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Editorial on the Research Topic

New therapeutics for soft tissue sarcomas
Soft tissue sarcomas (STS) represent less than 1% of all tumors and are thought to be

derived from mesenchymal progenitor cells. This heterogeneous class of tumors include

over 100 histological subtypes with varying clinical presentation and genetics. Their

heterogeneity reflects the ability of mesenchymal precursors to develop into an array of

tissue types including muscle, bone, cartilage, and fat.

There are no routine standard screening tests for sarcoma, but once a tumor is detected

the prognosis is based on the disease stage, histopathology, size, and genetics. Standard of

care includes surgery, radiation and chemotherapy. A percentage of sarcomas have

actionable driver mutations, but most do not. STS are typically “cold”, with a low tumor

burden and are not likely to respond to immunotherapy. Despite improvements in therapy,

the 5-year survival rate remains low, reported as 58% (Cancer Net, ASCO) due in part to

higher frequencies of advanced metastatic disease.

This Research Topic includes nine multidisciplinary manuscripts. One overall theme is

that targeted therapies can be very effective for specific STS with specific actionable

mutations, but only a limited percentage of sarcoma patients have these mutations. Even

patients that respond well to targeted therapy often relapse, and then require subsequent

non-targeted therapy. Therefore, additional therapies that are both for targeted sarcomas

and for sarcomas lacking obvious actionable genetics are required that can prevent relapse/

prolong PFS.

Fuchs et al., reviewed FDA approved drugs for STS. Pazopanib is FDA approved for

non-adipocyte STS based on clinical prolongation of the PFS from 1.6 months to 4.6

months. The OS increase did not reach statistical significance (10.7 vs 12.5 months). Other

drugs reviewed were approved for more targeted populations and have longer response

rates. (1) Pexidartinib (CSF1R, Ckit inhibitor) for tenosynovial giant-cell tumors (locally

invasive, frequently due to CSF1 overexpression), 39% overall response rate (2) imatinib for

dermatofibrosarcoma protuberans (locally invasive with COL1A1/PDGFB fusion protein),

5% CR, 55% PR, (3) crizotinib for ALK positive inflammatory myofibroblastic tumors

(locally invasive), (4) tazemetostat (EZH2 inhibitor) for epithelioid sarcoma (can be
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metastatic; characterized by loss of INI1 subunit of the SWI/SNF

chromatin remodeling complex that opposes the enzymatic

function of EZH2), (5) nab-sirolimus for perivascular epithelioid

cell tumor (PEComa, often seen with tuberous sclerosis), (6)

tropomyosin receptor kinase inhibitors for TRK fusion positive

cancers. Also reviewed were targeted kinase inhibitors that do not

have FDA approval for STS but are in clinical testing.

Maleddu et al. reviewed only locally aggressive mesenchymal

tumors, particularly Desmoid fibromatosis, giant cell tumor of

bone, and tenosynovial giant cell tumor. These tumors have

limited ability to metastasize and therefore carry a better

prognosis than metastatic tumors. As noted by Fuchs et al. as

well, treatment for these includes targeted chemotherapy

approaches that can be effective. New therapies and paradigms

have focused on utilizing less toxic regimens and identifying

patients that do not require more toxic regimens.

Fuchs et al. reviewed new therapeutics for synovial sarcoma

(SYN). SYN is defined by the translocation of t(X:18) (p11.2;q11.2)

forming an oncogenic fusion protein, with about 1000 cases per

year in the US (1). Although SYN is more responsive to

chemotherapy, the overall survival is worse than that of most

STS. He reviewed clinical trials using adoptive cell transfer, where

autologous T cells are transfected with engineered T-cell receptors

that bind antigens that are expressed predominately in SYN

including NY-ESO-1, PRAME, and MAGE-A4. Included is a

description of the challenges with the approach.

Seong and D’Angelo reviewed immune approaches for STS. STS

generally have low levels of infiltrating lymphocytes and may have

higher levels of immunosuppressive M2 macrophages.

Lacuna et al. reviewed new therapeutics for leiomyosarcoma

(LMS). First-line therapies are anthracycline- or gemcitabine-based

regimens, resulting in a median PFS time of about 5 months and

overall survival time between 14-16 months. LMS is not typically

associated with specific mutations, but with complex karyotypes.

Highlighted in the review are new therapies based upon: (1) DNA

repair deficiencies because LMS is often associated with defects in

DNA-repair. This includes a Ph2/3 trial assessing temozolomide

and Olaparib in uterine LMS. (2) Kinase inhibitors, including

cabozantinib and anlotinib. (3) Metabolic vulnerabilities due to

the frequent loss of argininosuccinate synthase 1. (4) New

chemotherapeutic combinations including a Phase 3 trial of

unesbulin with dazacarbazine. Unesbulin is an orally bioavailable

inhibitor of tubulin polymerization. Possibly, the combination of

unesbulin (causes G2M arrest) and dazacarbazine (an alkylating

agent) causes replicative stress, particularly in tumors such as LMS

that are deficient in DNA-repair.

Three papers discuss new therapies tested in preclinical studies

or in a case report. First, Bernardo et al. demonstrates that both

photon and proton irradiation are equally effective in a sarcoma

mouse model. In clinical trials, first line therapy is the combination

of radiotherapy with doxorubicin, although the rates of recurrence

remain high. Clinical trials are not conducted to optimize radiation/

chemotherapy regimens or to compare types of radiation,

increasing their value in preclinical studies. Second, Marritt et al.

present preclinical data demonstrating efficacy of STING agonists in

models of undifferentiated polymorphic sarcoma UPS. Third, Li
Frontiers in Oncology 025
et al. describe a case report of a favorable response of an ALK-fusion

positive protein to the ALK TKI ensartinib. Epithelioid

inflammatory myofibroblastic sarcoma (EIMS) is often associated

with ALK fusion proteins.

Finally, because osteosarcomas show genetic similarities to soft

tissue sarcomas, we have included a paper describing a prognostic

score predicting responsiveness to high dose methotrexate

(Ganguly et al.). Tumor size, baseline metastases and SAP were

prognostic factors to predict survival, but social factors were not.

Similar parameters are likely to be relevant to STS tumors.

In summary, new therapies are being identified and developed

for sarcomas. Some of these are targeted therapies leveraging the

gains made in personalized medicine. Others are focused on novel

chemotherapeutic combinations leveraging the complex karyotype

of sarcoma on the background of DNA repair deficiencies. Exciting

new immuno-oncology approaches are in preclinical and clinical

stages. Some of these approaches may provide new therapies to

overcome resistance and provide more possible treatments to mix

and match in varying sequence so as to provide measurable benefit

to STS patients.
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Introduction: Soft tissue sarcomas (STS) are highly metastatic, connective-

tissue lineage solid cancers. Immunologically, sarcomas are frequently

characterized by a paucity of tumor infiltrating lymphocytes and an immune

suppressive microenvironment. Activation of the STING pathway can induce

potent immune-driven anti-tumor responses within immunogenic solid

tumors; however, this strategy has not been evaluated in immunologically

cold sarcomas. Herein, we assessed the therapeutic response of intratumoral

STING activation in an immunologically cold murine model of undifferentiated

pleomorphic sarcoma (UPS).

Materials and Results: A single intratumoral injection of the murine STING

agonist, DMXAA resulted in durable cure in up to 60% of UPS-bearing mice. In

mice with synchronous lung metastases, STING activation within hindlimb

tumors resulted in 50% cure in both anatomic sites. Surviving mice all

rejected UPS re-challenge in the hindlimb and lung. Therapeutic efficacy of

STING was inhibited by lymphocyte deficiency but unaffected by macrophage

deficiency. Immune phenotyping demonstrated enrichment of lymphocytic

responses in tumors at multiple timepoints following treatment. Immune

checkpoint blockade enhanced survival following STING activation.

Discussion: These data suggest intratumoral activation of the STING pathway

elicits local and systemic anti-tumor immune responses in a lymphocyte poor

sarcoma model and deserves further evaluation as an adjunctive local and

systemic treatment for sarcomas.

KEYWORDS

cancer immunotherapy, cGAS/STING, undifferentiated pleomorphic sarcoma, KP
sarcoma model, soft tissue sarcoma
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Introduction

Soft tissue sarcomas (STS) are rare malignancies derived from

mesenchymal lineage tissues such as muscle, adipose, fibrous

tissue, vessels, and skin (1). Sarcomas are rare, representing <1%

of all cancer diagnoses, yet disproportionately account for 15-20%

of solid cancers in children, adolescents, and young adults (2–4).

There are over 50 unique histologic subtypes of STS (1), with

undifferentiated pleomorphic sarcoma (UPS) being the most

common subtype in adults (4). High-grade soft tissue sarcomas

are considered a high-fatality disease characterized by frequent

metastases, resistance to systemic therapies, and a five-year

survival rate of under 60% (1, 5). Unresectable metastatic

disease is rapidly fatal (1, 6–8) and there is a pressing need for

new systemic therapies for STS patients (9).

Immunotherapies are revolutionizing cancer care (10–13),

yet unfortunately, sarcoma remains recalcitrant to multiple

clinically approved immune-based therapies (14–18). Relative

to other solid cancers, most sarcomas are deficient in tumor

infiltrating lymphocytes (TILs) (19–21), which, like other solid

cancers, predicts poor therapeutic responses to immune

checkpoint inhibition (ICI) (22). The immunosuppressive

landscape of STS is multifactorial and can be attributed to a

combination of low tumor mutational burden, dense infiltration

of immune suppressive macrophages (“M2-like” macrophages),

and the expression of immune suppressive connective tissue

cytokines and growth factors within mesenchymal-derived

sarcomas (23–25).

The stimulator of interferon genes (STING) receptor is a

highly conserved intracellular protein involved in the dsDNA

sensing apparatus of eukaryotic cells and is responsible for Type

I IFN and cytokine production in response to cytosolic DNA

derived from pathogens and corrupt host cells (26, 27). The

STING pathway provides a critical link between the innate and

adaptive compartments of the immune system and is a vital

component of cancer immunity (19, 21, 28). When STING is

activated, the potent liberation of Type I IFNs and other

inflammatory mediators results in tumor necrosis (19, 28),

activation of antigen presenting cells (APCs) (25, 28),

enhanced cross-priming of CD8+ lymphocytes and

recruitment of anti-tumor lymphocytes into the tumor

immune microenvironment (TIME) (19, 21, 28). In pre-

clinical models of classically inflamed solid tumors,

intratumoral (i.t.) small molecule STING agonists can induce

dramatic local tumor regression and systemic immunity against

distant disease and this strategy has now entered early phase

clinical trials.

STING immunotherapy has not been evaluated in

immunogenically cold models of STS. As poorly inflamed

sarcomas are recalcitrant to immune-based therapies such as

immune checkpoint inhibitors (14, 17–19, 21), we hypothesized
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that i.t. STING therapy would be an effective strategy to

dismantle the immune suppressive sarcoma microenvironment

and sensitize murine STSs to ICI. Herein, we evaluated the

therapeutic anti-tumor effects of STING activation in a

lymphocyte poor murine model of UPS that is resistant to ICI

(29–31). We demonstrate that that a single i.t. dose of a small

molecule STING agonist resulted in rapid immune-mediated

tumor clearance locally and systemically and therapeutic synergy

with immune checkpoint blockade.
Materials and methods

Mice

All in vivo murine studies were performed animal use

protocols approved by the University of Calgary Health

Sciences Animal Care Committee (#AC19-0072). Mice were

housed in a biohazard level 2 containment facility in

individual cages (Techniplast) equipped with HEPA filters and

filtered air. The mouse housing room was maintained at 22 +/-

1°C, 30-35% humidity, and was on a 12-hour light/dark cycle.

The mice were allowed standard food and water ad libitum. All

in vivo murine experiments were performed in 6–8-week-old

male and female mice. All mice were purchased from Jackson

Laboratories and then bred in house. Rag2 KO mice (B6(Cg)-

Rag2tm1.1Cgn/J Rag2 knockout mice; stock #008449) are deficient

in mature T-cells and B-cells (32). CCR2 KO mice (B6.129S4-

Ccr2tm1Ifc/J CCR2 knockout mice; stock #027619) show a

monocyte recruitment deficiency to sites of inflammation and

were used to test tumor macrophage deficiency (33).
Tumor model

The development of the syngeneic KP UPS cell line used in

these experiments is described and characterized by Hildebrand

et al. (2021) (29), and also previously by DuPage et al. (2012)

(31) and Kirsch et al. (2007) (30). Briefly, spontaneous UPS

tumors were generated in conditional Trp53fl/fl and KrasG12D/+

mice via lenti-Cre (University of Iowa Viral Vector Core;

FIVCMVCre VSVG) mediated Trp53 deficiency and activation

of the KrasG12D oncogene subperiosteally in the hindlimb of

female C57Bl/6 mice which results in establishment of primary

UPS tumors exclusively in the proximal tibia of the hindlimb.

Following a latency of 8-10 weeks, hindlimb tumors were

harvested and cultured in vitro for 6-8 weeks for cell line

development. Only cell line derived tumors were used as the

model for this project. Cultured UPS tumor cells were

engineered to express mCherry and firefly luciferase via
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transduction with pLV430G oFL T2A mCherry vector. This cell

line is referred to as “TAO1+”. Aliquots of UPS cell not

transduced with mCherry and luciferase are referred to as

“TAO1-”. All UPS tumors evaluated in in vivo experiments

reported in this study utilized engrafted TAO1+ UPS tumors in

which UPS cells were resuspended in serum free RPMI-1640

media and injected intramuscularly into the right hindlimb. The

quantity of UPS cells injected were as follows: 100,000 for

primary injection, 10,000 for contralateral limb injection, and

100,000 for tail vein injection.
Tumor volume assessment and
bioluminescent imaging

Tumors were monitored by caliper measurements and

bioluminescent imaging (BLI). For BLI, mice were injected

with D-luciferin (Goldbio Technology; cat. #LUCK-1G)

intraperitoneally and imaged using a Xenogen IVIS Lumina

system (Caliper Life Sciences, Hopkinton, MA, USA) ten

minutes following injection. Living Image Software

(PerkinElmer) to collect and analyze the BLI images. The

image exposure was set to “Auto.”

Caliper measurements were used to measure tumor length,

width, and depth. Length is defined as proximal to distal, width

is defined as lateral to medial, and depth is defined as anterior to

posterior measurements. Tumor volumes were calculated with

the formula (L+X)*L*X*0.2618, where L is the length of the

tumor and X is (width of tumor + depth of tumor)/2 (29, 34).

The humane endpoint for any mouse experiment was defined as

a leg tumor exceeding 15 mm in the length, width, or depth

dimensions. For the tail vein injection experiments and any mice

with lung tumors, the humane endpoint was defined as any rapid

deterioration of overall health including rapid weight loss, loss of

grooming, hunched posture, and lethargic behavior.

Experimental endpoint for any murine long-term survival

experiment was defined as three months after primary cell line

injection, one month after contralateral limb re-challenge, and

two months after tail vein re-challenge. All mice alive beyond

these experimental timelines are regarded as “survivors.” We

have not observed any evidence of UPS relapse after these

experimental endpoints.
5’6-dimethylxanthenone-4-acetic
acid experiments

In this study, DMXAA was used to investigate STING

immunotherapy in murine UPS tumors. In all experimental

groups, 100,000 UPS cells were injected into the right hindlimb

muscle of C57Bl/6 mice. Intra-tumoral (i.t.) injection(s) of

DMXAA (Sigma; cat. #D5817-25MG) or sodium bicarbonate
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(Gibco; cat. #25080094) were administered when UPS tumors

reached ~100 mm3 (7 days after cell line engraftment). The

experimental groups were: (i) one DMXAA (18 mg/kg) injection

(n=10), (ii) one DMXAA (25 mg/kg) injection (n=14), (iii) two

DMXAA (18 mg/kg) injections (n=10), (iv) three DMXAA (18

mg/kg) injections (n=10), and (v) sodium bicarbonate vehicle

controls (n=9). For (i), (ii), and (v) the treatment was delivered 7

days post UPS injection. For experiment (iii) DMXAA was

administered 7- and 14-days post UPS injection. For

experiment (iv) DMXAA was administered 7-, 11-, and 14-

days post UPS injection. An additional cohort was utilized in

which 100,000 UPS cells were injected into the tail vein for lung

engraftment on day 0, followed by concurrent leg tumor

engraftment of 100,000 UPS cells on day 7. On day 14, 18 mg/

kg of DMXAA was administered i.t. in the hindlimb. Single and

double DMXAA doses were chosen based on previous studies

(24, 28, 35). The triple DMXAA dosing was modified from this

same study. For the Rag2 and CCR2 KO mice experiments,

100,000 UPS cells were injected into the right hindlimb muscle.

DMXAA (18 mg/kg) or sodium bicarbonate vehicle control were

injected i.t. when tumors reached ~100 mm3 (7 days after cell

line engraftment).
In vivo re-challenge experiments

Mice from the cohort that were engrafted with 100,000 UPS

cells in the right hindlimb, subsequently received an i.t. dose of

DMXAA (18 mg/kg) and survived were re-challenged with UPS

cells. Survival was characterized as mice that are tumor free with

no evidence of tumor after three months. For the re-challenge

experiments in the primary site, 10,000 UPS cells were injected

into the muscle of the contralateral hind limb of “survivors” and

naïve C57Bl/6 mice. For the tail vein re-challenge experiments,

100,000 UPS cells administered through a tail vein injection in

“survivors” and naïve C57Bl/6 mice. Tail vein injections of

murine UPS cells into C57Bl/6 mice had been previously

determined by our laboratory to result in UPS tumors

exclusively in the lung within 3-4 weeks using this model.

Weekly BLI and overall mouse health were used to assess

tumor growth.
Immune checkpoint inhibitor therapy

Mice bearing syngeneic UPS hindlimb tumors were treated

with a mouse anti-CTLA4 monoclonal antibody (BioXcell,

CD152, clone 9D9, 250 mg) or a mouse anti-PD1 monoclonal

antibody (BioXcell, CD279, clone RMP1-14, 250 mg)
intraperitoneally, on days 7, 10, and 13 following UPS

injection. For anti-PD-1 + anti-CTLA4 dual therapy, UPS-

bearing mice were treated with mouse anti-CTLA4 (BioXcell,

CD152, clone 9D9, 250 mg) and mouse anti-PD1 (BioXcell,
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CD279, clone RMP1-14, 250 mg) intraperitoneally, on days 9, 11,

15, 18, 22, 25, 29, and 32 following UPS injection. For DMXAA

+ anti-PD-1 + anti-CTLA4 combination therapy, UPS-bearing

mice were treated with i.t. DMXAA (18 mg/kg) on day 7 and

mouse anti-CTLA4 (BioXcell, CD152, clone 9D9, 250 mg) and
mouse anti-PD1 (BioXcell, CD279, clone RMP1-14, 250 mg)
intraperitoneally, on days 9, 11, 15, 18, 22, 25, 29, and 32

following UPS injection.
Flow cytometry

100,000 UPS cells were engrafted into the hind limb muscle

of C57Bl/6 mice and 7 days later when the tumors reached a

tumor volume of ~100 mm3, i.t. injections of DMXAA (18 mg/

kg) or sodium bicarbonate were given. Tumors were processed

for flow cytometry 3- and 7-days post DMXAA or sodium

bicarbonate treatment. UPS tumors were excised and

homogenized using a gentleMACS Dissociator (Miltenyi).

Tumors were digested with RPMI-1640 media (Gibco; cat.

#22400089) containing 0.5 mg/mL DNAse I (Roche

Diagnostics; cat. #10104159001), 20 mg/mL Collagenase II

(Gibco; cat. #17101-015), and 0.5 mL/10 mL fetal bovine

serum (Gibco; cat. #12483-020). Tumors were then strained

with a 70 mm strainer (Falcon™; cat. #08-771-2), treated with

RBC lysis buffer (Biolegend; cat. #420301), and washed with 40%

Percoll™ (cat. #17-0891-02).

Single cell suspensions were stained with LIVE/DEAD

Zombie Aqua (cat. #423102) before antibody staining for 15-

30 minutes. Antibody staining was completed using the

following fluorophore-conjugated antibodies: CD3ϵ (cat.

#155609), CD4 (cat. #100512), CD8a (cat. #100733), CD45

(cat. #103154), CD11b (cat. #101207), Ly6C (cat. #128005),

and Ly6G (cat. #127615). Data was acquired using a

FACSCanto II (BD Biosciences) with FACSDiva software (BD

Biosciences). The data was analyzed with FlowJo (TreeStar). T-

cells were defined as CD3ϵ+/CD4+ (CD4 T-cells) and CD3ϵ+/
CD8+ (CD8 T-cells). Monocytes were defined as CD45+/CD11b

+/Ly6C+/Ly6G-, neutrophils as CD45+/CD11b+/Ly6C+/Ly6G+

and macrophages as CD45+/CD11b+/Ly6C-/Ly6G-. Controls

included a dead cell sample, achieved by heating the tumor cells

to 80°C for 15 minutes, unstained tumor cells, and single colour

controls. Single colour controls were made using compensation

beads (Invitrogen) (cat. #501129040).
mRNA quantification and analysis

NanoString® technology was used to compare the mRNA

expression levels of ~750 genes in the following four treatment
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groups: control UPS tumors (n=4), UPS tumors 24 hours post

DMXAA treatment (18 mg/kg; n=4), and UPS tumors 72 hours

post DMXAA treatment (18 mg/kg; n=7). Total RNA was

extracted from TAO1+ UPS tumors using standard protocols.

100 mg of unamplified total RNA input was used for codeset

hybridization using the mouse-specific nCounter® PanCancer

Immune Profiling panel (NanoString® Technologies, Seattle,

WA) (36). Codeset/RNA complexes were immobilized on

nCounter® cartridges for data collection. nSolver Analysis

Software 4.0 and Advanced Analysis were used for analysis

and figure generation.
Histopathology

UPS tumors were fixed in 10% neutral buffered formalin

(Research Products International Corp) for 24 hours and

embedded into paraffin using a tissue processor (Leica). The

tissues were sectioned to 5 microns (Leica RM2255) and stained

with hematoxylin and eosin (H&E) following the same protocol

as Foothills Medical Centre Calgary Laboratory Services.
Statistical analysis

For survival plots, the log-rank Mantel-Cox test was used.

For categorical variables, a two-way ANOVA with Bonferroni’s

multiple comparisons test was used. The development of all

graphs as well as statistical analysis was performed using

GraphPad Prism version 8.2.1.
Results

Intratumoral STING activation induces
durable survival in UPS-bearing mice

DMXAA is an established murine-specific STING agonist

with known dosing parameters and minimal toxicities below 30

mg/kg (28, 37). We first sought to determine if different dosing

schedules of DMXAA would result in therapeutic anti-tumor

effects. Single, double (3 days apart) or triple (every three days)

i.t. doses of DMXAA resulted in complete tumor eradication

beyond 3 months in 50-60% of mice (Figure 1A). I.t. dosing of

DMXAA was chosen over intra-peritoneal administration to

maximize local induction of i.t. immune responses. Additionally,

there are reports that i.t. DMXAA is more effective at activating

STING responsiveness in tumors than i.p. administration (28).

We observed greatest tumor eradication in the triple dosed

cohort but did observe overlying skin necrosis in over 50% of

these mice. There we no observed toxicities in the 18 mg/kg
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group. Using a 25 mg/kg single i.t. dose we observed increased

complete tumor eradication (70%) compared to the 18mg/kg

dose (50%), although one mouse died from presumed treatment

toxicity within 24hrs of injection (Figure 1B).

All DMXAA treated tumors showed immediate tumor

volume and BLI reductions compared to control. A more

detailed examination of tumor volumes and tumor BLI data in

the single 18 mg/kg treated mice shows three distinct patterns of

response to DMXAA treatment: long-term survivors, partial

responders, and late relapse (Figures 1C, D). In the partial

responder group, the mean tumor volumes steadily increased

after a transient reduction (Figures 1C, D). In the relapsed group,

mean tumor volume and BLI signal steadily decreased, and the

tumors were no longer palpable, however around day 28, tumors

became palpable again with associated increased BLI signal

(Figures 1C, D).
UPS re-challenge is rejected in STING-
treated surviving mice

We next sought to determine if successful clearance of UPS

tumors following STING therapy would result in systemic

protection against UPS recurrence. To mimic the clinical

scenario of sarcoma recurrence in the extremity (local) or lung

(metastatic), we performed UPS re-challenge experiments on

previous UPS-bearing mice that completed eradicated their
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challenged with UPS cells in either the contralateral limb or

lung resulted and 100% of these mice rejected the UPS re-

challenge as defined by no BLI signal or palpable tumor for up to

60 days of observation (Figure 2). All control mice in these

experiments developed hindlimb and lung tumors that rapidly

progressed to humane endpoint (Figure 2). There were no

differences in UPS tumor clearance between males and females

(Figure S1).
STING activation in extremity UPS
tumors results in systemic clearance of
limb tumors and synchronous
lung lesions

The lung is the most common site of metastases in STS. To

evaluate if STING treatment of extremity UPS tumors could also

induce therapeutic responses in sites of distant disease, we tested

STING activation in a model of synchronous hindlimb and lung

tumors. Naïve mice were engrafted with UPS cells in the lung via

tail vein injections (Day 0), followed by UPS engraftment in the

right hindlimb (Day 7), and then given DMXAA (Day 14; 18

mg/kg) i.t. (Figure 3A). All mice developed engrafted UPS

tumors in the lung and hindlimb as detected by BLI imaging.

Mice bearing simultaneous hindlimb and lung UPS tumors that

received i.t. STING therapy all survived longer than control
B

C D

A

FIGURE 1

Intratumoral STING activation results in long-term survival in UPS-bearing C57Bl/6 mice. (A-D) 100,000 UPS + mCherry and luciferase cells
were injected intramuscularly on day 0. (A) DMXAA (18 mg/kg) was injected i.t. according to varying dose schedules: single dose = injected on
day 7, double dose = injected on days 7 and 14, and triple dose = injected on days 7, 11, and 14. (B) DMXAA (18 mg/kg or 25 mg/kg) or NaHCO3

was injected i.t. on day 7. Mean tumor volume (C) and mean BLI (D) of UPS-bearing C57Bl/6 mice treated with DMXAA. (C, D) 18 mg/kg DMXAA
or NaHCO3 was injected i.t. on day 7.
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mice, with 30% of STING treated mice completely eradicating

UPS tumors in both anatomic sites (Figure 3B). By day 49, all

surviving mice had complete and durable tumor remission in

both sites (Figures 3C, D). Examining individual BLI data, 50%

of mice that did not survive STING therapy developed severe

tumor burden in the lung, and similar to isolated hindlimb

DMXAA experiments, some mice transiently cleared the lung

tumors only to relapse around 3 weeks post-therapy (Figure 3E).
Intratumoral STING activation results in
tumor necrosis, lymphocyte infiltration,
and upregulation cytotoxic adaptive
immune pathways

To elucidate the changes within the UPS TIME following

STING therapy, ex-vivo analyses of DMXAA treated UPS

tumors were evaluated at multiple time points after treatment.

Mid-tumor H&E sections showed >50% necrosis in all DMXAA

treated tumors at 72hrs, with minimal spontaneous necrosis in

control tumors (Figures 4A, B). Transcriptomic analyses also

demonstrated higher apoptotic pathway scores was at 72hrs post

STING treatment compared to control (Figure 4C).

Using FACS and Nanostring® transcriptome analyses, we

sought to evaluate changes in immune populations within UPS

tumors following STING treatment at various timepoints.

Overall leukocyte infiltration and general inflammation scores

were increased within 72hrs of STING treatment (Figures 4D,
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E). Additionally, there was elevated mRNA expression of

downstream markers associated with the STING pathway or

effectors of STING activation (Figure 4F), such as Tbk1, Irf3, as

well as interferons alpha-1, 2, and 4 (Ifna1, 2, and 4), beta-1

(Ifnb1), and gamma receptor (Ifngr), thus further confirming

evidence of persistent upregulation of STING pathway and

effectors up to 72hrs following DMXAA treatment.

Assessing the myeloid immune compartment, gene

expression levels of most macrophage markers were decreased

at early time points post STING therapy but rebounded and

were elevated relative to control by 72hrs (Figure 4G). Mean

macrophage function scores were also increased 72hrs post

STING treatment compared to control UPS tumors

(Figure 4H). Using FACS we observed a rapid increase in

neutrophils at early timepoints following STING treatment,

which like the mRNA analyses, was associated with a

reciprocal reduction in macrophages as well. This trend,

however, was reversed by 7 days, where macrophage numbers

steadily increased and neutrophil numbers declined (Figure 4I).

Examining the adaptive immune compartment, STING

treated tumors demonstrated an elevation in adaptive immune

scoring of mRNA expression profiles 72hrs after treatment

(Figure 5A). T cell function scores and cytotoxic scores of

mRNA analytes were also elevated in the 72hrs post DMXAA

treatment group (Figures 5B, C). Direct mRNA expression levels

of common lymphocyte markers were most upregulated in the

72hrs post DMXAA treatment in UPS tumors when compared

to the control UPS tumors and 24hrs post DMXAA treatment
B

C DA

FIGURE 2

Intratumoral STING activation provides protective immunity against UPS re-challenge. (A, C) C57Bl/6 DMXAA survivors and naïve C57Bl/6 mice
were given 100,000 UPS TAO1+ mCherry and luciferase cells injected via tail vein on day 0. (B, D) “Survivors” and naïve C57Bl/6 mice were
re-challenged with 10,000 UPS TAO1+ cells injected intramuscularly into the contralateral limb on day 0. BLI images of tail vein re-challenge
(C) and contralateral limb re-challenge (D) in naïve C57Bl/6 mice (control) and DMXAA survivors (DMXAA). **p-value=0.0046. ****p-
value<0.0001.
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(Figure 5D). There was a higher expression of Cd3ϵ, Cd4, and

Cd8 in control and tumors 72hrs after DMXAA treatment

compared to 24hrs after treatment. However, there was an

elevated expression of cytotoxic markers (Granzymes A and B;

Gzma and Gzmb, Figure D) in tumors 72hrs after DMXAA

treatment. Using FACS, compared to control, increased ratios of

CD8+ T-cells were also observed in the STING treated UPS
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tumors seven days after treatment, while the quantity of CD4+

T-cells remained stable across all time points (Figure 5E).

Collectively, these investigations of the UPS TIME

demonstrate that i.t. STING activation results in tumor necrosis,

liberation of STING effector chemokines and cytokines, early

neutrophil influx, followed by increases in adaptive immunity

gene expression and CD8+ lymphocyte infiltration.
B
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FIGURE 3

STING treatment of extremity UPS results in systemic eradication of synchronous lung metastases. (A) A schematic outlining the establishment
of UPS tumors in the lung on day 0. 100,000 UPS TAO1+ mCherry and luciferase cells were injected in the tail vein, subsequently followed by
leg tumor engraftment on day 7, and treatment of the hindlimb tumors with 18 mg/kg of DMXAA or vehicle control sodium bicarbonate i.t. on
day 14. (B) Kaplan Meier plot comparing the survival of DMXAA, and vehicle control treated mice. (C, D) BLI intensity of leg and lung tumors in
DMXAA and vehicle control groups. (E, F) BLI intensity of leg and lung tumors in DMXAA and vehicle control tumors individually.
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Lymphocyte deficiency, but not
macrophage deficiency, attenuates
anti-tumor benefits of intratumoral
STING immunotherapy

To determine if STING-mediated tumor clearance is

dependent on an adaptive immune response, we tested

DMXAA treatment in Rag2 Knockout (KO) mice (Figure 6).
Frontiers in Immunology 08
14
UPS engraftment, growth kinetics and time to humane endpoint

were unaffected by lymphocyte deficiency (Figures 6A, B). There

was also no significant difference between the overall survival time

(p-value = 0.1728) of UPS bearing Rag2 KO mice and C57Bl/6

mice (Figure 6C). These findings suggest negligible engagement of

the adaptive immune compartment in the progression of tumor

growth or engraftment in this UPS model. The anti-tumor effects

of STING therapy, however, were lost when UPS engrafted Rag 2
frontiersin.org
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FIGURE 4

Intratumoral STING activation results in necrosis and upregulation of apoptotic and myeloid markers. (A, B) Low magnification microscopy of
hematoxylin and eosin (H&E) stained tumor mid-sections shows substantial tumor necrosis 72hrs post STING therapy in UPS tumors. Nanostring
nSolver® analyses of immune mRNA transcripts demonstrating increased apoptosis (C), leukocyte infiltration (D), and tumor inflammation (E) within
72hrs of STING therapy. nSolver® generated heatmaps show increased mRNA expression profiles of common STING pathway and effectors markers
(F), macrophage markers (G), and macrophage functional scores (H) 72hrs after STING therapy. (I) FACS analyses of tumor cell suspensions for
myeloid cells (CD45+, CD11b+), which includes macrophages (Ly6G-, Ly6C-), monocytes (Ly6G-, Ly6C+), and neutrophils (Ly6G+, Ly6C+).
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KO mice were treated with intra-tumoral DMXAA (Figures 6C-

E). A marked decrease in UPS tumor volume was observed in

DMXAA treated Rag2 KO mice (days 7-14; Figure 6C), with

tumor volumes sharply rebounding afterwards. These

observations would suggest early tumor clearance following

STING therapy via lymphocyte independent mechanisms,

although UPS tumors could not be cleared beyond 14 days

without an intact lymphocyte compartment.

As STS are highly enriched in macrophages and given that

macrophages are highly responsive to STING agonists (37–39),

we sought to determine if reductions in UPS macrophages would

mitigate the early or innate immune response to DMXAA. The

CCR2/CCL2 is a known recruitment axis for tumor associated

macrophages and highly expressed by TAO1 cells in culture

(Figure 7A) we utilized a CCR2 KO model, which leads to

deficiencies in monocyte recruitment into tumors (33) and has

been shown reduced tumor macrophages in previous work (40).

Engrafted UPS tumors in CCR2 KOmice showed 75% reduction

of macrophages in UPS tumors (Figure 7B), but no differences in

tumor growth kinetics and time to humane endpoints

(Figures 7C, D). Following i.t. DMXAA, both control and

CCR2 KO mice showed reduction in UPS tumor volumes

(Figures 7E), tumor bioluminescence (Figure 7F), and tumor
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free survival 90-days post-UPS engraftment (Figure 7G).

However, UPS tumors in the CCR2 KO group demonstrated

quicker tumor volume and BLI response to treatment

(Figures 7E, F). These results would suggest that tumor

macrophage reductions via the CCR2/CCL2 axis did not

impair responsiveness to STING agonist therapy and may

have promoted a more rapid early/innate response.
STING therapy is synergistic with
immune checkpoint blockade
in murine UPS

This murine model of UPS is resistant to anti-CTLA4 and

anti-PD-1 monotherapy (Figures 8A, B) and documented by

others (29). We have observed late UPS tumor relapses in mice

treated with DMXAA after near complete tumor eradication

(relapses, Figures 1C, D). As we have also observed increased

CD8+ T cell infiltration and cytotoxic lymphocyte scores

following STING treatment of UPS tumors, we sought to

determine genes associated with negative immune regulation

were upregulated in UPS tumors after i.t. DMXAA.We observed

upregulation of Ido1, Lag3, Pd-1, Ctla4, Pdcd1lg2, and Tigit
frontiersin.org
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FIGURE 5

Intratumoral STING activation results in upregulation of lymphocytic markers and infiltration of cytotoxic T-lymphocytes. nSolver® advanced
analysis of STING treated of UPS tumors demonstrates increased (A) adaptive immune pathway scores, (B) T-cell function scores, and (C)
cytotoxic T-lymphocyte scores. Heat maps illustrate the (D) increased adaptive and cytotoxic mRNA expression profiles observed in UPS tumors
following STING treatment. (E) FACS analyses of tumor cell suspensions assessing CD8 T cells (CD3ϵ+, CD8+) and CD4 T cells (CD3ϵ+, CD4+).
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transcripts 72hrs post DMXAA treatment compared to control

UPS tumors (Figure 8C). Mean exhausted CD8 scores were also

at this timepoint (Figure 8D), collectively implying an

opportunity to increase therapeutic outcomes in STING

treated UPS tumors by the addition of immune checkpoint

inhibition (ICI) therapy.

The additional of both anti-PD1 and anti-CTLA4 therapy

improved STING-mediated tumor clearance from 50% to 80%.

We also observed 30% tumor clearance using combination ICI

therapy without STING therapy in this UPS model (Figure 8E).

These results suggest (i) there is baseline negative immune

checkpoint regulation in this model that can be therapeutically

targeted using combination ICI therapy, but not monotherapy

and (ii) STING activation results in further upregulation of
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negative T cell co-stimulatory pathways that can be targeted to

improve tumor clearance.
Discussion

Soft tissue sarcomas (STS) are rare, high-fatality cancers that

are poorly responsive to systemic therapies (6, 41–44). Recent

clinical trials have persistently failed to show significant clinical

benefit for patients with advanced STS treated with immune

checkpoint inhibitors (6, 12, 45), and other immune-based

therapies (7, 9, 46–50). While considerable heterogeneity exists

within the complex karyotypes of STS, the TIME of most STS is

immunologically cold, which predicts poor sensitivity to immune
frontiersin.org
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FIGURE 6

Intratumoral STING activation and subsequent anti-UPS tumor effects are mediated by adaptive immune responses. (A-E) 100,000 UPS +
mCherry and luciferase cells were injected intramuscularly on day 0. (A) Mean tumor volume and (B)–mean BLI ROI of UPS growth in Rag2
KO mice (purple) and C57Bl/6 mice (grey). (C) Survival of untreated Rag2 KO (solid purple) and C57Bl/6 mice (solid grey), as well as Rag2
KO (dashed purple) and C57Bl/6 mice (dashed grey) treated i.t. with DMXAA (18 mg/kg) on day 7. (D) Mean tumor volume and (E) mean BLI ROI
of Rag2 KO mice (purple) and C57Bl/6 mice (grey) treated i.t. with DMXAA (18 mg/kg) on day 7.
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therapies (22). Using a transplantable, immune competent,

orthotopic murine model of UPS that recapitulates the

lymphocyte poor TIME of most STS, we sought to determine if

STING immunotherapy could dismantle the immunosuppressive

features of this model and promote immunogenic tumor

eradication. Here, we demonstrate that i.t. STING activation can

promote tumor necrosis, lymphocyte mediated tumor clearance

and durable tumor eradication in up to 60% of UPS-bearing mice

following a single injection of a small molecule STING agonist.

Additionally, i.t. STING therapy was also effective on systemic

sites of disease in the lung, and in mice that cleared tumor

following therapy, durable immunity against UPS re-challenge

was present.
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While there have been numerous studies examining the

therapeutic potential of STING agonism in solid tumor models

(19, 28, 51–53), this is the first detailed examination of STING

therapy in an immunologically cold model of sarcoma. Recently,

Wolf et al., did test a STING agonist, ADU-S100, in combination

with an IL-2 superkine (H9-MSA) using the methylcholanthrene

carcinogen model of sarcoma (51). This model of UPS has a high

mutational burden (2000 non-synonymous mutations/tumor)

compared to the KP UPS model (18 non-synonymous

mutations/tumor) and is more representative of the mutational

burden observed in human cancers that are sensitive to

immunotherapies (54, 55). Conversely, the TIME of the KP

model of UPS contains a paucity of lymphocytes, is enriched in
frontiersin.org
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FIGURE 7

Impairing monocyte recruitment with CCR2 deficiency showed similar UPS response to intratumoral STING activation. (A) Concentration of
monocyte chemoattractants (CCL2, CX3CL1, M-CSF) in the supernatant of UPS cell culture. (B-G) 100,000 UPS + mCherry and luciferase
cells were injected intramuscularly on day 0. (B) UPS tumor macrophages (CD45+, CD11b+, F4/80+) in CCR2 KO mice are reduced by 75%
compared to control C57Bl/6 mice 9-days after UPS engraftment. (C) Mean tumor volume and (D) mean BLI ROI of UPS tumor growth curves
in CCR2 KO mice and C57Bl/6 mice. (E) Tumor volume and (F) mean BLI ROI of UPS-bearing CCR2 KO or C57Bl/6 mice treated with 18 mg/kg
DMXAA i.t. on day 7. (G) Longitudinal in vivo survival of UPS bearing mice following STING therapy showing similar overall survival in CCR2 KO
and control C57Bl/6 mice. ns, non-significant. **p-value=0.043. ****p-value<0.0001
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CD206 immunosuppressive macrophages, and is resistant to

immune checkpoint blockade (29, 56), thus recapitulating the

immunotherapy resistant phenotype common to most

sarcomas. We do recognize that our UPS model used here is

driven by Kras and p53 mutations, which are also used to induce

lung and pancreatic carcinomas in mice. Indeed, there is also

evidence that STING activation can induce therapeutic

responses in these models (37, 57), suggesting that these

mutations or associated downstream effector pathways may

support sensitivity to STING therapy.
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Similar to other studies, we have shown that STING-mediated

clearance of tumor cells in this UPS model is dependent on

functional lymphocytes (28, 52, 53). Additionally, our data

importantly shows the resultant systemic treatment effect

following i.t. STING activation as we observed durable survival

in mice with synchronous extremity and lung tumors following

treatment of the extremity tumor. This, coupled to the rejection of

UPS re-challenge in the leg or lung highlights the persistent anti-

sarcoma systemic adaptive immunity following a single treatment

of STING activation. This is clinically important as the lung is the
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FIGURE 8

Therapeutic synergy of STING activation and immune checkpoint blockade in murine UPS tumors. (A, B) 100,000 UPS + mCherry and luciferase
cells were injected intramuscularly on day 0. (A) 250 mg mouse anti-CTLA4 monoclonal antibody or (B) 250 mg mouse anti-PD1 monoclonal
antibody were injected intraperitoneally, on days 7, 10, and 13 following UPS engraftment. (C) NanoString mRNA expression profile of common
immune checkpoint markers. Upregulated expression is shown in purple and downregulated expression is shown in grey. Control UPS tumors
(n=4), 24 hours post DMXAA UPS tumors (n=4), 72 hours post DMXAA UPS tumors (n=7). (D) Exhausted CD8 pathway score using Nanostring
Technologies.(E) Anti-PD-1 (250 mg) + anti-CTLA4 (250 mg) were injected intraperitoneally on days 9, 11, 15, 18, 22, 25, 29, and 32 following UPS
injection (black and green), DMXAA (18 mg/kg) was injected i.t. on day 7 (purple).
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principal visceral site of STS metastases or systemic relapse (58,

59). These data justify further study into how STING-based

immunotherapy for primary sarcomas could be used to

systemically eradicate micro-metastases or prevent relapses

following local control procedures.

A central process of STING immunotherapy is the induced

cooperation of rapid innate immune responses with persistent

adaptive immune-based elimination of cancer cells. Numerous

studies have demonstrated impaired STING signaling or

downregulation of STING in cancer cells, suggesting the

stromal constituents of the TIME are the critical targets of

STING activation (60–63). As macrophages are highly

sensitive to STING agonists (64–66) and are abundant in both

human and pre-clinical sarcoma models (29, 39, 56, 67–69), we

hypothesized that a reduction in tumor associated macrophages

(TAMs) would mitigate the therapeutic response to STING

agonism. Monocytes are known to contribute to the TAM

populations, and the CCR2/CCL2 signaling is critical for TAM

recruitment from monocyte lineages (55). We did observe a 75%

reduction in UPS TAMs in the CCR2 KO line but did not

observe any change in long-term survival and instead observed

earlier onset of tumor volume and BLI reductions following

treatment. It is possible TAMs are not the dominant effector cell

of small molecule STING agonists in this model and STING

signaling occurs via other cell populations such as tumor

resident DCs (21), endothelial cells (19) or remaining

macrophage pools. Alternatively, inhibition of the CCL2/CCR2

axis is associated a decrease in CD206 immunosuppressive

macrophage populations (38) and thus a reduction in CD206

TAMs in CCR2 KO mice may provide a more inflamed and

sensitive environment for STING responsiveness.

An interesting observation in these experiments were the late

tumor relapses following STING therapy. In these mice (30%),

tumors substantially regressed and were not palpable, but

quickly rebounded 2-3 weeks after treatment. Transcriptomic

data of STING treated tumors did show increased expression of

markers associated with T-cell inhibition and T-cell exhaustion

which could explain late treatment resistance. Supporting this,

we observed improved tumor clearance from 50% to 80% when

STING therapy was combined with immune checkpoint

inhibition (anti-CTLA4 and anti-PD1). These observations are

consistent with pre-clinical studies in other cancer models

showing STING-dependent upregulation of negative immune

checkpoints and improved therapeutic responses when STING

agonism is combined with immune checkpoint blockade (37, 52,

70). As there is considerable clinical enthusiasm to understand

which clinical STS will benefit from immune checkpoint

blockade, the addition of intra-tumoral STING therapy may

provide an opportunity to improve response rates across more

STS subtypes.

We acknowledge that there are limitations within the

present study. Firstly, it has been well characterized that
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DMXAA is murine-specific STING agonist and does not

activate human STING (71). We elected to use DMXAA in

this study as proof of concept given the documented efficacy,

known toxicities and well-defined dosing parameters of this

small molecule STING agonist. Over the past decade, numerous

small molecule STING agonists capable of activating human

STING have been developed (51, 52, 72) and while some of these

agents are now being tested in clinical trials, there remains much

to learn regarding how these new agents should be administered

and dosed locally, systemically, and in concert with other

therapies. Future studies are ongoing evaluating these new

agents in different genetic models of STS. Another limitation

pertains to the cell-line derived UPS tumors used in this study.

We and others have shown that engrafted KP UPS tumors

demonstrate increased spontaneous lymphocytic infiltrated

compared to spontaneous KP UPS tumors (56). Therefore,

these engrafted tumors may be more sensitive to STING

therapy and future studies evaluating spontaneous tumors will

be required. Engraftable tumors enabled a more consistent,

reproducible, and feasible experiments as we could predictably

induce tumors and begin therapy using consistent timelines.

Further work will be completed to delineate the tumor antigens

involved in this UPS model following STING activation.
Conclusion

To our knowledge, this is the first study to evaluate STING

immunotherapy in the KP model of UPS. Like most human STS,

the KP sarcoma model has an immune-suppressed TIME and is

resistant to immune checkpoint blockade. We have shown that a

single treatment of intra-tumoral STING activation can induce

immune-mediated sarcoma clearance locally and systemically.

These results justify further study into the clinical translation of

STING immunotherapy for sarcomas.
Data availability statement

The original contributions presented in the study are

included in the article/Supplementary Materials. Further

inquiries can be directed to the corresponding authors.
Ethics statement

The animal study was reviewed and approved by University

of Calgary Health Sciences Animal Care Committee

(#AC19-0072).
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1087991
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Marritt et al. 10.3389/fimmu.2022.1087991
Author contributions

KLM contributed to project conception, completion, study

design, and produced the first draft of the manuscript. KMH and

KNH contributed to experiment completion and final

manuscript production. AKS contributed to study design and

experiment execution. FJZ, DJM, and FRJ contributed to study

conception and project design. MJM contributed to project

conception, design, manuscript development, and funding

acquisition. All authors contributed to the article and

approved the submitted version.
Funding

We would like to extend our gratitude to the following

groups who provided funding for the completion of this

research: Canadian Institutes of Health Research, Alberta

Cancer Foundation, Cancer Research Society, and the

University of Calgary Department of Surgery. Alberta Cancer

Foundation, Award #27365; Canadian Institutes of Health

Research, Award #PJT-175253; Cancer Research Society,

Award #24264.
Frontiers in Immunology 14
20
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/

fimmu.2022.1087991/full#supplementary-material
References
1. Cormier JN, Pollock RE. Soft tissue sarcomas. CA: Cancer J Clin (2004) 54
(2):94–109. doi: 10.3322/canjclin.54.2.94

2. Burningham ZH, Spector M, Schiffman LJD. The epidemiology of sarcoma.
Clin Sarcoma Res (2012) 2(1):14. doi: 10.1186/2045-3329-2-14

3. Farid M, Ngeow J. Sarcomas associated with genetic cancer predisposition
syndromes: a review. oncol (2016) 21(8):1002–13. doi: 10.1634/theoncologist.2016-
0079

4. Nandra R, Hwang N, Matharu GS, Reddy K, Grimer R. One-year mortality
in patients with bone and soft tissue sarcomas as an indicator of delay in
presentation. Ann R Coll Surgeons Engl (2015) 97(6):425–33. doi: 10.1308/
003588415X14181254790284

5. Seddon B, Strauss SJ, Whelan J, Leahy M, Woll PJ, Cowie F, et al.
Gemcitabine and docetaxel versus doxorubicin as first-line treatment in
previously untreated advanced unresectable or metastatic soft-tissue sarcomas
(GeDDiS): a randomised controlled phase 3 trial. Lancet Oncol (2017) 18
(10):1397–410. doi: 10.1016/S1470-2045(17)30622-8

6. Groisberg R, Hong DS, Behrang A, Hess K, Janku F, Piha-Paul S, et al.
Characteristics and outcomes of patients with advanced sarcoma enrolled in early
phase immunotherapy trials. J immunother Cancer (2017) 5(1):1–8. doi: 10.1186/
s40425-017-0301-y

7. Schwinger W, Klass V, Benesch M, Lackner H, Dornbusch HJ, Sovinz P, et al.
Feasibility of high-dose interleukin-2 in heavily pretreated pediatric cancer
patients. Ann Oncol (2005) 16(7):1199–206. doi: 10.1093/annonc/mdi226

8. Wrobel P, Ahmed S. Current status of immunotherapy in metastatic
colorectal cancer. Int J colorectal Dis (2019) 34(1):13–25. doi: 10.1007/s00384-
018-3202-8

9. Kawaguchi S, Tsukahara T, Ida K, Kimura S, Murase M, Kano M, et al. SYT-
SSX breakpoint peptide vaccines in patients with synovial sarcoma: a study from
the Japanese musculoskeletal oncology group. Cancer Sci (2012) 103(9):1625–30.
doi: 10.1111/j.1349-7006.2012.02370.x

10. Binnewies M, Roberts EW, Kersten K, Chan V, Fearon DF, Merad M, et al.
Understanding the tumor immune microenvironment (TIME) for effective
therapy. Nat Med (2018) 24(5):541–50. doi: 10.1038/s41591-018-0014-x
11. Dyson KA, Stover BD, Grippin A, Mendez-Gomez HR, Lagmay J, Mitchell
DA, et al. Emerging trends in immunotherapy for pediatric sarcomas. J Hematol
Oncol (2019) 12(1):1–10. doi: 10.1186/s13045-019-0756-z

12. Tawbi HA, Burgess M, Bolejack V, Van Tine BA, Schuetze SM, Hu J, et al.
Pembrolizumab in advanced soft-tissue sarcoma and bone sarcoma (SARC028): a
multicentre, two-cohort, single-arm, open-label, phase 2 trial. Lancet Oncol (2017)
18(11):1493–501. doi: 10.1016/S1470-2045(17)30624-1

13. Wang M, Zhao J, Zhang L, Wei F, Lian Y, Wu Y, et al. Role of tumor
microenvironment in tumorigenesis. J Cancer (2017) 8(5):761. doi: 10.7150/
jca.17648

14. Balch CM, Riley LB, Bae YJ, Salmeron MA, Platsoucas CD, von Eschenbach
A, et al. Patterns of human tumor-infiltrating lymphocytes in 120 human cancers.
Arch Surg (1990) 125(2):200–5. doi: 10.1001/archsurg.1990.01410140078012

15. Chakravarthy A, Khan L, Bensler NP, Bose P, De Carvalho DD. TGF-b-
associated extracellular matrix genes link cancer-associated fibroblasts to immune
evasion and immunotherapy failure. Nat Commun (2018) 9(1):1–10. doi: 10.1038/
s41467-018-06654-8

16. Chalmers ZR, Connelly CF, Fabrizio D, Gay L, Ali SM, Ennis R, et al. Analysis
of 100,000 human cancer genomes reveals the landscape of tumor mutational burden.
Genome Med (2017) 9(1):1–14. doi: 10.1186/s13073-017-0424-2

17. Chen DS, Mellman I. Oncology meets immunology: the cancer-immunity
cycle. immunity (2013) 39(1):1–10. doi: 10.1016/j.immuni.2013.07.012

18. Sorbye SW, Kilvaer T, Valkov A, Donnem T, Smeland E, Al-Shibli K, et al.
Prognostic impact of lymphocytes in soft tissue sarcomas. PloS One (2011) 6(1):
e14611. doi: 10.1371/journal.pone.0014611

19. Demaria O, De Gassart A, Coso S, Gestermann N, Di Domizio J, Flatz L,
et al. STING activation of tumor endothelial cells initiates spontaneous and
therapeutic antitumor immunity. Proc Natl Acad Sci (2015) 112(50):15408–13.
doi: 10.1073/pnas.1512832112

20. Diamond MS, Kinder M, Matsushita H, Mashayekhi M, Dunn GP,
Archambault JM, et al. Type I interferon is selectively required by dendritic cells
for immune rejection of tumors. J Exp Med (2011) 208(10):1989–2003. doi:
10.1084/jem.20101158
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fimmu.2022.1087991/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fimmu.2022.1087991/full#supplementary-material
https://doi.org/10.3322/canjclin.54.2.94
https://doi.org/10.1186/2045-3329-2-14
https://doi.org/10.1634/theoncologist.2016-0079
https://doi.org/10.1634/theoncologist.2016-0079
https://doi.org/10.1308/003588415X14181254790284
https://doi.org/10.1308/003588415X14181254790284
https://doi.org/10.1016/S1470-2045(17)30622-8
https://doi.org/10.1186/s40425-017-0301-y
https://doi.org/10.1186/s40425-017-0301-y
https://doi.org/10.1093/annonc/mdi226
https://doi.org/10.1007/s00384-018-3202-8
https://doi.org/10.1007/s00384-018-3202-8
https://doi.org/10.1111/j.1349-7006.2012.02370.x
https://doi.org/10.1038/s41591-018-0014-x
https://doi.org/10.1186/s13045-019-0756-z
https://doi.org/10.1016/S1470-2045(17)30624-1
https://doi.org/10.7150/jca.17648
https://doi.org/10.7150/jca.17648
https://doi.org/10.1001/archsurg.1990.01410140078012
https://doi.org/10.1038/s41467-018-06654-8
https://doi.org/10.1038/s41467-018-06654-8
https://doi.org/10.1186/s13073-017-0424-2
https://doi.org/10.1016/j.immuni.2013.07.012
https://doi.org/10.1371/journal.pone.0014611
https://doi.org/10.1073/pnas.1512832112
https://doi.org/10.1084/jem.20101158
https://doi.org/10.3389/fimmu.2022.1087991
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Marritt et al. 10.3389/fimmu.2022.1087991
21. Woo S-R, Fuertes MB, Corrales L, Spranger S, Furdyna MJ, Leung MY, et al.
STING-dependent cytosolic DNA sensing mediates innate immune recognition
of immunogenic tumors. Immunity (2014) 41(5):830–42. doi: 10.1016/
j.immuni.2014.10.017

22. Petitprez F, de Reyniès A, Keung EZ, Chen TW, Sun CM, Calderaro J, et al.
B cells are associated with survival and immunotherapy response in sarcoma.
Nature (2020) 577(7791):556–60. doi: 10.1038/s41586-019-1906-8

23. Corrales L, McWhirter SM, Dubensky Jr Gajewski TW TF. The host STING
pathway at the interface of cancer and immunity. J Clin Invest (2016) 126(7):2404–
11. doi: 10.1172/JCI86892

24. Jassar AS, Suzuki E, Kapoor V, Sun J, Silverberg MB, Cheung L, et al.
Activation of tumor-associated macrophages by the vascular disrupting agent 5, 6-
dimethylxanthenone-4-acetic acid induces an effective CD8+ t-cell–mediated
antitumor immune response in murine models of lung cancer and
mesothelioma. Cancer Res (2005) 65(24):11752–61. doi: 10.1158/0008-
5472.CAN-05-1658

25. Wang L-CS, Thomsen L, Sutherland R, Reddy CB, Tijono SM, Chen CJ,
et al. Neutrophil influx and chemokine production during the early phases of the
antitumor response to the vascular disrupting agent DMXAA (ASA404). Neoplasia
(2009) 11(8):793–803. doi: 10.1593/neo.09506

26. Ahn J, Xia T, Rabasa Capote A, Betancourt D, Barber GN. Extrinsic
phagocyte-dependent STING signaling dictates the immunogenicity of dying
cells. Cancer Cell (2018) 33(5):862–873 e5. doi: 10.1016/j.ccell.2018.03.027

27. Zheng J, Mo J, Zhu T, ZhuoW, Yi Y, Hu S, et al. Comprehensive elaboration
of the cGAS-STING signaling axis in cancer development and immunotherapy.
Mol Cancer (2020) 19(1):133. doi: 10.1186/s12943-020-01250-1

28. Corrales L, Glickman LH, McWhirter SM, Kanne DB, Sivick KE, Katibah
GE, et al. Direct activation of STING in the tumor microenvironment leads to
potent and systemic tumor regression and immunity. Cell Rep (2015) 11(7):1018–
30. doi: 10.1016/j.celrep.2015.04.031

29. Hildebrand KM, Singla AK, McNeil R, Marritt KL, Hildebrand KN, Zemp F,
et al. The kras G12D; Trp53 fl/fl murine model of undifferentiated pleomorphic
sarcoma is macrophage dense, lymphocyte poor, and resistant to immune
checkpoint blockade. PloS One (2021) 16(7):e0253864. doi: 10.1371/
journal.pone.0253864

30. Kirsch DG, Dinulescu DM, Miller JB, Grimm J, Santiago PM, Young NP,
et al. A spatially and temporally restricted mouse model of soft tissue sarcoma. Nat
Med (2007) 13(8):992–7. doi: 10.1038/nm1602

31. DuPage M, Mazumdar C, Schmidt LM, Cheung AF, Jacks T. Expression of
tumour-specific antigens underlies cancer immunoediting. Nature (2012) 482
(7385):405–9. doi: 10.1038/nature10803

32. Hao Z, Rajewsky K. Homeostasis of peripheral b cells in the absence of b cell
influx from the bone marrow. J Exp Med (2001) 194(8):1151–64. doi: 10.1084/
jem.194.8.1151

33. Boring L, Gosling J, Chensue SW, Kunkel SL, Farese Jr Broxmeyer RV HE,
et al. Impaired monocyte migration and reduced type 1 (Th1) cytokine responses in
CC chemokine receptor 2 knockout mice. J Clin Invest (1997) 100(10):2552–61.
doi: 10.1172/JCI119798

34. Kendal JK, Singla A, Affan A, Hildebrand K, Al-Ani A, Ungrin M, et al. Is
use of BMP-2 associated with tumor growth and osteoblastic differentiation in
murine models of osteosarcoma? Clin Orthopaedics Related Res (2020) 478
(12):2921. doi: 10.1097/CORR.0000000000001422

35. Fridlender Z, Jassar A, Mishalian I, Wang LC, Kapoor V, Cheng G, et al.
Using macrophage activation to augment immunotherapy of established tumours.
Br J Cancer (2013) 108(6):1288–97. doi: 10.1038/bjc.2013.93

36. Cesano A. nCounter® PanCancer immune profiling panel (NanoString
technologies, Inc., Seattle, WA). J immunother Cancer (2015) 3(1):1–3.
doi: 10.1186/s40425-015-0088-7

37. Ager CR, Reilley MJ, Nicholas C, Bartkowiak T, Jaiswal AR, Curran MA.
Intratumoral STING activation with T-cell checkpoint modulation generates
systemic antitumor immunity. Cancer Immunol Res (2017) 5(8):676–84. doi:
10.1158/2326-6066.CIR-17-0049
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Emerging targeted and
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Synovial sarcoma is a soft tissue sarcoma accounting for approximately 1,000

cases per year in the United States. Currently, standard treatment of advanced and

metastatic synovial sarcoma is anthracycline-based chemotherapy. While

advanced synovial sarcoma is more responsive to chemotherapy compared to

other soft tissue sarcomas, survival rates are poor, with a median survival time of

less than 18 months. Enhanced understanding of tumor antigen expression and

molecular mechanisms behind synovial sarcoma provide potential targets for

treatment. Adoptive Cell Transfer using engineered T-cell receptors is in clinical

trials for treatment of synovial sarcoma, specifically targeting New York esophageal

squamous cell carcinoma-1 (NY-ESO-1), preferentially expressed antigen in

melanoma (PRAME), and melanoma antigen-A4 (MAGE-A4). In this review, we

explore the opportunities and challenges of these treatments. We also describe

artificial adjuvant vector cells (aAVCs) and BRD9 inhibitors, two additional potential

targets for treatment of advanced synovial sarcoma. This review demonstrates the

progress that has been made in treatment of synovial sarcoma and highlights the

future study and qualification needed to implement these technologies as standard

of care.

KEYWORDS

synovial sarcoma, soft tissue sarcoma, therapeutics, clinical trial, adoptive cell transfer
1 Introduction

Synovial sarcoma (SYN) is a soft tissue sarcoma accounting for 5-14% of all soft tissue

sarcomas (1, 2). The incidence of SYN in the United States is approximately 1.42 per million

for adults and 0.81 per million for children and adolescents, accounting for roughly 1,000

cases per year (3). SYN presents at an average age of 35-40 years and there is equal

distribution of cases between females and males (3–6). SYN most often arises in deep tissues
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of the extremities but can also present as head and neck, trunk, and

lung lesions (3, 7). Epidemiologic studies have found that most

patients are diagnosed with local disease while 10-13% of patients

initially present with metastatic disease (3, 7).

The diagnosis and staging of SYN involve pathologic and

radiographic review. SYN is defined by the presence of translocation

of t(X:18) (p11.2;q11.2) using FISH or RT-PCR and is found in more

than 95% of tumors (8). This translocation leads to the fusion of genes

SYT on Chromosome 18 and SSX on Chromosome X, which causes

production of SS18-SSX1, SS18-SSX2, or SS18-SSX4 (9–11). These

oncogenic fusion proteins impact cellular transcription and

metabolism, leading to sarcomagenesis.

For localized cases of SYN, initial therapy is most commonly

surgical resection with or without radiation therapy. Neoadjuvant or

adjuvant chemotherapy is considered in select cases (12, 13). SYN

has high metastatic potential with a historic five year metastasis-free

survival rate of 50-60% (14). For locally advanced or metastatic

disease, first line therapy usually incorporates anthracycline-based

chemotherapy with or without ifosfamide (13, 15, 16). SYNs are

relatively chemosensitive tumors compared to other soft tissue

sarcomas. In primary soft tissue sarcomas, early localized and

metastatic recurrence have been found to occur at a median of
Frontiers in Oncology 0224
38.3 and 41.3 months, respectively (17). In contrast, SYN has been

found to have local recurrence at a mean of 43 month and metastatic

recurrence at 68 months (18). A review of 15 clinical trials of first-

line chemotherapy for SYN has shown a 27.8% response rate

compared to 18.8% in other soft tissue sarcomas (19). When

comparing SYN to other soft tissue sarcomas, progression free

survival (PFS) was 6.3 months versus 3.7 months and overall

survival (OS) was 15.0 months versus 11.7 months, respectively

(19). Despite this response, however, for those with metastatic

disease one year survival remains 59.5% and the median overall

survival is 17.0 months (95% CI 14.5-19.5) (6).

Currently, after anthracycline-based chemotherapy, the only

other systemic therapy for treatment of advanced or metastatic

SYN approved by the FDA is pazopanib. This approval was granted

after pazopanib was shown to improve PFS compared to placebo in a

population of patients with varying non-adipocytic metastatic soft

tissue sarcomas which included 30 patients with SYN (20).

Improved understanding of cellular and molecular processes

behind the development of SYN and advancements in knowledge of

SYN’s antigen expression will allow for potential targets for treatment

of advanced SYN. In this review, we explore emerging therapies in the

treatment of advanced and metastatic SYN.
FIGURE 1

Adopted Cell Transfer engineered T-cell receptors targeting CTAs for treatment of SYN.
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2 SYN antigen expression and adopted
cell transfer

SYN has been found to express cancer testis antigens (CTAs) (21).

CTAs are antigens with predominant expression in the testis and are

not normally found in somatic tissue (22). CTAs are a potential target

for treatment of malignancies as they elicit humoral and cellular

immune responses (23). SYN has been found to have high expression

of CTAs (24). Due to their high expressivity, selectivity, and

immunologic response, CTAs have been identified as potential

targets for treatment of SYN.

Adopted Cell Transfer (or Therapy) (ACT) uses tumor antigen

specific T-cells obtained from resected tumor specimens which are

expanded in vitro and then infused for treatment of cancers (25, 26).

One challenge of this treatment is that not all resected tumors allow

for the expansion of autologous tumor infiltrating T-cells (27). This

obstacle, along with variable quantities of T-cells within tumors, has

prompted study of genetically engineered T-cell receptors to target

cancer specific antigens. These T-cells are obtained through the

harvesting of patient autologous T-cells which are then genetically

modified to express a T-cell receptor for a cancer antigen. This

technology is currently in development for the treatment of SYN

targeting CTAs (Figure 1).
2.1 NY-ESO-1 adopted cell transfer

New York esophageal squamous cell carcinoma-1 (NY-ESO-1) is

a CTA that was first described from serological analysis of

recombinant cDNA expression libraries (SEREX) of esophageal
Frontiers in Oncology 0325
squamous cell carcinoma (28). NY-ESO-1 is expressed in

approximately 80% of SYNs. The immunogenicity of NY-ESO-1

has led to its consideration as a target for treatment of SYN (23, 29).

In 2011, Robbins et al. conduced the first clinical trial of

autologous T-cells genetically engineered to have a specific T-cell

receptor for NY-ESO-1 for patients with metastatic melanoma and

SYN (Table 1) (38). The trial utilized a retroviral vector to create

CD4+ and CD8+ autologous T-cells with a T-cell receptor that

recognized the SLLMWITQC peptide of NY-ESO-1 for HLA-

A*0201, named IG4- a95:LY ([NCI] 08-C-0121) (30). These T-cells

were expanded in vitro and then transferred to patients after

nonmyeloablative chemotherapy along with IL-2. This trial

demonstrated objective clinical response in four out of six patients

with SYN. The study was then expanded for 12 additional patients

with SYN (31). Results demonstrated complete response for one

patient and partial response observed in 10 of the 18 total patients

with SYN. The three-year survival rate was 38% and the five-year

survival rate was 14%.

All participants had neutropenia and thrombocytopenia during

lymphodepleting chemotherapy, and one patient died from E. coli

bacteremia three days after transfer of T-cells during a period of

neutropenia. In this study, no correlation was measured

demonstrating relationship between percentage of anti-NY-ESO-1

CD4+ or CD8+ T-cells at one month post transfer and

disease response.

With evidence of activity for genetically engineered T-cells

targeting NY-ESO-1, additional studies of genetically engineered T-

cell receptors against NY-ESO-1 have been conducted. A Phase I, open-

label trial of NY-ESO-1c259 T-cells (letetresgene autoleucel [lete-cel];

GSK3377794) included 45 patients with recurrent or metastatic SYN

(NCT01343043) (29). This study resulted in one complete response (34
TABLE 1 Clinical trials completed or with preliminary results for treatment of SYN.

Target Treatment, Population Trial,
Publication

year

Phase,
Study
Size

Summary

NY-ESO-1 Anti-NY-ESO-1 T-cells,
HLA- A*0201,
Metastatic SYN or melanoma

[NCI] 08-C-0201,
2015 (30, 31)

II, 18 with
SYN

1 complete response, 10 partial responses. Three-year survival 38%, five-year
survival 14%
AEs: 100% of patients with neutropenia and thrombocytopenia

Autologous
NY-ESO-1c259

T-cells,
HLA- A*02,
Unresectable, metastatic, or
recurrent SYN

NCT01343043,
2020 (26, 32)

I, 45 1 complete response (34 weeks), 14 partial responses (across four cohorts)
AEs: 40% with Grade 3 or higher hematologic AEs, 44% with cytokine release
syndrome (4 patients Grade 3 or higher)

PRAME Anti-PRAME
T-cells,
HLA matching, PRAME
expression solid tumors

NCT03686124*,
2021 (33)

I, 12 6 patients with partial response, 6 with stable disease (3 patients with SYN)
AEs: cytopenia, cytokine release syndrome and neurotoxicity (Grade 1-2), one
dose limiting toxicity

MAGE-A4 Autologous MAGE-A4c1032 T-
Cells,
HLA-A*02, expression of
MAGE-A4

NCT03132922,
2020 (34, 35)

I, 28 7 patients with partial response, 11 with stable disease
AEs: No dose limiting toxicities, >30% Grade 3 or higher hematologic AEs, two
trial related deaths due to aplastic anemia and cerebral vascular accident

Anti-MAGE-A4
T-cells,
HLA-A*02, Advanced SYN or
myxoid/round cell liposarcoma

NCT04044768*,
2022 (36, 37)

II, 51 36.2% response rate, median duration or response 52 weeks (8.29 – 75.14)
AEs: Not reported
*Preliminary results presented, recruitment continues.
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weeks) and 14 partial responses (29, 32). In this trial, four cohorts were

established with varying NY-ESO-1 expression and lymphodepleting

chemotherapeutic regimens. Cohort 1 included patients with high NY-

ESO-1 expression and a high lymphodepletion regimen (fludarabine

and cyclophosphamide). Cohort 2 included patients with low NY-ESO-

1 expression with a high lymphodepletion regimen. Cohort 3 included

patients with high NY-ESO-1 expression with a differing high

lymphodepletion regimen (cyclophosphamide only). Cohort 4

included patients with high NY-ESO-1 expression and a low

lymphodepletion regimen (dose reduced cyclophosphamide

and fludarabine).

Cohorts 1-3 have complete data available as of January 2020. In

Cohort 1, six of 12 patients had at least a partial response, one patient

had a complete response, and the median overall survival (OS) was

24.3 months (29). In Cohort 2, four patients of 13 had partial response

and the median OS was 9.9 months. In Cohort 3, one patient of 5 had

a partial response with an OS of 19.9 months. In Cohort 1 all six

responders had presence of anti-NY-ESO-1 T-cells at 6 months post

cells transfer (39). More than 40% of patients in all cohorts had Grade

3 or higher hematologic Adverse Events (AEs) and 44% of patients

had cytokine release syndrome, of which four were Grade 3 or higher

(29). This is similar to toxicity seen for chimeric antigen receptor

(CAR) T-cell therapy, where 69% of patients had Grade 3 or higher

neutropenia and 92% of patients had cytokine release syndrome, of

which 6% were Grade 3 or higher (40). A Phase II master protocol is

currently in recruitment to test NY-ESO-1 T-cells for patients with

metastatic SYN or myxoid/round cell liposarcoma who have

progressed after standard treatment (NCT03967223) (Table 2) (41).

Next generation NY-ESO-1 T-cell products may provide

additional benefits, but qualification is needed. Currently, a Phase II

master protocol of three different next generation NY-ESO-1 T-cell

products is in recruitment for treatment of solid tumors with NY-

ESO-1 expression (NCT04526509) (42).

CD8 is a cell surface glycoprotein that acts as a co-receptor with

T-cell receptors and assists in T-cell binding to MHC1 (47, 48).

Previous in vitro study has found that engineered T-cells targeting a

cancer testis antigen that co-expressed CD8a led to greater CD4+ T-

cell activity (49). One arm of the master protocol will use anti-NY-
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ESO-1 T-cells which co-express the CD8a chain to determine efficacy

of this technology (GSK3901961) (42).

An additional technology of interest combines anti-NY-ESO-1 T-

cells with a dominant negative transforming growth factor- b (TGF-b)
type II receptor (GSK3845097) (42). TGF-b is a regulator of immune

homeostasis and has been found to inhibit tumor cellular immunity

(50, 51). T-cells genetically engineered to target prostate cancer

combined with a dominant negative TGF-b receptor have been

found to cause tumor regression and enhanced survival in a murine

model (51) . This technology may improve the tumor

microenvironment by limiting the impact of immune down-

regulators, specifically TGF- b, in treatment of SYN.

T-cell quality impacts success in ACT. Previous study of ex-vivo

ACTs has found that stem-like surface markers on T-cells are more

likely to lead to response and stem-like T-cells are more capable of in

vivo expansion (52). This knowledge has led to the development of

technology that improves the stem-like quality of engineered T-cell

receptors ex vivo through epigenetic reprogramming (53). The third

arm of the master protocol will assess anti-NY-ESO-1 T-cells after a

proprietary epigenetic reprogramming process to enhance the stem-like

quality of the T-cells (GSK4427296). Combining engineered T-cells

with additional genetic modifications may enhance efficacy of ACT

targeting NY-ESO-1. Beyond NY-ESO-1 targeted therapies, other

ACTs against cancer testis antigens have been developed for the

treatment of SYN.
2.2 PRAME adopted cell transfer

Preferentially expressed antigen in melanoma (PRAME) is a cancer

testis antigen that is expressed in 95% of metastatic melanoma (54). It is

also expressed homogenously in SYN at high levels (55). PRAME

functions through inhibition of apoptosis and signal transduction of the

retinoic acid receptor, causing tumorigenesis (56). Based on its

expression and impact on sarcomagenesis, it is an additional target

for directed engineered T-cell therapy.

The IMA203 trial utilized T- cell receptor engineered T-cells

against PRAME in HLA-A*02:01 (NCT03686124) (57). This Phase I
TABLE 2 Clinical trials in recruitment for treatment of SYN.

Target Treatment Population Trial Phase

NY-ESO-1 Autologous NY-ESO-1c259 T-cells HLA- A*02,
Previously untreated advanced SYN or myxoid/round cell
liposarcoma

NCT03967223
(41)

II

Anti-NY-ESO-1 T-cells with co-expression of CD8a
chain
Anti-NY-ESO-1 T-cells with co-expression of TGF-b
Epigenetically reprogrammed NY-ESO-1 T-cells

HLA- A*02,
Previously treated advanced SYN or myxoid/round cell liposarcoma

NCT04526509
(42)

I

NY-ESO-1 aAVCs Relapsed, refractory advanced solid tumors known to express NY-
ESO-1

NCT04939701
(43)

I, II

PRAME Anti-PRAME
T-cells

HLA-A*02, Relapsed, refractory PRAME positive NCT04262466
(44)

I, II

BRD9 BRD9 inhibitor (CFT8634) Locally advanced or metastatic SMARCB1-perturbed cancers,
including SYN

NCT05355753
(45)

I

BRD9 inhibitor
(FHD-609)

Advanced SYN or advanced SMARCB1-loss tumors NCT04965753
(46)

I
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trial of 12 evaluable patients resulted in six patients with stable disease

and six patients with partial response, three of whom had SYN (33).

The most common adverse events were cytopenias, neurotoxicity, and

cytokine release syndrome. One patient had a dose limiting toxicity.

Another, currently recruiting, trial for treatment of advanced solid

tumors with PRAME and HLA-A*02:01 expression will test IMC-

F106C, a T-cell receptor against PRAME, both in combination with

checkpoint inhibitors and as a single agent (NCT04262466) (44).

Results of this trial are expected in 2024.
2.3 MAGE adopted cell transfer

Melanoma-associated antigen (MAGE) proteins are clustered on

the X chromosome. Expression of MAGE protein is generally

restricted to reproductive tissues. This protein functions by

inhibition of p53 and thereby limits tumor suppression (58, 59).

MAGE-A4 is a cancer testis antigen that is expressed in many tumor

types including lung cancer (19-35%), breast cancer (13%), ovarian

cancer (47%), colon cancer (22%), esophageal cancer (60%), and soft

tissue sarcomas, including 50-80% of SYN (24, 60–62).

Afamitresgene autoleucel are autologous T-cells which are isolated

from patients, transduced with a lentiviral vector containing the

MAGE-A4c1032 T-cell receptor, and expanded prior to infusion.

Recently, results of a Phase I dose-escalation and expansion trial of
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Afamitresgene autoleucel was conducted in patients who were HLA-

A*02 positive with advanced cancers that expressed MAGE-A4

(NCT03132922). In this study, patients received lymphodepletion

regimen of cyclophosphamide and fludarabine prior to

Afamitresgene autoleucel infusion (34, 35).

In the Cohort 3/expansion group (28 patients), 7 of 28 patients had

a partial response, 11 of 28 had stable disease, while 10 of 28 either had

progressive disease or were not evaluable (34). Results of this study

showed no dose limiting toxicities and the most common Grade 3 or

higher AE (>30%) were hematologic, including lymphopenia,

leukopenia, neutropenia, anemia, and thrombocytopenia. Two

patients had trial related deaths due to aplastic anemia and cerebral

vascular accident. Notably, all responses to therapy occurred in patients

with SYN, perhaps emphasizing the validity of targeting MAGE-A4 in

this histology.

A Phase II, single arm, open-label clinical trial of Afamitresgene

autoleucel in patients with advanced SYN or myxoid/round cell

liposarcoma (MRCLS) called SPEARHEAD-1 is currently underway

(NCT04044768) (36). Preliminary results from SPEARHEAD-1 were

presented at the 2022 American Society of Clinical Oncology Annual

Meeting (37). Patients received Afamitresgene autoleucel and were

evaluable for response (Phase I, n = 18; Phase II, n = 51) with all

patients expressing the HLA-A*02 allele. The pooled investigator-

assessed overall response rate was 36.2% which occurred across

MAGE-A4 H-scores of 134-400. The median duration of response
FIGURE 2

Mechanism of action of Artificial Adjuvant Vector Cells targeting NY-ESO-1 for treatment of SYN.
frontiersin.org

https://doi.org/10.3389/fonc.2023.1123464
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Fuchs et al. 10.3389/fonc.2023.1123464
was 52 weeks (8.29 – 75.14). Response rate was higher in patients with

fewer lines of previous therapy, smaller target lesions, higher MAGE-

A4 scores, those without bridging therapy, women, patients over 40,

and patients from North America. The SPEARHEAD-1 trial is

currently recruiting for Cohort 2 which will specifically evaluate

patients with SYN (36).
2.4 Challenges of cancer testis antigen ACT

There has been success in treating SYN through targeting NY-

ESO-1, PRAME, and MAGE-A4 using ACT, with more trial results

forthcoming. While this is laudable, there are challenges to the

treatment of SYN using these technologies. One barrier is the

restriction of many of these therapies to patients with HLA-A*02.

Studies have found that HLA-A*02 is more common in Caucasian

populations compared to African-American and Asian populations

(63). Other barriers for ACT include the multi-week time needed for

the production of genetically engineered T-cells, the pre-treatment

lymphodepletion regimen which often requires hospitalization, and

the high cost of therapy (64, 65). While many of these issues may be

overcome through improvement in manufacturing techniques and

health systems changes, some may be incontrovertible.
3 NY-ESO-1 artificial adjuvant vector
cells

One technology in development for the treatment of SYN that

does not require HLA matching is artificial adjuvant vector cells

(aAVCs). aAVCs are loaded with an exogenous glycolipid ligand, a-
galactosylceramide (a-GalCer), which is presented on a CD1d

molecule and activates invariant natural killer T (iNKT) cells
Frontiers in Oncology 0628
(Figure 2) (66). aAVCs also express a specific tumor-associated

antigen. The a-GalCer synthetic ligand activating iNKT allows

iNKT and natural killer (NK) cells to kill aAVCs, leading to the

release of the tumor-associated antigen. Endogenous dendritic

cells then serve as antigen presenting cells which allow for creation

of CD4+ and CD8+ anti-tumor antigen T-cells. Previously, a Phase II

trial of patients with non-small cell lung cancer infused with a-
GalCer-pulsed Antigen Presenting Cells (APCs) showed efficacy (67).

aAVCs that express NY-ESO-1 have been shown in a murine model

to elicit NY-ESO-1 specific CD8+ T-cells as well as have an anti-

tumor effect (68).

ASP0739 is an aAVC product targeting NY-ESO-1 being

developed for treatment of SYN. Currently, a Phase I trial is in

recruitment to test ASP0739 in patients with solid tumors including

SYN, myxoid/round cell liposarcoma, ovarian carcinoma, non-small

cell lung cancer, and esophageal squamous cell carcinoma

(NCT04939701) (43). Phase II of the trial will use ASP0739 in

combination with pembrolizumab, an antibody against PD-1 on

lymphocytes that prevents de-activation of T-cells by tumors. While

the results of these studies are yet to come, these trials will hopefully

provide an additional therapeutic opportunity for treatment of SYN

without the need for HLA matching.
4 BRD9 targeted therapy

BRD9 small molecule inhibitors are currently in development for

the treatment of SYN (Figure 3). Mammalian SWI/SNF (mSWI/SNF

or BAF) complexes are chromatin remodelers that allow for

alterations in gene expression and DNA transcription. SS18-SSX

fusion oncoprotein has been found to hijack the BAF complex,

displacing wild-type SS18, resulting in changes in transcription and

thus the development of SYN (69). These findings have led to the
FIGURE 3

BRD9 inhibitor therapy for the treatment of SYN.
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recognition of BAF complexes and specific subunits as potential

targets for treatment of SYN (70).

BRD9 is a non-BET bromodomain protein and subunit of BAF

complexes that has been recognized as a potential target for cancer

treatment. In 2017, the first BRD9 chemical degrader was created that

bridges the BRD9 bromodomain and E3 ubiquitin ligase complexes in

vitro (71). Since then, numerous BRD9 inhibitors and have been

developed (72–75). Degradation of BRD9 inhibits SYN tumor

progression in a murine model (76). Therefore, BRD9 inhibition

and/or degradation is a potential target for treatment of SYN.

CFT8634 is an oral heterobifunctional degrader that bridges

BRD9 with E3 ligase, causing ubiquitination and proteasomal

degradation of BRD9 (77). FHD-609 is an intravenous BRD9

degrader that bridges BRD9 with cereblon (CRBN) E3 ubiquitin

ligase substrate that leads to proteasomal degradation (78). These

therapies are currently undergoing Phase I trials for patients with

advanced SYN (45, 46). The results of these trials are anticipated as

potential therapies for treatment of SYN.
5 Conclusion

While standard of care treatment of advanced and metastatic SYN

remains anthracycline based chemotherapy, there are numerous

technologies in development for the treatment of advanced and

metastatic SYN. These technologies stem from improved understanding

of the tumor antigen expression and molecular mechanisms behind SYN.

Engineered T-cell receptor therapies targeting CTAs has shown success in

early-stage trials. Optimization of these engineered TCR treatments is

currently being studied, with efforts to enhance T-cell antigen binding, alter

the tumor microenvironment, and improve the quality of T-cells used for

treatment. Alternative therapies without the need for HLA matching that

are currently in recruitment for Phase I trials include aAVCs and

BRD9 inhibitors.

Reviewing the new targeted and cellular therapies shows the

tremendous progress that has been made over the preceding

decades. Nonetheless, further study and qualification are required

to ensure that we are doing the best for our patients. We anticipate
Frontiers in Oncology 0729
that with the accelerated pace of discovery and application of new

agents, treatment for patients with SYN will make remarkable strides

in the upcoming years.
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Therapeutic advances
in leiomyosarcoma

Kristine Lacuna*, Sminu Bose, Matthew Ingham
and Gary Schwartz

Division of Hematology and Medical Oncology, Department of Medicine, Columbia University Irving
Medical Center, New York, NY, United States
Leiomyosarcoma is an aggressive mesenchymal malignancy and represents one

of the most common subtypes of soft tissue sarcomas. It is characterized by

significant disease heterogeneity with variable sites of origin and diverse genomic

profiles. As a result, the treatment of advanced leiomyosarcoma is challenging.

First-line therapy for metastatic and/or unresectable leiomyosarcoma includes

anthracycline or gemcitabine based regimens, which provide a median

progression-free survival time of about 5 months and overall survival time

between 14-16 months. Effective later-line therapies are limited. Molecular

profiling has enhanced our knowledge of the pathophysiology driving

leiomyosarcoma, providing potential targets for treatment. In this review, we

explore recent advances in our understanding of leiomyosarcoma tumor biology

and implications for novel therapeutics. We describe the development of clinical

trials based on such findings and discuss available published results. To date, the

most promising approaches for advanced leiomyosarcoma include targeting

DNA damage repair pathways and aberrant metabolism associated with

oncogenesis, as well as novel chemotherapy combinations. This review

highlights the recent progress made in the treatment of advanced

leiomyosarcoma. Ongoing progress is contingent upon further development

of clinical trials based on molecular findings, with careful consideration for

clinical trial design, strong academic collaborations, and prospective

correlative analyses.

KEYWORDS

sarcoma, soft tissue sarcoma (STS), leiomyosarcoma (LMS), therapeutics, clinical trials
1 Introduction

Leiomyosarcoma (LMS) is a malignant neoplasm of smooth muscle differentiation

and is one of the most common subtypes of soft tissue sarcomas (STS) in adults,

representing 10-20% of new diagnoses (1, 2). LMS is itself a heterogeneous disease with

variable sites of origin, clinical course, and response to therapy, making the treatment of

LMS challenging. Common anatomical sites include the uterus, abdomen,
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retroperitoneum, and larger blood vessels. LMS of the extremity is

less common, accounting for 10-15% of limb sarcomas, with

predilection for the thigh (3). Cure may be achieved in patients

with localized LMS who undergo surgery, however 40% of cases will

still develop local recurrence and/or metastatic disease, most

commonly to lung (4). Patients with advanced LMS are typically

treated with chemotherapy, either with gemcitabine or doxorubicin

based regimens in the first-line setting. Beyond first-line

chemotherapy, which provides a median progression-free survival

(PFS) of only about 5 months, there are limited treatment options

for advanced disease (5).

Molecular profiling has aided in understanding the biology of

LMS, providing implications for novel targeted therapies. Based on

such profiles, approaches to LMS have evolved and are currently

being explored in ongoing clinical trials. In this review article, we

describe recent advances in the treatment of advanced LMS. A

subset of ongoing clinical trials for patients with LMS is highlighted

in Table 1.
2 Tumor biology

The pathophysiology of LMS is complex, making the discovery of

effective and targeted treatments challenging. LMS lacks a defining

genomic alteration and is instead characterized by substantial

mutational heterogeneity with frequent whole-genome duplication,

widespread DNA copy-number alterations, and chromothripsis (12–

15). The most consistent genomic alterations seen across several

studies include mutations or deletions in the tumor suppressors RB1,

PTEN, and TP53. Targetable, activating mutations in oncogenes are

rare. Molecular profiling has also uncovered recurrent alterations in

telomere maintenance genes such as ATRX and homologous

recombination DNA repair genes. There has also been evidence for

immune infiltration in LMS (16, 17); however, tumor mutational

burden is low and microsattelite instability is rare (18, 19).

Due to this genomic heterogeneity, multiomic molecular

profiling studies have attempted to further categorize subtypes

within LMS. Because LMS may be found in several anatomical

sites, investigators asked whether different sites represent
Frontiers in Oncology 0233
molecularly distinct diseases, in particular uterine LMS versus

nonuterine/soft-tissue LMS. This is of importance as many

clinical trials for LMS are designed to include all anatomical

subtypes. From an analysis of 1115 LMS tumors, results suggest

that uterine LMS represents a molecularly distinct disease with

varying genomic alterations compared with nonuterine

LMS (17).

Other studies have identified LMS subtypes that do not

necessarily reflect anatomical sites of origin. Molecular subtypes

associated with distinct clinical outcomes have been identified by

several studies (16, 20–23). Dr. Guo and colleagues demonstrated

three reproducible molecular subtypes: Subtype I expressed genes

associated with smooth muscle differentiation and demonstrated

favorable outcome versus subtype II which expressed less smooth

muscle differentiation and had worse prognosis. Subtypes I and II

included both uterine and nonuterine LMS whereas subtype III

consisted mainly of uterine LMS, which demonstrated

intermediate outcome (20). Similarly, Dr. Anderson and

colleagues identified three distinct molecular subtypes of LMS

that correlate with patient survival. Subtype I (uterine and

nonuterine LMS) and subtype III (mainly uterine LMS)

harbored a higher overall burden of somatic mutations and

were associated with worse survival compared to subtype II

(nonuterine LMS of the abdomen/extremity). Furthermore,

subtype I was associated with myogenic dedifferentiation and

high immune infiltration (16). These data suggest that a subset of

uterine LMS behave as an independent molecular subtype while

another subset of uterine LMS joins nonuterine LMS to become

part of the other identified subtypes.

The identification of varying molecular patterns within LMS

highlights the challenges of studying this disease. As of now,

patients with LMS are enrolled onto clinical trials as a

homogenous entity, ocasionally considering site of disease

(uterine versus nonuterine). However, as we have seen, patients

with LMS (including those with the same anatomical site) can

display vastly different outcomes based on subtype. This can make it

difficult to interpret overall results from a trial, as clinically

meaningful outcomes may not be directly apparent for certain

populations within LMS. Future molecular studies should focus
TABLE 1 Selected available systemic therapies for advanced leiomyosarcoma.

Regimen Line of
therapy

First Author Phase Type of
Sarcoma

PFS
(months)

RR (%) OS
(months)

Doxorubicin v gemcitabine plus docetaxel First Seddon (5) 3 STS 5.3 v 5.5 19 v 20 16.3 v 14.5

Trabectedin v dacarbazine
Trabectedin v dacarbazine: uLMS
subgroup analysis

> 1 Demetri (6)
Hensley (7)

3 STS
uLMS

4.2 v 1.5
4.0 v 1.5

9.9 v 6.9
11 v 9

12.4 v 12.9
13.4 v 12.9

Pazopanib v placebo
Pazopanib: uSTS v non-uSTS subgroup
analysis

> 1 Van der Graaf (8)
Benson (9)

3 STS
STS

4.6 v 1.6
3.0 v 4.5

6 v 0
11.4 v 10.7

12.5 v 10.7
17.5 v 11.1

Eribulin v dacarbazine
Eribulin v dacarbazine: LMS subgroup
analysis

> 1 Schoffski (10)
Blay (11)

3 LMS+LPS
LMS

2.6 v 2.6
2.2 v 2.6

4 v 5
5 v 7

13.5 v 11.5
12.7 v 13
LMS, leiomyosarcoma; uLMS, uterine leiomyosarcoma; STS, soft tissue sarcoma; uSTS, uterine soft tissue sarcoma; LPS, liposarcoma; RR, response rate; PFS, progression free survival; OS, overall
survival; v, versus.
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on identifying actionable targets and biomarkers within these LMS

subtypes, which may then be incorporated into future clinical

designs and subgroup analyses. Enrollment and treatment

selection based on molecular data may ultimately reveal a

preferential response for an LMS subtype that would not

otherwise be identified.
3 Approved treatments for
advanced LMS

3.1 Early line therapies

LMS demonstrates moderate sensitivity to chemotherapy, with

uterine LMS being more responsive compared to other anatomical

sites (24). In the first-line setting, doxorubicin or gemcitabine based

regimens are commonly used. In the phase 2 trial, Gemcitabine and

Docetaxel versus Doxorubicin as First-Line Treatment in Previously

Untreated Advanced Unresectable or Metastatic Soft-Tissue

Sarcoma (GeDDiS), both regimens demonstrated comparable

efficacy in STS, including LMS. For gemcitabine and docetaxel

versus doxorubicin, there were no significant differences in median

progression free survival (PFS) (5.5 versus 5.3 months) or overall

survival (OS) (14.5 versus 16.3 months), and objective response

rates (ORR) were similar (20% versus 19%). Quality-of-life

assessments were compared between the two treatment groups at

12 weeks. There was no significant difference between the two

groups at 12 weeks however the mean global health status score was

numerically higher in the doxorubicin group versus gemcitabine

and docetaxel. This may influence treatment decision for select

patients (5).

Although subgroup analysis performed within the GeDDiS trial

demonstrated no evidence of differential treatment effect by

histologic subtype, other studies in uterine LMS have suggested

unique sensitivity to gemcitabine and docetaxel. In a phase 3 study

of gemcitabine and docetaxel compared with gemcitabine alone in

patients with metastatic soft tissue sarcomas (SARC002), the

combination showed superior objective response, PFS and OS.

This study also confirmed a higher sensitivity of LMS to

gemcitabine and docetaxel compared with other histologic

subtypes (25). Subsequently, in a phase 2 study of gemcitabine

and docetaxel as first-line treatment for uterine LMS, the ORR was

35.8% with complete response seen in 4.8%, partial response in 31%

and stable disease in 26.2% of patients (26). Cross-study

comparison is limited however these response findings may imply

a more favorable benefit of gemcitabine and docetaxel in uterine

LMS versus response data seen in other studies such as GeDDiS. As

a result, some prefer gemcitabine and docetaxel as first-line

treatment for uterine LMS. Choice of first-line treatment remains

individualized, with consideration of many factors including patient

preference, performance status, and comorbidities.

Other gemcitabine-based regimens may be considered for early-

line treatment of LMS, such as gemcitabine plus vinorelbine and

gemcitabine plus dacarbazine. In a phase 2 study of gemcitabine

plus vinorelbine in patients with advanced soft tissue sarcomas
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including LMS who received ≤ 1 prior therapy, clinical benefit

(defined as complete response, partial response, or stable disease at

> 4 months) was seen in 25% of patients (27). In a randomized

phase II study comparing gemcitabine plus dacarbazine versus

dacarbazine alone in patients with previously treated STS, median

PFS was 4.2 months versus 2 months, median OS was 16.8 months

versus 8.2 months, with higher ORR of 49% versus 25% (28). As a

result, this regimen may be considered for patients with LMS who

failed anthracycline-based treatment.

Early-line therapy for LMS also includes the combination of

doxorubicin plus dacarbazine. In a retrospective study

of doxorubicin plus dacarbazine, doxorubicin plus ifosfamide or

doxorubicin alone as first-line treatment for advanced LMS, 303

patients were included for which 117 (39%) received doxorubicin

plus dacarbazine, 71 (23%) received doxorubicin plus ifosfamide,

and 115 (38%) received doxorubicin alone. The estimated median

PFS was 9.2 months, 8.2 months, 4.8 months, median OS

was 36.8 months, 21.9 months, 30.3 months, with ORR of 30.9%,

19.5% and 25.6% for doxorubicin plus dacarbazine, doxorubicin

plus ifosfamide, and doxorubicin alone, respectively (29). These

data demonstrate favorable activity of doxorubicin plus dacarbazine

in LMS and warrant further investigation in prospective

clinical trials.
3.2 Later line therapies

Later-line treatment of LMS includes trabectedin, pazopanib,

and other chemotherapy agents. Trabectedin is approved in

patients with advanced liposarcoma (LPS) or LMS who received

prior treatment with anthracyclines. In the randomized phase 3

study of trabectedin versus dacarbazine for metastatic LPS or LMS

after failure of conventional chemotherapy, trabectedin

demonstrated superior median PFS versus dacarbazine (LMS:

4.3 versus 1.6 months). However, there were no significant

differences in OS (12.4 versus 12.9 months) or ORR (9.9 versus

6.9%) (6). In a uterine LMS specific subset analysis of this phase 3

trial, trabectedin provided a median PFS of 4.0 months compared

with 1.5 months for dacarbazine, with an ORR of 11% (7). From

these data, trabectedin was approved for advanced LMS in

October 2015.

Pazopanib is another approved treatment for patients with

advanced STS who have previously received chemotherapy, with

activity in LMS. Pazopanib is a small-molecule tyrosine kinase

inhibitor that inhibits vascular endothelial growth factor (VEGF)

receptor, platelet-derived growth factor (PDGF) receptor, and c-

KIT (30). In the randomized phase 3 study of pazopanib for

metastatic STS (PALETTE), pazopanib demonstrated superior

PFS versus placebo (4.6 versus 1.6 months). However, there were

no differences in OS (12.5 versus 10.7 months) and objective

responses occurred in only 6% of patients (8). In a uterine LMS

specific subset analysis, pazopanib provided a median PFS of 3.0

months, OS of 17.5 months, and ORR of 11% (9).

Other chemotherapy agents are also considered for later-line

treatment of LMS. Although inferior to trabectedin, dacarbazine

demonstrates activity in LMS and is used in the later-line setting (6,
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10, 11). In a phase 3 trial of eribulin versus dacarbazine in

previously treated patients with advanced LPS or LMS, OS was

improved in patients assigned to eribulin. However, an LMS-

specific subset analysis demonstrated comparable efficacy for

eribulin and dacarbazine (10). Eribulin was approved in January

2016 for LPS, but not for LMS, though the drug is sometimes used

for later-line treatment of LMS.

Early-line treatment options for LMS provide a median PFS of

approximately 5 months with a median OS of 14-16 months. Later-

line regimens are less efficacious, with a median PFS of about 3-4

months, median OS of 12-13 months, with low response rates.

Results are summarized in Table 2. There is an urgent need for

improved treatment options for patients with LMS. Based on a

greater understanding of LMS tumor biology, novel approaches to

LMS have evolved and are currently being explored in ongoing

clinical trials.
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4 Novel approaches to LMS

4.1 Targeting DNA repair pathways

Homologous recombination (HR) comprises a series of

interrelated pathways that function in the repair of double-

stranded DNA breaks (31). HR deficiency is seen in tumors with

loss of BRCA1/2 function as well-described in ovarian, breast,

prostate, and pancreatic cancers. More recently, research has been

directed at the concept of “BRCAness” which is a condition in

which tumors lack mutations in BRCA1/2 but harbor alterations in

other HR pathway genes resulting in HR deficiency (32). Tumors

that display “BRCAness” due to defects in the HR DNA repair

pathway may offer opportunities for targeted therapy.

Normally, DNA damage repair is a carefully regulated process in

which single-stranded DNA breaks are identified by PARP, resulting
TABLE 2 Selected ongoing clinical trials in leiomyosarcoma.

NCT
Identifier

Title Phase Line of
Therapy

Eligible
Subtypes

Status

NCT05633381 Testing Olaparib and Temozolomide Versus the Usual Treatment for Uterine
Leiomyosarcoma After Chemotherapy Has Stopped Working

2/3 > 2 uLMS Recruiting

NCT05116683 ATX-101 in Advanced Dedifferentiated Liposarcoma and Leiomyosarcoma (ATX-101) 2 > 1 LMS Recruiting

NCT04807816 Targeting ATR in Soft-tissue Sarcomas (TARSARC) 2 0-4 LMS Recruiting

NCT03536780 Avelumab in Combination With Gemcitabine in Advanced Leiomyosarcoma as a Second-line
Treatment (EAGLES)

2 > 1 LMS Recruiting

NCT04577014 Retifanlimab (Anti-PD-1 Antibody) With Gemcitabine and Docetaxel in Patients With
Advanced Soft Tissue Sarcoma

1/2 First STS
including
LMS

Recruiting

NCT03138161 SAINT: Trabectedin, Ipilimumab and Nivolumab as First Line Treatment for Advanced Soft
Tissue Sarcoma

1/2 >1 (Phase
1); First
(Phase 2)

STS
including
LMS

Recruiting

NCT04551430 Cabozantinib Combined With PD-1 and CTLA-4 Inhibition in Metastatic Soft Tissue
Sarcoma

2 2-3 STS
including
LMS

Recruiting

NCT04624178 A Study of Rucaparib and Nivolumab in People With Leiomyosarcoma 2 2-4 LMS Not
recruiting*

NCT04242238 A Phase 1b Dose Escalation and Dose Expansion Study of a CSF1R Inhibitor (DCC-3014)
Administered Concurrently With an Anti-PD-L1 Antibody (Avelumab) in Patients With
Advanced High-grade Sarcoma

1b > 1 STS
including
LMS

Not
recruiting*

NCT03719430 APX005M and Doxorubicin in Advanced Sarcoma 2 Any STS
including
LMS

Recruiting

NCT04996004 A Study to Learn About the Study Medicine (Called TTI-621) Given Alone and in
Combination With Doxorubicin in People With Leiomyosarcoma (TTI-621-03)

2 Second LMS Recruiting

NCT04200443 Cabozantinib and Temozolomide for the Treatment of Unresectable or Metastatic
Leiomyosarcoma or Other Soft Tissue Sarcoma

2 0-5 STS
including
LMS

Recruiting

NCT03016819 Phase III Trial of Anlotinib, Catequentinib in Advanced Alveolar Soft Part Sarcoma,
Leiomyosarcoma, Synovial Sarcoma (APROMISS) (APROMISS)

3 > 1 STS
including
LMS

Not
recruiting*

NCT05269355 A Study of Unesbulin in Participants With Advanced Leiomyosarcoma (LMS)
(SUNRISELMS)

2/3 > 1 LMS Recruiting
fro
LMS, leiomyosarcoma; uLMS, uterine leiomyosarcoma; STS, soft tissue sarcoma.
*Not recruiting at the time of publication.
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in the recruitment of other DNA damage response proteins. PARP

inhibitors (PARPi) result in trapping of PARP at sites of DNA

damage, causing replication fork arrest and lethal double-stranded

DNA breaks. To resolve this PARP-DNA interaction, HR repair is

needed to accurately fix the resulting double-stranded DNA breaks

and restart stalled replication forks. In tumors that are HR deficient,

double-stranded break repair is imprecise leading to DNA damage

accumulation, progressive genomic instability, and cell death (33,

34). Patients with HR deficient tumors may respond more

efficaciously to PARPi-based treatment strategies.

LMS, particularly uterine LMS, harbors frequent defects in

DNA damage repair based on research from several groups (12,

13, 16, 32, 35–38). In whole-exome and transcriptomic sequencing

of 49 LMS patients, deleterious alterations in HR genes were found

in the majority of tumors. Enrichment of a mutational signature

associated with defective HR repair (Alexandrov-COSMIC

mutational signature AC3) was found in at least 57% of cases. In

clonogenic assays, LMS cell lines harbored multiple alterations in

HR genes and were responsive to the PARPi olaparib in a dose-

dependent fashion (13). In a separate cohort of 170 LMS patients

from The Ohio State University and the Cancer Genome Atlas,

deleterious HR pathway alterations were identified in 23% of

patients with uterine LMS and 15% with nonuterine LMS.

BRCA1/2 loss was seen in 10% of the uterine LMS cases and 1%

of nonuterine LMS cases. Four uterine LMS patients were treated

with off-label olaparib and demonstrated evidence of clinical benefit

(35). In another analysis of 211 LMS cases from Memorial Sloan

Kettering Cancer Center, deleterious alterations in HR pathway

genes were highlighted in uterine LMS compared with nonuterine

LMS. About 18% of patients with uterine LMS harbored an HR

pathway alteration versus 10% seen in nonuterine LMS (36, 37).

Lastly, in a pan-cancer analysis of germline and somatic BRCA

alterations of several cancers, uterine LMS harbored the highest rate

of somatic homozygous BRCA2 deletion (38).

To investigate the “BRCAness” of LMS and potential for novel

targeted therapy, further preclinical evaluations of PARPi have been

performed. In the Schwartz laboratory at Columbia University, in

vitro studies demonstrated limited activity of PARPi monotherapy

with olaparib in LMS cell lines. As a result, combination therapies

were investigated to potentiate the effects of PARPi. Anti-neoplastic

agents such as temozolomide and trabectedin induce DNA damage

and are thought to potentiate PARP trapping, leading to increased

apoptosis. Additional in vitro studies supported this hypothesis in

which concurrent treatment with olaparib plus a DNA damaging

agent (temozolomide) provided a profound reduction in cell

viability of ≥ 90% (32).

PARPi combinations are now being investigated in prospective

clinical trials for LMS. The combination of olaparib plus trabectedin

was studied in a phase 1b trial by Dr. Grignani and colleagues, where

this combination was deemed safe and well-tolerated, with a

recommended phase 2 dose (RP2D) of trabectedin at 1.1 mg/m2

every 3 weeks plus olaparib 150 mg twice a day (39). This led to a

phase 2 study of trabectedin in combination with olaparib for

advanced unresectable or metastatic sarcoma, which included a

cohort of patients with LPS and LMS. Results were presented at the

Connective Tissue Oncology Society (CTOS) Annual Meeting in
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2022 which demonstrated significant toxicity with this regimen,

resulting in frequent dose delays/modifications and discontinuation

in 19% of patients overall. For the LMS/LPS cohort, the median PFS

was 3.5 months. There were no confirmed objective responses, with

best overall response of stable disease in 75% and progressive disease

in 25% of patients. As a result, enrollment to stage 2 for the LPS/LMS

cohort was not opened (40). A phase 2 study of temozolomide and

olaparib for advanced uterine LMS provided encouraging results. In

this trial by Dr. Ingham and colleagues, 22 patients who received a

median of three prior lines of therapy were treated with

temozolomide 75 mg/m2 once daily in combination with olaparib

200 mg twice daily on days 1-7 of 21-day cycles. The temozolomide

plus olaparib combination provided a median PFS of 6.9 months and

an ORR of 27%, with a median duration of response of 12 months.

Hematologic toxicity was common, as 77% of patients experienced

grade 3/4 neutropenia and 32% of patients experienced grade 3/4

thrombocytopenia; however, this toxicity was manageable with dose

reduction and there were no events of neutropenic fever or bleeding

(41). In correlative analysis, alterations in HR genes including PALB2

and RAD51B or absence of RAD51 foci formation by a functional

assay were observed in patients with prolonged PFS (42). A

randomized phase 2/3 trial of olaparib plus temozolomide versus

investigator’s choice for uterine LMS after chemotherapy failure has

initiated recruitment (NCT05633381).

Another potential therapy targeting DNA damage repair

pathways in LMS includes the cell-penetrating peptide, ATX-101.

Proliferating cell nuclear antigen (PCNA) is a conserved scaffolding

protein that interacts with other proteins essential to DNA damage

response and intracellular signaling. ATX-101 blocks this

interaction and is thought to result in increased cell death

through the interruption of DNA damage repair (43, 44). A phase

2 clinical trial investigating ATX-101 monotherapy for advanced

LPS and LMS is ongoing (45) (NCT05116683).

Newer approaches to LMS involve directly targeting the cell’s

main DNA damage response machinery, which is comprised of

ataxia telangiectasia and Rad3-related protein (ATR), ataxia

telangiectasia mutated (ATM) protein kinase and the DNA-

dependent protein kinase catalytic subunit (DNA-PKcs) (46, 47).

As mentioned, molecular profiling has uncovered recurrent

alterations in telomere maintenance genes such as ATRX and

homologous recombination DNA repair genes (13, 16, 17).

Mutations in these pathways may lead to increased dependency

on the cell’s DNA damage response machinery for survival. This has

led to appealing anti-cancer targets, including ATR inhibitors

(ATRi) and DNA-PK inhibitors (DNA-PKi). The ATRi

BAY1895344 was tested in vivo in uterine LMS sarcoma mouse

models harboring ATRX mutations. Treatment with BAY1895344

demonstrated growth inhibition compared to vehicle control, with

no significant toxicity (47). Two DNA-PKi were also tested,

peposertib and AZD7648 in LMS sarcoma models. Co-treatment

with low-dose doxorubicin sensitized LMS cells to peposertib or

AZD7648 with significant inhibition of LMS cell viability and

proliferation. Furthermore, co-treatment of LMS patient-derived

xenografts with peposertib and low dose anthracycline significantly

inhibited tumor growth in 5 out of 7 models without toxicity. These

responses correlated with HR deficiency and ATRX inactivation
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(48). Given these promising preclinical data, ATRi are now being

studied in patients with sarcoma. A phase 2 study of ATRi

berzosertib in combination with gemcitabine for patients with

STS is ongoing (NCT04807816).
4.2 Immunotherapy

Immunotherapy has evolved over the past few decades, with

tremendous advances in various cancers. Due to these successes,

there has been interest in using immunotherapy for the treatment of

sarcoma. Several studies have been performed to better understand

the tumor immune microenvironment (IME) within sarcoma and

translate these findings into novel therapeutic approaches. Dr.

Pollack and colleagues investigated the tumor IME in sarcoma for

which immunophenotyping of 19 LMS tumors demonstrated a

relatively inflamed tumor IME as compared other sarcoma

subtypes. For LMS (and undifferentiated pleomorphic sarcoma),

there was a higher expression of genes related to antigen

presentation and T-cell mediated immunity compared with other

subtypes including synovial sarcoma and myxoid/round cell LPS

(49). Further investigation within LMS revealed greater immune

cell infiltration in soft tissue LMS versus uterine LMS, with soft

tissue LMS demonstrating over 2-fold increase in CD8 T-cell and B-

cell abundance (50).

Despite the potential for immunotherapy in LMS, clinical trials

with immune checkpoint blockade have been disappointing. In the

phase 2 trial of pembrolizumab in advanced sarcoma (SARC028),

86 patients were treated, including 10 patients with LMS. There

were no objective responses within the LMS population (51). In the

phase 2 trial of single agent nivolumab for advanced uterine LMS,

none of the 12 treated patients had an objective response and the

median PFS was 1.8 months (52). In the phase 2 trials of nivolumab

with or without ipilimumab treatment for metastatic sarcoma

(Alliance A091401), 43 patients were treated with nivolumab

monotherapy, including 15 patients with LMS, and 42 patients

were treated with nivolumab plus ipilimumab, including 14 patients

with LMS. One of fifteen LMS patients treated with nivolumab

monotherapy and two of fourteen LMS patients treated with

nivolumab plus ipilimumab demonstrated an objective response,

suggesting limited activity in LMS (53).

To potentiate the effects of immune checkpoint blockade,

combination approaches with other anti-neoplastic agents such as

chemotherapy have been investigated. In a phase 1 trial of

gemcitabine and pembrolizumab in LMS and undifferentiated

pleomorphic sarcoma, 11/13 treated patients had LMS. There was

1 DLT observed with gemcitabine at 1000mg/m2. The maximum

tolerated dose was not reached and recommended gemcitabine dose

was 1200mg/m2 on day 1 and 8 with pembrolizumab 200mg on day

1, for 21-day cycles. Median PFS was 5.1 months and best response

at 9 weeks for LMS was stable disease in 8/11 patients. The final

results of the dose expansion cohort are pending (54). In a phase 2

trial of eribulin plus pembrolizumab in patients with metastatic

STS, 19 patients with LMS were treated and 11/19 had uterine LMS.

The PFS rate at 12 weeks was 42.1% which failed to meet the

primary endpoint of 60%. The ORR in the LMS population was
Frontiers in Oncology 0637
5.3% (55). In a phase 2 trial of pembrolizumab in combination with

doxorubicin in patients with anthracycline-naïve advanced STS, 30

patients were enrolled including 10 patients with LMS. The median

PFS was 5.7 months for all STS. In the LMS population, 4/10

patients (40%) experienced a partial response, demonstrating

encouraging activity of this regimen (56). In a phase 1/2 study of

ipilimumab, nivolumab, and trabectedin for advanced soft tissue

sarcoma, analysis of phase 2 which included 88 evaluable patients

with previously untreated STS demonstrated an ORR of 21.6% with

8 complete responses and 11 partial responses. The median PFS was

7 months and median OS was 14 months (57). In LMS-specific

subgroup analysis of this trial which included 19 evaluable patients

in phase 2, the ORR was 31.6% with 2 complete responses and 4

partial responses. The median PFS was 7.4 months and median OS

was 36.1 months (58). The phase 1 results of a phase 1/2 trial of

retifanlimab with gemcitabine plus docetaxel for STS

(NCT04577014) were recently presented at ASCO 2022. This

study included a safety run-in followed by a 3 + 3 dose de-

escalation design. Gemcitabine (900mg/m2) was administered on

days 1 and 8, and docetaxel 75mg/m2 on day 8, in 21-day cycles.

Retifanlimab (210mg IV flat dose in the run-in portion, and 375mg

in the dose de-escalation portion) was administered on day 1 of

each cycle starting in cycle 2, and continued as monotherapy after 6

cycles of gemcitabine and docetaxel. Results demonstrated safety

and tolerability of this regimen, with the RP2D determined to be

retifanlimab at 375mg plus gemcitabine and docetaxel. For the run-

in and de-escalation cohorts respectively, ORR was 17% and 50%,

disease control rates were 100% and 83%, and PFS rates at 24 weeks

were 60% and 44%. Phase 2 is ongoing (59). Other active studies

testing immune checkpoint blockade in combination with

chemotherapy include a phase 2 study of avelumab with

gemcitabine, results are pending (NCT03536780).

Other combination approaches with immune checkpoint

blockade have been investigated in sarcoma. Synergistic effects

have been observed with the combination of immune checkpoint

blockade and antiangiogenic agents in other cancers (60). As a

result, this approach is of interest in sarcoma. In a phase 2 trial of

pembrolizumab with axitinib (a small molecule tyrosine kinase

inhibitor active on VEGF receptors) 33 patients were treated

including 6 patients with LMS (uterine LMS = 4, non-uterine

LMS = 2). Only 1 patient with non-uterine LMS achieved a

partial response (61). An ongoing phase 2 trial is testing the

combination of cabozantinib (small molecule inhibitor of receptor

tyrosine kinases, VEGF, MET, and AXL) with ipilimumab and

nivolumab, and is currently enrolling patients (NCT04551430) (62).

Another combination approach involves immune checkpoint

blockade with PARPi. PARPi may induce DNA damage and

enhance the neoantigen burden thereby potentiating the effects of

immune checkpoint blockade. This is being studied in a phase 2

trial of rucaparib and nivolumab for LMS (NCT04624178) for

which interim results were presented at CTOS 2022. 20 patients

were enrolled, for which 75% had uterine LMS, with a median of 2

prior lines of therapy. Based on 17 evaluable patients, median PFS

was 7.8 weeks, OS was 9.4 months. There has been 1 partial

response in a patient with uterine LMS with a BRCA2 mutation.

8 (47%) of patients have had a best response of stable disease (63).
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LMS is enriched with tumor-associated macrophages compared

to other STS subtypes, which may also provide implications for

novel targeted therapies. Macrophages are recruited to tumor sites

and can interact with neoplastic cells through the release of various

growth factors and cytokines, which may promote tumor

angiogenesis, invasion, and metastasis. An increased density of

tumor-associated macrophages was associated with worse disease-

specific survival in LMS (64, 65). It has also been demonstrated that

colony-stimulating factor-1 (CSF1) is a major attractant for

macrophages expressed by LMS cells. The expression of genes

involved in CSF1 signaling was also associated with worse

outcomes in both uterine and non-uterine LMS. As a result,

strategies have been aimed to deplete tumor-associated

macrophages and inhibit CSF1 signaling in sarcoma. In a phase

1b study of avelumab plus DCC-3014 (inhibitor of CSF1 receptor)

in patients with advanced sarcoma, 13 patients were treated

including 7 patients with LMS. The combination was deemed to

be safe and well-tolerated. Study expansion at the recommended

phase 2 dose is ongoing (NCT04242238) (66).

Novel immunotherapy agents are also being tested in LMS. CD40

is a master regulator of immunity which mobilizes multiple arms of

the immune system to initiate CD8+ T-cell mediated responses

against foreign pathogens and tumors. APX005M is a CD40

agonist that is expected to induce an effective anti-tumor immune

response in patients with sarcoma (67). A phase 2 trial of APX005M

in combination with doxorubicin in STS is actively recruiting patients

(NCT03719430). Another targeted approach involves CD47, a widely

expressed transmembrane protein which interacts with signal

regulatory protein-alpha on the surface of macrophages to protect

tumor cells from phagocytosis. CD47 expression is higher in LMS

compared with leiomyoma or normal muscle cells (68). In preclinical

models of LMS, an anti-CD47 monoclonal antibody demonstrates

increased phagocytic activity of LMS cells, thus inhibiting tumor

growth and metastatic spread (68). Consequently, a phase 2 trial

testing the CD47 inhibitor (TTI-621) is being studied in combination

with doxorubicin for patients with LMS (NCT04996004).
4.3 Targeting receptor tyrosine kinases and
intracellular signaling pathways

LMS displays substantial mutational heterogeneity and lacks

recurrent targetable alterations, including mutations in receptor

tyrosine kinases. There are rare circumstances in which actionable

gene alterations may be seen in LMS, such as in ALK, FGFR1, and

NTRK (17). However, in general due to the lack of targetable

mutations, most trials have investigated broadly acting tyrosine

kinase inhibitors (TKI) for LMS. As noted earlier, the small-

molecule TKI pazopanib is an approved treatment for patients

advanced STS who have previously received chemotherapy.

However, efficacy in LMS is modest (LMS: ORR = 6%, mPFS =

4.6 months; uterine LMS: ORR 11%, mPFS = 3 months) (8, 9), and

there have been ongoing efforts to improve outcomes with other

TKIs/TKI combinations.

Clinical trial data examining TKIs in LMS are mixed.

Bevacizumab is a monoclonal antibody against VEGF. VEGF
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normally binds to VEGF receptors, which are family members of

receptor tyrosine kinases involved in angiogenesis (69). A phase 3

trial examining the addition of bevacizumab to first-line

gemcitabine and docetaxel failed to show improvement in PFS,

OS, and ORR (70). Lenvatinib is a small molecule inhibitor that

targets fibroblast growth factor receptors (FGFR), PDGFRa, RET,
and KIT, in addition to VEGF (71). In a phase 1b/2 study of

lenvatinib plus erubulin in advanced LPS and LMS, the phase 1b

portion determined the RP2D to be lenvatinib 14mg/day and

eribulin 1.1mg/m2 on day 1 and day 8 for 21-day cycles. A total

of 30 patients were enrolled, including 21 patients with LMS. For

the LMS population, the median PFS was 8.6 months with ORR of

19% (4/21, 3 uterine and 1 nonuterine LMS) (72). These data may

suggest that the addition of lenvatinib potentiates the effects of

eribulin, as historical controls of eribulin monotherapy in LMS

exhibit worse outcomes, with a median PFS of 2.2 months, OS of

12.7 months, and ORR of 5%, summarized in Table 2 (11).

Collectively, these data demonstrate promising efficacy for the

treatment of advanced LMS.

Cabozantinib is small molecule inhibitor of tyrosine kinases c-

MET and VEGFR2, as well as AXL and RET (73). A phase 2 study

testing cabozantinib plus temozolomide for advanced LMS is

ongoing (NCT04200443). In a small study performed by Dr.

Ikeda and colleagues, the addition of bevacizumab to the regimen

of cabozantinib and temozolomide for patients with heavily pre-

treated uterine LMS demonstrated improved clinical benefit rate

(74). Anlotinib is a multi-target TKI including VEGF1-3, FGFR1-2,

PDGFRb, and KIT (75). A phase 2 trial of anlotinib was tested for

first-line treatment in patients with advanced STS, including LMS.

Results (all STS) demonstrated a median PFS of 7.1 months, with

ORR of 2.7% (76). A randomized phase 3 study of anlotinib versus

dacarbazine after failure of prior therapy in several STS subtypes is

ongoing, however enrollment in the LMS cohort has been

suspended and results are pending (NCT03016819).

Olaratumab is a monoclonal antibody against tyrosine kinase

PDGFRa, blocking its interaction with PDGF. A randomized, phase

2 study of doxorubicin plus olaratumab, followed by olaratumab

monotherapy in anthracycline-naïve STS demonstrated promising

results, with improvement in mPFS and mOS (77). This led to the

confirmatory, randomized, phase 3 ANNOUNCE trial of

doxorubicin with or without olaratumab in anthracycline-naïve

advanced STS, including LMS. For both STS and LMS, there was no

significant difference in primary endpoint of mOS between

doxorubicin plus olaratumab versus doxorubicin (LMS: 21.6

versus 21.9 months) (78). LMS accounted for a smaller

percentage of total subtypes in phase 2 versus phase 3 (36%

versus 46.1%), therefore the benefit seen in phase 2 may be

weighted towards non-LMS populations (77, 78). Based on these

results, olaratumab is not part of standard of care treatments for

STS and LMS.

Other approaches to LMS treatment target intracellular

pathways involved in tumorigenesis. In LMS, aberrant PI3K/

AKT/mTOR signaling has been seen due to PTEN loss and

amplifications of IGF1R, AKT, RICTOR, and mTOR (12).

Unfortunately, clinical trials targeting this pathway have

demonstrated limited activity. In the phase 2 trial of dual
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mTORC1/mTORC2 inhibitor MLN0128 (sapanisertib), 111

patients were treated, including 76 patients with LMS. For the

LMS population, PFS was 2.1 months with ORR of 3% (79).

Another intracellular target in LMS includes cyclin-dependent

kinase inhibition. CDK4 amplification has been seen in some

LMS tumors (80, 81). In preclinical models of LMS, treatment

with the CDK4/6 inhibitor palbociclib resulted in decreased cell

proliferation and induction of G0/G1 phase cell-cycle arrest (81).

Consequently, a phase 2 trial of the CDK4/6 inhibitor ribociclib in

combination with mTOR inhibitor everolimus was tested in

patients with dedifferentiated LPS and LMS with retained Rb

expression. 24 patients with LMS were treated, including 14 with

uterine LMS. The primary endpoint was progression free rate at 16

weeks, with treatment declared as promising if at least 8/24 patients

were progression free at 16 weeks. Final data on the primary

endpoint is pending, however of the 22 patients with complete

data, 6/22 (27%) met the primary endpoint and median PFS was

19.6 weeks, with no objective responses (82).
4.4 Metabolism

A newer approach to the treatment of sarcoma includes

targeting aberrant metabolic processes associated with

oncogenesis. In a study of 708 sarcoma tumor samples,

argininosuccinate synthase 1 (ASS1) expression was lost in 87%.

ASS1 is the rate-limiting enzyme in the conversion of citrulline to

arginine in the urea cycle. The loss of ASS1 makes cells dependent

on extracellular sources of arginine for survival. As a result, cancer

cells lacking ASS1 may have metabolic vulnerabilities (83).

Preclinical studies demonstrate synergistic effects with the

treatment of arginine depleting enzyme PEGylated arginine

deiminase (ADI-PEG20) in combination with gemcitabine and

docetaxel. The main transporter of gemcitabine is human

equilibrative transporter 1 (hENT1). Priming of tumors with

ADI-PEG20 and docetaxel resulted in the stabilization of c-MYC,

potentiating the effect of gemcitabine treatment through an increase

in hENT1 expression (84).

Given promising preclinical data, a phase 2 study of ADI-PEG20

in combination with gemcitabine and docetaxel for STS was performed

by Dr. Van Tine and colleagues. 75 patients who received at least one

prior line of therapy were treated. The trial underwent two dose

reductions due to prolonged neutropenia and thrombocytopenia:

gemcitabine was reduced from 900mg/m2 to 750mg/m2, and again

to 600mg/m2. Docetaxel was reduced from 75mg/m2 to 60mg/m2. For

those receiving gemcitabine 600mg/m2 + docetaxel 60mg/m2, PFS and

OS were 7.2 and 22.5 months, respectively for the LMS group. 8% of

patients (6/75) achieved a complete response, including 3 of the 6 with

LMS (85). A phase 3 randomized trial of ADI-PEG20 with gemcitabine

plus docetaxel is planned.
4.5 Novel chemotherapy combinations

Currently approved chemotherapy regimens for LMS

demonstrate modest efficacy therefore studies have investigated
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novel chemotherapy combinations in order to improve benefit.

Preclinical data demonstrated promising activity with trabectedin

and doxorubicin (86, 87). As a result, this combination was studied

in two phase 1 studies, which confirmed safety and tolerability when

used with granulocyte colony-stimulating factor (88, 89). This led to

a phase 3 trial of doxorubicin plus trabectedin versus doxorubicin as

first-line treatment for patients with advanced LMS. Patients were

randomly assigned (1:1) to receive doxorubicin alone (75 mg/m2)

once every 3 weeks for up to six cycles versus intravenous

doxorubicin (60 mg/m2) plus intravenous trabectedin (1.1 mg/

m2) once every 3 weeks for up to six cycles followed by

maintenance with trabectedin alone. The median PFS was

significantly longer with doxorubicin plus trabectedin versus

doxorubicin alone (12.2 months vs. 6.2 months), at the expense

of higher toxicity with grade 3-4 adverse events reported in 52% of

patients in the doxorubicin group alone versus 96% in the

doxorubicin plus trabectedin group (90).

Another promising novel chemotherapy combination in LMS

includes unesbulin (PTC596) plus dacarbazine. Unesbulin is an

investigational small-molecule tubulin binding agent. In preclinical

LMS models, unesbulin was shown to potentiate the activity of

dacarbazine (91). As a result, this was developed into a phase 1b

study of unesbulin plus dacarbazine for the treatment of patients

with advanced LMS. Results were presented at both ASCO 2022

(92) and CTOS 2022 (93). The RP2D of unesbulin was determined

to be 300 mg orally BIW with dacarbazine 1,000 mg/m2 IV every 21

days. As of the most recent presentation of data at CTOS 2022, there

were 33 evaluable patients, 14 with nonuterine LMS and 19 with

uterine LMS. Median prior lines of therapy were 3. The ORR was

18.2% with disease control rate of 51.5% at 12 weeks (93). A

randomized, placebo-controlled phase 2/3 trial has been

developed and is actively recruiting patients (NCT05269355).
5 Discussion

LMS is a rare and aggressive cancer that displays significant

clinical and biologic heterogeneity. As a result, LMS is challenging

to treat in the advanced setting. Our understanding of LMS

pathophysiology has progressed through the use of molecular

profiling resulting in the development of novel and targeted

treatment approaches. There are several approaches that appear

promising thus far. These include targeting DNA damage repair

pathways with olaparib and temozolomide, combination

chemotherapy with unesbulin plus dacarbazine, several new

immunotherapy targets such as CD40 or CSF1 receptor, novel

immunotherapy combinations with chemotherapy such as with

doxorubicin or with targeted drugs such as cabozantinib, and

exploitation of metabolic vulnerabilities using ADI-PEG20 with

gemcitabine plus docetaxel. Some of these regimens are now being

investigated or will soon be investigated in larger randomized phase

3 clinical trials and have the potential to improve current standards

of care in advanced LMS.

The future of LMS treatment is contingent upon a greater

understanding of tumor biology and continued development of

prospective clinical trials based on molecular findings. A challenge
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in studying LMS is how to account for the heterogeneity of this

disease, especially in the context of a clinical trial. As we have seen,

various multiomic molecular profiling studies have identified

subtypes within LMS that display vastly different clinical

outcomes and are not necessarily related to anatomical site.

Despite this, LMS enrollment onto clinical trials continues as a

homogenous entity. There may be clinically meaningful effects of a

study drug for certain LMS populations that are not obviously

apparent based on overall results, potentially leading to missed

therapeutic benefit. This may be the case for several of the negative

trials presented in this review, including larger negative phase 3

studies such as ANNOUNCE (78) as mentioned above, EORTC

62012: doxorubicin alone versus combination with ifosfamide (94),

PICASSO III: doxorubicin alone versus combination with

palifosfamide (95), and TH CR-406/SARC021: doxorubicin alone

versus combination with evofosfamide (96). Future enrollment and

treatment selection based on molecular data may ultimately reveal a

preferential response for an LMS subtype that would not otherwise

be identified.

Another challenge in treating LMS is that its most common

molecular alterations involve loss of tumor suppressor function in

RB, TP53 and PTEN (16, 17), which are not currently actionable

using existing cancer therapeutics. Furthermore, PD-1 inhibition has

not proven efficacious in LMS. New insights into the

immunosuppressive features of the LMS tumor IME are needed to

identify novel targets for immunotherapy-based approaches. As we

have seen, response to immune therapy in LMS is very infrequent

and this speaks to the need for biomarker development for this and

for other sarcoma subtypes. Tertiary lymphoid infiltrates have been

suggested as a biomarker for immunotheapy in sarcomas but this has

yet to be fully evaluated prospectively (97).

Future trials should continue to investigate the molecular

evolution of LMS, treatment effects on pathology, and discovery

of potential biomarkers. Successful translation of molecular findings

in LMS will require ongoing preclinical modeling, thoughtful

clinical trial design, strong academic collaborations, and

prospective correlative analysis. These considerations are
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necessary for the current and future development of novel

therapeutic agents that will improve clinical outcomes for patients

with advanced LMS.
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Targeted therapies for the
treatment of soft tissue sarcoma
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and Mark Agulnik3*

1Department of Medicine, McGaw Medical Center of Northwestern University, Chicago, IL, United
States, 2Department of Medicine, University of California, San Francisco, San Francisco, CA, United
States, 3Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center,
Duarte, CA, United States
Soft tissue sarcomas are rare malignant tumors derived from mesenchymal cells

that have a high morbidity and mortality related to frequent occurrence of

advanced and metastatic disease. Over the past two decades there have been

significant advances in the use of targeted therapies for the treatment of soft

tissue sarcoma. The ability to study various cellular markers and pathways related

to sarcomagenesis has led to the creation and approval of multiple novel

therapies. Herein, we describe the current landscape of targeted medications

used in the management of advanced or metastatic soft tissue sarcomas,

excluding GIST. We distinguish three categories: targeted therapies that have

current US Food and Drug Administration (FDA) approval for treatment of soft

tissue sarcoma, non-FDA approved targeted therapies, and medications in

development for treatment of patients with soft tissue sarcoma.

KEYWORDS

soft tissue sarcoma, targeted therapy, tyrosine kinase inhibitors, clinical trial,
drug therapy
1 Introduction

Soft tissue sarcomas (STS) are rare malignant tumors derived from mesenchymal cells

that represent 1% of all adult malignancies in the US (1, 2). In addition to being rare in

incidence, treatment of STS is complicated by the heterogenous nature of these tumors. In

fact, the 2020 WHO classification of STS includes over 70 different histologic and

molecular subtypes which have varied response to treatment (3). The most prevalent

soft tissue sarcoma subtypes identified through registries of referral centers other than

gastrointestinal stromal tumor (GIST) are liposarcoma, leiomyosarcoma, pleomorphic

sarcoma, and synovial sarcoma (4, 5).

First line therapy for most advanced or metastatic STS remains anthracycline-based

cytotoxic chemotherapy. For patients with neurotrophic receptor tyrosine kinase (NTRK)

gene fusion without a known acquired resistance mutation, that are either metastatic or

where surgical resection is likely to result in severe morbidity, and who have no satisfactory

alternative treatments or whose cancer has progressed following treatment, TRK inhibitors

are also a first-line treatment option. Advanced or metastatic STS have high morbidity and
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mortality with historic median progression free survival (PFS) of

approximately 6 months and median overall survival of just over

one year using anthracycline based chemotherapy (6–8) while more

recent studies have suggested some improvement in survival with

median OS of approximately 20-30 months using anthracycline-

based regimens (9, 10).

While some patients with advanced or metastatic disease may

benefit from local therapy of oligometastatic disease, for those who

have progression on cytotoxic chemotherapy, targeted molecular

therapies may be a treatment option. Over the past two decades

there have been significant advances in the use of targeted

molecular therapies for the treatment of STS. This has altered the

landscape of STS therapy and has implications for future targeted

therapies for STS which are currently in development.

In this paper we describe the current landscape of targeted

therapies that are used in the management of advanced or

metastatic soft tissue sarcomas, excluding GIST. We discuss

medications in three categories: targeted therapies that have

current US Food and Drug Administration (FDA) approval for

treatment of STS, non-FDA approved targeted therapies studied in

patients with STS, and medications in development for treatment of

various STS histologies.
2 FDA approved targeted therapies for
treatment of soft tissue sarcoma

2.1 Pazopanib

Pazopanib is an oral small molecule inhibitor of multiple

tyrosine kinases including vascular endothelial growth factor

receptor (VEGFR)-1, -2, and -3, platelet derived growth factor

receptor (PDGFR)-a and -b, stem cell growth factor receptor (c-

kit), fibroblast growth factor receptor (FGFR)-1 and -3, and colony-

stimulating factor-1 receptor (c-fms) (11). Pazopanib has

demonstrated utility in the treatment of all non-adipocytic STS.

In a randomized, double-blind, placebo-controlled phase III

trial of 372 patients with non-adipocytic STS who had progression

of disease despite standard chemotherapy, pazopanib was found to

have a median progression free survival (PFS) of 4.6 months

compared with 1.6 months in patients receiving placebo (hazard

ratio [HR] 0.31, 95% CI 0.24-.040, P < 0.0001) (12). There was no

statistically significant improvement in overall survival (OS) with a

median OS of 12.5 months with pazopanib group versus 10.7

months with placebo. The most common adverse events (AE)

were fatigue (65%), diarrhea (58%), nausea (54%), and weight loss

(48%). The most common (≥ 10%) Grade ≥ 3 AE was fatigue (13%).

Given the results of this study, pazopanib was FDA approved for the

treatment of patients with advanced STS who have received prior

chemotherapy in 2012 (13).

Pazopanib has subsequently been studied for patients with

specific sarcoma histologies. In a non-comparative, randomized,

open-label phase 2 trial of 72 patients with metastatic desmoid

tumors, the median PFS for the 43 patients in the pazopanib group

was 83.7% (95% CI 69.3 – 93.2) (14). A Phase II study of pazopanib
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in six patients with metastatic alveolar soft part sarcoma found one

patient with partial response and five with stable disease. Median

PFS was 5.5 months (95% CI 3.4-7.6 months) and the only severe

toxicity noted was one case of Grade 3 diarrhea (15). In a single-

arm, phase II trial of 34 patients with metastatic or unresectable

typical solitary fibrous tumor, of the 31 evaluable patients, 18 (58%)

had partial response 12 (39%) and had stable disease.

While typically used as a subsequent line of therapy after first-

line anthracycline, pazopanib has been suggested as an initial

treatment option for older adults who may not tolerate

anthracycline therapy. An open-label, randomized, phase II study

of pazopanib versus doxorubicin has been performed for patients

age 60 years or over with progressive advanced or metastatic STS

with an Eastern Cooperative Oncology Group (ECOG)

performance status of 0 to 2. This study demonstrated non-

inferiority of pazopanib compared with doxorubicin (16).
2.2 Pexidartinib

Tenosynovial giant-cell tumors (TGCTs) are benign neoplasms

of joints which, while rarely metastatic, can cause significant

morbidity (17, 18). TGCT cells express colony-stimulating factor-

1 (CSF1) and frequently have a t(1;2) translocation of the CSF1 gene

on chromosome 1p13 to the COL6A3 gene on chromosome 2q37

which leads to CSF1 overexpression (19–21). Therefore, CSF1/

CSF1R interaction has been considered as a potential therapeutic

target in the treatment of TGCT.

Pexidartinib is an orally administered, small molecule tyrosine

kinase inhibitor with selective activity against colony stimulating

factor 1 receptor (CSF1R) and c-kit (22). Based on its ability to act

against CSF1R, pexidartinib was initially studied for the treatment

of TGGT in a phase I/II dose-escalation and extension study

published in 2015. For the extension group, 12 of 23 patients had

partial response and 7 of 23 had stable disease (22).

Given the promising results of this dose-escalation and

extension study, a randomized, phase III trial of pexidartinib

versus placebo was conducted in 120 patients with advanced

TGCT (23). Results of this study showed a 39% overall response

rate compared to placebo (0%) (P < 0.001). Patients on pexidartinib

also reported significantly increased range of motion (+15% with

pexidartinib versus +6% with placebo, P = 0.0043) and significantly

improved physical functioning (P = 0.0019) per the Patient-

Reported Outcomes Measurement Information System – Physical

Function scale (PROMIS). The most common AEs were hair color

change (67%), fatigue (54%), aspartate aminotransferase increase

(39%), nausea (38%), alanine aminotransferase increase (28%), and

dysgeusia (25%). The most common (≥ 10%) Grade ≥ 3 AE were

aspartate aminotransferase increase (10%) and alanine

aminotransferase increase (10%).

Of note, emergence of mixed or cholestatic hepatotoxicity led to

a shortened enrollment period and enrollment was halted six

patients short of target. Three patients in the pexidartinib group

had aminotransferase levels three or more times the upper limit of

normal with total bilirubin and alkaline phosphatase two or more

times the upper limit of normal indicative of mixed or cholestatic
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hepatoxicity. One patient required two liver dialysis procedures.

However, with longer pexidartinib treatment no additional cases of

mixed and cholestatic hepatoxicity occurred.

Pexidartinib was FDA approved for the treatment of adult

patients with symptomatic TGCT associated with severe

morbidity or functional limitations and not amenable to

improvement with surgery in August 2019 (24). Given the reports

of liver injury, pexidartinib has a boxed warning of hepatoxicity and

is available through a Risk Evaluation and Mitigation Strategy

(REMS) program.
2.3 Imatinib

Imatinib is an orally bioavailable multikinase inhibitor.

Designed as an inhibitor of BCR-ABL, imatinib has been found

to have multiple tyrosine kinase activity including against PDGFR-

a, -b, and c-kit (25). In 2006 the US FDA approved imatinib for the

treatment of adult patients with unresectable, recurrent and/or

metastatic dermatofibrosarcoma protuberans (DFSP) which

harbors t(17;22)(COL1A1;PDGFB) fusion protein in the majority

of cases (26, 27).

Imatinib has been studied in two phase II trials for the

treatment of locally advanced or metastatic DFSP harboring

t(17;22) and found to have objective response rate approaching

50% (28). The most common (≥10%) Grade 3 AEs of imatinib in

the treatment of DFSP are neutropenia (16.7%) and fatigue (16.7%).

Long-term results of a single-institution study of 31 patients

with locally advanced/initially inoperable/or metastatic DFSP

(including those with fibrosarcomatous transformation) treated

with imatinib demonstrated a 5-year PFS of 58% and 5-year OS

of 64% (29).

Finally, an updated systematic review published in 2019 showed

complete response in 5.2% of patients, partial response rate of

55.2%, and stable disease in 27.6% of 152 patients treated with

imatinib for locally advanced or metastatic DFSP (30).
2.4 Crizotinib

Crizotinib is an orally available, small molecule tyrosine kinase

inhibitor of c-Met, anaplastic lymphoma kinase (ALK), and ROS1

which has FDA approval for treatment of ALK or ROS1-positive

non-small cell lung cancer (31, 32). In January 2022, crizotinib was

FDA approved for treatment of pediatric and adult unresectable,

recurrent, or refractory ALK-positive inflammatory myofibroblastic

tumors (IMT).

Crizotinib has been studied in two open-label trials, one in the

pediatric population and one in the adult population. An open-

label, phase I dose-escalation study of patients older than 12 months

and younger than 22 years with refractory measurable or evaluable

solid, CNS tumors, or anaplastic large cell lymphoma was

performed (33). Seven patients were enrolled in this study with

ALK-positive IMT. Of these patients, 4 had SD and 3 had PR. The

most common Grade ≥ 3 AEs was decreased neutrophil count.
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In a single-arm, open-label, phase Ib trial of crizotinib for

adolescent and adult patients ≥ 15 years old with ALK-positive

advanced malignancies other than non-small cell lung cancer, 44

patients were enrolled of which 9 had ALK-positive IMT (34). Of

the 9 patients with IMT, 67% (95% CI 30-93) had response with 1

complete response and 5 partial responses. After two years, three of

these patients still showed response. The most common Grade ≥

3 AE for all patients were neutropenia 22.7%, elevated

transaminases 6.8%, and vomiting 6.8%.
2.5 Tazemetostat

More than 90% of epithelioid sarcoma (ES) tumors lack

expression of INI1/SMARCB1, an epigenetic regulator. Loss of

INI1 function allows the histone methyltransferase and epigenetic

modifier Enhancer of Zeste Homolog 2 (EZH2) to act as an

oncogenic driver in tumor cells (35).

Tazemetostat was developed as an orally available, small

molecule selective inhibitor of S-adenosyl methionine (SAM)

competitive inhibitor of EZH2 (36). Tazemetostat was initially

studied in a phase I trial of relapsed or refractory B-cell non-

Hodgkin lymphoma and advanced solid tumors including 3

patients with INI1-negative ES (37).

In an open-label, phase II basket study of patients with INI1-

negative solid tumors and synovial sarcoma treated with

tazemetostat, results were published for the ES cohort. Of the 62

patients in the ES cohort, tazemetostat showed objective response in

15% of patients at data cutoff and a disease control rate of 26% at 32

weeks (38). The most commonly reported AE were fatigue (37%),

nausea (35%), and cancer pain (27%). The only Grade ≥ 3 AE in

more than 10% of the study population was anemia (13%). In June

2020, based on the results of this study, the FDA gave accelerated

approval for the treatment of patients aged 16 or older with

metastatic or locally advanced ES not eligible for complete

resection (39).
2.6 Nanoparticle albumin-bound sirolimus
(nab-sirolimus)

Perivascular epithelioid cell tumor (PEComa) is an ultra-rare

type of STS with an estimated annual incidence of ≤1 per 1,000,000

population (40). PEComas often have mutations in or loss of TSC1

or TSC2 genes which leads to increased mammalian target of

rapamycin (mTOR) activity (41, 42). It is thought that mTOR

activation is a driver of cell proliferation in PEComa and mTOR has

subsequently been used as a therapeutic target with mTOR

inhibitors as evaluated in retrospective analyses and case series

(43, 44).

Given the variable oral absorption and bioavailability of

sirolimus and everolimus, intravenous nanoparticle albumin-

bound (nab-sirolimus) has been studied in the treatment of

advanced malignant PEComa. Results of a prospective, open-

label, phase II registration study of 31 patients who had not

previously been treated with mTOR inhibitors and were available
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for analysis in the efficacy arm showed an overall response rate of

39% (12 of 31; 95% CI 22 to 58) with one complete response and 11

partial responses (45). Additionally, 52% (16 of 31) of patients had

stable disease. Twenty-five patients had tumor profiling. Of note, 8

of 9 (89%) patients with a TSC2 mutation achieved a confirmed

response versus 2 of 16 (13%) without TSC2 mutation (P <0.001).

The most common AEs ≥ 30% were mucositis (79%), fatigue

(59%), rash (56%), anemia (47%), nausea (47%), diarrhea (38%),

decreased weight (38%), hyperglycemia (35%), hypertriglyceridemia

(32%), hypercholesterolemia (32%), and decreased appetite (32%).

The most common (≥10%) Grade 3 AEs were mucositis (18%) and

anemia (12%).

When nab-sirolimus treatment was expanded in study for use

in patients who had been treated previously with mTOR inhibitors

(sirolimus, everolimus, temsirolimus, or sapanisertib), 25% (4 of 16

patients) achieved partial response and 50% had stable disease.

There were no Grade ≥ 4 AEs (46). nab-sirolimus was FDA

approved for adult patients with locally advanced unresectable or

metastatic malignant PEComa in November 2021 (47).
2.7 Tropomyosin receptor kinase inhibitors

The NTRK genes NTRK1, NTRK2, and NTRK3 encode

tropomyosin receptor kinase (TRK) proteins known as TRKA,

TRKB, and TRKC, respectively (48). While these proteins are

normally involved in neuronal development, NTRK gene fusions

have been identified in a variety of adult and pediatric tumors types

(49). These gene fusions encode proteins which have constitutive

TRK activity believed to be a key oncogenic driver regardless of

tissue type.

Larotrectinib is an orally available, small-molecule inhibitor of

all three TRK proteins and has been studied in a phase II basket

study of adults and adolescents with TRK fusion-positive cancers

(50). Seven (13%) patients had infantile fibrosarcoma and 11 (20%)

of the patients in the study had “other” soft tissue sarcoma

including myopericytoma (two patients), sarcoma that was not

otherwise specified (two patients), peripheral-nerve sheath tumor

(two patients), spindle-cell tumor (three patients), infantile

myofibromatosis (one patient), and inflammatory myofibroblastic

tumor of the kidney (one patient).

The overall response rate for all tumor types was 75% (95% CI,

61 - 85) as determined by independent radiology review committee.

Of the 55 patients in the study, 7 patients had complete response, 34

had a partial response, and 7 had stable disease. The median time to

response was 1.8 months. At 1 year, 71% of responses were ongoing

and 55% of all patients remained progression-free.

The most common (>30%) AEs, regardless of attribution, were

fatigue (36%), vomiting (33%), nausea (31%), dizziness (31%), and

increased ALT or AST (42%). The only Grade ≥ 3 AE regardless of

attribution in more than 10% of patients was anemia (11%).

Larotrectinib was granted accelerated FDA approval for adult and

pediatric patients with solid tumors that have NTRK gene fusion

without a known acquired resistance mutation, that are either

metastatic or where surgical resection is likely to result in severe
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whose cancer has progressed following treatment in November

2018 (51).

Entrectinib is an orally available inhibitor of all three TRK

proteins that has the ability to cross the blood-brain barrier. A

review of two phase I (ALKA-372-001 and STARTRK-1) and one

phase II (STARTRK-2) clinical trials of entrectinib for NTRK

fusion-positive has been conducted (52). There were 13 patients

with various types of soft tissue sarcoma included in this analysis.

At the data cutoff (May 31, 2018), the efficacy-available

population of 54 adults and 12.9 months of median follow-up

showed a 57% objective response including 7% complete response

and 50% partial response with a median duration of response of 10

months for all tumor types. The most common (≥10%) Grade ≥ 3

AEs in patients in the NTRK fusion-positive safety population were

increased weight (10%) and anemia (12%). Three serious

treatment-related events occurred in the NTRK fusion-positive

positive population: cognitive disorder, cerebellar ataxia,

and dizziness.

In an updated analysis of 150 adults with NTRK fusion-positive

tumors treated with entrectinib across 17 solid tumor types, the

objective response rate was 61.3% with 16.7% complete responses

(53). Thirty-two of the patients in this analysis had NTRK fusion-

positive sarcomas and an objective response rate was seen in 19

(59.4%) of these patients. The median duration of response for all

NTRK fusion-positive tumor types was 20 months (95% CI 13.2 –

31.1), median progression free survival was 13.8 months (95% CI

10.1 – 20.0), and median overall survival was 37.1 months (95% CI

27.2 – not estimable).

Given that entrectinib crosses the blood brain barrier, patients

with CNS metastases were included in this study. In patients with

investigator-assessed baseline CNS disease, objective response rate

was seen in 61.3% (95% CI 42.2 – 78.2) of patients with baseline

CNS metastases compared to 61.3% (95% CI 52.0 – 70.1) in patients

without CNS disease.

Entrectinib has been well-tolerated among patients with the most

common treatment related AEs being Grade 1/2 including dysgeusia

(36.6%), diarrhea (29.8%), and weight increase (28.5%). Adverse events

led to dose interruption in 32.8% of patients, dose reduction in 24.3% of

patients, and discontinuation in 7.2% of patients.

The most current data on use of entrectinib for NTRK fusion-

positive sarcoma was presented at the CTOS Annual Meeting in

November 2022 (54). In the sarcoma efficacy population of 26

patients (2 with baseline CNS disease and 24 without baseline CNS

disease), 11.5% (2 of 26) had complete response, 46.2% (12 of 26)

had partial response, 15.4% (4 of 26) had stable disease. The median

duration of response was 15.0 months (95% CI 4.6 – not evaluable).

While both patients with baseline CNS disease had at least a partial

response, only one patient had a durable response to therapy.

Seventeen of thirty-seven patients in the sarcoma safety group

experienced a Grade ≥ 3 AE. The most common Grade 3

treatment-related AE was increased weight in 10.8% of patients

and there was one Grade 4 treatment-related AE of hyperuricemia.

Entrectinib was granted accelerated FDA approval for adults

and pediatric patients 12 years of age and older with solid tumors

that that have NTRK gene fusion without a known acquired
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resistance mutation, that are either metastatic or where surgical

resection is likely to result in severe morbidity, and who have no

satisfactory alternative treatments or whose cancer has progressed

following treatment in August 2019 (55).
3 Non-FDA approved targeted
therapies studied in patients with soft
tissue sarcomas

3.1 Regorafenib

Regorafenib is a an orally bioavailable multikinase inhibitor of

VEGFR-1, -2, and -3, tyrosine kinase with immunoglobulin and

epidermal growth factor homology domain 2, and KIT (56). It is

chemically similar to sorafenib with the addition of a fluorine atom

in the center phenyl ring. Regorafenib has met primary endpoints in

phase III trials of patients with metastatic colorectal cancer (57, 58),

locally advanced, unresectable, or metastatic GIST (59), and

hepatocellular carcinoma (60).

In a randomized, placebo-controlled, phase II trial of 182

patients with non-GIST STS subtypes who had progressed or

were intolerant to anthracycline-based chemotherapy, compared

to placebo, regorafenib was shown to extend PFS in non-adipocytic

STS (61). The median PFS for patients with non-adipocytic STS was

4 months with regorafenib vs. 1 month with placebo (HR 0.36, P

<0.0001). The most common (≥10%) AEs were asthenia (13%),

hand and foot skin reaction (15%), hypertension (18%), and

hypophosphatemia (12%).

An open-label, single-arm phase II trial of daily regorafenib for

chemotherapy-refractory, metastatic or locally advanced

unresectable angiosarcoma demonstrated an overall response rate

of 17.4% (4/23) with 52% (12/23) of patients showing progression

free survival for greater than 4 months (62). The most common

Grade ≥ 3 adverse events were decreased lymphocyte count (26%),

hypertension (19%), fatigue (16%), anemia (13%), and

hyponatremia (10%). Based on these results, regorafenib has been

included as a treatment for metastatic or locally advanced

angiosarcoma in the NCCN guidelines (1).
3.2 Sorafenib

Sorafenib is an oral multikinase inhibitor which was initially

developed as an inhibitor of Raf kinase. This medication has been

found to have broad activity against multiple tyrosine kinases

including receptors involved in angiogenesis such as VEGFR-2,

-3, and PDGRF-b (63). Given its anti-angiogenic properties,

sorafenib has been studied for the treatment of multiple soft-

tissue sarcomas including angiosarcoma, desmoid tumor (DT),

and solitary fibrous tumor. Sorafenib has been identified as a

preferred treatment by the NCCN soft tissue sarcoma guidelines

for treatment of DT and solitary fibrous tumor (1).

A double-blind, phase III trial of sorafenib versus matching

placebo has been carried out for 87 patients with progressive,
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symptomatic, or recurrent DTs (64). The primary end point of

the study was progression-free survival (PFS). Results of the study

showed a two-year PFS of 81% (95% CI 69 – 96) in the sorafenib

group and 36% (95% CI 22 – 57) in the placebo group. Results also

showed objective response in 33% (95% CI 20 – 48) of the fifty

patients in the sorafenib group with one patient having a complete

response and 15 having partial responses. Twenty percent (7 of 35

patients) (95% CI 8 – 38) in the placebo group had objective partial

response. The most common grades 1 and 2 treatment related

adverse events were rash (73%), fatigue (67%), hypertension (55%),

diarrhea (51%), and nausea (49%) while the most common Grade ≥

3 adverse event was rash (14%).
3.3 Imatinib

As previously discussed, imatinib is an oral multikinase

inhibitor which has FDA approval for the treatment of locally

advanced or metastatic dermatofibrosarcoma protuberans. While

not FDA approved for the treatment of locally advanced or

metastatic TGCT, imatinib has shown some efficacy for use in

this population. A retrospective multi-institutional study of 27

patients evaluable for response showed an overall response rate in

19% of patients with 1 complete response and 4 partial responses

and 74% of patients had stable disease (65). It is thought that

inhibition of CSF1R by imatinib is the mechanism underlying this

response and has led to investigation of CSF1R specific inhibition

with medication such as pexidartinib and vimseltinib as discussed.
3.4 Sunitinib

Sunitinib is an orally available tyrosine kinase inhibitor with in

vivo activity against VEGFR-2 and PDGFR-b (66, 67). Sunitinib has

been studied for the treatment of solitary fibrous tumor and alveolar

soft part sarcoma (ASPS).

In a retrospective analysis of 31 patients evaluable for response

treated with sunitinib for advanced solitary fibrous tumor, the best

responses were 2 partial response, 16 stable disease, and 13

progressive disease (67). A <30% decrease in size of tumor was

observed in three patients. The median progression-free survival

was 6 months.

Sunitinib has also been studied for the treatment of ASPS in a

retrospective series of nine patients with advanced, translocated

ASPS and evidence of progression during the three months prior to

treatment (68). The median progression-free survival was 17

months and there was partial response in 5 cases, stable disease in

3 cases, and progression in one case.
3.5 Lenvatinib

Lenvatinib is an orally administered tyrosine kinase inhibitor

that targets VEGFR1-3, FGFR1-4, PDGFRa, c-kit, and RET (69).

Lenvatinib has FDA approval for the treatment for the treatment of

differentiated thyroid cancer, hepatocellular carcinoma, and as part
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of combination therapy in the treatment of renal cell carcinoma and

endometrial carcinoma (70, 71)

Pre-clinical evidence has demonstrated activity of lenvatinib in

treatment of STS (72). Additionally, phase I dose-escalation studies

have shown stable disease using lenvatinib in some patients with

synovial sarcoma and leiomyosarcoma (73, 74).

A phase Ib/II study of lenvatinib plus eribulin has been

conducted for patients with leiomyosarcoma and LPS (75). Thirty

patients enrolled in the study (21 with leiomyosarcoma, 9 with

LPS). The objective response rate was 19% for the leiomyosarcoma

group and 20% for the LPS group. The median PFS was 8.56

months (95% CI 4.40 – Not Reached) for both groups. The most

common Grade ≥ 3 AEs included neutropenia (36.7%), hand-foot

syndrome (16.7%), hypertension (13.3%), proteinuria (10%), and

febrile neutropenia (10%).

A phase II pilot study evaluating the efficacy of lenvatinib plus

pembrolizumab in the treatment of metastatic and/or unresectable

soft tissue sarcoma is currently in recruitment (Clinictrial.gov

identifier: NCT04784247).
3.6 Crizotinib

In addition to ALK-positive IMT as discussed above, given that

ASPS is characterized by translocation between chromosomes 17

and X resulting in ASPSCR1-TFE3 fusion gene and MET

overexpression, crizotinib has been studied in the treatment of

advanced or metastatic ASPS (76). A non-randomized, open-label,

phase II trial of 45 assessable patients with ASPS was conducted and

characterized patients as being MET+ or MET- based on the

presence or absence of TFE3 gene rearrangement (76). Among

the 40 MET+ patients, one patient had partial response and 35 had

stable disease. The one-year PFS was 37.5% (95% CI 22.9 – 52.1).

Among the 4 MET- patients one patient had partial response and 3

had stable disease. The one-year PFS for the MET- group of patients

was 50% (95% CI 5.8 – 84.5). One patient had unknownMET status

and had stable disease. Grade ≥ 3 treatment related AEs were fatigue

in two patients and hypotension with bradycardia, blurred vision,

diarrhea, and febrile neutropenia in one patient each, respectively.
3.7 CDK4/6 inhibitors

Palbociclib and abemaciclib are cyclin-dependent kinase

CDK4/CDK6 inhibitors which are FDA approved for the

treatment of advanced breast cancer (77). Given that a high

percentage of well-differentiated (WD) and de-differentiated (DD)

liposarcoma (LPS) demonstrate CDK4 amplification, recent trials

described below have been conducted to evaluate the utility of

CDK4/6 inhibitors in the treatment of LPS.

In a non-randomized, open-label, phase II trial of 60 patients

with WD and DD LPS treated with single-agent palbociclib the

median PFS was 17.9 weeks (2-sided 95% CI 11.9 - 24.0 weeks) with

one complete response. The primary toxicity was neutropenia

(grade 3, n = 20 [33%], grade 4, n = 2 [3%]) without neutropenic

fever reported (78).
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Abemaciclib has also been studied in a single-arm, phase II trial

of patients with DD LPS. Thirty patients were enrolled in the study

and 29 included for analysis. The median PFS was 30.4 weeks (95%

CI 28.9 – NE) with one partial response. The observed PFS at 12

weeks was 76% (95% CI 57-90%). Grade ≥ 3 toxicities included

anemia (37%), neutropenia (20%), thrombocytopenia (17%), and

diarrhea (7%) (79).

A randomized, double-blind, placebo-controlled phase III study

is currently in recruitment for the study of abemaciclib in patients

with advanced, recurrent, or metastatic DD LPS (Clinicaltrial.gov

identifier: NCT04967521).

While CDK4/6 inhibitors have most evidence for treatment of

LPS, a recent phase II study evaluated palbociclib for treatment of

other types of STS and osteosarcoma with have high CDK4

expression and underexpressed CDKN2A mRNA (80). Twenty-

two patients who had median of three lines of prior treatment were

enrolled in the study with nine different sarcoma subtypes,

including two osteosarcomas represented. The median follow-up

was 10 months, the median PFS was 4.2 months (95% CI 0.9-7.4),

and the median 6 months PFS was 30% (95% CI 9-51). Of the 19

evaluable patients, 11 (58%) had stable disease and 8 (42%) had

progression as best response. Of note, patients with higher CDK4

expression above the median showed significantly longer median

PFS and OS in the univariate analysis.
4 Medications in development for
various soft tissue sarcoma histologies

4.1 g-Secretase inhibitors

The Notch signaling pathway and dysregulation of cross-talk

between the Notch and Wnt/b-catenin pathway have been

implicated in multiple tumor types including DT (81). g-secretase
inhibitors (GSIs) block Notch receptor proteolysis and subsequent

translocation of the Notch intracellular domain to the nucleus,

preventing cell cycle progression (82).

The GSI nirogacestat (PF-03084014) was studied in an open-

label, phase II trial of 17 heavily pretreated adults with recurrent,

progressive DT (83). Results of this study showed a 29% (5 of 17

patients) overall response rate (all partial response) for more than

two years. There were also 29% (5 of 17 patients) with stable disease

who remained on study. The most common AEs were Grade 1 or 2

(95%) including diarrhea (76%) and skin disorders (71%). The only

Grade ≥ 3AE was hypophosphatemia (47%).

Given these results, a randomized, double-blind, placebo-

controlled phase III trial of nirogacestat versus placebo has been

conducted for patients with progressing DT (84). Results were

presented at the European Society of Medical Oncology in 2022.

There were 142 patients in the study. Nirogacestat showed

improvement in PFS compared with placebo with a HR of 0.29

(95% CI 0.15 – 0.55), overall response rate was 41% with

nirogacestat versus 8% with placebo (P<0.001), and the median

time to response was 5.6 with nirogacestat versus 11.1 months with

placebo. Of the AEs, most were Grade 1 or 2 (95%) and included
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diarrhea (84%), nausea (54%), fatigue (51%), hypophosphatemia

(42%), and maculopapular rash (32%). Of note, ovarian dysfunction

occurred in 75% (27/36) of women of childbearing potential and

resolved in 20 (74%) who discontinued the medication.

In addition to the GSI nirogacestat, early studies of the GSIs

AL101 and AL102 have demonstrated regression of DT (85, 86).

Interim results of a phase II/III open-label dose regimen finding

study and randomized, double-blind, placebo-controlled study of

AL102 were recently presented at the European Society of Medical

Oncology (ESMO) 2022 meeting (ClinicalTrials.gov identifier

NCT04871282) (87). As of February 22, 2022, 31 patients had

enrolled in the phase II study. Thirty patients were still on study at

time of analysis and 18 of those for more than 4 weeks. Mean age

was 40 years and 74% of patients were women. The most common

treatment-emergent adverse effects (TEAE) ≥ 15% for all doses were

diarrhea (39%), rash (26%), nausea (19%), fatigue (19%), and

stomatitis (16%). Four patients had Grade 3 AEs (two deemed

study-drug related: anemia, diarrhea; two deemed unrelated:

vomiting, pleural effusion). There was no significant ECG or food

effects noted.
4.2 Anlotinib

Anlotinib is an oral small-molecule inhibitor of multiple

tyrosine kinases, primarily VEGFR-2 and -3, FGFR-1-4, PDGFR-

a and -b, c-Kit, and Ret (88). Anlotinib first received the National

Medical Products Administration of China’s approval for use in

treatment of locally advanced or metastatic non-small cell lung

cancer in 2018 (89). Anlotinib has since been studied extensively in

the People’s Republic of China and received approval in June 2019

for second-line treatment of clear cell sarcoma, alveolar soft part

sarcoma, and other soft tissue sarcomas already treated with first-

line anthracyclines (90). This approval was based in part on a phase

II study of 166 soft tissue sarcoma patients who had progressive

disease after anthracycline-based chemotherapy and had not

previously received treatment with angiogenesis inhibitors (91).

The results of this study showed twelve-week PFS in 77% of patients

with alveolar soft part sarcoma, 75% of patients with synovial

sarcoma, and 75% of patients with leiomyosarcoma. The most

common grade 3 or higher adverse events were hypertension

(4.8%), triglyceride elevation (3.6%), and pneumothorax (2.4%).

Anlotinib (AL3818) is currently being studied in the US as a

phase III clinical trial for the treatment of alveolar soft part sarcoma,

synovial sarcoma, and leiomyosarcoma. Known as the APROMISS

trial, patients with alveolar soft part sarcoma will receive open-label

anlotinib while patients with leiomyosarcoma or synovial sarcoma

will receive either anlotinib (two-thirds) or dacarbazine (one-third)

(Clinicaltrials.gov identifier NCT03016819). At the time of this

publication this study is recruiting only patients with alveolar soft

part sarcoma.

Preliminary results from the APROMISS trial have evaluated

anlotinib compared to dacarbazine for second line treatment of

advanced or metastatic synovial sarcoma (92). Seventy-nine

patients received initial treatment and were evaluable in this

study with 52 receiving anlotinib as the treatment arm and 27
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receiving dacarbazine as the placebo arm. Overall PFS was 2.89

months (95% CI 2.73 – 6.87) for anlotinib compared to 1.64 months

(95% CI 1.45 – 2.70) for dacarbazine. The primary endpoint was

met (P = 0.0015) with a hazard ratio of 0.449 (95% CI 0.270 –

0.744). Grade 3 treatment related adverse events were seen in 23.1%

of patients treated with anlotinib and 25.9% of patients treated with

dacarbazine. The most common Grade 3 adverse events for

anlotinib were diarrhea (5.8%) and hypertension (3.8%).
4.3 MDM2 inhibitors

The Murine Double Minute Clone 2 (MDM2) gene encodes an

E3 ligase that binds tumor suppressor P53, both blocking the P53

transactivation domain and targeting P53 for degradation in the

proteasome (93). It is thought that inhibition of MDM2 may lead to

increased concentrations of P53 and restore P53 function.

MDM2 inhibition is currently being studied in a variety of

cancer types given the prevalence of P53 mutations in human

cancers. Amplification of MDM2 has been specifically identified

in certain cancer types including LPS. In fact, amplification of

MDM2 can be useful in the diagnosis of WD LPS (94).

Milademetan, an oral inhibitor of MDM2, was studied in a

phase I trial of patients with advanced, relapsed, or refractory solid

tumors or lymphoma (95). This study included patients with WD

and DD LPS. Fifty percent of the 107 patients in this study hadWD/

DD LPS. Median age was 61 years and 62% of patients had received

≥3 prior therapies. Partial response was seen in 3.8% of patients and

stable disease was seen in 64.2% of patients with WD/DD LPS. The

most common (>10%) grade ≥ 3 drug related adverse events in the

Schedule D was thrombocytopenia (14%).

Based on these phase I results, milademetan will be studied in a

phase III registration study of milademetan compared to

trabectedin in patients with unresectable or metastatic DD LPS

that has progressed on one or more prior systemic therapies

inc lud ing a t l eas t one anthracyc l ine-based therapy

(Clinicaltrial.gov identifier: NCT04979442).

In addition to milademetan, BI 907828 is another MDM2-p53

inhibitor currently under study. In vivo study of BI 907828 for the

treatment of MDM2 amplified DD LPS showed decreased tumor

size and even complete response for an in vivo murine model (96).

Based on these pre-clinical studies, BI 907282 is currently being

evaluated in a phase I dose escalation/expansion study of patients

w i t h a d v a n c e d s o l i d t umo r s ( C l i n i c a l T r i a l s . g o v

Identifier: NCT03449381).

Preliminary results have been presented for a group of 90

patients with median two lines of prior systemic therapy (97).

Forty-four of the patients in the study had advanced LPS with 28

diagnosed with DD LPS and 16 diagnosed with WD LPS. At data

cut-off, 34.4% of patients had received treatment for ≥ 6 months. In

the 41 evaluable patients with LPS, 24 of 27 patients with DD LPS

had partial response or stable disease and 13 of 14 patients withWD

LPS had partial response or stable disease. The most common

Grade ≥ 3 AEs were neutropenia (23.8%), thrombocytopenia

(21.4%), and anemia (11.9%).
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4.4 Vimseltinib

As discussed above, CSF1/CSF1R interaction has been a recent

target for the treatment of TGCT cells given their expression of

CSF1 related to the t(1;2) translocation of the CSF1 gene on

chromosome 1p13 to the COL6A3 gene on chromosome 2q37.

Vimseltinib is an oral, switch control tyrosine kinase inhibitor

which has been specifically designed for selective and potent

inhibition of CSF1R (98). Initial results from a phase I (dose

escalation) and phase II (expansion) study of vimseltinib for

treatment of TGCT in patients with unresectable TGCT showed

evidence of objective response for 30-50% of patients (99). Updated

results from the phase II expansion portion for patients treated with

the recommended phase II dose (30 mg twice weekly) showed

partial response or stable disease in 100% with 44% of patients in

Cohort A and 49% of patients in Cohort B having partial response

at a median treatment duration of 7.9 and 5.7 months,

respectively (100).

A randomized, double-blind, placebo-controlled, phase III trial

is currently in recruitment for study of vimseltinib for patients with

unresectable TGCT (Clinicaltrial.gov identifier: NCT05059262).
4.5 BRD9 inhibitors

Synovial sarcoma is defined by the presence of translocation

t(X;18)(p11.2;q11.2) leading to the fusion of genes SYT on

Chromosome 18 and SSX on Chromosome X (101). The SS18-

SSX fusion oncoprotein has been found to result in genetic
Frontiers in Oncology 0850
transcription changes through alteration in the function of SWI/

SNF or BAF complexes, leading to the development of synovial

sarcoma (102). Changes in canonical BAF (cBAF) complexes driven

by the SS18-SSX oncoprotein causes synovial sarcoma gene

expression (103, 104). One alteration this leads to is repression of

SMARCB1, a cBAF complex protein that may act in tumor

suppression and is found in ~70% of synovial sarcoma

samples (105).

Studies have found that disruption of the ncBAF complex in

samples with loss of SMARCB1 leads to attenuation of cell

proliferation in synovial sarcoma (106). One subunit of ncBAF,

unique from cBAF and pBAF is the BRD9, a bromodomain-

containing protein. Degradation of BRD9 inhibits synovial

sarcoma tumor progression in a murine model (107). Therefore,

BR9D inhibitors have been developed as a possible target for

treatment of synovial sarcoma.

There are two BR9D inhibitors currently under early phase I

clinical trial development for the treatment of synovial sarcoma.

CFT8634 is an oral heterobifunctional degrader that bridges BRD9

with E3 ligase, causing ubiquitination and proteasomal degradation

of BRD9 (108). A phase I clinical trial is currently recruiting to

assess the safety and tolerability of CFT8634 in locally advanced or

metastatic SMARCB1-Perturbed cancers including synovial

sarcoma and SMARCB1-Null tumors who have been previous

treated with at least one prior line of systemic therapy

(ClinicalTrials.gov Identifier: NCT05355753).

FHD-609 is an intravenous BRD9 degrader that bridges BRD9

with cereblon (CRBN) E3 ubiquitin ligase substrate that leads to

proteasomal degradation (109). A phase I, open-label, dose escalation
FIGURE 1

Simplified mechanisms of action of targeted therapies for treatment of soft tissue sarcoma. *Indicates that medication is FDA approved for treatment
of certain soft tissue sarcoma subtypes. Key: Platelet derived growth factor receptor (PDGFR); vascular endothelial growth factor receptor (VEGFR);
stem cell growth factor receptor (c-kit); Hepatocyte Growth Factor Receptor (c-Met); Anaplastic Lymphoma Kinase (ALK); cyclin dependent kinase
(CDK); colony stimulating factor 1 (CSF1); enhancer of zeste homolog 2 (EZH2); retinoblastoma (RB).
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and expansion study is currently recruiting patients to evaluate the

safety, tolerability, and preliminary clinical activity of FHD-609 for

patients with advanced synovial sarcoma or advanced SMARCB1-loss

tumors (ClinicalTrials.gov Identifier: NCT04965753).
5 Discussion

Targeted therapies for treatment of locally advanced and

metastatic STS have historically relied on tyrosine kinase

inhibition (TKI) with pazopanib for non-adipocytic STS.

Additional TKIs have been studied in STS including imatinib,

regorafenib, sorafenib, sunitinib, lenvatinib, and crizotinib. These

TKIs are multikinase inhibitors and thought to have activity in

treatment of STS given their ability to inhibit angiogenesis and

tumor growth promoting receptor tyrosine kinases.

With improved understanding of the cellular markers and

possible driver mutations causing sarcomagenesis for different

STS subtypes, multiple targeted therapies have been developed to
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directly inhibit these cellular processes with the hope of objective

tumor response. Simplified mechanisms of action of these therapies

can be seen in Figure 1. These therapies include FDA approved

treatments with a wide variety of specific mechanisms listed

in Table 1.

Multiple medications are currently in development for the

treatment of STS which are directed at known targets from

previously effective therapies including anlotinib (TKI) and

vimseltinib (CSF1R inhibitor) and are listed in Table 2. Successive

generations of medications targeting known STS drivers may have

high receptor affinity and decrease adverse events.

Medications currently under investigation for treatment of STS

with novel mechanisms of action include g-secretase inhibitors

(Notch and WNT/b-catenin pathway) for treatment of DT,

MDM2 inhibitors targeting P53 for treatment of LPS given high

expression of MDM2 in this STS subtype, and BRD9 inhibitors

targeting ncBAF complex for treatment of synovial sarcoma and

other SMARCB1-loss tumors. These medications and related

clinical trials are listed in Table 3.
TABLE 1 FDA Approved Targeted Therapies for Treatment of Soft Tissue Sarcoma.

Medication Mechanism of Action Target Sarcoma Type

Pazopanib Tyrosine Kinase Inhibitor VEGFR-1,-2,-3; PDGFR-a,-b; c-kit; FGFR-1,-3; c-fms Non-adipocytic STS (12)

Pexidartinib Tyrosine Kinase Inhibitor CSF1R; c-kit TGCT (23)

Imatinib Tyrosine Kinase Inhibitor PDGFR-b Dermatofibrosarcoma Protuberans (28–30)

Crizotinib Tyrosine Kinase Inhibitor c-Met; ALK; ROS1 IMT (33, 34)

Tazemetostat EZH2 Inhibitor EZH2 Epithelioid Sarcoma (38)

nab-Sirolimus mTOR inhibitor mTOR Pathway PEComa (45, 46)

Larotrectinib
Entrectinib

TRK inhibitor TRK TRK Fusion-Positive Tumors (50, 52–54)
Vascular endothelial growth factor receptor (VEGFR); platelet derived growth factor receptor (PDGFR); stem cell growth factor receptor (c-kit); fibroblast growth factor receptor (FGFR); colony-
stimulating factor-1 receptor (c-fms); tenosynovial giant cell tumor (TGCT); hepatocyte growth factor receptor (c-Met); anaplastic lymphoma kinase (ALK); inflammatory myofibroblastic tumor
(IMT); mTOR (mammalian target of rapamycin); perivascular epithelioid tumor (PEComa).
TABLE 2 Non-FDA Approved Targeted Therapies Studied in Patients with Soft Tissue Sarcoma.

Medication Mechanism of Action Target Sarcoma Type

Regorafenib Tyrosine Kinase Inhibitor PDGFRa; VEGFR-1, -2, -3; c-kit Non-adipocytic STS (61)
Angiosarcoma (62)

Sorafenib Tyrosine Kinase Inhibitor Raf Kinase; VEGFR-2, -3; PDGFR-b Desmoid Tumor (64)

Imatinib Tyrosine Kinase Inhibitor ABL; PDGFR; c-kit
Possible CS1FR

TGCT (65)

Sunitinib Tyrosine Kinase Inhibitor VEGFR-2, PDGFR-b Solitary Fibrous Tumor (67)
ASPS (68)

Lenvatinib Tyrosine Kinase Inhibitor VEGFR1-3; FGFR1-4; PDGFRa; c-kit; RET Leiomyosarcoma (75)
LPS (75)

Crizotinib Tyrosine Kinase Inhibitor c-Met; ALK; ROS1 ASPS (76)

Palbociclib
Abemaciclib

CDK4/6 Inhibitor CDK 4/6 WD/DD LPS (78, 79)
STS with high CDK4 expression (80)
Platelet derived growth factor receptor (PDGFR); vascular endothelial growth factor receptor (VEGFR); stem cell growth factor receptor (c-kit); hepatocyte growth factor receptor (c-Met);
anaplastic lymphoma kinase (ALK); cyclin dependent kinase (CDK); tenosynovial giant cell tumor (TGCT); Alveolar Soft Part Sarcoma (ASPS); well-differentiated/dedifferentiated liposarcoma
(WD/DD LPS).
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Given the interest in immunotherapy for treatment of STS,

future studies may seek to combine targeted therapy with

immunotherapy to evaluate if there is enhancement in treatment

effect and improved patient outcomes (110, 111). These studies

must be mindful of adverse effects of combination immunotherapy

as has been seen in previous study (112, 113).

In addition to therapies that target specific cellular and

molecular mechanisms as discussed, research is also underway to

identify drug delivery systems which may improve patient

outcomes. Nanoparticle albumin-bound sirolimus (nab-sirolimus)

is an example of a targeted therapy (mTOR inhibitor) which had

improved therapeutic dosing with a nanoparticle drug delivery

system. Future work will explore drug delivery systems with the

hope to enhance the effect of chemotherapy, molecular targeted

therapies, and radiation therapy while reducing toxicity (114).
6 Conclusion

Over the past two decades there has been significant

advancement in the use of targeted therapies for the treatment of

advanced and metastatic STS. These developments in targeted

therapies have highlighted a key paradigm and future direction of

treatment. Continuing in this vein, and building on the success of

the prior years, it is easy to see that the future of treatment in

sarcoma is bright. Next generation sequencing of STS in later lines

will continue to improve, and with it, our ability to identify

actionable targets. The promise of treatments that minimize

toxicity, while maximizing on target efficacy is hard to ignore,

and with the rapid pace of development, may shortly be in reach.
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Soft tissue sarcoma is a rare and aggressive disease with a 40 to 50% metastasis

rate. The limited efficacy of traditional approaches with surgery, radiation, and

chemotherapy has prompted research in novel immunotherapy for soft tissue

sarcoma. Immune checkpoint inhibitors such as anti-CTLA-4 and PD-1 therapies

in STS have demonstrated histologic-specific responses. Some combinations of

immunotherapy with chemotherapy, TKI, and radiation were effective. STS is

considered a ‘cold’, non-inflamed tumor. Adoptive cell therapies are actively

investigated in STS to enhance immune response. Genetically modified T-cell

receptor therapy targeting cancer testis antigens such as NY-ESO-1 and MAGE-

A4 demonstrated durable responses, especially in synovial sarcoma. Two early

HER2-CAR T-cell trials have achieved stable disease in some patients. In the

future, CAR-T cell therapies will find more specific targets in STS with a reliable

response. Early recognition of T-cell induced cytokine release syndrome is

crucial, which can be alleviated by immunosuppression such as steroids.

Further understanding of the immune subtypes and biomarkers will promote

the advancement of soft tissue sarcoma treatment.

KEYWORDS

soft tissue sarcoma, immune checkpoint inhibitor, adoptive immunotherapy, cancer
testis antigen, T-cell receptor therapy, chimeric antigen receptor (CAR) T-cell,
tumor-infiltrating lymphocyte, tumor microenvironment
1 Introduction

Sarcomas are a rare and heterogeneous group of solid tumors of mesenchymal origin,

accounting for only 1% of all adult malignancies. They can be divided broadly into soft

tissue sarcomas (STS), which originate in the fat, muscle, nerve, nerve sheath, blood vessels,

and other connective tissues or the bone.
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More than 70 different histologic subtypes of STS have been

identified (1). Soft tissue sarcoma is an aggressive disease with a 40

to 50% metastasis rate, with a 5-year survival rate of 30%. STS most

commonly metastasizes to the lungs; tumors in the abdominal

cavity more commonly metastasize to the liver and peritoneum (2).

The limited durable response with traditional surgery,

radiation, and chemotherapy in advanced-stage sarcoma has

prompted research in novel immunotherapy of soft tissue sarcoma.
1.1 Immune microenvironment of sarcoma

The tumor microenvironment (TME) comprises a tumor,

stromal cells, and immune cells such as macrophages,

lymphocytes, and extracellular matrix (3). Tumor cells take

advantage of TME over time, and genetic/epigenetic changes of

the tumor and rearrangement of TME are pivotal in

tumorigenesis (4).

Tumor associated macrophages (TAMs) are distinguished

components in TME. Tumors secrete high levels of colony-

stimulating factor 1 (CSF-1), which converts M1 macrophage

(classically activated, tumoricidal) to M2 macrophage/TAMs

(alternatively activated, tumor-promoting) and stimulates tumor

growth and metastasis along with CCL2 (5).

Sarcoma is traditionally considered an immunologically quiet

tumor with low tumor mutational burden (1.06 mutations/Mb) and

immunosuppressive TME (high levels of hypoxia-inducible factor 1

a (HIF1a), macrophages, neutrophils, and decreased T-cell levels)

(6). A subset of sarcomas are sensitive to ICIs. They are ‘hot’/

immune-sensitive tumors with high TMB, interferon, CD8

lymphocytes, and PD-L1 expression (7, 8).

A very recent paper highlights the significant prognostic value

of systemic inflammatory indexes as a prognostic marker in terms

of PFS and OS in STS patients who progressed on anthracycline. A

low lymphocyte-to-monocyte ratio (LMR) was associated with

worse OS (p = 0.006). Interestingly, low lymphocyte-to-monocyte

ratio (LMR) was an indicator of trabectedin efficacy, which could be

applied in clinical practice (9). In a previous study in 2021, 3D-

cultured cells from leiomyosarcoma and undifferentiated

pleomorphic sarcoma (UPS) surgical specimens were treated with

trabectedin and demonstrated the involvement of ECM-associated

genes such as mmps and their inhibitor timp1, emphasizing the

potential role of ECM in the activity of trabectedin (10).

It was proposed that tumors with high PD-1 expression and

tumor-infiltrating lymphocytes (TILs) respond well to ICIs (11).

Sarcomas have relatively low PD-1 and TILs. Various studies have

revealed conflicting results regarding how PD1 expression impacts

prognosis. A recent review of Phase II trials demonstrated that 30%

of patients with PD-L1 expression (≥1%) achieved a response.

However, 7% of PD-L1 negative patients also achieved a response,

underscoring the limitation of PD-L1 as a prognostic marker (12).

A subsequent analysis of SARC028 revealed that higher TILs at

baseline were associated with a better PFS.

In this article, we will review current immunotherapy of soft

tissue sarcoma, highlighting prominent trials with immune

checkpoint inhibitors and adoptive cellular therapies, including
Frontiers in Oncology 0257
engineered T-cell receptor targeting cancer testis antigens (CTA),

chimeric antigen receptor (CAR) T-cell therapies and tumor-

infiltrating lymphocytes (TILs).
2 Immune checkpoint inhibitors

Immune checkpoint inhibitors (ICI) regulate critical inhibitory

signals of T-cells such as PD-1/PD-L1 and CTLA-4 axes as

monotherapy or in combination with chemotherapy. ICIs are

FDA-approved to treat more than 50 cancer types, including

advanced solid tumors, MMR-deficient tumors, and tumors with

a high tumor mutation burden (13).

SARC028 was a significant Phase II trial published in 2017,

which first demonstrated the efficacy of pembrolizumab (PD-1

inhibitor) in some STS, notably in undifferentiated pleomorphic

sarcoma (UPS) (4 of 10) and dedifferentiated liposarcoma (dLPS) (2

of 10) (14). The final results of SARC028 expansion cohorts

confirmed effectiveness in UPS, with an objective response rate

(ORR) of 23%, but not in dedifferentiated/pleomorphic liposarcoma

(LPS) with an ORR of 10% (15).

In the Phase II Alliance A091401 trial, patients with metastatic

sarcoma were treated with nivolumab (PD-1 inhibitor) with or

without ipilimumab (CTLA-4 inhibitor). Dual immune checkpoint

blockade demonstrated an overall response (ORR) of 16%.

Responses were confirmed in leiomyosarcoma (uterine (n=1),

non-uterine (n=1)), myxofibrosarcoma (n=1), UPS (n=2), and

angiosarcoma (n=1) (16). In a phase II study for advanced

uterine leiomyosarcoma, none of the 12 patients responded to

nivolumab alone (17). In a subsequent Phase II expansion cohort

study, combination therapy of nivolumab and ipilimumab resulted

in an ORR of 28.6% in UPS and 14.3% in dedifferentiated

liposarcoma (18). In a DART trial by SWOG, a phase II trial of

ipilimumab and nivolumab in angiosarcoma demonstrated an ORR

of 25% (19). On December 2022, atezolizumab was granted FDA

approval for unresectable or metastatic alveolar soft part sarcoma

(ASPS) (ORR = 24%, NCT03141684).

Myxofibrosarcoma (MFS) expresses high levels of immune

microenvironment markers, and some case reports support PD-1

inhibition in myxofibrosarcoma, which is further explored in a

Phase II trial (ENVASARC, NCT04480502) (20–23).

ICI response in soft tissue sarcoma has been modest and

histologic-specific, especially in UPS, dLPS, ASPS, and angiosarcoma.
2.1 ICI and local/systemic therapy

Combinational strategies with ICI and local/systemic therapies

can overcome soft tissue sarcoma resistance mechanisms. Local

therapies to complement ICI consist of isolated limb infusion

and radiation.

Isolated limb infusion (ILI) is a minimally invasive

administration of high-dose chemotherapy to treat STS in the

extremities (24). Two patients with recurrent myxofibrosarcoma

responded to melphalan via ILI and pembrolizumab (1=partial

response, 1=complete response) (25). This promising case
frontiersin.org
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prompted a subsequent Phase II trial with pembrolizumab plus the

infusion of melphalan and dactinomycin (NCT04332874).

Radiation therapy is another local therapy to activate anti-

tumor immunogenicity in the tumor microenvironment through

the cGAS-STING pathway and subsequent CD8+ T cell activation

(26, 27). There are approximately ten ongoing trials to investigate

the effect of radiation in addition to ICI.

Chemotherapy enhances immunosurveillance by releasing type

I interferon (IFN), and increasing M2 macrophages, CD8+ T cells,

and NK cells in a tumor microenvironment (28, 29).

Two Phase II trials of doxorubicin and pembrolizumab from

Pollack et al. and Livingston et al. demonstrated promising ORR of

19% in advanced sarcoma and 36.7% in advanced STS, respectively

(30, 31). In a Pollack et al. study, grade 3+ treatment-related adverse

effects (TRAEs) such as neutropenia (6/37), leukopenia (1/37), and

febrile neutropenia (1/37), heart failure due to doxorubicin (2/37),

and adrenal insufficiency (1/37) and hypothyroidism (7/37) due to

pembrolizumab were observed. In a Livingston et al. study, grade 3+

TRAEs include neutropenia and leukopenia (11/30 each), and

anemia (8/30). Arthralgia (3/30), fatigue (2/30), autoimmune

disorder (2/30), and increased lipase (2/30) were grade 3+ TRAEs

attributed to pembrolizumab. Additionally, pembrolizumab-related

synovitis/myositis (n=1), autoimmune hepatitis (n=1), and

autoimmune nephritis (n=1) were observed, and all patients

responded to steroids. Grade 5 adverse events were not reported

in both studies.

Trabectedin, in addition to ipilimumab and nivolumab,

revealed an ORR of 19.5% in metastatic STS (32). Grade 4

adverse events include anemia, neutropenia, thrombocytopenia,

and increased AST/ALT and CPK. Grade 5 rhabdomyolysis was

observed in one patient.

Another strategy to augment immune response in STS is to

combine small molecule inhibitors such as tyrosine kinase

inhibitors (TKI). In the Phase II Immunosarc trial, TKI sunitinib

with nivolumab in metastatic or locally advanced STS led to an ORR

of 21%, with 48% of 6-month PFS (33). Wilky et al. demonstrated

the efficacy of Axitinib (VEGF receptor TKI) and pembrolizumab in

advanced sarcoma. None achieved a complete response. 8 out of 32

patients achieved a partial response (ORR 25.0%), with most

responses occurring in ASPS (6/11, ORR 54.5%) (34).

Pembrolizumab is FDA-approved in many cancers such as

advanced melanoma, Merkel Cell Carcinoma, Cutaneous

Squamous Cell Carcinoma, and non-small cell lung cancer, either

alone or with other therapies (35–38).

Phase II trials combining systemic therapy with pembrolizumab

in sarcoma are in progress: Pembrolizumab + eribulin

(NCT03899805), pembrolizumab + gemcitabine (NCT03123276),

pembrolizumab + lenvatinib (NCT04784247), pembrolizumab +

doxorubicin (NCT03056001), pembroliumab + cabozantinib

(PEMBROCABOSARC, NCT05182164), pembrolizumab +

epacadostat (IDO1 Inhibitor)(NCT03414229).

Other PD-1 inhibitors in sarcoma are investigated in Phase II

trials. Nivolumab + Gemcitabine/Doxorubicin/Docetaxel

(GALLANT, NCT04535713), Retifanlimab (PD-1 inhibitor) +

Gemcitabine/Docetaxel (NCT04577014), Sintilimab (PD-1

inhibitor) + Doxorubicin/Ifosfamide (NCT04356872) and
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Camrelizumab (PD-1 inhibitor) + Doxorubicin/Ifosfamide

(NCT04606108) are in progress.

Future research should aim to identify biomarkers in STS to

augment responses of ICI with and without local/systemic therapies

in each patient.
3 Adoptive cellular therapies

Successful T-cell treatments for hematological malignancies

have sparked interest in researching T-cell therapies for solid

tumors such as sarcomas.

One of sarcoma’s primary immune evasion strategies is

inadequate neoantigens/antigen recognition, which fails to create

enough tumor-specific T cells and immune responses. Adoptive

cellular therapies hope to avoid this phase by supplying a significant

amount of autologous T cells specifically designed for a particular

antigen. Autologous T cells are obtained from peripheral blood or

the original tumor and then amplified. Potential approaches include

engineered T-cell receptor (TCR) and chimeric antigen receptor

(CAR) T-cell therapy and tumor-infiltrating lymphocyte (TIL)

therapy with sarcoma.
3.1 Engineered T-cell receptor therapy

Cancer testis antigens (CTA) are tumor-associated antigens

(TAA) that are typically present in fetal development (placenta

and embryo) or at immune-privileged sites without MHC class I

(testes) (39). Sarcomas express higher than normal CTAs, especially

in SS and myxoid/round cell liposarcoma (40, 41). Sarcomas

express a variety of CTAs such as the NY-ESO-1, MAGE, and

GAGE family and fetal acetylcholine receptors (42).

NY-ESO-1 and MAGE family are intracellular antigens that

must be processed and presented with MHC. TCR T cells require

patients with matching HLA allele subtypes, often HLA-A2, which

compose approximately 30% of the population. Modified TCR T

cells recognize processed peptides viaHLA-A2-specific manner and

mount immune responses (43).

In 2011, Robbins et al. successfully investigated the antitumor

response of NY-ESO-1-specific TCRs with high dose interleukin-2

in refractory synovial sarcoma (SS). Objective clinical responses

were observed in 4 of 6 SS patients. A partial response lasted for 18

months in a patient with synovial sarcoma (44). Long-term follow-

up study which enrolled 12 additional SS patients, revealed that 11

of 18 patients with SS who received anti-NY-ESO-1 TCRs

responded to therapy (61%), and one had a complete response (45).

In a Phase I trial in 2018, T cells expressing NY-ESO-1c259

(Letetresgene autoleucel), a modified TCR recognizing NY-ESO-1/

LAGE1a peptide, demonstrated an ORR of 50% (6/12) in metastatic

SS following a lymphodepleting regimen of fludarabine and

cyclophosphamide. Remarkably, self-generating pools of NY-

ESO-1c259T cells persisted in vivo for at least 6 months in all

patients who responded. No fatal adverse events were reported.

Grade 3-4 adverse events include lymphopenia, leukopenia,

neutropenia, anemia, thrombocytopenia, and hypophosphatemia.
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Cytokine release syndrome was reported in five patients, with

median onset within 4 days and a median duration of 10 days (46).

High dose fludarabine-containing regimen is necessary for the

efficacy of NY-ESO-1c259 TCR, likely correlated with elevated IL-7

and IL-15, and TAM modulation (47).

Afamitresgene autoleucel (ADP-A2M4 SPEAR TCRs directed

against the MAGE-A4) revealed comparable efficacy. Phase I study

with MAGE-A4c1032 TCR by Hong et al. observed an ORR of 25%

in advanced solid tumors, and all partial responses were in patients

with synovial sarcoma. Two patients had trial-related deaths due to

aplastic anemia and CVA (48). A subsequent phase II study with

afamitresgene autoleucel revealed an ORR of 40% in 25 patients

with a tolerable safety profile in advanced/metastatic SS and

Myxoid/Round Cell Liposarcoma (MRCLS) (49).

Although engineered TCR in advanced soft tissue sarcoma

presents promising efficacy, there are some limitations to

overcome, particularly the HLA-A2 requirement, manufacturing

timelines/cost, and associated toxicities such as cytokine release

syndrome. Furthermore, there are heterogenous CTA expressions

in different types of sarcomas, and broad applicability may be

limited (43).
3.2 Chimeric antigen receptor T-cell
therapies

CARs are chimeric antigen receptors artificially engineered to

recognize naturally occurring tumor surface antigens and activate

T-cells in an MHC-independent manner (50).

C19-targeted CAR T-cell therapies for hematologic

malignancies such as CD19-positive B-cell acute lymphoblastic

leukemia and B-cell lymphomas have been successful. In 2022,

Ciltacabtagene autoleucel, B-cell maturation antigen-directed CAR

T-cell, was FDA-approved for patients with refractory or relapsed

multiple myeloma who received at least four lines of therapy

(CARTITUDE-1, NCT03548207). Further efforts to expand CAR

T-cell therapies in solid tumors are ongoing but have not shown

major significance yet.

In Phase I/II trial in HER2-positive sarcomas, including 16

osteosarcomas, one Ewing sarcoma, one primitive neuroectodermal

tumor, and one desmoplastic small round cell tumor, HER2-CAR T

cell therapy induced stable disease in four patients without

significant toxicity (51).

In another Phase I trial, ten HER2+ refractory/metastatic

patients (osteosarcoma (5), rhabdomyosarcoma (3), Ewing

sarcoma (1), and synovial sarcoma (1)) were enrolled and treated

with HER2-CAR T cells and lymphodepletion with either

fludarabine or in combination with cyclophosphamide. At the

initial follow-up at 6 weeks, 4 patients had progression, and 4

patients achieved stable disease. Overall survival at 1 year was

60% for patients treated with HER2-CAR T cells and

lymphodepletion (52).
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EGFR, GD2, insulin-like growth factor 1 receptor (IGF-1R),

tyrosine kinase orphan-like receptor 1 (ROR1), CD44v6, and NK

cell activating receptor group 2-member D (NKG2D) are potential

targets in sarcoma, and early phase trials are underway to

investigate the efficacy of CAR therapies for these targets.

CAR T-cell therapies will have to overcome a few obstacles in

the future. CAR T-cell therapies have limited cancer-specific

antigens, whereas TCRs recognize peptides presented via MHC

class 1, which essentially include whole proteasome (53, 54). Until

now, CAR-T therapies seek more specific targets in solid tumors,

which are conserved and do not convey toxicity to healthy tissue, to

improve long-term efficacy (55).

Cytokine release syndrome (CRS) is one of the adverse effects of

both TCR and CAR T-cell therapy following T-cell administration.

CRS is an acute, systemic response from immune stimulation in an

“on-target and on-tumor” manner. T-cell therapies can also induce

unexpected “on-target, off-tumor” autoimmunity, which damages

healthy cells by recognizing shared antigens (56–58). It is crucial to

promptly recognize and treat immune-mediated adverse effects,

which can be alleviated by immunosuppression such as

Tocilizumab and steroids if needed.
3.3 Tumor-infiltrating lymphocytes
therapies

Tumor-infiltrating lymphocytes (TIL) are extracted from

tumors and administered to the patients after ex vivo expansion

(59, 60). TIL had reproducible effects in melanoma. In a phase 3

trial by Rohaan et al. in 2022, TIL therapy demonstrated an ORR of

49% (41/84) in advanced melanoma (61). There has not yet

demonstrated satisfactory efficacy in other solid tumors.

In 2021, Mullinax et al. investigated a rapid expansion protocol

that TIL cultures from soft tissue sarcoma resection can expand

enough for clinical adoptive cell therapy, which led to an ongoing

Phase I trial (NCT04052334) (62).

Current challenges for TIL therapies include high cost due to

the personalized nature of TIL therapies, and toxicities from high-

dose IL-2, which is given post-TIL administration (63, 64).
4 Cancer vaccines

Talimogene laherparepvec (T-VEC) is an oncolytic viral

immunotherapy via intratumor injection. It enhances

immunogenicity via antigen presentation and tumor-specific T

cells. T-VEC is the first viral immunotherapy approved for

metastatic melanoma (65).

In a Phase II trial, 20 patients with advanced/metastatic

sarcoma were treated with an oncolytic virus, T-VEC, with

pembrolizumab, which demonstrated an ORR of 35% and a

median duration of response of 56.1 weeks (66).
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Vaccine therapies have been explored for decades

without satisfactory results, likely due to suppressive tumor

microenvironment. Current efforts are utilizing novel vectors to

promote specificity and strength of immune response.

A novel study by Somaiah et al. demonstrated the efficacy of

LV305, a lentivirus vector designed to induce NY-ESO-1 in

dendritic cells in vivo, improving immune response against tumor

cells (67). ORR was 4.2% in sarcoma (1/24 in SS).

CMB305 (a heterologous vaccine for NY-ESO-1 and TLR 4

agonist) is a good vehicle for synovial sarcoma and myxoid/round

cell liposarcoma patients, and it was subsequently assessed in a

Phase Ib study (68, 69). The study demonstrated a disease control

rate of 61.9% and OS of 26.2 months in 64 sarcoma patients. Phase

II study with CMB305 and atezolizumab (PD-L1 antibody)

compared to atezolizumab alone in STS did not reveal significant

improvement in PFS or OS compared to atezolizumab alone (70).
5 Future directions

Although adoptive cellular therapies offer potential

individual treatments, they are still in their infancy for soft

tissue sarcoma. Targeting fusion-derived cancer testis antigens

such as NYESO-1 and MAGEA-4 has shown benefits in limited

sarcomas such as synovial sarcoma and Myxoid/Round Cell

Liposarcoma (71–73).

Colony-stimulating factor-1 (CSF1) promotes “macrophage

polarization”, increasing M2/M1 macrophage ratio. CSF1R inhibitor

can be a potent immunomodulator by prohibiting the recruitment of

TAMs into TME (74). CSF1R-targeting agents have shown a relatively

tolerable safety profile but only modest clinical activity.

TTI-621 is a recombinant fusion antibody for SIRPa, a binding
domain for CD47, which interrupts inhibition of macrophage

phagocytosis mediated by CD47 and stimulates phagocytosis.

Combination of doxorubicin with TTI-621 (anti-CD47 antibody)

has shown anti-tumor effect in animal models, especially in tumors

which express high number of CD47 and macrophages, such as

leiomyosarcoma (75). Phase I/II study with TTI-621 alone and in

combination with doxorubicin for patients with advanced

leiomyosarcoma is underway (NCT04996004).

DR5 Agonist Antibody targeting the TRAIL-TNF axis, which

promotes tumor-specific apoptosis, is evaluated in a Phase II study of

chondrosarcomas (NCT04950075). NK cell therapies have limited

data in solid tumors, and trials for sarcoma (NCT01875601,

NCT02890758, NCT03420963) are currently in Phase I.

Envafolimab is a single-domain PD-L1 antibody and

administered subcutaneously. There is an ongoing phase II trial

evaluating envafolimab alone and with ipilimumab in

undifferentiated pleomorphic sarcoma or myxofibrosarcoma

(ENVASARC, NCT04480502). A multicenter phase II trial of

paclitaxel alone and with nivolumab in taxane-naïve angiosarcoma

patients is ongoing. (Alliance A091902, NCT04339738).

In recent years, nanotechnology has shown potential in

sarcoma treatment thanks to the development of smart
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include effective docetaxel-loaded mPEG-PLA nanoparticles in

sarcoma-bearing mice and albumin-paclitaxel (nab-paclitaxel/

Abraxane™) in osteosarcoma mice (76–78). (79) Only four

nano-drug delivery systems have been FDA-approved for

sarcoma - Doxil (Caelyx)® for AIDS-related Kaposi’s sarcoma,

DaunoXome® and Lipo-Dox® for Kaposi’s sarcoma and

Liposomal mifamurtide (MEPACT) for Osteosarcoma. For

locally advanced STS, there was a randomized, controlled Phase

II-III trial by Bonvalot et al. in 2019 which investigated the role of

NBTXR3, a radiation-enhancing nano-particle with radiotherapy

compared to radiotherapy alone, demonstrated the efficacy of

NBTXR3 with radiation (CR 16% vs. 8%, p = 0.044). There

already exists pre-clinical evidence in 2014 which demonstrated

that the chitosan nanoparticle-Methylglyoxal complex has

effective antitumor properties and elicits macrophage-mediated

immunity in Sarcoma-180 tumor-bearing mice (80). A Phase I

trial with BO-112 (a synthetic RNA conjugated with nano-sized

polyethyleneimine, which activates the immune system) with

nivolumab before surgery for resectable STS, is active since

2020. (NCT04420975)

The immunosuppressive microenvironment in STS should be

easier to overcome with safer and more effective next-generation

immunotherapy. It is currently understood that MMR deficiency is

rare and tumor mutation burden is low (3.3/Mb) in STS (7, 81–84).

In addition to a traditional concept of “immunologically hot”

sarcoma with complex karyotypes which expresses high immune-

infiltrate TME and responds well to immunotherapy, there is

emerging evidence of epigenetic modulation of transcription in

sarcoma, which boosts immunogenicity (85, 86). In a retrospective

study of 35 patients, DNA methylation degree correlated with

response to anti-PD-1 therapy in sarcoma (87).

There remains a question of whether the mutational burden or

neoantigen in STS is clinically correlated to treatment response in

immunotherapy. Tumor-infiltrating lymphocytes and PD-L1

expression in STS have shown conflicting prognostic significance

thus far. Advancements in bioinformatics and molecular

technology will guide the finding of potential biomarkers, which

will help fine-tune more effective combinations for each patient in

future trials.
6 Summary

Advanced soft tissue sarcoma is still a devastating diagnosis,

and there are limited treatments that have long-term success rates.

This article reviewed current immunotherapy in STS, mainly

immune checkpoint inhibitors alone or with additional local/

systemic therapy and adoptive cell therapy, which modifies the

immunogenicity of tumors and TME.

There is a dire need to identify genetic and clinical indicators of

response, resistance, and toxicity in immunotherapy in STS. To

better characterize histologic/molecular subtypes of STS, tissue and

liquid biopsies should be more frequently utilized.
frontiersin.org

https://doi.org/10.3389/fonc.2023.1150765
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Seong and D’Angelo 10.3389/fonc.2023.1150765
Advancement in the laboratory and clinical immunotherapy of

STS for the last five years has been encouraging. By learning from

each patient in clinical trials, we hope that patients with soft tissue

sarcoma can benefit in the new era of immunotherapy.
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Case report: Epithelioid
inflammatory myofibroblastic
sarcoma treated with an
ALK TKI ensartinib
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Chunhua Wei1 and Huijuan Wang1*
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Epithelioid inflammatory myofibroblastic sarcoma (EIMS) is an aggressive variant

of inflammatory myofibroblastic tumor (IMT) and has a poor prognosis. EIMS is

characterized by epithelioid morphology, neutrophilic infiltrate and specific

fusion partners of anaplastic lymphoma kinase (ALK). Despite no standard

therapy for EIMS, ALK tyrosine kinase inhibitors (TKIs) are recommended for

these tumors. The present case describes an abdominal mass that presented in a

31-year-old male. The patient suffered from recurrence and multiple metastases

2 months after surgery. Ensartinib was administered and RANBP2-ALK fusion was

detected. A partial response has been observed for 4 months and there has been

no recurrence. This study provided a successful case with sustained response of

targeted therapy.

KEYWORDS

epithelioid inflammatory myofibroblastic sarcoma, inflammatory myofibroblastic
tumor, RANBP2-ALK, ensartinib, fluorescence in situ hybridization
Introduction

Inflammatory myofibroblastic tumor (IMT) is as an intermediate soft tissue tumor

composed of myofibroblast-differentiated spindle cells along with numerous inflammatory

cells, plasma cells, and/or lymphocytes (1). Epithelioid inflammatory myofibroblastic

sarcoma (EIMS) is a rare subtype of IMT that is characterized by aggressiveness, rapid

local recurrence, earliest metastasis, and fatality (2, 3). EIMS differs from the conventional

spindle-cell IMT in that it consists mostly of round-to-epithelioid cells, with a loose or

myxoid stroma that is infiltrated with abundant neutrophils (4–7). Among 11 cases, all

tumors were located in the abdomen and most originated in the mesentery or omentum

(2). In addition to abdomen, several cases with extra-abdominal sites of EIMS have been

reported, including liver (8), lung (7, 9), pericardium (10), ovary (11), cutaneous (12),

stomach (13), groin (14) and central nervous system (15). A variety of gene partners have

been observed in IMT including NPM, TMP3/4, CARS, CLTC, EML4, DCTN1, SEC31L1,
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ATIC and FN1 (5), with more prevalent fusions of RANBP2 (2),

RRBP1 (16) and EML4 (5) in EIMS. Furthermore, G1269A has been

reported as a secondary mutation after resistance to crizotinib (17).

As described herein, a patient with RANBP2-ALK EIMS in the

greater omentum benefited from an ALK TKI.
Case description

An intermittent abdominal pain and abdominal distention were

reported by a 31-year-old Chinese male. Enhanced computed

tomography (CT) scans of the abdomen revealed an abdominal

mass that was suspected to be gastric stromal tumor (Figure 1 and

Table 1). Biopsy showed a loose tissue composed of spindle cells,

hollow cells and small blood vessels. Fluorescence in situ

hybridization (FISH) was negative for CHOP and MDM2,

excluding the presence of liposarcoma. Abdominal tumor

resection plus partial colectomy was then performed in March

2022, removing the greater omentum tumor as well as partial

transverse colon and ascending colon with a volume of 12 × 10 ×

10 cm. The histopathological results revealed the lesion contained

both epithelioid and spindle cells with enlarged nuclei and

infiltrating inflammatory cells, primarily plasma cells, eosinophils,

neutrophils, lymphocytes (Figures 2A, B). EIMS usually expressed

vimentin and desmin positively, the Expression situation of EMA,

CD30 and SMA was inconsistent. EIMS can be distinguished by

IHC from soft tissue tumors with epithelioid cell morphology and

tumors with significant mucoid background. Such as anaplastic

large cell lymphoma (ALCL) and EIMS were positive for SMA,

CD30 and ALK and negative for EMA (29). But no desmin was

found in ALCL. Follicular dendritic cell sarcoma (FDCS):

Immunohistochemical expression of CD21, CD23, or CD35 was

po s i t i v e , bu t no ALK ,De sm in ,WT- l , o rD2 -40 (3 0 ) .

Extragastrointestinal stromal tumor (EGIST) CD117, CD34 and

Dog-1 were positive, and ALK;CKDesmin were negative (31).

There fore , the fo l lowing markers were se lec ted for

immunohistochemistry, and the results were as follows. ALK,
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Vimentin, Desmin, SAM, Ki-67, CD30, CD31, Catenin and

H3K27Me3 were positive, while negative for Cytokeratin (CK),

CD34, CD117, S-100, SOX-10, Dog-1, Muc-4, EMA and ERG

(Table 2). Antibody clone of ALK-IHC is ALK p80(5A4), and

Positive immunohistochemical results of ALK, CD30, desmin, SAM

and Vimentin are shown in turn in this Figures 2C–G.

Approximately 18% of the tumor cells showed a rearrangement of

ALK by FISH (Figure 2H). These findings are in line with those of

EIMS. Adjuvant therapy was not administered to the patient

following surgery.

The patient presented to our hospital with abdominal

distension 74 days after surgery. CT showed new soft tissue mass

with peritoneal metastasis in lower abdomen and pelvis, indicating

tumor recurrence. The tumor was significantly enlarged 14 days

later by CT scan. The therapeutic course and radiological

examinations of the patient were summarized in Figure 1. The

patient was subsequently treated with ensartinib (225 mg, QD). The

CT revealed notable tumor shrinkage 13 days after ensartinib

treatment. In September 29, 2022, 4 months after initiation of

ensartinib, this patient still achieved partial response (PR) according

to the Response Evaluation Criteria in Solid Tumors (RECIST)

version 1.1 (Figure 1). Next-generation sequencing (NGS) was

employed using a 1021-gene panel (Burning Rock, Guangzhou,

China). NGS identified RANBP2-ALK fusion (EX18:EX20) with

mutational abundance of 2.3% and a TP53 p.R282Wmutation with

a mutational abundance of 3.2% using the biopsy specimen of the

abdominal mass (data not shown). As we prepared the manuscript,

the patient remained PR and continued to receive ensartinib

without any significant adverse events.
Discussion

EIMS is first named in 2011 (2) and is a more aggressive subtype

of IMT and characterized by epithelioid-to-round cell morphology

and prominent inflammatory infiltrate. EIMSs can occur across a

wide age range (4 months to 76 years), with a male and intra-
FIGURE 1

Comparison of computed tomography images before and after treatment with ensartinib.
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TABLE 1 Clinicopathological characteristics of EIMS in reported cases and our case.

mes of ALK-TKIs Response at
TKIs

PFS at TKIs
(m)

Follow-
up (m)

Crizotinib NA!PR!PR
3!8!19
(AWD)

40
(AWD)

NA NA
40
(ANED)

NA NA NA

PR 10(AWD)
17
(AWD)

NA 4 4(STD)

NA!PR 2!9 (AWD)
12
(AWD)

PR 19 (AWD)
33
(AWD)

NA 16 (AWD)
17
(AWD)

PR 12 (AWD)
14
(AWD)

NA 0.5 2(STD)

PR NA
24
(AWD)

PR!PR 9!8(AWD)
24
(AWD)

PR 2 14(STD)

NA NA NA

NA NA NA

!Ceritinib!Lorlatinib PR!PR!PR!SD
5!5.5!6!>5
(AWD)

>24
(AWD)
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erence

Age/
Sex Site Symptom Size

(cm) Multifocal Treatment Specific drug na

1 (18) 44/M Omentum
early satiety and
abdominal pain

NA Y SE+CT+ALKi!ALKi!ALKi Imatinib!Crizotinib

2 (2) 41/M Omentum NA 26 Y SE+CT+ALKi NA

3 (19) 57/M
Pleura or
chest wall

dyspnea on exertion NA NA ALKi NA

4 (20) 22/M the ileum fever, epigastralgia 5.5×6 Y SE+CT+ALKi crizotinib

5 (7) 21/M
the left lower
lobe of lung

general fatigue and
rapid weight loss

10 Y SE+ALKi crizotinib

6 (21) 71/M
the lung and
pleural-based
mass

dyspnea on exertion
and weight loss

12.5×12×8 Y SE+CT+ALKi !ALKi crizotinib!NA

7 (22) 16/F the lung NA 8 NA SE+CT+RT+ALKi crizotinib

8 (23) 22/M
the transverse
colon
mesentery

abdominal pain and
fever

13 NA SE+ALKi crizotinib

9 (24) 22/M
Mesentery of
colon

abdominal pain and
fever

20×15 Y SE+ALKi crizotinib

10 (5) 45/M omentum
abdominal distention
and abdominal pain

20 Y SE+ALKi crizotinib

11 (11) 15/F Ovary NA NA Y CT+SE+ALKi crizotinib/ceritinib

12 (17) 26/M Abdomen
fever, abdominal
distention

NA Y ALKi!ALKi crizotinib!brigatinib

13 (25) 46/F Abdomen
abdominal pain,
abdominal distention

11×6.5×7 NA SE+ALKi+CT crizotinib

14 (26) NA
colon
sigmoideum

NA 11.9×6.9 NA SE+ALKi crizotinib

15 (15) 72/F brain NA 4.7×1.6×1.2 N SE+ALKi Alectinib

16 (27) 42/F omentum
abdominal distention
and abdominal pain

19×19×10 Y
SE
+ALKi!ALKi!ALKi!ALKi

Crizotinib!Alectinib

66
!
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abdominal predominance (15). Recently, IMTs associated with

EML4-ALK have been classified as EIMS (5).

EIMS is essentially a histopathological diagnosis. Even with

auxiliary detection, it is difficult to make a definitive diagnosis of

EIMS on a small biopsy due to its genetic overlap with other ALK-

positive tumors. To date, more than 40 cases of EIMS have been

reported, among which 20 cases (2, 5, 7, 11, 15, 17–28) as well as

present case wi th the complete c l in icopatholog ica l ,

immunohistochemical and genetic characteristics were

summarized in Table 1, 2. These 21 cases were composed of 14

(67%) adults (21-72 years old) and 6 (29%) children or adolescents.

The median age was 24 years old. Fourteen (67%) patients were

male while six (29%) were female. In 16 patients, the tumors were

found in abdominal cavity (omentum, mesenterium, ileum, colon,

ovary, etc.), 4 in pleural cavity and 1 in brain, which consisted with

previous reports that EIMS had a male and intra-abdominal

predilection. In contrast, conventional spindle-cell IMT was

slightly more prevalent among females. The EIMS exhibits

distinctive morphological characteristics including loosely

arranged round or epithelioid neoplastic cells with vesicular

nuclei, prominent nucleoli and myxoid stroma surround by

amphophilic to eosinophilic cytoplasm. Neutrophil-rich

inflammatory infiltrates are a striking characteristic of EIMS.

Almost all tumors contained a spot of spindle cell component.

According to immunohistochemical results in 15 cases with

EIMS, 8 (53%) revealed a unique nuclear membrane staining

pattern for ALK (Table 2). Nevertheless, cytoplasmic or

perinuclear staining of ALK was observed in 7 of 15 cases (47%).

All cases (13/13) exhibited strong expression of desmin, another

diagnostic immunophenotype. Besides, the tumor displayed

variable expression of CD30 (69%, 9/13), alpha smooth muscle

actin (33%, 5/15) and epithelial membrane antigen (13%, 1/8).

Moreover, all cases were negative for cytokeratin (0/9), myogenin

(0/7), anoctamin−1 (0/4) and S-100 (0/11). Of note, FISH assay,

PCR assay or NGS can contribute to the diagnosis of EIMS. It has

been confirmed that ALK rearrangement is present in 16 cases by

FISH, 8 cases by PCR and 4 cases by NGS.

RANBP2-ALK and RRBP1-ALK fusions were the most reported

driver mutation of EIMS (16, 32). In previous studies as well as our

case with EIMS, nuclear membrane or perinuclear staining pattern

for RANBP2-ALK fusion was detected, and almost all cases

containing RANBP2-ALK fusion exhibited aggressive behavior (2,

12, 18, 20, 33–35). Despite of the unclear biological function, the

chimeric RANPB2-ALK gene was reported to promote cell growth

and proliferation regardless of cytokine in vitro (36, 37). There was a

specificity for RRBP1-ALK in EMIS with cytoplasmic ALK

expression and clinically aggressive progression, suggesting that

RRBP1-ALK may exert relapsed oncogenic role in clinically

aggressive EIMS (16). Recently, PRRC2B-ALK fusion was also

considered as the main oncogenic driver of the EIMS (27).

There is no clear consensus on the best treatment for EIMS. The

main treatment option remains surgical resection. Postoperative

adjuvant therapy has not yet been identified due to the limited

available experiences. In terms of rapid recurrence, postoperative

chemotherapy or radiotherapy appeared to exert finite effect (2, 18,

20, 35). Crizotinib has been applied to treat EIMS in several cases
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and showed favorable efficacy (2, 18–20, 38). In our summarized

cases, 10 patients continued to live with disease with follow-up of

11-40 months. Among 21 patients, 17 received crizotinib, apart

from 2 unknown TKIs, 1 ensartinib and 1 alectinib. Fifteen of 17

patients who received crizotinib had survival information, with a

median PFS of 9 months and mean PFS of 10.8 months.

Furthermore, a case with PRRC2B-ALK fusion showed durable

clinical response to sequential use of ALK TKIs (crizotinib,

alectinib, ceritinib and lorlatinib) (27). The development of drug

resistance to ALK TKIs is a major issue. A previous case revealed

that R1192P was found as a resistance mutation to crizotinib (27),

suggesting that the application of NGS was important to identify

actionable mutations and resistance mechanisms. This may

contribute to molecular targeted therapies for EIMS with ALK

gene arrangement. Considering the broader coverage of targets

and stronger tissue penetration, we speculated that patients may

have more benefits from the direct second- or third-generation ALK

TKIs compared with the sequential treatment of ALK TKIs.

Therefore, in our own case, the patient received ensartinib (a

second-generation ALK TKI) post relapse. After four months of

treatment, the patient felt well with PR, and follow-up CT scan

showed that the residual tumor was partially shrank.

Recently, a diffuse positive signal was observed in EIMS for

programmed death-ligand 1 (PD-L1) (4), providing a possible

inmmunomodulatory therapies targeting the PD-1/PD-L1

pathway. Moreover, CD30 appeared to commonly express in

EIMS in our summarized cases (Table 1). The survival time was

prolonged by ALK and CD30 combination therapies (39). With
Frontiers in Oncology 0568
increasing evidence of EIMS, molecular mechanisms will be clear

and potential treatments will be developed in the future.

In addition to RANBP1-ALK fusion, TP53 p.R282Wmutation was

also identified in our case. Mutant TP53 is closely related to the

occurrence, development and prognosis of tumor (40, 41). Besides,

mutations in TP53 independently promoted metastasis, decreased TKI

responses and shorten overall survival in ALK-positive lung

adenocarcinoma (42). However, the molecular pathological

importance of the TP53 mutation in IMT has not been elucidated

thus far. A previous study demonstrated that abnormal TP53 staining

patterns were detected in only approximately 7% of IMT, with TP53

missense mutations occurring in 13% of cases, suggesting that TP53

mutation in IMT was an infrequent event and may not attribute to its

pathogenesis (43). Recently, a study demonstrated that ORR of

ensartinib was high regardless of TP53 mutation status (44). In our

case, ensartinib also showed favorable efficacy.
Conclusion

In conclusion, we described a typical EIMS case with a round or

epithelioid morphology of cells, accompanied by a high relapse and

a poor prognosis. To the best of our knowledge, our report is the

first case to investigate the efficacy of ensartinib for EIMS. The

clinical management and results of the patients were introduced in

detail in our case; besides, the pathological and genetic

characteristics of the tumors were reviewed. By analyzing the
A B

D E F

G H

C

FIGURE 2

Histopathological examination with haematoxylin and eosin staining and Immunohistochemistry and FISH images. The lesion consisted of both
epithelioid and spindle cells with enlarged nucleolus and inflammatory cells infiltration (A) (magnification, x40). (B) (magnification, x200). (C) ALK
positivity (magnification, x400); (D)Focal CD30 weakly positive (magnification, x400); (E)Desmin positivity (magnification, x400) (F)SMA positivity
(magnification, x400) (G) Vimentin positivity (magnification, x400); (H) A FISH image of ALK rearrangement.
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efficacy of ALK TKIs in EIMS in previous literature, we found that

ALK TKIs are effective for EIMS treatment. However, given the lack

of the clear resistance mechanisms, further research is needed.

Detection of ALK rearrangement is essential for correct diagnosis

of EIMS and provides a fundamental basis for ALK TKI therapy.
Frontiers in Oncology 0669
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TABLE 2 Immunohistochemical and genetic characteristics in reported cases and our case.

Case Vimentin DES SMA CD30 CK EMA MYF4 DOG
1

S-
100

ALK

IHC FISH RT-
PCR NGS

1 NA + – NA – NA – NA NA NM
ALK-

rearrangement
RANBP2 NA

2 NA + – + – – – NA – NM
ALK-

rearrangement
RANBP2 NA

3 + + – – – NA – NA – PN RANBP2 NA NA

4 NA + + NA NA NA – NA – NM NA RANBP2 NA

5 + + – – – NA – NA – CN
ALK-

rearrangement
NA NA

6 NA NA NA NA NA NA NA NA NA NA
ALK-

rearrangement
NA NA

7 NA NA NA + NA NA NA NA NA CN
ALK-

rearrangement
NA NA

8 NA + – + – NA NA – – PN RANBP2 NA NA

9 NA + – – – – – NA – CN
ALK-

rearrangement
NA NA

10 NA + + NA NA NA NA NA NA CN NA EML4 NA

11 NA + + NA NA NA NA NA NA NM NA NA RANBP2

12 NA NA – NA – – – NA NA NA
ALK-

rearrangement
NA RANBP2

13 + NA + NA NA NA NA – – NA NA NA NA

14 NA + – + – – NA – – NA RRBP2 NA NA

15 NA + – – – + NA NA – CN NA VCL NA

16 NA + – NA – – NA NA – NA
ALK-

rearrangement
NA PRRC2B

17 NA NA NA + NA NA NA NA NA NM
ALK-

rearrangement
RANBP2 NA

18 NA NA NA + NA NA NA NA NA NM
ALK-

rearrangement
RANBP2 NA

19 NA NA NA + NA NA NA NA NA NM
ALK-

rearrangement
RANBP2 NA

20 NA NA NA + NA NA NA NA NA NM
ALK-

rearrangement
NA NA

Current
case

+ + + + - - NA - - NA
ALK-

rearrangement
NA RANBP2

Total

100% 100% 33% 69% 0% 13% 0% 0% 0%

(4/4)
(13/
13)

(5/
15)

(9/13)
(0/
9)

(1/8) (0/7) (0/4) (0/11)
fron
+, positive cells; −, negative staining; NM, nuclear membrane staining; PN, cytoplasmic staining with perinuclear accentuation; CN, cytoplasmic pattern; CK, cytokeratins; DES, desmin; EMA,
epithelial membrane antigen; FISH, fluorescence in situ hybridization; MYF4, myogenin; CD, cluster of differentiation; DOG-1, anoctamin−1; NGS, next-generation Sequencing; NA, data not
available; RT−PCR, reverse transcription−polymerase chain reaction; SMA, smooth muscle actin; IHC, immunohistochemistry; ALK, anaplastic lymphoma.
The bold values indicate the current case.
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healthcare setting: a single
centre analysis of 594 patients
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Sciences, New Delhi, India, 3Department of Pathology, All India Institute of Medical Sciences, New
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Introduction: The outcomes of osteosarcoma in low middle income countries

(LMICs) are different due to patients presenting in advanced stages, resource

constraints and the use of non-high-dose-methotrexate (HDMTX)-based

regimens. This study derived and validated a prognostic score for

osteosarcoma that integrates biologic and social factors and is tailored for

patients from an LMIC setting using a non-HDMTX-based protocol.

Materials and methods: A retrospective study including osteosarcoma patients

enrolled for treatment at a single tertiary care centre in India between 2003-19was

conducted. Baseline biologic and social characteristics were extracted from

medical records and survival outcomes were noted. The cohort was randomised

into a derivation and validation cohort. Multivariable Cox regression was used to

identify baseline characteristics that were independently prognostic for survival

outcomes in the derivation cohort. A score was derived from the prognostic

factors identified in the derivation cohort and further validated in the validation

cohort with estimation of its predictive ability.

Results: 594 patients with osteosarcoma were eligible for inclusion in the study.

Around one-third of the cohort had metastatic disease with 59% of the patients

residing in rural areas. The presence of metastases at baseline (HR 3.39; p<0.001;

score=3), elevated serum alkaline phosphatase (SAP) >450 IU/L (HR 1.57; p=0.001;

score=1) and baseline tumour size > 10 cm (HR 1.68; p<0.001; score=1) were
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identified to be independent factors predicting inferior event free survival (EFS) and

were included in development of the prognostic score. Patients were categorized

as low risk (score 0), intermediate risk (score 1-3) and high risk (4-5). Harrell’s c-

indices for the score were 0.682, 0.608 and 0.657 respectively for EFS in the

derivation, validation and whole cohort respectively. The timed AUC of ROC was

0.67 for predicting 18-month EFS in the derivation, validation and whole cohorts

while that for 36-month EFS were 0.68, 0.66 and 0.68 respectively.

Conclusions: The study describes the outcomes among osteosarcoma patients

from an LMIC treated uniformly with a non-HDMTX-based protocol. Tumor size,

baseline metastases and SAP were prognostic factors used to derive a score with

good predictive value for survival outcomes. Social factors did not emerge as

determinants of survival.
KEYWORDS
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Introduction

Osteosarcoma is the most common bone sarcoma worldwide (1,

2). The survival rates for bone sarcomas have improved over the last

two decades on account of the incorporation of multi-modality

treatment regimens. However, treatment outcomes continue to lag

behind in low and low middle income countries (LMICs) due to a

multitude of factors (2, 3). In LMICs, patients tend to present at

advanced stages with high disease burden at presentation.

Furthermore, healthcare accessibility, surgical expertise, access to

good supportive care, treatment abandonment rates and

compliance to treatment remain poorer in LMICs (4, 5). While

high-dose-methotrexate(HDMTX)-based protocols have become

the standard chemotherapy regimens in resource-rich settings, the

delivery of HDMTX-based regimens entails logistic difficulties in

the form of need for inpatient admission and strong supportive

care, thus necessitating the use of alternate strategies in settings with

resource limitations (6). Thus, treatment outcomes and their

determinants are likely to be different in LMICs.

The identification of prognostic factors at baseline may

facilitate tailoring of therapy based on disease risk. Prior studies

have explored prognostic factors for survival in osteosarcoma.

Baseline clinical factors such as extremes of age, large tumour

sizes, axial tumour site as opposed to appendicular, and the

presence of metastases have been found to be associated with

worse survival outcomes (7–12). In addition, baseline lab
HDMTX, high dose
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computed tomography;
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parameters such as the neutrophil-lymphocyte ratio and alkaline

phosphate have also been described to be of prognostic

significance (13, 14). Among tissue immunohistochemistry

markers assessed for prognostic value, tumour vascular

endothelial growth factor (VEGF) response to neoadjuvant

therapy has been noted to predict for more aggressive disease

biology, while tumour HER2/neu expression was not found to be

prognostic (15, 16).Imaging response surrogates using 18F-

fluorodeoxyglucose positron emission tomography, computed

tomography (18F-FDG PET-CT) and dynamic contrast

enhanced magnetic resonance imaging (DCE-MRI) have been

evaluated as markers for response to neoadjuvant chemotherapy

(17, 18). Patients with poor histopathologic response to

neoadjuvant therapy have been described to have inferior

treatment outcomes (8, 19, 20). However, the intensification of

therapy based on necrosis has not been conclusively shown to

improve survival, especially among patients receiving HDMTX-

based protocols (21). Therapy intensification based on baseline

perceived disease risk has not been attempted previously on a

background of chemotherapy protocols used in the current era

(22, 23). The studies from which prognostic markers have been

identified are largely registry based or have evaluated patients

enrolled in large randomised controlled trials, which may not be

reflective of the real world scenario. Furthermore, there is a

striking lack of data from LMICs on therapeutic outcomes in

osteosarcoma, wherein treatment protocols and the challenges

involved in implementing them are unique.

In resource-challenged settings, social factors are also

significant contributors to treatment outcomes. We have

previously seen that the magnitude of gender disparity in seeking

treatment for childhood cancer was dependent on the cost involved

(24). Studies from the West have noted that social factors such as

socioeconomic status and the possession of health insurance may be

major determinants of survival in osteosarcoma (25, 26). Since the

influence of social factors is likely to be more apparent in an LMIC
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setting, it is of great importance to identify their contribution to

treatment outcomes along with tumor-related biological factors.

This study was conducted to derive and validate a prognostic

score based on baseline disease characteristics along with analysis of

impact of social characteristics on outcome in patients with

osteosarcoma in an LMIC setting treated uniformly using a non-

HDMTX based regimen. This may allow clinicians in LMICs to

better risk stratify and tailor treatment based on the distinctive

characteristics of patients with osteosarcoma hailing from more

resource-challenged parts of the world.

Methods

Study design

This is a retrospective study from a single tertiary care cancer

centre in India. Consecutive patients registered in the period

between 2003 to 2019 in the medical oncology outpatient

department were included. All patients included had a

histopathologic diagnosis of osteosarcoma confirmed based on

characteristic morphologic features seen on the biopsy specimen

and discussion in the interdisciplinary conference. Patients who had

received chemotherapy outside prior to or after presentation to our

centre and those lost to follow up after receiving less than two cycles

of (neo)adjuvant chemotherapy at our centre were excluded. Ethics

approval was taken from the institute ethics committee (IEC-454/

06.05.2022, RP-34/2022). In view of the retrospective nature of the

study, the need for informed consent was waived off.
Data collection

For all included patients, treatment files were reviewed to collect

baseline data. Telephonic follow up was done to enhance data

retrieval for patients with missing data and for those who were lost

to follow up. Baseline clinical characteristics such as age, gender,

symptom duration prior to presentation, presence of fever, clinical

evidence of neurovascular bundle involvement, tumour size and

disease stage were recorded. The baseline lab parameters compiled

included hemogram and liver and renal function tests including

serum alkaline phosphatase. The social characteristics comprised

distance of the patient’s residence from the treating centre and the

type of residence (rural versus urban). GoogleMaps was used to derive

the distance of the treating centre from the address (27). The place of

residence was categorised as rural or urban based on the address as

per the National Census 2011 (28). Patients with metastatic disease

were classified as “limited burden metastases” if they had two or fewer

lung metastases and those with 3 or more lung metastases or any

extrapulmonary metastases were classified as “extensive metastases”.
Evaluation of the patient at baseline

All patients with confirmed diagnosis of osteosarcoma

availing treatment at our institute were subjected to a standard

set of baseline investigations prior to initiation of treatment.
Frontiers in Oncology 0374
Imaging of the local site was done with MRI (magnetic resonance

imaging). Baseline staging was done using either 18F-FDG PET-

CT of the whole body or with a combination of non-contrast

computed tomography (NCCT) of the thorax and a

99m-technetium methylene diphosphonate (Tc-99m MDP)

bone scintigraphy.
Treatment protocol

All patients were treated with a uniform non-HDMTX-based

chemotherapy protocol. Three cycles of neoadjuvant therapy with

cisplatin and doxorubicin were administered following which

therapy response was evaluated with the help of local and distant

site imaging. The RECIST 1.0 criteria were used for response

assessment. Local therapy was planned after multidisciplinary

discussion with the surgical team. The histopathologic response to

neoadjuvant therapy was assessed based on necrosis in the

postoperative specimen. Patients showing good responses

(necrosis > 90%) were given three cycles of adjuvant

chemotherapy with cisplatin and doxorubicin; on the other hand,

patients with poor responses (necrosis < 90%) were given three

alternating cycles each of cisplatin/doxorubicin and ifosfamide/

etoposide as adjuvant chemotherapy (19, 29, 30). In patients with

lung metastases at baseline, patients with partial or complete

responses following neoadjuvant chemotherapy were considered

for lung metastasectomy. Patients with disease progression at the

metastatic site(s) were managed further with palliative intent.
Outcomes of the study

The primary outcome in our study was event free survival (EFS)

and the secondary outcome was overall survival (OS). The EFS was

defined as the time between initiation of treatment and either

disease progression or death from any cause. OS was defined as

the time between treatment initiation and death from any cause.

The data was censored on 30 November 2022.
Statistical analysis

Statistical analysis was done with the help of STATA v.17

(StataCorp, College Station, TX, USA). Descriptive statistics was

used to summarize baseline characteristics. Continuous variables

were represented by median with range. The chi-square test and

Mann-Whitney test were used to compare categorical and continuous

variables respectively, and KaplanMeier analysis was done along with

log rank test to compare time to event outcomes. The follow-up

estimation of the cohort was done using reverse Kaplan Meier

method. The association of social factors [distance from treating

centre (>100 km versus < 100 km) and type of residence (rural versus

urban)] with baseline clinical characteristics was analysed by the chi-

square test while the impact of social factors on survival outcomes was

analysed by the log rank test. The impact of burden of metastases

(limited versus extended burden metastases) on survival was also

analysed by the Kaplan Meier and Cox regression methods.
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Generation of the derivation and validation
cohorts and identification of prognostic
factors in the derivation cohort

The whole cohort was divided in a 2:1 ratio into a derivation and

validation cohort in a randomised fashion. The baseline factors

assessed as potential prognostic factors included age (>18 vs ≤ 18

years), gender, symptom duration prior to presentation (>4 months

vs ≤ 4 months), presence of fever, disease stage (localised versus

metastatic), tumour size (>10 cm vs ≤ 10 cm), tumour site (axial vs

appendicular), clinical presence of neurovascular bundle

involvement, haemoglobin (<11 g/dL vs ≥ 11 g/dL), total leucocyte

count (≤11000/µL vs >11000/µL), serum albumin (≥3.5 g/dL vs < 3.5

g/dL), serum alkaline phosphatase (>450 IU/L vs ≤ 450 IU/L).

Univariable cox regression analyses were used to identify baseline

factors prognostic for EFS in the derivation cohort. Factors with p-

value less than 0.1 on univariable analyses were included for

multivariable analysis in a forward stepwise fashion based on

likelihood ratio. Factors with p<0.05 in the final multivariable

model in the derivation cohort were used to formulate the risk score.
Formulation of risk score

A weighted score was provided to each prognostic variable. The

score was computed based on the approximate ratios of the beta

coefficients of each factor in the multivariable model. The total score

was calculated by summation of individual prognostic factor scores

and was used to divide patients into three clinically discriminatory

risk groups.
Validation of the risk score

The risk score was validated by applying it separately to the

derivation, validation, and whole cohorts separately. Kaplan Meier

curves were constructed to represent EFS and OS in the three risk

groups in each of the three cohorts. Harrell’s concordance index (c-

index) was calculated for estimating the predictive ability of the risk

category model for EFS and OS in the derivation, validation and

whole cohorts. A receiver operating characteristic (ROC) curve was

also constructed by comparing the predicted and actual 18-month

and 36-month EFS and OS in each of the three cohorts and the

timed area under the ROC curve (timed AUC) for the derivation,

validation and whole cohort was estimated.
Results

Baseline patient characteristics and
survival outcomes

During the study period from 2003 to 2019, a total of 640

patients with osteosarcoma registered at our centre with available

data records were screened for inclusion in the study, out of which

594 patients were finally included for analysis (Figure S1). The

baseline sociodemographic and clinical characteristics of the entire
Frontiers in Oncology 0475
cohort are summarized in Table 1. The median age of presentation

was 18 years (range: 2-71 years) with predominantly male patients

(411/594; 69.2%) and a male to female ratio of 2.25:1. At

presentation, the median tumor diameter (longest dimension) at

the primary site was 10cm (range: 1-48 cm) with pathological

fracture observed in 126 (21.4%) patients. Baseline metastatic

disease was noted in more than one-third (204/594; 34.3%) of

patients. At a median follow, up of 51.7 months (35.7-67.7 months),

the median EFS of the whole cohort was 17.03 months while the

estimated median OS was 80 months. The cohort was randomized

2:1 to yield 396 patients in the derivation cohort and 198 patients in

the validation cohort. The baseline clinical and sociodemographic

characteristics as well as the survival outcomes were similar between

the two groups (Table 1).
Identification of prognostic factors in the
derivation cohort

In the derivation cohort, on univariable analysis, the presence of

baseline metastatic disease (HR=3.39; p<0.001); tumor diameter

(longest dimension) >10cm (HR=1.68; p=0.005); neurovascular

involvement at the primary site (HR=2.84; p<0.001); presence of

a pathological fracture at baseline (HR=2.02;p<0.001); higher

baseline serum alkaline phosphatase (>450 IU/L) (HR=1.57;

p=0.001); and baseline anemia (hemoglobin < 11g/dL) (HR=1.38;

p=0.021) were predictive of inferior EFS. However, on multivariable

analysis, only the presence of baseline metastases (HR=3.55;

p<0.001); tumor diameter >10cm (HR=1.38; p=0.045) and higher

serum alkaline phosphatase (HR=1.50; 95%; p=0.010) were

independently predictive of inferior EFS in the derivation cohort

(Table 2; Figures 1A–C). The above three factors were also

predictive of inferior OS in the derivation cohort. (Figures 1D–F).
Formulation of baseline prognostic
risk categories

The three independent prognostic factors predicting inferior

EFS in the derivation cohort were used to formulate a baseline

prognostic risk score. Based on the ratio of beta-coefficient of the

final multivariable Cox regression model, a weighted integer score

was assigned to each prognostic factor: presence of metastases

(score of 3); tumor diameter >10cm at primary site (score of 1)

and baseline serum alkaline phosphatase >450IU/L (score of 1).

Based on the scores, the patients were further categorized to

clinically discriminatory risk categories (low risk: Score of 0;

intermediate risk: score of 1,2 and 3; high risk: score of 4 and 5).
Prognostic ability of the risk score category
for event free survival

On application of the risk score to categorise patients in the

validation cohort, the median EFS was significantly different among

the three risk categories (median EFS of low risk, intermediate risk
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TABLE 1 Baseline clinical and socio, demographic characteristics in derivation (n=396), validation (n=198) and whole cohort (n=594).

Clinical/Socio, demographic parameter
(median with range) Categories Whole cohort

(n=594)
Derivation cohort

(n=396)
Validation cohort

(n=198)
P-

value*

* Clinical/demographic parameters

1. Age (years)

Median
(range)

18 (2 , 71) 18 (4, 66) 17 (2, 71) 0.499

≤18 years 344 (57.9%) 225 (56.8%) 119 (60.1%)

> 18 years 250 (42.1%) 171 (43.2%) 79 (39.9%)

2. Sex
Male 411 (69.2%) 270 (68.2%) 141 (71.2%) 0.451

Female 183 (30.8%) 126 (31.8%) 57 (28.8%)

3. Metastases

Non-
metastatic

390 (65.7%) 265 (66.9%) 125 (63.1%) 0.359

Metastatic 204 (34.3%) 131 (33.1%) 73 (36.9%)

4. Tumor diameter of primary tumor (longest dimension)
(cm) (n=482)

Median
(range)

10 (1-48) 9.4 (1-48) 10.4 (2-29) 0.048

≤10cm 270 (56.0%) 191 (59.3%) 79 (49.4%)

>10cm 212 (44.0%) 131 (40.7%) 81 (50.6%)

5. Symptom duration (months) (n=502)

Median
(range)

4 (1-36) 4 (1-36) 4 (1-36) 0.953

≤4months 287 (57.2%) 190 (57.2%) 97 (57.1%)

>4months 215 (42.8%) 142 (42.8%) 73 (42.9%)

6. Site of disease (n=525)
Axial 33 (6.3%) 20 (33.1%) 13 (7.5%) 0.431

Appendicular 492 (93.7%) 331 (94.3%) 161 (92.5%)

7. Fever at baseline
Yes 60 (10.1%) 34 (8.6%) 26 (13.1%) 0.083

No 534 (89.9%) 362 (91.4%) 172 (86.9%)

8. Fracture at presentation (n=590)
Yes 126 (21.4%) 85 (21.6%) 41 (20.8%) 0.820

No 464 (78.6%) 362 (91.4%) 172 (86.9%)

9. Neurovascular bundle involvement (n=582)
Yes 111 (19.1%) 67 (17.2%) 44 (22.9%) 0.098

No 471 (80.9%) 323 (82.8%) 148 (77.1%)

10. Hemoglobin (g/dL) (n=572)

Median
(range)

11.7 (4 – 16.9) 11.8 (4-16.9) 11.5 (4.2-15.7) 0.182

<11g/dL 208 (36.4%) 138 (36.1%) 70 (36.8%)

≥11g/dL 364 (63.6%) 244 (63.9%) 120 (63.2%)

11. Total leucocyte count (/µL) (n=571)

Median
(range)

8300 (990-42800) 8250 21-42800 8300 (990-24800) 0.930

≤11000 481 (84.2%) 318 (83.7%) 163 (85.3%)

>11000 90 (15.8%) 62 (16.3%) 28 (14.7%)

12. Serum Alkaline phosphatase (IU/L) (n=507)

452 (73 – 14960) 440 (73-14960) 496 (106-11550) 0.244

≤450IU/L 271 (49.9%) 189 (51.8%) 82 (46.1%)

>450IU/L 272 (50.1%) 176 (48.2%) 96 (53.9%)

13. Serum Albumin (g/dL) (n=531)

4.4 (2.0 – 6.2) 4.4 (2.1-6.2) 4.4 (2.0-5.6) 0.997

<3.5g/dL 49 (9.2%) 29 (8.2%) 20 (11.4%)

≥3.5g/dL 482 (90.8%) 326 (91.8%) 156 (88.6%)

(Continued)
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and high risk categories were 26.0 months versus 18.5 months

versus 11.8 months respectively, log rank p-value=0.002). Similarly,

the median EFS was significantly different among the three risk

categories in both derivation (log rank p-value<0.001) and whole

cohorts (log rank p-value<0.001). The estimated 18-month EFS in

the low, intermediate and high risk categories in the validation

cohort are 74 ± 8%, 50 ± 6% and 29 ± 8% respectively. The

corresponding values for the 36-month EFS in the validation

cohort are 49 ± 9%, 32 ± 6% and 14 ± 6% respectively in the

three risk groups. The 18-month and 36-month EFS values as

estimated in the derivation and whole cohorts are shown in Table

S1. The Harrell’s c-indices of the risk score category for EFS in the

derivation, validation and whole cohort were 0.682, 0.608 and 0.657

respectively. The timed AUC of ROC for predicting 18-month EFS

in the derivation, validation and whole cohort were 0.67 (0.61-0.73),

0.67 (0.59-0.76) and 0.67 (0.62-0.72) respectively, while that of 36-

month EFS in the derivation, validation and whole cohort were 0.68

(0.62-0.75), 0.66 (0.56-0.76) and 0.68 (0.63-0.73) respectively.

(Table S1 and Figure 2).
Prognostic ability of the risk score category
for overall survival

On application of the risk score category in the validation

cohort, the median OS in the three categories was significantly

different (median OS in the low risk, intermediate risk and high risk

categories were 66 months versus 53.6 months versus 18.8 months,

log rank p-value=0.027). (Table S1 and Figure S2). Similarly, the

median OS was significantly different among the three risk

categories in both the derivation (log rank p-value<0.001) and the

whole cohort (log rank p-value<0.001) as well. The estimated 18-

month OS in the low, intermediate and high risk categories in the

validation cohort are 90 ± 5%, 79 ± 5% and 55 ± 9% respectively.

The corresponding values for the 36-month OS in the validation
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cohort are 70 ± 9%, 63 ± 6% and 35± 9% respectively in the three

risk groups. The 18-month and 36-month OS values in the

derivation and whole cohorts are shown in Table S1. The

estimated 18-month and 36-month OS in the derivation,

validation and whole cohort are shown in Table S1. The Harrell’s

c-indices of the risk score category for OS in the derivation,

validation and whole cohort were 0.681, 0.603 and 0.654

respectively. The timed AUC of ROC values for predicting 18-

month OS in the derivation, validation and whole cohort were 0.68

(0.62-0.74), 0.68 (0.59-0.77) and 0.67 (0.63-0.73) respectively, while

that for 36-month OS in the derivation, validation and whole cohort

were 0.66 (0.60-0.73), 0.63 (0.54-0.73) and 0.66 (0.61-0.71)

respectively. (Table S1 and Figure S2).
Impact of burden of metastases on survival

Among the 204 patients with metastatic disease at baseline, 143

(70.1%) had lung-only metastases, 42 (20.6%) had lung and bone

metastases, 15 (7.4%) patients had isolated bone metastases and 4

(2%) had other sites of metastases. In the metastatic cohort, 56

patients (27.5%) had limited burden metastases while 148 patients

(72.5%) had extensive metastases. It was seen that EFS in patients

with limited burden metastases was significantly better than that of

patients with extensive metastases (HR 0.62; p=0.007) but worse

than that of patients with localised disease. (HR 2.2; p<0.001).

However, OS of the cohort with limited metastatic burden was

similar to patients with localised disease (HR 1.39; p=0.183) (Figure

S3). Metastasectomy of lung metastases was done in 10 (5.15%) of

194 patients in the upfront setting.

In our patient cohort, 198 patients progressed after first line

therapy. This included 23(11.6%) local-only recurrences, 118

(59.6%) isolated lung metastases, 40 (20.2%) patients with lung

and local site recurrences, 8 patients (4.04%) with isolated bone

metastases and 32 (16.2%) patients with metastases at other/
TABLE 1 Continued

Clinical/Socio, demographic parameter
(median with range) Categories Whole cohort

(n=594)
Derivation cohort

(n=396)
Validation cohort

(n=198)
P-

value*

* Sociodemographic parameters Median(range)

14. Distance from hospital (km) (n=537)

197 (20-2762) 177.5 (20-2005) 259(20-2762) 0.604

≤100km 192 (35.8%) 138 (38.5%) 54 (30.2%)

>100km 345 (64.2%) 220 (61.5%) 125 (69.8%)

15. Type of residence (n=537)
Urban 317 (59.0%) 208 (58.1%) 109 (60.9%) 0.535

Rural 220 (41.0%) 150 (41.9%) 70 (39.1%)

* Survival outcomes

16. Mortality 217 (36.6%) 141 (35.6%) 76 (38.6%) 0.479

17. Median event free survival (months) 17.03 (14.8-19.2) 16.6 (13.3 – 20.1) 17.7 (14.4-20.9) 0.178

18. Median overall survival (months)
80 (estimate not

reached)
Estimate not reached 55.7 0.820
front
*Continuous variables were reported as median with range. Median values between derivation cohort and validation cohort were compared during Mann-Whitney tests, while categorical
variables between derivation cohort and validation cohort were compared using Chi-square test and similarly time to event outcomes were compared using log rank test.
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TABLE 2 Univariable and multivariable analyses of prognostic factors for event free survival in the derivation cohort (n=396).

Prognostic factors Categories
(n)

Median event free survival
(months)

Univariable analysis Multivariable
analysis*

HR 95%
CI

P
value HR 95%

CI
P-

value

1. Age (years)

≤18 (225) 16.9 1 – – – – –

>18 (171) 15.6 1.004
0.77,
1.31

0.974 – – –

2. Sex
Male (270) 16.1 1.24

0.93,
1.66

0.144 – – –

Female (126) 19.6 1 – – – – –

3. Tumor diameter of primary site
(Longest dimension)

≤10cm (191) 24.4 1 – – 1 – –

>10cm (131) 14.9 1.68
1.25,
2.25

0.00049 1.38
1.01,
1.89

0.045

4. Site

Appendicular
(331)

19.6 1 – – – – –

Axial (20) 11.8 1.19
0.63,
2.27

0.578 – – –

5. Neurovascular involvement
Yes (67) 8.2 2.84

2.11,
3.81

<0.0001 – – –

No (323) 22.5 1 – – – – –

6. Symptom duration
≤4 months (190) 18.1 1.26

0.94,
1.70

0.122 – – –

>4 months (142) 24.4 1 – – – – –

7. Fever at baseline
Yes (34) 16.1 1.13

0.74,
1.74

0.575 – – –

No (362) 16.9 1 – – – – –

8. Pathological fracture at baseline
Yes (85) 9.7 2.02

1.52,
2.69

<0.0001 – – –

No (308) 21.4 1 – – – – –

9. Metastases at baseline
Yes (131) 8.3 3.39

2.60,
4.43

<0.0001 3.55
2.58,
4.88

<0.0001

No (265) 37.5 1 – – 1 – –

10. Hemoglobin (g/dL)
<11 (138) 13.8 1.38

1.05,
1.81

0.021 – – –

≥11 (244) 18.3 1 – – – – –

11. Total leucocyte count (/µL)

≤11000 (318) 17.8 1 – – – – –

>11000 (62) 14.1 1.16
0.78,
1.60

0.552 – – –

12. Serum Albumin (g/dL)

≥3.5 (326) 16.6 1 – – – – –

<3.5 (29) 16.9 1.26
0.77,
2.04

0.352 – – –

13. Serum Alkaline Phosphatase
(IU/L)

≤450 (189) 26.3 1 – – 1 – –

>450 (176) 13.6 1.57
1.19,
2.08

0.0014 1.50
1.10,
2.05

0.010
F
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HR, Hazard Ratio; CI, Confidence interval; Hazard of reference category is represented as 1.
*Multivariable analysis was done including variables with p ≤ 0.1 in univariable analyses in a forward stepwise manner based on likelihood ratio and only significant variables (p<0.05) in the
multivariable model was reported.
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multiple sites. Among the 161 patients having lung metastases at

first relapse, metastasectomy was done for 48 patients (29.81%).
Sociodemographic factors and their impact
on baseline clinical factors and survival
outcomes

In this study, the patients predominantly hailed from an urban

residence (317/594; 59.0%) with median distance from the hospital

of 197 km (20 to 2762 km), with similar distribution in the

derivation and validation cohorts. The impact of residence and

distance from the hospital on baseline clinical factors and survival

outcomes is summarized in Table 3. The primary residence of the

patient and the distance of the residence from the hospital were not

predictive of either EFS or OS in the whole cohort. However, on

multivariable analysis, patients with primary urban residence were

more likely to have baseline tumor size greater than 10 cm (48.1% vs

37.5%, multivariable odds ratio 1.69; 95% CI: 1.13, 2.53, p=0.011)

and less likely to have elevated total leucocyte count of more than

11000/µL (13.1% vs 20.0%; multivariable odds ratio 0.54; 95% CI:

0.31, 0.92; p=0.023). None of the remaining tumor characteristics or

laboratory parameters significantly differed based on the type of

primary residence or distance from the hospital (Table 3).
Discussion

In this study, we analysed a retrospective cohort of

osteosarcoma patients treated at our centre using a uniform non-

HDMTX-based protocol. We formulated and validated a prognostic

score based on baseline clinical factors and tailored to a unique

population of patients treated in a resource constrained setting with
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a non-HDMTX-based protocol. Our survival outcomes were similar

to those reported in smaller studies from LMICs but still lags behind

those reported from Western countries (8, 20, 31, 32).

We identified metastases, tumour size and serum alkaline

phosphatase to be important determinants of survival. The

presence of metastases is a universally established prognostic

factor in osteosarcoma (33). We observed that patients with

limited burden metastatic disease had better EFS than those with

extensive burden metastatic disease. It has been previously observed

that osteosarcoma presenting only with lung metastases has better

survival outcome than metastases at other sites (34). However, in

our cohort, the proportion of patients ultimately undergoing

metastasectomy remained low compared to eligible patients,

which may be partially owing to resource limitations inherent to

an LMIC setting. This exemplifies the need for better

interdisciplinary coordination for implementing uniform

protocols for metastasectomy for patients with limited number of

lung metastases.

Large size and elevated alkaline phosphatase are surrogate

markers for tumour burden. Large tumour size may hinder the

penetration of drugs, thereby reducing chemosensitivity.

Consequently, it has been identified to be prognostic for response

to therapy and survival in prior studies (8, 35). Serum alkaline

phosphatase is an indicator of osteoblastic activity and thus, may be

indicative of disease aggressiveness (36). The normalisation of

alkaline phosphatase following completion of neoadjuvant

therapy has been identified to be a predictor of better survival;

however, this was not assessed in the current study (37). Biomarkers

of a systemic pro-inflammatory state such as total leukocyte count

and hypoalbuminemia in Ewing sarcoma and hypoalbuminemia in

both Ewing and soft tissue sarcomas have been seen to have

prognostic value (38–40). However, these factors do not appear to

be major predictors of treatment outcomes in osteosarcoma. The
B C

D E F

A

FIGURE 1

Kaplan Meier curves showing impact of (A) the baseline tumor size (< 10 cm versus > 10 cm), (B) presence of metastases at presentation, and (C) higher
baseline serum alkaline phosphatase (≤450IU/L vs >450IU/L) on the event free survival (EFS) in the derivation cohort. The impact of the corresponding
factors on overall survival (OS) is shown in (D–F).
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difference may be a consequence of differences in tumour

microenvironmental profiles in the two tumours (41).

The prognostic factors identified in our cohort were largely

similar to those described in HDMTX-based protocols. There are

only few retrospective studies assessing prognostic factors while

using non-HDMTX-based regimens in LMICs (31, 32, 42, 43). An

analysis of another patient cohort from India using the non-

HDMTX-based OGS-12 protocol has described serum alkaline

phosphatase as prognostic for survival (43). Histologic response

to chemotherapy has been described to be predictive in the studies

available from LMICs (32, 42, 43). Metastases at presentation,

tumour site and type of surgery were additionally identified to be

prognostic in a Brazilian treatment cohort (44). The smaller size of

the cohorts described, the shorter durations of follow up and the

incorporation of treatment-related factors makes it difficult to

generalise their results. Multicentre collaborative individual

patient level data compilation may further our understanding of

osteosarcoma in LMICs.

We designed a disease risk score based on the prognostic factors

identified which had good discriminative value for distinguishing
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between groups with different survival. The tools currently available

for risk stratification in osteosarcoma are derived predominantly

from registry databases, which are inherently heterogenous in terms

of institutional practices and regimens used (45–48). Although data

derived from major randomised trials has enriched our

understanding of prognostic factors in osteosarcoma, treatment in

the setting of a trial may be subject to bias introduced by patient

selection and differences in patient care as compared to real world

data, thus making extrapolation difficult (8, 20, 49). Most scores

have incorporated treatment-related factors into their algorithm

(46, 47, 50, 51). Since treatment decisions may be altered based on

baseline characteristics, such scores may be difficult to interpret.

Our score was derived from a uniform single institution cohort

using only basic clinical and lab parameters at presentation to allow

for better risk stratification and prognostication at baseline.

Furthermore, it is the only score available that is uniquely tailored

to the LMIC setting accounting for treatment constraints and

social backgrounds.

In current practice , non-HDMTX-based protocols

incorporating risk stratified therapy, risk assessment is based on
B C

D E F

G H I

A

FIGURE 2

Predictive ability of the risk score category; (A, D, G): Kaplan Meier curves showing impact of risk score category on EFS in the derivation, validation
and whole cohorts respectively; (B, E, H): Receiver operating characteristic (ROC) curves for the risk score categories for 18-month EFS in the
derivation, validation and whole cohorts respectively; (C, F, I): Receiver operating characteristic (ROC) curves for the risk score categories for 36-
month EFS in the derivation, validation and whole cohorts respectively.
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neoadjuvant chemotherapy response. Thus, treatment escalation for

high risk disease has only been practised at completion of

neoadjuvant chemotherapy (30, 52). The identification of high

risk patients based on baseline characteristics may allow us to

better demarcate candidates for upfront intensified therapy. The

use of multiple non-cross-resistant drugs at therapy initiation may

allow for better tumour responses in the context of high risk disease

(53). The outcomes observed in patients with metastatic disease of

high risk disease based on the score formulated are demonstrably

poor. Thus, the score may be used to demarcate a subset of patients
Frontiers in Oncology 1081
whomay benefit from a palliative approach with early treatment de-

intensification to avoid therapy-related and consequent reductions

in quality of life (54, 55).

Social barriers to healthcare accessibility may lead to delays in

treatment-seeking and may adversely affect compliance. We

observed that patients with urban residence were more likely to

present with larger sized tumors with lower total leukocyte counts;

however, it did not have any impact on survival outcomes. A study

from a Western country observed that residing at greater distances

from the treatment centre and in areas of high unemployment was
TABLE 3 Impact of sociodemographic parameters on clinical factors at presentation and survival outcomes of osteosarcoma in the whole cohort.

Parameter Categories

Type of primary residence (n=537) Distance of residence from hospital
(n=537)

Urban residence
(n=317)

Rural residence
(n=220)

P
value

≤100 km
(n=192)

>100km
(n=345)

P
value

1. Age (years)
≤18 197 (62.1%) 133 (60.5%)

0.692
120 (62.5%) 210 (60.9%)

0.710
>18 120 (37.9%) 87 (39.5%) 72 (37.5%) 135 (39.1%)

2. Sex
Male 217 (68.5%) 157 (71.4%)

0.471
128 (66.7%) 246 (71.3%)

0.263
Female 100 (31.5%) 63 (28.6%) 64 (33.3%) 99 (28.7%)

3. Tumor size at primary site
(longest dimension)

≤10cm 135 (51.9%) 110 (62.5%)
0.029

92 (58.2%) 153 (55.0%)
0.518

>10cm 125 (48.1%) 66 (37.5%) 66 (41.8%) 125 (45.0%)

4. Site of primary tumor
Axial 14 (5.0%) 14 (7.0%)

0.364
9 (5.5%) 19 (6.0%)

0.804
Appendicular 266 (95.0%) 187 (93.0%) 156 (94.5%) 297 (94.0%)

5. Symptom duration
≤4 months 150 (56.8%) 110 (59.8%)

0.532
104 (63.8%) 156 (54.7%)

0.061
>4 months 114 (43.2%) 74 (40.2%) 59 (36.2%) 129 (45.3%)

6. Neurovascular bundle
involvement

Yes 59 (18.9%) 33 (15.3%)
0.290

37 (19.9%) 55 (16.1%)
0.277

No 253 (81.1%) 182 (84.7%) 149 (80.1%) 286 (83.9%)

7. Fever at baseline
Yes 33 (10.4%) 22 (10.0%)

0.878
20 (10.4%) 35 (10.1%)

0.921
No 284 (89.6%) 198 (90.0%) 172 (89.6%) 310 (89.9%)

8. Pathological fracture at baseline
Yes 64 (20.4%) 40 (18.3%)

0.544
42 (22.1%) 62 (18.1%)

0.261
No 250 (79.6%) 179 (81.7%) 148 (77.9%) 281 (81.9%)

9. Metastases at baseline
Yes 110 (34.7%) 75 (34.1%)

0.884
67 (34.9%) 118 (34.2%)

0.871
No 207 (65.3%) 145 (65.9%) 125 (65.1%) 227 (65.8%)

10. Hemoglobin (g/dL)
<11 111 (36.3%) 80 (38.1%)

0.674
65 (35.1%) 126 (38.1%)

0.508
≥11 195 (63.7%) 130 (61.9%) 120 (64.9%) 205 (61.9%)

11. Total leucocyte count (/µL)
≤11000 265 (86.9%) 168 (80.0%)

0.036
158 (85.9%) 275 (83.1%)

0.407
>11000 40 (13.1%) 42 (20.0%) 26 (14.1%) 56 (16.9%)

12. Serum Albumin (g/dL)
<3.5 28 (10.1%) 19 (9.5%)

0.840
18 (10.5%) 29 (9.5%)

0.721
≥3.5 249 (89.9%) 180 (90.5%) 153 (89.5%) 276 (90.5%)

13. Serum Alkaline phosphatase
(IU/L)

≤450 133 (46.8%) 109 (53.2%)
0.166

87 (49.4%) 155 (49.5%)
0.985

>450 151 (53.2%) 96 (46.8%) 89 (50.6%) 158 (50.5%)

14. Median event free survival
(months)

19.1 (15.5, 22.7) 16.9 (12.1, 21.7) 0.987 19.6 (15.5, 23.8)
17.0 (13.2,

20.7)
0.914

15. Median overall survival
(months)

Estimate not reached
64.7 (Estimate not

reached)
0.359

59.4 (Estimate not
reached)

Estimate not
reached

0.556
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associated with higher mortality rates among osteosarcoma patients

(56). Although social factors were integrated into our model, they

did not have any significant impact on survival outcomes. This is

further affirmed by our prior observation in bone sarcomas, where

even in the context of resource challenged settings, tumour biology

is a stronger determinant of the diagnostic interval than social

factors (57). In addition, it has been seen that therapy-related

factors such as delay in time to surgery following neoadjuvant

chemotherapy and delay in the completion of planned therapy may

compromise treatment outcomes (58, 59). Thus, optimising the

delivery of healthcare services may allow for further improvements

in survival.

The study represents the largest single institutional dataset of

patients treated with a uniform non-HDMTX-based protocol.

Furthermore, it is the largest dataset derived from a single

institutional cohort in Asia. It provides a tool that allows the

clinician to use baseline clinical and laboratory characteristics for

risk stratification. It integrates social factors with clinical

characteristics to better characterise the disease from the

perspective of a resource-challenged setting. However, our study

has a few limitations. Compliance to treatment and socioeconomic

status were not assessed separately; thereby, their roles as potential

prognostic factors could not be studied. However, the social

background provided by the place of residence and distance from

the treating centre may possibly serve as their surrogates. In the

future, prospective studies may be formulated that evaluate the role

of risk stratified therapy based on baseline characteristics to further

improve outcomes.
Conclusion

This study describes a large single institutional series of patients

with osteosarcoma from an LMIC treated with a uniform non-

HDMTX-based protocol. Clinical factors prognostic for survival at

baseline were identified and used to derive and validate a risk score

for prognostication. Tumour biologic characteristics were found to

supersede social factors as determinants of survival.
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Similar additive effects of
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photon or proton irradiation in
soft tissue sarcoma models
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High-precision radiotherapy with proton beams is frequently used in the

management of aggressive soft tissue sarcoma (STS) and is often combined with

doxorubicin (Dox), the first-line chemotherapy for STS. However, current treatment

approaches continue to result in high local recurrence rates often occurring within

the treatment field. This strongly indicates the need of optimized treatment

protocols taking the vast heterogeneity of STS into account, thereby fostering

personalized treatment approaches. Here, we used preclinical STS models to

investigate the radiation response following photon (X) or proton (H) irradiation

alone and in combination with different treatment schedules of Dox. As preclinical

models, fibrosarcoma (HT-1080), undifferentiated pleiomorphic sarcoma (GCT), and

embryonal rhabdomyosarcoma (RD) cell lines were used; the latter two aremutated

for TP53. The cellular response regarding clonogenic survival, apoptosis, cell-cycle

distribution, proliferation, viability, morphology, and motility was investigated. The

different STS cell types revealed a dose-dependent radiation response with reduced

survival, proliferation, viability, and motility whereas G2/M phase arrest as well as

apoptosis were induced. RD cells showed the most radiosensitive phenotype; the

linear quadratic model fit could not be applied. In combined treatment schedules,

Dox showed the highest efficiency when applied after or before and after radiation;

Dox treatment only before radiation was less efficient. GCT cells were the most

chemoresistant cell line in this study most probably due to their TP53 mutation

status. Interestingly, similar additive effects could be observed for X or H irradiation in

combination with Dox treatment. However, the additive effects were determined

more frequently for X than for H irradiation. Thus, further investigations are needed

to specify alternative drug therapies that display superior efficacy when combined

with H therapy.
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1 Introduction
Sarcomas are a very rare disease with an incidence of 6 per

100.000 people representing 1%–2% of all adult and 12%–15% of all

pediatric cancers (1). They originate from soft (mesenchymal)

tissues (84%) or bones (14%) (2). Classification, including

immunohistochemistry, is important in the context of diagnosis

and therapeutic option (3–5). Currently, >70 histological subtypes

with specific morphology have been identified so far (3).

Rhabdomyosarcomas (RMS) are the most common soft tissue

tumor (STS) in children accounting for >50% of the cases (6).

Undifferentiated pleiomorphic sarcoma (UPS) including giant cell

tumors (GCT) is the most common STS in late adulthood with a

high rate of local recurrence and distal metastasis (7) and 5-year

survival of patients of ca. 50% (4). Fibrosarcoma generally concerns

all age groups, but subtypes vary significantly between adults and

children, e.g., rarely metastasizing infantile to highly malignant

adult-type fibrosarcoma with poor prognosis (7). Independent of

histology, sarcomas are generally treated multimodally in expert

reference centers since there is a high need for individualized

treatment approaches (8). Whereas surgical resection of the

tumor remains as a primary treatment option, high-precision

neoadjuvant or adjuvant radiotherapy (RT) was shown to

improve local control rates (9). In particular, proton beam

therapy (PBT) is gaining importance as a treatment option for

STS due to the advantageous dose distribution. In contrast to

photon-based intensity-modulated radiotherapy, PBT can spare

critical normal tissue structures such as the central nervous

system or other organs better while delivering an iso-effective

dose to the tumor volume (2). The effects of photon (X) and

proton (H) beams can be compared for various biological

endpoints via the relative biological effectiveness (RBE). The RBE

sets the photon and H doses, which induce the same biological effect

in relation. In clinical treatment planning, the RBE of H is

considered to be a constant 1.1 (10). In contrast, a large

heterogeneity in RBE of H was shown for various sarcoma cell

lines in vitro (11). STS shows a poor response to systematic

treatments (9) , and first- l ine drugs are sti l l classical

chemotherapies such as doxorubicin (Dox, anthracycline),

ifosfamide, and dacarbazine (both alkylating drugs). The survival

benefit for STS patients with low predicted overall survival was

confirmed for anthracycline-based chemotherapy (12). However,

alternative regimes to improve outcomes of STS such as combined

radiation and chemotherapy approaches remain challenging (13).

Despite recent advances in newly approved drugs and radiotherapy

modalities, the 5-year overall survival for large and high-grade

tumors is still poor with rates below 50% (14). Thus, there is an

urgent need to optimize treatment protocols for combined

radiochemotherapies, particularly with PBT and standard

chemotherapy in STS (11), and to investigate (potential) additive

effects of combined therapies relative to the mono-radiotherapy

(15). This study therefore characterizes the effects of H irradiation

alone and compares the effect to X irradiations alone and in

combination with Dox in preclinical STS models (fibrosarcoma,

undifferentiated pleiomorphic sarcoma, rhabdomyosarcoma).
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Furthermore, the sequence of the combined treatments was

altered by applying Dox only before, before and after, or only

after irradiation to gain insights in the effect size of chemotherapy

and radiation modalities.
2 Materials and methods

2.1 Cell culture

The HT-1080 (ATCC CCL-121, fibrosarcoma, RD (ATCC CCL-

136, embryonal rhabdomyosarcoma), and GCT (ATCC TIB-233,

undifferentiated pleomorphic sarcoma/giant cell tumor) cell lines

were obtained from the American Type Culture Collection. HT-1080

cells were isolated from a 35-year-old man who did not receive

treatment. The cells are TP53 wild type (16). RD cells were derived

from biopsy specimens of a 7-year-old woman with pelvic RMS

previously treated with cyclophosphamide and radiation. GCT cells

were derived from the lung of a 29-year-old man. The TP53 gene was

mutated in RD (homozygous (17) and GCT (two heterozygous) cells.

All cell lines were grown in medium supplemented with 10% (v/v) fetal

bovine serum and penicillin–streptomycin (100 U/ml). The HT-1080

and RD cell lines were grown in Dulbecco’s modified Eagle’s medium

(Thermo Fisher scientific, Waltham, USA), which was supplemented

with 1% sodium pyruvate (Sigma-Aldrich, St. Louis, USA) for

HT-1080 cells. GCT cells were grown in McCoy’s (Thermo Fisher

Scientific, Waltham, USA). Cells were maintained at 37°C and 5% CO2

in a humidified incubator.
2.2 Photon irradiation

Photon irradiation hereafter referred to as X was performed

using an ISOVOLT 320 X-ray machine (Seifert–Pantak, East

Haven, CT) at 320 kV, 10 mA with a 1.65-mm aluminum filter,

and a distance around 50 cm to the object being irradiated (18).
2.3 Proton irradiation

Proton irradiation hereafter referred to as H was performed

with an IBA Proteus PLUS proton therapy system (IBA PT,

Louvain-la-Neuve, Belgium) at the West German Proton Therapy

Centre Essen (WPE). A clinical pencil beam scanning line with an

IBA PBS-dedicated nozzle was used. Several proton beams were

energy and intensity modulated layered to form a spread-out Bragg

peak (SOBP) consisting of five energy layers of 118.8 MeV up to

129.9 MeV. The proton beam range was compensated with a range

shifting block water equivalent thickness (WET) = 74 mm, material:

polymethyl methacrylate (PMMA)) and an additional solid water

phantom (RW3 plates, type SP34 IBA Dosimetry, composition:

98% polystyrene + 2% TiO2) with a WET of 3.3 cm to irradiate the

cells in the middle of the SOBP. Cells in multiwell plates were

irradiated with a homogeneous field with absorbed physical doses of

1, 2, 4, 6, or 8 Gy (field sizes: 20 × 20 × 1 cm3). Multiwell plates were

positioned laterally and centered with the sample surface in the
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isocenter on the treatment table and irradiated with a gantry angle

of 0°.
2.4 Doxorubicin treatment

The cytotoxic antibiotic doxorubicin (Dox) (2 mg/ml, Medac

GmbH, Wedel, Germany) was purchased from and prepared by the

pharmacy of the University Hospital Essen. For experiments, Dox

was diluted in PBS (Invitrogen, Carlsbad, USA) and culture

medium. Cells were treated in different sequences: 3 h before

irradiation (DoxA), 3 h before irradiation and refreshed within

1 h after irradiation till the end of the experiment (DoxB), or 1 h

after irradiation till the end of the experiment (DoxC) (Figure 1D).
2.5 Conditioned media

RD or GCT cells were cultured in normal growth media until

confluence. The medium was collected, centrifuged, sterile-filtered

(0.2 μm, Roth, Karlsruhe, Germany), and stored at −20°C until use.

The conditioned medium was mixed with fresh medium as a 20%

mixture for RD cells and a 40%mixture for GCT cells for the colony

formation assay (19).
2.6 Colony formation assay

For the clonogenic survival, HT-1080 and GCT cells were

preseeded 8 h and RD cells 24 h prior to radiation in triplicates

in six-well plates. Cells were treated with Dox-containing culture

medium. Following the irradiation, the media of all samples were

changed with medium (HT-1080), conditioned medium (GCT and

RD), or Dox-containing (conditioned) medium. The colonies were

fixed after 9 (HT-1080), 10 (GCT), or 12 (RD) days depending on

the cell doubling time (HT-1080: 24 h, GCT: 26 h, RD: 48 h),

stained using 0.3% crystal violet dye (Roth, Karlsruhe, Germany) in

70% ethanol for 10 min at RT, rinsed with water, and air dried.

Colonies with 50 cells were scored as surviving.
2.7 Flow cytometry analysis

Cells were plated 24 h before treatment in six-well plates.

Propidium iodide (PI) staining and flow cytometry analysis for

apoptotic DNA fragmentation (subG1 population) were performed

48, 72, or 96 h post treatment. Cells were incubated for 15–30 min at

RT with a staining solution (0.1 M Tris, 0.1 M NaCl, 5 mM MgCl2,

0.05%, Triton X-100 (all Roth, Karlsruhe, Germany)), additional 62

μg/ml RNase A (AppliChem, Darmstadt, Germany), and 40 μg/ml

PI (Sigma-Aldrich, St. Louis, USA) (20). Samples were analyzed by

flow cytometry (FACSCalibur, Becton Dickinson, Heidelberg,

Germany; FL-2) as described elsewhere (18). Cell-cycle phase

distribution was analyzed with Kaluza software to identify the

subG1 population (apoptotic DNA fragmentation, whole

population), and in a second step, the living cell population (G1,
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S, G2/M phase) was investigated for a G2 arrest. Statistical analysis

was performed in GraphPad Prism Version 8.3.0.
2.8 Migration assay

Themigratory potential of cells was investigated with themigration

assay 48 h post treatment at 0, 3, 6, 9, 24, and 48 h time points after

scratch induction (Supplementary Figure 1). Wound closure was

documented in images and determined by measuring the area of the

scratch using ImageJ (Wayne Rasband, National Institutes of Health,

US states) with the pluginWound_healing_size_tool_updated (19). To

calculate the maximummotility speed for each cell line, we calculated a

simple linear regression between two time points (HT-1080: 0–3 h,

GCT: 3–6 h, RD: 6–9 h) and determined the slope in the steep part of

the curve. Additional morphological changes were evaluated by a

sarcoma specialist on the basis of images of the migration assay.
2.9 Cell viability and proliferation analyses

The cell proliferation reagent WST-1 (in PBS 1:3, Roche,

Rotkreuz, Schweiz) was used as a colorimetric assay for the

quantification of cellular viability and cytotoxicity according to

the manufacturer’s instruction (Roche, Rotkreuz, Schweiz). Optical

densities were measured at 450 nm 60–90 min after incubation

(BioTek Synergy H1 microplate reader, Agilent Technologies, Santa

Clara, USA). Afterward, cells were fixed with glutaraldehyde (1% in

PBS, Roth, Karlsruhe, Germany) for 15 min, stained with 0.5%

crystal violet (CV) dye (Roth, Karlsruhe, Germany) in deionized

water for 25 min, gently rinsed in water, and air dried overnight.

The crystal violet dye was resolved in ECOSURF (0.2% in PBS,

Roth, Karlsruhe, Germany) on a shaker for 20 min before optical

density was measured at 540 nm (19). WST-CV data were

normalized to 0 Gy or 0 nM controls.
2.10 Data analysis and statistics

Cell survival and dose response data were fitted using the linear

quadratic equation:

SF =   e−(aD+bD2)

where SF denotes the surviving fraction of cells at dose D with

curve fitting parameters a and b. Non-linear regression analysis was
performed on survival curves using GraphPad Prism, version 8.3.0.

RBE values for protons were calculated relative to 320 kV X-rays

according to

RBE SF= 
DX SF

DH SF

where RBE SF is the RBE at a certain survival level (SF) and DX

SF and DH SF are the X and H dose for an iso-effect, respectively.

Statistical analyses were performed with GraphPad Prism 8.3.0,

and all data points represent at least three replicates with error bars
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FIGURE 1

Colony formation assay. Clonogenic survival of HT-1080, GCT, and RD cells following (A) X radiation (blue) or H radiation (red) alone. HT-1080/GCT:
fitted with the linear–quadratic model; RD: semi log line fit. (B) Table summarizing the fit parameter of the survival curves shown in (A), the
maximum RBEa, the RBE values to survival levels 90%, 50%, 10%, and 1%, and the plating efficiency of the cell models. RD cells were fitted with a
semi log line fit, and no b-term was retrieved. (C) Cell survival curves following X (blue) or H (red) irradiation replotted from (A) to allow better
evaluation of the radiation quality effects. (D) Summary of doxorubicin (Dox) treatment schedules. DoxA: 3 h before (mock) irradiation followed by
media exchange without Dox, DoxB: 3 h before (mock) irradiation followed by media exchange containing Dox. Dox exposure until end of
experiment. DoxC: (mock) irradiation followed by media exchange containing Dox. Dox exposure until end of experiment. Mock Dox treatments
(medium without Dox) were performed for all conditions. (E) Dox treatment alone or in combination with (F) 4 Gy X irradiation or (G) 4 Gy H
irradiation. Dox was applied according to (D). Samples were normalized to matching 0 nM (+ irradiation) controls. n ≥ 3, statistical analysis: (A) paired
t-test for whole curve comparing X vs. H. (E-G) Unpaired t-test comparing mono-/combined treatment vs. matching 0 nM control. p values > 0.05
(not significant, ns), < 0.05 (*), < 0.01 (**), and < 0.001 (***) were considered statistically significant.
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representing the standard deviation (SD). All presented data were

normalized to the experiment, time, and treatment matching

controls. The SD for the controls of each assay was calculated as

followed. For the colony formation assay (CFA), the plating

efficiency (PE) was calculated. The corresponding SD represents

the relative mean of the PEs. For subG1 levels (apoptosis) and the

cell-cycle phase, the SD was calculated from the mean of relative

subG1 or cell-cycle phase levels. For the cell viability and

proliferation assay, measurements were normalized to 0 Gy

control and the corresponding SD was calculated from the

relative mean of measurements. For the migration assay, the SD

was calculated from the mean of relative motility. The significant

level was determined by unpaired (curve comparison) or paired t-

test (data point comparison) with p values > 0.05 (not significant,

ns),< 0.05 (*),< 0.01 (**), and< 0.001 (***) were considered

statistically significant.
3 Results

3.1 Clonogenic survival: combined Dox
treatment reduced clonogenic survival
of STS cells more efficiently upon
prolonged treatment

The CFA is the most reliable method to quantify clonogenic

growth and survival following radiation as an important endpoint

of the cellular response toward cytotoxic stimuli (21). In order to

determine the radiation sensitivity of the different STS cells, CFA

was performed following X or H irradiation (dose range 0–8 Gy).

Plating efficiencies and survival curves were calculated from

surviving colony numbers, and respective curves were fitted with

the linear quadratic model (LQM) for HT-1080 and GCT cells and

with a semi-log line for RD cells (Figure 1A). RD cells seem to be the

most radiosensitive cell line, followed by GCT and HT-1080. Of

note, no significant difference in survival curves between X- and H-

irradiated STS cells could be estimated (Figure 1A). A cell line

comparison of the response to X or H irradiation showed that RD,

followed by GCT and HT-1080, was the most radiosensitive cells to

both radiation modalities (Figure 1C). The RBEa defined as the

ratio of aH/aX shows for HT-1080 an elevated RBE of 1.3 indicating

a higher sensitivity toward H irradiation (Figure 1B). This effect was

not seen for GCT or RD cells. The RBE decreases with lower

survival levels, which points toward a higher effectiveness for higher

single X doses (≥6 Gy) relative to H irradiation in HT-1080 and

GCT cells. Dox treatment at the indicated concentration (0–10 nM)

alone was then used to determine respective chemosensitivities

(Figure 1E). HT-1080 cells were most chemosensitive STS cells,

and the maximum Dox concentration had to be reduced from 10 to

7.5 nM to archive surviving colonies. The longest Dox treatment,

DoxB, reduced most effectively the cell survival in a dose-dependent

manner (Figure 1D). In combination with X or H irradiation, the

survival of all cell lines was even further reduced, again, with DoxB

being most effective (Figures 1F, G). Of note, Dox treatment (only)

before radiation (DoxA) was less effective than Dox after irradiation

(DoxC) independent of cell model or radiation quality (Figure 1E).
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When comparing Dox treatment alone with combined treatment

modalities, significant differences for HT-1080 (2 nM DoxB and X;

2 nM DoxB/C and H; 5 nM DoxC and X) and RD cells (2 nM

DoxB/C and H) were revealed; GCT cells were not significantly

affected. When comparing matching DoxA and DoxB or DoxC

(alone or in combination with irradiation), significant differences

for all Dox concentrations in HT-1080 and RD cells, for 5 nM and

in GCT for 10 nM (Figures 1E–G) were evaluated.
3.2 Apoptosis: GCT cells are
chemoresistant for Dox treatment alone
independent of sequence but sensitive for
combined treatment with radiation

Apoptosis is a further mechanism of cell death following radiation

exposure and the main mechanism of action for the DNA damaging

drug Dox (22). According to the clonogenic survival measurements

performed above, apoptosis induction was analyzed next within the

first 96 h following X or H irradiation and 10 nM Dox treatment by

determining apoptotic DNA fragmentation using flow cytometry

analysis in combination with PI staining. Relative to controls (0 Gy,

0 nM Dox), the subG1 population increased with radiation dose and

time after treatment in HT-1080 and RD cells whereas in GCT cells

only a radiation dose-dependent effect was seen (Figure 2A). Dox

treatment alone hadminor effects in HT-1080 and RD cells and did not

affect GCT cells (Figure 2B). Combined X or H irradiation with Dox

showed a radiation dose-dependent higher apoptosis rate and a Dox

schedule-dependent difference with DoxB and DoxC being more

effective than DoxA (Figures 2C–F). Matching X and H samples

were compared by identifying the potential influence of the radiation

quality (Supplementary Figure 2). Only the apoptosis rates in HT-1080

were statistically different following 8-Gy radiation alone

(Supplementary Figure 2A). However, GCT and RD cells are shown

in combination with DoxA and RD cells also in combination with

DoxB significant differences following 8 Gy (Supplementary

Figures 2B, C). The cellular response following DoxC was radiation

quality independent (Supplementary Figure 2D). The data were

normalized to the respective dose (4 or 8 Gy), radiation quality (X or

H), and time matching (48, 72, 96 h) of samples to identify potential

additive or synergistic effects in combined treated samples

(Supplementary Figure 3). For HT-1080 cells, an additive effect could

be identified for both irradiation qualities but only for DoxB andDoxC.

In contrast, in GCT cells, no additional effect was seen for H irradiation

and any Dox treatment. RD cells showed additive effects for X and H

irradiation with DoxC (Supplementary Figure 3).
3.3 Cell cycle distribution: accumulation of
the G2/M population in GCT and RD cells
following treatment with irradiation
or Dox

DNA damaging treatment such as radiation and chemotherapy

can induce a transient or permanent cell-cycle arrest stopping the

proliferation of damaged cells and providing an opportunity for
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repair (23). Therefore, the effect of mono- or combined treatment

with Dox and X or H radiation on cell cycle phases was analyzed

(Figure 3). The HT-1080 cell did not show a cell-cycle alteration

within 96 h after the indicated treatments. In contrast, GCT and RD

cells accumulated in the G2/M phase 48 h after treatment with

radiation only, or in combination with DoxA and DoxB. For the

most intense treatment (DoxB 8 Gy X or H), 37.7% and 40.2% for

GCT and 48.6% and 47.3% for RD cells accumulated in the G2/M

phase at 48 h, respectively. Arrests were beginning to resolve at 96 h

post treatment; significant changes relative to controls could still be

detected (Figure 3).
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3.4 Proliferation: prolonged Dox treatment
combined with irradiation reduced
proliferation activity of STS cells

Due to the G2/M phase arrest in two cell lines (GCT and RD

cells), we hypothesized that radiation might also reduce the general

proliferation activity. Cellular proliferation levels following

irradiation and Dox treatment were then estimated for the

different STS cells using the crystal violet assay (Figure 4).

Relative to controls (0 Gy, 0 nM Dox), all cell lines showed

reduced proliferation activities following both radiation qualities
A

B

D

E

F

C

FIGURE 2

Flow cytometry comparing relative subG1 phase proportion (subG1) of whole-cell population (sub G1, G1, S, G2, M phase) of 0 Gy control and
treatment of HT-1080, GCT, and RD cells following (A) radiation only with 4 and 8 Gy X (light/dark blue) or 4 and 8 Gy H (light/dark red). (B) Dox
treatment with 10 nM DoxA (before), DoxB (before & after), or DoxC (after); Dox treatment schedule details in Figure 1D. (C - F) Combined treatment
with DoxA, DoxB, or DoxC, and (C) 4 Gy X (blue), (D) 8 Gy X (blue), (E) 4 Gy H (red), or (F) 8 Gy H (red). n ≥ 3, statistical analysis: paired t-test for
whole curve or unpaired t-test for 96 h timepoint (shown as whole curve | 96 h) comparing treatment vs. 0 Gy control. p values > 0.05 (not
significant, ns), < 0.05 (*), < 0.01 (**), and < 0.001 (***) were considered statistically significant.
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in a dose-dependent manner (Figure 4A). Dox treatment alone—in

either treatment schedule—exhibited effects on the proliferation

levels of GCT cells. DoxB and DoxC treatment schedules in contrast

were able to reduce proliferations in HT1080 and RD cells

(Figure 4B). When using radiation treatment in addition, all

combinatory treatments significantly lowered proliferation

activities of all STS cell lines investigated 96 h post onset of

treatment (Figures 4C-F). Time- and dose-matching X- and H-

exposed samples were additionally compared by identifying the

potential influence of the radiation quality (Supplementary

Figure 4). No significant changes could be found with the

exemption of whole curve comparison of HT-1018 cells following

4 Gy and DoxA (Supplementary Figure 4B). To identify potential

additive or synergistic effects in combined treated samples, the data

were normalized to the respective dose (4 or 8 Gy), radiation quality

(X or H), and time matching (48, 72, or 96 h) samples

(Supplementary Figure 5). GCT cells were the most affected cell

line, and additive effects were found for all Dox conditions with X

irradiation (Supplementary Figures 5A, B). Following H irradiation,

much fewer effects could be detected. In contrast, RD cells were the

least affected cell line (Supplementary Figures 5B, C). However,

DoxB seems to be the most efficient for all cell lines

(Supplementary Figures 5).
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3.5 Cell viability: additive effects could be
identified for prolonged Dox treatment and
X but not for H

Cellular viabilities were measured via metabolic activities

following combined treatment of X or H irradiation with Dox

using the WST-1 reagent (Figure 5). Relative to controls (0 Gy, 0

nM Dox), both radiation qualities lowered the cell viability in a

dose-dependent manner. GCT recovered independent of radiation

quality to the control level after 4 Gy and 96 h, whereas HT-1080

and RD did not (Figure 5A). Dox alone had only minor effects on

cellular viabilities; GCT cells were not affected, whereas minor

effects of DoxB (HT-1080 cells) and DoxC (HT-1080, RD cells)

were seen (Figure 5B). The combination of X and all Dox

treatments significantly reduced the cell viability in HT-1080 and

RD cells 96 h post treatment; in GCT cells, only 8 Gy X and DoxA

and DoxB was effective (Figures 5C-D). To 96 h post treatment, H

and Dox significantly decreased metabolic activity in all cell lines

and treatments except HT-1080 to 4 Gy DoxB and DoxC

(Figures 5E-F). Time- and dose-matching X- and H-irradiated

samples were assessed to identify the potential influence of the

radiation quality (Supplementary Figure 6). Again, no significant

difference between X- and H-irradiated samples 96 h post treatment
A

B

D

C

FIGURE 3

Flow cytometry comparing the relative cell-cycle phase (G1 + S + G2/M = 100%) of HT-1080, GCT, and RD cells at 48 and 96 h following (A) 4 and
8 Gy X or H radiation only. (B–D) Combined treatment with radiation and (B) DoxA (before), (C) DoxB (before and after), and (D) DoxC (after). Dox
treatment schedule details in Figure 1D. n ≥ 3, statistical analysis: unpaired t-test for each timepoint comparing treatment vs. matching control of the
G2 phase. p values > 0.05 (not significant, ns), < 0.05 (*), < 0.01 (**), and < 0.001 (***) were considered statistically significant.
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could be found, exempt GCT to 4 Gy (96 h) or 8 Gy (whole curve).

In contrast, whole curve comparisons showed significant changes

for HT-1080 and RD following irradiation and DoxA or DoxB.

(Supplementary Figures 6B, C). To further reveal potential additive

effects in combined treated samples, data were normalized to the

respective dose (4 or 8 Gy), radiation quality (X or H), and time

matching (48, 72, 96 h) samples (Supplementary Figure 7). For X-

exposed samples, additive effects were found for HT-1080 and RD

cells whereas GCT cells were not affected (Supplementary

Figures 7A, B). No additive effects were identified following H

irradiation and any Dox treatment (Supplementary Figures 7C, D).
Frontiers in Oncology 0892
3.6 Cell morphology analysis post
treatment: radiation effects morphology
more pronounced than Dox

The migration assay was used to study morphological changes

upon treatment (Figure 6, Supplementary Figure 1). Untreated HT-

1080 cells, under the given cell culture conditions, appear small,

with a spindled to round shape, with aspects of a whirling

architecture. The nuclei are hyperchromatic and broadly

isomorphic. Upon X and H irradiation, HT-1080 cells seem

slightly enlarged and appear predominantly in spindle shape with
A

B

D

E

F

C

FIGURE 4

CV assay comparing the relative number of proliferating cells (proliferation; normalized to matched control) of 0 Gy control vs. treatment of HT-
1080, GCT, and RD cells following (A) radiation only with 4 and 8 Gy X (light/dark blue) or 4 and 8 Gy H radiation (light/dark red). (B) Dox treatment
with 10 nM DoxA (before), DoxB (before and after), or DoxC (after). Dox treatment schedule details in Figure 1D (C–F) Combined treatment with
DoxA, DoxB, or DoxC and (C) 4 Gy X (blue), (D) 8 Gy X (blue), (E) 4 Gy H (red), and (F) 8 Gy H (red). n ≥ 3, statistical analysis: paired t-test for whole
curve or unpaired t-test for the 96 h timepoint (shown as whole curve | 96 h) comparing treatment vs. 0 Gy control. p values > 0.05 (not significant,
ns), < 0.05 (*), < 0.01 (**), and < 0.001 (***) were considered statistically significant.
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long cytoplasmatic processes; nuclei appear to be increasingly

anisomorphic. No morphological changes were seen following

DoxA alone or in combination with any radiation treatment,

compared with X or H irradiation alone. DoxB and DoxC,

however, induced spindle-shaped cells with long cytoplasmic

processes and anisonucleosis. Combined treatment with DoxB or

C and both radiation qualities increased the amount of

anisonucleosis and increased the frequency of cells, which lost

their cytoplasmic processes and their bipolar spindled shape.

Unirradiated GCT cells show a largely homogeneous spindled

morphology with long cytoplasmic processes creating intercellular

connections. Following X and H irradiation, cells show cytoplasmic

and nuclear enlargement; furthermore, multinucleated cells appear.
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Few GCT cells develop a dendritic shape with fibroblastic

appearance. Monotreatment with DoxA or combined treatment

with any radiation and DoxA did not alter the morphology. Cells

under DoxB or DoxC treatment alone appear with extended

cytoplasmatic processes in GCT cells. The morphological effects

upon irradiation and chemotherapy alone were also seen following

combined treatment with irradiation and DoxB or DoxC.

Untreated RD cells present as networking spindled cells with long

cytoplasmic processes and broadly isomorphic nuclei. In co-

localization, few single polygonal cells with larger, roundish nuclei

are apparent. Upon X and H irradiation, cells and nuclei appear

enlarged and increasingly anisomorphic, and multinucleated cells show

up. The cytoplasm becomes granular, and some cells loose the spindled
A

B

D

E

F

C

FIGURE 5

WST assay comparing relative number of viable cells (viability; normalized to matched controls) of 0 Gy control vs. treatment of HT-1080, GCT, and
RD cells following (A) radiation only with 4 and 8 Gy X (light/dark blue) or 4 and 8 Gy H radiation (light/dark red). (B) Dox treatment only with 10 nM
DoxA (before), DoxB (before and after), or DoxC (after). Dox treatment schedule details in Figure 1D (C–F) Combined treatment with DoxA, DoxB, or
DoxC and (C) 4 Gy X (blue), (D) 8 Gy X (blue), (E) 4 Gy H (red), and (F) 8 Gy H (red). n ≥ 3, statistical analysis: paired t-test for whole curve or
unpaired t-test for 96 h timepoint shown as (whole curve96 h) comparing treatment vs. 0 Gy control. p values > 0.05 (not significant, ns), < 0.05 (*),
< 0.01 (**), and < 0.001 (***) were considered statistically significant.
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morphology. Independent of treatment schedule, Dox treatment alone

had no effect on the morphology of RD cells, like combined therapy

with DoxA and radiation. However, exposure to combined X or H

radiation and DoxB or C treatment led to the appearance of long thin

processes, fibroblast-like and dendrite-like cell shapes, and increasing

anisonucleosis. Overall, irradiation effects morphology of STS cells

more pronounced than Dox treatment.
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3.7 Cell motility: irradiation and Dox
treatment reduced motility, but X-Dox was
more effective than H-Dox

Finally, the migration assay was used to study cellular motilities

by measuring the surface area that cells occupy over time after

treatment with X or H irradiation and 10 nM Dox (Figure 6,
A

B

D

E

F

C

G

FIGURE 6

Migration assay comparing motility of 0 Gy control vs. treatment of HT-1080, GCT, and RD cells following (A) radiation only with 4 and 8 Gy X (light/
dark blue) or 4 and 8 Gy H (light/dark red) radiation. (B) Dox treatment with10 nM DoxA (before), DoxB (before and after), or DoxC (after). Dox
treatment schedule details in Figure 1D (C–F) Combined treatment with DoxA, DoxB, or DoxC and (C) 4 Gy X (blue), (D) 8 Gy X (blue), (E) 4 Gy H
(red), and (F) 8 Gy H (red). (G) Maximum of migration speed for each cell line extracted from the exponential phase of the curve via linear regression.
n ≥ 3, statistical analysis: paired t-test for whole curve comparison: treatment vs. 0 Gy control for HT-1080 cells until the scratch was closed (0–9 h)
and for GCT and RD cells over the whole observation period of 0–48 h. p values > 0.05 (not significant, ns), < 0.05 (*), < 0.01 (**), and < 0.001 (***)
were considered statistically significant.
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Supplementary Figure 1). Relative to controls (0 Gy, 0 nM Dox),

motilities for HT-1080 and GCT were significantly reduced

following 8 Gy irradiation. However, RD cells lowered the

motility only after 4 Gy X significantly (Figure 6A). Dox

treatment lowered the motility in a cell line-dependent manner

with HT-1080 being the most and GCT being the least affected

(Figure 6B). Combined treatment of X irradiation and Dox reduced

the motility in all cell lines where the 8 Gy dose was again more

effective in HT-1080 and GCT, whereas RD was more affected after

4 Gy and Dox (Figures 6C, D). Interestingly, the combined

treatment of Dox and H irradiation had less effects on cellular

motilities. Only HT-1080 (8 Gy only) and GCT (both doses) cells

showed significant effects (Figures 6E, F). The maximum speed of

cell migration was calculated to form the exponential phase of the

motility curves (HT-1080 cells 0–3 h; GCT cells: 3–6 h and RD cells

6–9 h). With the exemption of 4 Gy X in GCT and RD cells, the cell

motility was reduced by radiation, all Dox schedules, and combined

treatments relative to controls (0 Gy, 0 nM Dox, Figure 6G). The

data were additionally normalized to the respective dose (4 or 8 Gy),

radiation quality (X or H) (Supplementary Figure 8). Time- and

dose-matching X and H irradiated samples were assessed to identify

the potential influence of the radiation quality (Supplementary

Figure 9). With the exemption of 4 Gy with DoxB in HT-1080

and 8 Gy with DoxC in RD, no significant influence of the radiation

quality on the motility of the cells could be measured.
4 Discussion

In clinical practice, the established chemotherapy protocols of

X-based radiochemotherapy (24) are adopted for H-based

radiochemotherapy (8). Unfortunately, there is a lack of large

clinical trials investigating the effects of combined H-based

radiochemotherapy (25). In order to increase the body of

preclinical data to optimize and improve established treatment

protocols for combining radiotherapy, particularly with H and

standard chemotherapy in STS, the effects of H irradiation

compared with X irradiation and combined with the

chemotherapeutic drug Dox in three different sequences in three

STS models were evaluated.

In this study, the clonogenic cell survival, apoptosis induction,

cell-cycle effects, proliferation, viability, morphological changes and

cellular motility were investigated. It is shown that HT-1080 were

the most radioresistant and RD the most radiosensitive cell lines

(Figure 1C). GCT cells were most resistant to Dox treatment. For all

cell lines, the longest Dox treatment (DoxB) showed the highest

effectiveness (Figures 1E–G). The DoxC schedule reflects the

treatment situation in the clinics where patients with low

predicted overall survival benefit from adjuvant chemotherapy

(12). DoxB and DoxC are superior to DoxA (Figures 1E-G),

supporting the importance of the Dox treatment after radiation.

Overall, the colony formation assay is the most relevant assay for

the clinics because it investigates the long-term survival of STS cells.

For all combined treatment scenarios, additive effects could be

found. Overall, the combination of Dox and X seems to be more

effective than Dox and H (Figures 1F, G).
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The different STS cell types investigated (HT-1080

fibrosarcoma, GCT undifferentiated pleiomorphic sarcoma, and

RD embryonal rhabdomyosarcoma cells) revealed a dose-

dependent RT response with RD cells exhibiting the most

radiosensitive phenotype followed by GCT cells and the quite

radioresistant HT-1080 STS cells (Figure 1). Of note, no superior

effects could be estimated for H versus X irradiation. Presented

experiments were performed in the middle of the irradiation field

(center of the SOBP), as this represented the predominant situation

in the irradiation field of H therapy (26). However, the cell survival

curves were not significantly different for all the investigated models

(Figure 1A) and the determined RBEs were in the range of the

clinical assumption of 1.1 (27). RBE values as low as 0.8 were found

for survival level 1% (Figure 1B), which is indicative of a higher

effectiveness of X radiation. Other groups have found increased RBE

values representing a higher biological effectiveness of H irradiation

in the distal fall-off of the Bragg peak (11). For other entities such as

brain tumors, it has been discussed that the increased RBE at the

end of the proton range can lead to increased side effects in healthy

tissue (11). The clinical evidence for these effects remains weak (28).

Therefore, future experiments should investigate the cellular

response in this region of the treatment field. Striking was the

linear curve progression of the RD cells. This indicates a decreased

DNA damage repair capacity (29) of the cells and a high sensitivity

to radiotherapy. In follow-up studies, the functional mutational

status of DNA repair proteins should be clarified for this cell line.

The a/b ratios of HT-1080 and GCT cells are also of interest

(Figure 1B). Here, the ratios for H irradiation are higher in both

cases. This could be an indication of reduced fractionation

sensitivity of the cells (30).

Concerning the chemosensitivity of investigated STS cells, a

pronounced chemotherapy sensitivity was estimated for each cell

line. Significant differences between Dox mono treatment and Dox

radiation were found for HT-1080 and RD cells. However, survival

of GCT cells was not significantly altered in combined treatment

relative to Dox monotherapy. When comparing the different Dox

schedules, DoxB and DoxC were superior to DoxA. Dox and

ifosfamide remain the most effective chemotherapy drugs

available for STS tumors (31). However, management of STS is

increasingly subtype-dependent and resistance for Dox is present.

Resistance mediating molecular alterations such as the mutation of

TP53 was discussed since p53-dependent apoptosis is the main

mechanism of action of Dox (32).Unfortunately, the investigation

of new molecular targets only showed an incremental progress and

no superior effect relative to Dox (13). Nevertheless, patients with

undifferentiated pleomorphic sarcoma (UPS, GCT cells) showed the

highest overall response from treatment with monoclonal

antibodies against PD-L1 (33). TP53 mutations are mostly

associated with increased aggressiveness and radio resistance (34).

The sarcoma cells studied here all showed to be positive for

apoptotic cell death (Figure 2). However, apoptosis induction was

significantly increased after radiation treatment compared with

apoptosis after chemotherapy alone (Figures 2A, B). Mutations in

the TP53 gene are known for the RD (homozygous mutation of

TP53 (17)) and GCT (two heterozygous TP53 mutations (ATCC))

cell lines, whereas HT-1080 is proficient for TP53 (35). Especially in
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GCT cells, no significantly increased apoptosis rates could be

measured after treatment with Dox alone or in combination with

H irradiation (Figures 2B–F). Nevertheless, it seems that the

sequence of treatment has an impact on apoptosis rate and

exclusive Dox treatment before irradiation is less effective than

(before and) after radiation treatment (Figure 2B). Clinically, Dox

chemotherapy is given as adjuvant or neoadjuvant intervention

relative to radiotherapy. It is administered as a bolus injection

within a few minutes or as a continuous intravenous infusion over

several hours to days (36). The blood clearance of Dox varies widely

inter-individually but extends over several days (36) so it can be

assumed that Dox is present in sufficient amounts in tumor cells at

the time of irradiation. All Dox experiments were performed in

three different sequences with Dox treatment 3 h before irradiation

(DoxA), 3 h before and refreshment within 1 h after irradiation

(DoxB), or only within 1 h after irradiation (DoxC) (Figure 1D).

Prolonged treatment with Dox in schedule DoxB or DoxC showed

that major effects especially in combination with radiation additive

effects could be determined (Figures 2B-F).

The mutation of RD and GCT cells for the TP53 gene is also

reflected in the lack of p53-mediated G1/S cell-cycle arrest (37).

Therefore, the cells temporarily arrest in the G2/M phase to repair

DNA damage (38). In subsequent studies, the distribution and

kinetics of DNA repair proteins might gain insight into the repair

pathways used after X and H irradiation. First evaluations of

decisive DNA repair protein levels however seemed to be

unaltered in the STS cell lines investigated, at least under non-

radiating conditions (data not shown). The increased repair of DNA

damage via homologous recombination is intensively discussed in

the context of H irradiation (38) and could be a starting point for

the development of alternative drug therapy for STS.

Corresponding effects are demonstrated for cellular proliferations

and viabilities after treatment (Figures 4, 5): All cell lines showed

decreased proliferation activities and viabilities after irradiation

(Figures 4A, 5A). For the Dox treatment alone, no effect could be

determined in GCT cells for either endpoint, whereas effects for HT-

1080 and RD cells were detected (Figures 4B, 5B). To investigate the

additive effect of combined treatment in comparison with the mono-

treatment with radiation (15), the data were normalized to matching

controls (Supplementary Figures 5, 7). However, additive effects were

determined for GCT cells on proliferation especially after

combination with Dox and X, whereas the endpoint viability was

not additively affected. These additive effects belong to the in vitro

synergy, which differs from the therapeutic synergy (39).Taken

together, these data suggest that GCT cells have to some extent a

resistance to Dox and are most inactivated by irradiation. No

particular sensitivity to a beam quality could be determined

(Supplementary Figures 4, 6). In contrast, HT-1080 and RD cells

are sensitive especially to prolonged Dox treatment and the

combination with radiation, whether X or H, shows additive effects

(Supplementary Figures 5, 7). Another important aspect is the

different response of the cells in the cell viability and proliferation

assay. While the proliferation of the cells is much more reduced

following treatment (Figure 4A), the cell viability often recovers until

96 h (Figure 5A). Additionally, in the CFA with HT-1080 cells, single

cells and colonies with less than 50 cells could be detected even after
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high-dose irradiation with 8 Gy, indicating that these cells are

mitotically dead and stopped proliferating but are metabolically still

active (40).

In all cell lines, radiation induced more changes in cell

morphology compared with Dox treatment. However, no distinct

differences in morphology between the radiation qualities (X or H)

could be detected. Future work should include more time points,

radiation doses, and additional treatment with relevant particles like

carbon or oxygen ions to investigate the LET or RBE effect on

morphology (41). Treatment-induced loss of bipolarity, prolonged

cytoplasmic processes, and cell-shape alterations were seen for all cell

lines indicating cell damage and cellular plasticity. For sarcoma, the

transition frommesenchymal to (partial) epithelial (M(p)ET) cell type

has been described and discussed as a potential biomarker for tumor

treatment response (42). MET and the reversed-process epithelial to

mesenchymal transition (EMT) have been discussed to contribute to

doxorubicin resistance (43). Upregulation of EMT/MET genes has

been reported, e.g., in rhabdomyosarcomas (44), which could be used

for the development of new targeted drugs (45). The here found

resistance for Dox of GCT cells corresponds with some gene analyses

where genes, which are involved in chemoresistance (e.g., RAB22a and

S100P), were upregulated in UPS. Furthermore, an upregulation of

EMT-related genes and a downregulation of epithelial markers are

common in UPS. The development of new drugs is ongoing. One

example is eribulin, a novel microtubule inhibitor (45). Additionally,

in context to rhabdomyosarcoma cases, upregulations of CDH1

(epithelial marker), SLUG (inducer of EMT), and MMP9 (matrix-

modifying enzyme) are reported (44). In our study, no clear

indications for MET or EMT could be seen based on cell cultures.

To further analyze the potential cellular plasticity upon mono- or

combined treatment, additional biomarker stainings for MET, e.g., N-

cadherin, vimentin, and fibronectin, or EMT, e.g., E-cadherin,

occludins, and claudins, are needed (46). To confirm the in vitro

results, further investigations should be performed on tumor sections

from in vivo or in ovo experiments. In our study, GCT and RD cells

showed a pronounced resistance to Dox treatment of any schedule,

which can in part be explained by the mutated TP53 gene. In primary

STS cultures, a high mutation rate in apoptotic signaling genes (TP53,

ATM, PIK3CB, PIK3R1, NTRK1, CSF2RB) was found and linked to

Dox resistance (32). Future experiments should include molecular

analysis regarding apoptosis and migration biomarkers to understand

the additive effects mediated by anthracycline-based regimen. The

involved genes and pathways could serve as new targets for

personalized treatment approaches in sarcoma patients.

Finally, the migratory capacity of the three STS lines was

investigated following the different radiation modality treatment

with or without the different combined Dox schedules (Figure 6).

For conventional X radiotherapy, an increased cell motility was

shown, which holds the potential to promote invasion and

metastasis (47). For the treatment of sarcoma, H radiotherapy is

gaining importance (2). For example, for Ewing sarcoma cells (48),

as well as for other cancer entities, e.g., for breast cancer cells (49),

the enhanced motility following Dox treatment or X irradiation was

already shown, but there is a lack of data for STS in general.

Analysis of the motility in the three STS lines here revealed reduced

migratory capacities following Dox and H treatment (Figures 6E, F).
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In addition to apoptosis, the damage of the cellular membrane,

which may influence the motility as well, is a further mechanism of

action of Dox (22). Conclusively, the improved action of combined

radiochemotherapy as investigated here not only improved the

therapeutic response concerning cell survival but even reduced

the migration/invasion potential especially following combined

treatment with a prolonged sequence (DoxB or DoxC)

(Figures 6C-F).

In summary, no clear advantage of H therapy over X therapy could

be revealed in preclinical STS models. Experiments were performed in

the center of the SOBP and not at the distal fall-off, where enhanced

RBE values are described (10). RD rhabdomyosarcoma cells are quite

radiosensitive followed by GCT undifferentiated pleiomorphic sarcoma

cells. HT-1080 fibrosarcoma cells showed the highest radioresistance

while being sensitive to Dox treatments due to wt TP53 (50). For the

cell models used, prolonged Dox treatment was revealed as most

effective. Combination of H radiations with Dox showed for most

endpoints similar effects compared with X irradiation. Currently, the

measured effects can be labeled as “cell line specific”. To translate our

findings to “STS subtype specific”, more experiments with cells of the

respective histology needs to be performed. Subtype-specific treatment

approaches of STS increased constantly (13). A recent review

summarized all published and publicly available STS cell lines and

found only 45 histological subtypes represented in cell lines whereas

133 subtypes were not. For the here used histological subtypes,

alternative cell models are available in sufficient numbers for

fibrosarcoma and rhabdomyosarcoma, but not for undifferentiated

pleiomorphic sarcoma/giant tumor cells (3). Conclusively, the

presented findings strongly suggest that alternative drug therapies

should be developed for combination therapy with H. The ultimate

goal would be an individualized drug treatment tailored to the patient

in combination with high-precision radiotherapy after (partial) surgical

removal of the tumor.
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SUPPLEMENTARY FIGURE 1

Exemplary images of migration assay with (A)HT1080 cells, (B)GCT cells, and

(C) RD cells following 8 Gy X or H radiation and combined treatment with

DoxB (before & after; details see ) at different timepoints post scratch (0 h, 9 h,
48 h). 4 x magnification and scale bar = 553.3 µm.

SUPPLEMENTARY FIGURE 2

Flow cytometry comparing relative subG1 phase X vs. H of HT-1080, GCT,
and RD cells following (A) radiation only with 4 and 8 Gy X (light/dark blue) or

4 and 8 Gy H (light/dark red) radiation. (B-D) combined radiation treatment

with (B) DoxA (before), (C) DoxB (before & after), and (D) DoxC (after). Dox
treatment schedule details in . n ≥ 3, statistical analysis: paired t-test for whole

curve or unpaired t-test for 96 h timepoint shown as (whole curve| 96 h)
comparing matching X vs. H.

SUPPLEMENTARY FIGURE 3

Flow cytometry analysis of additive effects of combined treatment compared

with monotreatment (radiation only) of relative subG1 phase (subG1) of HT-
1080, GCT, and RD cells following combined treatment with 10 nM DoxA

(before), DoxB (before & after), or DoxC (after) and (A) 4 Gy X (blue), (B) 8 Gy X
(blue), (C) 4 Gy H (red), (D) 8 Gy H (red). Dox treatment schedule details in . n ≥

3, statistical analysis: paired t-test for whole curve or unpaired t-test for 96 h
timepoint shown as (whole curve| 96 h) comparing monotreatment vs.

combined treatment.
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SUPPLEMENTARY FIGURE 4

CV assay comparing relative number of proliferating cells (proliferation;
normalized to matched control) X vs. H of HT-1080, GCT, and RD cells

following (A) radiation only with 4 and 8 Gy X (light/dark blue) or 4 and 8 Gy H

(light/dark red) radiation. (B-D) combined radiation treatment with (B) DoxA
(before), (C) DoxB (before & after), and (D) DoxC (after). Dox treatment

schedule details in . n ≥ 3, statistical analysis: paired t-test for whole curve
or unpaired t-test for 96 h timepoint shown as (whole curve| 96 h) comparing

matching X vs. H.

SUPPLEMENTARY FIGURE 5

CV assay analysing the additive effects of combined treatment compared with
monotreatment (radiation only) of relative number of proliferating cells

(proliferation; normalized to matched control) of HT-1080, GCT, and RD
cells following combined treatment with 10 nM DoxA (before), DoxB (before

& after) or DoxC (after) and (A) 4 Gy X (blue), (B) 8 Gy X (blue), (C) 4 Gy H (red),
and (D) 8 Gy H.(red). Dox treatment schedule details in . n ≥ 3, statistical

analysis: paired t-test for whole curve or unpaired t-test for 96 h timepoint

shown as (whole curve| 96 h) comparing monotreatment vs.
combined treatment.

SUPPLEMENTARY FIGURE 6

WST assay comparing relative number of viable cells (viability; normalized to
matched control) X vs. H of HT-1080, GCT, and RD cells following (A)
radiation only with 4 and 8 Gy X (light/dark blue) or 4 and 8 Gy H (light/
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dark red) radiation. (B-D) combined treatment with (B) DoxA (before), (C)
DoxB (before & after), and (D)DoxC (after). Dox treatment schedule details in .

n ≥ 3, statistical analysis: paired t-test for whole curve or unpaired t-test for

96 h timepoint shown as (whole curve| 96 h) comparing matching X vs. H.
SUPPLEMENTARY FIGURE 7

WST assay analysing the additive effects of combined treatment compared
with monotreatment (radiation only) of relative number of viable cells

(viability; normalized to matched control) of HT-1080, GCT, and RD cells

following combined treatment with 10 nM DoxA (before), DoxB (before &
after), or DoxC (after) and (A) 4 Gy X (blue), (B) 8 Gy X (blue), (C) 4 Gy H (red),

and (D) 8 Gy H (red). Dox treatment schedule details in . n ≥ 3, statistical
analysis: paired t-test for whole curve or unpaired t-test for 96 h timepoint

shown as (whole curve| 96 h) comparing monotreatment vs.
combined treatment.
SUPPLEMENTARY FIGURE 8

Migration assay comparing relative number of motility X vs. H of HT-1080,
GCT, and RD cells following (A) radiation only with 4 and 8 Gy X (light/dark

blue) or 4 and 8 Gy H (light/dark red) radiation. (B-D) combined treatment
with DoxA (before), (C) DoxB (before & after), and (D) DoxC (after) radiation.

Dox treatment schedule details in . n ≥ 3, statistical analysis: paired t-test for
whole curve comparing X vs. H (HT: 0-9h; GCT: 0-48h; RD: 0-48h).
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Locally aggressive mesenchymal tumors comprise a heterogeneous group of soft

tissue and bone tumors with intermediate histology, incompletely understood

biology, and highly variable natural history. Despite having a limited to absent ability

to metastasize and excellent survival prognosis, locally aggressive mesenchymal

tumors can be symptomatic, require prolonged and repeat treatments including

surgery and chemotherapy, and can severely impact patients’ quality of life. The

management of locally aggressive tumors has evolved over the years with a focus

on minimizing morbid treatments. Extensive oncologic surgeries and radiation are

pillars of care for high grade sarcomas, however, play a more limited role in

management of locally aggressive mesenchymal tumors, due to propensity for

local recurrence despite resection, and the risk of transformation to a higher-grade

entity following radiation. Patients should ideally be evaluated in specialized

sarcoma centers that can coordinate complex multimodal decision-making,

taking into consideration the individual patient’s clinical presentation and history,

as well as any available prognostic factors into customizing therapy. In this review,

we aim to discuss the biology, clinical management, and future treatment frontiers

for three representative locally aggressive mesenchymal tumors: desmoid-type

fibromatosis (DF), tenosynovial giant cell tumor (TSGCT) and giant cell tumor of

bone (GCTB). These entities challenge clinicians with their unpredictable behavior

and responses to treatment, and still lack a well-defined standard of care despite

recent progress with newly approved or promising experimental drugs.

KEYWORDS

desmoid fibromatosis, giant cell tumor of bone, tenosynovial giant cell tumor, locally
aggressive mesenchymal tumors, malignant giant cell tumor of bone, metastatic giant
cell tumor of bone, tyrosine kinase inhibitors, g-secretase inhibitors
Introduction

Desmoid fibromatosis, giant cell tumor of bone and tenosynovial giant cell tumor are

three distinct locally aggressive mesenchymal tumors with unpredictable behavior and

absent to low tendency for malignancy (1). Historically, DF, GCTB and TSGCT have been

managed following paradigms of treatment for high grade sarcomas with aggressive
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surgeries and radiation treatment. However, important differences

with respect to epidemiology, biology and prognosis between locally

aggressive tumors and sarcomas have led to substantial changes in

management over the last few years. Specifically, DF, GCTB and

TSGCT affect predominantly young adults and, despite being

locally aggressive and often highly symptomatic, have excellent

prognosis (2–4). For all these reasons, and for the high rate of local

recurrence, aggressive surgeries are no longer recommended.

Similarly, radiation therapy is very rarely used nowadays for the

risk of both malignant transformation and secondary cancer. The

dismissal of aggressive treatments, the introduction of new drugs,

the advancements in local treatment techniques, and better

understanding of tumor biology have revolutionized the

management of DF, GCTB TSGCT (5, 6). These diseases are now

regarded more as chronic conditions in need of long-term

symptoms and disease control without quality-of-life detriment.

Patient associations and the expanding use of patient-

reported outcome measures (PROMs) have largely contributed

advancement in understanding the many physical, psychosocial,

and practical challenges that patient encounter (7, 8).

Desmoid-type fibromatosis

Desmoid-type fibromatosis (DF), also known as aggressive

fibromatosis, is a monoclonal fibroblastic neoplasm characterized

by an infiltrative and locally aggressive growth pattern, high rates of

post-surgical recurrence, and no metastatic potential (1).

Epidemiology. The incidence of DF is low with around 5 new

cases per million people per year, with a peak between the 3rd or 4th

decade of life and higher incidence in female patients (2).

Histopathology. Histologically, DF rarely cause diagnostic

confusion, and are reliably comprised of bland hypochromatic

spindled cells arranged in a densely fibrotic stroma (Figures 1A, B).

Etiopathogenesis. The etiopathogenesis of DF is not completely

understood and likely multifactorial. Approximately 85-90% of DF

cases are sporadic and harbor a mutation of the gene encoding the

beta catenin protein, CTNBB1; whilst the remaining 5-10% of DF

harbor an APC gene mutation and arise in the context of Familial

Adenomatous Polyposis Syndrome (FAP) or attenuated FAP

syndrome (9, 10). Key events in DF tumorigenesis are the genetic

alterations of CTNNB1 or APC in sporadic or hereditary cases,

respectively. Both mutations lead to constitutive activation of the

Wnt/b-catenin pathway. In addition, Notch target genes have been

shown to be overexpressed in DT and to engage in cross-talk

with the Wnt/b-catenin signaling pathway, providing alternative

potential therapeutic targets (11). Trigger events for tumorigenesis

are thought to be a recent trauma, surgery, or pregnancy (12, 13).

Genetic testing. Molecular testing is encouraged as part of the

diagnostic workup as virtually all DF harbor mutually exclusive

mutations of either the CTNNB1 or APC genes (9, 14).

Clinical presentation. Clinically, DF can occur in any anatomic

location. The vast majority of sporadic DF arise in the limbs, chest,

and abdominal wall, while the intra-abdominal and head and neck

location are less frequent. A previous surgery, trauma or recent

pregnancy are common anamnestic findings and are frequently
Frontiers in Oncology 02101
associated with de novo DF growth or progression of disease (1, 12,

13). FAP-associated DF harbor APC mutations can be multifocal and

are frequently intra-abdominal. The diagnosis of APC mutated DF

warrants FAP workup with colonoscopy and germline testing (9).

Natural history. The natural history of DF is unpredictable and

can vary widely between patients; presenting symptoms depend on

the growth rate and anatomic location of the tumor. Tumors can

elicit severe symptoms when abutting nerves or vessels, or cause

severe damage encompassing or invading intra-abdominal organs

such as the bowel (15). In the last several years, the treatment

approach has evolved considerably with emerging prospective

evidence that long term stable disease and even spontaneous

regression can occur in up to 20% of DF, even after an initial

phase of growth (15–19).
Treatment

There is no standard of care for DF, which have been

historically managed using similar paradigms to high grade

sarcomas, with attempts at complete resection even at the cost of

morbid surgeries, and various cytotoxic chemotherapies for

unresectable tumors (15–19). The Desmoid Tumor Working

Group (DTWG) is an international team of desmoid fibromatosis

experts that in 2020 has issued evidence-based consensus guidelines

with the aim of improving quality of care and patient’s outcome

worldwide (9).

Active surveillance. A “watch and wait” approach defined as

“active surveillance” has been recommended by the DTWG for

newly diagnoses patients, when the clinical presentation allows it, in

view of the unpredictable behavior of DF and the high rate of

spontaneous regression (9). Treatment initiation should be based

on clear radiographic progression or emerging clinical symptoms

(9). Patients managed with active surveillance should be monitored

with imaging at 1 or 2 months from diagnosis then every 3 to 6

months. Progression in a single assessment in the absence of

symptoms and when the tumor is in a non-critical location is not

indication for treatment. Ideally, patients on active surveillance

should be evaluated by an expert physician at a reference center for

DF as the risk of progression may be high for large tumors (9).

When disease progression has been documented in at least two

subsequent imaging assays, in the presence of worsening symptoms

and for tumor arising in anatomical-critical locations, treatment

should be considered. Systemic therapies should be favored over

upfront surgical resection, which is now discouraged and reserved

to few, selected cases due to preponderance of incomplete initial

resections and frequent recurrences (9, 16–18, 20, 21).
Locoregional treatments

While surgery and radiation therapy (RT) are less and less

employed, locoregional treatments such as cryoablation and high

intensity focused ultrasound ablation have gained considerable

interest over the past decade.
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Surgery. Surgical resection of DF is no longer recommended as

a first line treatment option, and it should be reserved for carefully

selected patients (9). The high rate of local recurrence, difficulties on

achieving negative margins along with the observed high rate of

spontaneous tumor regressions are the reasons that led to the

progressive decline of upfront surgery (2, 16, 17, 22). Resection

can be considered for small DF of the abdominal wall whenever a

complete tumor resection is deemed feasible without significant

morbidity (21).

Radiation therapy. Radiation therapy is not routinely used in

the management of DF and it should be avoided in the young

population given the risk of secondary malignancy. Whilst

retrospective series have failed to show statistically significant

advantages in terms of local control when RT was used in

combination with surgery versus surgery alone (23); moderate

dose of RT can offer adequate local control (24). Overall,
Frontiers in Oncology 03102
moderate dose RT can be considered in selected cases when

systemic treatments are not effective and surgery is not feasible,

especially for progressing tumors arising in critical locations as the

head and neck region.

Cryoablation. This is a minimally invasive procedure in which

a cryoprobe is percutaneously inserted into the tumor to deliver

nitrogen or argon gas, inducing the formation of surrounding ice

spheres and causing cell death through repeated cycles of freezing

and passive thawing (25, 26). This modality of treatment has been

increasingly used for DF of the extremity and trunk with several

retrospective series showing encouraging data regarding safety and

efficacy (25, 27, 28). Recent prospective evidence comes from the

phase II clinical trial CRYODESMO-01 which reported that 86% of

50 previously treated patients had non-progressive disease and

symptom improvement at 12 months post treatment (29). The

vast majority of patients that undergo cryoablation experience
FIGURE 1

Histopathologic features. Desmoid-type fibromatosis (A) contains bland spindled cells arranged in a vague fascicular pattern. They often demonstrate skeletal
muscle invasion (B, skeletal muscle fibers at black arrows), a finding that correlates with locoregional recurrence and incomplete excision. Giant cell tumor of
bone (C) is comprised of monotonous mononuclear cells and an even distribution of osteoclastic giant cells. Both cell populations display similar nuclear
features. In many instances, secondary aneurysmal bone cyst change (D) can be seen and can mask the underlying features. Tenosynovial giant cell tumor
(E) is comprised of an admixture of foamy macrophages, osteoclastic giant cells, and inflammation. Monomorphic variants (F) can display increased
cellularity, mimicking a sarcoma.
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grade 1 or 2 toxicity including pain, redness, and swelling confined

to the area of treatment, less frequently the formation of an

hematoma or transient peripheral nerve damage is observed;

serious adverse events are rare and include permanent nerve and

neighboring structures or organs damage (29–31).

High intensity focused ultrasound (HIFU). A non-invasive

local treatment that uses high frequency ultrasound waves to

induce thermal coagulation of the target tissue. The procedure is

performed under real time MR thermometry or ultrasound imaging

to monitor the energy distribution and ensure sparing of

surrounding tissues (32, 33). HIFU ablation is currently approved

in the US for the treatment of uterine fibroids (34), prostate cancer

(35), and for the treatment of painful bone metastasis (32, 36)with

excellent results for symptoms control and functional results (37,

38). Retrospective evidence demonstrated successful employment of

this modality of treatment for the management of desmoid

fibromatosis (33, 39, 40). Iatrogenic complications of HIFU

include grade 1 and 2 skin burns, and temporary nerve injury;

less frequent although serious adverse events are ulceration and

necrosis of non-target tissue caused by heat conduction and

permanent nerve damage (33).

Medical therapy

Various systemic treatments are available for DF, and with the

lack of a defined standard of care, the choice of which agent to use

first is left to the treating clinician and institutional experience.

Table 1 illustrates relevant clinical trials evaluating systemic

treatment for DF (Table 1).

Antihormonal therapy. Antihormonal agents s such as

tamoxifen or toremifene, alone or in combination with

nonsteroidal anti-inflammatory drugs (NSAIDs), have been

commonly used to treat DF (52, 53). Their employment was

supported by the observed propensity of DF to arise during

pregnancy and in the post-partum, and their frequent partial or

complete regression after childbirth, supposedly as a consequence

of estrogen levels returning to baseline (12, 13, 54–56). The

biological rationale for using antihormonal agents comes from the

proven estrogen receptor beta expression in 90% of DF (57) and

their ability to prevent myofibroblasts differentiation (58).

Antihormonal agents showed modest response rate across

retrospective series (53, 59). About 30% of patients experience

clinical benefit with tamoxifen with no clear correlation with

radiological changes on MRI (60). It remains unclear whether the

radiological findings and symptomatic improvement are treatment-

induced or perhaps expression of the natural course of the disease

and whether these drugs could have a role in the treatment of DF,

especially when hormone or pregnancy related. Nowadays,

antihormonal agents are no longer recommended for the lack of

sufficient evidence supporting their use (DTWG).
Chemotherapy

Standard chemotherapy. Cytotoxic chemotherapy has been

long used with evidence of efficacy deriving from several
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retrospective series and few prospective studies. Anthracycline-

based regimes have significant activity in DF with response rate

ranging from 37 to 54% (41–43). Patients are generally treated until

satisfactory clinical response or when the maximum dose of

anthracyclines is reached after 6 to 8 cycles (42). Potential toxicity

from treatment include cardiomyopathy, especially when treatment

is carried beyond the dose of 450mg/m2, and myelodysplastic

syndrome (42). Pegylated liposomal doxorubicin has a reported

response rate of 36% and better toxicity profile than its conventional

form (44). Overall, anthracycline based chemotherapy regimens are

effective and elicit rapid responses but have significant toxicity and

should be reserved for selected patients only when a rapid response

with prompt symptom control and tumor shrinkage are desired.

Low dose chemotherapy. Low dose chemotherapy with

methotrexate (MTX) plus vinblastine (VBL) or vinorelbine (VNL)

has been used especially in the young population (46, 47, 61, 62).

Disease control is achieved after several months of treatment and

response rate ranges between 35 to 40% (63). Late responses occur

and contribute to the high long term-disease control with reported

median PFS of 75 months and up to 136 months in patients that

had responded to treatment (62). Low‐dose MTX/VNL or VBL

chemotherapy is effective and minimally toxic regimen but has

significant impact on quality of life (QoL) for the lengthy duration

of treatment. Single agent oral vinorelbine has a disease control rate

of 86% with an excellent toxicity profile (46, 64). Low dose

chemotherapy regimens are an effective, safe, and affordable

choice that can offer long term symptoms and disease control,

however responses are delayed compared to other agents; their use

is especially common in the pediatric and young adults’ population

for the well understood toxicity profile.

Tyrosine Kinase Inhibitors. The clinical activity of tyrosine

kinase inhibitors (TKIs) is well known, and several agents have

been investigated in randomized controlled clinical trials. Imatinib,

the first TKI evaluated for DF treatment, is effective on achieve disease

control with 1 year progression free survival of 66% as confirmed by

the results of two separate phase II trial (48, 65). Response to

treatment is delayed compared to other agents with best responses

seen at 19, 22 and 26 months with decreasing imatinib dosage of 600,

400 or 200 mg per day (48). The overall response rate (ORR) with

imatinib is modest and even at the higher dose of 800 mg per day

response rate observed is 19% (49). Sorafenib is a multitarget kinase

inhibitor whose activity on DF has been extensively studied. The first

evidence of efficacy came from the retrospective analysis of a cohort of

24 patients with clinical improvement in 16 (66%) and imaging

confirmed partial responses in 5 cases (20%) (66). These observations

prompted amore recent phase III placebo-controlled trial of sorafenib

400 mg per day against placebo. The two-year progression free

survival was 81% in the treatment arm versus 36% in the placebo

arm, while objective response rate for patient on sorafenib was 33%

against 20% for placebo, confirming both the activity of sorafenib and

quantifying the frequent spontaneous regression observed in DF (20).

Pazopanib activity was retrospectively evaluated in a small cohort of 8

patients who received the drug at the starting dose of 800 mg with

toxicity-led adjustments and final doses ranging from 200 to 800 mg/

day. The overall observed PFS was 13.5 months with PR and SD
Frontiers in Oncology 06105
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(RECIST) 1.1 seen in 3/8 and 5/8 patients respectively (67).

DESMOPAZ was a non-comparative, randomized, phase II trial

that enrolled patients with DF to receive either pazopanib 800 mg

per day or methotrexate and vinblastine chemotherapy. Partial

response was seen in 37% of patients with a 6-months PFS of 83%;

adverse events led to dose reduction for 73% of patients with fatigue,

gastrointestinal toxicity and hypertension being most common (68).

In summary, sorafenib and pazopanib are the most effective

molecules with sorafenib being often favored in the clinical practice

for the milder toxicity profile when compared to pazopanib.

Gamma secretase inhibitors. Recently, new drugs targeting the

Wnt/beta-catenin and NOTCH pathways at different levels have

been developed with encouraging evidence of efficacy both in vitro

and in vivo (69–72). Reported results from the phase III placebo

controlled DeFi trial showed promising activity of the gamma

secretase inhibitor (GSI) nirogacestat in patients with progressive

desmoid tumors (73). Nirogacestat treatment produced an overall

response rate (ORR) of 41%, including 7% complete responses

(CR), versus 8% in the placebo arm. Adverse events with

nirogacestat were frequent but mostly low grade. Benefit was also

measured via patient-reported outcomes, including improved pain,

stiffness, and functional status (73). This agent is currently

undergoing review after New Drug Application submission to the

US FDA. Interim results of the phase II/III RINGSIDE trial of the

GSI AL102 are also encouraging, showing a favorable toxicity

profile and promising preliminary data of effective disease control

(51). The beta-catenin inhibitor Tegavivint, which has proven in

vitro antitumor activity, is currently being investigated in a phase I/

II open label trial sponsored by the Children Oncology Group open

to patients with recurrent or refractory desmoid tumors as well as

other types of solid tumors (NCT04851119) (74, 75).

Future directions. Preclinical studies have implicated the

epigenetic regulator EZH2, which is the catalytic subunit of the

polycomb repressive complex 2, as a potentially druggable target.

They observed in vivo inhibition of EHZ2 by tazemetostat with

partial regression of autochthonous tumor models and in vitro

activity of tazemetosat on Wnt pathway (76).

Areas of uncertainty. One of the main open questions remains

how to properly select patients for which therapies. Many have

postulated that the location of the driver mutation could influence

the clinical course of the disease. Three recently reported studies

suggested a trend toward worst outcome when the CTNNB1

mutation involves codon 45F, however the correlation failed to

reach statistical significance (19, 77, 78). Similarly, mutational status

does not correlate with response to treatment, but a correlation with

worse general outcome has been observed for APC mutant and

non-extremity DF (79).
Giant cell tumor of bone

Giant cell tumor of bone (GCTB) is a locally aggressive

mesenchymal tumor with limited ability to metastasize, low rate

of malignant transformation and high local recurrence rate (1).
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Epidemiology. GCTB accounts for 3 to 5% of all bone tumors

and generally occurs in young adults with peak incidence between

20 and 40 years of age (3, 80).

Histopathology. GCTB has unique histopathological features

with a minor subset of stromal mononucleated osteoblast-like cells

that are thought to be responsible for the growth and survival of a

second population of multinucleated, osteoclast-like giant cells. The

neoplastic stromal osteoblastic cells produce chemotactic factors

including nuclear factor kappa B ligand (RANKL). Increased levels

of RANKL promote pathologic recruitment of monocytes to the

tumor site and induce their differentiation into osteoclasts-like giant

cells, ultimately responsible for the osteolysis seen in GCTB

(Figures 1C, D) (81–83).

Tumor classification. There are two subtypes of GCTB: a more

common conventional type, and a primary malignant GCTB, a

rare entity accounting to less than 2% of new diagnoses (84, 85).

Moreover, 2 to 3% of conventional GCTB can undergo sarcomatous

transformation into a malignant tumor, in most cases several years

after radiotherapy or curettage (86–88). Conventional GCTB can

rarely metastasize, this occurs in less than 10% of patients with the

lung being the most common site of secondary disease. Pulmonary

involvement tends to remains asymptomatic, and it is not

necessarily linked to malignant transformation (89).

Clinical presentation. GCTB predominantly arises from long

bones such as femur and tibia, especially around the knee, but it can

also affect the pelvis, smaller bones of feet and hands, and other less

typical locations (90). Clinically, GCTB can cause pain, swelling,

deformity, and loss of function depending on the site of disease; if

left untreated, GTCB can lead to bone resorption, fracture, and

neurological symptoms (91, 92).

Local treatments. The mainstay of treatment for GCTB is

aggressive curettage or surgical en-bloc resection of the affected

bone, while medical treatment is reserved for recurring or

unresectable tumors and in lieu of morbid surgical procedures

(92). Intralesional curettage with allograft or bone cement

reconstruction is a widely accepted procedure that allows local

control without sacrificing function (91–93). Local recurrence rate

after curettage is high, ranging between 25 and 50% with conflicting

reported data regarding the impact of different bone reconstruction

techniques and filling materials (91, 92, 94–101). Peri-surgical

interventions have been explored with the intent to lower the rate

of local recurrence with no evidence of benefit so far (102, 103).

Adjuvant radiotherapy may decrease the chances of post-surgical

recurrence, but it is known to induce secondary malignant

transformation, making it not a commonly pursued treatment

(86, 87, 104–106).
Medical treatment

RANK ligand inhibitors. Denosumab is a fully human IgG2

monoclonal antibody that binds RANKL, preventing it to interact

with his receptor, RANK, on the surface of osteoclasts and their

precursors. Reduced RANL-RANK binding inhibits osteoclasts

formation, function, and survival, ultimately controlling osteolysis

and inducing ossification and fibrosis (107–111). The first proof of
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concept study of denosumab on GCTB was an open-label phase II

study that enrolled 37 patients with recurrent or unresectable

tumors to receive subcutaneous denosumab 120 mg every 4

weeks with additional doses on day 8 and 15. The primary

endpoint was the proportion of patients with a tumor response at

25 weeks defined as histopathological confirmed elimination of 90%

of giant cells; or, where giant cells represented less than 5% of tumor

cells at baseline, complete elimination. Non radiological progression

was used to estimate efficacy when histopathologic data were not

available. Of 35 assessable patients, 30 had either histological or

radiological response (112). Later analysis of tumor specimens

confirmed that denosumab significantly reduces RANK-positive

tumor giant cells, as well as the relative proportion of

proliferative, densely cellular tumor stroma, and promotes the

formation of differentiated bone tissue (108). A larger phase II

study enrolled 282 patients distributed in three cohorts to receive

denosumab at the established dose of 120mg subcutaneously every 4

weeks with extra doses on day 8 and 15 of the first cycle. Patients in

cohort 1 (n = 169) had inoperable disease and received denosumab

as the only treatment. Patients in cohort 2 (n= 100) received

neoadjuvant denosumab for salvageable GCTB, these patients had

GCTB that were deemed resectable with technically feasible, but

potentially morbid surgical resections. Cohort 3 included patients

who were transitioned from the previous phase II study. Results

from interim analysis after a median follow up of 13 months

showed that 96% of patients from cohort 1 had non-progressive

disease; seventy-four percent of patients from cohort 2 had not

undergone surgery and, among the 26 patients who did, 16 had a

less morbid procedure than initially planned. Toxicity included

joint pain in 20% of patients followed by headache, nausea, back

pain, and fatigue; osteonecrosis of the jaw (ONJ) was seen in 1% of

patients (113). Based on demonstrated efficacy, denosumab was

approved by the FDA in June 2013 for its use in adults and skeletally

mature adolescents with giant cell tumor of bone deemed

unresectable or requiring morbid surgery or in metastatic disease.

Long term follow up data of the same trial was analyzed for safety

and efficacy and published in 2019, after the enrollment was

expanded to include a total of 532 patients. The median follow up

was 58 months for the overall population, 65.8 months for cohort 1

and 53.4 months for cohort 2; at the time of the analysis 11% of

patients in cohort 1 had progressed and 92% of patients in cohort 2

had not undergone surgery in the first 6 months of treatment.

Common G3 or G4 toxicity were hypophosphatemia (5%),

osteonecrosis of the jaw (ONJ) (3%), atypical femoral fracture

(1%); 1% of patients presented with hypercalcemia occurring 30

days after discontinuing treatment (114).

The role of denosumab in the neoadjuvant setting has been also

evaluated, with conflicting results so far (102, 103, 115). A later

analysis of the expanded cohort 2 of the above-mentioned trial

evaluated the potential impact of pre-operative denosumab on

downstaging surgery. A total of 222 patients candidate to extensive

surgeries (hemipelvectomy, amputation, joint replacement/fixation)

were treated with denosumab for a median duration of 15.3 months;

at the date of cutoff for data analysis, 48% of patients had not yet

undergone surgery, while 38% of them had been able to undergo less

morbid surgeries than originally planned. In this study, 17 of the 116
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surgical patients experienced disease recurrence after a median time

of 13.6 months. Notably, the median follow up post-surgery was 13

months, hence the results may underestimate the actual rate of local

recurrence (116). Further evidence supports the use of denosumab for

patients with unresectable disease as well as in the neoadjuvant

setting, as it may facilitate surgery and allow avoidance of

mutilating resections (117–119).

Data suggests that the combination of neoadjuvant denosumab

and curettage is associated with a high risk of disease recurrence.

Errani et al. reported local recurrence rate as high as 60% (15/25) for

patients who underwent curettage after receiving denosumab versus

16% recurrence rate (36/222) for patients treated with upfront

curettage (120). This was confirmed by several groups and by a

recent metanalysis that showed that tumors treated with

denosumab plus curettage have a relatively higher risk of

recurrence compared with tumors managed with curettage alone

(P = 0.07) (102). It has been postulated that denosumab-induced

tumor changes may be responsible of the higher recurrence rate; for

example, the development of a peripheral calcified rim that can

preclude radical curettage as well as the persistence of latent tumor

cells in the new formed bone may represent the cause of recurrence

and may require more aggressive curettage (108, 121, 122). This is

supported by the knowledge that denosumab targets the osteoclastic

cells and lacks antitumor effect against neoplastic stromal cells that

can restart proliferating when the RANKL Ab disappears from the

microenvironment, as proven by in vitro evidence (123).

The short-term efficacy of denosumab and toxicity profile at the

standard dosing in patients with unresectable GCTB are well

described. However, patients with unresectable GCTB are, by

definition, candidates for prolonged treatment that can lead to

drug related complications. On the other hand, discontinuation

may be followed by disease relapse (124). In a cohort of 54 patients

with unoperable or metastatic GCTB, ONJ was observed in 9% of

patients, skin rash and hypophosphatemia in 11 and 4%

respectively. Ten patients discontinued denosumab and were

followed up for a median time of 15 months; 4 of them had

disease progression after 7 to 15 months from treatment

discontinuation, while 6 had no signs of active disease months to

a few years after treatment cessation (124). Rebound hypercalcemia

with acute kidney injury 5.5 to 7 months post denosumab was

described in three young patients (14, 15 and 40 years) who had

been treated for 1.3 to 4 years and stopped treatment for toxicity

(125). This prompts new questions regarding the optimal length of

treatment with evidence that some patients may be able to

discontinue denosumab and enjoy sustained response, while other

may need longer treatment (124, 126).

Increasing interval of denosumab dosing and establishing the

optimal length of treatment may help find a balance between

satisfactory disease control and avoidance of serious adverse

events. Effects of increased dosing interval has been evaluated in a

retrospective cohort of 37 patients. Dosing interval was increased

for 38% of patients with most common final interval of 12 weeks,

this resulted in similar tumor control compared to standard dosing

and lower absolute number of bone toxicity events (127). The

rationale supporting longer interval is that the half-life of

denosumab is 32 days and the inhibitory effects on osteolysis lasts
Frontiers in Oncology 08107
12 weeks (128, 129). The REDUCE trial, whose results are awaited,

was designed to investigate risks and benefits of maintenance

treatment with reduced intensity denosumab after 12-15 months

of conventional dose treatment in patients needing long term

therapy (130). Overall, denosumab provides long term disease

control for patients with unoperable GCTB and its use is now

well established. Conversely, the decision of initiating medical

treatment for patients with operable GCTB should be pondered

and the selected surgical modality defined prior to the start of

systemic treatment. In fact, although denosumab may improve the

outcome for patients undergoing en-bloc resections, it can increase

the risk of local recurrence in case of intralesional curettage.

Therefore, surgical and medical treatment planning for GCTB

should be coordinated by a sarcoma multidisciplinary team.

Tyrosine Kinase Inhibitors. Lenvatinib is a multitargeted

tyrosine kinase inhibitor whose effect on GCTB patient derived

2D and 3D primary culture was tested in a recently reported study.

Five patients derived primary GCTB series were exposed to

denosumab, lenvatinib and a combination of denosumab and

lenvatinib. Interestingly, lenvatinib exhibited higher activity both

in 2D and 3D compared to denosumab (131). The involvement of

VEGFR has been described in supporting RANKL-induced

osteoclastogenesis in GCTB and the above results confirm the

promising role of antiangiogenic drugs in its management (131,

132). Table 2 illustrates relevant clinic trial assessing systemic

treatment for GCT (Table 2).
Malignant giant cell tumor of bone

GCTB can rarely undergo malignant transformation and

acquire histopathological characteristics that are similar to a high-

grade sarcoma such as undifferentiated sarcoma or osteosarcoma

(145). Malignant transformation is reported in 1 to 4% of patients;

malignant GCTB are classified as primary malignant (PMGCTB),

secondary malignant GCTB (SMGCTB) or GCTB with

sarcomatous transformation not secondary to treatment (84, 146).

In primary malignant GCTB, distinct areas of benign GCTB are

juxtaposed with high-grade sarcoma ones, making it a challenging

and often missed diagnosis (85, 147). The radiologic features of

PMGCTB are also similar to those of conventional GCTB

presenting as osteolytic lesions with well-circumscribed margins

(84, 85, 148). In secondary malignant GCTB (SMGCTB),

malignancy is diagnosed at the site of conventional GCTB

previously treated with radiation or surgery (147, 148). Malignant

transformation in GCTB after or during treatment with denosumab

has also been reported; however it remains unclear whether

denosumab can favor malignant transformation through

immunosuppression or if at least some progressive SMGCTB

were malignant tumors initially misdiagnosed (111, 113, 114, 116,

146, 149–152). Sarcomatous transformation of conventional,

treatment naïve GCTB has been sporadically observed (146).

Latency between the primary diagnosis of conventional GCTB

and malignant GCTB can vary between 3 to over 20 years

according to historical data (146, 147, 153).
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TABLE 2 Main studies reporting on systemic treatment for GCTB.

Outcome p Key points

n)

86%
30/35 responders
20/20
histologically
10/15
radiologically

NA Denosumab elicits histological
and radiological response

96% at 13
months
74% no surgery
at 9.2 months

NA Denosumab was associated with
tumour responses and reduced
the need for morbid surgery

Cohort 1,2, and
3: 29% and 35%
77% and 79%
30 and 15 days
6.9 and 30%23.2
months- N/A

NA Rapid and clinically relevant pain
relief

48% had no yet
undergone
surgery at cutoff
time;
38% had less
morbid surgeries

NA Beneficial surgical downstaging,
including either no surgery or a
less morbid surgical procedure

2

PFS not reached
at the
preliminary
analysis

NA Denosumab is safe and shows
long term disease control

-
3% and 7.4% at 1
and 3, 5 years

NA Safe and potentially useful for
GCTB of spine and sacrum

Not reported Not
reported

Not reported

e No difference in
efficacy, toxicity,
mPFS.

NA
p= 0.22
p= 0.97

Tumor control is similar, bone
toxicity is better with enlarged
intervals
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(range)

Endpoint

Thomas et al. (112)
First study of
denosumab for GCT

2010 GCTB II Denosumab 120 mg sc q4w with
extra dose day 8 and 15

37 34 (22- 46) RR at 25 weeks
(elimination of at lea
giant cells or no radi
progression of the tar

Chawla et al. (113)
Interim analysis

2013 GCTB II Denosumab 120 mg sc q4w with
extra dose day 8 and 15

282 in 3
cohorts

33.5 safety profile
TTP -cohort1
Time to surgery -coh

Martin-Broto et al.
(6)
Interim results of
the previous study

2014 GCTB II Denosumab 120 mg sc q4w with
extra dose day 8 and 15

281 33.5 Proportion of patient
clinically relevant dec
worst pain
Time to decrease in p
Time to increase in p

Rutkowski et al.
(116)
Analysis of cohort 2
from phase 2 trial
from Chawla 2013

2015 GCTB II Denosumab 120 mg sc q4w with
extra dose day 8 and 15

222 34 (25-44) Cohort 2 patients for
downstaging rate

Chawla S. et al.
(114) Long term
follow up

2019 GCTB II Denosumab 120 mg sc q4w with
extra dose day 8 and 15

532 33 (25- 45) Primary: Safety
Secondary: PFS for co
percentage of patient
undergoing surgery f

Bukata et al. (133)
Subanalysis of phase
II from Chawla
2013

2019 GCTB of the
spine
including
sacrum

II Denosumab 120 mg sc q4w with
extra dose day 8 and 15

132 32 (13–83) Safety
Efficacy with estimate
For patients in cohor

ClinicalTrials.gov
Identifier:
NCT03620149

2021 GCTB II Denosumab maintenance 120mg
SC 12-weekly (after 12-15
months at conventional dosing)

NA NA PFS
ONJ

Jiang et al. (127) 2022 GCTB R Denosumab 120 mg sc at
various increased interval, most
commonly 12 weeks

37 37 (22-73) Difference in efficacy
toxicity or standard d
increased interval
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Overall, malignant GCTB is associated with poor outcome, with

post-radiation SMGCTB showing an especially aggressive behavior

(147, 153). Malignancy should be suspected in case of pulmonary

involvement, poor response to denosumab, aggressive clinical

behavior and disease that recurs after a latency period of more

than 4 years (84, 148). Surgical resection is the mainstay of

treatment for malignant GCBT (154). Although adjuvant

chemotherapy has failed to improve the overall survival for

patients with malignant GCBT, it seems associated with longer

pulmonary metastasis free survival (148).
Metastatic GCTB

Metastatic disease is rare and typically involves the lungs. The

pathophysiology of pulmonary metastasis of GCT has not been

determined, and various factors from tumor vascular invasion to

iatrogenic embolization have been suggested as the cause

pulmonary spread (155). Pulmonary metastases have matching

histological features to the primary tumor, are generally indolent

and not necessarily linked to malignant transformation, however

the incidence of lung metastasis is high for malignant GCTB (148,

156). The observed interval between primary diagnosis and

development of pulmonary metastasis is significantly shorter for

malignant GCTB compared to the conventional type (9 vs 21

months) according to a large retrospective case series reported by

Liu et al. (148). The incidence of lung metastasis seem to be

influenced by the presence of malignancy, time to recurrence,

time for primary diagnosis and tumor size (157). The clinical

course of pulmonary metastatic disease is unpredictable. Lung

metastasis may be managed with surveillance at first, however

about 50% of patients will eventually experience disease

progression and need treatment with metastasectomy or

denosumab (158). Overall, the prognosis of patients with

metastatic disease is favorable but many questions remain open

including surveillance recommendations, risk stratification and best

management of disease.
Tenosynovial Giant Cell Tumor

Tenosynovial Giant Cell Tumor (TSGCT) is a rare, locally

aggressive neoplasm that arises from the synovium of joints,

bursae, and tendon sheaths (4, 6).

Epidemiology. The incidence of TSGCT is estimated to be of 1.8

cases per million per year in the USA, with a peak between 30 and

50 years of age and female prevalence (3, 159–161).

Histopathology. TSGCT is characterized by elevated expression

of the colony-stimulating factor (CSF1) gene (97). Several

mechanisms leading to CSF1 hyperexpression have been

described such as translocations or deletions, the vast majority of

them resulting on exon 9 deletion, which negatively regulates CSF1

expression (134, 162, 163). This causes overexpression of CSF1,

responsible for the recruitment and growth of CSF1R expressing

monocytes and drives the development of a tumor formed by a large

number of nonneoplastic macrophages expressing CSF1R and a
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minority of neoplastic cells, which do not express CSF1R (134, 162–

164) (Figures 1E, F).

Tumor classification. TSGCTs are classified in two distinct

subtypes based on growth pattern and presentation: localized or

nodular type (N-TSGCT) and infiltrative diffuse type (D-TSGCT).

Although D-TSGCT displays an infiltrative border, both subtypes

are strikingly similar microscopically, being comprised of an

admixture of cell types without significant cytologic atypia

(Figures 1E, F). N-TCGT, the most common subtype, arises from

digits in 80% of cases with less frequent locations being the wrist,

ankle, foot, knee and, even more rarely, large joints. D-TCGT is rare

and affects the knee in 75% of observed cases, followed by the hip,

elbow, shoulder and ankle (81). An extra-articular form D-TSGCT

is possible, with tumor growth within the peri-articular soft tissue

and no evidence of articular involvement (165). Malignant TSGCT

is exceedingly rare and affects people between 50 and 60 years of

age; is characterized by areas of sarcomatous differentiation and

tends to metastasize to the lymph nodes and lungs rather than

locally recur (161, 166–170).

Clinic and natural history. TSGCT has an excellent prognosis,

and, with the exception of the rare malignant form, it is not

considered a life-threatening disease (171). Clinically, N-TSGCT

tends to have an indolent course, while D-TSGCT is more

aggressive and can have variable behavior from paucisymptomatic

to severely symptomatic disease with joint pain, swelling, locking,

instability, numbness, diminished range of motion and decreased

quality of life. Not all patients experience symptoms, and for this

reason management should be individualized and the clinical

presentation must be considered when deciding between active

surveillance versus systemic or surgical treatment (172, 173).
Local treatments

Surgery. In case of symptomatic disease, surgery is the primary

treatment for both subtypes. However, there is growing consensus

on wanting to avoid morbid resections and consider systemic

treatment instead (6). Most N-TSGCT can be cured with

marginal resection, whilst D-TSGCT require extensive

synovectomy and, despite this, have a chance of local recurrence

reported between 30 and 50% with even higher rate for repeat

resections (171).

Radiation therapy. Peri-operative interventions with systemic

treatment or radiotherapy are not standard of care although

considered by some authors for borderline operable cases (174).
Medical treatment

CSF1R inhibitors. Improved insight into tumor biology has

revolutionized systemic treatment and several molecules targeting

CSF1/CSF1R have successfully been employed. Pexidartinib is an

orally available CSF1R inhibitor approved in the USA for the

treatment of adults with inoperable and severely debilitating

tumors (164, 175). Evidence that brought to the approval of

pexidartinib comes from a phase III study against placebo
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showing an overall response rate of 39% in the treatment arm at

week 25 versus 0% for placebo, as well as improvement in patient-

reported outcomes, including scores for pain, stiffness, and function

(135, 175). To assess the long-term effects of pexidartinib, a pooled

analysis of studies ENLIVEN and the TSGCT cohort of the PLX

108-01 study was performed by Gelderbom et al. (136). The study

population consisted of a cohort of 120 patients treated with

pexidartinib; ORR was 60% according to RECIST and 65%

according to Tumor Volume Score (TVS) measurement, 77% of

responses occurred within 6 months from treatment start, and the

median duration of treatment was 19 months. Regarding toxicity,

68% of patients experienced adverse events (AEs) requiring dose

reductions or treatment discontinuation; 92% had aminotransferase

elevation between 1 and 3 x ULN in 66% of cases, while 4 patients

had mixed cholestatic hepatotoxicity which resolved within 1 to 7

months from drug interruption (136).

Imatinib. Imatinib mesylate blocks the CSF1R and is active

against TSGCT. Evidence of efficacy comes from a large multicenter

retrospective study that included 58 patients treated with imatinib

for advanced symptomatic, recurrent, or metastatic (2 patients)

TSGCT. The response rate (RR) among all patient was 31%, PFS

was 18 months, patient reported clinical benefit was favorable as

well as the toxicity profile (137, 143).

Nilotinib. Nilotinib, a tyrosine kinase inhibitor active against

CSF1, has shown short-term disease control with 90% of PFS at 12

weeks, and mixed long-term disease control with PFS of 52% at 5

years (139, 140). Further data from a recently completed phase II

study of Nilotinib in patients with relapsed or metastatic TSGCT are

awaited and will help clarify the role of Nilotinib for TSGCT

treatment (NCT01207492).

Ongoing clinical trials. New agents are also currently being

studied in ongoing clinical trials. CSF1R inhibitors. ViImseltinib is

an oral CSF1 inhibitor currently investigated on the ongoing phase

III MOTION trial (NCT05059262). Recently reported results from

phase I and phase II trials show that all enrolled patients benefited

from treatment in terms of symptoms or disease control with

manageable toxicity profile (144, 176).

Monoclonal antibodies against CSF1R. Monoclonal antibodies

against CSF1R cabiralizumab and emactuzumab have been studied on

patients with D-TSGCT with preliminary evidence of efficacy from

phase I/II trials (138, 141, 142). Results from a recently completed

phase III trial of emactuzumab are awaited (NCT05417789).

Class effect toxicities of CSF1/CSF1R inhibitor including

hypertension, oedema, and liver toxicity can rarely be serious. In

the attempt to avoid systemic toxicity and successfully treat this

localized disease, a trial of intra-articular administration of the

CSF1 receptor antibody AMB-05X is ongoing (NCT05349643).

(Table 3) illustrates relevant clinic trial assessing systemic

treatment for TSGCT.
Discussion

Despite progress made in systemic and local treatments and

improved understanding of disease biology, patients with locally

aggressive mesenchymal tumors still may experience unsatisfactory
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TABLE 3 Main studies reporting on systemic treatment for TSGCT.

me p Key points

NA Prolonged regression of tumor

0
%

0.0001 Robust tumor response with improved symptoms;
mixed or cholestatic hepatotoxicity is an identified
risk.

ached
NA Overall LT benefit of continued treatment with

pexidartinib

NA Potential effect of imatinib on targeting CSF1

NA Promising activity, 5 serious adverse events

NA Manageable toxicity and good disease control at 12
weeks

NA Mixed effect of nilotinib with half of patient needing
nire treatment at 8.5 years follow up

d
Not
reported

Not reported

%
NA Manageable toxicity, durable response

%
48%

NA Prolonged responses even after treatment
discontinuation

hort

hort

%

NA Manageable toxicity, effective
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Tap W. et al.
(134)

2015 TSGCT I/II Pexidartinib po
1000mg/d

20 46 (22- 80) Clinical benefit
CR/PR/SD

95%
0/12/7

Tap W. et al.
(135)
ENLIVEN

2019 TSGCT III Pexidartinib po
1000mg/d vs
placebo po

120 44 (22- 75) RR at 25 weeks
CR/PR

39% v
15%/2

Gelderblom
et al. (136)
Long term
effects of
pexidartinib

2021 TSGCT Pexidartinib
pooled
analysis

Pexidartinib po
800-1000mg/d

130 45 (20- 80) Best overall response
by RECIST (CR, PR)
DOR by RECIST

78%
Not re

Cassier PA.
et al. (137)

2012 TSGCT R Imatinib 400 mg/
day orally

27 41 (21- 77) RR
SD
CR/PR

19%
74%
1/4

Cassier PA.
et al. (138)
Emactuzumab
Phase I long-
term

2015 TSGCT I Emactuzumab IV
900-2000mg/2weeks

28 42 (18- 82) Safety
RR
CR

86%
7%

Gelderblom H
et al. (139)

2018 TSGCT II Nilotinib 800mg/
day orally

56 36 (18- 74) PFS 12 weeks 94%

Spierenburg G
et al. (140)
Long-term
Nilotinib Ph II

2022 TSGCT II Nilotinib 800mg/
day orally

48 37 (23- 51) LT-PFS
Duration of response
mTTP
clinical worsening
LT- toxicity

48%

Sankhara KK.
et al. (141)

2017 D-TSGCT I/II Cabiralizumab 1, 2,
4mg/kg

22 not reported Safety
efficacy

not
report

Cassier PA.
et al. (142)

2020 D-TSGCT I Emactuzumab IV
900-2000mg/2weeks

63 38 (18–82) Safety
RR
CR/PR

71%
3%, 68

Verspoor FGM
et al. (143)

2019 TSGCT R Imatinib 400 mg/
day orally

58 45 (36–56) RR
CR/SD
PFS 1 and 5 years

31%
4%, 27
71 and

Blay JY et al.
(144)

2022 TSGCT II Vimseltinib 30 mg
twice weekly

57 (46 cohort
A, 11 cohort
B)

45 (21–71) Safety
RR
CB (PR+SD)

49% c
A
44% c
B
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outcomes and detriment to quality of life. Treatment paradigms still

vary, given the rarity of these diseases and lack of consensus

guidelines. Misdiagnoses are frequent and contribute to

suboptimal management, worse outcome, and inadequate patient

experience (2, 177, 178). All this is being improved thanks to ad-hoc

instituted working groups and joint effort of scientists and patient

associations across the world. For example, a global consensus

meeting held in 2018 brought together world experts and started

the process of defining a standard of care for DF. Practice changing

conclusions were reached such as the recommendation to proceed

with a period of active surveillance for newly diagnosed DF and to

consider medical treatment as first option rather than surgery (9).

Prospectively controlled clinical trials require partnership and are

critical to validating future treatment recommendations for these

and other locally aggressive mesenchymal neoplasms. Many efforts

have been made in the past few years to identify prognostic and

predictive biomarkers and select the best candidates and potential

responders to treatment. Recently published studies have

significantly contributed to the understanding of the natural

history and potential prognostic significance of mutational status

in DF. Although no association reached statistical significance, a

trend toward worst outcome for tumors harboring mutations

involving codon 45F of the CTNNB1 gene, for APC mutated DF

and for non-extremity site of disease was uncovered (19, 77, 79).

There are not known prognostic factors for GCT or TSGC that can

help stratify patients. Massive parallel sequencing of 34 resection

specimens of TSGCT detected the presence of a CBL missense

mutation in 35% of tumors which was significantly associated with

shorter time to local recurrence (179).

Complexity is added to the management of locally aggressive

mesenchymal tumors by the unsatisfactory correlation between

RECIST assessment and treatment effectiveness. As postulated by

many, a better surrogate of treatment efficacy may be the change of

T2 signal on MRI; a shift from long to short T2 signal has been in

fact observed in DF when tumor histology transitioned from more

cellular to more fibrous, hypocellular tissue (180). Similarly, for

GCT, RECIST assessment is not an accurate measure of treatment

efficacy and the use of modified PET scan criteria or inverse Choi

density/size criteria have been proposed to assess response to

denosumab (181). Comparable limitations challenge response

assessment for TSGCT for which a volumetric comparison of the

tumor pre and post treatment may represent a more precise way of

measurement than diameter comparison, given the irregular shape

of the tumor (6).

Finally, how to select the patients that may benefit the most

from treatment and for how long to treat are crucial points that

need to be addressed. The newly introduced drugs have shed some

light, but they have also uncovered the very specific challenge of

exposing patients with non-malignant conditions to the risk of

potential long-term toxicity. Many aspects that go beyond the

disease itself warrant careful consideration. These patients report

persistent pain, emotional distress, and financial hardship (182,

183). While these are non-malignant diseases, the long-term effects

of treatments and impact on quality of life resemble cancer in many

ways. Patient reported outcomes are a necessary tool to finally strike

a balance between the desirable disease control and other non-
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negotiable aspects such as family planning, ability to work, financial

wellness, and good overall quality of life (8, 172, 173). Given the

rarity of this class of tumors, complex patient needs, and to avoid

suboptimal outcomes, treatment planning should be individualized

and planned in the context of an expert multidisciplinary team.
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