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Histogram analysis of multi-
model high-resolution diffusion-
weighted MRI in breast cancer:
correlations with molecular
prognostic factors and subtypes

Yanjin Qin1†, Feng Wu2†, Qilan Hu1, Litong He1, Min Huo3,
Caili Tang1, Jingru Yi1, Huiting Zhang4, Ting Yin5 and Tao Ai1*
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and Technology, Wuhan, China, 2Department of Radiology, Xiangyang Central Hospital, Affiliated
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First People’s Hospital Affiliated to Yangtze University, Xiantao, China, 4Magnetic Resonance (MR)
Scientific Marketing, Siemens Healthineers Ltd., Wuhan, China, 5Magnetic Resonance (MR)
Collaborations, Siemens Healthineers Ltd., Chengdu, China
Objective: To investigate the correlations between quantitative diffusion

parameters and prognostic factors and molecular subtypes of breast cancer,

based on a single fast high-resolution diffusion-weighted imaging (DWI)

sequence with mono-exponential (Mono), intravoxel incoherent motion (IVIM),

diffusion kurtosis imaging (DKI) models.

Materials and Methods: A total of 143 patients with histopathologically verified

breast cancer were included in this retrospective study. The multi-model DWI-

derived parameters were quantitatively measured, including Mono-ADC, IVIM-D,

IVIM-D*, IVIM-f, DKI-Dapp, and DKI-Kapp. In addition, the morphologic

characteristics of the lesions (shape, margin, and internal signal characteristics)

were visually assessed on DWI images. Next, Kolmogorov–Smirnov test, Mann-

Whitney U test, Spearman’s rank correlation, logistic regression, receiver

operating characteristic (ROC) curve, and Chi-squared test were utilized for

statistical evaluations.

Results: The histogrammetrics of Mono-ADC, IVIM-D, DKI-Dapp, and DKI-Kapp

were significantly different between estrogen receptor (ER)-positive vs. ER-

negative groups, progesterone receptor (PR)-positive vs. PR-negative groups,

Luminal vs. non-Luminal subtypes, and human epidermal receptor factor-2

(HER2)-positive vs. non-HER2-positive subtypes. The histogram metrics of

Mono-ADC, DKI-Dapp, and DKI-Kapp were also significantly different between

triple-negative (TN) vs. non-TN subtypes. The ROC analysis revealed that the

area under the curve considerably improved when the three diffusion models

were combined compared with every single model, except for distinguishing

lymph node metastasis (LNM) status. For the morphologic characteristics of the

tumor, the margin showed substantial differences between ER-positive and ER-

negative groups.
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Conclusions: Quantitative multi-model analysis of DWI showed improved

diagnostic performance for determining the prognostic factors and molecular

subtypes of breast lesions. The morphologic characteristics obtained from high-

resolution DWI can be identifying ER statuses of breast cancer.
KEYWORDS

diffusion weight imaging, diffusion kurtosis imaging, intravoxel incoherent motion,
breast cancer, prognosis, molecular subtypes
Introduction

Diffusion-weighted imaging (DWI) has been proven to be a

potential diagnostic tool for the evaluation of breast lesions (1). In

clinical practice, single-shot echo planar imaging (ss-EPI) sequence is

commonly utilized in breast DWI protocols due to fast acquisition

time (2, 3). However, previous studies have seldom evaluated the

morphologic analysis of lesions on ss-EPI images due to geometric

distortion and poor spatial resolution (4, 5). Readout-segmented EPI

(rs-EPI) can reduce distortions and maintain high resolution, but it

was limited by long scan times (6). Recently, the simultaneous

multislice (SMS) technique, which allows the exciting acquire

multiple slices at once, has been introduced to reduce the scan

time (7, 8). The SMS technique was combined with rs-EPI to

generate images with less image distortion and higher spatial

resolution for breast lesions in a clinically acceptable scanning

duration (9, 10). The application of SMS rs-EPI makes it feasible to

qualitatively assess the morphologic characteristics of breast lesions.

In addition to the qualitative analysis of SMS rs-EPI images, our

study also focused on the quantitative analysis of multi-model DWI.

Conventional DWI is based on a mono-exponential (Mono) model

that was first proposed to reflect the random Brownian motion of

water molecules diffusing into biological media by quantifying

apparent diffusion coefficient (ADC) values (11). However, water

diffusion in complex biological media may be influenced by the

blood microcirculation in capillaries, leading to a non-Gaussian

distribution (12, 13). To address this, advanced diffusion models,

including intravoxel incoherent motion (IVIM) and diffusion

kurtosis imaging (DKI), have been developed to reflect the diffusion

behavior of water molecules in tumors more accurately (14). A few

studies have investigated the correlations between IVIM- or DKI-

derived parameters with several clinical prognostic factors and

molecular subtypes. However, the conclusions have still not reached

a consensus (15, 16). Furthermore, most studies have reported that

more information can be parsed from histogram analysis, which can

reflect the microstructures and heterogeneity of breast cancer (17–20).

Therefore, the aim of this study was to apply three diffusion

models (Mono, IVIM, and DKI) to determine the parameters

valuable for differentiating between prognostic factor statuses and

molecular subtypes, as well as to assess the correlations of

morphologic characteristics with prognostic factors and

molecular subtypes.
026
Materials and methods

Patients

This retrospective study was approved by our institutional

rev iew board , and informed consent was obta ined .

From September 2020 to May 2021, 216 female patients who

underwent breast MRI in our hospital and fulfilled the following

criteria were selected: (1) the patients did not undergo

chemotherapy, or any other interventions before they were

examined by MRI; (2) the pathologic type of breast lesions was

confirmed by surgery or biopsy; and (3) relevant pathologic data of

patients were complete. The exclusion criteria included: 1) non-

mass like enhancement lesions detected on dynamic contrast-

enhanced (DCE)-MRI (n = 34); 2) the max diameter of mass

lesions< 1cm (n = 16); 3) poor DWI image quality due to patient

motion or susceptibility artifact (n = 23). Only the largest lesion was

analyzed when multiple lesions were detected in the bilateral breast.

Finally, 143 patients (mean age, 48.57 ± 12.01 years, range, 26 – 81

years) with 143 mass lesions (mean diameter, 2.48 ± 0.95 cm) were

included in the study. More detailed characteristics of the 143

patients are summarized in Table 1.
MRI scans

Breast MRI was performed on a 3T MRI scanner

(MAGNETOM Skyra, Siemens Healthcare, Erlangen, Germany)

using a dedicated 16-channel phased-array bilateral breast surface

coil. The breast MRI protocol included the following sequences:

axial fat-saturated T2-weighted imaging, T1-weighted DCE-MRI

with the time-resolved angiography (TWIST) with a volumetric

interpolated breath-hold examination (VIBE) technique, and SMS

rs-EPI sequence. Detailed imaging parameters are provided

in Table 2.
Image analysis

The images were independently analyzed by two breast readers

(with 3 and 5 years of experience, respectively) using an in-house-

developed DKI tool software. Both readers were informed that the
frontiersin.org
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patients had breast cancer but were blinded to the detailed pathologic

data. Two-dimensional (2D) region of interest (ROI) were manually

delineated, which excluded the cystic or necrotic portions of the

tumor, on high-b-value (b=1000 s/mm2) SMS rs-EPI images, with the

reference of the corresponding T2-weighted and DCE-MRI images.

The ROI was then copied to other parametric maps [including ADC,

pure diffusion (D), pseudo-diffusion coefficient (D*), perfusion

fraction (f), apparent diffusional kurtosis (Kapp), and apparent

diffusion coefficient (Dapp) maps] using the DKI tool software.

Finally, the histogram information of each ROI map was generated,

including mean, median, percentile values (25th and 75th), kurtosis,

and skewness. For example, the mean and 75th percentile metrics of

Mono-ADC were presented as Mono-ADCmean and Mono-

ADC75th, respectively.

The corresponding mathematical expressions were as follows:

1. Mono-exponential model (16):

Sb=S0 = exp ( − bADC)

where Sb is the signal intensity on the DWI image at a certain b

value (800 sec/mm2) and S0 is the signal intensity value in the voxels

with b values of 0.

2.DKI model (21):

ln½S(b)=S0� = −bDapp +
1
6
b2D2

appKapp

where Sb is he signal intensity on the DWI image according to

all b-values (0, 50, 100, 200, 400, 800, 1000, and 2000 sec/mm2).

Dapp represents the non-Gaussian diffusion coefficient and Kapp

represents the apparent kurtosis coefficient without unit.

3. IVIM model (22):

Sb=S0 = (1 − f ) exp ( − bD) + fexp½� b(D ∗+D)�
where Sb is he signal intensity on the DWI image according to

the b-value (0, 50, 100, 200, and 400 sec/mm2). D is the true

diffusion coefficient representing the simple movement of water

molecules in the tissue (unit: mm2/s), D* is the pseudo-diffusion

coefficient representing perfusion-related diffusion (unit: mm2/s),

and f is the fraction of fast diffusion representing the diffusion linked

to microcirculation (0 ≤ f ≤ 1).
Morphologic analysis

Two experienced readers independently assessed several

morphologic characteristics on SMS rs-EPI images with b = 1000

mm2/s according to the Breast Imaging Reporting and Data System

lexicon (BI-RADS edition 2013). Since enhancement is mostly used

to evaluate breast lesions on DCE-MRI, two readers evaluated

breast lesions on DWI images using internal signal characteristics,

which were defined as lesions with homogeneous signal,

heterogeneous signal, or only high-signal at the rim (23, 24). Each

morphological characteristic was specifically evaluated as follows:
a. Lesion shape: 1 for round, 2 for oval, 3 for irregular.
TABLE 1 Study population and histopathological characteristics.

Characteristics N (%)

Age at diagnosis ≤ 50 78 (54.5)

> 50 65 (45.5)

Long diameter (cm) > 2 91 (63.6)

≤ 2 52 (36.4)

Side Right 68 (47.6)

Left 75 (52.4)

Menopausal status Premenopausal 74 (51.7)

Postmenopausal 69 (48.3)

Histological type IDC 109 (76.2)

ILC 11 (7.7)

Papillary carcinoma 8 (5.6)

DCIS 15 (10.5)

ER Positive 80 (55.9)

Negative 63 (44.1)

PR Positive 76 (53.1)

Negative 67 (46.9)

HER2 Positive 48 (33.6)

Negative 95 (66.4)

Ki-67 Positive 79 (55.2)

Negative 64 (44.8)

LNM Positive 49 (34.3)

Negative 94 (65.7)

Molecular subtypes

Luminal A 45 (31.5)

Luminal B 41 (28.7)

HER2-positive 25 (17.5)

Triple-negative 32 (22.3)

Morphological features

Shape Round 24 (16.8)

Oval 49 (34.3)

Irregular 70 (48.9)

Margin Smooth 76 (53.1)

Spiculated 16 (11.2)

Irregular 51 (35.7)

Signal Homogenous 55 (38.4)

Heterogenous 64 (44.8)

Rim 24 (16.8)
DCIS, Ductal carcinoma in situ; IDC, Invasive ductal carcinoma; ILC, Invasive lobular
carcinoma; ER, Estrogen receptor; PR, Progesterone receptor; HER2, Human epidermal
growth factor receptor 2; LNM, Lymph nodes metastasis; TN, Triple-negative.
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Fron
b. Lesion margin: 1 for smooth, 2 for spiculated, 3 for

irregular.

c. Lesion internal signal characteristics: 1 for heterogeneous, 2

for homogeneous, 3 for rim.

d. The max diameter of lesion was measured on the largest

tumor section.
Histopathologic assessment

Histopathologic results were obtained from the electronic

medical records of each patient in our hospital. Estrogen receptor

(ER) positivity and progesterone receptor (PR) positivity were

defined as the presence of 1% or more positively stained nuclei in

10 high-power fields (25). Human epidermal growth factor receptor

2 (HER2) was considered positive if it was scored 3+ for

immunohistochemically stained tissue, or gene amplification was

observed with fluorescence in situ hybridization (FISH) (26). More

than 20% of cancer nuclei were positively stained for Ki-67 (12).

Lymph node metastasis (LNM) was confirmed by the clinician

performing the histopathologic examination (13). According to the

statuses of ER, PR, HER2, and Ki-67, the breast tumors were further

classified as Luminal A, Luminal B, HER2-positive, and triple-

negative (TN) (27).
Statistical analysis

All statistical analyses were performed using MedCalc software

(version 15.0, Ostend, Belgium) and SPSS software (version 26.0, IL,

USA). The inter-reader agreement for diffusion parameters and

morphological characteristics was assessed by using the intraclass

correlation coefficient (ICC): ICC ≤ 0.40, poor agreement; 0.40 - 0.59,
tiers in Oncology 048
fair agreement; 0.60 - 0.74, good agreement; 0.75 - 1.00, excellent

agreement. The categorical variables were as follows: prognostic

factors including ER, PR, HER2, Ki-67, and LNM (positive vs.

negative) and molecular subtypes (Luminal type vs. non-Luminal

type, TN type vs. non-TN type, and HER2-positive type vs. non-

HER2-positive type). All data were tested first with the Kolmogorov–

Smirnov test for normality analysis. The quantitative diffusion

parameters and max diameter of lesions between different

subgroups were compared using the Mann–Whitney U test.

Spearman correlations were used to characterize the correlations of

multi-model-derived histogram metrics with prognostic factors and

molecular subtypes. With pathologic results as the gold standard, the

receiver operating characteristic (ROC) curve analysis was used to

assess the diagnostic efficacy of each parameter or each model, and

the area under the ROC curve (AUC) was calculated. Then, the

largest AUC of each parameter was selected to establish the IVIM

model (D, D*, and f), the DKI model (Kapp and Dapp), and the

combined three diffusion models (Mono, IVIM, and DKI) using

logistic regression. The AUC comparisons were performed using the

DeLong test. The morphologic characteristics were compared using

the Chi-squared test. For all tests, the significance was set at p< 0.05/

8 = 0.00625 (control for multiple comparisons across five prognostic

factors and three molecular subtypes).
Results

Inter-reader agreement

As shown in Table 3, there was an excellent agreement between

two readers regarding the representative mean and median metrics

of diffusion parameters (range of ICCs, 0.827 – 0.939) and

morphological characteristics including the shape, margin, and

internal signal (range of ICCs, 0.857 – 0.890).
TABLE 2 Sequence parameters for T2-weighted imaging, SMS rs-EPI, and DCE-MRI.

Parameters T2WI SMS rs-EPI DCE-MRI

Repetition time (ms) 3700 2350 5.24

Echo time (ms) 101 72 2.46

Field of view (mm2) 320 x 320 280 x 280 320 x 320

Matrix 224 x 320 122 x 188 182 x 320

Slice thickness (mm) 4 5 1.5

Pixel bandwidth (Hz/Px) 347 887 780

Parallel imaging GRAPPA (x2) GRAPPA (x2) CAIPIRINHA (x4)

b-values (sec/mm2) / 0, 50, 100, 200, 400, 800, 1000, 2000 /

Readout segment / 5 /

Multi-slice mode / Slice acceleration (x2) /

Temporal resolution (sec/phase) / / 5.74

Acquisition time (min:sec) 2:06 4:39 5:57
SMS, Simultaneous multi-slice; DCE, Dynamic contrast-enhanced; GRAPPA, Generalized autocalibrating partially parallel acquisition; CAIPIRINHA, Controlled aliasing in parallel imaging
results in higher acceleration.
/ indicates Non-applicable.
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Relationship of diffusion parameters with
prognostic factors and molecular subtypes

The histogram metrics of various diffusion parameters among

prognostic factors and molecular subtypes of breast cancer are

displayed in Table 4. For Mono-ADC, IVIM-D, and DKI-Dapp, all

histogram metrics (mean, median, 25th, and 75th percentile) were

significantly lower while DKI-Kapp histogram metrics were

significantly higher in ER-positive groups compared to those in ER-

negative groups (all p< 0.0625), the same trend was found in PR-

positive groups compared with the PR-negative groups (all p< 0.0625).

Luminal type vs. non-Luminal type revealed that considerable

differences originated from histogram metrics (mean, median, 25th,

and 75th percentile) of Mono-ADC, IVIM-D, DKI-Kapp, and DKI-

Dapp (all p< 0.0625). Significantly higher histogram metrics (mean,

median, 25th, and 75th percentile) of Mono-ADC and DKI-Dapp

while lower histogram metrics (mean, median, 25th, and 75th

percentile) of DKI-Kapp were found in the TN type than in the

non-TN type (all p< 0.0625). Additionally, the Mono-ADC (mean,

median, 25th, and 75th percentile), IVIM-D(mean, median, and

75th percentile), and DKI-Dapp (mean, median, 25th, and 75th

percentile) values were significantly higher and the DKI-Kapp

(mean, median, and 25th percentile) values were significantly

lower in the HER2-positive type than in the non-HER2-positive

type (all p< 0.0625). No statistically significant difference was

observed in the negative and positive groups between HER2, Ki-

67, and LNM (all p > 0.00625).
Frontiers in Oncology 059
Considerable correlations were observed between ER and PR

groups as well as Luminal, TN, and HER2-positive types. Diffusion

parameters (Mono-ADC, IVIM-D, DKI-Dapp, and DKI-Kapp)

largely involved the histogram metrics (mean, median, 25th, and

75th percentile). When including all parameters in three diffusion

models, 74 correlations were remarkable (Figure 1).

Among single model parameters, Mono-ADCmedian and Mono-

ADCmean generated the best AUC in the positive and negative groups

between ER (AUC= 0.766, p< 0.001) and PR (AUC= 0.735, p< 0.001),

respectively. Meanwhile, DKI-Kappkurtosis, IVIM-Dskewness, and DKI-

Dappskewness generated the best AUC in the positive and negative

groups between HER2 (AUC = 0.632, p = 0.010), Ki-67 (AUC = 0.572,

p= 0.049), and LNM (AUC= 0.603, p= 0.044), respectively. Regarding

the differentiation of Luminal type vs. non-Luminal type, TN type vs.

non-TN type, as well as HER2-positive type vs. non-HER2-positive

type, the best AUC was derived from the Mono-ADCmean (AUC =

0.785, p< 0.001), Mono-ADC25th (AUC= 0.719, p< 0.001), andMono-

ADC75th (AUC = 0.738, p< 0.001), respectively (Table 5).

Among single models, the DKI model generated the best AUC

in the HER2-positive and HER2-negative groups (AUC = 0.622, p =

0.017), Ki-67-negative and Ki-67-positive groups (AUC = 0.611, p =

0.022), and LNM-positive and LNM-negative groups (AUC = 0.617,

p = 0.022). The Mono model generated the best AUC in the ER-

positive and ER-negative groups (AUC = 0.766, p< 0.001), PR-

positive and PR-negative groups (AUC = 0.735, p< 0.001), Luminal

type vs. non-Luminal type (AUC = 0.785, p< 0.001), as well as TN

type vs. non-TN type (AUC = 0.719, p< 0.001). Both Mono and DKI
TABLE 3 Interobserver agreement for diffusion parameters and morphological characteristics by two readers.

Parameters Metrics ICC 95% Confidence Interval

Mono-ADC mean 0.893 0.854 – 0.922

median 0.882 0.839 – 0.914

IVIM-D mean 0.861 0.807 – 0.900

median 0.827 0.759 – 0.875

IVIM-D* mean 0.939 0.915 – 0.956

median 0.918 0.885 – 0.941

IVIM-f mean 0.832 0.766 – 0.879

median 0.871 0.820 – 0.907

DKI-Kapp mean 0.889 0.849 – 0.919

median 0.933 0.908 – 0.951

DKI-Dapp mean 0.927 0.900 – 0.947

median 0.918 0.888 – 0.940

Morphological characteristics

Shape 0.857 0.807 – 0.895

Margin 0.867 0.819 – 0.902

Internal signal 0.890 0.851 – 0.920
ICC, intraclass correlation coefficient. D* is pseudo-diffusion coefficient.
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TABLE 4 Comparisons of mono, IVIM and DKI histogram metrics between different groups with molecular prognostic factors and subtypes.

ER PR HER2 Ki-67

Parameters Histogram
metrics

Negative Positive Negative Positive Negative Positive Negative Positive

Mono-ADC 25th 0.869 ±
0.147

0.739 ±
0.118

0.853 ±
0.149

0.746 ±
0.125

0.789 ±
0.148

0.809 ±
0.144

0.788 ± 0.135 0.803 ±
0.156

Median 0.963 ±
0.163

0.812 ±
0.122

0.948 ±
0.163

0.817 ±
0.130

0.867 ±
0.160

0.902 ±
0.159

0.868 ± 0.144 0.888 ±
0.172

Mean 0.979 ±
0.163

0.827 ±
0.126

0.964 ±
0.165

0.832 ±
0.131

0.880 ±
0.161

0.921 ±
0.160

0.881 ± 0.145 0.904 ±
0.174

75th 1.073 ±
0.192

0.906 ±
0.141

1.060 ±
0.192

0.909 ±
0.146

0.960 ±
0.181

1.018 ±
0.187

0.964 ± 0.168 0.991 ±
0.198

Kurtosis 3.739 ±
1.815

3.650 ±
1.859

3.615 ±
1.783

3.755 ±
1.887

3.903 ±
2.001

3.266 ±
1.370

3.597 ± 1.708 3.764 ±
1.937

Skewness 0.612 ±
0.676

0.509 ±
0.717

0.615 ±
0.633

0.500 ±
0.752

0.582 ±
0.741

0.499 ±
0.610

0.453 ± 0.764 0.636 ±
0.634

IVIM-D 25th 0.990 ±
0.234

0.857 ±
0.205

0.971 ±
0.231

0.867 ±
0.214

0.914 ±
0.229

0.919 ±
0.228

0.909 ± 0.230 0.921 ±
0.227

Median 1.128 ±
0.226

0.994 ±
0.174

1.113 ±
0.226

1.000 ±
0.178

1.044 ±
0.210

1.072 ±
0.207

1.041 ± 0.189 1.063 ±
0.224

Mean 1.147 ±
0.223

1.008 ±
0.168

1.131 ±
0.224

1.016 ±
0.172

1.059 ±
0.205

1.091 ±
0.206

1.056 ± 0.181 1.080 ±
0.224

75th 1.280 ±
0.238

1.136 ±
0.185

1.266 ±
0.241

1.141 ±
0.184

1.182 ±
0.214

1.235 ±
0.232

1.183 ± 0.190 1.213 ±
0.243

Kurtosis 3.440 ±
1.553

3.349 ±
1.366

3.376 ±
1.519

3.401 ±
1.390

3.585 ±
1.613

3.002 ±
0.944

3.416 ± 1.583 3.367 ±
1.337

Skewness 0.459 ±
0.628

0.390 ±
0.608

0.481 ±
0.597

0.366 ±
0.631

0.465 ±
0.650

0.331 ±
0.537

0.328 ± 0.682 0.495 ±
0.550

IVIM-D* 25th 3.211 ±
4.432

2.775 ±
3.992

2.884 ±
3.961

3.040 ±
4.393

3.188 ±
4.477

2.530 ±
3.531

3.292 ± 4.543 2.704 ±
3.875

Median 8.321 ±
5.900

7.307 ±
5.040

7.857 ±
5.536

7.663 ±
5.387

7.818 ±
5.462

7.627 ±
5.448

8.050 ± 5.501 7.513 ±
5.412

Mean 10.022 ±
4.871

9.096 ±
4.040

9.533 ±
4.460

9.478 ±
4.439

9.583 ±
4.435

9.347 ±
4.472

9.741 ± 4.719 9.312 ±
4.208

75th 14.621 ±
6.304

13.424 ±
5.334

14.180 ±
6.017

13.749 ±
5.617

14.020 ±
5.387

13.816 ±
6.576

13.963 ± 6.027 13.941 ±
5.632

Kurtosis 5.959 ±
9.492

5.912 ±
4.516

5.874 ±
5.417

5.984 ±
4.538

5.868 ±
5.174

6.060 ±
4.527

5.445 ± 3.703 6.327 ±
5.762

Skewness 1.282 ±
1.001

1.278 ±
0.907

1.256 ±
1.004

1.301 ±
0.898

1.236 ±
0.961

1.367 ±
0.921

6.327 ± 5.762 1.333 ±
1.029

IVIM-f 25th 0.027 ±
0.025

0.025 ±
0.023

0.026 ±
0.025

0.026 ±
0.025

0.027 ±
0.025

0.024 ±
0.021

0.026 ± 0.024 0.026 ±
0.023

Median 0.052 ±
0.029

0.051 ±
0.031

0.052 ±
0.029

0.052 ±
0.032

0.052 ±
0.032

0.052 ±
0.027

0.055 ± 0.033 0.050 ±
0.029

Mean 0.058 ±
0.028

0.057 ±
0.030

0.057 ±
0.028

0.058 ±
0.031

0.057 ±
0.031

0.059 ±
0.027

0.061 ± 0.032 0.055 ±
0.027

75th 0.082 ±
0.041

0.081 ±
0.046

0.082 ±
0.040

0.082 ±
0.047

0.080 ±
0.046

0.084 ±
0.041

0.087 ± 0.049 0.077 ±
0.039

Kurtosis 3.695 ±
2.332

3.597 ±
2.970

3.533 ±
2.255

3.735 ±
3.049

3.814 ±
3.168

3.296 ±
1.327

3.388 ± 1.720 3.845 ±
3.283
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TABLE 4 Continued

ER PR HER2 Ki-67

Parameters Histogram
metrics

Negative Positive Negative Positive Negative Positive Negative Positive

Skewness 0.626 ±
0.709

0.624 ±
0.758

0.591 ±
0.702

0.654 ±
0.765

0.662 ±
0.786

0.551 ±
0.619

0.611 ± 0.643 0.635 ±
0.804

DKI-Kapp 25th 0.796 ±
0.128

0.901 ±
0.158

0.811 ±
0.126

0.893 ±
0.167

0.872 ±
0.159

0.820 ±
0.139

0.867 ± 0.142 0.844 ±
0.163

Median 0.883 ±
0.125

0.993 ±
0.165

0.895 ±
0.126

0.988 ±
0.171

0.956
±0.168

0.921 ±
0.136

0.966 ± 0.137 0.927 ±
0.173

Mean 0.878 ±
0.124

0.991 ±
0.148

0.890 ±
0.122

0.986 ±
0.155

0.956 ±
0.151

0.911 ±
0.140

0.957 ± 0.144 0.928 ±
0.151

75th 0.963 ±
0.133

1.081 ±
0.160

0.973 ±
0.128

1.078 ±
0.169

1.037 ±
0.164

1.013 ±
0.149

1.051 ± 0.154 1.011 ±
0.162

Kurtosis 3.594 ±
2.031

3.653 ±
1.885

3.618 ±
2.153

3.635 ±
1.753

3.751 ±
1.909

3.381 ±
2.009

3.567 ± 1.765 3.675 ±
2.087

Skewness -0.124 ±
0.752

0.005 ±
0.812

-0.136 ±
0.742

0.023 ±
0.821

0.021 ±
0.804

-0.195 ±
0.738

-0.046 ± 0.813 -0.056 ±
0.769

DKI-Dapp 25th 1.179 ±
0.209

1.003 ±
0.208

1.148 ±
0.211

1.014 ±
0.217

1.072 ±
0.238

1.087 ±
0.194

1.079 ± 0.206 1.075 ±
0.239

Median 1.318 ±
0.227

1.124 ±
0.203

1.298 ±
0.227

1.131 ±
0.213

1.195 ±
0.241

1.238 ±
0.219

1.205 ± 0.217 1.213 ±
0.249

Mean 1.335 ±
0.223

1.146 ±
0.205

1.316 ±
0.225

1.153 ±
0.211

1.215 ±
0.241

1.259 ±
0.211

1.222 ± 0.217 1.236 ±
0.245

75th 1.481 ±
0.265

1.274 ±
0.220

1.467 ±
0.265

1.276 ±
0.224

1.339 ±
0.262

1.417 ±
0.256

1.352 ± 0.245 1.377 ±
0.275

Kurtosis 3.469 ±
1.641

3.311 ±
1.160

3.314 ±
1.575

3.439 ±
1.210

3.552 ±
1.528

3.041 ±
0.992

3.419 ± 1.243 3.349 ±
1.505

Skewness 0.503 ±
0.671

0.471 ±
0.604

0.507 ±
0.602

0.466 ±
0.661

0.540 ±
0.657

0.377 ±
0.571

0.387 ± 0.673 0.562 ±
0.590

LNM Luminal TN HER2

Parameters Histogram metrics Negative Positive Non-
Luminal

Luminal Non-TN TN Non-HER2-
positive

HER2-
positive

Mono-ADC 25th 0.805 ±
0.151

0.780 ±
0.137

0.878 ±
0.142

0.742 ±
0.123

0.772 ±
0.139

0.878 ±
0.143

0.779 ± 0.142 0.877 ±
0.144

Median 0.885 ±
0.165

0.867 ±
0.150

0.975 ±
0.159

0.815 ±
0.126

0.853 ±
0.150

0.967 ±
0.163

0.856 ± 0.152 0.984 ±
0.155

Mean 0.903 ±
0.167

0.877 ±
0.150

0.991 ±
0.160

0.830 ±
0.128

0.869 ±
0.152

0.982 ±
0.165

0.871 ± 0.154 1.002 ±
0.155

75th 0.986 ±
0.192

0.966 ±
0.172

1.087 ±
0.190

0.908 ±
0.143

0.953 ±
0.174

1.071 ±
0.196

0.952 ± 0.174 1.107 ±
0.184

Kurtosis 3.726 ±
1.954

4.084 ±
2.561

3.733 ±
1.897

3.660 ±
1.802

3.645 ±
1.780

3.842 ±
2.032

3.709 ± 1.860 3.593 ±
1.738

Skewness 0.645 ±
0.635

0.380 ±
0.785

0.616 ±
0.667

0.513 ±
0.720

0.525 ±
0.704

0.657 ±
0.680

0.552 ± 0.709 0.564 ±
0.661

IVIM-D 25th 0.920 ±
0.249

0.907 ±
0.182

0.996 ±
0.236

0.862 ±
0.206

0.897 ±
0.210

0.981 ±
0.273

0.895 ± 0.231 1.016 ±
0.181

Median 1.057 ±
0.225

1.046 ±
0.174

1.138 ±
0.227

0.997 ±
0.175

1.034 ±
0.195

1.120 ±
0.240

1.030 ± 0.201 1.160 ±
0.212

Mean 1.073 ±
0.220

1.063 ±
0.177

1.158 ±
0.224

1.011 ±
0.169

1.049 ±
0.189

1.142 ±
0.242

1.047 ± 0.199 1.178 ±
0.202
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TABLE 4 Continued

ER PR HER2 Ki-67

Parameters Histogram
metrics

Negative Positive Negative Positive Negative Positive Negative Positive

75th 1.201 ±
0.232

1.198 ±
0.199

1.294 ±
0.239

1.137 ±
0.184

1.178 ±
0.209

1.276 ±
0.248

1.174 ± 0.211 1.319 ±
0.231

Kurtosis 3.437 ±
1.540

3.296 ±
1.259

3.368 ±
1.521

3.403 ±
1.405

3.323 ±
1.354

3.617 ±
1.737

3.461 ± 1.497 3.049 ±
1.145

Skewness 0.429 ±
0.614

0.403 ±
0.625

0.470 ±
0.590

0.387 ±
0.633

0.394 ±
0.613

0.513 ±
0.628

0.421 ± 0.632 0.416 ±
0.547

IVIM-D* 25th 3.278 ±
4.341

2.371 ±
3.831

3.033 ±
4.076

2.923 ±
4.275

2.779 ±
4.028

3.619 ±
4.689

3.112 ± 4.381 2.282 ±
3.055

Median 8.010 ±
5.551

7.262 ±
5.238

8.117 ±
5.747

7.513 ±
5.246

7.642 ±
5.281

8.140 ±
6.029

7.683 ± 5.450 8.088 ±
5.488

Mean 9.706 ±
4.516

9.116 ±
4.289

9.726 ±
4.687

9.356 ±
4.278

9.356 ±
4.298

10.015 ±
4.913

9.535 ± 4.447 9.357 ±
4.454

75th 14.146 ±
5.909

13.578 ±
5.599

14.291 ±
6.284

13.736 ±
5.466

13.732 ±
5.710

14.712 ±
6.095

13.994 ± 5.634 13.752 ±
6.604

Kurtosis 6.106 ±
5.296

5.600 ±
4.243

5.984 ±
5.763

5.899 ±
4.367

6.014 ±
4.668

5.648 ±
5.904

5.831 ± 4.806 6.412 ±
5.668

Skewness 1.287 ±
0.998

1.267 ±
0.847

1.270 ±
1.049

1.287 ±
0.878

1.306 ±
0.933

1.191 ±
1.002

1.261 ± 0.910 1.371 ±
1.118

IVIM-f 25th 0.027 ±
0.023

0.023 ±
0.025

0.027 ±
0.025

0.025 ±
0.023

0.025 ±
0.023

0.029 ±
0.028

0.026 ± 0.024 0.024 ±
0.022

Median 0.053 ±
0.030

0.049 ±
0.032

0.053 ±
0.030

0.051 ±
0.031

0.051 ±
0.030

0.055 ±
0.034

0.052 ± 0.032 0.050 ±
0.025

Mean 0.059 ±
0.030

0.055 ±
0.029

0.059 ±
0.029

0.057 ±
0.030

0.056 ±
0.028

0.062 ±
0.035

0.058 ± 0.031 0.054 ±
0.019

75th 0.083 ±
0.045

0.079 ±
0.042

0.084 ±
0.042

0.080 ±
0.045

0.080 ±
0.041

0.088 ±
0.052

0.082 ± .047 0.078 ±
0.024

Kurtosis 3.719 ±
3.064

3.490 ±
1.825

3.597 ±
2.395

3.669 ±
2.896

3.570 ±
2.628

3.882 ±
2.965

3.727 ± 2.904 3.231 ±
1.335

Skewness 0.618 ±
0.785

0.638 ±
0.632

0.591 ±
0.744

0.647 ±
0.731

0.607 ±
0.713

0.684 ±
0.814

0.657 ± 0.751 0.471 ±
0.641

DKI-Kapp 25th 0.846 ±
0.169

0.871 ±
0.119

0.794 ±
0.124

0.895 ±
0.159

0.867 ±
0.164

0.813 ±
0.106

0.873 ± 0.151 0.769 ±
0.141

Median 0.936 ±
0.170

0.960 ±
0.133

0.879 ±
0.125

0.988 ±
0.164

0.961 ±
0.164

0.887 ±
0.121

0.961 ± 0.159 0.867 ±
0.131

Mean 0.932 ±
0.156

0.957 ±
0.132

0.873 ±
0.119

0.986 ±
0.149

0.957 ±
0.155

0.886 ±
0.105

0.959 ± 0.145 0.856 ±
0.136

75th 1.020 ±
0.167

1.047 ±
0.144

0.956 ±
0.127

1.077 ±
0.161

1.049 ±
0.165

0.961 ±
0.117

1.046 ± 0.158 0.950 ±
0.141

Kurtosis 3.388 ±
1.489

4.084 ±
2.561

3.738 ±
2.298

3.553 ±
1.679

3.629 ±
1.951

3.619 ±
1.951

3.571 ± 1.749 3.891 ±
2.713

Skewness -0.068 ±
0.708

-0.020 ±
0.926

-0.151 ±
0.789

0.015 ±
0.782

-0.060 ±
0.801

-0.023 ±
0.744

0.001 ± 0.769 -0.315 ±
0.830

DKI-Dapp 25th 1.084 ±
0.235

1.062 ±
0.201

1.185
±0.197

1.005 ±
0.212

1.044 ±
0.217

1.192 ±
0.211

1.056 ± 0.227 1.176 ±
0.182

Median 1.214
±0.243

1.201 ±
0.219

1.335
±0.218

1.126 ±
0.207

1.176 ±
0.225

1.326 ±
0.230

1.180 ± 0.230 1.345 ±
0.205
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models generated the best AUC in the HER2-positive type vs. non-

HER2-positive type (AUC = 0.738, p< 0.001) (Table 5).

Regarding the differentiation of positive and negative groups

between ER, PR, HER2, and Ki-67, the AUC of the combination of

Mono, IVIM, and DKI resulted in the best discriminatory power

compared with eithermodel alone. The comparisons of Luminal type

versus non-Luminal type, TN type versus non-TN type, and HER2-

positive type versus non-HER2-positive type revealed that AUC
Frontiers in Oncology
 0913
considerably improved when the combination of Mono, IVIM, and

DKI was used compared with either model alone (Table 5).
Comparison of morphologic characteristics
between the groups of molecular
prognostic factors and subtypes

As summarized in Table 6, the results demonstrated that the

margin of breast cancer had significant differences between the ER-

positive and ER-negative groups (p = 0.002). No significant

differences were observed in residual groups (all p > 0.00625).

Two representative cases are shown in Figures 2; 3.
Discussion

In this study, we evaluated the correlation of Mono, IVIM, and

DKI parameters with prognostic factors and molecular subtypes of

breast cancer using histogram analysis. The Mono and DKI models

yielded greater AUC to discriminate prognostic factors and

molecular subtypes compared with the IVIM model. The AUC

significantly improved when the combination of the three diffusion

models was used compared with either model alone except for

discriminating LNM-positive and negative. Additionally, the

qualitative DWI analysis based on the morphologic characteristics

could distinguish between ER-positive and -negative groups.

Previous studies have demonstrated the correlations of diffusion

parameters derived from Mono, IVIM, and DKI models with breast

cancer prognostic factors (18, 26, 28, 29). ER overexpression could

inhibit angiogenesis to reduce perfusion contribution as well as

increase cellularity to restrict water diffusion (11, 12, 29). Low

perfusion contribution and high cellularity could both result in

decreased histogrammetrics of Mono-ADC, DKI-Dapp, and IVIM-

D and increased histogram metrics of DKI-Kapp in the ER-positive

group. The higher DKI-Kappmean in ER-positive tumors was

consistent with the result of Yang et al. (16). Due to similarities
TABLE 4 Continued

ER PR HER2 Ki-67

Parameters Histogram
metrics

Negative Positive Negative Positive Negative Positive Negative Positive

Mean 1.238 ±
0.242

1.214 ±
0.213

1.352 ±
0.216

1.148 ±
0.206

1.196 ±
0.221

1.347 ±
0.234

1.202 ± 0.231 1.359 ±
0.195

75th 1.371 ±
0.270

1.354 ±
0.246

1.503 ±
0.261

1.275
±0.220

1.331 ±
0.249

1.483 ±
0.272

1.331 ± 0.252 1.527 ±
0.250

Kurtosis 3.458 ±
1.483

3.231 ±
1.189

3.414 ±
1.674

3.358 ±
1.174

3.290 ±
1.182

3.694 ±
1.937

3.449 ± 1.420 3.057 ±
1.026

Skewness 0.563 ±
0.622

0.337 ±
0.631

0.500 ±
0.636

0.476 ±
0.633

0.444 ±
0.623

0.628 ±
0.654

0.517 ± 0.639 0.336 ±
0.585
fr
The data for significance is shown in bold (p < 0.0625). ER, Estrogen receptor; PR, Progesterone receptor; HER2, Human epidermal growth factor receptor 2; LNM, Lymph nodes metastasis; TN,
Triple-negative.
FIGURE 1

Matrix plot of the Pearson correlation coefficients between multi-
model histogram parameters with molecular prognostic factors and
subtypes. Colored entries indicate significant correlations (p<0.0625)
with positive (blue) or negative (red). ER, Estrogen receptor; PR,
Progesterone receptor; HER2, Human epidermal growth factor
receptor 2; LNM, Lymph nodes metastasis; TN, Triple-negative.;
D*, pseudo-diffusion coefficient.
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TABLE 5 AUC of histogram metrics derived from mono, IVIM, and DKI models to predict molecular prognostic factors and subtypes.

ADC D D* f Kapp Dapp ADC D D* f Kapp Dapp

Metrics ER-positive vs.ER-negative PR-positive vs. PR-negative

25th 0.752 0.687 0.513 0.523 0.737 0.752 0.705 0.648 0.511 0.508 0.692 0.679

Median 0.766 0.693 0.551 0.512 0.753 0.739 0.730 0.662 0.510 0.512 0.707 0.704

Mean 0.765 0.702 0.555 0.511 0.746 0.734 0.735 0.671 0.506 0.507 0.704 0.699

75th 0.750 0.689 0.585 0.526 0.742 0.717 0.728 0.665 0.534 0.531 0.698 0.701

Kurtosis 0.504 0.521 0.523 0.515 0.55 0.531 0.457 0.541 0.559 0.533 0.575 0.596

Skewness 0.518 0.537 0.535 0.514 0.538 0.507 0.516 0.549 0.556 0.527 0.558 0.514

Single model 0.766 0.706 0.755 0.735 0.671 0.719

Three models 0.784 0.747

Metrics HER2-positive vs. HER2-negative Ki-67-positive vs. Ki-67-negative

25th 0.537 0.518 0.529 0.523 0.607 0.517 0.515 0.504 0.539 0.502 0.526 0.506

Median 0.565 0.541 0.500 0.540 0.581 0.557 0.518 0.508 0.524 0.557 0.544 0.505

Mean 0.584 0.552 0.503 0.559 0.581 0.566 0.524 0.516 0.522 0.563 0.535 0.509

75th 0.593 0.578 0.509 0.575 0.547 0.602 0.525 0.519 0.502 0.558 0.542 0.519

Kurtosis 0.602 0.617 0.527 0.504 0.632 0.593 0.514 0.503 0.501 0.539 0.527 0.538

Skewness 0.554 0.579 0.545 0.537 0.572 0.588 0.569 0.572 0.508 0.508 0.508 0.560

Single model 0.602 0.620 0.622 0.569 0.588 0.611

Three models 0.659 0.630

Metrics LNM-positive vs. LNM-negative Luminal vs. Non-Luminal

25th 0.550 0.540 0.563 0.577 0.546 0.543 0.766 0.697 0.501 0.521 0.733 0.746

Median 0.534 0.514 0.541 0.568 0.544 0.521 0.781 0704 0.5234 0.526 0.741 0.758

Mean 0.546 0.507 0.543 0.548 0.554 0.535 0.785 0.718 0.528 0.527 0.738 0.752

75th 0.529 0.510 0.536 0.540 0.557 0.521 0.772 0.706 0.5151 0.545 0.737 0.741

Kurtosis 0.505 0.513 0.525 0.502 0.559 0.517 0.519 0.545 0.556 0.523 0.553 0.565

Skewness 0.592 0.501 0.514 0.514 0.525 0.603 0.503 0.529 0.561 0.529 0.562 0.532

Single model 0.592 0.580 0.617 0.785 0.722 0.773

Three models 0.616 0.796

Metrics TN vs. Non-TN HER2-positive vs. Non-HER2-positive

25th 0.719 0.630 0.531 0.541 0.647 0.704 0.679 0.672 0.535 0.514 0.696 0.663

Median 0.701 0.625 0.525 0.513 0.673 0.684 0.726 0.689 0.527 0.526 0.696 0.707

Mean 0.697 0.636 0.532 0.529 0.662 0.678 0.737 0.698 0.508 0.511 0.701 0.705

75th 0.677 0.620 0.549 0.526 0.685 0.648 0.738 0.699 0.526 0.543 0.672 0.723

Kurtosis 0.508 0.531 0.573 0.514 0.513 0.503 0.541 0.512 0.505 0.522 0.572 0.612

Skewness 0.531 0.569 0.577 0.526 0.519 0.555 0.532 0.624 0.509 0.579 0.625 0.620

Single model 0.719 0.655 0.714 0.738 0.714 0.738

Three models 0.736 0.747
F
rontiers in Oncolo
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The best AUC of every diffusion parameter is shown in bold. ER, Estrogen receptor; PR, Progesterone receptor; HER2, Human epidermal growth factor receptor 2; LNM, Lymph nodes
metastasis; TN, Triple-negative; D*, pseudo-diffusion coefficient.
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in hormone receptor effects, PR-positive tumors also have same

trend as ER-positive tumors. In our study, the histogram metrics of

various diffusion parameters failed to reveal a remarkable difference

between the statuses of HER2, Ki-67, and LNM. We speculated that

this difference might be related to the inclusion of lesions, the

selection of the b values, and the delineation of the ROI.

In terms of molecular subtypes, we analyzed them statistically in

the form of binary classification. Previous studies demonstrated that

IVIM-D75th was lower in the Luminal type than in the HER2-positive

type, and higher IVIM-D and lower IVIM-D* in Luminal A type than

in the other subtypes (25, 30). These results were not entirely

consistent with our study. Due to the Luminal type being defined

as ER and/or PR positive, histogrammetrics ofMono-ADC, IVIM-D,

DKI-Dapp, and DKI-Kapp can be used to distinguish Luminal type

from non-Luminal type, as similar to distinguishing ER and PR

status. You et al. revealed that DKI-Kapp entropy value could identify

the HER2-positive type and non-HER2-positive type (20). Our study
Frontiers in Oncology 1115
also showed DKI-Kapp histogram metrics, particularly mean,

median, and 25th percentile, could differentiate HER2-positive type

and non-HER2-positive type. Suo et al. have demonstrated higher

Mono-ADC values in the TN subtype than in other subtypes (12);

this tendency was also observed in our study with higher Mono-

ADC, IVIM-D, and DKI-Dapp histogram metrics in the TN type

than those in the non-TN type. The reason may be that the TN type

shows a decrease in tumor cellularity with an associated increase in

diffusion (31, 32). In summary, various diffusion parameters can

quantify tissue cell density, perfusion contribution, and water motion

in vivo and may serve as a potential biomarker for differentiating

molecular subtypes.

Besides comparing individual parameters, the ROC of various

models was also compared. The present study revealed that the

AUC of the Mono or DKI model was higher than that of the IVIM

model. That is, the Mono or DKI model was superior to the IVIM

model in evaluating the correlations of prognostic factors and
TABLE 6 Magnetic resonance imaging morphological characteristics of molecular prognostic factors and subtypes.

Max diameter Shape Margin Internal signal

groups p-
value

Round Oval Irregular p-
value

smooth spiculated irregular p-
value

homogeneous heterogeneous rim p-
value

ER Positive 2.40 ±
0.96

0.269 11 37 32 0.092 52 13 15 0.002* 39 27 14 0.040

Negative 2.59 ±
1.00

13 18 32 31 4 28 19 34 10

PR Positive 2.39 ±
0.90

0.209 11 34 31 0.253 49 9 18 0.187 21 34 12 0.097

Negative 2.59 ±
1.01

13 21 33 34 8 25 9 11 14

HER2 Positive 2.44 ±
0.90

0.788 10 16 22 0.544 27 6 15 0.953 20 19 9 0.840

Negative 2.51 ±
0.99

14 39 42 56 11 28 38 42 15

Ki-67 Positive 2.52 ±
0.94

0.409 17 30 32 0.214 51 7 21 0.186 30 34 15 0.668

Negative 2.43 ±
0.97

7 25 32 32 10 22 28 27 9

LNM Positive 2.48 ±
0.95

0.992 6 18 25 0.443 26 6 17 0.652 20 21 8 0.994

Negative 2.48 ±
0.96

12 39 35 57 11 26 38 40 16

Luminal vs. 2.40 ±
0.93

0.230 12 16 29 0.106 55 13 18 0.010 42 30 14 0.034

Non-Luminal type 2.60 ±
0.10

5 16 10 28 4 25 16 31 10

TN vs. 2.62 ±
0.99

0.301 6 10 16 0.636 16 3 13 0.332 8 19 5 0.074

Non-TN type 2.45 ±
0.95

18 45 48 67 14 30 50 42 19

HER2-positive vs. 2.58 ±
1.03

0.680 6 6 13 0.230 12 1 12 0.069 8 12 5 0.626

Non-HER2-poitive
type

2.46 ±
0.84

18 49 51 71 16 31 50 49 19
fr
ontier
*indicates that the correlation is significant at the level of 0.00625 (double-tailed). ER, Estrogen receptor; PR, Progesterone receptor; HER2, Human epidermal growth factor receptor 2; LNM,
Lymph nodes metastasis; TN, Triple-negative.
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molecular subtypes of breast cancers. Yang et al. demonstrated that

the DKI model was not superior to the Mono model in reflecting the

prognostic information of breast cancer (16). Cho et al.

demonstrated that the AUC of the IVIM model was higher than

that of the Mono model, whereas Feng reported that the AUC of the

IVIM model was lower than that of the Mono model (15, 17). The

contradictory results might have resulted from the distinct choices

of multi-b values and poor repeatability of multi-models. Therefore,

the diagnostic value of the three models with various ranges of

multi-b values needs further exploration.

Kul et al. reported that themorphology evaluated onDWIprovided

83%-84% accuracy in distinguishing between benign and malignant

lesions (33). However, Kang et al. reported that the specificity of the

high-signal rim in DWI was higher than that of the ADCmean value

(80.6% vs. 63.9%) (34). Related studies include one byCho,who showed
Frontiers in Oncology 1216
that ER-positive tumor tends to show a not-circumscribed margin in

mammography compared to ER-negative tumors (35). Different from

our present study, the characteristic of smooth margin was more

frequently observed in ER-positive tumors. Another study by Yuan

et al, reported that the rate of burr sign in ER-positive in DCE-MRI was

higher than that in negative groups (36). The trendwas also observed in

our study butwas not significant. Although this studywas a preliminary

work, themorphologic characteristics assessed using SMS rs-EPImight

provide a noninvasive tool for assessing the biologic characteristics and

heterogeneity of breast cancers.

The present study had several limitations. First, the patient

population was relatively small, and hence a selection bias might

exist. Second, 2D ROI was manually drawn on the slice with the

largest tumor diameter. This method did not reflect the overall

tumor heterogeneity. Third, all MRI data were obtained in a single
FIGURE 2

Representative images of a grade 2 invasive ductal carcinoma in the right breast of a 42-year-old woman. This tumor was with positive expression of
estrogen receptor (95%) and progesterone receptor (20%), high Ki-67 (40%), and negative HER2 expression. (A) T2WI. (B) This mass is oval and with
obvious enhancement (arrow) on axial DCE-MRI. (C) This mass shows oval shape, smooth margin, and homogeneous signal on DWI (b-value = 1000
mm2/s) (arrow). ADC (D), Dapp (E), Kapp (F), D (G), f (H), and D* (I) maps and histograms of each map (J) are as shown.
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institution. Further studies are needed to verify the generalizability

and reproducibility of our results.

In conclusion, the histogram metrics of multiparametric DWI

and morphologic characteristics might be of use in providing

prognostic information regarding breast cancer, thus potentially

contributing to individualized treatment plans for patients with

breast cancer.
Data availability statement

The datasets presented in this article are not readily available

because the datasets generated or analyzed during the study are

available from the corresponding author on reasonable request.

Requests to access the datasets should be directed to YQ,

yanjinqin125@163.com.
Frontiers in Oncology 1317
Author contributions

Conceptualization: YQ, FW, and TA. Data curation: YQ, CT,

QH, LH. Formal analysis: YQ, QH, FW, and LH. Investigation: YQ,

JY, and QH. Methodology: YQ, FW, CT, and MH. Project

administration: TA. Software: TY and HZ. Supervision: TA.

Visualization: YQ, FW, and MH. Writing - original draft: YQ and

FW. Writing - review and editing: TA and TY. All authors

contributed to the article and approved the submitted version.
Funding

This research was supported by the Keypoint Research

and Development Program of Hubei Province (Grant

Number: 2022BCE019).
FIGURE 3

Representative images of a grade 3 invasive ductal carcinoma in the right breast of a 48-year-old woman. This tumor was with negative expression
of estrogen receptor (0) and progesterone receptor (0), high Ki-67 (50%), and positive HER2 expression. (A) T2WI. (B) This mass is irregular and with
obvious enhancement (arrow) on axial DCE-MRI. (C) This mass shows irregular shape, irregular margin, and heterogeneous signal on DWI (b-value =
1000 mm2/s) (arrow). ADC (D), Dapp (E), Kapp (F), D (G), f (H), and D* (I) maps and histograms of each map (J) are as shown.
frontiersin.org

mailto:yanjinqin125@163.com
https://doi.org/10.3389/fonc.2023.1139189
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Qin et al. 10.3389/fonc.2023.1139189
Conflict of interest

Authors HZ and TY were employed by the company Siemens

Healthineers Ltd.

The remaining authors declare that the research was conducted

in the absence of any commercial or financial relationships that

could be construed as a potential conflict of interest.
Frontiers in Oncology 1418
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors and the reviewers. Any product

that may be evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the publisher.
References
1. Luo HB, Du MY, Liu YY, Wang M, Qing HM, Wen ZP, et al. Differentiation
between luminal a and b molecular subtypes of breast cancer using pharmacokinetic
quantitative parameters with histogram and texture features on preoperative dynamic
contrast-enhanced magnetic resonance imaging. Acad Radiol (2020) 27(3):e35–44. doi:
10.1016/j.acra.2019.05.002

2. Weiss J, Martirosian P, Taron J, Othman AE, Kuestner T, Erb M, et al. Feasibility
of accelerated simultaneous multislice diffusion-weighted MRI of the prostate. J Magn
Reson Imaging (2017) 46(5):1507–15. doi: 10.1002/jmri.25665

3. Hu Y, Zhan C, Yang Z, Zhang X, Zhang H, Liu W, et al. Accelerating acquisition
of readout-segmented echo planar imaging with a simultaneous multi-slice (SMS)
technique for diagnosing breast lesions. Eur Radiol (2021) 31(5):2667–76. doi: 10.1007/
s00330-020-07393-5

4. Tang C, Qin Y, Hu Q, Ai T. Diagnostic value of multi-model high-resolution
diffusion-weighted MR imaging in breast lesions: based on simultaneous multi-slice
readout-segmented echo-planar imaging. Eur J Radiol (2022) 154:110439. doi: 10.1016/
j.ejrad.2022.110439

5. Filli L, Ghafoor S, Kenkel D, Liu W, Weiland E, Andreisek G, et al. Simultaneous
multi-slice readout-segmented echo planar imaging for accelerated diffusion-weighted
imaging of the breast. Eur J Radiol (2016) 85(1):274–8. doi: 10.1016/j.ejrad.2015.10.009

6. Jiang JS, Zhu LN, Wu Q, Sun Y, Liu W, Xu XQ, et al. Feasibility study of using
simultaneous multi-slice RESOLVE diffusion weighted imaging to assess parotid gland
tumors: comparison with conventional RESOLVE diffusion weighted imaging. BMC
Med Imaging (2020) 20(1):93. doi: 10.1186/s12880-020-00492-1

7. McKay JA, Church AL, Rubin N, Emory TH, Hoven NF, Kuehn-Hajder JE, et al.
A comparison of methods for high-Spatial-Resolution diffusion-weighted imaging in
breast MRI. Radiology (2020) 297(2):304–12. doi: 10.1148/radiol.2020200221

8. Phi Van VD, Becker AS, Ciritsis A, Reiner CS, Boss A. Intravoxel incoherent
motion analysis of abdominal organs: application of simultaneous multislice
acquisition. Invest Radiol (2018) 53(3):179–85. doi: 10.1097/RLI.0000000000000426

9. Barth M, Breuer F, Koopmans PJ, Norris DG, Poser BA. Simultaneous multislice
(SMS) imaging techniques. Magn Reson Med (2016) 75(1):63–81. doi: 10.1002/
mrm.25897

10. Tavakoli A, Attenberger UI, Budjan J, Stemmer A, Nickel D, Kannengiesser S,
et al. Improved liver diffusion-weighted imaging at 3 T using respiratory triggering in
combination with simultaneous multislice acceleration. Invest Radiol (2019) 54
(12):744–51. doi: 10.1097/RLI.0000000000000594

11. Maric J, Boban J, Ivkovic-Kapicl T, Djilas D, Vucaj-Cirilovic V, Bogdanovic-
Stojanovic D. Differentiation of breast lesions and distinguishing their histological
subtypes using diffusion-weighted imaging and ADC values. Front Oncol (2020) 10:332.
doi: 10.3389/fonc.2020.00332

12. Suo S, Zhang D, Cheng F, Cao M, Hua J, Lu J, et al. Added value of mean and
entropy of apparent diffusion coefficient values for evaluating histologic phenotypes of
invasive ductal breast cancer with MR imaging. Eur Radiol (2019) 29(3):1425–34. doi:
10.1007/s00330-018-5667-9

13. Huang Y, Lin Y, HuW, Ma C, LinW,Wang Z, et al. Diffusion kurtosis at 3.0T as
an in vivo imaging marker for breast cancer characterization: correlation with
prognostic factors. J Magn Reson Imaging (2019) 49(3):845–56. doi: 1002/jmri.26249

14. He M, Song Y, Li H, Lu J, Li Y, Duan S, et al. Histogram analysis comparison of
monoexponential, advanced diffusion-weighted imaging, and dynamic contrast-
enhanced MRI for differentiating borderline from malignant epithelial ovarian
tumors. J Magn Reson Imaging (2020) 52(1):257–68. doi: 10.1002/jmri.27037

15. Cho GY, Moy L, Kim SG, Baete SH, Moccaldi M, Babb JS, et al. Evaluation of
breast cancer using intravoxel incoherent motion (IVIM) histogram analysis:
comparison with malignant status, histological subtype, and molecular prognostic
factors. Eur Radiol (2016) 26(8):2547–58. doi: 10.1007/s00330-015-4087-3

16. Yang ZL, Li Y, Zhan CA, Hu YQ, Guo YH, Xia LM, et al. Evaluation of
suspicious breast lesions with diffusion kurtosis MR imaging and connection with
prognostic factors. Eur J Radiol (2021) 145:110014. doi: 10.1016/j.ejrad.2021.110014

17. Feng W, Gao Y, Lu XR, Xu YS, Guo ZZ, Lei JQ. Correlation between molecular
prognostic factors and magnetic resonance imaging intravoxel incoherent motion
histogram parameters in breast cancer. Magn Reson Imaging (2022) 85:262–70. doi:
10.1016/j.mri.2021.10.027

18. Kim EJ, Kim SH, Park GE, Kang BJ, Song BJ, Kim YJ, et al. Histogram analysis of
apparent diffusion coefficient at 3.0t: correlation with prognostic factors and subtypes
of invasive ductal carcinoma. J Magn Reson Imaging (2015) 42(6):1666–78.
doi: 10.1002/jmri.24934

19. Choi Y, Kim SH, Youn IK, Kang BJ, Park WC, Lee A, et al. Rim sign and
histogram analysis of apparent diffusion coefficient values on diffusion-weighted MRI
in triple-negative breast cancer: comparison with ER-positive subtype. PloS One (2017)
12(5):e0177903. doi: 10.1371/journal.pone.0177903

20. You C, Li J, Zhi W, Chen Y, Yang W, Gu Y, et al. The volumetric-tumour
histogram-based analysis of intravoxel incoherent motion and non-Gaussian diffusion
MRI: association with prognostic factors in HER2-positive breast cancer. J Transl Med
(2019) 17(1):182. doi: 10.1186/s12967-019-1911-6

21. Kang HS, Kim JY, Kim JJ, Kim S, Lee NK, Lee JW, et al. Diffusion kurtosis MR
imaging of invasive breast cancer: correlations with prognostic factors and molecular
subtypes. J Magn Reson Imaging (2022) 56(1):110–20. doi: 10.1002/jmri.27999

22. Le Bihan D. What can we see with IVIM MRI? Neuroimage (2019) 187:56–67.
doi: 10.1016/j.neuroimage.2017.12.062

23. Kishimoto AO, Kataoka M, Iima M, Honda M, Miyake KK, Ohashi A, et al. The
comparison of high-resolution diffusion weighted imaging (DWI) with high-resolution
contrast-enhanced MRI in the evaluation of breast cancers. Magn Reson Imaging
(2020) 71:161–9. doi: 10.1016/j.mri.2020.03.007

24. Barentsz MW, Taviani V, Chang JM, Ikeda DM, Miyake KK, Banerjee S, et al.
Assessment of tumor morphology on diffusion-weighted (DWI) breast MRI: diagnostic
value of reduced field of view DWI. J Magn Reson Imaging (2015) 42(6):1656–65. doi:
10.1002/jmri.24929

25. Lee YJ, Kim SH, Kang BJ, Kang YJ, Yoo H, Yoo J, et al. Intravoxel incoherent
motion (IVIM)-derived parameters in diffusion-weighted MRI: associations with
prognostic factors in invasive ductal carcinoma. J Magn Reson Imaging (2017) 45
(5):1394–406. doi: 10.1002/jmri.25514

26. Suo S, Cheng F, CaoM, Kang J, WangM, Hua J, et al. Multiparametric diffusion-
weighted imaging in breast lesions: association with pathologic diagnosis and
prognostic factors. J Magn Reson Imaging (2017) 46(3):740–50. doi: 10.1002/jmri.25612

27. Boria F, Tagliati C, Baldassarre S, Ercolani P, Marconi E, Simonetti BF, et al.
Morphological MR features and quantitative ADC evaluation in invasive breast cancer:
correlation with prognostic factors. Clin Imaging (2018) 50:141–6. doi: 10.1016/
j.clinimag.2018.02.011

28. Horvat JV, Iyer A, Morris EA, Apte A, Bernard-Davila B, Martinez DF, et al.
Histogram analysis and visual heterogeneity of diffusion-weighted imaging with
apparent diffusion coefficient mapping in the prediction of molecular subtypes of
invasive breast cancers. Contrast Media Mol Imaging (2019) 2019:2972189. doi:
10.1155/2019/2972189

29. Horvat JV, Bernard-Davila B, Helbich TH, Zhang M, Morris EA, Thakur SB,
et al. Diffusion-weighted imaging (DWI) with apparent diffusion coefficient (ADC)
mapping as a quantitative imaging biomarker for prediction of immunohistochemical
receptor status, proliferation rate, and molecular subtypes of breast cancer. J Magn
Reson Imaging (2019) 50(3):836–46. doi: 10.1002/jmri.26697

30. Kawashima H, Miyati T, Ohno N, Ohno M, Inokuchi M, Ikeda H, et al.
Differentiation between luminal-a and luminal-b breast cancer using intravoxel
incoherent motion and dynamic contrast-enhanced magnetic resonance imaging.
Acad Radiol (2017) 24(12):1575–81. doi: 10.1016/j.acra.2017.06.016

31. Li Q, Xiao Q, Yang M, Chai Q, Huang Y, Wu PY, et al. Histogram analysis of
quantitative parameters from synthetic MRI: correlations with prognostic factors and
molecular subtypes in invasive ductal breast cancer. Eur J Radiol (2021) 139:109697.
doi: 10.1016/j.ejrad.2021.109697

32. Youk JH, Son EJ, Chung J, Kim JA, Kim EK. Triple-negative invasive breast
cancer on dynamic contrast-enhanced and diffusion-weighted MR imaging:
comparison with other breast cancer subtypes. Eur Radiol (2012) 22(8):1724–34. doi:
10.1007/s00330-012-2425-2
frontiersin.org

https://doi.org/10.1016/j.acra.2019.05.002
https://doi.org/10.1002/jmri.25665
https://doi.org/10.1007/s00330-020-07393-5
https://doi.org/10.1007/s00330-020-07393-5
https://doi.org/10.1016/j.ejrad.2022.110439
https://doi.org/10.1016/j.ejrad.2022.110439
https://doi.org/10.1016/j.ejrad.2015.10.009
https://doi.org/10.1186/s12880-020-00492-1
https://doi.org/10.1148/radiol.2020200221
https://doi.org/10.1097/RLI.0000000000000426
https://doi.org/10.1002/mrm.25897
https://doi.org/10.1002/mrm.25897
https://doi.org/10.1097/RLI.0000000000000594
https://doi.org/10.3389/fonc.2020.00332
https://doi.org/10.1007/s00330-018-5667-9
https://doi.org/1002/jmri.26249
https://doi.org/10.1002/jmri.27037
https://doi.org/10.1007/s00330-015-4087-3
https://doi.org/10.1016/j.ejrad.2021.110014
https://doi.org/10.1016/j.mri.2021.10.027
https://doi.org/10.1002/jmri.24934
https://doi.org/10.1371/journal.pone.0177903
https://doi.org/10.1186/s12967-019-1911-6
https://doi.org/10.1002/jmri.27999
https://doi.org/10.1016/j.neuroimage.2017.12.062
https://doi.org/10.1016/j.mri.2020.03.007
https://doi.org/10.1002/jmri.24929
https://doi.org/10.1002/jmri.25514
https://doi.org/10.1002/jmri.25612
https://doi.org/10.1016/j.clinimag.2018.02.011
https://doi.org/10.1016/j.clinimag.2018.02.011
https://doi.org/10.1155/2019/2972189
https://doi.org/10.1002/jmri.26697
https://doi.org/10.1016/j.acra.2017.06.016
https://doi.org/10.1016/j.ejrad.2021.109697
https://doi.org/10.1007/s00330-012-2425-2
https://doi.org/10.3389/fonc.2023.1139189
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Qin et al. 10.3389/fonc.2023.1139189
33. Kul S, Metin Y, Kul M, Metin N, Eyuboglu I, Ozdemir O, et al. Assessment of
breast mass morphology with diffusion-weighted MRI: beyond apparent diffusion
coefficient. J Magn Reson Imaging (2018) 48(6):1668–77. doi: 10.1002/jmri.26175

34. Kang BJ, Lipson JA, Planey KR, Zackrisson S, Ikeda DM, Kao J, et al. Rim sign in
breast lesions on diffusion-weighted magnetic resonance imaging: diagnostic accuracy and
clinical usefulness. J Magn Reson Imaging (2015) 41(3):616–23. doi: 10.1002/jmri.24617
Frontiers in Oncology 1519
35. Cho N. Imaging features of breast cancer molecular subtypes: state of the art. J
Pathol Transl Med (2021) 55(1):16–25. doi: 10.4132/jptm.2020.09.03

36. Yuan C, Jin F, Guo X, Zhao S, Li W, Guo H, et al. Correlation analysis of
breast cancer DWI combined with DCE-MRI imaging features with molecular
subtypes and prognostic factors. J Med Syst (2019) 43(4):83. doi: 10.1007/s10916-
019-1197-5
frontiersin.org

https://doi.org/10.1002/jmri.26175
https://doi.org/10.1002/jmri.24617
https://doi.org/10.4132/jptm.2020.09.03
https://doi.org/10.1007/s10916-019-1197-5
https://doi.org/10.1007/s10916-019-1197-5
https://doi.org/10.3389/fonc.2023.1139189
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


TYPE Original Research
PUBLISHED 10 May 2023
DOI 10.3389/fnins.2023.1106350

OPEN ACCESS

EDITED BY

Lars Mueller,
University of Leeds, United Kingdom

REVIEWED BY

Julio Ernesto Villalon-Reina,
University of Southern California, United States
Nguyen Minh Duc,
Pham Ngoc Thach University of Medicine,
Vietnam

*CORRESPONDENCE

Santiago Aja-Fernández
sanaja@tel.uva.es

RECEIVED 23 November 2022
ACCEPTED 30 March 2023
PUBLISHED 10 May 2023

CITATION

Martín-Martín C, Planchuelo-Gómez Á,
Guerrero ÁL, García-Azorín D, Tristán-Vega A,
de Luis-García R and Aja-Fernández S (2023)
Viability of AMURA biomarkers from single-shell
di�usion MRI in clinical studies.
Front. Neurosci. 17:1106350.
doi: 10.3389/fnins.2023.1106350

COPYRIGHT

© 2023 Martín-Martín, Planchuelo-Gómez,
Guerrero, García-Azorín, Tristán-Vega, de
Luis-García and Aja-Fernández. This is an
open-access article distributed under the terms
of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction
in other forums is permitted, provided the
original author(s) and the copyright owner(s)
are credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted which
does not comply with these terms.

Viability of AMURA biomarkers
from single-shell di�usion MRI in
clinical studies

Carmen Martín-Martín1, Álvaro Planchuelo-Gómez1,2,
Ángel L. Guerrero3,4, David García-Azorín3, Antonio Tristán-Vega1,
Rodrigo de Luis-García1 and Santiago Aja-Fernández1*
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Di�usion Tensor Imaging (DTI) is the most employed method to assess white
matter properties using quantitative parameters derived from di�usion MRI, but
it presents known limitations that restrict the evaluation of complex structures.
The objective of this study was to validate the reliability and robustness of
complementary di�usion measures extracted with a novel approach, Apparent
Measures Using Reduced Acquisitions (AMURA), with a typical di�usion MRI
acquisition from a clinical context in comparison with DTI with application
to clinical studies. Fifty healthy controls, 51 episodic migraine and 56 chronic
migraine patients underwent single-shell di�usion MRI. Four DTI-based and eight
AMURA-based parameters were compared between groups with tract-based
spatial statistics to establish reference results. On the other hand, following a
region-based analysis, the measures were assessed for multiple subsamples with
diverse reduced sample sizes and their stability was evaluated with the coe�cient
of quartile variation. To assess the discrimination power of the di�usion measures,
we repeated the statistical comparisons with a region-based analysis employing
reduced sample sizes with diverse subsets, decreasing 10 subjects per group
for consecutive reductions, and using 5,001 di�erent random subsamples. For
each sample size, the stability of the di�usion descriptors was evaluated with the
coe�cient of quartile variation. AMURA measures showed a greater number of
statistically significant di�erences in the reference comparisons between episodic
migraine patients and controls compared to DTI. In contrast, a higher number
of di�erences was found with DTI parameters compared to AMURA in the
comparisons between bothmigraine groups. Regarding the assessments reducing
the sample size, the AMURA parameters showed a more stable behavior than DTI,
showing a lower decrease for each reduced sample size or a higher number of
regions with significant di�erences. However, most AMURA parameters showed
lower stability in relation to higher coe�cient of quartile variation values than the
DTI descriptors, although two AMURA measures showed similar values to DTI.
For the synthetic signals, there were AMURA measures with similar quantification
to DTI, while other showed similar behavior. These findings suggest that AMURA
presents favorable characteristics to identify di�erences of specificmicrostructural
properties between clinical groups in regions with complex fiber architecture and
lower dependency on the sample size or assessing technique than DTI.

KEYWORDS

alternative metrics, AMURA, brain, di�usion magnetic resonance imaging, DTI, migraine
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1. Introduction

Diffusion Magnetic Resonance Imaging (dMRI) is an imaging
modality employed to assess diverse in vivo physiological and
pathological conditions of the human body in clinical studies. It
has been widely used in the study of the brain and neurological
disorders (Rovaris et al., 2005; Goveas et al., 2015; Galbán et al.,
2017; Mekkaoui et al., 2017). It allows the characterization of
the diffusivity of water molecules within the tissue, providing
information about the microscopic configuration and structural
connectivity of the brain, especially inside the white matter (WM).

The most relevant feature of dMRI is its ability to measure
directional variance, i.e., anisotropy, which, inside the brain, is
related to structural connectivity between areas. The most common
methodology to estimate the anisotropy is via the diffusion tensor
(DT) (Basser et al., 1994; Westin et al., 2002).

In order to use it in clinical studies, the information provided
by the DT must be translated into some scalar measures that
describe different features of diffusion within every voxel. That way,
metrics like fractional anisotropy (FA) were defined and widely
employed to characterize damaged tissues in multiple neurological
and psychiatric disorders (Kochunov et al., 2012; Bette et al.,
2016; Mole et al., 2016; Herbert et al., 2018). However, from the
early stages of DT imaging (DTI), it was clear that the Gaussian
assumption oversimplifies the diffusion process.

In the past few decades, many techniques have been proposed to
overcome the limitations of DTI, usually requiring the acquisition
of larger amounts of diffusion data (Assemlal et al., 2011; Novikov
et al., 2019). Most of these techniques rely on the estimation
of more advanced diffusion descriptors, such as the Ensemble
Average diffusion Propagator (EAP), which is the probability
density function of the motion of the water molecules within a
voxel (Wedeen et al., 2005; Özarslan et al., 2013; Tristán-Vega and
Aja-Fernández, 2021).

A complete analysis of the EAP requires many diffusion-
weighted images (DWI) with several (moderate to high) b-values
in a multi-shell acquisition. The information provided by the
EAP is usually adapted to scalar measures that describe different
aspects of diffusion. The most frequently employed measures
are the return-to-origin probabilities (RTOP), return-to-plane
probabilities (RTPP), return-to-axis probabilities (RTAP) and the
propagator anisotropy (PA) (Wu et al., 2008; Descoteaux et al.,
2011; Hosseinbor et al., 2013; Özarslan et al., 2013; Ning et al.,
2015).

The accurate estimation of these measures requires the
calculation of the EAP, which commonly involves: (1) long
acquisition times; (2) several shells with large b-values, which may
be difficult to acquire in many commercial MRI scanners; and
(3) heavy computational burdens with very long processing times.
These three issues have hindered the general adoption of EAP-
related metrics in the clinical routine, despite the growing interest
in the exploration of their potential applicability (Avram et al., 2016;
Brusini et al., 2016; Zucchelli et al., 2016; Boscolo Galazzo et al.,
2018).

To overcome these limitations and facilitate the widespread use
of advanced diffusion metrics in clinical studies, a new approach
called Apparent Measures Using Reduced Acquisitions (AMURA)
has been recently proposed (Aja-Fernández et al., 2020, 2021,

2022). The method allows the estimation of diffusion measures
such as RTOP, RTAP, and PA, while reducing the number of
necessary samples and the computational cost. AMURA canmimic
the sensitivity of EAP-based measures to microstructural changes
when only a small number of shells (even one) is available. To
do so, AMURA assumes a prior model for the behavior of the
radial q-space instead of trying to numerically describe it, yielding
simplified expressions that can be computed easily even from
single-shell acquisitions.

One additional advantage of AMURA is that it can be
easily integrated into the processing pipeline of current existing
single-shell dMRI protocols and databases to unveil anatomical
details that may remain hidden in traditional DT-based studies.
AMURA has proved its potential in some exploratory studies with
clinical data focusing on Parkinson’s disease and Mild Cognitive
Impairment (Aja-Fernández et al., 2020, 2021), as well a recent
clinical study on migraine (Planchuelo-Gómez et al., 2020c).

In this work, we aim to assess the viability of different diffusion
descriptors extracted with AMURA for the study of a neurological
disorder in DTI-type datasets. Note that, initially, AMURA was
designed to work with b-values over 2,000 s/mm2, since the effects
measured with RTOP, RTPP, and RTAP were better showed at
higher values of b. However, results in clinical data have shown
its potential at lower b-values (Aja-Fernández et al., 2022). Thus,
we will explore the viability of these technique to model DTI-
type acquisitions, i.e., dMRI datasets acquired with those protocols
usually employed for the estimation of DTI and its derived
parameters, such as fractional anisotropy (FA) or mean diffusivity
(MD). These acquisitions are commonly single-shell, and only
include one non-zero b-value, usually in the order of b = 1, 000
s/mm2.

We have selected migraine as a case study. Migraine is an
attractive pathology for the evaluation of the quality of alternative
diffusion metrics, since the differences between patients and
controls that have been found using dMRI in the literature are
scarce and subtle (Planchuelo-Gómez et al., 2020b). In migraine,
differences are usually hard to find in comparison with other
disorders such as schizophrenia or Alzheimer’s disease, and they
require a large number of subjects per group and good quality data.
Thus, migraine will allow us to check the capability of different
techniques to detect subtle changes.

Migraine is a disabling primary disorder characterized by
recurrent episodes of headache, which usually last 4-72 hours
and present at least two of the following four characteristics:
moderate to severe pain intensity, unilateral location, pulsating
quality, and aggravation with physical activity (Third edition of
the International Classification of Headache Disorders, ICHD-3).
A common distinction when studying migraine is made between
episodic migraine (EM), in which patients suffer from headache
less than 15 days per month, and chronic migraine (CM), in which
patients suffer from headache at least 15 days per month.

A recent study identified statistically significant differences
in migraine using advanced diffusion measures calculated with
AMURA (Planchuelo-Gómez et al., 2020c). This study identified
higher RTOP values in CM patients compared to EM, and lower
RTPP values in EM compared to HC.

Given the fact that AMURA-derived measures have shown
promising results for the characterization of subtle WM changes
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in migraine, the main objective of this study was the assessment of
the reliability and the robustness of AMURAmetrics acquired with
a typical acquisition employed in a clinical context. Our purpose
is to validate the viability of these metrics for clinical studies even
when acquisition protocols are suboptimal for this methodology.
Specifically, we will use migraine as a case study and DTI-type
acquisitions, where only one shell is acquired at b = 1, 000 s/mm2.

2. Materials and methods

2.1. Advanced di�usion measures from
single shell acquisitions: AMURA

AMURA was proposed in Aja-Fernández et al. (2020) as a
methodology to calculate advanced diffusion metrics from reduced
acquisitions compatible with commercial scanners and general
clinical routine. It allows the estimation of different diffusion-
related scalars using a lower number of samples with a single-
shell acquisition scheme. AMURA considers that, if the amount
of data is reduced, a restricted diffusion model consistent with
single-shell acquisitions must be assumed: the (multi-modal)
apparent diffusivity does not depend on the b-value, so that a
mono-exponential behavior is observed for every spatial direction.
According to Basser and Jones (2002), in the mammalian brain,
the mono-exponential model is predominant for values of b up to
2,000 s/mm2 and it can be extended to higher values (up to 3,000
s/mm2) if appropriate multi-compartment models of diffusion are
employed.

This methodology allows shorter MRI acquisitions and very
fast calculation of scalars. Since the mono-exponential model only
holds within a limited range around the measured b-value, the
measures derived this way must be seen as apparent values at
a given b-value, related to the original ones but dependent on
the selected shell. The AMURA metrics used in this work are
(Aja-Fernández et al., 2020, 2021, 2022):

1. Return-to-origin probability (RTOP), also known as probability
of zero displacement, it is related to the probability density of
water molecules that minimally diffuse within the diffusion time
τ .

2. Return-to-plane probability (RTPP), which is a good indicator
of restrictive barriers in the axial orientation.

3. Return-to-axis probability (RTAP), an indicator of restrictive
barriers in the radial orientation.

4. Apparent Propagator Anisotropy (APA), an alternative
anisotropy metric. It quantifies how much the propagator
diverges from the closest isotropic one.

5. Diffusion Anisotropy (DiA), an alternative derivation of APA.
6. Generalized Moments, specifically we will consider the full

moments of order 2 (q-space Mean Square Displacement,
qMSD) and 1/2 (ϒ1/2).

2.2. Dataset

2.2.1. Participants
The sample of this study was originally composed of 56 patients

with CM, 54 patients with EM and 50 healthy controls (HC) that

participated in previous studies (Planchuelo-Gómez et al., 2020a,b).
Three patients with EM were discarded due to misregistration
errors.

Inclusion criteria included diagnosis of EM or CM following
the ICHD-3 (all the available versions), stable clinical situation,
and first screening related to migraine just before the recruitment.
Exclusion criteria were use of preventive treatments before theMRI
acquisition, migraine onset in people older than 50 years, recently
developed migraine (less than 1 year), frequent painful conditions,
psychiatric and neurological disorders different to migraine, and
pregnancy. Further details are available at Planchuelo-Gómez et al.
(2020b).

The local Ethics Committee of Hospital Clínico Universitario
de Valladolid approved the study (PI: 14-197). Additionally, all
participants read and signed a written consent form prior to their
participation.

The detailed demographic and clinical features of the three
groups are shown in Table 1. No statistically significant differences
in age or gender were found between the three groups. Patients with
CM showed significantly higher duration of migraine, frequency of
headache andmigraine attacks andmedication overuse, and a lower
presence of aura.

2.2.2. MRI acquisition
For patients with migraine, the images were acquired at least

24h after the last migraine attack and before 2 weeks after the
clinical visit to the headache unit. High resolution 3D T1-weighted
followed by DWI were acquired using a Philips Achieva 3T MRI
unit (Philips Healthcare, Best, The Netherlands) with a 32-channel
head coil.

The acquisition of T1-weighted images was carried out using
a Turbo Field Echo sequence with the following parameters:
repetition time (TR) = 8.1 ms, echo time (TE) = 3.7 ms, flip angle =
8o, 256× 256 matrix size, spatial resolution of 1× 1× 1 mm3 and
160 sagittal slices covering the whole brain.

The acquisition parameters for DWI were TR = 9,000 ms, TE
= 86 ms, flip angle = 90o, 61 diffusion gradient orientations, one
baseline volume, b-value = 1,000 s/mm2, 128 × 128 matrix size,
spatial resolution of 2× 2× 2 mm3 and 66 axial slices covering the
whole brain.

All the images were acquired in the same session with a total
acquisition time of 18 min.

2.3. Analysis of the data

2.3.1. dMRI preprocessing
Image preprocessing steps consisted of (1) denoising based on

the Marchenko-Pastur Principal Component Analysis procedure
(Veraart et al., 2016), (2) eddy currents and motion correction,
and (3) correction for B1 field inhomogeneity. TheMRtrix software
(Tournier et al., 2019) was employed to carry out these steps, using
the dwidenoise, dwipreproc, and dwibiascorrect tools (Zhang et al.,
2001; Smith et al., 2004; Andersson and Sotiropoulos, 2016; Veraart
et al., 2016). Further, a whole brain mask for each subject was
obtained with the dwi2mask tool (Dhollander et al., 2016).
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TABLE 1 Clinical and demographic characteristics of healthy controls (HC), episodic migraine (EM), and chronic migraine (CM).

HC (n = 50) EM (n = 51) CM (n = 56) Statistical test

Gender, male/female 11/39 7/44 6/50 χ2
(2,N=157) = 2.74

(22/78%) (14/86%) (11/89%) p = 0.25 †

Age (years) 36.1± 13.2 36.6± 7.9 38.1± 8.7 χ2
(2) = 2.79, p = 0.25‡

Duration of migraine history (years) 13.1± 10.5 19.6± 10.4 U = 932.5, p = 0.002⋄

Time from onset of chronic migraine (months) 24.5± 32.9

Headache frequency (days/month) 3.6± 1.9 23.3± 6.3 U = 40.0, p < 0.001⋄

Migraine frequency (days/month) 3.6± 1.9 13.9± 6.9 U = 99.5, p < 0.001⋄

Medication overuse 0 (0%) 42 (75%) p < 0.001∗

Aura 9 (18%) 1 (2%) p = 0.006∗

†Chi-square test. ‡Kruskal-Wallis test. ⋄Mann-Whitney U-test. ∗Fisher’s exact test. Data are expressed as means± SD.

2.3.2. Di�usion measures estimation
Two groups of diffusion measures were extracted. The former

group is composed of three DTI classical metrics: FA, MD, axial
diffusivity (AD), and radial diffusivity (RD). We considered only
thesemeasurements as they are the ones employed inmost previous
studies, particularly in the literature migraine, with no studies
applying other measurements excluding the one carried out with
this sample or the use of kurtosis (Ito et al., 2016).

These measures were estimated at each voxel using the dtifit

tool from the FSL software (Jenkinson et al., 2012). FAmeasures the
degree of anisotropy in the diffusion of water molecules inside each
voxel, which reflects the degree of directionality of water diffusivity.
MD is the average magnitude of water molecules diffusion. AD
measures the water diffusion in the principal direction of WM
fibers. RD describes the perpendicular diffusion of the principal
direction (Pelletier et al., 2016).

The latter group includes the seven proposed q-space metrics
calculated with AMURA: RTOP, RTAP, RTPP, APA, qMSD, DiA,
and ϒ1/2. The measures were calculated using dMRI-Lab1 and
MATLAB 2020a. AMURA measures rely on the expansion of
spherical functions at a given shell in the basis of spherical
harmonics (SH). Even SH orders up to six were fitted with a
Laplace-Beltrami penalty λ = 0.006. A fixed value of τ = 70 ms
has been assumed for all the AMURAmetrics. A visual comparison
of the DTI and AMURA measures is shown in Figure 1.

2.4. Experiment with synthetic data

The main hypothesis of this work is that AMURA metrics
are able to detect different diffusion properties than DTI in the
white matter. In order to quantify this assumption, an illustrative
synthetic experiment was carried out. We simulated a simple
diffusion model that diverges from the diffusion tensor (DT). The
simplest case is a 2-compartment model in which we considered
that the main anisotropic diffusion was ruled by a zeppelin-
shaped compartment (Alexander, 2008) and there was an isotropic

1 Available at www.lpi.tel.uva.es/dmrilab.

compartment that stands for the free water fraction (Tristán-Vega
et al., 2022):

S(b) = f · Zp(b, d||, d⊥)+ (1− f ) · exp(−bD0)

where Zp() is the zeppelin compartment,D0 is the diffusivity of free
water at body temperature (nearly 3.0 · 10−6 µm2/s), d|| (µm2/s)
and d⊥ (µm2/s) are the parallel and perpendicular diffusivities that
model the zeppelin and (1− f ) is the free-water fraction.

For the experiment, different values of f were considered,
ranging from 0.3 to 1. The value of d|| was fixed and d⊥ was changed
as a function of f for two different cases

1. The FA obtained after estimating the DT from S(b) is constant.
2. The MD obtained after estimating the DT from S(b) is constant.

Sixty-one gradient directions and b = 1,000 s/mm2 were
considered. DTI and AMURA metrics were calculated from the
synthetic signal.

In comparison with previous studies that assessed EAP-derived
measures (Fick R. H. J. et al., 2016; Zucchelli et al., 2016),
we employed a simpler model due to the different objective
of our study. The previous studies were focused on a detailed
characterization of the microstructure with the assessment of the
sensitivity of the EAP measures under different conditions with a
three-compartment model. The intracellular volume fraction and
dispersion were additionally included compared to our experiment
for the three-compartment model. In our study, the main objective
was the assessment of AMURA measures compared to DTI in
the context of clinical studies, i.e., comparison between clinical
groups, with a reduced dMRI acquisition. Therefore, this synthetic
experiment worked as a proof of concept to appreciate different
properties of the AMURA and DTI measures, and not as a detailed
analysis of the parameters in relation to microstructural features.

2.5. Statistical analysis

2.5.1. ROI analysis and TBSS
To test the capability of AMURA measures at b = 1,000

s/mm2 to be used in clinical studies, two different statistical
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FIGURE 1

Visual comparison of di�usion tensor imaging (DTI) and measures from apparent measures using reduced acquisitions (AMURA). The first row
contains the DTI measures, and the last two, the AMURA metrics.

analyses were considered: a region-oriented analysis and tract-
based spatial statistics (TBSS) assessment. For both approaches,
statistical differences between EM, CM, and HC were assessed with
two-by-two comparisons. Forty-eight different regions of interest
(ROIs) were identified using the Johns Hopkins University ICBM-
DTI-81WhiteMatter Atlas (JHUWM) (Oishi et al., 2008). The first
steps of the two assessing methods were common. The FA volumes
were non-linearly registered to the Montreal Neurological Institute
(MNI) space using the JHUWM template as reference. In the MNI
space, the mean FA image for all the subjects was extracted and it
was used to generate the white matter skeleton using a minimum
FA value of 0.2. For each subject, the FA values were projected to
the skeleton. For all the non-FA measures, the same registration
used for the FA maps and projection to the skeleton obtained from
the FA volumes were carried out.

For the ROI-based analysis, to obtain more robust measures,
the average value of the metrics for each subject was obtained using
voxels exclusively included in the white matter skeleton within the
2% and 98% percentiles of the corresponding skeleton values. Then
we carried out a two-sampled-two-tailed, pooled variance t-test
between each pair of groups (EM-HC, CM-HC, and EM-CM) for
every measure and ROI.

The TBSS approach was conducted to mimic a clinical study
following the basic procedure implemented in Planchuelo-Gómez
et al. (2020c) and Planchuelo-Gómez et al. (2020b). In this
assessment, the statistical comparisons were conducted using the
randomize tool from FSL (Nichols and Holmes, 2002), which

performs a permutation test. Specifically, 5,000 permutations and
the threshold-free cluster enhancement (TFCE) procedure were
employed (Smith and Nichols, 2009). Briefly, TFCE enhances zones
of the voxelwise statistic maps that show spatial contiguity to
obtain spatial clusters without using specific values to delimitate
different spatial areas with similar values. We considered that an
atlas-defined region presented statistically significant differences,
after family-wise error correction and TFCE, when the voxels with
differences contained a volume greater than 30 mm3. Each ROI
from the atlas could be part of one or more clusters defined by the
TFCE procedure, i.e., TFCE was applied independently from the
JHUWM atlas and the voxels for each region were extracted within
the defined clusters by TFCE.

The threshold for statistical significance for all the statistical
assessments was p < 0.05. It is worth noting that the purpose
of the ROI-based analysis was not to carry out a complete and
accurate clinical study, but to analyze the behavior of each measure
separately. Thus, the results in this case were not corrected for
multiple comparisons, causing some variations with the results
reported in the literature. For the same reason, clinical covariates
were not included in all the statistical comparisons.

Further, in relation to the ROI-based analysis, Cohen’s
D value was calculated over the different ROIs to quantify
the effect size of the different DTI and AMURA scalars. In
addition, the Cohen’s D-value was obtained for the full WM
to better describe what happened with each measure in the
whole brain.
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FIGURE 2

Experiment with synthetic data: a two-compartment model is considered, zeppelin + free water. The parameters of the zeppelin are modified so that
the estimated di�usion tensor in every case shows: (A) constant FA; (B) constant MD. AMURA metrics have been calculated. Measures are normalized
for better visualization.

2.5.2. Resampling of di�usion measures
To better understand the discrimination power of each

measure, we analyzed their statistical significance in relation to
the number of subjects in each group, i.e., the sample size. To
that end, a resampling experiment was carried out. The number
of subjects of each group (EM, CM, and HC) was progressively
decreased from the original number to 10 subjects in each
group, reducing five subjects for each iteration. For each iteration,
5,001 different subsamples were randomly obtained following
a bootstrapping procedure. For each subsample, the ROI-based
approach described in Section 2.5.1, i.e., the uncorrected t-tests
of the diffusion descriptors from each JHU WM atlas ROI within
the WM skeleton, was repeated. Specifically, for the tests with
statistically significant differences in the reference comparisons
with the whole sample, two-by-two comparisons between HC, EM,
and CM groups were carried out. For each ROI, diffusion metric
and specific configuration, a ROI was considered to have significant
differences if at least the two-by-two comparison in 2,501 out of the
5,001 subsamples showed p < 0.05, value established as threshold
for statistical significance, as in the whole sample. No kind of
statistical correction was used for this experiment considering that
our purpose was to study the behavior of the different metrics with
the sample size.

2.5.3. Analysis of stability
The coefficient of quartile variation (CQV) was used tomeasure

the stability across groups. The CQV is a measure of homogeneity
(Altunkaynak and Gamgam, 2019) and it was used to assess the
inter-subject variability, considering the diverse sample sizes from

the analysis described in the previous section. The CQV is one of
the most robust statistical measures as it depends on the quartiles,
being less sensitive to outliers. Its use is as follows:

CQV =
Q3 − Q1

Q3 + Q1
· 100 (1)

where Q1 and Q3 are the first and third quartile, respectively.
The CQV is calculated for each group and ROI, considering as

figure of merit the median value of all the CQV of the different 5001
subsamples used in this experiment. The 95% confidence interval
(95% CI) was set taking the 2.5 and 97.5 percentiles of the whole
CQV values for each group of values. This 95% CI was compared
between the diverse measures and regions for each sample size.

3. Results

3.1. Experiment with synthetic data

Results for the experiment with synthetic data are gathered in
Figure 2: constant FA (Figure 2A) and constant MD (Figure 2B).
All measures have been normalized for better visualization and
comparison. When FA is set to constant, in this simple scenario,
anisotropy-related metrics (PA and DiA) behave similarly. The
other AMURAmetrics detect the underlying change and grow with
f , presenting qMSD, ϒ1/2 and RTOP similar but higher slopes of
opposite sense compared to MD, which decreases with f , begin
the change of the RTAP almost identical to the one shown by the
MD. On the other hand, when MD is set to constant, Figure 2B,
all the AMURA measures are able to detect the changes in the
signal, and the DiA presented a similar steep rate compared to the

Frontiers inNeuroscience 06 frontiersin.org25

https://doi.org/10.3389/fnins.2023.1106350
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Martín-Martín et al. 10.3389/fnins.2023.1106350

FA, and higher steep rate values were appreciated in the case of
APA. This example illustrates that, although interpretation of some
AMURA measures can be similar to DTI measures, they are not
really quantifying the diffusion signal in the same way. The variety
of AMURA measures allows not only to detect similar patterns
compared to DTI, but also to find complementary results.

3.2. ROI based statistical analysis

Eleven different measures were considered for the analysis:
four DT-based measures (FA, AD, MD, RD) and seven AMURA-
based (RTOP, RTAP, RTPP, qMSD, ϒ1/2, APA, and DiA). Table 2
shows a p-value scheme for the 48 ROIs considered for each of
the measures. Those ROIs that exhibit differences with statistical
significance above 95% (p < 0.05) are highlighted in green and
above 99% (p < 0.01) in amber. The size of the effect (Cohen’s D)
is shown for those ROIs with significant differences (in bold face
those values in which D > 0.5).

Note that those metrics based on the DT showed a limited
amount of differences with only three ROIs with statistically
significant differences above 99% for EM vs. CM, two for CM vs.
EM and two for CM vs. HC. In the EM vs. HC comparisons,
the highest differences between AMURA and DTI metrics, with
a greater number of statistically significant results for AMURA,
were found: even in those cases in which the DT found differences,
like the pontine crossing tract (PCT), the equivalent AMURA
metrics showed a smaller p-value and higher effect sizes. RTOP,
qMSD, and DiA were the metrics providing a higher number of
statistically significant differences with the higher significance (see
amber ROIs) and the greater effect size.

Regarding the other two sets of comparisons (CM-EM and
CM-HC), AMURA metrics showed no clear higher number of
differences compared to DTI metrics. In fact, AD and MD were
able to detect more differences in the comparisons between CM and
EM, coherently with previous studies (Planchuelo-Gómez et al.,
2020b). This case suggests the complementary nature of DTI and
AMURA. As shown in the preliminary example, both methods are
quantifying different microstructure effects. Thus, AMURA seems
more sensitive to changes between EM and controls, while DTI
seems more sensitive to changes between the two types of migraine.

It is important to note that in all three comparisons, RD did
not find any significant differences in any ROI, which is consistent
with the findings reported in Planchuelo-Gómez et al. (2020b).
Therefore, to streamline the presentation of data in the figures and
tables that follow, RD will be omitted in the following experiments.

To better understand the behavior of both sets of measures, let
us deeply analyze three specific regions. We selected the PCT, right
inferior cerebellar peduncle (ICP-R) and the right external capsule
(EC-R) for being the ones with the highest number of differences
and the greatest effect sizes in Table 2. For each ROI, a box plot
of the three groups is shown for each measure in Figure 3A. The
boxes mark the median and 25 and 75 percentiles of the values of
the differentmeasures over the skeleton of the FA for all the subjects
in each group. For better visualization, the median of each group is
marked in red. The box plots are repeated in Figure 3Bmerging EM
and CM in a single group that includes all migraine patients.

In the PCT, regarding DTI, the statistical analysis found
differences between EM and HC for MD and AD, and between
CM and HC for AD, but no differences were found between both
migraine groups. In Figure 3A, we can see that, actually, MD
showed a higher median value of EM and CMwhen compared with
HC. These differences were kept in Figure 3B when considering
the joint migraine group. On the other hand, AMURA showed
significant differences between EM-HC and CM-EM. Only RTPP
(a metric related to AD) and ϒ1/2 Regarding the other two sets
of comparisons (CM-EM and CM-HC), AMURA metrics showed
no clear higher number of differences compared to DTI metrics.
In fact, AD and MD were able to detect more differences in the
comparisons between CM and EM. This would mean that AMURA
better discriminates EM in this ROI. According to Figure 3A, that is
precisely what is happening. See, for instance, RTOP and qMSD. In
both cases, there is almost no difference betweenHC and CM, while
EM shows smaller median and a reduced variance. On the other
hand, RTPP behaves more similarly to AD: both migraine groups
were similar but differ from the control-group.

For the ICP-R, according to Table 2, MD and AD differences
were found for the EM-HC case, AMURA found differences for
EM-HC and CM-HC and no differences were found for CM-EM. If
we check Figure 3A we can see that bothmigraine groups presented
similar values in this ROI. Statistically significant differences were
found between CM and HC, presenting the RTOP, qMSD, and
RTAP lower values in CM.

A similar effect can be observed in the EC-R, where no
differences were found for DTI parameters, but for AMURA in the
comparisons between HC and the two migraine groups. If we see
Figure 3A, we can observe that AMURAmetrics (RTOP and qMSD,
for instance) discriminated CM and HC better than MD and AD.
While in the MD and AD cases there is a reduction in the variance
of the CM group, the change in the median is smaller, compared to
CM and EM. If we pay attention to Figure 3B, we can see migraine
and HC showed similar AD andMD values, while differences could
be appreciated with RTOP, qMSD, and RTAP.

3.3. E�ect size

In Table 2, the values of the Cohen’s D were shown for those
ROIs with significant differences. Figure 4 shows the absolute value
of Cohen’s D for eight selected ROIs (those with the largest number
of differences) and for the three group comparisons.

The comparison between EM and HC, the AMURA metrics
showed the largest effect sizes as measured by larger Cohen’s
D-values. Specifically, qMSD, RTOP, and DiA were consistently
getting values over 0.5 (the threshold for medium effect) and, in
some cases, near 0.8. In the right external capsule (EC-R), for
instance, most AMURA metrics showed a moderate-large effect
size while DTI metrics did not get to 0.5. Even in those regions
where DTI values showed statistical differences and a moderate
effect (PCT, ML-R), AMURA outperformed them. There is only
one case, the MD in the ICP-R, where a DTI metric showed a
moderate effect size. However, if we check Table 2, we can see that
the effect size for MD is 0.75, but this value was slightly lower than
the value for the qMSD (0.75 vs. 0.76).
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TABLE 2 Results of the ROI-based statistical analysis and Cohen’s D: EM vs. HC, CM vs. EM, and CM vs. HC.

Two-sample t-tests for DTI and AMURA measures and each of the ROIs defined by thee JHU WM atlas. The p-values represent the probability that a certain measure has identical means for

both groups. ROIs exhibiting differences with statistical significance above 95% (p < 0.05) are marked in green and above 99% (p < 0.01) in amber. The Cohen’s D of those ROIs showing

statistical differences is included.

Regarding the comparison between CM and EM (Figure 4B),
most measures showed low effect sizes, both for DTI and AMURA.
The middle cerebral peduncle (MCP) for the AD and the right
sagittal stratum (SSR) showed Cohen’s D-values over 0.5 for the
AD, while AMURA only achieved medium effects in the pontine
crossing tract (PCT).

Finally, in the comparison between CM and HC (Figure 4C),
the right external capsule (EC-R), the right medial lemniscus
(ML-R) and the left medial lemniscus (ML-L), the APA and
the DiA reached absolute values of Cohen’s D higher than 0.5,
showing at the same time significant differences. FA also showed
moderate effect in ML-R and ML-L, while RTOP, qMSD, and
ϒ1/2 showed values over 0.5 in the right inferior cerebellar
peduncle (ICP-R).

It is also interesting to analyze the behavior of each measure
over the whole WM. Figure 5 shows the absolute Cohen’s D in the
whole WM for each measure. The biggest effect sizes were obtained
for the comparison between EM vs. HC for AMURA. Coherently,

this comparison also produced the highest number of ROIs with
significant differences. The qMSD or the RTOP measures reached
absolute Cohen’s D-values close to 0.6, and, respectively, 27 and 22
ROIs with significant differences for the ROI analysis, 43 and 41
in TBSS. On the other hand, the comparison between CM and HC
presented the lowest Cohen’s D-values, none of them reaching 0.5.
Regarding the comparison between CM and EM, the AD, MD were
the measures with greatest Cohen’s D-values, over 0.5.

3.4. Change of the sample size

Figure 6 shows the effects of changing the sample size
for different DTI and AMURA-based measures for the three
comparisons considered. We have selected 8 out of 11 metrics
for better visualization of the graphics. Among the DTI measures,
results with MD showed a relatively high number of ROIs
with statistically significant differences using bigger samples sizes,
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FIGURE 3

Boxplots of the distribution of di�erent measures for EM, CM, and HC for three specific regions: PCT, ICP-R, and EC-R. The star marks those regions
with statistically significant di�erences in the ROI analysis. (A) 3 sets (HC, CM, EM). (B) 2 sets (HC and migraine).

especially for the EM-CM comparison, as can be seen in Figure 6C.
However, even in that case, the number of significant ROIs
drastically decreased for a group sample size of 40. In addition,
few ROIs with statistically significant differences were found
for the rest of DTI measures and for the other two group
comparisons, in any sample size, which made the assessment
of the relationship between DTI measures and sample size
unfeasible.

Results showed a stable behavior of AMURA measures in
relation to the sample size, which can be understood as a linear
dependence between the group sample size and the number of
statistically significant ROIs. In Figure 6A, this behavior can be
better understood and interpreted in measures such as qMSD,
which was the most robust one in the comparison between EM and
HC. Furthermore, RTOP, qMSD, and DiA also showed a robust
behavior in the CM vs HC comparison. Notice that AMURA
measures reached the lack of statistical significance ROIs for a

group sample size of 10. However, when reducing the sample size
to half (N = 25), most AMURA metrics still were able to find
differences between groups, while only a few differences remained
for the DTI case.

In order to better understand this effect, we now analyze
the behavior of the measures in selected ROIS. We have chosen,
according to results in Table 2, those 13 regions in which DTI
measures showed differences with the original sample size for
EM vs. HC (see Figure 7A). For those 13 ROIs, in 7 of them FA
showed significant differences for N = 50, 5 for MD and 5 for
AD (see ROIs marked in amber). Then, we look at the results
for those specific ROIs for a reduced sample size of N = 25.
Note that, in that case, when the number of subjects is reduced
to half, the FA was only able to detect one ROI (out of 7), MD
only one (out of 5), and AD none (ROIs marked in red). When
we look to the AMURA metrics, we see that they were able to
still keep most of those differences even for a reduced sample size
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FIGURE 4

Absolute value of e�ect sizes (absolute Cohen’s d) for associations between (A) EM and HC; (B) EM and CM; (C) CM and HC. Di�erent DTI and
AMURA metrics are considered for eight selected ROIs (MCP, PCT, SCC, ML-R, ML-L, ICP-R, SS-R, EC-R) according to the JHU WM Atlas. The star
marks those regions with statistically significant di�erences in the ROI analysis.

(see ROIs marked in green): DiA and APA, anisotropy measures
similar to the FA, were able to, respectively find 4 and 7 out of
the original 7 FA ROIs. RTAP, and ϒ1/2 succeed in finding 2 of
the 5 MD ROIs, while RTOP finds 3 and qMSD 4 of them. In
addition, with RTPP, 2 out of the 5 AD ROIs were identified for
the reduced sample size. All in all, for this comparison, AMURA
outperformed DTI in keeping the differences even for a smaller
sample size.

As an illustration, in Figure 7B, the 13 considered ROIS
are depicted. For each ROI, the metrics that showed significant
differences for a sample size of N = 25 are displayed.

3.5. TBSS (original sample)

As we have previously stated, the ROI analysis carried out
in the previous sections could be an illustrative example of the
performance of the different metrics and it gives a valuable

insight on the relation among them. However, since no statistical
correction was considered, the results could not be acceptable
for clinical studies. Thus, in order to mimic an actual clinical
study, we have now repeated the analysis using TBSS for the three
comparisons.

Using the DTI measures (FA, MD, AD, and RD), statistically
significant differences between CM and EM patients were observed
for two parameters. Patients with CM showed lower AD and MD
values than EM in 40 and 38 out of 48 regions from the JHU-
WMAtlas, respectively. No statistically significant differences were
found using DTI measures between EM and HC or between CM
and HC.

For the AMURA metrics, the comparison between patients
with EM and HC showed the highest number of parameters with
statistically significant differences. Significant lower RTOP, RTAP,
qMSD, APA, DiA, and ϒ1/2 values in EM compared to HC were
found in 41, 39, 43, 27, 29, and 9 ROIs out of 48, respectively.
Concerning the comparison between both groups of patients,
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A B C

FIGURE 5

Absolute value of Cohen’s D-values for the three group comparisons in the Full WM: (A) Episodic Migraine (EM) vs. Healthy Controls (HC); (B) EM vs.
Chronic Migraine (CM); (C) CM vs. HC. DTI and AMURA measures are depicted. For each measure, the total number of ROIs that presented
statistically significant di�erences obtained with the ROI and TBSS statistical approaches are also noted.

A B C

FIGURE 6

Number of ROIs with statistically significant di�erences by the resampling of di�usion measures reducing the number of subjects per group (sample
size). (A) Episodic Migraine (EM) vs. Healthy Controls (HC). (B) Chronic Migraine (CM) vs. HC. (C) CM vs. EM. No statistical correction was considered.
For each case the median of 5,001 permutations considered.

higher values in CM compared to EM were identified for the RTPP
and ϒ1/2 in 4 and 32 regions, respectively.

Figure 8 shows the TBSS results including all the ROIs that
presented statistically significant differences together with the FA
skeleton. On the one hand, for EM vs. HC and CM vs. HC
comparisons, all the AMURA measures which showed significant
differences are merged and depicted in the figure, that is, RTOP,
RTAP, APA, qMSD,ϒ1/2 and only DiA for EM vs. HC. On the other
hand, DTI and AMURA measures can be distinguished in the last
CM vs. EM comparison. For DTI, the merged measures depicted
are AD andMD, while for AMURA are RTPP andϒ1/2. As it can be
seen, AMURA measures showed differences in group comparisons
where the DTI ones did not, as shown in the green circles. A
summary with the previous TBSS results regarding the number of
ROIs and the group comparisons can be found in Figure 9.

3.6. Analysis of stability

Figure 10 depicts the average values of CQV for all the DTI
and AMURA-based diffusion measures. The measures with the
highest stability (lowest CQV) were the RTPP and the APA, with an

approximate average CQV of 2% considering all the regions. Other
measures with relatively high stability were the three DTI measures
(FA, MD, and AD), ϒ1/2 and DIA, with CQV average values
between 2% and 5%. The remaining DTI and AMURA descriptors
(RD, RTAP, and RTOP), presented a moderate-high stability, with
CQV average values between 5% and 10%. The descriptor with the
lowest stability was the qMSD, with CQV average values between
15% and 20%.

Regarding the comparisons between the three groups of
interest, after reducing the group sample size to 45 subjects, the
assessment of the CQV 95% CI showed that the HC presented
a general higher variability than patients with EM and CM. The
parameters with a higher number of regions with statistically
significant differences betweenHC andmigraine patients according
to the 95% CI were the three AMURA measures (RTOP, RTPP,
and RTAP) and the MD, with 14–22 regions presenting differences.
Additionally, in the comparison between HC and CM, the CQV of
APA orϒ1/2 were significantly higher inHC thanCM in 13 regions.
The number of regions with CQV differences between CM and EM
was lower compared to the comparison betweenHC and the patient
groups. FA and MD were the descriptors with a higher number
of regions (nine) that showed higher variance in EM compared to
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FIGURE 7

Significant ROIs found for a reduced sample size (N = 25). (A) Table of ROIs found at N = 25 compared to the original sample size (EM vs. HC). In
amber, the ROIS with di�erences for DTI at the original sample size; in red, those ROIS with di�erences for DTI for a reduced sample size (N = 25); in
green, those ROIS with di�erences for AMURA for a reduced sample size (N = 25). (B) The 13 ROIs detected by DTI at the original sample size are
shown in the white matter. For each ROI, we have added the label of those metrics that show significant di�erences for a sample size of N = 25.

CM, andMDwas also the parameter withmore regions (eight) with
significantly higher variance in CM.

4. Discussion and conclusions

In this study, we assessed the viability of advanced diffusion
descriptors obtained with a novel approach, AMURA, in
comparison with traditional DTI parameters. To this end, their
capability to discriminate difference between clinical groups of
interest was compared, together with the stability of these results for
reduced sample sizes. Using synthetic and real data with a single-
shell and low b-value, we observed that AMURA is sensitive to
changes of parameters associated with the dMRI signal, showing
a higher capability of discrimination between clinical groups, even
for decreased sample sizes. Specifically, with AMURA we detected
a larger number of ROIs with statistically significant differences
between groups, or results complementary to those identified with
DTI, presenting higher effect size but lower stability than DTI
metrics.

Advanced diffusion descriptors such as RTOP, RTAP and APA
have shown to be useful for the analysis of the WM of the brain
(Aja-Fernández et al., 2020; Planchuelo-Gómez et al., 2020b,c).

However, their conventional calculation requires acquisition
protocols including several b-values, a high number of diffusion
gradient directions and very long processing times. This makes
them unfeasible for their use in clinical practice or in many
commercial MRI scanners. Besides, the use of these metrics in
retrospective studies is usually impossible since the acquisition
protocols do not allow for it.

AMURA was proposed to allow the estimation of apparent
versions of these advanced diffusion measures from reduced
acquisitions (Aja-Fernández et al., 2020, 2021, 2022). It provides a
fast and straightforward method to compute them from a single
shell and very short processing times. Metrics calculated with
AMURA have shown a high correlation with measures calculated
using a multishell approach, such as MAP-MRI (Özarslan et al.,
2013), MAPL (Fick R. H. et al., 2016), or MiSFIT (Tristán-
Vega and Aja-Fernández, 2021), for high b-values (at least
2,000 s/mm2). For lower values, these measures show a weaker
correlation since the underlying features measured are better visible
at higher b-values (Aja-Fernández et al., 2020, 2022). However,
we hypothesized that AMURA metrics can still provide useful
information at lower b-values, complementary to that obtained
from DTI-based measures. This paper focuses precisely on that
hypothesis and tries to elucidate whether AMURA-based measures
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FIGURE 8

Results of TBSS analysis: statistically significant clusters of voxels distinguishing between DTI and AMURA approaches. Mean FA image at the
background, FA skeleton colored in blue and significant ROIs colored in red-yellow. (A) Episodic Migraine (EM) vs. Healthy Controls (HC): merged
AMURA measures (RTOP, RTAP, APA, qMSD, ϒ1/2, and DiA). (B) CM vs. EM: merged DTI (AD and MD) and AMURA (RTPP and ϒ1/2) measures. DTI
measures do not detect any significant ROI either in EM vs. HC nor CM vs. HC. Green circles showed the areas where AMURA measures showed
di�erences in group comparisons where the DTI ones did not.

FIGURE 9

Summary of the statistically significant di�erences found with DTI (in red) and AMURA measures (in dark blue) for the comparison of the three
groups. (A) ROI based analysis (no statistical correction). (B) TBSS analysis (with family-wise error correction).
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FIGURE 10

Mean CQV for each group of study considering the 48 ROIs of JHU-WM atlas. Healthy Controls (HC), Episodic Migraine (EM), and Chronic Migraine
(CM). DTI and AMURA measures are shown. The measures with the higher stability have lower CQV.

obtained from standard DTI-type acquisitions are useful in group
studies.

To that end, we have resorted to migraine as our target
pathology, because of several reasons. First, diffusion MRI studies
in the literature show that differences between patients and HC,
or between different groups of patients (EM vs. CM) are subtle, as
studies using small sample sizes have often reported no differences
and even contradictory findings have been published (Chong and
Schwedt, 2015; Messina et al., 2015; Neeb et al., 2015; Gomez-
Beldarrain et al., 2016; Shibata et al., 2018; Coppola et al., 2020;
Planchuelo-Gómez et al., 2020a).

To study the viability of AMURA-based measures, two
different statistical analysis were carried out, including a ROI-
based analysis and conventional TBSS, together with the assessment
of the behavior of the diverse measures from reduces sample
sizes and of the stability. We show that AMURA measures
obtained from DTI-type acquisitions were able to successfully find
statistically significant differences between the three groups under
study (HC, EM, and CM), including differences that were not
detected using DTI-based measures. Although AMURA showed
additional differences between groups in a preliminary previous
study (Planchuelo-Gómez et al., 2020c), the magnitude of the
additional differences, particularly those between EM and HC, was
unexpected.

With a single-shell and low b-value acquisition, AMURA
shows itself as a method complementary to DTI, as reflected
by the results from the TBSS analysis (Figure 9B). On the one
hand, DTI-based AD and MD showed a good performance for
the comparison between EM and CM, with a great number of
ROIs with statistically significant differences, while AMURA-based

measures detected equivalent but a lower number of differences. On
the other hand, in the comparison between EM andHC, differences
were only found using AMURA-based measures, and in a relatively
large number of ROIs. The reason of these differences may be
that both techniques represent changes associated with diverse
pathophysiological mechanisms, as shown in the example with
synthetic data, where only AMURA was able to identify changes
of the free water fraction. Further studies on disorders with better
characterized pathophysiology than migraine must be carried out
to understand the different sensitivity to varied biological processes
of DTI and AMURA.

Regarding the behavior of the DTI and AMURA measures in
the synthetic experiment for diverse free water fractions, some
AMURA parameters showed higher sensitivity to the free water
changes. For constant FA, qMSD,ϒ1/2, and RTOP presented higher
changes for small changes of the free water fraction than the MD,
while DiA and APA remained constant. For constant MD, DiA and
FA showed similar changes and the APA showed higher changes
than the FA, without constant values of any AMURA parameter.
These results suggest that AMURA can better determine differences
caused by changes of free water fraction in comparison with DTI,
as some parameters presented higher sensitivity. Therefore, the
consequence would be that AMURA measures may be able to find
subtler differences between clinical groups compared to DTI, in line
with previously reported results in migraine (Planchuelo-Gómez
et al., 2020c).

The complementary nature of DTI- and AMURA-based
measures is confirmed by the ROI-based analysis (Table 2 and
Figure 9A). In the comparison between CM and EM, for instance,
the MD was the metric that detected a higher number of regions
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with statistically significant differences, but there were some ROIs
with differences exclusively identified by one or more AMURA-
based measures (e.g., the PCT). In the same way, there were ROIs
with differences exclusively found with the MD or AD (e.g., the
SS-R), and ROIs with differences identified by both DTI- and
AMURA-based measures (e.g., the EC-L).

If we focus on those regions selected in Figure 3 (PCT, ICP-
R, and EC-R) we can better understand what is happening with
the behavior of the distribution of the different metrics inside
the selected ROIs. First, let us focus on the anisotropy measures,
FA, APA, and DiA. According to Table 2, there are no differences
between groups for the FA for any of the three ROIs. On the other
hand, APA and DiA reflected differences for EM vs. HC (for the
three ROIs), for EM vs. CM (in the PCT) and CM vs. HC (both
in EC-R). These results are confirmed by the boxplots in Figure 3,
where AMURA-anisotropy measures were able to better separate
the three groups. It is of interest to note that when migraine is
considered as a single set, results are more similar for the three
metrics, confirming that anisotropy differences between controls
are migraine were really present. Regarding the other metrics, AD
and MD were able to find significant differences in most cases for
the three ROIs, according to Figure 3. However, AMURA metrics
always find the same differences but with a greater size effect. As an
example of this, we can focus on the PCT for EM vs. HC, where we
can see that all the metrics succeed in finding differences but with
different effect sizes.

All in all, from the results in Table 2 and Figure 3, we can see
that the behavior of AMURA and DTI is similar, although MD and
AD showed a lower variance for the CM group. The separation
between the groups follows very similar trends within the three
ROIs considered. However, AMURA manages to better find these
existing differences, and with a larger effect size.

The sensitivity of AMURA-based measures was analyzed
by further comparing the effect size found in the different
comparisons between groups. A classical method to determine
the magnitude of the differences between groups is Cohen’s
D, which considers the variability of the sample in relation
to the average value. As illustrated in Figures 4, 5, DTI-based
and AMURA-based measures showed comparable effect sizes for
the EM-CM and CM-HC comparisons. In the first case, DTI-
based AD and MD reached medium effect sizes (0.5; for the
whole WM), while Cohen’s D for FA barely exceeded small
effect size threshold (0.2). For this last comparison, Cohen’s
D for AMURA-based measures varied between the small and
the medium effect thresholds. For the comparison between CM
and EM, however, Cohen’s D-values were notably lower for all
measures, barely reaching 0.3 for DTI-based AD. Finally, regarding
the comparison between EM and HC, while DTI-based FA and
MD reached Cohen’s D-values around 0.3, AMURA-based RTOP,
qMSD, and DIA reached values over 0.5. These differences in effect
sizes among different measures and different group comparisons
offer a good explanation for the results shown in Table 2
and Figure 9.

Whereas it may be tempting to think about EM and CM as
different degrees of the same pathological process, recent results
(Coppola et al., 2020; Planchuelo-Gómez et al., 2020a) support
the hypothesis of EM and CM being different entities at the

microstructural level, each accompanied by different changes in
the WM. Following this hypothesis, DTI-based measures seem
well-fitted to detect WM changes in CM, while AMURA-based
methods perform remarkably well for the changes that occur in
EM. Although the interpretation of changes in DTI or AMURA-
based measures is not straightforward, results suggest that WM
changes in EM with respect to HC (specifically, lower RTOP and
RTAP) might be related to changes in the transverse diffusivity,
while changes in CM with respect to EM (such as higher RTPP and
lower AD)might be more related to changes in the diffusivity in the
axonal or main direction. As previously stated, the complementary
use of DTI andAMURAmay be useful to detect changes of different
nature using data obtained with a low b-value and single-shell
acquisition. The specific pathophysiological mechanisms related to
changes of diverse essence in AMURA must be assessed in future
studies.

Considering the difficulty to obtain large sample sizes in group
studies, it is important to assess the behavior of the diverse diffusion
measures when the number of subjects per group is reduced. As
depicted in Figure 6, both DTI-based and AMURA-basedmeasures
shared the expected trend, meaning that the number of ROIs with
statistically significant differences decreases as the sample size is
reduced. However, as shown in the experiment in Figure 7, when
the number of samples is reduced to half, DTI metrics were no
longer able to detect the differences between groups in most ROIs,
whereas AMURA could. From the 13 ROIs considered in the
experiment, DTI lost 11 of them when reducing the sample size,
while AMURA only lost 2 of them. This effect favors the usage of
AMURA metrics in studies with a small sample size.

The assessment of the stability provides another interesting
perspective for the evaluation and comparison between different
diffusion measures. The diffusion measures that showed higher
stability (lower CQV) were AMURA-based APA and RTPP, and the
DTI-basedmeasures, while AMURA-based qMSD seems to present
low stability. This high variability was expected, since qMSD is a
quadratic measure, so it must show a greater range of variability.
Interestingly, it presented a relatively high number of regions
with statistically significant differences in the comparisons of both
migraine groups against controls for diverse sample sizes despite
their low stability. Therefore, the results of this study suggest that
qMSD is able to characterize specific microstructural properties
that are particularly difficult to find with other parameters.
Moreover, as it has been suggested previously in this section,
differences between both groups of patients with migraine and
controls may be qualitatively distinct compared to the differences
between CM and EM. Furthermore, qMSD is especially sensitive to
short diffusion time scales (Ning et al., 2015).

It is important to note that the AMURA-based measures
employed in this paper must be considered as apparent values
at a given b-value, and their interpretation in terms of the
microstructure properties may be different from that of the original
EAP-based diffusion measures. Although the relationship between
AMURA-based measures and their original counterparts deserves
further study, in this paper we deliberately chose not to pursue this
comparison to focus on the viability of AMURA-based measures to
complement DTI in scenarios where EAP-based measures cannot
be obtained.
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This study presents limitations that must be pointed out. First,
the pathophysiological interpretation of the different trends of the
AMURA-based measures is not totally clear, so a description of the
microstructural properties according to the values of each measure
cannot be provided. As mentioned previously, the apparent nature
of AMURA-based measures and their complex relationship with
the original EAP-based measures prevent the direct adoption of
interpretations from those EAP-based measures. Microstructural
studies like those conducted for DTI-based measures (Alexander
et al., 2007; Winklewski et al., 2018) are needed to fully understand
the results obtained with AMURA.

Furthermore, the results obtained in this study cannot
be directly translated to other pathologies affecting the
WM of the brain. Even though AMURA can be expected
to be a useful information to detect differences in group
studies targeting other diseases, further research is needed to
confirm that.

In conclusion, this study showed that the new AMURA-based
measures can be easily integrated in group studies using single-shell
dMRI acquisition protocols, and they can reveal WM changes that
may remain hidden with traditional DT-based measures. The wide
variety of AMURA, a fast and relatively simple approach, provides
measures that allow to extract values that are able to find differences
between groups for restricted sample sizes and dMRI acquisition
protocols.
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Axon radius is a potential biomarker for brain diseases and a crucial tissue

microstructure parameter that determines the speed of action potentials.

Diffusion MRI (dMRI) allows non-invasive estimation of axon radius, but accurately

estimating the radius of axons in the human brain is challenging. Most axons in

the brain have a radius below one micrometer, which falls below the sensitivity

limit of dMRI signals even when using the most advanced human MRI scanners.

Therefore, new MRI methods that are sensitive to small axon radii are needed. In

this proof-of-concept investigation, we examine whether a surface-based axonal

relaxation process could mediate a relationship between intra-axonal T2 and T1

times and inner axon radius, as measured using postmortem histology. A unique

in vivo human diffusion-T1-T2 relaxation dataset was acquired on a 3T MRI

scanner with ultra-strong diffusion gradients, using a strong diffusion-weighting

(i.e., b = 6,000 s/mm2) and multiple inversion and echo times. A second reduced

diffusion-T2 dataset was collected at various echo times to evaluate the model

further. The intra-axonal relaxation times were estimated by fitting a diffusion-

relaxation model to the orientation-averaged spherical mean signals. Our analysis

revealed that the proposed surface-based relaxation model effectively explains

the relationship between the estimated relaxation times and the histological axon

radius measured in various corpus callosum regions. Using these histological

values, we developed a novel calibration approach to predict axon radius in other

areas of the corpus callosum. Notably, the predicted radii and those determined

from histological measurements were in close agreement.
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brain, axon radius, diffusion MRI, T2 relaxation, T1 relaxation, histology
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GRAPHICAL ABSTRACT

Surface-based relaxation model to predict axon radius.

Highlights

- Diffusion-relaxation MRI data were acquired using a high b-
value acquisition.

- A diffusion-relaxation model to estimate the intra-axonal T2 and
T1 was proposed.

- The histological inner axon radius modulated the estimated
relaxation times.

- A surface-based relaxation model predicted the axon radius in
the corpus callosum.

- The predicted axon radii agreed with the mean effective
histological radius.

1. Introduction

The speed of action potentials along axons is partly determined
by their radii (Goldstein and Rall, 1974). Axon radius explains
the biggest variance in conduction speed, as demonstrated by
previous studies (Hursh, 1939), with larger axons conducting
faster than those with smaller radii (Waxman and Bennett, 1972;
Costa et al., 2018; Drakesmith et al., 2019). Therefore, accurately
measuring axon radii in vivo is essential for better understanding
the neural mechanisms underlying brain function and their impact
on diseases.

The diffusion Magnetic Resonance Imaging (dMRI) signal is
sensitive to axon radii if strong diffusion encoding gradients (i.e.,
up to 300 mT/m in Connectom scanners (Jones et al., 2018) and
1,500 mT/m in animal preclinical scanners) are used (Assaf et al.,
2004, 2008; Assaf and Basser, 2005; Alexander, 2008; Dyrby et al.,
2013; Duval et al., 2015; De Santis et al., 2016; Veraart et al.,
2020; Barakovic et al., 2021a). However, the main limitation of
this approach is that the dMRI signals from axons with radii
smaller than ∼1–2 µm are practically indistinguishable from each
other, even when the most advanced human Connectom scanners
with ultra-strong (300 mT/m) gradients are employed in the data
acquisition (Nilsson et al., 2017). Today, the challenge is that
the peak of the axon radius distribution per voxel is below one
micrometer in most brain regions, as observed in histology. Hence,

most axon radii are below the lower bound for detection (Edgar
and Griffiths, 2014; Dyrby et al., 2018). For an overview of the
different strategies that have been employed to measure axon radius
with dMRI, the reader is referred to Assaf and Basser (2005),
Assaf et al. (2008, 2013), Alexander et al. (2010, 2019) Dyrby et al.
(2013, 2018), Novikov et al. (2019), Fan et al. (2020), Jelescu et al.
(2020), Veraart et al. (2020), Barakovic et al. (2021a), Pizzolato et al.
(2023).

Theoretical reasons explain the lower sensitivity of dMRI
to the inner radius of smaller axons. The commonly employed
model [i.e., Gaussian phase approximation in the long-pulse limit
(van Gelderen et al., 1994)] predicts an intra-axonal dMRI signal
attenuation that depends on the fourth power of the radius r.
Moreover, since the measured intra-axonal signal per voxel is the
sum of all the individual intra-axonal signals weighted by each
axon’s contribution to the signal (scaling by an extra-factor r2),
larger axons contribute more than smaller axons to the measured
signal. After considering these two factors together, an approximate
expression for the mean “effective” dMRI-based radius reff per
voxel can be derived, which depends on the higher-order moments
of the unknown axon radius distribution. The resulting analytical

expression reff ≈
(〈

r6〉 / 〈r2〉) 1
4 (where 〈〉 denotes the average over

the distribution) demonstrates that the estimate is heavily weighted
by the right-hand tail of the axon radius distribution (Burcaw et al.,
2015; Veraart et al., 2020). Consequently, the estimated mean axon
radius is mainly affected by the bigger axons from the fractions of
axons larger than the lower bound. This explains why estimations
may appear overestimated compared to histology (Alexander et al.,
2010; Dyrby et al., 2018).

Finding another source of MRI contrast sensitive to the
size of axons smaller than the diffusion resolution limit is
essential. Various studies in porous media have demonstrated that
the interaction between the water molecules and the confining
pore surface reduces the observed transverse T2 relaxation
time (Brownstein and Tarr, 1977). This surface-based relaxation
mechanism allows pore size to be estimated (Hurlimann et al.,
1994; Slijkerman and Hofman, 1998; Sørland et al., 2007; Mohnke
and Hughes, 2014; Müller-Petke et al., 2015). Notably, a similar
T2 relaxation model to predict the size of cells was proposed
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previously (Brownstein and Tarr, 1979), and the idea of applying
it to estimate the axon radius was suggested by Kaden and
Alexander (2013). However, there is a lack of validation studies to
demonstrate whether the inner axon radius modulates the intra-
axonal relaxation times. This might be explained by the fact that
approaches to estimating the intra-axonal relaxation times have
only been developed recently (Veraart et al., 2018; McKinnon and
Jensen, 2019; Barakovic et al., 2021b; Tax et al., 2021; Pizzolato et al.,
2022). Furthermore, to our knowledge, no dataset is available that
offers the combined histological information and relaxometry MRI
data from the same sample, which are necessary for the estimation
and comparison of these parameters.

The dMRI signals arising from the intra-axonal space can
be isolated if a sufficiently high b-value is employed (i.e.,
b > 4,000 s/mm2 for in vivo data), which significantly attenuates
the signal from spins experiencing large displacements (Jensen
et al., 2016; McKinnon and Jensen, 2019). As the confining
axonal geometry restricts the self-diffusion motion of spins
inside axons (assuming a slow exchange between the intra- and
extra-axonal spaces), the strongly diffusion-weighted MRI signal
should come from the intra-axonal spins. Thus, it is possible
to fit a diffusion-relaxation model of intra-axonal relaxation
to strongly diffusion-weighted MRI data collected at multiple
diffusion gradient directions and different echo times. This
approach, combined with taking the spherical mean (orientational
average), was employed previously to estimate the mean intra-
axonal T2 time per voxel (McKinnon and Jensen, 2019) and
bundle (Barakovic et al., 2021b), unconfounded by fiber orientation
effects.

This proof of concept study investigates whether the intra-
axonal T2 and T1 relaxation times are related to the inner axon
radius and whether they can be employed to predict the mean
effective radius. To do this, (1) we implemented two acquisition
protocols and measured diffusion-T1-T2 and diffusion-T2 weighted
MRI data from three healthy volunteers, one of them scanned using
both sequences; (2) we employed a diffusion-relaxation model to
enable the estimation of both intra-axonal T2 and T1 relaxation
times by using the spherical mean signals from the acquired data;
(3) we fitted the estimated relaxation times to a surface-based
relaxation model that depends on the histological axon radius;
(4) using histology from some brain regions we calibrated the
surface-based relaxation model to enable predicting axon radius in
other brain regions, and (5) we compared the MRI-based estimated
axonal radii with those obtained from two postmortem histological
human brain datasets in several regions in the midsagittal Corpus
Callosum (CC) cross-section. Additional details are provided at the
end of the next section.

2. Theory

2.1. Surface-based relaxation model

Inspired by the standard surface-based relaxation model used
in porous media (Zimmerman and Brittin, 1957; Brownstein
and Tarr, 1979), we propose the following model described
in Figure 1 and Eqs. (1)–(2). We assume that in the intra-
axonal space, there are two distinct water pools in fast exchange

(Zimmerman and Brittin, 1957): the surface water immediately
adjacent to the axonal membrane, e.g., see Le Bihan (2007), and
the cytoplasmic water (i.e., axoplasm). The T2 and T1 relaxation
times of the surface water are shorter because this water layer is in
a more ordered state (both spatially and orientationally) than pure
water (Halle, 1999; Finney et al., 2004) and the cytoplasmic water,
due to the strong water-tissue interactions (Levy and Onuchic,
2004; Zhang et al., 2007). Moreover, the relaxation times of the
cytoplasmic water are expected to be smaller than those of pure
water and Cerebrospinal fluid because the water molecules in this
pool could interact with cytoskeletal elements and a higher number
of macromolecules (Beaulieu, 2002). The fast exchange assumption
is reasonable if we consider that water molecules, on average, travel
distances much larger than the axon radius for typical diffusion and
echo times, as employed in this study.

According to the general model provided by Zimmerman and
Brittin (1957), the inverse of the observed intra-axonal T2 can be
modeled by the linear combination of the inverse relaxation times
of the surface water and the cytoplasmic water pools, weighted by
their volume fractions. Although the volume of the surface water
layer is much smaller than the total intra-axonal volume, its T2 time
(Ts

2) is much shorter than that of the cytoplasmic water (Tc
2). It thus

could have a non-negligible impact on the observed intra-axonal
(Ta

2 ) time. These assumptions are summarized in the following
model:

1
Ta

2
=

V − Sε
V

1
Tc

2
+

Sε
V

1
Ts

2 (1)

≈
1

Tc
2
+

2ε

r
1

Ts
2

=
1

Tc
2
+

2ρ2

r
,

where ρ2 = ε
/

Ts
2 is the T2 surface relaxivity; S is the surface area

of the axonal membrane; V is the intra-axonal volume; ε is the
thickness of the water layer. Note that when assuming a cylindrical
axonal geometry, as commonly done in dMRI, the surface-to-
volume ratio depends on the inner axon radius, S/V = 2/r. An
equivalent expression was obtained for the intra-axonal T1 time.

1
Ta

1
≈

1
Tc

1
+

2ρ1

r
, (2)

Where ρ1 = ε
/

Ts
1 is the longitudinal surface relaxivity.

2.2. Axon radius estimation from
intra-axonal relaxation times

By inverting Eqs. (1) or (2) it is possible to predict the inner
axon radius from the estimated intra-axonal Ta

2 and Ta
1 relaxation

times, respectively.

r ≈
2ρ2

1
Ta

2
−

1
Tc

2

,

r ≈
2ρ1

1
Ta

1
−

1
Tc

1

.
(3)

However, this approach requires knowing Tc
2 and ρ2 or Tc

1 and
ρ1 in advance. As these parameters are unknown and cannot be
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FIGURE 1

Transmission electron micrograph of a myelinated axon (adapted) illustrating the employed relaxation model for the intra-axonal space, composed
of two pools (arbitrarily colored in green and red for illustrative purposes) in fast exchange (Zimmerman and Brittin, 1957). This model is equivalent
to the Brownstein and Tarr (1977) model in the fast diffusion limit. The structured water (Le Bihan, 2007) adjacent to the inner axon surface (red) has
a shorter T2 than the cytoplasmic water (green). As the cytoplasmic water (i.e., axoplasm) interacts with large proteins, organelles, and cytoskeletal
elements (LoPachin et al., 1991; Beaulieu, 2002), its T2 is shorter than pure water. An equivalent model was assumed for the T1 relaxation. [This
transmission electron micrograph was deposited into the public domain by the Electron Microscopy Facility at Trinity College]. This is a file from the
Wikimedia Commons, a collection of freely usable media files, under the terms of the GNU Free Documentation License, Version 1.2 or any later
version published by the Free Software Foundation (Source: https://en.wikipedia.org/wiki/File:Myelinated_neuron.jpg). This file is licensed under the
Creative Commons Attribution-Share Alike 3.0 Unported license (CC BY-SA 3.0). Any copy and remix of the original file must be distributed under the
same or compatible license as the original.

estimated for each brain voxel without additional data, here we
propose a histologically-informed calibration approach to calculate
them.

The calibration is based on assuming that any dependence of
Tc

2 or Tc
1 on the axon radius, owing to potential changes in the

intra-axonal structure with the axon size (e.g., density of proteins,
organelles, and cytoskeletal elements), is weak and can be neglected.
That is, the dependence of Ta

2 and Ta
1 on the axon radius is

dominated by the surface-to-volume ratio terms in Eqs. (1) and
(2). Therefore, we assume that Tc

2, ρ2, Tc
1 and ρ1 are constant

across axons with different sizes. Nevertheless, we noted that the
calibration process is equally helpful in predicting axon radius
when Tc

2 or Tc
1 linearly varies with the radius. In that case, the

linear models [Eqs. (1) and (2)] can be rewritten in terms of
two alternative parameters. For more details, see the discussion
subsection “Is the cytoplasmic T2 constant?”

In this study, we collected in vivo diffusion-T1-T2 MRI data in
a human brain to estimate Ta

2 and Ta
1 . We employed a reduced

diffusion-T2 relaxation sequence to validate our model further by
scanning the same subject and two additional healthy volunteers,
which allowed us to estimate Ta

2 . Subsequently, we used histological
information from four regions of interest (ROIs) located in the CC
of a postmortem human brain to measure the mean histological
axon radii. The mean intra-axonal relaxation times and histological
axonal radii estimated in the four ROIs were combined to estimate
Tc

2 and ρ2, and Tc
1 and ρ1 via linear regression (i.e., calibration step)

from Eqs. (1) and (2). Then, using the calibrated parameters, we
predicted axon radius in another eleven CC ROIs for each scanned
subject via Eq. (3). Finally, we employed a second histological
dataset containing data from nine postmortem human brains to
further validate our results. All the details are provided in the
“Methods” section.

3. Methods

3.1. Intra-axonal diffusion-relaxation
models

As in McKinnon and Jensen (2019), we assume that for
b = 6,000 s/mm2 the in vivo dMRI signal comes from the intra-
axonal space. Thus, the diffusion-T1-T2 relaxation model for the
measured signal M for a given b, diffusion gradient unit vector ĝ,
echo time (TE), repetition time (TR), and inversion time (TI) is

M(b, ĝ, TE, TI) = kPDfaMa(b, ĝ) exp
(
−

TE
Ta

2

)
(4)∣∣∣∣1− 2 exp

(
−

TI
Ta

1

)
+ exp

(
−

TR
Ta

1

)∣∣∣∣+ η,

where k is a scalar that depends on the MRI machine, pulse
sequence, image-reconstruction algorithm, digital converter, etc.;
PD is the proton density; fa is the intra-axonal water volume
fraction; Ma(b, ĝ) denotes the orientation-dependent diffusion-
weighted signal from the intra-axonal compartment; η is the
experimental noise, assumed to be additive; |x| denotes the absolute
value of x; Ta

2 and Ta
1 are the intra-axonal relaxation times.

Following the approach of Edén (2003), Lasiè et al. (2014),
Kaden et al. (2016a,b), Eq. (4) can be simplified by computing the
orientation-averaged spherical mean signal M̄ as:

M̄(b, TE, TI) ≈ K exp
(
−

TE
Ta

2

)
(5)∣∣∣∣1− 2 exp

(
−

TI
Ta

1

)
+ exp

(
−

TR
Ta

1

)∣∣∣∣ ,
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where Ta
2 and Ta

1 are the parameters to be estimated, along with
the constant K (per voxel) that is proportional to the intra-axonal
water volume fraction (i.e., K = kPDfaM̄a(b, ĝ)); it also depends on
the intra-axonal diffusivities via M̄a .

It is important to note that in Eqs. (4)-(5), the T1 relaxation
terms follow the standard relaxation model (Bydder et al., 1998),
which assumes an ideal inversion pulse (Pykett et al., 1983; Barral
et al., 2010). Other acquisition sequences may require different
models. For a comprehensive review of alternative relaxometry
sequences and models, please refer to Stikov et al. (2015).

The diffusion-relaxation model in Eq. (5) is a more general
version of the model proposed by McKinnon and Jensen (2019)
for an inversion recovery sequence incorporating T1 relaxation.
The diffusion-T2 model for dMRI data collected at multiple TEs
(McKinnon and Jensen, 2019) without considering T1 effects is,

M̄(b, TE, TI) ≈ K exp
(
−

TE
Ta

2

)
. (6)

3.2. MRI data acquisition and
preprocessing

Human brain MRI data were acquired from three healthy
volunteers, and one of them was scanned twice on a Siemens
Connectom 3T system with 300 mT/m diffusion gradients
(Cardiff University Brain Research Centre, Wales, UK). The ethics
committee approved the study, and the participant provided
written informed consent.

Two diffusion-relaxation protocols were implemented.
A longer diffusion-T1-T2-weighted imaging sequence was
designed to obtain independent estimates of the axon radius from
the first subject’s intra-axonal T1 and T2 times (male, 28 years
old). A reduced diffusion-T2 protocol was employed to scan three
subjects (age-range = 28–39 years, mean-age = 32.3 ± 4.8 years,
males), including the first subject that was also scanned with the
longer sequence. Accordingly, for the second sequence, the axon
radii were estimated from the intra-axonal T2 times.

The diffusion-T1-T2 relaxation sequence comprised four
images with b = 0 s/mm2 and 48 diffusion directions at
b = 6,000 s/mm2 (diffusion gradient, 275 mT/m; diffusion times
1/δ = 22/8 ms) for each of the following nine (TE, TI) combinations
(in ms): (80, 200), (110, 200), (110, 331), (150, 200), (80, 906), (110,
906), (110, 1,500), (150, 906), (150, 1,500). The TIs were chosen
empirically from relatively small to large values to obtain maps with
different visual contrasts without nullifying the WM signal. The
lowest TE was set to minimize the contribution of the myelin water
(Mackay et al., 1994) to the measured signal, and the largest TE was
chosen as a trade-off between image contrast and noise. For each
(TE, TI) pair, one additional image with b = 0 s/mm2 and opposite
phase encoding direction was acquired to correct susceptibility
distortions (Andersson et al., 2003; Andersson and Sotiropoulos,
2016). Figure 2 shows the nine pairs of TEs and TIs. The TR was
5,000 ms, and the voxel size was 2.5 × 2.5 × 3.5 mm3. Ten slices
were acquired with matrix size and field of view of 88 × 88 and
220 × 220 mm2, respectively. The acceleration factor was 2, and
the total acquisition time was 42 min.

The diffusion-T2 protocol employed a dMRI sequence that
was repeated by changing the TE, using the following four values
TEs = (73, 93, 118, and 150) ms with TR = 4,100 ms. The

other sequence parameters (i.e., acceleration factor, diffusion times,
b-value, diffusion directions, number of b0s images, diffusion
gradient strength, matrix size, and field of view) were equal to those
employed in the previous diffusion-T1-T2 sequence. The number
of slices was 46, and the voxel size was 2.5 × 2.5 × 2.5 mm3.
The acquisition time per TE was 5 min, and the total scan
time was 20 min.

Additionally, a structural T1–weighted (T1w) image was
collected for each subject using a 3D MPRAGE sequence with the
following parameters: TR = 2,300 ms, TE = 2 ms, TI = 857 ms,
voxel size = 1 mm isotropic, and flip angle = 9◦, for the purposes
of spatial normalization.

The nine diffusion-T1-T2 4D volumes with different TEs and
TIs, and the four diffusion-T2 4D volumes with different TEs
were preprocessed separately in the following order: (1) noise
level estimation and removal using the MP-PCA method (Veraart
et al., 2016) by using the matrix centering and patch-based
aggregation options (Manjon et al., 2013), as implemented in dipy
(Garyfallidis et al., 2014)1; (2) attenuation of the Rician-noise
dependent bias in the signal by implementing the postprocessing
correction scheme proposed by Gudbjartsson and Patz (1995) and
(3) motion, geometric distortions, and eddy current corrections
using the “topup” and “eddy” tools included in FSL (Andersson
et al., 2003; Andersson and Sotiropoulos, 2016).

3.3. Estimation of the intra-axonal
relaxation times

Diffusion-T1-T2 model: after computing the spherical mean
signal for each pair of the preprocessed diffusion-T1-T2 datasets
with different TEs and TIs (see Figure 2), the intra-axonal
relaxation times were estimated by fitting the diffusion-relaxation
model in Eq. (5) using the “L-BFGS-B” method for bound
constrained minimization included in the Scipy python library
(Virtanen et al., 2020),2 with the following bounds: 0 ≤ K <∞,
40 ≤ Ta

2 (ms) ≤ 2000, and 300 ≤ Ta
1 (ms) ≤ 5000. The bounds for

the intra-axonal relaxation times were chosen to be higher and
lower than those expected for the myelin water and Cerebrospinal
fluid (Mackay et al., 1994; Labadie et al., 2014), respectively.

Diffusion-T2 model: the estimation was performed by fitting
the diffusion-relaxation model in Eq. (6) to the spherical mean
signals estimated from the diffusion-T2 data, using the L-BFGS-B
method (Virtanen et al., 2020) with the following bounds: 0 ≤ K <

∞, 40 ≤ Ta
2 (ms) ≤ 2000.

3.4. Histological samples

Two histological datasets were employed. The first one
contains two histological samples measured on the same subject.
The first sample, which we call “Histology1,” was measured
and reported by Caminiti et al. (2009). For completeness, we
provide a summary of the histological procedures. Axon radii
were measured in four regions of interest (i.e., ROI2, ROI5,

1 https://dipy.org/

2 https://docs.scipy.org
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FIGURE 2

Orientation-averaged spherical mean signals for each pair of TE and TI (TE, TI) in ms. These images were used to fit the diffusion-relaxation model in
Eq. (5).

ROI8, and ROI10) in the midsagittal CC cross-section of a
postmortem human brain (female, 63 years old). These ROIs
include axons connecting the prefrontal, motor, parietal and
visual cortices, respectively. All analyses were performed with
Neurolucida 7 software (MBF Biosciences) and a digital camera-
mounted Olympus BX51 microscope. Three sagittal blocks of the
CC were removed from the brain. The sample was immersion-
fixed in 4% (w/vol) paraformaldehyde in phosphate-buffered saline
solution within 27–30 h of death, cryoprotected, cut frozen, and
stained for myelin. Axons were sampled within 112 × 87 µm2

frames divided into 25-µm squares. The axonal profiles were
chosen for measurement if they presented a dark complete or
nearly complete myelin ring with a clear center. Longitudinally
cut axons were excluded, and the radius of slightly obliquely cut
axons (which appeared as ellipses) was approximated to its smallest
radius. Since fixation artifacts were frequent, the sampling was
restricted to profiles that could be followed through the thickness of
the whole section. Limitations of the optical microscopy prevented
measurement of axons radius smaller than ∼0.17 µm. A different
number of axons were measured per ROI, ranging from 1,178
(ROI10) to 9,605 (ROI2) axons. No correction for shrinkage effects
was applied to the measured radii because accurate shrinkage
estimates were unavailable. For more technical details, see Caminiti
et al. (2009). The second sample, which we call “Histology2,”
was measured by the same team (Prof. Giorgio Innocenti) using
the same material and following the same sampling procedure.

The main difference was that this time, eleven ROIs (i.e., ROI0-
ROI10) encompassing the whole midsagittal CC cross-section were
analyzed, and the number of measured axons per ROI was smaller:
from 153 (ROI5) to 720 (ROI1) axons. It is important to note that
the spatial locations of ROI2, ROI5, ROI8, and ROI10 are the same
in both histological samples. However, the sampling procedure
employed in the Histology2 sample was repeated without including
the axons measured in the Histology1 sample. The anatomical
location of the ROIs in both histological samples and the number
of measured axons per ROI are displayed in Figure 3.

The second histological dataset, which we call “Histology3,”
was reported by Wegiel et al. (2018). This electron microscopic
study of the CC included nine control subjects (age-range = 4–
52 years old; mean-age = 26.3 ± 15.8 years; postmortem-
interval = 15 ± 6.6 h; six males and three females) with
well-preserved CC ultrastructure. Each brain was fixed in 10%
buffered formalin for at least 3 months, washed for 24 h in
water to remove fixer, dehydrated, embedded in celloidin, and cut
into 200-µm-thick sections. Samples were oriented to cut axons
perpendicularly to the long axon axis and stained with a 2%
solution of p-phenylenediamine. Each section was stained with
uranyl acetate and photographed at a magnification of 15,000x
using a Hitachi H7500 transmission electron microscope with an
Advanced Microscopy Technique (AMT) Image Capture Engine
(Danvers, MA). Axons from five different segments (i.e., I, II, III,
IV, and V) of the midsagittal CC cross-sections of the nine control
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FIGURE 3

Anatomical location of the two independent histological samples of the first histological dataset (Histology1 and Histology2) taken from eleven
regions of interest (ROIs) in the Corpus Callosum. The number of studied axons per sample and ROI are reported for each case. The second sample
(Histology2) consisted of axons not included in the first sample (Histology1).

subjects were measured. The study was limited to myelinated
axons, which were better preserved than non-myelinated axons.
For each case, 12 electron micrographs were used, and background
correction was applied to reduce the risk of distortions during
image analysis. Axons were manually delineated, and the Image J
software was employed to obtain the axon radius (Feret’s radius,
µm) and area (µm2). No correction for shrinkage effects to
the measured radii was reported. The total number of axons
measured in the nine control subjects was 15,085 (1,676 per subject,
and 335 per segment, on average). For additional details, see
Wegiel et al. (2018).

We note that the CC segments employed in both histological
datasets (i.e., Histology1-Histology2 and Histology3) are related.
Segment I (Histology3) approximately corresponds to the union
of ROI0, ROI1, and ROI2 (Histology1-Histology2); segment II is
located around ROI3 and ROI4; the union of segments III and IV is
similar to the union of ROI5, ROI6, and RO7; and segment V covers
ROI8, ROI9 and ROI10. These relationships were used to compare

the histological estimates from both studies and the MRI-based
radius estimates.

3.5. Estimation of the mean histological
effective radius

For each ROI of each sample, we estimated the mean
histological axon radius. However, as the mean axon radius
estimated from MRI generally differs from the mean histological
radius (Burcaw et al., 2015; Veraart et al., 2020), we derived
an approximate expression for the mean effective radius for our
diffusion-relaxation models, finding that reff ≈

〈
r2〉 / 〈r〉, which

differs from the previous result reported in Burcaw et al. (2015),
Veraart et al. (2020) (The complete derivation is reported in the
Appendix section). This key result shows that the mean effective
radius derived from our model is not heavily weighted by the tail
of the axon radius distribution as that in Burcaw et al. (2015),
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Veraart et al. (2020). Consequently, we used this expression to
estimate the mean effective histological axon radius for each CC
ROI in both samples (see Figure 3), which was compared with the
MRI-predicted mean radius.

In order to estimate the effective radius, knowing both the mean
histological axon radius and the mean squared radius is required.
For the Histology1 and Hostology2 samples, these values were
calculated from the whole radius distribution per ROI. We don’t
have access to the radius distributions of the Histology3 sample.
Fortunately, in that study, the mean histological radius and the
mean axon area were reported (Wegiel et al., 2018). We used the
mean axon area to estimate the mean squared radius assuming a
circular geometry.

3.6. Spatial registration

The histologist that measured the axons in the Histology2
sample drew the locations of the eleven histological ROIs on the
structural T1w image of the subject scanned using the diffusion-T1-
T2 sequence, which we used to create a cluster mask. Therefore, we
used that T1w image as a reference to spatially register the estimated
parameter maps for all the subjects (i.e., intra-axonal relaxation
times and K maps). The same affine registration matrix and non-
linear deformation field were applied to each subject’s estimated
parameter map. These registration parameters were determined
by non-linearly registering the estimated K map (whose visual
appearance is similar to a T1w image, e.g., see Figure 4 in the
results section) to the reference T1w image. The registration was
carried out using the state-of-the-art (Klein et al., 2009) Symmetric
Normalization (SyN) method (Avants et al., 2008) implemented in
the ANTs software (ANTsPy).3 Before the registration, we corrected
the K map and T1w image for spatial intensity variations due to
B1-Radiofrequency field inhomogeneities using FSL (Smith et al.,
2004). All the registered images were visually inspected to verify
the accuracy of the normalization procedure. All the subsequent
analyses employed the registered maps. Furthermore, the ROIs
were eroded to remove peripheral voxels that do not correspond
to the corpus callosum and are affected by partial volume effects
with surrounding tissue and CSF.

The number of voxels included in each ROI ranges from
170 (ROI0) to 604 (ROI1) in the cluster mask defined in the
reference T1w image. The equivalent number of voxels in the
native space of the diffusion-T1-T2 MRI data with a lower
spatial resolution (obtained after applying the resulting non-
linear inverse registration to the cluster mask) ranges from 10
(ROI10) to 20 (ROI1).

3.7. Calibration step to predict axon radii

The first sample of the first histological dataset (Histology1)
was employed to estimate the unknown parameters of the surface-
based relaxation models in Eqs. (1)-(2). These equations were fitted
independently using the mean intra-axonal T2 and T1 times and the

3 https://github.com/ANTsX/ANTsPy

mean effective histological radii estimated in the same four ROIs
of the Histology1 sample. The fitting allowed us to determine the
cytoplasmic Tc

2 and Tc
1 times and the surface relaxivity coefficients

ρ2 and ρ1, which best explain the data in these regions. This was
done by fitting the linear equation y = mx+ n, where y = 1

/
Tc

2
and x = 2/r for values from the four CC ROIs. Note that these
parameters can be estimated as ρ2 = m and Tc

2 = 1/n. A similar
independent linear model was used to fit the T1 data for estimating
ρ1 and Tc

1 .
Subsequently, we predicted the mean effective axon radii, using

Eq. (3), in the eleven CC ROIs of the second sample of the first
dataset (Histology2) and the CC segments defined in the second
histological dataset (Histology3). The forecasted and histological
axon radii were compared using a linear regression model. The
linear relationship among the parameters was quantified and tested
by the slope and intercept of the fitted regression line and the
Pearson correlation coefficient. It is important to mention that
when there are two variables, such as in our study, the p-value of
the slope of the regression line and the p-value of the correlation
coefficient are identical. Therefore, to avoid redundancy, we
have reported only the p-values of the slopes in our findings.
In the Results section, we present the raw p-values without
applying the correction for multiple comparisons. However, in the
Discussion section, we mention the analyses that have survived the
Bonferroni correction.

4. Results

4.1. diffusion-T1-T2 and
Histology1-Histology2 data

Figure 4 shows the Ta
2 , Ta

1 , and K maps estimated from the
in vivo diffusion-T1-T2 MRI data for different brain slices. The
estimated relaxation times are within the expected range for white
matter. The values in the whole medial part of the CC were
distributed in the following ranges: 70 < Ta

2 (ms) < 130, 650 <

Ta
1 (ms) < 760.

The results of the calibration step are depicted in Figure 5.
It shows the regression line fitting the inverse of the mean intra-
axonal T2 per ROI to the inverse of the mean histological radius
in the four ROIs of the Histology1 sample (for more details, see
Figure 1), employing the surface-based relaxation model in Eq. (1),
as described in the subsection “Calibration step to predict axon
radii.” The correlation coefficient between both variables was 0.97,
and the p-value of the slope (i.e., for a hypothesis test whose null
hypothesis is that the slope is zero) was p = 0.03. We found the
calibrated parameters Tc

2 ≈ 126.97 ms and ρ2 ≈ 1.16nm/ms from
the estimated coefficients.

In Figure 6, we compare the effective histological radii in the
eleven ROIs of the Histology2 sample and those predicted using
the intra-axonal T2 times estimated from the in vivo diffusion-T1-
T2 MRI data [Eq. (3)]. The intercept and slope of the regression line
were 0.026 µm and 1.055, respectively; the correlation coefficient
was 0.676, and the p-value for the slope and the correlation was
p = 0.022. To further investigate the data, we analyzed a subset of
seven ROIs, excluding the four ROIs in the same locations as those
in the Histology1 sample. We obtained a slightly higher intercept
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FIGURE 4

Axial slices of the Ta2, Ta1 , and K maps estimated from the in vivo diffusion-T1-T2 relaxation MRI data in native space (i.e., before registering the images
to the reference T1w image). Note that the intra-axonal relaxation times are only meaningful in the white matter because the assumptions
underlying the estimation method are invalid in gray matter or CSF. The values of K (in arbitrary units) are higher in the white matter because this
parameter is proportional to the intra-axonal volume. We highlight two regions with different intra-axonal relaxation times: the genu of the Corpus
Callosum and the corticospinal tract (CST).

of 0.12 µm and a smaller slope of 0.89 compared to the analysis
conducted with eleven ROIs. The resulting correlation coefficient
decreased to 0.557, and the p-value for the slope was not significant,
p = 0.19.

Figures 7, 8 show results from similar experiments using the
intra-axonal T1. Figure 7 depicts the linear fitting of the inverse
of the mean intra-axonal T1 per ROI estimated from in vivo
diffusion-T1-T2 MRI data to the inverse of the mean effective
radius corresponding to the Histology1 sample [Eq. (2)]. The
correlation coefficient between both variables was 0.755 lower
than that previously found for the intra-axonal T2 in Figure 5,
and the p-value of the slope and the correlation did not reach
statistical significance, p = 0.25. From the estimated coefficients,
we found the calibrated parameters to be Tc

1 ≈ 870 ms and ρ1 ≈

0.087 nm/ms.
The linear relationship between the effective mean axon radius

estimated in the Histology2 sample and the radius predicted by
using the intra-axonal T1 times [Eq. (3)] is shown in Figure 8. The
intercept and slope of the regression line were 0.064 µm and 1.002,
respectively. The correlation coefficient was 0.628, and the slope
was significant, p = 0.039. When analyzing the subset of seven ROIs,
excluding the four ROIs from the Histology1 sample, we obtained a
new slope of 0.962 (p = 0.16), which was not statistically significant.
The intercept was 0.065 µm, and the correlation coefficient was
0.598.

Table 1 reports the mean histological effective axon radius per
ROI and the predicted values from the intra-axonal T2 and T1

times, respectively. The predicted axon radius from both intra-
axonal T2 and T1 times were very similar to each other. A linear
fitting between both estimates revealed a slope close to one

(0.947) and an intercept close to zero (0.041 µm). The slope was
significantly non-zero (p = 4e–5), and the correlation coefficient
was 0.927.

4.2. Diffusion-T2 and
Histology1-Histology2-Histology3 data

We complement the results presented in the previous section
by reporting the predicted radii for the subjects scanned with
the diffusion-T2 MRI sequence and by including the Histology3
dataset. Notably, the parameters Tc

2 and ρ2 were not recalibrated
for these subjects; instead, we used the values estimated in the
previous section.

The estimated intra-axonal T2 values in the whole medial part
of the CC for the three subjects were distributed in the following
ranges 80–130 ms, 90–125 ms, and 85–115 ms, respectively.

In Figure 9, the predicted mean effective radius, derived from
the intra-axonal T2 times of the three subjects, is presented for all
the CC ROIs. The figure also depicts the mean histological effective
radius for the three histological samples (Histology1, Histology2,
and Histology3).

To assess the validity of the calibrated parameters, which
were estimated from the subject scanned with the diffusion-T1-T2
sequence, for the subjects scanned with the diffusion-T2 sequence,
we repeated the calibration process using the mean intra-axonal
T2 times estimated for the three subjects and the Histology1
sample as a reference, as before. The recalibrated parameters were
remarkably similar to those obtained previously: Tc

2 ≈ 127.17 ms
and ρ2 ≈ 1.13nm/ms.
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FIGURE 5

Linear fitting of the inverse of the intra-axonal T2 times (y-axis) estimated from the in vivo diffusion-T1-T2 MRI data to the inverse of the inner axon
radius (x-axis) measured from the first histological sample (Histology1) of the first histological dataset. The scatter plot depicts the mean values
computed for all the voxels inside four corpus callosum (CC) regions of interest, corresponding to ROI2, ROI5, ROI8, and ROI10 in the Histology1
sample. The number of axons sampled for each CC ROI is displayed in the legend. The intercept and slope of the regression line were 0.0079 ms−1

and 0.00116, respectively. The slope of the regression line was significantly different from zero (p = 0.030).

We compared the T2-based predicted radii for the subject
that underwent two scans, using both diffusion-relaxation MRI
sequences, which values are reported in Figure 9 and Table 1 (as
Subject 3). The linear fitting between both estimates produced a
statistically significant regression line with a slope close to one
(0.993, p < 0.001) and an intercept close to zero (−0.029 µm). The
correlation coefficient between both estimates was 0.884.

Finally, we employed the calibrated model to predict the axon
radius across the whole WM. Axial and sagittal slices of the voxel-
wise T2-based inner axon radius estimated for all the subjects are
shown in Figure 10. The maps are approximately symmetrical, the
spatial variability of the estimated radius is apparent in both slices,
and all subjects show a similar pattern of small and big axons in the
same anatomical regions.

5. Discussion

This proof-of-concept study shows that (1) the intra-axonal
T2 and T1 relaxation times are highly modulated by the axon
radius (see Figures 5, 7), as measured from histological data (see
Figure 3), (2) a simple surface-based relaxation model can explain
this dependence (see Figure 1), and (3) the intra-axonal relaxation

times may also be sensitive to the smallest axons. Indeed, we did
not observe a clear overestimation bias in the estimated axon radius
(see Figures 6, 8, 9) in comparison to the histological values, as
reported in previous dMRI studies (Assaf et al., 2008; Alexander
et al., 2010; Dyrby et al., 2013; Horowitz et al., 2015) where only the
largest radii might have been detected. This result suggests that our
new approach may also be sensitive to differences in axon radius
below the “diffusion resolution limit” of ∼1–2 µm. One possible
explanation for this finding is that the intra-axonal T2 times are not
influenced by the strength of the diffusion gradients, as opposed
to the intra-axonal radial diffusivities used to estimate axon radii in
dMRI. Moreover, we found that the effective mean radius estimated
by our approach, i.e., reff ≈

〈
r2〉 / 〈r〉, produces much smaller radii

than those from diffusion models heavily weighted by the tail of

the axon radius distribution, i.e., reff ≈
(〈

r6〉 / 〈r2〉) 1
4 (Burcaw et al.,

2015; Veraart et al., 2020). This important result suggests that,
from a modeling point of view, the employed diffusion-relaxation
model may be more valuable than previous pure dMRI models
for estimating axonal radii. The predicted mean effective radius
obtained from the intra-axonal T2 and T1 times fell within a
narrow range of 0.52–1.13 µm and 0.51–1.12 µm, respectively,
which closely matched the range of histological axon radii (0.57–
0.95 µm). The smallest predicted effective radii were observed in
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FIGURE 6

Linear fitting of the effective histological radius estimated from the second histological sample (Histology2) of the first histological dataset to the
predicted radius from the intra-axonal T2 times, calculated from the in vivo diffusion-T1-T2 MRI data. The scatter plot depicts the mean values
computed for all the voxels inside the eleven corpus callosum (CC) regions, corresponding to ROI0-ROI10. The number of axons sampled for each
CC ROI is displayed in the legend. The slope of the regression line was significantly different from zero (p = 0.022).

ROI1, ROI0, and ROI2, while the largest radii were found in ROI6
and ROI5, followed by ROI4, ROI9 and ROI10 (refer to Table 1).
Nevertheless, we cannot rule out the possibility that the calibration
step, informed by the histological values, may have reduced any
potential overestimation effect.

Inspecting the estimated Ta
2 and Ta

1 relaxation maps (see
Figure 4), we notice that both relaxation times tend to be smaller
in the genu and splenium of the CC than in the corticospinal
tract (connecting the motor cortex to the spinal cord). Although
these values could be affected by fiber orientation effects with
respect to the B0 field (see the subsection “Orientation dependence
on relaxation times” in the Appendix), the corticospinal tract is
characterized by axons with larger inner radius (Aboitiz et al., 1992;
Innocenti et al., 2014; Barakovic et al., 2021a). This observation
agrees with multi-echo T2 relaxometry studies showing that the
intra- and extra-axonal T2 times (and the myelin content) in the
corticospinal tract are larger than in the CC, e.g., see Yu et al.
(2020), Canales-Rodríguez et al. (2021a,b,c). A consistent trend was
observed in the T2-based predicted axon radii for all three subjects,
as shown in Figure 10. The voxel-wise maps in Figure 10 and
the ROI-based estimates in Figure 9 agree with previous estimates
derived from dMRI data acquired using much higher b-values
(Veraart et al., 2021).

In agreement with our results, a previous multi-echo T2

relaxometry study found a positive correlation between axon radius
and T2 (including both the intra- and extra-axonal compartments)
in six samples of an excised and fixed rat spinal cord (Dula et al.,
2010). Moreover, two previous experimental studies investigated
the microstructural correlates of T1 in white matter (Hofer et al.,
2015; Harkins et al., 2016). In line with our findings, a significant
correlation between 1/T1 and axon radius was reported by Harkins
et al. (2016) in white matter tracts of a rat spinal cord. Similarly,
the analysis performed by Hofer et al. (2015) found a tendency for
the lowest T1 in the genu of the human CC (composed of densely
packed smaller axons) and the highest T1 in the somatomotor
region (dominated by fibers with large radii). In those studies,
however, the estimated relaxation times characterize the relaxation
process in the intra- and extra-axonal compartments combined. In
contrast, we report a more specific relationship by analyzing the
intra-axonal relaxation times associated with the inner axon radius.

A multi-gradient-echo MRI model was proposed to estimate
axon density based on the susceptibility-driven non-monotonic
time-dependent MRI signal decay (Nunes et al., 2017). They
employed a simple (phenomenological) general-linear model
to predict the average axonal diameters using four modeled
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FIGURE 7

Linear fitting of the inverse of the intra-axonal T1 times (y-axis) estimated from the in vivo diffusion-T1-T2 MRI data to the inverse of the inner axon
radius (x-axis), measured from the first histological sample (Histology1) of the first histological dataset. The scatter plot depicts the mean values
computed for all the voxels inside four corpus callosum (CC) regions, corresponding to ROI2, ROI5, ROI8, and ROI10. The number of axons sampled
for each CC ROI is displayed in the legend. The intercept and slope of the regression line were 0.0011 and 0.000087. The p-value for the slope was
not statistically significant (p = 0.23).

parameters, including the T2 relaxation times of the intra- and
extra-axonal compartments.

5.1. Impact on previous and future
studies

Our study has important implications for previous and future
dMRI studies of white matter microstructure. Previous studies,
such as those by Assaf et al. (2008), Alexander et al. (2010),
Zhang et al. (2011), Dyrby et al. (2013), Xu et al. (2014),
Daducci et al. (2015), Horowitz et al. (2015), Huang et al. (2015),
Benjamini et al. (2016), Drobnjak et al. (2016), Sepehrband et al.
(2016b), Romascano et al. (2020), Harkins et al. (2021), Herrera
et al. (2022), estimated axon radius without considering any T2
dependence, assuming the same T2 for all axons and intra- and
extra-axonal water compartments. This simplification may affect
the estimation of the intra-axonal diffusivities from which the axon
radii are derived. Alternatively, this issue could be attenuated by
using sufficiently high b-values, as shown in studies by Veraart
et al. (2020), Pizzolato et al. (2022), which helps eliminate the
contribution from the extra-axonal signal. However, this may be
insufficient in voxels with a broad distribution of intra-axonal T2

times. These multi-compartment models should be extended to
include T2 dependence, as discussed in studies by Veraart et al.
(2018), Lampinen et al. (2019), Tax et al. (2021). Recently, (Ning
et al., 2022) demonstrated that more accurate estimates of neurite
size could be obtained by investigating the coupling between
relaxation rate and diffusivity using multi-TE diffusion-relaxation
MRI data. For further discussion on this issue, please refer to
the Appendix subsection “Is the intra-axonal relaxation process
mono-exponential and time-independent?”

5.2. Underlying assumptions and
confounding factors

The proposed diffusion-relaxation model specifically applies to
WM regions composed of myelinated axons, where the exchange
of water molecules and other macromolecules and elements (such
as iron/ferritin) between the intra- and extra-axonal spaces is
negligible. In the human brain’s CC, for example, more than 95%
of axons in most regions are myelinated (Aboitiz et al., 1992).
While the non-myelinated portions of the axon (i.e., nodes of
Ranvier) contain a high density of voltage-gated ion channels
that facilitate ion passage across the axonal membrane, including
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FIGURE 8

Linear fitting of the effective histological radius determined in the second histological sample (Histology2) of the first histological dataset to the
predicted radius from the intra-axonal T1 times estimated from the in vivo diffusion-T1-T2 MRI data. The scatter plot depicts the mean values
computed for all the voxels inside the eleven corpus callosum (CC) regions, corresponding to ROI0-ROI10 in the Histology2 sample. The number of
axons sampled for each CC ROI is displayed in the legend. The slope of the regression line was significantly different from zero (p = 0.039).

K + and Na + , which is associated with a concomitant water
flux (Badaut et al., 2002), the myelinated portions of the axon
(i.e., internodes) are not exposed to the extracellular environment.

TABLE 1 Mean effective radius (in µm) for each region of interest (ROI) in
the corpus callosum.

ROI Histology Ta2 Ta1
ROI0 0.632 0.515 0.571

ROI1 0.777 0.533 0.511

ROI2 0.592 0.634 0.547

ROI3 0.638 0.723 0.616

ROI4 0.759 0.789 0.844

ROI5 0.855 1.069 1.047

ROI6 0.953 1.129 1.123

ROI7 0.633 0.750 0.791

ROI8 0.572 0.673 0.832

ROI9 0.583 0.836 0.782

ROI10 0.741 0.803 0.794

The anatomical location of each ROI is shown in Figure 3. The second row lists the radii
corresponding to the Histology2 sample. The third and four rows report the predicted
axon radii from the intra-axonal T2 and T1 times, respectively, estimated from the in vivo
diffusion-T1-T2 MRI data.

Although the axonal membrane in the nodes of Ranvier is
semipermeable to small diffusing molecules, such as water, the
internodes’ length is significantly greater [∼100 times the outer
axon diameter (Hursh, 1939; Rushton, 1951)] than the nodes of
Ranvier [∼1 µm (Arancibia-Cárcamo et al., 2017)]. As a result,
most multi-compartment T2 (Lancaster et al., 2003; Deoni et al.,
2013) and “standard” dMRI models [see (Novikov et al., 2019) for a
review] assume that the measured MRI signal is not significantly
affected by the inter-compartmental molecular exchange in WM
regions composed of myelinated axons.

Therefore, it is important to note that our model is unsuitable
for GM or WM regions affected by demyelination processes, such as
in Multiple Sclerosis, or any pathological condition with an increase
in intra-axonal iron. These conditions can significantly reduce
intra-axonal relaxation times and the estimated radii, rendering
our model invalid. However, it is worth noting that we use long
TEs in our model. If the intra-axonal T2 time of a given axon is
significantly reduced (e.g., below 20–40 ms) due to external factors,
the contribution of this axon to the overall voxel-wise measured
signal will be greatly diminished.

However, it is interesting that our calibration approach could
also be extended to cases where water exchange between intra-
and extra-axonal spaces is non-negligible, provided the exchange
is similar across axons with different radii. In such cases, the effect
of the exchange on the observed intra-axonal relaxation times can
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FIGURE 9

Predicted axon radius from intra-axonal T2 times estimated from the in vivo diffusion-T2 MRI data for the eleven ROIs (ROI0-ROI10) of the
Histology2 sample. Additionally, as a reference, the mean effective histological radius calculated from the three histological samples (Histology1,
Histology2, and Histology3) is also reported. Although the number and location of the ROIs used in the Histology3 sample differ from those
employed in the Histology1-Histology2 samples, they can be regrouped to cover similar anatomical areas (see subsection “Histological samples” for
more details). The histological and T2-based radii follow the expected “low-high-low” trend in axon radii. The axon radii from the
Histology1-Histology2 samples are consistently higher (about 25%) than those in the Histology3 sample.

be modeled by a global scaling of the cytoplasmic relaxation time,
which is accounted for during calibration.

A more suitable approach for modeling systems that are
coupled by means of a relaxation exchange process could be based
on the Bloch-McConnell equations (McConnell, 1958), which
generalize the relaxation model employed in this study [Eqs. (5) and
(6)]. However, fitting such a model requires estimating additional
parameters, including membrane permeability and extra-axonal
relaxation times, which may be prone to numerical degeneracies.
Additionally, the MRI acquisition time required for fitting the
Bloch-McConnell model (using both high and low b-values) is
longer than that required for our proposed model.

A study on human postmortem brains revealed that T2
∗ is

more sensitive than T2 to changes in WM iron concentration
(Langkammer et al., 2010). While it is established that the
macromolecular and iron content is altered in certain pathologies
(Stüber et al., 2014), more research is required to understand how
these abnormalities affect the intra-axonal space and how they can
impact the intra-axonal relaxation times.

We assume that signals measured at very high b-values are
primarily attributable to the intra-axonal space, given that the
signals from free-water and extra-axonal compartments decay
more rapidly with the b-value (Veraart et al., 2020). To further
suppress signals from tissue compartments with very short T2s,
such as myelin water (Mackay et al., 1994) and other confined

water molecules, we also used long TEs. Hence, the resulting
signals are expected to come from intra-axonal water molecules.
However, there are other 1D-stick-like structures in the WM,
such as the radiating processes of astrocytes, which can have
large diameters that might contaminate the resulting signals
(Veraart et al., 2020, 2021), as well as cell nuclei, vacuoles, and
other restricted compartments (Andersson et al., 2020). Therefore,
further studies are necessary to understand the potential effects of
these compartments on the measured T2 and predicted radii.

5.3. Acquisition sequences

The diffusion-T1-T2 sequence was implemented to investigate
the impact of axon radius on the intra-axonal T1 and T2 times
independently. Our results demonstrate that both relaxation times
are sensitive to changes in axon radius, with T2 exhibiting a slightly
higher sensitivity. Consequently, we can obtain two separate
estimates of axon radius using the relaxation times calculated from
this sequence (see Table 1). However, this is not our recommended
acquisition protocol due to the long acquisition time required.
Alternatively, a more practical approach for estimating axon radius
is to use the diffusion-T2 sequence. A faster version of this sequence
could be implemented by utilizing only two TEs, although the
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FIGURE 10

Axial and sagittal slices of the T2-based inner axon radius for the three scanned subjects. Subject3 underwent two scans, with scan2 (46 slices) and
scan1 (10 slices) representing the in vivo diffusion-T2 and diffusion-T1-T2 MRI data, respectively. All maps were normalized to the reference T1w
image, where the histological CC ROIs were defined, and the predicted radii were plotted over the reference image. A white matter mask was used
to suppress voxels in gray matter or cerebrospinal fluid.

resulting estimates may be more affected by underlying noise. This
possibility shall be investigated in future studies.

When implementing these sequences, it is important to identify
the optimal b-value to attenuate the extra-axonal signal. Based
on in vivo human brain data and numerical experiments using
analytical equations, the general rule of thumb is that a b-value
in the range of 4,000–6,000 s/mm2 is sufficient (Jensen et al.,
2016; McKinnon and Jensen, 2019). In our study, we used the
highest b-value within this range. However, it is worth noting that
determining the optimal b-value involves a trade-off influenced by
the SNR, which is affected by other sequence parameters, including
the TE and voxel size. Our data were acquired using the Connectom
3T scanner at CUBRIC, which has been previously used to collect
data with b-values up to 30,000 s/mm2 (Veraart et al., 2020,
2021). Ultra-high b-values with very strong diffusion gradients are
necessary for pure dMRI models to improve sensitivity to smaller
axon radii (Nilsson et al., 2017). However, our sequences do not
require b-values larger than 6,000 s/mm2 because all the necessary
information is derived from the relaxation times, which depend on
the TEs/TIs.

5.4. Main limitations and future studies

While our study provides valuable insights into the relationship
between axon radii and MRI relaxation times, it is important
to acknowledge some limitations. First, the in vivo diffusion-
relaxation MRI data and postmortem histological samples were

obtained from different subjects of different ages and genders.
Although some studies suggest that there are no sex differences in
the fibers composition of the corpus callosum (Aboitiz et al., 1992),
others have found age-related changes in axon size (Aboitiz et al.,
1996), which may affect the comparison between the postmortem
and in vivo measurements. Therefore, the estimated relaxation
times of the cytoplasmic water and surface relaxivities must be
considered as approximated guide values.

Second, the histological analysis of the second and third
histological samples (Histology2 and Histology3, covering eleven
and five CC sectors, respectively) are based on a reduced number
of axons compared to the first (Histology1) sample. This may
introduce sampling biases that could affect the accuracy of the
histological radius estimates. An extended discussion is provided
in the Appendix subsection “Histological tissue shrinkage and
sampling issues.” As such, a perfect agreement between the
effective histological radius and the predicted MRI-based radius
was not expected.

Third, the analysis was confined to the mid-sagittal plane of the
CC. Therefore, the estimated mean cytoplasmic relaxation times
and surface relaxivities are specific to this region. It is possible that
different values may be obtained if other white matter tracts were
included in the analysis. However, the extension of the analysis to
other regions would require modeling the orientation susceptibility
effects, which is beyond the scope of this proof-of-concept study.
For more details, refer to the Appendix subsection “Orientation
dependence on relaxation times.”
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Fourth, our study had a relatively small number of data
points available for computing correlations, with only four ROIs
to implement the calibration. This limited sample size restricts
the statistical power and precision of the estimated correlations,
leading to increased uncertainty and decreased reliability of the
findings. While it is generally recommended to account for multiple
comparisons to reduce the risk of false-positive findings, we opted
not to implement such correction. Given the exploratory nature
of our study, we prioritized sensitivity over stringent control of
false positives. Consequently, our findings should be interpreted
cautiously, requiring further validation in independent studies.
However, for completeness, we report that if we correct our
results for multiple comparisons using the Bonferroni method, only
two analyses survive the correction: the correlation of the radii
estimated using the T2 and T1 relaxation times reported in Table 1
and the T2-based predicted radii for the subject who underwent two
scans, using the two diffusion-relaxation MRI sequences employed
in this study.

Fifth, the proposed model is not suitable for GM or WM
regions affected by demyelination processes or any pathological
condition increasing intra-axonal iron. These conditions can
significantly reduce intra-axonal relaxation times and the estimated
radii, rendering the model invalid. A more detailed discussion
of these underlying assumptions and confounding factors can be
found in the previous subsection, “Underlying assumptions and
confounding factors,” in the Discussion section.

Sixth, the estimation of intra-axonal T2 from the spherical
mean of the strongly diffusion-weighted signal may be subject to
bias due to the presence of isotropically-restricted compartments,
including cell nuclei and vacuoles (Andersson et al., 2020).
However, this issue can be mitigated by utilizing the spherical
variance instead (Pizzolato et al., 2022). For more detailed
information, please refer to the Appendix subsection “The effect of
spherical cells: spherical mean vs. spherical variance.”

Seventh, although the spherical mean signal is not affected
by the presence of fiber crossings and orientation dispersion
(Lindblom et al., 1977; Callaghan et al., 1979; Kaden et al., 2016a), it
is influenced by the orientation susceptibility effect. In other words,
the measured signal still depends on the angle between the B0
magnetic field and the fiber orientation. In our study, the regions of
interest were located in the medial part of the CC, where the angle
between the B0 vector field and the nerve fibers remains relatively
constant. More details on this topic can be found in the Appendix
subsection “Orientation dependence on relaxation times.”

To better assess the generalizability of our approach, further
validation studies are necessary. In particular, we plan to test our
method using biomimetic phantoms with known ground truth
(Hubbard et al., 2015; McHugh et al., 2018; Huang et al., 2021; Zhou
et al., 2021) and ex vivo data from the same brains and multiple
white matter regions. Such datasets would allow us to investigate
whether the cytoplasmic relaxation times are truly independent of
axon radius (see the Appendix subsection “Is the cytoplasmic T2
constant?”). This could be achieved by repeating the calibration
process using different subsets of ROIs and comparing the resulting
estimates. However, obtaining sufficient histological ROIs and
measured axons per ROI will be crucial to minimize sampling bias
and get robust results not affected by noise. Additionally, including
data from the same brains (e.g., from non-human studies) will

enable us to guarantee that we are studying the same axonal
bundles.

An interesting future direction would be to utilize bundle-
specific intra-axonal T2 values (Barakovic et al., 2021b) to estimate
bundle-specific inner axon radius, which could potentially resolve
multiple axonal radii per voxel. This approach may potentially
predict axon radius beyond the current dMRI resolution limit
using clinical scanners. However, one limitation of translating
the diffusion-relaxation MRI sequence to clinical scanners is the
decreased signal-to-noise ratio resulting from using high b-values
and long TEs. One potential solution to mitigate this could be
to reduce the b-value to 4,000–5,000 s/mm2 and use numerical
simulations to determine the optimal range of TEs, based on
the intra-axonal relaxation times reported in this study and the
expected noise range.

Despite these limitations, our study provides a promising
approach for estimating axon radii and understanding their
relationship with MRI relaxation times. Future studies could
address these limitations and expand the analysis to other brain
regions to further validate the technique.

6. Code and data availability
statement

The datasets used in this study and the Python code can
be made available upon request from the corresponding authors,
subject to the following terms and conditions. The mean effective
histological radii of the Histology1, Histology2, and Histology3
samples are reported in Figure 9 and Table 1, respectively. We can
also share any other derived metric from the Histology1-Histology2
samples. Additional results for the Histology2 and Histology3
samples are available in Caminiti et al. (2009) and Wegiel et al.
(2018), respectively. The MRI data will be available upon signing
a data-sharing agreement with Cardiff University. Finally, we can
provide the Python scripts used in this study upon request.

7. Appendix: effective axon radius

We derive the mean effective radius that can be estimated from
the intra-axonal T2 and T1 relaxation times. For simplicity, we will
separately analyses the components of the measured signals that
exclusively depend on T2 and T1.

7.1. Axon radius estimated from Ta2

The signal arising from the intra-axonal compartments is the
sum of signals from the spins inside all axons. The measured T2-
weighted signal for a given echo time TE is

M(TE) = k
P∑

i=1

Ni exp
(
−

TE
Ti

2

)
, (7)

where P is the total number of axons, Ni is the number of spins
inside the ith axon with transverse relaxation time Ti

2, and k is a
constant that depends on the sequence/scanner.
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Assuming that the proton density (PD) does not depend on the
axon radius, then

PD =
Ni

πr2
i h
=

∑P
i=1 Ni∑P

i=1 πr2
i h
=

Nt∑P
i=1 πr2

i h
. (8)

where πr2
i h is the volume occupied by the ith axon, h is the axon

length, and Nt is the total number of spins in the intra-axonal space.
From Eq. (8) we obtain the following simplified relationship:

Ni = Nt
r2

i∑P
i=1 r2

i
, (9)

By plugging Eq. (9) into Eq. (7) we get.

M(TE) = kNt

P∑
i=1

(
r2

i∑P
i=1 r2

i

)
exp

(
−

TE
Ti

2

)
. (10)

We estimate a single intra-axonal T2 per voxel, which is equivalent
to assuming that all the T2s in Eq. (10) are equal to Ta

2 (i.e., and
hence that all axons in the voxel have the same radius r̄); in that
case, Eq. (10) becomes.

M(TE) ≈ kNt

P∑
i=1

(
1
P

)
exp

(
−

TE
Ta

2

)
= kNt exp

(
−

TE
Ta

2

)
. (11)

To understand how the distribution of axon radii in Eq. (10) affects
the apparent Ta

2 in Eq. (11), we use the following approximation.

kNt exp
(
−

TE
Ta

2

)
≈ kNt

P∑
i=1

(
r2

i∑P
i=1 r2

i

)
exp

(
−

TE
Ti

2

)
. (12)

After plugging the surface-based relaxation model in Eq. (1) and
removing common terms on both sides of the previous equation,
we get

exp
(
−

2TEρ2

r̄

)
≈

P∑
i=1

(
r2

i∑P
i=1 r2

i

)
exp

(
−

2TEρ2

ri

)
, (13)

where we cancelled the contribution from the cytoplasmic Tc
2,

which appears on both sides of the equation.
The exponential terms 2TEρ2

/
ri are small (according to our

data and results < 0.5), so we can expand the exponentials in Taylor
series using a first-order approximation as

1−
2TEρ2

r̄
≈

P∑
i=1

(
r2

i∑P
i=1 r2

i

)(
1−

2TEρ2

ri

)
(14)

=

P∑
i=1

(
r2

i∑P
i=1 r2

i

)
−

P∑
i=1(

ri2TEρ2∑P
i=1 r2

i

)

= 1− 2TEρ2

P∑
i=1

(
ri∑P

i=1 r2
i

)

Therefore,
1
r̄
≈

P∑
i=1

(
ri∑P

i=1 r2
i

)
,

r̄ ≈
∑P

i=1 r2
i∑P

i=1 ri
=

〈
r2〉
〈r〉

,

(15)

This is the expression that we used to correct the histological
radii, which is the mean effective radius estimated from this
relaxation model.

7.2. Axon radius estimated from Ta1

Following a similar approach, the measured T1-weighted signal
for a given TI is

M(TI) = k
P∑

i=1

Ni

∣∣∣∣1− 2 exp
(
−

TI
Ti

1

)∣∣∣∣ (16)

= kNt

P∑
i=1

(
ri∑P

i=1 r2
i

)
∣∣∣∣1− 2 exp

(
−

TI
Ti

1

)∣∣∣∣ .
Note that we neglected the TR dependence because, in practice, this
experimental parameter is much higher than the intra-axonal T1,
and its contribution is minor.

As we estimate a single apparent intra-axonal T1 per voxel, our
model is equivalent to assuming that all the T1s are equal to Ta

1
(i.e., all axons in the voxel have the same radius r̄); thus, Eq. (16)
becomes.

M(TI) = kNt

∣∣∣∣1− 2 exp
(
−

TI
T̄1

)∣∣∣∣ . (17)

To investigate how the distribution of axon radii in Eq. (16) affects
the apparent Ta

1 in Eq. (17), we use the approximation

kNt

∣∣∣∣1− 2 exp
(
−

TI
T̄1

)∣∣∣∣ ≈ kNt

P∑
i=1

(
r2

i∑P
i=1 r2

i

) ∣∣∣∣1− 2 exp
(
−

TI
Ti

1

)∣∣∣∣ .
(18)

After plugging the surface-based relaxation model in Eq. (2) and
removing common terms on both sides of Eq. (18) we obtain.

exp
(
−

2TIρ1

r̄

)
≈

P∑
i=1

(
r2

i∑P
i=1 r2

i

)
exp

(
−

2TIρ1

ri

)
, (19)

Note that Eq. (19) is similar to Eq. (13). Hence, we can get the
same relationship given by Eq. (15) after using the first-order Taylor
series approximation, which is justified by the small values of the
exponential terms 2TIρ1

/
ri (according to our MRI acquisition

parameters and results < 0.3).

7.3. Histological tissue shrinkage and
sampling issues

The histological datasets were inspected to investigate the trend
in axon radii. As expected, the data followed the “low-high-low”
pattern in axon radii, as shown in Figure 9. However, the mean
effective histological radii differed between the samples. The axon
radii from the Histology1-Histology2 samples were about 25%
higher than those in the Histology3 sample. These differences could
be due to genuine anatomical variations between the postmortem
brains or related to the histological procedures and corresponding
tissue shrinkage factors. The T2-based predicted radii in all subjects
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followed a similar “low-high-low” pattern closer to the values
measured in the Histology1 sample, as this was the calibration
sample.

In this study, the histological samples were not corrected for
tissue shrinkage, which can affect the accuracy of the estimated
axon radii. Consequently, the in vivo axons may be thicker than the
reported histological values (Barazany et al., 2009; Horowitz et al.,
2015). The extent of tissue shrinkage can vary widely depending
on the used histological preparation techniques, with reported
shrinkage factors ranging from 1 to 65% (Lamantia and Rakic, 1990;
Aboitiz et al., 1992; Houzel et al., 1994; Riise and Pakkenberg, 2011).
It is also unclear if shrinkage affects all brain axons equally, as
previous research has shown varying shrinkage levels in different
cellular compartments (Hursh, 1939). However, there is currently
limited knowledge about the effects of shrinkage on CC axons in
the human brain (Innocenti et al., 2019). Please refer to Dyrby et al.
(2018) for further information on tissue shrinkage issues.

Sampling biases can impact histological radii measurements.
One issue is that only a small amount of tissue is typically
sampled, so the microstructure properties of these regions may
not accurately represent properties in other regions within the
ROIs (Assaf et al., 2008). Another issue is that larger axons can
influence the mean effective radius more than the mean radius of
the distribution. Since larger axons are less common, accurately
detecting their proportions in a sample requires measuring a larger
number of axons. We observed this effect in the Histology1 and
Histology2 samples, where the effective radii in the four ROIs
used in Histology1 (which had denser spatial sampling) were
consistently higher than those in the same ROIs measured in the
Histology2 sample (see Figure 9).

For these reasons, the presented histological results should
not be considered the definitive “ground truth.” Future studies
should aim to identify optimal histological procedures, such as
those suggested by Sepehrband et al. (2016b), and also explore
the use of neural network approaches for automatic measurement
of tens of thousands of axons per ROI to reduce sampling biases
(Mordhorst et al., 2022). It is also worth noting that because the
proposed calibration approach uses histological data as a reference,
the predicted radii are relative to the specific histological sample
employed.

7.4. The effect of spherical cells:
spherical mean vs. spherical variance

A recent study showed that isotropically-restricted
compartments might bias the intra-axonal T2 estimated from
the spherical mean of the strongly diffusion-weighted signal
(Pizzolato et al., 2022). Thus, our estimates could be partially
affected by cell nuclei, vacuoles, and other types of structures in
the white matter (Andersson et al., 2020). As a remedy for that
problem, it was proposed to use the spherical variance (Pizzolato
et al., 2022) as a “filter” since the spherical variance of an ordered
axon bundle would be high, but in an isotropic component would
be close to zero. Although the results obtained in that study are
promising, the spherical variance is more sensitive to noise than the
spherical mean. Moreover, a larger number of diffusion gradient
directions than that used in our study is necessary to employ this

novel technique [48 vs. > 96 in Pizzolato et al. (2022)]. In future
studies, we plan to acquire dMRI data using a higher angular
resolution to compare both techniques’ outputs and filter out any
contribution from spherical cells.

7.5. Is the cytoplasmic T2 constant?

The cytoplasmic T2 may be influenced by the intra-axonal
microstructure, such as the number of organelles and the density
of cytoskeletal elements such as neurofilaments, microtubules, and
actin, as well as the chemical composition, including the type and
density of macromolecules and water content.

Numerous morphometric studies have provided evidence
of a linear correlation between neurofilament and microtubule
numbers and axonal cross-sectional area (Friede and Samorajski,
1970; Hoffman et al., 1987). These studies suggest that myelinated
axons contain more neurofilaments than microtubules and that
the axon radius adjusts to maintain a constant density of
neurofilaments. It was demonstrated that this relationship is
regulated by the relative degree of phosphorylation of the mid-
sized and heavy neurofilaments (Rao et al., 1998). Furthermore,
the myelin-associated glycoprotein is implicated in the signaling
cascade controlling neurofilament phosphorylation (Lunn et al.,
2002) and axon radius. As neurofilaments are the more abundant
cytoskeletal elements and their density is nearly constant in
myelinated axons with different radii, we do not anticipate a
relationship between cytoplasmic T2 and axon radius mediated by
neurofilament density in the axonal cytoskeleton.

However, a previous study using electron probe x-ray
microanalysis (LoPachin et al., 1991) measured the concentrations
of biologically relevant elements (such as Na, P, S, Ca, CI, K,
and Mg, in mmol/kg dry or wet weight) and water content in
the axoplasm of rat optic nerve myelinated axons. The study
found that dry and wet weight concentrations of Na, P, S, and
Ca were not dependent on the axonal radius. In contrast, the
axoplasmic concentration of K, CI, and Mg was related to axon
radius. Furthermore, the water content in medium and large axons
was similar (between 91 and 92%) but slightly reduced in small
axons (89%). These findings suggest that the chemical composition
of the axoplasm depends on the axon radius (LoPachin et al.,
1991). Therefore, until the effect of K, CI, and Mg on intra-axonal
relaxation times is clarified, the surface-based relaxation model
employed [i.e., Eqs. (1) and (2)] should be regarded as a first-order
approximation.

Despite this limitation, our findings (refer to Figures 5, 7)
suggest a linear relationship between the inverse of intra-axonal
relaxation times and axon radius, consistent with predictions made
by the surface-based relaxation model we employed. Our empirical
results demonstrate that the calibration step enables us to estimate
the mean axon radius in various regions of the midsagittal CC
(refer to Figures 6, 8, 9). As we did not observe any significant
non-linear relationships between intra-axonal relaxation times and
axon radii (within the range of measured radii in the midsagittal
CC), we conclude that any non-linear dependence is weak and
can be disregarded. Hence, either the cytoplasmic relaxation times
remain constant, as assumed in this study, or they vary linearly with
axon radius. In the following, we present some examples where the
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calibrated model could predict the axon radius accurately, even if
the cytoplasmic relaxation times depend on the axon radius.

Let us consider two distinct scenarios: In the first case, the
cytoplasmic T2 increases with the radius (similar to the observed
trend for intra-axonal T2 time), while in the second case, it
decreases. The former corresponds to the model

1
Tc

2 (r)
=

1
Tconst

2
+

k
r
, (20)

where Tconst
2 is a constant term common to all axons and k is a

constant quantifying how fast the cytoplasmic T2 changes with r.
By plugging this equation into our relaxation model [Eq. (1)], we
get a similar model with redefined parameters

1
Ta

2
=

1
Tconst

2
+

γ

r
, (21)

where γ = 2ρ2 + k. Althout the new parameters Tconst
2 and γ cannot

be interpreted as the cytoplasmic T2 and surface relaxivity, they can
be estimated by employing our calibration approach. Therefore, the
resulting model would be equally valid for predicting axon radius.

The second case corresponds to a model that predicts a decrease
in Tc

2 (r) for larger axons.

1
Tc

2 (r)
=

1
Tconst

2
+ kr. (22)

After plugging Eq. (22) into Eq. (1) and regrouping terms, the
relaxation model becomes.

1
Ta

2
=

1
Tconst

2
+

(
kr2
+ 2ρ2

)
r

. (23)

In our experiments, we observed a net reduction of Ta
2 with r.

Hence, the surface relaxivity term must dominate the relaxation
over k, i.e., 2ρ2

/
r > kr for the range of measured radii. The

modified parameters to be calibrated in this model are Tconst
2

and γ = 2ρ2 + kr2. In this case, our model only provides a good
approximation if the previous inequality becomes 2ρ2

/
r >> kr.

It is important to note that the models presented in this section
[Eqs. (20)–(23)] are hypothetical and were discussed to illustrate
the flexibility and limitations of the calibration approach in cases
where the underlying assumptions are not met. Similar results can
be obtained by using the intra-axonal T1 time or assuming a surface
relaxivity that depends on the radius.

7.6. Orientation dependence on
relaxation times

By computing the spherical mean of the diffusion signal,
the resulting orientation-averaged signal is independent of
the fiber orientation distribution and thus is not affected by
the presence of fiber crossings and varying levels of fiber
orientation dispersion (Lindblom et al., 1977; Callaghan et al.,
1979; Kaden et al., 2016a). However, the spherical mean does
not eliminate the dependence on the orientation susceptibility
effects, i.e., the measured signal still depends on the angle
between the B0 magnetic field and the fiber orientation. Some
previous studies have reported this orientation dependence for

both the T2
∗ and T2 (Oh et al., 2013; Aggarwal et al., 2016; Gil

et al., 2016) and T1 (Knight and Kauppinen, 2016; Knight
et al., 2017, 2018; Schyboll et al., 2018, 2020). Notably, while
(McKinnon and Jensen, 2019) reported a significant intra-
axonal T2 orientation effect, a recent study found that extra-
axonal T2 is more affected by this phenomenon than intra-
axonal T2 (Tax et al., 2021). Given these inconsistent findings,
further research is needed to determine whether the orientation-
dependent T2 effect is significant enough to be considered in this
model.

In our study, the regions of interest were located in the
medial part of the CC, where the angle between the B0 vector
field and the nerve fibers remains relatively constant. Therefore,
our findings are not likely affected by B0-orientation-related bias.
However, the orientation effect should be modeled in brain regions
with different fiber orientations, as it may affect the estimation.
Despite this potential limitation, in Figure 10, we present T2-based
radius images across the entire white matter, showing the spatial
variability of estimated radii across different regions, especially
in the sagittal slices depicting the midsagittal CC cross-sections.
The estimates from all subjects demonstrate a similar concordant
pattern, as well as the maps of the same subject (Subject3) obtained
from the two diffusion-relaxation MRI sequences, although some
differences are noticeable due to the different voxel sizes used in
both acquisitions.

7.7. Is the intra-axonal relaxation process
mono-exponential and
time-independent?

A recent theoretical formulation by Kiselev and Novikov
(2018) demonstrated how the interplay between diffusion and spin
dephasing in a heterogeneous environment could produce a non-
mono-exponential time-dependent transverse relaxation signal.
While this effect may be significant for short TEs, our relatively
long TEs (i.e., > 73 ms) and diffusion times (1 = 22 ms, δ = 8 ms)
used in this study (compared to the small intra-axonal space where
the restricted diffusion process takes place) indicate that a mono-
exponential signal relaxation is expected for the spins inside each
axon.

In our study, we estimated a single intra-axonal relaxation
time per voxel. However, if axon radii are distributed with non-
negligible variance, a more complete formulation must consider
distributions of relaxation times. Estimating a non-parametric
distribution of relaxation times is problematic from a practical
point of view because a large number of TEs/TIs would be
required. Nevertheless, an approach similar to that introduced in
AxCaliber (Assaf et al., 2008) could be adopted by assuming a
parametric form for such distributions, as shown in Sepehrband
et al. (2016a). Future studies should investigate this generalization
further.
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In humans, striato-pallido-
thalamic projections are largely 
segregated by their origin in either 
the striosome-like or matrix-like 
compartments
Adrian T. Funk 1, Asim A. O. Hassan 2, Norbert Brüggemann 3†, 
Nutan Sharma 4†, Hans C. Breiter 5,6†, Anne J. Blood 5,7,8,9† and 
Jeff L. Waugh 1,8,9*†

1 Division of Pediatric Neurology, Department of Pediatrics, University of Texas Southwestern, Dallas, TX, 
United States, 2 Department of Natural Sciences and Mathematics, University of Texas at Dallas, 
Richardson, TX, United States, 3 Department of Neurology and Institute of Neurogenetics, University of 
Lübeck, Lübeck, Germany, 4 Department of Neurology, Massachusetts General Hospital, Harvard 
University, Boston, MA, United States, 5 Laboratory of Neuroimaging and Genetics, Massachusetts 
General Hospital, Charlestown, MA, United States, 6 Warren Wright Adolescent Center, Department of 
Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, 
United States, 7 Department of Psychiatry, Massachusetts General Hospital, Harvard University, Boston, 
MA, United States, 8 Mood and Motor Control Laboratory, Massachusetts General Hospital, Charlestown, 
MA, United States, 9 Martinos Center for Biomedical Imaging, Massachusetts General Hospital, 
Charlestown, MA, United States

Cortico-striato-thalamo-cortical (CSTC) loops are fundamental organizing 
units in mammalian brains. CSTCs process limbic, associative, and sensorimotor 
information in largely separated but interacting networks. CTSC loops pass through 
paired striatal compartments, striosome (aka patch) and matrix, segregated pools 
of medium spiny projection neurons with distinct embryologic origins, cortical/
subcortical structural connectivity, susceptibility to injury, and roles in behaviors 
and diseases. Similarly, striatal dopamine modulates activity in striosome and 
matrix in opposite directions. Routing CSTCs through one compartment may 
be  an anatomical basis for regulating discrete functions. We  used differential 
structural connectivity, identified through probabilistic diffusion tractography, 
to distinguish the striatal compartments (striosome-like and matrix-like voxels) 
in living humans. We  then mapped compartment-specific projections and 
quantified structural connectivity between each striatal compartment, the globus 
pallidus interna (GPi), and 20 thalamic nuclei in 221 healthy adults. We  found 
that striosome-originating and matrix-originating streamlines were segregated 
within the GPi: striosome-like connectivity was significantly more rostral, ventral, 
and medial. Striato-pallido-thalamic streamline bundles that were seeded from 
striosome-like and matrix-like voxels transited spatially distinct portions of the 
white matter. Matrix-like streamlines were 5.7-fold more likely to reach the GPi, 
replicating animal tract-tracing studies. Striosome-like connectivity dominated 
in six thalamic nuclei (anteroventral, central lateral, laterodorsal, lateral posterior, 
mediodorsal-medial, and medial geniculate). Matrix-like connectivity dominated 
in seven thalamic nuclei (centromedian, parafascicular, pulvinar-anterior, pulvinar-
lateral, ventral lateral-anterior, ventral lateral-posterior, ventral posterolateral). 
Though we mapped all thalamic nuclei independently, functionally-related nuclei 
were matched for compartment-level bias. We validated these results with prior 
thalamostriate tract tracing studies in non-human primates and other species; 
where reliable data was available, all agreed with our measures of structural 
connectivity. Matrix-like connectivity was lateralized (left  >  right hemisphere) 
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in 18 thalamic nuclei, independent of handedness, diffusion protocol, sex, 
or whether the nucleus was striosome-dominated or matrix-dominated. 
Compartment-specific biases in striato-pallido-thalamic structural connectivity 
suggest that routing CSTC loops through striosome-like or matrix-like voxels 
is a fundamental mechanism for organizing and regulating brain networks. Our 
MRI-based assessments of striato-thalamic connectivity in humans match and 
extend the results of prior tract tracing studies in animals. Compartment-level 
characterization may improve localization of human neuropathologies and 
improve neurosurgical targeting in the GPi and thalamus.

KEYWORDS

striatum, thalamus, striosome and matrix compartments, patch, classification targets 
tractography, probabilistic diffusion tractography, cortico-striato-thalamo-cortical 
circuit, globus pallidus interna

1. Introduction

The mammalian thalamus projects to every cortical area, and each 
cortical area projects through intermediate structures to specific 
thalamic nuclei (Jones, 1998; Dufour et  al., 2003). However, the 
thalamus is much more than a passive relay for cortical information; 
the thalamus integrates information from diverse cortical inputs to 
stabilize and reshape cortical networks (Hwang et  al., 2017) and 
mediates direct information transfer between cortical areas (Sherman 
and Guillery, 2013). Precise characterization of connectivity with the 
thalamus is therefore essential to understanding the organization and 
functions of higher-order central nervous systems.

Delineating distinct thalamic nuclei has been accomplished based 
on histologic features (Krauth et al., 2010), structural connectivity 
(Behrens et al., 2003), resting state functional connectivity (Jones, 
1998), and combinations of these methods (Iglesias et  al., 2018; 
Iglehart et al., 2020). These methods have defined between 10 and 26 
anatomically and functionally distinct thalamic nuclei (Iglesias et al., 
2018; Ilinsky et al., 2018; Mai and Majtanik, 2018). The complexity of 
thalamic nuclear organization underpins the multimodal functions of 
cortico-striatal-thalamo-cortical (CSTC) loops (Alexander et  al., 
1986), anatomically segregated networks that mediate information 
transfer among functionally linked structures. CSTC loops modulate 
function beyond the cortex, striatum, and thalamus as well, through 
projections to the cerebellum, brainstem, and spinal cord (Haber, 
2003). Identifying the afferent and efferent patterns of structural 
connectivity with each thalamic nucleus is essential to understanding 
the clinical impact of focal thalamic lesions (Hwang et al., 2017, 2020) 
and extrathalamic lesions that disrupt thalamic networks (Kim et al., 
2021; Kletenik et al., 2022).The importance of CSTC loops in normal 
function and dysfunction in humans necessitates a more granular 
inspection of striatothalamic connectivity patterns (Joel, 2001).

Connectivity between the striatum and thalamus can be further 
specified based on the projections of two anatomically and functionally 
distinct compartments of the mammalian striatum, the striosome (aka 
patch) and matrix. Tract tracing studies in cats, rodents, and primates 
describe thalamostriate projections that are biased toward one striatal 
compartment (Nauta et al., 1974; Veening et al., 1980; Berendse and 
Groenewegen, 1990; Ragsdale and Graybiel, 1991; Féger et al., 1994). 
While thalamo-striate projections have been extensively mapped 

through tracer injections, and one study (Aoki et al., 2019) mapped 
multi-synaptic CSTC circuits using retrograde tracers, we found no 
prior reports that mapped compartment-specific multi-synaptic 
striato-pallido-thalamic projections. Therefore, the contributions of 
striosome and matrix to the regulation of specific thalamic nuclei, and 
specific CSTC loops, remain unknown.

While striosome and matrix are indistinguishable by routine 
histologic stains, the compartments can be readily identified using 
immunohistochemical methods in animal and human post-mortem 
tissue (Graybiel and Ragsdale, 1978; Holt et al., 1997). Both striatal 
compartments are comprised of medium spiny neurons (MSNs), but 
the two populations migrate from the lateral ganglionic eminence at 
different times in development (Graybiel and Hickey, 1982; Kelly et al., 
2018). They have largely distinct patterns of afferent and efferent 
connectivity (Lévesque and Parent, 2005; reviewed in Waugh et al., 
2022), segregated vascular supplies (Feekes and Cassell, 2006), and 
distinct expression of >60 surface proteins (Morigaki and Goto, 2015). 
Similar to other primate and non-primate mammals, in the human 
striatum the striosome is enriched in the medial, rostral, and ventral 
striatum – while the matrix is more common in the lateral, caudal, and 
dorsal striatum (Graybiel and Ragsdale, 1978; Goldman-Rakic, 1982; 
Donoghue and Herkenham, 1986; Graybiel, 1990; Desban et al., 1993; 
Eblen and Graybiel, 1995). They appear to fill opposing roles in 
behavior, with distinct influences on cost–benefit assessments, 
multiple models of learning, and motor action selection (Joel et al., 
2002; Stephenson-Jones et al., 2013; Bloem et al., 2022).

We recently demonstrated that diffusion tensor imaging (DTI) 
methods can identify voxels with striosome-like and matrix-like 
patterns of connectivity in living humans (Waugh et  al., 2022). 
Parcellating the striatal compartments based on differential structural 
connectivity replicated many anatomic features demonstrated through 
immunohistochemistry – their relative abundance, the anatomic sites 
where striosome or matrix are differentially enriched, their 
somatotopic organization, and their connectivity with extrastriate 
regions that were not utilized for parcellation. Test–retest reliability of 
this method was high: in humans scanned twice (1 month between 
scans), only 0.14% of voxels changed compartment-specific identity 
(Waugh et al., 2022). In regions where prior tract tracing studies in 
animals identified a robust compartment-specific bias in connectivity, 
our method replicated those findings in 93% of regions. An important 
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limitation of this method is the size mismatch between the human 
striosome and a diffusion voxel, the unit of signal acquisition in our 
technique. We  estimate that the diameter of the typical human 
striosome in coronal sections ranges from 0.5–1.25 mm [based on 
histology presented by Graybiel and Ragsdale (1978) and Holt et al. 
(1997)]. In contrast, the resolution of diffusion voxels in the present 
study was 1.5 or 2.0 mm isotropic, ensuring that even the most 
striosome-enriched striatal voxel will include a mix of striosome and 
matrix tissue. Readers should bear in mind that connection 
probabilities at each voxel are an average of both compartments, and 
that the majority of striatal voxels will therefore have indeterminate or 
weakly-biased compartment-specific connectivity profiles. For this 
reason, we restrict our assessments to the most-biased voxels, those 
that exceed 1.5 standard deviations beyond the mean for structural 
connectivity. Since our connectivity-based parcellations are inferential, 
we  identify these voxels as “striosome-like” and “matrix-like” to 
remind readers that we  have not directly identified striosome 
and matrix.

The organization of the striatum into striosome and matrix is 
conserved across all mammalian species investigated to date. 
Moreover, development of MSNs into striosome or matrix appears to 
be more fundamental than development of the direct and indirect 
pathways, a later-arising and less-distinct striatal organizational 
schema (Crittenden and Graybiel, 2011; Kelly et al., 2018). Projections 
from most cortical areas (80.0%) are significantly segregated toward 
one compartment (striosome-favoring or matrix-favoring, Waugh 
et al., 2022) suggesting that most CSTC loops follow a bifurcated path 
through striosome or matrix. While it is plausible that thalamic nuclei 
receive a combination of striosome-originating and matrix-originating 
projections, we  hypothesize that the striato-pallido-thalamic 
projections to a specific thalamic nucleus may be biased toward one 
compartment. Striosome and matrix differ in many clinically-relevant 
ways: they have differential susceptibility to hypoxic–ischemic injury 
(Burke and Baimbridge, 1993) and to dopamine-mediated 
excitotoxicity (Saka et al., 2004; Granado et al., 2010; Jaquins-Gerstl 
et  al., 2021); electrical stimulation promotes reward-mediated 
learning, but only when electrodes are placed in the striosome (White 
and Hiroi, 1998); dopaminergic D1 stimulation prolongs neuronal 
activation in matrix but shortens neuronal activation in striosome 
(Prager et  al., 2020); and more than a dozen diseases have been 
hypothesized to have a compartment-specific neuropathology 
(Crittenden and Graybiel, 2011; Kuo and Liu, 2020). These 
observations suggest that characterizing compartment-specific biases 
in striato-pallido-thalamic projections may be  important for 
understanding why diseases that affect the striatum or thalamus 
produce specific constellations of symptoms. To the best of our 
knowledge, such biases in compartment-level striatal projections to 
the thalamus as a whole, or to individual thalamic nuclei, have not 
been mapped previously in any species.

Much of our knowledge of the functions of thalamic nuclei in 
humans is based on correlation from animal studies, from 
observations in neurologic diseases [e.g., stroke (Schmahmann, 2003; 
Li et al., 2018), epilepsy (Leiguarda et al., 1992; Sánchez Fernández 
et al., 2012), traumatic brain injury (Snider et al., 2020; Mofakham 
et al., 2021], and from the response to focal treatments of neurological 
diseases, such as deep brain stimulation (DBS, Kundu et al., 2018; 
Morishita et al., 2019) and high intensity focused ultrasound (Shah 
et al., 2020). These studies demonstrate that specific thalamic nuclei, 

mechanisms of injury, and neuropsychiatric symptoms are linked, and 
that these thalamic dysfunctions can result from primary dysfunction 
within the thalamus or can result from extrathalamic sites impinging 
on the thalamus (Morton et al., 1993; Hedreen and Folstein, 1995; 
Chung et  al., 1996; Miyai et  al., 2000; Kumral et  al., 2001). 
We hypothesize that the striosome and matrix, through their divergent 
roles in striatal function, may contribute to the specificity of thalamic 
nuclear functions. A non-invasive, in vivo assessment of compartment-
specific thalamic connectivity may provide additional targets and 
more precise placement for neuromodulation (e.g., DBS), and may 
provide a nuanced understanding of complex brain injuries in which 
both striatum and thalamus are injured (Aravamuthan and 
Waugh, 2016).

In this study, we mapped the structural connectivity of thalamic 
nuclei with the striosome-like and matrix-like compartments of the 
striatum in living humans using probabilistic diffusion tractography. 
We utilized a relatively large (221 individuals) and racially diverse 
cohort of healthy adults, with equal representation of female and male 
subjects, and robust representation of ages from 20 to 65 years. This 
broad representation allowed us to assess for demographic influences 
on striato-pallido-thalamic connectivity. We  cross validated our 
results against measures of structural connectivity in non-human 
primates, cats, and rats that used injected tract tracers. Our results 
suggest that the functional specialization of CSTC loops involves 
distinct paths through the striosome and matrix compartments of the 
striatum, and that these loops may be  reliably assessed in living 
humans using probabilistic diffusion tractography.

2. Methods

2.1. Participants

All research was conducted in accordance with the principles 
set forth in the Declaration of Helsinki. We included subjects from 
multiple institutions. All data collection was approved by the 
Institutional Review Board for the respective institution where the 
subject was recruited. We utilized four separate cohorts of healthy 
subjects, totaling 221 participants (442 hemispheres). Of these 221 
participants, 218 were determined to have connectivity data in at 
least one hemisphere that met our internal quality control 
assessments, and were therefore utilized for connectivity analyses 
(423 hemispheres). The pre-set criteria used to determine whether 
connectivity data was sufficient for inclusion is explained in section 
2.6. We previously described the demographic variables of three of 
these cohorts (Waugh et al., 2022), which included 121 subjects 
(Cohorts 1–3). Briefly, 106 of these participants were right-handed 
(90%), 58 self-reported as female (49%), and the mean age of these 
cohorts was 35 years (range: 18–74). The remaining 100 subjects 
(Cohort 4, not previously described) were derived from the Human 
Connectome Project (HCP), accessed through the National 
Institute of Mental Health Data Archive (NDA, van Essen et al., 
2013). We assembled a diverse cohort of HCP subjects, balancing 
subjects for age, sex, and self-identified race. To create the HCP 
cohort, we identified 10 HCP subjects (with a goal of five male, five 
female) at each five-year increment starting from 20 years old and 
ending at 65 years old (20, 25, 30, etc.). When there were insufficient 
numbers of HCP subjects at a particular age target, we selected 
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subjects at surrounding ages, as close as possible to our target age, 
never infringing on the adjacent age targets. If there were fewer 
than five male or female subjects available at a specific age block, 
we rebalanced the sex ratio in another age block. For example, if 
only four male subjects were available at 30 years, we identified six 
female subjects at 30 years, and then at 35 years included six male 
and four female subjects. Among each group of five subjects (male 
or female, at a specific age), we attempted to produce a diverse and 
representative cohort by including at least one Asian subject, and at 
least one Black subject. We filled the remainder of each block of five 
with White subjects or those who listed their race as Other/Not 
reported. These participants were screened as healthy, with no 
reported history of neurological or psychiatric conditions. Of the 
100 HCP subjects, the self-reported race was Asian (13%), Black 
(28%), White (52%), and Other/Not reported (7%). 90 of the HCP 
subjects were right-handed (90%) and 10 of the subjects were left-
handed or ambidextrous (10%) based on the Edinburgh 
Handedness Inventory (Oldfield, 1971). The HCP cohort was evenly 
split between females and males (50:50). Subjects that comprise the 
HCP cohort can be accessed through the NDA via a study-specific 
identifier (DOI 10.15154/1528201). For our final, combined cohort 
(221 subjects), the mean age was 38.2 years old. The self-reported 
race of subjects was 39 Asian (22%), 37 Black (17%), 121 White 
(56%), and 10 Other/Not reported (5%). 113 participants were male 
(52%), and 105 were female (48%). Note that none of the included 
studies assessed gender identity; whether gender differed from the 
sex assigned at birth for any subject is unknown. The cohort 
included 196 right-handed subjects (90%), 21 left-handed or 
ambidextrous subjects (10%), and one subject who lacked 
handedness data.

2.2. Imaging data acquisition

All subjects were scanned at 3 T using whole-brain diffusion 
tensor imaging (DTI) and T1 (MPRAGE) protocols. For all subjects, 
MRI data was collected in a single scan session. We  previously 
described the imaging acquisition for cohorts A, B, and C (Waugh 
et al., 2022). Briefly, these subjects were scanned at 2 mm isotropic 
resolution, using 70 direction (cohorts A and C, 10 B0 volumes and 60 
volumes at non-colinear directions) or 33 direction (cohort B, one B0 
volume and 32 volumes at non-colinear directions) DTI protocols. 
Data for HCP subjects was collected at three sites in the United States 
on Siemens Prisma scanners running Syngo MR E11 software and 
using harmonized protocols. Briefly, DTI for HCP subjects was 
acquired at 1.5 mm isotropic resolution using 200 directions (14 B0 
volumes, 186 volumes at non-colinear directions) with the following 
parameters: repetition time = 3.23 s; echo time = 0.0892. Given these 
differences in DTI acquisition, we included both scanner type and 
number of diffusion directions as covariates in our subsequent 
analyses. T1 scans were collected at 1 mm isotropic resolution for 
cohorts A–C, and 0.80 × 0.76 × 0.76 mm for HCP subjects. The imaging 
volumes acquired for Cohorts A, B, C, and HCP were: A, 
256x256x256mm; B, 180 × 240 × 240 mm; C, 128 × 128 × 128 mm; HCP, 
208 × 300 × 320 mm. We  utilized the Freesurfer utility recon-all to 
perform whole-brain segmentation. Regardless of the original 
resolution and imaging volume for each subject, recon-all standardized 
the resolution of all T1 images to 1 mm isotropic.

2.3. Thalamic parcellations

We utilized the automated method of Iglesias et al. (2018) to 
produce individualized segmentations of the thalamus in native T1 
space. Briefly, we  completed whole brain segmentation using 
recon-all (Reuter et  al., 2012), utilizing each subject’s MPRAGE 
scan. We visually inspected the results of recon-all for each subject. 
Next, we utilized the Iglesias add-on to recon-all to further segment 
the thalamus into 25 nuclei. We  planned to use these thalamic 
segmentations to extract connectivity estimates from probabilistic 
tractography (after registering tractographic probability maps into 
native T1 space) but recognized that image registration and partial 
volume inaccuracies might compromise accurate data extraction. 
Therefore, we established, a priori, a minimum volume threshold 
for including data from a thalamic nucleus. We set a lower volume 
limit of four DTI-space voxels (32mm3 for cohorts A–C; 13.5mm3 
for our HCP cohort) when registered into T1 space, which excluded 
seven nuclei for cohorts A–C: central lateral, laterodorsal, limitans 
(suprageniculate), reuniens (medial ventral), paracentral, 
paratenial, and ventromedial. Note that the thresholds of 32mm3 for 
cohorts A–C and the 13.5mm3 for our HCP cohort are actually the 
same voxel-based threshold – four native-space voxels, adjusted for 
the resolution of each diffusion protocol. In addition, we excluded 
the lateral geniculate and limitans nuclei, given that (1) the white 
matter architecture surrounding these nuclei made grey/white 
segregation and accurate segmentation inconsistent in our datasets, 
and (2) we could identify no prior animal literature documenting 
afferent or efferent projections between the striatum and 
either nucleus.

Our exclusion criteria left 17 thalamic nuclei for final analysis in 
all 221 subjects: anteroventral (AV), central medial (CeM), 
centromedian (CM), lateral posterior (LP), mediodorsal-lateral 
(MDl), mediodorsal-medial (MDm), medial geniculate (MGN), 
parafascicular (Pf), pulvinar-anterior (PuA), pulvinar-inferior (PuI), 
pulvinar-lateral (PuL), pulvinar-medial (PuM), ventral anterior (VA), 
ventral anterior magnocellular (VAmc), ventral lateral anterior (VLa), 
ventral lateral posterior (VLp), and ventral posterolateral (VPL). 
Given the higher resolution of DTI scans in our HCP cohort (1.5 vs. 
2.0 mm isotropic), three additional nuclei met volumetric criteria 
when assessed only in the HCP cohort: central lateral (CL), 
laterodorsal (LD), and reuniens (Reu). We therefore assessed CL, LD, 
and Reu only in the 100 subjects of the HCP cohort.

2.4. DTI processing

Our A, B, and C cohorts had only anterior-to-posterior imaging, 
whereas the HCP group had both anterior-to-posterior and posterior-
to-anterior DTI volumes. Therefore, only HCP subjects were eligible 
for susceptibility-induced distortion correction using the FSL utility 
topup. We performed skull stripping using the FSL Brain Extraction 
Tool (bet2). We utilized the FSL tool eddy to correct for eddy current-
induced distortions and subject motion. We fit local diffusion tensors 
using dtifit, creating a 3D FA image at the same resolution as the 
original diffusion images. Finally, we generated diffusion parameters 
at each voxel using bedpostx (Behrens et al., 2007). We completed 
preprocessing and probabilistic tractography steps in each subject’s 
native space.
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2.5. Probabilistic diffusion tractography

We carried out four separate iterations of probabilistic 
tractography for this study, each with a distinct purpose. First, 
we  completed striatal parcellation using classification targets 
tractography (CTT) to quantify structural connectivity, as 
we described previously (Waugh et al., 2022). Briefly, we utilized a 
series of striosome-favoring or matrix-favoring cortical “bait” regions 
to identify voxels whose patterns of connectivity with extra-striate 
targets matched those identified in animals – and thus were 
“striosome-like” or “matrix-like.” We identified these bait regions from 
our comprehensive review of prior tract tracing studies in animals 
(Waugh et al., 2022). Unlike traditional probabilistic tractography, 
which focuses on streamlines after they exit a seed voxel, CTT 
quantifies the structural connectivity at each seed voxel with a 
predefined set of targets. Therefore, the output of CTT is a series of 
probability distributions – in this case, two superimposable maps of 
the striatum, one measuring connectivity to striosome-favoring 
regions, the other measuring connectivity to matrix-favoring regions. 
The ratio of those two probability distributions quantifies the degree 
to which a voxel is connected in a striosome-like or matrix-like 
manner. Second, we  executed traditional streamline tractography 
(non-CTT) to quantify and localize the streamline bundles that 
connect striosome-like and matrix-like striatal voxels with the 
thalamus. Third, we performed CTT with the thalamus as seed and the 
sets of parcellated striosome-like and matrix-like voxels as competing 
targets (the second round of CTT described here). We used this third 
iteration of tractography to quantify connectivity between specific 
thalamic nuclei and each striatal compartment. Fourth, we conducted 
two post-hoc iterations of striatal parcellation to assess the importance 
of precision in selecting striatal voxels. These parcellations utilized 
“N-1” (aka “leave-one-out”) approaches, in which we used five matrix-
favoring regions as bait, but only four striosome-favoring regions as 
bait. This allowed us to quantify connectivity with the left-out region, 
as we  demonstrated previously (Waugh et  al., 2022). For all four 
iterations of tractography, we  ran left and right hemispheres 
independently. Our striatal parcellations (tractography iteration one) 
and post-hoc assessments of precision (tractography iteration four) 
utilized a whole-hemisphere bounding mask. Iterations two and three 
utilized a subcortical bounding mask, described below.

The bait regions we utilized for striatal parcellation were similar 
to those we described previously (Waugh et al., 2022). However, as the 
present analysis included the globus pallidus interna (GPi) and 
thalamus as waypoint or seed regions, respectively, we  could not 
utilize these regions in striatal parcellation – one cannot define striatal 
compartment identity based on connectivity to a region and 
subsequently quantify connectivity with that region. Therefore, 
we replaced three bait regions from our prior work with three cortical 
regions whose striatal connectivity was significantly biased toward one 
compartment: (i) superior parietal (matrix-favoring), (ii) the superior 
portion of the inferior frontal gyrus, pars opercularis (matrix-
favoring), and (iii) the posterior portion of the temporal fusiform 
cortex (striosome-favoring). We selected these cortical regions for 
their high degree of compartment selectivity and substantial 
reproducibility across imaging cohorts. However, we were unable to 
identify any prior tract tracing studies in animals that mapped 
connectivity with these three regions. Notably, the temporal fusiform 
cortex is present only in hominids, and the superior parietal lobule 

and inferior frontal gyrus are present only in primates, precluding 
their study in the animal species commonly utilized in tract tracing 
studies (Waugh et al., 2022). We aimed to validate this group of bait 
regions by assessing whether selecting striatal voxels based on biased 
connectivity would reproduce other features of the striatal 
compartments demonstrated through histology, such as the relative 
location of each compartment within the striatum. Striosome and 
matrix are not distributed randomly within the striatum [both in 
animal (Goldman-Rakic, 1982; Gerfen, 1984) and human histology 
(Graybiel and Ragsdale, 1978; Faull et al., 1989)]. We tested the intra-
striate position of striosome-like and matrix-like voxels to learn 
whether identifying voxels based on biases in connectivity could also 
match the spatial patterns expected from histology. For the most-
biased voxels in the striosome-like and matrix-like distribution (those 
used as the seed or targets of subsequent rounds of tractography), 
we measured their cartesian location relative to the centroid of the 
nucleus it occupied (left or right hemisphere, caudate or putamen).

All standard space regions of interest (ROI) utilized in this study 
are provided in our Supplemental Materials. These standardized 
masks, when registered into a subject’s native diffusion space, served 
as seed, waypoint, target, inclusion, or exclusion masks for 
probabilistic diffusion tractography, which we carried out with the FSL 
tool probtractx2 (Behrens et al., 2007). We used fslview to manually 
segment left and right thalamic masks, encompassing only the 
thalamus and excluding the surrounding white matter. Our striatal 
ROI did not include the nucleus accumbens, which does not share the 
striosome/matrix architecture observed in the rest of the striatum, and 
excluded the posterior half of the caudate tail, as we found that this 
small structure led to registration errors and frequent partial volume 
effects (Waugh et al., 2022). We generated a subcortical inclusion 
mask, which encompassed the caudate, putamen, globus pallidus 
(interna and externa), thalamus, and the white matter immediately 
surrounding these structures. This mask eliminated all streamlines 
that extended beyond its boundaries, excluding corticostriate, 
thalamocortical, and subcortical-brainstem projections. We utilized 
this subcortical inclusion mask to refine tractography iterations two 
and three (mapping striato-pallido-thalamic streamline bundles, and 
quantifying connectivity at the level of specific thalamic nuclei, 
respectively). Seven of the cortical ROI masks used for striatal 
parcellations and our GPi mask were defined in our prior work 
(Waugh et al., 2022). We segmented the three new cortical ROIs on 
the MNI152_T1_1mm standard brain utilizing the human brain atlas 
of Mai et al. (1997) based on prior MRI assessments of the superior 
parietal (Passarelli et al., 2021), fusiform (Rajimehr et al., 2009), and 
inferior frontal (Hammers et  al., 2007) gyri. We  registered all 
standard-space ROIs into each subject’s native space using the FSL 
tools flirt and fnirt.

The results of probabilistic tractography can be influenced by the 
size of the target masks utilized, with larger volume increasing the 
probability of any given streamline ending at the target mask. 
Therefore, we assured that striosome-like and matrix-like masks from 
the same hemistriatum always had equal volume in order to minimize 
this source of bias, as previously described (Waugh et al., 2022). To 
create these matched-volume striatal masks, we selected the N most-
biased voxels in each probability distribution (striosome-like and 
matrix like), retaining the voxels that were 1.5 standard deviations 
above the mean. Since our experimental cohorts included diffusion 
images with two different resolutions, we set two different volume 
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thresholds to match this 1.5 standard deviation target. For cohorts 
A–C (2 mm isotropic voxels), we utilized an 83 voxel threshold. For 
our HCP cohort (1.5 mm isotropic voxels), we utilized a 180 voxel 
threshold. Striosome-like and matrix-like voxels cannot overlap; our 
method for selecting biased voxels precludes the same voxel being 
selected to represent both compartments. The overlap between 
compartment-like voxels within a subject was zero.

We utilized these equal-volume striatal compartment masks in 
tractography iterations two and three; iterations one and four (striatal 
parcellation) utilized the whole-striatum mask. For tractography 
iteration one (CTT, striatal parcellation), we utilized the striatum as 
seed, 10 cortical ROIs (5 striosome-favoring, 5 matrix-favoring) as 
targets, and included streamline paths from the whole hemisphere. 
For tractography iteration two (mapping the path of striato-pallido-
thalamic streamlines) we  utilized equal-volume striatal masks 
(striosome-like or matrix-like) as seeds, the GPi as a waypoint 
(streamlines were rejected if they did not contact the GPi), and the 
thalamus as a termination mask (streamlines terminated upon 
contacting any thalamic voxel, preventing loopbacks). For 
tractography iteration three (CTT, quantifying connectivity with each 
thalamic nucleus) we utilized the thalamus as seed, GPi as waypoint, 
and striosome-like and matrix-like masks as targets. Note that since 
the streamlines of probabilistic tractography have no directionality, 
this round of CTT selected for the same striato-pallido-thalamic 
streamlines generated using the traditional streamline tractography 
(iteration two) but allowed us to quantify connectivity at each 
thalamic voxel.

For tractography iteration four (striatal parcellation followed by 
quantitative CTT), we  parcellated the striatum as described for 
iteration one, but used 9 cortical ROIs (4 striosome-favoring, 5 
matrix-favoring) as targets. We carried out this N-1 parcellation twice, 
once each for two regions that were among the strongest striosome-
favoring biases from our prior work (Waugh et al., 2022): anterior 
insula and basal operculum. We then performed quantitative CTT 
with these left-out regions as seed and the N-1 parcellated striatal 
voxels as targets. As our aim for this iteration of tractography was to 
assess the influence of precise voxel location on compartment-level 
bias, we  ran parallel versions of quantitative CTT with imprecise 
striatal voxels as targets. To generate these imprecise masks, we shifted 
the position of each voxel in our precise, matched-volume masks, at 
random, by +/− 0–3 voxels in each plane. Note that this randomization 
step shifted the location by only a few voxels – these imprecise voxels 
were near-neighbors of the precise matched-volume masks. 
We measured the amplitude of this location shift for 40 hemispheres, 
selected at random: five striosome-like and five matrix-like masks for 
each of our four experimental cohorts. We  measured the change 
in location (root-mean-square distance) for all 4,026 voxels in these 
40 hemispheres.

We completed striatal parcellation and mapped the path of striato-
thalamic streamlines (tractography iterations one and four, and two, 
respectively) using the standard probtrackx2 settings: curvature 
threshold = 0.2; steplength = 0.5 mm; number of steps per 
sample = 2,000; number of streamlines/voxels = 5,000. For quantifying 
striato-thalamic tractography at the level of individual thalamic nuclei, 
however, increasing the depth of sampling by 10× (50,000 streamlines/
voxel) yielded a more accurate probability distribution. Specifically, 
increasing the number of streamline trials provided a more robust 
mapping of each compartment’s connection probability and thereby 

decreased the number of thalamic voxels that had no streamlines that 
met our anatomic and tractographic criteria. This increase in 
streamlines/voxel reduced the impact of “floor effects,” locations 
where we otherwise could not distinguish between low-connectivity 
and no-connectivity voxels. This allowed connectivity estimates to 
derive from a larger fraction of the voxels in each thalamic nucleus. 
For the MGN, we found that a further increase to 500,000 streamlines 
per seed voxel was necessary to adequately sample the probability 
distribution. Therefore, we ran tractography and quantification for 
MGN separately from all other thalamic nuclei. In all three iterations 
of probabilistic tractography, streamlines were corrected for length to 
prevent the proximity to a target from influencing the strength of 
connection. We visually inspected the results of dtifit, bedpostx, native 
space registrations, and both CTT and streamline tractography, for 
each subject, to assure that DTI processing was complete and accurate.

The regional segmentations and Linux scripts utilized to parcellate 
the striatum are accessible here: github.com/jeff-waugh/
Striatal-Connectivity-based-Parcellation.

2.6. Localizing compartment-specific 
streamlines

Our goals for tractography iteration two were (1) to map the paths 
of striato-pallido-thalamic connectivity, and (2) determine the relative 
abundance of streamlines seeded by striosome-like vs. matrix-like 
voxels. We sought to determine whether the streamlines seeded from 
striosome-like and matrix-like voxels traversed different routes to 
reach their pallidal and thalamic targets. Therefore, we  utilized 
normalized streamline bundles to reduce the impact of tract amplitude 
on mean location: we divided each subject/hemisphere/compartment’s 
tractography volume by its maximum value within the GPi. The 
averaged images and randomise testing results discussed below 
utilized these normalized tracts. After registering each subject’s 
tractography into standard space, we used two distinct approaches to 
assess the overlap of streamlines seeded by striosome-like vs. matrix-
like voxels. First, we used fslstats to determine the site of maximum 
value of striato-pallido-thalamic projections within the GPi 
(independent striosome-like and matrix-like streamline bundles). 
We quantified the location difference between compartment-specific 
bundles by calculating the root-mean-square difference in the site of 
the peak streamline amplitude (striosome-like vs. matrix-like bundles, 
in each individual and hemisphere). Further, we compared the x-, y-, 
and z-plane coordinates of these maximum value sites between 
striosome-like and matrix-like bundles in each individual and 
hemisphere. To correct for the intrinsic differences in location of the 
GPi in left and right hemispheres, we matched the center of mass for 
left and right GPi by mirroring right hemisphere x-coordinates into 
the left hemisphere and bringing y- and z-coordinates to the mean 
y- and z-coordinates for left and right GPi. Second, we quantified the 
overlap in streamlines using the averaged striato-pallido-thalamic 
tractograms from all subjects, for each hemisphere and compartment-
specific seed mask, both within and outside the GPi. For each 
hemisphere and compartment-specific seed we isolated the core of the 
tract at high- (uppermost 25% of voxels by amplitude), mid- 
(uppermost 50%), and low-stringency (uppermost 90%) amplitude 
thresholds. We previously identified these high- and mid-stringency 
thresholds as sufficient to isolate the tract core (Waugh et al., 2019). 
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We then calculated the Dice Similarity Coefficient (DSC) at high-, 
mid-, and low-stringency to assess the overlap in striosome-like and 
matrix-like streamlines, both within and outside the GPi, for each 
hemisphere. We  then quantified the overlap of streamlines for 
individual subjects with the mean streamline bundle (uppermost 
50%) to assess location variance within each streamline bundle. 
Finally, we  assessed the number of streamlines per seed voxel 
(non-normalized), comparing streamline bundles seeded by 
striosome-like vs. matrix-like voxels.

2.7. Quality assurance and quantification of 
thalamic connectivity

We registered each subject’s thalamic probability maps (tractography 
iteration three) into native T1 space. This allowed us to utilize each 
individual’s recon-all thalamic segmentation to generate nucleus-specific 
masks for extracting connectivity data from striosome-like and matrix-
like probability distributions. For native space probability maps, at every 
voxel the striosome-like and matrix-like probability distributions 
summed to one. After registration to T1 space, partial volume and edge 
effects led some voxels to lose this “sum to one” property. Therefore, 
we renormalized the probability distributions on a voxel-by-voxel basis. 
We trimmed edge voxels whose summed value was <0.5, which reduced 
partial volume effects at the edges of the thalamus. For each thalamic 
nucleus, we  quantified the number of suprathreshold voxels (value 
≥0.55) in striosome-favoring and matrix-favoring normalized 
probability distributions. For each nucleus we expressed connectivity as 
the percent of suprathreshold voxels dominated by each compartment 
(Nvoxels, striosome-like or matrix-like)/(Nvoxels, striosome-like + Nvoxels, 
matrix-like).

Next, we  assessed each thalamic nucleus for connectivity 
differences between left and right hemispheres. For any nucleus whose 
compartment-specific connectivity (1) was significantly different 
between left and right hemispheres and (2) was biased toward different 
compartments in the two hemispheres, we reported results for left and 
right hemispheres independently. For the four nuclei that met these 
criteria, bias was significant in one hemisphere and neutral in the 
other; we did not find significant differences in compartment-by-
hemisphere bias (e.g., left hemisphere biased toward matrix-like, and 
right hemisphere biased toward striosome-like voxels) for any 
thalamic nucleus. For the remaining 16 nuclei we combined left and 
right hemispheres for quantifying striosome-like vs. matrix-like 
patterns of connectivity.

Prior to any statistical comparisons, we imposed a data quality 
threshold to reduce inaccuracies resulting from inadequate sampling 
of the thalamic probability distributions. First, we  summed the 
volume of suprathreshold voxels from the striosome-favoring and 
matrix-favoring probability distributions (the maps resulting from 
whole-thalamus CTT). As we were concerned that paucity of data 
might reduce the accuracy of quantification, we  eliminated all 
subject-hemispheres whose suprathreshold total volume was below 
10% of the mean volume for that hemisphere. This elimination 
removed the left hemisphere for 13 participants and the right 
hemisphere for 6 participants. Next, we  eliminated all subject-
hemispheres that had no data for one compartment, as this led to a 
binarization of data that skewed bias calculations. For example, two 
subjects with very different bias counts would result in the same 

volume percent calculation (subject 1: 0 matrix-favoring voxels, 99 
striosome-favoring voxels; subject 2: 0 matrix-favoring voxels, 1 
striosome-favoring voxel; both result in bias estimates of 100% 
striosome-favoring). Note that increasing the streamlines/voxel 
during CTT (from 5,000 to 50,000 per seed voxel) substantially 
reduced the number of under-sampled subject hemispheres. 
Following this quality control step, we assessed thalamic connectivity 
in 210 left and 214 right hemispheres. For all subject-hemispheres 
eliminated based on under-sampling of thalamic CTT (tractography 
iteration three), we also removed those subjects from assessments of 
tractography iteration two.

Finally, we  compared our MRI-based results with previously 
published tract tracing studies in animals. For every prior study, 
we  recorded the tracing methods, species utilized, the number of 
animals assessed, and whether compartment assessment directly 
visualized tracing material in either striosome or matrix, or indirectly 
suggested compartment-specific connectivity. We  noted 
compartment-specific assessments as-described by the original 
authors; we did not reinterpret findings.

2.8. Statistical analyses

All statistical tests on data extracted from tractography volumes 
were performed using STATA (van Essen et al., 2013, Stata Statistical 
Software: Release 13, College Station, TX). We performed voxelwise 
nonparametric permutation testing on tractography volumes using the 
FSL tool randomise. We measured the location of each voxel in our 
striosome-like and matrix-like masks (the cartesian position relative to 
the centroid of caudate or putamen) for each subject and hemisphere, 
producing a dataset of 103,688 parcellated voxels. We assessed the effect 
of striatal compartment and nucleus of origin (caudate or putamen) on 
voxel location using two-factor ANOVAs (one each for the x-, y-, and 
z-planes). Within the same ANOVAs we assessed the effect of cohort, 
and subject identity nested within cohort. To the best of our knowledge, 
no interhemispheric differences in matrix and striosome location have 
been described previously. Therefore, we did not treat hemisphere as a 
separate factor. We previously demonstrated that scanner type, subject 
sex, and self-identified race had no influence on the location of 
parcellated striatal voxels (Waugh et al., 2022), and we therefore did not 
include these factors in our model. We performed identical ANOVAs 
for the x-, y-, and z-planes, and therefore used a significance threshold 
of p < 0.017 (0.05/3 comparisons). We performed post-hoc analyses of 
simple main effects for all factor interactions using the SME utility 
developed by the UCLA ATS Statistical Consulting Group (Ender, 
2017). We utilized the simultaneous test procedure for estimating the 
critical value of F, the most conservative method provided in this utility.

We evaluated the influence of precise location on compartment-
level bias by comparing the results of CTT with precisely-selected 
versus neighboring (imprecise) striatal voxels. We performed paired 
samples t-tests for the mean probability of connection, volume 
projecting to striosome-like voxels, and volume projecting to matrix-
like voxels, for two striosome-favoring seed regions, the anterior 
insula and the basal operculum. We  therefore used a significance 
threshold of p < 8.3×10−3 (0.05/6 comparisons).

We utilized paired-samples t-tests to compare the location of the 
peak value within the GPi for streamline bundles that originated in 
striosome-like or matrix-like voxels. As we tested location in the x-, y-, 
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and z-planes, we  utilized a significance threshold of p < 1.7×10−2 
(Bonferroni correction for three tests, 0.05/3). We utilized a single 
paired-samples t-test to compare the number of streamlines per voxel 
originating from striosome-like and matrix-like voxels. Our 
significance threshold was p < 0.05. We compared thalamic nucleus-
specific connectivity in the left and right hemispheres using t-tests, two 
samples with equal variance. As we  tested 20 thalamic nuclei for 
hemispheric differences, our significance threshold was p < 2.5×10−3 
(Bonferroni correction for 20 tests, 0.05/20). We performed a post-hoc 
series of ANCOVAs to identify any subject factors that were drivers of 
interhemispheric difference. Factors assessed included age, number of 
diffusion directions, scanner type, handedness, hemisphere, self-
identified race, and sex. As Cohorts A and B were unbalanced for sex, 
and Cohort B was also unbalanced for self-identified race, we also 
assessed the interaction between sex, self-identified race, diffusion 
directions, and scanner type. Data from different thalamic nuclei was 
colinear, precluding our use of MANCOVA to combine these tests. 
Therefore, we performed 20 independent ANCOVAs, resulting in a 
significance threshold for these ANCOVAs of p < 2.5×10−3 (Bonferroni 
correction for 20 tests, 0.05/20). We assessed compartment-specific 
bias in each thalamic nucleus using t-tests, two samples with equal 
variance. As we measured the bias in combined hemispheres in 16 
nuclei, our significance threshold for these comparisons was 
p < 3.1×10−3 (Bonferroni correction for 16 tests, 0.05/16). Finally, 
we performed voxelwise nonparametric permutation testing of striato-
pallido-thalamic streamlines (randomise) with the following 
parameters: 5,000 permutations; variance smoothing = 2 mm; 
threshold-free cluster enhancement mode; masked by one of two 
conditions in separate iterations of randomise. The two masks utilized 
for randomise were (1) the same GPi mask used as a waypoint for 
tractography, or (2) the subcortical bounding mask utilized for 
tractography with all grey matter structures removed (to restrict 
testing to only the subcortical white matter). For both iterations of 
randomise, we used the familywise error corrected, threshold-free 
cluster enhanced test statistics. Since we performed two related tests 
using randomise, we set our significance threshold at p < 0.025 (0.05/2).

3. Results

3.1. Overview of experimental aims

We aimed to identify the thalamic nuclei whose striato-pallido-
thalamic structural connectivity was significantly biased toward 
striosome-like or matrix-like voxels – the striatal voxels whose 
corticostriate connectivity profiles matched the biases demonstrated 
in prior tract tracing studies in animals. These striatal parcellations are 
highly stable: in subjects scanned twice, with 1 month between scans, 
only 0.14% of striatal voxels switched compartment identity (Waugh 
et al., 2022). We first measured the locations of our parcellated striatal 
voxels to assure that our method identified voxels with striosome-like 
and matrix-like distributions within the striatum, in addition to their 
striosome-like and matrix-like patterns of connectivity. We  next 
assessed the precision of our striatal parcellations by comparing 
quantitative tractography when striatal target voxels were either 
precisely selected or were randomly selected from among the nearest 
neighbors of those precise voxels. Then, we assessed whether our 
tractographic approach produced distinct and anatomically plausible 

streamline bundles by quantifying streamline amplitude and intra-
pallidal location of streamline bundles. Next, for all thalamic nuclei 
whose volume was sufficient to allow for reliable assessment, we tested 
whether thalamic nuclei in the left and right hemispheres had the 
same or different biases in striato-pallido-thalamic connectivity. 
Finally, we evaluated each of these thalamic nuclei for compartment-
specific biases in structural connectivity.

3.2. Compartment-specific voxel location

Prior histologic studies in humans (Graybiel and Ragsdale, 1978; 
Faull et al., 1989; Holt et al., 1997) and animals (Graybiel and Ragsdale, 
1978; Goldman-Rakic, 1982; Gerfen, 1984; Donoghue and 
Herkenham, 1986; Malach and Graybiel, 1986) described medio-
lateral, rostro-caudal, and dorsal-ventral gradients in the predominant 
locations of each compartment. Though striosomes can be  found 
throughout the striatum, they are enriched in medial, rostral, and 
ventral sites. Our connectivity-based parcellation method identified a 
similar pattern: striosome-like voxels are located more medial, more 
rostral, and more ventral than matrix-like voxels. Two-factor ANOVA, 
examining the effects of striatal compartment and striatal nucleus 
(caudate or putamen), identified a significant influence of both factors, 
and their interaction, on voxel location.

The mean location of striosome-like voxels was 0.9 mm more medial 
(F[1, 223] = 2,668, p < 4.6×10−126), 4.1 mm more rostral (F[1, 223] = 8,468, 
p < 2.3×10−179), and 4.9 mm more ventral (F[1, 223] = 44,277, 
p < 1.9×10−258) than the mean location of matrix-like voxels. Whether a 
voxel was found within the caudate or putamen also had a significant 
influence on voxel location. Matrix-like voxels in the putamen were more 
lateral (F[1, 223] = 90.8, p < 2.8×10−18), more caudal (F[1, 223] = 38.8, 
p < 2.3×10−9), and more dorsal (F[1, 223] = 1,309.9, p < 2.6×10−95) than 
matrix-like voxels in the caudate. Note that since individual voxels were 
assessed relative to the centroid of either caudate or putamen, the relative 
positioning of each nucleus within the hemisphere did not drive these 
differences in location. However, differences in the geometry and size of 
the caudate and putamen may have allowed voxels to reside at greater 
distance from the centroid of the putamen.

The interaction of compartment and nucleus had a significant effect 
on voxel location in the x-plane (sagittal, F[1, 223] = 1,084.7, 
p < 1.3×10−87), y-plane (coronal, F[1, 223] = 53.9, p < 3.9×10−12), and 
z-plane (axial, F[1, 223] = 15.6, p < 1.1×10−4). Simple main effects analysis 
of the compartment-nucleus interaction showed that in the x-plane, only 
putamen has a significant effect on voxel location (F[1, 103,464] = 7,667.3, 
p < 1.9×10−305). In the y- and z-planes, both caudate and putamen had a 
significant effect on voxel location: y {caudate, (F[1, 103,464] = 1,519.8, 
p < 1.1×10−153)}; putamen, (F[1, 103,464] = 10,205.5, p < 7.0×10−321); z 
{caudate, (F[1, 103,464] = 15,341.4, p < 2.7×10−322)}; putamen, (F[1, 
103,464] = 40,976.3, p < 5.4×10−322). Variance from individual subjects 
and experimental cohort factors (Supplemental Figure  1) were not 
significant contributors to voxel location in any plane.

3.3. Compartment-specific bias depends 
on precise selection of striatal voxels

Biases in compartment-specific connectivity were highly 
influenced by precise voxel location. We performed N-1 parcellation, 
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leaving out either the anterior insula or basal operculum in successive 
iterations of CTT, which allowed us to then perform quantitative 
tractography with each of these two striosome-favoring regions in 
turn. After generating matched-volume masks for each N-1 
parcellation (the precise voxels with the highest degree of striosome-
like or matrix-like bias in connectivity), we created parallel, imprecise 
masks with the location randomly shifted by up to 3 voxels in each 
plane. We sampled these random shifts in location for 40 hemispheres 
(4,026 voxels relocated). For both striosome-like and matrix-like 
masks, this randomization step led to a mean shift in location of 1.8 
voxels (SEM, ±0.01 voxel). Importantly, these relocated voxels were 
among the nearest neighbors of our precisely selected voxels. In our 
control conditions (anterior insula or basal operculum as seed, precise 
striatal masks as target), both regions were highly biased toward 
striosome-like voxels. Of seed voxels with substantial bias (those with 
compartment-specific connection probability ≥0.87), 82.1% (SEM, 
±1.2%) of anterior insular voxels and 91.5% (SEM, ±0.95%) of basal 
opercular voxels favored striosome-like target voxels. When precise 
compartment-like targets were shifted to neighboring voxels, the 
mean volume of anterior insula that favored striosome-like targets fell 
by 5.1-fold (from 1,438 to 279 voxels; p < 2.0×10−118; 
Supplemental Figure 2). Similarly, basal opercular voxels that favored 
striosome-like targets fell by 3.6-fold (from 1,213 to 339 voxels; 
p < 1.3×10−111). Targeting less-precise striatal voxels also led to an 
increase in the percentage of seed voxels that favored matrix-like 
connectivity, increasing by 19.0% in the anterior insula (p < 3.0×10−3) 
and 49.3% in the basal operculum (p < 3.6×10−4). Mean connectivity 
bias within the seed regions was also substantially reduced by shifting 
precise targets to neighboring voxels. The probability of connection to 
striosome-like voxels reduced by 35.8% in the anterior insula 
(p < 1.0×10−101) and reduced by 54.8% in the basal operculum 
(p < 2.7×10−35) when striatal targets were imprecise. Relocating 
striosome-like and matrix-like targets even 1–2 voxels from their 
precise location markedly reduced compartment-specific biases 
in connectivity.

3.4. Streamlines seeded by striosome-like 
and matrix-like voxels rarely colocalize

Streamline bundles originating in striosome-like and matrix-like 
voxels occupied distinct locations within the GPi and approached the 
GPi from different orientations (Figure 1). This GPi organization was 
qualitatively symmetric between hemispheres (Figures  1F–I). The 
maximum values of bundles from the two compartments had 
significantly different locations in the x-, y- and z-planes (p < 1.1 × 10−35, 
1.3 × 10−53, and 3.8 × 10−42, respectively), with streamlines seeded by 
striosome-like voxels situated more rostrally, ventrally, and laterally. 
Intra-pallidal location was highly similar within each bundle: 
coefficients of variation (CVs) for striosome-like streamlines (x-, y-, 
and z-planes) were 3.8, 2.6, and 2.9%, respectively; for matrix-like 
streamline locations, CVs were 1.8, 1.8, and 3.1%, respectively. The 
root-mean-square difference in the sites of peak value (striosome-like 
vs. matrix-like) within the GPi was 4.6 mm (SEM ± 0.089). Intra-pallidal 
streamlines in the core of the striosome-like and matrix-like bundles 
(the uppermost 25% of the amplitude distribution, Waugh et al., 2019) 
did not overlap in either hemisphere (DSC, 0%). At a mid-stringency 
threshold (the uppermost 50% of the amplitude distribution), 

streamlines were segregated (DSC, left GPi: 15.3% overlap; right GPi: 
13.7% overlap). At a low-stringency threshold (the uppermost 90% of 
the amplitude distribution), streamlines were still largely segregated 
(DSC, left GPi: 34.1% overlap; right GPi: 32.8% overlap). Comparison 
of streamlines at the voxelwise level (with randomise, Figure  1H) 
yielded similar results: for the majority of pallidal voxels (left 
hemisphere, 83.0%; right hemisphere, 79.0%), streamline counts seeded 
by one compartment were significantly greater than those seeded by the 
other compartment, in a similar pattern demonstrated through DSC.

Striato-pallido-thalamic streamline bundles seeded from 
striosome-like and matrix-like voxels arrived at and occupied distinct 
parts of the GPi (Figures 1A–G,I). A dense band of streamlines that 
originated in matrix-like voxels reached the dorsoposterior GPi. 
Lower density bands of streamlines that originated in striosome-like 
voxels approached from rostral and caudal orientations; both 
approached the ventrolateral GPi. Streamlines were highly segregated 
outside the GPi as well. Streamlines from the uppermost 25% of the 
amplitude distribution did not overlap, in either hemisphere (DSC, 
0%). Streamline bundles from the uppermost 50% of the distribution 
were highly segregated (DSC, left hemisphere: 2.7% overlap; right: 
4.4% overlap). Even at a low-stringency amplitude threshold (the 
uppermost 90% of the distribution), extra-pallidal streamlines were 
largely segregated (DSC, left hemisphere: 31.0% overlap; right: 41.4% 
overlap). Among our 221 subjects, compartment-specific streamline 
bundles were highly colocalized: the core of each individual’s 
streamline bundle overlapped with the core of the average streamline 
bundle in 95.7 and 93.9% of our subjects (streamlines seeded by 
matrix-like and seeded by striosome-like voxels, respectively).

3.5. Abundance of compartment-specific 
streamlines reaching the GPi

Streamlines seeded from matrix-like voxels were 5.7-fold more 
likely to reach the thalamus (via the GPi) than streamlines seeded by 
striosome-like voxels (2,291 streamlines per matrix-like seed voxel vs. 
401 streamlines per striosome-like seed voxel; p < 8.7×10−31). Within 
the GPi, streamlines seeded by matrix-like voxels were 7- to 9-fold 
more abundant than streamlines seeded by striosome-like voxels (left 
matrix-like: 727.3, SEM ±73.3; left striosome-like: 79.2, SEM ±27.1; 
right matrix-like: 536.6, SEM ± 89.8; right striosome-like: 70.0, 
SEM ± 14.3). Note that for each subject and hemisphere, striosome-
like and matrix-like seed masks always had equal volume (the 
uppermost 1.5 standard deviation of each probability distribution) 
and were seeded with equal numbers of streamlines. Therefore, 
streamline counts were independent of the relative volume of 
striosome-like and matrix-like voxels in the whole striatum. The 
dominance of matrix-like voxels in the GPi is consistent with previous 
connectivity assessments by tract tracing in squirrel monkeys, cats, 
and rats (Gimenez-Amaya and Graybiel, 1990; Flaherty and Graybiel, 
1993; Rajakumar et al., 1993).

3.6. Compartment-specific biases in 
striato-pallido-thalamic tractography

Our thalamic CTT (Methods 2.5, tractography iteration three) 
measured striato-pallido-thalamic connectivity between the striatal 
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compartments and each thalamic voxel. Though we assessed each 
thalamic voxel independently, compartment-specific biases in 
connectivity mirrored the large-scale anatomic organization of the 

thalamus (Figure 2). Similarly, while we performed CTT separately in 
left and right hemispheres, the patterns of structural connectivity in 
the two hemispheres were strikingly similar. Likewise, the mean 

FIGURE 1

Streamline bundles originating in striosome-like or matrix-like voxels reach and traverse the GPi by different paths. Tracts seeded by matrix-like or 
striosome-like striatal voxels follow distinct paths through the globus pallidus interna (GPi). The averaged streamlines (A–G, range: 0.63–0.96) for all 
subjects are visualized in red-yellow (striosome-like seeds) and blue-light blue (matrix-like seeds) overlaid by the GPi mask (green). The GPi mask is 
shown at 50% opacity to visualize overlap with streamline bundles. In the x-plane (panels A–E), views of the right GPi (from x  =  23–19) demonstrate 
segregation of the two streamline bundles at all lateral-to-medial (left to right) points. The bundles remain segregated in the y- (F), and z-planes (G) as 
well. The locations of peak amplitude for averaged matrix-like and striosome-like streamlines had significantly different locations in each plane (x 
plane, p  <  1.1×10−35; y plane, p  <  1.3×10−53; z plane, p  <  3.8×10−42). The core of streamline bundles that originated in matrix-like and striosome-like voxels 
(the uppermost 25% of each bundle, by amplitude) do not overlap in any GPi voxel. Voxelwise significance testing with randomise (H,I) demonstrated 
this segregation of streamlines seeded by striosome-like and matrix-like voxels as well (significance threshold, p  <  0.025, corrected for multiple 
comparisons; visualized range: 0.025–0.00001). Bundles seeded by striosome-like voxels (red-yellow) and matrix-like voxels (blue-light blue) occupy 
distinct zones of the GPi (H) and the subcortical white matter (I). In H, green voxels illustrate the few pallidal voxels where bundles were not 
significantly different. In (I), green voxels illustrate the whole of the GPi, as significance testing in this panel included only white matter voxels. Optimal 
visualization in the z-plane (G) was offset by 1  mm in the left and right hemispheres (vertical dashed line). Images follow radiologic convention. 
Coordinates follow MNI convention. Ca, caudate; Pu, putamen; Th, thalamus.
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connection probability for striosome-favoring and matrix-favoring 
thalamic voxels was highly similar in the left and right hemispheres 
(favoring matrix-like voxels: left, 0.72 SEM ± 0.024; right, 0.67 
SEM ± 0.024 – favoring striosome-like voxels: left, 0.64 SEM ± 0.023; 
right, 0.67 SEM ± 0.022). Thalamic voxels whose connectivity was 
biased towards the matrix-like compartment were predominantly 
located within the lateral nuclear group. Thalamic voxels with bias 
towards the striosome- like compartment largely occupied the 
anterior, medial, and midline nuclear groups. Thalamic voxels with 
sub-threshold bias closely approximated the internal medullary 
lamina (white voxels in Figures  2A,B), though all measured 
intralaminar nuclei had biased connectivity. The pulvinar was unique 
in not conforming to this pairing of nuclear group and striato-
thalamic connectivity (Figure 2C). Striosome-like and matrix-like 
connectivity cut across the pulvinar in orientations that did not match 
the pulvinar subdivisions we utilized (PuA, PuI, PuL, PuM). Note that 
while these qualitative patterns utilized the averaged probability maps 
(which included all subjects), our subsequent quantitative assessments 
of connectivity measured each nucleus in individual subjects.

Given the visual similarity of left and right hemispheres (Figure 2), 
we sought to identify whether thalamic nuclei in the left and right 
hemispheres shared the same patterns of striatal compartment 
connectivity. While hemispheric specialization in thalamic 
connectivity was interesting as a primary question, this assessment 
was also necessary to determine whether hemispheres could 
be combined for subsequent analyses or should be analyzed separately. 
We quantified striato-pallido-thalamic connectivity bilaterally for 20 
thalamic nuclei (Figure 3, organized from maximum to minimum 
interhemispheric difference). For two nuclei (Pf, VLa), connectivity 
was significantly different between left and right hemispheres, but 
both were biased towards matrix-like voxels; the left hemisphere was 
simply more matrix-biased than the right (means - Pf: 0.78 vs. 0.63, 
p < 7.3×10−5; VLa: 0.66 vs. 0.55, p < 4.5×10−4). Note that striosome-like 
and matrix-like connectivity measures always summed to one. 

Therefore, we  have presented only the measures of matrix-like 
connectivity. Four nuclei had significant differences in compartment-
specific connectivity in one hemisphere, but neutral connectivity in 
the other hemisphere (presented as mean matrix-like connectivity in 
the left vs. right hemisphere - CeM: 0.55 vs. 0.36, p < 1.8×10−6; MDl: 
0.52 vs. 0.40, p < 8.5×10−4; Reu: 0.54 vs. 0.04, p < 2.2×10−6; VAmc: 0.71 
vs. 0.45, p < 1.4×10−8). Note that Reu values were derived only from 
the 100 subjects in our HCP cohort.

We performed post-hoc ANCOVA testing to identify 
demographic or experimental factors that contributed to 
interhemispheric differences in connectivity with the striatal 
compartments. We tested the following factors for all 20 thalamic 
nuclei: age, number of diffusion directions, scanner type, handedness, 
hemisphere, self-identified race, sex, and interactions between sex, 
race, diffusion directions, and scanner type. No demographic or 
experimental factor, and no interaction between factors, was a 
significant contributor to interhemispheric bias.

Sixteen thalamic nuclei did not differ significantly in their 
compartment bias between left and right hemispheres, and we therefore 
combined the hemispheres for subsequent analyses (Figure 4; Table 1): 
AV, CL, CM, LD, LP, MDm, MGN, Pf, PuA, PuI, PuL, PuM, VLa, VLp, 
and VLP. Note that CL and LD values were derived only from the 100 
subjects in our HCP cohort. Six nuclei showed significant connectivity 
bias toward striosome-like voxels (mean connectivity of 0.5 indicated no 
bias, with 0 and 1 indicating complete bias towards striosome-like or 
matrix-like voxels, respectively): AV – 0.29, p < 9.6 × 10−43; CL – 0.09, 
p < 4.6 × 10−155; LD – 0.08, p < 2.1 × 10−114; LP – 0.42, p < 7.2 × 10−8; MDm 
– 0.41, p < 1.6 × 10−11; MGN – 0.38, p < 4.7 × 10−14. Seven regions showed 
significant connectivity bias towards matrix-like voxels: CM – 0.76, 
p < 2.0 × 10−83; Pf – 0.70, p < 1.0 × 10−42; PuA – 0.62, p < 7.2 × 10−20; PuL – 
0.65, p < 3.8 × 10−27; VLa – 0.61, p < 4.6 × 10−20; VLp – 0.69, p < 2.4 × 10−58; 
VPL – 0.71, p < 1.7 × 10−61. The three remaining thalamic nuclei were not 
significantly biased toward either striatal compartment: PuI – 0.49, 
p < 0.37; PuM – 0.49, p < 0.31; VA – 0.48, p < 0.08. Upon visual assessment 

FIGURE 2

Mean probability of striato-pallido-thalamic connectivity for striosome-originating and matrix-originating streamlines. Compartment-specific biases in 
structural connectivity parallel the anatomic organization of the thalamus. In axial (A) and coronal (B,C) views, probability maps that favored striosome-
like voxels (red-yellow) or matrix-like voxels (blue-light blue) were overlaid on the MNI_152_1mm template brain. Larger biases can be seen in yellow 
voxels (striosome-like) and light blue voxels (matrix-like). The coronal planes of section in B and C are indicated by dashed lines in A. Maps are the 
averaged probabilities from all subjects, with left and right hemispheres run independently. These views demonstrate probability values between 0.55–
0.85, voxels with substantial compartment-specific bias in structural connectivity. Voxels with indeterminate bias (those with connection probabilities 
of 0.45–0.55) do not appear in either probability map (white voxels). The anterior and medial nuclear groups have strong bias towards striosome-like 
striatal voxels, while the lateral nuclear group is mostly biased towards matrix-like voxels. Voxels with indeterminate bias closely approximate the 
internal medullary lamina. The pulvinar nucleus, the caudal-most portion of the thalamus, has a divided pattern of connectivity, with some pulvinar 
zones biased towards matrix-like voxels and other zones biased towards striosome-like voxels (panel C). Note that in this mode of tractography 
(classification targets) each thalamic voxel was mapped individually – the similarity of these probability maps to prior histology-based divisions of 
thalamic nuclei underscores the fact that probabilistic tractography follows the intrinsic anatomic and functional anatomy of the thalamus. Images 
follow radiologic convention. Coordinates follow MNI convention. Ca, caudate; Pu, putamen.
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of individual subjects’ probability distributions, it was clear that the 
segmentations of PuI and PuM paralleled the division between 
striosome-favoring and matrix-favoring connectivity, but straddled the 
boundary between them. Assessment of these two pulvinar areas may 
therefore require more subtle thalamic nuclear segmentations.

3.7. Mapping of striato-thalamic structural 
connectivity: human vs. model animals

Fourteen thalamic nuclei had (1) significant compartment-
specific bias in striato-pallido-thalamic connectivity and (2) 

FIGURE 4

Connectivity with most thalamic nuclei is biased toward either striosome-like or matrix-like voxels. Disynaptic projections from striatum to thalamus 
(via the globus pallidus interna) are biased: streamlines that originate in striosome-like or matrix-like voxels largely reach different thalamic nuclei. 
Seven nuclei were dominated by projections from matrix-like voxels (blue bars), six nuclei were dominated by striosome-like projections (red bars), and 
three nuclei had no compartment bias (purple bars). Note that the darker horizontal line (0.5) indicates the point of neutral connectivity. Higher values 
on the y axis indicate greater matrix-like connectivity (blue arrow), with lower values indicating greater striosome-like connectivity (red arrow). For any 
given nucleus, the values for matrix-like and striosome-like connectivity sum to one. Therefore, we present only the matrix-like connectivity for each 
thalamic nucleus. Error bars indicate the standard error of the mean. Two nuclei whose data originated from the HCP cohort alone are indicated by 
arrowheads. Significance thresholds: *, p  <  3.1×10−3; **, p  <  3.1×10−9; ***, p  <  3.1×10−15.

FIGURE 3

Connectivity to matrix-like voxels is stronger in the left hemisphere for most thalamic nuclei. Biased connectivity from the matrix-like compartment is 
larger in the left hemisphere. While this bias was significant in only six of 20 nuclei, bias was larger in the left for 18 of the 20 nuclei assessed. Note that 
the darker horizontal line (0.5) indicates the point of equal connectivity between thalamic seed voxels and matrix- or striosome-like target voxels. 
Higher values on the y axis indicate greater matrix-like connectivity (blue arrow), with lower values indicating greater striosome-like connectivity (red 
arrow). For any given nucleus, the values for matrix-like and striosome-like connectivity sum to one. Therefore, we present only the matrix-like 
connectivity for left and right hemispheres. Error bars indicate the standard error of the mean. Three nuclei whose data originated from the HCP 
cohort alone are indicated by arrowheads. Significance threshold: **, p  <  2.5×10−6; *, p  <  2.5×10−3.
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histology-based mapping in published animal studies with high-
probability bias towards either striosome-like or matrix-like voxels 
(Table 2). In all 14 nuclei, our MRI-based method in humans matched 
the findings of histology-based studies in animals: AV, CL, CM, LD, 
MDl, MDm, MGN, Pf, PuA, PuL, Reu, VLa, VLp, VPL. We identified 
a bias toward striosome-like voxels in CeM, but prior animal studies 
were mixed, with some reporting a matrix bias (Berendse et al., 1988; 
Ragsdale and Graybiel, 1991) and others reporting a striosome bias 
(Prensa and Parent, 2001). Connectivity in the VAmc has not been 
mapped in animals, to the best of our knowledge. While thalamostriate 
connectivity was mapped for LP in rat, in an unfortunate mixing of 
terms between species, the rodent LP is the homologue of the pulvinar 
nucleus in primates (Funaki et al., 1998; Kamishina et al., 2008; Foik 
et al., 2020). Connectivity with the primate LP has not been described 
previously, to the best of our knowledge.

4. Discussion

In this study we  aimed to identify biases in striato-pallido-
thalamic structural connectivity by assessing probabilistic 
tractography between parcellated striatal compartments (striosome-
like and matrix-like voxels) and segmented thalamic nuclei. Prior 
studies in primate and non-primate species demonstrated that 
striosome and matrix have distinct functions, pharmacology, and 
extra-striate connectivity. Therefore, we  propose that biases in 
compartment-specific structural connectivity may be  a mode for 
regulating specific thalamic nuclei and cortico-striato-pallido-
thalamo-cortical loops. If this same bifurcation in thalamostriate 
organization is present in humans, compartment-level regulation may 

be an anatomical basis for focused regulation of human motor and 
behavioral functions. We validated our compartment-specific biases 
in structural connectivity in humans (in vivo) with supporting 
anatomic findings (somatotopy and compartment bias) from previous 
animal studies, where available. Our findings concur with decades of 
tract tracing studies in animals and argue that in humans, striato-
thalamic structural connectivity is biased towards either striosome-
like or matrix-like voxels in most thalamic nuclei. Though it is 
encouraging that our MRI-based assessments were in agreement with 
prior animal and human histology and imaging studies, we remind 
readers that our striatal parcellations were inferential and based on 
differential connectivity – we  did not distinguish striosome and 
matrix through immunohistochemical staining, the gold standard for 
identifying the striatal compartments.

It is important to consider the limitations of our tractography-
based study. Probabilistic tractography is susceptible to false positive 
and negative streamline estimations, tract-specific biases based on 
orientation and degree of curvature, inter-individual variance in total 
streamline counts, and other potential confounds (Campbell and Pike, 
2014). Given these risks, we validated our tractography results with 
animal and/or human histology, where available. Identifying voxels 
solely by their differential connectivity replicated the spatial 
distribution, abundance, extra-striate connectivity, and somatotopy 
demonstrated previously in animal and human tissue (Waugh et al., 
2022). Further, we demonstrated that the precision of our striatal 
parcellations was essential for assessing compartment-like 
connectivity. Neighboring voxels (shifted by a mean of 1.8 voxels from 
their original, precise position) had either a complete loss or a marked 
reduction in compartment-specific connectivity. Finally, we refined 
our tractography to select for striato-pallido-thalamic connectivity by 
excluding streamlines that extended outside our subcortical bounding 
mask, and by imposing an obligatory waypoint (the GPi). We thereby 
reduced the contributions of false positive projections, such as 
thalamostriate projections and fibers of passage in the internal capsule. 
Since we included subjects from four distinct research cohorts, and 
measured voxel location at many sites in each subject, we assessed for 
the impact of repeated measures within each subject and the influence 
of experimental cohort. These factors did not influence intra-striate 
voxel location or compartment-specific bias. Finally, we quantified 
location and connectivity exclusively through within-subject 
comparisons to reduce the impact of inter-individual variance in 
streamline propagation. Our MRI-based measures of striato-pallido-
thalamic connectivity in humans replicated and extended the findings 
of injected tract tracer studies in experimental animals. It is likely that 
streamlines we  seeded within one thalamic nucleus propagated 
through other nuclei en route to our pallidal waypoint and striatal 
targets. Double-counts of a given streamline have the potential to 
inflate absolute measures of connectivity, and to inflate streamline 
counts in voxels closer to edges or the internal medullary lamina (as 
streamlines transit grey matter to reach white matter). However, it is 
not clear that double-counts would alter the bias in connectivity 
toward one striatal compartment. That is, two streamlines, seeded 
from the same thalamic voxel but bound for opposing striatal 
compartments, would progress through the same probability space in 
their egress from the thalamus, leading to double-counts for both 
compartments. As our method explicitly assesses bias in connectivity, 
not absolute numbers of streamlines, potential double-counts would 
not skew quantification toward one compartment. To avoid potential 

TABLE 1 Probability of striato-pallido-thalamic connectivity with matrix-
like voxels.

Nucleus Mean Standard 
Error

99.7% CI p value

AV 0.29 0.021 [0.229, 0.345] 9.6×10−43

CL 0.09 0.013 [0.047, 0.125] 4.6×10−155

CM 0.76 0.017 [0.706, 0.806] 2.0×10−83

LD 0.08 0.017 [0.025, 0.125] 2.1×10−114

LP 0.42 0.020 [0.361, 0.482] 7.2×10−8

MDm 0.41 0.018 [0.358, 0.467] 1.6×10−11

MGN 0.38 0.022 [0.321, 0.444] 4.7×10−14

Pf 0.70 0.020 [0.645, 0.760] 1.0×10−42

PuA 0.62 0.018 [0.563, 0.669] 7.2×10−20

PuI 0.51 0.020 [0.454, 0.572] 0.37

PuL 0.65 0.019 [0.593, 0.707] 3.8×10−27

PuM 0.49 0.018 [0.431, 0.543] 0.31

VA 0.48 0.018 [0.422, 0.532] 0.077

VLa 0.61 0.016 [0.557, 0.656] 4.6×10−20

VLp 0.69 0.015 [0.642, 0.735] 2.4×10−58

VPL 0.71 0.016 [0.657, 0.753] 1.7×10−61

Structural connectivity with matrix-like voxels for the 16 thalamic voxels for which 
we combined left and right hemispheres. The confidence interval (CI) provided here (99.7%) 
matches the significance threshold utilized for this set of t-tests.
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TABLE 2 Comparison of compartment-specific thalamic projections, animal and human assessments.

Thalamic 
nuclei

MRI-based results 
(striato-pallido-
thalamic)

Animal Literature 
(thalamostriate and 
corticostriate)

Species utilized Number of 
animals tested

Agree/Disagree/
Unknown

CM Matrix-biased Matrix-biased Cat1

Rat2

Squirrel Monkey3

29

93

4

Agree

Pf Matrix-biased Matrix-biased Cat1

Squirrel Monkey3

Rat2

29

4

93

Agree

PuA Matrix-biased Matrix-biased Tree Shrew4 9 Agree

VLa Matrix-biased Matrix-biased Rat5

Cat6

Pig-Tailed Macaque7

36

6

5 (i)

Agree

VLp Matrix-biased Matrix-biased Rat5

Cat6

Pig-Tailed Macaque7

36

6

5 (i)

Agree

VPL Matrix-biased Matrix-biased Rat5

Cat6

36

6

Agree

PuL Matrix-biased Matrix-biased Cat6

Tree Shrew4

6

9

Agree

AV Striosome-biased Striosome-biased Cat1 29 Agree

CL Striosome-biased Striosome-biased Cat1

Rat2

Rat12

Cat6

29

93

11 (i)

6

Agree

LD Striosome-biased Striosome-biased Rat8 1 Agree

MDm Striosome-biased Striosome-biased Cat6 6 Agree

MGN Striosome-biased Striosome-biased Rat9 10 (i) Agree

PuI Neutral Matrix-biased

(central pulvinar)

Tree Shrew4 9 Unknown

PuM Neutral Matrix-biased

(central pulvinar)

Tree Shrew4 9 Unknown

VA Neutral Matrix-biased

Matrix-biased

Cat6

Cat1

9

29

Unknown

LP Striosome-favoring Unknown None None Unknown

MDl Striosome-biased Striosome-biased Monkey10

Rat11

Rat2

12 (i)

16 (i)

93

Agree

Reu Striosome-biased Striosome-biased Rat2 93 Agree

CeM Striosome-biased Striosome-biased

Matrix-biased

Rat13

Rat2

45

93

Mixed

VAmc Matrix-biased Unknown None None Unknown

Comparison of our MRI-based findings in humans with histology-based assessments in animals. For 14 of 20 nuclei, our measures agree with prior animal literature. For the remaining six 
nuclei, bias is either mixed or unknown. For CeM, some tract tracing studies found a matrix-favoring bias and others found a striosome-favoring bias (“Mixed”). In LP and VAmc, we could 
identify no comparable study in animals (recorded as “Unknown” and “None”). In PuI, PuM, and VA, our method did not identify a compartment-specific bias (“Unknown”). We assessed the 
last four thalamic nuclei (blue) as separate hemispheres. The listed biases for these four nuclei are the mean of left and right hemispheres. Note that our MRI-based method utilized striatal 
voxels with striosome-like and matrix-like patterns of connectivity. While this inferential parcellation method replicates the compartment-specific spatial distribution, relative abundance, 
somatotopic organization, and connectivity profiles of striosome and matrix from animal and human histology, our use of living human subjects precluded the use of histologic confirmation 
of compartment identity. Superscripted numbers (“Species Utilized” column) correspond to the following citations, found in full form in the References Section: (1) Ragsdale and Graybiel 
(1991); (2) Unzai et al. (2017); (3) Sadikot et al. (1992); (4) Day-Brown et al. (2010); (5) Kincaid and Wilson (1996); (6) Avendano et al. (2006); (7) Pimenta et al. (2001); (8) Kamishina et al. 
(2008); (9) Barry et al. (2017); (10) Eblen and Graybiel (1995); (11) van Vulpen and Verwer (1989); (12) Wang and Pickel (1998); (13) Prensa and Parent (2001). The (i) designation (“Number 
of Animals” column) corresponds to the indirect association of compartment bias, as explained in the Discussion section.
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distortions by double-counting, we chose to quantify compartment-
specific streamlines at each voxel, and always relative to the 
connectivity with the opposite striatal compartment. We observed no 
regional trends suggesting that strength or direction of connectivity 
bias was driven simply by proximity or location. Edge nuclei and 
embedded nuclei were equally likely to have compartment-specific 
biases in connectivity (Figures 2, 4). Two of our most-biased nuclei, 
CM and CL, are both intralaminar but were biased toward matrix-like 
and striosome-like voxels, respectively. While we cannot exclude the 
possibility that double-counts impacted our measures of 
compartment-specific bias, the agreement between our findings and 
prior tract tracing studies in multiple species (Table 2) argues that this 
potential limitation did not meaningfully alter our results.

Striatal parcellation – and thus, the entirety of our efforts to map 
striato-pallido-thalamic connectivity – depends on injected tract 
tracing studies in animals for both guidance and validation. It is 
therefore essential to consider the breadth and depth of these 
histologic studies when judging the veracity of our own findings. The 
strength of the evidence for compartment-specific connectivity varies 
considerably among the thalamic nuclei. Some thalamic nuclei were 
assessed in multiple studies, several species, and using multiple 
techniques to identify compartment-specific connectivity bias. Nuclei 
with the strongest evidence included CL, CM, Pf, PuA, PuL, VPL, LD, 
and AV. Other thalamic nuclei had limited numbers of investigations 
and generally mapped connectivity in only single species. These 
included the PuI, PuM, Reu, MDl, MDm, VL, and CeM. A few 
thalamic nuclei had never been mapped previously, to the best of our 
knowledge, or were mapped only inferentially by demonstrating 
thalamocortical connectivity with regions whose compartment-
specific bias was demonstrated elsewhere. Nuclei with thin or absent 
evidence of compartment selectivity included the LP, MGN, VA, and 
VAmc. Further histologic mapping of striatothalamic, thalamostriate, 
and thalamocortical projections will be essential to validating our 
findings in these under-investigated thalamic nuclei. In an inversion 
of the typical relationship between animal and human studies, such 
MRI-based investigations in humans, with hundreds of subjects, may 
bolster the findings of histologic studies that included single or small 
numbers of animals.

An additional limitation for relating our results to prior histologic 
studies is the difficulty in comparing connectivity between techniques 
and across species. Our MRI-based measures of striato-pallido-
thalamic connectivity are not a direct comparison to prior tracer-
based techniques that assessed thalamostriate and corticostriate 
connectivity in animals. However, if the striatal limbs of CSTC loops 
are segregated through either striosome or matrix, we hypothesized 
that these compartment-specific biases would be shared among the 
multiple limbs of the CSTC loop (Unzai et al., 2017) – that striato-
pallido-thalamic projections (MRI in humans) would match the biases 
of thalamostriate projections (injected tracers in animals).

Studies of compartment-level striatal projections to the globus 
pallidus in cats, rats, and squirrel monkeys showed that axons 
originating from matrix dominate striatopallidal connectivity 
(Gimenez-Amaya and Graybiel, 1990; Flaherty and Graybiel, 1993; 
Rajakumar et  al., 1993). Our results replicated those findings: 
streamlines seeded from matrix-like voxels were 5.7-fold more likely to 
reach the GPi, despite the fact that striosome-like and matrix-like masks 
seeded equal numbers of streamlines. We previously demonstrated that 
streamlines seeded by striosome-like voxels contacted 16.1% more 

extra-striate voxels than streamlines seeded by matrix-like voxels 
(Waugh et al., 2022). Therefore, the dominance of streamlines seeded 
by matrix-like voxels in striato-pallidal projections is not due to a 
general reduction in connectivity of striosome-like voxels.

We found that streamlines from striosome- and matrix-like voxels 
occupied distinct parts of the GPi, with little overlap. This anatomic 
segregation was qualitatively symmetric between hemispheres, even 
though we  produced left and right hemisphere tractography 
independently. Our findings align with the tractography-based findings 
of Bertino et al., who demonstrated that limbic cortices (striosome-
favoring) selectively project to the rostral GPi, while sensorimotor 
cortices (matrix-favoring) selectively project to the caudo-medial GPi 
(Bertino et al., 2020). This compartment-specific somatotopy in humans 
matches that demonstrated in both primate and non-primate species. 
General topographic organization of striato-pallidal synaptic 
connectivity has been demonstrated in the rat (Sloot and Gramsbergen, 
1994; Fujiyama et al., 2011), squirrel monkey (Johnson and Rosvold, 
1971; Smith and Parent, 1986), and macaque (Saleem et al., 2002), with 
striosome and matrix projections partially overlapping but impinging 
on neurochemically distinct zones (Rajakumar et  al., 1993, 1994; 
Stephenson-Jones et al., 2013). Similarly, in mice the afferents from 
striosome and matrix MSNs to the entopeduncular nucleus (EP, the 
rodent equivalent of the GPi) synapse on different subclasses of EP 
neuron that release different neurotransmitters, have different firing 
patterns, and project to different targets (Wallace et al., 2017). If humans 
share these intermixed but functionally distinct populations of GPi 
neurons, segregating projections from striosome and matrix MSNs to 
different somatotopic zones may provide the architecture for separable 
functional roles for the two compartments in humans. The similarity of 
our tractography-based findings to the histology-based findings in 
animals supports the validity of using these methods to map striatal 
compartment-level structural connectivity in human health and disease.

Thalamic nuclei are often assessed at the level of anatomic groups, 
most commonly as anterior, medial, midline, lateral, and intralaminar 
nuclei. Thalamostriate projections are often mapped within this 
schema, with multiple nuclei within a group mapped in parallel, such 
as all midline (Unzai et al., 2017), lateral (Avendano et al., 2006), or 
intralaminar nuclei (Ragsdale and Graybiel, 1991). The biases in 
striato-pallido-thalamic connectivity we demonstrated closely mirror 
that group-level organization, both qualitatively (Figure  2) and 
quantitatively (Figure 4). It is important to note, however, that the 
traditional nuclear groups are not uniform in their functions. Among 
the intralaminar group, animal and human histologic characterization 
demonstrated that rostral and caudal intralaminar nuclei have distinct 
patterns of connectivity, they are engaged in disparate functions, and 
they have different vulnerability to neurodegeneration (Henderson 
et al., 2000; Galvan and Smith, 2011; Cover and Mathur, 2021). In cats, 
the rostral intralaminar nuclei (especially CL and paracentral nuclei) 
preferentially innervate the striosome, while the caudal intralaminar 
nuclei (CM and Pf) primarily project to the matrix (Ragsdale and 
Graybiel, 1991; Fujiyama et al., 2019). Other authors found that the 
rostral intralaminar nuclei had a mixed pattern of connectivity 
(Fujiyama et  al., 2019). Our measures of striato-pallido-thalamic 
connectivity in the intralaminar nuclei match these prior findings: CL 
(the sole rostral intralaminar nucleus large enough to measure here) 
was markedly biased towards striosome-like voxels, while CM and Pf 
strongly favored matrix-like connectivity. Our CTT-based parcellation 
of the thalamus – carried out at the level of individual voxels 
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– recapitulates the organization of thalamic nuclei into nuclear groups. 
This emergent property suggests that striatal voxels identified by their 
differential connectivity are embedded within distinct striato-thalamic 
structural networks, and potentially, are embedded within distinct 
CSTC loops.

Thalamostriate projections originating in the CM, Pf, VPL, 
pulvinar, and ventrolateral (VL) favored the matrix compartment, or 
other regions highly biased toward the matrix compartment, in 
anterograde tracing studies in squirrel monkey, rat, cat, and tree shrew 
(Sadikot et al., 1992; Kincaid and Wilson, 1996; Avendano et al., 2006; 
Unzai et  al., 2017). Our striato-pallido-thalamic connectivity data 
matches these matrix-biased thalamostriate findings. Tract tracing 
studies in the rat, cat, and squirrel monkey demonstrated that the VL 
projects primarily to matrix and receives projections from matrix-
favoring portions of the EP (Rajakumar et al., 1993; Pimenta et al., 2001; 
Avendano et  al., 2006). These VL tracing studies also support our 
findings of distinct, compartment-specific zones within the EP/GPi. 
Similarly, multiple types of histologic characterization in animals have 
demonstrated striosome-specific connectivity with particular thalamic 
nuclei. Anterograde tract tracing studies demonstrate that the medial 
and midline nuclei (such as Reu) generally project to striosome in 
animals (Goldman-Rakic and Porrino, 1985; Berendse et  al., 1988; 
Ragsdale and Graybiel, 1991; Avendano et al., 2006; Unzai et al., 2017; 
Phillips et al., 2019). Injection of tracer in LD (rat) produced terminal 
labeling exclusively in the striosome compartment (Kamishina et al., 
2008). In cats, radiolabeled amino acid injections in the rostral thalamic 
pole (primarily AV) elicited strong labelling of the lateral striosome 
(Ragsdale and Graybiel, 1991). In addition to direct evidence for 
compartment-specific projections, inferential evidence also supports 
compartment-specific thalamostriate projections. The CL has a robust 
projection to the dorsal striatum and has afferent and efferent 
connections with limbic cortices that also preferentially innervate the 
striosome compartment (Groenewegen, 1988; Eblen and Graybiel, 
1995; Wang and Pickel, 1998). Similarly, the striatum receives 
convergent projections from the MGN and the auditory cortices (Chen 
et al., 2019). Electrical stimulation of the prelimbic and infralimbic 
cortices, areas shown to project primarily to striosome (Donoghue and 
Herkenham, 1986; Gerfen, 1989; Nisenbaum et al., 1998; McGregor 
et al., 2019), directly alters the neuronal activity of the MGN (Barry 
et al., 2017). Given the shared structural connectivity between these 
nuclei and cortical areas with strong striosome biases, these animal 
histology studies strongly suggest that CL and MGN project primarily 
to the striosome. The biases of streamlines seeded by striosome-like 
voxels that we demonstrated here agreed with these thalamostriate 
projections identified in animals. While the concurrence of our human 
and prior animal connectivity measures is reassuring, it is important to 
note that these findings are supportive of, but are not a direct test of our 
hypothesis. It may be possible to determine whether compartment-
specific biases in striato-pallido-thalamic connectivity match the 
compartment selectivity of thalamostriate projections through 
colocalized injection of anterograde and retrograde tracers.

We identified one prior study that utilized multi-synaptic tracing to 
investigate striato-pallido-thalamic connectivity in rodents. Aoki et al. 
(2019) paired retrograde and anterograde tracing to demonstrate that 
limbic and motor cortices project through distinct striato-pedunculo-
thalamo-cortical circuits. Likewise, they identified spatially distinct 
limbic and motor zones in the thalamus and striatum. However, they 
did not assess projections for compartment selectivity. Therefore, 
comparison of our findings to prior histology-based assessments in 

animals is limited to single-synapse tracing studies. While animal 
studies that analyzed single steps in the striato-pallido-thalamic 
projection (e.g., striatopallidal, or pallidothalamic) lend support to our 
compartment-specific findings, these isolated segments do not sum to 
a full tracing of compartment-specific striato-pallido-thalamic 
connectivity. In a parallel limitation, the probabilistic nature of 
tractography, coupled with the millimeter-scale resolution of diffusion 
imaging, ensures that our results will obscure less-abundant tracts and 
potentially merge tracts that are adjacent but distinct. Despite these 
limitations, our methods were sufficient to demonstrate that projections 
from striosome-like and matrix-like voxels occupy different paths to the 
GPi, occupy different volumes within the GPi, and have significant and 
substantial biases in their connectivity with thalamic nuclei that match 
the results of prior histologic assessments in animals. Future multi-
synaptic tract tracing studies in animals will be necessary to validate our 
findings and more fully map the contributions of each striatal 
compartment to striato-pallido-thalamic arm of CSTC loops. While 
multi-synapse tracing poses an increased challenge relative to single-
synapse tracing, this type of connectivity mapping has previously been 
accomplished for striato-pedunculo-thalamo-cortical circuits and even 
with projections from visceral organs to the brain (Bostan et al., 2010; 
Aoki et al., 2019; Dum et al., 2019; Foster et al., 2021).

The connectivity biases we localized in humans may not compare 
directly with findings in animals. For example, tract tracing studies 
did not subdivide the VL or pulvinar nuclei into subnuclei, as we did 
(Ragsdale and Graybiel, 1991). We found that projections to both VLa 
and VLp were highly biased toward matrix-like voxels, similar to the 
biases of the combined VL described in animals. However, in tree 
shrews the pulvinar was divided into two subdivisions, both of which 
projected to the matrix compartment (Day-Brown et al., 2010). In 
humans the pulvinar can be divided into four or more subdivisions. 
The anatomic correlation between human and tree shew pulvinar is 
therefore uncertain. In primates, the LP and pulvinar have distinct 
anatomic boundaries, peptide expression, and neurotransmitter 
profiles (Pérez-Santos et  al., 2021), but these distinctions are not 
clearly established in non-primate species. Therefore, translating these 
posterior thalamic findings to human LP and pulvinar is problematic. 
For other thalamic nuclei, histologic mapping in animals is insufficient 
to identify a clear pattern of connectivity. Anterograde tracers injected 
into CeM predominantly reach the matrix (Berendse et  al., 1988; 
Ragsdale and Graybiel, 1991). However, Prensa and Parent found that 
nigral neurons with dense projections to striosome also send 
collaterals to CeM (Prensa and Parent, 2001). We  found no prior 
mapping of compartment-specific connectivity of the lateral 
mediodorsal (MDl), distinct from the other parts of the mediodorsal 
nucleus. However, the entire mediodorsal thalamus has prominent 
connectivity with cortical areas that selectively project to striosome, 
so MDl may also share striosome-favoring bias (Vogt et al., 1987; van 
Vulpen and Verwer, 1989; Eblen and Graybiel, 1995; O'Muircheartaigh 
et al., 2015; Phillips et al., 2019). Tract tracing results for Reu are 
limited but trend strongly toward striosome. In a single cat, a large 
injection of tracer that included both Reu and the ventromedial 
nucleus produced “marked” striosome labeling (Ragsdale and 
Graybiel, 1991). Reu is strongly interconnected with limbic structures 
(Vertes et  al., 2022), which predominantly project to striosome 
(Donoghue and Herkenham, 1986; Gerfen, 1989; Graybiel, 1990). In 
contrast, mapping of a single Reu neuron identified a mixed, but 
matrix-dominated pattern of thalamostriate projections (Unzai et al., 
2017). We could find no example of compartment-specific mapping 
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of the VAmc. Greater characterization in animal models, especially 
primates, will be  necessary to understand the thalamostriate and 
striatothalamic connectivity of the CeM, LP, MDl, pulvinar, Reu, and 
VAmc nuclei.

Each of the 20 thalamic nuclei we assessed had a particular bias in 
striatal connectivity: favoring striosome-like voxels, favoring matrix-like 
voxels, or neutral. However, for 18 out of 20 thalamic nuclei, the left 
hemisphere was more biased towards matrix than the right (Figure 2). 
This consistent bias was independent of the type of connectivity that 
dominated (i.e., present in both striosome-favoring and matrix-favoring 
nuclei), and was not influenced by handedness, type of diffusion 
protocol, or any demographic variable. While we executed tractography 
in each hemisphere independently, all experimental parameters (seed 
volume, number of streamlines seeded, waypoint and exclusion masks, 
etc.) were identical in left and right hemisphere tractography. Our hand-
segmented thalamic masks were slightly larger on the left (6.6%), but as 
the targets of tractography (striosome-like and matrix-like striatal 
masks) were of equal volume, we cannot detect a reason this would skew 
connectivity from most thalamic nuclei toward matrix-like voxels. This 
asymmetry in thalamic volume likely reflects neuroanatomic reality – 
our findings are similar to those of Ahsan et al., who determined that 
the left thalamus in healthy adults was significantly larger than the right 
(Ahsan et  al., 2007). This asymmetry in compartment bias was 
independent of a nucleus’ position within the thalamus (medial vs. 
lateral, rostral vs. ventral, embedded vs. edge). It is unclear how 
asymmetries in the edges of our left and right thalamic masks would 
produce such widespread, near-universal asymmetries in striatal 
connectivity. This left-sided bias towards matrix-like voxels was 
significant in 6 of 20 nuclei. Twelve additional nuclei were more biased 
in the left but not to a significant degree. The probability of 18/20 nuclei 
sharing a hemispheric bias by chance is 1 in 5,519. These structural 
asymmetries may also reflect laterality in function. Previous studies 
demonstrated that motor performance (speed, precision) was better in 
children whose functional connectivity was dominated by the left 
hemisphere (Barber et al., 2012). Likewise, increased motor control 
(manual dexterity) correlates with the degree of hemispheric 
lateralization for language (Hodgson et  al., 2021). In contrast, 
abnormalities in lateralization may contribute to the movement disorder 
dystonia, in which both functional (Blood et al., 2004) and structural 
(Blood et al., 2019) asymmetries in motor control regions correlate with 
symptoms. Prior studies that utilized injected tract tracers to assess 
thalamic connectivity generally did so qualitatively. To fully address the 
possibility that the left thalamus is more biased toward matrix than the 
right, we suggest that future studies utilizing injected tract tracers in 
animals should quantitatively compare striatothalamic projections 
between the hemispheres.

Thalamic asymmetries have been identified in clinical neurology, 
in human brain mapping through neuroimaging and histology, and in 
animal neuroscience. The bias of the left thalamus towards the matrix-
like compartment may be  another example of these widespread 
thalamic asymmetries. Cerebral infarction, when limited to the 
thalamus, appears to have equal frequency in the left and right 
hemisphere. However, left thalamic infarctions are significantly more 
likely to produce clinically impactful symptoms (Rangus et al., 2022), 
leading left-sided thalamic infarction to be diagnosed at double the 
rate of right-sided thalamic infarction (Schaller-Paule et al., 2021). In 
healthy adolescents, thalamocortical structural connectivity was 24% 
greater in the left than the right thalamus (Alkonyi et  al., 2011). 
Similarly, pallido-thalamic structural connectivity is significantly 

higher in the left thalamus, an asymmetry that is present in nuclei at 
every part of the rostro-caudal extent of the thalamus (Pelzer et al., 
2017). During both innocuous and painful thermal stimulation, the 
right thalamus is significantly more activated than the left, regardless 
of which side of the body is stimulated (Coghill et  al., 2001). 
Concentrations of the metabolite phosphocreatine, hypothesized to 
be a “substrate of wakefulness,” decline significantly from morning to 
afternoon, and are restored to morning levels by an afternoon nap – 
but this metabolic change occurs only in the left thalamus, not the 
right (Gordji-Nejad et al., 2018). Neurotransmitters are also lateralized 
in the human thalamus. The right thalamus has more μ-opioid 
receptor availability than the left, an asymmetry that is greater in the 
thalamus than in 15 other brain regions (Kantonen et al., 2020). Tissue 
norepinephrine is strongly lateralized in the postmortem human 
thalamus (Oke et al., 1978). In healthy rats, 98% of the brain’s mast 
cells are found in the thalamus. At most points in the rostro-caudal 
extent of the thalamus, the left thalamus has significantly more mast 
cells – up to 30% more (Goldschmidt et al., 1984). Asymmetries in 
mast cells number may have implications for human 
neuroinflammatory disorders, but as mast cell activation is also 
associated with improved goal-oriented behaviors and learning 
(Fitzpatrick and Morrow, 2017), asymmetries in humans, if present, 
may induce a lateralization in the motivational value of rewarding 
stimuli. These wide-ranging asymmetries in the anatomy, 
pharmacology, and metabolism of the thalamus provide context for 
the left-sided bias toward higher connectivity with matrix-like voxels, 
present in 18 of 20 thalamic nuclei. Our asymmetric findings may 
reflect a common feature of the mammalian thalamus.

Our method for parcellating the striatum into striosome-like and 
matrix-like compartments allowed us to map striato-pallido-thalamic 
connectivity in vivo in healthy humans. These techniques may also 
be  useful for mapping striato-pallido-thalamic projections in 
developmental and degenerative disease states. Numerous disorders that 
were hypothesized to have a compartment-specific element to their 
pathology and progression may be more completely understood when 
studied in a compartment-specific approach, rather than at the whole-
striatum level (Crittenden and Graybiel, 2011). For example, early in the 
clinical course of Huntington disease (HD) MSNs in the striosome 
degenerate more than those in matrix (Hedreen and Folstein, 1995; 
Matsushima, 2022). Striosome-dominated degeneration also holds true 
in later stages of HD for individuals whose symptoms were mood-
predominant (Tippett et al., 2007). Selective degeneration of thalamic 
projections neurons has also been identified in HD, especially in the 
CM/Pf complex (Heinsen et  al., 1996) and mediodorsal nucleus 
(Heinsen et al., 1999). These thalamic nuclei have opposing patterns of 
striatal compartment selectivity (CM/Pf, matrix-like; mediodorsal, 
striosome-like; Figure  4), suggesting that interpretating thalamic 
neurodegeneration in HD may require both symptom-specific (mood 
vs. motor) and compartment-specific assessments. Similarly, in both 
idiopathic Parkinson disease (PD) and progressive supranuclear palsy, 
thalamic neurodegeneration is relatively selective for the caudal 
intralaminar thalamic nuclei (CM, Pf; Henderson et al., 2000; Halliday, 
2009). Though beyond the scope of this publication, we propose that 
denervation within compartment-specific CSTC loops may correlate 
with symptom type in PD as it appears to do for HD.

Abnormalities in the striatal compartments may be a feature of 
developmental disorders, in addition to the noted neurodegenerative 
disorders. For some developmental disorders, matrix- or striosome-
specific neuropathologies are likely at the ultrastructural or 
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interneuron level [e.g., schizophrenia (Roberts et al., 2005), Tourette 
syndrome (Kataoka et  al., 2010)]. Such abnormalities are almost 
certainly below the resolution of diffusion MRI, a limitation of our 
striatal parcellation method. Other developmental disorders may have 
discernable structural abnormalities at MRI scale. Children with 
autism spectrum disorder were found to have increased ratios of 
matrix:striosome volume (identified by both immunohistochemical 
stains and mRNA expression, Kuo and Liu, 2020), an intriguing 
finding that will require repetition in larger cohorts. Habitual motor 
movements (stereotypies) have been hypothesized to arise from 
hyperactivation of striosomal neurons, based on studies in rats and 
squirrel monkeys (Canales and Graybiel, 2000; Saka et  al., 2004). 
Stereotypies are common in autism and developmental disability 
(Goldman et al., 2009), but are also found among typically developing 
children (Singer, 2009; Oakley et al., 2015). Stereotypies are remarkably 
persistent throughout childhood (Tan et al., 1997; Valente et al., 2019) 
and frequently co-occur with a range of other childhood neurological 
disorders (e.g., motor developmental delay, attention-deficit 
hyperactivity disorder, obsessive compulsive disorder, Tourette 
syndrome), suggesting an anatomic susceptibility within this cohort 
of neurodevelopmental disorders (Tan et  al., 1997; Valente et  al., 
2019). Whether these disorders are related to striosome or matrix 
dysfunction in humans has never been investigated, to the best of our 
knowledge. Anatomic relationships between each striatal 
compartment and particular symptoms can now be explored in living 
humans, and longitudinally through the course of diseases, for 
disorders associated with abnormal development, degeneration, or 
injury in specific CSTC loops. Identifying which thalamic nuclei have 
connectivity biases toward striosome-like or matrix-like voxels is an 
essential step in characterizing the role of the striatal compartments 
in specific CSTC loops, and thus in understanding the functions of 
striosome and matrix in human health and disease.
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Glossary

AP Anterior to posterior

CSTC Cortico striatal thalamo cortical

CTT Classification targets tractography

DBS Deep brain stimulation

DSC Dice similarity coefficient

DTI Diffusion tensor imaging

EP Entopeduncular nucleus

FA Fractional anisotropy

GPi Globus pallidus interna

HCP Human connectome project

HD Huntington disease

MOR Mu opioid receptor

MSNs Medium spiny neurons

NDA National Institute of Mental Health Data Archive

PA Posterior to anterior

PD Parkinson disease

ROI Region of interest

SEM Standard error of the mean

Thalamic nuclei were abbreviated in the convention of Iglesias et al. (2018):

AV Anteroventral

CeM Central medial

CL Central lateral

CM Centromedian

LD Laterodorsal

LP Lateral posterior

MDl Mediodorsal-lateral

MDm Mediodorsal-medial

MGN Medial geniculate nucleus

Pf Parafascicular

PuA Pulvinar-anterior

PuI Pulvinar-inferior

PuL Pulvinar-lateral

PuM Pulvinar-medial

Reu Reuniens-medial ventral

VA Ventral anterior

VAmc Ventral anterior magnocellular

VLa Ventral lateral anterior

VLp Ventral lateral posterior

VPL Ventral posterolateral
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Practical considerations of
di�usion-weighted MRS with
ultra-strong di�usion gradients
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Fabrizio Fasano3,5, Elena Kleban3,6, Lars Mueller3,7, C. John Evans3,
Maryam Afzali3,7, Derek K. Jones3, Itamar Ronen8,
Francesca Branzoli9,10 and Chantal M. W. Tax11,12

1The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University
School of Medicine, Baltimore, MD, United States, 2Kirby Research Center for Functional Brain Imaging,
Kennedy Krieger Institute, Baltimore, MD, United States, 3Cardi� University Brain Research Imaging
Centre, Cardi� University, Cardi�, United Kingdom, 4CIBM Center for Biomedical Imaging, EPFL
CIBM-AIT, EPFL Lausanne, Lausanne, Switzerland, 5Siemens Healthcare Ltd., Camberly, United Kingdom,
6Department of Radiology, Universität Bern, Bern, Switzerland, 7Leeds Institute of Cardiovascular &
Metabolic Medicine, University of Leeds, Leeds, United Kingdom, 8Clinical Sciences Institue, Brighton
and Sussex Medical School, Brighton, United Kingdom, 9Center for NeuroImaging Research (CENIR),
Paris Brain Institute (ICM), Pitié-Salpêtrière Hospital, Paris, France, 10Inserm U1127, CNRS U7225,
Sorbonne Universités, Paris, France, 11Brain Research Imaging Centre, School Physics and Astronomy,
Cardi� University, Cardi�, United Kingdom, 12Image Sciences Institute, University Medical Center
Utrecht, Utrecht, Netherlands

Introduction: Di�usion-weighted magnetic resonance spectroscopy (DW-MRS)
o�ers improved cellular specificity to microstructure—compared to water-based
methods alone—but spatial resolution and SNR is severely reduced and slow-
di�using metabolites necessitate higher b-values to accurately characterize their
di�usion properties. Ultra-strong gradients allow access to higher b-values per-
unit time, higher SNR for a given b-value, and shorter di�usion times, but introduce
additional challenges such as eddy-current artefacts, gradient non-uniformity, and
mechanical vibrations.

Methods: In this work, we present initial DW-MRS data acquired on a 3T Siemens
Connectom scanner equippedwith ultra-strong (300mT/m) gradients. We explore
the practical issues associated with this manner of acquisition, the steps that
may be taken to mitigate their impact on the data, and the potential benefits of
ultra-strong gradients for DW-MRS. An in-house DW-PRESS sequence and data
processing pipeline were developed to mitigate the impact of these confounds.
The interaction of TE, b-value, and maximum gradient amplitude was investigated
using simulations and pilot data, whereby maximum gradient amplitude was
restricted. Furthermore, two DW-MRS voxels in grey and white matter were
acquired using ultra-strong gradients and high b-values.

Results: Simulations suggest T2-based SNR gains that are experimentally
confirmed. Ultra-strong gradient acquisitions exhibit similar artefact profiles to
those of lower gradient amplitude, suggesting adequate performance of artefact
mitigation strategies. Gradient field non-uniformity influenced ADC estimates by
up to 4% when left uncorrected. ADC and Kurtosis estimates for tNAA, tCho, and
tCr align with previously published literature.

Discussion: In conclusion, we successfully implemented acquisition and data
processing strategies for ultra-strong gradient DW-MRS and results indicate that
confounding e�ects of the strong gradient system can be ameliorated, while
achieving shorter di�usion times and improved metabolite SNR.

KEYWORDS

di�usion-weighted MRS, ultra-strong gradients, gradient non-uniformity, eddy currents,

metabolites
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1 Introduction

Diffusion-weighted magnetic resonance imaging (DW-MRI)
is usually sensitized to the displacement of water, and provides
a myriad of tissue microstructure metrics that aid in the study
of many neuropathologies, including traumatic brain injury
(Hutchinson et al., 2018), neurodegeneration (Goveas et al., 2015),
and measuring treatment response in cancer therapy (Patterson
et al., 2008), to name a few. However, the ubiquity of water
molecules—present in both intra- and extracellular spaces—
complicates the modeling of water diffusion as a measure of
cellular microstructure. Magnetic resonance spectroscopy (MRS)
is a non-invasive technique providing quantitative measures of
metabolites and neurotransmitters which are present in the brain
at millimolar concentrations. Diffusion-weighted MRS (DW-MRS)
introduces diffusion gradients into MRS sequences, utilising MRS
as a filter to sensitize the MR signal to different metabolites
which are almost exclusively intra-cellular, with some considered
predominantly glial—myo-inositol (mI) and choline compounds
(tCho)—and others predominantly neuronal—N-acetyl-aspartate
(NAA) and glutamate (Glu) (Choi et al., 2007). While the
signal-to-noise ratio (SNR) and spatial resolution are reduced
compared to conventional water-based imaging, the specificity
afforded by DW-MRS greatly simplifies diffusion modeling and
interpretation, and provides a valuable non-invasive window
into metabolism and cellular microstructure, complimentary to
water-based diffusion imaging (Ronen et al., 2014; Najac et al.,
2016; Palombo et al., 2018; Ligneul et al., 2019; Genovese et al.,
2021b).

The apparent diffusion coefficients (ADCs) of metabolites are
at least five times smaller than those of water (Ellegood et al.,
2011), which necessitates higher b-values to adequately characterize
metabolite diffusion properties. A common approach is to employ
a DW-STEAM sequence, whereby metabolite diffusion occurs
during the mixing time (TM), with the diffusion time uncoupled
from the echo time (TE). However, this comes with the caveat
that STEAM generates a stimulated echo, reducing the available
SNR compared to spin-echo localisation methods by a factor
of two. The shorter TE of STEAM can ameliorate this, but
the long diffusion times required to achieve adequate diffusion
weighting may be undesired. If the goal is to probe short diffusion
times and/or high b-values, then the spin-echo-based diffusion-
weighted Point RESolved Spectroscopy sequence (Bottomley,
1987) (DW-PRESS) provides an alternative, offering better SNR
than STEAM, without the additional TE restrictions imposed by
adiabatic pulse pairing required for a diffusion-weighted semi-
LASER (DW-sLASER) sequence. Larger b-values can be achieved
by increasing the DW-gradient amplitude (limited by the gradient
system) and/or by increasing the diffusion time. Achieving the
latter with DW-PRESS can be challenging. With the diffusion
time coupled to the choice of TE, the available SNR at high b-
value is restricted by metabolite T2 relaxation. The introduction
of ultra-strong gradient systems can mitigate this. The Siemens
Connectom scanner is fitted with a gradient system capable of
reaching 300mT/m per axis. This provides larger b-values for a
given TE, and access to shorter diffusion times while maintaining
the required b-value range. Shorter diffusion times can reduce

the variability resulting from motion artefacts and, crucially,
can provide additional cell-specific microstructural properties of
highly-restrictive compartments (e.g., subcellular organelles) and
cellular viscosity (Setsompop et al., 2013; Palombo et al., 2017; Jones
et al., 2018).

However, the introduction of ultra-strong gradients poses
additional practical challenges. Specifically, eddy currents become
increasingly prevalent at larger gradient amplitudes. Switched
gradient fields induce eddy currents which produce time-varying
magnetic fields, distorting the lineshape of MR spectra and
hampering MRS modeling attempts. Moreover, eddy current
correction in conventional MRS relies on acquiring a water-
unsuppressed reference scan (Klose, 1990); however, in DW-
MRS, the water signal is heavily attenuated at high b-values,
complicating the extraction of the relevant phase information. In
addition to eddy current effects, it becomes increasingly difficult to
maintain uniform gradient fields on ultra-strong gradient systems.
This leads to a deviation in the applied gradient field from the
nominal gradient field, which is of particular relevance for diffusion
studies (Mesri et al., 2020). These gradient non-uniformities will
spatially modulate the b-matrix and image geometry, and must
be corrected in order to obtain reliable estimates (Bammer et al.,
2003). Finally, mechanical vibrations—caused by Lorentz forces
generated during rapid gradient switching—can cause anomalous
signal loss in diffusion experiments (Gallichan et al., 2010;Weidlich
et al., 2019, 2020), and is a particular concern for strong gradient
systems.

At the time of writing, only one full study has been published
on DW-MRS with ultra-strong gradients in humans, which
focused on utilising the hardware to measure macromolecular
background profiles for MRS (Şimşek et al., 2022). Despite
increasing community interest in strong gradients for diffusion
encoding (Setsompop et al., 2013; Jones et al., 2018; Jenkins
et al., 2020; Şimşek et al., 2020, 2021; Huang et al., 2021;
Jenkins, 2021; Fan et al., 2022; Döring et al., 2023), no
studies have specifically addressed the challenges of ultra-
strong gradients in the context of DW-MRS. Furthermore,
data processing software specific to DW-MRS data is limited,
and variation between existing methods has been previously
shown (Najac et al., 2022). With increased accessibility of high
performance scanner gradient systems, it is crucial to develop
open-source software that broaches the challenges posed by this
hardware.

In this work, we present initial data acquired using a 3T
Connectom—a research-only scanner equipped with a 300mT/m
gradient system. We introduce the practical issues associated
with this manner of acquisition and steps that may be taken
to mitigate their impact on the data. In this study, we limited
the scope of our investigation specifically to the diffusion-
weighted PRESS sequence, which was implemented with a flexible
bipolar diffusion gradient scheme. A DW-MRS data processing
pipeline was implemented and evaluated against pilot DW-PRESS
data. Phantom experiments were conducted and in vivo data
were acquired from a small cohort of individuals in order to
validate the measurements and demonstrate the capabilities of
ultra-strong gradients compared to more conventional gradient
settings.
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FIGURE 1

(A) Pulse sequence diagram for the DW-PRESS sequence. Slice-select gradients are shown for each dimension, x (blue), y (red), z (yellow), and
di�usion gradients are shown in gray. (B) The maximum achievable b-value as a function of the echo time for the DW-PRESS sequence, which is
limited by the maximum achievable di�usion-gradient strengths. The curves were calculated for maximal gradient amplitudes of 40, 80, and
300mT/m corresponding to the Siemens TRIO, Prisma, and Connectom scanner configurations, respectively. (C) For a given b-value, reduction of
the echo time by going from 80mT/m to 300mT/m will result in SNR gain. SNR gains were estimated for tNAA, tCho and tCr using their relaxation
times T2 (Ke et al., 2002; Ganji et al., 2012).

2 Materials and methods

For the DW-MRS acquisition, an in-house developed DW-
PRESS sequence with bipolar diffusion gradients (Branzoli, 2015)
was adapted for use on the 300 mT/m Connectom scanner. The full
pulse sequence diagram is shown in Figure 1A.

2.1 SNR simulations

We first conducted simulations to explore the relationship
between TE, maximum b-value, and diffusion time for the
DW-PRESS sequence, and subsequently, the potential TE-based
SNR improvements possible with ultra-strong gradients. The
maximum-achievable b-value is constrained by the gradient
characteristics, and has a corresponding minimum-achievable TE.
We investigated this relationship at three maximum gradient
amplitudes: 40, 80, and 300mT/m. The maximum achievable b-
value was calculated numerically using in-house code written in

Matlab. The slew rates—corresponding to each of the maximum
gradient amplitudes—were 200 T/m/s, 200 T/m/s and 83 T/m/s,
respectively.

For a given maximum b-value, the minimum-achievable TE
will define the magnitude of T2-based signal attenuation, with
short TE implying higher SNR. We investigated the expected SNR
increase when moving from a Siemens Prisma gradient system
(80mT/m) to a Connectom gradient system (300mT/m) for three
major metabolite measures—creatine + phosphocreatine (tCr),
tCho, and NAA+N-acetyl-aspartyl-glutamate (tNAA). The ratio of
SNR values between the 300mT/m and 80mT/m gradient systems
was calculated using previously-published metabolite T2 values (Ke
et al., 2002; Ganji et al., 2012):

S(TE) ∼ S0e
−TE/T2,metabolite (1)

SNR300

SNR80
(b) =

S
(

TEmin,300(b)
)

S
(

TEmin,80(b)
) = exp

−TEmin,300(b)+ TEmin,80(b)

T2,metabolite

(2)
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where, SNR300
SNR80

(b) is the ratio of TE-dependent SNR values
corresponding to the respective gradient systems, S is the signal
amplitude, S0 is the signal amplitude before T2-weighting, and
T2,metabolite is the metabolite-specific T2. Note that the SNR ratio
is independent of S0. The SNR ratio was calculated for a range of
maximum b-values (and hence, TEs) for each metabolite. Apart
from the pure T2 relaxation-driven reduction in SNR at longer
TE, J-evolution contributes to metabolite dephasing and increases
fitting uncertainties as well (Landheer et al., 2020); however, these
effects were not included in our simple model, as we focused on the
major singlet resonances.

2.2 Data acquisition

In order to evaluate measurement procedures and data
processing strategies pilot data were acquired in small test group
of 3 healthy participants—1 female; age 33 ± 10 years (mean
± standard deviation). Spectroscopic and structural data were
collected on a research-only 3 T Connectom MRI scanner, a
modified 3 T MAGNETOM Skyra system equipped with 300
mT/m gradients (Siemens Healthcare, Erlangen, Germany) and a
32-channel receive array head coil (Nova Medical, Wilmington,
United States). The study was performed with ethics approval from
the Cardiff University School of Psychology ethics review board
and written informed consent was obtained from all participants.
Additional Supplementary material were acquired on an isotropic
diffusion phantom (NIST) (Palacios et al., 2017).

2.2.1 Structural MRI
Each in vivo MR protocol included a Magnetization Prepared

Rapid Acquisition Gradient Echoes (MPRAGE) (Mugler III and
Brookeman, 1990) scan. Scanning parameters for the MPRAGE
sequence were: 1mm isotropic resolution, TR = 2.3 s, TE = 2ms,
TI = 837ms, Flip-angle= 9◦, field-of-view=256× 256.

2.2.2 DW-MRS
To reduce the impact of pulsation artefacts, all in vivo DW-

MRS scans were cardiac triggered to avoid systolic pulsation using
a pulse oximeter placed on the participant’s forefinger. DW-MRS
voxels were positioned using the T1-weighted MPRAGE.

In order to avoid cross-term effects from gradient overlap,
diffusion gradients were applied along the physical single-gradient
axes. To facilitate this, no rotations were applied to the voxels and
the dimensions were adjusted to maximize the coverage of the
relevant tissue volume in each case.

2.2.2.1 300 mT/m vs. 80 mT/m maximum gradient
strength

The DW-PRESS sequence’s functionality was extended to allow
precise specification of the gradients applied. This allowed us
to simulate different gradient configurations on the Connectom
scanner by selecting appropriate minimum rise times and the
maximum gradient amplitudes, Gmax. While this single-scanner
experimental design limited the conclusions we could draw about
the performance of the Connectom compared to a different

system with lower maximum gradient strength, our approach
allowed comparisons to be drawn between different gradient
strengths without the confounding impact of certain experimental
influences. Specifically, this approach removed the risk of different
voxel placement, ensured the equivalence of scanner calibrations,
and allowed us to study gradient-strength differences without
introducing differences in gradient non-uniformities. Here, we
considered conservative limits for the gradient characteristics
[slightly below the hardware and physiological limits (Setsompop
et al., 2013)] for the Connectom system, which can be potentially
extended and thus the maximum-achievable b-values increased.

For the DW-MRS protocol, we selected TEs of 116ms
and 74ms for Gmax = 80mT/m (Prisma-like setting) and
Gmax = 300mT/m, respectively. Diffusion weighting was applied
along a single gradient axis. The diffusion-gradient configurations
provided as {δ, ǫ, a, 1 [ms]} and shown in Figure 1A were {20.7,
0.5, 9.2, 56.2} and {7.1, 3.6, 9.2, 35.2} for 80mT/m and 300mT/m,
respectively, giving a maximum b-value of ≈ 30 000 s/mm2.
Further specification of the sequence parameters are listed in
Table 1. TEs and flat-top gradient durations were rounded to
the nearest ms by the sequence implementation, resulting in
unavoidable differences in b-values between the two conditions.
However, these deviations were minimized to the greatest extent
possible, and less than 1.5% in all cases. For each gradient setting,
24 transients were acquired with water suppression, along with 8
water-unsuppressed transients. A single 22 × 20 × 22 mm3 DW-
MRS voxel was acquired for both gradient conditions in the grey-
matter rich occipital lobe (OCC) of one participant in a single scan
session.

2.2.2.2 Gray matter vs. white matter
To compare tissue-type specific differences, DW-MRS voxels

were acquired in grey matter (GM) and white matter (WM)
rich brain regions of the other two participants with a modified
protocol. In one participant, a 24× 20× 25 mm3 voxel was placed
in the OCC, centred on the mid-line and as posterior as possible
without including the sagittal sinus or skull, maximising the GM
fraction. In a second participant, a 27 × 16 × 16 mm3 voxel was
placed in the sub-cortical white matter of the corona radiata (CR)
in the left hemisphere, maximising the WM fraction. Contrary
to the previous section, three diffusion weightings were applied
along each of the physical gradient axes with a single maximum
gradient amplitude (295 mT/m), and reduced TE of 70 ms giving
a gradient configuration of {7.1, 3.6, 9.2, 31.2} and a reduced
maximum b-value of 21763 s/mm2. The 8 nominal b-values were
0, 557.8, 1266.2, 2260.6, 5107.4, 9099.3, 14237, and 21763 s/mm2

along each of the three orthogonal single-gradient axes. Both DW-
MRS acquisitions otherwise used the same parameters: TRmin =
2, 500 ms, spectral width = 4, 000Hz, 24 water-suppressed, and 8
water-unsuppressed transients.

2.2.2.3 Table vibration phantom scans
In order to investigate table vibrations induced by the gradient

system, we acquired non-water-suppressed DW-MRS spectra in
an isotropic diffusion phantom with a volume fraction of 50%
polyvinylpyrrolidone (PVP, NIST). Spectra were acquired for the
300mT/m and 80mT/m gradient settings, with three diffusion
directions, along each of the three orthogonal single-gradient
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TABLE 1 Sequence parameters for the 300 and 80mT/m gradient conditions.

gmax=300 mT/m gmax=80 mT/m

g [mT/m] b [s/mm2] g [mT/m] b [s/mm2]

Gradient amplitudes and corresponding b-values 59 1, 257 16 1, 245

89 2, 838 24 2, 801

118 4, 989 32 4, 980

177 11, 226 48 11, 204

236 19, 957 64 19, 918

295 31, 183 80 31, 122

TE [ms] 74 116

δ [ms] 7.1 21.4

Rise time [ms·m/T] 12 6 (5)

Nominal b-values were calculated for the echo-times 74ms and 116ms for gmax=300 mT/m and gmax=80 mT/m, respectively.

physical axes. For each b-value, 4 transients were acquired, as
well as 4 corresponding transients with inverted gradient polarity
i.e., g = [0,±59,±89,±118,±177,±236,±290] mT/m. The
inverted scans facilitated eddy current correction for the non-
water-suppressed data, as described in the following section.

2.3 Data processing

2.3.1 MRS data processing
A DW-MRS pre-processing pipeline—conforming to MRS

consensus recommendations (Near et al., 2021)—was implemented
using theMatlab-basedMRS toolkit, FID-A (Simpson et al., 2017)1.
Relative coil phasing was applied using the water-unsuppressed b =

0 acquisition, weighting individual coil elements based on signal-
to-noise ratio (Hall et al., 2014). Motion-corrupted transients
were identified using a likeliness metric, comparing FIDs to the
first acquisition for each respective diffusion condition (Simpson
et al., 2017). Transients which varied by more than 2 standard
deviations were omitted prior to averaging to reduce the impact
of motion on the final results. To minimize signal losses due to
phase and frequency drift, spectral registration (Near et al., 2015)
was used to align individual transients for each diffusion condition,
separately. The resulting spectra were then manually inspected
for residual water/lipid or motion contamination, automated data
quality cutoffs were used for tNAA full-width at half-maximum
greater than 0.1 PPM and metabolite SNR less than 3 (Wilson et al.,
2019).

Tarquin (Wilson et al., 2011) V4.3.10 was used for linear-
combination modeling (LCM), with TE-specific simulated
basis sets including -CrCH2 (relaxation correction basis
function), alanine (Ala), aspartate (Asp), creatine (Cr), GABA,
glycerophosphocholine (GPC), glucose (Glc), glutamine (Gln),
glutathione (GSH), Glu, glycine (Gly), mI, lactate (Lac), NAA,
N-acetylaspartylglutamate (NAAG), phosphocholine (PCh),

1 Full code available https://github.com/CWDAVIESJENKINS/FIDA-

Tarquin-Processing/tree/main/PipeLines/DWMRS.

phosphocreatine (PCr), phosphorylethanolamine (PE), scyllo-
inositol (sI), and taurine (Tau). Reported metabolites are total
creatine (tCr = Cr + PCr), total NAA (tNAA = NAA + NAAG),
and total choline (tCho = Cho + GPC). Additional basis functions
were incorporated for macromolecular and lipid resonances,
with the baseline approximated by a Gaussian window function.
The extracted metabolite amplitudes and Cramér-Rao lower
bounds (CRLBs) were then used for diffusion modeling. Water
phantom scans were processed without LCM, with the water signal
amplitude quantified by taking the magnitude of the first point of
the complex FID.

2.3.2 Eddy current correction
While the DW-PRESS sequence was designed to minimize

eddy current artefacts using a bipolar gradient scheme (Branzoli,
2015), further eddy-current correction was required, particularly
for the highest b-values. For in vivo data, we performed eddy
current correction using a non-water-suppressed reference scan.
The signal of the water-suppressed scan, Smet(t) can be divided by
the signal of the non-water-suppressed reference Sref(t) to remove
the eddy-current-related phase, φeddy, (Klose, 1990):

Smet(t) = |Smet| e
i
(

φmet(t)+φeddy(t)
)

(3)

Sref(t) = |Sref| e
iφeddy(t) (4)

where the phase information of the MR spectrum, φmet, is
retained. To mitigate issues resulting from the attenuation of
the water signal at higher b-values, the relevant phase correction
term, φeddy was extracted from the reference scan using an
LPSVD (Vanhamme et al., 1998), improving robustness to the
noisier high-b-value water transients.

The Klose et al. method was used for all in vivo data in our
study. Testing revealed satisfactory performance, even at high b-
value; however, thismight not be the case for all types of acquisition.
To supplement this approach, we also demonstrate a second
method of post-hoc eddy current correction in a nickel-doped
water phantom, using gradient polarity inversion (Lin et al., 1994),
whereby alternating transients of a particular diffusion gradient
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strength are acquired with opposite gradient polarity. This reverses
the phase development due to eddy currents, such that:

Sinvert(t) =
∣

∣S(t)
∣

∣ eiφ(t)−iφeddy(t) (5)

S(t)Sinvert(t) =
∣

∣S(t)
∣

∣

2
eiφ(t) (6)

where, φ is the phase, φeddy is the phase specifically resulting
from eddy currents, and S and Sinvert are the signals resulting from
the initial and inverted gradient polarities, respectively. Multiplying
the resulting time-domain signals removes phase evolution due to
eddy currents.

2.3.3 Gradient non-uniformity correction
A mask representing the DW-MRS voxel was created in the

anatomical image space using SPM12 (Penny et al., 2011; Edden
et al., 2014). A vendor-supplied spherical harmonic description of
the spatial dependence of the field generated by each gradient coil
was used to assess geometric deviations of the voxel. A coil tensor,
L, was computed by taking the partial derivatives of the field—
normalized by the nominal gradient strength—where the elements
of the coil tensor contain the spatially varying deviations for each of
the gradient axes. The coil tensor was subsequently used to compute
the effective b-matrix and b-value from the nominal ones, i.e.,
Beff = LBL

T and beff = trace(Beff ) (Bammer et al., 2003). Nominal
b-values were estimated using in-house software written in Matlab
(Mathworks, Natick, MA, USA), then subsequently, the nominal
b-values were corrected for gradient non-uniformities (Bammer
et al., 2003). This gave rise to a distribution of corrected b-values
for each diffusion condition—rather than the single nominal value.
The corrected mask was used in conjunction with the corrected
b-values, to ascertain the effective b-value within the DW-MRS
voxel.

2.3.4 Di�usion measures
Data were fitted in the low (b < 3, 000smm−2) and

intermediate (b < 9, 500smm−2) b-value range with a mono-
exponential and kurtosis diffusion representation, respectively, and
over the full b-value range with an astrocylinder model (fully
dispersed cylinders). All diffusion fitting was performed in Matlab
2021b using trust-region reflective optimisation. The inverse of the
metabolite CRLBs was used to weight each data point, to reduce the
impact of individual poorly-fit spectra on quantification.

2.3.4.1 Di�usion representation
Metabolite ADCs were estimated for each direction

independently. The reported metabolite amplitudes for each
b-value were modeled using two approaches. Firstly, all b-values
below 3, 000 s/mm2 were fit using a mono-exponential decay:

ln(S) = ln(S0)− b · ADCe (7)

where ln(S) is the natural logarithm of the fitted metabolite
amplitude, and b is the b-value. S0 and ADCe are the
non-diffusion-weighted signal amplitude and apparent diffusion
coefficient (where e indicates the ADC from a mono-exponential
fit), respectively. Non-mono-exponential behavior was observed

beyond this b-value range, so b-values up to 9, 500 s/mm2 were
fit using the diffusion kurtosis representation (Jensen et al., 2005;
Yablonskiy and Sukstanskii, 2010):

ln(S) = ln(S0)− b · ADCk +
1

6

(

b · ADCk

)2
· K (8)

where ADCk is the apparent diffusion coefficient from the
kurtosis representation and k is the kurtosis. To stabilize fitting,
ADCe estimates from the mono-exponential representation were
used to initiate the fit of the kurtosis representation.

Following gradient non-uniformity correction, each single
nominal b-value, bi, is replaced with a distribution of corrected
b-values (denoted bi,effj ). To investigate the impact this had on
metabolite diffusion measures, we estimated mono-exponential fits
considering the distribution of b-values within the DW-MRS voxel:
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(9)

where ADCd is the apparent diffusion coefficient (d indicates
that it is estimated from a distribution of b-values), and the signal of
the ith b-value, S(bi), is repeated acrossM voxels at 1 mm3 isotropic
resolution (i.e., the resolution of the MPRAGE).

2.3.4.2 Di�usion modeling
Code adapted from the Multidimensional diffusion MRI (MD-

dMRI) analysis framework was used to implement a single-
compartment model of fully-dispersed cylinders (astrocylinders)
for bipolar diffusion encoding, in agreement with DW-MRS
recommendation (Nilsson et al., 2017, 2018; Ligneul et al., 2023).
To ratemodel performance and investigate ultra-high b-values with
Connectom settings (higher SNR, shorter TE, and diffusion-time)
the corrected Akaike information criterion (AICc) was used. The
model parameters include the signal amplitude S0 at b = 0, the
free diffusivity D0 and the cylinder radius RC with boundaries 0 ≤

RC ≤ 20µm. Moreover, fitting included outlier detection to remove
data-points potentially affected by motion by iteratively removing
a single b-value from the fitting and identify the fit with the lowest
root-mean-square-error (c.f., Supplementary Figures S3, S4). In the
case of multi-directional data, the directional average of the signal
was used for fitting to mitigate effects from tissue anisotropy. The
fitting uncertainties of the parameters were estimated by residual
bootstrapping with 250 random noise realizations (Jelescu et al.,
2022).

3 Results

3.1 SNR simulations

Figures 1B, C shows the results of the theoretical investigation
into the relationship between maximum-achievable b-value and
minimum-achievable TE for the DW-PRESS sequence, as well as
the related SNR simulation results. As anticipated, ultra-strong
gradients allow for a far shorter TE for a given b-value, a benefit
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which becomes even more apparent as the required maximum b-
value increases. Moreover, one can see from the color bar that
the minimum achievable diffusion time for a given maximum
b-value is strongly related to the maximum gradient strength.
In terms of SNR, we found that tCr—with the shortest T2 of
the metabolites considered—had the largest SNR gains. For a
maximum b-value of 31 000 s/mm2, our simulations suggest a
potential SNR improvement of 50%. Likewise, for tNAA and tCho,
our simulations suggest an expected SNR gain of about 10% and
21% moving from 80 mT/m to 300 mT/m, respectively.

3.2 Eddy currents

Figure 2 shows a summary of sequence validation results,
including examples of gradient-polarity-inversion eddy current
correction (ECC) in a phantom (Figure 2A), and examples of
water-reference-based ECC in vivo (Figure 2B). Although bipolar
diffusion gradients were applied in the water PVP phantom,
Figure 2A shows clear eddy current artifacts for both positive and
negative gradient polarity configurations. However, by combining
both datasets, effects from eddy currents can be largely prevented.
Apart from the benefits of limiting eddy-current artifacts,
combining consecutive transients with inverted gradient polarity
also reduces contributions from linear gradient cross-terms. This
allows for an accurate estimation of the b-value, even without
taking slice-selection, and crushing gradients into account. If no
gradient polarity inversion is used, one has to calculate the real
b-value directly from the full gradient chronograms (Mattiello
et al., 1997). For the in vivo acquisitions, where only a single
gradient polarity configuration was used, the effects from eddy
currents are clearly visible from Figure 2B (red line, Before ECC).
This effect is more pronounced at higher b-values, where steeper
gradients give rise to stronger induction currents. However, when
the acquired water reference is used for ECC (black line, After
ECC) non-linear phase distortions from eddy-currents can be
widely prevented. Despite large differences in diffusion gradient
characteristics, MRS fit residuals were comparable between the
80 mT/m and 300 mT/m acquisitions (Supplementary Figure S1).
The mean ratio between the fit residual and the noise level—
as reported by Tarquin—was 2.98 and 3.04 for the 300 and 80
mT/m acquisitions, respectively. The comparability of the residuals
alludes to a lack of significant differences in modeling performance,
despite the larger eddy current artifacts induced when ultra-strong
gradients are applied.

3.3 Gradient non-uniformities

Deviations in the voxel mask geometry and b-values due to
gradient non-uniformities were corrected by taking the nonlinear
spatial gradient profiles into account. While voxel deformations
made little-to-no difference to the voxel volume and position
(< 1% deviation), b-values were affected significantly. This is
perhaps expected, as unlike spatial encoding, b-values are driven
by the squared gradient amplitude. Figure 3 shows the magnitude
and spatial distribution of deviations from the nominally-specified

b-value due to gradient non-uniformities. While the fractional
deviation from the nominal b-value is constant, the actual deviation
increased with gradient strength. A relatively narrow distribution
is observed about zero at the lowest non-zero b-value and a much
wider, non-zero-centered distribution is seen for the highest b-
value. For the smallest nominal b-value of 567 s/mm2, the mean
(standard deviation) of the distributions of corrected b-values in
x, y, and z were 563 (5), 567 (5), and 559 (5) s/mm2, respectively,
and for the largest nominal b-value of 22,107 s/mm2–21,948
(198), 22,137 (185), 21,802 (199) s/mm2, respectively. The mean
deviation—calculated by taking subtracting nominal b-value from
the corrected one—were −4, 0, and −8 s/mm2 for 557.8 s/mm2,
and –159, 30, and –305 s/mm2 for a nominal value of 21,763 s/mm2.

Figure 4 shows in vivo mono-exponential fitting results if b-
values were not corrected for non-uniformity (blue); corrected for
non-uniformity, fitting the the full in-voxel distribution (red); and
corrected for non-uniformity using the median of the distribution
for fitting (green). After correction, we observed no significant
difference in the estimated ADCs when either using the full b-value
distribution or the median of that distribution, but overestimated
ADCs in the absense of non-uniformity correction (approximately
4% faster diffusion). Thus, in the subsequent analysis, the median
b-value was used to inform ADC, kurtosis, and microstructural
fitting.

3.4 Comparison of 80 and 300 mT/m
acquisitions

Figure 5A shows the individual in vivo spectra and LCM fitting
results left with the Connectom (Gmax = 300 mT/m) and
right with the Prisma (Gmax = 80 mT/m) settings. Overall
spectral SNR of all acquisitions was well aboveminimum consensus
recommendations, even for the highest b-value. The mean SNR
gain for tNAA—calculated by taking the ratio of the metabolite
peak amplitude to the standard deviation of the noise—was 1.16,
with a 16% increase in SNR when ultra-strong gradients are used.
Likewise, for the other major metabolites, we found an SNR gain of
1.36 for tCr, and 1.27 for tCho. To further elucidate the results, we
expanded our SNR calculations to examine J-coupledmetabolites—
Glu and mI (Wyss et al., 2018)—and found similar SNR gains: a
predicted 30% improvement for Glu was experimentally verified,
and a 29% improvement was observed for mI, compared to the
expected 31%.

The mean full-width half-maximum of tNAA was found to
be 6.2 Hz across both acquisitions, indicating a good shimming
and linewidth for LCM quantification. The tNAA CRLBs were all
less than 27%—even including the highest b-values—with a mean
value of 17% across all b-values. Similarly, the mean CRLB for tCr
was 14%, with all-but-one value falling below 22% . CRLBs were
higher for tCho with 4 acquisitions greater than 27%. Only a single
transient was rejected by themotion corruptionmetric—for the 300
mT/m acquisition at the highest b-value. Full data quality measures
are reported in Supplementary Table S2.

Figure 5B shows the tNAA diffusion decay fitted to a mono-
exponential for the single diffusion direction acquired in the OCC.
For the mono-exponential representation, the apparent diffusion
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FIGURE 2

(A) Phantom water spectra acquired with a given gradient polarity (green), inverted gradient polarity (red), and the combined, eddy-current corrected
spectrum (blue) (B) Three examples of spectra before (red) and after Klose eddy-current correction (black) at 50 mT/m (top), 150 mT/m (middle), and
295 mT/m (bottom). (C) DW-MRS quantification of the isotropic di�usion phantom. Individual di�usion directions (x, green; y, blue;, z, red) are
plotted on top of each other for the 300 mT/m (dashed fit line above, “x”) and 80 mT/m (dotted fit line below, “o”) acquisitions. The individual
quantified ADCs are also noted in the colour corresponding to the direction acquired. Note the strong overlap between directions, and vertical o�set
between gradient conditions.

FIGURE 3

Deviation from nominally specified b-values due to gradient non-uniformity. (A) The distribution of deviation from the nominal b-value within the
voxel. From dark blue to yellow, the distributions correspond to nominal b-values of 567, 2,296, 5,188, 9,243, 14,462, and 22,107 s/mm2. Higher
b-values exhibit broader distributions of deviations. (B) An example of the spatial distribution of deviations from a nominal b-value of 22,107 s/mm2.
The rows correspond to di�erent gradient directions (consistent with the first panel), and the columns represent orthogonal slices. The images in the
top row are overlaid with the DW-MRS voxel location used to determine the distributions shown in the left panel.
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FIGURE 4

This figure shows three di�erent approaches to representing the b-value during mono-exponential modelling. Directly fitting using the
nominally-specified b-value (blue), fitting using the median of the distribution of gradient-non-linearity-corrected b-values (green), and fitting using
the full distribution of corrected b-values (red). The resulting ADCs are shown in their respective colours. The (left) shows the tNAA di�usivity, while
the (right) shows tCho.

FIGURE 5

Comparison of the 300 mT/m acquisition to the 80 mT/m acquisition. (A) The individual spectra (black) for all b-values are overlaid by the
corresponding MRS fits for the 300 mT/m (blue) and 80 mT/m (red), respectively. The approximate b-values are noted on the left, with full details in
Table 1. (B) The mono-exponential (dashed coloured line) fits for the 300 mT/m (blue) and 80 mT/m acquisition (red) for tNAA. The vertical line
indicates the b-value data exclusion threshold for mono-exponential modeling.

coefficients of tNAA were ADCe,300 = 0.168 µm2/ms, and ADCe,80

= 0.158 µm2/ms for 300 and 80 mT/m, respectively. Results for
the other metabolites—tCho and tCr—are reported in Table 2.
The Kurtosis representation was not included for these data, as
only a single data point fell in the intermediate b-value range of
3, 000–9, 500 s/mm2.

Table 3 lists, in the upper rows, the estimated microstructural
properties derived from the astrocylinder model comparing the
300 and 80 mT/m settings acquired in the OCC . The estimated
AICc’s are similar between 80 and 300 mT/m settings. It is
interesting to note that D0 is, by average, higher for the Prisma
settings, which is also apparent from the signal attenuation at low
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TABLE 2 Listing of the in vivo results applying a mono-exponential and kurtosis representation for the three major metabolites.

Experiment Metabolite ADCe

[µm2/ms]
adj.R2e ADCk

[µm2/ms]
K adj.R2

k

300mT/m tNAAZ 0.168 0.94 - - -

tChoZ 0.116 0.93 - - -

tCrZ 0.125 0.73 - - -

80mT/m tNAAZ 0.158 0.99 - - -

tChoZ 0.184 0.69 - - -

tCrZ 0.184 0.75 - - -

CR voxel tNAAX 0.146 0.99 0.142 2.226 0.98

tNAAY 0.122 0.99 0.170 1.855 0.98

tNAAZ 0.153 0.97 0.166 1.622 1.00

tChoX 0.223 1.00 0.204 1.466 0.96

tChoY 0.185 0.81 0.211 1.758 0.97

tChoZ 0.112 0.45 0.101 0.192 0.94

tCrX 0.191 0.97 0.231 1.589 0.99

tCrY 0.158 0.89 0.167 1.383 0.99

tCrZ 0.177 0.89 0.136 1.014 0.96

OCC voxel tNAAX 0.128 0.93 0.180 1.569 0.98

tNAAY 0.153 0.42 0.194 2.147 0.82

tNAAZ 0.096 0.79 0.122 1.542 0.98

tChoX 0.079 0.47 0.104 1.913 0.94

tChoY 0.211 0.77 0.154 1.557 0.84

tChoZ 0.209 0.92 0.160 1.518 0.93

tCrX 0.181 0.78 0.204 1.477 0.96

tCrY 0.202 0.36 0.231 1.628 0.80

tCrZ 0.156 0.89 0.173 1.070 0.99

The Experiment column delineates the acquisition and the metabolite column specifies the metabolite considered, with the subscript indicating the diffusion direction. The obtained-R2 for each

model is included to evaluate the overall fitting quality of the diffusion decay.

b-values in Supplementary Figure S3, and in line with the estimated
ADCs. Moreover, RC tends toward zero for tNAA for the Prisma
configuration.

3.5 Grey matter and white matter

Figure 6A shows the voxel positions and tissue segmentation in
the OCC and CR estimated from 3D T1 MPRAGE (Penny et al.,
2011; Edden et al., 2014). The OCC voxel contained predominantly
greymatter (GM/WM/CSF: 75/17/8 %) and the CR voxel contained
predominantly white matter (GM/WM/CSF: 15/83/2 %). Spectral
quality was generally high for both voxels. The minimum SNR—as
measured by the maximum point of tNAA—was 10.9 in the OCC
and 8.9 in the CR at b = 0. The mean FWHM across the DW-
MRS acquisitions was 5.65 Hz for the OCC voxel, and 6.31 Hz for
the CR voxel, well within consensus recommended limits (Wilson
et al., 2019). The tNAA CRLBs ranged from 3.4–9.7% for the OCC,

and 5.1–51.9% for the CR, with difference between voxels likely
driven by the lower SNR in the CR voxel, or perhaps reflects
increased variability due to the proximity of the CR voxel to the
ventricles, as previously reported (Genovese et al., 2021a). We also
noted lower data quality for the OCC voxel in the y-direction,
which exhibited lower SNR and increased CRLBs, compared to the
other two directions. Regarding motion-corruption, we excluded
a greater number of transients in the data sets for the GM/WM
comparison than in the previous analysis. In all cases, no more
than 2 transients were removed per diffusion weighting, with one
exception for the CR voxel, where 3 transients were removed for
a single diffusion condition. All spectra and fits are shown in
Supplementary Figure S2. Figure 6B shows the fitting results for
tNAA in the OCC and CR voxels. Full data quality measures are
reported in Supplementary Table S2.

Metabolite ADCe for the mono-exponential representation
and ADCK and K for the kurtosis representation are reported
in Table 2 in the lower rows for each individual diffusion-
encoding direction. The mean directional-averaged ADCes for
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TABLE 3 Listing of the in vivo results of microstructural measures (free di�usivity D0, cylinder radius RC) estimated from an astrocylinder model.

Experiment Metabolite D0 [µm2ms−1] RC [µm] AICc

300 mT/m tNAAZ 0.33± 0.09 2.2± 0.1 −51.1

tChoZ 0.39± 0.06 1.4± 0.3 −59.4

tCrZ 0.41± 0.07 1.6± 0.4 −57.8

80 mT/m tNAAZ 0.52± 0.08 0.0± 0.0 −59.0

tChoZ 0.92± 0.14 2.4± 0.9 −56.4

tCrZ 0.72± 0.16 2.7± 1.0 −55.3

CR voxel tNAAavg 0.43± 0.07 2.2± 0.4 −73.1

tChoavg 0.48± 0.06 1.6± 0.7 −76.1

tCravg 0.46± 0.05 2.6± 0.2 −82.1

OCC voxel tNAAavg 0.39± 0.05 1.5± 0.3 −76.5

tChoavg 0.36± 0.04 0.0± 0.7 −72.3

tCravg 0.57± 0.07 1.9± 0.2 −74.6

The double-lined-column delineation shows, in the upper half, the comparison of the 300 and 80 mT/m settings where diffusion-encoding was applied only along the z-direction, and in the

lower half, the comparison of the averaged diffusion metrics over three orthogonal diffusion-directions in the white matter rich corona radiata (CR) and grey matter rich occipital lobe (OCC)

using the 300 mT/m setting. The fitting results can be found in Supplementary Figure S3.

FIGURE 6

Results of the in vivo grey and white matter acquisitions. (A) T1-weighted images are overlaid with tissue-specific segmentation masks for grey
matter (GM), white matter (WM), and CSF in the occipital (above) and white matter (below) voxels. Grey matter, white matter, and CSF voxel fractions
are reported in the corresponding text. (B) The three tNAA di�usion decays for the OCC and CR voxels. Mono-exponential (dashed lines) and kurtosis
(solid lines) fits are shown for the x (blue), y (green), and z (red) directions. The vertical lines indicate the b-value thresholds of data exclusion for
mono-exponential and kurtosis modelling, respectively.

tNAA/tCho/tCr are 0.14/0.17/0.18µm2ms−1 in the CR and
0.13/0.17/0.18µm2ms−1 in the OCC. For ADCK slightly higher
values were found with 0.16/0.17/0.18µm2ms−1 in the CR and
0.17/0.14/0.20µm2ms−1 in the OCC, and corresponding Kurtosis
values of 1.90/1.14/1.33 in the CR and 1.75/1.66/1.39 in the
OCC.

The estimated microstructural properties for the astrocylinder
model are listed in Table 3 in the lower rows for the voxels placed
in the WM-rich CR and GM-rich OCC acquired with Connectom
settings. The AICc’s are comparable between these two brain
regions and do not indicate greater model validity in either WM
or GM.

3.6 Table vibration

Figure 2C shows the signal decay for the isotropic diffusion
phantom acquired along the three orthogonal directions x, y, and z
for the Connectom and Prisma settings. The ADC for both settings
only shows a slightly faster diffusion along the z-direction, which
may point to stronger table vibrations along z. However, the overall
estimated ADCs are well in line with the calibration value of 0.293
µm2/ms at 22◦C. Considering our results in vivo shown in Figure 6
we found a stronger signal decay for tNAA, but also tCr and tCho
(not shown), in the CR when diffusion-encoding is applied along
the z-direction at ultra-high b-values.
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4 Discussion

In this study, we investigated the practical feasibility of DW-
MRS on a Connectom MR scanner equipped with 300mT/m
gradients to measure metabolite diffusion at ultra-high b-values
in the human brain. By comparing these results between clinical
and ultra-high gradient amplitudes, we show the benefits of new
gradient systems for DW-MRS, but also present strategies to
mitigate the impact of methodological challenges.

4.1 SNR simulations

Simulated SNR benefits of applying ultra-strong gradients
were mostly in line with experimental measurements in vivo.
Comparing the Prisma (Gmax = 80mT/m) and Connectom
(Gmax = 300mT/m) settings, the theoretical SNR gain of 10% for
tNAA was even exceeded experimentally and a 16% improvement
was achieved. A similar pattern is observed for tCho, where
experimental SNR gains exceed predictions by 7 percentage points.
J-coupled metabolites mI and Glu were approximately in-line with
expectations. For tCr, while we still report an increase in the SNR
at 300 mT/m, the magnitude of the SNR increase is not as large as
predicted by simulation—36% vs. the expected 50%. This variation
from expected SNR gains is attributed to inaccuracies in the
assumed T2, but further verification would require acquisition of
T2 relaxometry alongside the DW-MRS. Interestingly, two studies
that investigated this—in humans and mice respectively—found
that tCr was the only metabolite that showed a slight dependence
of ADC on TE (Branzoli et al., 2014; Mougel et al., 2022).

In general, SNR should be carefully considered in the context
of diffusion imaging (Ellegood et al., 2011). The SNR dependence
of MRS reconstruction and fitting methods can lead to anomalous
signal decay, particularly at higher b-values, making it an important
consideration for high-b-value DW-MRS. The shorter TE afforded
by ultra-strong gradients improved SNR and reduced CRLBs,
but strict consideration of SNR and MRS fit uncertainty is still
necessary.

4.2 In vivo results

Previous work (Ronen et al., 2014) found tNAA diffusivity
values of 0.076 and 0.34µm2/ms for diffusion gradients orthogonal
and parallel to the main fibre orientation of the corpus callosum,
respectively. The DW-MRS voxels considered in this study were
arranged to contain predominantly grey or white matter, but
inevitably containedmixed fibre orientations. Our measured ADCs
fell within the range reported by Ronen et al. (2014), with our lowest
ADC reported in grey matter (0.096 µm2/ms) and the highest in
kurtosis model of white matter (0.194 µm2/ms).

Furthermore, higher ADCs in GM compared to WM have
been previously reported (Ellegood et al., 2011; Kan et al., 2012;
Najac et al., 2016) and this finding is confirmed by our results for
tNAA in our grey-white matter comparison, where we find a mean
ADC of 0.126 µm2/ms for the OCC GM voxel, and 0.140 µm2/ms
for the CR WM voxel. Kurtosis value ranges for tNAA (1.5–2.2),

tCr (1.0–1.6), and—excluding one low-kurtosis fit (0.192)—tCho
(1.5–1.9) fall within previously reported diffusion-time-dependent
ranges for metabolites (Döring et al., 2023). Lower AICc values
were found in the data averaged over multiple diffusion directions.
This difference could potentially be attributed to a higher SNR or
better agreement with the model, resulting from powder averaging.
Furthermore, we examined the data to assess the feasibility of
employing more extensive modeling strategies, specifically using a
two-compartment model as described in Supplementary Figure S4
and Supplementary Table S1. However, the estimated AICc values
were consistently were higher.

We report a 6% decrease in the tNAA ADC of 80 mT/m
acquisition, compared to the 300 mT/m acquisition. Conversely, a
significant increase was noted for the other two metabolites (tCho,
tCr), in line with an even more pronounced increase in the free
diffusivity D0. Although the goodness-of-fit was lower for the 80
mT/m configuration, a possible explanation could be that the longer
TE reduces signal contributions from restricted compartments—
such as organelles—and consequently increases ADCs and D0s.
Previous studies within a TE range of 35 to 70 ms have not
found a correlation betweenmetabolite diffusion and T2 relaxation,
but others at 7T and longer TE report on faster diffusion with
increasing TE (Branzoli et al., 2014; Ligneul et al., 2023). This is
in line with our results for tCho and tCr indicating faster diffusion
when TE increases from 74 to 116 ms, although T2s were different
due to the lower field-strength and diffusion-times due to different
maximum gradient amplitudes. Moreover, despite the higher SNR,
shorter TE, and shorter diffusion-times achieved with the 300
mT/m settings, AICc’s indicate similar model support.

It is important to note that the relatively small size of
our volunteer group limits the confidence with which we can
draw conclusions about our quantitative analyses. Uncertainty
in the MRS modeling procedures—due to a myriad of factors,
including lineshape distortion, motion, uncharacterized signals
from macromolecules, and issues in baseline characterisation—
will affect the measured diffusion properties necessitating a larger
participant population to achieve sufficient statistical power. Here,
we utilize the Cramer-Rao lower bounds, and weight the fitting
accordingly in an attempt to mitigate this. However, in the future
it might be beneficial to use metabolite-cycling to further reduce
motion and eddy-current artifacts (Döring et al., 2018), and
expanding the sample size of the study.

4.3 Eddy currents

Diffusion-weighted imaging and spectroscopy use strong
gradients to achieve the desired diffusion weighting. Eddy
currents generated during ramp up and down times can cause
time-dependent frequency variations in the time domain and
consequently distort the MR spectra. Correcting for eddy-current
effects is vital in MRS—and particularly so for DW-MRS—in
order to accurately reflect lineshape distortions while modeling
MR spectra. Furthermore, as per Faraday’s law, the magnitude of
the induced eddy-current effects increase with the applied gradient
strength, further compounding their relevance in the context
of ultra-strong gradient DW-MRS. Thankfully, in the particular
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case of the Siemens Connectom scanner, the shield coil design
minimizes the relative size of eddy current effects. Setsompop
et al. (2013) reported that a 7.5-fold increase in gradient amplitude
on the Connectom scanner corresponded to just a 2–3-fold eddy
current increase, in absolute terms. Our sequence, acquisition
scheme, and post processing pipeline further reduce the impact
of eddy currents. Our DW-PRESS sequence utilized a bipolar
diffusion gradient scheme, which has the potential to reduce eddy
current effects on the acquired DW-MR spectra (Alexander et al.,
1997; Branzoli, 2015). We further applied two methods of post-hoc
eddy current correction.

Our in vivo DW-MRS protocols included unsuppressed water-
signal, which we used to correct for eddy-current-induced phase
and frequency shifts (Klose, 1990). Though this method requires
acquisition of only few additional spectra, faster water diffusion
may have reduced the effectiveness of this method at the highest
b-values applied in this work. Therefore, we also demonstrate
a second approach (Lin et al., 1994). For this, we inverted the
polarity of diffusion-weighting gradients for half of metabolite
spectra acquired at the highest b-values. The inversion of diffusion
gradient polarities inverts the phase of the generated eddy currents,
while the intrinsic signal phase and the magnitude of the diffusion-
weighting are expected to remain unchanged. No additional
acquisitions are required in this case. However, it should be
noted that motion corruption of individual transients would
necessitate the pairwise removal of the corresponding inverted
diffusion condition, potentially doubling motion-related transient
exclusions. Furthermore, our implementation of the method did
not include the inversion of slice-selective gradients, which may
explain the residual asymmetry of the lineshapes in our combined
spectra.

The quality of eddy current correction of the above methods
relies on the quality of the acquired water and metabolite spectra.
A lot of work has been done to monitor the field perturbations
in presence of diffusion gradients and their effect of the readout
trajectory and the consequent deterioration in image quality in
DW-MRI (Chan et al., 2014; Wilm et al., 2015). External probes
could be a valuable tool in characterizing and correcting for the
eddy current effects present in the FID. The existing DW-PRESS
sequence would require a trigger event prior the FID acquisition
and a careful temporal and spatial alignment between the FID from
the spectroscopy voxel and the estimated eddy current effects from
FIDs measured by the probes.

4.4 Gradient non-uniformities

Gradient coils are often designed with a limited field of view
(FOV) to minimize nerve stimulation caused by rapidly changing
magnetic fields over time. However, this design choice will increase
gradient spatial non-uniformity, which becomesmore noticeable as
one moves away from the isocenter. In high-performance gradient
systems like the one used here, gradient uniformity is often further
compromized to achieve better performance. There is increased
awareness of the importance of correcting for gradient deviations
in diffusion MRI studies (Bammer et al., 2003; Guo et al., 2020;
Mesri et al., 2020; Morez et al., 2021), but the specification of

a gradient system is commercially sensitive information and not
widely available.

Two strategies to represent the effective b-value were tested,
i.e., incorporating the distribution of b-values, and representing
that distribution using the median. Both strategies show similar
deviations of the estimated ADC in DW-MRS, but both varied
from the uncorrected nominal b-value, it is thus important to
take into account the effective b-values when this information is
available. Also, at lower gradient strength, and lower b-values—
where the absolute signal change as a function of b-value is typically
largest—gradient non-uniformities can bias quantitative estimates.
In addition to b-value deviations, gradient non-uniformities will
also result in distortions of the slice profile and thus voxel geometry.
While the distortions we observed were small, it should be a
consideration when placing voxels close to tissue boundaries,
and conservative placement within the relevant tissue is advised,
particularly when deviating far from the isocenter, where gradient
non-uniformities are larger. Furthermore, there will likely be a
small impact on chemical shift displacement error (CSDE). While
CSDE is typically a linear chemical-shift-dependent translation of
the effective voxel, when gradient non-uniformities are substantial,
this effect is no longer a simple translation, and will result in
metabolite-specific voxel deformation. This is an area that requires
further study; however, we expect this effect to be minimal due
to the lower amplitude of the imaging gradients, and the linear—
rather than quadratic—effect that non-uniformities have on slice-
selective gradients.

4.5 Table vibrations

The switching of strong diffusion gradients can cause
mechanical vibrations at low frequencies within the scanner system
and table. These vibrations could then be transmitted to the
subject being scanned, resulting in artificial signal decay (Hiltunen
et al., 2006) which artificially increases the measured ADC. While
the Connectom scanner does, indeed, provide access to stronger
gradients, it is not trivial how this may manifest as mechanical
vibration. Interestingly, Setsompop et al. (2013) reported that the
effects of acoustic noise generated by a 300 mT/m Connectom
scanner were, in fact, lower than those at more conventional
gradient strengths (40 mT/m). They postulated that the thicker,
larger, and heavier gradient system of the Connectom scanner
somewhat offset the larger amplitude of vibrational forces it
generated (Setsompop et al., 2013).

Although the relatively lower directional variance of ADCs
measured in the NIST phantom at the Gmax = 300 mT/m setting
was surprising, it is important to note that in vivo tissue stiffness
and composition is different and likely more prone to vibration-
induced artifacts. Indeed, our measurements in the CR show a
particularly strong signal decay when diffusion-encoding is applied
along z-direction. This might originate from tissue anisotropy and
major white-matter tracts pointing along z (e.g., cortico-spinal
or cortico-pontine tract) when diffusion of tNAA is considered.
However, tCho shows consistent signal dropouts and diffusion
in the low b-value range remains unaffected, which could point
to effects related to table vibrations at high gradient amplitudes.
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Our hypothesis is that the CR—further away from the contact
point between the head and the coil—is more strongly affected by
random rotations induced by table vibrations than the OCC. This
would be in line with previous observations of largest vibrations
on the Connectom when diffusion-encoding is applied along the
z-direction (Mueller et al., 2019). However, additional dedicated
investigations with different sequence parameters (voxel position,
diffusion-time) are required to elucidate this further.

In general, this artefact will be hardware- and sequence-
specific but can be mitigated at the hardware level through
careful consideration of the coil/gradient mounting (Ogura et al.,
2006; Mueller et al., 2019), or even participant positioning, as
different placement of padding around the head can lead to
differing vibrational coupling between the brain and RF coil
housing (Gallichan et al., 2010).

4.6 Other considerations

4.6.1 Macromolecules
The macromolecular background is a potential confound to

DW-MRS quantification (Ronen and Valette, 2007), with slowly-
diffusing signal components persistent throughout the diffusion
conditions. The impact of macromolecules is mitigated in this
study as we acquired data at a longer TE, and parameterized the
MM background during modeling. Experimentally acquired MM
backgrounds are preferable—and can be acquired with ultra-strong
gradient DW-MRS (Şimşek et al., 2022)—but are parameterization
dependent, and are perhaps best-acquired at the cohort level in
larger studies (Zöllner et al., 2023).

4.6.2 Other sequences
While our study focused on a DW-PRESS implementation,

the methodological considerations we identified are transferable
to other DW-MRS localisation methods. The gradient non-
uniformities can be corrected using the same principles, with
simple modifications made to account for the specific gradient
profile. Similarly, both of the eddy current correction methods
considered here are also applicable to other single-shot localization
schemes, and DW-PRESS might actually present a particularly
challenging example. PRESS localization is known to be more
susceptible to chemical shift displacement error than STEAM
or sLASER, and this—coupled with the strong spatiotemporal
dependence of eddy currents—can adversely affect the efficacy
of the eddy-current correction in a metabolite-specific manner.
The T2-based SNR gains provided by ultra-strong gradients are
also transferable to other sequences with some caveats. Both DW-
STEAM and DW-sLASER will benefit from the T2-based SNR
gains, but are less sensitive to anomalous J-modulation effects
than PRESS; however, our data suggest that this has a minimal
effect on our DW-PRESS data. DW-STEAM also benefits from the
decoupling of diffusion time from the TE, and this can be used to
circumvent some of the T2 limitations to achieve high b-values.
However, when short diffusion times are required—for example,
to probe shorter length scales and/or minimize motion artefacts—
ultra-strong gradients can still provide benefits. Furthermore, when

measuring metabolite diffusion in small anatomical structures
such as thalamus, hippocampus, brainstem, or spinal cord, higher
gradient amplitudes combined with DW-STEAM or DW-sLASER
localization can enhance an accurate localization (with a minimal
CSDE) and should be prefered over DW-PRESS 2.

Another practical consideration that we didn’t directly
investigate in this work is the effect of concomitant gradient
fields. These are nonlinear transverse components to an applied
gradient field that arise from Maxwell’s equations, and are
typically more prominent at lower static field strengths and higher
gradient field strengths (Baron et al., 2012). Our DW-PRESS
sequence implementation utilized symmetric gradient timing to
mitigate the impact of this effect, but for non-symmetric gradient
implementations—for example, free gradient waveforms—this
effect becomes an important consideration that should be corrected
in a prospective manner (Baron et al., 2012; Szczepankiewicz et al.,
2019).

4.6.3 Other preprocessing steps
In this study, a retrospective outlier rejection method was used

to identify and remove suspected motion-corrupted transients by
comparing subsequent transients to the first. While 3 transients
were removed in one such case—at the highest b-value—this did
not impact the ADC estimations using the mono-exponential and
kurtosis representations, which were performed using lower b-
values. However, this may be adversely affect the SNR of highest b-
value acquisitions in the other models. Weighting using the CRLBs
mitigated the impact this had onmodel performance. Furthermore,
if the initial transient of a given series is corrupted by motion, a
high rate of outlier rejection would be observed. While this case
wasn’t encountered in these data, a secondary process—perhaps
comparing to the median spectrum—would circumvent this issue.
Our approach was conservative, and an alternative approach could
be to monitor bulk motion in a prospective manner (Andrews-
Shigaki et al., 2011; Saleh et al., 2020).

We have previously investigated the impact of phase and
frequency correction methods on DW-MRS data (Jenkins, 2021),
and the inherent SNR-dependent performance of such methods.
Signal denoising techniques could mitigate this somewhat, and
show promise for DW-MRS data (Mosso et al., 2022); however,
care must be taken not to invalidate assumptions about noise
characteristics during further modeling steps (Dziadosz et al.,
2023).

4.6.4 Modeling
While we focused on the practical considerations here,

alternative DW-MRS modeling procedures could be beneficial,
particularly leveraging high b-values and/or the higher SNR to
further disentangle compartments (i.e., cylinders and spheres,
Supplementary Figure S4, Supplementary Table S1). With the
current data, sufficient support was not found for a more
complex model, but future work could investigate this with
specifically-acquired data.

2 At ultra-high field (≥ 7T) PRESS localization is severely compromised by

CSD, and STEAM or sLASER localization is recommended.
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Multi-spectrum modeling of MRS data—fitting the
frequency and b-value dimensions in a single step, rather
than independently—is another promising avenue which improves
model parsimony and the stability of diffusion measures to
experimental variation (Tal, 2023), and notably, allows stable
parameterization of the macromolecules and baseline. Several
groups have worked to develop this methodology in recent
years e.g., FitAid (Chong et al., 2011; Adalid et al., 2017),
FSL-MRS (Clarke et al., 2021), and Osprey (Oeltzschner et al.,
2020).

4.7 Limitations

We were able to demonstrate the SNR improvement of
incorporating ultra-strong gradients. However, cardiac and nerve
stimulation limits place firm lower bounds on gradient ramp time
and restrict the achievable gradient amplitudes at shorter TE. As
a result, at TEs below 70 ms, the maximum gradient amplitude
of the Connectom scanner is not achievable within the echo time,
at least with the DW-PRESS sequence and diffusion gradient
configuration we used. This limits the potential benefit provided by
the ultra-strong gradient system. However, in practice, the ultra-
high b-values we achieved in this study might not be necessary
for all applications, and sacrificing diffusion weighting in favour
of the improved SNR brought by lower TE might be preferable.
This would be particularly beneficial when smaller voxel sizes
or shorter scan times are a necessity. Moreover, for DW-PRESS,
shorter TE also reduces the diffusion time, probing smaller length
scales and different aspects of cell morphology. In practice, lower
b-values and shorter TE might be preferable for detecting cell
morphology changes in order to reduce scan time and/or voxel
size.

Our relatively small cohort of volunteers limits the
interpretability of the reported ADCs. A larger study is required
to elucidate the effects of diffusion time, and systematically
validate microstructure across tissue types. Moreover, while
our multiple-gradient-condition acquisition allowed reasonable
comparisons with conventional gradient systems, a systematic
repeatability study using independent gradient systems would
be necessary to fully vindicate these results. Indeed, the
Connectom gradient design differs from that of a lower-
gradient system, affecting gradient non-uniformity even at low
gradient amplitudes, and cross-scanner comparisons would
automatically include such differences (Gudino and Littin,
2023).

Furthermore, while our focus in this work was in the
implementation of DW-MRS with ultra-strong gradients, and
circumvention of major artefacts, we primarily limited our analysis
to the major metabolites.

5 Conclusion

We successfully implemented acquisition and data processing
strategies for ultra-strong gradient DW-MRS. We report diffusion
coefficients which conform with the existing literature. Simulated

SNR gains are experimentally confirmed, and results indicate
that confounding effects of the strong gradient system can be
ameliorated.
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SUPPLEMENTARY FIGURE S1

Figure showing the MRS fitting residuals for the 300 mT/m (left) and 80
mT/m (right) acquisitions. Residuals are plotted in red, ascending in b-value
from top to bottom.

SUPPLEMENTARY FIGURE S2

This figure shows the individual processed spectra (black) and fits (red) for
the OCC (left) and CR (right) voxels for all b-values. Individual di�usion
directions are grouped by di�usion value, and are ordered from top to
bottom: x, y, and z, respectively.

SUPPLEMENTARY FIGURE S3

Eddy current phase evolution from three di�erent gradient amplitudes: 295
mT/m (blue), 150 mT/m (red), and 50 mT/m (yellow).

SUPPLEMENTARY FIGURE S4

Fitting results applying an astrocylinder model and the estimated
microstructural measures (free di�usivity D0, cylinder radius RC). Outliers
were identified by the RMSE when iteratively removing a single data point
from fitting.

SUPPLEMENTARY FIGURE S5

Fitting results applying a two-compartment model and the estimated
microstructural measures (free di�usivity D0, sphere radius RS, cylinder
radius RC). The fraction of cylinders fC was kept fixed at 0.8 and the standard
deviation was estimated from bootstrapping. Outliers were identified by the
RMSE when iteratively removing a single data point from fitting.

SUPPLEMENTARY TABLE S1

Listing of the in vivo results of microstructural measures (free di�usivity D0,
sphere radius RS, cylinder radius RC) estimated from a two-compartment

model. The double lined column delineation shows in the upper half the
comparison of the 300 and 80 mT/m settings where di�usion-encoding was
applied only along the z-direction, and in the lower half the comparison of
the averaged di�usion metrics over three orthogonal di�usion-directions in
the white matter rich corona radiata (CR) and grey matter rich occipital lobe
(OCC) using the 300 mT/m setting. The fitting results can be found in
Supplementary Figure S4. ∗Fraction of cylinders fC was kept fixed at 0.8, c.f.,
text.

SUPPLEMENTARY TABLE S2

Full data quality information for the in vivo data. Each section contains
entries for the Cramer-Rao lower bound (CRLB) of tNAA, tCho, and tCr, as
well as the full width half maximum (FWHM), signal-to-noise ratio (SNR),
points excluded by the motion-corruption metric (Excl.), and the mean
frequency (Freq-Mean) and phase (Phs-Mean) shifts applied by spectral
registration. Entries are ordered by increasing b-value per section.
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Multiple diffusion metrics in 
differentiating solid glioma from 
brain inflammation
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Guohua Zhao 1, Gaoyang Zhao 1, Peipei Wang 1, Weijian Wang 1, 
Jie Bai 1, Yong Zhang 1, Huiting Zhang 2, Guang Yang 3, 
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1 Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, 
Zhengzhou, China, 2 MR Research Collaboration, Siemens Healthineers Ltd., Wuhan, China, 3 Shanghai 
Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai, China

Background and purpose: The differential diagnosis between solid glioma 
and brain inflammation is necessary but sometimes difficult. We  assessed 
the effectiveness of multiple diffusion metrics of diffusion-weighted imaging 
(DWI) in differentiating solid glioma from brain inflammation and compared the 
diagnostic performance of different DWI models.

Materials and methods: Participants diagnosed with either glioma or brain 
inflammation with a solid lesion on MRI were enrolled in this prospective study 
from May 2016 to April 2023. Diffusion-weighted imaging was performed using 
a spin-echo echo-planar imaging sequence with five b values (500, 1,000, 
1,500, 2000, and 2,500  s/mm2) in 30 directions for each b value, and one b 
value of 0 was included. The mean values of multiple diffusion metrics based on 
diffusion tensor imaging (DTI), diffusion kurtosis imaging (DKI), mean apparent 
propagator (MAP), and neurite orientation dispersion and density imaging 
(NODDI) in the abnormal signal area were calculated. Comparisons between 
glioma and inflammation were performed. The area under the curve (AUC) 
of the receiver operating characteristic curve (ROC) of diffusion metrics were 
calculated.

Results: 57 patients (39 patients with glioma and 18 patients with inflammation) 
were finally included. MAP model, with its metric non-Gaussianity (NG), shows 
the greatest diagnostic performance (AUC  =  0.879) for differentiation of 
inflammation and glioma with atypical MRI manifestation. The AUC of DKI model, 
with its metric mean kurtosis (MK) are comparable to NG (AUC  =  0.855), followed 
by NODDI model with intracellular volume fraction (ICVF) (AUC  =  0.825). The 
lowest value was obtained in DTI with mean diffusivity (MD) (AUC  =  0 . 7 5 8 ).

Conclusion: Multiple diffusion metrics can be  used in differentiation of 
inflammation and solid glioma. Non-Gaussianity (NG) from mean apparent 
propagator (MAP) model shows the greatest diagnostic performance for 
differentiation of inflammation and glioma.

KEYWORDS

magnetic resonance imaging, non-Gaussian, diffusion-weighted imaging, glioma, 
brain inflammation
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1 Introduction

Glioma is the most common primary brain tumor and requires 
timely surgical treatment for a better prognosis (Lapointe et al., 2018). 
Brain inflammation, on the other hand, is a common benign lesion 
with associated neurologic dysfunction and non-operative therapy as 
the main treatment (Hodler et al., 2020). Early identification of glioma 
from inflammation is essential. However, these two types of diseases 
sometimes overlap in clinical symptoms, signs, and laboratory tests 
(Han et al., 2021).

Currently, the preoperative diagnosis of glioma relies on magnetic 
resonance imaging (MRI) examination (Zoccarato et al., 2019). Some 
cystic or necrotic brain inflammation may exhibit ring-shaped 
enhancement, making it prone to misdiagnosis as glioblastoma, 
consequently leading to erroneous treatment decisions (Sabel et al., 
2001; Nadal Desbarats et al., 2003). Central necrosis, hemorrhage, and 
ring-shaped enhancement are considered typical malignant features 
of high-grade gliomas in advanced stages. These characteristics are 
associated with rapid tumor cell growth, inadequate blood and oxygen 
supply to the tumor core, damage to the blood–brain barrier and 
immature angiogenesis. Several studies (Hiremath et al., 2017; Bo 
et al., 2021) have advanced imaging analysis methods to distinguish 
gliomas exhibiting typical malignant features from conditions such as 
brain abscesses and tumefactive demyelination. On the other hand, 
gliomas with atypical MRI presentations are prone to misdiagnosis as 
brain inflammation, resulting in treatment delays and further tumor 
progression, thereby worsening prognosis (Talathi et al., 2015; Lu 
et al., 2019), resulting in treatment delays and further progression, 
thereby worsening prognosis. Some research (Wu et al., 2021; Piao 
et al., 2022) have defined atypical MRI manifestation of glioma as the 
absence of an obvious mass effect or enhancement. Gliomas with such 
atypical manifestations are deemed challenging to differentiate from 
brain inflammation using conventional MRI, making them a focal 
point for research. We recognize the importance of choosing cases 
with comparable imaging presentations for studies on imaging 
methods that aim to distinguish between gliomas and brain 
inflammation. This strategy aligns with the pragmatic considerations 
of clinical practice (Omuro et al., 2006). However, the definition of 
atypical MRI manifestations in gliomas remains ambiguous and lacks 
standardized criteria.

Building upon the studies and case reports mentioned above, 
we advocate for the incorporation of a straightforward and widely 
applicable set of selection criteria in investigations of novel imaging 
techniques. This involves including glioma cases based on the 
identification of either cystic or solid lesions as primary criteria. 
Additionally, the selection of cases of brain inflammation with 
comparable imaging presentations is emphasized to establish a 
homogeneous control group. Specifically, distinguishing cystic/
necrotic gliomas from cerebral abscesses, cysticercosis or tumefactive 
demyelination, and differentiating solid gliomas from brain 
inflammation with similar imaging presentations.

Accurate diagnosis of solid lesions is paramount, as these manifest 
in the early stages of the disease. Timely intervention can curtail lesion 
progression, preserve cerebral function, and enhance overall 
prognosis. Recent research (Wu et al., 2021; Piao et al., 2022) found 
that the deep learning and radiomics analysis based on conventional 
MRI performed well in distinguishing glioma and brain inflammation, 
but the features extracted by those methods are limited in 

characterizing the pathophysiological and microstructural differences 
between two type of lesions due to their complex numerical nature 
(Abdel Razek et  al., 2021). Therefore, the use of advanced MRI 
techniques to access patients with suspected glioma is in need.

Diffusion-weighted imaging (DWI) is increasingly used because 
of its ability to quantitatively assess the microstructure of lesion. 
Advanced diffusion models describe the displacement of the water 
molecules more accurately, which can illustrate the microstructural 
information of the tissue better. Several non-Gaussian diffusion 
models have been used to evaluate glioma, and they performed well 
in predicting glioma genotyping (Gao et al., 2022) and distinguishing 
glioblastoma from solitary brain metastasis (Qi et al., 2022; Wang 
et  al., 2022). In this study, we  evaluated the performance of 4 
diffusion models in differentiating glioma with atypical MRI 
manifestation from brain inflammation, including diffusion tensor 
imaging (DTI), diffusion kurtosis imaging (DKI), mean apparent 
propagator (MAP), and neurite orientation dispersion and density 
imaging (NODDI) models.

2 Materials and methods

The study was approved by scientific research and clinical trial 
ethics committee of the first affiliated hospital of Zhengzhou 
university, and informed consent was waived (Approval Number: 
2019-KY-231).

2.1 Patients

This retrospective study involved the collection of imaging data 
from 62 patients diagnosed with either glioma or inflammation from 
May 2016 to April 2023. The inclusion criteria were: (1) glioma 
histopathologically confirmed cerebral gliomas based on the World 
Health Organization (WHO) 2021 classification criteria or brain 
inflammation confirmed through pathological biopsy or cerebrospinal 
fluid analysis; (2) MRI shows a solid lesion without hemorrhagic, ring-
shaped enhancement, or patchy heterogeneous signals of necrosis.

The exclusion criteria were: (1) patients who had undergone 
surgery, anti-tumor therapy, steroids or anti-infective treatment before 
the MRI examination; (2) MRI images with severe susceptibility 
artifacts or motion artifacts; (3) lesions located under the tentorium 
of cerebellum; (4) incomplete imaging data.

2.2 MRI protocol

All patients underwent MRI scans on a 3 T MR scanner 
(MAGNETOM Prisma, Siemens Healthineers, Erlangen, Germany) 
with a 64 channel of head–neck coil. The acquisition sequence and 
parameters were as follows: (1). T1WI: repetition time (TR), 250.0 ms; 
excitation time (TE), 2.46 ms; number of slices, 20; slice thickness, 
5.0 mm; field of view (FOV), 220 × 220 mm2; acquisition matrix, 
314 × 314; (2). T2WI: TR, 4,090.0 ms; TE, 99.0 ms; number of slices, 
20; slice thickness, 5.0 mm; FOV, 220 × 220 mm2; acquisition matrix, 
733 × 733; (3). T2 dark-fluid: TR, 8,000.0 ms; TE, 81.0 ms; number of 
slices, 20; slice thickness, 5.0 mm; FOV, 220 × 220 mm2; acquisition 
matrix, 314 × 314; (4). DWI: spin-echo echo-planar imaging sequence, 
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TR 2,500 ms, TE 71 ms, number of slices, 60; slice thickness, 2.2 mm; 
FOV, 220 × 220 mm2, five non-zero b values (500, 1,000, 1,500, 2000, 
and 2,500 s/mm2) with 30 directions for every b value, and one zero b 
value (b = 0 s/mm2).

2.3 Diffusion-weighted imaging processing

Eddy current and motion correction were conducted on diffusion-
weighted data using the Diffusion Kit Eddy tool1 (Xie et al., 2016). The 
DWI images were processed by NeuDiLab (Diffusion Imaging in 
Python)2 to obtain b = 0 s/mm2 (b0) image and the metric maps 
including the DKI-based mean kurtosis (MK), the DTI-based mean 
diffusivity (MD) and fractional anisotropy (FA), the MAP-based mean 
squared displacement (MSD), q-space inverse variance (QIV), 
non-Gaussianity (NG) and return-to-origin probability (RTOP), the 
NODDI-based intracellular volume fraction (ICVF) and orientation 
dispersion index (ODI).

2.4 Image processing and analysis

The volumes of interest (VOIs) of lesions were delineated using 
ITK-SNAP software3 by two neuroradiologists (K.Z. and X.M., 3 and 
11 years of experience, respectively) who were blind to the diagnostic 
information. The VOIs of lesions were defined as abnormal 
hyperintense signals on the b0 image (Figure 1) and cerebrospinal 
fluid signals were avoided. Since the b0 images were part of the DWI 
sequence, it was simple to align VOIs with other metric maps (Huang 
et al., 2021). The mean value of each metric map was calculated by 
FAE4 (Song et al., 2020).

2.5 Statistical analysis

Statistical analyses were all performed by software environment R 
(v4.2.0).5 The chi-square test was used to compare the sex distribution 
of the patients between the two groups. The normality of the data and 
homogeneity of the variance were evaluated using the Shapiro–Wilk 
and Levene’s tests, respectively. The differences of the metrics and 
mean age between glioma and inflammation were compared using 
independent t-test or Mann–Whitney U test depending on the results 
of test for normality and homoscedasticity. All data were expressed as 
the mean ± standard deviation (SD) or median (25th percentile, 75th 
percentile) depending on the test method. Cohen’s d effect sizes were 
calculated to demonstrate the strength of difference between 
parameters in inflammation group and glioma group. A value of 
Cohen’s d greater than 0.8 was considered as a large effect size (Ma 
et al., 2020). The receiver operating characteristic (ROC) curve was 
drawn and the area under the curve (AUC), sensitivity, specificity and 
accuracy were calculated to evaluate the diagnostic performance of 

1 https://diffusionkit.Readthedocs.io

2 http://nipy.org/dipy

3 http://www.itksnap.org/pmwiki/pmwiki.php

4 https://github.com/salan668/FAE

5 http://www.r-project.org

each metric. The optimal cut-off values were selected based on the best 
Youden Index. Delong test was used to compare the differential 
diagnostic performance. Statistical significance was set at p < 0.05.

3 Results

3.1 Patients characteristics

The demographic characteristics and the timepoint of imaging in 
relation to symptom onset of included patients were summarized in 
Table  1. Overall, 57 participants (34 men, 23 women, mean age, 
46 years; age range, 17–73 years) were included in this study (Figure 2). 
24 participants were diagnosed with WHO grade 2 glioma (10 
astrocytoma, 12 oligodendroglioma, 2 Not Otherwise Specified 
(NOS)), 11 participants were diagnosed with WHO grade 3 glioma (4 
astrocytoma, 5 oligodendroglioma, 2 NOS), 4 participants were 
diagnosed with WHO grade 4 glioma (4 glioblastoma). 18 participants 
were diagnosed with brain inflammation. The average age of patients 
in the inflammation group is significantly higher than that of those in 
the glioma group (p < 0.05). There were no significant differences in 
gender or onset between two groups (p > 0.05).

3.2 Histogram analyses of DWI parameters

Various metrics differed significantly between glioma group and 
inflammation group (Table 2). MK, NG, FA, RTOP, and ICVF were 
significantly lower in the glioma compared with those in the 
inflammation (p < 0.05); MD, MSD, QIV were significantly higher in 
the glioma compared with those in the inflammation (p < 0.05). There 
were no significant differences in ODI between two groups (p > 0.05). 
Corresponding boxplots of metrics were shown in Figure 3.

3.3 Performance of diagnosis

Table 3 and Figure 4 present the results of the ROC curve analyses 
of diffusion metrics. The NG derived from MAP model had highest 
AUC value. Based on the Delong test (Table 4), a comparison of the 
area under the curve (AUC) for the most valuable diagnostic 
parameters among different models revealed NG demonstrates the 
highest AUC, significantly surpassing both ICVF and MD. There is no 
significant difference observed in AUC between NG and MK. MK 
follows as the second-highest, with a significant increase in AUC 
compared to MD. There is no significant difference in AUC between 
MK and ICVF. ICVF exhibits a significantly higher AUC 
compared to MD.

4 Discussion

Our study aimed to assess the discriminative potential of multiple 
diffusion metrics of diffusion-weighted imaging (DWI) in 
distinguishing solid glioma from inflammation. Various diffusion 
models, including diffusion-tensor imaging (DTI), diffusion-kurtosis 
imaging (DKI), neurite orientation dispersion and density imaging 
(NODDI), mean apparent propagator (MAP) were utilized. Our 
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results demonstrated that the non-Gaussianity (NG) from MAP 
model may hold the greatest potential as a diffusion metric for 
differentiation of inflammation and glioma with the highest AUC 
(0.879) as well as the largest effect size (Cohen’s d = −1.644).

NG quantifies diffusion heterogeneity by assessing the divergence 
between the spin displacement probability density function (PDF) and 
its Gaussian approximation. Similar to NG, mean kurtosis (MK) is a 
measure of the deviation of water molecule movement from a 

FIGURE 1

Two representative cases. The delineation of the volume of interest (VOI) is shown by the red lines on the b0 images. (A) 43-year-old female patient 
presents with NMDA-IgG positivity autoimmune encephalitis. (B) A 52-year-old male patient with left temporal glioblastoma (World Health 
Organization grade 4). T1CE, T1 weighted contrast enhancement; DKI, diffusion-kurtosis imaging; MK, mean kurtosis; DTI, diffusion-tensor imaging; 
MD, mean diffusivity; FA, fractional anisotropy; MAP, mean apparent propagator; MSD, Mean squared diffusion; NG, mean non-Gaussianity; RTOP, 
return-to-origin probability; QIV, q-space inverse variance; NODDI, neurite orientation dispersion and density imaging; ICVF, intracellular volume 
fraction; ODI, orientation dispersion index.
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TABLE 1 Patient characteristics.

Total Inflammation Glioma p

Age 46 ± 12 52 ± 10 43 ± 13 0.006

Sex 0.112

Male 34 8 26

Female 23 10 13

Onset 0.511

Acute (< 2 weeks) 21 7 14

Subacute (2 weeks–3 months) 18 7 11

Chronic (> 3 months) 18 4 14

FIGURE 2

Participant selection flowchart.

TABLE 2 Mean values of diffusion metrics of inflammation and glioma.

Inflammation Glioma t/z p Cohen’s d

MK 0.669 ± 0.098 0.543 ± 0.066 5.769* < 0.001 −1.644

FA 0.181 (0.153,0.208) 0.151 (0.126,0.172) 477 0.030 −0.693

MD 0.916 ± 0.169 1.045 ± 0.127 −3.218* 0.002 0.917

MSD 20.208 ± 2.623 21.251 ± 2.142 −1.592* 0.117 0.454

NG 0.169 (0.156,0.191) 0.118 (0.103,0.132) 617 < 0.001 −1.836

QIV 53.126 (35.598,56.28) 67.366 (55.093,81.27) 181 0.003 0.71

RTOP 2.215 (2.041,2.931) 1.699 (1.497,1.881) 558 < 0.001 −1.195

ICVF 0.273 (0.229,0.356) 0.194 (0.164,0.224) 579 < 0.001 −1.422

ODI 0.325 (0.265,0.406) 0.307 (0.289,0.355) 369 0.766 −0.432

*In line with normal distribution, independent t-test was adopted.
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TABLE 3 ROC curve analysis of diffusion metrics for differentiation of inflammation and glioma.

Cut-off AUC (95%CI) p Sensitivity Specificity Accuracy

MK 0.600 0.855 (0.737,0.972) < 0.001 0.778 0.872 0.842

FA 0.171 0.679 (0.516,0.843) 0.016 0.667 0.718 0.702

MD 0.962 0.758 (0.599,0.917) < 0.001 0.778 0.769 0.772

MSD 21.3 0.647 (0.482,0.812) 0.041 0.778 0.538 0.614

NG 0.150 0.879 (0.776,0.982) < 0.001 0.778 0.923 0.877

QIV 61.1 0.742 (0.582,0.902) 0.002 0.833 0.692 0.737

RTOP 2.01 0.795 (0.645,0.945) < 0.001 0.778 0.846 0.825

ICVF 0.221 0.825 (0.698,0.951) < 0.001 0.833 0.718 0.754

ODI 0.399 0.526 (0.331,0.72) 0.398 0.333 0.923 0.737

Gaussian distribution within a tissue. In biological tissues, the 
diffusion behavior of water molecules is often influenced by various 
complex factors such as cell size and membrane permeability, resulting 
in non-Gaussian diffusion patterns. Both higher NG and MK value 
indicates a greater deviation from a Gaussian distribution, suggesting 
a more complex and heterogeneous microstructure of the tissue 
(Ozarslan et al., 2013). The similar physiological significance between 
NG and MK may explain the comparable diagnostic performance of 
the two (AUC of 0.879 and 0.855, Delong test p = 0.078). We initially 
hypothesized NG and MK to be larger in glioma for more diffusion 
barrier (Raab et al., 2010), as histopathological studies have revealed 
that due to loss of contact inhibition, gliomas exhibit higher degrees 
of cellularity and cytological atypia compared to reactive gliosis in 
brain inflammation (Hewer et al., 2020). However, the results were 

contrary to such assumption. In glioma, both the smaller NG and MK, 
as well as the larger MD and MSD, have indicated a smaller diffusion 
barrier than inflammation. One possible explanation is that the 
majority of the glioma cases with atypical MRI manifestation involved 
low-grade glioma (LGG). Tumor cell proliferation in LGG is 
characterized by larger cell volume, relatively smaller density, and 
reduced extracellular space due to extrusion between cells (Raab et al., 
2010). Consequently, the barrier restricting the diffusion of water 
molecules including phospholipids and macromolecular proteins 
becomes less (Goryawala et al., 2018). Conversely, during the course 
of inflammation, the reparative response of brain tissue to injury may 
lead to an enhancement of its structural integrity. Zhuo et al. (2012) 
found that reactive gliosis has been shown to be a prominent feature 
during recovery from brain inflammation and this process can 

FIGURE 3

Boxplots of diffusion metrics. * represented p  =  0.01  ~  0.05, ** represented p  =  0.001  ~  0.01, *** represented p  ≤  0.001. DKI, diffusion-kurtosis imaging; 
MK, mean kurtosis; DTI, diffusion-tensor imaging; MD, mean diffusivity; FA, fractional anisotropy; MAP, mean apparent propagator; MSD, Mean squared 
diffusion; NG, mean non-Gaussianity; RTOP, return-to-origin probability; QIV, q-space inverse variance; NODDI, neurite orientation dispersion and 
density imaging; ICVF, intracellular volume fraction; ODI, orientation dispersion index.
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gradually increase the value of MK, which helps to support our view. 
Additionally, there is a discernable difference in the cellular 
morphology of benign and malignant gliosis. Research (Rivera-
Zengotita and Yachnis, 2012) utilizing immunohistochemistry 
targeting glial fibrillary acidic protein (GFAP) have demonstrated that 
reactive astrocytes are found in an evenly spaced pattern with multiple 
thin, elongated radiating glial processes that extend into the stroma. 
In contrast, astrocytoma cells exhibit shorter and thicker processes 
(Shao et al., 2016). This disparity in astrocytic morphology may result 
in a higher cell membrane surface area within the voxel of benign glial 
hyperplasia, leading to the formation of more diffusion barriers that 
hinder gaussian diffusion of water molecules.

Furthermore, another explanation for the less diffusion restriction 
in gliomas is the more severe damage inflicted upon brain tissue by 
gliomas compared to inflammation. ICVF in NODDI model has been 
confirmed by histological studies (Jespersen et al., 2010) to exhibit a 
correlation with myelin staining. Our study found a lower ICVF value 
in glioma, which may be reflective of reduced intracellular diffusivity 
caused by more severe neuron injury or axonal loss (Chong et al., 
2021). Also, the extracellular matrix produced by glioma may 
be another factor that reduces the density of white matter fibers and 

axons (Zamecnik, 2005). In DKI model, MK value reflects the 
complexity and structural integrity of brain tissue (Das et al., 2017). 
Previous studies on the application of DKI to low-grade gliomas 
(Goryawala et al., 2018) and inflammation (Liu et al., 2022) have 
demonstrated lower radial kurtosis (RK) values in lesions in 
comparison to healthy controls or contralateral normal-appearing 
white matter, which related to the destructive impact exerted by tumor 
cells or inflammation on brain tissue. In our research, the values of 
MK in glioma were lower, suggesting more severe structural damage 
in glioma than inflammatory lesions. In MAP model, NG has been 
identified as an indicator of the organizational complexity within 
tissues (Ozarslan et al., 2013). Meanwhile, RTOP has been shown to 
decrease in response to damage of neural fibers (Jiang et al., 2021b). 
Besides, in a recent study by Gao et al. (2022), it was discovered that 
values of NG and RTOP were significantly smaller in more invasive 
isocitrate dehydrogenase (IDH) wild-type gliomas compared to those 
with IDH mutant. Given the stronger invasiveness of IDH wild-type 
gliomas, these MAP metrics may potentially serve as parameters to 
characterize differences in lesion invasiveness. The invasion behavior 
and infiltration of glioma cells is a crucial factor affecting the 
diffusion metrics.

Fractional anisotropy (FA) is widely utilized to assess the 
coherence of white matter fiber bundles, our investigation found that 
FA in glioma was lower, which may represent more severe damage to 
white matter fiber bundles. A study (Hiremath et al., 2017) utilizing 
DTI to differentiate demyelination and glioma revealed no significant 
differences between the solid components and peritumoral regions of 
the two lesion groups (p = 0.341 and 0.052, respectively). These 
findings contradict our results, which could be attributed to the small 
sample size employed (n = 35). However, the AUC and the effect size 
of FA in our research were relatively small (AUC = 0.679, Cohen’s 
d = 0.693), indicating a lack of practical value (Ma et al., 2020). It is 
possible that the gaussian diffusion model-based limitations of FA in 
elucidating the intricate microstructural features of tissues may have 
had a bearing on this outcome (Chong et al., 2021). FA is influenced 
by both white matter fiber reduction and fiber crossing, which are 
difficult to differentiate using the DTI model, particularly in areas 
affected by edema (Jiang et al., 2021a). NODDI model is based on the 
three-compartment theory of non-Gaussian diffusion of water 
molecules, and it decomposes the physiological significance of FA into 
ICVF and orientation dispersion index (ODI) (Slattery et al., 2017). 
Histologically, ODI was found to be more correlated with orientation 
dispersion than FA, reflecting the dispersion of nerve walking, which 
could be used to characterize fiber crossing (Schilling et al., 2018). 
Results in our research showed no significant differences in 
Orientation Dispersion Index (ODI) between the two groups 
(p = 0.766), suggesting that fiber crossings and distortions occur in 
both inflammation and glioma, which limited the role of FA in 
characterizing white matter integrity.

In summary, non-Gaussian diffusion models, including MAP and 
DKI, have greater potential than NODDI and DTI for characterize the 
differences of microstructure, the extent of brain tissue damage and 
invasiveness between inflammation and glioma, thus facilitating their 
differential diagnosis. However, these advantages are based on 
technical principles and indirect results rather than direct pathological 
validation, highlighting the need for further research.

This study has several limitations that should be considered. Firstly, 
the sample size of cases with inflammation is relatively small, which may 

FIGURE 4

ROC curves of the diffusion metrics for distinguishing glioma from 
brain inflammation. MK, mean kurtosis; MD, mean diffusivity; FA, 
fractional anisotropy; MSD, Mean squared diffusion; NG, mean non-
Gaussianity; RTOP, return-to-origin probability; QIV, q-space inverse 
variance; ICVF, intracellular volume fraction; ODI, orientation 
dispersion index.

TABLE 4 Delong test for diffusion metrics with largest AUC in each model 
for differentiation of inflammation and glioma.

z p

MK vs. MD 2.927 0.003

MK vs. NG −1.762 0.078

MK vs. ICVF 1.908 0.056

MD vs. NG −2.995 0.003

MD vs. ICVF −2.547 0.011

NG vs. ICVF 2.315 0.021
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result in biased or inaccurate results. Secondly, the imbalanced 
proportion of different types of cases included in the study could further 
exacerbate this issue. Moreover, the VOIs were manually delineated in 
this study. This approach lacks objectivity and may introduce errors or 
inconsistencies in the data analysis. Alternative methods for identifying 
and measuring the VOIs, such as automated segmentation algorithms, 
might help mitigate this limitation in future studies.

5 Conclusion

Multiple diffusion metrics is a promising approach for distinguish 
solid glioma from inflammation. Non-Gaussianity (NG) from mean 
apparent propagator (MAP) model shows the greatest potential for 
differentiation of inflammation and glioma.
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Di�usion magnetic resonance imaging is sensitive to the microstructural
properties of brain tissue. However, estimating clinically and scientifically
relevant microstructural properties from the measured signals remains a highly
challenging inverse problem that machine learning may help solve. This study
investigated if recently developed rotationally invariant spherical convolutional
neural networks can improve microstructural parameter estimation. We trained
a spherical convolutional neural network to predict the ground-truth parameter
values from e�ciently simulated noisy data and applied the trained network to
imaging data acquired in a clinical setting to generate microstructural parameter
maps. Our network performed better than the spherical mean technique and
multi-layer perceptron, achieving higher prediction accuracy than the spherical
mean technique with less rotational variance than the multi-layer perceptron.
Although we focused on a constrained two-compartment model of neuronal
tissue, the network and training pipeline are generalizable and can be used to
estimate the parameters of any Gaussian compartment model. To highlight this,
we also trained the network to predict the parameters of a three-compartment
model that enables the estimation of apparent neural soma density using tensor-
valued di�usion encoding.

KEYWORDS

di�usion magnetic resonance imaging, geometric deep learning, microstructure,

spherical convolutional neural network, MRI

1 Introduction

Neuroimaging enables non-invasively measuring functional and structural properties
of the brain, and it is essential in modern neuroscience. Diffusion magnetic
resonance imaging (dMRI), the most commonly used imaging modality for quantifying
microstructural properties of the brain, measures displacements of water molecules at
the microscopic level and is thus sensitive to tissue microstructure. dMRI has been used
to localize microstructural alterations associated with, for example, learning (Sagi et al.,
2012), healthy development (Lebel et al., 2019), aging (Sullivan and Pfefferbaum, 2006),
neurodevelopmental disorders (Gibbard et al., 2018), and neurodegenerative diseases
(Zhang et al., 2009). However, accurately inferring clinically and scientifically relevant
properties of tissue microstructure (e.g., cell morphology or distribution of cell types)
from the measured signals remains a highly challenging inverse problem (Kiselev, 2017).
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Most dMRI data analysis methods are based on signal models
that express the measured signal as a function of parameters of
interest and can be fit to data by numerically minimizing an
objective function (Novikov et al., 2019). An essential requirement
for microstructural neuroimaging methods is low rotational
variance (i.e., estimated parameters should not depend on how
the subject’s head is oriented in the scanner). Furthermore, it is
often desirable for the parameter estimates to be independent of
the orientation distribution of the microscopic structures (e.g., an
estimate of axon density should not depend on whether the axons
are aligned or crossing). These two requirements are often achieved
by acquiring high-angular resolution diffusion imaging (HARDI)
data and averaging over the diffusion encoding directions, which is
referred to as “powder-averaging”, a term borrowed from the field
of solid-state nuclear magnetic resonance (NMR). The number of
acquisition directions required for a nearly rotationally invariant
powder-averaged signal depends on the properties of tissue
microstructure and diffusion encoding (Szczepankiewicz et al.,
2019a). Fitting models to powder-averaged signals is often referred
to as the “spherical mean technique” (SMT), a term introduced
by Kaden et al. (2016b). While powder-averaging enables the
estimation of various microstructural parameters (Jespersen et al.,
2013; Lasič et al., 2014; Kaden et al., 2016a,b; Szczepankiewicz et al.,
2016; Henriques et al., 2020; Palombo et al., 2020; Gyori et al.,
2021), a significant amount of information is lost during averaging.
Therefore, it may be beneficial to estimate the parameters directly
from full data without powder-averaging.

In recent years, microstructural parameter estimation using
machine learning (ML) has received significant attention as a
potential solution to issues with conventional fitting, such as
slow convergence, poor noise robustness, and terminating at local
minima (Golkov et al., 2016; Barbieri et al., 2020; Palombo et al.,
2020; de Almeida Martins et al., 2021; Elaldi et al., 2021; Gyori
et al., 2021, 2022; Karimi et al., 2021; Sedlar et al., 2021a,b;
Kerkelä et al., 2022). ML models can be trained to predict
microstructural parameter values from data using supervised or
self-supervised learning. In the context of dMRI, a particularly
promising development has been the invention of spherical
convolutional neural networks (sCNNs) (Cohen et al., 2018; Esteves
et al., 2018). sCNNs are SO(3)-equivariant (i.e., rotating the input
changes the output according to the same rotation) artificial neural
networks that perform spherical convolutions with learnable filters.
They theoretically enable rotationally invariant classification and
regression, making them potentially well-suited for predicting
microstructural parameters from dMRI data.

This study aimed to investigate if sCNNs can improve
microstructural parameter estimation. We focused on estimating
the parameters of a constrained two-compartment model by Kaden
et al. (2016a) regularly used in neuroscience to study human white
matter in vivo (Collins et al., 2019; Toescu et al., 2021; Voldsbekk
et al., 2021; Battocchio et al., 2022; Rahmanzadeh et al., 2022). An
sCNN implemented according to Esteves et al. (2018) was trained
to predict the neurite orientation distribution function (ODF) and
scalar parameters (neurite diffusivity and density) from dMRI data.
Training and testing were done using simulated data. The sCNN
was compared to conventional fitting and a multi-layer perceptron
(MLP) in terms of accuracy and orientational variance. The trained

model was then applied to MRI data acquired in a clinical setting to
generate microstructural maps. Furthermore, to highlight the fact
that the sCNN and training pipeline are applicable to any Gaussian
compartment model, the network was trained to estimate the
parameters of a constrained three-compartment model by Gyori
et al. (2021) that enables the estimation of apparent neural soma
density using tensor-valued diffusion encoding (Topgaard, 2017).

2 Materials and methods

2.1 Spherical harmonics

Any square-integrable function on the sphere f : S2 → C can
be expanded in the spherical harmonic basis:

f (x) =
b

∑

l=0

l
∑

m=−l

f̂ml Ym
l (x), (1)

where x is a point on the unit sphere, b is the bandwidth of f , l is
the degree,m is the order, f̂m

l
is an expansion coefficient, and Ym

l
is

a spherical harmonic defined as

Ym
l (θ ,φ) =

√

2l+ 1

4π

(l−m)!

(l+m)!
Pml (cos θ)e

imφ , (2)

where θ ∈ [0,π] is the polar coordinate, φ ∈ [0, 2π) is the
azimuthal coordinate, and Pm

l
is the associated Legendre function.

The expansion coefficients are given by the spherical Fourier
transform (SFT):

f̂ml =

∫

S2
dx f (x)Ȳm

l (x). (3)

SFT of a band-limited function can be computed exactly as a
finite sum using a sampling theorem (Driscoll and Healy, 1994).
Equation 1 is the inverse spherical Fourier transform (ISFT).

Since reconstructed dMRI signals are real-valued and
antipodally symmetric, we use the following basis:

Sml =



















0 if l is odd
√
2 ℑ

(

Y−m
l

)

ifm < 0
Y0
l

ifm = 0
√
2 ℜ

(

Ym
l

)

ifm > 0

. (4)

Considering that diffusion encoding directions do not usually
follow a sampling theorem like the one by Driscoll and Healy
(1994) that enables SFT to be exactly computed as a finite sum, we
use least squares to compute the expansion coefficients: Indexing
j = 1

2 l(l + 1)+m assigns a unique index j to every pair l,m. Given
f sampled at points x1, x2, ..., xnpoints stored in a column vector X,
the values of the spherical harmonics sampled at the same points
are organized in a npoints × ncoefficients matrix B where Bij = Sm

l
(xi).

(

B
T
B
)−1

B
T
X gives a vector containing the expansion coefficients

minimizing the Frobenius norm (Brechbühler et al., 1995).
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2.2 Spherical convolution

Convolution of a spherical signal f by a spherical filter h is
defined as

(f ∗ h)(x) =

∫

SO(3)
dR f (Rê3)h(R

−1
x), (5)

where ê3 is a unit vector aligned with the z-axis. If f and h are
band-limited, the above equation can be evaluated efficiently as a
pointwise product in the frequency domain (Driscoll and Healy,
1994). The spherical harmonic coefficients of the convoluted signal
y are

ŷml = 2π

√

4π

2l+ 1
f̂ml ĥ0l . (6)

Spherical convolution is equivariant to rotations (i.e.,R(f ∗h) =
(Rf ) ∗ h for all R ∈ SO(3)) and the filter is marginalized around the
z-axis (i.e, for every h, there exists a filter hz that is symmetric with
respect to the z-axis so that f ∗ h = f ∗ hz).

2.3 Compartment models

Compartment models represent the dMRI signal as a sum of
signals coming from different microstructural environments (e.g.,
intra- and extra-axonal water). For details, see, for example, the
review by Jelescu and Budde (2017). Here, we focus on models with
non-exchanging Gaussian compartments following an ODF. The
signal measured along n̂ is expressed as a spherical convolution of
the ODF by a microstructural kernel response function K:

S(n̂) =

∫

SO(3)
dR ODF(Rê3)K(R

−1
n̂), (7)

where K is the microstructural kernel response function:

K(n̂) = S0

[

N
∑

i=1

fi exp(−b :Di)

]

, (8)

where S0 is the signal without diffusion-weighting, N is the
number of compartments, fi is a signal fraction, b is the b-tensor
corresponding to n̂ and a b-value equal to Tr(b), : denotes the
generalized scalar product (b :D =

∑3
i=1

∑3
j=1 bijDij) (Westin

et al., 2016), and Di is an axially symmetric diffusion tensor
aligned with the z-axis representing Gaussian diffusion in the
compartment. The training pipeline presented in this paper is
applicable to any compartment model that can be expressed using
Equations 7 and 8. Given a different data generation method, the
sCNN can be trained to predict the parameters of non-Gaussian
models as well.

2.3.1 Two-compartment model
The so-called “standard model” of diffusion in white matter

consists of a one-dimensional compartment representing diffusion
inside neurites and a coaxial axially symmetric extra-cellular
compartment (Novikov et al., 2019). We focus on a constrained
version of the model by Kaden et al. (2016a) that enables model

parameters to be estimated from powder-averaged data using the
SMT. The model contains two parameters: intra-neurite diffusivity
d and intra-neurite signal fraction f . Axial and radial diffusivities
of the extra-cellular compartment are d and (1 − f )d, respectively.
Inserting this into Equation 8 gives

K(n̂) = S0






f exp






−b :







0 0 0
0 0 0
0 0 d













+ (1− f ) exp






−b :







(1− f )d 0 0
0 (1− f )d 0
0 0 d


















. (9)

2.3.2 Spherical mean technique
Kaden et al. (2016b) observed that for a fixed b-value, the

spherical mean of the dMRI signal over the gradient directions
does not depend on the ODF. By exploiting this invariance, the
constrained two-compartmentmodel can be fit to powder-averaged
data, denoted by SPA here, using the following signal equation
(Kaden et al., 2016a):

SPA = S0



f

√
πerf

(√
bd

)

2
√
bd

+ (1− f )e−b(1−f )d

√
πerf

(

√

bfd
)

2
√

bfd



 .

(10)

2.3.3 Three-compartment model
Palombo et al. (2020) added a spherical compartment

representing neural soma to the standard model to make it more
suitable for gray matter. We use a constrained three-compartment
model by Gyori et al. (2021) that uses tensor-valued diffusion
encoding to make apparent neural soma imaging more feasible
without high-performance gradient hardware. The model contains
four parameters: intra-neurite diffusivity di, intra-neurite signal
fraction fi, spherical compartment diffusivity dsph, and spherical
compartment signal fraction fsph. Axial and radial diffusivities of

the extra-cellular compartment are di(1− fi − fsph)
1
2 fsph/(fsph+fi) and

di(1 − fi − fsph)
( 12 fsph+fi)/(fsph+fi), respectively. We omit explicitly

writing out the kernel signal equation to save space, but it is trivial
to construct from Equation 8.

2.4 Simulations

Simulated training data was generated by evaluating Equation 7
in the frequency domain according to Equation 6. The response
function values were evaluated along 3072 directions uniformly
distributed over the surface of the sphere according to the
hierarchical equal area isolatitude pixelisation (HEALPix) (Gorski
et al., 2005; Zonca et al., 2019) and expanded in the spherical
harmonics basis. Rician noise was added to the simulated signals:

Snoisy =

√

(S+ X)2 + Y2, (11)
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FIGURE 1

Network for two-compartment model parameter prediction. The input is normalized two-shell data expanded using spherical harmonics up to
degree eight. The signals undergo spherical convolutions, non-linearities, and spectral pooling to produce the predicted orientation distribution
function. After the initial three convolutions, global mean pooling is applied in the signal domain, and the resulting arrays are concatenated to create
a nearly rotationally invariant feature vector passed on to the FCN that outputs the predicted scalar parameter.

TABLE 1 Mean squared error of the estimated two-compartment model

parameters on the test dataset.

Method ODF d (µm2/ms) f

sCNN 2.76 · 10−3 3.08 · 10−3
3.23 · 10−3

sCNN∗ 2.75 · 10−3
3.07 · 10−3

3.23 · 10−3

SMT 6.47 · 10−3 10.92 · 10−3 37.50 · 10−3

MLP 2.71 · 10−3 4.00 · 10−3 3.70 · 10−3

MLP∗ 2.70 · 10−3 4.00 · 10−3 3.63 · 10−3

Deep learning-based parameter estimation outperformed the spherical mean technique. The

asterisk (∗) refers to models trained with randomly rotated training data. The lowest values

are highlighted in bold.

where S is the simulated signal without noise and X and Y are
sampled from a normal distribution with zero mean and standard
deviation of 1/SNR, where SNR is the signal-to-noise ratio. SNR
was matched to the mean SNR in the imaging experiments.

2.5 Network architecture

Our sCNN, visualized in Figure 1, consists of six spherical
convolution layers implemented according to Esteves et al. (2018)
without enforcing localized filters. The network takes the expansion
coefficients in the frequency domain as input and outputs the
estimated ODF and scalar model parameters. The number of input
channels is equal to the number of shells in data. Each spherical
convolution layer is followed by a leaky (slope is 0.1 for negative
values) rectified linear unit (ReLU) applied in the spatial domain.
The conversion between frequency and spatial domains is done
using the 3072 HEALPix directions. Spherical harmonics up to
degree 16 are used in the network because the non-linearity can

increase signal bandwidth. Spectral pooling discards coefficients
of the highest degrees. After the initial three convolutions, global
mean pooling is applied in the spatial domain, and the resulting
arrays are concatenated and passed to the fully connected network
(FCN) that outputs the predicted scalar parameter. The FCN
consists of three hidden layers with 128 units each. The first two
layers of the FCN are followed by batch normalization (Ioffe and
Szegedy, 2015) and a ReLU. The sCNN for estimating the two-
compartment model parameters has 78,258 trainable parameters.

2.6 Training

Training was done over 105 batches of simulated data
generated during training. Each batch contained signals from
500 microstructural configurations produced by random sampling
(d ∼ U(0, 3 µm2/ms) and f ∼ U(0, 1)). ODFs were sampled from
five volunteer scans. Validation and test datasets were constructed
similarly, except that they contained 104 and 106 microstructural
configurations, respectively, and the ODFs were sampled from
different volunteer scans. Training was performed twice: with and
without randomly rotating the ODFs. The ODFs in the validation
and test datasets were randomly rotated. ADAM (Kingma and
Ba, 2014) was the optimizer with an initial learning rate of 10−3,
which was reduced by 90% after 50% and 75% into the training.
Mean squared error (MSE) was the loss function. ODF MSE was
calculated in the spatial domain.

2.7 Baseline methods

The sCNN was compared to the SMT and an MLP that
takes the normalized dMRI signals as inputs and outputs the
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FIGURE 2

Mean squared error of the estimated two-compartment model parameters on the test dataset for di�erent values of intra-neurite di�usivity (d) and
intra-neurite signal fraction (f). The first row (A–E) shows the results for d and the second row (F–J) shows the results for f. Deep learning-based
methods outperformed the spherical mean technique in all parts of the parameter space. The asterisk (*) refers to models trained with randomly
rotated training data.

TABLE 2 Average standard deviation of the estimated two-compartment

model parameters over rotations of the input signals.

Method d (µm2/ms) f

sCNN 0.23 · 10−3 0.13 · 10−3

sCNN∗ 0.18 · 10−3
0.09 · 10−3

SMT 0.14 · 10−3 0.25 · 10−3

MLP 20.30 · 10−3 14.40 · 10−3

MLP∗ 17.23 · 10−3 12.78 · 10−3

The asterisk (∗) refers to models trained with randomly rotated training data. The lowest

values are highlighted in bold.

spherical harmonic coefficients of the ODF and the model
parameters. The SMT parameter estimation and the subsequent
ODF estimation using the estimated microstructural kernel and
constrained spherical deconvolution (CSD) was done using Dmipy
(Fick et al., 2019). The MLP consisted of three hidden layers
with 512 nodes each. The hidden layers were followed by batch
normalization and a ReLU. The MLP had 614,447 trainable
parameters. It was trained like the sCNN, except ten times more
batches were used to account for the higher number of parameters
and ensure convergence.

2.8 Imaging data

The brains of eight healthy adult volunteers were scanned on
a Siemens Magnetom Prisma 3T (Siemens Healthcare, Erlangen,
Germany) at Great Ormond Street Hospital, London, United
Kingdom. Data was denoised (Veraart et al., 2016) using
MRtrix3 (Tournier et al., 2019) and distortion- and motion-
corrected using FSL (Jenkinson et al., 2012; Andersson and
Sotiropoulos, 2016). SNR was estimated in each voxel as the
inverse of the standard deviation of the normalized signals
without diffusion-weighting.

2.8.1 High-angular resolution di�usion imaging
Seven volunteers were scanned using a standard clinical

two-shell HARDI protocol with two non-zero b-values of 1
and 2.2 ms/µm2 with 60 directions over half a sphere each.
Other relevant scan parameters were the following: diffusion
time (1) = 28.7 ms; diffusion encoding time (δ) = 16.7 ms;
echo time (TE) = 60 ms; repetition time (TR) = 3,050 ms;
field of view (FOV) = 220 × 220 ms; voxel size = 2 × 2 ×

2 mm3; slice gap = 0.2 mm; 66 slices; phase partial Fourier =
6/8; multiband acceleration factor = 2. Fourteen images were
acquired without diffusion-weighting, one of which had the
phase encoding direction reversed to be used to correct for
susceptibility-induced distortions. The total scan time was 7
minutes. Mean SNR in the brain was 50. Neurite ODFs were
estimated using multi-tissue CSD (Jeurissen et al., 2014) with
lmax = 8.

2.8.2 Tensor-valued di�usion imaging
One volunteer was scanned using a prototype spin echo

sequence that enables tensor-valued diffusion encoding
(Szczepankiewicz et al., 2019a). Data was acquired using
numerically optimized (Sjölund et al., 2015) and Maxwell-
compensated (Szczepankiewicz et al., 2019b) gradient waveforms
encoding linear and planar b-tensors. The acquisitions with
linear b-tensors were performed with b-values of 0.5, 1, 2, 3.5,
and 5 ms/µm2 with 12, 12, 20, 20, and 30 directions over half
a sphere, respectively. The acquisitions with planar b-tensors
were performed with b-values of 0.5, 1, and 2 ms/µm2 with
12, 12, and 20 directions over half a sphere, respectively. Other
relevant scan parameters were the following: TE = 82 ms; TR =
4.2 s; FOV = 220 × 220 ms; voxel size = 2 × 2 × 2 mm3; slice
gap = 0.2 mm; 66 slices; phase partial Fourier = 6/8; multiband
acceleration factor = 2. Fourteen images were acquired without
diffusion-weighting, one of which had the phase encoding direction
reversed. The total scan time was 12 minutes. Mean SNR in the
brain was 29.
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FIGURE 3

Axial slices of the intra-neurite di�usivity (A–C) and intra-neurite signal fraction (G–I) maps generated using the spherical convolutional neural
network, multi-layer perceptron, and spherical mean technique. The second row (D–F) shows the di�erences between the intra-neurite di�usivity
maps and the fourth row (J–L) shows the di�erences between the intra-neurite signal fraction maps.

3 Results

3.1 Two-compartment model

3.1.1 Prediction accuracy
MSE on the test dataset is reported in Table 1. The sCNN and

MLP outperformed the SMT in estimating the ODF and scalar
parameters. The sCNN predicted d and f the best while the MLP
was predicted the ODF marginally better than the sCNN. Both
the sCNN and MLP benefited slightly from randomly rotating the
training data. Figure 2 shows how prediction accuracy depends
on the values of d and f . The sCNN and MLP outperformed
the SMT in all parts of the parameter space. Although the
largest errors with the SMT occurred for values of d and f not

typically observed in the brain, ML-based approaches were more
accurate for values observed in the brain (i.e., d roughly between 1
and 2 µm2/ms).

3.1.2 Rotational variance
The rotational variance of the differentmethods was assessed by

generating signals from 103 randommicrostructural configurations
rotated over 729 rotations given by the SO(3) sampling theorem
by Kostelec and Rockmore (2008). No noise was added to the
signals to exclude the effects of noise. The average standard
deviation of the estimated parameters from the rotated data
are shown in Table 2. The sCNN and SMT were much less
sensitive to rotations than the MLP. The SMT had the lowest
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FIGURE 4

Neurite orientation distribution functions overlaid on a map of intra-neurite signal fraction generated by the spherical convolutional neural network
trained with randomly rotating the training data. The color represents the principal direction, and the size is scaled according to neurite density. This
coronal slice shows the intersection of the corticospinal tract and the corpus callosum.

rotational variance for d, and the sCNN had the lowest rotational
variance for f . However, the SMT’s non-zero rotational variance
was driven by low values of d or f for which the fit is
unstable. For values typically observed in white matter, the SMT’s
estimates’ standard deviation was three orders of magnitude
smaller than the average. Data augmentation by rotating the
input signals improved prediction accuracy for both the sCNN
and MLP. However, the sCNN was much less rotationally
variant even without data augmentation than the MLP was with
data augmentation.

3.1.3 Application on real imaging data
Figure 3 shows parameter maps generated using the three

methods. The maps produced by the ML-based methods appear
less noisy. Overall, the sCNN estimated d to be greater than the
MLP (mean difference = 2.4 · 10−2 µm2/ms; std of difference
= 8.1 · 10−2 µm2/ms) and SMT (mean difference = 0.9 · 10−2

µm2/ms; std of difference = 12.7 · 10−2 µm2/ms). However, in
the CSF the sCNN tended to estimate d to be less than the MLP
or SMT. Overall, the sCNN estimated f to be greater than the
MLP (mean difference = 0.5 · 10−2; std of difference = 3.6 ·

10−2) and SMT (mean difference = 0.1 · 10−2; std of difference =
4.5 · 10−2) while exhibiting a similar yet lesser tissue-dependent
pattern as d. Figure 4 shows example ODFs generated by the
trained sCNN.

3.2 Three-compartment model

To highlight the fact that the network and training pipeline
are applicable to any Gaussian compartment models, the sCNN
was trained to predict the three-compartment model parameters
the same way as with the two-compartment model. Informed by
the two-compartment model results, the network was trained with
randomly rotated training data. di ∼ U(0, 3 µm2/ms), fi ∼ U(0, 1),
dsph ∼ U(0,max(di, 0.5 µm2/ms)), and fsph ∼ U(0, 1 − fi). The
upper limit of dsph was chosen to correspond to a sphere with
a diameter of 25 µm using the Monte Carlo simulator Disimpy
(Kerkelä et al., 2020). Figure 5 showsmaps that the sCNN generated
from preprocessed dMRI data.

4 Discussion

The primary purpose of this study was to investigate whether
sCNNs can improve microstructural parameter estimation from
noisy dMRI data, focusing on a constrained two-compartment
model widely used in neuroscience research to study human white
matter in vivo. The sCNN demonstrated superior accuracy with
similar rotational variance compared to the SMT, and exhibited
similar accuracy but considerably lower rotational variance than
the MLP that had significantly more trainable parameters. Our
results show that sCNNs can offer substantial benefits over
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FIGURE 5

Axial slices of the intra-neurite di�usivity (A), spherical compartment di�usivity (B), intra-neurite signal fraction (C), and spherical compartment signal
fraction (D) maps generated by the spherical convolutional neural network trained with randomly rotating the training data.

simpler artificial neural network architectures for ML-based
microstructural parameter estimation from dMRI data.

We focused on comparing neural network architectures with
a fixed training strategy, using the SMT as a baseline. Previous
research byGyori et al. (2022) has highlighted the significant impact
of training data distribution on neural network predictions, which
affects the performance of our sCNN when applied to real imaging
data. We are aware of this limitation, and in future work, we aim
to optimize the training data distribution. Another relevant key
takeaway from the work by Gyori et al. (2022) is that at low SNR,
ML-based parameter estimation can suffer from high bias, which
manifests as maps that appear exceedingly smooth. Moreover, it is
important to note the general limitation of microstructural models
that deviations from model assumptions can lead to inaccuracies
(Lampinen et al., 2017; Henriques et al., 2019; Kerkelä et al., 2021).

When it comes to training the sCNN, while it is crucial to
sample the space of possible ODFs as exhaustively as possible
during training, the MLP training requirements are even more
demanding since its rotational variance can only be reduced
through learning. Changes in b-values or the angular resolution of
shells will necessitate retraining our network. Technically, the same
network could be used as long as the b-values remain consistent,
but the spherical harmonics expansion would vary with different
angular resolutions (i.e., the number of b-vectors).

To the best of our knowledge, sCNNs have been used
to analyze dMRI data only a few times prior to this. Sedlar

et al. (2021a) trained an sCNN to predict ’neurite orientation
dispersion and density imaging’ (NODDI) (Zhang et al., 2012)
parameters from subsampled data, and Goodwin-Allcock et al.
(2022) showed that sCNNs can improve the robustness of
diffusion tensor estimation from data with just a few directions.
sCNNs have also been used to estimate ODFs (Elaldi et al.,
2021; Sedlar et al., 2021b). However, this study differs from the
aforementioned studies in two important ways. First, our network
and simulations were developed to estimate both the ODF and
scalar parameters of any Gaussian compartment model. Second,
we carefully compared the sCNN to the SMT, a commonly used
and nearly rotationally invariant conventional fitting method, thus
warranting a comparison with sCNN. Although we implemented
spherical convolution layers as described by Esteves et al.
(2018), other architectures also exist and warrant investigation
in the context of microstructural parameter estimation. For
example, the sCNNs by Cohen et al. (2018) use cross-correlation
and can learn non-zonal (i.e., not symmetric with respect to
the z-axis) filters, Kondor et al. (2018) developed efficient
quadratic nonlinearities in the spherical harmonics domain,
and the graph-based sCNN by Perraudin et al. (2019) is
suitable for spherical data with very high angular resolution.
Besides optimizing network architecture, future studies should
also focus on optimizing hyperparameters and especially on
carefully assessing the effects of and optimizing the training
data distribution.
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Introduction: Type C hepatic encephalopathy (HE) is a decompensating event 
of chronic liver disease leading to severe motor and cognitive impairment. 
The progression of type C HE  is associated with changes in brain metabolite 
concentrations measured by 1H magnetic resonance spectroscopy (MRS), most 
noticeably a strong increase in glutamine to detoxify brain ammonia. In addition, 
alterations of brain cellular architecture have been measured ex vivo by histology 
in a rat model of type C HE. The aim of this study was to assess the potential 
of diffusion-weighted MRS (dMRS) for probing these cellular shape alterations 
in vivo by monitoring the diffusion properties of the major brain metabolites.

Methods: The bile duct-ligated (BDL) rat model of type C HE was used. Five animals 
were scanned before surgery and 6- to 7-week post-BDL surgery, with each 
animal being used as its own control. 1H-MRS was performed in the hippocampus 
(SPECIAL, TE  =  2.8  ms) and dMRS in a voxel encompassing the entire brain (DW-
STEAM, TE  =  15  ms, diffusion time  =  120  ms, maximum b-value  =  25  ms/μm2) on a 
9.4  T scanner. The in vivo MRS acquisitions were further validated with histological 
measures (immunohistochemistry, Golgi-Cox, electron microscopy).

Results: The characteristic 1H-MRS pattern of type C HE, i.e., a gradual increase 
of brain glutamine and a decrease of the main organic osmolytes, was observed 
in the hippocampus of BDL rats. Overall increased metabolite diffusivities 
(apparent diffusion coefficient and intra-stick diffusivity—Callaghan’s model, 
significant for glutamine, myo-inositol, and taurine) and decreased kurtosis 
coefficients were observed in BDL rats compared to control, highlighting the 
presence of osmotic stress and possibly of astrocytic and neuronal alterations. 
These results were consistent with the microstructure depicted by histology and 
represented by a decline in dendritic spines density in neurons, a shortening and 
decreased number of astrocytic processes, and extracellular edema.

Discussion: dMRS enables non-invasive and longitudinal monitoring of the 
diffusion behavior of brain metabolites, reflecting in the present study the globally 
altered brain microstructure in BDL rats, as confirmed ex vivo by histology. These 
findings give new insights into metabolic and microstructural abnormalities 
associated with high brain glutamine and its consequences in type C HE.
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1 Introduction

Diffusion-weighted MRI (dMRI) has emerged as a promising 
“super-resolution” technique that can provide information about 
tissue microstructure non-invasively in the order of a micron. dMRI 
uses the diffusion of water molecules and their interaction with tissue 
cellular components to generate image contrast. This signal originates 
from ubiquitous water molecules present in all cell types and 
extracellular spaces, thus limiting its specificity to any tissue 
compartment, cell type, or physiological phenomenon. In contrast, 
brain metabolites measured by magnetic resonance spectroscopy 
(MRS) are predominantly intracellular, and some metabolites have 
preferential localization within specific brain cell types (Najac et al., 
2016). Myo-inositol (Ins) and glutamine (Gln) concentrations are 
higher in astrocytes, and N-acetylaspartate (NAA) and glutamate 
(Glu) concentrations are higher in neurons (Brand et  al., 1993; 
Urenjak et al., 1993; Harris et al., 2015). Although the representation 
of metabolite localization in one cell type is over-simplistic in vivo 
(Rae, 2014), it constitutes a useful assumption for MRS studies.

The combination between diffusion weighting and MRS, 
diffusion-weighted MRS (dMRS), enables the measurement of 
metabolite diffusion properties, which are expected to reflect 
properties of intracellular space (i.e., cell-type geometry, structure, 
cytosol viscosity, and molecular crowding). Different dMRS modeling 
approaches have been proposed to quantify cell microstructure 
(Ligneul et al., 2024), and, among others, alterations of astrocytic 
morphology were observed in a mouse model of reactive astrocytes 
and cuprizone-fed mice as a model of glial inflammation (Ligneul 
et al., 2019; Genovese et al., 2021).

Type C hepatic encephalopathy (HE) is a severe neurological 
condition that arises as a consequence of chronic liver disease 
(Monfort et al., 2009; Dharel and Bajaj, 2015; Häussinger et al., 2022). 
In type C HE, the high ammonium delivery to the brain, due to 
impaired urea cycle in the cirrhotic liver, is causing Gln accumulation 
and the gradual release of other metabolites (Ins, taurine (Tau), total 
choline (tCho)) as an osmotic response (Rackayova et al., 2016; Lanz 
et al., 2017; Braissant et al., 2019; Cudalbu and Taylor-Robinson, 2019; 
Rackayová et al., 2021; Pierzchala et al., 2023). In spite of this apparent 
osmoregulation, a mild increase in the apparent diffusion coefficient 
(ADC) of water has sometimes been observed in patients with type C 
HE (Kale et al., 2006). It has been associated with edema without a 
clear consensus on its compartmentalization (Cudalbu and Taylor-
Robinson, 2019; Pierzchala et al., 2023). The overall interpretation of 
diffusion data is difficult and sometimes controversial, as extracting 
quantitative metrics that characterize the underlying tissue 
microstructure requires modeling of the diffusion signal (Jelescu and 
Budde, 2017; Jelescu et al., 2020), which has not yet been proposed in 
type C HE. Furthermore, the presence of brain edema and/or 
increased brain water content is still controversial in type C HE, as 
type C HE, in contrast to acute HE, is characterized by lower blood 

ammonium values and a longer disease time course, allowing for the 
presence of compensatory mechanisms (Pierzchala et al., 2023). Gln 
synthesis in the central nervous system is largely confined to astrocytes 
(the site of glutamine synthetase activity) (Martinez-Hernandez et al., 
1977). Thus, it has been postulated that HE is the clinical manifestation 
of astrocyte swelling and/or astrocyte reactivity due to increased 
osmotic pressure triggered by Gln accumulation, with Gln acting as 
an osmolyte driving water into the cells. Although the pathological 
role of astrocytes in animal models and humans with severe 
hyperammonemia and liver failure has been confirmed, it has also 
become clear that additional cell types in the brain are also involved 
in the pathogenesis of HE. To date, the direct effects of Gln 
accumulation on astrocytes and potentially on other cell morphology 
concomitant with the appearance of brain edema in type C HE are not 
clear, mainly due to a limited number of in vivo studies. An increase 
in brain Gln will eventually lead to cellular microstructural changes 
despite osmoregulation (i.e., release of other brain osmolytes). 
Diffusion-weighted MRS is a powerful tool to study these alterations 
non-invasively and in vivo in an animal model of type C HE.

The aim of our study was to follow in vivo the longitudinal 
evolution of brain Gln and other metabolite diffusion properties in a 
rat model of type C HE using dMRS, thus providing information on 
potential microstructural alterations during type C HE. Furthermore, 
histological assessment of the brain tissue was performed to validate 
the in vivo dMRS findings, and short TE 1H-MRS measurements in 
the hippocampus were performed to validate the well-known 
metabolic changes in type C HE.

2 Materials and methods

2.1 Animal model of chronic liver disease 
induced type C HE

All experiments were approved by the Committee on Animal 
Experimentation for the Canton de Vaud, Switzerland (VD3022.1). 
Adult male Wistar rats underwent bile duct ligation (BDL; Charles 
River Laboratories, L’Arbresle, France, 175–200 g at surgery) to create 
a model of chronic liver disease-induced type C HE, as previously 
described (Braissant et al., 2019; DeMorrow et al., 2021), and SHAM 
surgery as controls for histology assessment only. BDL animals were 
scanned longitudinally under isoflurane anesthesia (~1.5%, in a 
mixture of 50% oxygen and 50% air). A first scan was performed 
before surgery (n = 5, “week 0”), and a second scan between 6- and 
7-week post-BDL (same animals, n = 5, “week 6”); the long duration 
of the MRI/MRS experiments did not allow us to scan all animals on 
the same day. For the MRI/MRS scans, all animals were placed in an 
in-house-built holder, with the head fixed in a stereotaxic system using 
a bite bar and a pair of ear bars. A small-animal monitor system (SA 
Instruments, New York, NY, USA) was used to monitor the body 
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temperature (maintained at 37.7 ± 0.2°C by warm circulating water 
and measured with a rectal thermosensor) and the respiration rate. 
Blood samples of bilirubin (Reflotron Plus system, F. Hoffmann-La 
Roche Ltd.) and ammonium (PocketChem™ BA PA-4140) were 
performed before the MRI/MRS scans (before BDL and at week 6–7 
post-BDL) to validate the model of chronic liver disease.

2.2 MRI, 1H-MRS and dMRS

All experiments were performed on a 9.4 T, actively shielded MRI 
system with a 31-cm horizontal bore (Magnex Scientific, Oxford, 
United Kingdom), featuring a 12-cm gradient coil insert (400 mT/m, 
120 μs) interfaced to an Agilent/Varian Direct Drive console (Palo 
Alto, CA, USA). An in-house-built 1H quadrature transceiver was 
used (25-mm inner diameter).

Fast T2-weighted images (multislice turbo-spin-echo sequence, 
TR = 4,000 ms, TEeff = 52 ms, echo train length = 8, field of view 
(FOV) = 23 × 23 mm2, slice thickness = 1 mm, 15 slices, matrix 
size = 256 × 256, two averages) were acquired in the axial direction to 
position the volumes of interest (VOIs) for 1H-MRS. First, a 1H-MRS 
scan was performed in the hippocampus (2 × 2.8 × 2 mm3, 11.8 μL) 
using the SPECIAL sequence (TE = 2.8 ms, TR = 4 s, 160 shots) to 
measure neurometabolism, as previously described (Braissant et al., 
2019). Then, dMRS data were acquired using a localized STEAM-
based spectroscopic pulse sequence (Kunz et al., 2010; Ligneul et al., 
2024) (TE/TM = 15/112 ms, 5 kHz spectral width, 4,096 spectral 
points, single shot acquisitions) in a voxel ranging from 162 to 245 μL 
depending on the animal. The dMRS voxel size was increased 
compared to the hippocampus MRS voxel due to the lower signal-to-
noise ratio (SNR) in the diffusion experiments as compared to a 
simple MRS acquisition. FASTESTMAP (Gruetter, 1993; Gruetter and 
Tkác, 2000) was used for shimming, leading to water linewidths of 
9–10 Hz in the hippocampus and of 18–20 Hz for the dMRS VOI 
(Figure 1A). Outer volume suppression blocks were interleaved with 
the VAPOR water suppression module. Diffusion gradients were 
applied simultaneously along three orthogonal directions (gradient 
duration δ = 6 ms, diffusion time Δ = 120 ms, direction [1,1,1]). A total 
of nine b-values (in ms/μm2, corrected for cross-terms (Kunz et al., 
2010; Mosso et al., 2024)) with the following number of shots were 
acquired: 0.4 (160), 1.5 (160), 6.0 (160), 7.6 (160), 9.3 (160), 13.3 (320), 
15.6 (480), 20.8 (480), and 25.1 (480).

Spectra were collected as single shots (consecutive ISIS 
acquisitions from SPECIAL were directly combined, with each 
combination being labeled as “shot” in this article) and corrected for 
eddy current distortions and phase and frequency drifts. Outlier shots 
with manifest signal drops (>50%) were removed, and all shots were 
averaged. Metabolite signals were quantified using LCModel (Version 
6.3-1 N) combined with an in vitro measured metabolite basis set for 
1H-MRS hippocampus spectra and a simulated metabolite basis set for 
dMRS spectra using published values of J-coupling constants and 
chemical shifts (Govindaraju et al., 2000; Govind et al., 2015). The 
following metabolites were included in the basis sets: alanine (Ala), 
ascorbate (Asc), aspartate (Asp), β-hydroxybutyrate (bHB), 
glycerophosphocholine (GPC), phosphocholine (PCho), creatine 
(Cr), phosphocreatine (PCr), glycine (Gly), GABA, glucose (Glc), Gln, 
glutamate (Glu), glutathione (GSH), Ins, lactate (Lac), 
N-acetylaspartate (NAA), N-acetylaspartylglutamate (NAAG), 

phosphoethanolamine (PE), scyllo-inositol (Scyllo), and Tau. In 
addition, an in vivo macromolecule spectrum acquired under the 
same conditions as in vivo 1H-MRS and dMRS data was included in 
each of the corresponding metabolite basis sets (single inversion 
recovery, TI = 750 ms, TR = 2,500 ms, no diffusion weighting, and 
metabolite residuals eliminated as described previously (Cudalbu 
et  al., 2021; Simicic et  al., 2021)). For 1H-MRS, metabolites with 
relative Cramer Rao Lower Bounds (CRLB) below 25% at week 0 for 
all animals were reported (selecting reported metabolites but not 
individual values), a purposely loose criterion to avoid filtering out 
low-concentrated metabolites (Kreis, 2016). For dMRS, to limit error 
propagation, only metabolites with relative CRLBs below 6% at the 
lowest b-value for all animals were reported.

Metabolite signal decays as a function of b-value were then fitted 
using two different approaches, using a non-linear least squares 
algorithm in MATLAB (fit function, Trust-Region method): First, 
Callaghan’s model of randomly oriented sticks (Callaghan et al., 1979) 
(mimicking neurites or processes) with metabolite diffusivity Dintra 
along the neurite/process:
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Second, the cumulant expansion at second order:
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Yielding the apparent diffusion coefficient D and kurtosis K, where 
b refers to the b-value and erf refers to the error function. Assuming an 
underlying isotropic distribution of sticks (Callaghan’s model) 
(Equation 1), the radius of convergence of the cumulant expansion is 
given by the first zero of the error function in the complex plane (Kiselev 
and Il'yasov, 2007), whereby assuming a diffusivity of about 0.3 μm2/ms, 
bc  = 19 ms/μm2. b-values up to bc were used for this fit. For each 
metabolite, the fits were performed on the individual animal diffusion 
signal decay, and the fitted parameters were reported as mean and SD 
across animals. The fits were also performed on the group-averaged 
diffusion signal decay for each metabolite, yielding a mean coefficient.

A detailed table of the acquisition and processing parameters 
following the experts’ consensus recommendations on minimum 
reporting standards in in vivo MRS (Lin et al., 2021) is presented in 
Supplementary Table S1.

2.3 Histology assessments

2.3.1 Fluorescence and Brightfield microscopy
Animals (SHAM and BDL animals) were sacrificed for histological 

evaluation between week 6 and 7 post-BDL. The deeply anesthetized 
(4% isoflurane for 5 min) animals were injected with analgesic 
(Temgesic [Essex Pharma], 0.1 mg/kg) before transcardiac perfusion 
with PBS. Due to the complexity of the experiments, additional groups 
of animals (in addition to the ones scanned by dMRS) were used for 
histological evaluation and electron microscopy, and SHAM animals 
were not used for electron microscopy. All animals were controlled for 
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blood bilirubin and ammonium values to ensure that the presence and 
evolution of CLD were in fact reflective of the dMRS group.

2.3.2 Immunohistochemistry (IHC)
Brains (SHAM n = 3, BDL n = 3) were fixed in a 4% formaldehyde 

PBS solution overnight at 4°C, washed with PBS, and cryopreserved 
in a 30% sucrose PBS solution at 4°C for 48 h. They were then 
embedded in Tissue-Tek® O.C.T. compound and cut into 16-μm 
sagittal sections. Astrocyte morphological alterations were depicted 
using mouse monoclonal anti-GFAP antibody (MAB360 Merck 
Millipore) (2 h at RT, 1:100 dilution) with secondary Alexa Fluor® 
594-AffiniPure+ Rat Anti-Mouse IgG (H + L) antibody (415–585-166 
Jackson ImmunoResearch Europe Ltd.) (1 h at RT, 1:200 dilution). 
Nuclei were stained with DAPI (D1306, Thermo Fisher Scientific). 
The stained sections were mounted with ProLong™ Diamond 
Antifade Mountant and covered with coverslip. Morphometric 
measurements (processes number/cell and processes length) were 
performed using Sholl analysis, as previously described (Braissant 
et al., 2019). A total of 200 astrocytes from each group were randomly 
selected and traced for all processes identified through GFAP staining. 
An average of 350 astrocytic processes were measured per sample, 
amounting to approximately 1,000 processes per group (seven 
slides/rat).

2.3.3 Golgi-cox staining
Golgi-Cox staining was performed to unveil the detailed 

morphology of the CA1 hippocampus neurons (Zaqout and Kaindl, 
2016). Extracted brains were directly immersed in the Golgi-Cox 
staining solution, then stored in the dark at room temperature for 
25 days prior to being washed with PBS, and cryopreserved for 48 h 
in 30% sucrose in PBS at 4°C. Brains were sliced into 115-μm-thick 
sagittal sections using a Leica VT1200 S vibratome (25 slides/
hemisphere, SHAM n = 3, BDL n = 7). After the staining procedure 
and dehydration, the slides were mounted with Neo-Mount (EMD 
Millipore). For quantitative analysis, only uniformly stained tissue 
with clearly apparent dendritic segments and spines was used. The 
surface of the neuronal soma was measured, and dendritic spines 
were manually counted (CA1 neurons: BDL soma ~200 cells, apical 
and basal dendrites ~100 each; SHAM soma ~120 cells, apical and 
basal dendrites ~60 each). The images were acquired using a Meiji 
Techno TC5600 Microscope (INFINITYX-32 camera, picture size: 
6,464× 4,864 pixels). The image processing and the quantitative 
immunohistochemical analysis were performed with INFINITY 
ANALYZE 7 software (Lumenera, Canada).

2.3.4 Electron microscopy (EM)
Deeply anesthetized BDL rats (n = 3) received an intraperitoneal 

injection of sodium pentobarbital. Afterward, a cardiac perfusion 
with 20 mL of isotonic PBS followed immediately with 300 mL of 
2.5% glutaraldehyde and 2% formaldehyde in phosphate buffer 
(0.1 M, pH 7.4) was performed. The brains were removed 2 h after 
perfusion, and 100-μm-thick coronal sections were cut through the 
somatosensory cortex, striatum, hippocampus, and cerebellum 
(vibratome Leica VT1200; Leica Microsystems). Following a 
cacodylate buffer wash (0.1 m, pH 7.4), the sections were postfixed 
for 1 h in 1.5% potassium ferrocyanide and 2% osmium tetroxide in 
0.13 M ice-cold cacodylate buffer, followed by 30 min in 2% osmium 
tetroxide alone, each in the same buffer, and then overnight (O/N) at 

4°C in 1% uranyl acetate in water. After dehydrating in alcohol, the 
sections were infiltrated O/N with Durcupan resin (Fluka, Buchs, 
Switzerland). The sections were flat embedded between glass slides 
in fresh resin and left O/N at 65°C for the resin to harden. The images 
were acquired using a Carl ZEISS Merlin With 3View (Gatan) 
Scanning Electron Microscope (SEM) (current: 300 pA, voltage: 
1.6 kV, image size: 6 nm/pixel, and z-axis: 50 nm) and analyzed with 
ImageJ FiJi16.

2.3.4.1 Edema reconstruction
We imaged 21 × 21 × 14.75 μm3 of the hippocampus using the SEM 

method with a voxel size of 6 × 6 × 50 nm3, 3,500 × 3,500 × 295 voxel3. 
We applied the DeepACSON pipeline (Abdollahzadeh et al., 2021a,b) 
for the semantic segmentation of the extracellular edema in the 
acquired 3D-EM dataset. We used a small training set—six 2D planar 
images manually segmented for edema. The images were tiled into 
350 × 350 voxel2 non-overlapping patches to initiate the training. To 
deal with the small training sets, we enhanced the performance of the 
networks by sequentially giving feedback as manual corrections to the 
network predictions. The training procedure for the networks follows 
the description in Abdollahzadeh et al. (2021a,b). For the instance 
segmentation of the extracellular edema, we applied a bottom-up 
percentile-based region agglomeration technique to merge over-
segmented watersheds to perform instance segmentation of the intra-
axonal spaces (Behanova et al., 2022).

2.4 Statistics

Data are presented as mean ± SD. For MRS, differences in 
metabolite concentration estimates were assessed with a repeated 
measure two-way analysis of variance (ANOVA) (Prism 5.03, 
GraphPad, La Jolla, CA, United States), with metabolites and disease 
(weeks 0 and 6) factors. For dMRS, differences in diffusion parameters 
based on individual animal fitting were assessed with a repeated 
measures two-way ANOVA on each parameter individually (ADC, 
AKC, Dintra), with metabolites and disease (weeks 0 and 6) factors. For 
both MRS and dMRS, Bonferroni’s multi-comparisons post-hoc test 
was applied, where the number of comparisons was set to the number 
of metabolites passing the CRLB criteria (n = 17 comparisons for MRS 
and n = 7 for dMRS). For the histological measures, a two-way ANOVA 
with post-hoc Tukey HSD was used to test for statistical significance. 
All tests were two-tailed. The significance level in all tests was 
attributed as follows: *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.

3 Results

The characteristic 1H-MRS pattern of type C HE, i.e., a gradual 
increase of Gln as a result of ammonia detoxification and a decrease 
in the main organic osmolytes as an osmoregulatory response 
(Rackayova et  al., 2016; Flatt et  al., 2017; Braissant et  al., 2019; 
Rackayová et al., 2021; Mosso et al., 2022), was present in the rats 
investigated in the current study. 1H-MRS in the hippocampus showed 
a significant increase of brain Gln (+178 ± 95%****), a decrease of Ins 
(−29 ± 14%**), trends of decrease for Tau, tCho, Glu, Asc, tCr 
(Cr + PCr), and GSH, and no difference for GABA, Lac, PE, tNAA 
(NAA + NAAG), and the macromolecules (Supplementary Figure S1). 
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Alanine, aspartate, bHB, glycine, glucose, and scyllo-inositol, often 
poorly quantified even at high fields, were not reported as they did not 
survive the 1H-MRS CRLB criterion.

Similar patterns were observed in the dMRS voxel on low b-value 
spectra (qualitative results in Figure 1B): an increase in Gln (2.1 ppm 
and 3.7 ppm, observed from its relative amplitude compared to NAA), 
together with a decrease in the main osmolyte Ins (3.5 ppm).

Furthermore, all BDL rats displayed an increase in plasma 
bilirubin (from undetectable to 9.1 ± 2.1 mg/dL) and blood ammonium 
(from 25.9 ± 7.5 to 59.3 ± 30.9 μM) at 6-week post-BDL, both 
validating the BDL surgery and thus the chronic liver disease.

The quality of the acquired dMRS spectra both at week 0 and week 
6 (Figure 1A) allowed the estimation of diffusion parameters of Gln, Glu, 
NAA, Ins, Tau, tCho (GPC + PCho), and tCr (Cr + PCr) and a fair 
comparison between the two time points. Supplementary Figure S2 
displays the quality of the LCModel fits in a representative set of diffusion-
weighted spectra acquired in one animal at weeks 0 and 6 post-BDL.

Figure  2 displays the metabolite signal diffusion decays with 
b-value, averaged over the cohort of animals at weeks 0 (green) and 6 

(orange) after normalization to b = 0.4 ms/μm2. A good quality fit was 
obtained with some minor discrepancies for tCho, tCr, and Tau at high 
b-values. To further evaluate data quality, the metabolite signal 
diffusion decays of individual animals are also plotted in 
Supplementary Figures S3,S4. The derived metabolites ADC before 
surgery (Figure  3, first panel, orange, “week 0”) were in good 
agreement with results in the healthy rodent brain (Ligneul et al., 
2019). After a 6-week period after surgery, an increase in intra-
neurite/process diffusivity Dintra was measured for all metabolites 
(disease effect: **** with +58 ± 16% increase for Gln:**, n = 5 rats), as 
estimated from the sticks model (Equation 1) (Figure 3). The cumulant 
expansion fit (Equation 2) confirmed this trend: an increase in ADC 
(disease effect:****, subject-matching:* with +35 ± 14% increase for 
Gln:*, +29 ± 21% increase for Ins:*, +17 ± 18% increase for Tau:*, n = 5 
rats) and a trend of decrease in kurtosis for some metabolites were 
observed, although the latter was not significant (Figure 3).

The Sholl analysis of the GFAP-stained astrocytes showed 
morphological alterations with a significant shortening of the 
processes (~30%****) and a decrease in the number of processes per 

FIGURE 1

(A) Representative sets of diffusion-weighted spectra in one animal at week 0 (orange, left) and week 6 post-BDL surgery (green, right) acquired with 
diffusion-weighted STEAM. The voxel position and the b-values used are displayed at the top. Of note, the differences in noise level among the spectra 
are due to a different number of shots for each on the b-value (less noise at high b-values due to more shots); (B) Example of spectra acquired in the 
same animal at week 0 (orange) and week 6 post-BDL surgery (green) at b  =  0.4  ms/μm2, highlighting with arrows the increase in brain Gln and 
decrease of the main brain osmolytes (i.e., Ins, tCho, Tau) observed qualitatively.
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cell (~18%****) at week 6 post-BDL (Figure 4A). In addition, the 
Golgi-Cox staining showed a significant increase in CA1 
hippocampal neuronal soma surface (~65%***) and a significant loss 
of dendritic spines density, both apical and basal (both ~50%***) 
(Figure 4B). Electron microscopy of the BDL rats’ brains revealed 
changes in the ultrastructure, as shown in Figures 4C,D, which were 
not observed in the healthy rat brain (Nahirney and Tremblay, 2021). 
Electron-dense lipofuscin granules were found in the perikaryal 
cytoplasm of neurons and in the cytoplasm of astrocytes, and 
aggregates are indicated in Figure 4C, together with elongated/fused 
mitochondria. A pattern of myelin sheath degeneration/breakdown 
was also observed (Figure 4C). The hippocampus was characterized 
by loss of tissue integrity and enlarged extracellular spaces, 
indicating increased extracellular water content in the area 
surrounding the astrocytes (Figure 4D). Automatic segmentation of 
extracellular space allowed reconstruction of the edema volume 

(938.743 μm3), corresponding to 14.5% of the whole dataset volume 
(6504.75 μm3).

4 Discussion

The present study describes the first in vivo implementation of 
single-voxel MRS, dMRS, and histology in rats with chronic liver 
disease-induced HE. It evaluates the potential of dMRS to highlight 
microstructural changes in the rat brain with type C HE through the 
measurement of metabolite diffusion properties. 1H-MRS probed an 
increase in Gln and a decrease in the main osmolytes (Ins) in the 
hippocampus of BDL rats at 6-week post-surgery, indicating the 
presence of osmotic stress. The additional use of dMRS in the same 
animals enabled the characterization of changes in the diffusion 
behavior of brain Gln, Glu, Ins, Tau, tCr, and tCho (an overall increase 

FIGURE 2

Metabolite signal diffusion decay with b-value, averaged over the cohort of animals at week 0 (green) and week 6 (orange) after normalization to 
b  =  0.4  ms/μm2. Solid line: kurtosis fit up to b  =  15.7  ms/μm2 (A) and Dintra fit from the randomly oriented sticks model (Equation 1) up to b  =  25  ms/μm2 
(B) Bval are in ms/μm2.
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as a disease effect, with Gln, Ins, and Tau showing significant changes), 
highlighting the presence of microstructural changes in this animal 
model, which were validated by different histological measures 
(astrocytes: decreased number and length of GFAP-stained intermediate 
filaments; neurons: decreased density of dendritic spines; and enlarged 
extracellular spaces). Taken together, our data suggest a loss of tissue 
integrity, providing new insights into metabolic and microstructural 
alterations linked to increased brain Gln and its consequences in type C 
HE. Furthermore, our results confirm that type C HE is characterized 
by complex and multicellular alterations that go beyond the hypothesis 
of intracellular edema, with astrocytes being the only target.

4.1 Brain metabolism alterations in the 
hippocampus

The increase in brain Gln in the hippocampus, mainly due to 
increased blood ammonium as a consequence of chronic liver disease, 
led to an osmotic imbalance resulting in a gradual decrease of other 
brain osmolytes (Ins), and contributed to morphological astrocytic 
alterations (shortening of process length together with a decrease in 
their number) (Häussinger et al., 2000), among other mechanisms. Of 
note, osmotic stress is not the sole mechanism involved in type C HE; 

oxidative stress and inflammation are complementary mechanisms 
acting synergistically (Simicic et al., 2022; Andersen and Schousboe, 
2023; Pierzchala et al., 2023). Consistent with our previous findings 
(Braissant et al., 2019), we also identified some trends (not significant) 
in the changes of other metabolites. These changes included a decrease 
in Tau and tCho due to the osmotic response, the neurotransmitter 
Glu, and the antioxidants Asc and GSH. Moreover, the EM-observed 
intracellular accumulation of lipofuscin aggregates is a sign of lipid 
peroxidation and thus the presence of oxidative stress, which is in 
agreement with our previous studies (Pierzchala et al., 2022; Simicic 
et al., 2022), and we observed herein a decrease in antioxidants, a sign 
of redox homeostasis alterations. The same trends in metabolite 
changes were also observed in the bigger VOI used for dMRS. The 
quantification of these data was not used for characterizing the brain 
metabolism due to the longer TE of the dMRS sequence and the lack 
of T2 corrections for water and metabolites.

4.2 Brain microstructural alterations 
revealed by dMRS and histology

In the BDL group at week 6, increased diffusivities of brain Gln 
and of the main brain osmolytes (Ins, Tau) were observed when 

FIGURE 3

Estimated diffusion parameters from the kurtosis fit (ADC and AKC) and from the randomly oriented sticks model (Equation 1) (Dintra) for the reliably 
estimated metabolites (Gln, Glu, Ins, Tau, NAA, tCr, and tCho) at week 0 (orange) and week 6 (green). Box plots: parameters fitted on the individual 
animal signal decays (line: median, top and bottom edges: 25th and 75th percentiles, whiskers: extreme values, dots: outliers); bold lines: parameters 
fitted to the mean signal decay as plotted and fitted in Figure 2. Significant differences from a two-way ANOVA (metabolite and disease factors) with a 
Bonferroni post-hoc test are indicated. **p  <  0.01, *p  <  0.05.
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FIGURE 4

Hippocampal sections from SHAM and BDL rats. (A) Astrocytes stained with anti-GFAP (red) and DAPI-nuclei (blue) and morphological characterization 
of the number and length of processes. (B) Representative micrographs of Golgi-Cox staining and neuronal morphology analysis of pyramidal CA1 
neurons. Black arrows indicate the spines, and the white arrows indicate spine pruning. (C) Analysis of the ultrastructure alterations of the hippocampus 
CA1 area. White arrowheads indicate granular electron-dense lipofuscin, and black arrowheads indicate myelin degeneration. (D) Extracellular edema 
reconstruction. Red arrows indicate the continuity of the plasma membrane. (C) and (D): an—astrocyte nuclei; nn—neuronal nuclei; ee—extracellular 
edema; sy—synapse; se—synaptic edema; pr—processes; de—dendrite. Data are presented as mean ± SD and statistical significance (two-way ANOVA 
with post-hoc Tukey HSD): *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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compared to week 0. This observation is a possible consequence of the 
osmotic stress caused by intra-astrocytic Gln increase: brain osmolytes 
may be  temporarily present in the extracellular space, therein 
experiencing freer diffusion compared to intracellular space, before 
being cleared out, as supported by the steady-state net decrease of 
osmolyte concentrations observed with MRS. The electron microscopy 
results revealed a loss of tissue integrity and enlarged extracellular 
spaces in the hippocampus, indicating increased extracellular water 
content in the area surrounding the astrocytes.

Furthermore, the increased diffusivities of Gln and Ins in the 
BDL rats, metabolites assumed to be  glial markers (Martinez-
Hernandez et al., 1977; Häussinger et al., 1994), may also reflect 
astrocyte alterations following the strong Gln increase. Changes in 
diffusivity in vivo are usually associated with microstructural 
changes (Najac et al., 2014, 2016; Palombo et al., 2018; Ligneul et al., 
2019; Genovese et  al., 2021), and the diffusion time used in the 
present study (120 ms, characteristic 2D diffusion length of 
4 8 5D m∆ = . ,µ  assuming D = 0 15. μm2/ms) is likely to probe 

metabolite diffusion along fibers (astrocytic processes or neuronal 
dendrites) rather than confinement in cell bodies, as shown with 
dMRS in the human (Najac et al., 2016) and macaque brain (Najac 
et  al., 2014). These dMRS findings are supported by the GFAP 
histological observations (i.e., decreased length and number of 
astrocytic processes) pointing toward a less restricted and ramified 
cellular architecture, explaining increased diffusivities for astrocytic 
metabolites in the BDL rats. A recent study showed increased serum 
GFAP levels in cirrhotic patients (Gairing et al., 2023), suggesting 
that the presence of astrocyte injury and astrocyte activation are two 
mechanisms that may lead to increased serum GFAP concentrations. 
It is worth mentioning that, using dMRS in a model of reactive 
astrocytes, Ins has been revealed as a specific intra-astrocytic marker 
whose diffusion closely reflects astrocytic morphology, enabling the 
non-invasive detection of astrocyte hypertrophy (Ligneul et  al., 
2019). In addition, the diffusion of astrocytic metabolites can mirror 
their altered morphology and pro-inflammatory phenotype (de 
Marco et  al., 2022), since, during neuroinflammation, both 
astrocytes and microglia undergo metabolic, functional, and 
morphological changes (Heneka et  al., 2014). In our previous 
studies, significantly elevated levels of IL-6 and reactive oxygen 
species were observed in the brains of BDL rats as compared to the 
SHAM animals (Pierzchala et al., 2022), suggesting the presence of 
neuroinflammation. IL-6 levels, together with oxidative stress, have 
also been associated with increased blood–brain barrier 
permeability, allowing neurotoxins to enter the brain and impair 
neurological functions (Simicic et  al., 2022). Recent studies 
promoted dMRS as a tool sensitive to glial cytomorphological 
changes induced by inflammation following LPS administration in 
humans (de Marco et al., 2022) or in cuprizone-fed mice (Genovese 
et al., 2021), where Ins and tCho apparent diffusion coefficients were 
significantly elevated. Following these studies, tCho diffusivity 
changes were related to the presence of inflammation, even though 
tCho has a limited specificity for glial cells. Similarly, an increased 
diffusivity for tCho (a trend of ~20% increase) was measured in this 
study, possibly reflecting here also the presence of 
neuroinflammation, as shown previously in BDL rats ex vivo 
(Pierzchala et  al., 2022). Neuroinflammation will impact the 
astrocyte cytoskeleton, which may lead to an increase in intracellular 
and extracellular space, as observed in our study. Furthermore, the 

EM data depicted a breakdown of myelin sheaths and myelin 
outfolding formation in BDL rats, which could also impact tCho 
diffusivity as tCho is required for membrane phospholipid synthesis 
and myelination (Zeisel et al., 1986), although only a few studies 
have validated the association between myelin status and tCho 
(Laule et al., 2007; Rae, 2014, Skripuletz et al., 2015).

Glu and NAA, both expected to be  preferentially located in 
neurons (MOFFETT et  al., 2007; Fendt and Verstreken, 2017), 
exhibited a trend of increased diffusivity in BDL rats at week 6 post-
BDL. Golgi-Cox measures probed an increased soma surface of CA1 
hippocampal neurons and a loss of dendritic spines density (which is 
made of filamentous actin cytoskeleton; Hering and Sheng, 2001) in 
BDL rats. Numerical simulations (Palombo et  al., 2018) have 
suggested that decreased dendritic spines density would increase the 
ADC of neuronal metabolites, consistent with the trend of increased 
Glu and NAA diffusivity observed herein. Furthermore, additional 
studies using two-photon microscopy on brain slices (Santamaria 
et al., 2006, 2011) have shown that the diffusional characteristics of 
dendrites are greatly affected by the dendritic spines density, being 
slower in the dendrite with the higher density of spines due to 
anomalous diffusion, and significantly faster in smooth/low spines 
density dendrites. Of note, Glu is the main precursor of Gln synthesis 
in the astrocytes, and the observed increased diffusivity trend can 
also reflect the reduced number and shortening of astrocyte 
processes. Total Cr also showed a trend of increased diffusivity in this 
study. Creatine is located in most cell types, has different roles in 
energy metabolism and cytoprotection, and also appears to act in 
osmoregulation and neurotransmission (Rackayova et  al., 2017; 
Braissant et al., 2019).

Metabolite kurtosis coefficients overall tended to decrease in the 
BDL group, suggesting that the intracellular space might be  less 
heterogeneous with reduced structural disorder. Although previous 
numerical simulations have shown that the number of processes 
departing from the soma has almost no influence on the measured 
ADC at any diffusion time (Palombo et al., 2016), the former, observed 
here by histology, might have an influence on Dintra, which is higher in 
HE  rats compared to control rats for most metabolites. Overall, 
we believe that increased diffusivities in type C HE rats versus control 
rats reflect (1) intracellular space alteration with reduced structural 
disorder, supported by decreased neuronal spines density, decreased 
length of astrocyte processes and number of ramifications shown by 
histology, and (2) a higher contribution of extracellular space diffusion 
in BDL rats compared to controls due to osmolytes leaving the cells 
counteracting intracellular Gln increase.

4.3 Limitations

dMRS is a challenging measurement, and different factors might 
affect the estimated diffusion metrics (Ligneul et al., 2024). In the 
present study, motion artifacts due to simple linear translational 
motion were compensated on individual shots by phase correction, 
while data affected by rotational and compressive motion were 
discarded in the outlier removal process. Consequently, we do not 
expect any significant effect of motion on the calculated metabolite 
diffusion metrics, i.e., an overall overestimation. Additionally, a 
change in metabolite concentration is unlikely to affect diffusivity 
through a change in cytosol viscosity given the small metabolite 
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concentrations (1–10 M) compared to water (45–50 M) (Kinsey 
et al., 2011).

For some metabolites (i.e., Tau, tCr, and tCho), the sticks model 
(Equation 1) showed some discrepancies with the measured data at 
high b-values. These discrepancies may result from a poorer LCModel 
spectral fit quality at higher b-values, exemplified by the high inter-
animal variability of estimated concentrations for the highest b-values 
(Supplementary Figures S3,S4). Such variability might be partially 
alleviated by the use of simultaneous 2D fitting of the spectral and 
diffusion dimensions (Adalid et al., 2017).

The strict CRLB criterion for dMRS ensures a fair comparison 
between the groups. The use of each animal as its own control with a 
scan before the BDL surgery was beneficial as it ruled out possible 
inter-animal differences in brain microstructure or metabolism that 
could have biased the group comparison. A good concordance 
between individual and group-average fit for diffusion estimates was 
obtained in the current study. The possibility of fitting diffusion 
coefficients on individual animal signal decays provides an error 
estimation better representing the group dispersion than the one 
evaluated from the group-averaged signal decay. dMRS is also 
characterized by an overall low signal-to-noise ratio (SNR) compared 
to a simple MRS acquisition. In the present study, the LCModel SNR 
ranged from 15–20 to 45 depending on the b-value, guiding the choice 
of the randomly oriented sticks model (Equation 1) instead of the 
randomly oriented cylinder model (i.e., fitting, in addition, the radius 
of processes) (Vangelderen et al., 1994). This finding is highlighted in 
a recent dMRS consensus article showing that fitting the cylinder 
model would require a higher SNR and higher b-values than what was 
accessible in the present study (Ligneul et  al., 2024). Finally, the 
increased brain Gln combined with the relatively short TE (15 ms) and 
high magnetic field allowed us to report brain Gln diffusivity for the 
first time.

Our study reports an overall increased diffusivity for all 
investigated metabolites, which was confirmed by histological 
measures. However, additional studies with an increased number of 
samples would be required to confirm this trend together with EM 
data on SHAM animals. dMRI could provide additional information 
with respect to dMRS, the former also informing on the extracellular 
space and on exchange between intracellular and extracellular spaces. 
An increased membrane permeability in BDL rats would also 
contribute to reduced compartmentalization (intracellular vs. 
extracellular) of metabolites (Ins, Gln, and Tau) and faster diffusion, 
which could be evaluated from joint dMRS and dMRI acquisitions in 
future studies. Future dMRS studies in this animal model should 
focus on targeting a specific brain region (the dMRS voxel here 
included several brain regions): brain regional differences in the 
neurometabolic profiles of BDL rats have been suggested, with the 
cerebellum exhibiting a stronger Gln increase than other brain 
regions (Simicic et al., 2019).

5 Conclusion

In conclusion, this study highlights the potential of dMRS as a 
unique tool to non-invasively monitor neuronal and astrocytic 
structural alterations in the rat model of type C HE  via the 
measurement of cell-specific metabolite diffusion properties. The 
increased diffusivity and reduced kurtosis in BDL versus control 

rats, measured in vivo with dMRS, are consistent with an altered 
microstructure probed ex vivo by fluorescence, brightfield, and 
electron microscopy. Overall, dMRS evidenced that type C HE is 
characterized by complex and multicellular alterations beyond 
astrocyte swelling and holds enormous potential for future 
HE studies.
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Comparative analysis of the
image quality and diagnostic
performance of the zooming
technique with diffusion-
weighted imaging using different
b-values for thyroid papillary
carcinomas and benign nodules
Liling Jiang1†, Jiao Chen2†, Yong Tan2, Jian Wu3, Junbin Zhang3,
Daihong Liu2* and Jiuquan Zhang2*

1Department of Radiology, Shapingba Hospital affiliated to Chongqing University (Shapingba District
People’s Hospital of Chongqing), Chongqing, China, 2Department of Radiology, Chongqing University
Cancer Hospital, Chongqing, China, 3Head and Neck Cancer Center, Chongqing University Cancer
Hospital, Chongqing, China
Objective: To compare image quality and diagnostic performance using different

b-values for the zooming technique with diffusion-weighted imaging (ZOOMit-

DWI) in thyroid nodules

Materials and methods: A total of 51 benign thyroid nodules and 50 thyroid

papillary carcinomas were included. ZOOMit-DWI was performed with b-values

of 0, 500, 1000, 1500 and 2000 s/mm2. The sharpness was evaluated as

subjective index. The signal intensity ratio (SIR), signal-to-noise ratio (SNR) and

apparent diffusion coefficient (ADC) weremeasured as objective indices. Pairwise

comparisons were performed among the different b-value groups using the

Friedman test. A receiver operating characteristic curve of the ADC value was

used to evaluate diagnostic performance. The DeLong test was used to compare

diagnostic effectiveness among the different b-value groups

Results: In both the papillary carcinoma group (P = 0.670) and the benign nodule

group (P = 0.185), the sharpness of nodules was similar between b-values of

1000 s/mm2and 1500 s/mm2. In the papillary carcinoma group, the SIRnodule was

statistically higher in DWI images with a b-value of 1500 s/mm2than in DWI

images with b-values of 500 s/mm2(P = 0.004), 1000 s/mm2(P = 0.002), and

2000 s/mm2(P = 0.003). When the b-values were 1500 s/mm2(P = 0.008) and

2000 s/mm2(P = 0.009), the SIRnodule significantly differed between the papillary

carcinoma group and the benign nodule group. When b = 500 s/mm2, the ADC

had an AUC of 0.888. When b = 1000 s/mm2, the ADC had an AUC of 0.881.

When b = 1500 s/mm2, the ADC had an AUC of 0.896. When b = 2000 s/mm2,

the ADC had an AUC of 0.871. The DeLong test showed comparable diagnostic

effectiveness among the different b-value groups except for between b-values of

2000 s/mm2and 1500 s/mm2, with a b-value of 2000 s/mm2showing

lower effectiveness
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Abbreviations: ADC, Apparent diffusion coefficient; D

imaging; MRI, Magnetic resonance imaging; ROC

characteristic; ROI, Region of interest; SD, standard

intensity; SIR, Signal intensity ratio; SNR, signal-to-nois

Zooming technique with diffusion-weighted imaging.
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Conclusion: This study suggests that 1500 s/mm2may be a suitable b-value to

differentiate benign and malignant thyroid nodules in ZOOMit-DWI images,

which yielded better image quality
KEYWORDS

diffusion-weighted imaging, b-value, thyroid nodule, image quality, diagnostic
performance
Introduction

Thyroid nodules are found in 19-67% of asymptomatic

individuals using ultrasonography (1). Among these nodules, 10-

15% of nodules are malignant (2). In patients with malignant

nodules, early diagnosis and active follow-up treatment can

elevate the 10-year survival rate to 90% (3). Therefore, it is

essential to find a reliable non-invasive imaging tool to diagnose

malignant thyroid nodules.

Ultrasound is a noninvasive technique for identifying thyroid

nodules; however, the result can vary depending on the evaluator

(4). Fine needle aspiration is an invasive examination, and one-third

of the results are inconclusive (2). Computed tomography is limited

in differentiating between malignant and benign thyroid nodules

and has the disadvantage of radiation exposure. Many authors have

investigated the important value of diffusion-weighted imaging

(DWI) in differentiation between malignant and benign thyroid

nodules (3, 5–8). With the development of magnetic resonance

imaging (MRI), DWI has become a popular modality for identifying

thyroid nodules in recent years and can assess the Brownian motion

of water molecules at the cellular level (9).

In malignant nodules, water movement is restricted due to

increased cellularity and reduced extracellular space. In most

previous thyroid studies, the b-value of DWI was lower than 1000

s/mm2 for differentiation between benign and malignant lesions (3,

5–8). With the advancement of high-field and DWI MRI

techniques, high-b-value DWI of the thyroid has become much

simpler. Past studies have shown that a high b-value of 2000 s/mm2

is optimal for the diagnosis and differential diagnosis of thyroid

nodules (10, 11). However, only a b-value of 800 s/mm2was

compared to 2000 s/mm2 in the above study, and the diagnostic

performance of b-values from 800 to 2000 s/mm2 is unknown.

In MRI exams, the b-value is an index indicating the degree of

sensitivity to diffusion in the images. The choice of b-value does, to

some extent affect the distortion as the eddy currents may be weaker
WI, Diffusion-weighted

, Receiver operating

deviation; SI, Signal

e ratio; ZOOMit-DWI,
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for smaller b-values, but susceptibility arguably is the main source

of image distortion in DWI. Higher b values produce increased

signal attenuation and usually requires increased signal averaging to

compensate for the signal-to-noise ratio. Most malignant thyroid

nodules were papillary carcinomas. The community still have not

reached a consensus regarding the optimal b value for MRI exams

to detect thyroid papillary carcinomas. Therefore, the optimal b-

value to differentiate between thyroid papillary carcinomas and

thyroid benign nodules in clinical applications must be explored.

In this study, we combined image quality and differential

diagnostic performance to determine the optimal b-value for

DWI detection of thyroid papillary carcinomas and thyroid

benign nodules. Image quality included subjective and objective

aspects. The zooming technique with diffusion-weighted imaging

(ZOOMit-DWI) was used in this study, which entails a reduced

field of view. We hypothesized that ZOOMit-DWI would show

excellent performance in the thyroid. We aimed to identify the

optimal b-value for differentiating thyroid papillary carcinomas and

thyroid benign nodules.
Materials and methods

Patient enrollment and thyroid
nodule selection

All procedures performed in this study involving human

participants were in accordance with the ethical standards of the

research committee and approved by the local research committee

(IRB No. CZLS2021207-A). Informed consent was signed by all

study participants. The study recruited 95 consecutive patients in

Chongqing University Cancer Hospital from July 2021 to May

2022. All patients underwent thyroid MRI examinations in this

study. Data collection was planned before surgical pathological

results were performed.

The inclusion criteria were as follows: a) planned thyroid

nodule surgical treatment; b) no needle biopsy or treatment

before surgery; c) the pathologic finding was thyroid papillary

carcinoma or thyroid benign nodule. The exclusion criteria were

as follows: a) contraindications to MRI examination; b) obvious

artifacts on DWI; c) incomplete DWI imaging data; d) the

pathologic finding was borderline neoplasm.
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Sample size

There are no generally accepted approaches to estimate the

sample size requirements for derivation studies, however, we

ensured that the study met suggested requirements of having at

least 10 events per candidate variable for the derivation of a model.
Examination method

In this study, Prisma 3.0 T MRI (Simens Healthcare, Germany

Erlangen) was used for examination on MRI with a 16channel

surface coil (Zhongzhi Medical, China Jiangsu). ZOOMit-DWI was

performed with the following diffusion gradient b factors: 0, 500,

1000, 1500 and 2000 s/mm2. ZOOMit-DWI uses the availability of

fully independent parallel radiofrequency transmission coils,

allowing excitation of selective “inner volumes” (12). When the

field of view is reduced, the readout tends to be faster which

decreases the susceptibility artifacts. The smaller field of view can

also be used to enable higher spatial resolution without increasing

the readout duration (13). The imaging parameters for DWI were

TR: 4600 ms; TE: 72 ms; FOV (RL x AP): 160 × 58 mm; average: 1

(b=0 s/mm2), 4 (b=500 s/mm2), 6 (b=1000 s/mm2), 9 (b=1500 s/

mm2), and 13(b=2000 s/mm2); matrix size (RL x AP): 110 × 36 mm;

slice thickness: 3 mm; intersection gap: 0.3 mm; diffusion gradient

orientations: 3; flip angle:150; and examination time: 439 s. The

imaging parameters for T2WI were TR: 3000 ms; TE: 88 ms; FOV:

200 × 200mm; average: 4; matrix size: 256×256; slice thickness:

3 mm; intersection gap: 0.3 mm; flip angle:150; and examination

time: 158 s.
Image analysis

All morphological images and DWI images were evaluated in

Siemens workstation (syngo.via). DWI images were evaluated by a

radiologist (LLJ). To evaluate reproducibility, all nodules were

evaluated one month later by the same radiologist (LLJ) and one

other radiologist (JC). Image quality analysis included subjective

and objective aspects. Diagnostic efficacy was evaluated according

to differential diagnostic performance. Only the largest nodule was

evaluated in one lobule.

Subjective image quality analysis
Subjective image quality of nodules and thyroids on DWI

images with different b-values was evaluated respectively

according to 4-point scale depending on sharpness: 4 = the

boundary was clearly depicted; 3 = the boundary was unclearly

depicted; 2 = the boundary was indistinctly visible; 1 = the nodule or

thyroid cannot be displayed.

Objective image quality analysis
Signal intensity (SI) and standard deviation (SD) was measured

in the nodule, thyroid and air in the same slice. The region of

interest (ROI) of nodules was manually drawn along the nodule
Frontiers in Oncology 03138
margin. The ROI of the thyroid was the largest and usually

circularly drawn on normal regions of the thyroid gland. The

ROI for air was circularly drawn around air in the trachea. First,

an ROI was drawn on DWI image with b = 0 s/mm2. Then, the ROI

was copied to DWI images with b = 500, 1000, 1500, and 2000 s/

mm2.The cystic and hemorrhagic areas were avoided. Then, the

signal intensity ratio (SIR) of nodules and signal-to-noise ratio

(SNR) of thyroids were calculated according to the following

formula: SIRnodule=(SInodule−SIthyroid)/SIthyroid; SNRthyroid=SIthyroid/

SDair (14).
Differential diagnostic efficacy analysis
The mean apparent diffusion coefficient (ADC) was measured

in different ADC maps (b = 500, 1000, 1500, 2000 s/mm2). ADC

calculated using the following formulas: ADC=In(S0/S1)/(b1-b0).

The b0 mean 0. The b1 mean 500, 1000, 1500 0r 2000. S0

represented the signal intensity of ROI in the DWI images of b =

0 s/mm2. S1 represented the signal intensity of ROI in the DWI

images of b = 500, 1000, 1500 0r 2000 s/mm2. The extraction of the

ADC values was automatically performed by the Siemens

workstation (syngo.via).

Four ADC values were recorded for each nodule. An ROI was

manually drawn along the nodule margin. First, the ROI was drawn

on a DWI image with b = 0 s/mm2, and then the ROI was copied to

different ADC maps. The above ROI was in the same slice, and

cystic and hemorrhagic areas were avoided.
Pathology

According to long-time clinic experience, the histopathologic

examination was used as the gold standards. All surgically resected

nodules were subjected to an intra-operative frozen section for

preliminary risk assessment. If the nodule was diagnosed as a

benignancy by intra-operative frozen section, total thyroidectomy

would not be applied and the specimen of lobectomy would be

acquired for further paraffin section. If the nodule was suspicious

malignant or atypical, total thyroidectomy would be further given

and the specimen of total thyroidectomy would be acquired for

further paraffin section and immunohistochemical staining.

According to pathological examination results, the nodules were

assigned to either the papillary carcinoma group or benign

nodule group.
Statistical analysis

The statistical analyses were calculated on personal computers

utilizing the Statistical Package for Social Sciences (SPSS−windows

version 25.0). All variabilities of subjective and objective evaluation

derived from MRI were exploratory. The interobserver and

intraobserver variability were assessed by determining intraclass

correlation coefficients, with the values of <0.50, 0.50–0.75, 0.75–

0.90, >0.90 reflecting poor, moderate, good and excellent

correlations (15). The interobserver agreement selected two-way
frontiersin.org
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random model and intraobserver agreement selected two-way

mixed model. Subjective and objective evaluation results were

compared among the different b-value groups. The Kolmogorov–

Smirnov test was performed to analyze normality. According to the

results of the Kolmogorov–Smirnov test, Student’s t test or Mann-

Whitney u test was used to compare difference between papillary

carcinomas and benign nodules. The data did not conform to a

normal distribution. Friedman test was applied to assess whether

significant differences existed among different b-value groups.

Bonferroni correction was a useful technique for controlling the

family-wise error rate in multiple comparisons. The area under the

receiver operating characteristic (ROC) curve was also calculated.

From ROC curve analysis on different b values, an optimal cut-off

value of ADC to predict thyroid papillary carcinoma was

determined by using Youden index. Youden’s index = sensitivity

+ specificity−1. Based on this data-driven cut-off value, sensitivity,

specificity and 95% confidence intervals were calculated. The

DeLong test was used to assess the area under the curve values

and compare diagnostic effectiveness among the different b-

value groups.
Results

Clinical data

Of the 95 patients, 5 patients were excluded (3 with incomplete

imaging data, 2 with severe artifacts on DWI, 4 were females, 1 was

male, with ages ranging from 43 to 61 years old). Ultimately, the 104

nodules from 90 patients were included in this study. 68 were

females, and 22 were males, and ages were 47.69 ± 12.09 ranging

from 21 to 77 years old. Patients had surgical pathological results

within a week after MRI. 53 nodules were malignant (50 papillary

carcinomas, 1 follicular carcinoma, 1 medullary carcinoma, 1

metastatic tumor), and 51 nodules were benign (25 adenomas, 19

nodular goiters, 2 goiters with adenomatous hyperplasia, 2 cases of

Hashimoto’s thyroiditis, 2 cases of subacute thyroiditis, 1 case of

granulomatous inflammation). There was not any adverse event in

this study. The flow chart was showed in Figure 1.
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Interobserver and intraobserver agreement

Interobserver agreement was moderate and good (0.746-0.965)

for subjective evaluations of thyroids and nodules, respectively

(Table 1). Interobserver agreement was moderate and good

(0.739-0.979) for objective evaluations of thyroids and nodules

(Table 1). Intraobserver agreement was good and excellent

(0.908-0.978) for subjective evaluations of thyroids and nodules,

respectively (Table 1). Intraobserver agreement was good and

excellent (0.811-0.995) for objective evaluations of thyroids and

nodules (Table 1).
Evaluation of subjective image quality

The sharpness of thyroids decreased as the b value

increased (Figure 2A). The multiple comparison results of

sharpness are shown in Table 2. In both the papillary

carcinoma group (P = 0.670) (Figure 2B) and benign nodule

group (P = 0.185) (Figure 2C), the sharpness of nodules was

similar between images with a b-value of 1000 s/mm2 and those

with a b-value of 1500 s/mm2.
FIGURE 1

Flowchart of this study.
TABLE 1 The interobserver and intraobserver agreement of measurements of thyroid nodules.

Inter-observer Intrao-bserver

ICC value 95% CI ICC value 95% CI

Signal intensity Nodule (b=500) 0.929 0.846-0.985 0.995 0.992-0.997

Thyroid (b=500) 0.834 0.706-0.921 0.991 0.987-0.994

Air (b=500) 0.892 0.840-0.927 0.992 0.988-0.994

Nodule (b=1000) 0.898 0.760-0.899 0.991 0.988-0.995

Thyroid (b=1000) 0.889 0.839-0.890 0.992 0.988-0.995

Air (b=1000) 0.862 0.796-0.907 0.992 0.989-0.995

Nodule (b=1500) 0.953 0.792-0.991 0.993 0.990-0.996

(Continued)
fro
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Evaluation of objective image quality

The SNRthyroid decreased as the b value increased (Figure 3A). In

the papillary carcinoma group (Figure 3B), the SIRnodule was

statistically higher in DWI images with a b-value of 1500 s/mm2

than in DWI images with b-values of 500 s/mm2 (P= 0.004), 1000 s/

mm2 (P = 0.002), and 2000 s/mm2 (P = 0.003). In the benign nodule

group (Figure 3C), the SIRnodule was statistically lower in DWI images
Frontiers in Oncology 05140
with a b-value of 1500 s/mm2 than in DWI images with b-values of

1000 s/mm2 (P = 0.017) and 2000 s/mm2 (P = 0.006). The multiple

comparison results of nodule sharpness are shown in Table 3. When

the b-values were 1500 s/mm2 (P = 0.008) and 2000 s/mm2 (P = 0.009),

the SIRnodule significantly differed between the papillary carcinoma

group and the benign nodule group (Table 4). In DWI images with a b-

value of 1500 s/mm2, the difference in SI between malignant and

benign nodules was visible to the naked eye (Figures 4–7).
TABLE 1 Continued

Inter-observer Intrao-bserver

ICC value 95% CI ICC value 95% CI

Thyroid (b=1500) 0.829 0.750-0.850 0.988 0.982-0.992

Air (b=1500) 0.880 0.822-0.919 0.983 0.975-0.988

Nodule (b=2000) 0.890 0.837-0.926 0.994 0.991-0.996

Thyroid (b=2000) 0.839 0.816-0.889 0.811 0.772-0.887

Air (b=2000) 0.922 0.884-0.947 0.995 0.992-0.996

Diagnostic performance ADC (b=500) 0.837 0.806-0.857 0.892 0.808-0.894

ADC (b=1000) 0.739 0.709-0.759 0.892 0.888-0.895

ADC (b=1500) 0.941 0.913-0.906 0.889 0.883-0.892

ADC (b=2000) 0.979 0.969-0.986 0.984 0.976-0.989

Sharpness Nodule (b=500) 0.765 0.748-0.776 0.922 0.737-0.980

Nodule (b=1000) 0.863 0.845-0.875 0.960 0.799-0.993

Nodule (b=1500) 0.876 0.864-0.884 0.934 0.903-0.956

Nodule (b=2000) 0.882 0.873-0.888 0.908 0.867-0.937

Thyroid (b=500) 0.965 0.948-0.976 0.978 0.968-0.985

Thyroid (b=1000) 0.746 0.720-0.764 0.915 0.874-0.943

Thyroid (b=1500) 0.766 0.749-0.777 0.920 0.881-0.946

Thyroid (b=2000) 0.846 0.750-0.877 0.919 0.880-0.946
fro
ADC, apparent diffusion coefficient; CI, confidence interval; ICC, intraclass correlation coefficients.
B CA

FIGURE 2

Evaluation of subjective image quality: (A) the sharpness of the thyroid decreased as the b value increased; (B) in the papillary carcinoma group, the
sharpness of nodules was similar between b-values of 1000 s/mm2 and 1500 s/mm2; (C) in the benign nodule group, the sharpness of nodules was
similar between b-values of 1000 s/mm2 and 1500 s/mm2.
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Diagnostic performance evaluation

Quantitative ADC measurements under different b-values all

differed significantly between malignant and benign thyroid

nodules (P < 0.05). The mean ADCs of malignant and benign

thyroid nodules are shown in Table 5. When b = 500 s/mm2, the

ADC had an AUC of 0.888, a sensitivity of 84.31%, and a specificity

of 84.37%. When b = 1000 s/mm2, the ADC had an AUC of 0.881, a

sensitivity of 78.34%, and a specificity of 89.97%. When b = 1500 s/

mm2, the ADC had an AUC of 0.896, a sensitivity of 86.27%, and a

specificity of 90.57%. When b = 2000 s/mm2, the ADC had an AUC

of 0.871, a sensitivity of 80.39%, and a specificity of 89.99% (Table 6,

Figure 8). The DeLong test showed comparable diagnostic

effectiveness among the different b-value groups except for

between b-values of 2000 s/mm2 and 1500 s/mm2, with a b-value

of 2000 s/mm2 showing lower effectiveness (Table 7).
Discussion

DWI is an important method to differentiate malignant from

benign lesions, but the most appropriate b-values for such

differentiation are unknown because different tumors within
Frontiers in Oncology 06141
different organs or tissues may have different sensitivities and

specificities to different b-values. The purpose of this study was to

explore the best b-value in ZOOMit-DWI to differential diagnosis.

The results suggest that 1500 s/mm2 was a suitable b value for

differentiating thyroid papillary carcinomas and thyroid benign

nodules, which yielded better diagnostic performance and image

quality. Thyroid papillary carcinomas and thyroid benign nodules

can be differentiated by comparing signals from thyroid nodules on

DWI images.

About the evaluation of subjective image quality, the sharpness

of the thyroid decreased as the b value increased. The b-value is an

important factor in DWI. On low-b-value images, the diffusion

characteristic of tissues has only a small impact. Higher-b-value

images are noisier and much darker (a low signal-to-noise ratio)

and have the disadvantage of requiring considerable time for

acquisition (16). Images with high b-values are of great

significance in detection of benign and malignant nodules (17). In

this study, when the b-values were 1500 s/mm2 and 2000 s/mm2, the

SIRnodule significantly differed between the papillary carcinoma and

benign nodule. Because at higher b-values, tissues with high water

molecule path lengths tend to lose signal rapidly (18). In addition,

the b value plays a crucial role in ADC measurements. The ADC

values are derived by DWI data to a monoexponential model using
TABLE 2 The pairwise comparison of sharpness of nodules and thyroids with different b-values (×10−3 s/mm2) in DWI images.

500-1000 (P) 500-1500 (P) 500-2000 (P) 1000-1500 (P) 1000-2000 (P) 1500-2000 (P)

Papillary carcinoma 0.877 0.786 0.002 0.670 0.004 < 0.001

Benign nodule 0.002 < 0.001 < 0.001 0.185 0.001 0.060

Thyroid < 0.001 < 0.001 < 0.001 0.005 < 0.001 < 0.001
DWI, diffusion-weighted imaging.
B CA

FIGURE 3

Evaluation of objective image quality: (A) the SNR of the thyroid decreased as the b value increased; (B) in the papillary carcinoma group, the SIR of
nodules was statistically higher in DWI images with a b-value of 1500 s/mm2 than in DWI images with b-values of 500 s/mm2, 1000 s/mm2 and
2000 s/mm2; (C) in the benign nodule group, the SIR of nodules was statistically lower in DWI images with a b-value of 1500 s/mm2 than in DWI
images with b-values of 1000 s/mm2 and 20000 s/mm2.
TABLE 3 The pairwise comparison of SIRnodule and SNRthyroid with different b-values (×10−3 s/mm2) in DWI images.

500-1000 (P) 500-1500 (P) 500-2000 (P) 1000-1500 (P) 1000-2000 (P) 1500-2000 (P)

SIRpapillary carcinoma 0.816 0.004 0.877 0.002 0.938 0.003

SIRbenign nodule < 0.001 0.192 0.145 0.017 < 0.001 0.006

SNRthyroid < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001
DWI, diffusion-weighted imaging; SIR, signal intensity ratio; SNR, signal-to-noise ratio.
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2 b-values reflects tumor cellularity and thus the properties of

diffusion restriction in tissue (19). ADC values are affected by both

blood perfusion and extracellular space (20). Both in the papillary

carcinoma and benign nodule, the ADC values decreased as the b

value increased. The signal-to-noise ratio decreases as the b value

increases (21).
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In papillary carcinomas, the SIRnodule was higher in DWI

images with a b-value of 1500 s/mm2 than in DWI images with

b-values of 500, 1000, 2000 s/mm2. In benign nodules, the SIRnodule

was lower in DWI images with a b-value of 1500 s/mm2 than in

DWI images with b-values of 1000 and 2000 s/mm2. When the b-

value was 1500 s/mm2, the SIRnodule significantly differed between
TABLE 4 Comparison of the SIRnodule values of papillary carcinomas and benign nodules with different b-values (×10−3 s/mm2) in DWI images.

500 1000 1500 2000

Papillary carcinoma 0.61 ± 0.46 0.65 ± 0.80 1.05 ± 0.56 0.80 ± 0.65

Benign nodule 0.68 ± 0.58 0.65 ± 0.86 0.15 ± 0.43 0.10 ± 0.43

P 0.809 0.416 0.008 0.009
DWI, diffusion-weighted imaging; SIR, signal intensity ratio.
B C

D E F

A

FIGURE 4

Images of a 55-year-old female with left lobe nodular goiters (arrow): DWI image with a b-value of 500 s/mm2 (A), 1000 s/mm2 (B), 1500 s/mm2 (D),
2000 s/mm2 (E); (C) ADC image with a b-value of 1500 s/mm2; (F) T2-weighted image. The SNR of the thyroid decreased as the b value increased. In
the DWI image with a b-value of 1500 s/mm2, the SI of the nodule was significantly low relative to the other images.
B C

D E F

A

FIGURE 5

Images of a 49-year-old female with right lobe follicular adenoma (arrow): DWI image with a b-value of 500 s/mm2 (A), 1000 s/mm2 (B), 1500 s/
mm2 (D), 2000 s/mm2 (E); (C) ADC image with a b-value of 1500 s/mm2; (F) T2-weighted image. The SNR of thyroid decreased as the b value
increased. In the DWI image with a b-value of 1500 s/mm2, the SI of the nodule was significantly low relative to the other images.
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thyroid papillary carcinomas and thyroid benign nodules,

suggesting that the SI difference was visible to the naked eye

when the b-value was 1500 s/mm2. In addition, the ROC analysis

with the ADC showed better classification results for b=1500 s/mm2

compared to the remaining b-values. Therefore, 1500 s/mm2 was

the optimal b value for differentiating thyroid papillary carcinomas

and thyroid benign nodules.
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The sharpness of nodules and thyroids decreased as the b value

increased. However, the sharpness of nodules was similar between

images with a b-value of 1000 mm2/s and those with a b-value of

1500 s/mm2, suggesting that 1500 mm2/s maintains good image

quality, which is inconsistent with results from a past study, where b

values ranged from 200 s/mm2 to 800 s/mm2 on 1.5 T MRI, and

worse image quality was noted at high b values (8). This discrepancy
B C

D E F

A

FIGURE 6

Images of a 54-year-old female with left lobe papillary carcinoma (arrow): DWI image with a b-value of 500 s/mm2 (A), 1000 s/mm2 (B), 1500 s/
mm2 (D), 2000 s/mm2 (E); (C) ADC image with a b-value of 1500 s/mm2; (F) T2-weighted image. The SNR of the thyroid decreased as the b value
increased. In the DWI image with a b-value of 1500 s/mm2, the SI of the nodule was significantly high relative to other out images.
B C

D E F

A

FIGURE 7

Images of a 24-year-old female with right lobe micropapillary carcinoma (arrow): DWI image with a b-value of 500 s/mm2 (A), 1000 s/mm2 (B),
1500 s/mm2 (D), 2000 s/mm2 (E); (C) ADC image with a b-value of 1500 s/mm2; (F) T2-weighted image. The SNR of the thyroid decreased as the b
value increased. In the DWI image with a b-value of 1500 s/mm2, the SI of the nodule was significantly high relative to the other images.
TABLE 5 Comparison of the mean ADC values of papillary carcinomas and benign nodules with different b-values (×10−3 s/mm2) in ADC images.

500 1000 1500 2000

Papillary carcinoma
(×10−3 mm2/s)

1.24 ± 0.30 1.03 ± 0.23 0.96 ± 0.24 0.79 ± 0.16

Benign nodule
(×10−3 mm2/s)

2.10 ± 0.55 1.75 ± 0.46 1.46 ± 0.40 1.15 ± 0.31

P 0.003 < 0.001 < 0.001 < 0.001
ADC, apparent diffusion coefficient.
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may be due to the ZOOMit technique, which improves image

quality compared to conventional single-shot echo planar imaging.

In this study, thyroid imaging was performed with a 3.0 T MR

scanner. In past literature, authors highlight the advantages of DWI

on strong magnetic fields machines, which can accurately measure

the ADC values (22). A 16channel surface coil can provide better

image signal-to-noise ratio performance and resolution for the

thyroid, which ensures image quality. Past studies have shown

that ZOOMit-DWI improves image quality compared with

conventional DWI of the prostate, orbit and gallbladder (23–25),

demonstrating that ZOOMit-DWI is a good tool to observe small
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organs. Due to the short scanning time, the relative homogeneity of

signal excitation is increased, and image blurring and distortion are

decreased (12). In this study, excellent image quality performance

was achieved, which also benefited from ZOOMit-DWI. Good

imaging quality is useful for manual ROI definition, which

directly affects measurement results.

In this study, ADC maps were computed based on DWI images

acquired with different b values and reflect the discrimination of

thyroid papillary carcinoma from benign thyroid nodules. All past

studies share one point of view: the diffusion of water molecules is

restricted in malignant tumors, which lead to ADC values decrease,

and the difference in the ADC values is valuable to make the

differential diagnosis between benign and malignant tumors (26).

This study also verified this view. Past studies demonstrated that the

ADC values of malignant nodules was obviously lower than benign

nodules in thyroid (6), which is similar to the results in this study,

where the ADC value of thyroid papillary carcinomas was

significantly lower than that of benign nodules regardless of

whether the b-value was 500, 1000, 1500, or 2000 s/mm2. Papillary

carcinomas have some microscopic features, which include

psammoma bodies, foci of squamous metaplasia, lymphoid

infiltration of the tumor stroma, and a peculiar appearance of

tumor cell nuclei. The microscopic features lead to increased

cellularity and reduced extracellular space (27). In addition, fibrosis

also hampers the diffusion of water molecules to varying degrees (28).

This study has a few limitations. First, different field strengths

were not compared. Second, only four b-values were compared in

this study. In the future, we will narrow the b-value interval for

verification. Finally, the ADC was measured by Siemens Healthcare

equipment. Further research is needed to determine whether the

cutoff value is appropriate for other MRI machines and third-party

postprocessing platforms.

In conclusion, 1500 s/mm2 was a suitable b-value to

differentiate benign and malignant thyroid nodules in ZOOMit-

DWI images, which had better image quality, and a signal difference

was visible to the naked eye.
TABLE 6 Diagnostic performance of the ADC in differentiating between thyroid papillary carcinoma and thyroid benign nodules with different
b-values (×10−3 s/mm2).

b value 500 1000 1500 2000

AUC
(95% CI)

0.888
(0.819-0.957)

0.881
(0.810-0.952)

0.896
(0.828-0.964)

0.871
(0.794-0.947)

Sensitivity
(95% CI)

84.31%
(71.99%-91.83%)

78.43%
(65.37%-87.51%)

86.27%
(74.28%-93.19%)

80.39%
(67.54%-88.98%)

Specificity
(95% CI)

84.37%
(71.49%-91.66%)

89.97%
(78.64%-95.65%)

90.57%
(76.20%-94.38%)

89.99%
(78.64%-95.65%)

Cutoff ADC
(×10−3 s/mm2)

1.47 1.28 1.16 0.93
ADC, apparent diffusion coefficient; AUC, area under the curve; CI, confidence interval.
FIGURE 8

The ROC curve of the ADC with different b-values for predicting a
papillary carcinoma.
TABLE 7 DeLong results for the ADC in predicting thyroid papillary carcinoma with different b-values (×10−3 s/mm2).

500-1000 500-1500 500-2000 1000-1500 1000-2000 1500-2000

P 0.891 0.546 0.399 0.337 0.486 0.006
ADC, apparent diffusion coefficient.
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