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Peptide therapeutics have recently gained momentum in antiviral therapy

due to their increased potency and cost-effectiveness. Interaction of the

HIV-1 envelope gp120 with the host CD4 receptor is a critical step for viral

entry, and therefore the CD4-binding site (CD4bs) of gp120 is a potential

hotspot for blocking HIV-1 infection. The present study aimed to design

short peptides from well-characterized CD4bs targeting broadly neutralizing

antibodies (bNAbs), which could be utilized as bNAb mimetics for viral

neutralization. Co-crystallized structures of HIV-1 gp120 in complex with

CD4bs-directed bNAbs were used to derive hexameric peptides using the

Rosetta Peptiderive protocol. Based on empirical insights into co-crystallized

structures, peptides derived from the heavy chain alone were considered. The

peptides were docked with both HIV-1 subtype B and C gp120, and the stability

of the peptide–antigen complexes was validated using extensive Molecular

Dynamics (MD) simulations. Two peptides identified in the study demonstrated

stable intermolecular interactions with SER365, GLY366, and GLY367 of

the PHE43 cavity in the CD4 binding pocket, and with ASP368 of HIV-1

gp120, thereby mimicking the natural interaction between ASP368gp120 and

ARG59CD4−RECEPTOR. Furthermore, the peptides featured favorable physico-

chemical properties for virus neutralization suggesting that these peptides

may be highly promising bNAb mimetic candidates that may be taken up for

experimental validation.

KEYWORDS

HIV-1, peptide therapeutics, CD4-binding site, neutralizing peptides, molecular
dynamics simulation
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GRAPHICAL ABSTRACT

Graphical flow chart of methodology.

Introduction

Human Immuno-deficiency Virus (HIV), the causative
agent of Acquired Immuno-Deficiency Syndrome (AIDS),
continues to be a tenacious global public health challenge.
According to the UNAIDS 2021 report, there were 37.7
million people living with HIV (PLHIV), of which 27.5
million people were on Anti-Retroviral Treatment (ART) and
1.5 million people were newly infected with HIV in 20201.
Though 40 years have passed since the discovery of HIV, a
preventive vaccine against HIV continues to be a dream of the
future (1, 2). However, the introduction of combinatorial Anti-
Retroviral Therapy (cART)/Highly Active ART (HAART) has
revolutionized the treatment of HIV infection and contributed
significantly to viral suppression in infected individuals and
control of transmission (3, 4). However, the emergence of drug
resistance and the establishment of long-lived latent reservoirs
remain major obstacles to the cure of HIV infection and
elimination of the disease (5, 6).

In recent years, broadly neutralizing antibodies (bNAbs)
that can neutralize diverse HIV-1 strains by targeting vulnerable
epitopes on the HIV-1 envelope and thereby block HIV-
1 infection have gained attention as potential adjuncts to
antiretroviral therapy (7, 8). Recent studies have demonstrated
that the administration of bNAbs is effective in suppressing
viremia (9) and protecting against lentiviral infection in animal
models (10, 11), thus providing valuable insights for the design
of effective HIV-1 vaccines (12, 13). Very recently, researchers
have directed their attention towards the development of
therapeutic proteins and peptides targeting HIV, due to their

1 https://www.unaids.org/en

advantages such as specificity and selective nature of action as
compared to drugs and antibodies (14–16). Enfuvirtide (also
known as Fuzeon or T20), an FDA-approved peptide-based
drug, prevents the completion of HIV fusion events and has
been used in combination with other anti-retroviral drugs for
treating HIV infection (17). However, the drug has limited
clinical application due to the emergence of resistant HIV-1
strains (12, 18).

Selective interaction of the HIV-1 envelope glycoprotein
(gp120) with the CD4 molecule which serves as the primary
cellular receptor, and one of the chemokine receptors
CCR5/CXCR4 or both, constitutes a crucial step in HIV-1
infection (19–21). Regardless of the genomic and antigenic
variation between HIV-1 strains, the CD4 binding site (CD4bs)
is known to be well-conserved among the different HIV-1
subtypes and is reported to be one of the potential targets of
neutralizing antibodies (22–24). The CD4bs is centered in a
cavity formed at the interface of the gp120 outer and inner
domains, where the hydrophobic residues present in the deep
pocket constitute the point of contact with Phe-43 of the CD4
receptor (also called the Phe43 cavity) (25, 26). In addition,
Arg59 of the CD4 receptor forms a salt bridge with D368 of
gp120 to stabilize the CD4 binding site interaction (27, 28).

As early as 1999, Vita et al. reported that oligo-peptides
targeting the CD4bs could inhibit the binding of gp120 with
the CD4 receptor and thereby prevent HIV infection (29).
The present study is based on the hypothesis that short
peptides derived from the paratope of broadly neutralizing
antibodies might function as potent mimics of these antibodies.
This is based on earlier reports that ultra-short peptides of
size up to seven amino acids have several useful features
including biocompatibility, tunability, non-immunogenicity,
biodegradability, and most importantly, efficient survival
against proteolytic degradation in the gastrointestinal tract,
as compared to longer peptides (30). We chose ultra-short
peptides of 6-amino acids length (hexamers) for our study.
Taking advantage of the available HIV-1 gp120-neutralizing
antibody crystal structure complexes, we made an attempt to
identify hexameric peptides from the paratope of neutralizing
antibodies and characterized them using in silico methods
like Molecular modeling, interacting interface analysis, and
Molecular Dynamic (MD) simulation to understand their
usefulness as therapeutic tools for HIV.

Materials and methods

Selection of co-crystal structures of broadly
neutralizing antibody with HIV-1 envelope
gp120

A number of CD4bs-directed neutralizing antibodies have
been identified and reported. Based on their mode of
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recognition and B-cell ontogeny, CD4bs antibodies fall into
two categories: VH-gene restricted antibodies derived from the
heavy chain germline genes VH1-2 or VH1-46, and CDRH3
dominated antibodies in which the antibody binding interfaces
are dominated by the complementary-determining region three
(CDR3) (13, 31, 32). The CD4bs directed bNAbs used for this
study included VRC01 and 8ANC131, considered to be the first
identified members of the VH-gene restricted “VRC01-class and
8ANC131-class” bNAbs (33) since the co-crystal structures of
these antibodies with HIV-1B and C envelopes were available.
VRC01 (VH1-2) and 8ANC131 (VH1-46) are both potent
bNAbs found to be capable of neutralizing about 91 and 78%
of the HIV-1 strains, respectively (34). The co-crystal structures
of 8ANC131 with the HIV-1 subtype B envelope YU-2 gp120
(PDB ID: 4RWY 2.13 Å resolution) and VRC01 with the HIV-
1 subtype C envelope ZM176.66 gp120 (PDB ID: 4LST 2.55 Å
resolution) were downloaded from PDB (Protein Data Bank)
(Figure 1). Both co-crystal structures included the heavy and
light chains of the respective antibodies complexed with HIV-
1 envelope gp120. The Fab (Fragment antigen-binding) regions
of the antibodies were bound to the CD4bs in HIV-1 gp120.

Design of short linear peptides targeting the
CD4-binding site

The Rosetta Peptiderive is a computational tool designed to
predict possible inhibitory peptides from the crystal structures
of protein complexes based on their interacting interface,
was used to identify short linear peptides that would target
the CD4bs and bring about virus neutralization. This tool is
hosted online in ROSIE (Rosetta Online Server that Includes
Everyone) web interface and can be accessed at https://rosie.
rosettacommons.org/peptiderive. The antigen (HIV-1 gp120)–
antibody (bNAb) complex was uploaded on the Rosetta
peptiderive tool in PDB format, with optimal parameters
defining the Receptor and Partner. The tool automatically
refines the antigen–antibody complex by removing local clashes
and extracts potential peptide fragments of specified window
size. The binding energies of the identified peptide–antigen
complexes were calculated using the Rosetta energy function
(35). Peptides with the most significant binding scores were
shortlisted, and their position, sequence, interface score and
relative interface score were obtained (36). Intermolecular
interactions of the identified peptide-antigen complexes were
visualized in the PDBsum webserver (37) and CHIMERA (38).

Docking of peptides with human
immunodeficiency virus-1 gp120

To validate the binding of the identified peptides with
HIV-1 gp120, peptide–antigen docking was performed
using HADDOCK (High Ambiguity Driven protein-protein
DOCKing) webserver (Version 2.2) in the EASY interface
available at https://wenmr.science.uu.nl/haddock2.4/. The

antigen and peptides were docked by generating Ambiguous
Interaction Restraints (AIR) with the interface residues
identified from the PDBsum analysis of the Rosetta
peptiderive complexes (39, 40). The docked structures
were summarized in clusters, and each cluster was assigned
a HADDOCK score, cluster size, RMSD from the overall
lowest energy conformations, Z-score and buried surface area
along with bonding energies (Vander Waal’s, electrostatic,
desolvation, and restraints violation energies). The best-
docked complex (topmost cluster suggested by HADDOCK)
replicating the desired residual interactions was identified
and selected for further analysis. The binding affinity (1G)
and dissociation constant (Kd) of the docked complexes
were calculated using the PRODIGY webserver, available at
https://wenmr.science.uu.nl/prodigy/. This webserver predicts
binding affinities based on inter-molecular contacts within a
distance cut-off of 5.5 Å (41, 42).

Molecular dynamics simulations of the
peptides with human immunodeficiency
virus-1 envelopes

The peptide-HIV-1 envelope complexes identified using
Rosetta peptiderive were subjected to Molecular dynamics
(MD) simulations to deduce their dynamic behavior under
physiologically simulated conditions (43). MD simulations
were performed using the DESMOND software package (44)
with OPLS_2005 as a force field and implemented as in
Muthukumaran et al. (45). To begin with, the system was built
in an auto-calculated cubic box and solvated with explicit Single
Point Charge (SPC) water molecules. The solvated system was
energy minimized and the MD run was carried out for 200 ns
by implementing an NPT ensemble with a sampling interval of
10 ps. During the MD run, the whole system was maintained
at an equilibrium of 300 K temperature and 1 atm pressure.
Analytical tools available in DESMOND were used to infer the
Root Mean Square Deviation (RMSD) of the protein backbone,
the Root Mean Square Fluctuation (RMSF) of the residues, the
radius of gyration, and other structural transitions throughout
the simulations.

Molecular mechanics-poisson boltzmann
surface area calculation for the top-scoring
stable neutralizing peptide-antigen complexes

The binding free energy (1G) of the final frames of
stable neutralizing peptide–antigen complexes obtained
from the MD simulation was calculated by implementing
MM-PBSA (Molecular Mechanics-Poisson Boltzmann
Surface Area) protocol in farPPI (fast amber rescoring for
Protein–Protein interaction Inhibitors) webserver, available
at http://cadd.zju.edu.cn/farppi/. Precise binding energies of
the docked poses were evaluated by the MM-PBSA method
which combines energy calculations based on implicit solvent
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FIGURE 1

Co-crystal structures of 8ANC131-YU-2 gp120 and VRC01-ZM176.66 gp120.The secondary structure elements (alpha helix and beta sheets)
color coded. PDB ID: 4RWY—Orange red: HIV-1 subtype B envelope, Blue: 8ANC131 Heavy chain, Yellow: 8ANC131 Light chain. PDB ID:
4LST—Green: HIV-1 subtype C envelope, Cyan: VRC01 Heavy chain, Magenta: VRC01 Light chain. The interface between the antibodies and
HIV-1 gp120 are highlighted and shown as the binding interface/CD4-binding site. (These two antibodies were selected based on their
neutralization profile and availability of crystal structure with HIV-1 subtype B and C envelope gp120 in Protein Data Bank).

and molecular mechanics model (46). Among the MM-PBSA
procedures, PB3 based approach was found to be highly
accurate as compared to the other approaches in farPPI,
as two force fields, GAFF2 and ff14SB, were applied to
the peptide and antigen, respectively (47, 48). Hence, this
method was adopted to score the binding free energy of the
peptide–antigen complexes.

KDeep absolute binding affinity calculation for the
most stable neutralizing peptide-antigen complexes

In addition to MM-PBSA, absolute binding affinity (1G)
of the topmost neutralizing peptide–antigen complexes was
calculated using KDeep, a protein–ligand affinity predictor tool
available at https://playmolecule.com/Kdeep/. This predictor
works based on a machine learning approach using a state-
of-the-art 3D convolutional neural network (49). The input
was voxelized into pharmacophore features like aromaticity,
hydrophobicity, total excluded volume, etc., and passed onto
the DCNN (Deep Convolutional Neural Network) model,
which is pre-trained by the PDBbind benchmark (v.2006).
Based on the implemented algorithm, the binding affinity
of the identified neutralizing peptide–antigen complexes was
calculated as discussed by Karlov et al. (50) and Varela-rial
et al. (51).

Additional computational predictions
The identified peptides were subjected to alanine scanning

using Bude Alanine Scan2 (52, 53) and Robetta Alanine scan3

2 https://pragmaticproteindesign.bio.ed.ac.uk/balas/

3 https://robetta.bakerlab.org/queue.jsp

(54) webservers to infer the energetically significant amino
acids at the peptide–antigen interface. This prediction helps
to prioritize key residues in the identified peptides. Toxicity
and physico-chemical properties of the peptides were predicted
using ToxinPred4 (55) and the peptide analyzing tool provided
by Thermo-fisher Scientific5.

Results

Neutralizing peptides derived from the
CD4-binding site-directed neutralizing
antibodies

Four hexameric peptides were derived through structure-
based sequence inference from the 8ANC131 and VRC01
neutralizing antibody-HIV-1 gp120 complexes using the Rosetta
peptiderive protocol as shown in Figures 2, 3. From the
hot segments in the bNAbs (that contribute to the most
significant binding interaction with the HIV-1 envelope gp120
protein), two peptides were identified from each of the
two antigen–antibody complexes. These included the peptide
Arg-Asp-Arg-Ser-Thr-Gly (RDRSTG) from the H chain of
8ANC131, which had an interface score of –9.447 and
contributed to 29% of binding energy, and the peptide

4 http://crdd.osdd.net/raghava/toxinpred/

5 https://www.thermofisher.com/in/en/home/life-science/protein-
biology/peptides-proteins/custom-peptide-synthesis-services/
peptide-analyzing-tool.html
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FIGURE 2

Peptides derived from 8ANC131 with the predicted hotspot regions on the antigen-antibody interface. The regions from where the peptides are
derived are highlighted. Peptides were visualized in Chimera, version 1.16.

Glu-Tyr-Ser-Ser-Thr-Pro (EYSSTP) from the L chain, which
had an interface score of –4.554 and contributed to 101% of
binding energy. Two other hexamers were derived from the PDB
crystal structure of VRC01-HIV-1C envelope, namely, Val-Asn-
Tyr-Ala-Arg-Pro (VNYARP) from the H chain, which had an
interface score of –9.982 and contributed to 30% of binding
energy, and QQYEFF (Gln-Gln-Tyr-Glu-Phe-Phe) from the L
chain, which had an interface score of –6.839 and contributed to
68% of binding energy (Table 1). In general, the peptides derived
from the heavy chain of the antibodies gave comparatively lower
interface scores than peptides derived from the light chain,
signifying better binding affinity of the former. Among the four
peptides, RDRSTG peptide having an interface score of –9.447
showed the most significant binding to the HIV-1 envelope.

Molecular docking of peptides with
antigens

Structural analysis of the 8ANC131-subtype B gp120 (PDB
ID: 4RWY) and VRC01-subtype C gp120 (PDB ID: 4LST)
complexes revealed close interaction between the antibody

Heavy chains and the HIV-1 gp120 CD4-binding site, while the
light chains protruded beyond the CD4bs, particularly the D
Loop and V5 regions (Figure 4). Therefore, we excluded the
peptides derived from the light chains as they did not engage
our target, i.e., the CD4bs. Residues 365–371 of HIV-1 gp120
were found to be the key residues involved in making critical
contacts with Phe43 and Arg59 residues of the CD4 receptor
(56). The VRC01 antibody showed a non-bonded interaction
with Ser365gp120, Gly366gp120, and Gly367gp120 of the Phe43
cavity, while in 8ANC131, Gly366gp120 and Gly367gp120 were
found to be involved in the interaction (57). Furthermore,
ASP368gp120 was observed to mediate the interaction with
ARG718ANC131/VRC01 by forming hydrogen bonds and salt
bridges, which mimicked the natural interaction between
ARG59CD4RECEPTOR and ASP368gp120 (25, 31, 34) (Figure 5).

We also performed intermolecular interaction analysis of
the Rosetta-derived peptide-antigen complexes and observed
similar interactions as seen in the PDB crystal structures
(Supplementary Figure 1). Among the peptides derived from
the antibody heavy chains, RDRSTG was found to form two
hydrogen bonds with ASP368 (2.75 Å and 2.82 Å) and MET426
(2.72 Å and 3.20 Å), and one hydrogen bond with GLY431
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FIGURE 3

Peptides derived from VRC01 with the predicted hotspot regions on the antigen–antibody interface. The regions from where the peptides are
derived are highlighted in a circle [Peptides were visualized in Chimera, version 1.16].

TABLE 1 Peptides derived from neutralizing antibodies and their interface scores.

PDB ID
(Co-crystal
structure)

Peptide
sequence

Receptor
(Envelope
gp120)

Antibody chain
(H-Heavy/
L-Light)

Position in
neutralizing antibody
(Crystal structure)

Interface
score

Total interface
score
(REU)

Relative interface
score (%)

4RWY
(8ANC131-
subtype B
gp120)

RDRSTG A H 71–76 –9.447 –33.11 28.54

EYSSTP A L 90–95 –4.554 –4.49 101.32

4LST
(VRC01-
subtype C
gp120)

VNYARP G H 57–62 –9.982 –33.57 29.73

QQYEFF G L 89–91, 96–98 –6.839 –10.03 68.23

*Highlighted peptides contribute significantly to binding with the respective antigen.

(2.76 Å); the other crystal structure residues were found to
have non-bonded contacts in the vicinity of <5 Å (LEU122,
VAL430, TRP427 and LYS432). The VNYARP peptide formed

two hydrogen bonds with GLY458 (3.08 Å and 3.12 Å) and
one hydrogen bond with ARG456 (2.73 Å) and THR467
(3.00 Å). In addition, salt bridges were also observed at ASP461
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FIGURE 4

Binding pockets of 8ANC131 and VRC01 in HIV-1 subtype B and subtype C gp120.

FIGURE 5

Hydrogen bonding (HB) interactions plot of the crystal structure of antigen–neutralizing antibody complexes.

and GLU466. Other non-bonded contacting residues were
ASN280, THR465, GLY366, SER365, ASN460 and ASP457.
Based on these observations, we docked the neutralizing
antibody 8ANC131-derived peptide RDRSTG with subtype C

(ZM176.66) gp120, and the VRC01-derived peptides VNYARP
with subtype B (YU-2) gp120, to examine the closeness of
the interaction patterns (especially ASP368 and SER365) with
that seen in the native crystal structures. To revalidate the
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observed interactions in the Rosetta derived complexes, we
performed re-docking of the peptide RDRSTG with subtype B
(YU-2) gp120 and VNYARP with subtype C (ZM176.66) gp120.
(Positions of residues are different in PDB crystal structures and
2D LIGPLOT—Supplementary Table 1; Residues stated here
are in accordance with the crystal structure but different from
that in LIGPLOT).

Docking with subtype B gp120
The RDRSTG peptide derived from 8ANC131 was found to

form hydrogen bonds with ASP368 (2.96 Å, 2.62 Å), TRP427
(2.81 Å, 2.97 Å), GLY198, GLU370, ASN425, MET426, GLU429
and LYS432, with a binding affinity (1G) of –9.1 kCal/mol
and Kd of 2.2E-07. The peptide VNYARP derived from VRC01
showed hydrogen bond interactions with ASP368 (2.68 Å) and
GLY431 (2.86 Å) with a binding affinity (1G) of –8.6 kCal/mol
and Kd of 5.0E-07 (Supplementary Figure 2).

Docking with subtype C gp120
The RDRSTG peptide featured interactions at positions

SER365 (2.75 Å and 2.69 Å), GLY366, ASP457 (2.78 Å and
2.67 Å), GLY458 and ASN460, with a binding affinity (1G)
of –8.8 kCal/mol and Kd of 3.4E-07. In the case of VNYARP-
subtype C gp120 re-docking, hydrogen bond interactions were
observed at ASN280 (2.87 Å and 3.10 Å), LYS360, HIS364,
ASP457, ASP461 (2.65 Å, 3.23 Å), THR465, GLU466, THR467
and ARG469, thus concurring with the Rosetta peptiderive
prediction. However, the main residue SER365 was noticed to
form a non-bonded contact with a binding affinity (1G) of –
9.9 kCal/mol and Kd of 5.9E-08 (Supplementary Figure 3). The
redocking study demonstrated the predictive accuracy of the
methods implemented.

Molecular dynamics simulation analysis
of the peptide-antigen complexes

To start with, the HIV-1 subtype B and subtype C gp120
antigens (without peptides) were subjected to a production run
of 200 ns, and trajectory analysis was performed. The system of
subtype B gp120 antigen comprised of 49,311 atoms with 14,688
water molecules in the neutralized state, while the subtype C
gp120 antigen system comprised of 48,478 atoms with 14,405
water molecules in the neutralized state. The RMSD plot of
both antigens revealed that the Cα deviations were stable and
within the range of 3 Å, and were found to converge toward the
final stages of simulation (Supplementary Figure 4). The RMSF
plot identified the peaks which represent the regions/residues
that fluctuated the most during the simulation: 175–200 (4.7 Å)
and 225–250 (5.0 Å) regions in subtype B gp120, and 250–
275 (4.0 Å) and 300–337 (4.2 Å) regions in subtype C gp120
(Supplementary Figure 5).

We then performed molecular dynamics simulation of the
peptide–gp120 complexes. The simulation system of subtype B

gp120-RDRSTG solvated complex comprised of 49,305 atoms
with 14,654 water molecules, and was neutralized by adding
one cl− ion (1.241 mM). On trajectory analysis, the protein–
ligand RMSD plot revealed that the complex converged at 10 ns
with a 0.6 Å difference between the peptide and antigen-bound
state (Figure 6). The ligand RMSD value was in the range of
3.0 Å with reference to the backbone of the antigen and was
found to be well-bound to the binding regions. The RMSF plot
revealed that RDRSTG (Supplementary Figure 6) interacted
well at regions 50–100, 220–250, 250–300 and 300–337, despite
fluctuations. Fluctuations posed by the peptide throughout
the simulation were inferred from the ligand RMSF plot
(Supplementary Figure 7), where it was found to be stable in
the range of 4 Å. The structural compactness of the peptide was
measured based on the radius of gyration (rGyr). This analysis
revealed that the peptide RDRSTG maintained its compactness
up to 150 ns in the range of 1 Å (Supplementary Figure 8).
The bonded interactions between the antigenic residues and
the RDRSTG peptide were analyzed from the ligand–protein
contacts plot (Figure 7), wherein it was found that for about
79 and 52% of the duration of the run, Asp229 (ASP368) and
Glu274 (GLU429) interacted by means of hydrogen bonds,
ionic bonds and water bridges, respectively (Supplementary
Figure 10).

Subtype C gp120-VNYARP peptide was made up of 48,414
atoms with 14,350 water molecules in the neutralized state.
The antigen–peptide RMSD plot inferred that the complex
converged at 75 ns with a 0.6 Å difference between the peptide
and antigen-bound states (Figure 6). However, the peptide
VNYARP evolved to make stable interactions between 85 and
160 ns in the vicinity of <3 Å. The ligand RMSD value was
in the range of 2.0 Å with a major fluctuation at 75 ns.
Residues in the region 150–180, 200–250, and 300–339 were
found to sustain bonded interactions with the peptide as per
the RMSF plot (Supplementary Figure 6). The ligand RMSF
plot inferred that the peptide is stable as the fluctuations
were within the range of 4 Å (Supplementary Figure 7). The
rGyr analysis revealed a minimum deviation of 6.0–6.5 Å,
indicating that the peptide sustained high compactness during
the entire simulation process (Supplementary Figure 9). With
regard to peptide–antigen contacts (Figure 8), Gly305 (GLY458)
was found to interact 96% of the time during the entire
run by means of hydrogen bonds and water bridges. Asp304
(ASP457—70%), Asp227 (ASP368—67%), Gly226 (GLY367—
62%) and Ser224 (SER365—62%) formed hydrogen bond
interactions and water bridges, with the exception of Asp227
(ASP368), where an additional ionic interaction featured. The
least interacting residue was Arg303 (ARG456), which revealed
sustained binding (hydrogen bonds and water bridges) around
53% of the 200 ns production run (Supplementary Figure 11).

The MD trajectories revealed RDRDTG and VNYARP
peptides to be highly stable in terms of bonded interactions
during the 200 ns of simulation. The dynamic evolution
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FIGURE 6

Root mean square deviation (RMSD) plot of the peptide–antigen complexes.

FIGURE 7

Ligand–protein contacts of peptide Arg-Asp-Arg-Ser-Thr-Gly (RDRSTG) within the subtype B gp120 complex.

of the peptides RDRSTG and VNYARP are illustrated in
Figures 9, 10. The MD trajectory analyses revealed that the
peptides RDRSTG and VNYARP were stable binders, as they
feature stable contacts with the key residues namely, SER365,
GLY366, GLY367, and ASP368 across the production run
(Supplementary Figure 12). The binding free energies (1G)
of the complexes (RDRSTG-subtype B gp120 and VNYARP-
subtype C gp120) were calculated over the MD simulation
trajectory for the frames sampled at an interval of 20 ns and
subjected to MM-PBSA (PB3) using the far-ppi server and
binding affinity calculation using Kdeep, respectively. MM-
PBSA calculations of RDRSTG-subtype B gp120 and VNYARP-
subtype C gp120 complexes gave an average of –13.58 ± 2.85
(Mean ± SD) kCal/mol and –16.04 ± 8.77 (Mean ± SD)
kCal/mol, respectively. Similarly, KDeep calculations gave an
average of –9.32 ± 0.80 (Mean ± SD) kCal/mol for RDRSTG-
subtype B gp120 and –10.18 ± 0.63 (Mean ± SD) kCal/mol

for VNYARP-subtype C gp120, respectively (Supplementary
Figure 17).

The Alanine scan analysis for RDRSTG-Subtype B gp120
and VNYARP-Subtype C gp120 complexes using Robetta and
Bude scan identified the cumulative energetically important
amino acids in the peptides across the binding interface as R,
D, R, S and T in the RDRSTG peptide and V, N, Y and R in the
VNYARP peptide. The binding affinities of the alanine mutated
peptides are provided in Supplementary Table 2. The results of
the physico-chemical analysis are provided in Table 2. Further,
the peptides were found to be non-toxic.

Discussion

The CD4-binding site of the HIV-1 envelope has been
a key target of therapeutics for many years. However, not
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FIGURE 8

Ligand–protein contacts of peptide Val-Asn-Tyr-Ala-Arg-Pro (VNYARP) within the subtype B gp120 complex.

FIGURE 9

Dynamic evolution of the RDRSTG-HIV-1B gp120 complex. Salmon—HIV-1B YU-2 gp120 envelope; Blue—RDRSTG peptide; shaded regions
indicate the interactions before and after simulation.

FIGURE 10

Dynamic evolution of the VNYARP-HIV-1C gp120 complex. Salmon—HIV-1C ZM176.66 gp120 envelope; Red—peptide VNYARP; shaded regions
indicate their interactions before and after simulation.

Frontiers in Medicine 10 frontiersin.org

14

https://doi.org/10.3389/fmed.2022.1036874
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/


fmed-09-1036874 November 14, 2022 Time: 15:29 # 11

Vivekanandan et al. 10.3389/fmed.2022.1036874

TABLE 2 Predicted physico-chemical properties of the neutralizing antibody heavy chain derived peptides.

Peptide Alanine scan ToxinPred Hydrophobicity Charge GRAVY MWAvg.
g/mol

MWMono-isotopic Theoretical PI

Bude Robetta

RDRSTG RDRSTG RDRSTG Non-toxic 2.66 +1 –2.40 690.7193 690.3409 10.9

VNYARP VNYARP VNYARP Non-toxic 6.63 +1 –0.82 718.8183 718.3763 9.9

*Highlighted letters indicate hot spot residues in the alanine scan. MW, Molecular weight.

a single drug targeting the CD4bs has been approved by
the US FDA to date (58). With the discovery of broadly
neutralizing antibodies, various new approaches have been
explored to improve treatment strategies for HIV infection.
Despite advancements witnessed in the treatment of HIV,
the development of immune therapeutics still remains a
cumbersome, time-consuming, and highly expensive process.
In recent decades, peptide therapeutics have gained significance
in the field of medicine, for being highly specific and
efficacious, with good tolerability and safety profiles (59).
The interest in peptide therapeutics has been mitigated by
certain limitations; these include the relatively short half-life,
physiological instability, and difficulty in oral administration
(60). However, there have been ongoing efforts to eliminate
the obstacles in utilizing peptides, through half-life extension
and stability enhancement under physiological conditions
(61). Numerous studies have demonstrated the usefulness of
short inhibitory peptides in the treatment of several diseases,
particularly cancer (62–65). More recently, peptide therapeutics
have also shown promise for the treatment of HIV infection
(12, 16).

A number of studies in the past have attempted to
identify potent peptide inhibitors targeting the CD4bs (29, 66–
70), but without much success. This is because a successful
inhibitor should not only block the binding of the HIV
envelope to the CD4 receptor but should also efficiently
block co-receptor interaction which is important for HIV-
1 entry into the target cell (71). This kind of inhibition is
actually accomplished very well by neutralizing antibodies,
which target specific epitopes on the virus and lead to virus
neutralization, thereby preventing HIV infection. Modern
methods in computer-aided drug design have catalyzed the
ability to reduce cost and time which limits the development of
novel therapeutics (72).

Andrianov et al. (73) utilized a computer-aided strategy
to screen a public web-oriented virtual screening platform
(pepMMsMIMIC) to identify a few promising peptidomimetic
candidates from the broadly neutralizing antibody VRC01 (73).
In a similar line, we undertook an in-depth analysis of the
co-crystal structures of the bNAb 8ANC131-subtype B YU-
2 gp120 and VRC01-subtype C ZM176.66 gp120 complexes
and inferred that the contacts made by each CD4bs-directed
broadly neutralizing antibody with the HIV-1 gp120 were
highly variable. However, it was observed that the heavy

chain of the CD4bs-directed neutralizing antibodies engaged
well with the CD4bs, i.e., the Phe43 cavity, which is highly
conserved among the different bNAbs. Based on earlier studies
as well as our analysis of the co-crystal structures of the
antibody-antigen complexes, we decided to narrow down on
hexameric peptides that would be short and at the same
time target the critical residues in the CD4bs. Subsequently,
potential hexamers were derived from the crystal structures
of 8ANC131-subtype B gp120 and VRC01-subtype C gp120.
Two peptides were predicted from each crystal structure, one
from the heavy chain and another from the light chain.
Only the peptides derived from heavy chains were taken
up for further computational evaluations as they bound
best to the CD4bs. The heavy chain derived peptides were
docked with subtype B and subtype C envelopes, to identify
interactions with the key residues in the CD4bs. Based on
the 2D-interaction plot of the crystallized complexes, peptides
RDRSTG and VNYARP, derived from the heavy chain of
8ANC131 and VRC01, respectively, were shortlisted as they
interacted with the key residues of the CD4bs mentioned
earlier. Molecular dynamics simulation of the RDRSTG-subtype
B gp120 and VNYARP-subtype C gp120 complexes across
the 200 ns trajectory (frames sampled at an interval of
20 ns) revealed that the peptides RDRSTG and VNYARP
precisely target the binding site of the CD4 receptor (Phe43
and Arg59 contacts) and interact with the critical residues
through hydrogen bonds and Vander Waal’s interactions
with an average binding free energy (1G) (MM-PBSA) of
–13.58 ± 2.85 (Mean ± SD) kCal/mol and –16.04 ± 8.77
(Mean ± SD) kCal/mol, respectively. The sampled frames were
also subjected to KDeep calculation, wherein, the peptides
RDRSTG and VNYARP scored a significant average binding
affinity (1G) of –9.32 ± 0.80 (Mean ± SD) kCal/mol and
–10.18 ± 0.63 (Mean ± SD) kCal/mol, respectively. In the
case of VNYARP, one of the frames at the 60th ns gave
a higher MMPBSA value (1G = +3.18 kCal/mol) due to
a major conformation change; however, the lower binding
free energy state was quickly regained around the 80th
ns.

The energetically significant amino acids in the topmost
stable peptide-antigen complexes of RDRSTG-subtype B
gp120 and VNYARP-subtype C gp120 were found to be R,
D, R, S, T, V, N, Y and R, as inferred from the cumulative
results of the alanine scan (52, 53) and Robetta analyses
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(54, 74). The two peptides were also predicted to possess
favorable physicochemical properties including non-toxicity,
hydrophobicity of 2.66 and 6.63, and GRAVY (Grand Average of
Hydropathy) of –2.40 and –0.82 (75, 76), respectively (Table 2)
making these highly promising therapeutic candidates.
A striking finding to be noted is that the RDRSTG peptide is
derived from the site that is involved in the critical interaction
between ARG59CD4−RECEPTOR and ASP368gp120. This could
be the likely reason for this peptide standing out as the best
CD4bs-targeting neutralizing peptide, as compared to all other
peptides.

We further analyzed the co-crystal structures of
other VH-gene-restricted (VRC01-class and 8ANC131-
class) and CDR-H3-dominated antibodies with gp120
envelope for their residual interactions. The VRC01-
class antibodies 3BNC117 (PDB ID: 4JPV), N6 (PDB
ID: 5TE7) and NIH45-46 Fab (PDB ID: 4JDV) revealed
interactions between the conserved ARG71HC/HeavyChain
residue and ASP368gp120. In addition, these antibodies also
interacted with SER365gp120, GLY366gp120 and ASP368gp120

through Leu44CD4 and Lys46CD4 (10, 57, 77). In case of
8ANC131-class antibodies (1B2530; PDB ID: 4YFL) and
CDR-H3 dominated antibody (CH103; PDB ID: 4JAN),
the key contacts were ASP368gp120 through ARG72HC

and ARG97HC, respectively. These antibodies also showed
interaction with residues of the PHE43 cavity in gp120 (34,
78). Given these observations, we speculate that peptides
derived from these neutralizing antibodies could also be
explored for the identification of novel neutralizing peptide
mimetics against HIV.

The binding of HIV-1 gp120 with the CD4 receptor on
the target cell triggers a conformational change that uncovers
epitopes called CD4-induced (CD4i) epitopes that bind to
the chemokine co-receptors on the host cell, either CCR5 or
CXCR4. Since the binding of the candidate bNAb mimetics to
the CD4bs prevents conformational changes in the HIV-1 gp120
and obsoletes binding to the co-receptor, the process of viral
entry into the target cells is also inhibited. Thus, the peptide
mimetics identified in this study hold promise as highly potent
candidates for HIV therapeutics.

Conclusion

Using modern computational tools the present study
identified two short, hexameric peptides from the heavy chain of
two well-characterized CD4bs-targeting bNAbs, 8ANC131 and
VRC01, that hold promise as potential therapeutic candidates
that can be exploited for the treatment of HIV-infected persons.
This study is the first of its kind to identify short peptides that
can bind to and possibly neutralize HIV-1. Given the potential
of the identified candidate peptides to function as mimetics of
HIV-1 broadly neutralizing antibodies, in vitro studies are in

progress to validate their efficacy in HIV-1 neutralization in our
laboratory (20).
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Jinwu Gutong capsule (JGC) is a traditional Chinese medicine formula for the

treatment of osteoarthritis (OA). Synovitis is a typical pathological change in OA

and promotes disease progression. Elucidating the therapeutic mechanism of

JGC is crucial for the precise treatment of OA synovitis. In this study, we

demonstrate that JGC effectively inhibits hyperproliferation, attenuates

inflammation, and promotes apoptosis of synovial cells. Through scRNA-seq

data analysis of OA synovitis, we dissected two distinct cell fates that influence

disease progression (one fate led to recovery while the other fate resulted in

deterioration), which illustrates the principles of fate determination. By

intersecting JGC targets with synovitis hub genes and then mimicking

picomolar affinity interactions between bioactive compounds and binding

pockets, we found that the quercetin-AKR1C3 pair exhibited the best affinity,

indicating that this pair constitutes the most promising molecular mechanism.

In vitro experiments confirmed that the expression of AKR1C3 in synovial cells

was reduced after JGC addition. Further overexpression of AKR1C3 significantly

attenuated the therapeutic efficacy of JGC. Thus, we revealed that JGC

effectively treats OA synovitis by inhibiting AKR1C3 expression.
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Introduction

Osteoarthritis (OA) is the most common age-related chronic

degenerative whole-joint disease and affects more than

300 million people worldwide (Choi et al., 2019; Boer et al.,

2021). OA imposes a severe social and economic burden, and its

total costs are estimated to equal 1%–2.5% of a country’s gross

domestic product (GDP) (Hiligsmann et al., 2013; Brown et al.,

2021). The main pathological features of OA are cartilage

degeneration and synovial inflammation (Sellam and

Berenbaum, 2010). Increasing evidence indicates that synovial

inflammation not only is directly linked to clinical symptoms

such as joint swelling and inflammatory pain but also increases

cartilage injury (Atukorala et al., 2016; Labinsky et al., 2020).

Thus, inhibiting synovitis is a crucial aspect of preventing OA

development.

The current treatments for synovitis mainly include

nonsteroidal anti-inflammatory drugs (NSAIDs) and

glucocorticoids (GSs), but their effects are often short-lived

and may even lead to a greater degree of cartilage loss

(Conaghan et al., 2019; Pontes-Quero et al., 2021). Jinwu

Gutong capsule (JGC) is a traditional botanical formula

widely used in China for OA treatment and is widely believed

to have considerable potential with respect to clinical efficacy

(Zhao et al., 2022). Indeed, the combined application of JGC with

NSAIDs or GS can significantly improve the efficacy of OA

treatment. However, the pharmacological mechanism of JGC

remains unclear and warrants further research.

Single cell sequencing provides insights into the underlying

mechanisms of OA development. Early research mainly focused

on cartilage degeneration: Tang et al. identified seven molecularly

defined populations of chondrocytes in the human OA cartilage

(Ji et al., 2019); Jeon et al. (2017) found that p16INK4a positive

senescent chondrocytes contribute to the development of

spontaneous and injury-induced OA. In recent years, people

have increasingly recognized the important role of synovitis in

the development of OA. Nanus et al. (2021) illustrated that there

are distinct synovial fibroblast subsets in early OA and end-stage

OA. Knights et al. (2022) displayed Prg4hi lining fibroblasts

secrete Rspo2, which drives pathological joint crosstalk after

injury.

In this study, we demonstrate the therapeutic effect of JGC on

synovial inflammation and hyperplasia. A single-cell synovial

atlas was produced, which allowed an in-depth exploration of the

synovial microenvironment. Further transcriptional dynamics

analysis revealed a cell fate decision mechanism that affects

disease progression and recovery. We also identified the target

of JGC in treating OA synovitis and verified this target through

computer simulations and biological experiments.

Materials and methods

Preprocessing of Jinwu Gutong capsule

Commercial JGC (specification: 0.5 g per pill) was purchased

from Guizhou SSLF Pharmaceutical Co., Ltd. (Guizhou, China,

approval number: Z20043621). According to the literature

(Sridhar et al., 2021), JGC was powdered and extracted using

a Soxhlet extractor with 6 times the amount of 90% ethanol. The

solvent was then concentrated using an electrically heated blast

drying oven at 45°C. Subsequently, the concentrate was

lyophilized with a freeze dryer and weighed. The JGC extract

was dissolved in DMSO (20 mg/ml) and stored at −80°C for

later use.

Cell culture

The human synovial cell line SW982 was kindly provided by

Procell Life Science and Technology Co., Ltd. (Wuhan, China).

SW982 cells have been shown to possess characteristic features

similar to synovial fibroblasts which makes them an ideal tool to

study synovitis in OA (Karuppagounder et al., 2022). The cells were

cultured in DMEM/Ham’s F12 medium (DMEM/F12; HyClone,

Logan, UT, United States) with 10% fetal bovine serum (PAN

Biotech, Aidenbach, Germany) and 1% penicillin/streptomycin

(Gibco, Grand Island, NY, United States).

Detection of cell proliferation

The cell proliferative capacity was determined by Cell

Counting Kit-8 assays (CCK-8, Biosharp, Guangzhou, China).

Cells (10,000/well) were plated in 96-well plates, and DMSO,

CTGF or JGC was added according to the experimental design.

CTGF is a pro-inflammatory cytokine, that is, upregulated in OA

TABLE 1 Molecular docking results.

Bioactive compounds Targets affinity (kcal/mol)

quercetin AKR1C3 −10.1

syringetin CYP1B1 −9.3

apigenin CYP1B1 −8.3

quercetin MMP2 −8.2

quercetin CYP1B1 −7.9

chlorogenic acid MMP2 −7.7

apigenin PTGS2 −7.7

icariside F2 VEGFA −2.3
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and contributes to synovial hyperplasia (MacDonald et al., 2021).

The working concentration of CTGF was 25 ng/ml, and that of

JGC was 20 μg/ml. After 24 h, the supernatant was replaced with

CCK-8 working solution, and the absorbance at 450 nm was

measured.

Apoptosis detection

An Annexin V-FITC Assay Kit (Merck, NJ, United States) was

used to detect apoptosis in synovial cells. The cells were plated in 6-

well plates (50,000/well) and processed as described above. After

24 h, the cells were dissociated and stained according to the

instructions provided with the kit. In brief, cells were digested

with trypsin, washed gently with PBS, resuspended in buffer

solution to 1 × 106 cells/ml. Then 5 μl Annexin V-FITC was

added, and the mixture was incubated in the dark for 5 min 5 μl

propidium iodide (PI) was added to the cells before analyzed. We

measured the proportion of FITC(+) cells by flow cytometry.

Data sources and processing

Single-cell sequencing data for synovial cells were downloaded

from the GEO database (no. GSE176308), and 10X genomics data

were loaded into the R package Seurat (v4.0.2). Synovial cells were

obtained from 4 patients with early-stageOA (both painful and non-

painful sites) and 4 patients with end-stage OA (painful sites)

(Nanus et al., 2021). Cell quality control was applied to remove

low-quality cells with less than 300 detected genes or withmore than

10% mitochondrial genes. After normalizing the data, the cells were

dimensionally reduced and clustered according to the top

2,000 highly variable genes. The FindIntegrationAnchors

algorithm found a set of anchors between Seurat objects from

different patients. These anchors could be used to integrate the

objects using the IntegrateData function. Harmony package (v1.0)

was used to remove the batch effect, the diversity clustering penalty

parameter was set to 2 and the ridge regression penalty parameter

was set to 1.

Pseudotime analysis

The dynamic states of synovial cells were assessed using the

Monocle algorithm (v2.18.0). Monocle uses an unsupervised

algorithm to order whole-transcriptome profiles of single cells

and produce a ‘trajectory’ of an individual cell’s progress through

differentiation. We applied the “reduceDimension” function to

compute the CellDataSet object as a lower dimensional trajectory.

The Discriminative Dimensionality Reduction with Trees

(DDRTree) method was chosen for its ability to reduce

dimensionality while discriminating between different data

points. Following dimension reduction, the two features with the

most significant amount of information were extracted and used as

the coordinate axes to visualize the trajectory. Branched expression

analysis modeling (BEAM) was performed to identify genes with

branch-dependent expression and thus elucidate fate decision

mechanisms.

Cell cycle analysis

Independent cell cycle analysis was performed for each

synovial cell. The “CellCycleScoring” function in the Seurat

package was used to assign cell cycle scores according to S-

and G2/M-phase genes, which were identified following

procedures described in a previous study (Kan et al., 2022).

The number of control features selected from the same bin per

analyzed feature was set to 100 and the random seed was set to 1.

The cells were classified into G1, S, and G2/M phases based on

the maximal score of each cell cycle phase program.

Jinwu Gutong capsule target prediction

We obtained information regarding the main raw materials

from the JGC drug manual. Information about the main active

ingredients of these raw materials was obtained from the relevant

literature (Supplementary Table S2). The SDF format files of

molecular structures were downloaded from the Pubchem

database (https://pubchem.ncbi.nlm.nih.gov/). Targets of these

molecular structures were predicted using the

SwissTargetPrediction database (http://www.swisstargetprediction.

ch/) (Daina et al., 2019). The species was confined to “Homo

sapiens”, and the predicted targets with a probability more than

0.3 were included in this study.

Molecular docking

Macromolecular structures were downloaded from the

RCSB PDB database (https://www.rcsb.org), and biological

ligands were accessed from PubChem database. PDB files were

converted to the PDBQT format. We used AutoDockTools

software to search for possible active pockets, removed all

water molecules and assigned hydrogen polarities. AutoDock

Vina was employed to conduct molecular docking between the

active ingredients and targets, then took the conformation

with the highest docking score (Affinity). Finally, we used the

PyMOL software to visualize the results of molecular docking.

Statistical analysis

Bilateral tests were performed for all statistical tests. A

p-value lower than 0.05 was considered to indicate statistical
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significance. R software version 4.0.2 (https://www.r-project.org/

) was used for the analysis. The following R language packages

were used in this study: “dplyr”, “Seurat”, “monocle”, “monocle”,

and “iTALK”. The “drug-material-target” network was visualized

using Cytoscape_3.7.2 (https://cytoscape.org).

Results

Jinwu Gutong capsule exerts ideal
therapeutic effects on reducing
inflammation and hyperplasia of synovial
cells

JGC is widely used for OA treatment with ideal clinical

efficacy. According to the instructions, the main raw materials

of JGC include Cibotium barometz (CB [Cyatheaceae; Cibotium

barometz (L.) J. Sm]), Epimedium (ED [Berberidaceae;

Epimedium sagittatum (Siebold & Zucc.) Maxim]), Clematidis

radix (CR [Ranunculaceae; Clematis chinensis Osbeck]), Zaocys

dhumnades (ZD [Colubridae]), Achyranthes bidentata Blume

(ABB [Amaranthaceae; Achyranthes bidentata Blume]),

Chaenomeles sinensis (CS [Rosaceae; Pseudocydonia sinensis

(Dum.Cours.) C.K. Schneid]), Pueraria lobata (PL [Fabaceae;

Pueraria montana var. lobata (Willd.) Maesen & S.M. Almeida ex

Sanjappa & Predeep]), Curcuma longa (CL [Zingiberaceae;

Curcuma longa L., Sp. Pl.: 2 (1753)]), Psoralea corylifolia Linn.

(PCL [Fabaceae; Cullen corylifolium (L.) Medik]), and

Campanumoea javanica bl (CJB [Campanulaceae; Codonopsis

javanica (Blume) Hook. f. & Thomson, Ill. Himal. Pl. t.16 B

(1855)]). Certain materials (ED, ABB, CS, PL, CL, and CR)

reportedly have significant anti-inflammatory and antioxidant

activities, and the aqueous extract of CR exerts a good anti-

osteoarthritis effect (Cheng et al., 2013; Lin et al., 2019; Cheng

et al., 2020; Jeon et al., 2020; Lin et al., 2021; Razavi et al., 2021).

The reasonable compatibility of these materials guarantees

curative efficacy.

Synovial tissue shows discordant hyperplasia and

inflammation during OA progression. The human synovial

cell line SW982 was treated with JGC to assess the effect of this

drug on synovial hyperplasia. In normal synovial cells, the

inhibition of proliferation by JGC was not significant,

indicating tolerable drug toxicity. We then induced

hyperproliferation using the growth factor CTGF, and JGC

exerted a more pronounced inhibitory effect on the

proliferation of active synovial cells (Figure 1A). Flow

cytometry showed that the proportion of FITC(+) synovial

cells was significantly increased, showing the apoptosis-

promoting effect of JGC on SW982 cells (Figure 1B). The

inflammatory cytokine IL-1β was applied to induce intense

inflammation in synovial cells. Although the expression levels

of numerous inflammatory genes (IL-1β, IL-6, IL-8, NOS2,

and TNF-α) were clearly increased, JGC treatment

significantly reversed the increase in expression caused by

inflammatory stimulation (Figure 1C). We also found similar

trends for the intracellular reactive oxygen species (ROS)

levels: inflammation led to increased ROS levels in

SW982 cells, and this increase was relieved after JGC

addition (Figure 1D). These results confirm the therapeutic

effect of JGC on synovitis in vitro.

Cellular composition and communication
of synovial microenvironment in
osteoarthritis

To deeply dissect the molecular mechanism of JGC in the

treatment of OA synovitis, scRNA-seq data from 4145 synovial

fibroblasts (SFs) were examined in this study. SFs were clustered

into nine color-labeled subsets based on their unbiased

transcriptome signatures (Figure 2A). The cell cluster

properties were preliminarily assessed based on cluster-specific

markers (Figures 2B,C; Supplementary Figure S1; Supplementary

Table S1): the cells in SF-0 expressed high levels of IGFBP6,

MFAP5, and SEMA3C, indicating their high proliferative

capacity; the cells in SF-1 overexpressed CXCL12 and ID1,

suggesting a stronger inflammatory stimulus; the cells in SF-2

expressed MMP2 and WISP2, which play decisive roles in

fibrosis; the cells in SF-5 showed relatively high expression of

Piezo2, a mechanosensitive channel; the cells in SF-6 expressed

RNASE1, indicating decreased adhesion to cartilage; the cells in

SF-7 expressed genes critical for synovial angiogenesis

(expressing SCUBE3); and the cells in SF-8 expressed

relatively high levels of a cell cycle-related gene (CENPM).

We further calculated module scores to assess their

inflammatory and proliferative activities, which are the two

most prominent pathological features of synovitis. Consistent

with the abovementioned results, the SF-1 synovial cells showed

the highest level of inflammation, whereas the SF-0 cells

exhibited an excessive proliferative capacity (Figures 3A,B).

Overall, the proportions of cells from patients with or without

pain, according to clinical information, did not significantly

differ among the clusters; however, higher proportions of cells

in SF-0, SF-1, and SF-2 were obtained from end-stage OA

patients (Figures 3C,D). A cell‒cell communication analysis

revealed complex ligand‒receptor interactions in the synovial

microenvironment, and intercellular crosstalk was mainly

divided into cytokines, growth factors and others (Figure 3E).

Based on the cytokine categories, the synovial cells in SF-1

expressed higher levels of CXCL12, which interacts with the

ITGB1 receptor of surrounding cells to regulate proinflammatory

cytokine production (Kong et al., 2020). The growth factor

category revealed that CTGF secreted by SF-7 cells interacts

with LRP1, which is highly expressed on the surface of cells in

other clusters, to induce pathological progression (Schnieder

et al., 2020).
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Transcriptional dynamics analysis reveals
the regulation of synovial cell fate
decisions

The Monocle pseudotime algorithm was used to profile the fate

trajectory of synovial cells. The cells were dimensionally descended

and arranged in a typical dendritic shape (Figure 4A), and the fate

trajectory was divided into three cell states based on bifurcation

points (Figure 4B, state 1 to state 3). By comparing the gene patterns

in distinct cell states, we found certain classical progenitor/stem cell

markers to be significantly overexpressed in cell state 1 (OCT-4,

TRA-1-81, SSEA4, NANOG, etc.). Thus, cell state 1 was defined as

the origin of the trajectory (Figure 4C), and the synovial cells

gradually differentiated into two distinctive fates as the trajectory

progressed (Figure 4D).

We screened for “branch-dependent” genes that changed as the

cell fate developed and divided these genes into two genemodules. A

Gene Ontology (GO) enrichment analysis of “branch-dependent”

genes helped annotate the cellular properties across different cell

fates (Figure 4E). Certain functions that are beneficial to synovitis

recovery were significantly activated in cell fate 1 (e.g., negative

regulation of the inflammatory response and cell growth). However,

some terms that suggest pathogenesis were enhanced in cell fate 2

(such as positive regulation of angiogenesis). The expression

patterns of some canonical synovitis regulators were further

assessed, and certain restorative genes (such as NMB, APOE and

SMAD7)were highly expressed in cell fate 1 but decreased in cell fate

2. In addition, some pathogenic genes, such as ASPN and ACTA2,

showed completely contrary trends (Figure 4F). A cell cycle analysis

showed that the proportion of actively proliferating cells (G2/M)was

significantly higher in cell fate 2, indicating likely tissue hyperplasia

(Figure 4G). What’s more, the two pathways associated with pain

(prostanoid and eicosanoid signaling) showed increased activation

in cell fate 2, suggesting that these cells were more likely to induce

FIGURE 1
Therapeutic effect of JGC on synovitis. (A) CCK-8 assay showing the effect of JGC on cell proliferation. (B) Flow cytometry showing the effect
of JGC on apoptosis. (C) PCR showing that JGC effectively inhibits synovial inflammation. (D) JGC clearly reduces the intracellular ROS levels.
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clinical symptoms (Figure 4H). In summary, these results suggest

that cells in cell fate 1 contribute to recovery and that cells in cell fate

2 lead to synovitis progression.

Jinwu Gutong capsule treats synovitis by
inhibiting AKR1C3

A differential expression analysis between the two cell fates

identified a total of 403 key synovitis genes, including 195 and

208 upregulated genes in cell fate 1 and cell fate 2, respectively

(Figure 5A). Furthermore, by summarizing previous research

results, we collected 122 bioactive molecules from the raw

materials of JGC (Supplementary Table S2). Subsequently,

151 potential targeting relationship pairs were predicted

from the SwissTargetPrediction database (Supplementary

Table S3), and a “drug-material-target” network was

generated to visualize the potential therapeutic mechanism

(Figure 5B). By taking the intersection of JGC targets with

key genes of synovitis, five promising functional targets

(AKR1C3, VEGFA, CYP1B1, MMP2, and PTGS2) were

obtained (Figure 5C). Molecular docking was performed to

simulate the interaction between bioactive compounds and

binding pockets, which revealed a molecular basis for this

picomolar affinity (Supplementary Figure S2). The quercetin-

AKR1C3 pair exhibited the best affinity, indicating that this pair

FIGURE 2
ScRNA-seq profiling of synovitis microenvironments. (A) A uniform manifold approximation and projection (UMAP) plot showing the color-
coded cell clusters in the synovitis microenvironment. (B)Heatmap showing the marker gene expression in the different cell clusters. (C) UMAP plot
showing the marker gene expression in the different cell clusters.
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constitutes the most promising molecular mechanism

(Figures 5D,E; Table 1).

Further PCR results confirmed the hypothesis that

AKR1C3 expression was elevated in inflamed synovial cells and

effectively inhibited by the addition of JGC (Figure 6A). Rescue

experiments were performed to characterize the regulatory

relationship. AKR1C3 overexpression significantly attenuated the

JGC-induced inhibitory effect on synovial cell proliferation

(Figure 6B). Similarly, the anti-inflammatory effect of JGC on

synovial cells was clearly counteracted by

AKR1C3 overexpression (Figure 6C). Taken together, our

findings suggest that JGC treats synovitis in osteoarthritis by

inhibiting AKR1C3.

Discussion

OA is a chronic degenerative disease that involves pain and

disability, resulting in poor quality of life (Xie et al., 2021). Severe

synovitis is one of the typical pathological features of OA and

leads to disease progression (Jin et al., 2011; Zhang et al., 2022).

Certain botanical drugs, such as saponins and kaempferol, have

been shown to act as effective therapeutics in inflammatory

diseases (Devi et al., 2015; Dong et al., 2019). As a traditional

botanical formula, JGC has been widely used in clinical practice

and exerts good curative effects on OA synovitis. Thus,

elucidating the molecular mechanism of JGC has important

academic value and broad application prospects.

The pathological changes occurring in the OA synovium

mainly include inflammation, hyperplasia and fibrosis, all of

which usually coexist (Kuang et al., 2020). Our study shows that

JGC effectively inhibits the expression of proinflammatory

factors in synovial cells and reduces the intracellular ROC

levels in these cells. Furthermore, JGC restrained the

overproliferation of and induced apoptosis in synovial cells.

These results confirm the therapeutic effect of JGC on

synovitis at the cellular level, which complements the results

from previous studies.

FIGURE 3
Assessment of the synovial microenvironment and intercellular communication. (A) UMAP plot showing the level of inflammation in the
different cell clusters. (B) UMAP plot showing the proliferation ability of the different cell clusters. (C) Distribution of cells from patients with or
without pain. (D) Distribution of cells from early- and end-stage OA patients. (E) Cell‒cell communication in the synovial microenvironment.
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A pseudotime analysis revealed the transcriptional dynamics

and cell trajectory fates of synovial cells. In addition to the

inflammation-, proliferation-, and fibrosis-related terms

mentioned above, we found that the Hippo pathway was

significantly activated in cell fate 1. The cells in cell fate

1 were identified as synovitis repair cells, and certain previous

studies support our conclusion that activation of the Hippo

pathway by verteporfin significantly reduces the severity of

FIGURE 4
Pseudotime analysis of the synovium. (A) Trajectory plot of distinct cell clusters. (B) Trajectory plot of pseudotime states. (C) Trajectory heatmap
of different cell states. (D) Trajectory plot of different cell fates. (E) Trajectory heatmap of different cell fates. (F) Branch trend curves of crucial genes.
(G) Cell cycle distribution of different fates. (H) The activation levels of “Eicosanoid Signaling” and “Prostanoid Signaling”.
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synovitis (Caire et al., 2021; Symons et al., 2022). Certain key

genes (APOE and SMAD7) were found to silence cell fate 2.

Apolipoprotein E, a major apoprotein of the chylomicron,

inhibits synovial activation and ectopic bone formation (de

Munter et al., 2016); in contrast, Smad7 loss promotes

synovial inflammation and fibrosis (Blaney Davidson et al.,

2006; Zhou et al., 2018). Moreover, the expression of several

disease progression genes (ASPN, ACTA2 and LINC02381) was

FIGURE 5
JGC treats synovitis by inhibiting AKR1C3. (A) Heatmap showing differentially expressed genes among distinct cell fates. (B) Network showing
predicted targets of JGC. (C) Venn diagram showing the intersection of JGC targets with hub genes of synovitis. (D)Molecular structure of quercetin.
(E) Molecular docking pattern of the quercetin-AKR1C3 pair.
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increased in cell fate 2 (Yang et al., 2018; Wang and Zhao, 2020;

Wei et al., 2021). Joint pain is the predominant symptom of OA.

“Eicosanoid Signaling” and “Prostanoid Signaling” are thought to

be the main contributors to OA pain (Sanchez-Lopez et al.,

2022). Several enzymes of the eicosanoid receptors are well-

recognized targets of anti-inflammatory drugs that can reduce

synovial inflammation (Korotkova and Jakobsson, 2014).

Interestingly, our study found that cells in fate 2 were more

active in both pathways. This finding indicated that as synovial

cells progress toward fate 2, the patient’s pain symptoms will

likely become more severe. Overall, the consistency of our results

with those from previous studies bolsters the reliability of our

findings on cell fate determination.

We found that quercetin, an active component of JGC,

well matched the active pocket of AKR1C3, and a PCR

analysis confirmed a regulatory relationship. The

steroidogenic enzyme AKR1C3 plays an important role in

many diseases, such as prostaglandin disorder, metastatic

breast tumors and atopic dermatitis (Mantel et al., 2012;

Evans et al., 2019; Li et al., 2020). AKR1C3 mediates

hyperproliferation, oxidative stress and drug resistance in

various tissues (González-Muniesa et al., 2013; Yepuru

et al., 2013; Thoma, 2015). Although AKR1C3 is a

promising therapeutic target, no AKR1C3-targeting drugs

have been approved for clinical use to date (Pippione et al.,

2017). As a natural product, quercetin has been extensively

evaluated for its efficacy and pharmacological safety (Hu et al.,

2017; Ulusoy and Sanlier, 2020; Lai and Wong, 2021; Yan

et al., 2022). Our study verifies the therapeutic effect of

quercetin on OA synovitis by targeting AKR1C3, which

further broadens the potential application of quercetin.

This study has some limitations. There were relatively few

synovitis scRNA-seq samples and a lack of corresponding

chondrocytes and subchondral bone samples. Analysis of

additional samples would be conducive to eliminating the

heterogeneity caused by individual differences. Simultaneous

analysis of data from multiple tissues (synovium, cartilage,

subchondral bone) is beneficial to deepen our understanding

of OA disease process.

In summary, our study confirms the beneficial influence of

JGC in OA synovitis and thus shows that JGC effectively

suppresses inflammation and hyperproliferation in synovial

cells. An in-depth profiling of the synovitis microenvironment

and transcriptional dynamics revealed two distinct cell fates that

resolve or advance the disease. We also identified the

pharmacological mechanism of the quercetin-AKR1C3 pair of

FIGURE 6
Rescue experiments of AKR1C3. (A) PCR showing that AKR1C3 is inhibited by JGC. (B) CCK-8 assay showing that AKR1C3 overexpression
attenuates the JGC-mediated inhibition of cell proliferation. (C) ROS staining showing that AKR1C3 overexpression counteracts the anti-
inflammatory effect of JGC.
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JGC in the treatment of OA synovitis. These efforts will help

researchers better elucidate OA synovitis and improve treatment

outcomes.
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Inflammatory bowel disease (IBD) is a gastrointestinal disease with an

underlying contribution of genetic, microbial, environment, immunity factors.

The coding region risk markers identified by IBD genome wide association

studies have not been well characterized at protein phenotype level.

Therefore, this study is conducted to characterize the role of NOD2

(Arg675Trp and Gly908Arg) and IL23R (Gly149Arg and Arg381Gln) missense

variants on the structural and functional features of corresponding proteins.

Thus, we used different variant pathogenicity assays, molecular modelling,

secondary structure, stability, molecular dynamics, and molecular docking

analysis methods. Our findings suggest that SIFT, Polyphen, GREP++, PhyloP,

SiPhy and REVEL methods are very sensitive in determining pathogenicity

of NOD2 and IL23R missense variants. We have also noticed that all the

tested missense variants could potentially alter secondary (α-helices, β-

strands, and coils) and tertiary (residue level deviations) structural features.

Moreover, our molecular dynamics (MD) simulation findings have simulated

that NOD2 (Arg675Trp and Gly908Arg) and IL23R (Gly149Arg and Arg381Gln)

variants creates rigid local structures comprising the protein flexibility and

conformations. These predictions are corroborated by molecular docking

results, where we noticed that NOD2 and IL23R missense variants induce

molecular interaction deformities with RIPK2 and JAK2 ligand molecules,

respectively. These functional alterations could potentially alter the signal

transduction pathway cascade involved in inflammation and autoimmunity.

Drug library searches and findings from docking studies have identified

the inhibitory effects of Tacrolimus and Celecoxib drugs on NOD2 and

IL23R variant forms, underlining their potential to contribute to personalized
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medicine for IBD. The present study supports the utilization of computational

methods as primary filters (pre-in vitro and in vivo) in studying the

disease potential mutations in the context of genptype-protein phenotype

characteristics.

KEYWORDS

inflammatory diseases, IBD, genetic variants, molecular docking, protein stability, 3D
modelling, MD simulation

1. Introduction

Inflammatory bowel disease (IBD) is chronic autoimmune
condition of the digestive tract (GIT) (1). Ulcerative Colitis
(UC) and Crohn’s disease (CD) constitute the two main clinical
forms of IBD. The specific molecular etiology of IBD is
yet to be fully understood, but numerous studies show that
aberrant interactions between various genetic, immunologic
(e.g., mucosal immune cells) and environmental (e.g., gut
microbiota) factors play a pivotal role in IBD pathogenesis
(1, 2). The genetic basis of IBD is well supported by findings
such as increased disease rates in monozygotic twins, and also
by disease susceptibility differences among ethnic groups (3).
Population genetics investigations have also revealed compelling
evidence about the critical role of genetic factors in the
etiopathogenesis of IBD. In recent years, the International IBD
Genetics Consortium (IIBDGC), has pooled up all the GWAS
findings and identified a total of 201 IBD susceptibility loci (4, 5).
Among these loci, NOD2 and IL23R still represent the strongest
predictors for IBD susceptibility and clinical phenotypes (6–8).

NOD2 (Nucleotide Binding Oligomerization Domain 2)
is an intracellular receptor belonging to the family of
cytosolic NLRs (NOD, leucine-rich repeat protein) involved
in immune response by recognizing the muramyl dipeptide
(MDP) component of the bacterial cell wall. NOD2 variants
like Arg70Trp, Gly908Arg, Arg702Trp and Leu1007PfsX2NOD2
are strongly implicated in Crohn’s disease (CD) in Caucasian
population (9–12). The IL23R gene encodes a transmembrane
protein molecule belonging to type I cytokine receptor (13). This
molecule initially pairs with IL12RB1 to bind the IL23 signaling
molecule and activates JAK- STAT and NF-κB signaling
pathways. This receptor is highly expressed in dendritic cells
and is shown to be involved in controlling infection and chronic
autoimmune diseases (14). The polymorphisms in the IL23R
gene are also known to modulate IL23 responses and have also
been reported to influence the risk of IBD development (15, 16).

Although, positive statistical associations of NOD2 and
IL23R genes with IBD is well known, the specific mechanisms
how these genetic variants contribute to clinical phenotypes
is not yet clear. It is reasonable to assume that the disease
related amino acid substitution mutations cause changes in the

chemical nature or position of the encoded amino acid variant,
and potentially influences the bio physical characteristics
(like hydrogen bonding, pH dependence and conformational
dynamics) of the proteins. Although, both in vivo and in vitro
studies are effective solution in this direction, but they consume
lot of time and require a series of laboratory investigations.
The alternate strategy for overcoming this difficulty is by
predicting the specific biophysical impacts of each mutation
through advanced integrated bioinformatics approaches. So
many computations programs like SIFT (17), Polyphen (18),
M-CAP (19), FATHMM (20), CADD (21) etc., each specializing
on different prediction principles, are now available for
exploring the relationship between genetic mutations and
human diseases. Numerous studies have utilized these programs
to screen clinically significant genetic variants in different
human diseases (22–26). Therefore, in the present study, we
have performed a comprehensive computational analysis of
NOD2 (Arg675Trp and Gly908Arg) and IL23R (Gly149Arg
and Arg381Gln) variants using diverse range of machine
learning approaches. The genetic sequence – protein structure
relationships were studied different structural parameters like
secondary structure, active sites, motifs, domains, and accessible
surface areas in both wild type and mutant proteins.

Disease management strategy for IBD patients involves
surgery or drug treatment, depending upon the clinical
conditions and progression of inflammation (27). IBD treatment
regime consists of drugs belonging to five major categories like
anti-inflammatory steroids, immunosuppressive, symptomatic
relief drugs, antibiotics, and biological agents. The long-
term serious side effects and toxicity induction by these
steroidal and non-steroidal drugs in IBD patients is seen
to be unavoidable. However, this problem can be effectively
minimized by screening drugs which have the potential to
inhibit mutated target proteins and reduce the drug associated
cellular toxicity (28). Our drug library searching revealed us that
Tacrolimus and Celecoxib drugs shows specific inhibitory action
on mutated forms of NOD2 (Arg675Trp and Gly908Arg) and
IL23R (Gly149Arg and Arg381Gln), respectively. Hence, our
study provides computational evidence to repurpose Tacrolimus
and Celecoxib drugs against IBD pathogenesis after conducting
comprehensive in vitro and in vivo experiments.
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2. Materials and methods

2.1. Variant data

The details of NOD2 and IL23R genes including mRNA
accession number, reference number and their concerned
protein sequences were retrieved from UniProt, Human
Gene Mutation Database (HGMD), ClinVar, 1,000 genomes,
Ensemble (and the Single Nucleotide Polymorphism Database
(dbSNP). The terms like genetic mutations, genetic variations,
and SNPs are used interchangeably throughout this manuscript.

2.2. Prediction and functional
annotation of variants

dbNSFP version 2.2 was used for the functional predictions
and annotations of NOD2 and IL23R missense mutations.
The dbNSFP is a comprehensive database for functional
predictions and annotations of all the potential human non-
synonymous single-nucleotide variants (nsSNVs) (29, 30). The
current version (dbNSFP v2.2) of the database is based on
the GENCODE 9/Ensemble version 64 and it includes a total
of 87,361,054 nsSNVs. The search for the nsSNVs from the
database is done using a java program that executes the query
in dbNSFP v2.2 on the local machine of the user. For each
query it produces two prediction scores and three conservation
scores along with other variant and gene annotations. In this
study, we produced the prediction data for NOD2 (Arg675Trp
and Gly908Arg) and IL23R (Gly149Arg and Arg381Gln) genetic
variants using six different algorithms e.g., SIFT, PolyPhen-2,
GERP++, PhyloP, SiPhy and REVEL.

2.3. Structure analysis of mutations

2.3.1. 3D modeling, secondary structure, and
solvent accessibility methods

The structural and functional consequences of any variant
can be better understood, by studying them at 3D level.
Therefore, we analyzed the 3D model of selected NOD2
(Arg675Trp and Gly908Arg) and IL23R (Gly149Arg and
Arg381Gln) variants. The Protein Databank (PDB) does not
have experimentally solved structures for NOD2 and IL23R,
so, we resorted to homology and/or ab initio based computer
modeling. In this study, we used different homology modeling
tools like Modeller,1 Swiss Model,2 etc., Another important
computational approach used to build a protein model is, ab
initio modeling. When an identical structure is unavailable or

1 https://salilab.org/modeller/

2 https://swissmodel.expasy.org/

the target sequence has <30% identity, this approach is utilized.
The I-Tasser3 used in the ab initio studies relies on the basic
principle of multiple-threading alignments by LOMETS and
iterative template fragment assembly simulations. The energy
minimization of built protein models was done by applying
the force-field of steepest descent using SPDV tool.4 This
energy minimization step was carried out to remove the wicked
contacts in a simulated protein structure. After the energy
minimization step, built protein’s structural quality was assessed
by Procheck5 tools.

The secondary structure analysis (such as helices, loops,
sheets, etc.) of built models was carried out using the PDBSUM
server.6 The active site analysis were carried out using CastP7

tool, this tools provide information about the active cavities,
conserved amino acids and substrate binding sites present
in the protein structure. Electrostatic, superpose, and solvent
accessibility analysis were carried out using Pymol, Yasara,8

and SAS tools.9 The SAS analysis provides information about
exposed and buried residues present in a protein, which is very
crucial for comparing wild type and mutated protein models.
In order to check the domains in the protein sequence, we
submitted our sequence to the SangerPfam web server,10 which
directly searches the protein sequences by expanding typical
search methodology with a Pfam wrapper around the HMMER
pack. The default E-value threshold used in the HMM search
process was 1.0.

2.3.2. Molecular dynamics (MD) simulations
The structural analysis of the NOD2 and IL23R proteins

was performed to evaluate the stability of wild type and
variant proteins using Gromacs 4.0 and Molecular Operating
Environment (MOE) softwares. The energy minimization for
initial structures was performed using the steepest descent
algorithm in the Gromacs 3.3 software package at a maximum of
2,000 ps time, at 300K temperature. After energy minimizing the
wild type and mutated proteins, we applied restraint at 100 ps
to allow solvent equilibration (NVT, NPT) around the protein.
Finally full MDS was performed on all structures (wild-type
and mutant models) at 20,000 ps, separately embedded in a
box (box volume > 756.12 nm3), containing pre-equilibrated
water molecules. The van der Waals interaction and particle
Mesh Ewald (PME) for long range electrostatic interactions
was set to >10 Å. The space between the edge of the box
and protein was set at >10 Å. Episodic frontier environments

3 https://zhanggroup.org/I-TASSER/

4 https://spdbv.unil.ch/

5 https://saves.mbi.ucla.edu/

6 http://www.ebi.ac.uk/pdbsum

7 http://sts.bioe.uic.edu/castp/index.html

8 www.yasara.org

9 www.abren.net/asaview

10 www.ebi.ac.uk/interpro/
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were smeared in all ways. Charged ions were positioned to
exchange water molecules in alternate positions, thus building
the entire neutral system. The lengths of hydrogen-atom bonds
were constrained using the LINCS parameters technique, at a
0.002 ps time step. For every 1 ps, the structures from the
dynamic trajectory were saved. The xmgrace analysis package in
GROMACS software, was used to perform all the post-dynamic
studies of the trajectories (31).

2.4. Genetic interaction networks
analysis

The protein association partners of NOD2 and IL23R
were studied using GeneMania tool.11 These databases provide
data about protein association based on multiple categories
of information, including physical co-occurrences, genomic
neighborhood, conserved co-expression, and gene fusion,
and these studies are limited to experimentally validated
interactions. The input format consists of providing the query
gene list. The output is a network of functional relationships
for query gene and predicted related genes in the form of nodes
and edges. Nodes represent genes and links represent networks.
Genes can be linked by more than one type of network.

2.5. Protein-drug interaction analysis
by molecular drug docking

At first, the potential therapeutic molecules showing an cut-
off interaction score of >0.03 against NOD2 and IL23R genes
were identified in Drug–Gene Interaction database (DGIdb)
(32). Then molecular docking analysis was performed to
elucidate the functional interaction deformities of wild and
mutant proteins with the query drugs. AutoDock 4.0, which
is based on the Lamarckian Genetic Algorithm, is used to
run docking queries for drugs and target proteins. During the
docking process, the torsion angles of flexible ligands were
identified by 10 independent runs. The protein structures were
initially neutralized by removing ions and charges (on histidine),
before applying gigaster charges to them. The grid maps were
constructed around protein-ligand molecules using Autogrid
module of Auto dock software program. The default parameters
used in constructing the grid were 60, 60, 60 points in x, y,
and z directions, a center spacing of a grid is 0.367A◦ (approx.
1/4 of the length of c–c covalent bond). Then, the docking
parameter file was prepared with AutoDockTools (ADT). When
LGA was set to 150 runs, the other default parameters were 150
conformations, population size is 50, and energy evaluations
is 25,00,000. For docking parameters, the initial translation

11 https://genemania.org/

was set to 0.2A Å; the torsion to 0.5o, the quaternion to 5.0o;
and the RMS cluster tolerance to 0.75 Å. The ligands that
showed the most promising binding energy were chosen from
the protein-ligand docking complex at the end of the docking
process. Pymol-0.98 was used to analyze the resulting docking
complexes.

3. Results

3.1. Pathogenic characterization of IBD
variants

The SIFT and PolyPhen-2 predictions, have attributed the
deleterious effect to NOD2 (Arg675Trp and Gly908Arg) and
IL23R (Gly149Arg and Arg381Gln). The other predictions like
GERP++, PhyloP, SiPhy and REVEL scores (GERP++ RS > 0;
Phylop > 0; SiPhy > 0, REVEL < 0.5) have also confirmed that
these 4 SNPs affect the nucleotide sequences, which are under
the high evolutionary significance (Table 1).

3.2. Protein structural impact analysis
of IBD variants

Structural annotations Workflow of current study
represented in Supplementary Figure 1.

3.2.1. 3D modeling
Due to unavailability of NOD2 and IL23R crystal statures in

Protein Databank, we performed the BLASTp search in protein
databank to check the homologous proteins with 45% identity.
However, we could not find any homologues protein structures
in PDB at the required threshold value. Therefore, to develop
NOD2 and IL23R wild type protein models, we resorted to ab
initio based modeling approach using I-Tasser web server. The
resultant output was 5 protein models for NOD2 and IL23R,
each. The best model was selected based on its c-scores (ranging
from −5 to + 2). The top NOD2 protein model (Figure 1A) had
a c-score of −1.23 and IL23R had a score of −2.2 (Figure 1B).
Both NOD2 and IL23R were cured by an energy minimization
step to remove all the bad contacts in the protein structure.
NOD2’s energy was minimized at 2,335 fs, and the released
energy was −3,25,428 KJ/Mol. For IL23R, energy minimization
was done at 3,245 fs, and it resulted in the release of −2,3545
KJ/mol of energy. These models were further evaluated for
protein quality using PROCHECK software. The NOD2 protein
model revealed that 97% of residues are in the allowed region
and only 3% of residues are present in the disallowed region.
For IL23R, 96.8% of residues are in the allowed region and 3.2%
of residues are in the disallowed region of the protein.

The native NOD2 and IL23R protein structures were
further used as templates to create mutant protein versions
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FIGURE 1

Molecular visualization of protein models (NOD2 and IL23R) and
Ramachandran plots. (A) The NOD2 protein structure, zoom
view represent localization of Gly908 (wildtype), Arg908
(mutated). (B) The IL23R protein structure zoom view represent
localization of Gly149 (wildtype), Arg149 (mutated), Arg381
(wildtype), Gln381 (mutated).

using MODELLER9v3 and Swiss Model server software. All
the 100 models (output from MODELLER9v3) generated
per each mutant category, were further subjected to energy
minimization followed by PROCHECK validation. The mutant
model (Gly908Arg and Arg675Trp) of NOD2 contains 95.2%
residues in allowed regions and 4.8% in disallowed regions. The
two mutant models (Gly149Arg, Arg381Gln) of IL23R consist
of 94.2 and 96.8% of residues in the allowed region, whereas 5.8
and 3.2% of disallowed regions, respectively.

3.2.2. Super positioning of native and mutant
models

We compared wild and mutant protein models of NOD2 and
IL23R to examine their structural drifts induced by amino acid
substitutions. The c-alpha backbone of the root mean square
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deviation (RMSD) between wild type and mutated models
(Arg675Trp and Gly908Arg) of NOD2 was found to be of 0.04
and 0.06 Å suggesting a limited potential of these mutations
in inducing whole structure level alterations, respectively.
However, at the amino acid residue level, these deviation was
seen to be very high, i.e., 2.45 and 1.78 Å, respectively. The
IL23R superposed on two mutated models, the C-alpha and
backbone RMSDs were 0.048 and 0.052Å, suggesting limited
potential of Gly149Arg and Arg381Gln mutations in inducing
whole structure level alterations. Similarly, even at amino acid
residue level, the deviation was minimal, that is, 1.6 and 1.48 Å
(Table 2).

3.2.3. Secondary structural annotations of IBD
variants

We sought to examine the structural and functional
consequences of amino acid substitutions in NOD2 and IL23R
proteins through diverse approaches like secondary structure
analysis, and clefts analysis.

3.2.4. Secondary structural features, clefts, and
active site analysis of NOD2

Secondary structure analysis is crucial to understanding
the hierarchical classification of protein structures and their
polypeptide folding nature. The secondary structure of NOD2
consists of different elements like 3 beta sheets, 12 beta-alpha-
beta motifs, 2 beta hairpins, 1 beta bulge, 20 strands, 44 helices,
78 helix-helix interfaces, 68 beta turns, and 9 gamma turns. As
NOD2 is a transmembrane protein, it is made up of many helices
as well as beta turns to maintain the polypeptide folding, which
is important for maintaining its globular shape (Figure 2A).

Clefts are defined as gap regions existing in any protein
molecule. The size of cleft often determines how protein
interacts with their ligand molecules. Most of the active sites
in proteins contain both deep and large clefts. The NOD2
protein contains 4 clefts greater than 1,000 Å, out of which
deepest and largest cleft located in between signal recognition
and oligomerization regions is 12,085.03 Å in size. This large
cleft is made up of 201 residues and consists of 72.13% accessible
vertices and 13.77% buried vertices (Figure 2B).

NOD2 ligand binding site prediction using PDBSUM
showed that ADP interacts with His 603, Ser306, Thr239,
Gly302, Thr240, Thr253, Thr307, Gly304 and Lys305 amino acid
residue of NOD2.

3.2.5. Secondary structural features, clefts, and
active site analysis of IL23R

The IL23R protein consists of three regions, i.e., the
C-terminal signal recognition, transmembrane and cytosolic
c-terminal regions. The secondary structural features of this
protein are made up of 10 sheets, 7 beta hairpins, 3 beta bulges,
37 strands, 4 helices, 80 beta turns, 40 gamma turns, and one
disulfide bridge. The odd secondary structural features of IL23R

are characterized by a low number of helices and a high ratio of
turns, which further helps to maintain the stability of IL23R in
the membrane (Figure 2C).

The IL23R contains 4 clefts that are larger than 1,000 Å in
size. Out of these, the fourth cleft made up of 91 residues is the
deepest and largest, is 6,021Å in size, and it contains 65.91%
accessible vertices and 11.59 buried vertices (Figure 2D).

IL23R active site prediction using the CASTp server revealed
the existence of two different active or ligand-binding sites
in between extracellular and intracellular regions. In the
extracellular region, the active site acid amino acid residues are
as follows, Tyr100, Gln110, Asp118, Leu210, and Arg227. In
the intracellular region, Phe530, Asn542, Glu570, Aln587, and
Gly599 are predicted as active site residues.

3.2.6. Solvent accessible surface area analysis
of IBD variants

The native Arginine at 675th position interacts is in buried
condition with more than 30% surface accessible area to solvents
but the variant Tryptophan is found in exposed condition and
decreases the solvent accessibility. The glycine (native) amino
acid at the 908th position of the NOD2 protein is in buried
position and portrays 20% surface accessible area to solvents,
whereas the substitution of arginine amino acid, due to its
physical conformation, portrays 80% of the surface accessible
area to solvents. The IL23R Phe149 and Arg381 amino acid
(native) residues showed 80% surface accessible regions, with
only Arg381 showing a significant shift (80–100%) in its solvent
accessibility ability (Figure 3A).

3.3. Stability predictions of IBD variants

Any amino acid substitution is likely to affect the stability
of protein structures. Therefore, to understand the structural
consequences of Gly908Arg of NOD2 and Gly149Arg and
Arg381Gln of IL23R on their protein stabilities, we assessed
their free energy changes through the DUET web server. Table 3
reveals that Gly908Arg of NOD2 and Gly149Arg and Arg381Gln
of IL23R mutations are destabilizing to protein stability in terms
of free energy changes.

3.4. Functional domain analysis of IBD
variants

The NOD2, Arg675Trp variant is located 68 amino acids
downstream from the winged helix domain located from 545th
to 597th residues, whereas the Gly908Arg variant is in leucine
rich domain 4 spanning between 897th and 1,004th amino acids.
The IL23R, Gly149 Arg is located in Fibronectin domain 1 (129–
217), whereas Arg381Gln variant lies 63 residues downstream to
Fibronectin domain 2 (219–318) of the protein (Figure 3B).
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TABLE 2 RMSD values and H-bond interaction of mutant and wild type models of NOD2 and IL23R.

Protein Mutated residue RMSD (Å) H-Bonds

Protein level Residue level

NOD2 Arg675 – – 7 H-bods, Arg-675, Val590, Ala589, Arg678, Leu672, Ser591

Trp675 (M) 0.04 2.453 3-Hobonds Val671, Leu672, Ala679

Gly908 – – 2 H-Bonds with Asn880 and Val935

Arg908 (M) 0.06 1.78 1 H–Bond with Val935

IL23R Gly149 – – –

Arg149 (M) 0.0479 1.6 1 H-bond with Glu130

Arg381 – – 5 H-bonds with Ser379, Thr382, Gly383

Gln 381 (M) 0.052 1.48 1 H-bond with Ser379

FIGURE 2

(A–C) 2D secondary structural conformation of NOD2 and IL23R. (B–D) The NOD2 and IL23R clefts in the structure, shown here as solid
surfaces colored according to volume, with the largest shown in red.

3.5. MD simulation findings of IBD
variants

The MD analysis was performed to better understand the
stability of proteins in both wild and mutant states during
the molecular simulation phase. We have also tried to predict
physical disturbances in mutant proteins, in terms of their values
corresponding to RMSD of C-alpha, radius of gyration (Rg)

and solvent accessible surface area (SASA) at a 10ns solvent
simulation period. The native energy minimized structures of
NOD2 and IL23R were used as references to compute the RMSD
values of their mutant forms.

In the case of NOD2, the molecular stability in wild type
protein was achieved at 3,000 ps (0.58 nm value) over the total
10 ns simulation test period. For Arg675Trp and Gly908Arg
variants, the RMSD values increased sharply after 4,000 ps and
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FIGURE 3

(A) Solvent accessibility surface area of wildtype and mutant NOD2 and IL23R. (B) Domain region in NOD2 and IL23R.

TABLE 3 Protein stability predictions for mutated and wild models of IL23R and NOD2.

Protein Mutation Stability predictions

mCSM* DUET# SDM$ Consequence

NOD2 Arg675Trp −0.689 −0.33 −0.774 Destabilizing

Gly908Arg −0.895 Kcal/mol −0.861 Kcal/mol −0.77 Destabilizing

IL23R Gly149Arg −0.567 Kcal/mol −0.304 Kcal/mol −1.89 Destabilizing

Arg381Gln −0.058 Kcal/mol −0.355 Kcal/mol −0.5 Kcal/mol Destabilizing

*mCSM: <-0 = destabilizing; >0 stabilizing.
#DUET = <-0 = destabilizing; >0 stabilizing.
$SDM: <-0 = destabilizing; >0 stabilizing.

stabilized after 6,000 ps, where they achieved RMSD values
in the range of 0.55 to 0.75 nm (Figure 4A). For the IL23R
wild type, stability in the graph was achieved after 4,300 ps
at a RMSD value of 0.43 nm. For Gly149Arg and Arg381Gln

of IL23R models, a change in stability was observed at 430 ps
(RMSD value is 0.39 nm) and 4,000 ps (RMSD value is 0.45 nm)
(Figure 4B). In addition to this, we have also assessed the radius
of gyration (Rg) and solvent accessible surface area (SASA)
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analyses to determine the tertiary structural features of proteins.
The SASA identified the marginal exposure of Arg675Trp and
Gly908Arg of NOD2 and Gly149Arg and Arg381Gln of IL23R
to solvent accessible areas (both hydrophilic and hydrophobic)
in both native and mutant forms. However, they were found
to be stable in the simulation phase. Our radius of gyration
analysis showed that Rg values are different between NOD2 wild
(Rg value is 0.35 nm) and mutant (Rg value is 0.28 nm) types,
suggesting the mutation induces conformational changes in the
protein. The root mean square fluctuations analysis with NOD2
and IL23R variants revealed flexible regions in the proteins’ 3D
structures. The ligand recognition region in Gly908 (wild type)
NOD2 is more flexible (RMSF score, which is 0.6 nm) than in
908Arg (mutant), which is more rigid (RMSF score is 0.32 nm).
However, this change was not able to alter the overall domain
flexibility but only the flexibility of surrounding amino acid
residues (Figure 4C). For IL23R, the wild type model showed
the fluctuations or flexibility of amino acid residues in the
immunoglobulin like domain (60–80 amino acids) with a value
higher than 0.7 nm. The 149 Arg mutant form (RMSF value of
0.45 nm) is located in the immunoglobulin region and affects
the fluctuation nature of this region. The Arg381Gln mutation
of IL23R is located near the immune globulin like domain, and
its RMSF values showed more or less similar distribution in both
native and mutant forms (Figure 4D).

We have also examined the secondary structural element
features of both native and mutant NOD2 and IL23R models
during the simulation period. At 10 ns simulation time, the
wild type NOD2 conformation had 150–256 H-bonds, while
the mutant (Gly908Arg) conformation had 173–252 H-bonds.
The NOD2 mutated model showed some distinct features
of secondary structural elements, which suggests that the
concerned amino acid residue disturbs its natural bonding with
neighboring amino acids in the polypeptide chain. At 10ns
simulation period, IL23R’s native conformation showed 185–
196 H-bonds, while the mutants IL23R (Gly149Arg, Arg381Gln)
showed fewer H-bonds that is ∼130–145 and ∼145–168
respectively. For IL23R, interestingly, both the two mutated
models showed similar secondary structural elements compared
to their wild type counterparts. So, it is clear that changes in
the amino acid sequences of NOD2 and IL23R genes affect the
protein’s structural stability.

3.5.1. Gene interaction network findings
Gene network analysis of NOD2 and IL23R was performed

with GeneMania to better understand their interacting
gene partners. Figure 5A shows the physical interactions,
co-expression, predicted interactions, pathways shared, co-
localization, and shared protein domains network of NOD2.
NOD2 showed physical interaction with 18 genes, which play a
very important role in many immune related pathways. NOD2
showed co-expression with 3 genes, i.e., RIPK2, TLR2 and
CARD9. Interestingly, the NOD2 interacting genes like RIBK2,

IKBG, and NKB1 are seen to share the nucleotide-binding
domain leucine rich repeat receptor singling pathway, innate
immune response pathway, intracellular signaling pathway,
and inflammatory response pathways. Co-localization network
analysis showed the interaction of CASP4 and TLR2 genes with
NOD2.

NOD2 is also seen to share Leucine Rich Repeat and CARD
Domain Containing 2 domains with CASP1, CASP4, CASP12,
CARD8, CARD9, NLRP1, NLRP4 and RIPK2 genes. Out of all
the genes involved in network, 7 genes i.e., IKBKG, NLRC4,
NFKB1, CARD9, RIPK2, XIAP and TLR2 plays important role
in mediating the innate immune reactions. The other candidate
gene IL23R shows direct physical interaction with IL23A and
IL12RB1 genes in a network. The IL23R is co-expressed with
IL18 and shares similar pathways with 19 genes. The gene
partners which showed physical interaction, co-expression, and
shared common pathways with IL23R gene, were all majorly
involved in T-cell regulation function (Figure 5B).

3.5.2. Protein-protein docking studies
Based on our gene-gene network analysis, we predicted

that RIPK2 is the best interacting partner of NOD2, owing to
its highest confidence score (0.999) (Figure 5C). Experimental
studies have proved that in the presence of ligand peptidoglycan,
NOD2 interacts with RIPK2 to perform different intracellular
reactions. Therefore, we have employed advanced docking
approaches to better understand the molecular interactions
between RIPK2 and NOD2 (both wild and mutant types). The
docking analysis showed that RIPK2 interacts with wild type
NOD2 near to its signal recognition site and interacts with
Trp93, Asp113, Lys118, Leu167, Tyr192, Asn276 and releases
the energy of −467.8 Kj/Mol. The Arg675Trp and Gly908Arg
mutant forms of NOD2 interacts with RIPK2 at few similar
sites to that of the wild type, but they form H-bonds with
different amino acid residues and releases the energy of >-400
Kj/Mol (Figure 5C). The network analysis of IL23R revealed that
JAK2, is its strong interacting partner owing to its confidence
score, i.e., 0.998. Our molecular docking analysis showed that
JAK2 interacts with IL23R, near C-terminal region amino acid
residues Trp307, Asn405, Tyr476, Gln465 and Pro 478 and
releases the binding energy of −635.6 KJ/Mol. The mutant
models of IL23R (Trp307, His345, Phe441, Asp479, Leu310,
Thr472) are shown to bind the similar cleft of JAK2 as the wild
type does and release the energy of −659.4 KJ/Mol and −652.5
KJ/Mol (Table 4 and Figure 5D).

3.5.3. Identification of potential drugs against
NOD2 and IL23R variants

From the gene-drug interaction database12 and from
literature sources, we identified Tacrolimus and Celecoxib drugs
which show specificity toward NOD2 and IL23R, respectively.

12 http://dgidb.genome.wustl.edu/
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FIGURE 4

(A,B) Molecular dynamics RMSD of NOD2 and IL23R at 100ns. (C,D) MD simulation RMSF of NOD2 and IL23R at 100 ns.

Through the advanced molecular docking approaches, we
identified that Tacrolimus interacts with both wild and mutant
NOD2 at the ligand binding sites (His720 and His734 amino
acids) and releases the energy of −6.12K.Cal/Mol. However,
the NOD2 mutant forms (R675W and G908R) interact with
Tacrolimus drug at the same ligand binding region and releases
−7.21 K.cal/mol and −6.78 K.cal/mol energy, respectively.
The hex docking analysis on the ligand muramyl peptide
and NOD2 interaction revealed that muramyl peptide binds
more strongly to the mutant form (with an energy release
of −68.2 K.Cal/Mol) compared to the wild (with an energy
release of −62.5 K.Cal/Mol) form of NOD2 (Figure 6A). For
IL23R, both wild and mutant protein forms showed greater
interaction with the Celecoxib drug, although their interacting
poses are different. The Celecoxib interacts with the Thr261
amino acid residue in wild IL23R and releases the energy of
−3.25 K.Cal/Mol. However, the same drug showed the highest
interaction (in the form of H-bonds) with Thr261, Asn262 and
Thr264 amino acid residues of mutant IL23R (G149R) with a
binding energy of −10.42K.Cal/Mol. The second IL23R mutant

(R381N) showed an interaction with Gln263 amino acid residue
and released the energy of −4.89 K.Cal/Mol (Figure 6B and
Table 5).

4. Discussion

The experimental elucidation of the genotype-protein
phenotype relationship is an uphill task owing to the number
of variant discoveries being added to the already existing
huge IBD mutation data (33). In this context, computational
prediction algorithms act as reliable tools for prioritizing
candidate genetic mutations based on the nature of their
impact (negative, neutral, or positive mutations) on proteins.
In the current investigation, we have systemically applied
diverse computational strategies to characterize the IBD variants
based on their evolutionary constraints on coding regions.
These strategies included algorithmic screening of genetic
mutations based on the nucleotide sequence and protein
structure conservation (integrated support vector machine
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FIGURE 5

(A,B) Genemania protein interaction network of NOD2 and IL23R. (C) Molecular docking intearaction of wildtype and mutant NOD2 with RIPK2.
(D) Molecular docking interaction of wildytype and mutant IL23R with JAK2.

Frontiers in Medicine 11 frontiersin.org

41

https://doi.org/10.3389/fmed.2022.1090120
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/


fmed-09-1090120 January 2, 2023 Time: 15:20 # 12

Nasser and Shinawi 10.3389/fmed.2022.1090120

learning algorithms) (ex: SIFT, PloyPhen2, GERP++, PhyloP
and SiPhy) across different mammalian species (34). The
rationality behind using multiple prediction methods is to
generate consensual variant predictions.

The importance of comprehensive computational
predictions of missense variants in CA2, LDLRAP1 and
SQSTM1 genes has been well demonstrated (24, 35, 36). In the
recent study, Polyphen-2, when compared with SIFT, M-CAP
and CADD tools, can make better pathogenicity predictions
for familial hypercholesterolemia (FH) causative LDLRAP1
mutations (24). Further verification of different computational
tools like SIFT, PolyPhen, M-CAP, CADD in screening PCSK9
missense mutations causative to FH is also well demonstrated
(37). Few other studies have also asserted the usefulness of
various computational algorithms in predicting the damaging
ability of nucleotide sequence variations belonging to human
disease related genes (34, 38, 39).The quantitative measurement
of each constrained element in GERP++ is according to the
magnitude of the substitution deficit, measured as “rejected
substitutions” (RS). Here, the negative and positive RS scores
are inversely proportional to evolutionary selections, where
in negative scores often are often considered to be strong
signal of biological function. From our GERP++ analysis,
we discovered that all the four SNPs fall in evolutionarily
conserved regions (RS < 0) and are under strong negative
selection. But, due to inherent differences of coding region with
regards to the pattern of evolutionary constraints, analysis of
population specific genetic variations in regulatory regions,
which undergoes evolutionary remodeling, will be of greater
assistance to better understand the human specific evolutionary
selections (8).

The specific structural and functional implications of
any genetic mutation (on its corresponding protein) can be
predicted based on the information about the significance of
amino acids it alter. In this context, amino acid residues which
fall in evolutionarily conserved regions serves as important
pointers in understanding the clear effects of genetic mutations
of human diseases. Highly pathogenic mutations in a protein
hotspot or active region may disrupt the activity of the protein
(40). Additionally, studying the mutations at 3 dimensional
structure level will help us in understanding the specific
structural deformities a particular amino acid variant is likely
to inflict on protein. The mapping of the mutation onto three-
dimensional protein structures and analyzing these changes at
the structural level will help to find the exact point where
they loss function/alter interactions with proteins (41). As of
today, the tertiary structural conformation of native and/or
mutant NOD2 (Arg675Trp, Gly908Arg) and IL23R (Gly149Arg,
Arg381Gln) is not yet resolved through laboratory experimental
x-ray crystallographic or NMR spectroscopic methods. So,
we built the 3 dimensional structural models of NOD2
(Arg675Trp, Gly908Arg) and IL23R (Gly149Arg, Arg381Gln)
proteins by ab initio method, and analyzed for its biophysical

characteristics like stability differences, structural deviations,
solvent accessible surface areas and secondary structural features
such as polypeptide folding (42).

The structural divergence of core proteins often correlates
with amino acid sequence divergence in an exponential
function manner (43). In our structural deviation analysis,
the Arg675Trp and Gly908Arg mutations of NOD2 have
indicated their significance by causing huge structural drift
at amino acid residues but not at whole structure level
deviations. The NOD2 mutation Arg675Trp variant is not
directly localized in the domain region of the protein.
However, the Arg675 amino acids form an H-bond network
with the surrounding amino acids. Whereas in the mutated
condition, the H-bond network is depleted, and this might
cause structural alteration in the NOD2 protein (44). The
second mutation G908R of NOD2 is actually located in
Lucine Rich Domain (735–1,040a.a) (LRRD), which folds
as horseshoe enabled by its rich content of hydrophobic
amino acid leucine (45). Although, this domain is not
directly involved in protein-protein interacting sites, but
it assist in stabilizing the NOD2 polypeptide folds which
have active site domains (46). Thus, it is explicable that
Gly908Arg mutation is capable of altering the NOD2
interaction ability by changing its H-bond properties. In
contrast, Gly149Arg and Arg381Gln mutations of IL23R are
not seen to inflict any significant structural deviations at
both amino acid and whole structure level. Single compared
to multiple amino acid residue substitutions often fails to
invoke compensatory effects (caused in case of multiple
amino acid substitutions) on protein structure, they induce
changes in side chain charge (47), active site conformations
and polypeptide complementarity, which are essential for
maintaining the protein structures. The two mutations (G149R
and R381Q) of IL23R are located in extracellular domain
and C-terminal cytoplasmic portions, respectively (48). Due
to mutation G149 in IL23R structure the transmembrane
domain the first beta barrel of IL23R increases its size from
Ser251-Lys258 to Val251-Lys258; this structural change
may alter the binding ability of extracellular domain of
IL23R with its ligand (49). In the second mutated protein
structure of IL23R (R381Q), helical structure (Leu468-
Thr472) is converted into loop component in the extracellular
domain portion, there by altering its binding ability with
first intermediate molecules critical for inducing cascade
of intracellular cellular signaling mechanisms underlying
inflammatory bowel disease.

We used the molecular dynamics simulation approach to
examine the natural and mutant NOD2 and IL23R structures at
the atomic level to gain a better understanding about missense
mutations induced impacts on protein structures. From the
simulation trajectory values, basic metrics such as RMSD,
RMSF, hydrogen bond numbers, and SASA were evaluated.
Molecular stability and flexibility changes were estimated from
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TABLE 4 Hex docking interaction scores of NOD2 and IL23R, wildtype and mutant models with their interaction partners.

Protein Interaction
partner

Hex binding
energy

(Kcal/Mol)

Difference in
binding energy

(Kcal/Mol)

Amino acid in interaction

NOD2 WILDTYPE RIPK2 −467.8 – Trp93, Asp113, Lys118, Leu167, Tyr192, Asn276

NOD2 mutant (R675W) −418.2 49.6 Trp93, Lys118

NOD2 mutant (G908R) −452.6 −15.2 Trp93, Asn94, Leu130, Asn276

IL23R wildtype JAK2 −635.6 – Trp307, Asn405, Tyr476, Gln465 and Pro 478

IL23R mutant (G149R) −659.4 +23.8 Trp307, His345, Phe441, Asp479

IL23R mutant (R381Q) −652.5 +16.9 Leu310,His 345, Thr472, Asp479

FIGURE 6

(A) Molecular docking interaction of wild and mutant NOD2 with drug Tacrolimus. (B) Molecular docking interaction of wild and mutant Il23R
with drug Celecoxib.

RMSD and RMSF values. Stability is the fundamental property
enhancing biomolecular function, activity, and regulation. In
our study, the distinct change in the RMSD trajectories of
mutated forms of NOD2 and IL23R, indicate the differences
in the route of alteration of structures from the starting
conformation to their final states despite the initial structures
being identical. This evidence clearly states the impact of
amino acid substitutions on the dynamics of the proteins.
The RMSF data also showed the mutated regions are highly
flexible in both proteins (NOD2 and IL23R) mutations

state. A clear insight of stability loss was observed in both
RMSD and RMSF parameters, which is further given the
evidence by decreasing the number intermolecular hydrogen
bonds in mutant structures. Intermolecular H-bonds are most
important factors in maintain the protein conformation and
creates stable interaction between the protein and its binding
partner (50).

The exponential function between structural divergence
of protein and amino acid sequence variation is variable
based on the mutation rates of amino acid residues, which
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occupies either buried or accessible positions on protein surface
(34). Following this principle, we identified that both Arg
675 (native) and 908 glycine (native) amino acids of NOD2
protein is in buried position and portrays only 20, 40%
surface accessible area to solvents, whereas the substitution
of tryptophan and arginine amino acids, due to its physical
conformation, portrays 80 and 60% surface accessible area
to solvents. The Phe149 and Arg381 amino acid (native)
residues of IL23R showed 80% surface accessible regions,
out of which, only Arg381 showed the major drift (80–
100%) in its solvent accessibility ability. An explanation in
accordance with our observation is that amino acid residues
in core portion of proteins is differentially conserved in
terms of their sequence and structure, than those that
solvent accessible (51). The good correlation of solvent
accessibility and stability analysis suggests that NOD2 and
IL23R, further confirms that drift in solvent accessibility affects
the protein stability.

The networking analysis of genes is a useful approach to
understand the functional interactions and associated signaling
cascades. The networks shown in form of arcs (relationships)
and nodes (entity) are based up on their connectivity levels
with other interacting proteins. The NOD2 networking analysis
suggested its strong role in immune mediated pathways. The
NOD2 showed physical interaction with 18 genes, which are
playing very important role in many immune related pathways.
The NOD2 showed co-expression with 3 genes i.e., RIPK2, TLR2
and CARD9. Interestingly, the NOD2 interacting genes like
RIBK2, IKBG and NKB1 are seen to be sharing Nucleotide-
binding domain leucine rich repeat receptor singling pathway,
Innate immune response pathway, Intracellular signaling
pathway, Inflammatory response pathways. Co-localization
network analysis showed the interaction of CASP4 and
TLR2 genes with NOD2. NOD2 is also seen to share
Leucine Rich Repeat And CARD Domain Containing 2
domains with CASP1, CASP4, CASP12, CARD8, CARD9,
NLRP1, NLRP4 and RIPK2 genes. Out of all the genes
involved in network, 7 genes i.e., IKBKG, NLRC4, NFKB1,
CARD9, RIPK2, XIAP and TLR2 plays important role in
mediating the innate immune reactions. The genetic network
NOD2 showed that RIPK2 is its highest interaction partner
owingto the confidence string score of 0.999. RIPK2 plays
an important role in modulation of immune response (both
adaptive and innate). The exposure of peptidoglycan content
of foreign particles can activate both NOD2 and NOD1,
which further interacts with RIPK2 through two caspase
recruitment domains (CARD-CARD) leading to the tyrosine
phosphorylation and activation of NF-Kappa B (52). Once
NFKB is released and translocates into nucleus it activates
hundreds of genes responsible for immune responses, growth
control and apoptotic mechanisms. To better understand
the interactions between NOD2 with RIPK2, protein-protein
docking study was performed, where we identified that RIPK2
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binds at CARD domain (95–182AA) of NOD2 (45). The
NOD2 mutant form Arg675Trp forms weaker interactions
with RIPK2 compared to wildtype conditions, indicating
the mutation may destabilize the interaction of RIPK2 with
NOD2 protein. The second mutant condition (G908R) state,
NOD2 interacts with RIPK2 at the same CARD domain.
However, the mutant NOD2 (G908R, located in LRRD
domain) shows differential binding conformation in terms
of interacting amino acids, leading to energy differences
between native and mutant forms NOD2 protein against
RIPK2.

Our multidimensional computation strategy (pathogenic
prediction of nucleotide sequence variations in addition to
molecular dynamics simulations) confirms that the R675W
and G908R, mutation alters the structural conformation of
NOD2, thus interaction with RIPK2 and eventually dysregulate
the NOD2 −RIPK2 signaling pathway. There have been
several reports, which indicated the link of NOD2 mutations
with aberrant immune responses in terms of temporal and
quantitative effects of activation of the TLR2-NOD2 −RIPK2
pathway on secretion of IL-10 further disturbing the between
pro- and anti- inflammatory responses against gram-positive
bacteria (53).

The other candidate gene IL23R shows direct physical
interaction with IL23A and IL12RB1 genes in a network.
The IL23R is co-expressed with IL18 and shares similar
pathways with 19 genes. The gene partners showed physical
interaction, co-expression and shared common pathway with
IL23R gene are all majorly involved in T-cell regulation
function (54). The selection of JAK2, best interacting partner
of IL23R was based on the confidence string score of
0.093. Janus tyrosine kinase 2 (JAK2), a non-receptor type,
class III protein is the intermediate molecule that binds
to IL23R, whose activation by IL23, phosphorylates STAT
and activates NFKB pathway that is essential for stimulating
inflammatory reactions involving T-cells, NK cells and possibly
certain macrophage/myeloid cells. Owing to the lack of
data on IL23R and JAK2 molecular binding characteristics,
we performed IL23R-JAK2 molecular docking. It was found
that JAK2 interacts with the cytosolic terminal of native
IL23R (at Trp307, Asn405, Tyr476, Gln465 and Pro 478
amino acid residues). Interestingly, even in mutant state
the IL23R also shows the samelevel interaction with JAK2
but its binding affinity (+16.9 and +23.8 Kcal/Mol) is
decreased when compared to wild type IL23R and JAK2
conformation. A recent study G149R mutation of IL23R,
observed the reduced expression of STAT3 (48). Cellular
functional assays have also observed that R381Q mutation
affects the constitutive association of JAK2 with IL23R, with
effects on subsequent STAT3 recruitment, phosphorylation, and
transcriptional activation (55).

As of today, no specific drug or drug targets are established
for treating IBD, except steroid medications, which just

reduces the severity of inflammatory reactions in IBD patients
(56). From our multidimensional computational approach, we
propose that, NOD2 and IL23R have the potential to act as
molecular targets. The drug, Tacrolimus interacts with NOD2 at
the ligand binding site of NOD2 and may positively upregulate
different crucial pathways involved in immune suppressive
mechanisms. On the other hand, Celecoxib, a non-steroidal
anti-inflammatory drug shows strong interaction with mutant
IL23R compared to its wild type, there by regulates the
IL23R function. Our computational findings pave the way to
test non-steroidal anti-inflammatory bowel disease drugs in
experimental conditions.

In conclusion, our study found that SIFT, PolyPhen-
2, GERP++, PhyloP, SiPhy and REVEL computational
algorithms are very helpful in analyzing NOD2 (R675W
and G908R) and IL23R (G149R and R381N) variants. The
secondary structure, tertiary structure, and stability prediction
approaches have demonstrated how the loss-of-function
variants induce minor structural drifts, shift free energy
values, and reduce the conformation flexibility of the NOD2
and IL23R protein molecules. Overall, our comprehensive
computational approach adds a layer to estimate the deleterious
potential of genetic variants associated with IBD. This study
recommends implementing multidimensional genotype –
protein phenotype assessment methods as a pre-laboratory
approach in developing personalized medicine for IBD patients
carrying NOD2 (R675W and G908R) and IL23R (G149R and
R381N) variants.
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Introduction: Bitter peptides are short peptides with potential medical applications.
The huge potential behind its bitter taste remains to be tapped. To better explore the
value of bitter peptides in practice, we need a more effective classification method
for identifying bitter peptides.

Methods: In this study, we developed a Random forest (RF)-based model, called

Bitter-RF, using sequence information of the bitter peptide. Bitter-RF covers more
comprehensive and extensive information by integrating 10 features extracted from
the bitter peptides and achieves better results than the latest generation model on
independent validation set.

Results: The proposed model can improve the accurate classification of bitter

peptides (AUROC = 0.98 on independent set test) and enrich the practical application
of RF method in protein classification tasks which has not been used to build a
prediction model for bitter peptides.

Discussion: We hope the Bitter-RF could provide more conveniences to scholars for

bitter peptide research.
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1. Introduction

The bitter peptides, often produced in fermented, aged, and spoiled foods, are oligopeptides
with diverse structures. Studies have shown that hydrophobic amino acids and their positions
are crucial determinants for bitter peptides to exhibit bitter taste (1, 2). Experiments have found
that many toxins are bitter taste, so most mammals, including humans, avoid the intake of
toxins by avoiding bitter substances (3). However, some bitter substances may have medicinal
effects. In biomedical and clinical sciences, hormetic responses were of considerable importance.
Many drugs displayed hormetic-like biphasic dose responses and showed opposite effects at low
and high doses (4). In diabetic patients, the peptides in Momordica charantia (M. charantia)
can significantly regulate blood glucose concentration. A 68-residue insulin receptor binding
protein was isolated from M. charantia. MclRBP-19 in this protein can span the 50th-68th
residues, enhance the binding of insulin and IR, stimulate the phosphorylation of PDK1 and
Akt, and induce the expression of glucose transporter 4, thus promoting glucose clearance (5).
And frequent consumption of M. charantia peptide is beneficial to multiple organs of human
body (6). The active compound polypeptide K extracted from the seeds of M. charantia has
gastroprotective effects in some gastric ulcer models (7). Hence, bitter peptides, previously
avoided due to their potential toxicity, can be beneficial at the correct dosage. Consequently,
the bitter peptides may be very useful in medicine, making their identification extremely
important (8).
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Experimental methods for identifying bitter peptides have a solid
theoretical basis, but the operation is complex, time-consuming,
and inaccurate. Biological methods often involve the extraction of
bitter peptides from raw materials through gel separation, multiple
rounds of liquid chromatography separation, and purification.
Finally, Fourier transforms infrared spectroscopy (FTIR) was used
to identify bitter peptides. Generally, spectroscopic-based methods
have requirements for instruments, which are not universal (9, 10).
Therefore, the bitterness evaluation stage requires the participation
of human subjects, which may lead to inaccurate results (11, 12).
Bioinformatics-based methods for predicting bitter peptides have
the advantages of no professional instrument requirements, short
time consumption, and high prediction accuracy. Therefore, it is
imperative to develop a machine learning model for predicting
bitter peptides.

At present, computational methods have been carried out to
study peptides (13, 14). Models based on the quantitative structure of
bitter taste relationship (QSBR), including multiple linear regression,
the support vector machine (SVM), and artificial neural network
(ANN), have been used to predict bitter peptides (2, 15–21).
Specifically, based on 229 experimental bitterness values determined
by human sensory evaluations, Dragon 5.4 software was designed to
predict bitter peptides by extracting 1292 descriptors and reducing
descriptors to 244 using a home-developed toolbox. Then, the GA-
PLS method was used to select the six best-scoring descriptors for
the QSAR model construction. The six descriptors, including SPAN,
Mean square distance (MSD), E3s, G3p, Hats8U, and 3D-MoRSE,
represent the dimension of the molecule, the numbers of atoms,
weighted atomic electrical topological states, the 3rd-component
symmetry directional WHIM index (weighed by polarizability),
spatial autocorrelation-based descriptors and an indicator of size,
mass, and volume of the molecules.

Further, to improve prediction accuracy, four generations of
classification models based on bitter peptide sequences have been
developed. The first-generation model used dipeptide propensity
scores to predict bitter peptides by extracting a few characteristics
of bitter peptides (22). The second-generation model utilized deep
learning research methods. However, there may be problems with
information redundancy and overfitting (23). The third-generation
model integrated five peptide features to formulate bitter peptides,
but the representativeness should be further optimized (24, 25).
The fourth-generation model extracted feature extraction by deep
learning pre-training, and then built a prediction model based on
light gradient boosting machine (LGBM) (26).

Inspired by the previous four generations of models, we proposed
Bitter-RF, a novel machine learning method for predicting bitter
peptides. In total, ten kinds of feature information were extracted,
consisting of 1,337 features in the feature set. By deleting all zero
items, 1206 features were used for model learning. Here, we used five
machine learning models to learn the features. After comparison, the
RF method has the best classification effect. The schematic framework
of Bitter-RF for bitter peptide prediction is shown in Figure 1.

2. Materials and methods

2.1. Dataset source

The fundamental for constructing a powerful model is to generate
a high-quality benchmark dataset. To provide a reliable model and

make a fair comparison, we used the same dataset as the previous
four generation models (22–24), which can be obtained from http:
//pmlab.pythonanywhere.com/BERT4Bitter (accessed on 13 January
2022). This data was originally obtained by manually collecting
experimentally validated bitter peptides from various literatures
(22). The data contains 640 records, including 320 experimentally
validated bitter peptides and 320 non-bitter peptides, which were
randomly generated from BIOPEP. In order to objectively evaluate
the model, we divided the data into training set and independent set
at a ratio of 8:2. The training set contains 256 bitter peptides and 256
non-bitter peptides. The independent set contains 64 bitter peptides
and 64 non-bitter peptides.

2.2. Feature extraction

In a computational model based on machine learning methods
for biological sequence data, the coding methods of sequences,
which can reveal as much sequence information as possible, are
the most critical step (27–36). In the field of sequence analysis,
scholars have done a lot of works, and various of sequence descriptors
were proposed. Here, we used iLearnPlus to extract 10 types
of features of bitter peptides (37). The specific information was
described as follows.

2.2.1. Amino acid composition (AAC)

The AAC encoding calculates the frequencies of 20 natural amino
acids in a peptide sequence (38–42). The equation was shown as
follows.

f (t) =
N (t)
N

, t ∈ {A,C, ...,Y} (1)

where N(t) means the number of amino acid type t, and N means the
length of peptides.

2.2.2. Traditional pseudo-amino acid
composition (TPAAC)

The TPAAC descriptor is proposed by Chou, which is also called
the type1 pseudo-amino acid composition (43). Here, we use H0

1(i),
H0

2(i), and M0(i) (i = 1, 2, 3,, 20) to respectively represent the
original hydrophobicity values (44), original hydrophilicity values
(45) and original side chain masses of 20 natural amino acids. We
normalized these values based on the standard normal distribution,
as follows.

H1 (i) =
Ho
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[
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1(i)

]2

20
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i = 1 M
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(4)
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Then, the correlation function for residues Ri and Rj can be
defined as:

2
(
Ri,Rj

)
=

1
3
{[
H1 (Ri)−H1

(
Rj
)]2
+
[
H2 (Ri)−H2

(
Rj
)]2

+
[
M (Ri)−M

(
Rj
)]2} (5)

The correlation function contains the three amino acid properties
mentioned above. By generalizing this function definition, an amino
acid property (Eq. 6) and a set of amino acid properties (Eq.7) are
defined.

2
(
Ri,Rj

)
=
[
H1 (Ri)−H1

(
Rj
)]2 (6)

2
(
Ri,Rj

)
=

1
n

n∑
n = 1

[
Hk (Ri)−Hk

(
Rj
)]2 (7)

where H (Ri) is the amino acid property of amino acid Ri after
standardization and Hk (Ri) is the k-th attribute in the amino acid
attribute set of amino acid Ri. And sequence order-correlated factors
were defined as:

θ1 =
1

N − 1

N−1∑
i = 1

2 (Ri,Ri+1) (8)

θ2 =
1

N − 2

N−2∑
i = 1

2 (Ri,Ri+2) (9)

. . .

θλ =
1

N − λ

N−λ∑
i = 1

2 (Ri,Ri+λ) (10)

where λ is a correlation parameter that can be adjusted, and λ should
be less than N, we set λ = 1. And traditional pseudo-amino acid
composition for a protein sequence can be defines as:

Xc =
fc∑20

r = 1 fr + ω
∑λ

j = 1 θj
, (1 < c < 20) (11)

Xc =
ωθc−20∑20

r = 1 fr + ω
∑λ

j = 1 θj
, (21 < c < 20+ λ) (12)

where ω is the weigthing factor and is set to 0.05 in this study.

2.2.3. Amphiphilic pseudo-amino acid
composition (APAAC)

The APAAC is a kind of PseAAC. It contains 20+2λ discrete
numbers: the first 20 numbers consist of conventional amino acids;
the next 2λ numbers are a set of correlation factors that reflect
different distribution patterns of hydrophobicity and hydrophilicity
along the peptide chain (46). This feature was described as follows.

Firstly, using H1 (i)(Eq.2) and H2 (i)(Eq.3) which are defined
in TPAAC to define hydrophobicity and hydrophilicity correlation
functions:

H1
i,j = H1 (i)H1

(
j
)

(13)

H2
i,j = H2 (i)H2

(
j
)

(14)

Secondly, sequence order factors can be formulated as:

τ1 =
1

N − 1

N−1∑
i = 1

H1
i,i+1 (15)

τ2 =
1

N − 1

N−1∑
i = 1

H2
i,i+1 (16)

τ3 =
1

N − 2

N−2∑
i = 1

H1
i,i+2 (17)

τ4 =
1

N − 2

N−2∑
i = 1

H2
i,i+2 (18)

...

τ2α−1 =
1

N − α

N−α∑
i = 1

H1
i,i+α (19)

τ2α =
1

N − α

N−α∑
i = 1

H2
i,i+α (20)

Finally, the APAAC is defined as:

PC =
fc∑20

r = 1 fr + w
∑2λ

j = 1 τj
, (1 < c < 20) (21)

PC =
ωτu∑20

r = 1 fr + w
∑2λ

j = 1 τj
, (21 < u < 20+ 2λ) (22)

where w is the weighting factor, and it is set to 0.5 in
this study. This value refers to Chou’s work on protein cell
property prediction using this feature (43). And we set λ 1 in
this study.

2.2.4. Adaptive skip dinucleotide
composition (ASDC)

ASDC is a modified dipeptide composition, which takes full
account of the relevant information that exists between adjacent
residues and between intervening residues. The feature vector for
ASDC was defined as:

ASDC = (fv1, fv2, ..., fv400),

fvi =

∑L−1
g = 1 O

g
i∑400

i = 1
∑L−1

g = 1 O
g
i

(23)

where fvi means the occurrence frequency of all possible dipeptide
with ≤ L-1 intervening peptides.
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FIGURE 1

Schematic framework of the Bitter peptide prediction model (Bitter–RF). The main process of Bitter-RF design mainly includes the following steps: (A)
dataset collection, (B) feature fusion, (C) modeling with multiple machine learning methods, (D) Bitter-RF performance evaluation.

2.2.5. Di-peptide composition (DPC)

The DPC encoding describes the frequencies of 400 dipeptide
combination in peptide sequence (47). The calculation method was
shown as follows.

D (r, s) =
Nrs

N − 1
, r, s ∈ {A,C,D, ...,Y} (24)

where Nrs means the number of dipeptides combined by amino acid
types r and amino acid types s and N is the length of peptide.

2.2.6. Dipeptide deviation from expected
mean (DDE)

DDE includes three parameters: dipeptides composition (Dc),
theoretical mean (Tm), and theoretical variance (Tv). Dc is the same
as DPC’s calculation method.Tm and Tv were calculated as follows:

Tm (r, s) =
Cr

CN
×

Cs

CN
(25)

Tv (r, s) =
Tm (r, s) (1− Tm (r, s))

N − 1
(26)

where Cr means the number of codons for the amino acid types r,
and Cs means the number of codons for the amino acid types s.
CN includes total possible codons, which means not including the
three stop codons.

Using three parameters, DDE was calculated as follows:

DDE (r, s) =
Dc (r, s)− Tm (r, s)

Tv (r, s)
(27)

2.2.7. Grouped amino acid composition
(GAAC)

GAAC divides 20 amino acids into five groups based on
their physicochemical properties that are the aliphatic group (g1:

GAVLMI), aromatic group (g2: FYW), positive charge group (g3:
KRH), negative charged group (g4: DE) and uncharged group (g5:
STCPNQ). This feature describes the frequencies of these five groups
of amino acids and can be calculated as follows:

f
(
g
)
=

N
(
g
)

N
, G ∈

{
g1, g2, g3, g4, g5

}
(28)

where N
(
g
)

is the sum of the number of the amino acid which
belongs to group g, and N is the length of peptide sequence.

2.2.8. Grouped dipeptide composition
(GDPC)

GDPC is a variant of DPC based on the amino acid classification
already mentioned in GAAC. The feature consists of 25 descriptors,
calculated as follows:

f (r, s) =
Nrs

N − 1
, r, s ∈

{
g1, g2, g3, g4, g5

}
(29)

where Nrs is the number of dipeptides represented by amino acid type
groups r and s, and N is the length of peptide sequence.

2.2.9. Sequence-order-coupling number
(SOCNumber)

The d-th rank sequence-order-coupling number was calculated as
follows:

τd =

N−d∑
i = 1

(
di,i+d

)2
, d = 1, 2, ..., nlag (30)

where di,i+d describes the distance between two amino acids at
positions i and i + d in a given distance matrix, nlag denotes
the maximum value of the lag (default value: 30) and N is the
length of the peptide sequence. The distance matrix used here from
both Schneider–Wrede physicochemical distance matrix (48) and
Grantham chemical distance matrix (49).
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2.2.10. Quasi-sequence-order (QSOrder)

For each amino acid, defined QSOrder as follows:

Xr =
fr∑20

r = 1 fr + w
∑nlag

d = 1 τd

, r = 1, 2, 3, ..., 20 (31)

where fr represent the normalized occurrence of amino acid which is
r typed, and the weighting factor w is defined as 0.1, and nlag denotes
the maximum value of the lag (default value: 30). τd is the same as the
definition in SOCNumber.

For other 30 quasi-sequence-order descriptors, defined QSOrder
as follows:

Xd =
wτd − 20∑20

r = 1 fr + w
∑nlag

d = 1 τd

, d = 21, 22, ..., 20+ nlag (32)

2.3. Random forest

RF algorithm is an ensemble of decision trees and has been widely
used for classification. Each tree depends on the value of a random
vector that is sampled independently and has the same distribution
for all trees in the forest. The introduction of randomness can reduce
the possibility of overfitting, improve the ability to resist noise, and
has strong adaptability to high-dimensional data.

RF algorithm has been applied to a variety of protein classification
problems (50–54).

2.4. Model evaluation metrics

To evaluate the training effect and prediction ability of the model,
we mainly used the Area Under the Receiver Operating Characteristic
curve value (AUROC), supplemented by Sensitivity (Sn), Specificity
(Sp), Matthew’s correlation coefficient (MCC), accuracy (ACC) (55–
72). These indexes can be formulated as follows:

Sn =
TP

(TP + FN)
(33)

Sp =
TN

(TN + FP)
(34)

MCC =
(TN × TP − FN × FP)

√
(TP + FP) (TP + FN) (TN + FP) (TN + FN)

(35)

ACC =
(TP + TN)

(TP + TN + FP + FN)
(36)

where TP and FN represent the number that the bitter peptides are
predicted as true bitter peptides and non-bitter peptides, respectively.
On the contrary, TN and FP represent the number that the non-
bitter peptides are predicted as true non-bitter peptides and bitter
peptides, respectively. That is to say, bitter peptides were defined as
positive samples, and non-bitter peptides were defined as negative
samples in this work.

TABLE 1 Results of RF-based models using 10 single features.

Cross-validation Feature Dimension AUROC Sn Sp Acc Mcc

10-fold cross-validation AAC 20 0.91 0.85 0.84 0.85 0.69

TPAAC 21 0.90 0.83 0.78 0.80 0.61

APAAC 22 0.89 0.83 0.81 0.82 0.64

ASDC 400 0.88 0.89 0.68 0.79 0.59

DPC 400 0.86 0.87 0.64 0.76 0.53

DDE 400 0.83 0.84 0.73 0.78 0.57

GAAC 5 0.75 0.72 0.66 0.69 0.39

GDPC 25 0.78 0.75 0.71 0.73 0.46

SOCNumber 2 0.70 0.66 0.62 0.64 0.28

QSOrder 42 0.89 0.82 0.82 0.82 0.64

Independent set validation AAC 20 0.96 0.91 0.89 0.90 0.80

TPAAC 21 0.94 0.83 0.86 0.84 0.69

APAAC 22 0.97 0.89 0.91 0.90 0.80

ASDC 400 0.92 0.89 0.75 0.82 0.65

CKSAAGP 100 0.87 0.77 0.81 0.79 0.58

DPC 400 0.89 0.88 0.70 0.79 0.59

DDE 400 0.90 0.89 0.84 0.87 0.74

GAAC 5 0.76 0.83 0.64 0.73 0.48

GDPC 25 0.80 0.73 0.72 0.73 0.45

SOCNumber 2 0.73 0.59 0.69 0.64 0.28

QSOrder 42 0.95 0.92 0.84 0.88 0.77

Best performance metrics are shown in bold.
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TABLE 2 Features after feature reduction operation.

Feature Dimension Dimension after operation

AAC 20 20

TPAAC 21 21

APAAC 22 22

ASDC 400 366

DPC 400 303

DDE 400 400

GAAC 5 5

GDPC 25 25

SOCNumber 2 2

QSOrder 42 42

Total of features 1,337 1,206

Sn is the model’s sensitivity, representing the proportion of
correctly predicted positive samples to the total number of actual
positive samples (73–76). Sp is the model’s specificity, representing
the proportion of correctly predicted negative samples to the total
number of actual negative samples (77, 78). Here ACC, MCC
and AUROC are all comprehensive indicators. ACC represents
the proportion of correct predicted samples to the total samples.
And MCC is the correlation coefficient between the description
classification and the predicted classification. Its range is [-1, 1]. If
the value is 1, it means the model prediction performance is perfect.
If the value is -1, it means the prediction is completely opposite to the
actual. The AUROC indicator can be used as a standard for evaluating
the quality of the binary classification model (79–82). The closer the
value of AUROC is to 1, the better the classification effect.

3. Results and discussion

3.1. Single-feature-based results

Here, we used iLearnPlus to extract the above 10 features (AAC,
TPAAC, APAAC, ASDC, DPC, DDE, GAAC, GDPC, SOCNumber,
QSOrder) and then utilized them to train a RF-based predictive
model for accurately identifying Bitter peptides (37). Table 1 shows
the results of 10-fold cross-validation and independent set.

As can be seen, AAC is the best among all single features, with
AUROC of 0.91 and 0.96 in 10-fold cross-validation and independent
data test, while the worst was SOCNumber, with AUROC of 0.70

and 0.73. This result should show that SOCNumber has only two
dimensions, so this feature cannot afford enough information. Thus,
this feature may be used to fuse other features to supplement
additional information.

Amino acid composition is only a basic feature and does not
burden physicochemical properties. Therefore, we think that there is
still a large space for optimization. Previous studies have shown the
relationship between bitter peptides and factors such as amino acid
hydrophobicity and amino acid position. Some single features with
poor performance have rich information that AAC does not have and
can improve prediction performance. Therefore, we will study how
to optimize the parameters of characteristics in following section.

3.2. Fusion feature processing

By fusing the 10 features mentioned above, we will get a 1,337-
dimensional fusion feature. In this step, we de-zero the fusion feature.
When a column contains only zero, it has no practical effect on the
discrimination and is removed. After deleting all zero columns, 1206
features remain, as shown in detail in Table 2.

3.3. Fusion-feature–based results

In this study, we compared the prediction effect of the fusion
features and the three features with the highest independent set
validation AUROC value among the above 10 single features. It has
been proved that using the RF method to deal with fused features
does have more advantages in terms of predictive ability. Table 3 and
Figure 2 show the results of 10-fold cross-validation and independent
set validation.

It could be seen that, in 10-fold cross-validation and independent
set validation, the prediction performance of fusion features
was improved or remained unchanged compared with single
feature prediction. That is to say, the fusion features have better
predictive ability.

3.4. Comparison with other machine
learning methods on fusion features

To further validate the prediction model of the RF method for
bitter peptides, we compared it with some traditional machine

TABLE 3 Comparison between single-features and fusion feature using RF algorithm.

ML method Cross-validation Feature Dimension AUROC Sn Sp Acc Mcc

Random Forest 10-fold cross-validation AAC 20 0.91 0.85 0.84 0.85 0.69

APAAC 22 0.89 0.83 0.81 0.82 0.64

QSOrder 42 0.89 0.82 0.82 0.82 0.64

Fusion 1206 0.93 0.86 0.84 0.85 0.70

Independent set validation AAC 20 0.96 0.91 0.89 0.90 0.80

APAAC 22 0.97 0.89 0.91 0.90 0.80

QSOrder 42 0.95 0.92 0.84 0.88 0.77

Fusion 1206 0.98 0.94 0.94 0.94 0.88

Best performance metrics are shown in bold.
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FIGURE 2

The prediction results using different features. (A) AUROC curves of fused features using RF; (B) AUROC curves of fusion features and three
single-feature on independent data; (C) detailed results on training data using 10-fold cross-validation; (D) independent data validated results.

TABLE 4 Comparison of multiple machine learning methods using fusion features.

Cross-validation Feature ML method AUROC Sn Sp Acc Mcc

10-fold cross-validation Fusion SVM 0.67 0.51 0.80 0.66 0.34

Fusion LightGBM 0.92 0.85 0.85 0.85 0.70

Fusion DT 0.80 0.83 0.77 0.80 0.60

Fusion LR 0.82 0.74 0.77 0.76 0.52

Fusion RF 0.93 0.86 0.84 0.85 0.70

Independent set validation Fusion SVM 0.74 0.61 0.78 0.70 0.40

Fusion LightGBM 0.97 0.92 0.91 0.91 0.83

Fusion DT 0.94 0.94 0.84 0.89 0.78

Fusion LR 0.89 0.80 0.84 0.82 0.64

Fusion RF 0.98 0.94 0.94 0.94 0.88

Best performance metrics are shown in bold.

learning methods. Here, Support Vector Machines (SVM),
LightGBM, Decision Trees (DT), and Logistic Regression (LR)
were selected to build models for comparison. The prediction results
of each machine learning method are shown in Table 4 and Figure 3.
It can be seen that the RF method is superior to or equal to other
machine learning methods in various indicators, and has good
learning effect and prediction ability. Therefore, according to the
data characteristics provided by us, the RF method shows the best
predictive ability.

3.5. Comparison with existed models

To evaluate the predictive ability of Bitter-RF, we compared
it with the existing four sequence-based models. The first model
is iBitter-SCM which was constructed based on the dipeptide
propensity score, the second model is BERT4Bitter using deep
learning method, the third model is iBitter-Fuse by combining fuses
features with SVM, and the fourth model was iBitter-DRLF by
selecting features through deep learning (22–24, 26). Here, Bitter-RF
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FIGURE 3

Performance evaluation of different machine learning models using (A) 10-fold cross-validation and (B) independent testing.

TABLE 5 Performance comparison of Bitter-RF with the existing methods.

Cross-validation Classifier AUROC Sn Sp Acc Mcc

10-fold cross-validation iBitter-SCM 0.90 0.91 0.83 0.87 0.75

BERT4Bitter 0.92 0.87 0.85 0.86 0.73

iBitter-Fuse 0.94 0.92 0.92 0.92 0.84

iBitter-DRLF 0.95 0.89 0.89 0.89 0.78

Bitter-RF 0.93 0.86 0.84 0.85 0.70

Independent set validation iBitter-SCM 0.90 0.84 0.84 0.84 0.69

BERT4Bitter 0.96 0.94 0.91 0.92 0.84

iBitter-Fuse 0.93 0.94 0.92 0.93 0.86

iBitter-DRLF 0.98 0.92 0.98 0.94 0.89

Bitter-RF 0.98 0.94 0.94 0.94 0.88

Best performance metrics are shown in bold.

FIGURE 4

Radar plot for comparing Bitter-RF with other published models using (A) 10-fold cross-validation and (B) independent testing.

Frontiers in Medicine 08 frontiersin.org55

https://doi.org/10.3389/fmed.2023.1052923
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/


fmed-10-1052923 January 20, 2023 Time: 14:48 # 9

Zhang et al. 10.3389/fmed.2023.1052923

model used the same bitter peptide and non-bitter peptide sequences
as the previous four models. We further extended the types of
extracted features on the basis of the third model, and used the RF
method for modeling. By referring to relevant literatures, we obtained
the performance indicators of the four models. The comparison
results have been shown in Table 5 and Figure 4.

The performance comparison between Bitter-RF model and the
four models showed that the results of Bitter-RF model in 10-fold
cross-validation are similar to BERT4Bitter, and slightly lower than
iBitter-Fuse. However, the results of Bitter-RF model on independent
data are generally better than those of the first three models, and
are comparable to those of the fourth model. Bitter-RF model has
the same Sn index as the previous two generation models, which
is superior to the first generation model. The indexes of Sp, ACC
and MCC are better than those of the previous three generations.
Furthermore, the AUROC of Bitter-RF model is 5% higher than that
of iBitter-Fuse. Although the prediction performance of Bitter-RF is
close to that of iBitter-DRLF, we used a traditional machine learning
method, which consumes less computing resources. To sum up,
Bitter-RF model shows stronger prediction performance and better
practical application ability.

To our knowledge, we could not find any alternative bitterness
classification studies allowing us to assess the intrinsic robustness
of the bitter/non-bitter classification and therefore it cannot be
excluded that the model may be affected by the inherent bias of
training/test set data.

4. Conclusion

Compared with other proteins, there is still much room for
related research on bitter peptides, and it has shown potential medical
benefits. To better study bitter peptides, we developed a novel model
Bitter-RF for predicting bitter peptides, which uses information from
multiple perspectives, including sequence internal information and
physicochemical properties. By comparison, we concluded that fused
features could produce better performance than single features, RF is
more suitable for bitter peptide prediction, and Bitter-RF has more
application advantages than the four published models. Our research
further enriches the application of RF method in the field of protein
classification. And Bitter-RF model’s better results also show that
enrich physical and chemical properties, location information and
other characteristics play an important role in the identification of
bitter peptides, which can provide biologists with more directions for
biological experiments to verify bitter peptides.

However, one may notice that the features were not optimized. In
the future, we will use various of feature selection techniques (83–86)
to pick out the best features for improving model’s performance.

Based on the proposed method, a free and easy-to-use python
package has been built and accessible at GitHub: https://github.
com/ZhangYufei01/Bitter-RF.git, which can help scholars to identify
bitter peptides.
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Background: Autism Spectrum Disorder (ASD) is a multifactorial, neurodevelopmental 
disorder, characterized by deficits in communication, restricted and repetitive 
behaviors. ASD is highly heritable in Saudi Arabia; indecencies of affected individuals 
are increasing.

Objectives: To identify the most significant genes and SNPs associated with the 
increased risk of ASD in Saudi females to give an insight for early diagnosis.

Methods: Pilot case–control study mostly emphasized on the significant SNPs 
and haplotypes contributing to Saudi females with ASD patients (n = 22) compared 
to controls (n = 51) without ASD. With the use of allelic association analysis tools, 
243,345 SNPs were studied systematically and classified according to their 
significant association. The significant SNPs and their genes were selected for further 
investigation for mapping of ASD candidate causal variants and functional impact.

Results: In females, five risk SNPs at p ≤ 2.32 × 10−05 was identified in association with 
autism. The most significant exonic variants at chromosome 6p22.1 with olfactory 
receptor genes (OR12D2 and OR5V1) clustered with high linkage disequilibrium 
through haplotyping analysis. Comparison between highly associated genes (56 
genes) of male and female autistic patients with female autistic samples revealed that 
39 genes are unique biomarkers for Saudi females with ASD.

Conclusion: Multiple variations in olfactory receptor genes (OR5V1 and OR12D2) and 
single variations on SPHK1, PLCL2, AKAP9 and LOC107984893 genes are contributing 
to ASD in females of Arab origin. Accumulation of these multiple predisposed coding 
SNPs can increase the possibility of developing ASD in Saudi females.
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autism spectrum disorder, Saudi females, coding variants, single nucleotide polymorphism, 
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1. Introduction

Autism Spectrum Disorder (ASD) is a range of neurodevelopmental 
and neuropsychiatric disorders that start appearing from early 
childhood and lasts throughout the person’s life (1, 2). Autism is among 
the most heritable and severe form of ASD (3), characterized by deficits 
in communication as well as repetitive and restricted behaviors as 
reported in the Diagnostic and Statistical Manual, Fifth Edition (DSM-5) 
(4). The World Health Organization (WHO) revealed statistics of 1 in 
160 children to be diagnosed with ASD (5). In 2017, the latest ASD 
statistics in Saudi Arabia revealed that one per 167 individual is affected 
by autism (6). ASD is commonly multifactorial and many studies 
suggested interactions between immunological, neurological, 
environmental and genetic factors (7, 8). Tremendous sex bias of ASD 
shows that males are more affected than females with a male to female 
ratio of 3:1 (9). Several studies investigated the genetic risk factors 
against ASD in females, yet the key factors remain unknown (10–12). 
This paper identifies some genetic variables susceptible to cause autism 
in Saudi females, addresses the correlation between some diseases and 
pathways and genetic variants in Saudi females.

2. Methodology

2.1. Sample collection

The present study is conducted in accordance with the Declaration 
of Helsinki and received approval from the Institutional Review Board 
(IRB) of Imam Abdulrahman Bin Faisal University (IRB-2016-13-152). 
Out of 73 female age matched samples were included, 22 were cases and 
51 were controls (Table 1). The present study sheds light on potential 
genetic contributors to autism in Saudi female subjects. Buccal cell 
samples were collected from the study subjects upon receiving the 
signed informed consent. All the samples were collected from the King 
Fahad Hospital of the University, Al Khobar, Saudi Arabia.

2.2. DNA extraction and genotyping

To extract DNA from buccal cell samples, the Gentra Puregene Buccal 
Cell Kit (Qiagen, Hilden, Germany) was used. The buccal cells were 
collected by scraping the inside of the mouth 10 times with given sterile 
brush. DNA was extracted within 3 h from the collection, 300 μl Cell lysis 
solution was dispensed in a 1.5 ml tube, incubated at 65°C for 15 min, and 
1.5 μl of proteinase K was added and incubated at 55°C for 60 min. Then 
we added 100 μl protein precipitation reagent and incubated for 5 min on 
ice and centrifuged (13,000–16,000 ×g for 3 min). Supernatant was mixed 

with 300 μl isopropanol and 0.5 μl glycogen, centrifuged for 5 min at 
13,000–16,000 ×g. The supernatant was discarded, the DNA pellet was 
washed with 70% ethanol and suspended the DNA in TE buffer. The 
Human Exome Bead Chip Kit v1.0 and v1.1 Illumina (San Diego, CA, 
United States), which is constituted of 243,345 putative functional exonic 
markers, was used with Illumina iScan for the microarray genotyping. 
DNA processing was performed in accordance with the manufacturer’s 
protocol and all genotyping data were obtained from iScan control 
software (Illumina). DNA extraction and microarray genotyping and 
analysis took place in the genetics research laboratory of the Institute for 
Research and Medical Consultation, Imam Abdulrahman Bin Faial 
University, Dammam, Saudi  Arabia. The procedures were executed 
between 2016 and 2019. The Infinium HTS workflow is a rapid 3 days 
work flow, in brief: The PicoGreen dsDNA quantification reagent was used 
to quantify double-stranded DNA samples. The quantified DNA samples 
were processed in 96 well plates. The quantified DNA samples were 
denatured and neutralized to prepare them for amplification. All the DNA 
samples were incubated uniformly to amplify, to generate a sufficient 
quantity of each individual DNA sample to be used in the Infinium HTS 
Assay. We Incubated the MSA3 plate with amplified DNA in the Illumina 
hybridization oven for 20–24 h at 37°C. Then to fragment the DNA, an 
endpoint fragmentation was used. A 100% 2-propanol and precipitation 
reagents were used to precipitate the DNA. Then, re-suspended the 
precipitated and fragmented DNA. The re-suspended DNA was dispensed 
onto bead chips and incubated for hybridization of each DNA sample to 
specific section of the bead chip. Afterwards, the bead chips were prepared 
for the staining process. Then the un-hybridized and non-specifically 
hybridized DNA samples were washed from the bead chips, added labeled 
nucleotides to extend primers hybridized to the sample, and stains the 
primers. For imaging the bead chip we followed the instructions in the 
System Guide for instrument to scan. Intensity files from iScan of the 
individual DNA samples from the exome chip were to perform the 
genotyping. Sample sheets with sample information, such as plate ID, cell 
ID, gender and so on were used for fetching the data from intensity files to 
perform the genotyping using GenomeStudio 2,0 software (Illumina.

2.3. Statistical and functional analysis

Initial quality check of call rate was fulfilled using GenomeStudio 2,0 
software (Illumina). Only one control was eliminated from the analysis 
due to a call rate of < 0.98% and remaining samples were re-clustered. 
Using the Chi-square test with 1 degree of freedom (df), Hardy–Weinberg 
equilibrium (HWE) was tested individually for all the variants. Reference 
SNP ID numbers and gene names were acquired from SNP-Nexus (13) 
and Kaviar (14). To assess the outcomes of different alleles and haplotypes, 
95% confidence interval, odds ratios and case–control association 
analyses were calculated using gPlink version 2.050 (15) and Haploview 
version 4.2 (16). The p values < 0.001 were regarded as significant. DAVID 
6.7 (17) and Enricher (18) were utilized to annotate the highly significant 
remarkable (p < 1 × 10−05) genes for functional implications.

3. Results

Genotyping (Illumina) data were submitted to the NCBI (National 
Center for Biotechnology Information) Gene Expression Omnibus 
(GEO) repository [GEO accession number: GSE221098; BioProject 
accession numbers: PRJNA912746; GEO accession numbers for 

TABLE 1 Characteristics of Saudi female patients with autism and controls 
without autism.

Parameter
Control 

group n = 51
Case group 

n = 22
Value of 

p

Age (year) 7.73 ± 3.13 7.09 ± 3.93 0.2251

Weight (kg) 30.01 ± 13.61 25.11 ± 11.92 0.1034

Height (cm) 121.38 ± 23.33 119.2 ± 20.69 0.3707

Body mass index 19.95 ± 4.97 16.70 ± 2.03 0.0033*

The data are presented as the mean values ± standard deviations. *Significant at p ≤ 0.05.
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individual samples: GSM6845201-GSM6845273].1 After filtering 243,345 
SNPs according to their p values, 280 SNPs with p < 0.0001 were selected 
as significant (p < 9.44 × 10−05; Table  2). The most significant SNPs 
suggesting a correlation with autism were rs2247856 (p = 3.069 × 10−06 at 
SPHK1), rs386789496 (p = 1.036 × 10−05 at LOC107984893), rs4602367 
(p = 1.783 × 10−05 at PLCL2), rs6960867 (p = 2.17 × 10−05 at AKAP9) and 
rs12035482 (p = 2.32 × 10−05) located on chromosome 17, 16, 3, 7 and 1, 
respectively, (Figure 1). All the significant SNPs of Saudi females autistic 
patients with p < 0.00018 are listed in Supplementary Table 1 in which all 
obey the hardy–Weinberg equilibrium.

All association tests were screened using minor alleles’ frequency 
in controls, value of p of Hardy–Weinberg equilibrium and type 1 error 
rate to achieve the strongest genetic predisposition and imputed for 
linkage disequilibrium in HapMap SNPs in multiple chromosomes 
(Figure  2). The haplotype analysis implemented on SNPs with 
significance of p < 0.0001 were classified into protective (less probable 
to cause autism) and risk (more probable to cause autism; Table 3). Risk 
alleles are listed as the following: in Chromosome 1: IL24-rs1150258C; 

1 https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE221098

rs1507765C (value of p = 2.3773 × 10−5); Chromosome 3: PLCL2-
rs4602367A; PLCL2-rs17272796C (value of p = 3.2579 × 10−5); 
rs9854207; rs2642926 (value of p = 9.399 × 10−6); Chromosome 6: 
OR5V1-rs9257819A; OR5V1-rs2022077A; OR12D2-rs9257834G; 
OR12D2-rs4987411T; OR12D2-rs2073154C; OR12D2-rs2073153T; 
OR12D2-rs2073151G; OR5V1-rs2073149A; OR5V1-rs1028411T; 
OR5V1-rs2394607T (value of p = 4.5015 × 10−5); Chromosome 7: 
AKAP9-rs6964587T; AKAP9-rs6960867G; AKAP9-rs1063243C (value 
of p = 2.1723 × 10−5) and Chromosome 19; ZNF600-rs7507442G; 
ZNF816-rs57088011C (value of p = 7.3276 × 10−5; Table 3; Figure 2). 
Whereas the alleles of protective haplotypes are: in Chromosome 1: 
IL24-rs1150258T; rs1507765A (value of p = 5.9759 × 10−5); Chromosome 
3: PLCL2-rs4602367G; PLCL2-rs272796T (value of p = 3.2579 × 10−5); 
rs9854207A; rs2642926C (value of p = 2 × 10−4); Chromosome 6: 
OR5V1-rs9257819C; OR5V1-rs2022077T; OR12D2-rs9257834T; 
OR12D2-rs4987411C; OR12D2-rs2073154G; OR12D2-rs2073153G; 
OR12D2-rs2073151A; OR5V1-rs2073149T; OR5V1-rs1028411G; 
OR5V1-rs2394607C (value of p = 1 × 10−4); Chromosome 7: AKAP9-
rs6964587G; AKAP9-rs6960867A; AKAP9-rs1063243A (value of 
p = 6.272 × 10−5) and Chromosome 19; ZNF600-rs7507442A; ZNF816-
rs57088011G (value of p = 2.8266 × 10−5; Tables 3; Figure 2). Surprisingly, 
olfactory receptor family 23 subfamily D member 2 (OR12D2) and 

TABLE 2 The most significant SNPs associated with autism in Saudi females.

S.NO CHR SNP ID BP MA MAF Gene AA Value of 
p

CHISQ OR 
(L95-U95)

Case, 
control 
frequencies

HWpval

1 17 rs2247856 74,381,555 A 0.247 SPHK1 A 3.07 × 10−06 21.77 6.28(2.77–14.23) 0.500, 0.137 0.0017

2 16 rs386789496 17,988,303 A 0.473 LOC107984893 A 1.04 × 10−05 19.44 5.5(2.48–12.17) 0.750, 0.353 0.0117

3 3 rs4602367 17,053,499 A 0.336 PLCL2 A 1.78 × 10−05 18.41 4.96(2.32–10.6) 0.591, 0.225 0.2088

4 7 rs6960867 91,712,698 G 0.397 AKAP9 G 2.17 × 10−05 18.03 4.86(2.28–10.38) 0.659, 0.284 0.588

5 1 rs12035482 195,738,953 A 0.493 none G 2.32 × 10−05 17.91 0.18(0.08–0.42) 0.773, 0.390 0.0717

6 19 rs7507442 53,278,953 G 0.486 ZNF600 G 2.83 × 10−05 17.53 5.05(2.28–11.15) 0.750, 0.373 0.0396

7 7 rs6964587 91,630,620 A 0.403 AKAP9 T 3.43 × 10−05 17.17 4.8(2.22–10.37) 0.667, 0.294 0.3397

8 5 rs160632 96,503,523 G 0.445 RIOK2 C 3.46 × 10−05 17.15 4.76(2.21–10.27) 0.705, 0.333 0.1332

9 3 rs9854207 27,614,316 C 0.363 none C 3.53 × 10−05 17.11 4.64(2.18–9.85) 0.614, 0.255 0.1288

10 19 rs142920057 334,472 C 0.121 MIER2 G 4.29 × 10−05 16.74 8.143(2.64–25.09) 0.300, 0.050 0.6628

11 6 rs2073149 29,365,423 A 0.493 OR5V1 A 4.30 × 10−05 16.74 4.89(2.21–10.82) 0.750, 0.380 0.3153

12 4 rs1339 154,631,563 G 0.197 RNF175 C 5.60 × 10−05 16.23 5.50(2.28–13.25) 0.405, 0.110 0.5161

13 7 rs10488360 4,411,209 A 0.452 none A 5.67 × 10−05 16.21 4.56(2.12–9.81) 0.705, 0.343 0.4184

14 5 rs409045 34,628,627 G 0.37 none C 6.14 × 10−05 16.06 4.41(2.08–9.33) 0.614, 0.265 0.4098

15 7 rs1063243 91,726,927 C 0.411 AKAP9 C 6.27 × 10−05 16.02 4.42(2.08–9.39) 0.659, 0.304 0.5296

16 19 rs57088011 53,454,387 G 0.062 ZNF816 C 7.33 × 10−05 15.72 22.44(2.71–185.8) 0.182, 0.010 0.4609

17 5 rs11556045 73,985,215 G 0.233 HEXB A 7.95 × 10−05 15.57 0.048(0.00–0.36) 0.977, 0.676 0.282

18 1 rs669408 232,519,150 C 0.35 none C 8.77 × 10−05 15.38 4.5(2.06–9.79) 0.600, 0.250 1

19 3 rs2642926 27,615,419 A 0.459 none T 9.15 × 10−05 15.3 4.37(2.03–9.38) 0.705, 0.353 0.0125

20 19 rs7248104 7,224,431 A 0.459 INSR A 9.15 × 10−05 15.3 4.37(2.03–9.38) 0.705, 0.353 0.9049

21 6 rs2073153 29,364,835 C 0.472 OR12D2 T 9.17 × 10−05 15.3 0.21(0.09–0.47) 0.773, 0.418 0.3848

22 3 rs17272796 17,077,268 G 0.336 PLCL2 C 9.29 × 10−05 15.28 4.27(2.01–9.06) 0.568, 0.235 0.2088

23 7 rs10260011 84,709,356 A 0.226 SEMA3D T 9.44 × 10−05 15.25 4.77(2.10–10.86) 0.432, 0.137 0.5474

S.NO: serial number; CHR: chromosome; SNP ID: single nucleotide polymorphism ID; BP: base pair position at the respective chromosome as per GRCh37.p13; MA: minor allele name; MAF: 
frequency of minor allele in controls; AA: associated allele; p: value of p; ChisQ: basic allelic test Chi-square; p: value of p; OR: odd ratio; L95: lower bound of 95% confidence interval for odds ratio; 
U95: upper bound of 95% confidence interval for odds ratio.; CCF: case, control frequencies; HWpval: value of p of Hardy–Weinberg equilibrium.
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olfactory receptor family 5 subfamily V member 1 (OR5V1) located on 
chromosome 6 had multiple significant nucleotide variants in Saudi 
autistic females (Figure 2).

After conducting functional enrichment analysis of females’ gene list, 
genes with SNPs p < 0.00018 have shown a link to certain diseases 

including systemic lupus erythematosus disease (SLE; 5 Genes; 
p = 0.004400769; BRD2, OR12D2, CR2, OR5V1, HLA-DOA), 
Amyotrophic Lateral Sclerosis (3 Genes; p = 0.046868501; CUBN, 
SIPA1L2, COMMD10), as well as some pathways like regulation of 
complement cascade (2 Genes; p = 0. 0.0018; CD55, CR2) vitamin B12 

FIGURE 1

Manhattan plot: a total of (n = 243,345) SNPs are plotted according to p-values (y-axis) and their position in the genome (x-axis). The most significant 
candidate nucleotide variants rs2247856 (SPHK1), rs386789496 (LOC107984893), rs4602367 (PLCL), rs6960867 (AKAP9) and rs12035482 on chromosome 
17, 16, 3, 7and 1 respectively, exceed the significance threshold line (p = 1.00 × 10–4.5 - green dash line) indicating a statistically significant correlation with 
autism.

FIGURE 2

Haplotype blocks representing the linkage disequilibrium of chosen SNPs on chromosomes of autistic females in Saudi Arabia. The numbers at the bottom 
left of each picture correspond to the chromosome number. * refers to the genes’ names. Red rectangles are the most risk haplotypes, green rectangles 
are the most protective haplotypes and light blue rectangles highlights the SNPs which are located in the same gene. Further details are in Table 3.
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metabolism (2 Genes; p = 0.006683; CUBN, INSR), and female preferences 
for male odors (2 Genes; p = 0.008301262; OR12D2, OR5V1). The most 
significant SNPs with p < 0.0001 (Supplementary Table 1) associated with 
autism in Saudi females were subjected for the functional annotation, 
there were 27 DAVID IDs. Gene ontology enrichment analysis indicated 
the significant (p value = 0.0051; involved 6 genes MLXIPL, ZNF816, 
YEATS2, INSR, PROX2, and ZNF600) biological process, regulation of 
DNA-templated transcription (GO:0006355).

4. Discussion

This study evaluates the risk of genetic variation in ASD Saudi 
female subjects. The most significant SPHK1 SNP rs2247856 was 
reported recently as a significantly associated variant with 
Parkinson’s disease in both genders (19). GWAS catalog2 of 

2 https://www.ebi.ac.uk/gwas/variants/rs2247856

rs2247856 reported the observed risk allele (rs2247856-A) of the 
present study with reticulocyte count, mean corpuscular volume, 
lymphocyte count, and reticulocyte fraction of red cells. However, 
no earlier reports on autism. No previous association was reported 
on rs386789496, rs6960867 and rs12035482. GWAS catalog of 
PLCL2 SNP rs4602367-A reported the association with rheumatoid 
arthritis (20). Even though, PLCL2 SNP rs4602367-A was not 
reported on autism, a recent study revealed the association of 
PLCL2 SNPs (rs6800583 and rs73139272) with autism (21).

Beginning with significant genes plotted in Manhattan plot, 
SPHK1 has the highest value of p of 3.069 × 10−6. SPHK1 is a key 
enzyme of sphingolipid metabolism which modulates cellular 
proliferation and pro-survival function (22). Since SPHK1 and 
SPHK2 phosphorylate sphingosine to sphingosine-1-phosphate 
(S1P) (23) (Figure  3), the presence of a high concentration of 
SPHK1 increases the production of S1P which when elevated can 
lead to autism according to Wu et al. (24). In addition, based on 
multiple logistic regression analysis, S1P alterations were 
considered significant biomarker predictor for autism (23). 

TABLE 3 Haplotype blocks of SNPs with significant p < 0.0001 in Saudi autistic females.

Chr Block Haplotype Freq.
Case, control 
ratio counts

Case, control 
frequencies

Chi 
square

Value of p Haplotypes
Risk/
protective

1 Block 1 CC 0.303 24.1: 19.9, 20.2: 81.8 0.548, 0.198 17.86 2.38 × 10−05 rs1150258C; rs1507765C Risk

1 TA 0.303 3.1: 40.9, 41.2: 60.8 0.071, 0.404 16.11 5.98 × 10−05 rs1150258T; rs1507765A Protective

1 TC 0.21 8.9: 35.1, 21.8: 80.2 0.202, 0.214 0.027 0.8688 rs1150258T; rs1507765C

1 CA 0.183 7.9: 36.1, 18.8: 83.2 0.179, 0.185 0.006 0.9376 rs1150258C; rs1507765A

3 Block 1 GT 0.657 18.0: 26.0, 78.0: 24.0 0.409, 0.765 17.261 3.26 × 10−05 rs4602367G; rs272796T Protective

3 AC 0.329 25.0: 19.0, 23.0: 79.0 0.568, 0.225 16.361 5.24 × 10−05 rs4602367A; rs272796C Risk

3 Block 2 AC 0.503 11.8: 32.2, 61.7: 40.3 0.269, 0.605 13.88 2.00 × 10−04 rs9854207A; rs2642926C Protective

3 CT 0.325 25.8: 18.2, 21.7: 80.3 0.587, 0.212 19.63 9.40 × 10−06 rs9854207C; rs2642926T Risk

3 AT 0.134 5.2: 38.8, 14.3: 87.7 0.118, 0.140 0.138 0.7106 rs9854207A; rs2642926T

3 CC 0.038 1.2: 42.8, 4.3: 97.7 0.027, 0.042 0.207 0.6491 rs9854207C; rs2642926C

6 Block 1 AAGTCTGATT 0.493 33.0: 11.0, 39.0: 63.0 0.750, 0.382 16.647 4.50 × 10−05 rs9257819A; rs2022077A; rs9257834G; 

rs4987411T; rs2073154C; rs2073153T; 

rs2073151G; rs2073149A; rs1028411T; 

rs2394607T

Risk

6 CTTCGGATGC 0.466 10.0: 34.0, 58.0: 44.0 0.227, 0.569 14.395 1.00 × 10−04 rs9257819C; rs2022077T; rs9257834T; 

rs4987411C; rs2073154G; rs2073153G; 

rs2073151A; rs2073149T; rs1028411G; 

rs2394607C

Protective

6 AAGTCTGTTC 0.027 1.0: 43.0, 3.0: 99.0 0.023, 0.029 0.052 0.8204 rs9257819A; rs2022077A; rs9257834G; 

rs4987411T; rs2073154C; rs2073153T; 

rs2073151G; rs2073149T; rs1028411T; 

rs2394607C

6 AAGTCTGTTT 0.014 0.0: 44.0, 2.0: 100.0 0.000, 0.020 0.887 0.3463 rs9257819A; rs2022077A; rs9257834G; 

rs4987411T; rs2073154C; rs2073153T; 

rs2073151G; rs2073149T; rs1028411T; 

rs2394607T

7 Block 1 GAA 0.589 15.0: 29.0, 71.0: 31.0 0.341, 0.696 16.019 6.27 × 10−05 rs6964587G; rs6960867A; rs1063243A Protective

7 TGC 0.397 29.0: 15.0, 29.0: 73.0 0.659, 0.284 18.032 2.17 × 10−05 rs6964587T; rs6960867G; rs1063243C Risk

19 Block 1 AG 0.514 11.0: 33.0, 64.0: 38.0 0.250, 0.627 17.531 2.83 × 10−05 rs7507442A; rs57088011G Protective

19 GG 0.425 25.0: 19.0, 37.0: 65.0 0.568, 0.363 5.31 0.0212 rs7507442G; rs57088011G

19 GC 0.062 8.0: 36.0, 1.0: 101.0 0.182, 0.010 15.724 7.33 × 10−05 rs7507442G; rs57088011C Risk

Chr: chromosome; Freq.: frequency.
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FIGURE 3

Sphingolipid metabolism pathway illustrates the processes of sphingosine-1-phosphate (S1P) production. The last step is catalyzed by SPHK1, a significant 
protein-coding gene associated with autism in Saudi females.

Similarly, dysregulation of S1P triggers the manifestation of 
psychiatric and neurological diseases such as Alzheimer’s disease 
(25), schizophrenia (26) Parkinson’s disease (27) and anxiety 
disorder (28). However, an experiment done on valproic acid rat 
model found that protein expression of SPHK1 wasn’t significant 
as it did not reach the significance level (24). Protein modeling of 
mutated SPHK1 denotes the damaging changes, which indicates the 
mutated SPHK1 protein can affect the Sphingolipid metabolism 
pathway (Figure 4). Some findings reported proteins encoded by 
AKAP9, another significant gene in the allelic association study, to 
be highly expressed in autism subjects (29). Yet, the mechanism of 
the association is still unknown.

Significant SNP candidates for ASD etiology in females were 
perceived to be located at OR12D2 and OR5V1 genes on chromosome 6 
having high linkage disequilibrium (Figure  2). Several studies have 
perceived sensory abnormalities in autism subjects including unusual 
odor perception (30, 31). Indeed, olfactory genes influence the 
neurodevelopment status in terms of social, emotional and behavioral 
functioning (30, 32). A study reported a link between a cluster of SNPs 
located within the olfactory receptor genes on chromosome 6p22.1 and 
social defects in ASD ( (33); Figure 5). Interestingly, Systemic Lupus 
Erythematosus (SLE), which is an autoimmune disease closely related to 
autism, is accompanied by variations in olfactory receptor genes 
(Figure  5). A research conducted in Egypt revealed that 7 out of 38 
autoimmune ASD patients had a family history of SLE (34). The largest 
cohort study done on 719 SLE offspring reported a strong association 
between the two disorders (35). Further evidence supporting the 
relationship between the two disorders is found through the functional 
enrichment analysis suggesting that OR12D2 and OR5V1 are commonly 
affected genes in both SLE and female ASD patients. Large cluster of 
olfactory receptor genes on chromosome 6 is located in proximity to class 
1 histocompatibility complex genes which mediate immunity (36). 
Another factor that attributes to the development of ASD in SLE’s 
offspring is the presence of the autoimmune antibodies in patients with 
SLE which attack the Ro60 protein bound to YRNA (37, 38). All these 
factors justify the reason behind the doubled risk of ASD in SLE patients’ 
offspring, giving that 21.4–26% of SLE offspring have autism (39). Current 
studies have emphasized on the potential role for the immune system in 
ASD, with immune-genetic abnormalities and the inappropriate response 
of the immune system to environmental challenges. A meta-analysis of 7 
observational studies (25,005 ASD cases and 4,543,321 participants) was 
conducted assessing the relationships between maternal systemic lupus 
erythematosus (SLE) or rheumatoid arthritis (RA) and risk for ASD in 
offspring. The results showed that maternal RA was associated with an 
increased risk for ASDs, whereas maternal SLE was associated with an 
increased risk for ASD only in western population (40, 41).

Another medical condition that shares common genes with ASD is 
vitamin B12 (cobalamin) deficiency, which causes many neurological  
and psychiatric disorders. Cobalamin catalyzes the conversion of 

FIGURE 4

Protein models of SPHK1 wild-type and mutated proteins. Root mean 
square deviation (RMSD) for the superimposed: 0.001.
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homocysteine to methionine (1, 42). A study conducted in Oman on 80 
participants half of which are cases revealed an accumulation of 
homocysteine and reduced levels of methionine due to vitamin B12 
insufficiency (43). Another study attributed the association between 
Vitamin B12 and autism to the role of vitamin B12 in the methylation 
cycle and genetic material biosynthesis (44). Biochemical abnormalities 
related with ASD consist of impaired methylation and sulphation 
capacities beside low glutathione (GSH) redox capacity. Possible 
managements for these abnormalities comprise cobalamin (B12). A 
systematic review of a total 17 studies was identified studies using vitamin 
B12 to manage ASD. The study found that generally; vitamin B12 seems 
to have evidence for efficacy in patients with ASD, especially in 
individuals who have been identified with unfavorable biochemical 
profiles. Initial clinical evidence proposes that vitamin B12, mostly 
subcutaneously injected, improves metabolic abnormalities in ASD 
alongside with clinical symptoms. Cobalamin is a promising supplement 
used in the management of ASD (45). The limitations of the current study 
should be acknowledged. First, the pilot study design nature and its 
relatively small sample size.

5. Conclusion

In summary, the findings of this study provide the first evidence for 
female-based genetic analysis in Saudi Arabia and assess the relationship 
between olfactory receptor genes and ASD. Furthermore, variations on 
olfactory receptor genes elucidate the impact of SLE in females and the 
inheritance of ASD. Future investigations with more representative 
samples that include experiments on rat models are needed to practically 
prove the association and enhance ASD managing choices.
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FIGURE 5

(A) Significant ASD variation at OR12D2 and OR5V1 genes are located within a cluster of olfactory receptor genes at the chromosomal region 6p22.1. 
(B) The figure shows that maternal SLE influences the manifestation of ASD in their offspring. Smell deficits and variations in olfactory receptor genes, 
particularly in OR12D2 and OR5V1, are common in both ASD and SLE patients.
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The viral disease dengue is transmitted by the Aedes mosquito and is commonly
seen to occur in the tropical and subtropical regions of the world. It is a growing
public health concern. To date, other than supportive treatments, there are no
specific antiviral treatments to combat the infection. Therefore, finding potential
compounds that have antiviral activity against the dengue virus is essential. The
NS2B-NS3 dengue protease plays a vital role in the replication and viral assembly.
If the functioning of this protease were to be obstructed then viral replication
would be halted. As a result, this NS2B-NS3 proves to be a promising target in the
process of anti-viral drug design. Through this study, we aim to provide
suggestions for compounds that may serve as potent inhibitors of the dengue
NS2B-NS3 protein. Here, a ligand-based pharmacophore model was generated
and the ZINC database was screened through ZINCPharmer to identify molecules
with similar features. 2D QSARmodel was developed and validated using reported
4-Benzyloxy Phenyl Glycine derivatives and was utilized to predict the IC50 values
of unknown compounds. Further, the study is extended to molecular docking to
investigate interactions at the active pocket of the target protein. ZINC36596404 and
ZINC22973642 showed a predicted pIC50 of 6.477 and 7.872, respectively. They also
showed excellent binding with NS3 protease as is evident from their binding energy
of −8.3and −8.1 kcal/mol, respectively. ADMET predictionsofcompounds have shown
high drug-likeness. Finally, themolecular dynamic simulations integratedwithMM-PBSA
binding energy calculations confirmedboth identified ZINC compounds as potential hit
moleculeswith good stability.

KEYWORDS
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Introduction

Dengue, a viral disease caused by members of the Flaviviridae family, is a leading
public health concern, affecting most Asian and Latin American countries, and
becoming a major cause of hospitalization and death in these regions (WHO,
2022). The disease spreads among humans through infected female Aedes aegypti or
Aedes albopictus (Adawara et al., 2020). There are four serotypes of Dengue virus
(DENV), namely, DEN-1, DEN-2, DEN-3, and DEN-4, of which DEN-2 is considered
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the most virulent strain (Adawara et al., 2020; Dwivedi et al.,
2021). Up to date, other than supportive, no specific antiviral
treatment exists to treat the illness, thus finding potential
compounds that have an anti-dengue activity that can be
developed into efficient drugs with the least toxic effects on
human beings is the need of the hour (Wellekens et al., 2022). In
vitro testing of inhibitory activities of various compounds is a
time-consuming procedure and is also expensive, pointing
toward the usage of quantitative structure-activity
relationship (QSAR) models which is a promising way to
predict the biological activity of new compounds (Kurniawan
et al., 2020).

The viral genome encodes for three structural proteins and
seven non-structural proteins, of which NS3 is a non-structural
protein that is essential for RNA replication and viral assembly
(Dwivedi et al., 2021). This protein contains a serine protease
domain, whose activity depends on the formation of a non-
covalent complex with the NS2B protein as a cofactor, thus
making the NS3 protein an attractive target that can be used
to develop dual-acting drugs that are effective against DENV
(Behnam et al., 2015). It has been reported that structure-based
drug design may not be suitable for developing NS3–NS2B
inhibitors due to the specific structure of the protease which is
slightly smooth in 3D space, and to date, ligand interaction
mechanism and QSAR information are very limited (Luo
et al., 2017).

Various in silico studies aiming to identify NS2B/
NS3 inhibitors have been performed, for example, a study by
Qamar et al., in 2017 pointed out that plant flavonoids have the
potential to inhibit the dengue protease enzyme and could stop
replication of DENV(Qamar et al., 2017). Other studies focusing
on phytocompounds as novel dengue protease inhibitors have
also been reported isolated phytochemicals belonging to different
groups including fatty acids, glucosides, terpenes and terpenoids,
flavonoids, phenolics, chalcones, acetamides, and peptides.
Curcumin, quercetin, and myricetin were found to act as non-
competitive inhibitors for the NS2b/NS3 protease enzyme
(Saqallah et al., 2022). Though various in silico experiments
have been performed to identify NS2b/NS3 inhibitors, most of
these studies are molecular docking based, and studies based on
QSAR are few.

In 2015, Behnam et al. performed a study that presents an
extensive biological evaluation of NS3 inhibitors containing
benzyl ethers of 4-hydroxyphenylglycine that function as
non-natural peptide building blocks synthesized via a
copper-complex intermediate. In this study, we make use of
these inhibitors to develop a ligand-based pharmacophore
model as well as a QSAR model, in order to identify lead
compounds having anti-dengue activity. This study also
elaborates on the ligand interactions and toxicity analysis of
the inhibitors based on in silico predictions. These findings can
then be utilized and integrated into in vitro studies in order to
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TABLE 1 Structures of the selected FDA approved drugs and their docking scores.

S. No. Standard drug Structure Binding energy (kcal/mol)

1 Danoprevir −13.5

2 Glecaprevir −13

3 Simeprevir −12.1

4 Saquinavir −10.5

5 Indinavir −10.5

6 Tipranavir −10.3

7 Nelfinavir −10.2

8 Asunaprevir −9.9

(Continued on following page)
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TABLE 1 (Continued) Structures of the selected FDA approved drugs and their docking scores.

S. No. Standard drug Structure Binding energy (kcal/mol)

9 Darunavir −9.4

10 Amprenavir −9.3

11 Telaprevir −9.2

12 Fosamprenavir −9.2

13 Lopinavir −9.1

14 Boceprevir −8.8

15 Ritonavir −8.6

16 Atazanavir −8
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further confirm the possibility of developing these inhibitors
into effective drugs.

Methodology

Identification of inhibitor compounds

An extensive survey of literature revealed the DenvInD-
Database of inhibitors of Dengue virus (https://webs.iiitd.edu.in/
raghava/denvind/), a curated database of Dengue virus inhibitors for
clinical and molecular research (Dwivedi et al., 2021). This database
contains detailed information about the SMILES, PubChem IDs,
EC50, CC50, IC50, and Ki values of 484 compounds which have been
validated as inhibitors against various drug targets of dengue virus
using in vitro studies. From this database, the specific set of
inhibitors against NS3 protease was selected for further studies.
Out of the 365 NS3 protease inhibitors reported in the database,
104 compounds containing 4-Benzyloxy Phenyl Glycine residues
were selected, whose biological assays were performed using
fluorometric assay HPLC-based DENV-protease assay in order to
eliminate false positives (Behnam et al., 2015). The IC50 value is a
measure of the effectiveness of a drug in bringing about the
inhibition of its respective target. Therefore, based on the
availability of IC50 values, 80 compounds were further selected
for the pharmacophore modeling and QSAR study as is
presented in the supplementary information. The IC50 values
were converted to pIC50 values in order to normalize the
variation in concentration units. The structures of these
80 compounds were drawn using ChemSketch, a software
developed by Advanced Chemistry Development, Inc. (Li et al.,
2004).

Identification of standard drugs

There is presently no standard treatment for dengue
infection and therefore there is a need to explore all avenues
that will lead us to potential drugs. In order to carry out a
comparative analysis between the compounds obtained from
DenvInD and standard drugs used to treat other similar viruses,
as well as to check the possibility of drug repurposing, a set of
15FDA-approved standard antiviral drugs have been reported
to inhibit protease in Hepatitis C Virus (HCV) and Human
Immunodeficiency Virus (HIV) was identified, as shown in
Table 1. The SDF files of these compounds were downloaded
from DrugBank for further analysis (Wishart et al., 2018).

Pharmacophore-based screening of ZINC
database

The top 3 compounds with the highest pIC50 values were
selected and their energies were minimized using Avogadro,
using the steepest descent algorithm and MMFF94 force field
(Hanwell et al., 2012). These molecules were converted to

mol2 format and were provided as input to PharmaGist with the
maximum number of output pharmacophores as 5, in order to
develop the pharmacophore model. The pharmacophore feature
output file was then used as input to ZINCPharmer, an open web
server used to screen the ZINC database to identify compounds with
similar pharmacophore features (Koes and Camacho, 2012). The
resultant compound hits were then downloaded as SDF files for
molecular docking analysis.

Quantitative structure-activity studies
(QSAR) studies

Creating training and test set
The 80 final compounds chosen from DenvInD were split

into training set and test set. The range of pIC50 values for the
training set and test set was 5.42–7.74 and 5.01–7.55,
respectively. Based on a randomized process, 64 compounds
were considered in the training set, and the remaining
16 compounds were considered in the test set. The training
set was used to build the QSAR model.

Generation of descriptor
Molecular descriptors refer to structural and

physicochemical properties that define a molecule and usually
include properties like steric parameters, hydrophobic
properties, electrostatic properties, etc., as well as
constitutional properties of the molecule. The descriptors for
the 64 compounds in the training set were calculated using
PaDEL software (Yap, 2011). Significant descriptors were
selected for further analysis based on their correlation with
the pIC50 values of the training compounds.

Building QSAR model-generation and validation
The BuildQSAR tool was used to build the QSAR model using

the 64 training compounds (Singh et al., 2022). A QSAR study
performed First, a systematic search was performed to select a set of
descriptors (maximum 3) on the basis of user-given correlation
criteria with respect to activity (pIC50). Further, the Multiple Linear
Regression (MLR) method was used to build the QSAR model using
multiple combinations of the selected descriptors (Murahari et al.,
2017). The descriptors were selected based on various statistical
parameters like high correlation coefficient (R), high Fischer’s value
(F-Test), low Standard error of estimate (s), statistical significance
(p), high cross-validated square of correlation coefficient (Q2), low
sum of squared error of prediction (SPRESS) and low standard
deviation of error of prediction (SDEP). The models that showed
significant statistical parameters were tested using the
16 compounds in the test set, to check the fitness of the QSAR
model.

Activity prediction of screened ZINC compounds
The pIC50 values of ZINC database compounds obtained as a

result of ZINCPharmerscreening were predicted using the validated
QSAR model that showed highly significant statistical parameters.
The compounds with good pIC50 values in comparison with
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compounds obtained from DenvInD were used for further
computational studies.

Molecular docking studies

Preparation of protein
The structure of Dengue Virus NS2B/NS3 Protease was obtained

from RCSB PDB (PDB ID: 2FOM) (Sarwar et al., 2018). SWISS-
MODEL was used to repair the missing atoms (Waterhouse et al.,
2018). Further, the ligands from the protein structure were removed
using BIOVIA Discovery Studio and the protein was prepared for
docking in AutoDock Vina, a part of MGL tools 1.5.7 (Seeliger and
De Groot, 2010; Pawar and Rohane, 2021). Water molecules were
deleted, polar hydrogen atoms and Kollman charges were added.
The prepared protein was saved as a pdbqt file and further used for
docking analysis. The binding site coordinates were obtained as
x = −3.243 y= −9.193 and z = 16.143 based on key amino acid
residues (His 51, Asp 75, and Ser 135) using PyMol version 4.4, a
molecular visualization software (Yuan et al., 2017). The grid box
size of 40 A0 was used for docking.

Docking with ZINC database compounds and
standard drugs

The compounds obtained from the ZINC database after the
pharmacophore-based screening, as well as the 15FDA-approved
antiviral protease inhibitors were converted to pdbqt format and
their energy was minimized using the MMFF94 force field.
AutoDock Vina was used for docking. Docking was performed
using exhaustiveness parameter as 10. Docking scores and binding
interactions at the active pocket of target protein for respective
ligands were inspected and recorded carefully. The output
complexes with high binding affinity and pIC50 were further used
to perform molecular dynamics simulation studies.

Molecular dynamic simulations

The top 2 compounds obtained after docking and QSAR activity
predictions of the selected ZINC database compounds were further
subjected to molecular dynamic simulations using GROMACS version
2018.1 (VanDer Spoel et al., 2005). The receptor topology was obtained
by the “pdb2gmx” script, while the ligand topologies were obtained by
the PRODRG server (Schüttelkopf and Van Aalten, 2004). Each of the
generated ligand topologies was rejoined to the processed receptor
structure to construct the ligand-protein complex. GROMOS96
54a7 force field was used to obtain the energy minimized
conformations of all the processed complexes (Schmid et al., 2011).
Next, a solvation step was performed wherein the structures were

solvated in a cubic periodic box (90 Å, 90 Å, 90 Å) with water extended
simple point charge (SPC) model. In order to neutralise the system,
4 Na ions added. Subsequently, energy minimization of the system was
carried out for 50,000 steps using the steepest descent algorithm
with <10.0 kJ/mol force. Upon energy minimization, equilibration of
the system was performed with two consecutive steps. The NVT
ensemble followed by NPT ensemble was done for 50,000 steps
each. A constant temperature of 300 K and constant pressure of
1 atm were maintained through the entire MD simulation. The
long-range electrostatic interactions were obtained by the particle
mesh Eshwald method with a 12 Å cut-off and 12 Å Fourier
spacing. Finally, the three well-equilibrated systems (one apo protein
and two protein-ligand complexes) was subjected to a final 100 ns
simulation. Root mean square deviation (RMSD), Root Mean Square
Fluctuation (RMSF), Radius of Gyration (R g), Solvent Accessible
Surface Area (SASA) and Number of Hydrogen bonds of the
protein and complxes were calculated using gmx_rms, gmx_rmsf,
gmx_gyrate, gmx_sasa and gmx_hbond tools, respectively. The MM/
PBSA study using g_mmpbsa version 5.1.2 utility was used to analyze
the binding free energy (ΔG binding) of the ligands with protein over
the whole 100 ns simulation time.

Prediction of drug-likeness and ADMET
properties of ZINC compounds

The hit molecules were then studied further investigated for
drug-likeness, toxicity, and ADME properties. Molsoft Drug-
Likeness and molecular property prediction tool were used to
predict drug-likeness (Elsherif et al., 2020) Other chemical
properties like the number of hydrogen bond donors,
hydrogen bond acceptors, BBB score, pKa, etc., were also
analyzed during this step. It is extremely important to
understand the toxicity levels of compounds before
considering it further as a potential drug lead. Hence to
predict the toxicity class of compounds, ProTox-II was used
(Drwal et al., 2014). Further, to elucidate the physicochemical
descriptors, pharmacokinetic properties, ADME parameters, and
drug-like nature, SwissADME tool was used (Daina et al., 2017).

Results and discussion

Ligand-based pharmacophore modeling

Top 3 compounds with highest pIC50, i.e., DenvInD_285,
DenvInD_265 and DenvInD_266, were submitted to
PharmaGistwebserver to generate the pharmacophore model.
This web server predicts a ligand-based pharmacophore model

TABLE 2 PharmaGist results.

S. No. Score Spatial features Aromatic Hydrophobic Donor Acceptor Molecules

1 29.394 6 2 0 3 1 DenvInD_285, DenvInD_266, DenvInD_265

2 22.780 6 1 1 3 1 DenvInD_285, DenvInD_266, DenvInD_265

3 22.045 4 2 0 1 1 DenvInD_285, DenvInD_266, DenvInD_265
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based on the best alignment of maximum features between the
submitted molecules. Considering a perfect alignment of all the
3 molecules submitted, a pharmacophore model was obtained with a
PharmaGist score of 29.394 having six spatial features. The
pharmacophore model generated includes a total of 6 features-
spatial features, aromatic 2), donors 3), acceptor 1), and the
results of other pharmacophores identified were presented in
Table 2.

Pharmacophore-based screening of ZINC
database

The pharmacophore features obtained from PharmaGist were
downloaded and used to screen the ZINC database through
ZINCPharmer webserver in order to find ligands with similar
pharmacophore features with an assumption of having similarity
in pharmacological properties. The query led to 38 hits from the
ZINC database with optimization of low RMSD and molecular
weight. The structures of these compounds were presented in the
Supplementary Material.

Building QSAR model and activity prediction
of ZINC database compounds

Using PaDEL software 1,444 descriptors were generated for the
training set of 64 compounds. Based on the correlation coefficient
calculated with respect to pIC50 values of the respective compounds,
13 descriptors were identified for further analysis. The training set of
64 compounds was given as input to the BuildQSAR tool to generate
the QSAR models. A variable selection search was performed using
“systematic search” mode using correlation criteria limits of
0.6–0.78 and the variable limit of 3. The influencing parameters

were found to be GATS6e (X1), GATS5i(X2), VE1_DzZ (X3), VE2_
DzZ (X4), VE3_DzZ (X5), SpMAD_Dzp (X6), SpMax3_Bhp(X7),
ETA_Epsilon_5 (X8), IC1(X9), IC2(X10), TIC0(X11), MIC1(X12),
WTPT-3 (X13) and they are further described in Table 3. GATS6e
and GATS5i are autocorrelation descriptors which are essentially
molecular descriptors that encode molecular structure as well as the
physicochemical properties attributed to the atoms in the form of
vectors (Hollas, 2003). VE1_DzZ, VE2_DzZ, VE3_DzZ and
SpMAD_Dzp are Barysz Matrix descriptors. Barysz matrix is a
weighted distance matrix that accounts for the presence of
multiple bonds and heteroatoms in the molecule under
consideration. SpMax3_Bhp is a Burden Modified Eigenvalues
descriptor that reflects the topology of the molecule. ETA_
Epsilon_5 is an Extended Topochemical Atom descriptor that
determines the contributions of specific positions within common
substructures of molecular graphs towards total functionality (Roy
and Ghosh, 2003). IC1, IC2, TIC0, and MIC1 are Information
Content descriptors, and WTPT-3 is a PaDEL Weighted Path
descriptor. The QSAR model was generated using a trial-and-
error method to find the best fitting model that has a high R, R2,
F-test, and Q2 and low s values, SPRESS, and SDEP statistical values.
The top six models were shown in Table 4. These models were
further tested using the test set to verify whether the pIC50 value
predicted by these models was comparable to experimental values.
Upon graphical analysis, it was seen that model 1 exhibited the
highest R2 value of 0.703 between observed and predicted pIC50

values. Hence model 1 was chosen for further studies. The pIC50

predicted using Model 1 ranged from 4.507 to 8.164. Further
information about the model is given in the supplementary file.
The pIC50 of the library compounds ranged from 5.013 to 7.744.
This shows that the validated QSAR model could identify
compounds with better predicted pIC50 values, for which the
objective was partially fulfilled. As the compounds need to be
tested experimentally. The predicted activity for the ZINC

TABLE 3 Details of the descriptors chosen to build the QSAR model (Karthikeyan et al., 2021).

S. No. Descriptor Description Descriptor class

1 GATS6e Geary autocorrelation–lag 6/weighted by Sanderson electronegativities Autocorrelation descriptor

2 GATS5i Geary autocorrelation–lag 5/weighted by first ionization potential

3 VE1_DzZ Coefficient sum of the last eigenvector from Barysz matrix/weighted by atomic number Barysz Matrix descriptor

4 VE2_DzZ Average coefficient sum of the last eigenvector from Barysz matrix/weighted by atomic number

5 VE3_DzZ Logarithmic coefficient sum of the last eigenvector from Barysz matrix/weighted by atomic number

6 SpMAD_Dzp Spectral mean absolute deviation from Barysz matrix/weighted by polarizabilities

7 SpMax3_Bhp Largest absolute eigenvalue of Burden modified matrix–n 3/weighted by relative polarizabilities Burden Modified Eigen values descriptor

8 ETA_Epsilon_5 A measure of electronegative atom count Extended Topochemical Atom
descriptor

9 IC1 Information content index (neighborhood symmetry of 1-order) Information Content descriptor

10 IC2 Information content index (neighborhood symmetry of 2-order)

11 TIC0 Total information content index (neighborhood symmetry of 0-order)

12 MIC1 Modified information content index (neighborhood symmetry of 1-order)

13 WTPT-3 Sum of path lengths starting from heteroatoms PaDEL Weighted Path descriptor
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database compounds were presented in Table 5. These compounds
were then analyzed using docking studies to identify the binding
patterns and interactions at the active pocket of the target protein.

Molecular docking studies

Docking of ZINC database compounds
The selected set of ZINC database compounds was subjected

to docking against dengue protease as stated in the protocol. The
binding energies ranged from −9 kcal/mol to −7.3 kcal/mol as
shown in Table 5. The top 2 compounds identified were
ZINC36596404 and ZINC22973642 with binding
energies −9 kcal/mol and −8.9 kcal/mol, respectively. The
interactions between the protein and the ligand were
summarized in Table 6. Upon observing the interaction
between dengue protease and ZINC36596404, conventional
hydrogen bond, carbon-hydrogen bond, Pi-donor hydrogen
bond, pi-sigma, and pi-alkyl were found to be significant.
Lys74, Trp83 and Trp89 were involved in a conventional
hydrogen bond, Gly148, Glu88 and Glu91 were involved in
carbon-hydrogen bond and pi-donor hydrogen bond,
Leu76 was involved in pi-sigma bond and Ala166 in pi-alkyl
bond. Next, the interaction between dengue protease and
ZINC22973642 was analyzed, revealing that van der Waals,
conventional hydrogen bond, carbon hydrogen bond, alkyl,
and pi-alkyl were noteworthy. The amino acid interactions for
these bonds were seen to involve Thr118. Thr120, Trp89, Glu88,
Asn152, Lys73, Ile165 for van der Waals bonds; Asn167, Leu149,
Val47 contributed to conventional hydrogen bonding; Gly148,
Leu76, Trp83, Gly87, Leu85 for hydrogen bonds; Val154, Ile123,
Ala166, Ala164, Lys74 for alkyl and pi-alkyl. The interactions are
represented in Figure 1.

Docking of standard drugs
The results obtained when the 15 chosen standard drugs were

docked against the Dengue protease were presented in Table 1. The
binding energies fall in the range of −13.5 kcal/mol to −8 kcal/mol.
From this, we can observe that Danoprevir, Glecaprevir, Simeprevir,
Indinavir, Tipranavir, Nelfinavir, Asunaprevir, Darunavir, and
Amprenavir have a better binding affinity with the Dengue
protease compared to the ZINC database compounds screened in
this study. This directs us to conduct an experimental study in order
to formulate a drug that works against dengue protease. Danoprevir
interacts with the receptor using van derWaals forces contributed by
Asn167, Ala166, Ala164, Ile165, Asn152, Leu76, Met49, Leu149,
Gly148 and Val147. Conventional hydrogen bonds made by
Lys74 and carbon hydrogen bonds made by Leu85, Val146 and
Gly87 also take part in the interactions. Glecaprevir interacted with
the receptor through attractive charges of Glu88, conventional
hydrogen bond of Trp83, carbon hydrogen bond of Gly148,
halogen bond by Val147 and pi-cation bond by Glu88. Amino
acids in Simeprevir that interacted with the receptor include Lys74,
Asn167, Lys73, Ala164, Asn152, Ile123, Gly153, Val154, Thr120,
Thr118, Asn119 and Val155 that contribute to van der waals forces,
and Asp71 that is involved in attractive charges. Indinavir was seen
to interact with the receptor throughmainly alkyl and pi-alkyl bonds
formed by Trp83, Leu149, Leu76 and Leu85, attractive charges ofTA
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TABLE 5 Results of docking ZINC database compounds against NS3 protease.

S. No. ZINC compound Binding energy (kcal/mol) Predicted pIC50

1 ZINC36596404 −9 6.477

2 ZINC22973642 −8.9 7.872

3 ZINC09789323 −8.7 6.399

4 ZINC16699623 −8.7 4.507

5 ZINC19143967 −8.5 7.047

6 ZINC09833225 −8.3 6.907

7 ZINC02458390 −8.2 6.189

8 ZINC06148003 −8.2 6.869

9 ZINC27672080 −8.2 7.086

10 ZINC14028064 −8.1 6.700

11 ZINC14037170 −8.1 7.188

12 ZINC35025967 −8 6.584

13 ZINC14036276 −8 6.860

14 ZINC67678868 −7.9 6.473

15 ZINC36656172 −7.9 7.474

16 ZINC02563681 −7.8 6.434

17 ZINC01155209 −7.8 6.743

18 ZINC15634648 −7.7 6.628

19 ZINC17795,206 −7.7 7.198

20 ZINC23080510 −7.7 8.050

21 ZINC32477936 −7.6 7.121

22 ZINC23327308 −7.6 7.414

23 ZINC32042479 −7.6 7.702

24 ZINC32908224 −7.6 7.391

25 ZINC14664807 −7.5 7.170

26 ZINC33242299 −7.5 7.713

27 ZINC69504947 −7.5 6.964

28 ZINC09826328 −7.5 6.728

29 ZINC23114768 −7.5 7.242

30 ZINC06445998 −7.4 5.955

31 ZINC37514943 −7.4 6.332

32 ZINC22755327 −7.4 7.666

33 ZINC32485749 −7.4 7.466

34 ZINC78464608 −7.4 8.164

35 ZINC32908634 −7.3 7.931

36 ZINC64718088 −7.3 6.723

37 ZINC23114770 −7.3 7.242

38 ZINC93765844 −7.3 6.838
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Glu88, and carbon hydrogen bond formed by Gly148 and Ala164.
The amino acid interactions seen among other standard drugs
studies are elaborated in the Supplementary Information. The
binding interactions of Danoprevir and Glecaprevir, the top
2 compounds were further examined and compared with the
binding interactions of the top hit ZINC compounds
ZINC36596404 and ZINC22973642. Comparing the amino acid
interaction of ZINC compounds and standard drugs with the
receptor, we get interesting inferences. The results show that
Ala166, Leu76, and Gly148 seem to play an important role in
interaction with the receptor as they are involved in interactions
with the receptor in Danoprevir, ZINC36596404, and
ZINC22973642. While Ala166 is involved in van der Waals
forces in Danoprevir interaction, it is involved in pi-alkyl and
alkyl bonding in ZINC36596404 and ZINC22973642 interactions,
but we can conclude that they are important residues in
hydrophobic interactions. Leu76 and Gly148 seem to be
contributing significantly to different types of hydrogen bonding.
Glu88 and Trp83 were identified as another set of important amino
acid residues interacting with the receptor in Glecaprevir,
ZINC36596404, and ZINC22973642. Glu88 can be said to be
necessary for hydrophobic interactions like pi-cation interaction
and van der Waals interactions as well as hydrogen bonding.
Trp83 has shown to be contributing to various hydrogen bonds
in Glecaprevir, ZINC36596404, and ZINC22973642. Gly148 can be
pointed out as a major key residue as it is involved in hydrogen
bonding in all the compounds discussed above. From this, we can
understand that by preserving these key interactions in the ZINC
compounds and modifying other groups, we can develop the
identified ZINC compounds into effective inhibitors of Dengue
Protease.

Molecular dynamic simulation

Root mean square deviation analysis
ZINC36596404 and ZINC22973642 with the lowest binding

energies were subjected to molecular dynamics simulation in
order to analyze the flexibility and stability of the protein-ligand
complexes in a cellular atmosphere. The changes in the complex
structure and conformation were assessed for a simulation time
frame of 100 ns through MD simulations. Differentparameters
like RMSD, RMSF, Rg, SASA were determined to understand the
stability of the molecular trajectory, flexibility, ligand-receptor
affinity and the extent of compactness and folding behavior.
Figure 2 shows the pose of respective ligand during MD
simulations in the active pocket at 25, 50, 75 and 100 ns,
respectively. Supplementary Figure S3 summarizes the results
obtained. RMSD evaluates whether the complex system has
equilibrated and attained stability over the time duration of
the simulation. In the case of apo-protein, the RMSD values
showed a general increasing trend from 0 to 1.6 ns with RMSD
values from 0 to 0.194 nm. Thereafter, the values showed slight
variations of small magnitude. Towards the end of the
simulation, particularly after 50 ns, a fairly constant value
that remained between 0.2 and 0.24 nm was obtained.
Considering the ZINC22973642 compound, the RMSD values
showed a general increasing trend till 19.68 ns, with RMSDTA
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values ranging from 0 to 0.27 nm. From this point ahead, the
values remained fairly constant in the range between 0.2 and
0.24 nm. The compound ZINC36596404 showed relatively
better stability, as the results show an increase followed by
decreasing trend until around 30 ns and thereafter remains at an
almost constant value of 0.23 nm with only slight variations.

Root mean square fluctuation analysis
RMSF values for Cα atoms were calculated and comparatively

analyzed for the ligand-bound complexes along with that of the
apo-protein in order to look into the mean residual fluctuations,
motion, and flexibility of the amino acid residues of particular
regions of the ligand binding during the simulation time.
Supplementary Figure S4 shows the results obtained. It was
observed that about seven amino acids (Gly62, Val72, Lys104,
Gly114, Gly121, Pro132, Gly153) are directly involving in the
complex formation via interactions like conventional hydrogen
bonds, carbon hydrogen bonds, Pi-donor hydrogen bond,Pi-
sigma,Pi-alkyl, Van der Waals, etc. From the figure we can see that
these residues are decreased in the complex due to the ligand binding
properties when compared to their free dynamics in the apoprotein.
From this, it is understood that the apo-protein, ZINC22973642, and
ZINC36596404 show a very similar pattern where maximum residues

show fluctuations, however, the vacillation was less than 0.3 nm for a
majority of these residues.

Radius of gyration (Rg)
The radius of gyration refers to the root mean square distance of

the atoms from their rotational axis. It helps to gatherdetails about
the compactness, rigidity, and folding behavior of the receptor
during the time frame of the simulation. Lower Rg valuesshow
that minimal fluctuations indicate a stable protein-ligand
complex. Higher Rg values along with variation suggests
instability of the complex. The values of Rg obtained are
pictorially represented in Supplementary Figure S5.
ZINC22973642 and ZINC36596404 happen to show a similar Rg

pattern where the value remains fairly constant at 1.65 nm with very
minor variations. From these results, we can conclude that the
protein attained a compact state and does not show abrupt
fluctuations indicating that a stably folded protein is formed
upon binding of ligands to the ZINC database compounds.

Solvent accessible surface area
The binding of small molecules to receptor protein induces

certain structural and conformational changes which have an impact
on the protein volume. This change can indirectly give an insight

FIGURE 1
Visual representation of the docked complexes and the amino acid interactions of (A) ZINC36596404 (B) ZINC22973642.
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into the protein-ligand complex during the simulation. SASA was
calculated to look into the solvent behavior of the dengue protease
upon binding to the ligands and it was comparatively analyzed to the
changes in surface area of the apo-protein. Hydrophobic residues
contribute to SASA values. The exposure of these residues from their
hydrophobic core region leads to complex instability by
decompressing the receptor. Similar to Rg, lower and minimal
fluctuations in the values indicated stabilized, compressed and
correctly folded target protein. The SASA values were calculated
and plotted against time in Supplementary Figure S6. The apo-
protein exhibited minimal fluctuations in SASA values until around
50,000 ps from where it started increasing up until 60,000 ps and
further decreased until the values stabilized. Both the ZINC database
compounds showed a closely similar pattern of minimal fluctuations
in the SASA values throughout the simulation period.

Hydrogen bonds
The binding affinity of identified small molecules with the

target protein can be ascertained by hydrogen bond formation.
The number of hydrogen bonds formed between ligand and
dengue protease revealed the binding affinity. Graphical
results were presented in Supplementary Figure S7.
ZINC22973642 showed an average binding affinity with the
protein and formed a maximum of 7 hydrogen bonds
throughout the simulation period. ZINC36596404 had higher

binding energy with the protein and this is clearly explained by
the consistent hydrogen bond formation with the protein. From
the figure, we can see that the ZINC compounds consistently
maintain at least 5 hydrogen bonds throughout the simulation
period. The residues involved in hydrogen bonding in
ZINC36596404 were Lys74, Trp83 and Trp89 which were
involved in a conventional hydrogen bond, Gly148, Glu88 and
Glu91 which were involved in carbon-hydrogen bond and pi-
donor hydrogen bond. Similarly, for ZINC22973642, Asn167,
Leu149, Val47 contributed to conventional hydrogen bonding,
and, Gly148, Leu76, Trp83, Gly87, Leu85 for hydrogen bonds.
The complexes eventually stabilized, as it can be interpreted from
the structural parameters.

MM-PBSA binding free energy
One of the widely accepted methods for estimation of binding

free energy of small ligands with biological macromolecules is
Molecular Mechanics Poisson Boltzmann Surface Area
continuum solvation (MM-PBSA). The energy values obtained
were summarized in Table 7. For both the ZINC database
compounds, SASA energy contributed more significantly towards
the binding as compared to Electrostatic energy and van der Waal
energy. In both cases, polar solvation energy seems to be positively
influencing the binding and hence we can say that it does not
favorably benefit the binding. In conclusion, the results of the

FIGURE 2
RMSD study of top 2 ligands for 100 ns MD Simulation.
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molecular dynamics simulation show that both ZINC36596404 and
ZINC22973642 have a good affinity and binding stability towards
the targeted dengue protease.

Prediction of drug likeliness and ADMET
properties

The drug-likeness of ZINC36596404 predicted using Molsoft
showed a score of 0.43. From the results, 5 hydrogen bond acceptors
and 3 hydrogen bond donors were also identified. The BBB score
was reported as 2.22 which is on the lower side. The drug-likeness of
ZINC22973642 analyzed by Molsoft had a score of 1.10. This drug-
likeness score is predicted Molsoft’s chemical fingerprints made
using a dataset containing 5,000 marketed drugs and 10,000 non-
drug compounds. The drug-likeness value ranges from −1 to +1,
where values equal to or less than 0 indicates that the compound
does not seem to be a likely drug, whereas values greater than

0 indicate good drug-likeness of the compound. Since both the
compounds discussed here have positive drug-likeness scores, we
can say that they seem to be drug-like. The results also identified
5 hydrogen bond acceptors and 2 hydrogen bond donors. The BBB
score was 2.85 and is on the lower side, similar to the previous
compound. ZINC36596404 belongs to toxicity class 5 indicating that
it may be harmful if swallowed (2000 < LD50 ≤ 5,000) and
ZINC22973642 to class 4 signifying that it may be harmful if
swallowed (300 < LD50 ≤ 2000) as per predictions made by
ProtoxII. The ADME results obtained from SwissADME are
shown in Table 8. ZINC22973642 shows no violation of
Lipinski’s rule of five. It is seen to have good GI absorption,
good solubility, and low BBB permeability indicating that it does
not cross the blood-brain barrier. It is seen to inhibit CYP1A2,
CYP2C19, CYP2C9, CYP2D6, and CYP3A4 which are cytochrome
enzymes involved in the detoxification and metabolism of drugs.
The skin permeation parameter for this compound indicates that it
is moderately good for topical applications. Its bioavailability score

TABLE 8 Drug-likeness and ADMET properties of top 2 compounds.

S.No. Parameter ZINC22973642 ZINC36596404

1 Number of Hydrogen Bond Acceptors 5 5

2 Number of Hydrogen Bond Donors 2 3

3 BBB Score 2.85 2.22

4 Drug-likeness model score 1.1 0.43

5 Solubility 3.44e-05 4.09e-05

6 GI absorption High High

7 CYP1A2 inhibitor Yes No

8 CYP2C19 inhibitor Yes Yes

9 CYP2C9 inhibitor Yes Yes

10 CYP2D6 inhibitor Yes Yes

11 CYP3A4 inhibitor Yes Yes

12 Log Kp (skin permeation) −6.42 cm/s −6.67 cm/s

13 Bioavailability score 0.55 0.55

14 LD50 586 mg/Kg 3000 mg/kg

15 Toxicity class 4 5

TABLE 7 MM-PBSA values of the two complexes after 100 ns simulation.

S. No. Energy terms (KJ/mol) ZINC22973642 ZINC36596404

1 Van der Waal −241.848 ± 0.791 −250.309 ± 1.106

2 Electrostatic −87.760 ± 1.045 −104.692 ± 1.163

3 Polar solvation 220.611 ± 16.207 261.191 ± 22.538

4 SASA −23.200 ± 0.055 −23.788 ± 0.072

5 Binding energy −132.196 ± 16.764 −116.651 ± 21.635
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shows that it is sufficiently absorbable and available throughout the
body when administered via the oral route. The predicted LD50 is
also sufficiently high. This, coupled with a good drug-likeness score,
makes this compound a very potent lead that can be further explored
and developed into an efficient drug against dengue protease.
ZINC36596404 also shows similar properties as that of
ZINC22973642, but only differs in that it does not inhibit
CYP1A2. The fact that these two ZINC compounds showed good
binding stability and affinity to Dengue Protease, combined with
their positive drug-likeness, show that these compounds can be
studied further in vitro in order to develop them into effective anti-
Dengue drugs.

Conclusion

In this study, a ligand-based QSAR and pharmacophore model of
Dengue protease inhibitors was developed using 4-Benzyloxy Phenyl
Glycine derivatives. TheGATS6e, GATS5i, VE1_DzZ, VE2_DzZ, VE3_
DzZ, SpMAD_Dzp, SpMax3_Bhp, ETA_Epsilon_5, IC1, IC2, TIC0,
MIC1, WTPT-3 descriptors were seen to have an effect on the anti-
dengue protease activity. The validatedQSARmodel showed significant
statistical parameters and can be used to predict the activity of unknown
compounds for anti-dengue protease activity. Using this QSAR model
and the pharmacophore features presented above, other 4-Benzyloxy
Phenyl Glycine derivatives can be modified to enhance their activities.
This model can be a helpful tool to reduce the time and expense
involved in dengue protease antagonist synthesis and activity
determination. Further, the molecular docking and dynamics
simulation studies performed using the compounds identified from
the ZINC database have indicated that ZINC36596404 and
ZINC22973642 show excellent binding with the dengue protease.
The complexes also show structural stability. They also have good
drug-likeness and compatible ADMET properties. It can be inferred
that these two compounds form promising candidates in the
development of dengue protease antagonists. Further work that aims
to test the in vitro and in vivo effects of these two compounds is required
in order to validate these results. Thus, our findings, coupled with
laboratory testing of the identified potential leads can help to develop
strong antagonists for dengue protease.
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Introduction: Osteosarcoma is a rare disorder among cancer, but the most

frequently occurring among sarcomas in children and adolescents. It has

been reported to possess the relapsing capability as well as accompanying

collateral adverse e�ects which hinder the development process of an e�ective

treatment plan. Using networks of omics data to identify cancer biomarkers

could revolutionize the field in understanding the cancer. Cancer biomarkers and

the molecular mechanisms behind it can both be understood by studying the

biological networks underpinning the etiology of the disease.

Methods: In our study, we aimed to highlight the hub genes involved in gene-

gene interaction network to understand their interaction and how they a�ect the

various biological processes and signaling pathways involved in Osteosarcoma.

Gene interaction network provides a comprehensive overview of functional gene

analysis by providing insight into how genes cooperatively interact to elicit a

response. Because gene interaction networks serve as a nexus to many biological

problems, their employment of it to identify the hub genes that can serve as

potential biomarkers remain widely unexplored. A dynamic framework provides

a clear understanding of biological complexity and a pathway from the gene level

to interaction networks.

Results: Our study revealed various hub genes viz. TP53, CCND1, CDK4, STAT3,

and VEGFA by analyzing various topological parameters of the network, such as

highest number of interactions, average shortest path length, high cluster density,

etc. Their involvement in key signaling pathways, such as the FOXM1 transcription

factor network, FAK-mediated signaling events, and the ATM pathway, makes

them significant candidates for studying the disease. The study also highlighted

significant enrichment in GO terms (Biological Processes, Molecular Function, and

Cellular Processes), such as cell cycle signal transduction, cell communication,

kinase binding, transcription factor activity, nucleoplasm, PML body, nuclear body,

etc.

Conclusion: To develop better therapeutics, a specific approach toward the

disease targeting the hub genes involved in various signaling pathways must have

opted to unravel the complexity of the disease. Our study has highlighted the

candidate hub genes viz. TP53, CCND1 CDK4, STAT3, VEGFA. Their involvement in

the major signaling pathways of Osteosarcoma makes them potential candidates

to be targeted for drug development. The highly enriched signaling pathways

include FOXM1 transcription pathway, ATM signal-ling pathway, FAK mediated
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signaling events, Arf6 signaling events, mTOR signaling pathway, and Integrin

family cell surface interactions. Targeting the hub genes and their associated

functional partners which we have reported in our studies may be e�cacious in

developing novel therapeutic targets.

KEYWORDS

Osteosarcoma, gene interaction network, hub genes, TP53, FOXM1 transcription factor

1. Introduction

The prominence of Osteosarcoma dates back to the early

nineteenth century when the French surgeon Alexis Boyer first

coined the term and William Enneking described the disease. A

recent study by the American Cancer Society found that 186.6 per

100,000 children and adolescents were diagnosed with cancer each

year from birth to age 19 (1). Osteosarcoma is the most common

type of bone cancer, originating in the mesenchyme tissue. The

tumor usually develops around the pelvis or long bone and then

metastasizes to neighboring tissue (2). Themost prevalent locations

in femur (42%, of which 75% is in the distal femur), the tibia (19%,

of which 80% is in the proximal tibia), and the humerus (10%).

The jaw or skull (8%) and the pelvis (8%) are additional potential

sites. In the ribs, Osteosarcomas only comprise 1.25 percent of cases

(3), (4).

Although it is seen in both young and adults, it has been

observed that the tumor spreads rapidly when the bone undergoes

the stages of its growth. It has a bimodal age distribution with

an adolescence and elderly peak in incidence. The incidence often

peaks between the ages of 10 and 14 years, after which it starts

to subside. Adults over 65 see the second peak in Osteosarcoma

incidence, more likely to be a second malignancy commonly linked

to Paget disease (5). The genomic landscape of Osteosarcoma based

on various sequencing methods revealed that alterations in the

sequence are due to somatic point mutations such as single base

substitutions, insertions, and deletions. Other structural variants

such as rearrangements and somatic copy number alterations

leading to copy number decrease may downregulate a tumor

suppressor gene driver and copy number increase may trigger

an oncogene driver (6, 7). Numerous familial syndromes are

associated with Osteosarcoma. Li-Fraumeni syndrome is one such

condition with a high prevalence of Osteosarcoma. This condition

is characterized by various malignancies, including leukemia,

breast, sarcoma, adrenocortical, and brain tumors (8). It is an

autosomal dominant disorder where the p53 tumor suppressor

gene is rendered inactive, which helps advance the cell cycle in the

presence of DNA damage.

Additionally, it has been demonstrated that alteration in

additional p53 pathway genes, such asMDM2, p14ART, and CDK4,

may increase a person’s risk of acquiring Osteosarcoma (9). DNA

helicase anomalies have also been reported in Osteosarcoma. In

the autosomal recessive disorder, Rothman-Thomas syndrome,

which is associated with skin changes, alopecia, and Osteosarcoma,

gene RECQL4 coding for DNA helicase is found to be defective.

Similar DNA helicase aberrations are found in Werner syndrome

where the WRN or RECQL4 gene is defective causing melanoma,

Osteosarcoma, etc. (10).

During the mid-1970s, chemotherapy was shown to be

adequate for treating Osteosarcoma. Osteosarcoma is typically

treated with neoadjuvant chemotherapy that includes cisplatin,

doxorubicin, ifosfamide, and high-dose methotrexate given along

with leucovorin. This is followed by surgical resection and adjuvant

chemotherapy (11). Although the current treatment regime has

proven to be partially effective, it is associated with short-

and long-term concomitant side effects such as accumulating

toxic compounds in other organs such as the liver, kidney,

heart, etc., leading to other detrimental effects on the body.

For instance, higher dosage rates were linked to an increased

risk of nephrotoxicity and gonadal dysfunction brought on by

cisplatin. The dosage intensity and the total dose of doxorubicin

were associated with an increased risk of cardiac toxicity (12).

Thus, the hub genes involved in the various enriched biological

processes and signaling pathways must be identified to develop

better treatment strategies. These hub genes are essential because

they play a role in regulating the molecular mechanism. Our

study aimed to highlight the hub genes involved in the gene-

gene interaction network to understand their interaction and

how they affect the various biological processes and signaling

pathways involved in Osteosarcoma. Using networks of omics data

to identify cancer biomarkers could revolutionize the field. Cancer

biomarkers and the molecular mechanisms behind it can both

be understood by studying the biological networks underpinning

the disease (13). Several network-based analysis tools were used

for biomarker identification in recent years. For instance, a

gene co-expression network (GCN) was developed to effectively

identify biomarkers in glioma. It was also utilized to assess a

gene module relevant to lung cancer, predictive biomarkers for

estrogen receptor-positive breast cancer treated with tamoxifen,

and biomarkers for anticipating the chemotherapy response in

breast cancer (14–16). In our earlier studies, we have used advanced

computational tools to decipher and predict the pathogenicity of

the various diseases (17, 18). Gene interaction network provides

a broad view of functional gene analysis by giving an insight into

how genes cooperatively interact to elicit a response. A dynamic

framework offers a clear understanding of biological complexity

and a pathway from the gene level to interaction networks.

The term “interaction” refers to the relationship between genes

that can affect other genes’ operations. Because gene interaction

networks serve as a nexus to many biological problems, their

employment of it to identify the hub genes that can serve as

potential biomarkers remain widely unexplored. Gene interaction

network assists in identifying novel candidate genes, based on

the idea that the neighboring genes located near the disease-

causing gene in a network are more likely to cause a similar

disease (19).
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2. Materials and methods

2.1. Cancer genetics web server

The Cancer genetics web server is an online resource portal,

which provides information on various cancers, particularly for

researchers and health professionals exploring this field. Sever is

available at www.cancer-genetics.org/. Using PubMed, the data

were obtained by utilizing information from numerous data

sources and literary reviews. It offers comprehensive links to

credible information about genes, their associated proteins, and

genetic alterations linked to cancer and related disorders. The

site includes a directory of genes identified as the oncogenes and

the tumor suppressor genes. Every gene page includes accessible

links to major genetic databases and abstracts, references, external

searches, and summary information wherever possible.

2.2. STRING database

STRING (Search tool for retrieval of the interacting gene)

(https://string-db.org/) is an online, publicly accessible database

harboring information on protein-protein interaction. The

interactions include direct as well as indirect connections. It

provides a versatile way for analyzing and visualizing the data, such

as setting confidence scores that reflect the level of interaction,

no of interactors, network type, display mode, etc. In order to

categorize the interactions, String uses the confidence scores:

highest (above 0.90), high (0.7–0.89), medium (0.4–0.69), and low

(0.15–0.39). The STRING database accepts the input in various

forms, such as protein by name, protein by sequence, multiple

proteins, protein families (COG), etc. The outcome of the network

can be saved in a variety of formats such as bitmap image, vector

graphic, TSV format, tab-delimited file, etc. (20).

2.3. Cytoscape

Gene interaction networks can be visualized and analyzed

using Cytoscape (https://cytoscape.org/). It provides a user-friendly

interface that allows the user to seamlessly operate the software.

It supports various plugins, which serve various purposes such as

clustering of genes, enrichment analysis, annotation, determining

topological properties of a network, etc. Output from STRING was

used as an input for the Cytoscape.

2.3.1. Network analyzer
It is a plugin in Cytoscape that calculates topological parameters

in a network. Numerous parameters can be computed, such as

degree, number of nodes, edges, average no. of neighbors, clustering

coefficient, average shortest path length, closeness centrality, and

betweenness centrality. The degree and average shortest length

are the essential parameters while analyzing the network since

the degree represents the direct interactors of the desired gene,

whereas the average shortest path is the distance between two

nodes. Closeness centrality measures how fast information travels

from one node to another node in a network, whereas betweenness

centrality represents the degree of influence a node exerts upon

other interactions of a node (21). The results generated can be

exported as a CSV file or directly analyzed in the software.

2.3.2. MCODE
MCODE is a plugin used to identify clusters in a network.

Clusters are highly interrelated regions that are grouped in a

network. The MCODE method is based on analyzing densely

interconnected regions where nodes have more interconnected

nodes, detecting potential clusters, and evaluating the number

of interconnected nodes (node scoring). Genes are clustered

by MCODE based on their connectivity, in which the same

cluster contains more interconnected genes with the optimal

neighborhood density. Genes that are associated with MCODE

scores are clustered together. (22).

2.4. FunRich

FunRich (http://www.funrich.org/) is a tool used for functional

enrichment and network analysis. It can be utilized to conduct

functional enrichment analysis on background databases

incorporating diverse genomic and proteomic resources. The

outcomes of the enrichment studies may be depicted using a wide

range of graphical layouts, such as column graphs, bar graphs,

pie charts, Venn diagrams, heat maps, and doughnut charts.

Users can download information from the UniProt and standard

human-specific FunRich databases. Additionally, users can create

their custom datasets and carry out enrichment analyses regardless

of the organism (23).

3. Results

3.1. Data collection

The genes for Osteosarcoma responsible for its growth and

development were curated from Cancer genetics web database.

The sites host information on genes for 76 different cancers

and associated conditions. The information on genes related to

Osteosarcoma was searched based on the keywords. We were able

to gather 58 genes and their related information. This data was

used for a STRING interaction network. The interaction network

was maximized, with a medium confidence score (0.4) which gave

an interaction for 71 genes and their functional partners. Gene

networks were constructed and further analyzed based on STRING

interaction data (Figure 1).

3.2. Network analysis

The network analysis of 71 genes was carried out using

NetworkAnalyzer. To study the gene interaction network, it

analyzed different topological parameters such as degree, no of

nodes and edges, characteristic path length, clustering coefficient,

closeness centrality, and betweenness centrality. The top genes with

the highest degree values are TP53,CCND1,CDK4, and STAT3with

no interactors 45, 33, 28, and 27, respectively. Table 1 lists the 20

genes along with their various analyzed parameters. The network
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FIGURE 1

Gene interaction network of Osteosarcoma comprising 71 genes and 426 interactions built in Cytoscape. Genes with the maximum number of

network interactions are positioned in the center (ENSP00000452479 is the Ensembl protein ID for sequence BCL2L2-PABPN1).

analysis revealed the no. of nodes to be 71 and no. of edges to be

426, while the clustering coefficient of the entire network was 0.583.

3.3. Clustering analysis

Clustering analysis of the gene interaction network was done

using MCODE, resulting in the genes in a cluster of 3. viz. C1, C2,

and C3 (Figure 2). The clustering of genes allowed us to understand

the highly interconnected regions. Clustering of MCODE is

influenced by both directed interactions and interactions between

the associated interactors. Out of 71 genes in the network, 36 are

identified as part of the cluster. Among the three, cluster C1 had the

most inter-connected regions constituting 24 nodes and 137 edges

with an MCODE score of 11.913, followed by C2 with five nodes

and ten edges with a score of 5.0, and C3 with 7 nodes and 14 edges

with a score of 4.667 (Table 2).

3.4. Functional enrichment analysis

Following clustering analysis, functional enrichment analysis

was performed using the STRING database and FunRich

tool, clarifying genes’ contribution to various processes and

pathways. The Bonferroni correction method obtained Gene

ontology terms with a p-value ≤ 0.05. Using the Bonferroni

correction, multiple comparisons are compensated by dividing the

significance level by the number of comparisons. A significance

level indicates the likelihood that a given test will detect an

incorrect difference in the sample that does not exist in the

population (false positive). Commonly, significance levels of 0.05

are considered significant. The genes observed in Osteosarcoma

revealed various contributions in Gene Ontology terms such

as Biological Processes (BP), Molecular Function (MF), and

Cellular Compartment (CC). The significantly enriched terms

in BP included regulation of cell cycle signal transduction,

cell communication, regulation of nucleobase, nucleoside,

nucleotide, and nucleic acid metabolism (Supplementary File 1),

MF included kinase binding, kinase regulator activity, transcription

factor activity (Supplementary File 2) and CC included

nucleoplasm, PML body, nuclear body, nucleus, and cytosol

(Supplementary File 3; Figure 3). The enriched signaling pathways

is of utmost importance while studying the progression of cancer.

Cancer involves various signal transmission pathways, which

promote its progression. The signaling pathways involved in

tumor progression of Osteosarcoma are the FOXM1 transcription

pathway, ATM signaling pathway, FAK mediated signaling events,

Arf6 signaling events, Class 1 PI3K signaling events, mTOR
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TABLE 1 The list of the top 20 genes in Osteosarcoma analyzed by NetworkAnalyzer.

Genes Degree Avg. shortest path
length

Closeness
centrality

Betweenness
centrality

TP53 45 1.343283582 0.744444 0.278506532

CCND1 33 1.582089552 0.632075 0.076460459

CDK4 28 1.626865672 0.6146788 0.047913393

STAT3 27 1.71641791 0.587798 0.033714855

VEGFA 27 1.701492537 0.582606 0.033879065

CDKN2A 27 1.641791045 0.609009 0.037095448

MDM2 26 1.701492537 0.587718 0.041774175

SRC 25 1.74626865 0.572643 0.053286042

CHEK2 24 1.746268657 0.572643 0.023052737

ERBB2 23 1.776119403 0.567713 0.036390641

RB1 23 1.76119403 0.563020 0.080214837

FOS 23 1.76119403 0.567794 0.051156614

CD44 22 1.805970149 0.553719 0.014110304

CCNE1 21 1.835820896 0.544715 0.007678749

PLK1 20 1.880597015 0.544715 0.025338494

MMP2 20 1.835820896 0.531746 0.009431072

CDC6 20 1.835820896 0.544715 0.075482361

MYCN 19 1.925373134 0.51937 0.012188444

AURKA 19 1.835820896 0.544715 0.004759471

SIRT1 18 1.776119403 0.563028 0.020802171

signaling pathway, and Integrin family cell surface interactions

(Supplementary File 4; Figure 4). The genes involved in various

signaling pathways of Osteosarcoma are mentioned in Table 3.

4. Discussion

A cancer cell will essentially have six hallmark capabilities to

be recognized as a cancer cell. The six core hallmarks outlined

by Hananah and Weinberg include self-sufficiency in growth

signals, insensitivity to antigrowth signals, evasion of programmed

cell death (apoptosis), limitless replicative potential, sustained

angiogenesis, and tissue invasion and metastasis, along with the

emerging hallmarks of cancer which includes deregulating cellular

energetics and avoiding immune destruction (24, 25). Attaining

each capability will likely involve inactivating or eluding a specific

control mechanism. We have utilized a gene interaction network in

our study to understand the development and progression of the

tumor cells in Osteosarcoma. This helped us decipher a group of

highly interactive genes responsible for the pathogenesis and spread

of the disease.

During analysis, MF observed were kinase binding, kinase

regulator activity, and transcription factor activity. Prior studies on

Osteosarcoma have highlighted that protein tyrosine kinases are

essential signaling molecules involved in the signaling pathways

that regulate cellular differentiation and proliferation (26). The

enriched BPs of Osteosarcoma included signal transduction, cell

communication, regulation of cell cycle, regulation of nucleobase,

nucleoside, nucleotide and nucleic acid metabolism, apoptosis,

protein metabolism, energy pathways, metabolism along with cell

cycle checkpoint signaling, DNA damage checkpoint signaling, and

response to hypoxia. Earlier studies have shown that impairment in

signal transduction, cell communication, and cell cycle checkpoint

signaling has significantly promoted Osteosarcoma (27). Signal

transduction is a sequential event where an extracellular signal

is transduced by the cell to create a response, which is necessary

for the normal growth and development of the cell. Since genetic

alterations drive cancer, these alterations create a wide range of

aberrant signaling networks that drives the expansion of the tumor.

These signaling pathways control tumor growth, development,

and fate (28). The signal transduction pathway involved 14 genes

namely CCND1, CDK4, VEGFA, CDKN2A, SRC, CHEK2, ERBB2,

CD44, CCNE1, PLK1, CDC6, AURKA, CCNB2, and TNFSF11. It

has been reported that patients suffering from Osteosarcoma cells

develop resistance toward the kinase inhibitor drug, Sorafenib

due to the mTOR signaling pathway. The mammalian target of

rapamycin (mTOR) facilitates all cell proliferation, apoptosis, and

autophagy. There is evidence showing that the mTOR signaling

pathway plays a significant role in a number of diseases, including

osteosarcoma. (29). The mTOR is structurally made up of a dimer

complex called the mammalian target of rapamycin complex 1

(mTORC1) and the mammalian target of rapamycin complex 2
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FIGURE 2

Clustering analysis of Osteosarcoma gene interaction network using MCODE. The genes were grouped into three clusters, viz. C1, C2 and C3.

Cluster C1 showed the highest level of clustering, followed by C2 and C3. The unclustered genes are located beneath, highlighted in orange color.

(mTORC2) (30). mTORC1 has been mostly seen in controlling cell

growth and metabolism, while mTORC2 primarily governs cell

proliferation and survival (31). Numerous signaling pathways in

the body, such as phosphoinositide-3-kinase (PI3K)/AKT, tuberous

sclerosis complex subunit 1 (TSC1)/tuberous sclerosis complex

subunit 2 (TSC2)/Rheb, LKBL/adenosine 5
′

monophosphate-

activated protein kinase (AMPK), VAM6/Rag GTPases, and

others, are regulated by mTOR (32). Under normal circumstances,

mTOR plays a significant role in regulating cell growth and

division. However, it is hyper-activated in tumor cells sending

aberrant signals that help tumor cells grow and proliferate, thus

promoting malignancy (33). mTOR pathway incessantly activates

the AKT signaling pathway among the other pathways (34).

Our study revealed 19 genes involved in the mTOR signaling

pathway of Osteosarcoma viz. TP53, CCND1, CDK4, STAT3,

VEGFA, CDKN2A, MDM2, SRC, CHEK2, ERBB2, RB1, FOS,

CCNE1, PLK1, MMP2, SIRT1, E2F2, CCNG1, and TNFSF11.

The involvement of mutated genes TP53 and VEGFA is closely

associated with all types of cancer. TP53 controls cell growth and

proliferation by acting as a tumor suppressor gene. The alteration

in the sequence of TP53 leads to tumor development. VEGFA

promotes the mTOR signaling in Osteosarcoma by promoting

angiogenesis in the tumor (35). It has been studied that there is

significant upregulation in mTORC1 during tumor growth and

development, and mTORC1 is comparatively more sensitive to

rapamycin than mTORC2. Thus, rapamycin acts as an inhibitor

of mTOR (36). Different approaches can be sought, such as

down-regulating the mTOR complexes to control cell proliferation.

Because of its close linkage with Osteosarcoma, mTOR pathways,

and the associated genes can serve as a therapeutic target for the

disease. Cell communication was also seen to be significantly

enriched in the Biological Processes. Communication between

the neighboring cells is crucial for normal cellular activities.

Numerous studies have demonstrated that a complex intercellular

communication system, whether through direct cell-to-cell contact

or traditional paracrine/endocrine signaling, plays a crucial role

in the growth and expansion of tumors (37). The most basic

signal transmission to the proximal or the distant cells is the

release of soluble substances into the extracellular space, such as

cytokines, chemokines, and growth factors. Along with it, another

cell interaction involves adhesion molecules and gap junction (38).

Recent studies have also demonstrated that healthy mitochondria

and other organelles may be donated by non-cancer cells through

tunnel nanotubes to keep cancer cells alive, but it has also been
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TABLE 2 List of Osteosarcoma related genes and their associated

signaling pathways.

Signaling
pathways

Genes

FOXM1 transcription

factor network

CCND1, CDK4, CDKN2A, CHEK2, RB1, FOS, CCNE1,

PLK1, MMP2, and CCNB2

FAK-mediated

signaling events

TP53, CCND1, CDK4, STAT3, VEGFA, CDKN2A,

MDM2, SRC, CHEK2, ERBB2, RB1, FOS, CCNE1,

PLK1, MMP2, SIRT1, E2F2, CCNG, and TNFSF11

ATM pathway TP53, CDKN2A, MDM2, CHEK2, RB1, CCNE1, PLK1,

MMP2, CDC6, SIRT1, E2F2, and CCNG1

Arf6 signaling events TP53, CCND1, CDK4, STAT3, VEGFA, CDKN2A,

MDM2, SRC, CHEK2, ERBB2, RB1, FOS, CCNE1,

PLK1, MMP2, SIRT1, E2F2, CCNG1, and TNFSF11

Class I PI3K signaling

events

TP53, CCND1, CDK4, STAT3, VEGFA, CDKN2A,

MDM2, SRC, CHEK2, ERBB2, RB1, FOS, CCNE1,

PLK1, MMP2, SIRT1, E2F2, CCNG1, and TNFSF11

mTOR signaling

pathway

TP53, CCND1, CDK4, STAT3, VEGFA, CDKN2A,

MDM2, SRC, CHEK2, ERBB2, RB1, FOS, CCNE1,

PLK1, MMP2, SIRT1, E2F2, CCNG1, and TNFSF11

EGF receptor(ErbB1)

signaling pathway

TP53, CCND1, MDM2, SRC, CHEK2, ERBB2, RB1,

FOS, CDK4, STAT3, VEGFA, CDKN2A, CCNE1, PLK1,

MMP2, SIRT1, E2F2, CCNG1, and TNFSF11

Integrin family cell

surface interactions

TP53, CCND1, CDK4, STAT3, VEGFA, CDKN2A,

MDM2, SRC, CHEK2, ERBB2, RB1, FOS, CCNE1,

PLK1, MMP2, SIRT1, E2F2, CCNG1, and TNFSF11

revealed that horizontal mitochondrial transfer from cancer cells

to neighboring cells is equally possible (39).

The Integrin family of proteins binds extracellular matrix

ligands and cell-surface ligands to act as cell adhesion receptors

during cell communication. Our study of Osteosarcoma

significantly enriches the integrin family of cell surface interactions.

Integrins connect with the extracellular matrix (ECM) via the

extracellular domain, supplying anchoring (40). Integrins are

also responsible for transmitting chemical signals into the cells,

where the signals develop in the ECM after ligation and involve

receptor clustering and binding of a particular ligand (41). As

a response to this clustering and the presence of GTPase Rho

A, cytoskeletal proteins like focal adhesion kinase (FAK) are

formed. The Ras protein, which plays a crucial role in cell signaling

and gene expression, is phosphorylated by FAK to activate the

mitogen-activated protein (MAP) kinase pathway (42). FAK plays

a role in co-localizing with integrin receptors in adherent cell

types at cell-substratum contact points known as focal adhesions

(43). FAK stimulates cell motility, survival, and proliferation

through kinase-dependent and -independent processes during the

development of various malignancies (44). Studies have reported

that FAK signaling is located at the junction of other signaling

pathways promoting metastasis (45). According to various reports,

FAK signaling is linked to the maintenance of cancer stem cells

(46). It has been highlighted that the tumor cells of Osteosarcoma

interact with their microenvironment, where β4 integrin plays a

significant role in metastasis and the invasive nature of cancer

(47). Growth factors and integrin ligands work synergistically

to regulate the differentiation of osteogenic cells from stem cells

(48). Growth factors called Bone Morphogenic Proteins (BMPs)

substantially impact the development and remodeling of postnatal

skeletal tissue, among other things (49). There are 14 known BMPs,

collectively constituting a subfamily with Growth Differentiation

Factors (GDFs). Among the 14 known BMPs, BMP-2, BMP-4,

BMP-6, BMP-7, and BMP-9 are especially important as they have

been found to induce complete bone morphogenesis (50). It has

been reported that the inhibition of β4 integrin has gradually

mitigated and inhibited metastasis in patients with Osteosarcoma

(51). Thus, analyzing the network targeting genes involved in

the integrin family of cell surface interactions can help develop

therapeutic targets for the disease.

Our study has also revealed various highly enriched pathways,

such as the FOXM1 transcription factor network, ATM pathway,

signaling event mediated by FAK, Arf6 signaling events, and Class

1 PI3K signaling events. FOXM1, a Forkhead Box Transcription

Factor, is known for maintaining the homoeostatic environment

and other cellular functions, such as cell proliferation, cell

cycle progression, DNA damage repair, angiogenesis, etc. Being

associated with a large number of cellular processes, it has

also manifested its role in several diseases as well as cancer. It

has been studied that FOXM1 plays a role in tumor growth

and progression (52). Forkhead box (Fox) proteins belong to

a superfamily of evolutionarily conserved transcriptional factors

characterized by a common DNA binding domain known as the

forkhead box or winged helix domain (53). FOXM1 preferentially

binds promoter regions with the consensus “TAAACA” recognition

sequence (54). Cell cycle regulation regulates its expression at

mRNA and protein levels. It increases during the S-phase, peaks G2

and M, and degrades during mitotic exit (55). Genetic alteration

and gene copy amplification of FOXM1 has been seen at loci

12p13.33, exhibiting oncogenic properties (56). Various studies

have highlighted that the alterations arise in FOXM1 during

post-transcriptional and post-translational modifications, which

leads to its deregulation and overexpression in cancer cells (55,

57). The role of FOXM1 in tumor cells is its participation in

the self–renewal and proliferation of cancer stem cells through

Wnt signaling, the MAPK-ERK pathway, and the PI3K-mTOR

pathway (58). Studies conducted on patients suffering from

Osteosarcoma have revealed that the upregulation of miR-370

suppressed the expression of FOXMI. On the contrary, it was also

evident that miR-370 was reduced in Osteosarcoma cells where

FOXM1 expression was elevated. The miR-370 is a class of micro-

RNA involved in various cellular processes such as proliferation,

differentiation, apoptosis, and tumor suppression (59). Thus,

micro-RNA can serve as a potential drug target in controlling the

spread of Osteosarcoma by FOXM1 factor since the contribution

of this transcription factor in promoting the disease is exemplary.

The Ataxia-Telangiectasia Mutated (ATM) kinase is an essential

sensor and signal transducer in the DNA damage response. It

is noteworthy that ATM is often considered a major tumor

suppressor because of its ability to induce cell cycle arrest. However,

certain tumor cells in the advanced stages exhibit enhanced

ATM signaling, which benefits cancer cell survival, resistance

to radiation and chemotherapy, biosynthesis, proliferation, and

metastasis (60). ATM is an active serine/threonine kinase and

is an important member of the P13K-related protein kinase

family (PIKK). The two main types of ATM signaling are the
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FIGURE 3

Functional enrichment analysis of Osteosarcoma gene. Significantly enriched (A) Biological processes, (B) Molecular function, (C) Cellular

component. The p-value is taken as 0.05 for reference.
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FIGURE 4

Functional enrichment of Osteosarcoma genes involved in significant biological pathways. The p-value is considered 0.05 for reference.

TABLE 3 Clustering analysis of Osteosarcoma gene interaction network.

Cluster MCODE
score

No. of nodes No. of edges Node IDs

C1 11.913 24 137 VEGFA, MYCN, SRC, AURKA, MCM5, KIT, ERBB2, CCND1,

CHEK2, E2F2, TIMP1, CCNG1, CCNE1, CD44, STAT3, PLK1,

PRIM1, FOS, CDC6, SIRT1, MMP2, CDKN2D, CCNB2, andMCM4

C2 5.00 5 10 TNFSF11, BMP2, SPARC, MMP13, and IBSP

C3 4.677 7 14 TP53, RB1, S100A4, RECQL4, CDK4, MDM2, and CDKN2A

canonical route, which is activated by DNA damage and signals

with the Mre11-Rad50-NBS1 (MRN) complex, and many non-

canonical modes of activation triggered by other types of cellular

stress. Both types of signaling are likely to play a part in ATM’s

ability to limit tumor growth (61). PI3K family members such

as ATM are routinely auto-inhibited when they are in their

resting state (dimers or polymers), and are only activated when

they attach to their partners. The ATM canonical pathway is

activated upon DNA double-strand breaks (DSBs), where ATM

dimers are dissociated to monomers, activation is triggered, and

ATM monomers are recruited to the DNA damage sites (62,

63). Since ATMs induce cell cycle arrest and apoptosis whenever

genetic alteration occurs, cancer cells use various mechanisms

to downregulate ATMs. For instance, ATM expression can be

decreased in some cancers due to miRNA-18a (64). Arf6 is a

member of the adenosine diphosphate (ADP)-ribosylation factor

(ARF) family of small GTPases. By regulating the transit of

proteins and lipids in eukaryotic cells, ARFs influence cellular

behavior and function (65). Arf6 controls cytoskeletal remodeling,

cell shape alterations, extracellular matrix proteolysis, and cell

adhesion mechanisms involved in tumor cell migration (66).

Degradation of the ECM by matrix metalloproteinases (MMPs)

is required for tumor cell invasion. MMPs are released into the

extracellular environment by both invadopodia and tumor cell-

expelled microvesicles, aiding the breakdown of the ECM and

invasion (67). Initiation of Arf6 leads to the activation of Rho

and Rac1 pathways, which promotes both microvesicle shedding

and formation of invadopodia, whereas expression of a dominant

negative Arf6 prevents the development of invadopodia and

microvesicle shedding (68, 69). The phosphoinositide 3-kinase

(PI3K) family is crucial to almost every aspect of cell and tissue

biology and hyperactivation of PI3K is one of the central events

in cancer (70). Studies carried out in the early 2000s were the

first to show that class I PI3K catalytic isoforms had the ability

to alter themselves. Since the discovery of its mutated form,

PI3KCA, PI3K has been placed on the frontline as a big player in

understanding cancer. The enrichment analysis of Osteosarcoma

genes has also revealed clinical phenotypes and sites of gene

expression where the former consisted of neoplasia, somatic

mutation, osteogenic sarcoma, and painful tender mass at long

bone metaphysis (Figure 5) while the latter comprised of the

esophagus, oral mucosa, malignant glioma, endometrium, uterine

cervix, and vulva (Figure 6).

To identify possible drug targets for Osteosarcoma, which

plays an essential role in various biological pathways, we

used NetworkAnalyzer, which is a built plugin in Cytoscape.
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FIGURE 5

The functional enrichment analysis of osteosarcoma genes performed by the FunRich tool revealed clinical phenotypes.

FIGURE 6

Functional enrichment analysis revealed sites of expression of osteosarcoma genes. The various highlighted portions show di�erent sites of

expression.

NetworkAnalyzer uses various parameters such as degree, average

shortest path length, closeness centrality, and betweenness

centrality. Degree refers to the no. of direct interactors, and more

no. of degrees will indicate more no. of gene interactors which

will help us to understand the progression of a pathway. The

significance of the gene in gene-to-gene communication increases

with decreasing average shortest path length and increasing

closeness centrality. Based on the parameters mentioned above,

our study has revealed the top five genes viz. TP53, CCND1,

CDK4, STAT3, andVEGFA, can be considered potential biomarkers

because they are involved in the major biological pathways

of Osteosarcoma.

TP53 gene is a potential biomarker with the most no. of direct

interactors of 45 with the shortest average path length of 1.343 and

the highest closeness centrality of 0.744. TP53 is seen to be involved

in various biological pathways. In our study, such as the FOXM1

transcription factor network, ATM pathway, Class 1 PI3K signaling

events, and mTOR signaling pathway. In normal conditions, TP53

is a tumor suppressor gene that initiates numerous stress-induced

pathways, including DNA damage, senescence, cellular death, and

reprogramming. It stimulates numerous genes encoding proteins

responsible for apoptosis (71). In a cancerous state, TP53 is

mutated, which loses its ability to suppress the tumor, thereby

promoting uncontrolled cell proliferation. Over 50% of human

neoplasms have somatic mutations in the TP53 gene. About 10%

of the changes are nonsense mutations, resulting in shortened p53

proteins, while most variants are missense mutations. Sixty percent

of neoplasms with missense TP53 mutations have their second

TP53 allele deleted (72). Earlier studies demonstrated that FOXM1

expression is increased when p53 is partially deleted or inactivated

by negatively regulating the expression of FOXM1. Similar studies

on TP53 have revealed that reverse regulation of TP53 through

the mTOR pathway also modifies the synchronization of growth

signals and stressors (73). The TP53 gene is considered a hallmark

in cancer studies and serves maximum potential for developing

therapeutic targets for treating Osteosarcoma.

CCND1 gene can serve as a drug target with 33 direct

interactors having a path length of 1.582 and closeness centrality of
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0.632. CCND1 or Cyclin D1 gene synthesizes a protein that governs

cyclin-dependent kinases in the cell cycle. It is well recognized

as a regulator of cell cycle progression in the nucleus, modifying

the transition from the G1 to the S phase. Although Cyclin D1

is well recognized for its function in the nucleus, current clinical

investigations link it to tumor invasion and metastasis when it

is present in the cytoplasmic membrane (74). It is altered in

4.10% of all cancers, typically by post-transcriptional regulation,

translocation, or amplification (75).

Additionally, emerging evidence reveals that CCND1 gene

mutations that cause nuclear retention and constitutive CDK4/6

kinase activation are oncogenic (76). CCND1 is also seen to be

involved in biological pathways such as the FOMX1 transcription

pathway, mTOR signaling pathway, etc. CCND1 is seen to be

involved in response to leptin, which is a peptide hormone

produced by adipocytes. Leptin helps in the maintenance of normal

cellular homeostasis. Downregulation of the apoptotic reaction and

upregulation of the cell cycle is due to the pro-carcinogenic impact

of leptin (77). Therefore, targeting the CCND1 gene may aid in

halting Osteosarcoma development.

CDK4 gene plays a significant role in the completion of

the cell cycle and are often hyperactive in cancer. CDKs are

serine/threonine kinases that are activated in association with a

cyclin partner. It has a no. of direct interactors of 28 with an

average shortest path length of 1.626 and closeness centrality of

0.614. During the G1-S transition, retinoblastoma protein acts

as a negative cell cycle regulator by binding to the transcription

factor E2F and suppressing transcriptional activity during the

early G1 phase. D-type cyclins express themselves more often in

response to mitogenic stimuli, and they join forces with CDK4/6 to

phosphorylate RB. The E2F transcription factor family’s inhibitory

control on RB is partially relieved by hypo phosphorylated RB,

which encourages the expression of E2F target genes like cyclin E

and speeds up the G1 phase transition (78). Studies have also shown

that CDK4 is involved in the regulation of the mTOR pathway

activated, thus making it a potential drug target (79).

The VEGFA gene is considered a hallmark in cancer-

related studies because of its role in angiogenesis, accomplished

periodically from pre-existing vascular networks (80). The tumor

angiogenesis is achieved in four steps. First is disruption of the

basementmembrane leading to hypoxia. Second is the dispersion of

endothelial cells activated by VEGFA, followed by the proliferation

and stabilization of endothelial cells. At last, the angiogenesis

regulating factors regulates the repeated process of angiogenesis

(81). Studies have also demonstrated that the FOXM1 transcription

factor regulates VEGFA to promote tumor angiogenesis (82).

VEGFA gene had a degree value of 27 and an average shortest path

length of 1.701.

The signal transducer and activator of transcription, STAT3,

plays a vital role in DNA replication. Being an essential STAT

protein family member, it plays a crucial part in various

vital cellular functions, including proliferation, differentiation,

survival, immunosuppression, angiogenesis, and cancer (83).

STAT3-activated genes enhance angiogenesis and metastasis,

prevent apoptosis, promote cell proliferation and survival, and

suppress antitumor immune responses (84). In addition to its

established role as a transcription factor in cancer, STAT3 regulates

mitochondrion functions (85). STAT gene has been revealed to have

direct interactors of 27 with an average shortest path length of 1.716

and closeness centrality of 0.587.

5. Conclusion

Osteosarcoma is one of the most frequently occurring sarcomas

with a high potency of tumorigenesis. Although chemotherapy and

radiotherapy are available as treatment options that have improved

patients’ lives, there is still some gray area regarding the etiology

of the disease. To develop better therapeutics, a specific approach

toward the disease targeting the hub genes involved in various

signaling pathways must be opted to unravel the complexity of the

disease. Our study has mentioned hub genes viz. TP53, CCND1

CDK4, STAT3, and VEGFA have the highest no. of interactions

and showed a high clustering density. Their involvement in the

major signaling pathways of Osteosarcoma makes them potential

candidates to be targeted for drug development. The highly

enriched signaling pathways include the FOXM1 transcription

pathway, ATM signaling pathway, FAK mediated signaling events,

Arf6 signaling events, Class 1 PI3K signaling events, mTOR

signaling pathway, and Integrin family cell surface interactions.

Targeting the hub genes and their associated functional partners,

which we have reported in our studies, may be efficacious in

developing novel therapeutic targets.
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It is yet unknown what causes cardiovascular disease (CVD), but we do know that 
it is associated with a high risk of death, as well as severe morbidity and disability. 
There is an urgent need for AI-based technologies that are able to promptly 
and reliably predict the future outcomes of individuals who have cardiovascular 
disease. The Internet of Things (IoT) is serving as a driving force behind the 
development of CVD prediction. In order to analyse and make predictions based 
on the data that IoT devices receive, machine learning (ML) is used. Traditional 
machine learning algorithms are unable to take differences in the data into 
account and have a low level of accuracy in their model predictions. This research 
presents a collection of machine learning models that can be used to address 
this problem. These models take into account the data observation mechanisms 
and training procedures of a number of different algorithms. In order to verify the 
efficacy of our strategy, we combined the Heart Dataset with other classification 
models. The proposed method provides nearly 96 percent of accuracy result than 
other existing methods and the complete analysis over several metrics has been 
analysed and provided. Research in the field of deep learning will benefit from 
additional data from a large number of medical institutions, which may be used 
for the development of artificial neural network structures.
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cardiovascular disease, AI-based technologies, internet of things, machine learning, 
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1. Introduction

Cardiovascular disease (CVD), which is the leading cause of death 
globally, has become a significant problem in public health all over the 
world. As a result, patients, their families, and the governments of 
these countries have incurred substantial socioeconomic expenses. 
Patients at high risk for CVD can be identified by prediction models 
that use risk stratification. After that, measures that are tailored to this 
group, such as dietary changes and the use of statins, can help reduce 
that risk and contribute to the primary prevention of CVD (1).

Several guidelines for the evaluation and management of CVD 
have suggested using predictive models as a means of identifying 
patients at high risk and assisting with clinical decision-making. The 
Pooled Cohort Equations and the Framingham CV risk equation6, for 
example, have both been subjected to independent evaluations in a 
variety of populations; however, the findings indicated that both of 
these equations were only weakly discriminating and had a poor level 
of calibration (2).

As a direct consequence of this, the predictive power of the 
majority of the models that are now in use is restricted, and there is 
room for advancement. For instance, the assumption of linearity is 
necessary for logistic regression, while the assumption of predictor 
independence is necessary for the Cox proportional hazard model (3).

In the area of study pertaining to the cardiovascular system, 
machine learning (ML) algorithms have been demonstrated to 
be extremely helpful predictors. They are more adept than standard 
statistical models at capturing the complex interactions and nonlinear 
linkages that exist between the variables and the results (4). Several 
different investigations (5–15) came to the conclusion that random 
forests (RF) and support vector machines (SVM) performed better 
than traditional models.

Cardiovascular diseases such as coronary artery disease (CAD), 
atrial fibrillation (AF), and other cardiac or vascular ailments continue 
to be the leading cause of death in the world (10). As people living 
standards improve and their stress levels continue to rise, the number 
of people who suffer from CVD is growing at an alarming rate.

According to the most recent estimations (16, 17), CVD will 
be responsible for the deaths of about 23 million people by the year 
2030. Infarction of the myocardium, atrial fibrillation, and heart 
failure are all instances of different types of CVD (18, 19). The 
incidence of cardiovascular disease can be influenced by a number of 
factors, including racial or ethnic background, age, gender, body mass 
index (BMI), height, and length of torso, as well as the outcomes of 
blood tests that evaluate factors such as renal function, liver function, 
and cholesterol levels (20, 21) which is shown in Figure 1.

The development of a wide variety of health problems can 
be influenced by the complex interactions that take place between 
these factors. Standard statistical approaches are incapable of 
accounting for all of the intricate causal links that exist between risk 
factors because there are so many of them (22, 23). In this day and age 
of big data, the Internet of Things (IoT) has been shown to be of 
critical importance. It has made it possible for patients to use smart 
drugs and smart bracelets to monitor and collect accurate data during 
a pandemic (24).

Researchers are employing artificial intelligence (AI) in an effort 
to mine new medical information that can be used by clinicians to 
better understand the symptoms of various diseases and, as a result, 

make more informed decisions for patients (25). This comes as the 
prevalence of data from the internet of things (IoT) grows within 
healthcare systems. In order to investigate previously unknown risk 
factors, current efforts to standardise medical data, and efforts to 
organise national health screening data (26–28), we  will first 
standardise medical data. These risk variables may have a correlation 
with the occurrence of the disease, which means that they could offer 
insights into the mechanisms underlying the disease. Furthermore, 
accurate disease incidence prediction models necessitate the analysis 
of large amounts of data (29, 30). The use of artificial intelligence (AI) 
and massive amounts of data in the prediction of CVD models is 
becoming increasingly common.

The main contribution and novelty of this research is 
mentioned below:

 • To extract a total of 11 distinct characteristics from the dataset.
 • After that, we started by normalising the data and then proceeded 

to divide the Heart dataset into training and testing sets using an 
8:2 split.

 • Afterwards, the incorporated GBDT is utilised in the SHAP 
method for the purpose of selecting features.

 • It helps to construct a stacking model consisting of a base learner 
layer in addition to a meta learner layer.

 • Finally, we  will achieve the results over several performance 
metrics analyses and method in the stacking model.

2. Background

Weng et al. (31) tested four different models using clinical data 
from over 300,000 homes in the United Kingdom. According to the 
findings, NN was the method that produced the most accurate CVD 
prediction results for the larger amount of data that were analysed.

The three traditional machine learning models that were tested 
and evaluated by Dimopoulos et al. (32) based on ATTICA data with 
2020 samples for the little CVD dataset were K-Nearest Neighbour 
(KNN), Random Forest (RF), and Decision Tree. When compared, RF 
was shown to have produced the best results by using the 
HellenicSCORE tool, which is a calibration of the ESC Score.

In view of the growing popularity of machine learning techniques 
in IoT applications, Mohan et al. (15) have proposed a hybrid HRFLM 
strategy as a means of further improving the accuracy of the model 
predictions in light of the aforementioned popularity of machine 
learning methods.

An IoT-ML method was investigated by Akash et al. (33) with the 
goal of predicting the condition of the cardiovascular system in the 
human body. The algorithm model uses machine learning (ML) 
techniques to compute and predict the patient cardiovascular health 
after it has obtained essential data from the human body. This data 
include the patient heart rate, ECG signal, and cholesterol.

Within the framework of Yang et al. (34) examination of local 
locations with separate prediction models, LR was utilised to evaluate 
30 cardiovascular disease-related characteristics utilising more than 
200,000 high-risk participants in eastern China. The results of the 
experiments led to the development of an RF model that is more 
suited to eastern China.
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For the first time in the study of CVDs, the idea of a stacking 
model was presented for the very first time by Yang et al. (35). The data 
on air pollution and weather were considered in order to have a better 
understanding of how the stacking model influences the daily 
hospitalisation rate for CVDs. In order to assist in the construction of 
the stacking model, a grassroots level of five basic learners was 
first constructed.

During this period, digital, fully automated ecosystems as well as 
cyber-physical systems are fast growing and finding applications all 
over the world. The creation of smart healthcare, which offers tools 
and processes for early diagnosis of life-threatening disorders, is one 
example of the innovative concepts and technical compositions that 
are being implemented in nearly every business. As the fourth 
industrial revolution moves towards a society that is more 
technologically advanced, there is an urgent requirement for 
additional research into CVD Zheng et al. (36).

3. Proposed method

The first thing that needs to be done is to combine the data from 
the Heart Dataset, which already contains information from 
Cleveland, Hungarian, and Swizerlang, as well as data from Long 
Beach VA and Stalog (Heart). From the five sources, we extracted a 
total of 11 distinct characteristics. After that, we started by normalising 
the data and then proceeded to divide the Heart dataset into training 
and testing sets using an 8:2 split. Afterwards, the incorporated GBDT 
is utilised in the SHAP method for the purpose of selecting features.

In the following stage, we  will construct a stacking model 
consisting of a base learner layer in addition to a meta learner layer. 
The study uses RF, LR, MLP, ET, and CatBoost classifiers to serve as 
our base learners. LR is utilised in the role of the meta learner. Finally, 
the suggested stacking model is assessed with regard to its accuracy, 
precision, recall, F1 score, and area under the curve (AUC). In order 
to evaluate the model adaptability to new contexts, we made use of a 
publicly available dataset known as the Heart Attack Dataset.

The Cleveland, Hungarian, Swizerlang, Long Beach VA, and 
Stalog (Heart) datasets, together with others from the machine 
learning repository at the University of California, Irvine (UCI), were 
combined to form the Heart Dataset. We began with a total of 1,190 
samples, and after deleting 272 duplicates, we  were left with 918 
unique sample datasets. We started with 1,190 samples. The whole 
Heart dataset is displayed in Table 1, and it consists of 11 features that 

were taken from five different datasets that contained significant 
relevant features.

3.1. Feature select and analysis

It is feasible to increase model performance and save a 
considerable amount of runtime by selecting the ideal subset of 
features that have a significant impact on the prediction outcomes. 
This process is referred to as feature selection, and it is possible to 
accomplish both of these goals.

The three most common methods for picking characteristics are 
called filters, wrappers, and embedding. The research we conducted 
utilised the embedded approach known as GBDT as a means of 
selecting feature variables. This was due to the fact that embedded 
techniques offer superior prediction performance compared to filter 
methods and are noticeably quicker than wrapper methods.

GBDT makes use of an additive model and a forward stepwise 
algorithm in order to achieve learning. These two components work 
together to accomplish this. For non-leaf nodes, the significance of the 
features increases proportionately with the magnitude of the reduction 
in weighted impurity that occurs during splitting.

Because of this, it is not possible to provide a detailed explanation 
of the role that each attribute plays in determining the overall accuracy 
of the predictions made by the integrated GBDT. In order to find a 
solution to this issue, we make use of a technique known as feature 
imputation, in which the explanatory model is a linear function of the 
values produced by feature imputation.

 
l i′ = ∅ + ∑ = ∅( )′z Ni iZ0 1

 
(1)

where N—features; ∅i—feature attribute value, and Z′i—feature 
is valid or not.

The Φi value of Equation (1) can be determined by employing a 
tree-valued estimate methodology (also known as the SHAP method), 
which is founded on the concepts of game theory and used as the 
feature attribute values. Below is a formulation for a model f and a set 
S of non-zero Z′ indices, as well as the conventional spherically valued 
attribute ∅i for each feature.

 
∅ = ∑ ∈ { } − −( ) ∪{ } − ( )( ) i S M i S N S N f S i f S! ! !1

 
(2)

FIGURE 1

Several factor influencing incidence in cardiovascular disease.
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where M—input feature set.
It is essential to keep in mind that the SHAP strategy is 

adapted to the specific context and tailored to individual needs. 
In contrast to the tree model gain, this method can produce 
consistent results for global feature attributes. This is an 
advantage over the tree model gain. In the course of our study, 
we make use of the SHAP methodology in order to isolate and 
assess several individual characteristics.

In addition to this, we  investigate the ways in which various 
characteristics interact with one another in order to improve our 
ability to predict outcomes. We differentiate between the contributions 
of individual features and the contributions of feature interactions by 
referring to the former as individual feature contribution and the latter 
as joint feature contribution Φi,j. In the same way as the value, the 
Shapeley interaction index is calculated using a formula, and the joint 
feature contribution i and j can be found by doing the calculation 
as follows.

 
∅ = ∑ ∈ { } − −( ) −( ) ∇ ( )i j S M i S N S Z Z N i j S, ! ! ! ,1

 
(3)

When i ≠ j:

 
∇ ( ) = ∪{ }( ) − ∪{ }( ) − ∪{ }( ) + ( )i j S f S i j f S i f S j f S, ,

 
(4)

where Z represents the indices. i,j represent the feature 
contributions. S represents the Shapeley interaction Index.

Equations (3) and (4) in the GBDT model quantify the twinning 
relationships between joint features. So, when judging the model, 
you can get a good idea of how the different factors that interact with 
each other contribute together.

3.2. Model building

To the extent that the model predictions are accurate, each 
individual in the base population has a stronger capacity for learning, 
and the degree of correlation between them decreases. When the 
individual learners are already more accurate, a fusion of models will 
be more successful if the individual learners come from a diverse 
range of backgrounds. This is the foundation upon which the concept 
of error-ambiguity decomposition is built.

This suggests that when picking the foundation learners for our 
organisation, we  should take into account the performance of 
individual learners while also taking into account the distinctiveness 
of each individual learner. Theoretically, it is conceivable to build 
layers of the stacking model indefinitely as long as their fundamental 
classifier is operational. This, of course, results in an increase in the 
level of complexity represented by the model.

To ensure accuracy while reducing the level of complexity 
exhibited by the model, we solely employ the stacking model, which 
is comprised of a two-tiered structure consisting of base learners and 
meta-learners. As a direct consequence of this, SVM, KNN, LR, and 
ET were decided upon as the possible models for base learners to 
utilise in the prediction of CVDs. XGBoost, LightGBM, CatBoost, and 
MLP were some of the other options that were thought about. 
Following the selection of the most reliable models as the foundation 
for our education, we restricted the pool of potential candidates to five 
people who exemplified a comprehensive representation of the 
population as a whole. The optuna framework was used in order to get 
the optimal values for the model parameters.

After running a 5-fold CV, this model may generate a large 
number of features. 5-fold CV is a technique that is frequently utilised 
in the first layer of a stacking framework to collect input features for 
the second layer. This paper employs linear regression (LR) as the 

TABLE 1 Heart dataset features.

Feature Detailed Information

Age Age of the patient

Sex Sex of the patient (Male: 0 or female: 1)

Chest pain type Four chest pain types

 • ATA: atypical angina

 • TA: typical angina

 • ASY: asymptomatic

 • NAP: non-angina

Resting BP Value of blood pressure during fasting (Unit mm hg)

Cholesterol Concentration of serum cholesterol (Unit mm/dL)

Fasting BS Value of blood glucose during fasting (1: blood glucose >120 mg/dL, 0: other)

Resting ECG Resting electrocardiogram

Max HR maximum heart rate

Exercise angina Presence of exercise angina

Old peak ST value decision

ST_Slope Slope of ST section at the movement peak (up, flat, and down)
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classifier for the fusion model predictions since generalised linear 
regression, also known as GLR, has historically been employed in the 
second layer of the stacking architecture. Because adjusting the 
complexity of the output layer of a neural network does not require 
the employment of more complex functions, this example makes use 
of functions that are simpler in nature.

The primary learners are the LR, RF, DT, MLP, and CatBoost 
protocols. At the beginning, we give the training sets eight times as 
many points as the testing sets. Within the training package that 
we provide for each of the five foundational learners, we utilise a 
5-fold CV. A single base learner is capable of producing five 
predictions, and each of these five predictions is arranged in a vertical 
column within a one-dimensional matrix. It possible that the second 
stage of training will be based on a five-dimensional matrix that been 
developed using the data of five different learners as its foundation.

When applied to the testing set, the 5-fold CV model is utilised 
once more to make predictions about our initial testing set, which 
results in the production of five predictions once more. The base 
learners can be  concatenated into a matrix for the stage second 
iteration. We use LR on the meta-learner so that it does not become 
too good at its job. In the second step of the process, we use these 
predictions to build the final results.

4. Results and discussion

The outcomes of the experiments will be discussed here in order 
to illustrate the benefits of the stacking paradigm that was 
recommended by us. Python version 3.9.7 was used throughout each 
and every test. In this investigation, the sklearn 1.0.2 toolbox is used 
for model prediction. The SHAP  40.0 toolbox is used for feature 
selection, and the Optuna 2.10.0 framework is used to determine the 
optimum values for the model parameters which is shown in Table 2. 
We executed 10 splits of the data set using various random seeds in 
order to account for the small sample size of this study and the 
aforementioned randomisation. After doing so, we  averaged the 
results of all 10 experiments.

Before we  started the feature selection process, our dataset 
contained a total of 11 features. Using the Tree SHAP approach, 
you are able to determine the contribution value that corresponds to 
each feature that is contained inside the sample dataset. The ranking 
of the feature contributions is determined by using the average 
SHAP value for all of the samples. In accordance with the GBDT 
model, the contributions of the global features are depicted. The ST 
Slope and Chest Pain Type have a significant influence on the patient 
condition (CVD) in patients with cardiovascular disease. In order to 
cut the model operating time even more, some features that aren’t 
necessary will have to be eliminated. We chose to adopt a cutoff of 
0.02, which led to the elimination of the Resting ECG characteristic 

while permitting the retention of the other 10 features. We used the 
AUC to evaluate the performance both before and after the feature 
selection process. Even though the AUC values of GBDT went down, 
the drop wasnot substantial at all, and there was not any difference 
that could be  considered statistically significant by performing 
metrics such as AUC, Threshold, Sensitivity, Specificity which is 
shown in Figures 2–5.

The incidence of CVD was quite low in this experiment, 
resulting in poor PPV and NPV values for each of the seven 
different ML models. Because of this, their therapeutic value may 
suffer as a result of an increase in the number of false-positive 
results. The probabilities that were predicted by each machine 
learning model were unique, and the risk distribution for LR was 
comparable to that of SVM. Patients who had a CVD episode had 
estimated risks that were greater, across all ML models, than 
those patients who had not had a CVD episode. The plots also 
demonstrated that all ML models overestimated the risks of those 
individuals who had not experienced any CVD events. This 
finding suggests that this variable may also affect how well a 
model predicts what will happen.

It is necessary to have a risk model in order to determine 
whether individuals have a high probability of developing 
CVD. We intended to test seven machine learning (ML)-based 
models to evaluate how correctly they could predict the risk of 
CVD. The findings demonstrated that each one of them had good 
to excellent discrimination and that they were all accurately 
calibrated. When it came to forecasting the risk of CVD, penalised 
LR performed better than other machine learning models, just 
like SVM did. The specificity of the SVM was higher than that of 
the LR, while the LR had a lower level of sensitivity. It is possible 
that a higher level of specialisation was favoured in this Kazakh 
Chinese group because the majority of the population was 
nomadic and there were few medical services available. In 
addition to this, when taking calibration and DCA into 
consideration, SVM fared marginally better than LR. Because of 
this, SVM and LR can be used to find people in this group who 
are at a higher risk of CVD and to find out if putting risk-
mitigation interventions in place for these people will improve 
their CVD outcomes during the clinical decision-making process.

Linear regression has been widely used in the clinic to 
construct predictive models due to the ease with which it may 
be  interpreted and its general straightforwardness. In a study 
aimed at predicting myocardial ischemia, both LR and SVM were 
shown to have the same level of predictive ability, which was 
consistent with our findings. A recent and exhaustive study 
concluded that there is no performance benefit to be gained from 
using ML in clinical prediction models over using LR. It was 
determined that when machine learning algorithms were applied 
to small datasets with a limited number of predictors, LR models 
might perform better than ML models in terms of overall 
performance. It is possible that the small sample size and the L1 
penalised technique used in this work are to blame for the superior 
performance of LR in comparison to other machine learning 
models, with the exception of SVM.

The Support Vector Machine (SVM) is a well-known supervised 
machine learning approach that has found applications in a wide 
variety of business sectors. The fundamental idea behind support 
vector machines (SVM) is to locate the hyperplane that has the 

TABLE 2 Software specifications.

Language Python Version 3.9.7

Operating system Windows 11

Tool box for model predicition Sklearn 1.0.2

Feature selection SHAP 40.0

Optimum values Optuna 2.10.0 framework
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capacity to effectively classify the data while also providing the 
biggest geometric margin. In addition to this, it possesses significant 
kernel capabilities, which simplify the process of dealing with 
nonlinear classification issues. The outstanding performance of SVM 
demonstrates that it is a great tool for tackling classification challenges 
on small, non-linear, and high-dimensional datasets. This 
demonstrates that SVM is an excellent tool. In our experiment, 
we observed that the SVM performed significantly better than other 
machine learning models.

When it comes to classification, RF is among the most successful 
ensemble learning strategies that may be used. Its predictions were not 
nearly as accurate as those generated by the LR and SVM algorithms, 
which were the other two options. It is likely that the limited number 
of participants in this study will prevent RF from achieving its full 
potential as a prediction tool. The concept of variable importance was 
utilised in order to locate potential indicators of CVD. Some studies 
suggest that RF may be  capable of revealing crucial but 
undisclosed predictions.

According to the results of feature selection that was based on RF, 
the age of the patient was the most significant predictor in the 
classification of CVD. In this study, it was discovered that certain risk 
factors, such as smoking and alcohol intake, were not as predictive as 
previously believed. Previous studies have shown that the synthetic 
indices BAI and LHR are both very good indicators of cardiovascular 
disease. Inflammation plays a significant part in the formation of 
atherosclerotic plaques as well as1 the progression of cardiovascular 
disease is shown in Figures 6–11.

There is evidence that inflammatory cytokines, such as high-
sensitivity CRP and interleukin-6, are associated with an elevated risk 
of cardiovascular disease. The Hs-CRP inflammatory marker was 
included in the Reynolds Risk Score in order to account for its role as 
a potential contributor to cardiovascular disease. hs-CRP has been 
shown in a number of other epidemiological studies to be  an 
important predictor of CVD. These studies have also shown that 
hs-CRP acts as a mediator in the pathogenesis of vascular disease and 
is a marker of endothelial dysfunction. These findings are consistent 
with the findings of the aforementioned studies. It was discovered that 
Hs-CRP increases the risk of atherosclerotic plaque rupture in 

FIGURE 2

Area under the curve (AUC).

FIGURE 4

Sensitivity (%).

FIGURE 3

Threshold probability.

FIGURE 5

Specificity (%).
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FIGURE 6

PPV (%).

FIGURE 10

Brier score.

FIGURE 9

High-risk patients (%).

FIGURE 8

Youden index.

FIGURE 7

NPV (%).

FIGURE 11

Hosmer-Lemeshow-2.
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addition to destabilising atherosclerotic plaques via NO, IL-6, 
and prostacyclin.

In addition, hs-CRP has been demonstrated to enhance 
thrombosis and cardiomyocyte apoptosis in response to hypoxia, 
which provides more support for its position as a risk factor for 
cardiovascular disease. It has been demonstrated that IL-6 is a 
factor in the course of atherosclerosis and that it promotes the 
creation of atherosclerotic plaques. This factor may have contributed 
to the increase in the number of cases of CVD. Taking statins, 
which can reduce a person chance of acquiring CVD, is beneficial 
for a great number of people and can help them avoid developing 
the condition. In clinical practise, Hs-CRP and IL-6 can be used as 
biomarkers for the early diagnosis of patients who have an increased 
likelihood of developing cardiovascular disease.

According to the findings of our study, a decrease in ADP was 
associated with an increased risk of developing cardiovascular 
disease. The adipose hormone ADP, which is secreted by adipocytes, 
has anti-inflammatory effects. These effects manifest themselves as 
a reduction in the levels of CRP and lymphocyte recruitment in 
atherosclerotic lesions, a reduction in the expression of TNF-, and 
an increase in the production of cytokines that are protective 
against inflammation. On the other hand, there is evidence from a 
small number of studies that suggests an increase in ADP may assist 
in avoiding an ischemic stroke. Increased NEFA concentrations 
have been associated with an increased risk of cardiovascular 
disease in previous research, and our study came to the same 
conclusion. The possible effects of NEFA on cardiovascular disease 
include the potential to exacerbate or worsen a number of illnesses, 
including type 2 diabetes, hypertension, the metabolic syndrome, 
and endothelial deterioration, to name a few. Patients can have a 
lower chance of developing cardiovascular disease if they are treated 
to have a lower ADP (CVD).

The risk prediction models that are currently being used in 
CVD domains were built using traditional statistical methodologies, 
as many studies have revealed. Nevertheless, these models have 
been proven to be erroneous in external populations. In the field of 
cardiology, machine learning algorithms have proven to be superior 
methods for deriving predictions from big datasets that are 
notoriously difficult to understand. No prior assumptions are made 
by machine learning algorithms, which means that any data can 
be used to develop accurate and resilient models. Because of this, 
ML is able to model more complex relationships between outcomes 
and predictors, which are typically more challenging to express 
using standard statistical methods. Discovering interactions 
between marginal predictors can help improve risk-management 
strategies when using ML.

Machine learning has the potential to identify new genotypes 
and phenotypes for a variety of CVDs, as well as novel risk factors 
for CVDs. All aspects of medical picture recognition, diagnosis, 
outcome prediction, and prognosis evaluation can be improved 
with the application of more sophisticated machine learning 
techniques such as deep learning and artificial neural networks 
(ANN). It possible that in the future, cardiologists will make 
better clinical decisions if they use machine learning models 
rather than the CVD risk stratifications that are currently used. 
On the other hand, most ML models may be hard for medical 
professionals to understand and use, which may limit how often 
they can be used in clinical settings.

5. Conclusion

According to the findings of this research, a stacking fusion 
model-based classifier performs better than individual models on all 
assessment criteria. This finding suggests that stacking models can 
combine the benefits of a variety of model types to achieve superior 
prediction performance. The recommended stacking approach offers 
improved prediction performance, increased resilience, and increased 
utility for individuals who are at high risk of developing 
cardiovascular disease. Hospitals can utilise this information to 
identify patients who are at a high risk of developing cardiovascular 
disease and provide them with early clinical intervention in order to 
reduce that risk. Research in the field of deep learning will benefit 
from additional data from a large number of medical institutions, 
which may be used for the development of artificial neural network 
structures or for the usage of deep learning frameworks in the future. 
In future work, the other deep learning techniques algorithms can 
be incorporated into Internet of Things (IoT) environments which 
helps to achieve more accuracy in terms of result and it can be useful 
to the hospitals and saving several human life.
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Background: Inflammatory bowel disease (IBD) is a chronic autoimmune disorder 
characterized by severe inflammation and mucosal destruction of the intestine. 
The specific, complex molecular processes underlying IBD pathogenesis are not 
well understood. Therefore, this study is aimed at identifying and uncovering the 
role of key genetic factors in IBD.

Method: The whole exome sequences (WESs) of three consanguineous Saudi 
families having many siblings with IBD were analyzed to discover the causal 
genetic defect. Then, we used a combination of artificial intelligence approaches, 
such as functional enrichment analysis using immune pathways and a set of 
computational functional validation tools for gene expression, immune cell 
expression analyses, phenotype aggregation, and the system biology of innate 
immunity, to highlight potential IBD genes that play an important role in its 
pathobiology.

Results: Our findings have shown a causal group of extremely rare variants in 
the LILRB1 (Q53L, Y99N, W351G, D365A, and Q376H) and PRSS3 (F4L and V25I) 
genes in IBD-affected siblings. Findings from amino acids in conserved domains, 
tertiary-level structural deviations, and stability analysis have confirmed that 
these variants have a negative impact on structural features in the corresponding 
proteins. Intensive computational structural analysis shows that both genes 
have very high expression in the gastrointestinal tract and immune organs and 
are involved in a variety of innate immune system pathways. Since the innate 
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immune system detects microbial infections, any defect in this system could lead 
to immune functional impairment contributing to IBD.

Conclusion: The present study proposes a novel strategy for unraveling the 
complex genetic architecture of IBD by integrating WES data of familial cases, 
with computational analysis.
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1. Introduction

Inflammatory bowel disease (IBD) is a chronic immune disorder 
characterized by severe inflammation and mucosal destruction in the 
colon and small intestine (1, 2). Crohn’s disease (CD) and ulcerative 
colitis (UC) are the two major forms of IBD, which share identical 
pathological and clinical symptoms (2, 3). However, each condition 
shows a variable clinical presentation, response to treatment, and 
genetic risk factors (3). Recent decades have seen a sharp increase in 
the prevalence of IBD, which could be attributed to industrialization 
and lifestyle changes. The high prevalence of consanguinity in the 
Arab population results in the perpetuation of numerous harmful 
genetic variants in society. This aggregation of damaging variants in 
key genes may cause rare monogenic diseases and increase the genetic 
contribution to complex diseases such as IBD. Although the primary 
cause of IBD is unknown, interactions between environmental and 
immunoregulatory variables have been identified as a probable cause 
in genetically predisposed individuals (4, 5).

There is a clear evidence that genetic factors play an important 
role, with relatives of UC and CD patients having 8- to 10-fold 
increased risk of developing IBD (6). The strongest evidence for a 
genetic predisposition to IBD came from twin studies. While genetic 
defects in the IL-10 signaling pathway have been identified as an 
underlying molecular cause for very-early-onset IBD (VEO-IBD), no 
single causal genetic factor has been identified for late-onset IBD. This 
is because, late-onset IBD has a polygenic etiology, and environmental 
factors determine the susceptibility and age of onset of the disease (7). 
However, genome-wide association studies (GWAS) have uncovered 
more than 200 common risk loci in IBD pathogenesis (8–12). Some 
of these risk alleles are missense variants that have been mapped to 
genes such as Interleukin 23 Receptor (IL23R), Nucleotide Binding 
Oligomerization Domain containing 2 (NOD2), and Autophagy-
related 16 like 1 (ATG16L1) (13). Majority of these risk markers are 
intronic variants (14).

Thus, to better understand the pathogenesis of complex diseases, 
application of next-generation sequencing technologies is having a 
greater impact, especially in consanguineous societies (15–17). They 
will provide an excellent opportunity to identify rare variants with 
intermediate to high effect ranges more efficiently. These rare variants 
are believed to have high odds ratios (ORs) and high penetrance and 
are suitable for functional experimental validation. In genetics, OR is 
often used to quantify the risk of developing a particular disease in 
individuals who carry a specific genetic variant or mutation. In a 
recent study, one rare coding variant in the BTNL2 gene within the 
Major histocompatibility complex (MHC) region was associated with 

higher IBD risk (OR-2.3), giving an insight into T cell activation 
mechanisms and IBD sub-phenotype developments (18). It provides 
strong support for our planned approach to identify potential causal 
variants and genes for IBD through familial studies. Since published 
information on the genetics of Arab IBD familial patients is limited, 
the goal of this study is to find out the causal genetic variants involved 
in IBD pathogenesis.

2. Materials and methods

2.1. Recruitment of families with IBD

The Biomedical Ethics Research Committee of King Abdulaziz 
University Hospital in Jeddah (KAUH) approved the proposed 
research project. At the Internal Medicine specialty gastroenterology 
clinics at King Abdulaziz University Hospital, Jeddah (KAUH), three 
unrelated Saudi consanguineous families with many affected siblings, 
who fulfilled the inclusion criteria of the study, reporting abdominal 
pain along with weight loss and persistent diarrhea, were recruited. 
An informed consent to join the research as participants was signed 
by all family members before we collected clinical data and blood 
samples. Family A has two siblings with IBD, and families B and C 
each have three siblings with IBD. All these patients were examined 
by a consultant gastroenterologists, and the diagnosis was arrived at 
as per the standard diagnostic criteria set out by the European Crohn’s 
and Colitis Organization (ECCO) 2019 (19). After collecting the full 
family history, a three-generation pedigree for each family was 
constructed. Hospital electronic health records were accessed to 
collect clinical history on all affected siblings. For genetic analysis, 
approximately 3–4 mL of peripheral blood was collected in EDTA 
tubes from all participants and stored at −80°C until used.

2.2. DNA purification

Genomic DNA was purified according to the manufacturer’s 
instructions using the QIAamp DNA Blood Kit (Qiagen, 
United  States). A Nanodrop (ND-1000 UV–VIS) 
spectrophotometer was used to measure DNA concentration and 
purity. The DNA integrity for high molecular weight DNA was 
evaluated using 1% agarose gel electrophoresis, and the gel image 
was captured in a UV transilluminator attached camera. All the 
samples were stored at −20°C until they were used for 
genetic analysis.
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2.3. Whole exome sequence analysis

Whole exome sequencing was performed using the Illumina 
HiSeq2000 next-generation sequencer (Illumina Inc., San Diego, CA, 
United States). The whole exome-enriched library was constructed 
using genomic DNA at an average concentration of 60 ng/μL, 
including DNA tagmentation (fragmentation and adapter ligation at 
both ends), target capturing, and amplification using the ligated 
adapters. The Agilent SureSelect exome capture kit V7.0 (Agilent 
Technologies, United States) was used to shear all exonic sections of 
protein-coding genes that were registered in the CCDS and RefSeq 
databases, resulting in ideal size-range fragments. Ultra-long 120-mer 
biotinylated cRNA library baits were used to hybridize the fragmented 
DNA. Capillary electrophoresis was used to determine the 
concentration and size of the library. During enrichment, various 
adapters were incorporated, allowing the samples to be amplified for 
subsequent sequencing. For variant calling and annotation, the 
sequencing reads (in the FASTQ format) were matched to the human 
genome reference sequence build 38 (GRCH38.p12) using BLAST 
(version 0.6.4d). Variants were filtered based on the following criteria: 
depth (30), maximum quality read (60), alternative to total depth ratio 
(>80% for homozygous variants and 40–70% for heterozygous 
variants), minor allele frequency (<0.01) based on the 1,000 genomes, 
gnomAD database, and location (coding regions or regulatory sites). 
The rare variants were further filtered based on the segregation pattern 
of the variants under different genetic inheritance models such as 
autosomal recessive (AR), compound heterozygous (CH), and de novo 
to identify the disease-causing variants.

2.3.1. Identifying the rare variant burden genes
Since IBD is a complex disease with polygenic involvement, 

we tried to identify the genes with a rare variant burden. From the 
exome sequencing data of individual families, we attempted to identify 
genes harboring rare variants to see which genes are potentially 
involved in the disease causation.

2.4. Functional enrichment analysis using 
immune pathways

The rare variant harboring genes shared between the three 
families were initially identified by the Venny 2.1.0 web tool.1 The 
ClueGo, a Cytoscape plug-in was then used to perform functional 
enrichment analysis on these rare variant genes. For pathway 
enrichment of query genes, the GO annotations was chosen in the 
ClueGo settings (6). In this enrichment test, default stringent statistical 
options, such as Bonferroni multiple testing correction and 
enrichment/depletion (Two-sided hypergeometric test), were applied. 
The common pathways (enriched GO terms) among all three families 
were identified by the VENNY tool. The pathways corresponding to 
the mapped genes with rare variants that were shared by all three 
families were then further filtered to exclude contributing genes that 
were not included in the initial query list of shared rare variant genes.

1 https://bioinfogp.cnb.csic.es/tools/venny/

2.5. Computational functional validation of 
selected potential IBD genes

The shared genes with rare variants from the pathway analysis 
were further filtered to validate their potential contribution to disease 
development. To this end, several databases were used to explore their 
gene expression levels in different organs and to prioritize the potential 
therapeutic drug targets and disease phenotype annotations.

2.5.1. Gene expression analysis and exome 
validation

We examined the changes in the expression status of our query 
genes in IBD tissues by downloading 24 IBD-related transcript 
expression datasets hosted in Expression Atlas.2 This database is 
maintained by the European Bioinformatics Institute and provides 
information on gene expression patterns from RNA-seq, microarray 
studies, and protein expression from proteomics studies. The 
keywords searched in the database were IBD and inflammation. 
Different experimental samples were used, such as colonic, mucosal 
biopsies and peripheral blood monocytes, for different diseases such 
as UC, IBD, CD, irritable bowel syndrome, colorectal cancer, and 
colon adenomas. From the resultant datasets, we  identified 
differentially expressed genes (DEGs) using a logFC cutoff fold change 
of >1 at p < 0.05. Furthermore, the EBI gene expression atlas (GXA) 
interface in Ensembl was used to search for transcript expression data 
of the query genes in different organs and tissues. The input is the gene 
name, and the output is the baseline expression in transcripts per 
million (TPM). Only the expression data of query genes (>0.5 TPM 
cutoff value) in the gastrointestinal tract, immunological organs, and 
blood were chosen from the output.

2.5.2. Immune cell expression analysis
The Database of Immune Cell Expression (DICE)3, expression 

quantitative trait loci (eQTLs), and epigenomics were used to reveal 
the effect of IBD risk-associated genetic polymorphisms on specific 
immune cell types which might influence disease pathogenesis. This 
database delivers comprehensive information on immune cell 
expression generated by 15 immune cell types (subsets of T cells, B 
cells, monocytes, and NK cells). The input is the query gene ID, and 
the output is the expression level of genes in transcripts per million 
(TPM) on the x-axis, and cell types are sorted based on the y-axis of 
box plot graphs.

2.5.3. Open target phenotype identification
The query hub genes were further analyzed using the Open 

Targets Platform.4 This website accesses several databases to help in 
clarifying the causal relationships between enzymatic reactions, 
physical binary interactions, or functional relationships between 
disease phenotypes and therapeutic targets (6). The input is the query 
gene list, and the output is the evidence score for a given target-disease 
pair. The significant value was set at a 0.5 cutoff score to detect the 
druggable molecular targets.

2 https://www.ebi.ac.uk/gxa/home

3 https://dice-database.org/

4 https://platform.opentargets.org/
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2.5.4. System biology of innate immunity
The innate immunity interactions for the query genes were further 

explored by using the InnateDB website.5 This publicly available 
database with an integrated platform facilitates the systems-level 
analysis of innate immunity networks, pathways, and genes (20). The 
input is the gene name, and the output is the interactions and signaling 
responses involved in innate immunity processes.

2.6. Interaction gene networks and 
function prediction

The GeneMANIA plugin from Cytoscape was used to identify 
gene interaction networks from query genes and predict the gene’s 
putative function and annotation. The plugin uses a large database of 
functional interaction networks from Homo sapiens, and each related 
gene is traceable to the source network used to make the prediction. 
The input is the query gene list and the organism type. The output is 
a network of interconnected genes (21, 22).

2.7. Amino acid conserved domains

The functional relevance of rare genetic variants on candidate 
proteins was predicted by comparing the nucleotide and amino acid 
sequences to the functional domains of the concerned protein as listed 
in the Conserved Domain Database (CDD). CDD program uses 
RPS-BLAST, which efficiently scans the query protein for 
pre-computed position-specific score matrices (PSSMs), to estimate 
the sequence conservation characteristics of the functional domains 
of the candidate protein. Protein domains annotated with query input 
sequence and imagining options are shown in the output file.

2.8. Protein structure analysis

2.8.1. Protein modeling and stability analysis
The Artificial Intelligence (AI) program developed by Alphabet/

Google DeepMind, AlphaFold, generated protein structure at the 
molecular level6, which was extensively used to study the structural 
effect of the variants on the candidate proteins. The input is the 
protein, gene name, or UniProt accession, and organism name. The 
output is a predicted 3D protein model from its amino acid sequence 
with high accuracy (including side chains), a per residue confidence 
metric (PLDDT) that is used to color the residues of the prediction, 
and a predicted aligned error that is necessary to assess confidence in 
the domain packing and large-scale topology of the protein. The 
I-TASSER web tool was also used along with AlphaFold for the 
generation of protein structures that were not available in AlphaFold. 
I-TASSER predicts the 3D structure and biological activity of protein 
molecules based on their amino acid sequences using high-quality 
model predictions. The input is the amino acid sequence, and the 
output is several full-length atomic models along with their estimated 

5 https://www.innatedb.com/

6 https://alphafold.ebi.ac.uk/

accuracy (including a confidence score for all models, predicted 
TM-score, and RMSD for the first model), GIF images of the predicted 
models, and predicted secondary structure and solvent accessibility. 
To generate mutant protein models, SWISS-MODEL, a fully 
automated protein structure homology-modeling tool, was used. The 
input is the mutated amino acid sequence along with the wild-type 
template file in PDB format. Outputs include the 3D structure of 
models, their target–template sequence alignment, and model 
coordinates. The protein model PDB file is viewed by a molecular 
visualization system, PyMOL 2.5.7 PyMOL represents the protein in a 
three-dimensional (3D) model and is capable of editing molecules.

2.8.2. Structural deviation and stability findings
The structural deviation between optimized native and variant 

protein models was determined using YASARA, a molecular 
graphics, modeling, and simulation tool. Two protein atomic 
coordinates were superimposed on top of each other, and the 
corresponding RMSD values were calculated to quantify structural 
similarity at both the global and local residue levels. The cut-off 
RMSD values for variant-induced structure deviations at the 
polypeptide chain and residue levels were > 0.2 and > 2, respectively. 
The effect of a candidate variant on protein structure stability was 
determined using the MAESTRO webserver. MAESTRO provides a 
confidence estimation Cpred for its total predicted change in stability 
(kcal/mol) ΔΔG predictions. ΔΔGpred <0.0 indicates a stabilizing 
mutation and Cpred is given as a value between 0.0 (not reliable) and 
1.0 (highly reliable).

3. Results

3.1. Clinical and family history

In family A (Figure 1A), the proband (III.2), aged 27 years, is the 
offspring of a consanguineous marriage between first cousins and has 
no family history of inflammatory bowel disease. He  was first 
diagnosed with Crohn’s disease at the age of 22 years, suffering from 
several symptoms such as nausea, anorexia, and night sweats. His 
endoscopy test findings confirmed the diagnosis of Crohn’s disease 
with an eroded, punctate, white-spotted mucosa in the esophagus and 
a hemorrhagic gastropathy (Figure 2). He is currently being treated 
with Pentaza (mesalamine), which is a 5-aminosalicylic acid 
derivative, and Imuran (azathioprine AZA), an immunosuppressive 
medication. His younger brother (III.3), now 20 years old, was first 
diagnosed with Crohn’s when he was 17 years old. He had comparably 
severe symptoms including lethargy, dizziness, and anorexia. At first, 
he was diagnosed with tuberculosis and was treated for 9 months. 
After that, gastrointestinal inflammation recurrence was noticed when 
a confirmatory endoscopy test was performed. The endoscopic 
findings were a tight, inflamed terminal ileum and an enterocolonic 
fistula. Then, after 2 years, a second endoscopic test was done that 
found severe inflammation at the ascending colon and cecum with 
anatomical distortion characterized by altered vascularity, congestion 
(edema), erythema, and pseudopolyps. The findings were worse when 

7 https://pymol.org/2/
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compared to previous examinations (Figure 2). He is currently being 
administered Remicade (Infliximab), which is a chimeric monoclonal 
antibody used to treat several autoimmune diseases, including IBD.

In family B (Figure 1B), the parents are healthy distant relatives 
from the same Arabian tribe. In this family, Crohn’s disease was 
diagnosed in one female and two male siblings. The proband (IV.2) 
was diagnosed when he  was 25 years old and is currently taking 
Humira (monoclonal antibody). His sister (IV.5) was diagnosed in her 
late 20s, and she had a colectomy and an ostomy bag. His younger 
brother (IV.6) was diagnosed when he was 25 years old and was kept 
on Infliximab (Remicade) for 2 years.

In family C (Figure 1C), the parents are first cousins and healthy, 
except that the mother has some intestinal inflammation. Interestingly, 
of the three affected male siblings, two were monozygotic twins. The 
proband (III.1) was diagnosed 3 years ago, and he is 32 years old now. 
He  has been on Remicade monoclonal antibody treatment every 
2 months since the diagnosis. Both twins (III.4 and III.5), now aged 
29 years, were diagnosed 6 years ago, and both underwent colectomy 
at the ages of 26 and 24 years, respectively.

3.2. Whole exome sequence analysis

Whole exome sequencing of many family members provided 
an average of 97,242, 98,011, and 96,297 variants in families A, B, 

and C, respectively. These massive numbers of variants were 
further filtered out by excluding 3′ and 5′ UTR variants, 
conservative and disruptive inframe deletion or insertion, 
synonymous, intergenic, and intronic variants, coding variants 
with high allele frequency (>0.01), and poor quality variants with 
a Phred score of <30. The inclusion of rare coding variants has 
resulted in 3,498 variants (in 1,455 genes) for family A, 3,721 
variants (in 1,571 genes) for family B, and 3,679 variants (in 1,668 
genes) for family C. Most of the coding variants in all three 
families were of the missense type (Table  1). The segregation 
analysis of the variants in the respective families with IBD did not 
detect any single rare variant following a classical AR, CH 
(compound heterozygotes), or de novo inheritance pattern. 
Therefore, we searched for the aggregation of rare variants that 
would increase the burden status of genes in these families.

3.3. Functional enrichment analysis using 
immune pathways

The functional enrichment analysis of rare variant 
genes  from  individual families revealed a total of 180, 114, 
and  116 immune-related pathways for families A, B, and C, 
respectively. In families A, B, and C, 23, 21, and 29 immune 
pathways respectively were  significantly enriched (p  = <0.05). 

A

B C

FIGURE 1

Three-generation pedigrees of families with IBD. (A–C) Represent the pedigrees of families A, B, and C, respectively. The black color circles or boxes 
represent patients with IBD. The arrow represents the proband in each family. The star represents individuals selected for WES.
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Table 2 presents the top five significant immune pathways for 
each family.

A total of 95 (61.3%) GO terms were shared by the three families 
and analyzed with the VENNY tool. These GO terms were associated 
with 163 genes after excluding the human leukocyte antigen (HLA) 
complex gene family owing to their known involvement in multiple 
autoimmune diseases. When we analyzed all 163 genes, only eight 
genes with rare variants were found to be common among all three 
families (Figures 3A,B).

3.4. Transcript expression analysis of 
candidate genes in IBD and healthy tissue 
samples

Out of the eight rare variant genes, seven genes were differentially 
expressed in colonic and mucosal tissues. Of them, two (ZDHHC11 
and PRSS3) were downregulated (FC: <−1.1) and five (LILRB3, 
LILRA2, LILRB1, PRSS2, and LILRA1) were upregulated. The 
expression of the upregulated genes (FC: >1.1) is presented in 

FIGURE 2

Endoscopic images of the GI tract of the proband III.2 and affected sibling III.3 in family A. Two pictures of the top row from proband III.2 show 
inflammation and ulceration lesions in the gastric body and eroded, punctate white spotted mucosa in the esophagus with a hemorrhagic gastropathy. 
Bottom row images from III.3 show inflammation and ulceration lesions in the cecum and ileocecal valve.

TABLE 1 The exome variants yield from siblings of three IBD families.

Case Total 
variants

Coding* Rare** Number of 
genes

Homozygous 
variants

Heterozygous 
variants

Family A
III.2 98,823 13,300 1721 734 195 1,526

III.3 95,660 13,157 1777 721 173 1,604

Family B
IV.2 97,925 13,287 1809 785 122 1,687

IV.5 98,097 13,435 1912 786 150 1762

Family C
III.1 97,737 12,933 1862 833 148 1714

III.4 94,857 12,796 1817 835 149 1,668

Coding* includes Frameshift, missense, splice acceptor, splice donor, start lost, and stop retained variants. 
Rare** (Minor allele frequency < 0.01 in gnomAD, 1,000 genomes, ExAC dbs).
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Figure 4B. In the control tissue (gastrointestinal, blood, and immune 
organs) samples, seven (of the eight) shared genes showed differential 
expression. PRSS3 has high expression in the small intestine and 
colon (Figure 3C).

3.5. Immune cell gene expression

Based on RNA sequencing data, we investigated the immune 
cell type representations of the eight prioritized genes, and only 

TABLE 2 Top five immune system-related pathways enriched in genes with rare coding variants in three families with IBD.

ID Term P-value* % Associated 
genes

Associated genes found

Family A

GO:0002483 Antigen processing and presentation 

of endogenous peptide antigen

0.00 38.10 LEF1, LIG4, PRKDC

GO:0002697 Regulation of immune effector process 0.01 3.02 LEF1, LIG4, PRKDC

GO:0038093 Fc receptor signaling pathway 0.01 2.30 LILRB1, TMEM176A, TMEM176B

GO:0045088 Regulation of innate immune response 0.01 8.98 LIG4, PRKDC, SOS1, SOS2

GO:0002220 Innate immune response activating 

cell surface receptor signaling pathway

0.02 11.20 ERAP1, ERAP2, IDE, SEC14L3

Family B

GO:0002250 Adaptive immune response 0.00 2.88 AHR, BTNL9, CARD9, CD79A, CEACAM1, HLA-B, HLA-C, 

HLA-DQB1, HLA-DQB2, HLA-DRB1, HLA-DRB5, IL17RA, 

IRF7, LILRA1, LILRB1, LILRB3, ORAI1, OTUD7B, PDCD1LG2, 

PPL, RAPGEF3, RASGRP1, RIF1

GO:0045088 Regulation of innate immune response 0.00 9.58 A2M, CARD9, CEACAM1, DHX58, HLA-B, IKBKB, IL18RAP, 

IRF7, KIR2DL4, LILRA2, LILRB1, MUC12, MUC16, MUC17, 

MUC19, MUC2, MUC20, MUC3A, MUC4, MUC5AC, MUC6, 

NCR1, NLRC5, OTOP1, PIK3R6, PRKDC, PSMB11, PSME3, 

PSPC1, RASGRP1, SOCS1, TRIM5

GO:0045088 Adaptive immune response based on 

somatic recombination of immune 

receptors built from immunoglobulin 

superfamily domains

0.00 2.40 AHR, CARD9, CEACAM1, HLA-B, HLA-DQB1, HLA-DQB2, 

HLA-DRB1, IRF7, LILRB1, RIF1

GO:0042269 Adaptive immune response based on 

somatic recombination of immune 

receptors built from immunoglobulin 

superfamily domains

0.00 18.60 CEACAM1, HLA-B, IL18RAP, KIR2DL4, LILRB1, NCR1, 

PIK3R6, RASGRP1

GO:0002218 Activation of innate immune response 0.00 11.39 CARD9, IKBKB, LILRA2, MUC12, MUC16, MUC17, MUC19, 

MUC2, MUC20, MUC3A, MUC4, MUC5AC, MUC6, PRKDC, 

PSMB11, PSME3, PSPC1, TRIM5

Family C

GO:0002220 Innate immune response activating 

cell surface receptor signaling pathway

0.00 14.40 CARD9, ICAM3, KLRC2, LILRA2, MUC1, MUC12, MUC16, 

MUC17, MUC19, MUC2, MUC20, MUC21, MUC3A, MUC4, 

MUC5AC, MUC5B, MUC6, PSMA8

GO:0002758 Innate immune response-activating 

signal transduction

0.00 14.29 CARD9, ICAM3, KLRC2, LILRA2, MUC1, MUC12, MUC16, 

MUC17, MUC19, MUC2, MUC20, MUC21, MUC3A, MUC4, 

MUC5AC, MUC5B, MUC6, PSMA8

GO:0002223 Stimulatory C-type lectin receptor 

signaling pathway

0.00 14.05 CARD9, ICAM3, KLRC2, MUC1, MUC12, MUC16, MUC17, 

MUC19, MUC2, MUC20, MUC21, MUC3A, MUC4, MUC5AC, 

MUC5B, MUC6, PSMA8

GO:0002218 Activation of innate immune response 0.00 12.66 CARD9, CGAS, ICAM3, KLRC2, LILRA2, MUC1, MUC12, 

MUC16, MUC17, MUC19, MUC2, MUC20, MUC21, MUC3A, 

MUC4, MUC5AC, MUC5B, MUC6, PSMA8, PSPC1

GO:0042113 B cell activation 0.00 2.72 ATM, HLA-DQB1, HLA-DQB2, IGLC1, IGLL5, LFNG, MSH2, 

SAMSN1, SLC25A5, YY1AP1

P-value* significant (<0.05).
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A

C

B

FIGURE 3

(A) Venn diagram showing the shared immune Go-terms between three IBD families. (B) Venn diagram showing the shared gene with rare variants 
between three families. (C) Top immune cell gene expression patterns of the genes with rare variants.

seven genes had significant expression in various immune cells 
with the log FC of 0.4 (Figure 4A). Leukocyte immunoglobulin-
like receptor genes (LILRB1, LILRB3, LILRA1, and LILRA2) are 
highly expressed in immune cells such as monocytes and natural 
killer (NK) cells. The LILRB3 gene is highly expressed in classical 
and non-classical monocytes with an average of 175.84 TPM and 
152.3 TPM, respectively. However, this gene is barely expressed 

in the T cells, with a mean TPM of <2.73. Furthermore, LILRB1, 
LILRA1, and LILRA2 are highly enriched in non-classical 
monocytes with means of 290.46, 632.40, and 128.35, respectively, 
compared to the classical monocytes with an average of 87.91, 
204.29, and 123.98, respectively. KMT2C is also highly expressed 
in non-classical monocytes, with a mean of more than 90 TPM 
(Table 3).
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3.6. Open target phenotype identification

From the eight genes identified from the WES rare variant 
burden analysis, only four genes have shown an association score of 
>0.1 with gastrointestinal or immune system disease phenotypes. The 
KMT2C gene shared phenotypes with UC with an overall association 
score of >0.37 (Table 4).

3.7. Concordance analysis

We used the Venny tool to find genes that were present in both 
IBD and normal healthy tissue expression analyses, immune cell 
restricted expression analysis, and open target platform analysis. Of 
the eight genes, seven (90%) were expressed in IBD tissues, normal 
healthy tissues (GI, immune organs), and different immune cell types 

A

B

FIGURE 4

(A) Eight genes that are highly expressed in the gastrointestinal tract and several immune tissues. (B) Differentially expressed genes in IBD datasets from 
NCBI-GEO database.

113

https://doi.org/10.3389/fmed.2023.1164305
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Jan et al. 10.3389/fmed.2023.1164305

Frontiers in Medicine 10 frontiersin.org

TABLE 3 Summary of the four different computational predictions for potential genes for IBD pathology: normal expression, IBD specific expression, 
and immune and open target platform.

Gene name Normal expression 
(Colon) (average TPM)

IBD specific 
expression (FC)

Immune (Mean 
TPM)

Open target platform 
overall association 

score

LILRB1 2.32 1.25 290.46 0.145

LILRB3 1.52 1.825 175.84 <0.1

KMT2C 14.6 NA 90.96 0.264

ZDHHC11 0.1 −1.1 10.26 <0.1

LILRA2 0.3 1.85 128.35 <0.1

PRSS2 0 2.23 NA 0.156

PRSS3 45.2 −1.5 0.82 0.109

LILRA1 0.34 1.575 632.40 <0.1

TABLE 4 Number of experimentally validated interactions and predicted interactions for LILRB1 and PRSS3 genes from the innate immunity database.

Ensembl gene 
ID

Organism Chromosome Gene 
symbol

Gene name Experimentally 
validated 

interactions

Interactions 
predicted by 

orthology

ENSG00000104972 Homo sapiens 19 LILRB1

Leukocyte immunoglobulin-

like receptor, subfamily B 

(with TM and ITIM 

domains), member 1

12 0

ENSG00000010438 Homo sapiens 9 PRSS3 Protease, serine, 3 6 0

such as monocytes and NK cells. In addition, four genes (50%) showed 
a strong association (>0.1 score) with gastrointestinal and immune 
system disease phenotypes. However, all eight genes, LILRB1, LILRB3, 
LILRA2, LILRA1, KMT2C, ZDHHC11, PRSS2, and PRSS3, were found 
to be significant in at least two tools  (Table 3).

3.8. System biology analysis of innate 
immunity

Only LILRB1 and PRSS3 have physical interactions or associations 
with the innate immune response in humans, out of the eight genes 
obtained in the preceding step. LILRB1 is mapped to chromosome 19, 
and it has 12 experimentally validated interactions with other genes. 
Most of the interacting partners are from the HLA gene family, such as 
A, C, G, and F. The gene PRSS3 interacts with six other genes (Table 4).

3.9. Shared genes with rare variants to 
pathway analysis

These three families shared 10 rare variants for LILRB1 
(ENST00000324602.12) including six missense and four novel 
frameshift variants. However, 11 unique missense variants were shared 
only between families B and C. Furthermore, two unique missense 
variants each were observed in families B and C. Families A and C 
shared a missense variant in PRSS3 (ENST00000379405.4) 
(c.244G > A; rs76740888) and family B had one additional missense 
variant in PRSS3 (c.10 T > C; rs772714741) (Table 5).

These two genes, LILRB1 and PRSS3, were studied independently to 
map the biochemical pathways associated with them. Our findings 

showed that LILRB1 is connected to three pathways, namely, the adaptive 
immune system, the immune system, and immunoregulatory interactions 
between a lymphoid and a non-lymphoid cell. The PRSS3 gene is involved 
in 10 different pathways, namely, neutrophil degranulation, the innate 
immune system, antimicrobial peptides, the metabolism of vitamins and 
cofactors, the metabolism of water-soluble vitamins and cofactors, alpha-
defensins, defensins, the immune system, and cobalamin (Cbl, vitamin 
B12) transport and metabolism.

3.10. Gene–gene networking analysis

Many of the physically interacting partners of PRSS3 (such as 
TCN1, DEFA4, DEFA1, DEFA5, DEFA3, DEFA6, PRSS2, SPINK1, and 
CBLIF) are co-regulated and co-expressed with interacting partners 
of LILRB1 (HLA-B, LILRA1, and LILRA3). Indirect dysregulated 
interactions between many of these proteins might trigger 
inflammation in IBD (Table 6).

3.11. Amino acid conserved domains

A crucial step in determining the relationship between the 
nucleotide sequence, protein structure, and function of disease-
causing proteins is by mapping the conserved amino acid domains. 
According to the CDD analysis, the LILRB1 protein contains an 
immunoglobulin (Ig) superfamily domain located between 28 and 419 
amino acid positions (four domains). PRSS3 protein consists of a 
Trypsin-like serine protease domain between 38 and 256 amino acids. 
We excluded variants that were located outside the conserved domains 
area (Table 7).
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TABLE 5 Rare variants of LILRB1 and PRSS3 genes in three families.

Gene 
name

Chr. 
No.

Position Rs ID cDNA position Amino acid 
position

Effect MAF

1,000 Gp GenomAD

Family A

LILRB1 19 54,631,583 rs554096090 c.154G > A p.Gly52Ser Missense variant 0.001 0.000

LILRB1 19 54,631,587 rs199588814 c.158A > T p.Gln53Leu Missense variant 0.001 0.000

LILRB1 19 54,631,686 rs200880414 c.257C > T p.Pro86Leu Missense variant 0.000 0.000

LILRB1 19 54,631,724 rs570016342 c.295 T > A p.Tyr99Asn Missense variant 0.000 0.000

LILRB1 19 54,631,725 rs535742370 c.296A > T p.Tyr99Phe Missense variant 0.000 0.000

LILRB1 19 54,631,749 rs142396802 c.320G > T p.Arg107Leu Missense variant 0.000 0.000

LILRB1 19 54,633,154 – c.1098_1099delAT p.Trp367fs Frameshift variant – –

LILRB1 19 54,633,157 – c.1100_1101insCT p.Trp367fs Frameshift variant – –

LILRB1 19 54,633,171 – c.1114_1115insAG p.Thr372fs Frameshift variant – –

LILRB1 19 54,633,173 – c.1117_1118delTA p.Tyr373fs Frameshift variant – –

PRSS3 9 33,796,675 rs76740888 c.244G > A p.Val82Ile Missense variant – –

Family B

LILRB1 19 54,631,583 rs554096090 c.154G > A p.Gly52Ser Missense variant 0.001 0.000

LILRB1 19 54,631,587 rs199588814 c.158A > T p.Gln53Leu Missense variant 0.001 0.000

LILRB1 19 54,631,605 rs774715846 c.176G > A p.Arg59His Missense variant – 0.000

LILRB1 19 54,631,686 rs200880414 c.257C > T p.Pro86Leu Missense variant 0.000 0.000

LILRB1 19 54,631,724 rs570016342 c.295 T > A p.Tyr99Asn Missense variant 0.000 0.000

LILRB1 19 54,631,725 rs535742370 c.296A > T p.Tyr99Phe Missense variant 0.000 0.000

LILRB1 19 54,631,749 rs142396802 c.320G > T p.Arg107Leu Missense variant 0.000 0.000

LILRB1 19 54,631,944 rs370374304 c.368 T > G p.Ile123Ser Missense variant 0.000 0.000

LILRB1 19 54,633,033 rs1185911260 c.976G > C p.Val326Leu Missense variant – –

LILRB1 19 54,633,034 rs1486166961 c.977 T > C p.Val326Ala Missense variant – –

LILRB1 19 54,633,037 rs974205214 c.980C > T p.Ser327Phe Missense variant – 0.000

LILRB1 19 54,633,049 rs1334566399 c.992A > G p.Gln331Arg Missense variant – –

LILRB1 19 54,633,108 rs765206177 c.1051 T > G p.Trp351Gly Missense variant – 0.000

LILRB1 19 54,633,116 rs764221410 c.1059A > C p.Gln353His Missense variant – 0.000

LILRB1 19 54,633,150 rs1260040283 c.1093G > T p.Asp365Tyr Missense variant – –

LILRB1 19 54,633,151 rs12985933 c.1094A > C p.Asp365Ala Missense variant – –

LILRB1 19 54,633,154 – c.1098_1099delAT p.Trp367fs Frameshift variant – –

LILRB1 19 54,633,157 – c.1100_1101insCT p.Trp367fs Frameshift variant – –

LILRB1 19 54,633,166 rs1401913528 c.1109G > A p.Arg370Lys Missense variant – –

LILRB1 19 54,633,171 – c.1114_1115insAG p.Thr372fs Frameshift variant – –

LILRB1 19 54,633,173 – c.1117_1118delTA p.Tyr373fs Frameshift variant – –

LILRB1 19 54,633,185 rs1240220003 c.1128A > T p.Gln376His Missense variant – –

LILRB1 19 54,633,210 rs372567136 c.1153G > A p.Gly385Ser Missense variant – 0.000

PRSS3 9 33,795,583 rs772714741 c.10 T > C p.Phe4Leu Missense variant – –

Family C

LILRB1 19 54,631,583 rs554096090 c.154G > A p.Gly52Ser Missense variant 0.001 0.000

LILRB1 19 54,631,587 rs199588814 c.158A > T p.Gln53Leu Missense variant 0.001 0.000

LILRB1 19 54,631,605 rs774715846 c.176G > A p.Arg59His Missense variant – 0.000

LILRB1 19 54,631,686 rs200880414 c.257C > T p.Pro86Leu Missense variant 0.000 0.000

LILRB1 19 54,631,724 rs570016342 c.295 T > A p.Tyr99Asn Missense variant 0.000 0.000

(Continued)
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TABLE 5 (Continued)

Gene 
name

Chr. 
No.

Position Rs ID cDNA position Amino acid 
position

Effect MAF

1,000 Gp GenomAD

LILRB1 19 54,631,725 rs535742370 c.296A > T p.Tyr99Phe Missense variant 0.000 0.000

LILRB1 19 54,631,749 rs142396802 c.320G > T p.Arg107Leu Missense variant 0.000 0.000

LILRB1 19 54,631,944 rs370374304 c.368 T > G p.Ile123Ser Missense variant 0.000 0.000

LILRB1 19 54,631,965 rs767704704 c.389A > T p.Gln130Leu Missense variant – 0.000

LILRB1 19 54,633,037 rs974205214 c.980C > T p.Ser327Phe Missense variant – 0.000

LILRB1 19 54,633,049 rs1334566399 c.992A > G p.Gln331Arg Missense variant – –

LILRB1 19 54,633,108 rs765206177 c.1051 T > G p.Trp351Gly Missense variant – 0.000

LILRB1 19 54,633,116 rs764221410 c.1059A > C p.Gln353His Missense variant – 0.000

LILRB1 19 54,633,150 rs1260040283 c.1093G > T p.Asp365Tyr Missense variant – –

LILRB1 19 54,633,151 rs12985933 c.1094A > C p.Asp365Ala Missense variant – –

LILRB1 19 54,633,154 – c.1098_1099delAT p.Trp367fs Frameshift variant – –

LILRB1 19 54,633,157 – c.1100_1101insCT p.Trp367fs Frameshift variant – –

LILRB1 19 54,633,166 rs1401913528 c.1109G > A p.Arg370Lys Missense variant – –

LILRB1 19 54,633,171 – c.1114_1115insAG p.Thr372fs Frameshift variant – –

LILRB1 19 54,633,173 – c.1117_1118delTA p.Tyr373fs Frameshift variant – –

LILRB1 19 54,633,185 rs1240220003 c.1128A > T p.Gln376His Missense variant – –

LILRB1 19 54,633,210 rs372567136 c.1153G > A p.Gly385Ser Missense variant – 0.000

LILRB1 19 54,636,536 rs41308744 c.1696G > A p.Glu566Lys Missense variant 0.004 0.000

PRSS3 9 33,796,675 rs76740888 c.244G > A p.Val82Ile Missense variant – –

TABLE 6 Protein–protein interactions of LILRB1 and PRSS3 genes.

Interactors Species Type Source database ID(s) Interactor types Tissue

LILRB1 with HLA-B Homo sapiens Physical interaction BIOGRID-256234 Protein – protein –

LILRB1 with HLA-A Homo sapiens Association IDB-120686 Protein – protein Kidney cell line

CSK with LILRB1 Homo sapiens Association MINT-8027327; EBI-7351403 Protein – protein –

HLA-F with LILRB1 Homo sapiens Physical interaction BIOGRID-276645 Protein – protein –

LILRB1 with HLA-A Homo sapiens Association BIOGRID-255783 Protein – protein –

PTPN6 with LILRB1 Homo sapiens Physical association IDB-190120; BIOGRID-318101 Protein – protein –

CSK with LILRB1 Homo sapiens Physical interaction IDB-117837; IDB-117834 Protein – protein T-lymphocyte cell line

LILRB1 with HLA-C Homo sapiens Physical interaction BIOGRID-256235 Protein – protein –

LILRB1 with HLA-G Homo sapiens Physical interaction
BIOGRID-256236; MINT-

7144982; EBI-7087620
Protein – protein –

PTPN6 with LILRB1 Homo sapiens Physical interaction IDB-117838; IDB-117836 Protein – protein T-lymphocyte cell line

B2M with LILRB1 Homo sapiens Association BIND-121495 Protein – protein –

CSK with LILRB1 Homo sapiens Association EBI-7351451; MINT-8027342 Protein – protein –

PRSS3 with SERPINA1 Homo sapiens Association BIND-117882; BIND-90568 Protein – protein –

Complex of 10 interactors Homo sapiens Association EBI-8770525 Protein – protein –

PRSS3 with ALB Homo sapiens Association BIOGRID-825632 Protein – protein –

PRSS3 with HDGF Homo sapiens Association BIOGRID-635705 Protein – protein –

TFPI with PRSS3 Homo sapiens Association BIOGRID-317015 Protein – protein –

PRSS3 with UBC Homo sapiens Association
BIOGRID-627754; 

BIOGRID-618329
Protein – protein –
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3.12. LILRB1 and PRSS3 3D model 
construction

The predicted 3D protein structure was collected from Alphafold, 
the state-of-the-art AI system developed by DeepMind, and 
I-TASSER. The total length (650 aa) of the structures of human 
LILRB1 protein chain A, with model confidence (pLDDT >70), was 
downloaded as a PDB file. The full-length (247 aa) structure model of 
human PRSS3 protein chain A was downloaded as a PDB file, with a 
model confidence score (C-score of −0.54), an estimated TM score of 
0.64 ± 0.13 Å, and an estimated RMSD = 6.9 ± 4.1 Å. The LILRB1 
(p.Gln53Leu, p.Tyr99Asn, p.Trp351Gly, p.Asp365Ala, and 
p.Gln376His) and PRSS3 (p.Phe4Leu and p.Val25Ile) were then 
modeled using homology modeling by the SWISS-MODEL using 
energy-minimized native protein structures.

3.13. Protein stability analysis

Pathogenic amino acid substitutions can result in changes in free 
energy values, thereby directly impacting protein stability. We analyzed 
the impact of 16 LILRB1 (G52S, Q53L, R59H, P86L, Y99N, Y99F, 
R107L, Q130L, S327F, Q331R, W351G, Q353H, D365Y, D365A, 
Q376H, and 2 G385S) and PRSS3 (F4L and V25I) variants on protein 
stability by MAESTRO. MAESTRO is a robust tool for predicting 
stability changes following point mutations by providing predicted free 
energy change (ΔΔG) values and a corresponding prediction 
confidence estimation (cpred). For the LILRB1 protein, out of the 16 
variants, only five had a destabilizing effect on the protein (Q53L, Y99N, 
W351G, D365Y, and D365A) with ΔΔG of 0.074, 0.85, 0.380, 0.083, and 
0.086, respectively. The cpred scores were 0.088, 0.923, 0.875, 0.885, and 
0.872, respectively. The two PRSS3 (F4L and V25I) variants had a 
destabilizing effect with ΔΔG of 0.016 and 0.799 and cpred of 0.885 and 
0.857 (Table 8). We used the YASARA tool to analyze the native and 
mutant LILRB1 and PRSS3 structures to evaluate their structural drifts 
(in terms of RMSD at residue and whole protein levels). The RMSD 
value is utilized to quantify the structural similarity between two atomic 
coordinates when they are superimposed. When there is divergence at 
the polypeptide chain level, impact of substitution mutations on amino 
acid structures can be determined. For the LILRB1 protein, the five 
substitutions with destabilizing effects on the protein (Q53L, Y99N, 
W351G, D365Y, and D365A) had RMSDs at residue levels of 1.8395, 
2.0688, 1.5186, 2.0098, and 2.0351. The two PRSS3 (F4L and V25I) 
variants with destabilizing effects had RMSD at residue levels of 2.1465 
and 2.0270, respectively (Figure 5 and Table 9).

4. Discussion

Most genetic studies on IBD have largely concentrated on identifying 
common variants with small effect sizes through GWAS studies (9). 
However, rare and highly penetrant variations identified through 
population-specific cohorts or family-focused research have immense 
potential to catch the variants with high effect size on complex diseases 
such as IBD (8, 12). Although, studying the familial cases may uncover 
rare causal variants, their heritability of disease in unrelated patient 
cohorts is still uncertain (23). Unlike VEO-IBD, which has a causal 
monogenic factor, late-onset is a complex and multifactorial disorder that 

cannot be explained by classical genetic segregation methods (16, 24, 25). 
Large-scale sporadic case–control studies on WES-based rare variant 
burden analysis (RVB) have previously identified several strong risk loci 
for complex diseases, such as Schizophrenia (26), Alzheimer’s disease 
(27), epilepsy (2019), autism (28), and Crohn’s disease (12).

According to a recent systematic review and meta-analysis of IBD 
in the Arab World, the consanguinity rate in Saudi  Arabian IBD 
patients is as high as 32.6% (4). Consanguinity acts as a prerequisite risk 
factor for several autosomal recessive immune disorders (29, 30). 
Therefore, identifying the actual genetic causes underlying familial IBD 
is expected to aid in early detection, therapy optimization, carrier 
screening, and genetic counseling for extended families. In this context, 
we have sequenced the exomes of three consanguineous Saudi families 
with more than one IBD-affected sibling. We performed segregation 
analyses of the variants in the respective IBD families. However, this 
did not result in identifying any causal rare variant fitting into the 
classical autosomal recessive, compound heterozygote, or de novo 
inheritance patterns. Since the classical Mendelian segregation analysis 
does not apply to all forms of IBD, single-gene models often fail to 
explain the complex molecular etiology of the disease. For example, in 
other gastrointestinal diseases, such as celiac disease (CeD), a recent 
study of two rare Arab families with CeD concluded that the genetic 
variability cannot be  explained by classical genetic segregation 
techniques, because the single gene model is incapable of dissecting the 
disease’s molecular elements (24). It has adopted multidimensional 
computational analysis to identify and characterize the potential 
autoimmunity risk genes for Celiac disease (19). Therefore, following a 
similar strategy, we searched and identified potential IBD genes based 
on the rare variant burden analysis using a combination of artificial 
intelligence approaches, bioinformatic tools, and multi-dimensional, 
large-scale next-generation sequence datasets. This novel approach at 
a large scale is likely to provide some valuable clues to novel biomarkers 
or drug targets for many complex diseases in the future (24, 31–34).

We prioritized from thousands of rare variants of WES to potential 
two candidate genes, LILRB1 and PRSS3, owing to their strong 
involvement in the innate immune system. Both genes are linked to 
inflammation, a process in which multiple pathways interact to 
contribute to this complex function. The LILRB1 gene is a member of the 
leukocyte immunoglobulin-like receptor (LILRs; or ILT, LIR, and CD85) 
family, which are the most conserved genes located within the leukocyte 
receptor cluster on human chromosome 19 (35, 36). The family consists 
of 13 members with activating or inhibitory properties: LILRs with long 
cytoplasmic tails that contain inhibitory motifs based on tyrosine act as 
inhibitory receptors (LILRBs), whereas LILRs with short cytoplasmic 
tails act as activators (LILRAs). LILRs are two pseudogenes and 11 
functional genes encoding five activating (LILRA1, 2, 4–6), five inhibitory 
(LILRB1–5), and one soluble form (LILRA3). Moreover, LILRs are 
classified into two classes based on the amino acid sequence similarity of 
the region that binds to HLA. LILRB1, B2, A1, A2, and A3 are classified 
as members of group 1 that are highly similar in sequence and are likely 
to interact with HLA class I molecules (HLAIs). Furthermore, LILRB1 
has been shown to inhibit the combination of CD8 and HLA I molecules, 
hence regulating CD8+ T cells (37, 38).

From our results, we found that the three families shared 10 
rare variants (six missense and four novel frameshift variants) in 
the LILRB1 gene. However, 11 unique missense variants were 
shared only between families B and C. Furthermore, two unique 
missense variants were shown in families B and C, respectively. Of 
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these variants, five (p.Gln53Leu; p.Tyr99Asn; p.Trp351Gly; 
p.Asp365Ala; and p.Gln376His) were seen to have a destabilizing 
effect on the corresponding protein with ΔΔG upon mutations of 
0.074, 0.85, 0.380, 0,083, and 0.086 (kcal/mol), respectively, and 
the cpred upon mutations of 0.088, 0.923, 0.875, 0.885, and 0.872 
(kcal/mol) respectively. All these variants were rare and not 
present in public databases such as the Greater Middle East 
(GME), the KAIMRC Genomic Database (KGD), and the Genome 
Aggregation Database (gnomAD) (16, 39). Various LILRB1 rare 
variants seen in these families might be  dysregulating several 
immune pathways, such as adaptive immunity, that normally 
prevent pathogens from growing by specialized, systemic cells and 
processes (40). Another important pathway is the 

TABLE 7 Conserved domains and their amino acid locations in LILRB1 and PRSS3.

Gene cDNA position Amino acid location Domain Domain range

LILRB1 c.154G > A p.Gly52Ser IgC2_D1_LILR_KIR_like 28–118

LILRB1 c.158A > T p.Gln53Leu IgC2_D1_LILR_KIR_like 28–118

LILRB1 c.176G > A p.Arg59His IgC2_D1_LILR_KIR_like 28–118

LILRB1 c.257C > T p.Pro86Leu IgC2_D1_LILR_KIR_like 28–118

LILRB1 c.295 T > A p.Tyr99Asn IgC2_D1_LILR_KIR_like 28–118

LILRB1 c.296A > T p.Tyr99Phe IgC2_D1_LILR_KIR_like 28–118

LILRB1 c.320G > T p.Arg107Leu IgC2_D1_LILR_KIR_like 28–118

LILRB1 c.389A > T p.Gln130Leu IgC2_D1_LILR_KIR_like 28–118

LILRB1 c.1098_1099delAT p.Trp367fs Ig super family 327–419

LILRB1 c.1100_1101insCT p.Trp367fs Ig super family 327–419

LILRB1 c.1114_1115insAG p.Thr372fs Ig super family 327–419

LILRB1 c.980C > T p.Ser327Phe Ig super family 327–419

LILRB1 c.992A > G p.Gln331Arg Ig super family 327–419

LILRB1 c.1051 T > G p.Trp351Gly Ig super family 327–419

LILRB1 c.1059A > C p.Gln353His Ig super family 327–419

LILRB1 c.1093G > T p.Asp365Tyr Ig super family 327–419

LILRB1 c.1094A > C p.Asp365Ala Ig super family 327–419

LILRB1 c.1117_1118delTA p.Tyr373fs Ig super family 327–419

LILRB1 c.1128A > T p.Gln376His Ig super family 327–419

LILRB1 c.1153G > A p.Gly385Ser Ig super family 327–419

PRSS3 c.10 T > C p.Phe4Leu Trypsin-like serine protease 38–256

PRSS3 c.244G > A p.Val82Ile Trypsin-like serine protease 38–256

TABLE 8 MAESTRO program protein stability prediction on LILRB1 and 
PRSS3 variants.

Substitutions Gene 
name

ΔΔGpred 
(kcal/mol)

cpred (kcal/

mol)

G52.A(S) LILRB1 −0.170 0.909

Q53.A(L) LILRB1 0.074 0.880

R59.A(H) LILRB1 −0.154 0.919

P86.A(L) LILRB1 −0.363 0.885

Y99.A(N) LILRB1 0.85 0.923

Y99.A(F) LILRB1 −0.112 0.903

R107.A(L) LILRB1 −0.607 0.864

Q130.A(L) LILRB1 −0.132 0.916

S327.A(F) LILRB1 −0.438 0.860

Q331.A(R) LILRB1 −0.063 0.873

W351.A(G) LILRB1 0.380 0.875

Q353.A(H) LILRB1 −0.047 0.911

D365.A(Y) LILRB1 −0.224 0.881

D365.A(A) LILRB1 0.083 0.885

Q376.A(H) LILRB1 0.086 0.872

G385.A(S) LILRB1 −0.169 0.865

F4.A(L) PRSS3 0.016 0.885

V25.A(I) PRSS3 0.799 0.857

ΔΔG Positive score, Destabilizing; Negative score, Stabilizing.

TABLE 9 YASARA program RMSD at residue and whole level.

Gene 
name

Substitutions Calpha 
RMSD (Å)

RMSD (Å)

LILRB1 Q53.A(L) 0.055 1.8395

LILRB1 Y99.A(N) 0.055 2.0688

LILRB1 W351.A(G) 0.055 1.5186

LILRB1 D365.A(A) 0.055 2.0098

LILRB1 Q376.A(H) 0.055 2.0351

PRSS3 F4.A(L) 0.121 2.1456

PRSS3 V25.A(I) 0.120 2.0270

Cutoff RMSD at the polypeptide chain > 0.2, residue levels > 2.
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A

B

FIGURE 5

3D structures of PRSS3 and LILRB1 wild and mutant protein models. Structures of (A) PRSS3 wild type in yellow, and mutant (p.Phe4Leu and p.Val25Ile) 
in red and blue, respectively (B) LILRB1 wild type in yellow, and mutant (p.Gln53Leu) in green (p.Tyr99Asn) orange (p.Trp351Gly) blue (p.Asp365Ala), red, 
and (p.Gln376His) purple.
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immunoregulatory interactions between a lymphoid and a 
non-lymphoid cell. A variety of receptors and cell adhesion 
molecules play important roles in modifying the response of 
lymphoid cells (such as B-, T-, and NK cells) to self, tumor 
antigens, and pathogenic organisms (41). Since the innate immune 
system detects microbial infections, any defect in this system could 
lead to microbial imbalance that could trigger IBD development.

The second gene, PRSS3, is a member of the trypsin family of 
serine proteases (synonyms: PRSS4, TRY3, and TRY4). This 
enzyme is found in the brain and pancreas, and it is resistant to 
common trypsin inhibitors. It acts on peptide bonds containing 
the carboxyl group of lysine or arginine. This gene is located on 
chromosome 9 at the locus of the T cell receptor beta variable 
orphans. The PRSS3 gene has four transcripts encoding distinct 
isoforms. Furthermore, this gene is a known contributor to the 
initiation and progression of malignant tumors, but its 
significance in gastric cancer (GC) remains unknown (42). This 
is the first report linking the novel potential role of the PRSS3 
gene to IBD through shared rare variant burden analysis in three 
families from Saudi Arabia presenting late-onset IBD.

In the present study, we  found that both families A and C 
shared the same missense variant for PRSS3 (c.244G > A; 
rs76740888). Family B had a missense variant for PRSS3 (c.10 T > C; 
rs772714741). The frequency of the PRSS3, c.244G > A variant in 
the GME variome project is 11%, which might be seen only among 
the Arab population. However, this variant is not present in 
gnomAD. Moreover, two prediction tools, the Mutation Taster and 
the likelihood ratio test (LRT), show that this variant is damaging. 
The frequency of the c.10 T > C variant is rare and not present 
among GME, KGD, and gnomAD. Interestingly, both variants have 
a destabilizing effect on the protein structure, with ΔΔG of 0.016 
and 0.799 (kcal/mol) and cpred of 0.885 and 0.857 (kcal/mol) (43). 
Destabilizing mutations reduce the stability of a protein and may 
lead to its misfolding, aggregation, and degradation (44).

Different rare variants of the PRSS3 gene might be perturbing 
several immune pathways, such as the innate immune system and 
neutrophil degranulation (45). Any defect in these important 
pathways could harm autoimmunity, which will lead to the 
development of any disease linked to autoimmunity, such as IBD. Our 
findings suggest a novel strategy for deciphering the complex genetic 
basis of IBD through the whole exome sequence (WES) analysis of 
familial cases combined with computational analysis. This study was 
performed on three consanguineous Saudi families with IBD with 
each family having more than one affected sibling.

We sincerely acknowledge some limitations of this study. First, 
our findings were limited to three families with IBD, and studying 
more familial cases will help establish the role of the LILRB1 and 
PRSS3 and other potential causal genes, biomarkers, and drug targets 
for IBD. But our findings could be a proof of concept that rare variant 
burden (RVB) can assist in unraveling the genetic complexity of IBD, 
where classical Mendelian segregation models are of limited use. 
Second, while our study was conducted on humans, studying the role 
of LILRB1 and PRSS3 genetic variants on intestinal cell lines and 
animal models could aid in understanding how mutant proteins 
modulate autoimmune responses at the tissue level. Third, 
computational methods often show variable predictions; hence, their 
results should be interpreted in the context of subsequent biological 
experiment-based verifications.

5. Conclusion

This study proposes a novel strategy for understanding the 
genetic complexity of IBD by combining WES and computational 
multi-dimensional biological data analysis to identify potential IBD 
key proteins. Our findings suggest that the rare and novel variants 
identified in two potential key proteins (LILRB1 and PRSS3) are likely 
to contribute to IBD pathogenesis via several important immune 
pathways, such as the innate and adaptive immune system pathways 
and neutrophil degranulation.
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Molecular crosstalk between 
COVID-19 and Alzheimer’s disease 
using microarray and RNA-seq 
datasets: A system biology 
approach
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Vellore, Tamil Nadu, India

Objective: Coronavirus disease 2019 (COVID-19) is an infectious disease caused 
by Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2). The clinical 
and epidemiological analysis reported the association between SARS-CoV-2 
and neurological diseases. Among neurological diseases, Alzheimer’s disease 
(AD) has developed as a crucial comorbidity of SARS-CoV-2. This study aimed 
to understand the common transcriptional signatures between SARS-CoV-2 and 
AD.

Materials and methods: System biology approaches were used to compare the 
datasets of AD and COVID-19 to identify the genetic association. For this, we have 
integrated three human whole transcriptomic datasets for COVID-19 and five 
microarray datasets for AD. We have identified differentially expressed genes for 
all the datasets and constructed a protein–protein interaction (PPI) network. Hub 
genes were identified from the PPI network, and hub genes-associated regulatory 
molecules (transcription factors and miRNAs) were identified for further validation.

Results: A total of 9,500 differentially expressed genes (DEGs) were identified 
for AD and 7,000 DEGs for COVID-19. Gene ontology analysis resulted in 37 
molecular functions, 79 cellular components, and 129 biological processes 
were found to be  commonly enriched in AD and COVID-19. We  identified 26 
hub genes which includes AKT1, ALB, BDNF, CD4, CDH1, DLG4, EGF, EGFR, 
FN1, GAPDH, INS, ITGB1, ACTB, SRC, TP53, CDC42, RUNX2, HSPA8, PSMD2, 
GFAP, VAMP2, MAPK8, CAV1, GNB1, RBX1, and ITGA2B. Specific miRNA targets 
associated with Alzheimer’s disease and COVID-19 were identified through 
miRNA target prediction. In addition, we  found hub genes-transcription factor 
and hub genes-drugs interaction. We also performed pathway analysis for the 
hub genes and found that several cell signaling pathways are enriched, such as 
PI3K-AKT, Neurotrophin, Rap1, Ras, and JAK–STAT.

Conclusion: Our results suggest that the identified hub genes could be diagnostic 
biomarkers and potential therapeutic drug targets for COVID-19 patients with AD 
comorbidity.
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1. Introduction

SARS-CoV-2 (Severe Acute Respiratory Syndrome-Corona 
Virus Disease 2019) become a major health issue and highest 
prevalence rate (1). According to the world health organization 
(WHO) report worldwide, the COVID-19 outbreak affected over 
600 million people and 6.8 million of them died, as of 6 march 
2023 a total of 1.3B vaccine doses have been administrated.1 
SARS-CoV-2 genome consists of 29,811 nucleotides of enveloped 
positive-stranded ssRNA; as a result, SARS-CoV-2 appears to bind 
exclusively to angiotensin-converting enzyme 2 (ACE2) (2). This 
causes severe acute respiratory distress. ACE2 expression levels 
are highest in the small intestine, testis, heart, kidneys, and 
thyroid and the lowest in the brain, bone marrow, spleen, blood, 
blood vessels, and muscle (3). COVID-19 vaccines were developed 
and deployed rapidly, successfully controlled the pandemic, and 
reduced the risk of associated death and severe illness (4–6). 
COVID-19 poses a greater risk of death for patients with 
pre-existing neurological conditions (7). Virus RNA transcripts 
and viral proteins were also found in brain tissues of COVID-19 
patients during an autopsy (8, 9). Neurological symptoms have 
been reported in COVID-19 cases more notably in recovered 
patients from COVID-19 challenged memory loss and cognitive 
disability (10). Clinical studies have proven the possibility of 
COVID-19 pathogenesis in the brain, and, some studies pointed 
out that COVID-19 might accelerate the neurodegeneration of 
Alzheimer’s Disease (AD) and Parkinson’s Disease (5, 11–15). As 
a result of COVID-19, cognitive impairment may be caused by the 
following mechanisms like Direct COVID-19 infection in CNS, 
Systematic hyperinflammatory response to COVID-19, Peripheral 
organ dysfunction, Severe coagulopathy, Cerebrovascular 
ischemia due to endothelial dysfunction, and Mechanical 
ventilation due to severe disease conditions (16, 17).

Alzheimer’s Disease is a neurodegenerative disorder more 
than 50 m people are affected worldwide and this count is 
expected 150 m in 2050 (18). The major reason for AD is a 
breakdown of amyloid precursor protein (APP) in the brain 
which generates beta-amyloid (Aβ) in extracellular neural space 
(19–21). Several enzymes reported for the breakdown of APP 
importantly three secretase enzymes such as alpha-secretase, 
beta-secretase, and gamma-secretase play crucial roles in the 
cleavage process (22–24). Another possible mechanism of AD is 
an intracellular hyperphosphorylated tau protein (25). The tau 
protein plays a vital role in the stabilization and assembly of 
microtubules, as well as in regulating plasticity and synaptic 
function. Tau protein hyper phosphorylates under certain 
physiological conditions, resulting in the destabilization of 
associated microtubules, synaptic damage, and other 
complications (26, 27). A higher permeability of BBB might 
permit viruses and bacteria to enter the brain (28). Several 
pathogens are implicated in the development of AD, including 
viruses, bacteria, fungi, and parasites (29). COVID-19 crosses the 
BBB and induces an inflammatory response within microvascular 

1 https://covid19.who.int/

endothelial cells leading to BBB dysfunction (16, 30). In previous 
studies, integrated bioinformatics and system biology approaches 
also investigated the impact of SARS-CoV-2 on neurological 
disease progression (31–33). Systems biology provides a 
comprehensive interpretation of high-throughput platforms 
including genomics, proteomics, and metabolomics for analysis, 
display, compatibility, and accessibility. Comorbidity analysis for 
diverse diseases has become possible with the availability of high-
throughput data and system biology bioinformatics approaches 
also provides a better way to unravel the biological complexity of 
these multifactorial diseases influenced by multiple pathogenic 
determinants (34, 35). To investigate the molecular factors that 
influence the development of SARS-CoV-2 and neurological 
comorbidities, we investigated multiple gene expression datasets 
from AD and SARS-CoV-2 which includes microarray data and 
transcriptome data from various human brain tissue and blood 
samples. We proposed a network-based systems biology approach 
to explore the relationship between AD and SARS-CoV-2.

2. Materials and methods

2.1. Data collection

We have used gene expression datasets such as transcriptome 
datasets and microarray datasets to find the differentially expressed 
genes. This collection of datasets was extracted from gene expression 
omnibus (GEO) at the National Center for Biotechnology 
Information2 (36, 37).

For our analysis, we used the following inclusion criteria:

 1. Dataset which contains samples from the disease group and the 
control group in original experimental studies.

 2. Expression profiling by array used for AD with GEO2R 
tool support.

 3. Expression profiling by high throughput sequencing with raw 
counts data used for COVID-19.

 4. Only homo-sapiens datasets were included.
 5. A dataset containing at least eight samples included.

The keywords used for AD include “Alzheimer’s Disease” and 
further the results were filtered by the term “homo-sapiens,” and 
we selected the study type “expression profiling by array” which 
resulted in five datasets for AD. Among the five datasets, three of 
them were associated with peripheral blood mononuclear cells 
(PBMCs), and two of them were brain tissue-based. For 
COVID-19 we used the keywords “SARS-CoV-2” to narrow down 
the results and further filtered them by “homo-sapiens,” and 
“expression profiling by high-throughput sequencing.” 
We retrieved three datasets related to COVID-19, including two 
PBMC datasets and one brain tissue dataset. Both control 
(non-diseased) and diseased samples are included in all the 
datasets Table 1.

2 https://www.ncbi.nlm.nih.gov/
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2.2. Preprocessing and identification of 
differentially expressed genes

To classify genes with significantly different expression levels 
between samples, differential gene expression analysis is necessary. 
GEO2R was used to identify DEGs from microarray data, the 
selected microarray datasets have two groups control and disease 
(37, 38). The (Linear Models for Microarray Data) limma 
Bioconductor package is also available in GEO2R online tool for 
finding the differentially expressed genes (39). As part of the 
normalization process, outliers were removed using the log2 
transform, and the Benjamin Hackenberg methods are used by 
default to correct p value (40). To perform DEGs analysis, 
we selected false discovery rate (FDR) p values adjusted for multiple 
testing. We downloaded the full table with the following columns 
for further analysis value of p, adjusted value of p, log fold change, 
gene symbol, and title (41). Following DEGs, we plotted a volcano 
plot using the pheatmap package in R, genes with p value <0.05, and 
log FC | > 1 was considered (42).

For transcriptomics datasets, we  have used a DESeq2 
Bioconductor package (version 3.16) in RStudio version 2022. The 
transcriptome profile of COVID-19 tissues and blood samples was 
compared with control tissues and blood samples. DESeq2 is a 
statistical model designed to identify differentially expressed genes 
between two or more conditions, it is often used in the analysis of 
RNA-Seq data, to identify the genes which change in expression 
between different biological samples or conditions (43, 44). The 
DESeq2 model uses a negative binomial distribution to model the 
count data obtained from RNA-Seq experiments and variance for 
each gene across all samples. The model accounts for technical 
variability such as differences in sequencing depth, and for 
biological variabilities such as differences in cell size or the presence 
of outliers (44).

Once the mean and variance for each gene are estimated, the 
DESeq2 model uses a hypothesis testing framework to determine 

which genes are significantly differentially expressed between the 
conditions of interest. The resulting p value and log fold changes are 
then used to rank the genes based on their level of differential 
expression (45, 46).

2.3. Identification of common gene 
ontology terms and identification of 
overlapped genes among COVID-19 and 
Alzheimer’s disease

Followed by preprocessing and DEGs identification of 
COVID-19 and AD datasets, we classified them into four different 
groups AD-PBMC, AD-Tissue, COVID-19-PBMC, and COVID-19 
-Tissue (47). To identify the overlapped gene among these four 
groups, a Venn diagram was created using an online Venn diagram 
tool Interactive Venn.3 Then the identified common genes were 
taken for constructing a (Module 1) PPI network for further 
analysis. Web-based database for annotation visualization and 
integrated discovery (DAVID)4 tool was used to perform a gene 
ontology analysis for DEGs for Alzheimer’s disease and COVID-19 
independently (48). We have taken only those genes with common 
GO terms among AD and COVID-19 for further analysis and 
constructed a PPI network (Module 2).

2.4. Protein–protein interaction analysis 
and hub genes prediction

The biological functions and possible associations are mainly 
carried out by the PPI and we constructed two PPI networks. The 

3 http://www.interactivenn.net/

4 https://david.ncifcrf.gov/

TABLE 1 Microarray datasets obtained from the GEO database with the search key terms “Alzheimer’s Disease” and “SARS-CoV-2” with a filter 
restricting to “Homo Sapiens.”

S. No Accession ID Platform Sample count (case/
control)

Analysis methods

1 GSE4226 GPL1211, NIA MGC, Mammalian 

Genome Collection

AD;14/14 GEO2R

2 GSE4229 GPL1211, NIA MGC, Mammalian 

Genome Collection

AD;12/28 GEO2R

3 GSE18309 GPL570, Affymetrix Human Genome 

U133 Plus 2.0 Array

AD;6/3 GEO2R

4 GSE97760 GPL16699, Agilent-039494 Sure Print G3 

Human GE v2 8x60K Microarray

AD;9/10 GEO2R

5 GSE36980 GPL6244, Affymetrix Human Gene 1.0 

ST Array

AD;33/47 GEO2R

6 GSE152418 GPL24676, Illumina NovaSeq 6,000 COVID;17/17 DESeq2

7 GSE166190 GPL20301, Illumina HiSeq 4,000 COVID;11/11 DESeq2

8 GSE174745 GPL24676, Illumina NovaSeq 6,000 COVID;6/3 DESeq2

Expression type microarray and RNA-Seq to Alzheimer’s Disease and SARS-CoV-2, respectively.
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first protein interaction network (Module 1) was constructed 
using the common differentially expressed genes between the four 
groups and on other hand, the PPI network (module 2) was 
constructed using the genes with common GO terms. The protein 
interactions were constructed using STRING version 11.55 online 
tool then the PPI network was analyzed and visualized through 
Cytoscape software6 (49). The protein interaction networks are 
large networks and every node is connected with an edge, the 
highly interconnected genes (edges) in the PPI network consider 
hub genes. After constructing the two PPI networks we used the 
CytoHubba plugin version 0.1 in Cytoscape to identify the highly 
connected genes (50). Four topological features or ranking 
methods such as maximal clique centrality (MCC), Degree, 
Closeness, and Betweenness were employed to identify the hub 
genes. We have collected the top 20 genes from every method, and 
the gene present in at least three ranking methods were considered 
hub genes (51).

2.5. Analysis of transcription factor and 
microRNAs of hub genes

The interaction between hub genes-transcription factors (TFs) 
and hub genes-microRNAs (miRNA) has been conducted. 
Transcription factors play a crucial role, it binds with specific 
genes and regulates the rate of transcription of genetic 
information. Bioinformatically and/or in vitro assessment is 
possible of some of the mechanistic functions of candidate 
miRNAs prior to conducting preclinical animal tests (52). 
Cytoscape iRegulon plugin version 1.3 was used to predict the 
potential interactions between hub genes and TFs. In iRegulon, 
the enriched motifs were ranked depending on the direct targets 
using the position weight matrix (53). Therefore, AD and 
COVID-19 associated hub genes miRNA targets were predicted 
by using miRDB (MicroRNA Target Prediction Database).7 The 
miRNA targets predictive score (rank) >80 was considered a 
reliable score (54). The identified miRNAs were further plotted 
using Cytoscape software. For a better understanding of the role 
of miRNAs in disease mechanisms, we identified the hub miRNAs 
using four ranking methods (Degree, betweenness, closeness, and 
stress) of the CytoHubba plugin in Cytoscape (55, 56).

2.6. Drug-gene interaction analysis of hub 
genes

The drug-gene interaction was identified using Drug Gene 
Interaction Database (DGIdb) (57). DGIdb interface provides a search 
for genes against a database of drug-gene interactions and druggable 
targets. FDA approval status was confirmed through the drug bank 
database for shortlisted drugs in the interaction (Figure 1).

5 https://string-db.org/

6 https://cytoscape.org/

7 https://mirdb.org/

2.7. Gene ontology and pathway analysis of 
hub genes

Cluster Profiler (Version 4.1.0) Bioconductor package in R was 
used for creating Gene ontology of the hub genes (58). The top 
gene-ontology of molecular function (MF), cellular component 
(CC), and biological process (BP) were plotted using a bubble plot, 
and biochemical pathways associated with hub genes were identified 
using the KEGG database (Kyoto encyclopedia genes and 
genomes) (59).

3. Statistical analysis

3.1. DEGs

DEGs were identified for each data set by using adjusted p-values 
based on the moderated t-statistic (adj P) <0.05 along with an 
absolute value of logFC (log foldchange) of >1. The logFC ≥1 was 
considered as upregulated genes and logFC ≤ −1 was considered as 
downregulated genes.

3.2. Gene set enrichment analysis

The enrichment analysis of the gene ontology terms was 
confirmed using the “cluster Profiler” package, the analysis was 
performed separately for each comparison with applied 
hypergeometric statistical test, through the below equation,
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p-values were adjusted for multiple comparisons, and q-values 
were also calculated for FDR control as well. p-values <0.05 were 
considered to be significantly enriched terms (58).

3.3. Gene ontology and pathway analysis

In DAVID, Fisher’s Exact test is adopted to measure the gene 
enrichment in annotation terms. Fisher’s Exact p-values are 
computed by summing probabilities P over defined sets of tables 
(Prob = ∑Ap). The modified Fisher exact p-value (EASE 
score) ≤ 0.05 and FDR < 0.05 are considered strongly enriched 
(60, 61).

3.4. Protein interaction network 
constructions

Protein interactions are assessed and integrated using the STRING 
database which includes direct (physical) and indirect (functional) 
associations. PPI networks can be  constructed by calculating the 
distance ‘D’ between pairs of proteins (u,v),
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STRING tool provides four thresholds as a default including low 
(0.15), medium (0.40), high (0.70), and highest (0.90) and, we created 
a network using a medium threshold value (61).

4. Results

4.1. Analysis of microarray and 
transcriptome datasets

We retrieved five microarray datasets for AD and three 
transcriptome datasets for COVID-19 which includes disease and 
healthy samples. The AD microarray datasets were GSE4226, 
GSE4229, GSE18309, GSE97760, and GSE36980 analyzed through 

GEO2R. The transcriptome-based COVID-19 datasets GSE152418, 
GSE166190, and GSE174745 were analyzed through the DESeq2 
Bioconductor package in R software. The datasets were analyzed 
individually and identified the DEGs (Supplementary Tables S1, S2). 
The overall upregulated and downregulated DEGs were tabulated in 
Table 2. Followed by DEGs the datasets were classified to four different 
groups such as AD-PBMC, AD-Tissue, COVID-PBMC, and COVID-
Tissue in order to identify a common gene. Figure 2 demonstrates the 
volcano plots of the AD and SARS-CoV-2 datasets, where the red dot 
represents a gene that has been upregulated, and the blue dot 
represents a gene that has been downregulated.

4.2. Identification of common genes

The overlapped genes among the four groups are depicted in the 
Venn diagram Figure  3 for better understanding. Only 9 (HST6, 
POLR3G, SLC6A20, ITGA2B, HOMER3, GMPR, AGBL1, CRABP2, 

FIGURE 1

A schematic diagram of the workflow adopted in the study depicting the major steps of preprocessing of microarray and RNA-Seq data followed by 
identification of differentially expressed genes using R packages and gene ontology and hub gene analysis. Further, the hub genes were exposed to 
pathway analysis, miRNAs, and transcription factor prediction.
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OLFML2B) genes have been found to be shared between AD-PBMC, 
AD-Tissue, COVID-19-PBMC, and COVID-19-Tissue. We identified 
the genes which were present in at least 3 groups and tabulated them 
(Table 3) for further analysis and construct a (Module 1) PPI network.

4.3. Identification of common gene 
ontology terms among COVID-19 and 
Alzheimer’s disease datasets

DAVID analysis was performed to understand the biological 
significance of AD and COVID-19 DEGs. We found 164 MF, 175 CC, 
and 581 BP were enriched in Alzheimer’s disease and 146 MF, 196 CC, 

and 545 BP were enriched in COVID-19 datasets and 37 MF, 79CC 
and 129 BP were found to be commonly enriched between Alzheimer’s 
disease and the COVID-19 dataset. For this study, we have considered 
only the common GO terms for further analysis and (module 2) 
protein interaction network construction. Supplementary Table S4 
gives the details of the commonly enriched GO terms.

4.4. Protein interaction network 
construction and analysis

The STRING database was used to construct the protein 
interaction network then visualized via Cytoscape software. The edges 

TABLE 2 Differentially expressed genes of Alzheimer’s disease and COVID-19 datasets with details of upregulated and downregulated genes and total 
counts after deletion of duplication.

Sample groups Datasets Up regulated Down regulated Total DEGs Duplication 
removed

GSE4226 2,560 656 18,550 7,944

AD- PBMC GSE4229 16 318

GSE18309 983 886

GSE97760 4,733 8,398

AD-Tissue GSE36980 1,612 1,121 2,733 1,611

COVID-19-PBMC GSE152418 1,115 2,545 8,840 5,165

GSE166190 206 4,974

COVID-19 Tissue GSE174745 1867 534 2,401 1864

FIGURE 2

The multiple volcano plot showing differentially expressed genes of COVID-19 and AD (upregulated genes in red and downregulated genes in blue).
The x-axis depicts the log fold change in gene expression between different samples and the y-axis depicts FDR-adjusted p values.
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represent the interactions between the genes, and the nodes represent 
the genes. Figure 4 illustrates the (Module 1) PPI network of common 
genes with 823 edges and 373 nodes. Figure 5 illustrates the (Module 
2) PPI network of GO sources with 2,674 nodes and 50,719 edges 
established according to the results.

4.5. Hub genes identification

Using the CytoHubba plugin of Cytoscape, we identified the 
highly interacting hub genes for the progression of AD and SARS-
CoV-2. Four different algorithms, namely MCC, Degree, 
Betweenness, and Closeness were utilized to extract the hub genes 
from module 1 and module 2. We obtained the top 20 genes from 
both modules based on these four ranking methods and tabulated 
them in module 1 (Table 4) and module 2 in (Table 5). The gene 
present in at least 3 ranking methods are considered as hub genes. 
As a result, Figure 4 displays the list of hub genes (ACTB, CDC42, 
RUNX2, HSPA8, PSMD2, GFAP, VAMP2, MAPK8, CAV1, GNB1, 
RBX1, ITGA2B) obtained from common genes (module 1) PPI 
network. A group of 17 (AKT1, ALB, BDNF, CAV1, CD4, CDC42, 

CDH1, DLG4, EGF, EGFR, FN1, GAPDH, INS, ITGB1, ACTB, SRC, 
TP53) overlapping genes was obtained through gene ontology 
(module 2) PPI network (Figures 5A,B). We identified that CAV1, 
CDC42, and ACTB genes are common among the two sets of hub 
genes. The expression of Caveolin-1 (Cav-1) has been associated 
with aging in both senescent cells and aged tissues in vitro and in 
vivo. In murine embryonic fibroblasts, Cav-1 knockout accelerates 
premature senescence, while loss of Cav-1 accelerates 
neurodegeneration and aging. In most cell types, ACTB (Actin-
Beta) is abundantly and stably expressed and is commonly used to 
normalize gene expression as an internal control (62). ACTB variant 
rs852423 has been found to be  associated with increased 
susceptibility to AD (63). The identified module 1 and module 2 
hub genes and their major roles are tabulated in 
Supplementary File 2.

4.6. MicroRNAs network of hub genes

The regulatory networks such as miRNAs and TFs of the hub 
genes were identified. MicroRNAs (miRNA) and transcription factors 
(TFs) are involved in the development and progression of COVID-19 
and its comorbid conditions. Based on the analysis of the hub genes-
miRNA and hub genes-Transcription factors, we have obtained a clear 
network of interactions. The results revealed that the miRNAs regulate 
26 hub genes, which could be a possible target of the comorbidity. All 
the hub genes have targeted a total of 839 miRNAs of which 27 
miRNAs were targeted in more than three hub genes (Figure 6A; 
Supplementary Table S5).

Also, we  have identified the hub miRNAs using four ranking 
methods (Degree, betweenness, closeness, and stress) of the 
CytoHubba plugin in Cytoscape. We extracted the top 40 nodes from 
each ranking method and the overlapped miRNAs were identified 
using a Venn diagram (Figure  6B; Supplementary Table S6). The 
miRNAs present at least three ranking methods considered as 
hub-miRNAs and we found five hub-miRNAs including hsa-miR-
6,867-5p, hsa-miR-548c-3p, hsa-miR-6,828-3p, hsa-miR-545-5p, and 
hsa-miR-5,011-5p.

4.7. Transcription factor network of hub 
genes

iRegulon predicted 85 TFs for the hub genes and importantly four 
TFs HAND2, GATA1, GATA2, and GATA6 interacted with 23 hub 
genes (Figure 7; Supplementary Table S7). The heart-and neural crest 
derivatives expressed protein-2 (HAND2) play a crucial role in neural 
crest development (64). The synergistic activation between HAND2 
and GATA4 TFs is causally linked to congenital heart diseases (CHD). 
Severe CDH may contribute to delayed brain development, 
thromboembolism, and pulmonary hypertension. The transcription 
factors might play a major role in different cell types. GATA family 
TFs are zinc finger DNA binding proteins, GATA1 and GATA2 play 
an essential role in developing and maintaining the hematopoietic 
system (65). Jin Chu et al. reported that GATA1 acts as a transcription 
repressor for gamma-secretase activating protein (gsap) gene 
expression (66). Interestingly previous studies suggested that GATA1 
is a transcription repressor for synapse-related genes. In neurological 

FIGURE 3

Venn diagram of shared differentially expressed genes, where each 
ellipse represents AD-PBMC, AD-Tissue, COVID-19-PBMC, and 
COVID-19-Tissue with Nine (HST6, POLR3G, SLC6A20, ITGA2B, 
HOMER3, GMPR, AGBL1, CRABP2, OLFML2B) genes common 
among the four groups.

TABLE 3 Common genes identified among AD-PBMC, AD-Tissues, 
COVID-19-PBMC, and COVID-19-Tissues.

S. No Datasets Common Genes

1. AD-PBMC, AD-Tissue, COVID-19-

PBMC, COVID-19-Tissue

9

2. AD-PBMC, COVID-19-PBMC, 

COVID-19-Tissue

132

3. AD-Tissue, COVID-19-PBMC, 

COVID-19-Tissue

22

4 AD-PBMC, AD-Tissue, COVID-19-

PBMC

327
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A B

FIGURE 4

Network of protein–protein interaction and detected hub genes (from genes common among AD-PBMC, AD-Tissue, COVID-19-PBMC, and COVID-
19-Tissue, module 1). (A) The up-regulated and down-regulated genes in red and green colors and hub genes in aqua. (B) Venn diagram representing 
the genes commonly shared among the topological features of MCC, Betweenness, Closeness, and Degree.

A B

FIGURE 5

(A) Network constructed to represent the common genes shared by ontology terms of Alzheimer’s disease and COVID-19 gene ontology terms 
(module 2). Purple diamonds represent the hub genes of this network. (B) Venn diagram showing the genes commonly shared among the topological 
features of MCC, Betweenness, Closeness, and Degree.
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TABLE 4 The top 20 genes from module 1 of (common genes of Alzheimer’s disease and COVID-19 tissues and blood) protein–protein interaction 
network analyzed using four different topological analysis methods such as MCC, Closeness, Betweenness, and Degree through CytoHubba plugin.

S. No Betweenness Closeness Degree MCC

1. ACTB ACTB ACTB PSMA1

2. CDC42 CDC42 CDC42 PSMD2

3. RUNX2 HSPA8 RUNX2 PSMC1

4. HSPA8 RUNX2 GFAP PSME3

5. GFAP CAV1 HSPA8 PSMB3

6. ITGA2B GFAP CAV1 ACTB

7. CAV1 MAPK8 GNB1 RUNX2

8. SNRNP70 PTGS2 PSMD2 POSTN

9. RBX1 VAMP2 MAPK8 ELN

10. GNB1 PRKCZ ITGA2B SPARC

11. VAMP2 PIK3CG PSMA1 ACAN

12. PIK3CG ITGA2B PTGS2 SPRED1

13. MAPK8 WNT4 ACAN TP73

14. FKBP1A RBX1 PSME3 TIMP3

15. MYL6B ACAN RBX1 OAZ1

16. PSMD2 PGR TRPV1 MAPK6

17. SLC12A1 PSMD2 PSMB3 GFAP

18. ABCC8 GNB1 PSMC1 CDC42

19. OAZ1 TRPV1 KCNA1 HSPA8

20. HMBS MAP2K3 VAMP2 SDC4

TABLE 5 The identified top 20 genes from module 2 (common gene ontology terms between Alzheimer’s disease and COVID-19) of protein–protein 
interaction network analyzed using four topological analysis methods such as MCC, Closeness, Betweenness, and Degree through CytoHubba plugin.

S. No Betweenness Closeness Degree MCC

1. SRC STAT3 STAT3 NDUFA6

2. CFTR DLG4 CDH1 UQCRH

3. CAV1 CAV1 BDNF ATP5MF

4. ACTB ACTB MMP9 NDUFB7

5. EGF ERBB2 EGFR NDUFV2

6. BDNF BDNF ALB ATP5PO

7. ALB ALB AKT1 NDUFC2

8. ITGB1 ITGB1 ITGB1 NDUFB6

9. TP53 TP53 TP53 P13073

10. INS INS INS UQCRC1

11. CDC42 CDC42 CD4 ATP5PD

12. CYCS EGF DLG4 COX5A

13. AKT1 AKT1 ACTB NDUFB9

14. CDH1 CDH1 CDC42 ATP5ME

15. FN1 FN1 FN1 UQCR10

16. SNCA SRC SRC ATP5PF

17. EGFR ESR1 ERBB2 NDUFA12

18. GAPDH GAPDH GAPDH NDUFA8

19. DLG4 EGFR EGF NDUFV1

20. CD4 CD4 CAV1 ATP5MG
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conditions such as AD, NGB may have therapeutic and disease-
preventing properties that can be explored experimentally (67).

4.8. Identification of drug-gene interaction

We investigated the drug interactions of hub genes using the 
DGIdb. A total of 26 hub genes were explored through the drug-gene 
interactions network. The network result shows that a total of 106 were 
interacting with the hub genes (Figure 8; Supplementary Table S8). 
Some of the drugs were already approved by the food and drug 
administration (FDA) which makes this drug more possible to treat 
AD and COVID-19 comorbidity. There are potential therapeutics for 
COVID-19 comorbidities associated with the dysregulation of 
the proteins.

4.9. Gene set enrichment analysis of hub 
genes

Functional enrichment analysis results showed that hub genes are 
involved in several biological functions. We  identified hub genes 
related gene ontology using cluster profiler package in r, and 
we plotted the significantly enriched terms based on adjusted p value 
<0.05, as illustrated in Figure  9. There are several pathways were 
enriched in KEGG analysis including the PI3K-AKT, Neurotrophin, 
Rap1, Ras, and JAK–STAT signaling pathways, and the top  20 
signaling pathways are depicted in Figure 10 (Supplementary Table S9). 

The gene set enrichment results clearly show that the hub genes are 
majorly involved in the signaling pathways which might be closely 
linked to COVID-19 and AD.

5. Discussion

High-throughput sequencing technologies, bioinformatics, and 
systems biology analysis methods could identify and reveals the 
changes in the expression level of genes and also assists to identify the 
potential biomarkers for several diseases importantly 
neurodegenerative diseases. In this study, the focus is on 
understanding how AD and COVID-19 disease are related through 
pathogenetic processes and molecular crosstalks. We followed systems 
biology approaches including DEGs identification, PPI network 
construction, hub genes identification, gene set enrichment analysis, 
and pathway analysis. Also, we explored and identified the regulatory 
network and drug-genes interaction of the hub genes. To investigate 
the relationship between AD and COVID-19 we performed gene set 
enrichment analysis using AD and COVID-19 DEGs discretely. The 
datasets were further classified into four different groups such as 
AD-PBMC, AD-Tissue, COVID-19-PBMC, and COVID-19-Tissue. 
We collected the common DEGs from among the four groups for 
constructing a Protein–Protein interaction network (module 1). 
While only 9 DEGs (HST6, POLR3G, SLC6A20, ITGA2B, HOMER3, 
GMPR, AGBL1, CRABP2, and OLFML2B) were commonly expressed 
between these groups. In addition, we  performed Gene Set 
Enrichment Analysis for the DEGs of Alzheimer’s disease and 

A B

FIGURE 6

Hub Genes-miRNAs Network (A) miRNAs interacting with more than three hub genes, aqua color squares representing the hub genes and the maroon 
color diamonds representing the miRNAs. (B) Predicted hub miRNAs using four topological features of CytoHubba including Betweenness, Closeness, 
Degree, and Stress.

132

https://doi.org/10.3389/fmed.2023.1151046
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Premkumar and Sajitha Lulu 10.3389/fmed.2023.1151046

Frontiers in Medicine 11 frontiersin.org

SARS-CoV-2 DEGs, then we retrieved the genes with common gene 
ontology terms for constructing a PPI network (module 2).

The HST6, ITGA2B, HOMER3, and CRABP2 genes have not been 
reported in AD or COVID-19 related articles. In the extracellular 
matrix, Olfactomedin Like 2B (OLFML2B) is the olfactomedin 
domain protein photomedin-2, with an important role in neural crest 
development and neurogenesis, cell–cell adhesion, and cell cycle 
regulation. The OLFML2B gene may contribute to the treatment of 
bladder cancer in the future based on individual prognostic markers 
(68). Hongde Liu proposed that GMPR’s (Guanosine Monophosphate 
Reductase) GMPR1 is associated with Tau phosphorylation in AD via 
the AMPK (AMP-activated protein kinase) and adenosine receptor 
pathways (69). A therapeutic strategy of inhibiting GMPR1 with 
lumacaftor has been proposed to treat AD based on the elevated 
expression of GMPR in this disease. Wei Dong et al. explored the 
common initiative molecular pathways in AD and ischemic stroke and 
they found that AGBL1 is a common risk gene (70). SLC6A20 appears 
to be  a novel regulator of glycine and proline levels in the brain 
according to the research of Mihyun Bae. Further, pharmacologically 
inhibiting SLC6A20 may contribute to the treatment of brain disorders 

via an increase in glycine levels in the brain and N-Methyl-D-
Aspartate receptors (NMDAR) activity (71). Some important 
biological processes, including spliceosome genes, were dysregulated 
by POLR3B genes. A number of transcription factors, including 
FOXC2 and GATA1, play a role in neuronal dysfunction and 
intellectual disability, which are affected by impaired protein synthesis 
and splicing (72).

miRNAs as biomarkers: miRNA subsets have shown clinical 
relevance as biomarkers according to a growing number of reports. 
There are emerging miRNA therapeutics that are used to determine 
the presence of pathology, as well as the progression, genetic links, and 
stage of the disease. miRNAs have been translated into clinical 
medicine faster than ever because of the bioinformatic approach to 
identifying miRNA-binding sites and their related biological pathways 
in target genes, as well as the expanding availability of in vitro and in 
vivo preclinical research models (73). The miRNA helps to understand 
the development and progression of COVID-19 and AD comorbidity. 
In the miRNAs network BDNF, MAPK8, ITGB1, FN1, EGFR, and 
RUNX2 hub genes are associated with most of the miRNAs. The 
co-expression network revealed that hsa-miR-6,867-5P regulates 

FIGURE 7

Hub Genes-Transcription Factors network (red color diamond designates the hub genes and the green color circulars designate the Transcription 
Factors). The edges between the two genes indicates the interaction between TFs and hub genes.
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EGFR, DLG4, GFAP, BDNF and hsa-miR-548C-3p regulates EGFR, 
MAPK8, ITGB1, CAV1 and hsa-miR-5692a regulates ITGB1, FN1, 
MAPK8, EGF, RUNX2. Research suggested that hsa-miR6867-5P and 
6,867-5P were associated with platelet apoptosis and adhesion in an 
autoimmune disease like immune thrombocytopenia (74). Recent 
studies exhibited that hypothalamic miRNAs including miR-548C-3p 
are potential contributors to different neurodegenerative diseases, also 

this author identified 29 novel hypothalamic MicroRNAs as a 
propitious therapeutic regimen for SARS-CoV-2 by regulating ACE2 
and TMPRSS2 expression (75). Cosin et al. studied a multiple linear 
regression model for predicting amyloid beta levels in Cerebrospinal 
fluid, for this they used four validated miRNAs for AD including 
miR-545-5p, miR-142-3p, miR-34a-5p, and miR-15b-5p. The results 
revealed that miR-34a-5p is the best-predicting miRNA for amyloid 

FIGURE 8

Drug-Hub Gene Network (aqua color indicating the hub genes and red color indicating the drugs).

FIGURE 9

Top 20 gene ontology terms of hub genes (The x-axis label represents the gene ratio and the y-axis label represents gene ontology terms).
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beta levels in cerebrospinal fluid (Cosín-Tomás et  al., 2017). The 
miR-545-3p, and miR-34a-5p could be potential biomarkers for the 
early detection of AD (Cosín-Tomás et al., 2017).

To illustrate the mechanisms of hub genes we  performed 
enrichment analysis including GO and pathway analysis. We found 
various cell signaling pathways are enriched including RAP1, MAPK, 
PI3K-AKT, RAS, and HIF-1 signaling pathways, etc. The signaling 
pathway of RAP1 was found to be  a crucial regulator of cellular 
functions such as the formation and control of cell adhesion and 
junction and, also plays a major role during cell invasion and 
metastasis in different cancers (76). MAPK pathway responds to 
numerous extracellular stimulations including inflammatory 
cytokines, stress, and viral infection. Furthermore, COVID-19 
infection activated MAPK and the downstream signaling possibly 
leading to cell death. Intense work is in progress to develop a 
compound to target MAPK pathways to treat neurodegenerative and 
inflammatory diseases (77). Proliferation, apoptosis, and angiogenesis, 
the Renin-angiotensin signaling pathway (RAS) has been shown to 
play a role in tumorigenesis through complex interactions (78). 
Krishna Sriram et al. reported that RAS has a great tendency to cause 
comorbidities and mortality and they proposed a model to predict 
effective drugs to target RAS (79). RAS–ERK signaling induces 
amyloid precursor protein and tau protein hyperphosphorylation 

which are enhanced in AD brains, and inhibition of RAS-MAPK 
activation prevents tau and amyloid precursor protein 
hyperphosphorylation (80). HIF-1α (hypoxia-inducible factor) plays 
a crucial role in inflammatory responses, regulating metabolic 
pathways and regulating the aging process. Dysregulations of the 
pathway HIF-1α lead to several diseases including cardiovascular 
disease, cancer, and AD. HIF-1α is a key activator for COVID-19 and 
inflammatory responses and it could be a therapeutic target for virus-
induced inflammatory diseases and COVID-19 (81). As part of the 
immune response and virus entry into the cell, Phosphatidylinositol 
3-kinase (PI3K)/AKT signaling plays a significant role also this 
pathway is involved in several aspects of neurological disease 
development (82). Patients with COVID-19 have been found to have 
an increased risk of lung tissue fibrosis following activation of the 
PI3K-AKT signaling pathway (83). Cancers and diabetes are 
associated with excessive activation of the PI3K-AKT pathway also 
cardiovascular diseases and neurological conditions such as AD and 
PD might also be affected by the deregulation of the pathway (84). 
Enriched BP of hub genes has primarily participated in the cellular 
response to peptides, animal organ morphogenesis, endomembrane 
system organization, maintenance of protein location, and embryonic 
organ development. The top enriched terms of CC were nucleus, 
cytosol, mitochondrion, nuclear lumen, and nucleoplasm. The top five 

FIGURE 10

Pathway-Hub Gene Network (aqua color indicating the hub genes and the red color indicating the signal pathways).
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terms in MF were mainly enriched transmembrane transporter 
binding, RNA polymerase II-specific DNA-binding transcription 
factor binding, DNA binding transcription factor binding, sequence-
specific DNA binding and transcription factor binding. 
We constructed a drug-gene network for hub genes and investigated 
the relationship between the chemical and the disease. Through this 
drug-gene network, we  found several drugs including 
diacetylmorphine, donepezil, dronabinol, levodopa, haloperi, 
deferoxamine, raltitrexed, diazepam, and warfarin. These drugs are 
already reported for treating AD and Parkinson’s disease (85–89). 
Recent studies reported repurposing of CNS drugs are potential to 
treat SARS-CoV-2-infected individuals (90). We  have found an 
interaction between DEGs-miRNAs-TFs which are plays key roles in 
the pathogenesis of neurological disorders.

It is necessary to acknowledge that the study has some limitations 
because it only relies on bioinformatics and network biology. One of 
the limitations of the study is the potential confounding effects 
associated with the variations in transcriptome profiles from different 
tissues (brain vs. blood). Also selecting overlapping DEGs from 
separate analyses of tissues and blood samples may not completely 
eliminate the confounding effect of sample variation. Additionally, the 
large number of DEGs identified in the study may have caused a 
potential for false positive results. While we attempted to address these 
issues by performing additional analyses including hub genes and 
pathway analysis.

6. Conclusion

The present study aims to understand the molecular crosstalk 
between COVID-19 and Alzheimer’s Disease, including discovering 
the gene expression signatures, TFs, Drug-gene interaction, miRNAs 
associations, and dysregulated molecular pathways. As a result of 
integrated analyses of microarrays and transcriptomics of PBMC cells 
and tissue cells, we were able to identify AD and COVID-19 DEGs. 
Through PPI network analysis twenty-three (AKT1, ALB, BDNF, 
CAV1, CD4, CDC42, CDH1, DLG4, EGF, EGFR, FN1, GAPDH, INS, 
ITGB1, ACTB, SRC, TP53, RUNX2, HSPA8, PSMD2, GFAP, VAMP2, 
MAPK8, GNB1, RBX1, ITGA2B) hub genes were identified. 
Transcription factor network analyses revealed that several TFs play a 
crucial role in post-transcriptional and transcriptional regulators of 
the differentially expressed genes. The identified shared pathways 
between AD and COVID-19 provide there are several similar 

underlying mechanisms play in both diseases. Our findings could lead 
to identifying a potential biomarker to predict the highest risk of 
neurological complications with COVID-19. Also, the identified 
transcription factor might be a potential therapeutic drug target for 
both diseases.
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Bioinformatic analysis of gene
expression data reveals Src family
protein tyrosine kinases as key
players in androgenetic alopecia
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Introduction: Androgenetic alopecia (AGA) is a common progressive scalp hair

loss disorder that leads to baldness. This study aimed to identify core genes and

pathways involved in premature AGA through an in-silico approach.

Methods: Gene expression data (GSE90594) from vertex scalps of men with

premature AGA and men without pattern hair loss was downloaded from

the Gene Expression Omnibus database. Differentially expressed genes (DEGs)

between the bald and haired samples were identified using the limma package in

R. Gene ontology and Reactome pathway enrichment analyses were conducted

separately for the up-regulated and down-regulated genes. The DEGs were

annotated with the AGA risk loci, and motif analysis in the promoters of the DEGs

was also carried out. STRING Protein-protein interaction (PPI) and Reactome

Functional Interaction (FI) networks were constructed using the DEGs, and the

networks were analyzed to identify hub genes that play could play crucial roles in

AGA pathogenesis.

Results and discussion: The in-silico study revealed that genes involved in the

structural makeup of the skin epidermis, hair follicle development, and hair cycle

are down-regulated, while genes associated with the innate and adaptive immune

systems, cytokine signaling, and interferon signaling pathways are up-regulated

in the balding scalps of AGA. The PPI and FI network analyses identified 25 hub

genes namely CTNNB1, EGF, GNAI3, NRAS, BTK, ESR1, HCK, ITGB7, LCK, LCP2,

LYN, PDGFRB, PIK3CD, PTPN6, RAC2, SPI1, STAT3, STAT5A, VAV1, PSMB8, HLA-A,

HLA-F, HLA-E, IRF4, and ITGAM that play crucial roles in AGA pathogenesis. The

study also implicates that Src family tyrosine kinase genes such as LCK, and LYN

in the up-regulation of the inflammatory process in the balding scalps of AGA

highlighting their potential as therapeutic targets for future investigations.

KEYWORDS

androgenetic alopecia, differential gene expression analysis, reactome functional
interaction network, STRING protein-protein interaction network, gene ontology, motif
analysis, Wnt/β-catenin signaling, Src family protein tyrosine kinases

Introduction

Androgenetic alopecia (AGA) is a complex genetic disorder characterized by a
progressive loss of scalp hair leading to baldness. It is more prevalent in men than women,
and the hair loss pattern differs between the sexes (1). In men, AGA, also known as male
pattern hair loss, is defined by a distinct M-shaped pattern hair loss that begins with
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a bi-temporal recession of the frontal hairline, followed by hair
thinning at the frontal and vertex scalp region, which eventually
converges resulting in complete baldness in the frontal and vertex
scalp region (1, 2). Hair loss, particularly adolescent AGA, causes
serious psychosocial ramifications in men affecting their self-
esteem and quality of life (3).

Hair loss in AGA is attributed to the gradual transformation
of thick pigmented large terminal hairs into non-pigmented
small fine vellus hair through hair follicle miniaturization process
driven by the androgen 5α-dihydrotestosterone (5α-DHT) (1).
However, the mechanism of hair follicle miniaturization is poorly
understood and the inadequate understanding of the pathobiology
of AGA impedes the search for a permanent cure to hair loss (4).
Molecular genetic studies have identified 12 genomic regions of
interest and genes such as AR, EDA2R, PAX1, FOXA2, HDAC9,
TARDBP, HDAC4, AUTS2, IMP5, SETBP1, SUCNR, MBBL1,
EBF1, WNT10A, SSPN, and ITPR2 associated with AGA (2).
However, these identified genes explain only a limited proportion
of the pathogenesis and genetic variance of AGA since most of
the identified genetic variants reside in the non-coding region
of the genome for which no clear functional effect has been
established yet (2). Hence, the identification of additional genetic
loci for AGA is warranted to understand the pathobiology and to
aid drug discovery.

Recently, Michel et al. (5) performed a microarray gene
expression analysis between hairless or bald vertex scalp from
young men with premature AGA and haired scalp from control
men to identify dysregulated genes in AGA. The identification of
differentially expressed genes (DEGs) was carried out by analysis of
variance test and Tukey’s post-hoc tests. After Benjamini-Hochberg
correction they, found 184 down-regulated and 149 up-regulated
genes in the AGA group compared with the healthy group. In
this study, we utilized the same data of Michel et al. (5) to
identify DEGs in the AGA pathology employing a different method
and threshold criteria. We constructed biological networks, such
as the STRING protein-protein interaction (PPI) and Reactome
Functional Interactome (FI) networks, using the DEGs obtained.
We then focused on the hub nodes in both the PPI and FI networks
and identified the hub genes that were common to both networks
as worthy of further investigation into the signaling pathways
involved in AGA development.

Materials and methods

Microarray data

The raw dataset of the gene expression profile GSE90594
generated by Michel et al. (5) was downloaded from the GEO
database (6). The data was obtained from scalp biopsies taken
from the vertex region of 14 young males with premature alopecia
(age 29.4 ± 3.4 years, stage V–VII as per Hamilton-Norwood
classification) and 14 healthy volunteers with less than 2% white
hairs (age 26.1 ± 3.6 years, Stage I or II according to Hamilton-
Norwood classification). Both the alopecia and healthy group did
not have any other skin involvement, autoimmune disorders, and
systemic diseases (5).

Data preprocessing and differential gene
expression analysis

limma v3.50.3 (Linear Models for Microarray Data) package,
a R/Bioconductor software package, which provides an integrated
solution for analyzing gene expression data from microarray
technologies was utilized for data analysis (7). The Data pre-
processing included background correction using normexp method
and quantile normalization. Boxplot and cluster analyses were
performed to identify and remove outliers in the samples. Then the
control probes and the unexpressed probes are filtered out while the
probes that are expressed above background are retained for further
analysis. In addition, for multiple probes corresponding to the same
genes in the arrays their average expression value was computed by
avereps function in limma. Then the DEGs for the alopecia samples
compared to the healthy samples were mined using the single-
channel design matrix provided in the limma package. Benjamini
and Hochberg’s method was utilized to compute the adjusted
p-values (False Discovery Rate, FDR) (8). The probes with adjusted
p-value (FDR) < 0.05 were selected as differentially expressed.

Gene ontology and pathway enrichment
analysis

ToppGene Suite1 (updated: Mar 2021) was employed to
perform gene ontology (GO) functional and pathway analysis to
identify items in gene lists that may have relevance to the biological
question being investigated (9, 10). The ToppFun function in the
ToppGene Suite was utilized to carry out GO (biological process
and molecular function), gene family (source: genenames.org), and
pathway enrichment (source: Biosystems-Reactome) analyses for
the DEGs. All genes that are detected in the microarray analysis
were used as background gene set in the ToppGene Suite for these
analyses. The probability density function which is the default
method for p-value and FDR calculation was selected. Gene count
>2 and FDR B&H q-value < 0.05 were chosen as the cut-off criteria
for the analyses.

Annotation of differentially expressed
genes with AGA risk loci

Windows of 50 kb, 100 kb and 500 kb flanking the
107 lead SNPs associated from 8 genome wide association
studies [Study Accession IDs: GCST000250 (11), GCST000251
(12), GCST001548 (13), GCST001297 (14), GCST005116 (15),
GCST90043616 (16), GCST003983 (17), and GCST90043619 (16)]
for the trait androgenetic alopecia indexed in the NHGRI-EBI
GWAS catalog were prepared by calculating coordinates of 50 kb,
100 kb and 500 kb distance on either sides from the SNP position.
Gene coordinates of DEGs transcript(s) were annotated using
RefSeq Identifiers (Hg38). The flanking coordinates of SNPs were
overlapped with the coordinates of DEGs utilizing the intersect

1 https://ToppGene.cchmc.org/
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FIGURE 1

(A) Volcano plot of the differentially expressed genes in AGA with log2FC > | 0.3| and adj. p-value < 0.05 as cut off value. (B) Bar chart depicting the
number of differentially expressed genes for the log2FC values.

function in Bedtools v2.30.0 (18). An overlap is only considered
when there is a minimum of 1 bp overlap between the coordinates
of DEG transcripts and the flanking coordinates of the lead
SNPs (19).

Motif analysis in the promoter regions of
differentially expressed genes

The promoter regions of up and down-regulated DEGs were
separately subjected to motif analysis utilizing the gene-based
analysis method in HOMER v4.11 software2 (20). 2,000 bp
upstream and 200 bp downstream relative to the transcriptional
start site of the genes were considered as promoter regions (19)
and the promoter sets for the DEGs were constructed based
on RefSeq genes (Hg38). Motifs of length up to 12 bases were
probed with Benjamini-Hochberg-corrected p-value ≤ 0.05 as cut-
off value.

STRING protein-protein interaction
network

The protein-protein interaction (PPI) interaction network for
the DEGs were computed through the STRING database. The
online web resource STRING v11.53 is a biological database
that includes direct (physical) and indirect (functional)
protein-protein association data which are both specific and
biologically meaningful (21). The PPI interaction network for
the DEGs were computed through the stringApp plugin v1.7.1
in Cytoscape v3.9.1 (22). An interaction score of 0.900 (highest

2 http://homer.ucsd.edu/homer/microarray/index.html

3 https://string-db.org/

confidence) was used as the cut off criterion for constructing
the PPI network.

Reactome functional interaction network

Reactome functional interaction (FI) network was constructed
for the DEGs utilizing the Cytoscape application ReactomeFIViz
v8.0.4 which probe for disease-related pathways and network
patterns using the Reactome functional interaction (FI) network
(23, 24) created based on the well-known biological pathway
database Reactome4 (25, 26). Reactome FI network 2021 version
was used to construct the FI network for the DEGs. Gene ontology
biological process and pathway enrichment analysis for the nodes
(genes) mapped in the network was carried out through the inbuilt
Reactome FI network analysis tool.

Network analysis and hub gene
identification

The topological properties of the PPI and FI network were
analyzed through the Cytoscape pre-installed network analyzer
v4.4.8 tool (27). Cytohubba v0.1 plugin was used to identify hub
proteins in the PPI and FI network and rank them based on
topological algorithms and centralities such as Maximal Clique
Centrality (MCC), Maximum Neighborhood component (MNC),
Density of Maximum Neighborhood Component (DMNC),
Degree, Closeness, and betweenness (28). The clusters in the
networks were determined using the MCODE plugin with
specific parameters including a degree cut-off of 2, fluff node
density cut-off of 0.1, node score cut-off of 0.2, K-core of 2,

4 https://reactome.org/
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and max depth of 100 to determine the highly interconnected
nodes (29).

Results

Data processing and screening of
differentially expressed genes

The GSE90594 dataset contained 28 samples of which 14
samples are from men with premature AGA and 14 samples from
healthy men without hair loss. Cluster analysis of the samples
after background correction and normalization of the arrays
revealed 9 samples (5 alopecia and 4 healthy samples) as outliers
(Supplementary I-1, 2). The outlier samples were removed, and
differential gene expression analysis was carried out between 9
alopecia and 10 healthy samples. The probes were annotated
with Entrez Gene ID, Gene Symbol, and Gene names using the
clusterProfiler 4.0 v4.4.3 package in R by querying the Reference
Seq ID (30). From this list, the probes that have a valid Entrez
Gene ID are selected for further analysis. Subsequently probes
with similar Probe IDs (Probe Names) are averaged using avereps
function in limma and the probes with different probe ID for same
genes are kept as such.

The analysis returned a total of 289 DEGs (33 up-regulated
and 256 down-regulated DEGs) for a threshold cut off of value
log2FC > | 1| and q-value < 0.05 (Supplementary II-6). Further
to construct a big and detailed STRING PPI and reactome FI
networks a total of 2,439 unique DEGs (1,261 up-regulated,
1,171 down-regulated, and 7 genes with probes expressed in both
directions) that falls within a cut off value of log2FC > | 0.3|
and q-value < 0.05 were mined (Figure 1). The gene family
enrichment analysis of these 2,439 DEGs are given in Figure 2 and
Supplementary II-7. GO functional analyses revealed that the up-
regulated genes enriched for immune system mediated GO terms
implying a heightened immune response in hairless scalp, while the
down-regulated genes enriched for hair growth related GO terms
as expected (Table 1 and Supplementary II-8). The Reactome
pathway enrichment analysis also enriched pathways such as
keratinization, developmental biology G2/M DNA replication
checkpoint for down-regulated genes, wherein for up-regulated
genes innate immune system, Cytokine signaling, interferon
signaling, adaptive immune system, and antigen processing cross
presentation pathways were enriched (Table 2 and Supplementary
II-9). The DEG list was inspected for genes known to be involved in
various signaling pathways such as Wnt, NF-κB, TGF-β, BMP, and
Vitamin D metabolism and the mapped DEGs for these signaling
pathways were provided in the Supplementary I-3.

Annotation of differentially expressed
genes with AGA risk loci

Mapping of SNPs identified through GWAS to DEGs annotates
genetic variants located in or near the gene regions that are
differentially expressed, helps to understand the functional role
of DEGs and their association with disease. To identify genes
that potentially contribute to AGA pathology, we annotated the

coordinates of 107 genomic loci associated with AGA risk in men
identified through GWAS with our DEGs. The analysis identified
51 DEGs within the window of 500 kb of 73 AGA risk SNPs and
14 DEGs within the window of 50 kb of 16 lead SNPs (Table 3).
Some of the DEGs were mapped to reported AGA risk SNPs
including MEMO1 at loci 2p22.3, SRD5A2 at 2p23.1, FOXL2NB
at 3q23, FGF5 at 4q21.21, DKK2 at 4q25, EBF1 at 5q33.3, IRF4
at 6p25.3, CENPW at 6q22.32, PAGE2 at Xp11.21, highlighting
their association with AGA pathology. Our analysis also identified
other DEGs, such as HOXD9 at 2q31.1, LHPP at 10q26.13, CRHR1
at 17q21.31, STH at 17q21.31, and PAGE2B at Xp11.21, as more
likely to be candidate gene risks for AGA than the mapped genes in
GWAS studies. MEMO1 was down-regulated, and it plays a crucial
role in regulating cell proliferation, survival, and differentiation in
the hair follicle (30). SRD5A2, whose product inhibits hair growth,
was up-regulated (31). HOXD9, a member of the HOX family of
genes that plays a crucial role in the development and patterning
of various tissues and organs in the body, was up-regulated in our
analysis, although its role in hair growth is unknown (32). FGF5,
which inhibits hair growth and is involved in the transition of
hair follicles from anagen to catagen phase, was down-regulated
(33). DKK2, a Wnt inhibitor that leads to hair growth inhibition
was up-regulated (1). FOXL2NB, IRF4, CENPW, EBF1, LHPP,
CRHR1, and STH located within the AGA risk loci warrant further
investigation. The mapped DEGs within 500 kb of lead SNPs may
also be considered for future investigation of their association with
hair growth and AGA (Table 3).

Motif analysis in the promoter regions of
AGA differentially expressed genes

The transcription factor motif enrichment analysis on the
promoter regions of the differentially expressed genes was carried
to identify potential transcription factors involved in the AGA
pathology. The top transcription factor motifs enriched for the
down-regulated genes are LEF1 (Lymphoid Enhancer binding
Factor 1), HOXB13 (Homeobox B13), NEUROD1 (Neuronal
Differentiation 1), ZNF189 (Zinc Finger protein 189), and
MEF2C (MADS Box Transcription factor 2, Polypeptide C)
(Figure 3 and Supplementary II-10). The transcription factor
LEF1 actively participates in the Wnt signaling pathway by
activating the transcription of target genes in the presence of
β-catenin. Wnt/β-catenin Signaling plays a crucial role in hair
follicle differentiation and morphogenesis (31). The transcription
factor HOXB13 belongs to HOX gene family which plays a
crucial role in regulating embryonic development including hair
formation. HOXB13 is implicated in skin development and low
level of its expression is associated with telogen hair follicle (32,
34). The transcription factor NEUROD1 is primarily involved
in the development and differentiation of the nervous system.
NEUROD1 acts by controlling the expression of genes involved in
neuronal development and in the formation of axons and dendrites
(35). ZNF189 belongs to the zinc finger protein family which
play important roles in various biological processes including
transcriptional regulation, DNA repair, and cellular signaling.
MEF2C belongs to the MADS box transcription factor 2 (MEF2)
family of transcription factors and is involved in myogenesis (32).
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FIGURE 2

Gene family enrichment analysis of the differentially expressed genes.

Many transcription factor motifs belonging to the SMAD, HOX,
STAT, ZNF, NEURO, FOX, and FOS gene families (Figure 3) are
enriched for the down-regulated genes indicating their role in hair
growth which has to be studied further.

The motifs for IRF3 (Interferon Regulatory Factor 3), PRDM1
(PR/SET Domain 1), IRF8 (Interferon Regulatory Factor 8), SPI1
(Spi-1 Proto-Oncogene), SPI1:IRF8, ISRE (Interferon-sensitive
response element), IRF2 (Interferon Regulatory Factor 2), IRF1
(Interferon Regulatory Factor 1) and SF1 transcription factors were
enriched as the top motifs for the up-regulated genes (Figure 3
and Supplementary I-11). The Interferon regulatory factors (IRFs)
are a family of transcription factors that regulate various aspects of
the immune system from promoting immune cell development to
immune cell differentiation. They play a central role in controlling
the innate and adaptive immune responses to pathogens (33).
IRF1 and IRF2 are important in regulating dendritic cells which
participates in antigen presentation and bridge the innate and
adaptive immune system. IRF3 involves in type I interferon
production and IRF8 regulate myeloid cell development (33).
PRDM1 coordinates several important functions in the adaptive
immune system that support the key effector functions of B and
T lymphocytes (36). SPI-1 encodes an ETS-domain transcription

factor that control gene expression involving in the development
of myeloid and B-lymphoid immune cells (37). The enrichment
of these transcription factor motifs as the top motifs in the up-
regulated genes of bald scalp implies a state of heightened immune
response in AGA.

STRING protein-protein interaction
network analysis and identification of
hub genes

The stringApp generated 1967 PPI pairs for the submitted
DEGs. The main PPI network, which consisted of 749 nodes
(447 up-regulated genes, 273 down-regulated genes, and 29 linker
genes) and 1,856 edges, was selected for further analysis while
disconnected nodes and small isolated PPI pairs were discarded
(Figure 4 and Supplementary II-12). The PPI network had a
clustering coefficient of 0.334, a characteristic path length of 5.683, a
network diameter of 19, a network density of 0.007, and an average
of 4.956 neighbors. The functional enrichment analysis performed
using the inbuilt STRING tool on the Reactome and Wikipathway
databases revealed that the PPI network was enriched for several
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TABLE 1 Result of gene ontology analysis of DEGs from ToppGene Suite (FDR < 0.05).

Gene ontology of up-regulated genes Gene ontology of down-regulated genes

Gene ontology term Number of
genes from

DEG list

Number of
genes in

annotation

Gene ontology term Number of
genes

enriched

Number of
genes in

annotation

Molecular
function

Extracellular matrix structural
constituent

44 195 Structural constituent of skin
epidermis

16 44

Signaling receptor binding 181 1,813 Structural molecule activity 87 892

Protein-containing complex
binding

166 1,726

Oxidoreductase activity 97 834

integrin binding 35 171

Immune receptor activity 34 165

Carbohydrate binding 46 315

Antigen binding 32 189

MHC protein Complex binding 14 43

MHC class II protein complex
binding

11 27

Biological
process

Regulation of immune system
process

239 1,821 Intermediate filament
organization

29 74

Cell activation 208 1,464 Molting cycle 38 149

leukocyte activation 184 1,277 Hair cycle 38 149

Immune effector process 144 895 Intermediate filament
cytoskeleton organization

30 96

Regulation of immune response 159 1,088 Intermediate filament-based
process

30 98

Positive regulation of immune
system process

165 1,164 Epithelium development 180 1,979

Lymphocyte activation 154 1,058 Skin development 60 387

Cell adhesion 211 1,742 Epidermis development 67 500

Leukocyte mediated immunity 105 594 Hair follicle development 27 120

T cell activation 115 704 Hair cycle process 27 123

Cellular
component

Cell surface 162 1,178 Intermediate filament 101 229

External side of plasma
membrane

104 599 Keratin filament 73 108

Side of membrane 124 853 Intermediate filament
cytoskeleton

103 271

Extracellular matrix 106 678 Polymeric cytoskeletal fiber 156 889

External encapsulating structure 106 680 Supramolecular polymer 177 1,181

Collagen-containing extracellular
matrix

90 541 Supramolecular fiber 176 1,172

Intrinsic component of plasma
membrane

202 1,992 Supramolecular complex 195 1,549

Integral component of plasma
membrane

192 1,893 Anchoring junction 109 1,419

Secretory granule 116 987 Cell-cell junction 53 590

MHC protein complex 16 26 Extracellular matrix 58 678

immune response-related pathways (Supplementary II-13). The
pathway terms related to Cytokine Signaling in the Immune
System, Interferon Signaling, T cell receptor signaling, Signaling by

Interleukins, Immunoregulatory interactions between a Lymphoid
and a non-Lymphoid cell, Adaptive and Innate immune systems,
and TCF-dependent signaling in response to WNT were enriched
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TABLE 2 Result of reactome pathway enrichment analysis of DEGs from ToppGene Suite (FDR < 0.05).

Reactome ID Pathway name Genes from DEG list Genes in annotation

Up-regulated genes

1269203 Innate immune system 155 1,302

1269310 Cytokine signaling in immune system 102 760

1270244 Extracellular matrix organization 53 297

1269314 Interferon gamma signaling 27 94

1269201 Immunoregulatory interactions between a Lymphoid and a non-lymphoid cell 31 135

1457780 Neutrophil degranulation 69 492

1269318 Signaling by interleukins 70 528

1269340 Hemostasis 78 639

1269311 Interferon Signaling 33 202

1269173 Phosphorylation of CD3 and TCR zeta chains 10 25

1270246 Collagen biosynthesis and modifying enzymes 17 70

1269171 Adaptive immune system 88 823

1269350 Platelet activation, signaling and aggregation 40 282

1470923 Interleukin-4 and 13 signaling 22 114

1269174 Translocation of ZAP-70 to immunological synapse 9 22

1270260 Integrin cell surface interactions 16 68

1270001 Metabolism of lipids and lipoproteins 84 816

1269182 PD-1 signaling 9 26

1269195 Antigen processing-cross presentation 19 101

1270245 Collagen formation 18 93

Down-regulated genes

1457790 Keratinization 103 214

1270302 Developmental biology 158 1,078

1269756 G2/M DNA replication checkpoint 4 5

1269570 Class B/2 (Secretin family receptors) 16 93

from the Reactome database. Additionally, the Wikipathways
database identified significant pathway terms related to the
Inflammatory response pathway, Development of pulmonary
dendritic cells and macrophage subsets, B cell receptor signaling
pathway, and the Vitamin D receptor pathway (Supplementary
II-13). These results confirm the credibility of the PPI network
and reinforce the observation of immune response-related and hair
follicle-related pathways.

The top 20 ranking hub nodes (genes) in the PPI network
were identified using the Cytoscape plugin Cytohubba based on
four topological analysis methods and two centralities (MCC,
DMNC, MNC, Degree, Closeness, and Betweenness) and are listed
in Table 4. Out of these, a total of 15 hub genes that appeared
in at least three of these categories were considered as significant
hub genes, and the frequently appeared genes are highlighted in
the Table 4. The MCODE cluster analysis performed on the String
PPI network revealed 8 clusters when using the 15 hub genes as
roots for clustering. The 8 clusters were comprised of 53, 63, 101,
59, 37, 41, 53, and 9 nodes, respectively (Supplementary II-14).
The top 3 highly interconnected clusters were selected for further
analysis (Supplementary 1–4). Cluster 1 had 10 hub genes, cluster
2 contained 5 hub genes, and cluster 3 had 6 hub genes. Our analysis

revealed that two hub genes LCK and STAT5A appeared in all 3
clusters strongly suggesting their putative role in AGA.

Reactome protein functional interaction
network analysis and identification of
hub genes

The ReactomeFIViz tool was utilized to construct the FI
network for the DEGs resulting in an initial network of 1,092
connected nodes, 1,340 unconnected nodes, and 4,047 edges
(Supplementary II-15). The unconnected nodes were discarded
from the analysis and the final FI network consisted of 1,014
nodes (581 up-regulated and 433 down-regulated genes) with
3,980 edges as shown in Figure 5. The FI network had a
clustering coefficient of 0.280, a network diameter of 11, a network
density of 0.008, and an average number of neighbors of 7.850.
The pathway enrichment and GO Biological process analyses
were conducted using the inbuilt ReactomeFIViz – analysis
network function tool (Supplementary II-16). Reactome pathway
terms such as Extracellular matrix organization, Keratinization,
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TABLE 3 Overlap of AGA risk loci from genome-wide significance studies with differentially expressed genes in premature AGA samples compared to normal men.

Chr Cytogenetic
region

SNP Study
accession

Mapped
genes

500 kb 100 kb 50 kb Log2FC

Diff genes Up/Down Diff genes Up/Down Diff genes Up/Down

Chr1 1p33 rs61784834 GCST005116 RPL21P24, FOXD2 TRABD2B Down – – – – –0.61

Chr1 1p36.11 rs11249243 GCST005116 RUNX3, MIR4425
RUNX3 Up RUNX3 Up – – 0.38

CLIC4 Down – – – – –0.62

Chr1 1p36.11 rs9803723 GCST005116 IFITM3P7, SYF2
RUNX3 Up – – – – 0.38

CLIC4 Down – – – – –0.62

Chr1 1p36.11 rs2064251 GCST005116 IFITM3P7, SYF2
RUNX3 Up – – – – 0.38

CLIC4 Down – – – – –0.62

Chr1 1p36.11 rs7534070 GCST003983 SYF2, IFITM3P7
RUNX3 Up – – – – 0.38

CLIC4 Down – – – – –0.62

Chr1 1p36.22 rs12565727 GCST001548 C1orf127 ANGPTL7 Down – – – – –2.21

Chr1 1p36.22 rs2095921 GCST003983 C1orf127 ANGPTL7 Down – – – – –2.21

Chr1 1p36.22 rs7542354 GCST005116 C1orf127 ANGPTL7 Down – – – – –2.21

Chr1 1q24.2 rs78003935 GCST003983 GORAB-AS1,
HAUS4P1

PRRX1 Up – – – – 0.54

Chr1 1q24.2 rs11578119 GCST005116 GORAB,
GORAB-AS1

PRRX1 Up – – – – 0.54

Chr2 2p14 rs6546334 GCST003983 LINC01812 CNRIP1 Up – – – – 0.37

Chr2 2p14 rs62146540 GCST005116 FBXL12P1
CNRIP1 Up – – – – 0.37

PLEK Up – – – – 0.64

Chr2 2p21 rs11694173 GCST003983 THADA ZFP36L2 Up – – – – 0.31

Chr2 2p22.3 rs13021718 GCST005116 DPY30, MEMO1
MEMO1 Down MEMO1 Down MEMO1 Down –0.32

SRD5A2 Up – – – – 0.71

Chr2 2p23.1 rs9282858 GCST003983 SRD5A2

SRD5A2 Up SRD5A2 Up SRD5A2 Up 0.71

GALNT14 Down – – – – –0.59

MEMO1 Down – – – – –0.32

EHD3 Down – – – – –1.49

CAPN14 Down – – – – –0.92

Chr2 2q13 rs3827760 GCST003983,
GCST90043616

EDAR GCC2 Down – – – – –0.35

Chr2 2q31.1 rs13405699 GCST005116,
GCST003983

’– MAP3K20 Down – – – – –0.42

Chr2 2q31.1 rs71421546 GCST005116 HOXD-AS2 HOXD9 Up HOXD9 Up HOXD9 Up 0.34

Chr2 2q35 rs74333950 GCST003983 WNT10A CYP27A1 Up CYP27A1 Up – – 0.42

(Continued)
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TABLE 3 (Continued)

Chr Cytogenetic
region

SNP Study
accession

Mapped
genes

500 kb 100 kb 50 kb Log2FC

Diff genes Up/Down Diff genes Up/Down Diff genes Up/Down

Chr2 2q35 rs7349332 GCST005116 WNT10A CYP27A1 Up CYP27A1 Up – – 0.42

Chr2 2q37.3 rs9287638 GCST001548 TWIST2,
LINC01937

TWIST2 Up TWIST2 Up – – 0.48

Chr2 2q37.3 rs11684254 GCST005116,
GCST003983

LINC01937,
TWIST2

TWIST2 Up TWIST2 Up – – 0.48

Chr3 3q23 rs6788232 GCST005116 PRR23A, FOXL2NB
FOXL2NB Up FOXL2NB Up FOXL2NB Up 0.73

FOXL2 Up FOXL2 Up – – 0.95

FOXL2NB Up – – – – 0.73

Chr3 3q23 rs7642536 GCST005116,
GCST003983

MRPS22 FOXL2 Up – – – – 0.95

Chr3 3q25.1 rs4679956 GCST003983 AADACL2-AS1 IGSF10 Up – – – – 0.45

Chr3 3q25.1 rs16863765 GCST005116 AADACL2-AS1 IGSF10 Up – – – – 0.45

Chr4 4q21.21 rs7680591 GCST005116 FGF5 FGF5 Down FGF5 Down FGF5 Down –1.09

Chr4 4q21.21 rs4690116 GCST003983 FGF5 FGF5 Down FGF5 Down FGF5 Down –1.09

Chr4 4q25 rs78311490 GCST003983 DKK2 DKK2 Up DKK2 Up DKK2 Up 0.34

Chr5 5q33.3 rs1422798 GCST005116 EBF1
EBF1 Up EBF1 Up EBF1 Up 0.34

RNF145 Down – – – – –0.40

Chr5 5q33.3 rs62385385 GCST003983 EBF1
EBF1 Up EBF1 Up EBF1 Up 0.34

RNF145 Down – – – – –0.40

Chr6 6p25.3 rs12203592 GCST005116,
GCST003983

IRF4 IRF4 Up IRF4 Up IRF4 Up 0.49

Chr6 6q21 rs12214131 GCST005116 ’– PREP Down – – – – –0.37

Chr6 6q22.32 rs9398803 GCST005116 CENPW CENPW Down CENPW Down CENPW Down –0.32

Chr6 6q22.32 rs1262557 GCST003983 RPS4XP9 CENPW Down – – – – –0.32

Chr7 7p21.1 rs2073963 GCST001548 HDAC9 TWIST1 Up – – – – 0.57

Chr7 7p21.1 rs71530654 GCST005116 HDAC9 TWIST1 Up – – – – 0.57

Chr7 7p21.1 rs7801037 GCST003983 HDAC9 TWIST1 Up – – – – 0.57

Chr7 7q11.22 rs939963 GCST005116 RNU6-832P AUTS2 Up – – – – 0.31

Chr7 7q11.22 rs34991987 GCST003983 RNU6-832P AUTS2 Up – – – – 0.31

Chr7 7q11.22 rs6945541 GCST001548 RNU6-832P AUTS2 Up – – – – 0.31

Chr7 7q11.22 rs4718886 GCST005116 Y_RNA, RNU6-229P AUTS2 Up – – – – 0.31

Chr7 7q32.3 rs9719620 GCST005116 MKLN1,
MKLN1-AS

LINC-PINT Up – – – – 0.40
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Fro
n

tie
rs

in
M

e
d

icin
e

fro
n

tie
rsin

.o
rg

147

https://doi.org/10.3389/fmed.2023.1108358
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/


fm
ed-10-1108358

June
2,2023

Tim
e:13:11

#
10

P
re

m
an

an
d

an
d

R
e

e
n

a
R

ajku
m

ari
10

.3
3

8
9

/fm
e

d
.2

0
2

3
.110

8
3

5
8

TABLE 3 (Continued)

Chr Cytogenetic
region

SNP Study
accession

Mapped
genes

500 kb 100 kb 50 kb Log2FC

Diff genes Up/Down Diff genes Up/Down Diff genes Up/Down

Chr10 10q22.3 rs11593840 GCST005116,
GCST003983

LRMDA KCNMA1 Up – – – – 0.46

Chr10 10q26.13 rs3781458 GCST003983 FAM53B LHPP Up LHPP Up LHPP Up 0.30

Chr10 10q26.13 rs3781452 GCST005116 FAM53B LHPP Up LHPP Up LHPP Up 0.30

Chr11 11p11.2 rs11037975 GCST005116,
GCST003983

ALX4
CD82 Down – – – – –0.33

ACCS Up – – – – 0.56

Chr12 12p11.22 rs7976269 GCST005116 FAR2 TMTC1 Down – – – – –0.48

Chr12 12p12.1 rs9300169 GCST003983 SSPN RASSF8-AS1 Up – – – – 0.38

Chr12 12p12.1 rs7974900 GCST005116 SSPN RASSF8-AS1 Up – – – – 0.38

Chr12 12q13.13 rs180807105 GCST90043616 HOXC12
MAP3K12 Up – – – – 0.31

NFE2 Up – – – – 0.71

Chr12 12q24.33 rs76972608 GCST005116,
GCST003983

FZD10-AS1,
LINC02419

FZD10 Down FZD10 Down – – –0.55

Chr13 13q12.3 rs9314998 GCST003983 LINC00385,
KATNAL1

LINC00426 Up – – – – 0.44

Chr17 17q21.31 rs12373124 GCST001548 MAPT-AS1, SPPL2C
CRHR1 Down CRHR1 Down CRHR1 Down –0.72

STH Up STH Up STH Up 0.36

Chr17 17q21.31 rs919462 GCST005116 MAPT
STH Up STH Up STH Up 0.36

CRHR1 Down – – – – –0.72

Chr17 17q21.31 rs201408539 GCST003983 KANSL1
STH Up STH Up – – 0.36

CRHR1 Down – – – – –0.72

Chr17 17q21.31 rs572756998 GCST005116 ARL17B

CRHR1 Down – – – – –0.72

STH Up – – – – 0.36

WNT3 Down – – – – –0.68

Chr17 17q22 rs17833789 GCST005116 AKAP1
MSI2 Down – – – – –0.33

MTVR2 Up – – – – 0.38

Chr17 17q22 rs62060349 GCST003983 LINC02563, AKAP1
MSI2 Down – – – – –0.33

MTVR2 Up – – – – 0.38

Chr20 20p11.22 rs2180439 GCST000251,
GCST001297

’– PAX1 Up – – – – 0.81

Chr20 20p11.22 rs77410716 GCST005116 ’– PAX1 Up – – – – 0.81

Chr20 20p11.22 rs552649178 GCST005116 LINC01432 PAX1 Up – – – – 0.81

(Continued)
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Interferon gamma signaling, Regulation of Insulin-like Growth
Factor (IGF) transport and uptake by Insulin-like Growth Factor
Binding Proteins, Response to elevated platelet cytosolic Ca2 +,
Immunoregulatory interactions between a Lymphoid and a non-
Lymphoid cell, and WNT ligand biogenesis and trafficking were
enriched for the genes present in the FI network. GO Biological
process terms such as immune response, transmembrane receptor
protein tyrosine kinase signaling pathway, canonical Wnt signaling
pathway, and inflammatory response were also enriched.

The top 20 ranked hub genes in the FI network identified
based on the six algorithms including MCC, DMNC, MNC, Degree,
Closeness, and Betweenness are presented in the Table 5. Out
of these, a total of 19 hub genes that appeared in at least three
of the categories were considered significant hub genes, and the
frequently appeared genes are highlighted in the Table 5. The
MCODE cluster analysis of the FI network revealed 11 clusters
when using the 19 hub genes as roots for clustering. The 11 clusters
had node numbers of 189, 55, 216, 47, 34, 59, 153, 180, 29, 69, and
6, respectively (Supplementary II-17). The top 3 clusters ranked
based on their cluster score were selected for further analysis
(Supplementary I-5). Cluster 1 consisted of 14 hub genes, cluster 2
contained 1 hub genes, and cluster 3 had 9 hub genes. Our results
showed that seven hub genes (HCK, GNAI3, RAC2, PDGFRB, EGF,
NRAS, and STAT5A) were present in two of the selected clusters
indicating their potential role in AGA.

Candidate genes in AGA pathology

The 25 hub genes identified from the analyses of the PPI and
FI networks constructed based on the DEGs were considered key
genes in the pathology of AGA (Table 6). Out of these 25 hub genes,
21 genes (BTK, ESR1, HCK, ITGB7, LCK, LCP2, LYN, PDGFRB,
PIK3CD, PTPN6, RAC2, SPI1, STAT3, STAT5A, VAV1, PSMB8,
HLA-A, HLA-F, HLA-E, IRF4, and ITGAM) were found to be
up-regulated, while 4 genes (CTNNB1, EGF, GNAI3, and NRAS)
were downregulated. The results of the GO biological process and
pathway enrichment analysis, conducted using the Toppgene suite,
revealed that the hub genes were associated with immune and
inflammatory processes (Table 7). The significant biological terms
enriched for the hub genes included regulation of immune system
process, T cell activation, immune response-regulating cell surface
receptor signaling pathways. Furthermore, the significant pathway
terms enriched for the hub genes included cytokine signaling in the
immune system, signaling by interleukins, signaling by the B cell
receptor (BCR), and signaling by SCF-KIT, interleukin-3, 5, and
GM-CSF signaling, and the innate immune system.

CTNNB1 (Catenin Beta 1) is a crucial downstream component
of the Canonical Wnt Signaling Pathway. In the presence of Wnt
ligand, β-catenin accumulates in the nucleus and functions as
a coactivator for the transcription factors TCF/LEF, leading to
the activation of Wnt responsive genes (35). The Wnt/β-catenin
signaling pathway is essential for hair growth and its inhibition,
driven by 5α-dihydrotestosterone through the androgen receptor,
can result in hair loss in AGA (1). GNAI3 (G Protein Subunit
Alpha I3) functions as a downstream transducer of G protein-
coupled receptors (GPCRs) in various signaling pathways (38).
GPCRs play a role in regulating skin homeostasis and maintaining
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FIGURE 3

Motif enrichment analysis of the differentially expressed genes. (A) Motifs enriched in up-regulated genes, (B) motifs enriched in down regulated
genes.

hair growth (39–41). NRAS (NRAS Proto-Oncogene, GTPase) is
a membrane protein that travels between the plasma membrane
and Golgi apparatus (42). EGF (Epidermal Growth Factor) acts as
a switch in the hair growth cycle (43). It regulates the expression
of hair follicle regulatory genes through Wnt//β-catenin signaling
(44). Thus, these 4 downregulated hub genes which are involved in
hair growth mechanisms are crucial and their downregulation in
AGA is expected.

The LCK (LCK Proto-Oncogene, Src Family Tyrosine Kinase)
gene, which encodes a non-receptor protein-tyrosine kinase, is
a crucial signaling molecule in the selection and maturation of
developing T cells and plays a key role in T cell receptor signal
transduction pathways (25, 26). The up-regulation of the LCK
gene is also associated with alopecia areata (27). The LYN (LYN
Proto-Oncogene, Src Family Tyrosine Kinase) gene encodes a non-
receptor tyrosine-protein kinase and is crucial for regulating innate
and adaptive immune responses, integrin signaling, growth factor
and cytokine responses, and hematopoiesis (24). BTK (Bruton
Tyrosine Kinase) and plays a key role in B lymphocyte development
and is a target for inflammatory diseases (45). Inhibition of BTK by
inhibitors leads to changes in hair and nails texture (38). PIK3CD
(Phosphatidylinositol-4,5-Bisphosphate 3-Kinase Catalytic Subunit
Delta) is involved in immune system response (46). PTPN6
(Protein Tyrosine Phosphatase Non-Receptor Type 6) is critical for
the function of lymphoid and myeloid cells (47). SPI1 (Spi-1 Proto-
Oncogene) encodes a transcriptional activator specifically involved
in the development of macrophages and B cells. This protein also
regulates pre-mRNA splicing (23). STAT3 (Signal Transducer and
Activator of Transcription 3) is activated by cytokines and growth
factors. This gene plays an important role in maintaining the
homeosis of skin (48). STAT5A (Signal Transducer and Activator
of Transcription 5A) protein serves a dual function of signal
transduction and activation of transcription in cells exposed to
cytokine and other growth factors. This protein also mediates
cellular responses to activated FGFR1, FGFR2, FGFR3 and FGFR4
(31). Also, STAT5 activation is important for hair growth phase

induction in hair dermal papilla cells (DPCs) (34). VAV1 (Vav
Guanine Nucleotide Exchange Factor 1) encoded protein is
important in hematopoiesis and plays a role in the development
and activation of T-cell and B-cell (32). PSMB8 (Proteasome 20S
Subunit Beta 8) plays an important role in cellular homeostasis
through selective destruction of ubiquitinated proteins. Mutations
in this gene are associated with autoinflammatory responses (49).
ESR1 (Estrogen Receptor 1) is a nuclear sex steroid hormone
receptor which regulates many genes responsible for growth,
metabolism and reproductive functions. This gene is known to
express in hair follicle cells (50). HCK (HCK Proto-Oncogene, Src
Family Tyrosine Kinase) participates in the regulation of innate
immune responses by inducing monocyte, neutrophil, macrophage
and mast cell functions. This gene is recently reported to play
a role in hair regenerative potential of stem cells (51). ITGB7
(Integrin Subunit Beta 7) is an adhesion receptor which mediates
signaling from the extra cellular matrix to the cell. They also
function as a homing receptor for lymphocytes migration (46).
LCP2 (Lymphocyte Cytosolic Protein 2) acts as a substrate for
the T cell antigen receptor mediated intracellular tyrosine kinase
pathway (46). PDGFRB (Platelet Derived Growth Factor Receptor
Beta) gene encodes a cell surface tyrosine-protein kinase receptor
for the members of the platelet-derived growth factor family. It
plays an essential role in cell proliferation, differentiation, survival,
chemotaxis, and migration (52). RAC2 (Rac Family Small GTPase
2) involve in phagocytosis of apoptotic cells and epithelial cell
polarization (46). IRF4 (Interferon Regulatory Factor 4) regulates
interferon signaling and negatively regulates Toll like receptor in
the induction of innate and adaptive immune systems (42). ITGAM
(Integrin Subunit Alpha M) functions as macrophage receptor and
plays a key role in the adherence of monocytes and neutrophils (42).
HLA-A (Major Histocompatibility Complex, Class I, A), HLA-F
(Major Histocompatibility Complex, Class I, F) and HLA-E (Major
Histocompatibility Complex, Class I, E) plays a central role in
immune system by participating in cell presentation for recognition
by T cell receptor (42). A majority of the hub genes namely PTPN6,
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FIGURE 4

STRING protein-protein interaction network. The nodes are represented as circles and edges as lines. Red and green nodes indicate downregulated
and upregulated genes, respectively. The larger nodes represent DEGs that comply with a log2FC > | 1| value. The pink nodes indicate linker genes.

LCK, LCP2, LYN, HCK, VAV1, STAT3, STAT5A, and BTK belongs
to the Src homology 2 (SH2) domain containing tyrosine kinases
and participate in the immune system process.

We conducted ClueGO reactome pathway enrichment analysis
for the genes that were identified by at least two algorithms of
the Cytohubba analysis of the biological networks (PPI and FI)
as well as 289 DEGs that met the cut-off value of log2FC > |
1| using the ClueGo plugin v2.5.9 in Cytoscape (53). The results
were presented as a network of pathways with genes participating
in the pathways, which are illustrated in Figure 6. The analysis
revealed pathways such as keratinization, formation of the cornified
envelope, developmental biology, interferon alpha/beta signaling,
cytokine signaling in the immune system, receptor tyrosine
kinase signaling, PI5P, PP2A, and IER3 regulation of PI3K/AKT
signaling, immunoregulatory interactions between lymphoid and
non-lymphoid cells, costimulation by the CD28 family, and the
GPVI-mediated activation cascade are the predominant pathways

for our input genes. The enrichment of pathways involved
in immune system function are consistent with our findings
suggesting that immune system dysregulation plays a role in AGA
pathology.

Validation of DEGs with other datasets

To validate the results of our analysis of the GEO dataset
GSE90594, we compared the DEGs obtained with other datasets
available in the GEO database. As of November 1, 2022, we
found that no profile in the database contained samples from men
with AGA and from normal haired men, except for the profile
we analyzed in this study. The few available datasets related to
AGA lacked control samples from normal men and the quality
of the microarray and RNA-Seq data was questionable. Despite
these limitations, we selected two datasets, GSE66663 (which
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TABLE 4 Top 20 hub proteins identified by different topological algorithms and centralities utilizing cytohubba plugin in the STRING PPI network.

Topological algorithms Centralities

MCC MNC DMNC Degree Betweenness Closeness

PSMB8 LYN IFITM3 NRAS CTNNB1 CTNNB1

IRF9 LCK IFITM1 CTNNB1 SDC1 LCK

ISG15 HLA-A ISG15 STAT3 COL4A4 STAT3

EGR1 STAT3 IFITM2 LYN ENPP1 EGF

IFITM3 NRAS OAS1 LCK NRAS LYN

IFITM1 HLA-DRB1 EGR1 HLA-A HGF NRAS

IFITM2 PTPN6 IRF8 PTPN6 STAT3 PTPN6

OAS1 STAT5A HLA-G STAT5A PPARA STAT5A

HLA-A PSMB8 IRF1 HLA-DRB1 ITGAM PDGFRB

HLA-F HLA-F POFUT2 EGF PKLR VAV1

HLA-E CDK1 SPON1 ITGAM LYN HGF

IRF4 HLA-E THSD4 B2M H2AX HCK

IRF1 CTNNB1 ADAMTS7 CDK1 THBS1 ITGAM

IRF8 HCK ADAMTS1 PSMB8 TNF ESR1

HLA-G CCNB1 CFP HLA-F EGF AR

CFP FGR ADAMTS17 HLA-E HIF1A HIF1A

POFUT2 VAV1 ADAMTS10 CCNB1 ACSL1 CXCL12

SPON1 CCNA2 THBS2 PTPRC PPARG HLA-A

THSD4 IRF4 THBS1 VAV1 RACK1 PTPRJ

ADAMTS7 LCP2 IRF9 IRF4 QPRT SFN

The highlighted genes are present in more than two columns, as indicated by the color code: Violet denotes presence in 4 columns, blue denotes presence in 3 columns, and green denotes
presence in 2 columns.

includes hTERT-immortalized DPCs derived from balding frontal
and non-balding occipital scalp samples from men with AGA) and
GSE212301 (which contains RNA-Seq data from balding vertex
and non-balding occipital scalp samples of 10 men with AGA),
and performed differential gene expression analyses. The common
DEGs between the datasets are presented in the Supplementary II-
18. We discovered 490 DEGs were common between GSE90594
and GSE66663 dataset in which 190 genes were differentially
regulated in same directions. Whereas 180 DEGs were common
between GSE90594 and GSE212301 dataset in which 44 genes were
differentially regulated in same directions.

Discussion

Differential gene expression analysis is a technique used to
identify genes whose expression levels change significantly between
two or more experimental conditions or samples using the data
generated from microarray or RNA sequencing experiments. This
approach helps to determine which genes are upregulated or
downregulated in response to a specific condition, such as a
disease state or treatment, which facilitates understanding of the
underlying molecular mechanisms of diseases (54). In this study we
analyzed gene expression data from the scalps of 9 individuals with
premature AGA and 10 normal volunteers from the GEO database
profile GSE90594 to identify core genes associated with AGA (5). In

Michel et al. (5) analysis report, the authors performed differential
gene expression analysis on all 28 samples (14 alopecia and 14
normal samples) using ANOVA and Tukey’s post-hoc tests. After
applying the Benjamini-Hochberg correction for multiple testing,
they identified 333 DEGs consisting of 184 downregulated and 149
upregulated genes. The authors selected the DEGs using a cut-off of
fold change ≥ ± 1.5 (log2FC ≥ ± 0.58) and p≤ 0.05 for significance
(5). In our analysis, we normalized the microarrays, removed the
outlier samples, and performed the differential gene expression
analysis using the single-channel design matrix provided in the
limma package. We used Benjamini and Hochberg’s method to
compute the adjusted p-values (FDR or q-value) and considered
probes with q ≤ 0.05 to be significant. In our analysis, the
fold change values of AGA-associated genes known to play a
crucial role in disease pathology, such as AR (log2FC = 0.33),
CTNNB1 (log2FC = −0.58), TGFB2 (log2FC = −0.58), and
SRD5A2 (log2FC = 0.56) between the AGA patients and healthy
group were lower. To thoroughly examine the pathology of AGA,
we adopted a stringent criterion of log2FC ≥ ± 0.3 with a strict
FDR value (q≤ 0.05) and obtained 2,439 DEGs, taking into account
that subtle differences in gene expression can have a significant
biological impact and that some genes are more sensitive to changes
in dosage (55, 56).

To shed light on the biological roles and processes associated
with the 2,439 DEGs, we performed gene family enrichment, GO
(biological process, molecular function, and cellular component)
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FIGURE 5

Functional interaction network generated by ReactomeFIViz app. The nodes are represented as circles and edges as lines. Red and green nodes
indicate downregulated and upregulated genes, respectively. The larger nodes represent DEGs that comply with a log2FC > | 1| value.

enrichment, and pathway enrichment analyses. Our results
revealed that the down-regulated genes belonged to gene families
such as keratins, keratin-associated proteins, frizzled receptors,
Bone morphogenetic proteins, Wnt, and metallothioneins
(Figure 2). The GO enrichment analysis indicated that these
down-regulated genes play vital roles in the structural constituents
of the skin epidermis, hair follicle development and hair cycle
(Table 1). The pathway enrichment analysis showed that these
down-regulated genes participate in the keratinization pathway
(Table 2). On the other hand, the up-regulated genes were
enriched for CD molecules, Immunoglobulin-like domains,
Rho GTPase-activating proteins, receptor tyrosine kinases,
minor histocompatibility antigens, and selenoproteins as the
top gene families (Figure 2). The GO enrichment analysis also

demonstrated that these up-regulated genes were involved in MHC
protein complex binding, leukocyte activation, regulation of the
immune response, and T-cell activation (Table 1). The pathway
enrichment analysis found that the up-regulated genes participated
in the innate and adaptive immune systems, cytokine signaling,
and interferon signaling pathways (Table 2).

The identification of genetic variants associated with AGA is
critical for understanding its etiology. In this study, we annotated
the coordinates of AGA-associated genomic loci with our DEGs
to identify the potential candidate genes contributing to AGA
pathology. Our analysis identified several DEGs located within or
near reported AGA risk loci such as MEMO1, SRD5A2, FOXL2NB,
FGF5, DKK2, EBF1, IRF4, CENPW, and PAGE2. These findings
support the existing knowledge of the association between these
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TABLE 5 Top 20 hub proteins identified by different topological algorithms and centralities utilizing cytohubba plugin in the reactome FI network.

Topological algorithms Centralities

MCC MNC DMNC Degree Betweenness Closeness

LCP2 STAT3 LAT2 STAT3 ESR1 STAT3

HLA-DRB1 LYN HLA-DOA CTNNB1 CTNNB1 CTNNB1

HLA-DPA1 CTNNB1 CD74 SPI1 STAT3 PIK3CD

HLA-DRB4 LCK SGO1 ESR1 SPI1 PTPN6

HLA-DQA1 PIK3CD SKA2 PIK3CD PIK3CD SPI1

HLA-DRB3 SPI1 ZWINT LYN GNAI3 LYN

HLA-DPB1 PTPN6 C1R LCK PTPN6 ESR1

LCK NRAS C1S NRAS NRAS STAT5A

CD3E GNAI3 LCP1 GNAI3 HIF1A LCK

ZAP70 VAV1 CIITA PTPN6 EGR1 NRAS

IGKC HCK KIF26A RAC2 ITGB7 EGF

IGKV1-16 EGF C2 HCK GATA2 GNAI3

IGLV1-44 PDGFRB CELSR1 VAV1 AR HCK

IGLV1-47 LCP2 PCDHB4 EGF LYN PDGFRB

IGKV1D-16 RAC2 PCDH7 STAT5A RAC2 HIF1A

LYN STAT5A PCDH8 PDGFRB TGFBR2 EGR1

VAV1 BTK DCHS1 ITGB7 ITGAM AR

BTK ITGB7 KIF4A LCP2 TNF VAV1

HLA-DMB CD3E CDH23 ITGAM STAT5A CRKL

HLA-DOA HLA-DRB1 PCDH11Y BTK LCK BTK

The highlighted genes are present in more than two columns, as indicated by the color code: Red denotes presence in 5 columns, violet denotes presence in 4 columns, blue denotes presence
in 3 columns, and green denotes presence in 2 columns.

genes and AGA pathology. Furthermore, our analysis (Table 3)
mapped several DEGs including HOXD9, LHPP, CRHR1, STH,
and PAGE2B, which are of unknown significance in hair growth,
with AGA risk loci in GWAS studies. These genes warrant further
investigation. Moreover, the enrichment of many DEGs identified
in our analysis within the 500 kb window of AGA risk loci revealed
that the genes which have not yet been identified as AGA risk loci
could play a critical role in AGA pathology.

In our analysis to identify specific sequence motifs or patterns
in the promoter regions of the DEGs, we found several enriched
motifs for the down-regulated genes, including those involved
in the Wnt/β-catenin signaling pathway (LEF1), TGF-β signaling
(SMAD2, SMAD3, and SMAD4), nervous system development
(NeuroD1 and NeuroG2), development (HOXB13, HOXD10,
HOXA13, HOXA11, HOXD11, and HOXD13), Jun/FOS family
(JunB, Jun-AP1, AP-2 gamma, Fosl2, and AP-1), and FOX
family (FOXK1, and Fox:Ebox). Among the down-regulated
DEGs, we observed the presence of LEF1, SMAD6, SAMD7,
HOXA3, HOXC13, FOXN1, FOXE1, and FOXI2. In contrast,
the transcription factors such as NEUROD2, HOXD1, HOXD9,
FOXL2, and FOXL2NB were up-regulated, confirming that the
down-regulation of hair-related genes in AGA may be primarily
due to the Wnt/β-catenin signaling component LEF1 (1).

Furthermore, our motif analysis revealed that the top motifs
enriched for the up-regulated genes were those for immune system-
related transcription factors, such as IRF1, IRF2, IRF3, IRF8,

PRDM1, SPI-1 (PU.1), and SF1. Among the up-regulated DEGs, we
observed the presence of several IRF family of transcription factors,
including IRF1, IRF1-AS1, IRF4, IRF8, IRF9, and SPI. Specifically,
IRF1 is critical for apoptosis and the target genes of IRF1
are responsible for apoptotic responses. IRF4 and IRF8 regulate
myeloid cell development, while IRF9 mediates STAT1/STAT2
function in downstream signaling of type I IFN receptor signaling
and is also involved in autoantibody production (35, 55). These
findings suggest that these immune transcription factors may play
a role in the up-regulation of immune response genes, implying a
heightened immune system activity and immune response against
hair growth cycle in the scalp in AGA. Taken together, our
results provide further evidence that the genes for hair follicle
development and hair cycle are down-regulated, while genes for
immune response are up-regulated in the balding scalps of AGA.

The occurrence of inflammatory phenomena in AGA
pathogenesis has been reported earlier, but the cause of
the inflammation was unknown. Consequently, the role of
inflammation in AGA was not heavily emphasized in the past (52,
57). Despite the general belief that scalp inflammation results in
folliculitis, perifollicular fibrosis, and destructive scarring alopecia,
studies have linked inflammation to male pattern baldness (55–
57). Jaworsky et al. (58) discovered the presence of activated
T-cell infiltrate in hair follicles and found that these infiltrates
were associated with class II antigens. In 2001, Young et al. (56)
discovered granular immunoglobulin M and C3 at the basement
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TABLE 6 Hub genes identified common in the STRING PPI and reactome FI network.

Sr. no. Gene
symbol

Gene name Gene family Gene function summary from Uniprot Expression direction

1 CTNNB1 Catenin beta 1 Armadillo family of proteins Important for Wnt signaling and cell adhesion DOWN

2 EGF Epidermal growth factor Epidermal growth factor family Important for cell growth and differentiation DOWN

3 GNAI3 Guanine nucleotide-binding protein G(I) Subunit Alpha-3 G protein alpha inhibitory subunit family Regulates diverse signaling pathways DOWN

4 NRAS NRAS proto-oncogene, Gtpase Ras family of small GTPases Involves in regulating cell growth and differentiation DOWN

5 BTK Bruton tyrosine kinase Tec family of non-receptor tyrosine kinases Critical for B cell development and activation UP

6 ESR1 Estrogen receptor 1 Nuclear receptor family Acts as a transcription factor for estrogen signaling UP

7 HCK HCK proto-oncogene, Src family tyrosine kinase Src family of non-receptor tyrosine kinases Has roles in immune cell signaling and activation UP

8 ITGB7 Integrin subunit beta 7 Integrin family of cell adhesion molecules Important for immune cell trafficking and activation UP

9 LCK LCK proto-oncogene, Src family tyrosine kinase Src family of non-receptor tyrosine kinases Plays a critical role in T cell development and activation. UP

10 LCP2 Lymphocyte cytosolic protein 2 SLP-76 family of adapter proteins Essential for T cell receptor signaling and activation UP

11 LYN LYN proto-oncogene, Src family tyrosine kinase Src family of non-receptor tyrosine kinases Functions in B cell signaling and immune responses. UP

12 PDGFRB Platelet derived growth factor receptor beta Rho family of small GTPases Involves in actin cytoskeleton organization and cell migration UP

13 PIK3CD Phosphatidylinositol-4,5-bisphosphate 3-kinase Catalytic Subunit Delta Phosphoinositide 3-kinase catalytic subunit family Plays a role in various signaling pathways UP

14 PTPN6 Protein tyrosine phosphatase non-receptor type 6 Protein tyrosine phosphatase family Regulates immune cell signaling and homeostasis UP

15 RAC2 Rac family small Gtpase 2 Rho family of small GTPases Involves in actin cytoskeleton organization and cell migration UP

16 SPI1 Spi-1 proto-oncogene ETS family of transcription factors Essential for hematopoietic development and differentiation UP

17 STAT3 Signal transducer and activator Of transcription 3 STAT family of transcription factors Involves in cytokine signaling and immune responses UP

18 STAT5A Signal transducer and activator Of transcription 5A STAT family of transcription factors Important for immune cell development and activation UP

19 VAV1 Vav guanine nucleotide exchange factor 1 Vav family of guanine nucleotide exchange factors Regulates signaling pathways downstream of receptors UP

20 PSMB8 Proteasome 20s subunit beta 8 Proteasome beta subunit family Involves in protein degradation and antigen presentation UP

21 HLA-A Major histocompatibility complex, Class I, A Human leukocyte antigen (HLA) family Involves in antigen presentation and immune responses UP

22 HLA-F Major histocompatibility complex, class I, F Human leukocyte antigen (HLA) family Involves in immune tolerance and immune responses UP

23 HLA-E Major histocompatibility complex, class I, E Human leukocyte antigen (HLA) family Involves in antigen presentation and immune regulation UP

24 IRF4 Interferon regulatory factor 4 Interferon regulatory factor family Involves in immune cell differentiation and function UP

25 ITGAM Integrin subunit alpha M Integrin family of cell adhesion molecules Important for leukocyte function and immune responses UP
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TABLE 7 Result of GO biological process and reactome pathway enrichment analysis of hub genes from ToppGene Suite (FDR < 0.05).

GO ID Biological process term Gene count Up-regulated genes Down-regulated genes

GO:0002682 Regulation of immune system
process

20 IRF4, PTPN6, LCK, SPI1, HLA-A, LCP2, LYN, ITGAM, PIK3CD, HCK, VAV1, ESR1, STAT3, BTK, STAT5A, RAC2, HLA-E, HLA-F CTNNB1, NRAS

GO:0042110 T cell activation 15 IRF4, PTPN6, LCK, SPI1, HLA-A, LYN, ITGAM, PIK3CD, VAV1, STAT3, STAT5A, RAC2, HLA-E, HLA-F CTNNB1

GO:0050778 Positive regulation of immune
response

15 PTPN6, LCK, SPI1, HLA-A, LCP2, LYN, ITGAM, PIK3CD, HCK, VAV1, BTK, STAT5A, HLA-E, HLA-F NRAS

GO:0043299 Leukocyte degranulation 10 SPI1, HLA-A, LYN, ITGAM, PIK3CD, HCK, BTK, RAC2, HLA-E, HLA-F

GO:0002764 Immune response-regulating
signaling pathway

14 IRF4, PTPN6, LCK, HLA-A, LCP2, LYN, PIK3CD, HCK, VAV1, ESR1, BTK, HLA-E, HLA-F NRAS

GO:1903131 Mononuclear cell differentiation 14 IRF4, PTPN6, LCK, SPI1, LYN, PIK3CD, VAV1, STAT3, BTK, STAT5A, RAC2, HLA-E, HLA-F CTNNB1

GO:0045321 Leukocyte activation 17 IRF4, PTPN6, LCK, SPI1, HLA-A, LCP2, LYN, ITGAM, PIK3CD, VAV1, STAT3, BTK, STAT5A, RAC2, HLA-E, HLA-F CTNNB1

GO:0002521 Leukocyte differentiation 15 IRF4, PTPN6, LCK, SPI1, LYN, ITGAM, PIK3CD, VAV1, STAT3, BTK, STAT5A, RAC2, HLA-E, HLA-F CTNNB1

GO:0046649 Lymphocyte activation 16 IRF4, PTPN6, LCK, SPI1, HLA-A, LYN, ITGAM, PIK3CD, VAV1, STAT3, BTK, STAT5A, RAC2, HLA-E, HLA-F CTNNB1

GO:0002768 Immune response-regulating cell
surface receptor signaling pathway

12 PTPN6, LCK, HLA-A, LCP2, LYN, PIK3CD, HCK, VAV1, BTK, HLA-E, HLA-F NRAS

Biosystems
ID

Reactome pathway
name

Gene count Up-regulated genes Down-regulated genes

1269310 Cytokine signaling in immune
system

17 PSMB8, IRF4, PTPN6, LCK, HLA-A, LYN, ITGAM, PDGFRB, PIK3CD, HCK, VAV1, STAT3, STAT5A, HLA-E, HLA-F NRAS, EGF

1269318 Signaling by interleukins 14 PSMB8, IRF4, PTPN6, LCK, LYN, ITGAM, PDGFRB, PIK3CD, HCK, VAV1, STAT3, STAT5A NRAS, EGF

1269171 Adaptive immune system 15 PSMB8, PTPN6, LCK, HLA-A, LCP2, LYN, PDGFRB, PIK3CD, ITGB7, VAV1, BTK, HLA-E, HLA-F NRAS, EGF

1269357 GPVI-mediated activation cascade 7 PTPN6, LCK, LCP2, LYN, PIK3CD, VAV1, RAC2

1269183 Signaling by the B cell receptor
(BCR)

10 PSMB8, PTPN6, LCK, LYN, PDGFRB, PIK3CD, VAV1, BTK NRAS, EGF

1269487 Signaling by SCF-KIT 11 PSMB8, PTPN6, LCK, LYN, PDGFRB, PIK3CD, VAV1, STAT3, STAT5A NRAS, EGF

1269323 Interleukin-3, 5 and GM-CSF
signaling

10 PSMB8, PTPN6, LYN, PDGFRB, PIK3CD, HCK, VAV1, STAT5A NRAS, EGF

1269203 Innate immune system 16 PSMB8, PTPN6, LCK, HLA-A, LCP2, LYN, ITGAM, PDGFRB, PIK3CD, HCK, VAV1, BTK, HLA-E NRAS, EGF

1269284 DAP12 signaling 10 PSMB8, LCK, LCP2, PDGFRB, PIK3CD, VAV1, BTK, HLA-E NRAS, EGF

1268855 Diseases of signal transduction 10 PSMB8, LCK, PDGFRB, PIK3CD, VAV1, STAT3, STAT5A CTNNB1, NRAS, EGF
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FIGURE 6

Enrichment of reactome pathway terms for the hub genes and DEGs that comply log2FC > | 1| using Cytohubba plugin ClueGO. The network shows
the connectivity between pathway terms based on shared functional nodes and edges among the DEGs with a kappa score of 0.4. The color of the
nodes and edges represents their specific functional classes, and only significant values with p < 0.05 are shown in the enrichment. Nodes labeled in
red represent down-regulated genes, while nodes labeled in green indicate up-regulated genes. The larger labeled nodes are the hub genes.

membrane, as well as porphyrins in the pilosebaceous canal in
biopsy specimens from the bald scalps of AGA patients. They
suggested that the local microbiologic flora and environmental
factors like UV light could be responsible for the inflammatory
reactions (56). Mahe et al. (59) proposed in a 2001 review that
the inflammatory process associated with AGA be referred to as
microinflammation in contrast to classical inflammatory process.
Furthermore, the presence of peripilar signs around the hair follicle
ostium, which reflect perifollicular inflammation, has established
the presence of follicular microinflammation in AGA (60, 61).
Despite these findings, the underlying biological reason, pathways,
and genes involved in the inflammatory process of AGA have not
yet been elucidated.

In order to deepen our understanding of the inflammatory
mechanisms in AGA, we constructed gene interaction networks
using the DEGs identified in our study. The Cytoscape plugins
StringApp and ReactomeFIplugin were utilized to construct the PPI
and FI networks, respectively. The DEGS in the PPI network were
connected based on their protein-protein interactions obtained
from the STRING database, while the DEGs in the FI network
were linked based on their involvement in signaling pathways
from the Reactome database. The integrated tools within the
Cytoscape StringApp and ReactomeFI plugins were utilized to
perform GO and pathway enrichment analyses for both networks.
The results were consistent with our previous GO, pathway, and
motif enrichment analyses. In addition, a Cytohubba analysis was
conducted to identify the hub genes of the biological networks. The
hub genes were sorted based on their occurrence in more than one

algorithm used in the analysis. As a result, 15 genes (LYN, HLA-
A, STAT3, NRAS, CTNNB1, PSMB8, HLA-F, HLA-E, IRF4, LCK,
PTPN6, STAT5A, VAV1, EGF, and ITGAM) were identified as key
hub genes in the PPI network. Similarly, 19 genes (LCK, LYN,
BTK, CTNNB1, GNAI3, NRAS, PIK3CD, PTPN6, SPI1, STAT3,
STAT5A, VAV1, EGF, ESR1, HCK, ITGB7, LCP2, PDGFRB, and
RAC2) were recognized as key hub genes in the FI network as they
were consistently identified across multiple algorithms.

To explore the connections between hub genes and DEGs
exhibiting log2FC > | 1|, we performed reactome pathway
enrichment analysis using the ClueGo plugin in Cytoscape (53).
The analysis revealed that the hub genes were strongly associated
with several important pathways related to immune system
functions including interferon signaling, cytokine signaling, GPVI-
mediated activation cascade, PI3K/AKT signaling, and signaling by
receptor tyrosine kinases (Figure 6). Interestingly, recent research
has linked the activation of the PI3K/Akt pathway with the
apoptosis of hair follicle stem cell (HFSC) mediated by 5α-DHT
in AGA (62, 63). Furthermore, the ClueGo network (Figure 6)
showed that several genes including the hub genes PSMB8,
SPI1, STAT3, PIK3CD, NRAS, CTNNB1, and LEF1 connect the
keratinization process with inflammatory process terms suggesting
that AGA is driven by a complex interplay between various
molecular pathways involving immune system dysregulation and
abnormal keratinization.

A significant number of the up-regulated hub genes identified
in our study such as PTPN6, LCK, LCP2, LYN, HCK, VAV1, STAT3,
BTK, and STAT5A belong to the Src Homology 2 (SH2) domain
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FIGURE 7

Schematic model of 5α-DHT mediated AGA in DPCs including Wnt/β-catenin signaling pathway and up-regulated inflammatory process. The green
lines and arrows represent the normal activated Wnt/β-catenin signaling in the DPCs of normal-haired scalp, while the red lines and arrows denote
the behavior of signaling pathways in the DPCs of balding scalp. The androgen 5α-DHT-AR complex inhibits the Wnt signaling by transcribing
Wnt/β-catenin inhibitors. In our analysis genes for frizzled receptor, Wnt ligands (Wnt2b, Wnt3, Wnt5a, Wnt10b, and Wnt11), beta-catenin, LEF, and
TCF are down-regulated, while the Wnt inhibitors DKK2 and SFRP2 are upregulated implying the downregulation of the normal Wnt/β-signaling
pathway in AGA. The genes for phospholipase, calcineurin, and NFAT which function downstream of the non-canonical Wnt/Calcium pathway are
upregulated, while the Wnt ligand for this pathway Wnt5a and frizzled receptor in the upstream are down-regulated. We propose that Src tyrosine
kinase, known to interact with phospholipase and calcineurin, may activate this Wnt/Calcium pathway pathway and this needs further investigation.
In addition, other Wnt ligands such as Wnt3a, Wnt4, and Wnt16 are up-regulated in our analysis and these ligands or some GPCR receptors may play
a role in the activation of Wnt/calcium signaling pathway and mediate the up-regulation of NFAT which transcribes inflammatory process genes.

gene family. This group of genes encodes proteins containing SH2
domains, which can recognize and bind to phosphorylated tyrosine
residues in other proteins. SH2 domain-containing proteins
participate in signal transduction pathways serving as adapter
molecules linking tyrosine phosphorylation events to downstream
signaling pathways (64). Further of the four non-receptor tyrosine
kinase hub genes (BTK, HCK, LCK and LYN), three genes namely
HCK, LCK, and LYN belong to the Src family of protein tyrosine
kinases (65). Recent studies have highlighted the potential role
of Src tyrosine kinase in hair growth. One study found that Src
inhibition promotes melanogenesis, leading to the production of
hair color pigment melanin (66). In another study the flavonoid
quercitrin was shown to stimulate hair growth in cultured DPCs by
activating several signal transduction elements, including receptor
tyrosine kinases and non-receptor tyrosine kinases. Specifically,
Src family proteins such as CSK, FRK, HCK, and SRMS, which
were not differentially expressed in our analysis, were found to
be activated by quercitrin while promoting the hair growth (67).

Additionally, recent researches have shown that Src tyrosine kinase
can cross-talk with Wnt signaling (65) and with androgen receptor
(AR) signaling (66) suggesting a potential interplay between Src
tyrosine kinase and androgen-DHT and Wnt/β-catenin signaling
in the balding scalps of AGA. Therefore, we suggest that further
investigation into the potential interactions between Src tyrosine
kinase family genes, AR-5α-DHT, Wnt/β-catenin signaling, and the
inflammatory response is needed to gain a more comprehensive
understanding of AGA pathogenesis.

The Hair follicle is a fascinating mini-organ that continuously
undergoes cycles of growth (anagen), regression (catagen), resting
(telogen), and shedding (exogen). This process is regulated by
a number of signaling cascades, including Wnt/β-catenin, Sonic
Hedgehog (SHH), bone morphogenetic protein (BMP), notch,
transforming growth factor β (TGF-β), NF-κB, and fibroblast
growth factors (FGFs), which coordinate communication between
the epithelial and mesenchymal cells in the hair follicle (68).
Although it is well-known that androgen 5α-DHT modulates
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the Wnt/β-catenin signaling pathway in DPCs and inhibits the
transcription of hair growth genes in AGA, less is known about
the behavior of other hair growth signaling pathways in AGA
(1). In this study, we identified several DEGs involved in Wnt/β-
catenin, NF-κB, TGF-β, BMP, and Vitamin D metabolism signaling
pathways more than the original analysis by Michel et al. (5)
(Supplementary I-3). Our network analysis also identified core
genes that could further elucidate the pathogenesis of AGA, with
a focus on the upregulated inflammatory response.

Conclusively, to gain a better understanding of the
pathogenesis of AGA a schematic model of 5α-DHT mediated
AGA in DPCs including the Wnt/β-catenin signaling pathway and
the up-regulated inflammatory process is proposed in Figure 7.
The nuclear factor associated with T cells (NFAT) family of
transcription factors controls the expression of proinflammatory
genes. The Calcineurin-NFAT signaling pathway regulates the
immune system and inflammatory response (69–71). The NFAT
and Wnt pathways are shown to reciprocally regulate each other
constituting a non-canonical Wnt/Ca2 + /NFAT pathway in certain
cells and tissues for coordinating their effects on cell growth and
differentiation (71, 72). In addition, Src tyrosine kinase gene LCK
are shown to interact with calcineurin and NFAT promoting NFAT
activity (70, 73–75). Also the Src tyrosine kinase genes such as LCK
and LYN promotes cytosolic accumulation of Ca2+ which activates
calcineurin (76). In the non-canonical Wnt/Ca2+ signaling
pathway calcineurin and NFAT acts downstream, but our analysis
shown that the genes coding them are upregulated and the genes
in the up-stream of the pathway are down-regulated. Given that
the Src tyrosine kinases cross-talk with Wnt signaling and that
increased activity of Src is seen during aberrant Wnt signaling
in many diseases (77), we suggest that Src-tyrosine kinases may
cross-talk with the androgen 5α-DHT modulated Wnt Signaling
pathway and promote inflammatory response. Therefore, further
investigation into the potential interactions between Src tyrosine
kinase family genes, AR-5α-DHT, Wnt/β-catenin signaling, and the
inflammatory response is needed to gain a more comprehensive
understanding of AGA pathogenesis.

Conclusion

Differential gene expression analysis is a powerful technique
for identifying genes associated with specific conditions such as
AGA. In this study, we analyzed the gene expression data from the
scalps of individuals with premature AGA and normal volunteers to
identify core genes associated with AGA. We identified 2,439 DEGs
using a stringent criterion of log2FC ≥ ± 0.3 with a strict FDR value
and performed gene family enrichment, GO enrichment, pathway
enrichment, and motif analysis for the DEGs. Our findings indicate
that down-regulated genes in AGA play significant roles in the
structural makeup of the skin epidermis, hair follicle development,
and hair cycle, while up-regulated genes are implicated in the
innate and adaptive immune systems, cytokine signaling, and
interferon signaling pathways. Moreover, we identified potential
candidate genes that may contribute to AGA pathology and require
further investigation. Our study also highlights the critical role
of Src family tyrosine kinases in AGA pathology. Overall, this
study enhances our understanding of the underlying molecular

mechanisms of AGA and may lead to the development of new
therapeutic strategies for treating this condition.
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Potential biomarkers uncovered
by bioinformatics analysis in
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ductal adenocarcinoma
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Isaac Arnold Emerson2 and Sivakumar Arumugam1*
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Background: Mutant KRAS-induced tumorigenesis is prevalent in lung, colon,

and pancreatic ductal adenocarcinomas. For the past 3 decades, KRAS mutants

seem undruggable due to their high-a�nity GTP-binding pocket and smooth

surface. Structure-based drug design helped in the design and development

of first-in-class KRAS G12C inhibitor sotorasib (AMG 510) which was then

approved by the FDA. Recent reports state that AMG 510 is becoming resistant in

non-small-cell lung cancer (NSCLC), pancreatic ductal adenocarcinoma (PDAC),

and lung adenocarcinoma patients, and the crucial drivers involved in this

resistance mechanism are unknown.

Methods: In recent years, RNA-sequencing (RNA-seq) data analysis has become

a functional tool for profiling gene expression. The present study was designed

to find the crucial biomarkers involved in the sotorasib (AMG 510) resistance

in KRAS G12C-mutant MIA-PaCa2 cell pancreatic ductal adenocarcinoma cells.

Initially, the GSE dataset was retrieved from NCBI GEO, pre-processed, and then

subjected to di�erentially expressed gene (DEG) analysis using the limma package.

Then the identified DEGswere subjected to protein–protein interaction (PPI) using

the STRING database, followed by cluster analysis and hub gene analysis, which

resulted in the identification of probable markers.

Results: Furthermore, the enrichment and survival analysis revealed that the small

unit ribosomal protein (RP) RPS3 is the crucial biomarker of the AMG510 resistance

in KRAS G12C-mutant MIA-PaCa2 cell pancreatic ductal adenocarcinoma cells.

Conclusion: Finally, we conclude that RPS3 is a crucial biomarker in sotorasib

resistance which evades apoptosis by MDM2/4 interaction. We also suggest

that the combinatorial treatment of sotorasib and RNA polymerase I machinery

inhibitors could be a possible strategy to overcome resistance and should be

studied in in vitro and in vivo settings in near future.
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GRAPHICAL ABSTRACT

Study outcomes and proposed future directions to combat sotorasib resistance in KRAS G12C mutant cells.

1. Introduction

Mutant RAS-harboring cancers are predominant in many

cancers including pancreatic, breast, colon, and lung, which

corresponds to nearly 30% of all cancers (1, 2). Unlike NRAS and

HRAS isoforms of RAS, the KRAS isoform has high mutation

frequencies at mutational hotspots G12 (89%), G13 (9%), and Q61

(1%) residues (3–5). Overall, the G12th residue is the most mutated

position of KRAS with G12D as the most prevalent mutation with

36%, followed by the G12V and G12C mutations with 23 and 14%,

respectively (6). KRAS is a small GTPase that acts as a molecular

switch by GTP-bound (active form) and GDP-bound (inactive

form) states and triggers the downstream signal transduction

pathways (7, 8). The GDP to GTP conversion is mediated by

the guanine nucleotide exchange factors (GEFs), and the GTP

to GDP hydrolysis is mediated by GTPase-activating proteins

(GAPs) (9, 10). The mutant KRASmaintains the GTP-bound active

state and overcomes the GTPase activity and initiates nearly 80

different downstream effector signaling pathways including MAPK

and PI3K-mTOR signaling which further activates JUN and MYC

transcription factors and promotes the cancer cell survival and

proliferation (11–15).

Several strategies have been carried out to inhibit the mutant

KRAS signaling such as targeting the upstream effectors (EGFR

inhibitors, FGFR1 inhibitors, and IGF1R inhibitors); targeting

the inhibitors of KRAS regulators (SOS1 inhibitors and SHP2

inhibitors); direct targeting of KRAS (KRAS on state and off-

state inhibitors); downstream effector inhibitors (PI3K inhibitors,

mTOR inhibitors, and MEK inhibitors); and cell cycle arrest

(CDK4/6 inhibitors) (16–19). Moreover, targeting the other

mediators and effectors in the MAPK pathway result in the

signaling crosstalk such as MEK-PI3K, RAF-AKT, RAS-SKF,

RAS-YAP, and SHP2-dependent MAPK reactivation and SHP2-

independent PI3K reactivation (20–22). All the strategies have

shown significant outcomes, but the complete inhibition of KRAS

was promising in the direct targeting strategy. In general, the

intracellular levels of GTP are in micromolar (µM) ranges, and

its binds with picomolar (pM) affinity to the GTP-binding pocket

of the KRAS, which challenges it as undruggable to the medicinal

chemistry and drug discovery researchers to design and develop a

potent KRAS mutant small molecule inhibitors (23–25). Finally,

the undruggable became druggable by the successful discovery

and FDA approval of KRAS G12C inhibitor sotorasib (AMG 510)

for the treatment of non-small-cell lung cancer (NSCLC) and

other solid tumors (26–28). The sotorasib specifically targets the

cryptic pocket of the KRAS G12C (H95/Y96/Q99) and forms the

covalent bond with the reactive cysteine at the 12th position,

which also limits its ability to target other KRAS mutants such

as G12D and G12V that lacks reactive cysteine (29). Recently,

in December 2022, FDA granted the accelerated approval for

adagrasib (MRTX849) for the treatment of KRAS G12C-mutated

NSCLC (30).

Accumulating pieces of evidence report that sotorasib

is becoming resistant among NSCLC, pancreatic ductal

adenocarcinoma, and colorectal adenocarcinoma patients

bearing KRAS G12C mutation and even resulting in hepatotoxicity

(31, 32). The understanding of this resistance mechanism is

challenging due to the intracellular heterogeneity and variability

of KRAS G12C-mutated cancer cells (33). Hence, to identify

the crucial biomarkers involved in the sotorasib resistance, we

have retrieved the RNA-seq data from the NCBI GEO database

of AMG 510 treated (resistant) and untreated in KRAS G12C-

mutant MIA-PaCa2 pancreatic ductal adenocarcinoma cells.

The differentially expressed genes (DEGs) were identified by the

linear model, and then, the DEGs were subjected to protein–
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protein interaction (PPI), cluster analysis, and hub gene analysis.

In addition to this, the resulting probable biomarkers were

also subjected to gene ontology (GO), pathway enrichment,

and survival analyses to find the crucial biomarker in the

sotorasib resistance.

2. Materials and methods

2.1. Data collection and pre-processing

The RNA-seq dataset retrieved for this study was accessed

through NCBI Gene Expression Omnibus (GEO) database (http://

www.ncbi.nlm.nih.gov/geo/). The keywords used for filtering the

dataset include “KRAS mutated Pancreatic cancer” and “Homo

sapiens” (organism). The datasets were screened, and “GSE178479”

was retrieved for this study in which the sotorasib (AMG 510)

resistance in the KRAS G12C-mutant MIA-PaCa2 pancreatic

ductal adenocarcinoma cells was reported (34). The sequencing

platform and the platform ID of the sample were “Illumina HiSeq

4000” and “GPL20301,” respectively. The number of samples used

in this study was two, which includes RNA-seq profiles of AMG

510 treated (rep1 and rep2) and AMG 510 untreated (rep1 and

rep2)MIA-PaCa2 cells. The present study was carried out to predict

the crucial biomarkers involved in the AMG 510 resistance in

pancreatic ductal adenocarcinoma cells.

The count matrix of the samples was prepared based on the

matrix file information provided in the GEO database (35). The

lowly expressed genes were filtered based on their counts using

the counts per million (CPM) function in the edgeR package with

the threshold of 0.5. Box plots were used to check the distribution

of the read counts on the log2 scale (36). The CPM function

provided the log2 counts per million which are then corrected for

different library sizes. The CPM function also adds a small offset to

avoid taking a log of zero. The trimmed mean of M-value (TMM)

normalization was performed to eliminate composition biases

between the libraries (37). This generates a set of normalization

factors, where the product of these factors and the library sizes

define the effective library size. The calcNormFactors function

calculated the normalization factors between libraries.

2.2. Di�erential gene expression analysis

The limma package (38, 39) with the voom function was used,

which transforms the read counts into logCPMs while taking

account of the mean–variance relationship in the given data

(40, 41). After vooming, we applied a linear model to the voom

transformed data to test for differentially expressed genes (DEGs)

using standard limma commands.

The voom transformed data have been used in limma to test for

differential gene expression. The linear model fit was designed for

each gene using the lmFit function in limma which estimates the

groups and gene-wise variances. The contrast between the groups

was then analyzed based on the makeContrasts function. Then

the contrasts matrix was fitted to the object to get the statistics

and estimated parameters. Here, we called the contrasts.fit function

in limma. Furthermore, we called the eBayes function to perform

the empirical Bayes shrinkage on the variances and estimated the

logFC of 0.05 and their associated p-values. Finally, to increase

the significance and reduce the false discovery rates, we used the

TREAT function to predict specific genes (42–44).

2.3. Network analysis

The differentially expressed genes (DEGs) filtered through the

TREAT function were then subjected to the STRING database

(https://string-db.org/) to predict the protein–protein interactions

(PPIs) with a confidence level of 0.004 and higher, and the first

shell of 10 interactions was used as a filter (45). The MCODE and

CytoHubba were used to analyze the probable marker genes among

the DEGs (46).

2.4. Enrichment and survival analysis

The hub genes resulting from the network analysis were

then subjected to gene ontology using the enrichGO function in

the clusterProfiler package (47). The enriched biological process

(BP), cellular components (CC), and molecular functions (MF)

were analyzed using the enrichGO function. The KEGG pathway

analysis was also carried out using the enrichKEGG function to

analyze the enriched terms.

The Kaplan–Meier (KM) survival analysis was carried out

based on the Spearman correlation using the Kaplan–Meier plotter

online tool employing the median patient splitting mode (48, 49).

Hazard is the defined slope for the survival curve which measures

the incidence of death, and the hazard ratio (HR) compares the

two treatment groups. If HR is 2.0, then the rate of death in

one treatment group is twice the other group (50). A statistical

hypothesis test was calculated based on a log-rank test. The

schematic representation of the workflow of the study is shown in

Figure 1.

3. Results

3.1. Identification of di�erently expressed
genes

Through limma analysis, we have tested the difference between

the sotorasib (AMG 510) treated and untreated samples to analyze

the genes responsible for the AMG 510 resistance in the treated

group. The voom transformation of adjusting the library size

with the normalization factors was analyzed through a mean–

variance trend. The comparative boxplot analysis of unnormalized

logCPM with the voom transformed logCPM is shown in Figure 2

which represents the precision of normalization. The CPM plot of

count data after filtering the lowly expressed genes is provided in

Supplementary Figure 1. The mean–variance relationship helps to

analyze whether the low counts are filtered adequately and variation

in the data by estimating the relationship of the log counts, which

generates a precision weight for each observation and enters these

into the limma empirical Bayes analysis. The voom mean–variance

trend curve is shown in Supplementary Figure 2.
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FIGURE 1

Schematic representation of the workflow of the study.

The empirical Bayes function was used to analyze the DEGs

with the linear model fit. The linear model fit resulted in the

identification of upregulated and downregulated genes from the

DEGs. In this study, it resulted in the differentially expressed genes

among the AMG 510 treated (resistant) and untreated groups,

which are repressed through the MA plot as shown in Figure 3 and
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FIGURE 2

Boxplot analysis of unnormalized logCPM with the voom transformed logCPM.

the volcano plot as shown in Figure 4. Initially, the raw RNA-seq

data were retrieved, pre-processed, and the differentially expressed

genes (DEGs) were predicted using a cutoff on the log fold change

threshold of 0.5. The p-value threshold of 0.05 resulted in the

identification of 330 upregulated genes and 499 downregulatory

genes as shown in Figure 4, and the complete list of DEGs is

provided in Supplementary Table 1. To reduce false discovery rates,

we further applied TREAT (t-tests relative to a threshold) function

in the limma package, which resulted in the identification of six

upregulated DEGs and 12 downregulated DEGs.

3.2. Network analysis

The interaction network was visualized using Cytoscape using

molecular complex detection (MCODE) to find the significant

clusters between each node representing a gene while edges

represent the interaction of the molecules. The default parameters

were set including the degree cutoff of 2, node score cutoff of

≥0.2, K-score of ≥2, and max depth from seed of 100. Finally, the

MCODE resulted in six clusters with the highest nodal score of 22

as shown in Figure 5.

The probable marker genes have been identified based on

the highly connected nodes using CytoHubba in Cytoscape.

It uses 12 scoring methods to identify the markers, namely,

betweenness, bottleneck, closeness, clustering coefficient (CC),

degree, the density of maximum neighborhood component

(DMNC), eccentricity (EcC), edge percolated component (EPC),

maximal clique centrality (MCC), maximum neighborhood

component (MNC), radiality, and stress. The top 10 genes from

each scoringmethodwere isolated. Genes that are common inmore

than five scoring methods and also have an impact on MCODE

were considered hub genes.

3.3. Enrichment analysis

The enrichment analysis was performed with the GO

terms: biological process (BP), cellular components (CC), and

molecular functions (MF). The biological process includes

cytoplasmic translation, ribosomal small subunit assembly,

ribosome assembly, ribosomal small subunit biogenesis, non-

membrane-bounded organelle assembly, negative regulation

of protein ubiquitination, and negative regulation of protein

modification by small protein conjugation or removal. Cellular

components include cytosolic ribosome, ribosomal subunit,

ribosome, cytosolic small ribosomal subunit, cytosolic large

ribosomal subunit, small ribosomal subunit, large ribosomal
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FIGURE 3

MA plot used to represent log fold change vs. mean expression between the two groups (AMG 510 treated and untreated). A scatter plot depicts the

normalized mean expression on the x-axis and base-2 log fold change on the y-axis. The red dots represent the upregulated genes, the blue dots

represent the downregulated genes, and the black dots represent the non-significant genes.

subunit, focal adhesion, cell–substrate junction, polysome,

polysomal ribosome, rough endoplasmic reticulum, cytoplasmic

side of endoplasmic reticulum membrane, rough endoplasmic

reticulum membrane, and euchromatin. Molecular functions

are structural constituents of the ribosome and rRNA binding.

The enriched GO terms of biological process (BP), cellular

components (CC), and molecular functions (MF) are shown

in Figure 6 and Table 1. Then the KEGG pathway analysis

was also carried out, and the enriched term was observed

as “hsa03010:Ribosome.”

3.4. Survival analysis

The Kaplan–Meier (KM) survival analysis plot was created

based on Spearman’s correlation, using the hazard ratio (HR) and

log-rank test of the genes. In general, HR > 1 represents that the

low-expression group has a higher chance of survival than the high-

expression group, and HR < 1 represents that high-expression

groups have a higher chance of survival than the low-expression

group. The survival analysis of probable genes showed that the

low expression of RPL4, RPL32, RPLP1, and RPS3 would have a

higher probability for survival, and the high expression of RPS28,

RPS15, RPS9, RPL15, and JUN would have a higher probability for

survival. Based on the log-rank test, the significance level was set to

0.05, and if the calculated p-value is >0.05, the null hypothesis is

retained. Based on these criteria, the ribosomal protein RPS3 was

identified as a probable biomarker that showed high survival rates

and p < 0.05 as shown in Figure 7. In addition, the HR of RPS3 is

almost near two which indicates that it has twice the rate of death

when compared to the others. The KM survival plots of RPL15,

RPS15, RPS28, RPL4, RPL32, RPLP1, RPS9, and JUN are shown

in Supplementary Figure 3.

4. Discussion

KRAS mutations are prevalent in many cancers including

pancreatic, breast, colon, and lung with mutational hotspots at

G12 (89%), G13 (9%), and Q61 (1%) residues (1, 2). The G12D,

G12C, and G12V are frequent mutations with 36, 23, and 14%

expressions, respectively (6). Of note, the KRAS G12C mutation

is relatively high in lung adenocarcinoma than in pancreatic

adenocarcinoma patients. The direct inhibition of the mutant

KRAS is very prominent over other strategies but challenges the

small molecule inhibitor development due to their high-affinity

GTP-binding pocket and smooth surface (16, 51). Structure-based

drug design guided the development and FDA approval of first-

in-class potential KRAS G12C inhibitor sotorasib (AMG 510) that

has changed the scenario in which the mutant KRAS became

undruggable (26). Recently, in December 2022, FDA granted the

accelerated approval for Adagrasib (MRTX849) for the treatment

of KRAS G12C-mutated NSCLC (30). In addition to this, several

pharma industries have initiated to design and develop novel

KRAS mutant inhibitors (mutant specific/pan-KRAS). Several

KRAS G12C (GDP-bound off state) inhibitors, such as sotorasib
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FIGURE 4

Volcano plot of the DEGs depicts the logFC on the x-axis and –log10 (p-value) on the y-axis. The red dots represent the upregulated genes, the blue

dots represent the downregulated genes, and the black dots represent the non-significant genes.

(AMG 510), adagrasib (MRTX849), GDC-6036, JNJ-74699157,

D-1553, JDQ443, LY3537982, LY3499446, ARS1620, and KRAS

G12C (GDP-bound off state) inhibitors such as RMC-6291, RMC-

6236, and RM-018, and Pan KRAS Switch I/II inhibitors such

as BI-2852, are being studied in preclinical and clinical studies

(18, 52–55). Recent pieces of evidence report the resistance to

AMG 510 among KRAS G12C-mutant cancer patients (31, 33).

Moreover, Adagrasib (MRTX849) and ARS1620 were reported

to have acquired resistance in KRAS G12C-mutant cells (33,

56). Amplification of the mesenchymal epithelial transition factor

receptor (MET); activating mutations of downstream effectors,

such as BRAF, and dual specificity mitogen-activated protein

kinase kinase 1 (MEK1); oncogenic fusion with fibroblast growth

factor receptor 3 (FGFR3) and CCDC6-RET; and loss-of-function

mutations of phosphatase and tensin homolog (PTEN) and

neurofibromin 1 (NF1) were reported to be the key elements

involved in the resistance mechanisms to KRAS mutant inhibitors

in lung adenocarcinoma and colorectal adenocarcinoma (56, 57).

Unlike the abovementioned resistance mechanisms, our results

revealed a significant correlation between the sotorasib resistance

in KRAS G12C-mutant cells and ribosomopathies.

Recently Chan et al. (34) reported an interesting study on

the identification of sotorasib (AMG 510) resistance in the KRAS

G12C-mutant MIA-PaCa2 pancreatic ductal adenocarcinoma

cells when treated with increasing dosage (0.1–5µM) for

60 days and found that MIA-PaCa2 showed resistance at

5µM treatment of AMG 510 (34). This interested us to

identify the crucial biomarkers involved in the AMG 510

resistance in the KRAS G12C-mutant MIA-PaCa2 pancreatic

ductal adenocarcinoma cells. In addition to MIA-PaCa2 cells,

they have also tested the AMG 510 resistance in SW1463

human Caucasian rectum adenocarcinoma, LU99 lung giant cell

carcinoma, and LU65 lung carcinoma cell lines which have KRAS

G12C mutations.

The main aim of the present study was to identify the

key biomarker genes involved in the AMG 510 resistance.

Initially, the raw RNA-seq data were retrieved, pre-processed,

and the differentially expressed genes (DEGs) were predicted
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FIGURE 5

Protein–protein interaction (PPI) network of DEGs obtained from the STRING database.

which resulted in the identification of 330 upregulated genes

and 499 downregulatory genes as shown in Figure 4 and

Supplementary Table 1. The t-tests relative to a threshold (TREAT)

function reduced the false discovery rates of DEGs (42), which

further resulted in the identification of six upregulated and

12 downregulated genes. These filtered DEGs were studied for

the protein–protein interaction network using STRING which

resulted in four MCODE clusters, and the MCODE cluster 1

showed the highest nodal density among the other clusters as

shown in Figure 5. In addition, cluster analysis and hub gene

analysis were carried out which resulted in probable biomarkers

as shown in Figure 6, and the enriched GO terms of biological

process (BP), cellular components (CC), and molecular functions

(MF) are shown in Table 1. In general, HR > 1 represents

that the low-expression group has a high chance of survival

than the high-expression group, and HR < 1 represents that

the high-expression group has a high chance of survival than

the low-expression group (58). Finally, the survival analysis

based on the hazard ratio and log-rank test resulted in the

identification of RPS3 as the probable biomarker with high

survival rates and p < 0.05 as shown in Figure 7. Based on

the log-rank test, the significance level was set to 0.05, and if

the calculated p-value is >0.05, the null hypothesis is retained.

Moreover, the HR of RPS3 is nearly 2 which indicates that

it has twice the rate of death when compared to the others.

The KM survival plots of RPL15, RPS15, RPS28, RPL4, RPL32,

RPLP1, RPS9, and JUN are shown in Supplementary Figure 3.

In addition, the GO of all the 330 upregulated genes and 499

downregulatory genes shown in Supplementary Table 1 reveals

that the myc transcriptional targets, such as E2F transcription

factor 6 (ENSG00000169016), are upregulated and the CDK10

(ENSG00000185324) is downregulated. Generally, the E2F6

regulates the gene expression of proteins involved in cell

proliferation and the CDK10 acts as a tumor suppressor.
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FIGURE 6

Bar plot of the enriched GO terms analyzed using enrichGO function using cluster profiler.

Furthermore, the CDC25B (ENSG00000101224) expression has a

p53-dependent tumor suppressive effect, which is downregulated.

The anti-apoptotic BCL-6 (ENSG00000113916) is downregulated.

The abovementioned targets are also involved in the RAS

signaling pathway. These data suggest that the resistance

could be a result of RNA pol I machinery hyperactivation

and apoptosis evasion. The present study revealed that the

small unit ribosomal protein RPS3 is known to be only

expressed in the AMG 510 resistant MIA-PaCa2 cells and

identified as a significant biomarker involved in the resistance

of AMG 510. These novel identifications resulted from the

emergence and accumulation of RNA-Seq data of drug-resistant

cancer cells.

Ribosome biogenesis starts from the nucleolus and ends

in the cytoplasm with the formation of the mature ribosome

from rRNA and ribosomal proteins (59). In normal cells, the

RNA pol I initiates the Pol I transcription followed by the

pre-rRNA processing and modification and then assembled
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TABLE 1 Gene ontology analysis of the enriched terms.

GO term and GO ID DEGs p-value Adjusted
p-value

Genes

Cytoplasmic translation (GO:0002181) BP 1.13E-16 2.91E-14 RPL4/RPLP1/RPS28/RPS9/RPL32/RPL15/RPS15/RPS3

Ribosomal small subunit assembly

(GO:0000028)

BP 3.50E-05 0.004512 RPS28/RPS15

Ribosome assembly (GO:0042255) BP 0.00037 0.029458 RPS28/RPS15

Ribosomal small subunit biogenesis

(GO:0042274)

BP 0.00053 0.029458 RPS28/RPS15

Non-membrane-bounded organelle

assembly (GO:0140694)

BP 0.000575 0.029458 RPS28/RPS15/RPS3

Negative regulation of protein

ubiquitination (GO:0031397)

BP 0.000685 0.029458 RPS15/RPS3

Negative regulation of protein

modification by small protein

conjugation or removal (GO:1903321)

BP 0.000896 0.033031 RPS15/RPS3

Cytosolic ribosome (GO:0022626) CC 3.72E-18 1.34E-16 RPL4/RPLP1/RPS28/RPS9/RPL32/RPL15/RPS15/RPS3

Ribosomal subunit (GO:0044391) CC 3.95E-16 7.10E-15 RPL4/RPLP1/RPS28/RPS9/RPL32/RPL15/RPS15/RPS3

Ribosome (GO:0005840) CC 4.09E-15 4.91E-14 RPL4/RPLP1/RPS28/RPS9/RPL32/RPL15/RPS15/RPS3

Cytosolic small ribosomal subunit

(GO:0022627)

CC 2.30E-09 2.07E-08 RPS28/RPS9/RPS15/RPS3

Cytosolic large ribosomal subunit

(GO:0022625)

CC 8.69E-09 6.26E-08 RPL4/RPLP1/RPL32/RPL15

Small ribosomal subunit (GO:0015935) CC 1.98E-08 1.19E-07 RPS28/RPS9/RPS15/RPS3

Large ribosomal subunit (GO:0015934) CC 1.30E-07 6.71E-07 RPL4/RPLP1/RPL32/RPL15

Focal adhesion (GO:0005925) CC 5.12E-07 2.23E-06 RPL4/RPLP1/RPS9/RPS15/RPS3

Cell-substrate junction (GO:0030055) CC 5.56E-07 2.23E-06 RPL4/RPLP1/RPS9/RPS15/RPS3

Polysome (GO:0005844) CC 3.04E-06 1.10E-05 RPS28/RPL32/RPS3

Polysomal ribosome (GO:0042788) CC 9.28E-05 0.000304 RPS28/RPL32

Rough endoplasmic reticulum

(GO:0005791)

CC 0.000614 0.001842 RPL4/RPS28

Cytoplasmic side of endoplasmic

reticulum membrane (GO:0098554)

CC 0.006886 0.019069 RPS28

Rough endoplasmic reticulum

membrane (GO:0030867)

CC 0.011453 0.029451 RPS28

Euchromatin (GO:0000791) CC 0.017363 0.039066 JUN

A band (GO:0031672) CC 0.017363 0.039066 RPL15

Structural constituent of ribosome

(GO:0003735)

MF 7.11E-16 3.34E-14 RPL4/RPLP1/RPS28/RPS9/RPL32/RPL15/RPS15/RPS3

rRNA binding (GO:0019843) MF 0.000478 0.011236 RPS9/RPS3

with ribosomal proteins (RPs) to form mature 60s and 40s

subunits and ultimately takes part in protein synthesis. Unlike

normal cells, the RNA pol I is hyperactivated leading to the

altered rRNA modifications and altered RPs extraribosomal

functions, thus forming the onco-ribosomes and translating the

oncogenic mRNAs and ultimately ending with ribosomopathies

(59). Some large subunit ribosomal proteins, such as RPL5,

RPL9, RPL10, RPL11, RPL15, RPL21, RPL22, RPL23A, RPL27,

RPL31 RPL34, RPL35, RPL36, and large subunit ribosomal

proteins, such as RPS7, RPS15, RPS15A, RPS17, RPS19, RPS20,

RPS24, RPS27, and RPSA, are reported to have significant roles

in the progression of various types of cancers including lung,

colon, breast, and pancreatic cancers (60–62). Generally,

the ribosomal proteins (RPs) directly/indirectly interact

with the Mdm2/Mdm4 E3 ubiquitin-protein ligases, which

in turn regulate the degradation of p53 tumor suppressor

protein resulting in the tumor progression (62, 63). An

interesting study reports that the WD repeat-containing

protein 74 (WDR74) alters the RPL5 levels and promotes

metastasis by degrading p53 via the RPS15-Mdm2 axis in
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FIGURE 7

The Kaplan–Meier plot for survival analysis of key biomarkers RPS3.

The x-axis represents the time in months, while the y-axis represents

the probability of survival. The red and black colors represent the

high expression and low expression of the biomarkers, respectively.

lung carcinoma (64). The ribosomal proteins were upregulated

in KRAS mutant Panc-1 cells, and their inhibition results in

cell cycle arrest, apoptosis induction, and antiproliferation

(65, 66).

RPS3 knockdown in Caco-2 colon cancer cells showed

decreased cancer progression and increased apoptosis via p53

upregulation and reduced activity of lactate dehydrogenase

(LDH) (67). RPS3 was also reported to induce apoptosis

by disrupting its interaction with E2F1 and also upregulates

the expression of pro-survival genes in NSCLC (68). On

this note, the mutations in the ribosomal proteins are also

highly involved in tumorigenesis. The RPs were reported to

interact with MDM2/4 and inhibit p53, and overexpression was

observed as a result of the hyperactivation of RNA polymerase

I machinery. The inhibition of RNA polymerase I machinery

by inhibitors, such as CX-3543 and CX-5461, promotes p-53-

dependent apoptosis in several cancers (69, 70). The clinical

trials of RNA polymerase I machinery by inhibitors CX-

5461 (NCT02719977) and CX-3543 (NCT00955786) resulted

in the identification of safety, tolerable dosage, and effective

dosage regimes and also resulted in less toxicity in patients

(71). The potential of individual RNA polymerase I machinery

inhibitors was studied, and combination strategies have to be

studied in near future from the successful interventions from

preclinical studies. Chan et al. (34) reported that the sotorasib

resistance was offered by the PAK/PI3K pathway in KRAS

G12C-mutant MIA-PaCa2 cells, and our bioinformatics analysis

showed that RPS3 was the crucial biomarker. Recent reports

show that RPS3 mediates the PI3K-Akt signaling axis in cancer

cells, which correlates with our findings from the study (72,

73).

From the above understandings, we observe and conclude

that the small unit ribosomal protein RPS3 is the crucial

biomarker of the AMG 510 resistance in KRAS G12C-mutant

MIA-PaCa2 cell pancreatic ductal adenocarcinoma cells. The

study outcomes and the possible future directions to combat the

Sotorasib resistance in KRAS G12C mutant cells were shown

in the Graphical Abstract. Co-targeting of ribosomal proteins

along with the target-specific inhibitors (here KRAS G12C-

mutant inhibitor) will pave way for the development of precision

treatment, such as using CRISPR-Cas and T-cell immunotherapy,

in cancer.

5. Conclusion

The current study was performed to evaluate the crucial

biomarkers involved in the KRAS G12C inhibitor, sotorasib

(AMG 510). From the analysis, we finally conclude that the

ribosomal protein RPS3 is the crucial biomarker involved in

the AMG 510 resistance in the KRAS G12C-mutant MIA-

PaCa2 cell pancreatic ductal adenocarcinoma cells. From

the study results and previous literature, we also report

that resistance could result from the degradation of p53 via

the RPs-MDM2/MDM4-p53 axis. Thus, the combinatorial

treatment strategy of (i) KRAS G12C-mutant inhibitors

and (ii) RNA polymerase I machinery inhibitors, such as

CX-3543 and CX-5461, could be a possible strategy to

tackle resistance and has to be studied in in vitro and in

vivo settings, which promotes the increased therapeutic

treatment of KRAS G12C-mutated cancers in the era of

precision medicine.
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SUPPLEMENTARY FIGURE 1

CPM plot of count data after filtering the poorly expressed genes.

SUPPLEMENTARY FIGURE 2

Voom mean–variance trend curve. It depicts that the lowly expressed genes

are filtered properly. t. Counts nearly 0 (plot x-axis value −1) have low

standard deviations. This rises immediately for low counts and then

gradually decreases.

SUPPLEMENTARY FIGURE 3

Kaplan–Meier plot for survival analysis of RPL4 (A), RPL32 (B), RPLP1 (C),

RPS9 (D), JUN (E), RPL15 (F), RPS15 (G), and RPS28 (H). The x-axis

represents the time in months, while the y-axis represents the probability of

survival. The red and black colors represent the high expression and low

expression of the biomarkers, respectively.
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Application of novel AI-based
algorithms to biobank data:
uncovering of new features and
linear relationships
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Immunology, Trinity College Dublin, The University of Dublin, Dublin, Ireland

We independently analyzed two large public domain datasets that contain
1H-NMR spectral data from lung cancer and sex studies. The biobanks were

sourced from the Karlsruhe Metabolomics and Nutrition (KarMeN) study and

Bayesian Automated Metabolite Analyzer for NMR data (BATMAN) study. Our

approach of applying novel artificial intelligence (AI)-based algorithms to NMR is

an attempt to globalize metabolomics and demonstrate its clinical applications.

The intention of this study was to analyze the resulting spectra in the biobanks

via AI application to demonstrate its clinical applications. This technique enables

metabolite mapping in areas of localized enrichment as a measure of true activity

while also allowing for the accurate categorization of phenotypes.

KEYWORDS

metabolomics, NMR, KarMeN, BATMAN, AI-based algorithm, lung cancer

1. Introduction

The field of metabolomics is the most recent addition to the “-Omics” discipline. The

core objective of this emerging field is to record all metabolites within a biological sample.

Metabolites are understood to be by-products of cellular metabolism with a weight of ∼2

kDa or less (1, 2). Water-soluble metabolites have the ability to communicate with the

environment and the microbiome due to the mobility around the open biological system

(3). Consequently, metabolomics is essential for “systems biology” due to its particular scope

analogous to fields such as genomics and proteomics (4). “Hence, genomics and proteomics

identify what could happen, metabolomics identifies what is currently happening in a

system” (5). The metabolomics framework is capable of examining endogenous metabolites

and signal molecules that are by-products or participate in gene regulation, protein function,

and enzymatic activity. Based on these, we identify ‘true activity’ as a representation of

what is currently happening in a biological system (5). Additionally, metabolomics is often

a consequence of “exposomics”, which is a series of factors that include diet, lifestyle,

pollutants, medication, and the microbiome itself (Figure 1A) (7). It is particularly valuable

as it is capable of capturing the thousands of small molecule interactions within a given

organism (8). Therefore, a significant portion of research has been invested in the potential

of tracking the downregulation and upregulation patterns of metabolites or biomarkers in

order to interpret fluctuations in biological function (9, 10).
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Broadly speaking, there are two metabolomics

methodologies: The first is targeted metabolomics, which

establishes associations between defined metabolites and

known phenotypic states (1). This approach remains to

be desired as it requires a deep understanding of that

pre-defined state and access to bioinformatic databases to

cross-validate. Alternatively, untargeted metabolomics is

the widening of the search for metabolites without prior

knowledge of the state in question. This unbiased and

semi-quantitative approach measures thousands of small

molecules simultaneously with the core objective being the

development of statistical and analytical methods that allow

the tracking of entire metabolic pathways and fluctuation

patterns (11–13).

A potential workhorse instrumentation for untargeted

metabolomics integration is nuclear magnetic resonance (NMR)

due to its holistic detection capability combined with high

sensitivity (though not as high as mass spectrometry) for low

molecular weight biomarkers. It is typical to use NMR and

mass spectrometry (MS) in tandem with multivariate analysis

(14). NMR spectroscopy is a technique that exploits atomic

nuclei with non-zero magnetic moments to act as tiny probes

for the detection of the local structure, dynamics, reaction

state, and chemical environment within molecules. NMR

spectra are unique, well-resolved, analytically tractable, and

often highly predictable for small molecules. NMR analysis

is, therefore, used for confirming the identity of a substance.

Different functional groups are easily distinguishable, and

identical functional groups with differing neighbors still give

distinguishable signals. Following NMR’s discovery in the

1940s, a plethora of new applications have emerged, and the

technique has undergone major technological developments.

NMR has now become an essential tool in the fields of chemistry,

physics, biology, and medicine. Potential applications of this

technology exist in multiple areas including structural biology,

metabolomics, food science, toxicology, natural products

research, pharmaceutical reaction and process monitoring,

and organic chemistry (15–17). As NMR is inherently

quantitative, its ability to determine metabolite concentrations

in a reproducible manner allows it to serve as an additional

variable of analysis for multiple phenotypes from a variety

of biofluids.

In the case of NMR, the standardized workflow generates

thousands of signals which include true signals from metabolites,

adducts, and fragments, as well as noise signals from contaminants

and artifacts (11, 12). Due to the sheer quantity of signals

generated from a single NMR workflow, it is essential to

develop tools that are capable of noise reduction, aiding in

the analysis of “true signals,” allowing for more impactful

outputs from downstream analysis. At present, there are issues

regarding the scalability of technologies that are required

to mainstream global metabolomics. Currently, there are

software tools developed such as MVAPack, NMRProcFlow,

and WorkFlow4Metabolomics. However, there are problems

regarding the high-throughput applications of such software

tools allowing for the development of artificial intelligence

(AI) integration.

There is an abundance of applications that have demonstrated

that AI is not a one size fits all; therefore, one must borrow

and hybridize concepts from genome-wide association studies

(GWASs) and Mummichog in an attempt to map all possible

metabolite matches to a pathway via mass spectroscopy, solely

focusing on regions of localized enrichment as they are assumed

to be a reflection of “true activity” (18). Other methods include

the Bayesian AutomatedMetabolite Analyzer for NMR (BATMAN)

data approach, which performs spectral deconvolution using prior

information on the spectral signatures of metabolites (19). When

handling large metabolomic datasets, it is common to attempt

to find meaning through multivariate analysis (MVA) methods

such as principal component analysis (PCA) and partial least

squares projection to latent structures (PLSs), all of which are

attempts to segregate features that contribute to variation that

are separated for further analysis, not too dissimilar from the

mummichog approach (20). The recent integrations of AI into

this space have seen the use of the least absolute shrinkage and

selection operator (LASSO), PCA, self-organization maps (SOMs),

and partial least square-discriminant analysis (PLS-DA) (8). AI

is capable of identifying phenotypic variation via dimensional

reduction, which indicates the biological pathway that differs

among phenotypes and demonstrates the value and power these

approaches have as they lend themselves to precision health (21).

Our approach involves harnessing global metabolomics in

addition to multivariate analysis in tandem with NMR to

investigate metabolites and their correlation with sex and lung

cancer. In this study, we use the data provided by two large biobank

databases. All data relating to sex were curated and analyzed by

Rist et al. (22) and Bub et al. (23), while the lung cancer data were

curated and analyzed by Padayachee et al. (19). The objective was to

examine open-source datasets and apply our analytical techniques

to observe variations and establish relationships in regions of

localized enrichment. Regions of enrichment are then separated

and probed for further correlations. Further probing defines the

change in functional parameters induced via disease or aging. Upon

examining the blood and urine, it became apparent that it was

possible to identify patterns and classify participants in accordance

to sex and lung cancer, with >90% accuracy.

2. Materials and methods

2.1. Data collection

For this investigation, we obtained open-source datasets from

the health study by Rist et al. (22) and the lung cancer study by

Padayachee et al. (19). In this study, we focused solely on the

previously analyzed 1H-NMR spectra of blood plasma and urine

samples obtained from lung cancer patients (ncases = 69, ncontrol =

74) (19) and healthy men and women (n = 301) (23). Procedural

steps differed per study; these include fasting periods, preparation,

and storage of NMR sampling.

The KarMeN study (22, 23) recruited healthy men and women

(+18 years old). In addition to blood and urine sampling (tested

by NMR, GC-MS, and LC-MS), a variety of anthropomorphic

measurements were taken but not utilized during our analysis. The
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FIGURE 1

(A) Biological “omics” cascade and the factors that govern them. Targeted metabolomics focuses on the measurements of endogenous small

molecules as a by-product of a metabolic pathway, while global metabolomics focuses on the fluctuation patterns and attributes said pattern to a

pathway. Fluctuations in the “omics” cascade (blue layer) can be due to the influence of exogenous non-genetic factors (red) and can lead to

alterations in phenotypes. Global metabolomics analysis can aid in the enhanced understanding of biomarkers/pathways and their correlation with

etiology and diagnosis (6). (B) Workflow diagram highlighting the important milestones of the NMR and AI processes.
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sole features used for this study were the 1H NMR blood and urine

analyses performed following a post-fasting period of 6 h, which

meant that we were availing of only approximately 35% of the entire

dataset provided by the study (22).

Padayachee et al. (19) collected previously analyzed data from

lung cancer patients (ncase = 69) from the Limburg Positron

Emission Tomography Center (Hasselt, Belgium), while the control

data (ncontrol = 74) were from Ziekenhuis Oost-Limburg (Genk,

Belgium). Additional parameters of this study included: a 6-h

fastening period, a glucose level of ≥ 200 mg/dl, and morning

medication intake.

The strict inclusion/exclusion parameters and the handling

of samples in both studies gave us confidence in the integrity

and excellence of both datasets, thus enabling us to perform our

own analysis. The inputs we availed of were solely that of 1H-

NMR datasets.

2.2. Data processing

In one-dimensional 1H-NMR spectroscopy, the signals are

represented as the frequency domain resulting from the Fourier

transform of a time-domain signal. These are given in units of parts

per million (ppm), which is pre-determined at 0.0 ppm based on

the chemical shift reference. Data processing was performed prior

to any analysis to ensure the integrity and reliability of the results.

For the Padayachee et al. (19) data, several pre-processing

steps were conducted on the 400-MHz spectra using the

Varian/Agilent software. These steps involved zero-filling

and multiplication by an exponential apodization function of

0.7Hz before Fourier transformation. Additionally, the spectra

underwent manual phasing, automatic baseline correction

using polynomials or splines, and referencing to trimethylsilyl-

2,2,3,3-tetradeuteropropionic acid (TSP) at 0.015 ppm. The final

pre-processing step involved normalizing the spectra by the

total area under the curve, without accounting for the water and

TSP signals.

Regarding the Rist et al. (22) data, both plasma and urine

samples were subjected to untargeted NMR analysis using 1D
1H NMR spectroscopy. Plasma samples were measured at 310K

on an AVANCE II 600 MHz NMR spectrometer equipped with

a 1H-BBI probehead and a BACS sample changer, while urine

samples were analyzed at 300K on a Bruker 600 MHz spectrometer

equipped with either an AVANCE III with a 1H,13C,15N-TCI

inversely detected cryoprobe or an AVANCE II with a 1H-BBI room

temperature probe. The plasma spectra were referenced to the

ethylenediaminetetraacetic (EDTA) acid signal at 2.5809 ppm and

bucketed graphically, ensuring that each bucket contained only one

signal or group of signals and no peaks were split between buckets.

The urine spectra were resampled for a uniform frequency axis

and aligned using “correlation optimized warping.” Subsequently,

bucketing was performed using an in-house developed software

based on Python, aiming to assign signals or groups of signals to

individual buckets without splitting peaks between them. Finally,

the resulting bucket tables were used for statistical analyses and

machine learning algorithms.

Furthermore, the resulting pre-processing steps from the

studies by Rist et al. (22) and Padayachee et al. (19) were subject

to further investigation. The investigation of the above outputs was

performed using Chenomx NMR Suite 8.1 (Chenomx, Edmonton,

Canada) and Human Metabolome Database (HMDB) for the

identification of metabolites. In addition, there were a variety

of unknowns that could not be identified by harnessing either

methodology. Therefore, the results section and corresponding

graphs contain these unknown variables that can be identified as

“Unknown – PPM”.

The data obtained from the study by Padayachee et al. (19)

required further processing steps in an attempt to reduce the

background noise and increase the overall resolution of the

data. This was conducted by binning the data into further sub-

intervals of 0.01 ppm. Conversely, the same approach could not be

conducted on the data obtained from the study by Rist et al. (22)

as the binning was conducted in-house and correlated with pre-

defined metabolites. The difference in binning processes and MHz

may be factors that allowed for variation in the results.

As per common practice in NMR, we removed water and

its corresponding ppm as this often accounts for the majority

of peak intensity and can mask minor variations in the NMR

spectra. Due to the difference in obtained data, standardization

was required, whereby the negative values within the dataset

were set to zero and mean-centered scaling was applied to the

Rist et al. (22) data. Feature values were transformed to follow

a uniform or normal distribution for the Padayachee et al. (19)

data. This helped to stabilize the variance and minimize the effects

of outliers, resulting in improved performance of the predictive

model. Scaling is important as it facilitates a fair comparison

between different features.

Finally, the dataset was divided into two sets: a test set

comprising 33% of the data and a training set with 66% of the data.

This partitioning ensures an unbiased evaluation of the algorithm’s

performance. To determine the significance of different features

in the dataset, the widely adopted statistical test known as the

ANOVA F-test was employed for feature selection. In order to

comprehensively evaluate the algorithm, a 10-fold cross-validation

technique was applied. This method is commonly employed in

machine learning to assess the algorithm’s performance across

multiple subsets of the dataset. By dividing the data into 10 equal

parts, the algorithm was trained and evaluated 10 times, each time

using a different combination of nine parts for training and one part

for testing. This approach provides a more robust assessment of the

algorithm’s generalization capability and overall performance.

3. Results

The data were generated by obtaining open-source datasets

from the Rist et al. (22) and Padayachee et al. (19) lung cancer

studies. In this study, we focused solely on the previously

analyzed 1H-NMR spectra of blood plasma and urine samples

obtained from lung cancer patients (ncases = 69, ncontrol = 74)

(19) and healthy men and women (n = 301) (23). The data

were structured and analyzed using our own in-house artificial

intelligence (AI) and machine learning (ML) combined with classic

statistical approaches to isolate features of interest and hone in
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on localized regions of enrichment for further analysis and to

correlate said features with individual metabolites and extrapolate

for metabolites that are predictive of phenotypes of interest. The

analysis in this section was performed via global metabolomics,

which demonstrates simultaneous analyses of multiple features

to categorize a phenotype of interest. The figures below show

heatmaps, minimum spanning trees, boxplots, volcano plots, and

PLS to demonstrate the phenotypic categorization, which lends

itself to clinical capabilities.

We tested the integrity of our outputs by comparing them to

the published analyses of the original datasets (19, 22). The mean

specificity - which describes the amount of correctly predicted

positives or “regions of enrichment” - we obtained was 0.97

for the KarMeN study (22) and 0.93 when distinguishing lung

cancer of Padayachee et al. (19). Additionally, the precision of the

model, which describes the portion of true positives among actual

positives, was measured to be 0.96 in KarMeN and 0.93 in the

Padayachee et al. study. The above statistics can be represented

on a scale of 0–1, where 0 represents poor performance and 1

perfect performance.

3.1. Lung cancer case study

Our analysis of the data provided from the Bayesian Automated

Metabolite Analyzer lung cancer study (19) yielded an overall 0.92

accuracy, with a mean specificity of 0.90 and a mean sensitivity of

0.93. The healthy precision value was 0.93, with a recall of 0.91

and an f1-score of 0.92. For the disease precision, it was 0.90,

with a recall of 0.93 and an f1-score of 0.91. The area under the

receiver operating characteristic curve (AUC-ROC) is calculated

by plotting the true positive rate against false positive, where 1

represents perfect and 0.5 worst. The Padayachee et al. (19) data

had an AUC-ROC of 0.92 (Figures 2–6).

Figure 2A is a heatmap of leading features in lung cancer

cohorts. The leading 20 metabolites contained in this heatmap are

essential for characterizing phenotypic states. Of these 20, we have

found asparagine, creatine, glycerol, threonine, glucose, citrate, and

lactate. Moreover, we have identified tartaric acid, which was not

on the list of key metabolites in the Padayachee et al. (19) study.

Interestingly, tartaric acid is known as a lung cancer biomarker and

can be found in HMDB (24).

Our in silico analysis provided the following: Figures 3A

and B are graphical outputs to visualize metabolomic relationships

distilled down from a total of approximately 2million relationships.

The distillation of these relationships is further represented

in Figures 4A and 5A which highlight the variability in the

top-ranking metabolites. In summary, we have funneled down the

key metabolites involved in lung cancer.

3.2. KarMeN health analysis among sexes

Our analysis of the data provided from the Karlsruhe

Metabolomics and Nutrition study (22, 23) predicted sex solely

using 1H-NMR data derived from plasma, yielding an overall

accuracy of 0.95, with a mean specificity of 0.97 and a mean

sensitivity of 0.92. The male precision value was 0.95, with a recall

of 0.97 and an f1-score of 0.96. For the female precision, it was 0.96,

with a recall of 0.93 and an f1-score of 0.94. The AUC-ROC was

computed to be 0.95 (Figures 2–6).

Figure 2B is a heatmap of leading features in the determination

of sex in healthy cohorts. The leading 20 metabolites contained

in this heatmap are essential for characterizing phenotypic states.

Of these 20, we have found creatinine, creatine, glycerol, glycine,

sarcosine, isoleucine, and valine. Moreover, we have identified 2-

hydroxy-2-methylbutyric (HMB) acid, which was not in the list of

key metabolites in the Rist et al. (22) study.

Figures 6A and B are graphical outputs to visualize

metabolomic relationships distilled down from a total of

approximately 2 million relationships. The distillation of these

relationships is further represented in Figures 4B, 5B, which

highlight the variability in the top-ranking metabolites. In

summary, we have funneled down the key metabolites involved in

distinguishing sex in healthy people.

4. Discussion

The primary objective of this study was to analyze the human

metabolome in the plasma by way of globalized metabolomics

profiling by harnessing 1H-NMR, to determine the factors that

significantly impact the metabolic profile of a healthy cohort

compared to a lung cancer cohort, and to distinguish the

variables among the sexes. Therefore, we performed our study and

established a strict in silico experimental standardization, which

we applied to data structuring, data treatment, and post-analysis

treatments. When collecting open-source data, we ensured that all

sample collections were standardized in terms of fasting, collection

time points, and general pre-analysis handling. We also searched

for healthy datasets with strict exclusion and inclusion criteria that

excluded groups that suffered from acute or chronic diseases or

were on medication, as we wanted a dataset that represented “true

health,” thereby decreasing variation. In contrast, the medication

and acute/chronic disease exclusion criteria cannot be applied to

the lung cancer cohort as they must undergo medical treatment in

tandem with the study. Furthermore, this fundamental difference

may be one variable that explains the variability when testing

the integrity of the algorithm. Through additional analysis, we

found that our process is capable of generating high-integrity

categorization with minimal variation. The difference among

predictive capabilities per dataset could be due to the number of

samples; n= 301 (22) and n= 143 (19). More specifically, Rist et al.

(22) binned 138 sex features as pre-determined metabolites, while

1,134 features were binned as 0.01 ppm increments in the data of

Padayachee et al. (19).

Furthermore, some AI algorithms may require a relatively

small amount of data to achieve satisfactory results, while others,

particularly deep learning algorithms, often benefit from large-scale

datasets. The size of the dataset required is directly proportional

to the type of AI used and its field of application. Even a large

dataset may not be useful if it is noisy, incomplete, or biased.

A primary issue is the problem of complex, highly specialized,

and specific fields focusing on molecular interactions, protein

structures, or drug discovery that typically require domain expertise
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FIGURE 2

Heatmap of leading features in (A) lung cancer cohorts and in (B) health and sexes. This heatmap is a representation of the top features and the

correlations relative to other features. The feature was determined by a singular NMR unit (bin or bucket), measured in units of chemical shift (ppm).

The location of the ppm was determined by ANOVA F-values. The features found through NMR analysis of plasma can be used to categorize the (A)

lung cancer metabolome and (B) among sexes and determine the states of health.
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FIGURE 3

Graphical outputs visualizing the linear relationship between ppm. (A) Minimum spanning tree (Mst) generated by the Fruchterman–Reingold

algorithm used to visualize all ppm in the healthy category with correlations above a 90% threshold. Nodes closer together in the center have a

stronger correlation and nodes far apart around the perimeter have little to no correlation. (B) Mst used to visualize all ppm in the diseased category

with correlations above a 90% threshold.

FIGURE 4

(A) Boxplots demonstrating the significance of changes between healthy controls and lung cancer groups and between male–female cohorts. The

boxplot demonstrates the absolute di�erence between the means of each feature. These features were further analyzed and identified to be the

following metabolites; 2-aminoisobutyric acid, dimethylmalonic acid, tartaric acid, and glycine. These identified metabolites were among the lead

features used to categorize the phenotypes of interest. Green represents the healthy controlled cohort, while red represents the lung cancer cohort.

The binned NMR spectral data from the Padayachee et al. (19) study were used to generate these graphs. (B) Boxplot demonstrates the absolute

di�erence of the means of each feature. These features were further analyzed and identified to be the following metabolites; creatinine 1, creatine 1,

2-hydroxy-2-methylbutyric (HMB) acid, valine 1, valine 2, isoleucine, and glucose 20. These identified metabolites were among the lead features

used to categorize the phenotypes of interest, while other points of interest include U 0.88 ppm and U 1.08 ppm. Blue represents the male cohort,

while purple represents the female cohort. The binned Plasma NMR spectral data from the Bub et al. study were used to generate these graphs.
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FIGURE 5

Kernel density plot used to visualize the distribution of lung cancer and the distribution of male–female cohorts. The above scatter plots demonstrate

a clear separation among the cohorts. (A) For the lung cancer cohorts, the features of interest include dimethylmalonic, tartaric acid, glycine, and

acetone. (B) For the distribution of sexes, the features of interest include creatinine 1, creatine 1, 2-hydroxy-2-methylbutyric (HMB) acid, and valine 1.

FIGURE 6

Graphical outputs visualizing the linear relationship between ppm. (A) Minimum spanning tree (Mst) generated by the Fruchterman–Reingold

algorithm used to visualize all ppm in the male (blue) category with correlations above a 90% threshold. Nodes closer together in the center have a

stronger correlation and nodes far apart around the perimeter have little to no correlation. (B) Mst used to visualize all ppm in the female (purple)

category with correlations above a 90% threshold.
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and specialized knowledge. As a result, the problem space is more

constrained, and the available data may be more targeted and

focused. In such cases, a smaller sample size can still provide

meaningful insights and accurate predictions.

The impact of our analytical approach can be found in Figure 4.

Many of our leading 20 metabolites have significant overlap with

the pre-existing analysis (19, 22). Along with these, we have

uncovered previously unidentified metabolites, such as tartaric acid

and 2-hydroxy-2-methylbutyric acid (HMB), in lung cancer and

sex identification, respectively (22, 24). We wish to emphasize that

Rist et al. utilized clinical chemistry, liquid chromatography, and

mass spectrometry along with NMR spectroscopy to identify the

top metabolites. However, our analysis only required one-third of

the original dataset, and we only utilized the NMR dataset. Despite

this, our analysis has uncovered not only similar metabolites but

also those which are unique.

We recognize that there are requirements for additional

analysis and broadening of the inclusion criteria. Participants that

are obese and/or smoking must be included and recorded for

an accurate representation of the healthy population, as studies

demonstrate that nicotine does have neuroprotective qualities (25);

therefore, we can assume their metabolic profile would be variable.

We also need to recognize the influence of “exposomics” and how it

can greatly influence the “omics” cascade, especially those that are

variable per region, such as carcinogens and diet (Figure 1A) (6).

Owing to the fact that NMR metabolomics provides a

quantitative and holistic view of all of the metabolites contained,

there is no reason that this technology cannot be applied to other

diseases. In this article, we have successfully harnessed AI and

metabolomic techniques to broaden the search parameters that

aid in a comprehensive understanding of disease and wellbeing.

The advancements made here can offer a snapshot of the entire

biological system, which allows us to ascertain an accurate

understanding of the phenotype in question, paving the way for

true precision medicine.

5. Conclusion

From our analyses of NMR spectra from two separate

biobanks, we have established that our approach has direct clinical

applications. Our approach of harnessing AI and NMR to globalize

metabolomics enables us to identify metabolites, to highlight

them as regions of localized enrichment as a measure of true

activity, while enabling us to accurately categorize phenotypes

of interest.
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Our understanding of the function of long non-coding RNAs (lncRNAs) in

health and disease states has evolved over the past decades due to the many

advances in genome research. In the current study, we characterized the lncRNA

transcriptome enriched in triple-negative breast cancer (TNBC, n = 42) and

estrogen receptor (ER+, n= 42) breast cancer compared to normal breast tissue (n

= 56). Given the aggressive nature of TNBC, our data revealed selective enrichment

of 57 lncRNAs in TNBC. Among those, AC099850.4 lncRNA was chosen for further

investigation where it exhibited elevated expression, which was further confirmed

in a second TNBC cohort (n = 360) where its expression correlated with a worse

prognosis. Network analysis of AC099850.4high TNBC highlighted enrichment

in functional categories indicative of cell cycle activation and mitosis. Ingenuity

pathway analysis on the di�erentially expressed genes in AC099850.4high TNBC

revealed the activation of the canonical kinetochoremetaphase signaling pathway,

pyridoxal 5’-phosphate salvage pathway, and salvage pathways of pyrimidine

ribonucleotides. Additionally, upstream regulator analysis predicted the activation

of several upstream regulator networks including CKAP2L, FOXM1, RABL6, PCLAF,

and MITF, while upstream regulator networks of TP53, NUPR1, TRPS1, and

CDKN1A were suppressed. Interestingly, elevated expression of AC099850.4

correlated with worse short-term relapse-free survival (log-rank p = 0.01). Taken

together, our data are the first to reveal AC099850.4 as an unfavorable prognostic

marker in TNBC, associatedwithmore aggressive clinicopathological features, and

suggest its potential utilization as a prognostic biomarker and therapeutic target

in TNBC.

KEYWORDS

noncoding RNA, lncRNA, AC099850.4, biomarkers, triple negative breast cancer,

prognosis

Introduction

Breast cancers represent a diverse group of cancers with different underlying

biological features exhibiting differences in their clinical management, responses to

treatment, and clinical outcomes (1). Recent advances in genomic research led to

the BC classification of defined molecular subtypes, based on hormone receptor

(HR), including estrogen receptor (ER) and progesterone receptor (PR), expression, as

well as ERBB2 [also known as human epidermal growth factor receptor 2 (HER2)]
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amplification, while tumors lacking overexpression of HR and

lacking HER2 amplifications are referred to as triple-negative

breast cancer (TNBC), comprising ∼10–20% of all breast cancers.

TNBC is oftentimes diagnosed at a younger age and has more

aggressive clinicopathological features at presentation (larger

tumor size, higher grade, and lymph node involvement) compared

to other breast cancer subtypes. TNBC is also classified based

on mRNA expression into four intrinsic subtypes: basal-like and

immune suppressed (BLIS), immunomodulatory subtype (IM),

mesenchymal-like subtype (MES), and luminal androgen receptor

(LAR) subtype, with BLIS being the most aggressive subtype (2).

While most of the research on breast cancer classification has

focused on protein-coding mRNAs, the utilization of non-coding

RNAs (ncRNAs), including miRNA and long non-coding RNAs

(lncRNAs), is currently gaining momentum for breast cancer

classification and as diagnostic and prognostic biomarkers (3–5).

In our previous analysis, we identified 13 lncRNAs that were able

to discriminate TNBC from normal breast tissue (3). A previous

study by Huang et al. reported low NEAT1low and MAL2high to

predict unfavorable outcomes in TNBC (6). In another study, Song

et al. reported low-NEF lncRNA expression to correlate with poor

prognosis in TNBC (7), thus corroborating a prognostic value for

several lncRNA in TNBC.

lncRNAs represent a major class of ncRNAs with lengths

exceeding 200 nucleotides and a lack of functional protein

translation. lncRNAs can be divided into six different

groups based on their genomic positions, subcellular

localizations, and functions: (1) enhancer lncRNAs, (2)

intronic lncRNAs, (3) antisense lncRNAs, (4) sense lncRNA,

(5) intergenic lncRNA, and (6) bidirectional lncRNAs

(8, 9). Increasing evidence has implicated lncRNAs in

the onset and progression of various human cancers,

through the regulation of key cellular processes, including

proliferation, migration, invasion, and apoptosis at the

transcriptional and post-transcriptional levels (10). Phase

II/III clinical trials highlighted the potential use of RNA-based

therapeutics, including antisense oligonucleotides (ASOs)

and small interfering RNAs (siRNAs) to treat various human

diseases (11).

Compelling data have implicated lncRNAs in regulating

various biological processes, which could play oncogenic

or tumor suppressor roles in breast cancer (12–15). Our

data recently highlighted the prognostic and therapeutic

functions of MALAT1 and LINC00511 in TNBC

(16, 17).

In the current study, we characterized the differentially

expressed lncRNAs in TNBC and ER+ breast cancers compared

to normal breast tissues. Given the aggressive nature and lack

of targeted therapies for TNBC, we subsequently aimed at

identifying unique lncRNA transcripts expressed in TNBC, but

not ER+ BC, which could potentially be used as prognostic

biomarkers and therapeutic targets. Subsequently, we focused

our study on AC099850.4 (alternatively named lnc-SKA2-

1, AC099850.3, or ENSG00000265415), revealing AC099850.4

as a novel prognostic biomarker associated with unfavorable

disease outcomes in TNBC. Comprehensive bioinformatics and

network analysis revealed a plausible role of AC099850.4 in cell

cycle regulation.

Results

To provide a global overview of the differentially expressed

lncRNAs in different BC subtypes, transcriptomic data from

42 TNBC, 42 ER+HER2− (referred to as ER+ throughout

the article), and 56 normal breast tissues (NT) were pseudo-

aligned to the GENCODE release (V33) reference genome using

Kallisto. Data presented in Figure 1 revealed a distinct lncRNA

expression profile for the indicated breast cancer molecular

subtypes compared to NT (Figure 1A, Supplementary Table S1).

Concordantly, PCA analysis revealed similar segregation of TNBC

from ER+ and NT (Figure 1B). Our analysis revealed 226 lncRNAs

that were upregulated in TNBC vs. NT and in ER+ vs. NT

(Figure 1C). Interestingly, we identified 57 lncRNAs that were

upregulated in TNBC vs. ER+ and in TNBC vs. NT, but not

in ER+ vs. NT, suggesting their specific expression in TNBC

(Figure 1C).

AC099850.4 expression correlates with
advanced tumor grade and worse
prognosis

Among the identified TNBC-enriched lncRNAs, AC099850.4

was chosen for further analysis since its expression was enriched

in TNBC and has not been implicated in TNBC thus far. The

expression AC099850.4 in TNBC, ER+, and NT is shown

in Figure 2A. We subsequently confirmed the upregulated

expression of AC099850.4 in a larger cohort of TNBC (n

= 360) compared to normal (n = 88) exhibiting 2.2 fc,

p(Adj) = 1.3 × 10−30, as shown in Figure 2B. Interestingly,

we observed the highest expression of AC099850.4 in

TNBC with advanced tumor grade (Figure 2C) and the

BLIS TNBC subtype exhibiting the worst prognosis (18)

(Figure 2D).

Elevated expression of AC099850.4
correlates with the mitotic cell cycle in
TNBC

To better understand the role of AC099850.4 in driving

TNBC, the cohort of 360 TNBC was grouped into AC099850.4high

(n = 180) and AC099850.4low (n = 180). We subsequently

analyzed the corresponding protein-coding transcriptome of the

AC099850.4high vs. AC099850.4low using the GENCODE v33

reference genome. Our data revealed a remarkable difference in

mRNA expression between the AC099850.4high vs. AC099850.4low,

with majority of functional enrichment being in categories

indicative of proliferation and mitosis (Figure 3A). Differentially

expressed genes in AC099850.4high are illustrated as volcano
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FIGURE 1

LncRNA transcriptional landscape in di�erent breast cancer subtypes and normal breast tissue. (A) Hierarchical clustering of TNBC (n = 42), ER+

breast cancer (n = 42) and normal breast tissue (n = 56) based on di�erentially expressed lncRNAs. Each column represents one sample, and each

row represents a single lncRNA. The expression level of each lncRNA (log2) is depicted according to the color scale. (B) Principal component analysis

(PCA) for the lncRNA transcriptome of TNBC, ER+ breast cancer, and normal breast tissue. (C) Venn diagram depicting the overlap between

upregulated lncRNAs in TNBC vs. normal, ER+ vs. normal, and TNBC vs. ER+.

plot (Figure 3B). Protein–protein interaction (PPI) analysis on

the upregulated genes in AC099850.4high vs. AC099850.4low

revealed strong network interaction with the highest enrichment

in cell cycle-related processes, where the expression of cell

cycle regulators (TRIP13, MYBL2, BRIP1, UBE2S, ANLN, NUF2,

CCNB2, MELK, PLK1, TPX2, BIRC5, AURKB, TYMS, NCAPD2,

FOXM1, UBE2C, IQGAP3, CENPF, NEK2, ASPM, MKI67, TTK,

CEP55, KIF2C, CDC20, CKS2, PTTG1, PRC1, CDK1, KIFC1,

STMN1, TOP2A, and CDKN2A) was enriched in AC099850.4high

(Figure 4).
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FIGURE 2

AC099850.4 expression correlated with advanced

clinicopathological features of TNBC. (A) Box plots depicting the

expression of AC099850.4 in TNBC (n = 42), ER+ BC (n = 42), and

normal breast tissue (n = 56) from the PRJNA251383. (B) Expression

of AC099850.4 in the validation cohort (TNBC = 360 vs. normal =

88) from PRJNA486023 (C) mRNA-based classification (D) TNBC.

BLIS: basal-like immunosuppressed, MES: mesenchymal, IM:

immunomodulatory, LAR: luminal androgen receptor. *p < 0.05, **p

< 0.005, ***p < 0.0005 and ****p < 0.00005. Expression of

AC099850.4 as a function of tumor grade.

Ingenuity pathway analysis of di�erentially
expressed genes in AC099850.4high vs.
AC099850.4low TNBC

We subsequently used ingenuity pathway analysis to

provide a better understanding of the enriched canonical,

upstream regulator, and disease and function categories

in AC099850.4high TNBC. Canonical enrichment analysis

identified activation of the kinetochore metaphase signaling

pathway, pyridoxal 5’-phosphate salvage pathway, and salvage

pathways of pyrimidine ribonucleotides in AC099850.4high TNBC

(Supplementary Table S2). Disease and function analysis identified

enrichment in cell proliferation, cell movement, migration of cells,

invasion of cells, cell viability, and colony formation (Figure 5A,

Supplementary Table S3). Upstream regulator analysis identified

enrichment in networks with predicted activation state of CKAP2L,

FOXM1, RABL6, PCLAF, MITF, FOXO1, AREG, H2AZ1, E2F3,

ESR1, RARA, ZNF768, KRAS, HNF1A-AS1, OGT, YAP1,

KDM1A, and MYBL2 (Figure 5B, Supplementary Table S4). In

contrary, TP53, NUPR1, TRPS1, CDKN1A, CTLA4, AR, KDM5B,

ARID1A, ATF3, and PDCD1 were suppressed (Figure 5C,

Supplementary Table S4). Taken together, our data suggested a

strong correlation between AC099850.4 expression and mitotic cell

cycle in clinical tumor specimens from TNBC patients.

AC099850.4 is an unfavorable prognostic
biomarker for TNBC relapse-free
short-term survival

We subsequently sought to assess the prognostic value of

AC099850.4 in relation to RFS in TNBC. In that regard,

we divided the 360 TNBC cohorts into AC099850.4high and

AC099850.4low based on median AC099850.4 expression and

performed the Kaplan–Meyer survival analysis. Interestingly,

AC099850.4 expressed had a modest correlation with RFS in the

long term (log-rank p-value = 0.4, Figure 6A). However, when

we assessed the ability of AC099850.4 to predict short-term RFS

(24 months), the high expression of AC099850.4 correlated with a

worse prognosis (log-rank p-value = 0.01, Figure 6B). Those data

highlighted a role for AC099850.4 as an unfavorable prognostic

biomarker for short-term RFS.

Discussion

Understanding the biological roles of various lncRNAs has

contributed to our knowledge of the functions of this class

of epigenetic regulators in cancer. In the current study, we

characterized the lncRNA transcriptome of TNBC and ER+ breast

cancers and identified 57 lncRNAs that were upregulated in TNBC

vs. ER+ and in TNBC vs. NT, but not in ER+ vs. NT, suggesting

their restricted expression in TNBC. Of particular interest,

we conducted a comprehensive investigation on the expression

AC099850.4 in TNBC. Interestingly, the highest expression of

AC099850.4 was observed in TNBC patients with advanced tumor

grade and in the BLIS subtype, which is known to have the worst

prognosis among different TNBC subtypes (18). Investigating the

expression of AC099850.4 in a larger cohort of TNBC (n =

360) correlated higher expression of AC099850.4 and enriched

functional categories indicative of cellular proliferation andmitosis.

More in-depth computational analyses using IPA revealed

activation of several functional categories in AC099850.4high

TNBC, including the canonical kinetochore metaphase signaling

pathway, pyridoxal 5’-phosphate salvage pathway, and salvage

pathways of pyrimidine ribonucleotides. Additionally, upstream

regulator analysis predicted activation of CKAP2L, FOXM1,

RABL6, PCLAF, and MITF and suppression of TP53, NUPR1,

TRPS1, and CDKN1A in AC099850.4high TNBC. Nonetheless,

our data highlighted AC099850.4 as an unfavorable prognostic

biomarker predicting short-term TRFS in TNBC. In agreement

with our data, AC099850.4 was recently identified among 8 lncRNA

biomarker panels in head and neck squamous cell carcinoma
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FIGURE 3

Functional enrichment in AC099850.4high vs. AC099850.4low TNBC. Expression data from 360 TNBC were grouped into “AC099850.4high” and

“AC099850.4low” according to AC099850.4 median expression and were subjected to di�erential expression analysis. (A) Heatmap depicting the

clustering of the AC099850.4high vs. AC099850.4low TNBC with the enriched gene ontology (GO) categories indicated on the left side and the

corresponding enrichment p-value. (B) Volcano plot depicting the upregulated (red) and downregulated (blue) genes in AC099850.4high vs.

AC099850.4low TNBC.

(19). Similarly, the elevated expression of AC099850.4, an m6A-

related lncRNA, was reported in patients with oral squamous

cell carcinoma (20), and the elevated expression of AC099850.4

was also correlated with worse survival in lung cancer (21).

Recently, AC099850.4 was reported to be highly expressed and

correlated with a worse prognosis in non-small cell lung cancer
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FIGURE 4

Protein-protein interaction (PPI) network analysis of upregulated genes in AC099850.4high vs. AC099850.4low TNBC. PPI network based on STRING

analysis of upregulated genes in AC099850.4high vs. AC099850.4low. Network statistics: number of nodes: 76, number of edges: 585, expected

number of edges: 79, average node degree: 15.4, avg. local clustering coe�cient: 0.647, PPI enrichment p-value: < 1.0 × 10−16.

(22). Similarly, a recent study on hepatocellular carcinoma (HCC),

which included 374HCC and 160 non-HCC samples, identified five

immune-related lncRNA prognostic panels, including AC099850.3.

Silencing of AC099850.3 inhibited HCC cell proliferation and

migration and led to significant inhibition of PLK1, TTK, CDK1,

and BULB1 cell cycle molecules and CD155 and PDL1 immune

receptors (23). Numerous recent studies revealed intriguing

aspects of AC099850.4 as immuno-autophagy-related lncRNA (24),

epithelial-mesenchymal transition-related lncRNA (25), and cancer

cell stemness-associated lncRNA (26) in HCC. Those reports

further support an oncogenic role for AC099850.4 in various

human cancers, which remains to be validated in TNBC.

While several studies implicated AC099850.4 in various other

cancer types, our data are the first to implicate this lncRNA in

TNBC prognosis. Our data suggest the potential use of AC099850.4

as a prognostic biomarker and therapeutic target in TNBC, which

warrants further investigation.

Conclusion

Our data are the first to identify AC099850.4 as a novel

prognostic biomarker for TNBC, correlating with advanced disease

stage and patient survival.

Limitations of the study

Our data provide solid evidence implicating AC099850.4

as a prognostic biomarker in TNBC. One limitation of the

current study is that the cohort we analyzed has only ER+

and TNBC, but none of the patients were HER2+; hence, the

expression of AC099850.4 in HER2+ BC remains to be assessed.

Although our study was initially based on patients’ transcriptomic

data, the potential to utilize this lncRNA for patient prognosis

remains to be validated in multiple TNBC cohorts. The functional

Frontiers inMedicine 06 frontiersin.org190

https://doi.org/10.3389/fmed.2023.1149860
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Vishnubalaji and Alajez 10.3389/fmed.2023.1149860

FIGURE 5

Ingenuity pathway analysis of di�erentially expressed genes in AC099850.4high vs. AC099850.4low TNBC. (A) Tree map (hierarchical heatmap)

depicting a�ected functional categories based on di�erentially expressed genes in AC099850.4high vs. AC099850.4low where the major boxes

represent a category of diseases and functions. Upstream regulator analysis depicting activated (B) and inhibited (C) networks in AC099850.4high vs.

AC099850.4low TNBC.

consequences of AC099850.4 depletion in TNBC cell models

remain to be validated in vitro, and the potential use of RNA-

based therapeutics to target AC099850.4 systemically remains also

to be addressed in vivo. Our data highlighted multiple enriched

GO and networks in AC099850.4high vs. AC099850.4low TNBC;

however, the exact mechanism by which AC099850.4 exerts its

biological functions and its interacting protein partners remains to

be identified using biochemical approaches, such as comprehensive

identification of RNA-binding proteins by mass spectrometry,

ChIRP-MS (27).

Materials and methods

RNA-Seq data analysis and bioinformatics

Raw RNA sequencing data were retrieved from the sequence

read archive (SRA) database under accession no. PRJNA251383,

consisting of 42 TNBC, 42 ER+HER2−, and 56 normal breast

tissue samples. The Kallisto index was constructed by creating a

de Bruijn graph employing the GENCODE release (V33) reference

transcriptome and 31 length k-mer. FASTQ files were subsequently
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FIGURE 6

Relapse-free survival (RFS) analysis according to AC099850.4 expression. (A) Long-term RFS analysis in a cohort of 360 TNBC based on median

AC099850.4 expression. (B) Short-term RFS analysis in a cohort of 360 TNBC based on median AC099850.4 expression. The log-rank test was used

to compare groups.

pseudo-aligned to the generated index using KALLISTO 0.4.2.1,

as previously described (3, 28). Normalization (TPM, transcript

per million) was conducted using KALLISTO 0.4.2.1. A detailed

description of the study subjects can be found in Ref. (29).

Normalized expression data (TPM) were sequentially imported

into AltAnalyze v.2.1.3 software for differential expression and

PCA analysis using 2.0-fold change and adjusted cut-off p-

value of <0.05 (30). Low abundant transcripts (<1.0 TPM

raw expression value) were excluded from the analysis. The

Benjamini–Hochberg method was used to adjust for the false

discovery rate (FDR). The marker finder prediction was carried

out as previously explained. PRJNA486023 (360 TNBC and 88

normal samples) was retrieved from the SRA databases using

the SRA toolkit v2.9.2 as previously described (31, 32) and

was mapped to GENCODE release (v33) as mentioned above

and was used to confirm our findings. Detailed information on

the study subjects in this validation cohort can be found in

Jiang et al. (33).

Protein-protein interaction and KEGG
network analysis

Upregulated genes in AC099850.4high TNBC (n =

180) were subject to PPI network analysis using the

STRING (STRING v10.5) database to illustrate the

interacting genes/proteins based on knowledge and

predication as described before (34). KEGG pathway

analysis was conducted using DAVID as described

earlier (35).

Gene set enrichment and modeling of gene
interactions networks

Upregulated genes in AC099850.4high were imported into

the Ingenuity Pathway Analysis (IPA) software (Ingenuity

Systems; http://www.ingenuity.com/) and were subjected to

functional annotations and regulatory network analysis using

upstream regulator analysis (URA), downstream effects analysis

(DEA), mechanistic network (MN) and causal network analysis

(CNA) prediction algorithm. IPA uses precision to predict

functional regulatory networks from gene expression data and

provides a significance score for each network according to the fit

of the network to the set of focus genes in the database. The p-value

is the negative log of P and represents the possibility of focus genes

in the network being found together by chance.

Survival and statistical analysis

The Kaplan–Meier survival analysis and plotting were

conducted using IBM SPSS version 26 software. For survival

analysis, patients were grouped into high or low based on the

corresponding lncRNA median expression. The log-rank test

was used to compare the outcome between expression groups.

GraphPad Prism 9.0 software (San Diego, CA, USA) was used to

compare the lncRNA expression as a function of tumor grade and

LN status. An unpaired two-tailed t-test was used to compare two

groups, while a one-way ANOVA was used to compare multiple

groups. The Benjamini–Hochberg method was used to adjust

for the false discovery rate (FDR). The p-value of < 0.05 was

considered statistically significant.
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