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Editorial on the Research Topic

Models in population, community and ecosystem dynamics
When first published, the call for this special topic was left very broad, with the aim to

“welcome models for all significant aspects of population, community and ecosystem

dynamics”. The purpose was to obtain —hopefully— an unbiased instantaneous picture of

the current directions in the field of ecological modelling. As in most fields of science, the

number of publications, methodologies, and models generated in theoretical ecology have

inflated in the very recent decades (Rossberg et al., 2019; Zhang and Wang, 2020), so it was

an interesting exercise, we thought, to see what a sample of voluntary submissions —self-

identified as modelling works by their authors— could provide as a picture of the ongoing

trends and research directions in the field.

As expected, the scope of covered topics was very broad, spanning several of the

classically-studied processes of interest in ecology, from evolutionary dynamics (Wang and

Wang, Fussmann and Kopp) to biogeochemical cycles in ecosystems (Bian and Xia, Zelnik

et al.), while several articles concerned the study of interactions of species with their

environment or with other species (Guo et al., Hooker et al.) trying to develop novel

methods (Lindo et al.), or infuse new paradigms (Dobson et al.).

There was no unifying theme, as expected given the broad scope of the topic. However,

we could detect an underlying concern, shared by a majority of the articles. Bian and Xia

take an explicit look at the propagation of uncertainty from satellite measurements of leaf

area index to estimates of the nitrogen and phosphorus cycles. Dobson et al. speculate

whether the specificities of trees (their longevity, and seasonal productivity) could affect the

relation between the complexity and stability of the associated food web. Fussmann and

Kopp look at populations that witness rapid changes in their environment, questioning the

validity of current reciprocal transplant experiments to assess maladaptation. Guo et al.

look at spatial heterogeneity and how it affects the stability of competition between species.

Hély et al. lay foundation for a novel modelling approach to ecosystem dynamics that

incorporates inherent stochasticity and variability to better predict stable and alternative

stable states. Hooker et al. start from an extensive dataset to disentangle the drivers of

synchrony—and asynchrony— between two species, showing that trophic interactions and
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environmental stochasticity interact in yielding synchrony. Lindo

et al. tackle the issue of stochasticity, offering practical methods for

its inclusion in soil dynamical models. Wang and Wang show how

chaotic dynamics may result in unpredictability, despite the

deterministic evolution of a phenotypic trait. You may have

already understood where we are reaching: all these articles were

concerned with one aspect or another of uncertainty. Whether it is

background noise, stochasticity, heterogeneity, or dynamic stability

(the mirror concept). Only two articles out of the 10, more

classically, tried to ascertain the state of the ecological system at

equilibrium, whether it was microbial decomposition (Manzoni

et al.), or net primary production under nutrient subsidies

(Zelnik et al.).

Coincidence or not, we live in times that are perceived by an

increasing number of people as uncertain. Incoming challenges are

numerous and their complexity hard to fully grasp: the advances of

artificial intelligence (Weiser and Von Krogh, 2023), global security

challenges (Booth and Wheeler, 2023), pandemics (Batty, 2020), the

impending climate breakdown (Barnett, 2023), the absence of

clearcut political projects and effective policies (Turk, 2022), the

looming prospect of a biodiversity collapse (Maechler and Graz,

2022), economic volatility (Ahir et al., 2022), etc.

We will not enter into the otherwise fascinating debate of the

influence of the social context on science (Latour, 1987) or of the

effect in return of ecological theory on society (Bosselman and

Tarlock, 1994; Scoones, 1999). Nor will we resolve the question of

whether ecological paradigms reflect the dominant philosophical

ideas in the contemporaneous society (Simberloff, 1980) or whether

they are rather shaped by pragmatism reflecting the characteristics

of the object they study (Travassos-Britto et al., 2021). What is

certain is that all current research efforts aimed at understanding

and including uncertainty into ecological theories are welcome

and timely.

In conclusion, what have we learnt from the rather limited set of

papers published in this Research Topic on ecological modelling?

Regarding uncertainty, we will take home the variety of practical

methods described that aim at explicitly including e.g., noise and

error propagation (Bian and Xia), demographic and environmental

stochasticity (Lindo et al.), chaotic dynamics in eco-evolutionary

processes (Wang and Wang), and the upscaling of disturbance to a

continental scale (Hély et al.). The articles helped us realize as well

that, rather than being a nuisance to be reduced, uncertainty and
Frontiers in Ecology and Evolution 025
variability is a fundamental component of the functioning of

ecological (Lindo et al.) and evolutionary systems (Fussmann and

Kopp) to be understood and explained (Guo et al., Wang and

Wang, Hooker et al., Dobson et al.). Finally, the works of Manzoni

et al. and Zelnik et al. are here to remind us that a mechanistic

understanding of ecological processes is as necessary as ever, if only

because variability is a process in itself, with mechanisms that

generate it. Variability is so intrinsic to complex ecological

systems (Roy et al., 2020), and multi-scale that a holistic

approach to transcend rather focused studies, such as those

included in this Research Topic, might be the next challenge to

tackle in ecological modelling (Holyoak and Wetzel, 2020).

We hope that the readers of this special topic will find similar

inspiration for their own research from one or several of the

published articles in this Research Topic. As editors, we would be

gratified if our Research Topic pave the way to future contributions

that will help tackle uncertainty in our understanding of the

functioning of ecological systems that are put under incomparable

strain since the establishment of mankind as a major actor in the

biosphere of or planet.
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Intransitive competition, typically represented by the classic rock-paper-

scissors game, provides an endogenous mechanism promoting species

coexistence. As well known, species dispersal and interaction in nature might

occur on complex patch networks, with species interacting in diverse ways.

However, the effects of different interaction modes, combined with spatial

heterogeneity in patch connectivities, have not been well integrated into

our general understanding of how stable coexistence emerges in cyclic

competition. We thus incorporate network heterogeneity into the classic

rock-paper-scissors game, in order to compare ecosystem stability under

two typical modes of interaction: species compete to fill empty sites,

and species seize each other’s colony sites. On lattice-structured regular

networks, the two interaction modes produce similar stability patterns through

forming conspecific clusters to reduce interspecific competition. However,

for heterogeneous networks, the interaction modes have contrasting effects

on ecosystem stability. Specifically, if species compete for colony sites,

increasing network heterogeneity stabilizes competitive dynamics. When

species compete to fill empty sites, an increase in network heterogeneity

leads to larger population fluctuations and therefore a higher risk of stochastic

extinctions, in stark contrast to current knowledge. Our findings strongly

suggest that particular attention should be devoted to testing which mode

of interaction is more appropriate for modeling a given system.

KEYWORDS

competitive intransitivity, cyclically competing ecosystems, dispersal network
heterogeneity, ecosystem stability, rock-paper-scissors games

Frontiers in Ecology and Evolution 01 frontiersin.org

7

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/journals/ecology-and-evolution#editorial-board
https://www.frontiersin.org/journals/ecology-and-evolution#editorial-board
https://doi.org/10.3389/fevo.2022.1068830
http://crossmark.crossref.org/dialog/?doi=10.3389/fevo.2022.1068830&domain=pdf&date_stamp=2022-11-10
https://doi.org/10.3389/fevo.2022.1068830
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fevo.2022.1068830/full
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/


fevo-10-1068830 November 5, 2022 Time: 15:23 # 2

Guo et al. 10.3389/fevo.2022.1068830

Introduction

Understanding the mechanisms of ecosystem stability
is a fundamental issue in ecology (May, 1972; Chesson,
2000; Levine and HilleRisLambers, 2009; Allesina and Levine,
2011). Many proposed mechanisms rely heavily on exogenous
factors mitigating the effects of competition, such as niche
differentiation (Chesson, 2000; Levine and HilleRisLambers,
2009; Chu and Adler, 2015) and intermediate disturbance
hypothesis (Connell, 1978; Roxburgh et al., 2004; Liao et al.,
2022). In contrast to these exogenous mechanisms, intransitive
competition provides an endogenous mechanism promoting
coexistence (Laird and Schamp, 2006; Allesina and Levine, 2011;
Soliveres et al., 2015; Levine et al., 2017), and, in particular,
the simple rock-paper-scissors game has become a typical case
to explain ecosystem stability (Huisman and Weissing, 1999;
Kerr et al., 2002; Reichenbach et al., 2007). The classic, cyclic
game of rock-paper-scissors usually leads to species’ abundances
neutrally cycling without converging to a stable equilibrium
point, which is rarely observed in nature. To overcome this
problem, many approaches have been proposed to explain the
robust persistence of the cyclically competing system, such
as higher-order interactions (Grilli et al., 2017) and spatially
structured interactions (Durrett and Levin, 1997; Czárán et al.,
2002; Rojas-Echenique and Allesina, 2011; Calleja-Solanas et al.,
2021; Zhang et al., 2022). In particular, the latter mechanism
of local structured interactions stabilizing coexistence has been
documented experimentally (Kerr et al., 2002). Thus, it is
widely believed that the inclusion of spatial structure, where
the interactions and dispersal of individuals are local, can result
in stable coexistence in rock-paper-scissors games. Yet, these
conclusions are mostly drawn from lattice-based models, where
each individual is assumed to only interact with its surrounding
neighbors. This assumption is relatively restrictive, as species
dispersal and interactions in nature might occur on complex
networks with variation in patch connectivities (i.e., spatial
heterogeneity in dispersal networks; Urban and Keitt, 2001;
Fortuna et al., 2006; Dale and Fortin, 2010; Galpern et al., 2011;
Grilli et al., 2015; Fortin et al., 2021; He et al., 2021; Li et al., 2021;
Zhang et al., 2021).

There is abundant evidence that landscape structure, and
other factors (e.g., patch quality; Liao et al., 2013), can result
in anisotropic (i.e., directionally biased) dispersal behavior and
therefore spatial heterogeneity in patch connectivities (Urban
and Keitt, 2001; Fortuna et al., 2006; Dale and Fortin, 2010;
Galpern et al., 2011; Grilli et al., 2015; Fortin et al., 2021; He
et al., 2021). Since different patches in the landscape might
be perceived differently by species (Hansbauer et al., 2010;
Dondina et al., 2018), and the resulting dispersal network
would display diverse patterns of patch connectivity (Yeaton
and Bond, 1991; Bunn et al., 2000; Nicholson and Possingham,
2006; Fortuna et al., 2009; Bearup et al., 2013; Hirt et al., 2018;
Germain et al., 2019). For instance, species dispersal between

sub-reefs within the Great Barrier Reef has been characterized
with scale-free networks (Kininmonth et al., 2010), while seed
dispersal by birds, as opposed by winds, is better described by an
irregular network than a spatially uniform network. In addition,
Fortuna et al. (2006) identified a large spatial dispersal network
of temporary ponds, which are used as breeding sites for
amphibian species, following a power-law degree distribution.
As such, there has been an increasing interest in exploring the
effects of network heterogeneity on ecosystem stability using
graph theory (Szabó et al., 2004; Szolnoki and Szabó, 2004;
Masuda and Konno, 2006; Dale and Fortin, 2010; Schütt and
Claussen, 2010; Galpern et al., 2011; Laird, 2014; Nagatani et al.,
2018; Fortin et al., 2021; He et al., 2021; Zhang et al., 2021). Many
studies have found that increasing network heterogeneity (i.e.,
increasing variation in patch connectivities) can promote stable
coexistence in cyclic competition (Masuda and Konno, 2006;
Schütt and Claussen, 2010; Nagatani et al., 2018).

Despite these advances, several lattice-based models (Laird
and Schamp, 2008; Rojas-Echenique and Allesina, 2011; Zhang
et al., 2022) have observed that local intransitive competition can
reduce species coexistence compared to long-range competition,
in stark contrast to current knowledge of local interactions
stabilizing coexistence (Durrett and Levin, 1997; Huisman and
Weissing, 1999; Czárán et al., 2002; Kerr et al., 2002; Calleja-
Solanas et al., 2021). Rojas-Echenique and Allesina (2011)
and Zhang et al. (2022) attributed the opposite outcomes
to different interaction modes, which can induce distinct
stabilizing mechanisms in lattice-structured models. Indeed,
species in diverse natural ecosystems might interact in different
ways. For example, there are two typical interaction modes often
observed in nature: seedlings of tree species or propagules of
grass species compete to fill gaps, while animal species fight
directly for colony sites (Rojas-Echenique and Allesina, 2011;
Calleja-Solanas et al., 2021; Zhang et al., 2022). However, the
effects of these different interaction modes, in combination with
spatial heterogeneity in dispersal networks mentioned above,
have not been well integrated into our general understanding
of how stable coexistence emerges in cyclic competition. In
this study, we thus incorporate dispersal network heterogeneity
into the classic rock-paper-scissors games, in order to make
a comparative analysis of ecosystem stability between the two
typical interaction modes.

Materials and methods

Dispersal network heterogeneity

We consider a landscape consisting of a finite number (N)
of patches (so-called colony sites), with each accommodating
only one individual (or a subpopulation) of a species. In the
landscape, individuals can move and interact between patches
only along a predefined set of dispersal pathways. This shapes
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a dispersal network, with patches and dispersal pathways being
represented by network nodes and links, respectively. To model
the effect of spatial heterogeneity in dispersal networks (with
fixed average patch degree k 4), we generate four typical network
structures with contrasting heterogeneities (i.e., the extent of
variation in patch connectivities):

(1) A lattice-structured regular network with all patches having
the same degree (illustrated in Figure 1A with each patch
linked to other four patches).

(2) A randomly structured network with randomly connected
patches (Watts and Strogatz, 1998), yielding small variation
in patch degrees (Figure 1B).

(3) An exponential network constructed based on the
algorithm of random attachment (Barabási and Albert,
1999). This produces a greater variation in patch
connectivities than the random network (Figure 1C).

(4) A scale-free network structured according to the algorithm
of preferential attachment (Barabási and Albert, 1999),
producing the highest variation in patch connectivities
(Figure 1D).

In these networks, species are assumed to use
dispersal links in either direction without preference (i.e.,
undirected dispersal).

Two typical interaction modes

We consider a system of three cyclically competing species
on a landscape of size N = 10,000 patches connected by dispersal
networks. Each patch can only accommodate one individual
of a species. The competitive relationships between these three
species (i, j, and k) follow the rock-paper-scissors game, an
example of intransitive competition which usually yields species
coexistence with oscillations (Grilli et al., 2017; Li et al., 2020).

To focus solely on the effect of species competition on
ecosystem stability, we perform simulations as follows: (i)
according to the typical assumption in previous work (Masuda
and Konno, 2006; Rojas-Echenique and Allesina, 2011; Grilli
et al., 2017; Nagatani et al., 2018; Calleja-Solanas et al., 2021;
Zhang et al., 2022), initially all patches are populated with
individuals randomly drawn from the three species; (ii) in
each time step, we perform a competition event using the two
interaction modes specified below; (iii) we repeat step (ii) for a
long time, finding that 1,000 generations (1 generation = 10,000
time steps at N = 10,000 patches) are sufficient for the system to
achieve steady state; (iv) at steady state, we record the number
of individuals for each species and the spatial patterns at every
generation.

In this study, we consider two interaction modes separately
in the simulations.

Mode 1: Similar to Grilli et al. (2017) and Calleja-Solanas
et al. (2021), in each time step, we randomly select a focal
individual (with probability 1/N in the whole network) to die,
and immediately choose two individuals randomly from its
directly linked neighbors for pairwise competition, with the
offspring of the winner occupying this empty patch. If the two
individuals belong to the same species, then this species directly
occupies the empty patch. If there is only one neighbor for the
empty patch, then it is occupied directly by this neighbor.

Mode 2: Similar to Rojas-Echenique and Allesina (2011),
in each time step, we randomly select two directly linked
individuals for competition, with the offspring of the superior
competitor substituting the inferior one (otherwise keeping the
original state).

Under these two different interaction modes, we firstly
explore how increasing network heterogeneity affects ecosystem
stability in classic rock-paper-scissors games, and then test
whether these outcomes are robust to varying network size.

Results

We begin our analysis by inspecting the temporal evolution
of species abundances (Figure 2). When species compete to
fill an empty patch (Mode 1), increasing network heterogeneity
(from lattice-structured regular to scale-free networks) increases
the magnitude of population fluctuations and speeds up
stochastic species extinctions. In contrast, if the superior
competitor directly substitutes the inferior one (Mode 2), all
three species can coexist, and the magnitude of population
fluctuations around the equilibrium point (≈1/3) decreases as
network heterogeneity increases. In lattice-structured regular
networks, both interaction modes yield similar fluctuation size
(Figure 2A vs. Figure 2E with different ranges of y-axis).
This is more clear when looking at their dynamic trajectories
(Figure 2I vs. Figure 2M). In these dynamic trajectories
(Figures 2I–P), the abundances of the species at each generation
represent a point in the 3-simplex, whose vertices correspond
to a monospecific population. Over time, the point follows a
trajectory which will reflect the state of the system. If the system
is close to the equilibrium abundances, the trajectory eventually
occupies a small area near it, whilst larger fluctuations cover
larger areas. Similar to Figures 2A–H, the interaction mode 1
results in greater fluctuations and ultimately monoculture in
more heterogeneous networks (Figures 2I–L), as opposed to
the interaction mode 2 where ecosystems are more stable in
networks with higher heterogeneity.

To test whether these outcomes are robust, we simulate 20
replicates for each case, by regenerating the dispersal network
in each replicate (Figure 3). In Mode 1, three species can
coexist with oscillations around the equilibrium point in the
lattice-structured regular network (see Figure 2A), unlike other
three heterogeneous networks where only one species ultimately
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FIGURE 1

Four typical network structures consisting of 100 patches (red nodes) with 200 links (green lines): (A) lattice-structured regular, (B) randomly
connected, (C) exponential, and (D) scale-free networks. Variation in patch degree (proportional to node size) increases from left to right panels.

FIGURE 2

(A–H) Dynamics of species abundances of a rock-paper-scissors system (with 1,000 generations = 1 × 107 time steps) in complex networks of
size N = 104 nodes with 2 × 104 links (average patch degree k 4), including lattice-structured regular, randomly connected, exponential and
scale-free networks. Two interaction modes are considered: (Mode 1) species compete to fill empty patches; and (Mode 2) species seize each
other’s patches. (I–P) Trajectories in the phase space represented by the 3-simplex, corresponding to the dynamics in panels (A–H). The color
bar represents time evolution (generations). Oscillations around the equilibrium point cover a smaller area, indicating a more stable ecosystem.

dominates the system (Figure 3A). As such, the outcome in
the regular network is absent in Figure 3A. In other three
heterogeneous networks, we record the extinction time of the
first species in each replicate, with more time required for
species extinction implying more stable coexistence. As shown

in Figure 3A, increasing network heterogeneity generally leads
to species going extinct sooner. In Mode 2, all species can
coexist with fluctuations around the equilibrium point in all
dispersal networks. Thus, we use variation in fluctuations size
(C.V. around the mean species abundances at steady state)
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FIGURE 3

Box plots (red) of ecosystem stability (with 20 replicates for each case, indicated by gray cycles), characterized by panel (A: Mode 1) the time
(generations) required for the first species to go extinct if stochastic extinctions occur, or (B: Mode 2) coefficient of variation in fluctuations size
(C.V. around the mean species abundances at steady state) if three species can coexist. Again, four typical network structures are included:
lattice-structured regular, randomly connected, exponential and scale-free networks. Note that, under Mode 1, three species can coexist in the
regular network (see Figure 2A), which is thus absent in panel (A). More time required for species extinction or lower values of C.V. implies more
stable coexistence. Other settings are the same as in Figure 2.

to characterize ecosystem stability, with lower values of C.V.
indicating more stable coexistence. As shown in Figure 3B,
an increase in network heterogeneity generally results in
smaller fluctuations in species abundances, yielding a more
stable system. These outcomes further confirm our previous
conclusions in Figure 2.

To better understand the mechanisms behind these dynamic
behaviors, we display several snapshots of the spatial patterns
of the three competitors in complex networks (Figure 4). In
the lattice-structured regular network, both interaction modes
produce similar conspecific clumping patterns (Figures 4A,B).
To clearly illustrate the spatial organization in dispersal
networks with contrasting heterogeneities, we take a system
of N = 100 patches for example by displaying their snapshots
at the 5th generation in Mode 1 and the 20th generation in
Mode 2 (Figures 4C–J). In Mode 1 (Figures 4C–F), when three
species have almost equal abundance in the regular network,
increasing network heterogeneity which tends to increase
network modularity, enlarges differences in species abundances,
most likely accelerating stochastic extinctions. In Mode 2
(Figures 4G–J), if three species have unequal abundances in the
regular network, dispersal network heterogeneity (i.e., network
modularity) acts as a driving force to equalize their abundances,
thereby stabilizing the ecosystem. We also observe that species
can form self-organized conspecific clusters with the most
connected patches at the core in these heterogeneous networks.

Under both interaction modes, we finally focus on how
system size (i.e., increasing network size) affects fluctuations in
species abundance in networks with contrasting heterogeneities
(Figure 5). Intuitively, increasing network size promotes
ecosystem stability, regardless of interaction mode and network

heterogeneity. Specifically, stochastic extinctions in Mode 1
require more time to occur as network size increases, especially
in networks with less heterogeneity (Figure 5A). This also
demonstrates that increasing network heterogeneity greatly
destabilizes the system. In Mode 2, the size of population
fluctuation declines linearly with increasing network size (with
log-log scale in Figure 5B), thereby promoting ecosystem
stability. Furthermore, increasing network heterogeneity leads
to smaller fluctuations, further confirming that network
heterogeneity can stabilize the cyclically competing system.

Discussion

Incorporating complex networks into the classic
rock-paper-scissors game, we find that whether network
heterogeneity can stabilize competitive dynamics depends on
the interaction mode. Specifically, if species compete directly
for colony sites, increasing spatial heterogeneity in dispersal
networks stabilizes the cyclically competing ecosystems, further
confirming previous theoretical arguments (Masuda and
Konno, 2006; Schütt and Claussen, 2010; Nagatani et al., 2018).
In contrast, when species compete to fill an empty site, an
increase in network heterogeneity leads to stronger population
fluctuations and thus increases the risk of stochastic extinctions.
Interestingly, in the lattice-structured regular network, both
interaction modes display similar coexistence patterns based
on the same mechanism: local interactions allow species to
survive by forming conspecific clusters (via self-organization)
where interspecific competition only takes place at the borders
between heterospecific clusters, thereby decreasing the effective
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FIGURE 4

(A,B) Snapshots of the spatial organization of a 3-species system in rock-paper-scissors games at the 1000th generation in the
lattice-structured regular network of size N = 104 patches with average degree k 4 under Modes 1 & 2. Individuals of each species are painted
in a different color. (C–J) Snapshots of the spatial patterns of the three species under Modes 1 & 2. (C–F) Mode 1 at the 5th generation; (G–J)
Mode 2 at the 20th generation) in different networks (lattice-structured regular, randomly connected, exponential, and scale-free) of small size
N = 100 patches (with k 4) for clarity.

FIGURE 5

Effect of network size (N) on ecosystem stability under Modes 1 & 2 in networks with contrasting heterogeneities, including lattice-structured
regular, randomly connected, exponential, and scale-free networks (each dot represents the mean of 20 replicates). Stability is characterized by
panel (A: Mode 1) the time (generations) required for the first species going extinct, or (B: Mode 2) the coefficient of variation (C.V.) in
fluctuations size around the mean species abundances at steady state. More time required for species extinction or lower values of C.V.
indicates a more stable system.
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interspecific competition (by reducing interspecific encounter
rate) and therefore population fluctuations (Figures 4A,B).

There exist different mechanisms between the two
interaction modes that induce contrasting effects of network
heterogeneity on ecosystem stability. In our model, the
stabilizing role of network heterogeneity is observed when
competition occurs through the superior competitor displacing
the inferior one in a randomly chosen pair of neighbors.
This competition mode has been commonly used and is
symmetric in a cyclical way. However, increasing variation
in patch connectivities implies that a few patches are highly
connected while most have only few connections. A patch with
more connections is more likely to be selected as a neighbor,
while another neighbor can be sampled from multiple patches
that might accommodate any of the three species. As such,
which species can occupy this highly connected patch will
change more frequently in networks with higher heterogeneity.
To some extent, this prohibits the growth of self-organized
conspecific clusters with the most connected patches at the
core. In fact, increasing network heterogeneity breaks the
symmetry in species interactions, that is, those individuals in
highly connected patches have a higher chance to participate
in competition than other individuals in poorly connected
patches. This results in asymmetric interactions that can
produce negative frequency dependence (NFD) which is absent
in symmetric interactions (Rojas-Echenique and Allesina,
2011). Specifically, the NFD can decrease the average fitness
of individuals when they become more common (cf. Zhang
et al., 2022). Thus, the NFD, which is more significant in more
heterogeneous networks, can suppress the population growth
of dominant species but promote the growth of rare species,
thereby increasing the frequency of oscillations and stabilizing
competitive dynamics.

Network heterogeneity is destabilizing for the interaction
mode where species compete for an empty site. This is because,
in this mode, each species has the same probability to be selected
to die, regardless of patch connectivities, so NFD cannot emerge.
As such, conspecific clusters, with highly connected patches at
the core, can grow (via self-organization) without restriction
especially in networks with higher heterogeneity. Within these
conspecific clusters, a competition event does not contribute
to variation in species abundance, as local competition occurs
between conspecific individuals. Thus, changes in species
abundances can only take place along the borders between
heterospecific clusters. However, the length of these borders
increases more rapidly in more heterogeneous networks (i.e.,
a rapid increase in the number of “active” individuals that
can change the state at the borders), promoting interspecific
encounter rate and therefore interspecific competition. In
addition, these heterospecific clusters can be treated as
compartments dominated by different species, but there are
lots of links connecting these compartments. If a superior
competitor invades a compartment dominated by an inferior

one, then it can colonize this compartment via the highly
connected core. Ultimately, this results in larger population
fluctuations and makes stochastic extinction events more likely.

This study incorporates complex networks into the rock-
paper-scissors game under two commonly observed modes
of interaction. In the lattice-structured regular network,
both interaction modes yield similar system stability through
forming conspecific clusters to reduce interspecific competition
(Figure 4A vs. Figure 4B). Interestingly, we find that the
inclusion of network heterogeneity can induce contrasting
coexistence patterns between the two interaction modes, due
to different mechanisms as explained above. This strongly
suggests that particular attention should be devoted to testing,
theoretically and experimentally, which mode of interaction is
more appropriate for modeling a given competing system. For
example, whereas the death of a tree or grass creates a gap in
plant communities (i.e., Mode 1), animal species more typically
fight for territory (i.e., Mode 2). Thus, these communities
should be modeled with different interaction modes and so
can be expected to be affected differently by the structure of
the landscape they inhabit. Overall, even if these outcomes are
obtained using an extremely simplified model, our findings
can help identify different mechanisms to explain the role of
different interaction modes in stabilizing competitive dynamics
in complex networks with contrasting heterogeneities.
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Recent theoretical studies have identified chaotic dynamics in eco-

evolutionary models. Yet, empirical evidence for eco-evolutionary chaos in

natural ecosystems is lacking. In this study, we combine analyses of empirical

data and an eco-evolutionary model to uncover chaotic dynamics of body

length in a fish population (northeast Arctic cod: Gadus morhua). Consistent

with chaotic attractors, the largest Lyapunov exponent (LE) of empirical data

is positive, and approximately matches the LE of the model calculation, thus

suggesting the potential for chaotic dynamics in this fish population. We

also find that the autocorrelation function (ACF) of both empirical data and

eco-evolutionary model shows a similar lag of approximately 7 years. Our

combined analyses of natural time series and mathematical models suggest

that chaotic dynamics of a phenotypic trait may be driven by trait evolution.

This finding supports a growing theory that eco-evolutionary feedbacks can

produce chaotic dynamics.

KEYWORDS

eco-evolutionary dynamics, chaos, fish body length, genetic variation,
autocorrelation function, predictability

Introduction

One of the main questions in evolutionary biology is how ecological interactions
affect the phenotypic trait evolution of species (Thompson, 2005). Variation in
phenotypic traits (e.g., body size, behavior, morphology, and physiology) are a common
feature in natural populations and phenotypic traits can evolve in natural environments
(Coulson et al., 2011; Hanski, 2011; Agrawal et al., 2013). Mutual adaptation induced
by ecological interactions; that is, coevolution, can shape the adaptive peaks of pairs
of associated species (Guimarães et al., 2017). Moreover, selection caused by ecological
interactions can even affect the dynamics of whole ecological systems (Koskella
and Brockhurst, 2015) and accelerate the adaptation process of natural population
(Galetti et al., 2013). These ecological and evolutionary interactions are critical to the
structure and functioning of biodiversity (Ehrlich and Raven, 1964; Thompson, 2005).
Hence, understanding how ecological interactions shape biodiversity will determine
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how coevolution acts on associated species (Iwao and Rausher,
1997; Parchman and Benkman, 2002; Ridenhour, 2005;
Thompson et al., 2013).

The interplay of ecological and evolutionary dynamics has
been an increasingly active area of research (Schoener, 2011;
Koch et al., 2014). To this end, one of the most important
areas of research is the long-term predictability of evolution
(Green, 1991; Kauffman and Johnsen, 1991; Ferriere and Fox,
1995), where recent theoretical work has focused on the chaotic
properties of ecological and evolutionary processes (Dercole
et al., 2010; Schreiber et al., 2011; Gilpin and Feldman, 2017).
For example, Dercole et al. (2010) coupled an evolutionary
equation to a food chain model and found that coevolution
can drive the population size to oscillate at the edge of chaos.
Gilpin and Feldman (2017) showed that an even simple two-
species predator-prey model could give chaotic dynamics when
evolution was included in the model. Schreiber et al. (2011)
established an eco-evolutionary model showing how predator
trait variation affects the trait value of prey, showing that
rapid evolution of a polyphagous predator may generate chaotic
dynamics due to eco-evolutionary feedbacks. Some researchers
have also explored chaotic dynamics of multidimensional
phenotypic traits and considered the effects of high-order
interactions (e.g., the rate of phenotype x change with time
(dx/dt) is affected by the x3 term) on the rate of traits change
with time, with the aim of analyzing the unpredictability of
long-term evolution under high-order coupling (Doebeli and
Ispolatov, 2014; Rego-Costa et al., 2018).

It is important to note that proving if eco-evolutionary
feedbacks can lead to chaotic dynamics is a daunting task, and
the empirical evidence for chaos in phenotypic traits are rare.
This lack of evidence may be primarily due to the absence
of long time series data on phenotypic traits. Interestingly,
body size–a vital phenotypic trait–is also well known to be
a major player in the dynamics and stability of interactions
and here some longer time series exist (De Roos et al., 2003;
Rooney et al., 2010; Heckmann et al., 2012; Delong et al.,
2015). For example, Delong et al. (2015) analyzed the interaction
between body size and trophic cascades, and found that the
loss of larger predators have greater consequences on trophic
control and biomass structure than smaller predators. Rooney
et al. (2010) systematically analyzed the inner property of two
food webs–the Cantabrian Sea Shelf marine and the Central
Plains Experimental Range (CPER) shortgrass prairie soil. They
found that biomass turnover rates (Production: Biomass ratio)
decrease with increasing body size and larger organisms tend
to have higher trophic positions. Heckmann et al. (2012) used
a bioenergetics approach to analyze the interplay of body-size
structure and adaptive foraging of consumers, and they found
that stronger body-size structures (i.e., species on higher trophic
levels have larger body masses than species on lower levels)
and faster adaptation stabilize food webs. De Roos et al. (2003)
synthesized research about population dynamics and body size

dependence in individual life history, and they found that body
size generally leads to population cycles driven by differences in
competitiveness of differently sized individuals. Given that body
size has been identified as important in mediating dynamical
outcomes, it is surprising that no research has investigated eco-
evolutionary dynamical properties (e.g., chaos) in the body size.

All of the previously mentioned research has shown that
body size affects population dynamics and food web stability.
Consistent with this, recent macroecological results found
that body size from aquatic ecosystems (composed of smaller
body-sized organisms) were less stable (a higher coefficient
of variation) than wetland and terrestrial organisms (Rip and
McCann, 2011). At the same time, for freshwater fish, recent
work showed that the linear correlation between community
biomass and mean body mass was not significant (Hatton
et al., 2015). However, due to the influence of eco-evolutionary
feedbacks (Ferriere and Legendre, 2013), we speculate that there
is a non-linear correlation between community biomass and
body mass. One well-known mechanism for eco-evolutionary
feedbacks that may play a potent role in fish population
dynamics is fisheries-induced evolution, which has been
significant and ubiquitous in harvested ecosystems (Olsen
et al., 2004; Jørgensen et al., 2007). Empirical data of a single
fish population has found that body length of different ages
can yield cyclic dynamics over time (Eikeset et al., 2016),
it remains unknown whether these potentially and rapidly
evolution induced evolutionary feedback can have chaotic
properties or not.

In practice, the Lyapunov exponent (LE) is a classical
method to characterize the chaotic nature of real and model
ecosystems (Li et al., 2020; Rogers et al., 2022), and two
approaches have been used to compute the LE: direct estimation
and Jacobian/indirect estimation. On the one hand, the direct
approach uses the definition to estimate LE from the data by
measuring the divergence rate of the nearest neighbors over a
finite time horizon (Rosenstein et al., 1993). In ecology, this
approach is mainly used to describe the results of experimental
systems (Becks et al., 2005; Graham et al., 2007; Benincà
et al., 2008; Kosuta et al., 2008; Becks and Arndt, 2013; Wang
et al., 2019). On the other hand, the Jacobian/indirect approach
requires fitting a delayed embedding model (with embedding
dimension and lag) to the available time series and calculating
the LE from the Jacobian matrix of the model (Nychka et al.,
1992). A variety of methods may be used to estimate unknown
model frameworks, such as generalized additive models (GAMs)
(Benincà et al., 2015), neural networks (Ellner and Turchin,
1995), local linear regression (Sugihara, 1994), and non-linear
local LE (Li and Ding, 2022). In particular, to accurately predict
the model framework of empirical data, the Jacobian/indirect
method usually requires the incorporation of abiotic factors
(e.g., temperature) into the system, which inevitably increases
the data quality requirements.
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In what follows, we use a biologically plausible eco-
evolutionary model to study the relationship between a
phenotypic trait (body length) and population biomass. We
first examine dynamical properties of body length based on
the direct LE estimation to reveal evidence of underlying
oscillations [via autocorrelation function (ACF)] and chaotic
dynamics (via attractor reconstruction) of the phenotypic trait
in a natural time series. Second, we explore a relatively simple,
yet plausible, theoretical eco-evolutionary model with body
length as a trait, that shows similar dynamical signatures and
chaos. Our results suggest that potential for eco-evolutionary
dynamics. We answer two vital problems: how phenotypic trait
affects population dynamics and system stability; and whether
changes in the magnitude of genetic variation in body length can
drive eco-evolutionary chaos (chaotic dynamics in ecological
and evolutionary processes) in fish population dynamics. Our
work supports a growing theory that eco-evolutionary feedbacks
can produce chaotic dynamics.

Materials and methods

Time series data

We used a previously published time series data set (Eikeset
et al., 2016) on the body length of the northeast Arctic cod
(Gadus morhua), to study the dynamics of a phenotypic trait.
The data set consists of mean body length for different age
stages (age 3–12 years) of the population from year 1946 to
2004 (Supplementary Figure 1). The original data set includes
body length for all 10 age stages. For simplicity, the data set was
divided into three broader age classes: age class I (age 3–5), age
class II (age 6–9), and age class III (age 10–12). Each class has a
different competition (compete for the shared resources) ability
and reproductive (egg supply) rate per biomass. We assume
that cod of the age class I has the lowest competition ability
(characterized by the maximal attack rate) and reproductive
rate, the age class II has a moderate level, and the age class
III has a high level; we assume that three age classes have
low, moderate, and high growth potential in body length (see
Table 1), respectively. In each age class, means of body length
were calculated. Finally, to facilitate data analysis, three time
series were transformed by a square-root power transformation
to suppress sharp peaks.

Phase space reconstruction of body
length

For the empirical data, we employed a state-space
reconstruction (i.e., we reconstructed the multidimensional
dynamics of each body length class, using the body length time
series) (Takens, 1981; Becks et al., 2005; Benincà et al., 2008;
Wang et al., 2019; Dakos, 2020). To this end, the C–C method

(Kim et al., 1999), which is useful for smaller data sets, was first
used to calculate the time delay (τ) of each time series. Second,
combined with the time delay (τ), the Grassberger–Procaccia
(G–P) method was used to calculate the embedding dimension
(m) (Grassberger and Procaccia, 1983). Third, by combining τ

and m, the largest LE of each time series was derived (Wolf
et al., 1985); moreover, in order to distinguish whether chaos is
driven by external environmental noise or endogenous factors,
we use wdencmp function (Donoho et al., 1995) to filter out
the environmental noise of empirical data and re-calculate the
largest LE of body length (see Supplementary Figure 2 and
simulation codes in Supplementary material). Notably, the
system has chaotic dynamics only if the Lyapunov exponent is
larger than zero. The Lyapunov exponent quantifies the rate of
exponential divergence (or convergence) of nearby trajectories
(Strogatz, 1994), and a positive LE indicates chaos where the
magnitude of LE effectively measures the system sensitivity to
initial conditions.

Eco-evolutionary model

Different with the attractor reconstruction approach, we
combine ecological processes (consumer-resource dynamics)
with evolutionary processes (phenotypic trait dynamics) to
simulate the complex dynamics in fish populations.

The time series data show that fish in the different age
stages have different body lengths (Supplementary Figure 1).
Different with early age-structured consumer-resource models
(Schreiber and Rudolf, 2008; Nilsson et al., 2018), in this
study, 10 ages are divided into three age classes (mean,
body, and length), under the biologically plausible assumptions
(i.e., different maximal attack rate and reproductive rate
in Table 1) of each age class, the system is similar to a
multi-species consumer-resource system. Here, we establish
a bioenergetic consumer-resource model (McCann, 1998)
to include phenotypic representations of quantitative trait
evolution (Cortez, 2016, 2018; McPeek, 2017; Yamamichi and
Letten, 2021). The model can be written as:

dR
dt
= R

(
r (SR)− αR−

x1(SR, S1)C1
1+ x1(SR, S1) h1R

−
x2(SR, S2)C2

1+ x2(SR, S2) h2R
−

x3 (SR, S3)C3

1+ x3 (SR, S3) h3R

)
(1.1)

dCi

dt
=
(
−di (Si)− δiai

)
Ci + gi

xi(SR, Si)CiR
1+ xi(SR, Si) hiR

+ XiYi

(1.2)

dJi
dt
= biCi − Ji

dJi + dJD
n=3∑
j=1

Jj

 (1.3)

dSi
dt
= Vi

(
−

∂di (Si)
∂Si

+ gi
R ∂xi(SR,Si)

∂Si(
1+ xi(SR, Si) hiR

)2

)
(1.4)
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dSR
dt
= V4

(
∂r (SR)
∂SR

−
C1

∂x1(SR,S1)
∂SR

1+ x1(SR, S1) h1R

−
C2

∂x2(SR,S2)
∂SR

1+ x2(SR, S2) h2R
−

C3
∂x3(SR,S3)

∂SR
1+ x3 (SR, S3) h3R

)
(1.5)

Where i= 1, 2, 3, and

Xi =
(W1 −W2) (1− e−kiτi)3

+W2

W2
(1.6)

Yi =
e−dJiτiδidJi

∑n=3
j=1 Jj

2
(
dJD

(
1− e−dJiτi

)
δi
∑n=3

j=1 Jj + dJi
) . (1.7)

The state variable R is the resource biomass; Ci, Ji, and
Si are the biomass, egg biomass and body length of fish in
age class i, respectively; SR is the body length of the resource
fish. Equations (1.1–1.3) represent biomass dynamics and Eqs
(1.4, 1.5) represent trait dynamics, where dSi

dt = Vi
∂

∂Si

[
dCi/dt
Ci

]
and dSR

dt = VR
∂

∂SR

[
dR/dt
R

]
. Here we assume that selection is

frequency-dependent in both the resource (R) and consumers
(Ci). τi is the maturation time for all individuals in a consumer
population (McCann, 1998). Yi is Beverton–Holt recruitment of
age class i based on reproductive effort τi years ago and Xi is the
growth of surviving recruits over τi, in which growth follows a
Bertalanffy function (McCann, 1998). We assume the resource
fish shows logistic growth: r is the intrinsic rate of increase of
the resource, α is the intraspecific competition coefficient for the
resource; Moreover, we use Holling type-II functional response
to show predation terms: xi and hi are the attack rate and
handling time of fish in age class i on the resource, respectively;
di is the instantaneous rate of mortality of fish in age class

i; δi is the instantaneous rate of reproductive energy invested
into offspring for fish in age class i; ai is the conversion costs
of production of soma to gonadal tissue; gi is the conversion
efficiency of prey biomass into adult biomass; bi is the egg supply
rate of fish in age class i; dJi is density-independent egg mortality
rate; dJD is egg mortality related to egg density dependence;
ki is the rate of fish growth; W1 is the asymptotic mass; and
W2 is the mass of an individual egg; both Vi and V4 are the
genetic variation of body length Si and SR, respectively; a higher
value of the genetic variation means a faster speed of evolution.
Finally, based on the relationship among resource and fish,
similar to the early theoretical approach (Dercole et al., 2010),
trait dependencies are modeled using the following functional
forms:

xi = xi (Si, SR) = xi0exp

[
−

(
Si − wi0

ei

)2
+ 2li

Si − wi0

ei

·
SR − w40

fi
−

(
SR − w40

fi

)2
]

(1.8)

r = r (SR) = r0
(
1− r1(SR − w40)

2) (1.9)

di = di (Si) = di0
(
1+mi(Si − wi0)

2) (1.10)

Wherewi0 (i= 1, 2, 3) is the optimal trait values. r0, r1, xi0, ei,
li, fi, di0, and mi are all positive. The growth rate r is maximum
at SR = w40, where the growth of the resource is best adapted
to its environment. The attack rate xi is maximum at Si = wi0

and SR = w40 when the body length of cod matches with the
prey fish. The mortality di of a fish in age class i is minimum
at Si = wi0.

TABLE 1 Parameters used in the eco-evolutionary model.

Par. Description Value Par. Description Value

α Density dependence coefficient 0.35 r0 Maximal intrinsic rate 1.726

hi Handling time 0.06; 0.04; 0.03 wi0 Optimal trait value of Si 2.3; 2.5; 2.7

δi Instantaneous rate of
reproductive energy invested
into offspring

0.073; 0.099; 0.2 xi0 Maximal attack rate 15.58; 23.37; 31.16

ai Conversion costs 1.326 ei Scale coefficient 1

gi Conversion efficiency 0.7; 0.924; 0.675 Vi Genetic variation of Si V1 varies [0, 1]; 0.6;
0.65

bi Egg supply rate 0.3; 0.4; 0.5 li Scale coefficient 1; 1.5; 1.2

τi Maturation time 2.5; 2.7; 3.5 di0 Minimal instantaneous rate of
mortality

0.8; 2.5; 3.6

ki Growth rate 0.5; 0.3; 0.2 mi Scale coefficient 0.03; 0.04; 0.05

dJi Density-independent egg
mortality

0.24 r1 Scale coefficient 0.165

dJD Mortality related to egg density
dependence

10 w40 Optimal trait value of SR 2.1

W1 Asymptotic mass 40 fi Scale coefficient 1

W2 Individual egg mass 0.29 V4 Genetic variation of SR 0.67

Frontiers in Ecology and Evolution 04 frontiersin.org

19

https://doi.org/10.3389/fevo.2022.1064873
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/


fevo-10-1064873 November 10, 2022 Time: 15:57 # 5

Wang and Wang 10.3389/fevo.2022.1064873

For eco-evolutionary model (Thompson, 2005), most of
the parameter values were derived from the previous research
(McCann, 1998) while the remaining set of parameters were
obtained based on the reasonable guess values from parameter
space presented in Supplementary Figure 3. All parameters
can be found in Table 1. Similar to early theoretical work
(McPeek, 2017; Cortez, 2018), we mainly explore how the
speed of evolution in terms of the magnitude of genetic
variation (Vi) affects the stability of the eco-evolutionary model
(Thompson, 2005). We studied the dynamical properties of the
eco-evolutionary model using numerical simulation method.
Bifurcation diagrams and LE spectrum can be utilized to find the
conditions under which the eco-evolutionary model produced
chaotic dynamics (positive LEs). Moreover, we calculated both
the ACF and LE of both empirical and theoretical time series to
compare model predictions with field data. All simulations were
carried out using MATLAB 7.0 (MathWorks, 2004).

Results

Empirical results

The natural time series of body length suggests that chaotic
dynamics may be presented in this fish species (Figure 1). First,
we obtain the time delay τ = 2 (Figures 1D–F) and embedding
dimension m = 11 (the rate of change of lnC(m, D) with lnD
does not change with the increase of m; Figures 1G–I) for
the age class I, II, and III, respectively. Then, by combining
τ = 2 with m = 11, we obtain both of the LE values are greater
than zero (Figures 1G–I). So, time series of the body length
in the fish population exist in the chaotic region. Moreover,
a similar result is obtained when the environmental noise of
time series is filtered out (Supplementary Figure 2), all the
LE values are larger than 0 (Supplementary Figures 2C,F,I),
indicating dynamical chaos. So, the body length dynamics of the
fish population present an intrinsic chaotic property.

Theoretical predictions of
eco-evolutionary model

As revealed by a theoretical simulation (Figure 2), the eco-
evolutionary model can give rise to a rich set of potential
dynamics. When the genetic variation of body length in the age
class I, V1, is small (V1 = 0.03, LE = −0.0016; Figure 2A),
the dynamics of body length S1 approaches a simple, regular
oscillation (period-2 oscillation). After an increase in the
magnitude of genetic variation in body length S1, V1 (V1 = 0.27,
LE = −0.0012; Figure 2B), the dynamics of body length S1

presents a doubling-periodic oscillation. Further, when V1 is
increased even more, the dynamics of body length S1 appears
to enter a chaotic regime (V1 = 0.5, LE = 0.0643; Figure 2C)

as suggested by the Lyapunov exponent (Figure 2F). Finally,
periodic dynamics (regular oscillation) is observed when V1 is
increased even further (V1 = 0.764, LE=−0.001; Figure 2D).

Since chaos may occur purely due to ecological dynamics,
we did a bifurcation analysis assuming ecological dynamics only
(i.e., assuming V1 = V2 = V3 = V4 = 0). Under these purely
ecological conditions, the single-parameter bifurcation shows
that the ecological process may not produce chaotic dynamics
(Supplementary Figure 3), and the dynamics of population
biomass C1 is merely represented as a stable equilibrium.

Comparison between theoretical
predictions and empirical data

Both theoretical predictions and empirical results show
that the dynamics of a phenotypic trait, such as body length,
can show chaotic properties. However, if the dynamics of our
theoretical model is indeed a plausible representation of the
empirical data, other dynamical properties of their respective
time series should also be similar.

In this regard, the ACF analysis indeed indicates dynamical
similarities among natural (Figure 3A) and theoretical
(Figure 3B) time series. Both theoretical data and empirical
data show two major peak lags: short (about 7 years) and long
periods (about 24 years). However, due to the limited length
of empirical data (in total 59 data points), the long period
may be not significant (Figure 3A). Moreover, a predictable
period (years) of the chaotic timeseries is 1/LE (S3) (i.e.,
1/0.1309 = 7.64 years in body length S3; Figure 1I), which
is close to 7 years (calculated by the ACF). Therefore, these
results illustrate the eco-evolutionary model can depict the real
dynamics of body length in a single fish system.

Discussion

The predictability of long-term evolution has puzzled
ecologists for decades (Green, 1991; Kauffman and Johnsen,
1991; Ferriere and Fox, 1995). Although recent theoretical
work has analyzed the chaotic properties of eco-evolutionary
dynamics (Dercole et al., 2010; Schreiber et al., 2011; Doebeli
and Ispolatov, 2014; Gilpin and Feldman, 2017; Rego-Costa
et al., 2018), eco-evolutionary chaos has not been shown in
empirical data. In this study, we combined an eco-evolutionary
model with analyzes of empirical data to uncover chaotic
dynamics of body length of a single fish population. Our
work may prove the eco-evolutionary chaos in the natural
ecological system.

Our work may be treated as a supplementary method to
study fish species. In this study, we provided a new mechanism,
that is, the genetic variation of phenotypic trait determines
chaotic dynamics of body length. The new mechanism revealed
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FIGURE 1

Phase space reconstruction of single time series of body length. (A–C) Empirical data of body length; (D–F) Attractor reconstruction (τ = 2;
based on the C–C method) of empirical data with noise; (G–I) Lyapunov exponent (LE) of body length: D is the neighborhood radius, m is the
embedding dimension, and C is the correlation integral, which is influenced by both D and m. In each rectangle, m varies from 5 to 12 (from top
line to bottom line, m = 11 can be obtained for each case when the rate of change of lnC(m, D) with lnD does not change with the increase of
m). Body length S1 (age class I: age 3–5), S2 (age class II: age 6–9), and S3 (age class III: age 10–12) are the mean of each age class. The original
data is shown in Supplementary Figure 1.

in our work is different from recent studies (Eikeset et al.,
2016; Andersen, 2019), which showed many mechanisms could
influence population dynamics (stable or oscillatory state)
of fish species, such as the change of age structure, life-
history parameters, and fishing. Actually, our work involved
with above factors. First of all, for different study methods
(attractor reconstruction and eco-evolutionary model), different
age classes (age 3–12) were divided into three broader age
classes, and each class has the different maximal attack rate and
reproductive rate (Table 1). Moreover, life-history parameters
(i.e., individual growth rate ki and reproduction rate bi in
Table 1) indeed influence population dynamics (non-chaos in
Supplementary Figure 3) of fish species when we neglected the
evolutionary dynamics (V1 = V2 = V3 = V4 = 0). Finally,
although we do not introduce human harvest (fishing) into the
eco-evolutionary model, we infer that fishing will impact the
demography and recruitment of a fish stock. Therefore, it is
worth trying to analyze how each ecological parameter influence
population dynamics of fish. The simulation result showed that
non-chaos emerges when we do not consider phenotypic trait
evolution in the mechanistic model (Supplementary Figure 3).

In short, in this work, the free-equation approach (attractor
reconstruction) proved chaos in trait dynamics, and then
a plausible interpretation mechanism (regulating the genetic
variation of phenotypic trait may result in chaotic dynamics
of body length in the eco-evolutionary model) for chaos in
body length of fish was suggested, that is, rapid evolution
in phenotypic trait may result in chaos in both ecological
(population density/biomass) and evolutionary (phenotypic
trait) processes.

The road to eco-evolutionary chaos

Early theoretical work found that regulating the magnitude
of genetic variation in phenotypic trait can result in periodic
oscillations (McPeek, 2017; Cortez, 2018) and chaotic dynamics
(Dercole et al., 2010; Gilpin and Feldman, 2017). However,
empirical evidence for eco-evolutionary chaos in natural
ecosystems is lacking. In this study, we first use the phase
space reconstruction method to present the evidence for
potential chaos in fish body length. In our eco-evolutionary
model, similar to recent theoretical approaches (Cortez, 2018;

Frontiers in Ecology and Evolution 06 frontiersin.org

21

https://doi.org/10.3389/fevo.2022.1064873
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/


fevo-10-1064873 November 10, 2022 Time: 15:57 # 7

Wang and Wang 10.3389/fevo.2022.1064873

FIGURE 2

Eco-evolutionary dynamical simulations. (A–D) Space phase diagrams; (E) Bifurcation diagram; (F) Lyapunov exponent (LE) spectrum. Model
parameters are presented in Table 1 and V1 varies in [0, 1]: Panels (A) V1 = 0.03, (B) V1 = 0.27, (C) V1 = 0.5, and (D) V1 = 0.764. The simulation
time is 1,000 and initial value of Eq. (1) is (0.1, 0.1, 0.03, 0.02, 0.03, 0.01, 0.01, 2.2, 2.4, 2.8, and 3).

Yamamichi and Letten, 2021), we only analyze how system
stability varies with the genetic variation (V1). Our results
show the increase of V1 can generate chaotic dynamics in both
phenotypic trait and biomass (LE > 0; Figure 2F). However,
when we do not consider trait evolution (Vi = 0) in the
model, population dynamics of the fish population may not
present chaos. Then the ACF of both empirical data and
simulation data of the eco-evolutionary model show that the
predictable period (years) of body length in fish population
is about 7 years. Therefore, the eco-evolutionary model can
approximately depict and predict the intrinsic dynamic behavior
of empirical data.

Moreover, recent theoretical research showed that ecological
process (population density/biomass) will produce population
oscillation if evolutionary process (phenotypic trait) has the
oscillatory dynamics (McPeek, 2017; Cortez, 2018). In our study,
we first present chaotic dynamics (irregular periodic oscillation)
of the body length (attractor reconstruction), while comparative
analyses of the ACF reveal broadly consistent results between
experimental data and theoretical models. Therefore, we infer
that the eco-evolutionary chaos may be driven by body length
evolution (changes in genetic variation of body length) in the
cod population.

In the eco-evolutionary model, the chaotic evolutionary
trajectories (LE > 0; Figure 3F) are intrinsically unpredictable,
and strongly dependent on the magnitude of genetic variation
in phenotypic trait (V1). The change switches between the
non-chaotic (LE < 0) and chaotic dynamics (i.e., the “edge
of chaos”) was discussed in earlier work (Ferriere and Fox,
1995; Turchin and Ellner, 2000; Benincà et al., 2015), which
may balance the resource-fish system near the “evolutionary
sliding” (Dercole et al., 2006). This maybe provide an
evolutionary explanation for chaotic dynamics in the nature
(Turchin, 2003). Our work identifies eco-evolutionary chaos
in a natural ecological system. This empirical finding supports
the theory that eco-evolutionary feedbacks can produce
chaotic dynamics.

Rapid evolution in body length of fish
is limited predictability

The rapid evolution of fish population has caused
widespread discussion (Olsen et al., 2004; Jørgensen
et al., 2007; Eikeset et al., 2016). In this study, we infer
that the change of the body length (chaotic dynamics of

Frontiers in Ecology and Evolution 07 frontiersin.org

22

https://doi.org/10.3389/fevo.2022.1064873
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/


fevo-10-1064873 November 10, 2022 Time: 15:57 # 8

Wang and Wang 10.3389/fevo.2022.1064873

FIGURE 3

Chaotic dynamics is observed for the northeast Arctic cod (Gadus morhua) based on empirical data and simulation data analyzes.
(A) Autocorrelation function (ACF) of empirical data; (B) ACF of simulation data; body length class I (S1), class II (S2), and class III (S3). Blue line
denotes significance threshold and the value in the middle of two blue lines can be considered not significantly different from 0.

phenotypic trait) is due to evolution. Moreover, the body
length evolution has a limited predictability due to its
chaotic property.

In the cod population, we checked for chaotic dynamics
(positive LE) of body length based on both empirical data and
eco-evolutionary model analyses. We found the LE of empirical
data [LE(S3)= 0.1309], which means predictable periods (1/LE)
of empirical data (i.e., 7.64 years in body length S3) is also close
to 7 years (calculated by the ACF). The eco-evolutionary model
can approximately depict and predict the intrinsic dynamic
behavior of empirical data, that is, the limited predictable
period of rapid evolution (Vi > 0) in body length of fish is
approach to 7 years. Fish population growth is closely bound
up with our daily life, considering the effectively predictable
time of body length can help us make a suitable strategy for
fishery conservation.
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Decomposition rate as an emergent 
property of optimal microbial 
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Decomposition kinetics are fundamental for quantifying carbon and nutrient cycling 
in terrestrial and aquatic ecosystems. Several theories have been proposed to 
construct process-based kinetics laws, but most of these theories do not consider that 
microbial decomposers can adapt to environmental conditions, thereby modulating 
decomposition. Starting from the assumption that a homogeneous microbial 
community maximizes its growth rate over the period of decomposition, we formalize 
decomposition as an optimal control problem where the decomposition rate is a 
control variable. When maintenance respiration is negligible, we find that the optimal 
decomposition kinetics scale as the square root of the substrate concentration, 
resulting in growth kinetics following a Hill function with exponent 1/2 (rather than 
the Monod growth function). When maintenance respiration is important, optimal 
decomposition is a more complex function of substrate concentration, which 
does not decrease to zero as the substrate is depleted. With this optimality-based 
formulation, a trade-off emerges between microbial carbon-use efficiency (ratio of 
growth rate over substrate uptake rate) and decomposition rate at the beginning 
of decomposition. In environments where carbon substrates are easily lost due to 
abiotic or biotic factors, microbes with higher uptake capacity and lower efficiency 
are selected, compared to environments where substrates remain available. The 
proposed optimization framework provides an alternative to purely empirical or 
process-based formulations for decomposition, allowing exploration of the effects 
of microbial adaptation on element cycling.

KEYWORDS

microbial model, decomposition kinetics, optimization, microbial adaptation, growth-
efficiency trade-off

1. Introduction

Organic matter decomposition and its subsequent mineralization by microbial decomposers 
regulate the flow of carbon and nutrients in both terrestrial and aquatic systems. Two different 
sets of assumptions have been proposed to describe the kinetics of decomposition in 
mathematical models. First, based on the observation that the relative mass loss is nearly 
constant, first-order decay models were initially proposed (Salter and Green, 1933; Olson, 1963). 
The same concept has been adopted in numerous later biogeochemical models (Manzoni and 
Porporato, 2009). Second, more recent developments acknowledged the role of microbial 
biomass as a driver of decomposition and accounted for extra-cellular enzymes in the reaction 
kinetics. These works assume that the degradation of soil organic matter can be treated as an 
enzymatic reaction that follows Michaelis–Menten (Michaelis and Menten, 1913) or other 
nonlinear kinetics laws involving both substrate and enzyme concentrations (Wang and Post, 
2013; Tang and Riley, 2019). Even without describing enzymatic reactions per se, nonlinear 
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decomposition models inspired by Monod’s results (formally similar 
to Michaelis–Menten kinetics), or other nonlinear functions, have 
often been used to include microbial biomass as a driver of 
decomposition (Monod, 1949; Wutzler and Reichstein, 2008; Manzoni 
and Porporato, 2009; Abramoff et al., 2018). Despite their differences 
and contexts of application, linear and nonlinear approaches rely on 
some a priori assumption on the mathematical form of the 
decomposition kinetics.

Biogeochemical reactions in soils are complicated by chemical and 
spatial heterogeneities and by the diversity of microbial metabolic 
strategies. Hence, it is difficult to achieve a theoretically sound 
representation of macro-scale kinetics laws to interpret experimental data 
at the field scale, and in ecosystem models at even larger scales. Therefore, 
one could question whether the underlying kinetics laws should 
be imposed (as currently done) or regarded as emerging properties of the 
soil system, and derived based on some physical constrain or ecological 
consideration. In this contribution, we  follow the latter approach by 
formulating a decomposition model from an optimization perspective, 
assuming that decomposition should proceed so that decomposers 
maximize their cumulative growth over the duration of decomposition.

Optimization principles are commonly used in ecology and plant 
science (Rosen, 1967; Harrison et al., 2021). Their underlying assumption 
is that evolution leads to optimally-adapted phenotypes by selecting the 
fittest organisms. The objectives of such evolutionary optimization are 
typically the maximization of reproductive effort, resource use, or net 
growth rate. An optimal strategy often exists because resources are 
limited and therefore need to be used or allocated in particular and timely 
manners. Moreover, physiological trade-offs and enzymatic capacity 
constrain the range of possible resource use strategies (Gudelj et al., 2010; 
Allison, 2012; Waldherr et al., 2015). For example, carbon use efficiency 
(i.e., the ratio of growth rate over uptake rate) tends to be lower in fast 
growing organisms (Lipson, 2015; Muscarella et  al., 2020). 
Mathematically, given the optimization objective (fitness maximization) 
and constraints (resources are limited; physiological trade-offs), and 
assuming that some traits can be varied thanks to selective pressures, it is 
possible to formulate organism growth as an optimal control problem.

This is also the case for microbial decomposers, which exploit 
resources accumulated in organic matter (in soil, litter, sediments, or 
water) that are not only limited, but also subject to consumption by 
competing organisms and loss due to physical processes. Therefore, 
microbes face an inherent dilemma. On the one hand, resources could 
be  consumed rapidly to ensure maximal use, but high rates of 
consumption are generally achieved over a short period and with low 
efficiency of conversion to biomass. On the other end, some microbes 
could aim at consuming resources slowly and efficiently, but in such a 
case, resources could be  lost before they are consumed, because of 
abiotic processes or other organisms. Finding the optimal foraging 
strategy and the decomposition kinetics emerging as outcomes of this 
optimization problem frames the scope of this contribution.

Specifically, we ask:

 1. Is there an optimal decomposition rate that maximizes total 
microbial growth for a given substrate amount?

 2. Are the optimal decomposition kinetics consistent with 
established empirical or theoretical decomposition kinetics?

 3. How does the optimal decomposition rate vary with 
microbial traits?

 4. Are any trade-offs between growth rate and carbon-use efficiency 
emerging from the optimal decomposition strategy?

These questions are addressed by interpreting organic matter 
decomposition as an optimal control problem, which is solved 
analytically. The problem is set up in a general way, so that the 
derived equations can be applied to different decomposition systems, 
but we  illustrate results for terrestrial litter decomposition as a 
case study.

2. Methods

A simple carbon (C) cycling model with a single substrate mass 
balance is presented first (Section 2.1), followed by the optimality 
conditions and the boundary conditions for the optimization (Sections 
2.2 and 2.3). The equations describing microbial physiology are 
presented next (Section 2.4). The following Sections 2.5 and 2.6 detail 
the derivation of the analytical solution. Finally, the efficiency of the 
decomposition system is defined in Section 2.7. The model schematic is 
shown in Figure 1 and the symbols are explained in Table 1.

2.1. Carbon cycling model

We start from the premise that microbial decomposers aim at 
maximizing their growth rate (g) over a time interval tt  that is not 
prescribed, but allowed to emerge as a result of the optimization. Growth 
is achieved by assimilating organic C, which we assume is the main 
limiting substrate and energy provider (Figure 1). A single cohort of 
organic C is denoted by c (expressed as mass of C in the system), and its 
mass loss during decomposition is described. The C compartment is 
assumed chemically homogeneous for simplicity (well-mixed 
approximation). Mass loss is caused by microbial-driven decomposition 
at rate u , which is not specified a priori as typically done in 
biogeochemical models, but is instead derived as a result of the 
optimization. We assume that all decomposed C is taken up, so that 
decomposition and uptake rates are equal to u. Physical processes such 
as leaching and adsorption, or uptake by other organisms, also 
contribute to the depletion of substrate C, following first-order kinetics 
(with rate constant g ). The parameter g  is thus a measure of substrate 
C availability – higher g  implies faster losses due to abiotic or biotic 
factors that cannot be controlled by the microbial biomass. Microbial 
biomass is assumed in quasi-equilibrium, so that mortality equals 
growth. A fraction m  of microbial necromass production is assumed to 
be  recycled in the substrate compartment. Building on these 
assumptions, the mass balance equation of the organic matter cohort 
can thus be written as,

 
,= - - +

dc u c g
dt

g m
  

( ) 00 .=c c
 

(1)

2.2. Microbial growth as an optimal control 
problem

The microbial growth optimization problem can be formulated as 
the maximization of
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J g u dt

t
= ( )ò
0

t

,

 
(2)

with free terminal time tt  and no terminal gain, and subject to the 
mass-balance constraint in Equation (1). This constitutes an optimal 
control problem with control u bound to be  larger than  
zero.

Necessary conditions for the optimization can be expressed in terms 
of the Hamiltonian (H) and a Lagrange multiplier ( l ) as (Kirk, 1970; 
Lenhart and Workman, 2007)

 
H g dc

dt
g u c g= + = + - - +( )l l g m ,

 
(3)

 
0 1=

¶
¶

= + - +( )¢ ¢H
u

g gl m ,

 
(4)

 
- =

¶
¶

= -
d
dt

H
c

l
gl,

 
(5)

where we use the prime notation exclusively for derivatives with respect 
to u (e.g., ¢ = ¶ ¶g g u/ , ¢¢ = ¶ ¶g g u2 2

/ ) and continue with the Leibniz 
notation for other derivatives.

These necessary conditions are usually referred to as the Pontryagin 
Maximum Principle, in honor of the man who first proved the theorem 
in 1956. While the proof of the theorem is quite theoretical (Kirk, 1970), 
the basic idea is related to optimization in multivariable calculus. If a 
point x*  in n-dimensional space maximizes a function g x( )  subject 
to the constraint f x( ) = 0 , the Lagrange multiplier rule says that there 
exists a number l such that Ñ = Ñg fl  (where Ñ  indicates the 
gradient of the n-dimensional functions g and f).  
This can be  recast as a statement that x*  maximizes the so-called 
Hamiltonian function H g f= + l  (Equation (3)) for some l . The 
simplest proof of the version of the maximum principle we are using is 
based on elementary calculus (Lenhart and Workman, 2007).  Assuming 
the control variable u is the maximizer of the functional J u[ ]  (Equation 
(2)), we can choose any allowable variation v and assert that the function 
value  = 0  is the maximizer of the function J u v+[ ] . The conditions 
(4) and (5) follow from this maximization.

In Equations (4) and (5), the first equalities are the general necessary 
conditions for optimization, and the second equalities represent the 
optimization conditions specific to this model. The downward concavity 
of g(u) (Section 2.4) guarantees that the solution is the maximum of J.

Independent of the specifics of g(u), the temporal evolution of the 
Lagrange multiplier can be obtained by solving Equation (5),

 
l l gt e t( ) = 0 ,

 
(6)

where l0  represents the initial condition, to be determined from the 
boundary conditions of the optimization problem, as described in the 
following section.

A

B

C D

FIGURE 1

Schematic of the carbon cycling model (A), approaches to describe decomposition kinetics (B), main components of the microbial growth optimization 
problem (C), and optimal solutions (D). Symbols are defined in panel (A) and Table 1.
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2.3. Boundary conditions for the 
optimization problem

Equations (4) and (6) provide two conditions to determine the 
four unknowns c(t), u(t), l0 , and tt . Therefore, two additional 
conditions are required to mathematically close the problem. These 
conditions are specified at the terminal time tt . Because the terminal 
time is free, one of the conditions is given by setting the Hamiltonian 
to zero at t t= t . Moreover, at the terminal time, we assume that the C 
compartment is completely depleted. Taking c tt( ) = 0  into 
H tt( ) = 0  yields

 
g u gt t t tl m= -( ),  

(7)

where subscript t  indicates evaluation at the terminal time, so that 
u u tt t= ( ) , g g u tt t= ( )( ) , etc. Next, lt  in Equation (7) can 
be eliminated by using Equation (4) in the form,

 
l

m
=

-
¢
¢

g
g1
.

 
(8)

Then after evaluating at the terminal time and simplifying we find,

 g u gt t t= ¢ .  (9)

2.4. Growth model

The growth rate is expressed as a saturating function of the uptake 
rate, which as explained above equals the decomposition rate,

 
g u u

u
( ) = -

+
a

r
b

,
 

(10)

where a  is the maximum growth rate, b  is the half-saturation constant, 
and r  the rate of substrate uptake used for cellular maintenance. Because 
growth rate is by definition equal to the uptake rate times the microbial 
carbon use efficiency (CUE: ratio of growth rate over uptake rate), and 
CUE £ <emax 1 , the values of the half-saturation constant and the 
maximum growth rates must be  constrained to satisfy these limits. 
Specifically, we assume that the slope of the g(u) relation at small u (and 
for negligible r ) equals emax , so that a b= emax . The function g(u) is 
shown in Figures 2A,B for various parameter combinations.

The concave shape of the g(u) relation implies declining CUE as 
the decomposition rate u increases. This decline can be caused by 
different factors that are not included in this model, but that are 
surrogated by the g(u) relation: (i) The marginal return on 
investment in extra-cellular enzymes decreases with increasing u 
because enzyme synthesis is energetically costly (del Giorgio and 
Cole, 1998) and hydrogen peroxide required for oxidative enzyme 
functioning may cause cell damage, thereby reducing CUE 
(Manzoni et al., 2021). (ii) When the microbial population reaches 
a steady state, the rate of growth will become limited by the 
enzymatic capacity in the cell and on cell walls (Waldherr et al., 

2015). (iii) At high rates of enzyme release, the substrate binding 
sites may become saturated (Tang and Riley, 2013). (iv) Diffusion of 
the reaction products eventually becomes limiting (Vetter et  al., 
1998). (v) In the case of nitrogen-poor substrates, fast decomposition 
requires intense nitrogen immobilization, and when inorganic 
nitrogen sources are unavailable either microbial metabolism slows 
down due to nutrient limitation, or overflow respiration increases 
(Manzoni et al., 2021). In all these cases, net growth is expected to 
stabilize around a maximum value that allows cells to grow within 
their stoichiometric constraints.

With growth described by Equation (10), we can also define the 
microbial CUE as,

 
CUE = =

-( )
+( )

g
u

e
u

u umax .
b r
b

 
(11)

Higher values of maintenance respiration r  decrease CUE, potentially 
causing it to become negative when u < r . At high values of u 
compared to r  and b  (plentiful resources), CUE » e umax /b . In 
general, the maximum CUE is attained at intermediate values of u, but 
it remains below emax .

2.5. Nondimensionalization

Before beginning the analysis, it is helpful to nondimensionalize the 
problem, which reduces the number of parameters by two. To that end, 
we define dimensionless variables (see also Table 1):

C c
=
g
b

 (and initial condition C c
0

0=
g
b

),

U u
=
b

,

 T t= g  (and terminal time T tt tg= ),

 

0
0and initial condition ,bl bl

a a
æ öL = L =ç ÷è ø  

(12)

growth rate.

 
G g G g= =æ

è
ç

ö
ø
÷¢ ¢

a
b
a

and its derivative ,
 

(13)

and parameters

 
,r

b
=R

 
,am

b
=M

 
(14)

With these changes, the problem consists of an initial value problem 
in the nondimensional substrate concentration C (from Equation (1))
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( ) 0, 0 ,+ = - + =

dC C U G C C
dT

M
 

(15)

an optimality condition (from Equation (4))

 ( )1 0,+ - + =¢ ¢G GL M  
(16)

and terminal conditions (from Equation (9))

 G U Gt t t= ¢ ,

 
C Tt( ) = 0,  

(17)

where the subscript t  indicates the terminal time as before. We also 
define the nondimensional growth rate (from Equation (10)) and its 
derivative with respect to U,

 
( ) ,

1
-

=
+

UG U
U
R

 
( )

( )2
1 ,

1
¢

+
=

+
G U

U

R

 

(18)

A B

C D

E F

FIGURE 2

Effects of the half saturation constant of the microbial growth rate ( b , left panels) and of the first-order decay constant ( g , right panels), for two values of 
maintenance respiration ( r ) and maximum growth efficiency ( maxe ) on: (A,B) the relation between growth rate and decomposition rate, g(u); (C,D) the 
temporal trajectory of the optimal decomposition rate, u(t); and (E,F) the temporal trajectory of the substrate carbon, c(t). In all panels: 0c = 1 g, m = 0.5. In 
(B), curves with the same g value overlap, because g(u) does not depend on g . Parameter units are as in Table 1.
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and the nondimensional Lagrange multiplier (from Equation (6))

 ( ) 0 .L = L TT e  
(19)

The problem must be solved for parameters Ut , 0L , and Tt  and the 
variables U and C, after which the dimensional variables and functions 
can be determined from Equations (12)–(14).

2.6. Analytical solution

We start by substituting the formulas for G and ¢G  (Equation (18)) 
into the boundary condition in Equation (17) to obtain an  
equation for decomposition rate at the terminal time,

 

( )( )1
.

1¢

- +
= =

+
U UGU

G
t tt

t
t

R
R

 
(20)

TABLE 1 Symbols and units.

Symbol Explanation Units Nondimensional form

Variables and functions

c, 0c Substrate C mass g ,=
cC g
b  

00
cC g
b

=

CUE C-use efficiency, CUE 
g G
u U

= = 1

g Microbial growth rate g y−1 gG
a

=

H Hamiltonian function g y−1

S
Reverse nondimensional time, S T Tt= - 1

t Time y T tg=

u Decomposition rate g y−1
uU
b

=

V Auxiliary variable, V = 1 + U 1

l , 0l Lagrange multiplier 1
,bl

a
L =

 
00

bl
a

L =

Parameters

maxe Maximum microbial growth efficiency 1

m Parameter combination, ( )1= +m M R 1

k Decomposition rate constant in linear kinetics (only used in Figure 7) y−1

K Half saturation constant in monod-type kinetics (only used in Figure 7) g

v Maximum decomposition rate in Monod-type kinetics (only used in Figure 7) g y−1

a Maximum microbial growth rate, maxea b= g y−1

b Half saturation constant of the g(u) relation g y−1

g Rate constant for C losses that are not controlled by the decomposers y−1

h Overall system efficiency 1

m Fraction of necromass production recycled as substrate 1
=
amM
b

r Microbial maintenance respiration rate g y−1

=
rR
b

Subscripts and superscripts

¢ Differentiation with respect to u or U

0 Subscript indicating initial conditions (t = 0 or T = 0)

t Subscript indicating evaluation at the terminal time ( t tt= , T Tt= , or S = 0)
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Solving for Ut  we obtain

 
2 ,= + +Ut R R R  (21)

 ( )2
1 .

1
¢ +
=

+
G

U
t

t

R

 

(22)

The terminal (nondimensional) decomposition rate is therefore only a 
function of the maintenance respiration rate, and Ut = 0  when 
maintenance respiration is negligible. The result U Pt >  is somewhat 
surprising, as it means that G does not approach 0 at the end of the 
decomposition process. This will be a noteworthy feature in graphs of 
the results. In the subsequent analysis, it is helpful to define an additional 
function V = 1 + U and parameter ( )1= +m PM . Substituting V into 
Equation (22) yields the slightly simpler formula

 
2

1 ,¢ +
=G

V
t

t

R

 
(23)

where Vt  is found from the definition of V and Equation (21) as,

 
V P P Pt = + + +( )1 1 .

 
(24)

To find L0 , we combine the optimality condition of Equation (16) 
with the solution for L  of Equation (19), and evaluate at the 
terminal time,

 
0 2 2

1 .
1

¢
- -

¢
+

L = =
- -

T TG e e
G V m

t tt

t t

R
M  

(25)

We now turn to the quantities that are functions of time: ¢G , V, U, and 
C in turn. These quantities are best understood in reverse time, 
defined by

 S T T= -t .  (26)

¢G  follows from the optimality condition of Equation (16), since L  is 
fully known. After clearing the fractions, we obtain

 
( )2 2 2

.1

t

+
=

-
¢

+S
G

V m e m
R

 

(27)

The definition of ¢G  (Equation (18)) then yields

 
V V m e mS2 2 2 2= -( ) +t ,

 
(28)

 
U V m e mS= -( ) + -t

2 2 2
1.

 
(29)

To obtain the time trajectory of C, we first write the differential 
equation in reverse time, along with the reverse time initial condition 
(i.e., applied at S = 0 , corresponding to T T= t ). Substituting V for U 
and simplifying, we have

 
( ) ( )

2
1 , 0 0.= + - + + =

dC mC V C
dS V

M
 

(30)

This initial value problem has the surprisingly simple solution

 

2
2 1.

1
= - +

+
VC V
R  

(31)

which can be obtained using the integrating factor method and can 
be confirmed directly from the differential equation by applying the 

chain rule dC
dS

dC
dV
dV
dS

= , with dV
dS

 from Equation (28).

At this point, we still do not know the terminal time Tt  or the initial 
value of the decomposition rate U0 . By substituting V = 1 + U into the 
last result, we can obtain solutions for U and G in turn as functions  
of C,

 ( )( )1 ,= + + +U CR R R
 

(32)

 
.

1
+

=
+ + +

CG
C
R

R R  
(33)

From the first of these, we obtain the value of initial U,

 ( )( )0 01 .= + + +U CR R R
 

(34)

and the corresponding V U0 0 1= + ,

 
V P P C P0 01 1= + + + +( ).

 
(35)

Equations (32)–(35) show that the (nondimensional) decomposition 
rate can be expressed as a function of substrate C and maintenance 
respiration rate only.

Next, Vt  (Equation (24)) and V0  (Equation (35)) are substituted 
into Equation (28), evaluated at S T= t , to obtain

 

0 02 1 .
2 1
+ + -

=
+ -

T C Ue
U

t

t

M
M  

(36)

Taking the logarithm yields the terminal time

 

0 02 1ln .
2 1

æ + + - ö
= ç ÷+ -è ø

C UT
Ut
t

M
M  

(37)

Particularly compact solutions are found when 0=M  and/or 0=R  
(Table 2).
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2.7. Efficiency of the decomposition system

We define the overall efficiency of the decomposition system as the 
fraction of initial substrate C that is transferred to other compartments 
in the form of necromass. This definition is motivated by the argument 
that stabilized soil organic C is largely composed of microbial necromass 
(Liang et al., 2017), so that decomposition is efficient from the point of 
view of C storage when it results in a large net export of necromass. 
Accordingly, we define

 

( ) ( ) ( )( )max

0 0 0

1 1
,

- -
h = = ò

TJ e
G U T dT

c C

tm m

 
(38)

where J is the cumulative growth rate, which is maximized in the 
optimization problem (Equation (2)). Using this definition, we find
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( )
max

0 2 2 2

1 12 ln .

1
--

ì üé ù
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T
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V m e me
t

t

t
t

t

m R

 

(39)

More compact formulas for h  are reported in Table 2 for the simpler 
cases with 0=M  and/or 0=R .

2.8. Model parameters

The model is meant to represent a generic system where 
decomposers forage on a single cohort of a chemically homogeneous 
substrate in the absence of additional C inputs. For illustration, we chose 
parameter values broadly representing the decomposition of 1 g C of 
plant litter by microbial saprotrophs (for conciseness, in the following 
we do not specify ‘C’ in the units).

We expect that litter is decomposed over time scales of years, so that 
0 1< £g  y−1 (when studying CUE-growth trade-offs, we allow g  to 
reach as high as 104 y−1 for illustration). Consistent with these 

characteristic timescales and initial substrate C values, b  is allowed to 
vary in the range 0 1< £b  g y−1. The maximum growth efficiency is set 
to emax = 0.5, but we also consider values within the plausible range 
0 < £emax 0.8 (Manzoni et al., 2017). The maintenance respiration rate 
is varied in the range 0 0 4£ £r .  g y−1. There is no consensus on the 
fraction of decomposer necromass that is recycled as a substrate. 
Depending on the specific microorganism and environmental context, 
necromass can be labile or recalcitrant, but can also be stabilized via 
adsorption and occlusion within soil aggregates. For labile necromass 
that is re-used as substrate, m =1 , whereas for recalcitrant or otherwise 
not bioavailable necromass, m = 0 . Therefore, we  explore the full 
range 0 1£ £m .

Empirical and optimization models for decomposition were 
compared using a litterbag decomposition time series. To meet the model 
assumptions, we selected litter of Swida controversa, which is characterized 
by relatively low lignin content (to ensure a relatively homogeneous 
substrate) and high initial nitrogen content (to avoid nutrient limitation), 
and that was almost completely degraded by the end of the field incubation 
(data from “upper site” in Osono and Takeda, 2005). Linear ( u kc= ), 

Monod-type ( u vc
K c

=
+

), and optimization-based kinetics were used to 

fit the time series of remaining litter C. The three models shared the same 
structure (including respiration and necromass recycling, as in Figure 1A), 
and only varied by their decomposition kinetics. Parameters k (linear 
model), v and K (Monod model), and b  and r  (optimization model) 
were estimated by nonlinear least square fitting. For all models, we set 
g = 0 8.  y−1, emax = 0.5, m = 0.5.

3. Results

In the Results section, the solutions are shown in dimensional form 
for ease of interpretation, and to illustrate the role of individual parameters 
on optimal u, and corresponding g and c, during the decomposition 
process. We  start by presenting solutions as a function of time and 
remaining substrate C (Section 3.1). Next, we illustrate variations in initial 
decomposition rate and terminal time as microbial traits encoded in 
model parameters are changed (Section 3.2). Last, we present evidence of 

TABLE 2 Analytical solutions of the optimal decomposition problem when 0=M  or 0= =M R .

Simplified scenarios: 0,=M  0>R 0,=M  0=R

( )U C ( )( )1+ + +CR R R C

( )u c ( )( )cr b r g r+ + + cbg
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CUE-growth rate trade-offs and describe patterns in system efficiency 
when microbes face increasingly large abiotic C losses (Section 3.3).

3.1. Optimal decomposition kinetics and 
substrate C trajectories

The optimal decomposition rate decreases through time, but it 
reaches zero at the terminal time only if maintenance respiration is set to 
zero (Figures 2C,D). Increasing the rate of uncontrolled losses g  or the 
half saturation constant b  (proportional to the maximum growth rate) 
increases the initial values of u (from dashed to solid lines in Figure 2). 
However, this more rapid initial depletion of the substrate causes u to 
decrease faster at higher g  or b . As a direct consequence of the patterns 
in u in combination with the uncontrolled losses, substrate C decreases 
faster with higher values of g  or b  (Figures 2E,F). Decomposition is 

also faster at any time point when maintenance respiration is larger than 
zero, because decomposition is promoted to compensate for maintenance 
C costs, compared to a scenario without maintenance respiration 
(compare colored and black lines in Figures 2C,D). Lower maximum 
growth efficiency ( emax ) slows down microbial growth, but marginally 
affects u and substrate C decline (orange vs. blue curves in Figure 2). 
Notably, necromass recycling does not affect u (Equation (32)), but 
slightly delays the decline in substrate C thanks to the partial recycling of 
C that would be otherwise lost from the system (not shown).

The shape of the optimal decomposition kinetics is best illustrated 
by plotting u as a function of substrate C (with time progressing as c is 
depleted). The u(c) function is concave downward, scaling approximately 
as c1 2/  with an intercept larger than zero at c = 0 when maintenance 
respiration is present (Figures  3A,B). This means that the optimal 
decomposition rate does not reach zero at the terminal time. Consistent 
with the time trajectories in Figure 2, increasing g  or b  shifts the u(c) 

A B

C D

E F

FIGURE 3

Effects of the half saturation constant of the microbial growth rate ( b , left panels) and of the first-order decay constant ( g , right panels), for two values of 
maintenance respiration ( r ) and maximum growth efficiency ( maxe ) on: (A,B) the relation between optimal decomposition rate and substrate carbon, 
u(c); (C,D) the relation between optimal growth rate and c, g(c); and (E,F) the relation between microbial C-use efficiency (CUE) and c. In all panels: 0c =
1 g, m = 0.5. Parameter units are as in Table 1.
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A B

D E

C

F

FIGURE 4

Effect of half saturation constant ( b , left column), maintenance respiration rate ( r , central column), and maximum microbial growth efficiency ( maxe , 
right column) on initial optimal decomposition rate ( 0u , top row) and terminal time ( tt , bottom row), for two values of the first-order decay constant ( g , 
dashed vs. solid) and the necromass recycling fraction ( m , black vs. blue). Other parameters: 0c = 1 g (all panels), r  = 0.1 g y−1 (A,C,D,F), b  = 0.5 g y−1 
(B,C,E,F), maxe = 0.5 (A,B,D,E). In (A–C), lines with different values of m  overlap because 0u  is independent of m . In all panels: 0c = 1 g. Parameter units 
are as in Table 1.

FIGURE 5

Trade-off between initial microbial C-use efficiency ( CUE0 ) and initial 
growth rate ( 0g ), when varying the C loss rate constant ( g , increasing 
from 10−4 to 104 y−1 left to right along the curves). Line styles refer to 
different combinations of the half saturation constant ( b ), maintenance 
respiration rate ( r ), and maximum microbial growth efficiency ( maxe ). 
Other parameters: 0c =  1 g, m = 0.5. Parameter units are as in Table 1.

FIGURE 6

Whole system efficiency ( g ) as a function of the C loss rate constant  
( g ). Line styles refer to different combinations of the fraction of 
necromass recycled ( m ), maintenance respiration rate ( r ), and 
maximum microbial growth efficiency ( maxe ). Other parameters: 

0c = 1 g, b = 0.5 g y−1. Parameter units are as in Table 1.

curves upwards. The optimal growth rate broadly follows the patterns of 
u, but the decline of g near c = 0 is delayed compared to u (Figures 3C,D). 
As a result, the CUE increases during decomposition (i.e., with 
decreasing c) in the absence of maintenance costs, while it remains 
approximately stable otherwise (Figures 3E,F). Lower emax  decreases 
both g and CUE (orange vs. blue curves in Figure 3).

3.2. Initial decomposition rate and terminal 
time

The initial u increases with g  and b , whereas it is independent of 
emax  and m  (Figures 4A–C). The terminal time tt  also depends on g  
and b , showing inverse trends compared to u because faster 
decomposition implies shorter tt  (Figures 4D–F). When necromass is 
recycled, the time to consume all the substrate increases (blue vs. black 
curves in Figures 4D,F). Similarly, higher values of emax  – by promoting 
C retention in the system – lengthen the decomposition process, 
although this effect appears only when m > 0  (Figure 4F).

3.3. C-use efficiency-growth trade-offs and 
system efficiency

Varying the rate of C losses g  drives changes in the initial 
decomposition rate, growth rate, and CUE. As both these rates increase, 
initial CUE decreases (Figure 5 shows the relation between CUE and 
growth rate), implying a rate-efficiency trade-off along environmental 
gradients where resource losses vary. The trade-off is stronger when 
r = 0  (black curves in Figure 5), because maintenance respiration tends 

to reduce variations in CUE (Figures 3E,F). Moreover, decreasing emax  
shifts the trade-off relations towards lower CUE values and lower initial 
growth rates (orange vs. blue curves in Figure 5).

The overall system efficiency ( h ), decreases as substrate C 
losses increase (Figure 6). Such a decrease can be compensated by a 
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A B C

FIGURE 7

Comparison of linear ( u kc= ), Monod-type (
vcu

K c
=

+ ), and optimal decomposition kinetics to describe litter C mass loss: (A) temporal trajectory of litter C 
(c) and model fitting performance (RMSE: root mean square error; R2: coefficient of determination), (B) decomposition rate as a function of litter C (u(c)), 
and (C) microbial growth rate as a function of litter C (g(c)). Data are from Osono and Takeda (2005); see details on model fitting in Section 2.8 (linear 
model parameter: k = 0.94 y−1; Monod model parameters: v = 1.68 g y−1, K = 1.00 g; optimization model parameters: b = 0.3 g y−1, r =  0.002 g y−1).

lower fraction of necromass recycled (dashed vs. solid lines), a lower 
rate of maintenance respiration (black vs. colored lines), or a higher 
emax  (blue vs. orange curves in Figure  6). The strong effect of 
necromass recycling is explained by our definition of system 
efficiency as the fraction of initial C that is transferred to stabilized 
forms (i.e., that is not recycled as a labile substrate). The latter two 
parameters ( r , emax ) instead regulate C retention in biomass, and 
thus how much of the C that microbes take up can 
be eventually stabilized.

4. Discussion

We proposed an optimization approach to define decomposition 
kinetics, based on the idea that decomposition is an emergent 
property of complex microbial dynamics that might be difficult to 
capture with prescribed kinetics. In our approach, maximum growth 
is attained by balancing C gains from substrate uptake and C costs 
for substrate acquisition, maintenance, and growth. This simple 
principle has already been applied to describe various aspects of 
decomposition (see a short review of the literature in Section 4.1), 
but not to our knowledge to define the shape of the decomposition 
kinetics or changes in decomposition rate through time. The 
advantage in doing so is that the optimal kinetics structurally 
account for environmental conditions (resource limitation setting 
constraints on the optimization) and physiological trade-offs. In 
contrast, models with prescribed kinetics can only account for these 
effects through time invariant parameter which might not offer 
sufficient flexibility to capture microbial adaptations. This advantage 
might prove particularly important when studying microbial 
responses to combined climate and land use changes, which 
challenge microbial communities in ways difficult to replicate 
in experiments.

4.1. Is there an optimal decomposition rate 
that maximizes total microbial growth for a 
given substrate amount?

Describing the decomposition process as an optimal control 
problem allows for determining the decomposition rate that maximizes 

microbial growth over the decomposition period. This approach builds 
on the Darwinian principle that organisms able to maximize their fitness 
(reproductive success, which translates into biomass growth for soil 
microbes) should be selected by evolutionary processes (Harrison et al., 
2021). This idea has been exploited in previous theoretical works. For 
example, enzyme synthesis for competing cellular processes (Baloo and 
Ramkrishna, 1991), cell wall transporter abundance (Casey and Follows, 
2020), internal cell composition (Franklin et al., 2011; Maitra and Dill, 
2015), allocation to extra-cellular enzymes (Vetter et al., 1998; Averill, 
2014; Wutzler et  al., 2017; Calabrese et  al., 2022), rates of specific 
metabolic reactions (Vallino et al., 1996), or allocation of C to growth 
vs. respiratory processes (Manzoni et  al., 2017) can be  optimized. 
However, in most of these approaches, the growth rate was maximized 
at a given time and for given conditions, neglecting an essential feature 
of decomposition systems – the limiting resources are finite and 
maximizing growth or consumption rates can lead to a rapid, and 
suboptimal, resource depletion. Here we approach the problem from the 
alternative perspective of optimal decomposition rate constrained by 
limited resource availability.

We found that there is indeed an optimal decomposition rate that 
allows microbes to effectively ‘compete’ with biotic or abiotic processes 
that remove C substrate from the system. Decomposition rates higher 
than the optimal would result in faster growth, but for a shorter time and 
at a relatively lower CUE. In contrast, slower rates would leave more 
substrate to the competitors or to abiotic processes removing resources 
from the system, leading to lower growth over the whole decomposition 
period. As substrate losses decrease (lower g ), the optimal decomposition 
rate is reduced while decomposition time (i.e., terminal time) increases, 
maximizing the cumulative growth. Notably, the optimal decomposition 
rate tends to zero in the absence of substrate losses ( g = 0 ). This 
mathematical result suggests that microbes invest energy and nutrients in 
the production of extra-cellular enzymes as long as there is an evolutionary 
pressure to do so – if the substrate always remained available through 
time, microbes would not evolve costly acquisition strategies.

An optimal balance between resource use and time to deplete the 
resource emerges also in other ecological contexts. For example, plant 
transpiration rate can be  optimized (via regulation of stomatal 
conductance) to maximize plant net C assimilation. This problem has 
been formulated – as for decomposition models – as an instantaneous 
maximization problem (e.g., Bassiouni and Vico, 2021 and references 
therein) or an optimal control problem including the constraint that soil 
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water is limited (Manzoni et al., 2022). The advantage of formulating 
resource consumption problems by formally accounting for resource 
availability constraints (limited substrate C, or soil water in the case of 
plant growth) is that the optimal solution naturally captures the 
consumption rate-time trade-off that is inherent in these problems. 
Approaches based instead on instantaneous maximization can lead to 
sub-optimal solutions (Feng et al., 2022).

4.2. Are the optimal decomposition kinetics 
consistent with established empirical or 
theoretical decomposition kinetics?

Most optimization approaches focused on finding optimal model 
parameter values for prescribed kinetics of decomposition (Baloo and 
Ramkrishna, 1991; Averill, 2014; Wutzler et  al., 2017; Casey and 
Follows, 2020; Calabrese et al., 2022). Here instead we do not prescribe 
any specific kinetics of decomposition, but let that emerge from the 
optimization. The optimal decomposition rate is in fact obtained 
analytically as a function of C availability during decomposition.

The optimal kinetics of decomposition scale as the square root of 
substrate C (Figures 3A,B; Table 2). As a consequence, the optimal 
growth rate resembles the Monod-type decomposition functions 
often used in models of microbial growth in cultures (Monod, 1949) 
and then re-purposed for soil C cycling models (see Manzoni and 
Porporato, 2009 for a review), although in our optimal solution 
substrate C appears under square root. The Monod form emerges 
from the combination of transport and uptake limitations or 
competing chemical reactions and physical processes (Liu, 2007; 
Tang and Riley, 2019). In contrast, here the curvature of the optimal 
decomposition rate vs. C concentration relation is due to two factors: 
decreasing returns at high decomposition rates (Equation (10)) and 
higher rates required to compete with other processes removing 
substrate C from the system.

It is noteworthy that even without prescribing specific 
mechanisms of C release from the substrate (enzymatic reaction 
kinetics, extra-cellular enzyme synthesis) and transport from the site 
of decomposition to the cells (diffusion, advection), we  obtain 
optimal kinetics that have similar downward concavity as previously 
proposed kinetics laws. This similarity is apparent when fitting 
empirical and optimal kinetics to the same litter decomposition 
dataset (Figure 7). The optimal kinetics perform as well as linear or 
Monod-type kinetics, at least in the case study of a relatively 
homogeneous and labile litter we selected for illustration (Figure 7A). 
The optimal and Monod-type u(c) and g(c) relations share some 
qualitative similarities – e.g., downward concavity and convergence 
to u ~ 0 at low c. However, they both differ from the simpler linear 
kinetics that do not saturate at high values of c.

In contrast to Monod-type relations, as the substrate concentration 
decreases, the optimal kinetics tend to zero only when maintenance 
respiration is negligible, whereas in general they converge to a value 
larger than zero, and for small values of maintenance respiration, 
u ~ r . This behavior is due to the presence of maintenance costs that 
require fast decomposition at low substrate to maintain positive growth 
even at the end of the decomposition process. This result can 
be contextualized by recalling that our model describes dynamics in 
homogeneous conditions. We  can then consider a collection of 
homogeneous litter (or soil) patches that are internally homogeneous, 
but that differ in initial C or environmental conditions. The terminal 

times in each of these patches will differ, resulting in the superposition 
of patch-scale u(c) curves that could cause a tapering off of the C decay 
trajectory at the macroscopic scale when some patches have very long 
terminal times. Other processes not included here, such as dormancy, 
could also lengthen the decomposition process. We speculate that these 
effects could explain why empirical kinetics reach zero at low substrate 
concentrations and thus appear to be sub-optimal.

Moreover, different from classical microbial growth kinetics, the 
optimal decomposition rate increases with increasing rate of resource 
loss. While there is a clear ecological explanation for this effect 
(Section 4.1), we can also interpret g  from a physical perspective for 
the case study of terrestrial litter decomposition. Leaching of organic 
C could be  modelled as the product of the medium hydraulic 
conductance and C concentration, so that g  is interpreted as 
hydraulic conductivity for a given litter layer thickness. In turn, soil 
hydraulic conductivity scales as medium water content to a power 
typically higher than 10 for soils (Rodriguez-Iturbe and Porporato, 
2004), suggesting a strong nonlinear control of water content on C 
losses in moist conditions. Because optimal decomposition scales as 
the square root of g , we can expect it to also scale as water content 
to a power ~ 5. This result suggests that decomposition rates in wet 
– but still oxic – environments should have evolved in such a way as 
to increase more than linearly with water content just to contrast 
hydrological-driven C losses.

The similarities of the optimal and empirical kinetics suggest that 
the proposed equations could be tested in soil C cycling models as an 
alternative to currently employed kinetics (Figure 1B). There are major 
differences between the idealized model structure we adopted and the 
multi-compartment structures of most C cycling models, and the 
parameters in our formulation (e.g., b  and r ) are not widely 
available, hindering a direct application of our solutions in C cycling 
models. However, it would be interesting to test if kinetics with the 
same functional form as the optimal solution, but with parameters to 
be  calibrated, perform well once included in the more complex C 
cycling models. This approach rests on the assumption that each 
compartment of these models behaves like one substrate-microbial 
biomass pair as conceptualized here. An application of this approach is 
illustrated in Figure 7 for a relatively homogeneous litter type.

4.3. How does the optimal decomposition 
rate vary with microbial traits?

Microbial traits encoded in model parameters affect the optimal 
decomposition rate mostly via the half saturation constant of the 
growth function ( b ) and the rate of maintenance respiration ( r ). 
Higher maximum microbial CUE and the fraction of recycled 
necromass increase the terminal time of decomposition because they 
promote C retention in the system, but they do not affect the optimal 
decomposition rate per se (Figure 4).

The effect of b  can be explained by recalling first that growth is 
also rescaled by b  to ensure that CUE remains lower than one. This 
means that b  also regulates the maximum growth rate. Therefore, 
microbes with higher growth capacity should evolve a matching 
decomposition capacity, even if the relation between these two traits is 
predicted to be nonlinear, with decomposition rate scaling as the square 
root of b  (Table 2). Higher maintenance costs require an increased 
decomposition rate to ensure positive net growth (Section 4.2), so 
increasing r  promotes faster decomposition (Figure 4B; Table 2), even 
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though microbial CUE is decreased. Moreover, if both b  and r  
exhibit similar sensitivities to environmental conditions, that sensitivity 
will be retained in the decomposition rate, because u scales linearly 
with r  and br  (Table 2). For example, physiological responses to 
warming in terms of changes in r  and b  should be  reflected by 
similar temperature dependence of the overall decomposition rate.

4.4. Are any trade-offs between growth rate 
and CUE emerging from the optimal 
decomposition strategy?

It has been hypothesized that CUE could exhibit an inverse relation 
with decomposition or growth rate when comparing different microbial 
resource use strategies, due to increasing inefficiencies at high rates 
(Roller and Schmidt, 2015). The occurrence of such a relation is 
debated – there is both supporting (Muscarella et  al., 2020) and 
contrasting (Calabrese et al., 2021) evidence of CUE-growth rate trade-
offs across isolates grown in laboratory studies. However, this trade-off 
can occur in whole soil microbial communities (Lipson et al., 2009) 
that have adapted to a range of competition pressures (Lipson, 2015). 
High CUE and low resource acquisition are expected to be selected in 
high-resource environments (high yield strategy, ‘Y’), while high 
resource acquisition and low CUE would be selected in low-resource 
and highly competitive conditions (acquisition strategy, ‘A’) (Malik 
et al., 2020). Consistent with this conceptual understanding, we found 
that microbial CUE decreases with increasing optimal decomposition 
or growth rate when the risk of losing C is higher (increasing g ; 
Figure 5) or when initial C is lower (results not shown) – i.e., when the 
long-term resource availability decreases.

The tradeoff we found is also consistent with results from another 
optimization approach, where the allocation of resources to growth 
(equivalent to our CUE) was the control variable (Frank, 2010). In that 
framework, microbial populations with lower CUE were selected when 
the expected survival time of the population was shorter, suggesting 
that environments with high rate of resource loss (high g ) or subjected 
to frequent disturbances should select strains with fast, but 
inefficient, growth.

The shape of the CUE-growth trade-off varies with r . Higher 
maintenance costs, by promoting high optimal decomposition rates, 
also keep microbes far from the high-efficiency growth that would 
occur at low decomposition rate and r  = 0. As a result, the CUE-rate 
inverse relation flattens as r  is increased. This result is qualitatively 
consistent with empirical evidence that the CUE-growth rate relation 
is negative in microbes with high efficiency (low maintenance costs) 
and relatively flat in microbes with low efficiency (high maintenance 
costs) (Muscarella et al., 2020).

4.5. Model limitations and extensions

The proposed model, with a single substrate pool and a single 
microbial pool, is relatively simple to analyze, allowing full analytical 
tractability. While this ‘minimal’ model offers clear insights on the 
optimal kinetics and their consequences on the substrate C balance, it 
misses potentially important biological, biochemical, and ecological 
factors. From a biological perspective, we did not study how specific 
metabolic processes might be  optimized, but focused on the 
macroscopic effect of such processes on decomposition capacity 

(expressed through the control variable u). As a first step towards 
improved biological realism, maintenance respiration could be coupled 
to decomposition capacity by assuming that higher capacity is possible 
thanks to higher respiratory costs for synthesizing enzymes (as in 
Calabrese et al., 2022, but in a temporally dynamic context). As an 
alternative, complex metabolic networks have been analyzed using 
optimization methods to predict biomass growth and substrate 
consumption rates (Vallino, 2010; Waldherr et al., 2015; Giordano et al., 
2016). While less mechanistic, our approach shows the kinetics of 
decomposition that would emerge had the decomposers been 
optimally adapted.

Perhaps the main limitation of our approach is that it postulates 
that the whole microbial community adapts in the same way. Clearly, 
competition, mutualism, and predation shape microbial community 
dynamics (Allison, 2014; Abs et al., 2020; Sokol et al., 2022), providing 
evolutionary pressures to exploit different niches. However, one could 
argue that as a first approximation, the (optimal) behavior of a 
representative organism in the community could be identified and 
used to characterize the average system dynamics. Studying the 
aggregated dynamics instead of letting it emerge from the underlying 
interactions is prone to aggregation errors (Chakrawal et al., 2020), 
but at least it allows identifying the main controlling factors in a 
transparent way. For example, CUE at community level varies along 
nutrient availability gradients as predicted by a community level 
optimality criterion (Manzoni et al., 2017). In plant communities, 
most species exhibit traits converging towards the community 
weighted mean, also suggesting some degree of coordination in the 
way plants within the community acclimate and adapt (Muscarella 
and Uriarte, 2016). This evidence supports our assumption that – as 
a first approximation – optimality criteria can be  applied at the 
community level.

This interpretation, however, can be  problematic when 
investigating long-term processes such as decomposition. In fact, as 
litter is decomposed, the microbial community undergoes 
successional dynamics (Berg and McClaugherty, 2003). 
We  incorporated shifts in community composition from 
low-efficiency, fast-growing organisms (r-strategists) to high-
efficiency, slow-growing ones (K-strategists) through the shape of 
the g(u) relation. Therefore, rather than predicting the outcome of 
succession, our model is constrained by its occurrence in terms of 
varying CUE. The optimal u we obtain should then be interpreted 
as the realized decomposition rate that maximizes the community-
level growth over the decomposition process, regardless of the 
specific actors involved at any particular time during the process.

Previous contributions have explored optimal allocation to enzymes 
targeting different compounds (Averill, 2014; Wutzler et al., 2017), but not 
in a dynamic context where the goal function is cumulative biomass growth, 
as done here. Other efforts focused on the selection process per se, by 
modelling interacting microbial taxa (Allison, 2014; Abs et al., 2020), but 
translating those results into easily applicable kinetics laws is difficult. 
Including multiple substrate pools and enzymes targeting specific substrates 
in our optimal control framework would thus complement these previous 
works. Moreover, microbial biomass dynamics could be  explicitly 
represented by an additional mass balance constraint. Along these lines, 
considering also different microbial functional groups would allow 
addressing the current limitation that optimization is performed at the 
community level, but would also raise additional questions – should all 
groups behave optimally given the presence of the other groups? Or should 
we postulate an ‘ecosystem level’ optimality criterion (Dewar, 2010)?
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5. Conclusion

Starting from the assumption that the decomposition rate is 
optimized to maximize microbial growth, we have developed an 
analytical model of organic matter decomposition. When neglecting 
maintenance respiration, the optimal decomposition kinetics scale 
as the square root of the substrate C content, so that the growth rate 
follows a Hill function with exponent ½. In a more general case, 
including maintenance respiration, optimal kinetics diverge from 
typical Hill functions, for example by prescribing high 
decomposition rates even when substrates are nearly exhausted. The 
evolutionary pressure for performing rapid decomposition is 
provided here by the risk of losing resources to abiotic processes or 
other organisms. When such a risk increases, the optimal microbial 
foraging strategy shifts from high efficiency growth and slow 
decomposition rates to low efficiency growth and fast rates. 
Therefore, a growth efficiency-rate trade-off emerges along 
gradients of increasing pressure to use limiting resources.
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Satellite-observed leaf area index (LAI) is often used to depict vegetation canopy 
structure and photosynthesis processes in terrestrial biogeochemical models. 
However, it remains unclear how the uncertainty of LAI among different satellite 
products propagates to the modeling of carbon (C), nitrogen (N), and phosphorus (P) 
cycles. Here, we separately drive a global biogeochemical model by three satellite-
derived LAI products (i.e., GIMMS LAI3g, GLASS, and GLOBMAP) from 1982 to 2011. 
Using a traceability analysis, we explored the propagation of LAI-driven uncertainty 
to modeled C, N, and P storage among different biomes. The results showed that 
the data uncertainty of LAI was more considerable in the tropics than in non-
tropical regions, whereas the modeling uncertainty of C, N, and P stocks showed 
a contrasting biogeographic pattern. The spread of simulated C, N, and P storage 
derived by different LAI datasets resulted from assimilation rates of elements in 
shrubland and C3 grassland but from the element residence time (τ) in deciduous 
needle leaf forest and tundra regions. Moreover, the assimilation rates of elements 
are the main contributing factor, with 67.6, 93.2, and 93% of vegetated grids for the 
modeled uncertainty of C, N, and P storage among the three simulations. We further 
traced the variations in τ to baseline residence times of different elements and the 
environmental scalars. These findings indicate that the data uncertainty of plant 
leaf traits can propagate to ecosystem processes in global biogeochemical models, 
especially in non-tropical forests.

KEYWORDS

ecosystem modeling, leaf area index, nitrogen cycle, phosphorus cycle, traceability analysis, 
uncertainty propagation

1. Introduction

Over the past few decades, terrestrial ecosystems have absorbed nearly one-third of the CO2 of 
anthropogenic emissions by vegetation canopy (Friedlingstein et al., 2022). However, the terrestrial 
carbon uptake by vegetation photosynthetic is widely limited by the availability of essential nutrients, 
especially nitrogen (N) and phosphorus (P) (Elser et al., 2007; LeBauer and Treseder, 2008; Xia and 
Wan, 2008; Allen et al., 2020; Hou et al., 2020). The availability of N and P affects vegetation 
productivity (Elser et al., 2007; Norby et al., 2010), carbon (C) allocation (Hofhansl et al., 2015), litter 
decomposition (Averill and Waring, 2018), and other processes (Sutton et al., 2008; Melillo et al., 
2011). The availability of N and P also constrains soil carbon storage (Crowther et  al., 2019), 
especially under the scenarios of climate change and increasing atmospheric CO2 (Wang et al., 2020). 
Thus, global distributions of C, N, and P storages are crucial for modeling the global biogeochemical 
feedback to future climate change.
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Many global biogeochemical models have coupled nutrients 
processes to provide more realistic simulations of terrestrial 
ecosystems (Thornton et al., 2007; Wang et al., 2007, 2010; Goll et al., 
2012; Yang et al., 2014; Zhu et al., 2019; Sun et al., 2021). Several 
global models not only incorporated the N cycles (Manzoni and 
Porporato, 2009; Zaehle et al., 2014; Meyerholt and Zaehle, 2015) but 
also implemented the P processes, such as ORCHIDEE-CNP (Goll 
et  al., 2017; Sun et  al., 2021), QUINCY v1.0 (Thum et  al., 2019), 
GOLUM-CNP (Wang et al., 2018), JSM (Yu et al., 2020), JULES-CNP 
(Nakhavali et al., 2022), and E3SM (Zhu et al., 2019). The coupled 
C-N-P cycle reduced the magnitude of disequilibrium in the 
terrestrial C cycle (Wei et al., 2022a), but how to accurately represent 
the nutrient cycles and the effects of N and P limitation in 
biogeochemical models are still challenges (Hungate et  al., 2003; 
Thomas et al., 2015; Wieder et al., 2015; Sun et al., 2017).

Due to the difference in model structure and parameters (Zaehle 
and Dalmonech, 2011), the increased model complexity further 
hinders our understanding of the modeling uncertainty. However, 
most global biogeochemical models share a typical pool-flux structure 
and follow some fundamental properties of terrestrial element cycling 
(Xia et al., 2013; Luo et al., 2015). For example, C atoms enter the 
ecosystem through plant photosynthesis, while plants assimilate N 
and P mainly from mineral soil. The elements of C, N, and P are 
allocated among plant pools, then transferred to litter and soil pools, 
and eventually returned to the atmosphere via the decomposition of 
organic matter (Olson, 1963; Zhang et al., 2008). In biogeochemical 
models, there are a specific soil inorganic-N pool and a few soil 
inorganic P pools, which generally separate to distinct pools based on 
its chemical fractionation (Hedley et al., 1982; Cross and Schlesinger, 
1995; Hou et al., 2018). Labile P usually comes from P mineralization, 
P weathering, and dust deposition (Wang et al., 2010). Some of the 
labile P can enter the sorbed P pool and subsequently become 
occluded, but this form is assumed to be unavailable by plants (Wang 
et  al., 2018). Those specific processes of the coupled C-N-P 
biogeochemical cycles can be found in Figure 1.

Leaf area index (LAI), as a significant uncertainty source of 
simulated photosynthetic carbon uptake (Li et al., 2018; Cui et al., 
2019), is widely used as a critical parameter in the process-based 
biogeochemical models for depicting vegetation canopy structure 
(Forzieri et al., 2017; Zeng et al., 2017; Liu et al., 2018; Chen et al., 
2019). Many inter-model comparisons on Earth system models 
(ESMs) have shown a large spread of LAI on a global scale (Zeng 
et al., 2016), partially leading to their persistent uncertainty in carbon 
storage projections (Wei et al., 2022b). Recently, many studies have 
used satellite-based LAI to directly force the models for a more 
realistic prediction of the global carbon (C) cycle (Zeng et al., 2017; 
Liu et al., 2018; Chen et al., 2019). However, there are significant 
discrepancies in different satellite-based LAI products on temporal 
and spatial scales (Jiang et al., 2017; Xiao et al., 2017; Liu et al., 2018). 
Therefore, understanding whether and how the data uncertainty in 
LAI observations propagates to global biogeochemical models helps 
provide a more accurate prediction of future terrestrial carbon sinks 
(Heinsch et al., 2006; Liu et al., 2018).

This study introduces a framework to decompose a complex 
biogeochemical model coupled with C-N-P processes into its 
traceable components. Considering that the N and P cycles are not a 
closed cyclic system, we only focused on the organic matter of C, N, 
and P in this study. Specifically, the framework traces the modeled 
ecosystem organic C, N, and P storage to the influx of C (i.e., net 

primary productivity, NPP), N, and P uptake and the corresponding 
ecosystem residence time [ i C N P�� �, , ]. The τ i  can be  further 
traced to the baseline residence time [� i i C N P� �� �, , ]  and 
environmental scalars ( ξ ). The former � i

�  usually preset in models 
depends on the soil properties and vegetation characteristics, while 
the latter usually includes temperature and water scalars and is 
determined by climate forcings. Based on the framework, we further 
analyzed the difference among biomes (Supplementary Figure S1) in 
simulated C, N, and P storage caused by the disagreement of LAI 
estimates among three satellite-derived products (i.e., GIMMS LAI3g, 
GLASS, and GLOBMAP) with the Australian Community 
Atmosphere Biosphere Land Exchange (CABLE) model. The primary 
goal of this study is to explore the uncertainty propagation of LAI 
observations to global simulations of C, N, and P storage in the 
biogeochemical models.

2. Materials and methods

2.1. Satellite-derived leaf area index datasets

Leaf area index is an important parameter that consistently monitors 
vegetation structure dynamics over large spatial and temporal scales. 
This study uses three satellite-derived long-term global LAI products: 
GIMMS LAI3g, GLASS LAI, and GLOBMAP LAI. We re-sampled all 
three LAI datasets from their native resolution into 0.5° × 0.5° special 
resolution using the nearest neighbor algorithm and interpolated to the 
hourly temporal resolution to force the model. All three datasets have 
been validated and widely used to monitor terrestrial vegetation 
dynamics (Dardel et al., 2014; Piao et al., 2015; Zhu et al., 2016, 2017; 
Jiang et al., 2017).

2.1.1. GIMMS LAI3g product
The Global Inventory Modeling and Mapping Studies (GIMMS) 

LAI3g product (version 01) was generated by the Feed-Forward Neural 
Network (FFNN) algorithm based on the Advanced Very High 
Resolution Radiometer (AVHRR) GIMMS Normalized Difference 
Vegetation Index (NDVI) dataset and Moderate Resolution Imaging 
Spectroradiometer (MODIS) LAI (Zhu et al., 2013). It provides a global 
observation at 1/12-degree spatial resolution and 15-day temporal 
resolution from July 1981 to December 2011. The GIMMS LAI3g 
dataset was extensively evaluated by comparison with field LAI 
measurements, other satellite-derived data products, statistical climatic 
variables, and the simulation results from land models (Mao et al., 2013; 
Zhu et al., 2013).

2.1.2. GLASS LAI product
The Global LAnd Surface Satellite (GLASS version 03) long-time 

series LAI product was estimated from MODIS and AVHRR remote 
sensing data using the General Regression Neural Networks (GRNNs) 
approach (Xiao et al., 2014). The GRNNs were trained with the fused 
time-series LAI from MODIS and CYCLOPES products and the MODIS 
reflectance of the BELMANIP sites. The GLASS LAI product has a 
temporal resolution of 8 days and spans from 1981 to 2014. For the 
period of 1981–1999, the data product was generated from AVHRR 
reflectance data, providing a geographic projection at the spatial 
resolution of 0.05°. From 2000 to 2014, the LAI product was generated 
from MODIS surface reflectance data with a spatial resolution of 1 km 
(Xiao et al., 2014, 2016).
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2.1.3. GLOBMAP LAI product
The consistent long-term GLOBMAP LAI product (version 01) 

was generated by a combination of AVHRR LAI (1981–2000) and 
MODIS LAI (2000–2011) (Liu et al., 2012). The MODIS LAI time 
series was generated from MODIS land surface reflectance data based 
on the GLOBCARBON LAI algorithm (Deng et  al., 2006). By 
establishing a pixel by pixel relationships between AVHRR 
observations and MODIS LAI data series during the overlapped 
period (2000–2006), the AVHRR LAI could be retrieved back to 1981. 
The temporal resolution of this dataset is half a month and 8 days in 
1981–2000 and 2001–2011, respectively. The spatial resolution of the 
AVHRR LAI dataset is 8 km.

2.2. Matrix representation of the carbon, 
nitrogen, and phosphorus cycle

We developed a theoretical framework for decomposing the 
terrestrial carbon, nitrogen, and phosphorus stock into some 
traceable components based on the biogeochemical principles of the 
terrestrial carbon cycle. For example, the terrestrial carbon cycle can 
be generally described as the following processes, which includes 
carbon enters the ecosystem via plant photosynthesis; photosynthetic 
carbon is then allocated among plant pools; part of this carbon is 
consumed by respiration, and the remainder is further transferred to 

litter and soil carbon pools; lastly, the carbon in the litter and soil 
pools is decomposed and back into the atmosphere (Luo and Weng, 
2011; Luo et al., 2022). Plants assimilate the nitrogen and phosphorus 
from mineral soils and then transfer following the same flow with 
organic matter in terrestrial ecosystems. Therefore, following the 
approach developed by Xia et al. (2013), the biogeochemical cycle 
processes can be  mathematically represented by three 
matrix equations:

 

dX t
dt

B U t A t CX t

dN t
dt

B U t A t CN t

dP t
d

C C

N N

� �
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� �
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� �

�

�

tt
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�

�

�
�
�

�

�
�
� �

  

(1)

where X(t) = (X1(t), X2(t), …, X9(t))T, N(t) = (N1(t), N2(t), …, N9(t))T, 
and P(t) = (P1(t), P2(t), …, P9(t))T are 9 × 1 vector, which describes the 
C, N and P pool size of leaf, root, wood, metabolic litter, structural 
litter, coarse wood debris (CWD), fast soil, slow soil and passive soil 
pool at time t in CABLE model. B b b b i C N Pi

T� �� � �� �1 2 3 0 0, , , , , , ,  
is a vector of allocation coefficients of C, N, and P among different 
plant pools. For the C allocation, the partitioning coefficients from 
NPP to root and wood carbon pools are equations of availably of light, 

FIGURE 1

Schematic diagram of major carbon (C), nitrogen (N) and phosphorus (P) pools and fluxes in a terrestrial ecosystem. Black, blue and pink arrows indicate 
the C-cycle processes, N-cycle processes, and P-cycle processes, respectively. Green, yellow, and gray rectangles represent the vegetation, litter and soil 
pools of organic carbon, nitrogen, and phosphorus. LAI, leaf area index; PLAI, LAI-leval photosynthesis, GPP, gross primary productivity, CUE, carbon use 
efficiency; NPP, net primady productivity; Meta, metabolic litter; Str, structural litter; CWD, coarse woody debris.
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nitrogen, and water, respectively. Then the rest of NPP goes to the leaf 
pool. For the N and P, the allocations of N and P uptake among 
different plant pools are calculated based on the proportion to each 
pool’s demand of N and P. The inputs of C, N, and P are represented 
by U t i C N Pi � � �� �, , . UC  is the fixed carbon by canopy 
photosynthesis, i.e., net primary production (NPP). UN  and UP  are 
the assimilated N and P via plant uptake from soil minerals. � t� �  is 
a diagonal matrix, the diagonal components representing the 
environmental scalars (such as temperature and soil moisture) effects 
on carbon decomposition rate at time t. C is a 9 × 9 diagonal matrix 
with diagonal entries by 9 × 1 vectors c c c c T� �� �1 2 3, , , . The diagonal 
elements indicate the C decay rate for each pool. A is a transfer 
coefficients matrix, which can quantify how much carbon can 
be transferred among different pools. Therefore, the first term on the 
right side of Equation (1), BUi i  i C N P�� �, , , describes the C, N, and 
P inputs and allocation among different plant pools, and the second 
term on the right represents the transfer and exit rates (Xia et al., 
2013; Luo et al., 2017).

By letting Equation (1) equal zero, we obtained the C, N, and P pool 
size at steady-state as the product of ecosystem residence time 
and influx:
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(2)

where Xss , Nss , and Pss  are vectors that includes all the organic pools 
at steady state. UC , UN , and UP  are the ecosystem C, N, and P influx 
at steady state. UC  represents NPP in this study, which can be further 
decomposed to gross primary production (GPP) and carbon use 
efficiency (CUE) based on some previous studies (Bradford and 
Crowther, 2013; Xia et al., 2017). The term A C B i C N Pi�� � �� ��1

, ,  in 
Equation (2) are vectors of the residence time of individual pools as:
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(3)

The ecosystem-level residence time of C, N, or P was summed from 
all the individual pools. The ecosystem residence time can be determined 
by multiple ecological processes, such as allocation (i.e., the B vector), 
carbon transfer among different pools (i.e., the A matrix), decomposition 
rates (i.e., the C matrix), and the environmental scalars (i.e., ξ ). The 
scalar ξ  usually consists of the temperature (ξT ) and water 
scalars (ξW ) as:

 � � �� T W  (4)

Generally, the parameters of B, A, and C matrices are preset in a 
specific model according to model structure, soil properties, and 
vegetation characteristics (Zhou et al., 2018). By rearranging Equation 
(3), we can further decompose the residence time to the environment 
scalar and the corresponding preset parameters:
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(5)

The residence time can be  further decomposed to environment 
scalars and baseline residence time vectors. The equation of baseline 
residence time can be expressed as:
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(6)

2.3. The Community 
Atmosphere-Biosphere-Land Exchange 
(CABLE) model: overview and experiments

The Australian Community Atmosphere Biosphere Land 
Exchange (CABLE) model version 2 is a global land surface model 
that can simulate biophysical and biogeochemical processes (Wang 
et al., 2010, 2011). It includes five submodels: (1) radiation, (2) canopy 
micrometeorology, (3) surface flux, (4) soil and snow, and (5) 
ecosystem respiration, and it also incorporates carbon (C), nitrogen 
(N), and phosphorus (P) cycles. CABLE has been widely evaluated by 
other global observations (Piao et al., 2015), eddy-flux measurements 
(Best et al., 2015), and manipulated field experiments (De Kauwe 
et al., 2014). This model can be applied to attribution analysis (Zhang 
et al., 2016) or plant feedback effects (Lei et al., 2019) by doing a series 
of simulation experiments. The default settings of LAI are prognostic 
in the CABLE model, but a switch can control them. When the switch 
is turned on, the prognostic LAI can be calculated as the product 
between specific leaf area (SLA) and leaf biomass. SLA and the 
phenology phases (used to determine the leaf growth) are prescribed 
for each plant functional type.

In this study, we turned the switch off and replaced the modeled 
LAI with data from three satellite-observed products (GIMMS 
LAI3g, GLASS, and GLOBMAP). Based on the traceability analysis 
approach, we performed three simulations to diagnose the source of 
uncertainty in the biogeochemical cycle caused by LAI. The CABLE 
model was first spun up with the C-N-P coupled schemes to the 
steady state in 1,900 using a semi-analytical solution (Xia et  al., 
2012). The forcing data (Zhang et  al., 2016) used to spin up the 
model concludes seven 6-hourly meteorological forcing variables 
(i.e., temperature, precipitation, downward shortwave radiation, 
downward longwave radiation, specific humidity, pressure, and wind 
speed) from the CRUNCEP version 5 (New et al., 1999, 2000, 2002). 
Using spin-up results as an initial value, we run the model from 1901 
to 1981. After that, we performed three simulations by replacing the 
modeled LAI with three satellite-based LAI products (GIMMS 
LAI3g, GLASS, GLOBMAP), respectively. Lastly, we spun up CABLE 
to a steady state forced by the satellite-derived LAI datasets and 
time-variant CO2 concentration from 1982 to 2011 (Supplementary  
Table S1).
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3. Results

3.1. Spatial variations of terrestrial carbon, 
nitrogen, and phosphorus storage

The estimated global mean LAI was 1.24 ± 0.18 m2 m−2 (mean ± SD) 
across the three data products. The simulated global stocks of C, N, and 
P were 11.0 ± 1.4 C kg C m−2, 504.3 ± 68.1 g N m−2, and 97.7 ± 13.6 g P 
m−2, respectively. All three simulations showed the highest mean LAI in 
tropical regions among the eight biomes (Figure 2A). Furthermore, the 
variability of LAI across three simulations was also higher in the tropics 

than in any other area (Figure 2B). However, the simulated element 
storage (i.e., C, N, and P) showed a divergent spatial pattern in 
magnitude and variability compared with LAI (Figures  2C–H). 
Specifically, northern high-latitude regions showed the highest annual 
mean element storage (12.0 kg C m−2 for the C storage, 531.3 g N m−2 for 
the N storage, and 93.1 g P m−2 for the P storage) compared with other 
climate regions. In contrast, tropical regions showed a relatively high C 
storage (10.0 kg C m−2) but low storage of N (400. 2 g N m−2) and P 
(78.5 g P m−2) (Figures 2C,E,G). A similar distribution was also found 
in the spatial variability of elements (Figures 2D,F,H). In addition, it is 
noted that the high disagreement in P storage across three simulations 

A B

C D

E F

G H

FIGURE 2

Spatial distributions of annual leaf area index (LAI, A), carbon (C), nitrogen (E) and phosphorus (G) storage and the corresponding standard deviation of LAI 
(B), C (D), N (F), and P (H) storage among three satellite-derived simulations. Note that we only consider the organic pools for nitrogen and phosphorus in 
this study.
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is mainly located in the regions covered by herbaceous vegetation, such 
as eastern Australia, southeastern South America, and southern Africa 
(Figure 2H).

3.2. Decomposing carbon, nitrogen, and 
phosphorus storage into ecosystem 
residence time and the corresponding influx

The ecosystem element storage can be  decomposed into the 
corresponding element residence time (τ τ τC N P, , ) and the influx rate 
[UC (NPP), UN, and UP] based on the traceability framework according 
to Equations (2, 3). Deciduous needle leaf forest (DNF) had the largest 
ensemble annual mean results of ecosystem C (86.0 kg C m−2), N 
(424.3 g N m−2), and P (24.4 g P m−2) storage among the eight biomes, 
resulting from its longest residence time (τC , 154.3 years; τN , 
78.4 years; τP , 65.5 years) and mediated element input (NPP, 557.4 g C 
m−2 yr.−1; UN, 5.4 g N m−2 yr.−1; UP, 0.37 g P m−2 yr.−1). However, the order 
of the size in C, N, and P storage was inconsistent in the remaining seven 
biomes (Supplementary Table S2). Shrubland had the lowest C storage 
(10.7 kg C m−2) as a result of the smallest NPP (257.6 g C m−2 yr.−1) and 
a moderate τC  (41.4 years). Evergreen needle leaf forest (ENF) had a 
relatively long τN  (50.4 years) and low UN (3.1 g N m−2 yr.−1). While 
evergreen broadleaf forest (EBF), deciduous broadleaf forest (DBF), and 
C3 grassland (C3G) had a short τN  (~25.0 years) and relatively high UN 
(~9.0 g N m−2 yr.−1), leading to a moderate N storage. For P storage, EBF, 
DBF, and C3G had a relatively short τP  (~23.9 years) and relatively high 
UP (~0.50 g P m−2 yr.−1), resulting in a moderate P storage. Although 
Tundra had a relatively long τN  (53.0 years) and τP  (50.9 years), it still 
has the lowest N (16.5 g N m−2) and P (1.4 g P m−2) storage as the result 
of the smallest UN (0.31 g N m−2  yr.−1) and UP (0.03 g P m−2  yr.−1). 
Additionally, the carbon influx via canopy photosynthesis (NPP) can 
be further decomposed into GPP and CUE (Xia et al., 2017). The results 
showed that EBF had the highest annual mean GPP (3312.2 g C 
m−2 yr.−1), followed by DBF (2103.1), C4 grassland (C4G, 1873.4), C3G 
(951.3), ENF (912.6), DNF (871.2), Shrubland (511.6) and Tundra 
(370.8) regions (Supplementary Figure S2 and Supplementary Table S2). 
The ranges of carbon use efficiency of all eight biomes from 0.37 to 0.71.

The ecosystem element storage derived from three satellite-based 
LAI differed among the eight biomes. For example, ENF, EBF, and DBF 
had similar C, N, and P storage for the three simulations (Figure 3). 
Although Shrubland and C3G had comparable values of element 
residence time (τC , τN , and τP ), their different element uptake rates 
(NPP, UN, and UP) led to variations in element storage across the three 
simulations. In addition, compared with the simulations derived from 
GIMMS LAI3g and GLASS, the simulation derived by GLOBMAP LAI 
had the smallest NPP, UN, and UP (Figure 3). Tundra and DNF had 
comparable C storage across three simulations. However, the N and P 
storage magnitude varied widely in these regions. The differences in N 
and P storage across the three simulations are mainly due to τN  and 
τP  (Supplementary Table S2).

3.3. Traceability analysis of ecosystem 
residence time

Ecosystem residence time can be  decomposed into baseline 
residence time and environmental scalars. The baseline residence time 
is determined by the carbon transfer coefficients matrix (A matrix), 

decomposition rates (C matrix), and the allocation coefficients 
(B vector) among different plant element pools based on Equation 6. 
Considering that the element cycles (C, N, and P) share the same A and 
C matrix, the difference in baseline element residence time is mainly 
caused by the element allocation coefficients ( B B BC N P, , ). The baseline 
C residence time (�C

� ) is the longest compared with baseline N 
residence time (�N

� ) and baseline P residence time (�P
� ) 

(Supplementary Figure S3) in all the eight biomes. Deciduous needle 
leaf forest has a relatively long �C

�  (21.8 years), which is almost three 
times that of �N

�  (8.2 years) and �P
�  (6.8 years). Baseline element 

residence times were similar in C3 grassland (�C
� , 4.6 years; �N

� , 

A

B

C

FIGURE 3

Decomposition of ecosystem carbon (A), nitrogen (B), and phosphorus 
(C) storage into its influx and ecosystem residence time in various 
biomes for each simulation. ENF, evergreen needleleaf forest; EBF, 
evergreen broadleaf forest; DNF, deciduous needleleaf forest; DBF, 
deciduous broadleaf forest; Shrub, shrub land; C3G, C3 grassland; C4G, 
C4 grassland.
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3.7 years; �P
� , 3.6 years), C4 grassland (�C

� , 5.6 years; �N
� , 

4.3 years; �P
� , 4.3 years), and shrubland (�C

� , 8.7 years; �N
� , 7.1 years; 

�P
� , 7.1 years) regions. Additionally, �C

�  were similar to each other in 
three LAI-derived simulations. While �N

�  and �P
�  differed substantially 

across three simulations, especially in ENF, DNF, and tundra regions 
(Figure 4).

Environmental scalar (ξ ) can regulate ecosystem residence time by 
limiting the decomposition rates of litter and soil organic pools. By 
decomposing environmental scalar into temperature (ξT ) and water 
scalar (ξW ), we can found that the multi-year mean of ξT  ranges from 
0.09 for deciduous needle leaf forest to 0.70 for C4 grassland, while ξW  
ranges from 0.60 for tundra and 0.92 for C4 grassland (Figure 5). The 
global average of ξT  (0.38) is considerably lower than that of ξW  
(0.82). In general, ξT  dominates the difference in ξ  among eight 
biomes compared with ξW .

3.4. Variation decomposition of the 
simulated carbon, nitrogen, and phosphorus 
storage

We decomposed the variations of element storage into several 
traceable components on each vegetated grid by a traceability analysis 
approach. Figure 6 shows the dominant traceable component for each 
grid which explains the greatest contrition to the element storage 
variation. The results showed that the element influx rates (i.e., NPP, UN, 
and UP) are the primary uncertainty source in 67.6, 93.2, and 93.0% of 
the vegetated grid cell for the C, N, and P storage, respectively. By 
further tracing the modeled variation of NPP into GPP and CUE, 
we found that GPP and CUE explained 91.6 and 8.4% of the variation 
across simulations, respectively. The baseline residence time has a larger 
uncertainty contribution than the environmental scalars (Figure 6). 
Specifically, the contributions of baseline element residence time (i.e., 
�C
� , �N

� , and �P
� ) to the variation of ecosystem element residence time 

(i.e., τC , τN , and τP ) is 75.3, 91.2, and 91.8%, respectively. While the 
contribution of ξ  is 24.7% for the variation of τC , 8.8% for τN , and 
8.2% for τP . In addition, the contributions of ξT  and ξW  to the 
variation of element storage are relatively small compared with other 

contributors, i.e., ξT  and ξW  only contribute 3.8 and 4.2% for C 
storage, 0.32 and 0.28% for N storage, and 0.28 and 0.29% for P storage 
variation, respectively.

4. Discussion

Several recent studies have compared the differences among the 
existing satellite-derived LAI products on regional and global scales 
(Jiang et al., 2017; Liu et al., 2018). However, few studies have explored 
the influences of data uncertainty on simulated element storage in 
biogeochemical models. Our study shows that the largest discrepancies 
in the magnitude and spatial variance among different LAI products are 
mainly located in the evergreen broadleaf forest (Figure 2B), which is 
consistent with some previous studies (Camacho et al., 2013; Fang et al., 
2013; Xiao et al., 2017; Piao et al., 2020). The significant divergence in 
different satellite-based LAI observations is due to the saturation effects 
of LAI in dense vegetation (Goswami et al., 2015; Li et al., 2018), sensor 
degradation, changes in platforms and sensors, and contamination by 
clouds and aerosols (Jiang et al., 2017; Liu et al., 2018; Piao et al., 2020). 
However, the high northern latitudes rather than the tropical regions 
have the most considerable discrepancies in simulated element storage 
due to the uncertainty of permafrost processes and the difficulty of 
spinning the model to equilibrium (Thornton and Rosenbloom, 2005; 
Xia et al., 2012). The results of the uncertainty pattern in element storage 
are consistent with that emerged in the current generation of Earth 
System Models (Arora et al., 2013; Friedlingstein et al., 2014; Zhou et al., 
2021; Wei et al., 2022b). The contrast spatial distribution of uncertainty 
between satellite-derived LAI data and the modeled C-N-P storages 
indicates a nonlinear propagation of leaf area uncertainty in the 
biogeochemical models.

Decomposing the modeled element storage to its traceable 
components can facilitate understanding of inter-biome distributions of 
terrestrial C, N, and P storage on the globe (Figure 2). For instance, due 
to the long residence times and the corresponding moderate uptake rate, 
the deciduous needle leaf forest has the highest C, N, and P storage 
among all the eight biomes (Figure 3). Although evergreen broadleaf 
forests have relatively large influxes of C and N, the corresponding short 
residence time results in intermediate C and N storages. The P storage 
in the evergreen broadleaf forest regions can be decomposed into the 
medium P uptake and residence time (Figure 3). The ecosystem element 
residence time can be  further decomposed into the corresponding 
baseline residence time and environmental scalars. As shown in 
Figure 4, the evergreen broadleaf forest has almost the longest mean 
baseline residence times of C (21.9 years), N (15.5 years), and P 
(11.5 years). However, although deciduous needle leaf forest has a 
relatively long baseline C residence time (21.8 years), it has only 
moderate baseline N (8.2 years) and P (6.8 years) residence time 
(Figure 4). This is because more assimilated N and P than C are allocated 
to leaves (C: 0.08, N: 0.26, P: 0.38) with faster turnover 
(Supplementary Figure S4). Previous studies also reported a longer P 
residence time on soils with low P availability (Tsujii et al., 2020), which 
can contribute to more efficient P conservation to support plant 
productivity under nutrient-limited regions (Wang et  al., 2018). In 
addition, environmental scalars can also influence ecosystem residence 
time by regulating the baseline residence time in the CABLE model. For 
example, the low temperature decreases the decomposition rates in 
north-high latitude regions, though the absolute magnitude of 

FIGURE 4

Comparison of baseline carbon, nitrogen and phosphorus residence 
time among different biomes with a three-dimensional scatter plot for 
each simulation. Abbreviations of biomes are given in Figure 3.
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discrepancy is large (Figure 5; Koven et al., 2015). Our results indicate 
that compared with the water scalar, the temperature scaler is the main 
limiting factor in all eight biomes (Figure 5), which is also supported by 

the observational datasets in temperate forests on the site levels (Chen 
et al., 2022).

We diagnosed the uncertainty source of different simulations 
derived from three satellite-based LAI products based on the 
traceability framework. We  further quantified the dominant 
traceable component for each grid on a global scale. The results 
indicate that the uncertainty of element storage across three 
LAI-derived simulations shows a large spatial variation. Specifically, 
our study demonstrates that GPP contributes most to the spatial 
uncertainty of C storage in 61.9% of vegetated grids, mainly located 
in subtropical and some tropical regions. By contrast, the baseline 
C residence time was the major contributing factor for northern 
high-latitude areas (Figure 6). The spatial pattern of the dominant 
uncertainty components of N and P storage was similar to C 
storage, with N and P uptake rates dominating >90% of the global 
vegetated grids.

Although our biogeochemical traceability framework helps trace 
the uncertainty propagation path, we also acknowledge that it still 
has some limitations. First, the steady-state assumptions developing 
the traceability framework in this study are widely used in 
decomposing the land surface models (Xia et al., 2013; Rafique et al., 
2016; Wei et al., 2022b) and developing models (Wang et al., 2018). 
However, terrestrial ecosystems are not steady (Luo and Weng, 2011) 
due to increasing atmospheric CO2, climate warming, nitrogen 
deposition, and other anthropogenic disturbances (Friedlingstein 
et al., 2006; Sitch et al., 2015). Second, the plant functional types in 
each land grid cell are prescribed in the CABLE model. Thus, the 
uncertainty of LAI data may propagate to different processes in 
dynamic vegetation models, such as the CLM-FATES (Fisher et al., 
2015) and BiomeE (Weng et al., 2015, 2019). Third, we acknowledge 
that this approach mainly focuses on ecosystems’ emergent 
properties but ignores some understanding of internal ecological 
mechanisms such as competitive strategies and evolutionary systems. 
Furthermore, the traceability framework we applied in this study 
only considered organic pools and ignored soil inorganic N and P 
pools. The size of soil inorganic N and P pools may enhance or 
weaken the feedback between vegetation dynamics and climate 
change (Wei et al., 2019; Wang et al., 2022), calling for a further 
understanding of the interaction between vegetation and inorganic 
nutrient pools in biogeochemical models.

5. Conclusion

In summary, this study explored data uncertainty propagation to 
model uncertainty by decomposing the terrestrial organic element 
(i.e., C, N, and P) storage into its traceable components. Those 
components include the element uptake rates, ecosystem baseline 
residence time, temperature, and water scalars. Such a traceable 
analytical framework effectively reveals the mechanisms behind the 
simulation uncertainty and its propagation through ecosystem 
processes. By applying this framework, we can distinguish the reasons 
for the difference in simulated element storage caused by LAI among 
biomes and further diagnose the uncertainty source. It can be applied 
to other biogeochemical models to help characterize and quantify the 
uncertainty propagated in element cycles. The nonlinear uncertainty 
propagation of data to the model explored in this study can help 
improve biogeochemical models’ future prediction ability. The 
findings in this study also call for more research efforts on the causal 

FIGURE 5

Determining of the environmental scalars ( ξ ) by temperature scalars 
( Tξ ) and water scalars ( Wξ ) among biomes. The dashed line show 
the constant value of environment scalars. Abbreviations of biomes are 
given in Figure 3.

A

B

C

FIGURE 6

The global pattern of the dominant variable for the variation in 
simulated land carbon (A), nitrogen (B), and phosphorus (C) storage 
among three simulations. The insert panels indicate the proportion of 
each traceable components in global vegetated grids. GPP, gross 
primary productivity, CUE, carbon use efficiency; Tξ , temperature 
scalars; Wξ , water scalars; Cτ ′ , baseline C residence time; Nτ ′ , 
baseline N residence time; Pτ ′ , baseline P residence time.
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links between leaf area and biogeochemical cycles in 
terrestrial ecosystems.
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Ecosystems worldwide receive large amounts of nutrients from both natural

processes and human activities.While direct subsidy e�ects on primary production

are relatively well-known (the green food web), the indirect e�ects of subsidies

on producers as mediated by the brown food web and predators are poorly

considered. With a dynamical green-brown food web model, parameterized

using empirical estimates from the literature, we illustrate the e�ect of organic

and inorganic nutrient subsidies on net primary production (NPP) (i.e., after

removing loss to herbivory) in two idealized ecosystems—one terrestrial and

one aquatic. We find that nutrient subsidies increase net primary production, an

e�ect that saturates with increasing subsidies. Changing the quality of subsidies

from inorganic to organic tends to increase net primary production in terrestrial

ecosystems, but less often so in aquatic ecosystems. This occurs when organic

nutrient inputs promote detritivores in the brown food web, and hence predators

that in turn regulate herbivores, thereby promoting primary production. This

previously largely overlooked e�ect is further enhanced by ecosystem properties

such as fast decomposition and low rates of nutrient additions and demonstrates

the importance of nutrient subsidy quality on ecosystem functioning.

KEYWORDS

nutrient subsidy, trophic cascade, primary production, ecosystem function, ecosystem

modeling, organic fertilization, food web

1. Introduction

No ecosystem is an island, entirely cut off from external influences. On the contrary, the

influx of materials and organisms into ecosystems, known as subsidies, significantly impact

the state and functioning of ecosystems (Polis et al., 1997; Palumbi, 2003). The subsidies

can take various forms, including mass transport of materials by water and air (Bobbink

et al., 2010), animals that move across ecosystems for various activities such as foraging

(Marczak et al., 2007; Buendía et al., 2018), and, an increasingly important phenomenon

for ecosystems world-wide, input of resources such as nutrients through human activities

(Raun and Johnson, 1999; Newsome et al., 2015). Subsidies can have diverse impacts. Adding

nutrients in limited supply in the ecosystem often increases primary production (Polis et al.,

1997; Montagano et al., 2018), but it can also reduce it when, for instance, adding one

nutrient promotes plant–microbe competition for other nutrients (Čapek et al., 2018). The

consequences of subsidies depend on the trophic interactions in the ecosystem. Introducing

consumers changes ecosystem fluxes which affects biomass distributions across trophic levels

(Allen and Wesner, 2016) and thereby how nutrients cycle in the ecosystem. Introduced

species can change the behavior of the ecosystem entirely, as they create novel interactions

and pathways (Baxter et al., 2004).
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Subsidies can move both horizontally between food web

compartments at a certain trophic level and vertically across trophic

levels within a food web. Horizontal transfer occurs due to nutrient

flows and interactions of organisms between food webs, and

can occur through physical transfer of material between spatially

separated webs in an ecosystem, or through species interactions in

linked food webs (Nakano andMurakami, 2001; Baxter et al., 2004).

For example, consumer species in green-brown food webs that

rely on both primary producers in the green channel and detrital

matter in the brown channel connect the two channels and their

food webs (Moore et al., 2004; Allen and Wesner, 2016). Subsidies

also lead to vertical exchanges between trophic levels within a

food web. Subsidies provided from below, by influx of nutrients or

direct provision to primary producers, propagates up to consumer

species, increasing the overall biomass and altering the shape of

biomass distribution in the food web (Hines et al., 2006). Predator

subsidies lead to pressure on the herbivores they consume, and

can lead to trophic cascades where primary producers are released

from herbivory pressure due to predation (Leroux and Loreau,

2008; Newsome et al., 2015; Galiana et al., 2021). Hence, subsidies

can cause positive albeit indirect effects on primary production via

trophic interactions, but outcomes of such combined horizontal

and vertical effects of subsidies in green-brown food webs are

poorly explored.

Research on the impact of subsidies has centered on either

the horizontal or the vertical flows, without bringing these two

perspectives together (Rooney et al., 2006). Studies of landscape

ecology and meta-ecosystem theory have focused on horizontal

transfer between habitats (Darimont et al., 2009; Gravel et al.,

2010), and how it interacts with spatial structure (Jacquet

et al., 2022). In contrast, food web ecologists have focused on

vertical flows that can change biomass distributions and can

lead to trophic cascades (Leroux and Loreau, 2008). However,

flow of energy and nutrients due to subsidies can be more

nuanced due to the complexity of interactions within ecosystems,

intertwining the horizontal and vertical flows. Moreover, research

on subsidies has largely focused on green food webs (Nakano

and Murakami, 2001; Loreau and Holt, 2004; Bobbink et al.,

2010), with more recent interest in brown food webs (Allen

and Wesner, 2016; McCary et al., 2020). Linking the two into

integrated green-brown food webs has only just begun (Zou et al.,

2016).

Nutrient subsidies into the brown channel of the food

web has recently been shown to affect plant production (Riggi

and Bommarco, 2019; Aguilera et al., 2021). The subsidies

provide food for detritivores, which in turn increases predator

populations, and lead to a trophic cascade where plants grow

more as herbivory pressure is reduced by predators. However, a

theoretical understanding of these processes and their relevance

has lagged behind. While some theoretical investigations have

been conducted on how organic matter subsidies affect primary

producers and nutrient recycling (Leroux and Loreau, 2008;

Gounand et al., 2014; Spiecker et al., 2016), we know of

only two studies in which the full green-brown food web

was considered in the context of subsidies (Attayde and Ripa,

2008; McCary et al., 2020). However, they did not consider

how the input rate and quality of nutrient subsidies affect the

food web.

Here, we develop and use a dynamical model to examine

how nutrient subsidies affect primary production in coupled

green-brown food webs in terrestrial and aquatic ecosystems. We

focus on nitrogen as a key nutrient whose cycle has been widely

disrupted by human activities, andmeasure net primary production

(NPP) (i.e., the production remaining after herbivory), as a function

of nutrient subsidy. The nutrient subsidy properties we consider are

the amounts of inorganic and organic nitrogen in detrital matter

(e.g., green or animal manure) and their relative proportions.

Inorganic nitrogen is directly taken up by primary producers and

fuels the green channel, while organic nitrogen is consumed by

decomposers and fuels the brown channel. Combining the model

with data from the literature on nitrogen fluxes and stocks we

aim to assess, first, how the strength and quality of subsidies affect

net primary production. Second, we investigate how food web

properties, such as consumption, nitrogen conversion efficiencies,

and metabolic rates for consumers, and ecosystem properties, such

as nitrogen mineralization rate and primary producer mortality,

modify the subsidy effect on primary producers. Our results focus

on idealized aquatic and terrestrial ecosystems intended to be

representative of widespread conditions on Earth.

2. Methods

We note that we use a similar methodology to another study

(Zelnik et al., 2022), with the same model and some of the

same sources for parameterizing the model. For clarity, we note

a few main differences: (i) We base the parameterization of this

model (see below) on fewer studies, as we focus less on the data

synthesis aspect of the previous study and more on theoretical

analysis. (ii)We use amore general parameter exploration, focusing

on two generic ecosystem types rather than six specific types

(e.g., forests) as in the previous model, and do not set any

parameter to zero throughout, as we did for some parameters in

the previous study. (iii) We focus here on net primary production,

rather than on general trends of stocks and fluxes, as in the

previous study.

2.1. Dynamical model

To model the dynamics of subsidized green-brown food

webs, we write six mass balance equations describing the

changes in nitrogen stock in units of [gN m−2] (see Table 1).

Four compartments are functional groups of organisms:

primary producers (P), herbivores (H), detritivores excluding

microorganisms (D), and predators (C). The two other

compartments are of organic nitrogen including microbial

decomposers (S) and inorganic nitrogen (N).

While we focus on nitrogen as a key limiting nutrient in many

ecosystems, we keep themodel general, to open for the possibility to

describe the dynamics of other nutrients as well. We follow Barbier

and Loreau (2019) in defining the food web interactions, using a

type I functional response for consumption terms, together with

self-regulation (Barabás et al., 2017) of each species compartment.

A conceptual diagram is given in Figure 1, and the model dynamics
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TABLE 1 Definition of variables, fluxes, and metrics used.

Name Description Units

P Primary producer stock [gNm−2]

H Herbivore stock [gNm−2]

S Detrivore stock [gNm−2]

C Predator stock [gNm−2]

N Inorganic nitrogen stock [gNm−2]

S Organic nitrogen stock [gNm−2]

I Subsidy strength [gNm−2y−1]

IN Inorganic subsidy strength [gNm−2y−1]

IS Organic subsidy strength [gNm−2y−1]

I0 Nitrogen input from recycling [gNm−2y−1]

ψ Fraction of organic subsidy

PSOS Producer sensitivity to organic subsidies

Note that I = IN + IS , ψ = IS/I, and PSOS = 1
<P> · d

dψ
P.

are detailed by the coupled ordinary differential equations, given in

Equation (1).

d

dt
P = P

(

ǫPrPN − rHH − uP − qPP
)

(1a)

d

dt
H = H

(

ǫHrHP − rCC − uH − qHH
)

(1b)

d

dt
D = D

(

ǫDrDS− rCC − uD − qDD
)

(1c)

d

dt
C = C

(

ǫCrCH + ǫCrCD− uC − qCC
)

(1d)

d

dt
N = zS− ℓN − rPPN + IN (1e)

d

dt
S = I0 − zS− rDDS+ IS (1f)

For each of the first four compartments, with i designating the

specific compartment, the parameter ri represents the consumption

coefficient of the trophic level below (in units of [m2(gN)−1yr−1]),

ǫi is the non-dimensional nutrient conversion efficiency associated

with this consumption, ui is the natural mortality rate (units of

(yr−1)), and qi is the self-regulation coefficient (e.g., light limitation

for primary producers, or intra-guild predation for predators, in

units of [m2(gN)−1yr−1]). In the two abiotic compartments, z is the

rate of nitrogen mineralization, and ℓ is the loss rate of inorganic

nitrogen due to mass transport and chemical transformations such

as denitrification that remove nitrogen from the N pool, both in

units of (yr−1). The latter is assumed independent of the subsidy

amount and quality, even though nitrogen loss rates can depend

on both amount and quality of the subsidy (e.g., N2O emissions,

Shcherbak et al., 2014). IN and IS are the influx rates of nitrogen

into the N and S compartments, respectively, which are interpreted

as subsidy fluxes of inorganic and organic nitrogen. We define the

nutrient subsidy strength as I = IN + IS. The fraction of organic

subsidy, which we call subsidy quality or ψ , is calculated as IS/I.

Thus, ψ = 0 for strictly inorganic subsidy and ψ = 1 for only

organic inputs. I0 is the input of nutrients from recycled materials

FIGURE 1

Interactions between the six compartments of an ecosystem model

with nutrient subsidies. Compartments are: primary producers (P),

herbivores (H), detritivores (D), predators (C), inorganic nutrients (N),

active organic nitrogen (S). Black lines show nutrient fluxes between

compartments; blue lines show the nutrient subsidies that are added

to the ecosystem, the red line marks the separation between

organism and substrate compartments, and the dashed arrow

indicates nutrient recycling from dead primary producers to the

organic nitrogen compartment.

from primary producers, given as I0 = yuPP, with y the recycling

rate (the quantitatively smaller recycling from other compartments

is neglected for simplicity). The definitions of the different subsidy

fluxes are also noted in Table 1.

A few modeling choices require some explanations. By having

self-regulation terms (e.g., qPP
2 in the first equation) we can expect

more well-behaved dynamics (Barabás et al., 2017), e.g., avoiding

oscillatory dynamics observed in previous studies (Attayde and

Ripa, 2008). We also make a neutral assumption on predator

preference, in which predators are agnostic as to which prey

they consume and can switch freely between herbivores and

detritivores (i.e., generalist multichannel predators). We focus on

a type-I functional response as it is simpler to analyze, and it

is not a priori clear which type of functional response is the

most relevant at the ecosystem level. Beyond type-I functional

response, type-II functional response is often used in consumer–

resource interactions (Attayde and Ripa, 2008;Wollrab et al., 2012),

although its relevance has also been contested Jonsson (2017).

Furthermore, it has been previously found that the choice of

functional response type does not alter the qualitative outcomes

of nutrient enrichment (Wollrab et al., 2012). To assert this also

in our model, we test a model with a type-II functional response,

and conclude that a type-I functional response is more relevant for

our modeling approach, being less likely to lead to extinction of

entire functional groups (e.g., no herbivores in the ecosystem) and

temporal oscillations (Supplementary material).

Nutrient recycling (I0), represented by the dashed horizontal

arrow in Figure 1, is a main nutrient source in many

ecosystems, especially terrestrial and macrophyte-dominated

aquatic ecosystems (Manzoni et al., 2018). As we show in the

Supplementary material, including recycling has a similar effect as
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an increase in subsidy strength I and a decrease inψ , compared to a

scenario without recycling. This effect of recycling can be explained

by noticing that even with only the inorganic nitrogen subsidy,

the organic nitrogen compartment is fed by nitrogen recycling of

primary producer biomass. Therefore, without loss of generality,

we focus in the main text on ecosystem dynamics without nutrient

recycling, i.e., setting y = 0. This assumption allows for a simplified

analysis and presentation while retaining the qualitative behavior

of the model. We also show that including detritus recycling gives

qualitatively similar results (Supplementary material).

2.2. Model parameterization

To analyze the effects of subsidies on primary production,

we parameterize the model for two generic ecosystem types: a

terrestrial and an aquatic ecosystem. These idealized ecosystems

are used as baselines, and we test a wide range of parameters

around these baseline values to ensure the generality of our results.

We base the model parameterization on two data collections with

estimates of nitrogen stocks and flow rates as defined in our model

(Cebrian, 1999, 2004). We draw rough estimates of ecosystem

properties such as nutrient conversion efficiencies from a dozen

additional studies detailed in the Data collection subsection below.

All values are converted to units of grams of nitrogen per square

meter for stocks, and per year for rates. As explained below in

the Parameter derivation subsection, we assume that Equation (1)

are in equilibrium, and use the empirically-derived stock and rate

estimates to back-calculate the model parameters for the terrestrial

and aquatic ecosystem, respectively. We do this by estimating the

production fluxes of the four compartments (P, H, D, C), and use

these flux values together with values for fraction of production lost

to processes such as predation, to estimate the various parameters.

Finally, as explained in the Simulations and parameter exploration

subsection 2.5, we use two methods to numerically explore the

consequences on primary production of a wide range of possible

parameter values representing different ecosystems.

2.3. Data collection

We combine the datasets from Cebrian (1999, 2004) according

to idealized ecosystem type: terrestrial or aquatic. Terrestrial

ecosystems include those labeled as forests, grasslands, savannas,

drylands, and boreal ecosystems. Aquatic ecosystems include

all marine and freshwater ecosystems, such as oceans, seagrass

meadows, coral reefs, and lakes. We exclude data for marshes

and swamps from either ecosystem type. With these definitions,

we obtain 210 records for the terrestrial and 534 records for

the aquatic idealized ecosystem from the datasets. The data

types for each record and their associated units are: primary

producer nitrogen content (νP [gN/gDW]; DW stands for dry

weight), primary producer stocks (BP [gCm−2]), herbivore stocks

(BH [gCm−2]), mineralization rate (z [yr−1]), decomposition

flux (fD [gCyr−1m−2]), detrital production (fM [gCyr−1m−2]),

primary production (fP [gCyr−1m−2]), herbivory fraction (ρPH).

The geometric average of the available values is calculated for

each data type and used in the subsequent estimation of the

model parameters for each ecosystem type. The use of a geometric

average is appropriate due to the wide range of values for various

ecosystems (Bar-On et al., 2018). We use the primary producer

average nitrogen content, together with a ratio of carbon to dry-

weight ratio of 2.5 (Cebrian and Lartigue, 2004), to convert BP and

all fluxes related to primary producers and detritus from carbon to

nitrogen, for instance P = BP · (νP/2.5). We similarly use a carbon

to nitrogen ratio for animals of 5 (Allgeier et al., 2020), to convert

BH from carbon to nitrogen stocks. We estimate S using the ratio

between the decomposition flux and mineralization, D = fD/z,

where we take S as the effective stock of organic matter.

Beyond the data from Cebrian (1999, 2004), additional

estimations of ratios of stocks and process rates are needed to

parameterize our model. In absence of a cohesive empirical

estimates for terrestrial and aquatic ecosystems, we use

representative information from a variety of sources, striving

to define plausible values for the model parameters so that nitrogen

stocks and fluxes remain within reasonable observed ranges.

We begin by estimating the ratios between compartment stocks,

i.e., of predators to herbivores σCH , detritivores to herbivores

σDH , and of inorganic to organic nitrogen σNS. From a global

estimation of biomass in the oceans (Bar-On et al., 2018), we see

that the biomass of fish and large invertebrates is roughly similar

to, or slightly smaller than, that of arthropods and protists. This

similarity between vertebrates and invertebrates suggests that also

the biomass of animals at different trophic levels could be similar

because herbivores are mainly planktonic (e.g., protists), predators

are mainly vertebrates (e.g., fish), and detritivores span both

categories. We therefore assume that their stocks in the aquatic

ecosystem to be the same, σCH = σDH = 1. Two reports of biomass

of different trophic groups in forests (Brockie and Moeed, 1986)

and grasslands (Perkins et al., 2018) show that detritivore biomass is

an order of magnitude higher than (forest) and similar (grassland)

to that of herbivores. Therefore, for terrestrial ecosystems we

choose an intermediate value of detritivore biomass as five times

the biomass of herbivores, i.e., σDH = 5. In the same studies

they also find that predator biomass is substantially smaller than

herbivore biomass. Hence, we assume for the terrestrial ecosystem

that σCH = 0.2. These ratios for aquatic and terrestrial ecosystems

are also roughly consistent with results for predators and prey

across terrestrial and aquatic biomes (Hatton et al., 2015). A study

of nitrogen cycling in aquatic ecosystems (Berman and Bronk,

2003) reported ratios between inorganic and organic nitrogen that

were both higher and lower than 1. Conversely, Groffman and

Rosi-Marshall (2013) found consistently lower inorganic nitrogen

levels compared with organic nitrogen in terrestrial ecosystems,

even when only considering the active proportion of soil organic

material (around 5% of total organic matter; Paul, 2016). Based on

this evidence, we assume σNS = 1 for the aquatic and σNS = 0.5 for

the terrestrial ecosystems.

We also estimate fractions of production lost to predation

and to self-regulation, which includes intra-guild predation. The

fraction of secondary production lost to predation could be high,

reaching 90% in forests (Hairston and Hairston, 1993). Because

we deem this value to be extremely high, we choose a more

moderate value, and assume that ρHC = ρHD = 0.5 for both

the terrestrial and aquatic ecosystems. Estimations for how much
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production is lost to self-regulation are basically non-existent. It

has been suggested that self-regulation and predation coefficients

are roughly proportional for predators (Polis et al., 1989; Galiana

et al., 2021). Assuming self-regulation and predation coefficients as

equal (rC = qC), renders self-regulation fractions of ρCC = 1.0

for the aquatic and ρCC = 0.067 for the terrestrial ecosystem (see

calculation in the Parameter derivation subsection). However, these

values appear extreme and we therefore choose more moderate

values, setting ρCC = 0.5 for the aquatic and ρCC = 0.1 for the

terrestrial ecosystem. In doing so, we keep a large difference in self-

regulation between ecosystem types, as suggested by the predation

rates, but refrain from letting this difference be too large, potentially

overshadowing other differences between ecosystem types. For

other compartments there are no direct means to estimate self-

regulation for a representative ecosystem. However, self-regulation

for primary producers, e.g., via light limitation (Keddy, 2001),

is likely more substantial than for herbivores and detritivores,

which are probably more limited by predators and detrital matter,

respectively (Hairston et al., 1960). We therefore choose, for

both the terrestrial and aquatic ecosystems, small values for self-

regulation fractions among herbivores and detritivores ρHH =

ρDD = 0.05, but higher values for primary producers, ρPP = 0.2.

Finally, we estimate loss and leaching rates and nutrient

conversion efficiencies. For the terrestrial ecosystem, the ratios

between annual loss flux and stocks of inorganic nitrogen are

between 0 and 2 (Groffman and Rosi-Marshall, 2013), so that we

can assume an annual loss rate of nitrogen ℓ = 1 [yr−1]. For

the aquatic ecosystem, estimates from multiple lakes (Hohener and

Gachter, 1993) give a median value of ℓ = 2 [yr−1], assuming the

relevant water column depth is 10 m (Middelboe and Markager,

1997). Next, we estimate nitrogen conversion efficiencies. These

are generally higher than carbon conversion efficiencies, but by

definition never higher than 1. Nutrient conversion efficiencies for

animals have in previous models been assumed to be 0.8 (Zou et al.,

2016), 0.5 and 0.25 (Attayde and Ripa, 2008). No loss for primary

producer uptake of inorganic nitrogen was assumed. Following

these assumptions, we set for primary producers ǫP = 1, and for

animals an intermediate value of 0.5, i.e., ǫH = ǫD = ǫC = 0.5.

2.4. Parameter estimation

The values of all model parameters are estimated by inverting

the model equations (Equation 1) for nitrogen fluxes, after setting

nitrogen stocks, fluxes, and other ecosystem properties described in

the previous subsection (Table 2). This approach is repeated for the

terrestrial and aquatic ecosystems.

Since we need values for all six compartments to determine

the parameter values, our estimations of stocks are complemented

by the ratios between nitrogen stocks in different compartments,

TABLE 2 Parameters values used for simulations.

Parameter values in:

Description Units Aquatic Terrestrial Wide coexistence

rP Production coefficient [m2gN−1yr−1] 14.6 0.487 0.2

rH Herbivory coefficient [m2gN−1yr−1] 36.0 0.368 0.5

rD Detritivory coefficient [m2gN−1yr−1] 36.0 0.368 0.5

rC Predation coefficient [m2gN−1yr−1] 56.6 24.8 10

uP Producer mortality rate [yr−1] 9.44 0.520 0.5

uH Herbivore mortality rate [yr−1] 9.00 0.477 0.5

uD Detritivore mortality rate [yr−1] 11.6 0.255 0.1

uC Predator mortality rate [yr−1] 4.50 6.44 5

qP Producer self-regulation coeff. [m2gN−1yr−1] 1.89 0.0260 0.02

qH Herbivore self-regulation coeff. [m2gN−1yr−1] 5.66 0.496 0.5

qD Detritivore self-regulation coeff. [m2gN−1yr−1] 7.30 0.0530 0.05

qC Predator self-regulation coeff. [m2gN−1yr−1] 28.3 37.2 15

ǫP Production conversion efficiency 1 1 1

ǫH Herbivory conversion efficiency 0.5 0.5 0.5

ǫD Detritivory conversion efficiency 0.5 0.5 0.5

ǫC Predation conversion efficiency 0.5 0.5 0.5

z Mineralization rate [yr−1] 8.40 0.970 0.5

ℓ Leaching/Loss rate [yr−1] 2 1 1

In the column labeled “wide-coexistence” a parameter set similar to the terrestrial one is reported, but with values chosen to have a wide region of coexistence. z is the rate of nitrogen

mineralization, ℓ is the loss rate of inorganic nitrogen. The 16 other parameters correspond to four compartments (P,H,D,C), noted in the following by i. ri , consumption coefficient of the

trophic level below; ǫi , nutrient conversion efficiency associated with consumption; ui , natural mortality rate; qi , self-regulation coefficient. Columns of aquatic and terrestrial correspond to the

parameter estimations from the literature, as detailed in the section Methods.
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as described above: C = σCHH, D = σDHH, and N = σNSS.

The values for stocks and fluxes are given in Table S3 in the

Supplementary material.

The growth term in Equation (1a), fP = ǫPrPNP, is essentially

the primary production in nitrogen units, so that we can find the

consumption rate of nutrients by primary producers as:

rP = fP/(ǫPNP)

Similarly, the loss term due to herbivory is rHPH, which can

also be written as fPρPH (recall that ρPH is the fraction of

primary production consumed by herbivores). It follows that the

consumption rate by herbivores is:

rH = ρPH fP/(PH) = ρPHǫPrPN/H

We also assume the detritivory rate to be the same as for herbivores,

i.e., rD = rH , as both herbivores and detritivores are typically

mobile animals feeding on sessile material. Finally, the loss term

of herbivore biomass due to predation is rCHC, which can also

be written as fHρHC, where ρHC is the fraction of herbivore

production consumed by predators, and fH is the flux herbivore

gross production. We thus find that:

rC = ρHCrHǫHP/C

For primary producers, we use the detrital production flux fM , to

find the natural mortality rate:

uP = fM/P

For the animal compartments we use the fraction left from

predation from gross production of the compartment, to estimate

the natural mortality:

uH = (1− ρHC)rHǫHP

uD = (1− ρDC)rDǫDS

uC = (1− ρCC)rCǫC(H + D)

We similarly use the fraction of production lost to self-

regulation, normalized by the compartment’s stock, to estimate the

self-regulation coefficients:

qP = ρPPrPǫPN/P

qH = ρHHrHǫHP/H

qD = ρDDrDǫDS/D

qC = ρCCrCǫC(H + D)/C

The values of the other parameters, namely the nutrient

conversion efficiencies and the parameters describing losses from

the organic nitrogen compartment (z and ℓ), are taken directly

from their empirical estimates (Table 2). These derivations yield

two parameter sets of 18 parameters for each ecosystem (Table 2).

Furthermore, we construct an additional parameter set, based on

the terrestrial parameters noted as “wide coexistence” in Table 2.

These parameter values are chosen with a wide range of ψ within

the coexistence range when I = 10 [gN m−2yr−1] (i.e., with

all compartments extant), while remaining closely similar to the

terrestrial ecosystem parameter set. While the choice of the “wide

coexistence” parameter values is arbitrary, it is done in order to

visually demonstrate the effect of food web properties in Figure 1.

We show in the Supplementary material that the specific parameter

value choice does not effect the qualitative results, and thus

emphasize that our choices of this “wide coexistence” parameter

values are only for presentation purposes, and do not affect the

conclusions.

2.5. Simulations and parameter exploration

In all simulations and calculations we focus on the equilibrium

of the ecosystem model. We find this equilibrium by integrating in

time, until the maximal change in stocks per year, calculated for

all nutrient input options, is less than 10−5 [gN m−2], or until the

simulation reached 1,000 years, whichever comes first.We note that

most simulations reach equilibrium in less than 100 years, and very

few reach the 1,000 years mark (Table S1).

To answer our questions on how (1) subsidy strength and

quality affect net primary production (NPP) and (2) consumer

rates and other ecosystem properties modify the subsidy effect on

primary producers, we assess how NPP changes as the subsidy

strength I and qualityψ are varied. The former is assumed to range

between 1 and 100 [gN m−2yr−1], and the latter across all possible

values, between 0 (only inorganic nitrogen) and 1 (only organic

nitrogen).

Besides varying the external inputs, we also explore the effect

of other parameters: (i) the effects of food web properties are

assessed by changing several parameters in conjunction, and (ii)

an uncorrelated random parameter exploration of all parameters

is performed to confirm the generality of the results.

First, we test the effect on ecosystem dynamics of three over-

arching properties of the food web: consumption, conversion

efficiency, and metabolic rates. We vary the baseline values of the

parameters by a factor γ , so that the parameters change together

in a perfectly coordinated manner. For consumption, we change

consumption coefficients for the animal compartment i as: r̃i =

γ ri. For conversion, we change nutrient conversion for the animal

compartment i as ǫ̃i = 1
4γ ǫi, noting that the smaller range of

nutrient conversion efficiencies is due to the constraint ǫi ≤

1. For metabolic rates, we change the consumption coefficients,

natural mortality and self-regulation coefficients in the three animal

compartments as ãi = γ ai, where a stands for r, u, and q, and i

identifies the animal compartment.

In these analyses, we vary the control parameter γ on a

logarithmic scale between 0.1 and 10. Our focus on variations in

the properties of the animal compartments is motivated by our

interest in how primary production is altered in the food web.
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However, we also test if concurrently changing the parameters

for the primary producers, P, changes the qualitative results (see

Supplementary material). To present the dependence of NPP on

ψ (Figure 3), we calculate the average value of NPP across the

range of I-values for each ψ , and only show ψ-values where

compartments coexist, i.e., where all compartments have non-zero

values at equilibrium for at least some value of I. To present the

NPP dependence on I, we do the same, but now averaging over the

range of ψ values for each I.

Second, to robustly test the effect of changing each parameter,

we perform a random parameter exploration. We take each of

18 model parameters: all parameters except I and ψ . We change

their values relative to the baseline values of terrestrial or aquatic

ecosystems (Table 2), without any correlation between parameters

(in contrast to the first analysis). For each parameter, we assume

a log-normal distribution, such that the base-10 logarithm values

have a standard-deviation of 1, except for nutrient conversion

efficiencies, for which we assume a standard-deviation of 0.25 and

we cap the values at 1. We repeat the sampling to create 20,000 sets

of randomly chosen parameters, and explore subsidy scenarios by

considering a range of ψ values between 0 and 1, and seven values

of I (1, 2, 5, 10, 20, 50, 100 [gN m−2yr−1]).

2.6. Ecosystem metrics for subsidy impact
assessment

We focus on estimating NPP, and its dependence on nutrient

subsidies. The effect of herbivory is included in our definition of

NPP, motivated by our aim to describe variations in net biomass

production increments, that is, primary production left after the

herbivory fraction has been removed. This amounts to the term

upP in Equation (1), which is also directly proportional to the

producer biomass P (as opposed to the term rPǫPNP, which

includes the production lost to herbivory). Since production is

strongly dependent on input levels I, and we change I across two

orders of magnitude, it is useful to normalize NPP by I. We thus use

a measure of normalized production, given by uPP/I. We note that

this normalized production term is dimensionless, representing an

ecosystem-level nitrogen use efficiency if we assume that mortality

is due to harvesting in analogy to agricultural ecosystems (Scaini

et al., 2020). As we show in the results, it is also useful to

examine how P changes when the subsidies are more organic,

i.e., d
dψ

P (uP and I are constant along the ψ axis, and we can

therefore ignore them here). We normalize this term by the

average primary producer biomass for a given level of subsidy

strength I, and call this metric “Producer Sensitivity to Organic

Subsidy” (PSOS): 1
<P> · d

dψ
P.

3. Results

3.1. General responses of primary
production to changes in subsidy strength
and quality

We begin by examining how subsidies, and in particular their

strength I and their organic fraction ψ , affect NPP as given by

the term uPP for our two representative ecosystems, terrestrial

(Figure 2, left) and aquatic (Figure 2, right). In each ecosystem, all

parameters are constant except the subsidy parameters I and ψ .

In general, NPP increases with subsidy strength, as more nutrients

are converted into biomass. To highlight the effect of subsidies on

the efficiency of nutrient conversion to biomass, in Figure 2 and in

the following we focus on the normalized production uPP/I. When

nitrogen inputs are low (the lower region in subsidy parameter

space), normalized production is also low (dark blue). At high

inputs, normalized production levels saturate as more biomass is

lost to top consumers in the aquatic ecosystem, or to inefficiencies

related to primary producer self-regulation such as light limitation

in the terrestrial ecosystem. Eventually, these effects will cause

normalized production to decrease at very high subsidy strength,

as seen on top of each panel in Figure 2.

As we increase the organic fraction of nitrogen inputs,

i.e., moving left to right in the subsidy parameter space, NPP

consistently decreases in the aquatic ecosystem. In contrast, NPP

can also increase in the terrestrial ecosystem within certain ranges

of organic fraction. This increase only occurs within the coexistence

range where all compartments have non-zero values (marked by

gray lines Figure 2). The positive trend in the terrestrial ecosystem

occurs because organic nitrogen supports a large detritivore

community, which feeds the predators that in turn reduce the

herbivores, thereby allowing plants to growmore. At higher organic

fractions outside the coexistence range, NPP decreases when larger

amounts of nitrogen flow into the brown food web instead of being

used by primary producers.

The behavior outside the coexistence region can be explained as

follows. When D = 0 (due to low ψ), net nitrogen mineralization

equals the input of organic nitrogen (zS = IS). Hence, all nitrogen

inputs reach the N compartment at equilibrium, with ψ playing

no further role. When H = 0 (due to high ψ) the only effect of

detritivores on primary producers is competition over nitrogen,

leading to a decrease of P with ψ . Here, the detritivores have

opportunities to consume organic nitrogen before it is mineralized

and consumed by the primary producers. Finally, when C = 0

(low I) no top-down control of the herbivores can occur, and

hence D only exerts a negative effect via resource competition,

similarly to the case where H = 0. Hereafter, we will focus

on how nutrient subsidies determine NPP within the coexistence

region, which changes depending on parameter selection because

we expect the species groups represented in our model—primary

producers, herbivores, predators, and detritivores—to all be extant

in most ecosystems.

3.2. E�ects of food web properties on
production-subsidy relations

Focusing on the coexistence region, we can now assess how

food web properties determine how NPP is affected by subsidy

strength and quality. We consider three food web properties

encoded in parameters describing the three animal compartments

(H,D, C): consumption, conversion efficiency, and metabolic rates.

Net primary production, normalized by subsidy strength, is

affected jointly by subsidy quality ψ (top of Figure 3) and strength
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FIGURE 2

Normalized production uPP/I as a function of nitrogen subsidy strength (I) and quality (organic nitrogen fraction, ψ ), in terrestrial (left) and aquatic

(right) ecosystems. Besides I and ψ , other parameters are kept constant; gray lines enclose the coexistence region where all food web

compartments (P,H,D,C) are extant. Small panels on the right of each parameter-space show normalized production at a constant value of I (gray

background shows coexistence region), corresponding to the three horizontal dashed lines in each parameter-space.

FIGURE 3

E�ect of food web properties and subsidies on net primary production. Top and bottom panels show normalized production as a function of subsidy

quality (top) and subsidy strength (bottom). Left, middle, and right panels show sensitivities to food web properties as described by the parameters

characterizing the animal compartments H, D, and C [(left) consumption coe�cients; (middle) consumption coe�cients, mortality rates, and

self-regulation coe�cients; (right) nutrient conversion e�ciencies]; shades from blue to red (light to dark) correspond to increasing values of model

parameters. These changes are done relative to baseline parameters defined in Table 2 (column labeled “wide-coexistence”), corresponding to a

terrestrial ecosystem with a large coexistence range. Results for other baseline parameter values are summarized in Figure S10.

I (bottom of Figure 3), and by food web properties (indicated

by different colors). This is shown for a specific set of initial

ecosystem parameters (denoted as “wide-coexistence” in Table 2),

but we conduct a sensitivity analysis to test that the reported

trends are consistent for a wide range of parameter sets, including

parameters for aquatic ecosystems, as well as with internal recycling

(see Supplementary material).

Overall, the response of NPP is stronger when subsidy strength

is varied than when varying subsidy quality, and it is often hump-

shaped with a maximum at intermediate I. These responses vary in
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shape depending on the food web properties considered, indicating

interactions between these properties and subsidies strength and

quality. Net primary production decreases mildly with increasing

consumption coefficients and strongly with increasing metabolic

rates. In contrast, NPP varies less (and generally increases) with

increasing nutrient conversion efficiency. Increasing metabolic

rates causes a shift from mild positive dependency of NPP on

subsidy quality to a mild negative dependency, whereas trends turn

to positive when increasing consumption or conversion. The most

notable interaction of food web properties with subsidy strength

occurs when increasing metabolic rate, which causes a shift from

hump-shaped to weakly negative relation betweenNPP and subsidy

strength.

3.3. Analytical exploration of ecosystem
processes driving production-subsidy
relations

As we have seen in the results so far, a higher fraction of organic

subsidies can increase NPP, in particular in terrestrial ecosystems

and under scenarios of strong consumption and more efficient

nutrient conversion by animals. Beside these food web properties,

we now assess which model parameters and thus which associated

ecosystem processes that play a role for the relationship between

production and subsidy quality. We do this using both an analytical

(this section) and a numerical approach (Section 3.4).

Starting from analytical arguments, it is useful to consider

a simplified scenario where predator self-regulation is negligible

(i.e., qCC ≈ 0). Not only is this approximation mathematically

convenient, but this term is also indeed substantially smaller than

other terms in terrestrial ecosystems: with our estimatedC stock, we

have qCC = 0.714≪ 6.44 = uC [yr−1]. Under this approximation,

solving Equation (1d) at equilibrium yields

H + D =
uC

ǫCrC
, (2)

which means that increases in H are balanced by decreases in D

and vice versa as ψ is increased, because their total is fixed. It is

therefore natural to ask how P changes between the low ψ value

where D = 0 and the high ψ value where H = 0. Note that D and

H do not necessarily span this whole range for 0 < ψ < 1, but

answering the question remains useful to clarify the role of model

parameters. At low ψ and with D = 0, all nitrogen subsidies flow

into N, and from Equation (1)a we have at equilibrium:

qPPL =
ǫPrPI

ℓ+ rPPL
−

rHuC

ǫCrC
− uP, (3)

where PL = P(ψ ≈ 0). At high ψ and with H = 0, we have no

herbivory term in Equation (1a), so that at equilibrium:

qPPH =
ǫPrPI

ℓ+ rPPH
· (1− ψ + ψφ)− uP, (4)

where PH = P(ψ ≈ 1) and we defined the parameter group

φ = (1 + rDuC
ǫCrCz

)−1, associated with nutrient uptake by detritivory.

Equations (3) and (4) can be directly solved to find P, but it is more

instructive to study the difference between their right hand sides,

where state variables and parameters affecting stocks P, and hence

also production, appear. Using these equations, we can estimate the

sensitivity of production to changes inψ because Equations (3) and

(4) represent P at low and high ψ , respectively, and the derivative
d
dψ

P scales as PH−PL = P(ψ ≈ 1)−P(ψ ≈ 0). Subtracting the two

equations, we find the difference between P stocks between ψ ≈ 1

and ψ ≈ 0,

1P = PH − PL =
1

qP

[

ǫPrPI

(

1

ℓ+ rPPH
−

1

ℓ+ rPPL

)

(5)

+
rHuC

ǫCrC
− ψ(1− φ)

ǫPrPI

ℓ+ rPPH

]

.

We can largely disregard the first term in round brackets,

because it only decreases the difference 1P, but does not affect

the direction of the ψ effect: if PH = PL this whole term

vanishes, if PH > PL it is negative, and if PH < PL
it is positive. The second term, rHuC

ǫCrC
, shows that herbivory

increases 1P. Similarly, the third and last term in the square

brackets shows the effect of nutrient competition by detritivory,

with a decrease in 1P as φ decreases from its maximal

value of 1.

The formulation of 1P reveals how NPP is affected by larger

fractions of organic inputs, seen by the changes in the second

and third term of the equation. For instance, fast rates of organic

nitrogen dynamics (large ℓ and z) lead to a more positive effect of

ψ on P (positive d
dψ

P), since ℓ occurs in the denominator of the

third term, and large z keeps φ closer to 1. For both ℓ and z, less

nitrogen is lost due to resource competition with detritivores, and

hence NPP gains due to lower herbivory become more important.

Decreasing subsidy strength I or production coefficient rP has the

same qualitative effect as increasing ℓ (i.e., decreasing the relative

importance of the growth term), and hence also leads to a more

positive d
dψ

P.

Focusing on the second term that captures herbivory

effects, a higher herbivory rate rH also leads to a more

positive d
dψ

P: if herbivory pressure is high, increase in ψ

leads to larger P-values due to lower herbivore densities.

Finally, higher rD decreases nutrient availability for producers

by routing nutrients to decomposers (decreasing φ),

thus also lowering d
dψ

P. Effects of other parameters on

production are harder to predict—for example, uC occurs

in both the herbivory term and in φ, makings its effect less

straight-forward.

3.4. Numerical exploration of ecosystem
processes driving production-subsidy
relations

We corroborate these analytical relationships with an extensive

numerical exploration using randomly chosen parameter sets.

In this exploration, we show how the metric PSOS, which

represents the average sensitivity of producer biomass P on subsidy

quality ψ , varies as a function of parameter values (Figure 4).

We focus here on parameters characterizing the terrestrial

ecosystem (see Table 2). A similar exploration of parameters

for aquatic ecosystems shows overall comparable results (see
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FIGURE 4

Producer sensitivity to organic subsidies (PSOS) as a function of variation in model parameters, averaged over 1,000 random parameter sets per point

shown. Median parameter values for the terrestrial ecosystem are used to construct the random parameter space (see Table 2). Results are shown for

varying subsidy strength I, as indicated by di�erent colors: blue (I = 5), red (I = 20), and yellow (I = 100). PSOS is defined as: 1
<P>

· d

dψ
P.

Supplementary material), with a few exceptions, notably that

in aquatic ecosystems organic additions have a more negative

effect on NPP.

Producer sensitivity to organic subsidy increases with higher

rH and ℓ, and decreases with I and rP, consistent with our

analytical analysis (Figure 4). However, rD and z show the predicted

trends only for parameters of aquatic ecosystems (and even then

with weak trends, see Supplementary material). This suggests

that herbivory (mediated by rH) and nutrient loss (ℓ, but also

I and rP) play a significant role in determining the sensitivity

of NPP on subsidy quality, while resource competition with

detritivores (rD and z) does not. Moreover, PSOS increases with

uH , ǫD, and rC, and decreases with ǫH and uD. Additionally, self-

regulation of all animal compartments causes a weak negative

trend, which virtually disappears in the aquatic ecosystems (see

Supplementary material). The effect of rC and the animal self-

regulation coefficients could not be seen using our analytical

approach, since they are at odds with negligible predator self-

regulation. rC is mainly relevant in relation to qC (Barbier and

Loreau, 2019), and hence neglecting qC takes away our ability to

see this effect. The other self-regulation coefficients can become

important only when qC is large, as otherwise top-down control

is too dominant—This is indeed evidenced by their minimal

effect in the aquatic ecosystems where predator self-regulation

is weak.

4. Discussion

4.1. Subsidy e�ects on net primary
productivity

Our main results can be summarized along four main points.

First, as expected, increasing (strengthening) nitrogen inputs

leads to higher Net Primary Production (NPP), but this effect

saturates as nutrients inputs increase, as can be seen by the

decreasing normalized NPP values at higher subsidy strength

(Figure 2). Second, we predict that increasing the fraction of

nitrogen subsidies in organic form (higher ψ) will lead to higher

NPP in many terrestrial ecosystems, but more often to lower

NPP in aquatic ecosystems (Figure 2, Figure S6). Third, the slope

of the production—subsidy quality relation increases with higher

consumption coefficients, but decreases substantially with higher

metabolic rates (Figure 3, Figure S10). Fourth, we find that several

ecosystem properties mediate the effect of subsidy quality on NPP

(Figure 4). For example, increasing the herbivory coefficient (rH),

predation coefficient (rC), detritivory conversion efficiency (ǫD),

and loss rate (ℓ), consistently and strongly increases the positive

effect of an increasing fraction nitrogen in organic form (ψ) on

NPP.

All these relationships between subsidy and NPP depend

on the ecosystem in question, and we confirm that terrestrial
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and aquatic ecosystems respond differently to subsidies (Nakano

and Murakami, 2001; Shurin et al., 2006; Leroux and Loreau,

2008). The finding that in terrestrial ecosystems NPP is more

positively affected by organic additions than in aquatic ecosystems

may seem surprising, given that this effect is driven by trophic

cascades of predators suppressing herbivores—a process that is

typically associated with aquatic ecosystems. One explanation

could be that metabolic rates of herbivores are often higher in

aquatic ecosystems (Cebrian and Lartigue, 2004), and, as we have

seen (Figure 3), high metabolic rates lead to a more negative

effect of organic inputs on NPP. We also find that increasing

the mineralization rate (z), production coefficient (rP), herbivore

mortality rate (uH), and herbivore self-regulation coefficient (qH)

lead to a more positive relationship between ψ and NPP in

aquatic ecosystems (Figure S5). This in turn implies that in

aquatic systems primary producers are nutrient limited, so that

increasing the mineralization rate (z) or production coefficient (rP)

allows them to take up more nitrogen. In contrast, herbivores

are already predator-controlled as increasing herbivore mortality

rate (uH) or herbivore self-regulation coefficient (qH) decreases

the predator control over herbivores. Hence, we predict that

subsidizing aquatic ecosystems is less likely to increase NPP via

the indirect effect of predator control, compared with terrestrial

ecosystems. Finally, we note that aquatic ecosystems often receive

substantial subsidies from nearby terrestrial ecosystems (Shurin

et al., 2006; Leroux and Loreau, 2008), and high subsidy strength

(I) weakens the importance of subsidy quality (ψ) (Figure 4).

Therefore, aquatic ecosystems with high subsidy strength (I)

are not likely to exhibit higher NPP due to higher fractions of

organic subsidies.

From a theoretical perspective, the positive effect of organic

subsidies on primary production can be understood as a particular

case of apparent competition (Holt, 1977; Abrams et al., 1998),

in which consumers are suppressed by predators that in turn

benefit from the subsidies. In this light, the switch from

positive to negative effects of subsidies on NPP, for instance

when comparing terrestrial to aquatic systems (Figure S6), is

conceptually similar to the switch between apparent competition

and apparent mutualism (Montagano et al., 2018), since in

both cases indirect effects on consumers due to predation

pressure can have negative or positive effects, respectively.

However, unlike the competition-mutualism switch that centers

on predation alone, in our case it is the interplay between

predation pressure and resource competition that determines

the effect of subsidies. A similar situation may occur in meta-

ecosystems where flows of abiotic resources and animals are often

very different, highlighting the importance of incorporating high

trophic levels into theoretical meta-ecosystem studies (Gounand

et al., 2018).

Our numerical exploration (Figure 4) largely confirms our

analytical results [using Equations (3) and (4)] where low subsidy

strength (I) and high loss rate of inorganic nitrogen (ℓ) lead to

a positive relationship between the fraction of organic subsidies

and net primary production. However, our analytical analysis did

not allow for identifying effects of other ecosystem parameters on

the relationship between subsidy quality and NPP. The numerical

analysis instead pointed to the negative impact of herbivory

conversion efficiency (ǫH) and detritivore mortality rate (uD)

and the positive impact of detritivory conversion efficiency (ǫD)

and herbivore mortality rate (uH). Both high herbivore mortality

rate (uH) and low herbivory conversion efficiency (ǫH) decrease

herbivore biomass, whereas low detritivore mortality rate (uD)

and high detritivory conversion efficiency (ǫD) increase detritivore

biomass. All these changes lead to higher NPP when increasing

organic subsidies. We thus find an asymmetry between the

impacts on NPP of herbivores (which directly decrease NPP)

and detritivores (which indirectly increase NPP by promoting

predators).

4.2. Nitrogen recycling and other model
assumptions

To ease the analysis and presentation, we chose not to include

nitrogen recycling from producers and other compartments to

the organic nitrogen compartment, which are often considered

in theoretical analyses of ecosystem dynamics (De Mazancourt

et al., 1998; Attayde and Ripa, 2008; Cherif and Loreau, 2009).

However, as we show in the Supplementary material, the qualitative

results are similar with and without nitrogen recycling, with three

notable exceptions. Adding nitrogen recycling in the model results

in higher production due to the increased efficiency of the system,

leads to a slight shift left of coexistence boundaries on the ψ axis,

as recycled material feeds the organic nutrient compartment and

weakens the positive link between ψ and NPP. This last aspect

implies that in ecosystems where nutrient recycling is minimal,

such as in agricultural crop fields, switching from inorganic to

organic nutrient inputs is more likely to increase NPP. It is also

difficult to find a simple explanation to this last aspect, but it can be

partially attributed to the increased effective inputs, which play the

role of higher subsidy strength (I) (see, e.g., Figure 4).

Beyond nutrient recycling, we have made some other notable

simplifying assumptions. We chose to use linear kinetics for the

organic nitrogen compartment (as in most soil biogeochemical

models, Manzoni and Porporato, 2009) and a type I functional

response for species interactions. While converting literature data

to the nitrogen stock units, constant carbon-to-nutrient ratios

were assumed within each compartment. This assumption of

stoichiometric homeostasis is supported by evidence for animals,

but less so for primary producers (Elser et al., 2000). We also used a

neutral assumption on predation choice, assuming that predators

can predate on both herbivores and detritivores, and show no

preference in the matter. This choice was used to highlight the

distinct nature of green-brown food webs, where herbivores and

detritivores compete for resources in an inherently non-equal way,

leading to an interesting interplay between resource competition

and apparent competition due to predation pressure. This is in

contrast to previous research which has focused more on green

food webs, and has considered both apparent competition and

prey switching in detail (Abrams et al., 1998; Chase et al., 2002;

Leroux and Loreau, 2012). While all these simplifications affect

the results, we expect them to make second-order corrections, and

they should affect the quantitative but not the qualitative outcomes.

Since we focus here on the qualitative response of production to
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subsidies, we believe that, much like for nutrient recycling, these

other simplifications will not impact our general conclusions.

Finally, the proposed model focuses on nitrogen flows and

stocks, neglecting interactions of nitrogen and other elements

that can modify the rates and efficiencies of nitrogen transfers

among compartments, depending on the most limiting element

(Sterner and Elser, 2002; Cherif and Loreau, 2013; Manzoni et al.,

2017). This assumption has also implications for the interpretation

of subsidy quality. Here, we have defined quality in terms of

relative amounts of inorganic and organic N in the subsidy, but

other measures of quality could be considered, including the

elemental composition of the organic subsidy. For example, inputs

of organic matter with high C:N ratio would cause C:N in the S

compartment to increase, eventually resulting in inorganic nitrogen

immobilization (Cherif and Loreau, 2013). In our framework, net

immobilization is a nitrogen transfer from N to S, which we have

not considered but that would reduce the amount ofN available for

primary producers. Thus, high C:N organic subsidies would be of

“lower quality” compared to low C:N organic subsidies. In the long

term, as carbon is removed from organic matter via respiration,

nitrogen mineralization would be restored, but lower inorganic

nitrogen and higher organic matter C:N ratio resulting from this

low quality subsidies might lower the nitrogen content in primary

producers, and increase the nitrogen assimilation efficiencies while

decreasing the growth rates at higher trophic levels (due to lower

efficiency of carbon conversion to biomass, Manzoni et al., 2017).

However, a stoichiometric explicit model [building on Cherif and

Loreau (2013) and Buchkowski et al. (2019)] would need to be used

to assess these consequences on the food web as a whole.

By focusing on the nitrogen cycle only, our model did not

include non-linear feedback mechanisms involving other variables

partly controlled by nitrogen stocks. For example, subsidies can

lead to nutrient accumulation in water bodies that promote NPP,

but eventually can lead to eutrophication and a dramatic change

in ecosystem function. This type of regime shifts (Scheffer and

Carpenter, 2003) require a modeling approach that includes also

state variables outside the nitrogen cycle, such as light and oxygen

availability in the case of eutrophication.

4.3. Implications and future directions

An understanding of which parts of the parameter space

that are relevant to real ecosystems will be useful for applied

purposes. For instance, the model predicts that introducing organic

fertilization in agriculture improves regulation of herbivores, which

are potential pests on crop plants. Indeed, empirical work has

shown that organic fertilization can suppress herbivores (Settle

et al., 1996; Riggi and Bommarco, 2019), but does not always

increase primary production (Halaj and Wise, 2002), emphasizing

that benefits of organic subsidies to primary production are

context dependent. Further, in conjunction with site-specific

parameter estimates, the model we present with linked green and

brown resource channels can be used to predict the effects of

anthropogenic subsidies on specific natural ecosystems such as

grasslands or forests. The model can indicate which ecosystems

are more sensitive to nutrient enrichment. Furthermore, climate

change affects various ecosystem properties such as metabolic rates

and the kinetics of soil nutrient cycling, which in turn affect the

impacts of nutrient subsidies on NPP.

It is difficult to extrapolate on the overall effect of climate

change, given the range of positive and negative effects of different

parameters (Figure 4, Figure S5), and the difficulty in estimating

the effect of warming on model parameters (Bideault et al., 2021).

However, if we assume that metabolic rates are more sensitive to

warming than other ecosystem properties such as consumption

coefficients, we can speculate from Figure 3 that warming will

lead to a more negative impact of organic subsidies on NPP.

This highlights the importance of exploring how ecosystems

respond to compound climatic changes and perturbations in

the subsidy strength and quality. These changes lead ecosystems

toward conditions not previously experienced, which are therefore

also harder to predict. Our approach of developing theory for

subsidized ecosystems using dynamical models, parameterizing

thesemodels for a wide range of ecosystem and testing confounding

effects of model parameters, is a step toward understanding

how ecosystems respond to human influence. Importantly, it is

clearly essential to consider the green and brown food webs

in concert.

While useful for qualitative predictions, testing our theoretical

predictions empirically in specific case studies is likely to be

challenging. There are recent investigations of nutrient quality

and quantity subsidy effects on primary producers in conjunction

with food-web dynamics (Riggi and Bommarco, 2019; Aguilera

et al., 2021), but it is difficult to directly connect their results

to our theoretical findings. A particular problem is to normalize

results by subsidy strength, i.e., empirically disentangling the

effects of subsidy strength (I) and subsidy quality (ψ). This is

of interest since the subsidy effect in the context of green-brown

food webs should be most striking along the ψ axis, given that

the effect of I on production is a more straightforward bottom-up

one. Indeed, despite clear results showing that detritus additions

increase primary producer stocks (Hagen et al., 2012), it is not

possible to attribute subsidy effects to bottom-up vs. top-down

mechanisms, because experiments typically manipulate bothψ and

I, and increases in Imay overshadow the top-down effects of higher

ψ . A practical solution may be to compare ecosystems with and

without herbivory and/or predation (e.g., due to pesticide use),

where the effect of ψ for different parameter regimes should be

most evident.

Here, we explored how two aspects of nutrient subsidies—

strength and quality—impact primary production in green-brown

food webs. Subsidy strength has a direct positive impact, mainly

as a bottom-up direct effect on producers. The effect of subsidy

quality truly connects the green and brown channels in food webs—

organic subsidies can indirectly promote production via predator

control on herbivores. This aspect of nutrient enrichment has been

largely overlooked, and as we have seen here can play a major role

in determining ecosystem functioning. These results show that the

impact of nutrient enrichment depends on more than its strength,

and that human overloading of ecosystems with inorganic nutrients

is consequential not only because of its large amounts, but also

due to higher proportions of inorganic nutrients, which promote

production at the cost of losing the ecological function of the brown

channel.
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In rapidly changing environments populations and species face a challenge

to remain adapted and avoid extinction or replacement by fitter types. If

evolutionary adaptation cannot keep pace with the speed of environmental

change populations will exhibit varying degrees of maladaptation with respect

to the current environmental state. Reciprocal transplant experiments are an

established method for comparatively assessing the relative fitness of multiple

populations in their respective environments. Here we use a quantitative-genetics

model to show that inference from reciprocal transplants can be misleading

when applied to populations that are in the process of adapting to environmental

change. Specifically, we analyze (a) the case of two populations adapting to

two different fitness optima starting from a suboptimal initial state and (b)

the case of two populations attempting to adapt to changing trait targets

that move at different speeds. We find that, in both scenarios, populations

can undergo transitional fitness states that, if reciprocal transplant experiments

were performed, would lead to the conclusion of (local) non-adaptation or

maladaptation. This signature of apparent maladaptation occurs although both

populations strictly follow an evolutionary trajectory dictated by the principle of

fitness increase over time. Our results have implications for potential patterns of

latitudinal replacement of populations/species with ongoing global change and

might help shed light on the surprising finding (based on reciprocal transplants)

that many populations in the wild fail to show a strong signature of adaptation to

their local environments.

KEYWORDS

evolutionary dynamics, maladaptation, local adaptation, reciprocal transplant, relative
fitness, quantitative genetics model, adaptive divergence, invasion success

1. Introduction

Evolutionary biologists and ecologists have based their work on the premise that the
evolutionary response to environmental change in nature should be adaptive. That is,
when populations face changing conditions that make them less adapted, they are expected
to evolve in a way that strives to restore the fitness they have lost in the process. Yet,
studies conducted in natural ecosystems as well as in the laboratory frequently fail to show
evidence of local adaptation. A sizeable number of studies report the absence of adaptation,
insufficient adaptation or even an evolutionary response that is worse, from a fitness
perspective, than no change at all would have been. A meta-analysis of reciprocal transplant

Frontiers in Ecology and Evolution 01 frontiersin.org66

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/journals/ecology-and-evolution#editorial-board
https://www.frontiersin.org/journals/ecology-and-evolution#editorial-board
https://doi.org/10.3389/fevo.2023.1151283
http://crossmark.crossref.org/dialog/?doi=10.3389/fevo.2023.1151283&domain=pdf&date_stamp=2023-04-24
https://doi.org/10.3389/fevo.2023.1151283
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fevo.2023.1151283/full
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/


fevo-11-1151283 April 18, 2023 Time: 14:17 # 2

Fussmann and Kopp 10.3389/fevo.2023.1151283

experiments estimated that the signature of local adaptation (where
resident populations have higher fitness than foreign populations)
occurred in 70% of cases (Hereford, 2009). This means that in
30% of cases populations were found to be maladapted to their
environment, a result that might be an underestimate given that
there is likely a reporting bias in favor of studies that “prove”
adaptation. In the same vein, another meta-analysis focusing on
selection coefficients found that in 64% of cases the mean trait
value displayed by the studied populations was more than one
phenotypic standard deviation away from the optimal trait value
(Estes and Arnold, 2007). The perplexing ubiquity of populations
in maladaptive states has led to two recent special issues on the
topic of “maladaptation” in the journals American Naturalist and
Evolutionary Applications. In addition to rallying papers with new
case studies of maladaptation (Brady et al., 2019c; Fraser et al., 2019;
Loria et al., 2019), the introductory articles of these special issues
provide insightful analyses on the potential causes and mechanisms
(Brady et al., 2019a,b).

In the present theoretical study we perform a closer
investigation of a phenomenon labeled “apparent maladaptation”,
where a population appears to be maladapted when in fact it is
in the process of adapting to a changed or changing environment
(Brady et al., 2019b). This type of maladaptation can occur when
the time scale of observation is insufficient so that snapshots
(or a single snapshot) of the dynamical process of adaptation
show maladaptive states. More precisely, on their trajectory to an
adaptive state, populations undergo transient states that are (or
appear) maladaptive. A simple case of this phenomenon would
be a population that adapts to its changing environment but lags
behind the optimal adaptive state. Depending on the relation of
the speed of environmental change and the adaptive potential
of the population, the gap between the realized and fitness-
optimizing trait values (i.e., the degree of maladaptation) could
narrow, widen or stay the same over time (Kopp and Matuszewski,
2014). Here, we will use a simple, established evolutionary model
that can explain how evolutionary dynamics that follow fitness
gradients in a changed (or changing) environment can (transiently
or permanently) result in apparently maladaptive outcomes. Our
analysis reveals patterns of transient maladaptation that are far
more diverse and surprising than the gradual changes in adaptation
expected under the lagging-behind-the-optimum scenario.

Our study obtains an empirical and application-related
dimension in the context of reciprocal transplant experiments,
which are often considered the “gold standard” for assessing the
degree of local adaptation (Kawecki and Ebert, 2004; Hereford,
2009; Blanquart et al., 2013; Brady et al., 2019b). In reciprocal
transplant experiments the fitness of a population A, supposedly
adapted to environmental conditions a, is compared with the
fitness of a (or several) population(s) B, adapted to environmental
conditions b. Individuals (and their genotypes) from both
populations are transplanted to the other environment to enable
a direct fitness comparison between populations in their respective
local vs. foreign environments. To a first degree, local adaptation
can be concluded from a pattern of higher fitness of the resident
populations in their respective environments and lower fitness
of foreign/introduced populations in the environments foreign to
them. However, as we will discuss, appropriate inference from the
results of reciprocal transplant experiments is somewhat disputed
(Kawecki and Ebert, 2004; Blanquart et al., 2013). We use the

predictions of our evolutionary model to simulate the results
of hypothetical reciprocal transplant experiments performed at
different time points of transient evolutionary dynamics. We
will show that transient evolutionary states can lead to varying
inferences arising from reciprocal transplant outcomes. Depending
on the timing of the experiment and the criteria for local adaptation
adopted, strong, weak, or no support for adaptation can be found
when resident and foreign populations are evolving.

Finally, the results of our model can also be interpreted in
the context of global change, where evolution might be able to
make up for the loss of fitness of populations or species due
to rapid environmental change (Diamond, 2018). However, the
prevailing opinion is that populations/species become less and less
fit in their local environments because the speed of global change
outpaces the populations’ adaptive potential (Somero, 2010). In
response, populations might migrate and reestablish themselves in
environments that allow them to be fit without the need for rapid
evolutionary adaptation. As a result, global warming is expected
to lead to major latitudinal range shifts of species (Deutsch et al.,
2008; Sunday et al., 2012; Bennett et al., 2021). Despite the vast
differences in spatial and temporal scales, it can be argued that
the same ecological and evolutionary principles apply to reciprocal
transplant experiments and global change-induced species range
shifts. Our model also informs the latter process by highlighting the
temporal succession of two distinct checkpoints that might occur
during colonization of and adaptation to the new environment: a
better fit to the new than to the old environment and becoming
fitter than the resident populations in the new environment.

2. Materials and methods

2.1. Evolutionary model

Our analysis is based on a classical model of quantitative trait
evolution (Lande, 1976; Estes and Arnold, 2007) and largely relies
on previously established realistic parameter values (Bürger and
Lynch, 1995). The model describes the stochastic evolution of the
mean phenotype in a randomly mating, finite population with
discrete generations (t). Trait phenotypes are normally distributed
with mean trait value z̄t and phenotypic variance σ2. Traits are
under stabilizing selection on viability (either with or without a
moving trait optimum) and the average fitness of individuals in the
population with mean trait value z̄ is determined by the Gaussian
adaptive landscape function

Wz =Wmax exp

(
−

(z̄ − θ)2

2
(
ω2 + σ2

)) , (1)

where θ is the optimum phenotypic trait value, ω2 characterizes
the width of the adaptive landscape and Wmax is the maximum
attainable average fitness (arbitrarily set to one in this study).

Adaptive evolution can be imagined as the trait mean climbing
the slope of the adaptive landscape function toward the fitness
maximum. Direction and speed of evolution are determined by
the position of the trait mean relative to the optimum trait value,
the shapes of the adaptive landscape and the phenotypic trait
distribution, and the heritability of the trait. It is possible to find
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FIGURE 1

Fitness landscapes, trait evolution, and reciprocal-transplant experiments under Scenario 1: Trait optima are stationary; initial trait value z̄0 is located
at the fitness optimum for environment a. Population B branches off from population A at time t0 and adapts to the new environmental conditions
dictated by the changed fitness landscape. (A) Fitness landscapes for environment a (blue) and b (red); vertical lines indicate the location of the
fitness optima. (B) Probability distributions for phenotypic means after t = 10 (solid) and 200 (dashed) generations of evolution. Note that population
A’s (blue) mean trait value remains in place while population B evolves toward the new trait optimum θb = 5. Also note that the width of the
distribution shown is the variance of the mean phenotype across hypothetical replicated populations (arising due to genetic drift), not the genetic
variance of a single population (which is assumed to remain constant). (C–F) Fitness plots for hypothetical reciprocal transplant experiments
performed at t = 10, 75, 125, 200 (Left side of each panel: fitness of populations A (blue) and B (red) in environment a; right side: fitness of
populations A and B in environment b). Parameters: z̄0,a = z̄0,b = 0; θa = 0; θb = 5; Wmax,a =Wmax,b = 1; ωa = ωb = 5; σa = σb = 1.135;
h2
a = h2

b = 0.224; Na = Nb = 200.

a solution (Lande, 1976; Estes and Arnold, 2007) for the probability
distribution of the mean phenotype8(z̄t) after t generations of trait
evolution, which, again, is a normal distribution characterized by its
mean z̄8(t) and variance σ2

8(t)

8(z̄t) = 1√
2πσ2

8(t)
exp

(
−
(z̄t−z̄8(t))2

2σ2
8(t)

)
,

with : z̄8(t) = (z̄0 − θ) exp
(
−

h2σ2

ω2+σ2 t
)
+ θ,

and : σ2
8(t) =

ω2
+σ2

2N

(
1− exp

(
−2 h2σ2

ω2+σ2 t
)) (2)

where h2is the realized heritability and N the effective population
size. In addition to our analyses based on this deterministic
model we also performed individual-based stochastic simulations.
These simulations were done to verify that our results from the
deterministic analyses also hold up when populations experience
demographic stochasticity and the associated risk of extinction
(Bürger and Lynch, 1995). We found that the model predictions
between the two approaches are in very good agreement and

present the methodology and results of the individual-based
simulations in the Supplementary material.

2.2. Adaptive scenarios

2.2.1. Stationary trait optima
We first consider the scenario of a population A under

environmental conditions a from which a part branches off
to colonize a different environment b as a new population
B (Figures 1–4). Natural circumstances under which such a
scenario might happen are emigration or the splitting of the
population by a catastrophic event. The scenario is also comparable
to those conducive to allopatric speciation. We follow the
evolutionary trajectory of the same fitness-determining trait in
both populations in their respective environments. We do not
make specific assumptions about the nature of the trait (and
assign arbitrary trait values), but possible cases are organisms
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FIGURE 2

Visualization of three critical checkpoints during the evolutionary dynamics under Scenario 1. (A) Evidence for local adaptation by the 1SA contrast
criterion (satisfied for all t > 0). (B) Fitness of population A vs. B in environment a (addressing the Local vs. Foreign criterion; satisfied for all t > 0).
(C) Fitness of population B in own vs. other environment (addressing the Home vs. Away criterion; tcrit = 64; solid vertical line in this panel; dashed
vertical line in other panels).

facing different temperature regimes or gape-limited predators
encountering differently sized prey in environments a and b.
We also put ourselves in the shoes of an evolutionary biologist
who performs reciprocal transplant experiments to assess the
degree of adaptation of populations A and B to their respective
environments, without necessarily knowing their evolutionary
history. We produce the typical reciprocal transplant plots that
would arise from experiments conducted at different time points
(Figures 1C–F, 3C–F). We start by analyzing the special case where
the original population (i.e., population A before population B’s
split-off) has a trait value that maximizes fitness in environment
a (Scenario 1; Figures 1, 2). Subsequently, however, we will be
particularly interested in cases where the original population has
not yet reached the optimal trait value (Scenario 2; Figures 3, 4),
for example, because it is itself a recent colonizer of environment a.

2.2.2. Moving trait optima
Secondly, we analyze the more general case where the trait

optima are gradually shifting over time in one direction (Scenario
3; Figures 5–7). Here, fitness differences will arise because,
starting from the branching point, the two populations are facing
environmental change that progresses at different speeds. The
scenario is closely related to global-change phenomena (such as
increasing temperatures), which are nearly ubiquitous but differ in
magnitude regionally.

Under this scenario, the trait optima of populations A and B
start at the identical initial value θ0 and move over time in the same
direction, according to θt = kt, but at different rates ka and kb. The
expected mean trait value z̄8(t) of a population adapting to such a

moving optimum is given by Estes and Arnold (2007):

z̄8(t) =
(
z0 + kt

)
− k

(
ω2
+ σ2

h2σ2

)(
1− exp

(
−

h2σ2

ω2 + σ2 t
))

,

(3)
with the same variance as in Equation 2.

2.3. Inference from reciprocal transplants

Different measures have been proposed to estimate local
adaptation from the results of reciprocal transplant experiments
(Kawecki and Ebert, 2004; Blanquart et al., 2013). A straightforward
approach is to rely on estimates of the average local adaptation.
For this measure, the 1SA contrast (i.e., sympatric vs. allopatric
contrast), one calculates the difference between the average fitness
in sympatric combinations of populations and sites and the average
fitness in allopatric combinations (Blanquart et al., 2013), i.e., for
our case of two populations A, B in two environments a, b:

1SA =
1
2
(
WA in a +WB in b

)
−

1
2
(
WA in b +WB in a

)
, (4)

where WJ in i is the average fitness of population J = A,B evaluated
in environment i = a,b, respectively. Local adaptation would be
indicated if1SA > 0.

In contrast, the Local vs. Foreign criterion (L–F) emphasizes
the comparison between populations within environments
(Kawecki and Ebert, 2004). Under local adaptation, the local
population is expected to show higher fitness than the foreign
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FIGURE 3

Fitness landscapes, trait evolution and reciprocal transplant experiments under Scenario 2: Trait optima are stationary; initial trait value z̄0 is located
at a suboptimal value to the left of the fitness optimum for environment a. Both populations adapt to new environmental conditions but population
B’s (red) fitness optimum is farther to the right than population A’s (blue). (A) Fitness landscapes for population A (blue) and population B (red);
vertical lines: fitness optima (blue, red) and initial trait value z̄0 (black). (B) Distributions of phenotypic mean after t = 10 (solid) and t = 200 (dashed)
generations of evolution. Note that population A’s (blue) mean trait value changes less than population B’s. (C–F) Fitness plots for hypothetical
reciprocal transplant experiments performed at t = 10, 75, 115, 200. Parameters: z̄0,a = z̄0,b = −5; other parameters as in Figure 1.

population in both environments. This means that, in a classical
reciprocal transplant plot, with environments on the x-axis and
fitness on the y-axis, the lines connecting the fitness values of a
given population in the two environments need to cross (as, e.g., in
Figure 3E) (We note that, while it is also possible for the lines to
cross if, in each environment, it is the foreign population that has
higher fitness, such a case of complete maladaptation did not occur
in our present study).

Finally, the Home vs. Away criterion (H-A) emphasizes the
comparison between populations across environments (Kawecki
and Ebert, 2004). Under this criterion, local adaptation exists if
each population has higher fitness in its own environment than in
the alternative environment. With respect to a reciprocal transplant
plot, this means that local adaptation occurs if the line connecting
the two fitness values for a population has a negative slope for
population A and a positive slope for population B (assuming that
environment a is placed to the left of environment b on the plot’s
x-axis; as, e.g., in Figure 5D). Note that, under this criterion, no
direct comparison is made between the fitness values of the two
populations, however it is possible that one population is locally
adapted to its environment while the other one is not.

3. Results

3.1. Stationary trait optima

We first analyze the most basic case (Scenario 1 above)
where population A is perfectly adapted to its environment a,
and population B branches off from population A and shows
steady evolutionary adaptation toward a new optimal trait value
in environment b (Figure 1). Reciprocal transplant experiments
performed at different time points would show accumulating
evidence of local adaptation (Figures 1C–F, 2). At t > 0, blue and
red lines cross over, indicating that each population is fitter in its
own environment than the other population (L-F criterion satisfied;
Figure 2B). Once the mean trait value of Population B has evolved
to be closer to the optimal trait value for environment b than the
one for environment a, each population has higher fitness in its
own environment than in the other environment (blue line has
negative slope, red line has positive slope; H-A criterion satisfied;
Figure 2C). Signal strength in support for both the L-F and H-A
criteria increases with time, and so does the estimate of the average
local adaptation, the 1SA contrast, which has a positive value at all
times t > 0 (Figure 2A).
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FIGURE 4

Visualization of three critical checkpoints (vertical lines) during the evolutionary dynamics under Scenario 2. (A) Evidence for adaptation by the 1SA

contrast criterion (at t ≥ 33). (B) Fitness of population A vs. B in environment a (addressing the Local vs. Foreign criterion; tcrit = 100). (C) Fitness of
Population B in own vs. other environment (addressing the Home vs. Away criterion; tcrit = 126).

Under Scenario 2, both populations start the evolutionary
process at a trait value displaced to the left of the optimal trait
value for environment a (Figure 3A). Because population B’s
trait optimum lies further to the right than that of population
A, its evolutionary trajectory moves across high-fitness regions
of population A’s fitness landscape. As a result, population B
encounters periods where it is better adapted to environment
a than population A, as well as periods where population B
is better adapted to environment a than to environment b.
Initially, none of the criteria for local adaptation is satisfied;
with progressing evolution, however, the 1SA contrast, the L-F
criterion, and the H-A criterion become consecutively fulfilled
(Figure 4). Due to these periods of apparent maladaptation,
hypothetical reciprocal transplant experiments would only reveal
an unequivocal signature of local adaptation about 126 generations
after the split of populations A and B (with the current
parameterization; Figures 3F, 4C).

3.2. Moving trait optima

The phenomenon of apparent maladaptation also arises under
Scenario 3 (moving trait optima with different speed). Because
the conditions are assumed to be changing more rapidly in
environment a than in environment b, population A is trailing
the optimal trait value more than population B is. Starting from
an initial state of complete local adaptation (Figures 5B, C),

population B first gains fitness superiority over population A in
environment a (loss of local adaptation according due to the
L-F criterion; Figures 5D, 6B, 7), then population B becomes
the universally more fit population (Figure 5E), and finally,
population A becomes better adapted to environment b than to
environment a, (loss of local adaptation according to the H-A
criterion; Figures 5F, 6C, 7). If environmental and evolutionary
change continue for a sufficiently long period, both populations
will trail their environmental fitness optima by a constant gap
(Figure 7), and the signature of relative (yet, not complete) local
adaptation becomes reinstated (t ≈ 300).

4. Discussion

In this theoretical study we analyzed realistic evolutionary
scenarios during which populations can display transitional fitness
states that carry the signature of non-adaptation or maladaptation.
Before discussing the implications of our findings in more detail,
we feel that it is useful to evoke two conceptual perspectives: the
concept of adaption as a process vs. adaptation as a state; and the
concept of relative vs. absolute fitness.

Unlike evolution, which always refers to a process, adaptation
can either refer to the process of adapting or to the state of
being adapted. This distinction is very much at the core of our
seemingly paradoxical observations, where populations strictly
obey the laws of quantitative genetics by displaying monotonous
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FIGURE 5

Fitness landscapes, trait evolution and reciprocal transplant experiments under Scenario 3: Trait optima are moving (from left to right along the
x-axis); initial trait values z̄0,a and z̄0,b are located at the fitness optima for their environments. Both populations adapt to the shifting environmental
conditions but population A’s (blue) fitness optimum moves faster than population B’s (red). (A) Fitness landscapes for population A (blue) and
population B (red) at t = 10 (solid) and t = 250 (dashed); vertical lines: fitness optima. (B) Distributions of phenotypic means at t = 10 (solid) and
t = 250 (dashed). Note that both populations are trailing their respective fitness optima. (C–F) Fitness plots for hypothetical reciprocal transplant
experiments performed at t = 10, 75, 150, 250. Parameters: ka = 0.050; kb = 0.025; z̄0,a = −5; z̄0,b = 0; other parameters as in Figure 1.

adaptive evolution [i.e., they climb their respective adaptive hills,
leading to “adaptive divergence” (Hendry, 2017)] yet undergo
transient maladaptive states. Keeping the two views on adaptation
straight is key when interpreting the kind of evolutionary dynamics
that occurred in our study. However, we believe that we are dealing
with a problem that runs deeper than merely a semantic issue. The
reason is that nearly all practical methods of assessing adaptation
in nature (such as reciprocal transplant or common garden
experiments) implicitly quantify adaptive states, but the results
are often interpreted as evidence for the process of evolutionary
adaptation (or the lack thereof).

In a similar vein, distinguishing between relative and absolute
fitness is crucial when discussing (mal)adaptation (Holt and
Gomulkiewicz, 1997; Brady et al., 2019b). Specifically, evolutionary
biologists tend to emphasize relative fitness while ecologists focus
on absolute fitness (Hendry and Gonzalez, 2008; Brady et al.,
2019b). This means that, to an evolutionary biologist who strictly
applies the relative fitness concept, a population is maladapted if it
has lower fitness than a relevant reference population. By contrast,
an ecologist might score the same population as well adapted if
it displays a positive growth rate in its local environment, and
particularly so if the population has evolved toward this state from
a previous state of lower absolute fitness. In our study, populations
always increase their local absolute fitness in the environment
they are adapting to (in Scenarios 1 and 2), except in cases

where environmental change outpaces the capacity for evolutionary
change (in some instances of Scenario 3). Relative fitness of a
population, however, depends on the comparison with a reference
population, either within (L-F criterion) or across (H-A criterion)
environments.

Equipped with this background it should be straightforward
to understand the evolutionary dynamics presented in Scenarios
2 and 3 for what they are, namely adaptive trajectories that,
on their way to an adaptive steady state, pass through transient
states of maladaptation (in the evolutionary sense above, that
is in terms of relative fitness). This phenomenon can only
occur while the evolutionary process is not at a (stable or
dynamic) equilibrium, either because the populations are not
initially at their fitness optima (Scenario 2) or because the
fitness optima themselves are moving targets (Scenario 3; we
also have analyzed the combination of these two causes of
steady-state divergence but omitted the results from this paper
as they did not provide any additional insights to what is
presented here). The phenomenon necessarily implies change in
relative fitness and may (Scenario 3) or may not (Scenario 2)
be accompanied by intermittent loss of absolute fitness of one
or both populations. The label “apparent maladaptation” (Brady
et al., 2019b) tries to reconcile the facts that the underlying
process is truly adaptive yet produces snapshots of true maladaptive
states.
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FIGURE 6

Visualization of three critical checkpoints (vertical lines) during the evolutionary dynamics under Scenario 3. (A) Evidence for local adaptation by the
1SA contrast criterion (at t ≤ 201). (B) Fitness of population A vs. B in environment a (addressing the Local vs. Foreign criterion; tcrit = 62). (C) Fitness
of population B in own vs. other environment (addressing the Home vs. Away criterion; tcrit = 88).

FIGURE 7

Populations trailing the moving fitness optima over time (Scenario 3). Optimal trait values set by the environmental conditions (dashed lines) and trait
values realized by populations A and B (solid lines). At the Local vs. Foreign criterion checkpoint (tcrit = 62), population B is as fit in environment a as
population A is. At the Home vs. Away criterion checkpoint (tcrit = 88), population B is equally fit in environments a and b.
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Our study has some implications for the interpretation of
reciprocal transplant experiments, one of the primary methods for
detecting and quantifying adaptive divergence (Kawecki and Ebert,
2004; Hendry, 2017). While many such experiments have detected
clear patterns of local adaptation (Nagy, 1997; Hargreaves and
Eckert, 2019), other studies have reported a nearly complete lack
of adaptation (Low-Decarie et al., 2013; Rolshausen et al., 2015);
indeed, meta-analyses have revealed that about 30% of experiments
failed to detect the classical signature of local adaptation, i.e.,
higher relative fitness of local types in each environment (i.e., the
L-F criterion) (Leimu and Fischer, 2008; Hereford, 2009). Part of
these results are likely due to a lack of adaptive dynamics per se
(e.g., due to lack of genetic variation). In addition, however, our
study points to a variety of cases that fail to produce adaptive
signatures even in the presence of adaptive dynamics, leading
to apparent maladaptation. These cases include examples of one
population being relatively better locally adapted than the other,
no matter what the environment (e.g., Figures 3C, D, 5D–F); or
examples of one environment leading to lower absolute fitness of
both populations than the other environment (e.g., Figures 3C–
E), even with the identity of the low-fitness environment switching
over time (Figures 5E, F). That said, we did not find any instances
of complete maladaptation, where each population has the highest
fitness in the non-native environment. In a real experimental
situation, maladaptive patterns of the kind we observed may arise
due to a multitude of factors such as constraints on evolution,
genotype-by-environment interaction, co-evolution, unaccounted
traits under selection or phenotypic plasticity (Bjorklund, 1996;
Hendry, 2017). We would like to add to this list as a possible factor
“transient adaptive dynamics,” given that our results demonstrate
that these trajectories do not just amount to a delayed approach
to the adaptive state (as in Scenario 1) but may cross through
truly maladaptive transition states (Scenarios 2, 3). This realization
is very much in line with the idea and recent experimental
demonstration of an “adaptational lag” (akin to our Scenario 3)
that leads to fitness superiority of non-native populations because
local populations failed to keep evolutionary pace with rapid
environmental climate change (Kooyers et al., 2019). Reciprocal
transplants are often labor-intensive experiments, replication in
time (as simulated in our purposefully placed snapshots presented
in panels C through F of Figures 1, 3, 5) is rarely possible,
and the evolutionary history of the populations chosen for the
experiment is often scarcely known. As such, we advise against
taking the absence of evidence for adaptation (based on results from
a single reciprocal transplant or common garden experiment) as
hard evidence for the absence of adaptive divergence.

Over the course of the adaptive divergence observed in
our model simulations, we were able to track certain measures
commonly used as indicators of local adaptation (see Section
2.3). Among these measures, the Local vs. Foreign criterion (L-F)
adopts the most “evolutionary” perspective, in that it emphasizes
the comparison of relative fitness among populations, and some
authors maintain that it should be used as the only diagnostic
for establishing local adaptation (Kawecki and Ebert, 2004). An
implicit consequence of the L-F criterion is that overall local
adaptation can only be concluded from a reciprocal transplant
experiment if all populations tested are locally adapted. Other
authors found this criterion overly strict and impractical and
have advocated for adopting the 1SA contrast, which is satisfied

if, on average, populations have higher fitness in their native
than in their non-native environments (Blanquart et al., 2013).
Which criterion a researcher decides to use when interpreting
their experiment probably depends ultimately on the experimental
design and the type and strength of inference they wish to draw
from their experiment. We feel, that, in our study, the1SA contrast
proved to be an unacceptably lenient benchmark. For instance,
this criterion would have led us to conclude local adaptation
in the cases depicted in Figures 3D or 5E, simply based on
the fact that the adaptation of population B to environment
b slightly exceeds the clear maladaptation of Population A to
environment a. In situations like ours, where only few populations
and environments are compared with one another, the L-F and
H-A criteria appear to be the more useful diagnostics. In all
our simulations, both diagnostics were far more restrictive in
assigning local adaptation to results of a reciprocal transplant
experiment than the 1SA contrast; however, which of the two
measures (L-F or H-A) were satisfied during a longer period of
the simulated evolutionary dynamics depended on the concrete
parameterization.

We framed our study around populations that face different
adaptive challenges for a certain period of time and whose local
fitnesses are compared afterwards in the context of a reciprocal
transplant experiment. One could argue that this scenario has
similarities with the process of species invasions that occur on
a global scale, even more so because it is becoming increasingly
clear that climate change can be a crucial factor determining
the introduction and establishment of non-native species (Hulme,
2017; Ricciardi et al., 2021). Hence, our Scenario 3 could also be
interpreted from an invasion biological perspective, where trait
optima shift due to the regionally different intensity and speed of
climate change. Our current approach is certainly too generic in
parameterization as well as too low-dimensional in trait space to
be able to make useful predictions for concrete invasion scenarios.
However, we would like to point out the possibility that the L-F
and H-A checkpoints might serve as invasion criteria. Over the
course of adaptation to climate change a potentially invasive species
would likely increase its invasion potential in two steps. It would
(a) develop higher relative fitness than the resident species and
(b) become better adapted to the foreign environment than to
its native environment (Figure 7). Checkpoint a aligns with the
L-F criterion and gives the invader the competitive edge, whereas
checkpoint b (= H-A) would increase the incentive to migrate out
of the native environment (provided there are individuals that are
able to probe both environments as, for instance, in migratory
birds). Our simulations revealed that the order in which these two
events occur is not fixed and depends on the specific conditions
(i.e., parameterizations, in the model), but they always occurred
in temporal succession. It would be premature to decide if one
of the two criteria can serve as a more significant predictor for
invasion success than the other, but in many real-life scenarios the
invasion probability will likely be higher when both criteria are
met.

In this theoretical study we have elaborated on the
phenomenon of apparent maladaptation that previously has
been sketched out in Brady et al. (2019b). We have shown that our
results have potentially important implications in applied areas
that reach beyond theoretical evolutionary biology. However, we
also decided to keep things simple, traceable and generic by using
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a very simple evolutionary model that was not parameterized
for any concrete real eco-evolutionary scenario. We consider
our contribution a first step toward investigating this interesting
phenomenon of apparent maladaptation. We can envision many
realistic model alterations, such as multiple evolving traits,
evolutionary constraints, alternatively shaped fitness functions
(Osmond and Klausmeier, 2017), eco-evolutionary scenarios in
multi-species communities (Govaert et al., 2019; Hui et al., 2021),
and so on, and invite other researchers to evaluate the validity of our
conclusions under model realizations that mirror more concrete
scenarios than we were able to analyze.
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Ecologists are increasingly recognizing the importance of stochastic processes in

generating spatial and temporal variation in biological communities. This variation

is very high in soil, which hosts not <¼ of all biodiversity on Earth and is central

to how terrestrial ecosystems respond to perturbations. Measurement errors,

demographic stochasticity (individual variability in traits such as birth and death

rates), and environmental stochasticity (fluctuations in environmental properties)

are the three main sources of stochasticity in ecology. Here, we synthesize

how these three sources of stochasticity are quantified and incorporated in

the study of soil biodiversity, highlighting current limits, possible solutions, and

future research needs. We stress the relevance of all these factors to our future

understanding of terrestrial ecosystems via plant-soil and soil-climate interactions

and feedbacks. In soil, measurement errors are due to the small size, high

abundance, and broad distributions of soil organisms, which limit sampling in

space and especially over time. We argue that positive autocorrelation is a

main characteristic of soil environmental properties, which may have important

consequences on the response of soil biota to perturbations. At a local scale, large

populations of soil organisms also imply aminor role of demographic stochasticity.

Despite demographic stochasticity being a less significant source of variability

than environmental stochasticity, we show that demographic stochasticity can be

sizeable, but that within soil systems, stochasticity of environmental conditions

must be accounted for. Explicit consideration of stochastic processes in soil

biodiversity research is essential to our future understanding of the processes

that control soil biodiversity. In classical ecology, stochasticity implies probabilistic

predictions in terms of population growth, extinction, species coexistence, and

community diversity. In soil, stochasticity implies very variable responses to climate

change and the soil-climate feedback. Future studieswill have to identify themajor

sources of environmental stochasticity with a particular focus on the interaction

between multiple global change factors.

KEYWORDS

stochasticity, soil biodiversity, terrestrial ecology, global change, time serial data

1. Introduction

Individuals, populations, and ecological communities display very large variability

over space and time. Since a fully deterministic description of all the factors

that control this variability is not feasible, ecologists have developed a large

number of models that explicitly incorporate stochastic processes in modeling

this variability (May, 1973; Caswell, 2000; Lande et al., 2003; Vellend, 2010).
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Shoemaker et al. (2020) have recently clarified many of the

misconceptions and confusions on stochastic processes in ecology,

highlighting the importance of an integrative framework to make

the study of ecological communities more robust and predictive.

In fact, a major misconception is that stochastic approaches imply

uncertainty and unpredictability while, instead, they simply imply

that predictions are probabilistic, and that there are different

sources of variance that contribute to the outcome of an ecological

process. Stochastic ecological processes can thus be quantified in

terms of probability distributions and expectations (Lande et al.,

2003). In other words, models that incorporate stochastic processes

make “the unpredictable” predictable, if we accept that most

predictions in ecology will be of a probabilistic nature. There is a

misconception that a stochastic process implies total ignorance of a

process, which is rarely the case. In most cases, there is information

available to us that allows for predictions while calculating some

degree of uncertainty around the mean. More generally, modeling a

process using a stochastic approach does not mean that the process

is intrinsically random and has no deterministic causes. Rather that

the complexity of the factors that determine the trajectory of the

measured variables is so high that a probability description of the

possible trajectories is tractable while a deterministic one is not

(Karlin and Taylor, 1975).

Soil is one of the most variable and diverse components

in terrestrial ecosystem and hosts not <¼ of all biodiversity

on earth (Bardgett and Van der Putten, 2014; FAO, 2020). The

variability of soil biodiversity over space and time is enormous

and observed from very small (a few mm) to global scales (e.g.,

Ettema and Wardle, 2002; Bardgett et al., 2005; Delgado-Baquerizo

et al., 2018; Phillips et al., 2019; White et al., 2020; Caruso

and Bardgett, 2021). Many studies have clarified the roles of the

abiotic and biotic factors that control the distribution of soil

organisms from global (Delgado-Baquerizo et al., 2018; Phillips

et al., 2019; Van Den Hoogen et al., 2019) to intermediate and

local scales (Lindo and Winchester, 2009; Caruso et al., 2019).

But the abiotic and biotic factors that control soil organism

distribution, and the ecosystem functions that these organisms

mediate, vary over space and time, and stochastic processes offer

the quantitative framework to link fluctuations in abiotic and biotic

factors to variation in population and communities (Lande et al.,

2003). This is particularly important for soil communities, that

are central to ecosystem functioning, especially biogeochemical

cycles (Bardgett and Wardle, 2010; Crowther et al., 2019), which

are connected via plants and the atmosphere to global climate

change dynamics (Bardgett et al., 2008), and are subjected to

a complex interaction of multiple global change factors (e.g.,

warming, changes in soil moisture, nitrogen deposition) (Rillig

et al., 2019; Bardgett and Caruso, 2020). Interactions with multiple

factors imply important temporal and spatial fluctuations in

populations, biomass, microbial and faunal traits, and biological

rates, including energy fluxes. Given that a fully deterministic

description of all these interactions is not feasible, we argue that

stochastic approaches offer a solution to conceptualize and model

this complexity. We thus offer a synthesis and perspective on how

stochastic processes have been considered in past soil biodiversity

research, highlighting some important aspects of the state-the-

of-the-art, current limitations in terms of data availability, and

solutions that will boost, in our view, a deeper understanding of the

response of terrestrial ecosystems to environmental variation and

perturbation regimes.

2. Sources of stochasticity in soil
biodiversity

Over the last 15 years, the factors and processes that structure

soil biodiversity have been studied intensively and over multiple

spatial scales. For example there have been some general literature

reviews and synthesis papers on different biodiversity theory and

methods as applied to soil biota (e.g., Vályi et al., 2016; Thakur

et al., 2020; White et al., 2020), large scale studies investigating

the factors that control the distribution of soil organisms (e.g.,

Delgado-Baquerizo et al., 2018; Crowther et al., 2019; Phillips

et al., 2019; Tedersoo et al., 2022), and studies that have tested

the predictions of competing community assembly models (e.g.,

Lekberg et al., 2007, 2011; Lindo and Winchester, 2009; Dumbrell

et al., 2010; Caruso et al., 2011, 2012). Much of this work was meta-

analyzed by Guerra et al. (2020). In many of these studies, and also

as recently summarized in Vályi et al. (2016), Thakur et al. (2020),

and White et al. (2020), there is a relatively large proportion of

the variance in the data that cannot be attributed to the factors

analyzed. There is typically variance observed in the abundance

of organisms, but also in relative species abundance and species

composition, as well as in ecosystem functions (for example, total

soil respiration). Much of this variance is typically spatial because

most studies have focused on the spatial dimension, and time series

of soil biota are rare. Caruso et al. (2020) recently reviewed the

literature for soil animals and highlighted the rarity of time series

for soil biota. For example, in the BioTIME database (Dornelas

et al., 2018) the only time series for soil organisms are the two we

recently submitted.

Depending on the specific context of the different research,

various authors have offered multiple explanations on the sources

underlying this “unexplained” variance, but in general there are

three main sources in ecology (Figure 1): measurement errors,

environmental, and demographic stochasticity (Shoemaker et al.,

2020). The term “unexplained” is thus not really appropriate in our

view, because the sources of variances are known, but what it is not

known are their relative contributions.

2.1. Measurement errors

The process of measurement in science is best modeled using

probability distributions, given that measurements are subjected

to a myriad of sources of error that together affect the accuracy

and precision of measurements (Taylor, 1997). In this sense,

measurement errors can be measured and accounted for (e.g.,

through instrument calibration, detection limits), such that, in

principle we should always be able to quantify them. In ecology,

at a theoretical level, measurement errors are perhaps the least

interesting source of stochastic variation, but in soil research

this type of error represents an important source of variance for

two reasons: firstly, soil biota are very small sized and patchily

distributed from local to broad scales (Ettema and Wardle, 2002),

meaning the sampling regime should be very intense at multiple
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FIGURE 1

Stochastic processes a�ect population fluctuations (black lines of di�erent types), and so species intraspecific and interspecific interaction and

eventually fluctuations in any properties emerging from these interactions (for example, the simple total density as the sum of individual species

density, blue solid line). The two key types of stochastic processes are demographic stochasticity and environmental stochasticity. A third source of

variance is measurement errors, which propagates when variable measured with uncertainty (species fluctuation) are combined into an aggregated

properties (for example, total sum of species densities).

scales in order to provide precise estimates of ecological variables

such as population density and biomass; secondly, basically all

taxonomic groups in soil are sampled destructively, meaning that

repeated measurements on the “same object” are not possible, and

that measurements at one particular spatial scale must be based

on either a composite sample from multiple samples or technical

replicates later pooled or averaged to represent the community at

the chosen spatial scale (Caruso and Bardgett, 2021). While this is

well-known in the practice of soil ecology, we propose that there are

also other sources of measurement errors that are underestimated

in soil biodiversity research, and that soil ecologists and ecologists

in general, rarely apply the rules of error propagation in their

estimates of measurement errors. In ecology this topic has been

considered explicitly only in a few works mostly related to the

estimate of the biomass of plants (Deutschman et al., 1999; Lo, 2005;

Molto et al., 2013).

We propose that there are two major areas where error

propagation can become an important approach to estimating the

contribution ofmeasurement error to the total variance observed in

soil ecological systems. One is the estimate of population biomass,

which is usually based on compounding information on body size

with information on population density (Turnbull et al., 2014).

The other is the related estimate of energy fluxes (e.g., Potapov

et al., 2016) that is based on the allometric scaling of metabolism

with body size and temperature. This latter case is particularly

important, given that an energetic description of soil food webs

potentially allows the estimation of matter fluxes and so, for

example, rates of CO2 emissions (Moore and de Ruiter, 2012). In

energetic food webs estimated through allometric metabolic scaling

(Barnes et al., 2018), the total metabolic loss of a trophic species

is the sum of the losses of each individual within that species

population. The metabolic loss I of one individual of biomass M

is typically estimated with an equation of the type: I ∝ Mb.

There is a measurement error σM in M, which is often due to

estimating individual biomass M by body size, with uncertainty

both in lengthmeasurements and the parameters that link body size

to body dry or wet weight. But, even more fundamentally, there

is also uncertainty in the scaling exponent b. The exact value of

the scaling exponent, and the implication of this value, have been

a subject to heated discussion in the more general debate on the

metabolic scaling theory of ecology (Enquist et al., 2003; Brown

et al., 2004; Makarieva et al., 2006, 2008; Glazier, 2010). Regardless

of the different theories and predictions on the exact value of the

scaling exponent, experimentally there is a well-known systematic

variation in the scaling exponent, which varies between taxa and

phylogenetic lineages (Ehnes et al., 2011). For example, Ehnes et al.

(2011) estimated (mean ± SE) b as 0.68 (± 0.4) for oribatid mites

and 0.69 (± 0.09) for mesostigmatid mites. Our point is that the

experimental error σb around b as well as the error σM around M

are both needed to assess the measurement error of I, which is a

combination of the two errors.

This can be demonstrated through an equation of the

type I ∝ Mb to estimate I, given uncertainty σb and

σM in b and M, respectively. From error propagation theory

(Taylor, 1997), the uncertainty in I would then be σI ≈

I2
[

(

M
b

σM
)2

+
(

ln (M) σb
)2

]

under the assumption that there is

no correlation in the error structure of M and b. If there was some

non-negligible correlation between the two measurements, one

more term should be added to the error of I, with the general effect

of further increasing measurement uncertainty. Even more, usually

the general equation used to estimate I is I = i0Mb exp(− E
kT
)

where k is the Boltzman constant, T is temperature, E activation
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energy, and i0 is a taxon-specific constant. The latter two

parameters (E and i0) are estimated experimentally with some

errors, which should also be incorporated in the estimate of σI .

Given that the Ij of each individual j is estimated with an error

σI , and that the total metabolism of a trophic species is the sum

of all individual metabolisms, that is Itot =
∑

Ij, the error of Itot
will be obtained by propagating the errors from the sum of all

Ij. That would simply be σtot =
∑

σI assuming no correlation

between the measurements of the metabolic loss of each individual

(a correlation would further increase the combined error for

the total).

These estimates of individual biomass based on allometric

scaling become compound errors with calculations into population

level biomass, which are then used in calculations of flux in food

web models. The estimate of the energy fluxes between two trophic

species finally requires the knowledge of other coefficients, which

express the efficiency of energetic transfers between trophic levels.

Arguably, these coefficients are known with some errors and the

errors should thus propagate to the estimate of the energy flux

together with the error of the metabolic loss. All these errors are

rarely, if ever, taken into account, and are (implicitly) assumed to

be negligible (Barnes et al., 2014, 2018; Potapov et al., 2019, 2021),

or are not taken into account (Gauzens et al., 2019). Similar issues

apply to conversions from abundance to biomass data, assignment

of species into trophic groups (see Buchkowski and Lindo, 2021),

extrapolation of density data across scales, and in general any

conversion based on measurements and coefficients that, being

based on experimental measurements, are necessarily known with

a degree of uncertainty intrinsic to the measurement process. We

thus recommend that future soil biodiversity studies explicitly

consider the issue of error propagation in the quantification of error

measurements, as this is important to estimate lower and upper

bounds for key ecosystem level quantities such as respiration and

fluxes of C and N.

2.2. Demographic stochasticity

Individuals within a species differ in vital rates, especially

survival and fecundity, that together determine individual fitness

(Caswell, 2000; Lande et al., 2003). In very small populations

(typically < 100), this variability in vital rates is the source of

demographic stochasticity, and can be measured by following

cohorts of individuals, their survival and reproduction output

(Lande et al., 2003). This is relatively straightforward, while time

consuming, for vertebrates such as birds (Engen and Sæther,

1998; Sæther et al., 2000; Engen et al., 2001, 2003) but much

more challenging for soil organisms, apart from laboratory studies

on soil animals (Siepel, 1994; Søvik and Leinaas, 2003; Stamou,

2012). Despite the fact that direct measurements of demographic

stochasticity are difficult to obtain for soil biota, there is theoretical

ground to expect demographic stochasticity plays a minor role in

structuring soil biodiversity. For example, following Lande et al.

(2003), in simple, unstructured density independent stochastic

models, the total variance σ 2
λ of the finite rate of population

growth λ equals σ 2
e +

σ 2
d
N , where σ 2

e is environmental variance

(defined in the next section), σ 2
d
is demographic variance, and

N is total population size. Density independence is appropriate

because demographic stochasticity applies to small populations,

which are arguably far away from their carrying capacity. In large

populations, population sizeN≫
σ 2
d

σ 2
e
and demographic stochasticity

plays a much smaller role than environmental stochasticity. A

critical population size Nc = 10
σ 2
d

σ 2
e
can be defined, above which

demographic stochasticity can be ignored. In birds, this critical

population size can range from a few tens to various hundreds

of individuals (Lande et al., 2003). Clearly, the issue is that we

do not know the magnitude of environmental and demographic

variance in soil organisms. However, it is textbook knowledge that

the density per square meter of most soil organisms is typically

well above 100 or 1,000 units for animals and up to 1 billion

bacterial cells and 200m of fungal hyphae per gram of soil microbes

(Coleman et al., 2004).

It is thus unlikely that demographic stochasticity plays any role

at all for most species at scales larger than 1 m2 (see also Section 3).

At scales smaller than 1 m2, however, various soil animal species,

such as Collembola and mites, can have population sizes of a few

tens of individuals, making demographic variance a likely source

of stochasticity. If we assume a small population size at this scale,

and thus a density independent model following Lande (1998), and

the formulation in Lande et al. (2003), we can also formulate an

unstable stochastic equilibrium for population size that establishes

a critical threshold below which the probability of extinction

approaches unity. This critical equilibrium value can be calculated

as N∗ =

σ2
d
4

λ −1−
σ2e
2

. For example, if σ 2
d

= 1 and σ 2
e = 0.04,

and the average λ = 1.03, the critical population size would be 25

individuals. This is a likely scenario at some spatial scales (1–100m)

for some groups of soil fauna given existing estimates of population

size and finite rates of increases (e.g., Caruso et al., 2020). However,

at this scale interactions between individuals in soil become very

likely, as also shown by highly aggregated distribution of soil fauna

and microbes at small scales (Ettema and Wardle, 2002). The

implication is that other biological mechanisms will potentially

contribute to population fluctuations, especially Allee effects, which

makes again pure demographic stochasticity unlikely to be a large

and only source of fluctuations in soil biota.

These considerations are very relevant to the large body of

literature that has investigated the relative roles of stochastic

and deterministic determinants of soil biodiversity. A recent

synthesis has been offered by Thakur et al. (2020), who found

about 100 papers explicitly testing community ecology assembly

theory in soil communities, and concluded that theory such as

the neutral theory, which has demographic stochasticity as the

core process, are generally not well-supported suggesting niche-

based explanations underly community composition, and the high

levels of unexplained variance are likely due to other stochastic

processes described here (see next section). This conclusion is

consistent with the general consideration that for most soil species,

large population sizes over relatively broad scale (>100m) imply a

small role of demographic stochasticity. It is, however, important

to remark that in many of the papers reviewed in Thakur et al.

(2020) there is, in our opinion, very often confusion between

the assumption of neutrality in certain models and the role of

stochastic processes. As made clear by Adler (2007), demographic
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stochasticity is just a demographic process that may be at play both

in neutral and niche community dynamics (see also the simple

niche stochastic model example by Tilman, 2004). This means that

the rejection of a neutral model does not imply that community

fluctuations are not affected by demographic stochasticity, but only

that the assumption of neutrality is not sufficient to explain the

tested community patterns (Vellend, 2010).

2.3. Environmental stochasticity

Besides individual-level variability in vital rates such as birth

and survival rate, the average expression of rates in the population

also depends on the environment, which fluctuates. Sometimes

conditions are favorable, sometimes they are not. After removing

structural, periodic fluctuations due to, for example, the day and

night cycle, or the seasonal cycle, or trends due, for example, to

global warming,many environmental fluctuations are bestmodeled

as probability distributions (Figures 2, 3), that is, stochastic

fluctuations. The implication is that the vital rates, too, will

fluctuate stochastically. A simple density independent model for

this type of stochastic fluctuations is Nt = N0
∏t

i=1 λi where

the population size N grows geometrically from time 0 to time t

according to the finite rate of increase λ, but at each time step the

value of λ changes, because the environment changes (Botsford

et al., 2019). This implies fluctuations in the rate of growth and

so population size over time. It will also imply fluctuations in

interspecific interactions, and all the ecosystem processes that

depends on these interactions (Figure 1).

The first population level implication of environmental

stochasticity is that the long-term growth rate of the population will

be smaller than the expected average growth rate, and the higher

the environmental variance the smaller the rate will be (Caswell,

2000; Lande et al., 2003). This also applies to populations structured

by age and stages (Caswell, 2000; Tuljapurkar, 2013), which is the

case with many soil animals (Walter and Proctor, 1999). However,

while this is generally true for so called “white noise”, which is

fluctuations without temporal autocorrelation (Figure 3), many

time series of environmental variables display autocorrelation in

their random component (Figures 3, 4). This is the so called

“color” of noise, which has been shown to have different types and

sometimes contrasting effects on the long-term rate of population

growth (Ripa and Lundberg, 1996; Ruokolainen et al., 2009)—we

argue this is particularly important in soil properties such as soil

moisture. For example, in the time series we show in Figure 4,

soil moisture and temperature, but especially soil moisture, clearly

show fluctuations due to the day-night cycle and pulses of rain.

After removing these fluctuations, the remaining random noise

is positively autocorrelated, with highest variance displayed over

short period of times. This is relatively easy to interpret: if soil

becomes dry, it will stay so for a certain time until it rewets. As well

as the rewetted soil may be subjected to another bout of drought

but with loss of moisture that will take a certain time, meaning

that the closer in time any two soil moisture measurements are, the

more similar the measurements are likely to be (i.e., red noise). The

implication is that both wet and dry conditions may persist longer

than under purely white noise, and certain population models

imply that red noise may reduce the risk of extinction (Ripa and

Lundberg, 1996).

Regardless of the particular population model, however,

an important tool to describe the structure of environmental

stochasticity in time series analysis is the Fourier transformation

(Bloomfield, 2004; Bush et al., 2017). The Fourier transform of

a time series moves data from the time domain (x-axis) to the

frequency domain (new x-axis); in the original time series, the y-

axis is simply the measured variable (Figure 3), and in the Fourier

transform the y-axis becomes variance (Figure 3). In practice,

the Fourier transform allows detection of the frequencies or,

conversely, time period mostly expressed in the data (i.e., that

shows more variance). If all the frequencies are equally expressed,

the pattern (or spectrum) of the Fourier transform is flat (white

noise), and there is no relationship between frequency and variance.

If low frequencies show more variance than high frequency there

will be a negative correlation between frequency and variance (i.e.,

there will be positive autocorrelation in the time domain referred to

as red noise). Fourier analysis of soil time series can thus quantify

the autocorrelation structure of environmental stochasticity in soil,

thereby elucidating the effect of this stochasticity on soil biota

population and communities. This analysis is straightforward for

abiotic variables especially for data collected from data loggers that

allow the collection of time series of desired length and resolution

(see example in Figure 4).

Unfortunately, the same is not possible for soil biota (Caruso

and Bardgett, 2021). Yet, future modeling studies (see example in

Figure 2) still benefit from incorporating forms of environmental

stochasticity, that reflect the random structure observed in

soil abiotic environments. For example, energetic food webs

incorporate temperature as a key parameter via the fundamental

metabolic scaling equation I = i0Mb exp(− E
kT
). There are

now soil food web models parameterized on field data (Potapov

et al., 2021; Pettit et al., 2023) using the energetic approach

(Moore and de Ruiter, 2012). Thus, in silico soil food web

models (i.e., computer model estimations) can explore the effect of

environmental stochasticity on energy fluxes using information on

the stochastic structure that can be revealed by a Fourier analysis

of soil temperature time series (Figure 4). These models could

also simulate the impact of perturbation regimes, that changes the

temporal structure of fluctuations in environmental variables.

3. Community level estimate of
stochasticity

One major limitation in the study of stochastic fluctuations in

soil biodiversity is the lack of time series (Bardgett and Caruso,

2020; Caruso and Bardgett, 2021). However, many ecological

processes that happen over time potentially leave their signature in

the spatial distribution of organisms, and there are some models

that may allow estimate of environmental and stochastic variance

from combined spatial and temporal time series (Lande et al.,

2003; Botsford et al., 2019). We offer an example here, based on

a publicly available time series of soil oribatid mites (https://doi.

org/10.5061/dryad.tmpg4f4vt), which was the subject of previous

work of ours (Caruso et al., 2020). The dataset consists of several

9-year time series replicated over multiple sampling locations. We
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FIGURE 2

The “observed” population stochastically fluctuate around an equilibrium. The fluctuation follows a normal distribution with autocorrelation

parameter “phi”. The parameter phi and the mean and variance of the observed population can be estimated from a sample of the population. The

estimate of the mean, variance and autocorrelation parameter can be used to draw a desired number of “simulated” populations. In this example,

three simulated populations (Simulated R1, R2, and R3) are shown together with the originally observed population. The three simulated population

and the observed one represents four realizations of the same stochastic process, with the probability distribution of the process been estimated

from the observed population. This time series displays positive autocorrelation, that is “red” noise.

fitted the model by Engen et al. (2002) to this dataset, and we

provide an R script (see Data Availability Statement) that displays

all the key step of the model fitting procedure. The key output

of the model is a partitioning of the total community variance

in terms of environmental variance, and a term that is the sum

of demographic variation and overdispersion (which is relative to

the underlying Poisson distribution assumed by the model). The

environmental variance is further decomposed into two sources:

general environmental variance, which is a forcing component that

applies to all species, and species-specific environmental variance.

The model takes the relative abundance of species, location and

sampling time as input. It is fitted in stages: first, a bivariate Poisson

distribution is fitted to the combined species relative abundance of

all pairs of possible samples. Second, the variance and correlation

parameters of each fit are combined with the spatial and temporal

distance between each pair of samples. Third, an estimate is

obtained for the parameters that control the dependency of the

correlation parameter on the spatial and temporal distance between

any two samples.

These parameters contain the main output, that is the estimate

of environmental and demographic variance. Note however, as

outlined in the previous section, because measurement errors

are generally not well-incorporated into models and analyses,

estimates of environmental and demographic stochasticity are

likely overestimated. This model is based on the following main

stochastic model, where the logarithm X of the abundance of

any species i in the community has the following forms: dXi
dt

=

ri − mXi − A(X) +
σd√
Ni
Di + σeSi + σEE. Where the subscript

i indicates a certain species, D, S, and E are Brownian motions

and, respectively, represents demographic (D), species specific (S)

environmental, and general environmental (E) effects. The sigma

coefficient of each of this term (D, S, and E) is the variance we

aim to estimate in order to quantify the relative importance of

environmental (e+E) vs. demographic (d) stochasticity. The model

is not neutral with respect to intrinsic growth rate r and the species

level stochastic effect D and E, and it includes interactions between

speciesA(X) as well as density dependence controlled by parameter

m.With these simple assumptions, a crude but field-based estimate

of environmental and demographic stochasticity is possible from

the type of community data sets available to soil ecologists. Our

calculations (see R script, Sup. Info.) show that for an old conifer

forest (>100 yrs), the total variance observed in the temporal and

spatial fluctuation of oribatid species could be partitioned as 85%

environmental variance (σe + σE) and 15% demographic variance

+ overdispersion (that is σd + o). However, the method does

not allow separation of demographic variance from overdispersion

(the deviation in the relationship between mean and variance

of the underlying Poisson distribution of the model), which is

likely due to spatial aggregation observed at small scales (Engen

et al., 2002). Regardless, the results empirically confirm the
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FIGURE 3

A Fourier transformation decomposes the overall pattern of the time series to reveal the underlying frequencies present in the original function. As

such, the Fourier transformation can be used to provide information on seemingly stochastic processes. Environmental variables typically display

“red” noise or positive autocorrelation over time. In this figure, a time series of soil moisture with red and white noise (no autocorrelation) are

simulated. A Fourier transformation of the two timeseries (top panels, red and white noise) demonstrates that in the spectrum of the red noise most

of the variance is displayed over short time scales, with a negative correlation between variance and periods. The spectrum of the white noise is flat,

with all periods displaying similar variance.

theoretical expectation for the main source of stochastic variation

as environmental, but also non-neutral. Following, the 85% of

total environmental variance can be partitioned into interspecific

differences in the response to the general environmental variance

(82% of the 85%, or 70% of the total) and local, species-specific

response (18% of the 85%, or 15% of the total). The variance values

were σe
2 = 0.36; σE

2 = 1.37; σd+o
2 = 0.29. Assuming no

overdispersion we would have σe
2 = 0.36 and σd

2 = 0.29, which

we use to estimate an average critical population density of 12

individuals (using Nc = 10
σ 2
d

σ 2
e
).

Most oribatid mite species in forest soils have densities above

50 individual m−2. Using the formula for the critical equilibrium

value Nc with a long-term stochastic rate λ = 1.6, σe
2 = 0.36 and

σd
2 = 0.29 (see Caruso et al., 2020), Nc is < 1, suggesting the risk

of extinction is negligible. Although crude, the example shows that

relatively short time series (9 years) with some spatial replication

and community level data allows an estimate of environmental

and demographic stochasticity in soil communities. The time scale

of the time series might be tuned to the biological groups under

consideration. For example, for bacteria a time series could occur

over a single season. In the northern hemisphere at temperate

latitudes, bacterial communities could be sequenced molecularly at

10 intervals from May to August (the growing season) in multiple

locations with relatively affordability.

4. Emerging concepts and way
forward

Stochasticity can be fully embraced in the study of the factors

that control the structure and functions of soil biodiversity and

aboveground-belowground linkages. Through modeling stochastic

processes, we can better predict and identify populations,

communities or ecosystems that are vulnerable to stochasticity

in terms of fluctuations that can make soil biological activities

uncertain and unstable (Bardgett and Caruso, 2020). This is

important because instability in soil biological activities cause

uncertainty and instability in fluxes that link aboveground and

belowground components, and functions such as nutrient cycling.

To obtain this goal, we need to improve data in terms of a

quantification of measurement errors based on the theory of

error propagation, and produce more time series of different soil

biota across multiple locations. Experimental time series are the

main tool to elucidate potential divergent (i.e., alternative stable

state) soil-climate feedbacks through examining the resistance and

resilience of soil biodiversity and function (Bardgett and Caruso,

2020). However, experimental tests and empirical data of this are

lacking. In terms of new data and models, we need a quantification

of the relative roles of different sources of stochasticity and

explicit incorporation of stochastic autocorrelation structure into
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FIGURE 4

Two real world time series of soil moisture and temperature. In the time domain (top panels) both variables, but especially soil moisture, displays clear

positive autocorrelation (over short time scales values tend to be similar). After detrending linear and periodic trends and isolating the stochastic

component, the calculation of the autocorrelation coe�cient phi confirms the presence of positive autocorrelation (i.e., red noise). With these

parameters, one can now draw a desired number of stochastic trajectories, which can inform the modeling of population, community, and

ecosystem level (e.g., energy fluxes and soil respiration) processes.

soil models (at population, community, and ecosystem levels).

Improved experimental designs, theory and practical methods are

already available to quantify and propagate measurement errors

(for example see Caruso and Rillig, 2022). It is just a matter

of applying them more extensively and critically, acknowledging

errors at the various levels at which they occur (e.g., in energetic

soil food webs). Time series remain challenging to obtain but

there is an increasing number of contributions toward a temporal

description of soil biota (e.g., Barreto et al., 2021), and especially

for microbial groups the collection of time series within a

single year or season is both feasible and informative of short

terms dynamics.

We demonstrate that even a modest time series replicated over

space allows a crude but reliable quantification of demographic

and environmental stochasticity in soil communities and the

quantification of the joint spatial and temporal autocorrelation

observed both in biota and the environment, while a Fourier

analysis of the stochastic components of time series can reveal the

type of autocorrelation that characterizes stochastic fluctuations

both in biota and the environment. We believe this approach will

be very useful in future manipulative experiments, such as global

change experiments that manipulate the intensity, frequency, and

type of multiple perturbations (Rillig et al., 2019), which generate

complex fluctuations.
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Trophic interactions
between primary consumers
appear to weaken during
periods of synchrony

Katie R. Hooker1*, L. Mike Conner2, Steven B. Jack2,
Gail Morris2, William E. Palmer3, Brandon T. Rutledge2,
D. Clay Sisson3, Theron M. Terhune3, Shane D. Wellendorf3

and Robert A. McCleery1

1Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL, United States,
2The Jones Center at Ichauway, Newton, GA, United States, 3Tall Timbers Research Station and Land
Conservancy, Tallahassee, FL, United States
Our understanding of synchrony between populations from different taxonomic

groups has been centered on predator–prey dynamics in simple systems but has

rarely been examined in complex predator–prey systems. In addition to trophic

interactions such as predator–prey dynamics, there is some evidence that

exogenous factor such as climatic variation may facilitate synchrony between

different taxonomic groups. Using three longitudinal datasets on quail (Colinus

virginianus) and cotton rats (Sigmodon hispidus) we examined 1) the consistency

of synchrony across time and space, 2) the relative influence of trophic

interactions vs. exogenous factors on synchrony and 3) if trophic interactions

were positively associated with synchrony between populations. We found

evidence of consistent synchrony in cotton rat and bobwhite populations at

both the site and regional levels. We found that trophic interactions between

cotton rats and bobwhite were associated with relative synchrony between these

populations, but these interactions appeared to weaken in years of greater

synchrony. We did not find evidence that exogenous factors influenced

relative synchrony at the regional level. Given the lack of a clear mechanistic

explanation of the patterns observed in our data, we propose an alternative

climate-mediated predation framework to explain synchrony in complex

predator–prey systems. This framework includes both classic bottom-up

theories of regulation while integrating trophic interactions via components of

the shared predator hypothesis.

KEYWORDS

climate, Colinus virginianus, Moran’s theorem, shared predator hypothesis,
Sigmodon hispidus
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Introduction

Wildlife populations that co-vary in time and space have been

investigated by scientists since the birth of ecology (Chapman, 1928;

Elton, 1949; Andrewartha and Birch, 1954; Krebs, 1985; Brewer,

1988). Synchronous population dynamics, defined as coincident

changes in abundance (Liebhold et al., 2004), have been observed

across taxonomic groups, including invertebrates (Sutcliffe et al.,

1996), fish (Myers et al., 1997), birds (Michel et al., 2016), and

mammals (Ims and Steen, 1990). Despite its historical foundation,

the patterns, causes, and consequences of synchronous population

fluctuations are still not well understood (Liebhold et al., 2004).

Most examples of synchrony come from disjunct populations of the

same species (Burrows et al., 2002; Post and Forchhammer, 2002;

Bellamy et al., 2003; Krebs et al., 2013) or closely related species

(Raimondo et al., 2004a; Raimondo et al., 2004b; Robertson

et al., 2015).

Synchrony between populations from different taxonomic

groups is thought to be driven by exogenous factors such as

environmental stochasticity (Moran, 1953) and trophic

interactions such as competition and predation (Liebhold et al.,

2004). There is considerable evidence that exogenous factors can

cause synchrony in closely related species (Cavanaugh and

Marshall, 1972; Ranta et al., 1997; Kendall et al., 2000; Koenig

and Liebhold, 2016). Two sympatric populations may co-occur

without synchronizing until a catalyst, such as changes in weather

patterns, creates conditions for synchrony (Moran, 1953).

Additionally, factors such as changes in habitat quality and

weather patterns (i.e., the North Atlantic Oscillation) can alter the

amount of synchrony found among populations across space and

time (Hurrell, 1995; Ranta et al., 1997; Ranta et al., 1998; Koenig,

2001; Allstadt et al., 2015). While these patterns appear to be clear

for closely related species, they are unclear when synchrony occurs

in populations of different taxonomic groups.

Much of our understanding of synchrony between populations

from different taxonomic groups has centered on trophic

interactions, via predator–prey dynamics (Ims and Steen, 1990;

De Roos et al., 1991; Gurney et al., 1998; Spiller et al., 2016) that

occur in relatively simple communities of predators and prey (Lack,

1954; Angelstam et al., 1984). While the concepts generated from

simple systems have been broadly applied (Davenport and

Chalcraft, 2012; Nordberg and Schwarzkopf, 2019), rarely have

they been examined in complex predator–prey systems. Meanwhile,

other trophic mechanisms like competition for resources (Koenig,

2001; Jones et al., 2003) and similarity in species’ reproductive

strategies may also increase the opportunity for synchrony (Moran,

1953; Liebhold et al., 2004). Additionally, there is some evidence

(Liebhold et al., 2004) but little understanding of how trophic

interactions and exogenous factors may interact to influence

synchrony between populations from different taxonomic groups

(Bjørnstad et al., 1999).

Two species that may allow us to better understand the

influence of the synergies of exogenous factors and trophic

interactions in a complex food web are hispid cotton rats

(Sigmodon hispidus) and northern bobwhite (Colinus virginianus;

hereafter bobwhite; Staller et al., 2005; Morris et al., 2011). Cotton
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rats and bobwhite are dominant primary consumers in ecosystems

throughout the southeastern United States. Both species serve as an

important food source to several shared generalist avian,

mammalian, and reptilian secondary consumers (Schnell, 1968;

Barrett et al., 2001). Anecdotal evidence of synchronous

population fluctuations in cotton rat and bobwhite populations

have been observed, leading some to hypothesize a trophic

interaction mechanism of synchrony (Errington and Stoddard,

1938; Schnell, 1968; Barrett et al., 2001; Staller et al., 2005).

However, environmental conditions can also influence both

populations, for example, bobwhite chick survival can be sensitive

to rainfall during their restricted breeding season (Terhune et al.,

2019). Alternatively, variation in seasonal temperatures has been

correlated with cotton rat reproductive activity (Goertz, 1965) and

abundance (Rehmeier et al., 2005).

Our objective was to understand the patterns and drivers of

synchrony for two sympatric primary consumers in a complex food

web. Specifically, we wanted to address the following questions:

1) Do bobwhite and cotton rats synchronize consistently across

space and time? 2) What is the relative influence of trophic

interactions vs. exogenous factors on the amount of synchrony

between populations, and 3) does the strength of trophic

interactions increase with increasing synchrony between

populations? Using datasets from sites in their southeastern

geographic ranges, we predicted that bobwhite and cotton rats

would exhibit punctuated but inconsistent periods of synchrony

because the species’ reproductive potential is influenced differently

by environmental variation. In support of Moran’s theorem of

synchrony (Moran, 1953; Stien et al., 2012), we predicted that

periods of synchronous fluctuations would be more closely

associated with exogenous factors because populations of these

species can be sensitive to climatic variation (Eifler and Slade, 1999;

Perez et al., 2002; Hernández et al., 2005; Rehmeier et al., 2005).

Finally, we predicted that trophic interactions (e.g., predation and

competition) would not vary with the relative amount of synchrony

between populations because empirical evidence (Miller and Epstein,

1986; Post and Forchhammer, 2002; Raimondo et al., 2004a) and

theory suggest that exogenous factors drive synchrony in unrelated

species (Moran, 1953; Royama, 1992; Koenig, 2001).
Materials and methods

Study species

Cotton rat and bobwhite distributions overlap in the southern

United States and Mexico. Both species are ~160 g as adults (cotton

rat range: 100 to 225 g; bobwhite range: 140 to 170 g; Cameron,

1999; Brennan et al., 2014) and primarily herbivorous, consuming

grass and forb seeds, fruits, leafy vegetation, and sometimes

invertebrates (Fleharty and Olson, 1969; Campbell-Kissock et al.,

1985). Although they share similar resources, cotton rats and

bobwhite select different vegetation structure. Cotton rat density

generally increases with grass height and density (Goertz, 1964)

whereas bobwhite prefer bunchgrasses and shrubs for cover and

nesting (Wells, 2008). They also differ in life history strategies.
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Cotton rats can breed year-round if environmental conditions are

favorable (Linzey, 1998), while bobwhite reproduction is restricted

to a defined breeding season, primarily May–August (DeVos and

Mueller, 1993).

Both bobwhite and cotton rat populations can be sensitive to

environmental variation. Bobwhite abundance and survival have

been linked to climatic conditions (Speake and Haugen, 1960;

Jackson, 1962; Perez et al., 2002; Hernández et al., 2005).

Although deviations from average seasonal environmental

conditions can influence populations of both species, extreme

weather events (e.g., extreme heat and drought) during the

bobwhite breeding season can have a greater relative impact on

their demographics (Perez et al., 2002; Tri et al., 2012). Similarly,

extreme summer temperatures and cold winters have been shown to

reduce cotton rat reproduction and abundance (Eifler and Slade,

1999; Rehmeier et al., 2005).
Study sites

To investigate the patterns of cotton rat and bobwhite population

fluctuations, we used long-term data from three study sites: Tall

Timbers Research Station (TT) in Leon County, Florida, the Jones

Center at Ichauway (JC) in Baker County, Georgia, and a private

property (Private) in Baker County, Georgia (Private; Figure 1).

Tall Timbers is a 1,600-ha forest in Leon County, Florida, USA,

approximately 33.3 km north of Tallahassee, Florida. Tall Timbers’

landscape is dominated by sparsely distributed pine trees and a diverse

understory of forbs and grasses. Characterized by a humid, subtropical

climate and summer rainy season, TT has an average air temperature

of 19.78°C and an average annual precipitation of 1.50 m.

The Jones Center at Ichauway is a 12,000-ha research facility in

Baker County, Georgia, USA, approximately 20 km southwest of

Newton, Georgia. The Jones Center is dominated by longleaf pine
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(Pinus palustris) and a diverse understory of grasses, forbs, and

shrubs. The climate at JC is characterized by long, hot summers and

cool, short winters (Lynch et al., 1986) with an average annual

temperature of 18.11°C and average annual precipitation of 1.41 m.

The private property in Baker County, Georgia is a 6,000-ha

forest approximately 24 km southwest of Albany, Georgia. In the

Upper Coastal Plain physiographic region, this property is

characterized by sandy-loam soils with low natural fertility

(Palmer et al., 2012). The temperate, subtropical climate receives

an average of 1.41 m of annual precipitation and has an average

annual air temperature of 18.11°C. The dominant vegetation

community is defined by low densi ty upland pines ,

predominantly slash (P. elliottii), longleaf, and loblolly (P. taeda)

and a diverse understory of forbs, legumes, and native warm season

grasses (Yates et al., 1995).
Population data collection

Cotton rats
At TT, we established eight 1.82-ha plots, made up of 100

Sherman live traps (7.62 × 8.89 × 22.86 cm, H. B. Sherman Traps,

Inc., Tallahassee, FL) arranged in a 10 × 10 grid. We placed traps 15

m apart and baited them with oats. At JC, in late July to mid-August

each year from 2003 to 2017, we also trapped on eight plots with

144 Sherman live traps in 12 × 12 grids with 15 m spacing (2.72-ha).

At the private property, each August from 2008 to 2017, we

established four 1.82-ha plots made up of 100 Sherman live traps

arranged in a 10 × 10 grid spaced 15 m apart. We trapped at each of

these locations annually in late July–August (TT: 2002–2017, JC:

2003–2017, Private: 2008–2017), for four consecutive nights. We

trapped cotton rats in August based on the within-year cycles of

cotton rat populations observed in the region, which include annual

peak densities in August each year (Hannon, 2006). We marked
FIGURE 1

Study sites including the Jones Center at Ichauway, Baker Co., GA, a private property in Baker Co., GA, and Tall Timbers Research Station, Leon Co., FL.
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individuals with a unique numeric ear tag (Style 1005-1, National

Band and Tag Co., Newport, KY) and collected data on location.

We released marked animals at place of capture. Our trapping and

handling methods followed the recommendations of the Animal

Care and Use Committee of the American Society of Mammalogists

(Sikes and Animal Care and Use Committee of the American

Society of Mammalogists, 2016). Our methods were approved by

Tall Timbers Research Station under (IACUC permit GB-2001-01-

15), at the Jones Center at Ichauway under the Georgia Department

of Natural Resources (scientific collecting permit 1000528068), and

at the private property under the Georgia Department of Natural

Resources (scientific collecting permit 1000650622).

Bobwhite
We conducted annual autumn covey counts at TT between

September and November from 2002 to 2017 based on the

methodology of Wellendorf and Palmer (2005). Each year, we

randomly established twelve 25-ha quadrants. We placed a

trained observer at the midpoint of each side of the quadrant (4

observers/quadrant). During the 45 minutes before sunrise, we

recorded the estimated distance, bearing, and location of all

calling coveys on a map of the quadrant and surrounding areas.

We determined calling covey locations via triangulation based on

observers’ bearings and distances. We grouped estimated distances

from observer to covey into four categories: 0–100 m, 101–250 m,

251–500 m, and > 500 m. We estimated covey size based on flush

counts conducted following point counts. We used this same

methodology at the private property, where we conducted annual

autumn (September–November) covey counts on four randomly

established 25-ha quadrants from 2008 to 2017.

At JC, we conducted point count covey call surveys on a 92-

station grid covering 6,997-ha from mid-October to early-

November from 2003 to 2017. Beginning 45 minutes before

sunrise, we recorded each covey heard until all calling had ceased.

We grouped estimated distances from observer to covey into five

distance bands: 0–25 m, 25–50 m, 50–100 m, 100–250 m, and 250–

500 m. We assumed 12 bobwhite/covey based on published average

covey size (Janke et al., 2013).
Environmental data collection

We selected a suite of environmental variables to determine the

influence of exogenous factors on patterns of cotton rat and bobwhite

population fluctuations. Enhanced vegetation index (EVI) is an

optimized index that quantifies the “greenness” of vegetation based

on the difference between the visible and near-infrared light reflected

by vegetation (Huete et al., 2006). We chose EVI over the traditionally

used NDVI (normalized difference vegetation index) because EVI has

improved sensitivity to high biomass regions and is less influenced by

cloud cover compared to NDVI (Huete et al., 2006). We downloaded

EVI data from NASA’s MODIS platform (Didan, 2015) using product

MOD13Q1 at a 250 m spatial resolution and 16-day temporal scale.

We averaged these data for seasonal (spring: March–May, summer:

June–August, autumn: September–November, winter: December–
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February) EVI measurements at all sites. Additionally, we focused

on seasonal climatic variation due to the well-established links with

both bobwhite and cotton rat population growth. Specifically, we

obtained seasonal mean precipitation (cm) and temperature (°C) from

NOAA’s National Centers for Environmental Information (NCEI,

2020) closest to each study site (mean distance ~21 km from study

sites) from 2001 to 2017. We paired environmental data from the

winter and spring prior to animal capture, the summer concurrent

with cotton rat and prior to bobwhite capture, and the autumn after

cotton rat and concurrent with bobwhite capture.
Statistical analyses

Animal density estimation
We estimated cotton rat density at TT, JC and the private

property using annual August capture data. We calculated density

based on a subset of Otis’ closed capture models (null (M0), time-

varying (Mt), behavioral response (Mb); Otis et al., 1978; SI 1) using

a conditional likelihood approach of two parameters: capture

probability (p) and recapture probability (c; Huggins, 1989;

Cooch and White, 2012). We chose a closed capture framework

due to the single trapping session each year. We grouped each

capture by “Plot” and “Year.” We used both DAICC and model

weight to identify the most parsimonious model (AICC; Akaike,

1973; Burnham and Anderson, 2002; Burnham and Anderson,

2004). We derived plot-level abundance estimates from the most

parsimonious model using the package RMark (Laake, 2013) in

Program R (R Core Team, 2021). We averaged estimated

abundance across plots within each year to provide a single

annual cotton rat abundance estimate for each site.

We estimated bobwhite density at TT and the private property

based on a global distance function from a subset of available

detection functions in Program DISTANCE (Thomas et al., 2010)

using an information theoretic criterion (AIC; Akaike, 1973) and

model fit using chi-square model fit statistics (Burnham and

Anderson, 1998). We estimated bobwhite density at JC based on

an annual calling rate calculated given daily weather conditions

(Wellendorf and Palmer, 2005), the assumed covey size, and the

number of coveys heard. Different methodologies were used to

estimate density at TT and JC due to differences in data collection

methods across organizations/sites.

Synchrony of cotton rats and bobwhite
To determine if bobwhite and cotton rats consistently synchronize

at each site, across the region, and through time we used concordance

as a proxy for relative synchrony or the coincident population

fluctuations (Gouhier and Guichard, 2014; Borgmann-Winter et al.,

2021) of bobwhite and cotton rats. We measured concordance with a

Kendall’sW test of concordance (kendall.global function) in the vegan

package (Oksanen et al., 2013) in R (R Core Team, 2021). Kendall’sW

is a non-parametric test of agreement among independent measures

(i.e., judges) of same attributes which provides a concordance estimate

ranging from 0 (no concordance) to 1 (full concordance), an F

statistic, and probability (p). We treated cotton rat and bobwhite
frontiersin.org
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densities from each site as judges to measure relative synchrony at the

site level. Then we treated cotton rat and bobwhite densities in each

year as judges to test regional relative synchrony across years. The

magnitude of agreement among judges can be interpreted as slight (0

< W < 0.20), fair (0.20 < W < 0.40), moderate (0.40 < W < 0.60),

substantial (0.60 <W < 0.80), or almost perfect (0.80 <W < 1.0; Landis

and Koch, 1977). We used the default 999 permutations and a Holm

probability correction (Legendre, 2005) with a = 0.05 level of

significance. We conducted post-hoc testing (kendall.post function)

of the results to determine which judges significantly (a ≤ 0.05)

influenced the overall concordance statistic. Each species’ annual

density contributes to overall measures of concordance

independently (Legendre, 2005). In some years, bobwhite or cotton

rat density may have a greater influence than the other on the overall

synchrony of population fluctuations. To acknowledge the effect of

noise in the empirical data and understand how extremes in

population abundances shaped patterns of synchrony, we measured

the patterns the proportion of peaks (maxima) and troughs (minima)

common to both bobwhite and cotton rat populations in time series.

Specifically, we assessed the proportion of concurrent peaks and

troughs using a Monte Carlo randomization to shuffle each species’

time series, destroying both the autocorrelation structure and cross

correlation between series. We assessed peaks and troughs with all

sites pooled (regionally) and at each site individually (locally). We

conducted our analysis using the synchrony package (Gouhier and

Guichard, 2014) in Program R, which computed a p-value based on

the number of randomizations conducted (N = 999).

Drivers of population density
To determine the relative influence of exogenous factors on

bobwhite and cotton rat densities we generated generalized linear

models (GLM) in the glmmTMB package (Magnusson et al., 2017)

in R (R Core Team, 2021). We developed two additive models to

evaluate the linkages between bobwhite and cotton rat densities and

exogenous factors. We averaged our seasonal exogenous factors and

measures of density across sites, providing a single seasonal estimate

of each variable per year. We justified consolidating these data

based on the similar relative synchrony observed across all study

sites. We parameterized the model with a Gaussian distribution and

seasonal estimates of EVI, precipitation, and temperature, and the

annual densities of bobwhite and cotton rats (Models 1 and 2). Prior

to modeling, we scaled each variable and analyzed the variance

inflation factor (VIF) in package car (Fox et al., 2019) in R (R Core

Team, 2021) to assess each temporal dataset for multicollinearity of

explanatory variables. We removed variables with > 2.5 VIF

(Allison, 1999) one-by-one to reduce correlation.

Model 1:
Fron
Bobwhite Density ~ Seasonal EVI + Seasonal Temperature

(°C) + Seasonal Precipitation (cm)
Model 2:
Cotton Rat Density ~ Seasonal EVI + Seasonal Temperature

(°C) + Seasonal Precipitation (cm)
We assessed model fit based on visual inspection of the

normality of residuals and met the assumptions of normality. We

computed aWald-z-statistic from aWald chi-square test (Wald and
tiers in Ecology and Evolution 0591
Wolfowitz, 1943) to calculate the p-values of the explanatory

variables in each model with a significance level of a ≤ 0.05. We

evaluated the relative strength of these predictors by comparing

their scaled beta estimates and displaying them graphically.
Drivers of synchrony

To determine the relative influence of trophic interactions and

exogenous factors on synchrony we generated a generalized linear

model (GLM) in the glmmTMB package (Magnusson et al., 2017) in

R (R Core Team, 2021). We developed an additive model to evaluate

the linkages between our measure of regional relative synchrony

(Kendall’s W averaged from cotton rat and bobwhite Kendall’s Ws),

exogenous factors, and trophic interactions (e.g., bobwhite and cotton

rat densities). We averaged our seasonal exogenous factors and

measures of density across sites, providing a single seasonal

estimate of each variable per year. We justified consolidating these

data based on the similar relative synchrony observed across all study

sites. We parameterized the model with a Gaussian distribution and

seasonal estimates of EVI, precipitation, and temperature, and the

annual densities of bobwhite and cotton rats (Model 3). Prior to

modeling, we scaled each exogenous factor variable and analyzed the

variance inflation factor (VIF) in package car (Fox et al., 2019) in R (R

Core Team, 2021) to assess each temporal dataset for

multicollinearity of explanatory variables. We removed variables

with > 2.5 VIF (Allison, 1999).

Model 3:
Relative Synchrony ~ Seasonal EVI + Seasonal Temperature

(°C) + Seasonal Precipitation (cm) + Cotton Rat Density +

Bobwhite Density
For each parameter, we computed a Wald-z-statistic from a

Wald chi-square test (Wald and Wolfowitz, 1943) to calculate the

p-values of the explanatory variables. We considered the

explanatory relevance of each parameter, using a significance

level of a ≤ 0.05. We evaluated the relative strength of these

predictors by comparing their scaled beta estimates and displaying

them graphically.

Trophic interactions and synchrony
To determine if trophic interactions were influenced by the

amount of synchrony between the populations, we regressed the

density of each species against an interaction between the other

species density and our measure of relative synchrony (Kendall’sW;

Models 4 and 5). We also included exogenous factors (significant

variables from Model 3) to account for their known influence on

densities and synchrony. We parameterized the models as a GLM in

the glmmTMB package (Magnusson et al., 2017) in R (R Core

Team, 2021) with the bobwhite and cotton rat densities modeled to

fit with a Gaussian distribution and evaluated the residuals to

determine if any assumptions of normality were violated.

Models 4 and 5:
Bobwhite Density ~ Significant Exogenous Factors fromModel

3 + Cotton Rat Density + Relative Synchrony + Cotton Rat

Density*Relative Synchrony
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Fron
Cotton Rat Density ~ Significant Exogenous Factors from

Model 3 + Bobwhite Density + Relative Synchrony +

Bobwhite Density*Relative Synchrony
For each parameter, we computed a Wald-z-statistic from a

Wald chi-square test (Wald andWolfowitz, 1943) to calculate the p-

values of the explanatory variables. We considered the explanatory

relevance of the interaction parameter as well as other variables,

using a significance level of a ≤ 0.05. We evaluated the relative

strength of these predictors by comparing their scaled beta

estimates and displaying them graphically.
Results

Estimates of animal density

Cotton rats
The most parsimonious model of cotton rat density across sites

was the behavioral response model p(.),c(.): TT: AICc = 19099.67,

model weight: 1.0; JC: AICc = 10175.56, model weight: 1.0; Private

property: AICc = 2753.53, model weight: 0.99 (SI 2). Cotton rat

density averaged 25.40 ± SE 1.46 cotton rats/ha from 2002 to 2017

at TT, 10.90 ± SE 1.18 cotton rats/ha from 2003 to 2017 at JC, and

15.8 ± SE 3.74 cotton rats/ha from 2008 to 2017 at the private

property (SI 3).

Bobwhite
We estimated the density of bobwhite at TT and the private

property based on the most competitive detection model, with a

uniform detectability with simple polynomial adjustments, AIC =

146.5 (Wellendorf and Palmer, 2005). Bobwhite density averaged 3.48

± SE 0.19 birds/ha at TT, 4.82 ± SE 0.34 birds/ha at the private property,

and varied little at JC, averaging 1.69 ± SE 0.05 birds/ha (SI 4).
tiers in Ecology and Evolution 0692
Environmental variation

Enhanced vegetation index varied by site and year and was, on

average, highest in summer (0.48 ± SE 0.007) and lowest in winter

(0.27 ± SE 0.003) across all sites. Precipitation varied across years and

sites. Precipitation peaked in summer (30.2 ± SE 3.22 cm) and was

lowest in autumn (14.7 ± SE 2.25 cm). Air temperature varied across

seasons and years, with the highest average temperatures in summer

(27.20 ± SE 0.15° C) and lowest in winter (11.70 ± SE 0.36° C) across

all sites (SI 5).
Drivers of population density

After removing highly correlated environmental variables

(winter, spring, and autumn EVI and winter, autumn, and

summer precipitation) using VIF, our model of bobwhite density

included winter temperature, spring precipitation and temperature,

summer EVI and temperature, and autumn temperature as

explanatory variables. Bobwhite density was significantly

associated with previous spring precipitation (b = 0.22 ± SE 0.11,

z = 1.98, p = 0.05) and concurrent autumn temperature (b = 0.26 ±

SE 0.13, z = 2.03, p = 0.04; Table 1).

Our model predicted that as prior spring precipitation increases

from 5.5 to 32.51 cm, bobwhite density would increase from 2.82 ±

SE 0.19 to 3.49 ± SE 0.20 individuals per hectare. Similarly, as

autumn temperature increases from 18.74 to 23.28°C, bobwhite

density is predicted to increase from 2.58 ± SE 0.29 to 3.63 ± SE 0.26

bobwhite per hectare (Figure 2).

Our model of cotton rat density included the same

environmental variables as our model of bobwhite density except

autumn temperature because those data were collected after cotton

rat density each year. Cotton rat density was significantly associated
TABLE 1 Generalized linear mixed model results of the exogenous factors influence on bobwhite and cotton rat densities at the Jones left at
Ichauway, a private property in Baker Co., GA, and Tall Timbers Research Station from 2002 to 2017.

Response Variable Explanatory Variable b Estimate SE z p

Bobwhite Density

Winter Temperature 0.25 0.14 1.81 0.07

Spring Precipitation 0.22 0.11 1.98 0.05*

Spring Temperature −0.02 0.11 −0.22 0.83

Summer EVI −0.08 0.10 −0.76 0.45

Summer Temperature −0.08 0.13 −0.63 0.53

Autumn Temperature 0.26 0.13 2.03 0.04*

Cotton Rat Density

Winter Temperature 4.78 1.49 3.21 0.001*

Spring Precipitation 4.30 1.39 3.10 0.002*

Spring Temperature −0.58 1.31 −0.44 0.66

Summer EVI 4.19 1.31 3.21 0.001*

Summer Temperature 3.12 1.52 2.05 0.04*
An autumn temperature was not included in the cotton rat density model because it was collected after cotton rat density each year. Variables with p ≤ 0.05 were considered statistically significant (*).
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with a number of variables, including positive significant

relationships with winter (b = 5.83 ± SE 1.40, z = 4.17, p < 0.001)

and summer temperature (b = 2.95 ± SE 1.40, z = 2.11, p = 0.04),

spring precipitation (b = 4.21 ± SE 1.29, z = 3.26, p = 0.001), and

summer EVI (b = 4.81 ± SE 1.25, z = 3.84, p < 0.001; Table 1).

Our model of cotton rat density predicted that as winter

temperature increases from 8.81 to 14.46° C, cotton rat density

would increase from 9.76 ± SE 3.03 to 27.84 ± SE 3.13 cotton rats/
Frontiers in Ecology and Evolution 0793
ha. Similarly, as summer temperature increases from 26.38 to 28.24° C,

cotton rat density is predicted to increase from 13.93 ± SE 2.60 to 23.67

± SE 2.75 cotton rats/ha. Our model predicted that as spring

precipitation increases from 5.15 to 32.51 cm, cotton rat density will

double, increasing from 12.59 ± SE 2.31 to 25.45 ± SE 2.53 individuals/

ha. Our model predicted that as summer EVI increases from 0.43 to

0.55, cotton rat density will nearly triple, increasing from 12.49 ± SE

2.83 to 29.32 ± SE 3.56 cotton rats/ha (Figure 3).
FIGURE 2

Raw data (gray dots) and model-predicted bobwhite density (black line) ± 95% confidence intervals (gray band) as prior spring precipitation and
concurrent autumnal temperature increases at the Jones Center at Ichauway, a private property in Baker Co., GA, and Tall Timbers Research Station
from 2002 to 2017.
FIGURE 3

Raw data (gray dots) and model-predicted cotton rat density (black line) ± 95% confidence intervals (gray band) as prior winter temperature, prior
spring precipitation, and concurrent summer EVI and temperature increase at the Jones Center at Ichauway, a private property in Baker Co., GA, and
Tall Timbers Research Station from 2002 to 2017.
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Synchrony of cotton rats and bobwhite

Regionally, when we pooled cotton rat and bobwhite density

across sites as judges (N = 2), we found significant concordance

(W = 0.76, F3 = 3.09, p < 0.001, c2 = 58.93, corrected p < 0.001)

indicating substantial levels of regional relative synchrony. At the

site level, relative synchrony ranged from substantial at the Jones

Center (W = 0.73; p = 0.05) and private property (W = 0.79;

p = 0.04) to almost perfect at Tall Timbers (W = 0.90; p <0.001;

Table 2). Overall, we found significant but fair levels of regional

synchrony across years (W = 0.40, F32 = 20.87, p < 0.001, c2 = 25.75,

corrected p = 0.001). Post-hoc testing revealed that the strongest

indication of synchrony were bobwhite and cotton rat densities in

2003, 2005, 2006, 2007, 2016, and 2017 (allW = 0.63), and bobwhite

from 2011 to 2016 (all W = 0.63; SI 6). The regional proportion of

concurrent peaks of bobwhite and cotton rat population maxima

and minima was 56% (p = 0.01) suggesting synchrony occurred

when abundances were relatively high and low.
Drivers of synchrony

After removing highly correlated environmental variables

(winter, spring, and autumn EVI and winter, autumn, and

summer precipitation), our model of relative synchrony included

winter temperature, spring precipitation and temperature, summer

EVI and temperature, autumn temperature, and bobwhite and

cotton rat densities as explanatory variables. Relative synchrony
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was negatively associated with bobwhite density (b = −0.26 ± SE

0.10, z = −2.68, p = 0.007; Table 3). Our model predicted that as

bobwhite density increases from 1.82 to 4.49 individuals per

hectare, relative synchrony will decrease from 0.95 ± SE 0.19 to

0.10 ± SE 0.13 (Figure 4).
Trophic interactions and synchrony

We found evidence that both bobwhite and cotton rats were

positively associated with the density of the other species. We

modeled bobwhite density with the significant environmental

factors from Model 1 (spring precipitation and autumn

temperature), relative synchrony, and the interaction of relative

synchrony and cotton rat density. Bobwhite density was positively

associated with cotton rat density (b = 0.30 ± SE 0.11, z = 2.58, p =

0.01; Table 4) but not the interaction of cotton rat density and

synchrony. Our model predicted that as cotton rat density increases

from 6 to 39 individuals/ha, bobwhite density will increase from

2.71 ± SE 0.20 to 3.87 ± SE 0.30 bobwhite/ha (Figure 5).

Wemodeled cotton rat density from the significant environmental

variables from Model 2 (winter and summer temperature, spring

precipitation, and summer EVI), relative synchrony, bobwhite density,

and the interaction of relative synchrony and bobwhite density.

Cotton rat density was positively associated with bobwhite density

(b = 6.83 ± SE 1.45, z = 4.70, p < 0.001) and negatively associated with

the interaction of relative synchrony and bobwhite density (b = −2.71

± SE 1.03, z = −2.63, p = 0.009; Table 4). Our model of cotton rat
TABLE 3 Generalized linear mixed model results of the exogenous and trophic interaction factors on relative synchrony at the Jones Center at
Ichauway, a private property in Baker Co., GA, and Tall Timbers Research Station from 2002 to 2017.

Response Variable Explanatory Variable b Estimate SE z p

Relative Synchrony

Winter Temperature 0.09 0.06 1.59 0.11

Spring Precipitation −0.03 0.05 −0.63 0.53

Spring Temperature −0.008 0.04 −0.23 0.15

Summer EVI −0.09 0.07 −1.33 0.30

Summer Temperature −0.07 0.06 −1.04 0.82

Autumn Temperature 0.09 0.06 1.44 0.18

Cotton Rat Density 0.12 0.10 1.26 0.21

Bobwhite Density −0.26 0.10 −2.68 0.007*
Variables with p ≤ 0.05 were considered statistically significant (*).
TABLE 2 Results of post-hoc testing of Kendall’s W showing the synchrony of cotton rats and bobwhite at each site relative to overall concordance (W).

Site Kendall’s W F p Corrected p

Jones Center 0.73 2.73 0.05* 0.05*

Private 0.79 3.87 0.04* 0.04*

Tall Timbers 0.90 9.46 <0.001* <0.001*
Kendall.post provides the contribution to overall concordance (W), F statistic, probability of the F statistic, and the probability of the Holm correction (significance of a ≤ 0.05, denoted by *).
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density predicted that as bobwhite density increases from 1.82 to 4.02

bobwhite/ha, cotton rat density will increase from 4.45 ± SE 3.07 to

26.93 ± SE 1.99 cotton rats/ha (Figure 5). Our model indicated that as

synchrony between species increases, the association between

bobwhite density on cotton rat density decreases. At low levels of

concordance (W = 0.20), our model predicted a positive association

between bobwhite density and cotton rat density, predicting that as

bobwhite density increases from 1.82 to 4.02 bobwhite/ha, cotton rat

density would increase from 0.0 ± SE 5.58 to 30.88 ± SE 2.79 cotton

rats/ha. Similarly, at fair levels of synchrony (W = 0.31), as bobwhite

density increases from 1.82 to 4.02 individuals/ha, cotton rat density is

predicted to increase from 0.06 ± SE 4.35 to 29.10 ± SE 2.19 cotton
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rats/ha. At the highest levels of synchrony observed between species

(W = 0.63), as bobwhite density increases from 1.82 to 4.02

individuals/ha, cotton rat density is predicted to increase from 10.51

± SE 2.49 to 23.93 ± SE 2.77 cotton rats/ha (Figure 6).
Discussion

In our examination of a complex predator–prey system, we

found evidence of regional and site-specific synchrony between two

taxonomically divergent primary consumers demonstrated by both

substantial levels of concordance and high proportions of
FIGURE 4

Raw data (gray dots) and model-predicted relative synchrony (black line) ± 95% confidence intervals (gray band) as bobwhite density increases at the
Jones Center at Ichauway, a private property in Baker Co., GA, and Tall Timbers Research Station from 2002 to 2017.
TABLE 4 Generalized linear mixed model results of the global model of exogenous factors and synchrony at the Jones Center at Ichauway, two sites
at a private property in Baker Co., GA, and Tall Timbers Research Station from 2002 to 2017.

Response Variable Explanatory Variable b Estimate SE z p

Bobwhite Density

Spring Precipitation 0.04 0.12 0.37 0.71

Autumn Temperature 0.33 0.10 3.21 0.001*

Relative Synchrony −0.15 0.11 −1.35 0.18

Cotton Rat Density 0.30 0.11 2.58 0.01*

Relative Synchrony*Cotton Rat Density 0.10 0.10 1.01 0.31

Cotton Rat Density

Winter Temperature 1.09 1.35 0.81 0.42

Spring Precipitation 0.99 1.08 0.92 0.36

Summer EVI 6.22 0.95 6.53 <0.001*

Summer Temperature 2.69 0.94 2.87 0.004*

Relative Synchrony 0.64 1.04 0.62 0.54

Bobwhite Density 6.83 1.45 4.70 <0.001*

Relative Synchrony*Bobwhite Density −2.71 1.03 −2.63 0.009*
Cotton rat and bobwhite density models include only the statistically significant exogenous variables from Table 1. Variables with p ≤ 0.05 were considered statistically significant (*).
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concurrent maxima and minima. Unlike many synchronous

populations, we found negligible evidence that variation in the

relative amounts of synchrony were tied to exogenous factors (Post

and Forchhammer, 2002; Stien et al., 2012). We did find that

trophic interactions between cotton rats and bobwhite were

associated with relative synchrony between these populations, but

these interactions appeared to weaken in years of greater synchrony

(Lee et al., 2020). If populations were synchronized by mechanisms

like predation and competition, we would have expected a positive

association between synchrony and trophic interactions (Ims and

Steen, 1990; De Roos et al., 1991). Accordingly, our research

suggests that the patterns of fluctuation among taxonomically

divergent primary consumers in our system cannot be easily
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explained by our current suite of theoretical constructs that focus

solely on exogenous factors (Moran, 1953) or trophic predator–prey

interactions (Hagen, 1952; Lack, 1954; Angelstam et al., 1984) and

may be influenced by the interaction of these factors (Coulson et al.,

2004; Stenseth et al., 2004).

The pattern of synchrony between bobwhite and cotton rats

varied considerably across years, fluctuating from no

relationship to moderate synchrony. Declines in relative

synchrony were associated with increasing bobwhite density.

When regional synchrony between the populations was highest

(2003, 2005, 2006, 2007), environmental conditions were

characterized by above average greenness across multiple

seasons and summer precipitation. During those same years,
FIGURE 5

Raw data (gray dots) and model-predicted cotton rat and bobwhite density (black line) ± 95% confidence intervals (gray band) as the other species’
density increases at the Jones Center at Ichauway, a private property in Baker Co., GA, and Tall Timbers Research Station from 2002 to 2017.
FIGURE 6

Raw data (gray dots) and model predicted relationship of the interaction of bobwhite density and relative synchrony on cotton rat density at the
Jones Center at Ichauway, a private property in Baker Co., GA, and Tall Timbers Research Station from 2002 to 2017.
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bobwhite density which are known to be sensitive to temperature

and precipitation (Table 1; Lusk et al., 2001), was low; and cotton

rat density, sensitive to seasonal greenness, precipitation, and

temperature (Table 1; Reed and Slade, 2006), was variable.

Alternatively, during years of reduced synchrony (2002, 2004,

2010), environmental conditions were characterized by above

average spring precipitation and below average winter and

summer precipitation as well as reduced cotton rat densities

and average bobwhite densities. These patterns suggest that

differences in synchrony can potentially be partially explained

by the subtly different ways climatic conditions influence the

population densities of these taxonomically divergent species.

Yet they do not conform well with Moran (1953), commonly

used to explain patterns between populations, suggests

synchrony occurs during extreme weather events that reduce

population densities. Following this concept, we would have

expected increases in synchrony when bobwhite and cotton rat

densities were both at their lowest. Based on maxima and

minima across sites, bobwhite and cotton rat populations

fluctuated concurrently in more than 50% of the study years

(SI 7); however, these fluctuations were not clearly linked to

exogenous factors as indicators of population change. Across

sites, cotton rats appear to deviate from synchronous

fluctuations more frequently than bobwhite (SI 7), possibly

due to their reproductive plasticity relative to bobwhite’s

defined breeding season. Cotton rats’ natural history facilitates

opportunistic breeding when environmental conditions are

favorable (Linzey, 1998), while bobwhite are restricted to a

defined breeding season (Stoddard, 1931). Accordingly,

although exogenous factors appeared to influence the

population dynamics of each species individually and the

proportions of concurrent maxima and minima were

substantial across sites, there was not a strong relationship

between synchrony and exogenous factors. However, it is

important to note that we did not observe the extreme weather

events that commonly support Moran (1953).

While both populations were positively associated with one

another, only cotton rats were influenced by the interaction of

relative synchrony and bobwhite density (Table 4). Numerous

observational studies have suggested that cotton rats positively

influence bobwhite density through generalist predators switching

their prey selection (Staller et al., 2005; Ellis-Felege et al., 2017;

Palmer et al., 2019). Predation by birds of prey and mammals is the

leading cause of bobwhite mortality at all life stages (Burger et al.,

1995; Rollins and Carroll, 2001; Cox et al., 2004). Similarly, avian

and mammalian predators account for the majority of mortalities of

adult cotton rats (Morris et al., 2011; McCampbell et al., 2023).

Moreover, seasonal predation pressure has been shown to

considerably alter both cotton rat (Wiegert, 1972) and bobwhite

populations (Carroll et al., 2007). We found that as synchrony

between bobwhite and cotton rats increases, the positive association

of bobwhite density on cotton rat density declines, possibly due to

prey switching by predators when both species populations are at

relatively high densities. This differs from the trophic interactions
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commonly attributed to synchrony in taxonomically divergent

primary consumer species. The alternative prey hypothesis (APH)

suggests that predators are selective and synchronize prey

population densities by depredating their primary prey

(i.e., numerically dominant) until its population declines before

switching to an alternative prey and instigating its decline (Hagen,

1952; Lack, 1954; Angelstam et al., 1984). We have no evidence that

the generalist predators in our system are selective (Godbois et al.,

2003; Cherry et al., 2016; Rectenwald et al., 2021), and if the APH

was occurring, we would expect an inverse relationship between

prey densities. As cotton rat densities are reduced by predation,

bobwhite density would increase to synchronize with cotton rat

densities (Angelstam et al., 1984). However, we observed periods of

elevated synchrony after years of both increasing and decreasing

cotton rats.

Another explanation of trophic interactions is the shared

predator hypothesis which posits that predators can synchronize

prey species populations through indiscriminate predation of

primary and alternate prey to cause simultaneous increases and

declines (Norrdahl and Korpimäki, 2000). Synchrony seemed to

occur after years of both increasing and decreasing cotton rats;

however, these associations were inconsistent. Under the shared

predator hypothesis, we would also expect that alternative prey (e.g.,

bobwhite) and primary prey (e.g., cotton rat) would consistently

decline after spikes in the population of the numerically dominant

prey, which should facilitate increased predator activity and

encounter rates (Bety et al., 2002; Ježková et al., 2014); however,

we did not see evidence of this pattern either (Ydenberg, 1987; Ims

and Steen, 1990).

Without a clear mechanistic explanation of the patterns in our

data, we propose an alternative climate- mediated predation framework

for understanding the linkages of prey in complex predator–prey

systems with numerous non-selective predators. First, in keeping

with classic bottom-up theories of regulation (White, 1978; Hunter

and Price, 1992), exogenous conditions influence the populations of

each prey species via availability of resources (Meserve et al., 2001;

Meserve et al., 2009). Next, population fluctuations of the numerically

dominant prey changes predator communities. Finally, changes in the

predator community alter the predation risk and populations of species

with the same predators in a manner consistent with the shared

predator hypothesis. While this hypothesis needs to be tested, there

is substantial support for its components, 1) fluctuations of numerically

dominant prey are closely linked to climate-induced changes in

resources (Lima et al., 1999; Ernest et al., 2000), 2) fluctuations of

numerically dominate prey are tied to changes in populations and

communities of their predators (Post and Forchhammer, 2002;

Beaugrand et al., 2009; Turkia et al., 2020), and 3) changes in

predator communities alter the population demographics of species

with the same predators (Rooney et al., 2006; Stoessel et al., 2019;

Quéroué et al., 2021). This framework (Figure 7) is more consistent

with many patterns of our data than existing constructs.

Although we used data from three sites across 15 years, our

study had several limitations which should be noted. Most

importantly, because of the coarse spatial and temporal
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resolution (i.e., annual) of our population and remote sensing

data, the patterns in our data might change at more biologically

relevant temporal and spatial scales that more closely track

species’ interactions. Another important caveat was that cotton

rat and bobwhite population data were collected in different

areas of each study site, which may have inadvertently influenced

our findings as the species were not experiencing the same

microclimatic conditions. Moreover, while annual population

density data were collected at times of peak density, our sampling

occurred at slightly different seasons for each species, potentially

limiting our ability to detected linkages between them. Both

species have an average lifespan of approximately 6 months

(Brennan, 1999; Curlee and Cooper, 2012; McCampbell et al.,

2023), suggesting limited annual carryover of population

densities; however, we did not investigate this assumption with

the inclusion of time lags. Additionally, without data on predator

density we were unable to fully investigate the drivers of

bobwhite and cotton rat population fluctuations. Although
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cotton rats are the most commonly trapped small mammal at

these sites, they are not the only small mammals in these systems.

Fluctuations in other small mammal populations, most notably

Peromyscus gossypinus (cotton mouse) andMus musculus (house

mouse) may have influenced our results and therefore these

populations should be acknowledged and accounted for in future

studies. Another concern was the variation in population data

collection, especially bobwhite density, across sites. While two

sites used the same methodology, the assumptions made

regarding covey size at the Jones Center may have skewed the

data and influenced the results. Lastly, our lack of strong effects

may have been influenced by the removal or mesomammalian

predators and supplemental feeding that occurred across all sites

and throughout the study. Although we have identified factors

associated with synchrony within our dataset, further

investigation should aim to collect population and predator

data on finer spatial and temporal scales to capture the within-

year variation in population fluctuations.
FIGURE 7

Climate-mediated predation framework proposed to explain the simultaneous interactions of the environment, predators, and prey species in
ecosystems with numerous non-selective predators.
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While a climate-mediated predation framework may provide a

better explanation of the fluctuation patterns in populations of

taxonomically divergent primary consumers in complex food webs,

there is considerable work that needs to be done before attributing

mechanisms to these patterns. Specifically, we suggest two important

steps to determine the applicability of this construct. First, there is a

need to link survival, cause-specific mortality, predator populations,

and specific resources (i.e., vegetation characteristics, food availability)

to the annual fluctuations of primary and alternative prey species. To do

this, contrary to the coarse resolution of this study, research will need to

investigate these populations on finer spatiotemporal scales that allow

for the inference of mechanism. Second, we advocate for manipulations

of resources for the numerically dominant prey to determine if they

lead to population increases, alter predator communities, and change

the predation rate of other prey populations in the system. We present

this paper as a foundation to generate a greater understanding of the

integral drivers of synchrony within complex systems.
Data availability statement

The raw data supporting the conclusions of this article will be

made available by the authors, without undue reservation.
Ethics statement

The animal study was reviewed and approved by Tall Timbers

Research Station and Land Conservancy: IACUC permit GB-2001-

01-15; the Jones Center at Ichauway: Georgia Department of

Natural Resources Scientific collecting permit 1000528068; the

private property in Baker County, Georgia: Georgia Department

of Natural Resources Scientific collecting permit 1000650622.
Author contributions

KRH: data analysis, study design, manuscript writing. LC: study

design, data collection, manuscript editing. SJ: study design, data

collection. GM: data collection, manuscript editing. WP: study

design, data collection, manuscript editing. BR: study design, data

collection. DS: study design, data collection, manuscript editing. TT:

data analysis, study design, manuscript editing. SW: study design,
Frontiers in Ecology and Evolution 1399
data collection, manuscript editing. RM: study design, data analysis,

manuscript writing. All authors contributed to the article and

approved the submitted version.
Funding

Funding provided by Tall Timbers Research Station and

Land Conservancy.
Acknowledgments

The authors thank the numerous interns, staff, and administrative

personnel of Tall Timbers Research Station and Land Conservancy, the

Jones Center at Ichauway, and the private property in Baker County,

Georgia for their assistance in data collection, logistics, and support.

Additionally, we would like to thank Drs. Dale Rollins and Brad
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christelle.hely@ephe.psl.eu

RECEIVED 26 November 2022

ACCEPTED 05 July 2023
PUBLISHED 26 July 2023

CITATION
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The Drape: a new way to
characterize ecosystem states,
dynamics, and tipping points
from process-based models

Christelle Hély1,2*, Herman H. Shugart3, Robert J. Swap4

and Cédric Gaucherel5

1Institut des Sciences de l’Evolution de Montpellier (ISEM), Montpellier University, CNRS, EPHE, IRD,
Montpellier, France, 2EPHE, PSL University, Paris, France, 3Department of Environmental Sciences,
University of Virginia, Charlottesville, VA, United States, 4Sciences and Exploration Directorate,
Goddard Space Flight Center, NASA, Greenbelt, MD, United States, 5AMAP – INRA, CIRAD, CNRS, IRD,
Montpellier University, Montpellier, France
There are many ways to study ecosystem dynamics, all having several issues.

Main limitations of differential equation systems are the necessarily small number

of interactions between few variables used, and parameter values to be set

before the system dynamics can be studied. Main drawbacks of large-scale

snapshot observation datasets to build a stability landscape are assuming that the

most represented conditions are the most stable states, and using the computed

landscape to directly study the system’s dynamics. To remedy these

aforementioned shortcomings and study complex systems based on the

processes that characterize them without having to limit the number of

variables, neither set parameter values, nor to use observations serving both

model buildup and system’s dynamics analysis, we propose a geometric model

as an additional and novel aid to study ecosystem dynamics. The Drape is a

generic multi-dimensional analysis, derived from process-based model datasets

that include disturbances. We illustrate the methodology to apply our concept

on a continental-scale system and by using a mechanistic vegetation model to

obtain values of state variables. The model integrates long-term dynamics in

ecosystem components beyond the theoretical stability and potential landscape

representations currently published. Our approach also differs from others that

use resolution of differential equation systems. We used Africa as example,

representing it as a grid of 9395 pixels. We simulated each pixel to build the

ecosystem domain and then to transform it into the Drape – the mean response

surface. Then, we applied a textural analysis to this surface to discriminate stable

states (flat regions) from unstable states (gradient or crest regions), which likely

represent tipping points. Projecting observed data onto the Drape surface allows

testing ecological hypotheses, such as illustrated here with the savanna-forest

alternative stable states, that are still today debated topics, mainly due to

methods and data used. The Drape provides new insights on all ecosystem
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types and states, identifying likely tipping points (represented as narrow ridges

versus stable states across flat regions), and allowing projection and analysis of

multiple ecosystem types whose state variables are based on the same

three variables.
KEYWORDS

disturbance, multi-dimensional ecological space, response surface, textural analyses,
stability, transient states, savannas, tropical forests
1 Introduction

Prediction of ecosystem change under novel conditions is

a central issue for ecologists, especially with the apprehension

that environmental changes are on multiple scales. A growing

number of studies have investigated ecosystem dynamics and

their role in planetary function as bases for projecting the Earth’s

future (e.g. Brook et al., 2013; Hughes et al., 2013a). From

theoretical considerations of system dynamics, one may expect

sharp changes can be a part of the dynamic ecosystem repertoire

(Scheffer et al., 2001; Briske et al., 2010). Such changes have been

analyzed for a diverse array of systems ranging from the Earth

climate system (e.g. Lenton et al., 2008; Kriegler et al., 2009;

Gaucherel and Moron, 2015), to the international financial

system, and to terrestrial and aquatic ecosystems (e.g. Davis and

Shaw, 2001; Chapin et al., 2004; Folke et al., 2004; Van Nes and

Scheffer, 2007; Favier et al., 2012; Hughes et al., 2013a; Conversi

et al., 2015; Martin et al., 2020). Such non-linear responses can

profoundly affect the dynamics and management of natural systems

(Scheffer et al., 2001).

For almost a century (Lotka, 1925; Volterra, 1926) with

increased intensity since the 1970s (Holling, 1973; Noy-Meir,

1975; May, 1977; Walker et al., 1981), ecologists have developed

models of ecosystem dynamics. Initially, these were for simplified

systems such as predator–prey or competition interactions with the

numbers of different populations defined as state variables. If

needed, other components representing the environment are also

defined as equation parameters.

Such models are often based on systems of ordinary differential

equations (ODE). Qualitative or more complex models were first

more conceptual, such as state-and-transition models (e.g. Ellis and

Swift, 1988; Archer, 1989; Westoby et al., 1989). The use of ODE

systems makes more tractable (analytically or numerically) the

search for stationary points of the system (i.e. equilibria or

periodic orbits) in the so-called phase portrait of the state

variables, at least for ecosystem representations of small

dimensions. One can characterize the equilibrium stability, which

depends on the real part of the eigenvalues of the Jacobian matrix

(for hyperbolic equilibria). By analyzing the nullclines, manifolds

that go through the fixed points on the phase portrait, the behavior

of system-dynamic solutions on the state space can be discerned.

Ideally, the local stability of the dynamics is guaranteed by a

potential function (in blue on Figure 1A), whose time derivative
02104
along the solutions of the system is negative, at least locally. If it is

not strictly decreasing everywhere, then multiple steady states or

periodic orbits occur, as do bifurcation points (i.e. tipping points)

and hysteresis (e.g. May, 1977; Sternberg, 2001).

Subsequent studies have advanced in several different directions

including: i) determination of leading indicators (also called early

warning signal, e.g. Van Nes and Scheffer, 2007; Dakos et al., 2008,

2010; Livina et al., 2010), used to assess the proximity of a system to

a tipping point; ii) the role of noise or variability in the system

dynamics and intermediate stability creation (e.g. D’Odorico et al.,

2005; Dakos et al., 2012); iii) linkage to spatial dynamics and

patterns (e.g. van de Koppel et al., 2002; van de Koppel and

Rietkerk, 2004; Bel et al., 2012; Kéfi et al., 2014; Ratajczak et al.,

2017b); iv) analysis of the response to perturbations of finite

magnitude and duration – instead of theoretical developments

based on linear stability to infinitesimal perturbations (Ratajczak

et al., 2017a) or even the response to continuous stochastic

perturbations (Nolting and Abbott, 2016); v) use of space-for-

time substitutions and related probability density functions built

exclusively from observations in order to infer the potential shape as

well as the presence of multiple stable states and tipping points (e.g.

Hirota et al., 2011; Staver et al., 2011a; Favier et al., 2012; Scheffer

et al., 2012).

Tipping points usually occur in response to a gradual change in

a system process (internal and acting on parameter values) or in a

system driver (external factor acting on state variables). Under an

abrupt change in system state after crossing a tipping point, the

system behavior is radically different from that previously observed.

Despite intrinsic differences, many dynamic systems display similar

early warnings signals prior to the occurrence of a tipping point.

These include slowing rates (e.g. Wissel, 1984; Van Nes and

Scheffer, 2007), temporal and spatial autocorrelations among

system variables (Dakos et al., 2010; Boulton et al., 2013; Kéfi

et al., 2014), and fluctuations of the variance increasing up to

“flickering” (Wang et al., 2012; Dakos et al., 2013). Active debates

regarding tipping points, their nature (Gaucherel et al., 2020), and

detection mostly have origins from the catastrophe theory

(Thom, 1972).

For global change, terrestrial ecosystem responses are

conditioned by many interdependent processes (e.g. Brook et al.,

2013; Hughes et al., 2013a). Catastrophic dynamics such as tipping

point-events seem relatively rare among ecosystem behaviors.

Concepts intending to capture ecosystem dynamics as a whole
frontiersin.org
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should also account for the wide range of smooth (gradual) and/or

relatively stable behaviors often observed in nature (Dutta et al.,

2018). Inclusion of the internal processes responsible for the system

dynamics, even in a synthetic and simplified way, provides a better
Frontiers in Ecology and Evolution 03105
understanding of past and current dynamics by making explicit

explanations of the processes. Such inclusion can also improve

representation and visualization of concepts such as stable,

transient, or alternative states, and system trajectories and system
B

A

FIGURE 1

Conceptual representations of ecosystem dynamics (A) from ordinary differential equation system (adapted from Scheffer et al., 2001) or statistical
method based on derivative of probability density function (Hirota et al., 2011; Scheffer et al., 2012) and (B) from the present study Drape concept. In
both panels, the ball represents the system state at a given time. In (A) the black arrow represents a perturbation (disturbance, stochasticity, noise),
considered as an external factor, that pushes the system to another place on the stability landscape (a narrow environmental range slice), on the
potential landscape (all slices so the full environmental range), and likely to another equilibrium state (valley) if the ball crosses a ridge; the blue line
represents the equilibria curve for this system. In panel (B), the perturbation is stochastic and intrinsic to the vegetation model that created the data,
and natural disturbance is embedded in the vegetation model and the system definition. The system may move on the Drape when state variable
values change (i.e. at least in terms of climate known as an ongoing changing compartment of the system), which is ineluctable through time, even
in terms of small changes. Conversely to the potential landscape in (A) the Drape topography in (B) is not related to the value distribution of each
state variable dataset. See Figure 2 for further explanation.
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tipping points, if they exist (e.g. Boettiger et al., 2013; Dutta et al.,

2018). Nolting and Abbott (2016) showed that to properly detect

and study alternative stable states, linear stability analysis, as in

traditional deterministic ODE models, is not appropriate to study

the potential, thereby necessitating the inclusion of stochasticity.

While using snapshot measurements from extensive datasets is

relevant to describe current patterns (e.g. Hirota et al., 2011; Staver

et al., 2011a; Scheffer et al., 2012), a number of studies of different

ecosystem types and different time scales showed significant

discrepancies when testing the space-for-time substitution

approach (e.g. Adler and Levine, 2007; Blois et al., 2013).

Different observed localities may not have undergone the same

historical changes (e.g. disturbance types and regimes), and so, their

use in space-for-time analyses may be inappropriate.

Interpretations of the underlying ecosystem dynamics (including

definitions of equilibria and alternative stable states) should be

performed with caution when using the space-for-time substitution

approach. This justification is particularly true if these

interpretations are not linked to nor validated by a deterministic

model, a point wisely suggested by several authors (e.g. Boettiger

et al., 2013; Dutta et al., 2018). Fortunately, an increasing number of

studies both rely on ecosystem models built with deterministic or

stochastic skeletons and then use statistical approaches to compute

and test early warning signals, existence of tipping points, and

multiple stable states (e.g. Staver et al., 2011b). To analyze the

dynamics of a large-scale system, where multiple system states can

appear in the studied region as a result of different underlying

processes at play, it may be difficult or intractable to rely on a

complicated differential equation system. This likely explains why

several studies have chosen to statistically analyze observations to

differently apprehend the potential and its associated stabilities on

the so-called landscape stability (Hirota et al., 2011; Scheffer et al.,

2012). This type of applications exhibits several limitations. For

instance, the attribution of stable states to the most frequently

represented states (and reversely for unstable states) has been

criticized (Ratajczak and Nippert, 2012).

From Tansley’s (1935) original ecosystem definition,

ecosystems are composed of biotic and abiotic components. It

would then be logical to expect an ecosystem to include

complexities and interactions beyond merely the populations of

organisms it contains (e.g. Gignoux et al., 2011; Gaucherel, 2014).

While there are a number of current models that account for abiotic

processes, most if not all of them significantly simplify these

processes: i) abiotic considerations are reduced to a single

limiting-nutrient variable or a synthetic single parameter

“resource”; ii) natural disturbances are rarely included in the

system definition or considered as parameters only (e.g.

D’Odorico et al., 2005; Van Nes et al., 2014; Touboul et al., 2018);

iii) dynamics depends on the systems perturbation, considered as

either a change in the abiotic resource or in the biotic variable

resulting from exogenous factor or from intrinsic stochasticity (e.g.

Beisner et al., 2003; Bel et al., 2012).

Many authors have used the so-called ball-in-cup analogy

(Figure 1A) to illustrate the system (i.e. the ball) and its

dynamics, represented as the movement of the ball along the cup-

shaped landscape (e.g. Scheffer et al., 2001; Beisner et al., 2003;
Frontiers in Ecology and Evolution 04106
Nolting and Abbott, 2016). Regarding ecological systems, Beisner

et al. (2003) showed that the concept of alternative stable states was

initially apprehended by two different schools (the “community

perspective” and the “ecosystem perspective”, respectively), which

can be integrated into a common conceptual framework. From the

community perspective, the environment, defined by the state

variables and the associated potential and landscape stability, is

fixed. Conversely, from the ecosystem perspective, the topology of

the environment is not fixed because it depends on the parameter

values that may change and, in turn, impact state variables. There is

therefore an interest in developing tools that allow integrative

understanding and visualization of system dynamics. Moreover,

for an applied perspective of managing ecosystems, Beisner et al.

(2003) also suggest that we should seek to define the boundaries of

desirable stable states, and understand the processes that bring

resilience nearby these desirable states.

The present work aims to propose a new concept of

understanding ecosystem dynamics, the Drape, designed to

circumvent some of the aforementioned limitations. It is designed

to explore new and likely more informative avenues to

understanding ecosystem dynamics. We propose a novel

approach, one that is not based on differential equations, to

elucidate ecosystem dynamics, across vast spatial scales able to

encompass several ecosystems and biomes. Rather than employing

more traditional approaches that rely heavily upon differential

equations, we use a mechanistic model (mainly deterministic but

with some stochasticity) to extract the main state variables (abiotic,

biotic, and disturbance, respectively), from which we build two

multidimensional representations of the system (the 3D-domain

and the 2D-Drape, respectively). We then perform a textural

analysis of the Drape, which characterizes its “topography”

(variations) in terms of number of stable, unstable and transient

states, and their locations on the Drape. Below, we present the

Drape theoretical framework, and then illustrate it with African

ecosystems and biomes to test several ecological hypotheses before

discussing its benefits and limitations.
2 Materials and methods

2.1 Theoretical framework

2.1.1 General characteristics
Following Tansley’s (1935) original definition of the ecosystem

as a systems of biotic and abiotic parts and explicitly including

disturbances (see Drukenbrod et al. (2019) for a recent review), a

minimal ecosystem representation must be multi-dimensional

(Figure 1B), with at least three dimensions based on the three

most important abiotic, biotic components and disturbance factors

(variables), respectively (Gignoux et al., 2011; Gaucherel, 2014).

These are the properties of the “conceptual space” used here to

capture ecosystem dynamics.

For terrestrial ecosystems, climate conditions are often

considered as the main abiotic factor at the continental scale and

the vegetation as the main biotic factor. Fire, grazing, or pest

outbreak are example of a dominant disturbance (e.g. Pickett and
frontiersin.org
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White, 1985; Johnson, 1992; Scholes and Walker, 1993; Sankaran

et al., 2005; Staver et al., 2011b). These three minimal factors may

provide the synthetic state variables of the system (Figure 1B). For

example: 1) annual rainfall, rainfall seasonality or growth season

temperature could serve as proxies for the abiotic factor of climate;

2) biomass, leaf area index or tree cover could serve as proxies for

the biotic factor; 3) and frequency or return time interval for the

main disturbance factor. This representation considers disturbance

to be an endogenous variable, unlike the consideration of

disturbance as an exogenous factor if considered as the system

perturbation, or simply as a limiting parameter in many studies (e.g.

Carpenter et al., 2001; Scheffer et al., 2001; Touboul et al., 2018).

All three variables define the ecosystem. This second property is

compulsory in this conceptual space: state variables are fully

“symmetric” (i.e. interchangeable). The ecosystem is not (purely)

biotic, neither is it abiotic. Consequently, an (eco)system could be

represented by any of the six permutations of a 3D-space,

considering how each state variable may act on the other two

through various feedbacks (Scheffer et al., 2005, 2012; Hirota et al.,

2011). While vegetation response is usually analyzed as a function

of the climate and of the main disturbance, it may be relevant for

example to analyze the ecosystem disturbance as a function of the

two other factors, as performed in several paleoecological studies

(e.g. Hély et al., 2010, Hély et al., 2020; Ali et al., 2012; Aleman

et al., 2013).

To illustrate this new approach, we selected Africa as example

because this continent encompasses a wide range of environmental

conditions and ecosystem types that are all driven by rainfall as the

main abiotic variable and most of them as well by fire as the main

natural disturbance. We first focused on testing ecological

hypotheses related to the forest and savanna states and transitions

(see section 2.1) as this is still an ongoing debated topic due to

methods used (e.g., Hirota et al., 2011; Ratajczak and Nippert, 2012;

Hanan et al., 2014, Hanan et al., 2015; Staver and Hansen, 2015;

Aleman et al., 2020). Therefore, the 3D-space for the African

terrestrial tropics has been defined using annual rainfall as the

climate axis, aboveground biomass as the vegetation axis, and fire

frequency (number of fires per year over a fixed interval, e.g. 500

years) as the disturbance axis (Figure 2A). Fire is indeed a major

disturbance in these ecosystems (e.g. Scholes and Walker, 1993;

Bond et al., 2005; Staver et al., 2011a). Tropical fires currently

shifting from natural to human-induced fires could be included to

produce a four-dimensional space with a fourth, human-related

state variable (Cincotta et al., 2000), if so desired. Numerous studies

indicate for instance that tropical forests and savannas are two

dominant states that can coexist under the same environmental

conditions (e.g. Sankaran et al., 2005; Staver et al., 2011b; Favier

et al., 2012). Alternations from one state to the other presumably

reflect changes within the environment. Therefore, a third rule in

building our example conceptual space is to consider a spatial extent

large enough to encompass broad changes within biomes (different

savanna ecosystems based on tree cover changes or grass

composition changes (e.g. Ringrose et al., 1998; Scholes et al.,

2002)), and between biomes (i.e. regime shifts and/or alternation

between savannas and forests). Therefore, thanks to this new

approach, we were also able to characterize all other ecosystems
Frontiers in Ecology and Evolution 05107
(from desert to tropical rainforests) and their states on the Drape

based on their location and their neighborhood heterogeneity.

Instead of a purely statistical analyses based on observations

(e.g. Hirota et al., 2011; Staver et al., 2011a; Scheffer et al., 2012), the

fourth rule is to impose the use of state variables that result from

process-explicit models. As in many other ecological studies (e.g.

Prentice and Webb III, 1998; Sitch et al., 2008; McMahon et al.,

2011), we chose to work with the Lund-Potsdam-Jena General

Ecosystem Simulator model (hereafter LPJ-GUESS model, Smith

et al., 2001; Hély et al., 2006; Hickler et al., 2012; Chaste et al., 2018),

a Dynamic Global Vegetation Model (DGVM, see Supplementary

information S1.1) to build the conceptual space of African

terrestrial ecosystems.
2.1.2 Building the domain
Once the state variables of the studied domain are identified,

their values can be extracted from specific variables that may have

been serving as input in the DGVM or have been simulated by it

(Hély et al., 2006; Gaucherel et al., 2008) to build the axes of the 3D

conceptual space (Figure 2). In this 3D-space, projection of all

geographical continental locations (i.e. pixels) through their

simulated values at the end of a DGVM run generates the

equilibria state hereafter called the domain (Figure 2). See

Supplementary information S1.1 and Supplementary Figure S1 for

details about how equilibrium state is reached for each geographical

location. In general, many DGVM-based studies produce

satisfactory assessments of present and past ecosystem

component dynamics when compared with independent

reconstructions (e.g. Hély et al., 2009; Prentice et al., 2011; Chaste

et al., 2018). One can therefore use a DGVM with modern, past, or

even future environmental conditions experienced for a given

geographic region, such as Africa here, with 20th century climate

condition in the current example. The built 3D domain represents a

prospective domain that contains all geographic locations for which

simulated data can be compared with observed data from present or

with reconstructed data from past for exploration and/or

validation purposes.

Within the prospective domain, the realized domain is the set of

points or cloud that represents the system states (Figures 2A, B) for

a given past, present or future set of conditions. The system state is

represented at any time by the values of the three state variables. In

our example, the cloud is more or less extended on the X–Y plan

(e.g. climate-fire), and varies in thickness on the Z-axis (vegetation)

mainly according to the Z-values reported by the points (geographic

locations) that fit within such domain region.

2.1.3 From the domain to the Drape
For the sake of clarity, and assuming that system states exhibit a

reduced range in Z, we replace this point-cloud by a response

surface called the Drape. To develop the Drape, a statistical moment

(e.g. mean or median) of the Z variable is first computed for each

narrow X×Y bin (Figure 2C). Several bin sizes were tested to

identify the best trade-off between accuracy and smoothness of

the Drape, in particular considering areas with only few cloud

points (Wiens, 1989). We checked that any bin size led to the same
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qualitative features (ridges, valleys…) on the Drape. The smoothed

(hyper-)surface (Figure 3A) of the Drape results from the data

autocorrelation only. Beyond the Drape construction procedure

explained here, one could use the full range of values within bins to

test the three proposed hypotheses described in the section below.
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The Drape is not a potential function, but it is associated with all

possible types rather than with any specific catastrophe type. The

computation of the Z-variable variance allows the capture of the

inherent variability of the third ecosystem state-variable (the

vegetation in Figure 3B) relative to the other two. Compared to
B

C

A

FIGURE 2

Representations of the tropical domain (cloud of points) within the ecosystem 3D-space. This space is defined by annual Rainfall (in mm.year−1),
vegetation carbon Biomass (in kg C.m−2), and Fire (i.e. number of significant fires over 500 years, see Supplementary Figure 1B for computation
details), each one representing the most important abiotic, biotic, and disturbance state variables of the system, respectively. In this example, each
cloud point represents a continental geographical location in Africa for which the LPJ-GUESS Model (Smith et al., 2001; Sitch et al., 2008) has been
previously run (Hély et al., 2006; Gaucherel et al., 2008) using modern climate from the CRU time-series datasets (New et al., 2002). Each point
represents the equilibrium state reached by the DGVM at that location, such equilibrium being defined by values of the state variables (see
Supplementary Figure S1). (A, B) illustrate the property of axis symmetry, while (C) reports the domain view as in (A) but based on averaged Biomass
values in bins along Rainfall and Fire axes, which is an intermediate stage between the domain (point cloud) and the Drape.
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B

C

A

FIGURE 3

3D-representation of the tropical domain through the system Drape based on rasterized bin average biomass values (A) and its thickness (i.e. mean
± 1s) (B). Axes units relate to annual Rainfall (in mm.year−1), vegetation carbon Biomass (in kg C.m−2), and Fire frequency (i.e. number of fires year−1).
A hypothetical trajectory has been superimposed on the Drape for illustrative purpose (C). This trajectory could represent a geographical site and its
lacustrine paleoecological reconstruction over the last 9000 years for climate (e.g., based on diatoms, chironomids, speleothems…), fires (e.g. micro-
carbons), and vegetation (e.g., pollen, phytoliths, biomarkers…). We could project the chronological states obtained on the Drape, which would
constitute the trajectory of this site and we could therefore follow this trajectory to highlight periods when the site has been in a stable state
(homogeneous region see Figure 4) or inversely when its dynamics has experienced a major modification symbolized by the passage of the
trajectory in a gradient or ridge zone (see Figure 4 for stable and unstable state detection).
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the potential landscape from previous studies (Hirota et al., 2011;

Scheffer et al., 2012), the neighborhood of each geographical

location is lost in our proposed domain and Drape, other than

that a location’s neighborhood is partially preserved in the spatial

autocorrelation of the soil type (Supplementary Figure S2) and

climate input data in the DGVM.
2.2 Analysis of the Drape: towards
system states, resilience and
trajectory understanding

Through the analysis of its heterogeneity, the Drape concept

provides rich insights about a particular ecosystem or a biome shift.

Using multiscale textural analysis (e.g. Gaucherel, 2007) on a 2D

projection of the Drape (Figure 4A, similar to Figure 3A) produces a

Drape heterogeneity map (Figure 4B) that can help detect different

behaviors of the system. The heterogeneity index used is the

evenness diversity index (see Supplementary information S1.2 for

details of the computation). The higher the evenness diversity, the

more heterogeneous the neighbor pixels on the map.

Heterogeneous areas are therefore defined as having a high degree

of evenness diversity amongst neighboring pixels (Figure 4B)

highlighting statistically significant differences in the averaged

biomass between neighboring pixels on the Drape (Figure 4A).

Homogeneous areas (plateaus and valleys where neighboring pixels

have low relative evenness diversity values) imply stable states and

potential basins of attraction to explore through additional tests.

This heterogeneity analysis may seem to be in the same spirit as

methods applied for the case of potential landscapes. An increased

variance in Z associated with a small change in X or Y, measured as

Drape heterogeneity, has utility to distinguish among stable

(homogeneous zones), transient (gradients) and unstable (narrow

ridges or peaks) behaviors (Briske et al., 2010). Such state

characteristics result from the Drape’s topography, and not from

the dataset value distribution as in the potential landscape concept

(Hirota et al., 2011; Scheffer et al., 2012).
2.3 Use of the Drape to test
ecological hypotheses

Beyond the presentation of the Drape, the objectives of this

study were threefold. The first objective was to test whether the

600–1000 mm.yr−1 rainfall range, first proposed to discriminate

closed-canopy forests from savannas (Sankaran et al., 2005), could

be characterized on the Drape as a specific area such as a ridge or

gradient). The second objective was to see whether several savanna

types could be highlighted on the Drape due to climate–fire

interactions (Hirota et al., 2011; Staver et al., 2011a; Favier et al.,

2012) and whether these different types of savanna qualified as

different stable states. Finally, the third objective was to test whether

savanna and forest stable states would be found close enough to

each other on the Drape to be considered as likely, adjacent

alternative system states.
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We used the dataset from Ruesh and Gibbs (2008) and their

reporting of observed ranges of biomass based on climatic zones

(IPCC, 2006), Global Ecofloristic Zones (FAO, 2001), and the

Global Land Cover 2000 ecosystem classification (Bartholomé and

Belward, 2005) to compare with the Drape value ranges.
3 Results and discussion

3.1 From the study-case: African
ecosystems and states, and insights from
the Drape for ecological hypotheses

The African Drape analysis using the Multiscale Heterogeneity

Map method and the computation of the evenness diversity index

revealed three homogeneous areas (namely S1, S2, S3 in Figure 4B)

that we interpret as stable states, and two heterogeneous areas (the

G1 gradient area interpreted as a transient state and the R1 ridge

area interpreted as an unstable state in Figure 4B). Based on their

African geographic locations (Supplementary Figure S3), we

compared the characteristics of each revealed Drape area with

those from the compiled observations (Ruesh and Gibbs, 2008)

for precipitation, biomass, and ecosystem types (Table 1).

The S1 stable state (Figure 4B) represents the most arid regions

with the lowest biomass range (Figure 4A; Table 1). Such

characteristics and their associated geographic locations extracted

from the LPJ-GUESS simulation (Supplementary Figure S3A), are

in agreement with ecosystems from sparse grasslands to shrub-

dominated savannas. The S1 biomass range likely matches the lower

third of the observed range, because the S1 woody components

represent less than 30% (not shown) of the potential C biomass

simulated. S1 represents a stable state (a valley) on the Drape

constituted by arid and semi-arid grassy biomes. They range from

desert to tropical steppes to savannas with low woody cover.

The S2 stable state (Figure 4B) represents a plateau composed of

regions with 1300–1800 mm annual rainfall, intermediate fire

frequencies, and C biomass that is at least ten times heavier than

that found in S1. These characteristics and their geographic

locations (Supplementary Figure S3B) match perfectly with the

tropical moist deciduous forest and rainforest (Table 1).

The S3 stable state (Figure 4B) having biomass range similar to

that of S2 and with more than 2300 mm annual rainfall, is a plateau

typified by rainforests (Supplementary Figure S3C). Simulated and

observed characteristics of these locations conform with the African

tropical wet climate regions (Table 1). While simulated biomasses

are slightly lower than the mean observed, their range (Table 1) is in

agreement with the full range (8.5–33 kgC.m−2) of observed

rainforest biomasses. Note that vegetation models predict

potential vegetation, so that slightly higher biomass than observed

biomass is expected – even from reserves such as national parks in

which low intensity management activities still exist.

Among the heterogeneous areas revealed by the multiscale map,

R1 represents the most heterogeneous area even after discarding

outlier pixels (Figure 4B). We describe the R1 area as a ridge because

over such small extent area on the multiscale map of the Drape,
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characterized by a narrow range of quasi inexistent fires and a 700–

1200 mm.yr−1 rainfall range, the simulated biomass range is the

widest recorded (Figure 4A; Table 1, and Supplementary Figure

S3D). This may be partly explained by the rainfall range that crosses
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the 1000 mm.yr−1 threshold discriminating tropical dry from

tropical moist climates (Table 1). Consequently, these geographic

areas include several ecosystems from sparse grasslands to tropical

moist deciduous forests and rainforests whose observed biomasses,
B

A

FIGURE 4

Analysis of the African Drape. (A) presents the Drape projection in the Rainfall–Fire plane. Note the position of the first bin (no fire, no rainfall) in the
upper left corner compared to its position in the lower forward corner on Figure 3A, 3C. Here panel (A) also reports the projected stable and
unstable states found with the textural analysis and highlighted in (B). Grey pixel areas could correspond with other tropical continental conditions
(Southern America, Indonesia, Australia) not found currently in Africa, or with past conditions from which there is no present-day analogue
condition. (B) shows the spatially explicit heterogeneity index (i.e., evenness diversity) resulting from the textural analysis based on the MHM method
(see Supplementary information S1.2 and Gaucherel (2007)). The higher the index, the more heterogeneous the neighboring pixels on the multiscale
map. Three stable (homogeneous – low evenness diversity with dark blue colors) and two unstable (heterogeneous – from light blue-yellow to red
colors) state regions are highlighted. Grey areas on both panels represent non-existing system states based on the modern condition simulation.
Note that red pixels, located on the lower and right edges of the plan in (B) result from edge effect computations due to poorly filled pixels and
empty neighbouring pixels. We do not consider them as real heterogeneous pixels.
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ranging from 0.2 to 15.2 kgC.m−2, agree well with the wide range

extracted from the Drape (Table 1). The last large heterogeneous

area is the G1 area, squeezed between S1 and S2 areas on the

multiscale map (Figure 4B). G1 is a gradient representative of

regions with a slightly wider rainfall range (500–1300 mm.yr−1)

than that of R1, a wide range of fire occurrences, and as a

consequence with a quite wide range of biomasses (Figure 4A;

Table 1) but narrower than that of R1. Simulated characteristics and

locations of G1 conditions (Table 1; Supplementary Figure S3E)

include regions that are similar to those of R1 and mountain

regions. Actually, the R1 ridge could also be considered as the

most extreme conditions of the G1 gradient (see Supplementary

Figure S3D), where heterogeneity is so high that the system switches

from transient states along G1 to unstable states in the R1 area. It is

worth noting that African regions composing the G1 transient

states (alone or even associated with the R1 regions) are very similar

to the regions classified as the projected worst-case biome changes

expected in Africa over the 2071–2100 period as compared to the

1961–1990 reference (Niang et al., 2014). Finally, one could also see

on the multiscale map a second gradient (dashed line on Figure 4),

squeezed between S2 and S3 areas, but narrower and weaker

than G1.

Based on these results, we confirm the first hypothesis since the

600–1000 mm.yr−1 rainfall range actually belongs to the G1 gradient

that we consider as a transient state area, and to the R1 ridge that we

consider as an unstable state occurring in the quasi absence of fires.

However, we must reject the second and the third hypotheses because

there is no stable state (homogeneous area) within this 600–
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1000 mm.yr−1 gradient that could be representative of any savanna

stable state (second hypothesis), and in turns, the savanna-forest

dynamics cannot be considered as alternative stable states.

Conversely, we showed that S2 and S3 stable state areas represent

different forest stable states and that part of the S1 stable state pixels

may represent savannas with low woody cover (less than 30% of the

very light biomass (<1.5 kgC.m−2)). However, these stable savannas

grow with less than 500 mm.yr−1 in rainfall, which is at least 2.6 and

4.6 times drier than annual rainfall for S2 and S3, respectively.

Several paleoecological studies have shown that during the

Holocene African Humid Period (de Menocal et al., 2000) and

the so-called “Green Sahara” (Chikira et al., 2006; Watrin et al.,

2009), several paleolakes were present in the current Saharan and

Sahelian regions (Lézine et al., 2011). This was a response to

intensified monsoonal rainfall that penetrated inland more than

10° northwards. The rainbelt core migrated up to 5° northwards

during the humidity optimum (Texier et al., 2000). Such moister

conditions over the 15–20°N latitudinal region, as compared to its

present-day aridity, created good environmental conditions for the

Guinean-Congolian pollen taxa (Hély et al., 2014) that are

exclusively representative of modern tropical rainforest. This

suggests that some geographic locations have therefore

experienced ecosystem or even biome shifts over the last

millennia that may have been similar to those from the S1 to S2

and/or to S3 stable states. Further research is needed to assess the

speed of these past changes, to plot geographic-site trajectory on the

Drape (as conceptually illustrated on Figure 3C), and to apprehend

paths and likely direction shifts.
TABLE 1 Characteristics of stable and unstable African state regions revealed from the Drape textural analysis (Figure 4).

Drape state
and
ratio

Drape
annual
rainfall
(mm)

Drape
annual
fire fre-
quency
(#fires)

Drape
biomass
(kg C.m−2)

Observed
biomass
(kgC.m−2)

Climate zones
and

annual rainfall
(mm)

GEZ GLC2000 ecosystems
(class numbers)

S1
162/4658

<500 0–0.10 0.12–1.12 0.1–4.6 Trop. Dry
Warm Temp. Dry

<1000

TBWh
TBSh
TAWb

Bare areas (19), Sparse grassland and
grassland mosaics (14 & 18), Grasslands
(13), and Shrub covers (11, 12 & 15)

S2
63/441

1300–1800 0.04–0.07 14.8–17.8 15.2 Trop. Moist
1000–2000

TAWa
Tar

Tropical broadleaf (1–3) and mixed forests
(6–8)

S3
36/19

>2300 0.04–0.06 12.8–16.6 20.0 Trop. Wet
>2000

Tar Tropical broadleaf forests (1–3) and mixed
forests (6–8)

R1
32/77

700–1200 0–0.02 2.1–22.9 0.2–15.2 Trop. Dry
Trop. Moist

Warm Temp. Moist
<2000

TBSh
TAWb
TAWa
Tar

Sparse grassland and grassland mosaics (14
& 18), Grasslands (13), and Shrub covers
(11, 12 & 15), Tropical broadleaf forests (1–
3) and mixed forests (6–8)

G1
180/3008

500–1300 0.02–0.10 0.8–14.5 0.2–15.2 Trop. Dry
Warm Temp. Dry
Warm Temp. Moist
Trop. Montane
Trop. Moist

<2000

TAWb
TAWa
Tar
TM

Sparse grassland and grassland mosaics (14
& 18), Grasslands (13), Shrub covers (11, 12
& 15), Tropical broadleaf forests (1–3) and
mixed forests (6–8)
The Global Ecofloristic Zones are: Tropical desert (TBWh), Tropical Shrublands (TBSh), Tropical Moist deciduous forest (TAWa), Tropical dry forest (TAWb), Tropical rainforest (Tar),
Tropical mountain systems (TM).
For each given each stable (S1–S3) and unstable (R1 and G1) state, based on geographical African locations composing it (see SI-3) simulated values from the LPJ-GUESS model are compared to
continental compiled observations from Ruesh and Gibbs (2008). We report the Climatic zones (IPCC, 2006), Global Ecofloristic Zones (FAO, 2001), and Global Land Cover 2000 ecosystem
classification from Bartholomé and Belward (2005). The ratio in the first column is the number of pixels defining such state on the Drape over the number of pixels over Africa representing it. The
overall number of pixels on the Drape and in Africa are 843 and 9395, respectively.
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The multiscale map analysis suggests that most savannas (i.e.

GLC2000 forest mosaic and shrub cover classes with 5.0–10.0

kgC.m−2 biomass range (Ruesh and Gibbs, 2008)) lie on the G1

gradient area and are therefore transient states but without

delimited stable states. These savannas could shift to R1 unstable

states if only fire (or a similar disturbance such as grazing (Bond

et al., 2005) would almost disappear, while they could shift to S2

(S1) stable states if only rainfall would increase (decrease), and only

to S1 if both rainfall would decrease and fire would change. Past

savanna dynamics applied on the Drape could provide insights on

past realized-trajectories and speed. The overall Drape information

could be useful for savanna-ecosystem sustainable management, for

instance to avoid bush-encroachment (Ringrose et al., 1998) that

one could consider as a shift to R1 conditions.

Once valleys (S1) and plateaus (S2 and S3) are identified on the

Drape, their location, width and depth could quantify the

importance of these basins of attraction, such characterization

corresponding well with the system resilience as defined by

Walker et al. (2004) and discussed by Beisner et al. (2003) for

ecosystem management perspectives. Similarly, ridges could

represent the boundaries of contiguous basins of attraction. As

previously noted, ridges could be interpreted as bifurcation states

(i.e. tipping points) from which small changes in the state variables

would induce an ecosystem shift or even a biome shift. From the

location (state) of the system on these Drape areas, one could also

estimate objectively the latitude (i.e. width) and the resistance (i.e.

depth) of the basin of current ecosystems, as well as its

precariousness (i.e. its distance to the ridge, which is the

boundary of the basin of attraction) and its likely resilience as

suggested by Beisner et al. (2003) and Walker et al. (2004).

Observations from current conditions, from past reconstructions

or from future projections based on different socio-economic and

climatic scenarios can provide the realized states found in different

areas of the Drape. Analysis of an ecosystem at a given geographical

location and its trajectory on the Drape could provide expected

temporal changes of the state variables. One could therefore analyze

and validate the Drape variations (i.e. its topography) from

embedded system trajectories reconstructed from observations and/

or paleoecological studies as conceptually illustrated in Figure 3C.
3.2 Benefits of the Drape concept

Understanding ecosystem dynamics as a scientific objective and

predicting future responses as a more practical objective are difficult

tasks. We propose departing from the current methods based on

differential equation systems and/or statistical approaches, as well as

from simplifications of the abiotic and disturbance components of

ecosystems. Because our method only relies on observed data for

validation, one avoids misinterpretation. Debates concerning possible

extrapolation in cases of slow dynamics (as suggested above) should

move toward synthesis (e.g. Hirota et al., 2011; Ratajczak and

Nippert, 2012). The proposed Drape concept is an improvement in

ecosystem understanding for the following seven reasons:
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i) The Drape presents in a single multidimensional space all

ecosystems governed by the same first-order state variables and

allows to position and characterize the different states of these

ecosystems in order to later study past, present, or future

trajectories. (Figure 2 and Supplementary information S1.1). This

process-based approach will allow including ecosystem responses

over long periods of time and through several spatial (from local to

continental) scales. This satisfies the need to retrieve slow but

integrative changes during regime shifts that may appear

incremental at human time scales (Ratajczak and Nippert, 2012;

Hughes et al., 2013b). For example, the response to global warming

by terrestrial ecosystems at the end of the last ice age (Minckley

et al., 2012) or at the end of the African Humid Period (Lézine et al.,

2011; Hély et al., 2014) took millennia, long after the ice sheets had

melted or after the African monsoon intensification had terminated.

ii) The Drape, built from the outputs of the process-based

model, includes disturbances as a state variable as important as

vegetation or precipitation and thus allows to better characterize

each ecosystem, its states, and its functional neighbors. Indeed,

disturbances were previously considered as parameters or external

forces in the representation of system dynamics and manifested an

effect on the ecosystem through the biotic component only (e.g.

Staver et al., 2011b; Touboul et al., 2018). By definition, ecosystems

are simultaneously biotic and abiotic, with several tightly

interacting components (e.g. flora, fauna, soils, atmosphere and

humans). There is no conceptual reason to focus on a specific

component over the others (Gignoux et al., 2011; Schwartz and Jax,

2011; Gaucherel, 2014). This matches the observation that

ecosystems are simultaneously conditioned by the laws of

thermodynamics and the by natural selection.

iii) The state variables used to build the space and the Drape are

symmetric in the system functioning. Each axis has the same weight

and equal role in constructing the domain (Figure 2). With this

property in mind, the 3D space is the smallest multidimensional

space aiming at synthetizing any ecosystem state. More complicated

domains can take into account additional extra state variables (e.g.

human activities or fauna), if required (Cincotta et al., 2000). The

symmetry between state variables also allows the study of the system

and its states from different points of view (Figures 2A, B), while

maintaining the mechanistic relationships among the state variables.

iv) The Drape itself provides an instantaneous and convenient

visualization of the different states encountered, as well as their

characterization in terms of associated state variable values. This is

interpreted in the example case as an averaged and rasterized (grid-

based) surface (Figures 3, 4) of the realized domain (Figure 2).

v) The textural analysis explores the Drape variations to identify

basins of attraction, characteristic tipping points and their

relationships in terms of distance (Figure 4; Appendix 2). Using a

statistical moment such as the mean to build the Drape surface

prevents from finding “folded backward” regions previously

considered as tipping-points or induced catastrophic shifts

(Scheffer et al., 2001). However, tipping-points on the Drape are

materialized as ridges (i.e. most heterogeneous areas, Figure 3A).

Once identified and delineated, the analysis informs the possible

system behavior further away. Methods other than the multiscale
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textural analysis shown here may be used to analyze the Drape, such

as a spectral analysis (e.g. Keitt, 2000).

vi) The Drape concept is generic. It allows featuring all states

and associated state variables values extracted from a process-based

model. The Drape concept could therefore be used to study other

terrestrial, marine, or fresh water ecosystems as long as the chosen

state variables are the best representative ones and that values are

extracted from (state-of-the-art) process-based model. The Drape

can be used for different periods than nowadays, which may point

to states being located in different areas of the Drape as compared to

the present-day state.

vii) By reporting onto the Drape the trajectory a given

geographical location would record through time (observed from

time-series such as remote-sensing datasets, simulated from

process-based models, or reconstructed from paleoecological

datasets, see Figure 3C) we would visualize and analyze its

dynamics and clearly characterize the states it went through.

Despite its resemblance with real topography or a Waddington’s

landscape (Goldberg et al., 2007), it is worth emphasizing that the

third axis (Z) of the domain does not carry the meaning of a vertical

and oriented direction such as the one constrained by gravity (e.g.

Scheffer et al., 2001; Beisner et al., 2003). On this Drape, a ball

representing the ecosystem state at a specific location and time

could easily move up to higher Z values due to any ecological

process. As such, the Drape surface appears much more similar to a

chaotic manifold (further discussed below) than the stability

landscape of the potential mentioned in previous studies. The

Drape surface also seems to combine the ecosystem and the

community perspectives from Beisner et al. (2003). Indeed, no

process directly acts on this ball (i.e. the ball is not pushed by an

external force), but rather intrinsic and stochastic processes modify

one or several state variable values which, in turn, “push” the system

toward another area of the Drape (Abarbanel, 1996; Strogatz, 2001).

Moreover, basins of attraction are not systematically the lowest

Drape areas.

In practice, a different domain (and its associated Drape) should

be recomputed whenever a state variable should be replaced by

another more important or representative variable. This allows

different neighboring ecosystems (or even biomes) to occur

within the same domain, and approximated by a common Drape.

It seems reasonable to find tropical forest and savanna biomes in

the same domain, but boreal biomes (e.g. coniferous forests

and tundra) would be in another distinct domain, as they would

require different ecosystem state variables (e.g. temperature instead

of precipitation). This should also allow identifying past ecosystem

states for which there are no modern analogues (e.g. the “green

Sahara” during the mid-Holocene) in specific areas of the Drape

(e.g. Figure 4B, lower right region, which is currently empty). Every

biome observed during a given period will likely not occupy all of its

potential Drape area. So, the Drape concept does not fully solve the

problem of defining the ecosystem or biome boundaries (Gignoux

et al., 2011; Gaucherel, 2014). The limits, here defined by the

extreme values of each state variable, are physically constrained,

while a priori the Drape extent is not. Such boundaries would

simultaneously depend on the maximum system variability and by

the addressed question.
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The Drape concept applied to ecosystems can play an important

role in the tipping point debate (Ratajczak and Nippert, 2012; Brook

et al., 2013; Gaucherel and Moron, 2015). With tipping points

defined as sharp changes in ecosystem dynamics, such changes

would fit with all sharp gradients (clines) and sharp peaks observed

in the Drape variations. Indeed, to shift from a relatively smooth or

flat (i.e. homogeneous) area of the Drape to another one by a sharp

gradient is a clue of abrupt variations in states (Lenton et al., 2008;

Kriegler et al., 2009). Such tipping points could easily be identified

and quantified on the Drape based on their sharpness (relatively to

other zones) and from their direction.

In our African example, the G1 gradient appeared approximately

twice as heterogeneous as its neighboring stable states (S1 and S2)

assimilated to steppes-grassy savannas and forest types, respectively,

based on state variable values (Figure 4A). We stress that such

transitions are not necessary “state transitions” such as those

observed in chaotic systems (Abarbanel, 1996; Ghil et al., 2002),

and they would definitely need a detailed and rigorous mathematical

analysis to be demonstrated as attempted in some recent studies

(Accatino et al., 2010; Zaliapin and Ghil, 2010).
3.3 Limitations of the domain
and perspectives

The limitations of the Drape concept presented here are of two

sorts. First, there are methodological limitations, which hopefully

can be improved upon and progressively removed. For instance, the

variability arising from similar geographic areas (i.e. close points in

the domain) probably contributes to the volume or “thickness” of

the realized domain (Figure 3B). This variability may be retrieved by

the calculation and representation of another statistical moment

(e.g. variance) of the domain, and be analyzed in a similar manner

than the averaged Drape (Figure 4). Moreover, using different

moments or statistics such as the mode would allow

representation of bimodal distributions in each (X, Y) interval bin

if they exist, and thus to the plotting of more complicated (e.g.

folded) Drape variations. Such complicated responses have been

studied in detail in the catastrophe theory (e.g. the cusp geometry

(Thom, 1972)), and ecological studies would gain in applying such a

rigorous analysis to ecosystems (Gaucherel et al., 2020).

For clarity, we did not explore the specific role of human beings

as one of the ecosystem components. As with other unmentioned

ecosystem components (e.g. soils), humans could partly be involved

as part of one of the already included components (e.g. climate and/

or fires), or as an additional component. The resultant four-

dimensional space and the more complicated 3D-Drape (called a

hypersurface) could be treated without technical difficulties. This is

obviously useful for applied questions related to ecosystem

management and environmental policies, and it would be relevant

to explore this possibility in human-perturbed systems (Cincotta

et al., 2000; Gaucherel et al., 2012).

The second category of limitations of the Drape concept

involves the effort needed ultimately to represent a more

functional concept such as ecosystem chaos. The Drape concept
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Hély et al. 10.3389/fevo.2023.1108914
carries on the ecosystem trajectory that follows the Drape response

surface from the spatial and temporal autocorrelations of system

components (Figure 3C). With the exception of ridge areas and

other possible singularities, each ecosystem state globally shows a

high correlation with the next (and nearby) state (Figure 4), due to

the processes involved and function of model equations (e.g.

Cramer et al., 1999; Smith et al., 2001; Sitch et al., 2008), as well

as due to the spatial autocorrelation in the abiotic state variables.

It would be convenient and parsimonious to build the Drape with

the system trajectories themselves, which is the approach that

provides the dynamical system theory and chaotic system

representations in previous studies (Lorenz, 1963; Takens, 1981).

To write and solve the equations for a dynamical system would

directly lead to a trajectory in the phase-space. This approach

assumes that ecosystems are dynamical and possibly chaotic, i.e.

fully deterministic, ergodic and sensitive to small variations in initial

conditions (Lorenz, 1963; Strogatz, 2001). To our knowledge, this has

never been demonstrated for an ecosystem as a whole, although it is

documented for some components such as prey–predator subsystems

(May, 1977), vegetation dynamics (Solé and Bascompte, 2006) or

climate dynamics (e.g. Ghil et al., 2002). However, a focus on purely

biotic (or abiotic) components omits the necessary symmetry

between biotic, abiotic and disturbance components (e.g. Gaucherel

et al., 2020). This is the spirit of the present study.
4 Conclusion

Wepropose and illustrate a new and potentially powerful concept

to capture ecosystem dynamics and the related complexity. With a

Drape structure embedded into a multidimensional space made up

with biotic, abiotic and disturbance state variables, the representation

provides a simplification of ecosystem dynamics into a smoothed,

quantitative and intuitive representation. It is our hope that the Drape

concept and its associated properties, which are borrowed from

dynamic system theory and catastrophe theory, will facilitate

understanding, visualization and prediction of ecosystem dynamics.

The Drape concept is a next step in the direction of analytically

demonstrating the complex and possibly chaotic behaviors

commonly assumed for ecosystems. It needs to be tested and

validated based on further observations and simulations. We fully

expect that it will prove useful for further exploration of ecosystem

functioning and tipping-point related issues.
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Hély, C., Braconnot, P., Watrin, J., and Zheng, W. (2009). Climate and vegetation :
simulating the African humid period. Comptes Rendus Géoscience 341, 671–688. doi:
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Recent theoretical work has provided major new insights into the ways that

species interactions in food webs are organized in ways that permit the

coexistence of significant numbers of species. But, we seem to have forgotten

about trees! Not the phylogenetic ones that are increasingly important for

dissecting the evolutionary structure of food webs, but the trees, shrubs and

grasses that are the basal species in all terrestrial ecosystems. Many of the food

webs available for analysis over the last 30 years were based on freshwater or

marine systems where algae were the main plants. Trees are very different from

algae; they can live for centuries, while annually producing leaves, fruits and

seeds that provide nutrients for a diversity of species on higher trophic levels. In

sharp contrast to algae, they are only partly consumed by herbivores and usually

compensate or recover from herbivory. Most of the biomass in terrestrial systems

is in the plants, this again contrasts with aquatic systems, where most of the

biomass is in primary and secondary consumers. Moreover, each individual tree

supports its own food web of species that are only partially coupled to those of

surrounding trees. If we are going to apply our theoretical understanding of

food-web structure to species-rich terrestrial ecosystems in ways that are

insightful for conservation, then we need a deeper examination of the role that

higher plants play in food webs. While community ecology has developed an

increasingly detailed understanding of the ways plant communities are

organized, this seems to have evolved almost independently of the food-web

literature. In this article, we make a plea to more sharply consider higher plants in

food webs and to do this by combining recent theoretical work on food webs,

with recent empirical and theoretical work on plant communities. Ultimately, we

argue for a deeper integration of plant community ecology into studies of

food webs.
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Neutral, omniscient and basal

If you walk around Windsor Great Park in the south of

England, you are surrounded by some of Britain’s oldest

inhabitants. Not the British Royal Family, who live on the Estate,

but the oak trees that have lived in the park since Henry VIII wooed

his multiple wives here, trees that were already established when

William the Conqueror and the Normans arrived in England in

1066 (Figure 1 - Green, pers comm). Trees are some of the oldest

organisms on the planet, if we go to the western United States, we

can find Bristlecone pines that are almost 5,000 years old (Brown,

1996); not far away in Sierra are Giant Sequoia’s that are several

thousand years old and the largest organisms on the planet. In the

Namibian desert, Welwitschia plants can be thousands of years old

with same two leaves they first sprouted (Herre, 1961); Figure 1); in

Sri Lanka, Jaya Sri Maha Bodhi—a sacred fig (Ficus religiosa) and

the oldest planted tree—has stood since 288 BC (Ram, 2016).

Simply seeing trees as perches, dens, or nest sites for the

mammals and birds that live on, and in the tree, massively

underestimates the foundational role that individual trees play for

the multiple generations of species that they support. All ancient

trees, and indeed, all higher plants are host to a community of fungi,

bacteria, insects and nematodes that form a network of organisms
Frontiers in Ecology and Evolution 02119
that feeds on, or exchanges nutrients with the tree (Hardoim et al.,

2015) (Parihar et al., 2020; Hawkins et al., 2023). Most trees sustain

their own food web of diverse organisms that feed on, or in, them

(Price, 2002). Ultimately, the food webs of forests are meta-webs,

where each individual tree is a node that hosts its own sub-web of

multi-species interactions. The long life of trees and the relatively

short life of species that use them as resources, and the even shorter

lives of the fungi and bacteria that form their microbiome, makes it

unlikely that two trees in the same forest support identical food

webs. Furthermore, the mature stages of most individual trees live

longer than the careers of the researchers who study them! Indeed,

some of the trees mentioned above are older than most religions

and the evolutionary origin of conifers predates most terrestrial

vertebrates! (Farjon, 2008). Does this longevity provide an

underappreciated level of stability to terrestrial ecosystems? And

does this ineluctably constrain the persistence of terrestrial animal

and microbial communities to the survival of the trees and grasses

that contain most of the biomass in terrestrial ecosystems?

Trees are some of the most ubiquitous organisms on Earth; a

recent study estimates there are around 3.04 trillion trees on the

planet (Crowther et al., 2015), just under half of these (1.39 Trillion)

are in tropical and subtropical forests, the rest are split almost

equally between boreal (0.74T) and temperate regions (0.61T); each
A B

DC

FIGURE 1

Three long-lived trees. (A) Oak tree in Windsor Great Park (Photo by Andy Dobson). (B) Welwitschia in the Namibian desert (Photo by Jennifer
Guyton). (C) Giant Sequoia in the Mariposa Grove of Giant Sequoias, California (Photo Allegra Dobson). (D) Elephants and Zebra in Serengeti National
Park surrounded by grasses that annually regrow from deep roots to support a large diversity and biomass of ungulates (Photo Andy Dobson).
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tree contains a food web of interacting fungal, bacterial, insect and

nematode species, and acts as a discrete patch in the habitats and

territories of many bird and mammal species. Most individual

plants have a web of mycorrhizal fungi associated with them and

this may contain a significant proportion of the carbon dioxide

scrubbed from the atmosphere by the tree A recent review estimates

that as much as 30% of the carbon captured by trees from the

atmosphere is stored in these fungal mutualists (Hawkins et al.,

2023). Although individual trees can be incredibly long-lived, recent

studies of data from long-term tropical forest plots show significant

turnover in the populations of individual trees on multi-decadal

timescales (Chisholm et al., 2014). A beguiling pattern underlies

these data: variation in the population size of abundant trees tends

to be driven by environmental variation (most likely climate and

natural enemies), while variation in the abundance of rarer trees is

dominated by demographic stochasticity. Presumably the food web

associated with more abundant trees can persist as meta-

communities whose species continuously recruit into the adult

populations from the population of younger trees waiting to

develop in the understory, or as seeds in the soil seed bank. These

age-structured effects could also operate in rarer trees where higher

levels of variability in abundance may compensate for the reduced

probability of specific fungal, insect, and nematode species locating

their host.

At a macro-ecological scale, it is also intriguing to ask how these

patterns change from species-rich rainforests to species-poor boreal

forests where the biomes associated with each tree are likely less

dissimilar, than those associated with individual tropical trees.

Likewise, the food webs associated with individuals trees in closed

canopy forests may be more similar than the food webs associated

to widely spaced savanna trees. What are the dynamic and

structural consequences for food webs of switching our botanical

perspective from algae in ponds, to oaks, yews, figs, Bristlecone

pines in forests, and grasses in savannas? Recent work on forces that

determine the stability of food webs has emphasized the role of

long-lived species that create slow dynamics where changes in

abundance occur on timescales that are orders of magnitude

slower than for consumer species in the web (McCann et al.,

2005; Rooney et al., 2006; McCann, 2011). Trees canonically fill

this role in the food web dynamics of tropical, temperate and boreal

forests; perennial grasses play an analogous role in savannas. While

there is a rapid turnover and variance in the abundance of early life

stages—fruits, seeds and seedlings are produced on a regular annual

basis, or occasionally at longer time intervals in masting species.—
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The longevity of adult mature trees consistently and predictably

generates, on a time scale of decades to centuries, spatially local

resources for species on higher tropic levels that feed on fruits,

seeds, and leaves, as well as for the decomposer community that

feeds on fallen leaves and branches (Table 1). Variation in annual

levels of productivity is partially offset by interactions between

plants competing for space, nutrients, water, and sunlight

(Tilman, 1982; Tilman, 1988). While this initially creates

problems for stability from a theoretical food web perspective, as

explicit competition is destabilizing (Loreau and De Mazancourt,

2013), these problems could be surmounted if light, water and

nutrients were included as additional ‘limiting factors’ in the web,

competition between plants would then be explicitly resource based

(Allesina and Tang, 2012; Tang et al., 2014; Allesina and

Tang, 2015).
Food web models

Are there more explicit ways of dealing with the longevity of

mature plants in food web models? Could this be captured by age-

or stage-structured models that allow long-lived mature trees to

compete slowly for light, water and nutrients, while supplying a

variable annual supply of leaves, sap, fruits, pollen and seed stages to

the consumers that form the rest of the web? Ultimately, this

suggests we should use models of plant communities to provide a

basal layer to models of terrestrial food webs. We could then add on

top of these the faster and more ephemeral interactions between

plant reproduction and animal, bacterial and fungal consumer

species? Although some site-specific computer food-web models

take this approach, it is missing from the more analytical models

based on random networks (Box 1). Ultimately what happens at the

base of the web determines the dynamics of what happens in higher

trophic levels; so one major route that food web studies need to

develop is to integrate the consumer-resource parts of food-web

models with models for dynamics of plant communities (Tilman,

1982; Tilman, 1988; Hubbell, 2001).

The species composition and spatial distribution of the

underlying plant community is the primary determinant of the

foraging/grouping structure of the herbivore community, whose

feeding activities interact with local soil and climate conditions to

shape the local plant community. Most insects, birds and mammals

display strong preferences for the plants that they feed upon (Fine

et al., 2004; Hutchinson et al., 2022). In savanna ecosystems,
TABLE 1 Table comparing the biomass of plants in different ecosystems and relative timescales at which plant demography and ecosystem
succession operate.

Ecosystem
type

Biomass of
primary
consumers

Lifespan of
primary
consumers

Biomass of primary
producers (kg)

Lifespan of primary
producers (years)

Turnover time of
ecosystem (years)

Lake/Aquatic
Small to
intermediate

Days to years ~1 x 10-10 0.1 - 1 0.1 - 1

Grassland
Intermediate to
large

Days to years 0.1 - 1 kg 0.1 - 10 1 - 10

Tropical forest Small to large Days to years 100 - 100,000 kg 10 - 1,000 1,000’s
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vertebrate herbivores can quickly be divided into browsers and

grazers, these will in turn divide the habitat into open areas of

grassland and bush with tree density increasing in the occasional

riparian areas. For example, the Serengeti grasslands are divided

into different plant communities of short and long grasslands,

woodlands and kopjes that have their own fairly well-delineated

groups of herbivores that feed on them (Baskerville et al., 2011).

These compete seasonally with the larger migratory herbivores

(wildebeest, zebra, and elephants) that only use each of these

communities for a few months each year (Figure 2). In turn, the

herbivore communities in any location have both specialized local

and generalized more widely spread carnivores that feed on them.

Spatial patterns in tropical forests will be more complex, individual

trees will have sharply defined insect webs closely associated with

them that are coupled to the webs of other trees by the generalist

birds, insects, and mammals that feed on fruit and leaves of different

tree species and by the predators that then feed upon these primary

consumers. This contrasts with aquatic systems where algae that are

the dominant plant species, in general, these are more

homogeneously distributed and do not generate the distinct

patterns in the distribution of vegetation that characterize forests

and savannas. Although vertical and horizontal stratification in the

abundance of different algae do create subtle groupings in the web
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that only emerges when the full details of the feeding relationships

are delineated (Hutchinson, 1961; D’Alelio et al., 2016).

Nevertheless, algal-plankton driven, aquatic food webs will tend

to be relatively spatially homogenous and generate an inverse

biomass pyramid: most of the rapidly generated primary

productivity in algal communities is consumed and turned into

relatively short-lived fish and invertebrate species at higher trophic

levels. This may make them intrinsically more unstable than

spatially complex terrestrial systems where most of the biomass is

in the long-lived plants at the base of the food web (Allesina

et al., 2015).

An overenthusiastic emphasis on algae as ‘canonical plants’ is

not restricted to studies of food webs, in a survey and meta-analysis

of experimental consumer and fertilization manipulation

experiments researchers found that only 7% and 14% of the

studies were of terrestrial systems (Hillebrand et al., 2007; Gruner

et al., 2008). The international NutNet system has begun to address

this balance, a review of the first decade of data from grassland

communities at the core of NutNet (Borer et al., 2017) suggests that

the stability of these grassland webs reflects a balance between

competition among plants for nutrients and light, that is constantly

redressed by the grazing of herbivores. Artificial fertilization or

reduction in herbivores always leads to reductions in plant diversity
BOX 1 field guide to random matrix food web models.

The original ‘random-graph’ food web models developed from “spin-glass theory” by Gardner and Ashby (1970) were refined by Robert May (1973) to produce a result
that has had ecologists scratching their heads for forty years. The result showed that if a food web was characterized by a matrix of random positive and negative
interactions between species (of magnitude 0<->1) then stability would always decrease with increasing species diversity. So how could complex ecological communities

persist? May’s result showed that stability requires all the eigenvalues of the community interaction matrix to be negative, this requires i2
ffiffiffiffiffiffiffi

s : c
p

< 1, where s is number of
species, c is connectance, or number of links in the web and i is average interaction strength. May suggested that ‘modularity’, organizing species into sub-webs of species
that interacted more with each other than with other species might help enhance stability, although stability would still always decline with increased species diversity.

Allesina et al. (2008) helped formalize this conjecture when they showed that that subdividing webs into groups of highly interactive species could enhance stability.
They then made a major breakthrough (Allesina and Pascual, 2009) when they realized May’s original formulation allocated each interaction strength a random number
between -1 and 1. This meant that 1/4 of web interactions would be mutualisms (+/+), 1/4 would be competition (-/-) and half would be consumer-resource or predator-
prey (+/-) relationships. This makes it very hard to have negative eigenvalues as the product of all the negative interactions will be balanced by the product of all the positive
interactions (remembering -/- is always positive)!. They showed that if competitive and mutualistic interactions are more accurately characterized by the consumer-
resource relationships that underlie them then it was much more likely that the community matrix would have negative eigenvalues and the community would be stable.
Allesina and Tang (2012) extended this result to show that stability was possible with much larger community matrices when the vast majority of links were consumer
resource (+/-) links, although May’s central conjecture still held, stability will still decline with increased species diversity, but the intercept of the relationship will be much
higher. Some of these results were partly discovered by a paper written in direct response to May’s (1973) paper by (Roberts, 1974). He suggested that if the subset of
random webs with feasible properties are considered (where feasible implies interaction strengths that permit all species to persist), then webs with more species are more
stable. However, Roberts set up his arrays in a way that generates very strong within species regulation, which would inherently increase the stability of the web as more
species are added.

Allesina and Levine (2011) then expanded the work to examine interactions between species coexisting on the same trophic level, essentially plant communities. This
work showed that framing this debate within the traditional and algebraically tractable framework of interactions between two species is misleading, particularly when the
traditional framework is expanded to include multiple species all of which are assumed to have similar demographic properties and interact by competing for the gaps that
appear when an individual of one species dies and is replaced by any other species (“neutral” models that make a large bow to Peter Grubb’s “regeneration niche” Grubb,
1977). They showed that if species have higher-order interactions with each other such that A outcompetes B, but the presence of C allows B to outcompete A, then it is
possible for many species to coexist on the same trophic level in ways that produce patterns that are closer to those observed empirically than occur in “neutral’
communities.

Grilli et al. (2017), expanded this framework to consider indirect interactions in whole food webs; this work showed that indirect interactions can considerably
enhance the stability of multi trophic webs. Several ecologists have long argued for the importance of indirect interactions and this work confirms these interactions are
important for web stability (Gibbs et al., 2022).

Allesina et al. (2015) also developed elegant methods for adding structure to webs that built uponWilliams andMartinez ‘niche model’which assumes that species can
be arranged by body size such that larger species tend to feed on species within a range of smaller body sizes. This means that empirical webs tend to be ‘interval’ and can
be arranged as sequence of species along an axis where species to the right can only feed on species to the left (an idea originally suggested by Joel Cohen in 1978). Webs of
this type are more similar to empirical webs than ‘random graph’ webs which are not interval. This work further suggested that incorporating modularity considerably
reduces the importance of interaction strength in determining stability. Modularity is the presence of substructure within the web such that species tend to form groups
that interact much more frequently with each other than with other species. This again significantly increased the stability of the model webs. However, results from these
analyses suggest modularity is only important under restrictive conditions and observed patterns of nestedness may simply be an epiphenomenon of intervality and is
more likely to observed when food webs are assembled using binary (presence-absence) diet data, than when using quantitative diets (Staniczenko et al., 2013).
frontiersin.org

https://doi.org/10.3389/fevo.2023.1253084
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


Dobson et al. 10.3389/fevo.2023.1253084
due to intensification of competition between plants ,

disconcertingly echoing the mass uncontrolled experiments that

humans are undertaking in many natural ecosystems. If we are ever

going to use food-web models to understand these trophic-cascade

effects, we will need to develop models that realistically capture the

dynamics of the plant community.

The last ten years have seen considerable advances in our

understanding of the forces that structure theoretical food webs;

the advances developed by Allesina and colleagues almost match the

increases of understanding gained in the previous four decades and

take us a long way towards resolving the initial ‘complexity versus

stability’ conundrum first described by May (see Box 1). The

‘devious strategies which make for stability in enduring natural

systems’ that allow coexistence have now been considerably

untangled. A major next step will be to develop new hybrid

methods that combine insights from plant community ecology

into food web theory. This will then provide a new framework for

examining the structure of the temperate woodlands, tropical

forests and savannas that contain most of the terrestrial

biodiversity on the planet.

A key result to emerge from recent work on food webs described

in Box 1 emphasizes the powerful stabilizing influence of indirect

interactions between species that are mediated by a third or fourth

species (Allesina et al., 2015; Grilli et al., 2017; Mayfield and

Stouffer, 2017). Such interactions are central to the recruitment

and survival of many tropical and temperate plant species;

particularly the presence of fungal pathogens and mutualists.

Ecologists have increasingly realized that Janzen-Connell effects
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that minimize recruitment of seedlings in sites adjacent to their

parent tree are driven by fungal pathogens (Augspurger, 1983;

Gilbert and Hubbell, 1996; Packer and Clay, 2000; Bagchi et al.,

2010; Mangan et al., 2010). This in turn ensures that competition

for light and soil resources between plants in tropical forests is

mediated at the recruitment stage by indirect inter-specific

interactions largely driven by fungal pathogens. The impact of

fungal, nematode, insect, and bacterial pathogens that attack

seedlings and older plants is considerably modified and

ameliorated by the presence of a diversity of symbiotic fungi that

organize themselves into a “symbiotic immune system” that helps

protect older plants against further attacks (Jones and Dang, 2006;

Lo Presti et al., 2015). The key thing about these fungal associations

from a food-web perspective is that they generate a diversity of

indirect effects that modulate more direct impacts on the plant’s

fitness. They also create blocks of interactions that are specific to

each tree species, and often to individual trees, thus creating patchy

block motifs within the overall matrix of food web interactions

(Gri l l i et al . , 2016) . These effects , and the modular

compartmentalized structure they promote, could have a

stabilizing influence on the overall structure of the web, a result

that would not have been apparent using the earlier models for food

web structure. Fungal interactions are considerably less diverse in

marine and freshwater systems, perhaps because algae produce

classes of toxins that are particularly detrimental to fungi and

bacteria (Kini et al., 2020).

The community of host-specific fungal pathogens and insects

combines with those generated by less specific seed-dispersers and
FIGURE 2

The Serengeti food web. The network is shown organized and colored by group according to the consensus partition method and arranged by
trophic level from left (plants) to right (carnivores). Plants are identified by the first letter of identified habitat type, if available: (G)rassland, (W)
oodland, (R)iparian, (K)opje, (S)hrubland, (T)hicket, and (D)isturbed. Plant groups are labeled by significantly overrepresented habitat types, and
species assigned to the overrepresented type are labeled with black borders. An interactive version of this figure is available at http://edbaskerville.
com/research/serengeti-food-web/. (Baskerville et al., 2011).
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pollinators to create considerable modularity the overall matrix of

interactions between species in the food web for the ecosystem.

Each modular group reflects the large number of interactions that

occur between fungi, bacteria, nematodes and insects that are

specialists on each plant species, or perhaps even each individual

trees. In contrast, the overall matrix of species interactions will be

shadowed by the more diffuse connections of generalist pollinators,

seed-dispersers and herbivores species that utilize multiple species

of trees. Theoretical studies show that the heterogeneities generated

by specialists are likely to be more stabilizing than when generalists

dominate these components of food web structure (Grilli et al.,

2016). Similar patterns occur in the communities of parasites and

pathogens that feed in and upon all the species that feed in the

herbivorous and carnivorous trophic levels of the web (Lafferty

et al., 2008).
Seasonal fluctuations and
microbiomes

Deciduous forests are characterized by a huge annual

fluctuation in basal resources when the leaves and fruit produced

in the spring and consumed throughout the summer;

concomitantly their leaves convert atmospheric CO2 into

carbohydrates and add new structure to the canopy and roots as

well as nutrients for consumers. Recent studies illustrate that in

many temperate, tropical and boreal forests, a high proportion of

carbon uptake is stored in fungi associated with the roots systems

(Hawkins et al., 2023). In the autumn, leaf fall moves a huge volume

of nutrients back to the ground and into the soil, sequentially (but

asymmetrically) connecting the canopy food webs with those of the

understory and the soil. These nutrients are consumed by a large

community of fungi, worms and bacteria, many of which have

symbiotic relationships with the roots of the parent tree (Cornwell

et al., 2009; Hardoim et al., 2015). Other fungi are less altruistic and

drive the ‘Janzen-Connell’ effect described above that provide an

important driver of tropical forest diversity by preventing offspring

of the parent tree establishing in their near vicinity (Bagchi et al.,

2010; Mangan et al., 2010). These mechanisms most likely underlie

the strong conspecific negative density-dependence, recently

quantified in the 50 hectare forest plot on Barro Colorado Island

in Panama (Kalyuzhny et al., 2023).

Similar plant-microbial couplings also operate in savannas and

grassland (Petermann et al., 2008): the rainy season converts an

almost barren and inedible landscape into high quality pasture that

can feed a huge abundance of herbivores. In the Serengeti, when the

rains end, and the long dry season begins, larger herbivores such as

wildebeest and zebra migrate away from nutrient rich soils where

they’ve fed during lactation. Their dung, urine, and the death of

young calves and adults slowly disperse these nutrients to the soil in

nutrient poor regions of the ecosystem. Recent studies of the

Serengeti food web illustrate how the long-lived perennial grasses

create an annual pulse of nutrients that drives the fast dynamics of

the wildebeest and their predators, while the woodlands and the

kopjes (rocky outcrops or inselbergs) support sub-communities of

less abundant vertebrates that operate on a much slower timescale
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(Dobson, 2009). We are only just beginning to glimpse how the

above ground heterogeneity created by different plant communities

is matched by the mycorrhizal and invertebrate communities

feeding on the roots beneath the soil surface (Wardle et al., 2004;

Crowther et al., 2013). We suspect that it is similar, but soil

organisms and other microbes are all too rarely considered in

savanna food web studies.

Our hopes that food web studies will help us understand how

ecosystems will respond to climate change and other anthropogenic

insults founder on the paucity of food web-studies that include trees

and their mycorrhizal associations. Acid rain is devastating for

fungi, so many temperate plant communities have only been

observed in the absence of the mycorrhizae they co-evolved with;

similarly fires destroy mycorrhizae. If you visit Yellowstone

National Park there are still bare areas of ground with essentially

no tree recruitment since the fires of 1988 (Turner et al., 1997;

Turner et al., 2003). These are areas where the hottest fires

destroyed the mycorrhizal community and pine seedlings are

denied the symbiotic mechanism that allows them access to vital

soil nutrients (Franke, 2000). The really bad news here is that the

last two years have seen extensive fires across the boreal forests and

tundra of northern Canada; this has destroyed huge areas of habitat,

if the mycorrhizae are lost, these areas may take even longer

to recover.

Fire is an important component of many savanna and forest

ecosystems; plants are the species that supply fuel for fires and fires

return nutrients to the soil; but few food-web models consider fire

as a component of the web (although see (Bowman et al., 2016).

Some authors have suggested fire appears as a super-herbivore that

profoundly effects the dynamics of tree-grass interaction in

savannas (McNaughton, 1985; Bond and van Wilgren, 1996;

Bond and Keeley, 2005). We tend to see it as more closely

resembling an “uber-virus”; it has essentially zero mass and

requires a threshold level of host abundance to establish. Like

true viruses, the impact of fire on ecosystem structure can be

subtle and profound (Holdo et al., 2009; Staver et al., 2011; Beale

et al., 2018), to date no food-web models include fire in any form,

yet it is essential to the structure and diversity of vegetation in

savannas, fynbos, and drier forests (Bond and van Wilgren, 1996;

Higgins et al., 2000). Our major concern here is that when fire

removes trees and burns at sufficient heat to destroy the soil

mycorrhizal community, then the most important stabilizing

component of the food web may have been lost and may take the

time of many generations of shorter-lived, tree-dependent taxa

to recover.
Reproduction and the other webs

While mycorrhizal associations are the most well-known

examples of plant-microbe interactions, there are a suite of

additional ways in which plants are foundational to microbial

ecosystems. Among these, floral nectaries play host to suites of

microbial organisms that disperse and establish through flower-

visiting animal vectors (Herrera et al., 2009; Belisle et al., 2012).

Similarly, carnivorous pitcher plants support a diverse microbial
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FIGURE 3

A comparison of two food webs. The first, (A), is a three-trophic-level food web of East African primary producers and consumers. Herbivory, as represented
by the browsing impala, is the only form of primary consumption. This linear food web represents the classic mental model of feeding relationships and
energetic pathways in an ecosystem. (B) Increasing the resolution of primary consumer guilds in the this food-web changes its complexity, the potential for
indirect (blue and red) and higher-order (purple) interactions among primary consumer guilds, and illustrates how including a wider range of interactions and
taxa into food webs can lead to a new mental model of feeding relationships, where plant population and community dynamics are central, primary
consumer guilds are arrayed around them, and secondary consumers attach at the outer edges. All photos courtesy of MCH.
FIGURE 4

The food-web of Norwood Farm (Somerset, UK) collected by and recreated from the data of Pocock, Evans and Memmott (Pocock et al., 2012). Green
circles represent plant species, gray-blue circles are antagonistic primary consumers (aphids and seed-feeders), dark purple circles are parasites and
parasitoids, and yellow circles potential pollinators (flower visitors and butterflies). Out of the more than 1200 interactions, 45% are between plants and
flower visitors. Likewise, 56% of taxa (252/451) are flower visitors. Their inclusion dramatically alters this food-web. Plant interactions with leaf-miner
parasitoids were excluded from the original dataset. All silhouettes are from phylopic.org and the bee image was contributed by Melissa Broussard.
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ecosystem within the aqueous solution that decomposes their prey

(Baiser et al., 2012). Among plants that do not ‘eat’ animals, diverse

microbial communities are found on the surface (Vorholt, 2012)

and inside of their leaves (Arnold, 2007). What is becoming clear is

that the trophic relationships within the microbial communities of

many individual plants may be as complex as even the most diverse

of currently resolved macroscopic food webs!

Integrating higher plants into food web theory requires a shift

from these species being the basal fodder of grazers and browsers to

the central assemblage in terrestrial ecosystems upon which the vast

majority of animal and microbial communities and their direct,

indirect, and higher-order interactions are assembled (Figure 3).

The historical dominance of aquatic ecosystems in food-web

ecology has meant that the non-folivorous webs that higher

plants host are often not explicitly accounted for in food-web

theory. An increasingly large literature on the associations

between plants and their pollinators and seed-dispersers, who are

both mutualists and consumers of higher plants, coupled with their

importance for plant reproduction primes these interactions for

inclusion in broader food-web models. In short, to adequately

incorporate higher plants into food-web theory we must not

forget the birds and the bees!

Animal pollinators facilitate reproduction for around 88% of all

flowering plants (Ollerton et al., 2011), a proportion that can reach 98-

99% in tropical forests (Bawa, 1990). Similarly, up to 90% of woody

plants rely on vertebrates for seed-dispersal (Jordano, 2000), while a

substantial proportion of herbaceous seeds are dispersed by ants (Howe

and Smallwood, 1982). More specifically, endozoochorous seed-

dispersal (i.e., where the disperser receives a meal and the association

is often mutually beneficial) ranges from 30–40% of woody species in

temperate forests, to 70–94% in neotropical rainforests (Jordano, 2000).

Given the nature and ubiquity of these associations, this means that

many of the primary consumers in any real food web rely on

something other than a plant’s leaves (Figure 4).

While ‘consumers of fruits and nectar’ are occasionally included in

empirical food webs (Polis, 1991; de Visser et al., 2011), pollinators and

seed-dispersers are generally beneficial to plants, in contrast to folivores

that suppress plants (Pringle et al., 2023). When pollinators and seed-

dispersers are lost, plant recruitment can be significantly reduced

(Robertson et al., 1999; Cordeiro and Howe, 2001; Clark et al., 2007).

Similarly, the importance of these species is highlighted by the fact that

their loss can drive rapid directional evolutionary change in plant

reproductive morphology (Galetti et al., 2013; Gervasi and Schiestl,

2017), and the long-term dynamics of plant communities are

intimately bound to these mutualistic primary consumers (Jordano,

2000). The reproduction of higher plants also represents an under-

appreciated avenue through which plants drive food web dynamics.

While the annual loss and growth of foliage by deciduous trees is a

temporally consistent resource pulse in food webs, the phenology of

plant reproduction can be more variable and suggests how animal

populations may be stabilized by a trickle of resources as opposed to a

pulse. For example, the reproduction of Ficus species in the tropics is

often aseasonal both at the scale of individual trees (Bronstein and

Patel, 1992) and among species (Lambert and Marshall, 1991). The
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result of this asynchrony is a steady supply of fruit and floral resources

for mutualistic primary consumers. Crucially, figs are the major source

of calcium for many frugivorous birds and mammals (O'Brien et al.,

1998). Even in climatically harsh boreal and tundra biomes, some

plants retain fruits into the autumn and winter (Mulder et al., 2021),

representing a crucial resource of frugivores outside of the growing

season. Shifting availability of floral and fruit resources can also have

strong effects on the spatial and temporal distribution of pollinators

and frugivorous seed-disperser populations (Levey, 1988a; Levey,

1988b; Kinnaird et al., 1996; Olesen et al., 2011). Over the past 30

years, a rapidly growing literature on the structure and function of

bipartite plant-mutualist networks has developed (Jordano, 1987;

Bascompte and Jordano, 2013; Valdovinos, 2019; Valdovinos and III,

2021), yet it has remained largely distinct from classic food web studies.

The incorporation of reproductive mutualisms into food web theory

would represent the conceptual coupling of two dominant fields in

community ecology. Food-web models that consider higher-plant

population dynamics and the mutualists that drive those dynamics

will also benefit from the conceptual advances in mutualistic-network

ecology on the phenology of species interactions (CaraDonna et al.,

2014; Ponisio et al., 2017), species-species interactions that do not occur

(Olesen et al., 2011), and structure-stability relationships in different

ecological networks (Thébault and Fontaine, 2010; Sauve et al., 2014).

The integration of pollination and seed-dispersal associations

into food web theory has the potential to alter the image of

complexity and stability of currently resolved food webs while

also improving the biological realism of plant-population models

(Figure 4). May’s stability criterion (Box 1) relies on species

richness, interaction strength, and connectance (i.e. the

proportion of trophic links observed out of the total possible

links) (May, 1973; van Altena et al., 2016). Pollinators are a

mega-diverse guild; the addition of these species to food webs will

increase species richness and almost certainly alter connectance and

network macrostructures (Figure 4). Furthermore, the links

between pollinators, seed-dispersers, and their respective

predators may produce more accurate food web representations

by filling in some of the ‘missing links’ (Dobson et al., 2008; Lafferty

et al., 2008). For precedence, the incorporation of parasites into

food webs this has had startling implications for studies of food web

complexity (Lafferty et al., 2006). Incorporating the population and

community dynamics of higher plants to food web theory will not

only improve the resolution of the basal resource level but also

necessitate the inclusion of entire guilds of animal species not

typically represented in classic predator-prey food webs, such as

pollinators and frugivorous seed-dispersers.

Incorporating reproductive mutualisms into food-web theory

involves more than tacking on a plant-pollinator or plant-frugivore

module to existing food-webs and assuming that all interactions in

these mutualistic modules are always mutually beneficial.

Mutualisms are prone to cheating behaviors, which can shift

these interactions, at least temporarily, towards parasitism (Jones

et al., 2015). For example, endozoochorus dispersal—by virtue of

fruits and seeds being ingested—tends to involve some kind of

nutritional reward to the consumer, but the effect on the plant can
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range from seeds requiring gut passage for germination to seed

predation. Epizoochorus dispersal, where seeds are dispersed

without ingestion, such as by hooking onto fur, offer no cost to

the disperser, but also no benefit. Furthermore, obligate frugivores

are few and far between (Jordano, 2000), seed-predators, such as

ants and small mammals, can still be important seed dispersers)

(Janzen, 1971), and seed-dispersal by large folivores may be negated

by their leaf and stem consumption. Browsing ungulates can be

important seed-dispersers (Rodrıǵuez-Pérez et al., 2011; Pringle

et al., 2014) despite their largely folivorous diets and negative effect

on plants (Pringle et al., 2023). Therefore, the devil of integrating

plant reproduction into food webs almost certainly lies in the details

of how reproductive mutualisms function and are quantified.
Seeing the web with the trees

In conclusion, we argue that a deeper consideration of the role

of higher plants in food webs is needed to create the “next

generation” of food web models. The simplest way to do this

would be to include trees and plants as basal species in food webs

where spatial competition for light, water, and nutrients creates a

community of species that live for a very long time and thus

generate significant underlying stability that trickles up to the

species that feed in and upon them. These primary consumers

can be divided into two broad classes of species: (1) those that feed

on the regular production of fruits, leaves, sap and bark of the plant;

and (2) the large community of fungi, bacteria and parasitic plants

that drive interactions with the plant and its surrounding

environment and through time modify the structure of the

individual tree, in ways that usually enhance the persistence of

both the tree and its ‘symbiotic’ community. The inclusion of this

huge diversity of parasitic and mutualistic species echoes recent

pleas to include parasites and pathogens into models for food webs

(Lafferty et al., 2006; Dobson et al., 2008; Lafferty et al., 2008). Each

of these groups of species generate fuzzy but modular blocks within

the matrix of interactions between species that form the overall

structure of any food web matrix.

The theoretical and technical advances required to bring higher

plants into food web studies is beginning to emerge. Multilayer and

multiplex ecological networks are an exciting development that

allow several webs (be they the webs associated to individual trees in

a forest or webs describing different types of ecological interactions)

to be described as single mathematical object (Pilosof et al., 2015;

Garcıá-Callejas et al., 2018; Guimaraes, 2020). An important recent

study has plotted a potential course for the integration of niche

theory with food web theory (Godoy et al., 2018). Yet others have

described how bioenergetic food-web models may be extended to

include terrestrial plant-herbivore interactions. (Valdovinos et al.,

2022). These approaches will generate the food-web descriptions

that will be used to explore the organization of terrestrial species

interactions at the broadest community level and can quickly

become the grist for the next generation of food-web models that

needed to help understand the consequences resource exploitation

and deforestation in all the world’s forests. Hopefully, they can also

provide important guides for pathways to forest restoration.
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We conclude on a final note of urgency. We are losing trees,

forest and grasslands at a rapid rate. If the stability and persistence

of terrestrial ecosystems is dependent upon long-lived plant species

we need to considerably upgrade attempts to protect them. There

are roughly 400 trees for every human on the planet, this number is

decreasing for two reasons: increasing human population and the

loss of 15 billion trees each year (Crowther et al., 2015); land-use

conversion since the dawn of agriculture has led to the loss of

around 46% of global tree abundance. Slowing this loss of trees,

forests, and perennial grasslands is arguably the most efficient way

to reduce the net rate of species extinction (Schleuning et al., 2016).

Restoring degraded forests, savannas, and grasslands is arguably the

most cost-effective and efficient way to reverse global climate

heating. As most of the freshwater used by humans is supplied by

rivers and streams that have their origins in forests and water sheds,

then human dependence on freshwater should form the basis of any

cogent argument about the importance of protecting forests

(Garrick et al., 2017). This should protect both the forests and the

trees that are arguably the key components of most terrestrial

food webs.
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