Moth bean (Vigna aconitifolia) is an orphan legume of Vigna genus, exhibiting wide adaptability and has the potential to grow well in arid and semi-arid areas, predominantly across different eco-geographical regions of Asia, particularly the Indian subcontinent. The inherent adaptive attributes of this crop have made it more tolerant towards a diverse array of abiotic and biotic stresses that commonly restrain yield among other Vigna species. Additionally, the legume is recognized for its superior nutritional quality owing to its high protein content as well as amino acid, mineral and vitamin profile and is utilized as both food and fodder. Moth bean can play a vital role in sustaining food grain production, enhancing nutritional security as well as provide a source of income to resource-poor farmers amid rise in global temperatures and frequent drought occurrences, particularly in rain-fed cropping systems which accounts for about 80% of the world’s cultivated land. However, this minor legume has remained underutilized due to over-exploitation of major staple crops. With the exception of a few studies involving conventional breeding techniques, crop improvement in moth bean for traits such as late maturity, indeterminate growth habit, shattering and anti-nutritional factors has not garnered a lot of attention. Recent advances in sequencing technologies, modern breeding approaches and precision phenotyping tools, in combination with the available crop gene pool diversity in gene banks, can accelerate crop improvement in moth bean and lead to the development of improved cultivars. Considering the recent surge in awareness about the development of climate-smart crops for sustainable agricultural future, collective effort towards effective utilization of this hardy, neglected legume is the need of the hour.
Globally, legumes are vital constituents of diet and perform critical roles in maintaining well-being owing to the dense nutritional contents and functional properties of their seeds. While much emphasis has been placed on the major grain legumes over the years, the neglected and underutilized legumes (NULs) are gaining significant recognition as probable crops to alleviate malnutrition and give a boost to food security in Africa. Consumption of these underutilized legumes has been associated with several health-promoting benefits and can be utilized as functional foods due to their rich dietary fibers, vitamins, polyunsaturated fatty acids (PUFAs), proteins/essential amino acids, micro-nutrients, and bioactive compounds. Despite the plethora of nutritional benefits, the underutilized legumes have not received much research attention compared to common mainstream grain legumes, thus hindering their adoption and utilization. Consequently, research efforts geared toward improvement, utilization, and incorporation into mainstream agriculture in Africa are more convincing than ever. This work reviews some selected NULs of Africa (Adzuki beans (Vigna angularis), African yam bean (Sphenostylis stenocarpa), Bambara groundnut (Vigna subterranea), Jack bean (Canavalia ensiformis), Kidney bean (Phaseolus vulgaris), Lima bean (Phaseolus lunatus), Marama bean (Tylosema esculentum), Mung bean, (Vigna radiata), Rice bean (Vigna Umbellata), and Winged bean (Psophocarpus tetragonolobus)), and their nutritional, and functional properties. Furthermore, we highlight the prospects and current challenges associated with the utilization of the NULs and discusses the strategies to facilitate their exploitation as not only sources of vital nutrients, but also their integration for the development of cheap and accessible functional foods.
Micronutrient malnutrition is a serious threat to the developing world’s human population, which largely relies on a cereal-based diet that lacks diversity and micronutrients. Besides major cereals, millets represent the key sources of energy, protein, vitamins, and minerals for people residing in the dryland tropics and drought-prone areas of South Asia and sub-Saharan Africa. Millets serve as multi-purpose crops with several salient traits including tolerance to abiotic stresses, adaptation to diverse agro-ecologies, higher productivity in nutrient-poor soils, and rich nutritional characteristics. Considering the potential of millets in empowering smallholder farmers, adapting to changing climate, and transforming agrifood systems, the year 2023 has been declared by the United Nations as the International Year of Millets. In this review, we highlight recent genetic and genomic innovations that can be explored to enhance grain micronutrient density in millets. We summarize the advances made in high-throughput phenotyping to accurately measure grain micronutrient content in cereals. We shed light on genetic diversity in millet germplasm collections existing globally that can be exploited for developing nutrient-dense and high-yielding varieties to address food and nutritional security. Furthermore, we describe the progress made in the fields of genomics, proteomics, metabolomics, and phenomics with an emphasis on enhancing the grain nutritional content for designing competitive biofortified varieties for the future. Considering the close genetic-relatedness within cereals, upcoming research should focus on identifying the genetic and genomic basis of nutritional traits in millets and introgressing them into major cereals through integrated omics approaches. Recent breakthroughs in the genome editing toolbox would be crucial for mainstreaming biofortification in millets.
Frontiers in Medicine
Hemostasis in ECMO and VAD