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Lung diseases are a major cause of morbidity and mortality worldwide. In recent years, there have been significant advances in our understanding of the mechanisms of lung diseases, as well as the development of new treatments. The collection of Reviews in Pulmonary Medicine 2022 reviewed several lung diseases and their treatments.

Sepsis-related acute respiratory distress syndrome (ARDS) is a life-threatening condition that occurs when inflammation in the lungs leads to fluid buildup and breathing problems. It is a major cause of death in sepsis patients, with a fatality rate of 30–40% (Gong et al.). Currently, there is no cure for ARDS. The main treatment is supportive care, such as mechanical ventilation and fluid management. However, there are ongoing research efforts to develop new treatments that target the underlying mechanisms of ARDS. Some of the potential targets for ARDS treatment include inflammatory mediators, such as cytokines and chemokines, endothelial cell dysfunction, epithelial cell injury, disruption of VE-cadherin, alveolar macrophage activation, neutrophil apoptosis, and excessive production of reactive oxygen species (ROS) (Gong et al.). To gain new insights into ARDS pathogenesis and to identify and develop new therapeutic targets, biomarkers of the disease have been actively sought. These biomarkers, such as the soluble form of the receptor for advanced glycation end-products (sRAGE) and angiopoietin-2 (ANG2), are believed to be markers of type I alveolar epithelial cell injury and lung endothelial barrier dysfunction, respectively. High levels of sRAGE and ANG2 are also associated with an increased risk for ARDS and severity of the disease. The precise role of sRAGE in ARDS remains a topic of ongoing debate. A prevailing view suggests that sRAGE plays a protective anti-inflammatory role by acting as a decoy receptor, preventing RAGE ligands from binding to membrane-bound RAGE. However, opposing arguments propose that elevated sRAGE levels may instead result from overstimulation of cell surface RAGE, leading to downstream inflammatory signaling (1). In contrast, elevated ANG2 levels are believed to directly contribute to the increased risk of developing ARDS (2). Experimental evidence suggests that reducing blood ANG2 or blocking its signaling can improve survival in animal models (3).

Chronic obstructive pulmonary disease (COPD) is the third leading cause of death worldwide. It is characterized by the destruction of the airways and alveoli and caused by smoking and air pollution. COPD is incurable, and its pathogenesis is complex and not fully understood. Multiple factors and their interactions, including persistent inflammation, oxidative stress, and protease/antiprotease imbalance, are known factors contributing to the pathogenesis of COPD. In addition, most recent studies suggest that ferroptosis also plays an important role in the pathogenesis of COPD, and it may be a target for new therapies (Meng et al.). Different from apoptosis and necroptosis, ferroptosis is a recently discovered form of cell death that is mediated by phospholipid peroxidation through free iron-mediated Fenton reactions in the presence of ROS. Cigarette smoke exposure can induce ferroptosis in lung epithelial cells by increasing the levels of iron and ROS in the lungs, leading to cell death and tissue damage. Ferroptosis can also be triggered by the depletion of glutathione (GSH), an antioxidant that protects cells from ROS damage and detoxifies lipid peroxides. Deficiency or inhibition of SLC7A11 (solute carrier family 7 member 11), GPX4 (glutathione peroxidase 4), and NFE2L2 (NFE2 like BZIP transcription factor 2, also known as NRF2) genes, which direct generation of GSH, superoxide dismutase, catalase, heme oxygenase, and other antioxidants, exacerbate ferroptosis in COPD. Therefore, targeting ferroptosis by inducing these genes and/or by removing excessive iron from the body may be a promising new approach for the treatment of COPD.

Lung cancer (LC) is the leading cause of cancer death worldwide, with about 1.8 million deaths in 2020 as estimated by the International Agency for Research on Cancer. Therapies such as chemotherapy, radiation, and their combination, can be effective at initial treatment of LC, but they often have relapse of the disease that then manifests in a chemotherapy-resistant form. In recent years, there has been a growing interest in a new approach to LC therapy called immunogenic cell death (ICD) (Xu et al.). ICD is a form of regulated cell death in which damage-associated molecular patterns (DAMPs) and tumor-associated antigens (TAAs) are released. These molecules activate dendritic cells to present tumor antigens to T cells, which then kill the LC cells. In this way, the dying cancer cells are transformed into a therapeutic vaccine that can boost the body's defenses specifically against LC and provide long-term effects to the patients. To date, the DAMPs that have been mechanistically linked to ICD include ATP, CALR (calreticulin), HMGB1 (high mobility group box 1), Type I IFN (interferon), and ANXA1 (annexin A1). Since doxorubicin was identified as the first ICD inducer in 2005 (4), different therapeutic agents have been found to initiate ICD in LC. For example, crizotinib, a targeted therapy used to treat LC patients with ALK (ALK receptor tyrosine kinase) gene rearrangements, can induce ICD in ALK-positive LC cells. Lurbinectedin, another potent ICD inducer, was approved by the US Federal Drug Administration in 2020 for the treatment of relapsed small-cell LC (5). To kill cancer cells more effectively and achieve better results of LC treatment, different ICD inducers are being used or are on clinical trials in combination with immune checkpoint inhibitors, such as pembrolizumab, which targets PD-1 (programmed death protein 1)/PD-L1 (programmed death ligand 1) pathway (5).

In addition to sepsis-related ARDS, COPD, and LC, the collection of reviews also includes other pulmonary diseases, such as interstitial lung diseases (ILDs), including rare lymphangioleiomyomatosis (LAM), and cryptogenic organizing pneumonia (COP), portopulmonary hypertension (PoPH), eosinophilic granulomatosis with polyangiitis (EGPA), pleural effusion, and obstructive sleep apnea. Clinical features, pathogenesis, diagnosis, current treatment options and future perspectives for these diseases have been discussed in detail. For instance, research has discovered that LAM is linked to mutations in the TSC2 or TSC1 gene, which trigger hyperactivation of the mTORC1 signaling pathway and subsequent LAM cell senescence (Bernardelli et al.). Cellular senescence, characterized by a permanent proliferation arrest, anti-apoptosis, and proinflammatory phenotype, is also observed in COPD (6), LC (7), idiopathic pulmonary fibrosis (8), and pulmonary arterial hypertension (9). Therefore, hindering senescence and eliminating senescent cells using mTORC1 inhibitors and senolytic drugs could be potential therapeutic strategies for LAM and these lung diseases.

In summary, lung diseases continue to be a significant global health concern. Researchers have been focusing on the discovery of genetic susceptibility, the molecular mechanism of disease, various biomarkers, immune dysfunction, and environmental/lifestyle triggers. Advancements in these research areas have facilitated the development of targeted therapies, early diagnosis and disease monitoring, personalized treatment, and potential preventive strategies. Gene therapy and gene editing, though still in the early stages of development, hold promise for correcting genetic defects that contribute to lung diseases. Mesenchymal stem cell-based therapies could also offer the possibility of regenerating damaged lung tissue and restoring lung function. Additionally, artificial intelligence and machine learning tools can enable researchers and clinicians to analyze vast amounts of data, process images, and identify patterns and associations, thereby accelerating progress in these research efforts.
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Background: Pleural cryobiopsy is a novel technique for the diagnosis of pleural pathologies. However, the safety and feasibility of this modality compared to standard forceps for pleural biopsy has not been fully elucidated. This systematic review and meta-analysis aims to establish the efficacy and safety of cryobiopsy for evaluation of undiagnosed pleural effusion.

Methods: For this systematic review and meta-analysis, we searched PubMed, Embase, Scopus, and Web of science databases up to December 16, 2021 to identify relevant articles. We included randomized controlled trials, cohort studies, retrospectives studies and case series that compared pleural cryobiopsy and forceps biopsy. A qualitative assessment was performed using the QUADAS-2 tool.

Results: Of the 365 articles identified by our search, 15 studies were eligible for inclusion. The specimen sizes obtained with cryobiopsy were significantly larger compared with forceps biopsy (Standard mean difference 1.16; 95 % CI: 0.51–1.82; P < 0.01). Furthermore, the cryobiopsy tissue specimens were deeper (OR 2.68; 95 % CI: 1.39–5.16; P < 0.01) and qualitatively better with less crush artifacts (OR 0.06; 95 % CI: 0.01–0.26; P < 0.01). There was no significant difference in diagnostic yield (OR 1.32; 95 % CI: 0.79–2.21; P = 0.29) and mild to moderate bleeding events (OR 1.21; 95 % CI: 0.64–2.29; P = 0.57) between pleural cryobiopsy and forceps biopsy. No publication bias was observed among these studies.

Conclusions: Compared to flexible forceps biopsy pleural cryobiopsy obtained larger and deeper tissue specimens with less crush artifacts but does not show superiority for diagnostic yield. Further studies are still needed to verify these findings.

Keywords: pleural effusion, pleural cryobiopsy, forceps biopsy, meta-analysis, pleuroscopy


INTRODUCTION

The accurate diagnosis of pleural effusion is challenging and undiagnosed pleural effusion is frequently encountered in about 10–20 % cases, even after thoracentesis and closed pleural biopsy (1, 2). Medical thoracoscopy or video-assisted thoracoscopic surgery (VATS) performed using rigid or semi-rigid thoracoscope plays vital role for evaluating undiagnosed pleural effusion (3). Traditionally rigid pleuroscopy has been the procedure of choice as it offers larger pleural biopsy specimens with greater ease than semi-rigid pleuroscopy (4). However, in resource-limited settings rigid pleuroscopy may not be available and is more expensive than semi-rigid pleuroscopy. Although, the pleural biopsy specimens obtained during semi-rigid thoracoscopy are smaller but it is widely available and has good sensitivity (91%) and specificity (100%) in the diagnosis of exudative pleural effusion (5). Procuring adequate samples with sufficient depth from thickened or fibrosed pleura remain the most important limitation of semi-rigid pleuroscopy. Therefore, there is an immense need of alternative technology that could allow adequate biopsies of fibrotic pleura with larger specimen size to enhance the diagnostic yield. In recent years, cryotechnology has emerged as a promising tool for treating benign and malignant lung diseases (6). In addition to the therapeutic purpose cryotechnology is widely used for diagnostic purposes in interstitial lung disease, lung tumors, and in determination of lung rejection in transplant patients (7–9). Cryoprobe-based therapy is based on the Joule–Thomson effect whereby a liquefied gas exits at a high flow expands rapidly resulting in very low temperature at the tip of cryoprobe. Furthermore, the development of cryoadhesion or cryorecanalization has revolutionized the field of bronchology and introduced cryobiopsy (CB) as a promising sampling technique. The specimens obtained by cryobiopsy are larger and better-preserved with less crush artifact than traditional forceps biopsy (10, 11).

Several studies have compared the diagnostic yield, specimen size, bleeding severity, tissue depth of pleural CB and forceps biopsy (FB), but the results of these studies have been heterogeneous (12–21). Furthermore, most of these studies were conducted either with small populations or retrospectively. A recent meta-analysis by Shafiq et al. reported diagnostic yield of 96.5% for pleural cryobiopsy and 93.1% for forceps biopsy (22). However, in that meta-analysis authors pooled the results of only seven observational studies and failed to include randomized crossover study (23) that compared pleural cryobiopsy and forceps biopsy for the diagnosis of pleural effusions. In addition, they omitted pooled analysis of many efficacy (such as specimen size, biopsy death and crush artifacts) and safety endpoints (i.e., bleedings severity). Similarly, meta-analysis by Rial et al. (24) only pooled data of diagnostic yield and showed that pleural cryobiopsy was not superior to forceps biopsies. However, no meta-analysis, to date, has examined the efficacy of pleural cryobiopsy specifically for the specimen size harvested in subjects with undiagnosed pleural effusion. We therefore conducted a systemic review and meta-analysis to assess the efficacy and safety of cryobiopsy vs. forceps biopsy for evaluation of undiagnosed pleural effusion and attempted to ascertain whether there are variability in efficacy and safety endpoints with the two techniques. Our meta-analysis comparing the efficacy and safety of the pleural cryobiopsy vs. forceps biopsy is the largest to date, as we included more than twice the number of patients included in any previous meta-analysis (22, 24).



METHODS

The reporting of current meta-analysis was in accordance with the recommendations of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) (25).


Search Strategy and Selection Criteria

The PubMed, Embase, Scopus, and Web of Sciences databases were searched for relevant articles. The last search was performed on December 16, 2021. The following search strategy (Cryobiopsy OR Cryoprobe biopsy OR Forceps biopsy OR pleural cryobiopsy) AND (Pleura OR Pleural effusion OR Pleural biopsy OR Pleuroscopy OR Thoracoscopy) was employed to identify all relevant studies. The full search strategies for all databases are available in Supplementary Appendix 1. We assessed all of the references of selected articles to include additional studies.

The inclusion criteria were as follows: (1) Study population: Studies in which adult patients undergoing pleural biopsy either by pleuroscopy or by thoracoscopy; (2) Comparative studies: Studies that compare cryobiopsy and forceps biopsy; (3) Outcome included overall diagnostic yield, bleeding severity, specimen size, crush artifacts, and depth of specimen. Randomized controlled trials, cohort studies, retrospectives studies and case series were included. Exclusion criteria were studies with <5 subjects, non-comparatives studies, and review articles. We performed electronic search without any time and language restrictions.



Data Extraction

All duplicate studies were excluded by using by EndNote X 8.0 software. The two investigators (M.G. and H.Y.D.) who performed the literature search also independently extracted the data from included studies. Disagreements were resolved with a third investigator. Using a standardized data extraction form two independent reviewers abstracted the data. The extracted data included first author, year of publication, age, percent male, type of study, specimen size, diagnostic rate, bleeding severity, depth of the tissue and presence of artifacts. For continuous outcome such as specimen size, we abstracted mean and standard deviation. When only median and range were reported in studies, we calculated mean and standard deviation according to the Wan et al. (26).



Types of Outcome Measures

The primary outcome was standardized mean difference (SMD) of sample size obtained by cryobiopsy vs. forceps biopsy. Secondary outcomes were diagnostic yield, biopsy depth, crush artifacts, and bleeding severity for these two types of biopsy methods.



Quality Assessment

Two authors (M.G. and H.Y.D.) independently assessed the quality of individual studies using Quality Assessment of Diagnostic Accuracy Studies 2 score (QUADAS-2) tool (27). Disagreements among the reviewers were discussed and resolved during a consensus meeting. Based on the QUADAS-2 tool, each article was evaluated for risk of bias in 4 domains: (1) patient selection, (2) index test, (3) reference standard, (4) flow and timing. For each domain, the risk of bias and concerns about applicability (which also include patient selection, index test and reference standard) were analyzed and rated as low, high or unclear risk. Interrater agreement of QUADAS-2 ratings were assessed using Cohen kappa statistic.



Statistical Analysis of Data

All statistical analysis were performed with the R Statistical Software Package 4.1.0. Odds ratio (OR) with 95 % confidence interval (CI) was calculated for dichotomous data and standard mean difference (SMD) with corresponding 95% CI for continuous data. Statistical significance was set at P < 0.05. I2 and P-values were calculated to assess the heterogeneity among the included studies. A P-value < 0.1 and I2 value >50% indicated substantial heterogeneity across studies. Due to the wide variation in institutional protocols for performing pleural cryobiopsy as there is no standardized methodology to perform it, we conducted all the analysis using a random-effect model. Publication bias was assessed using funnel plots and the Egger's test or the Harbord's test. Sensitivity analysis was performed to evaluate the influence of each study on the overall effect size by using the leave-one-out method (i.e., by removing one study at a time).




RESULTS


Description of Included Studies

Figure 1 shows the details of study selection process. Of the 361 records identified from literature search and four potentially eligible studies from additional source. After title and abstract screening, we assessed 18 full text articles, of which 15 were included in the meta-analysis. Three studies were excluded because they were conference article with abstract only. All studies were published after 2015. Among those 15 studies, eight prospective studies (12, 15, 17, 20, 21, 28–30), four retrospective studies (13, 18, 19, 31), two cases series (14, 16) and one randomized controlled trial (23) were analyzed, comprising 1061 biopsies (555 cryobiopsies and 506 forceps biopsies). Cryobiopsy of pleura was obtained in most patients (in 11 out of 15 studies) using cryoprobe 2.4 mm diameter. Detailed characteristics of the included studies are shown in Table 1.


[image: Figure 1]
FIGURE 1. PRISMA Flow chart of study selection process.



Table 1. Characteristics of included studies.
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Quality Assessment

Summary of QUADAS-2 assessments of included studies is summarized in Supplementary Figure 1. The quality of included studies was generally fair. A higher risk of bias was mainly due to inappropriate patient selection and index test, and only few studies scored high risk in quality assessment (14, 16, 17, 20, 31). In most of studies, there was low or unclear risk of bias. The Interrater agreement for quality assessment of included studies between both reviewers was very good, with Cohen kappa being 88.3 %.



Primary Outcome


Specimen Size

A total of 12 studies were included in the pooled analysis of specimen size (Supplementary Table 1). The results of meta-analysis showed that the pooled standardized mean difference (SMD) for specimen size with cryobiopsy vs. forceps biopsy was 1.16 (95 % CI: 0.51–1.82; P < 0.01) (Figure 2). The above value indicated that the biopsies from cryobiopsy were significantly larger than specimens obtained by forceps biopsy. The heterogeneity was significant (I2 = 90%, P < 0.01). No evidence of publication bias was detected by the Egger's test (P = 0.57) and visual inspection of funnel plot (Supplementary Figure 2). The sensitivity analysis showed that no single study significantly affected the final pooled estimates of specimen size (Supplementary Figure 3).


[image: Figure 2]
FIGURE 2. Forest plot comparing specimen size of pleural cryobiopsy vs. forceps biopsy.





Secondary Outcomes


Diagnostic Yield

Overall, 15 studies compared diagnostic rate of pleural cryobiopsy with forceps biopsy. The pooled diagnostic yield of cryobiopsy was 94.1 % (522/555) and forceps biopsy was 91.3 % (462/506). Compared with forceps biopsy, cryobiopsy was not associated with a significant increase in diagnostic rate (OR 1.32; 95 % CI: 0.79–2.21; P = 0.29) in patients with unexplained pleural effusion (Figure 3). The heterogeneity was not significant (I2 = 5%; P = 0.39). The visual inspection of funnel plot showed roughly symmetrical distribution of studies (Supplementary Figure 4). However, the Harbord test did not show evidence of publication bias (P = 0.38). With respect to diagnostic rate, the direction and magnitude of the pooled ORs did not vary substantially with leave-one-out method, showing robustness of our finding (Supplementary Figure 5).


[image: Figure 3]
FIGURE 3. Forest plot comparing diagnostic yield of pleural cryobiopsy vs. forceps biopsy.





Crush Artifacts and Biopsy Depth

Crush artifact in pleural biopsy specimens can make pathological interpretation very challenging. Five studies reported data on crush artifacts (Supplementary Table 2). Compared with forceps biopsy, cryobiopsy specimens tended to be artifacts that were less crushed and had better tissue integrity (OR 0.04; 95 % CI: 0.01–0.26; P < 0.01) (Figure 4). This effect size was robust in the leave-one-out sensitivity analysis (Supplementary Figure 6). Visual inspection of funnel plot (Supplementary Figure 7) and the Harbord test did not show evidence of publication bias (P = 0.83). Biopsy depth was reported in seven studies (Supplementary Table 3). Pleural cryobiopsy was highly successful in obtaining deeper tissue (up to the pleural fat or deeper) than that of forceps biopsy (OR 2.68; 95 % CI: 1.39–5.16; P < 0.01) (Supplementary Figure 8). There was moderate heterogeneity among the studies (I2 = 48%; P = 0.07). Visual inspection of the funnel plot (Supplementary Figure 9) did not show asymmetry and the Harbord test (P > 0.05) also revealed no significant publication bias. Sensitivity analysis using the leave-one-out approach showed that our result was robust (Supplementary Figure 10).


[image: Figure 4]
FIGURE 4. Forest plot of crush artifacts for pleural cryobiopsy vs. forceps biopsy.




Bleeding Severity

Ten studies evaluated bleeding severity (Table 2) of which six studies contributed to the pooled analysis of bleeding event. Mild to moderate bleeding events were not significantly different between cryobiopsy and forceps biopsy group (OR 1.21; 95 % CI: 0.64–2.29; P = 0.57) (Supplementary Figure 11). There was no evidence of heterogeneity among pooled studies (I2 = 0%, P = 0.92). Funnel plot showed relatively symmetrical plot (Supplementary Figure 12) and no publication bias was detected by the Harbord test (P > 0.05). Furthermore, sensitivity analysis indicated that the results were robust (Supplementary Figure 13).


Table 2. Qualitative analysis of bleeding severity.
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DISCUSSION

Pleural biopsy is indicated for unexplained pleural effusion that remains undiagnosed even after radiological imaging and pleural fluid analysis. Pleural cryobiopsy is evolving as the new technique for diagnosing exudative pleural effusion, when the diagnosis has remained elusive despite one or two thoracentesis. In fact, only limited studies have been conducted that compared pleural cryobiopsy and forceps based pleural biopsy. In the present meta-analysis of 15 articles involving 1061 biopsies with undiagnosed pleural effusion who underwent pleural cryobiopsy and forceps biopsy, we found that efficacy/safety outcome of specimen size, biopsy depth and crush artifacts differ significantly between cryobiopsy and forceps biopsy. However, diagnostic yield and bleeding events were similar between the groups.

This meta-analysis showed that the specimens obtained using cryobiopsy were significantly larger in size than the forceps biopsy specimens (SMD = 1.16; 95% CI: 0.51–1.82; P < 0.01). Previous pooled analysis of seven studies evaluating cryobiopsy and forceps biopsy also documented that biopsy size harvested by cryobiopsy were significantly larger than forceps biopsy (SMD = 0.867; 95% CI: 0.427–1.308; P < 0.001) (32). However, this systematic review and meta-analysis was only published as conference abstract. Conference abstracts often lack rigorous peer review, conclusions drawn from the results presented in such abstract may be biased or imprecise. In our study larger samples with sufficient extrapleural fat tissue or pleural tissue might have helped in a confident histological diagnosis of the pleural effusion in patients with thickened or fibrosed pleura. Cryobiopsy is a promising technique because both biopsy size and quality contribute to diagnostic yield. In a recent meta-analysis, Shafiq et al. (22) demonstrated that larger pleura samples were obtained through cryobiopsy than through forceps biopsy. However, they just performed qualitative analysis of specimen size and failed to perform the pooled analysis. Similarly, another meta-analysis has focused exclusively on diagnostic yield and omitted pooled analysis of other efficacy and safety end points (24). Cryobiopsy is performed using several different variations of technique across centers, this variability in institutional protocols for performing the procedure might be the reason for significant heterogeneity for biopsy size across included studies.

Our systematic review and meta-analysis revealed that the diagnostic yield of pleural cryobiopsy is comparable to that of traditional pleural biopsy using flexible forceps for undiagnosed pleural effusion (OR 1.32; 95 % CI: 0.79–2.21; P = 0.29). In a recent study, Chen et al. (12) showed that cryobiopsy during semi-rigid pleuroscopy was a safe technique with a higher diagnostic yield than forceps biopsy for the diagnosis of exudative pleural effusion (EPE). Similarly, Touseed et al. (19) revealed that diagnostic yield was 99% with cryobiopsy and 96% with forceps biopsy, however there was no significant difference in the diagnostic yield between these two techniques. The first randomized trial that has compared the yield of the two techniques found that diagnostic rate of pleural effusion with cryobiopsy was higher than forceps biopsy (CB: 78.0% Vs FFB 76 %) even though there was no statistically significant difference (23). On the other hand, in patients undergoing pleural biopsy using flexible forceps, followed by a flexible cryoprobe introduced through the pleuroscope, Thomas et al. (18) found that diagnostic yield achieved with cryobiopsies was similar to the yield of forceps biopsy. However, there was no significant improvement in diagnostic yield by combining FB with the CB in this small cohort. Similarly, a recent meta-analysis by Shafiq et al. (22) demonstrated that pleural cryobiopsy is a safe method with similar diagnostic value, comparable to flexible forceps biopsy. However, they just included seven observational studies in their meta-analysis, which was less than the number of our included studies. Furthermore, we included the first ever randomized crossover study that compared pleural cryobiopsy and flexible forceps biopsy in subjects undergoing medical thoracoscopy for the diagnosis of pleural effusions (23). Despite its remarkable ability to harvest significantly deeper and larger specimens with less crush artifact, pleural cryobiopsy does not show superiority for diagnostic yield over forceps biopsy. Given that both techniques produced more than a 90% diagnostic rate, larger numbers of cases should be evaluated in future studies to find a statistically significant difference. Importantly, cryobiopsies will produce better results in cases with thickened and sclerotic pleura (where a forceps biopsy can be difficult), but forceps biopsies are adequate in the vast majority of cases. Additionally, in areas with a higher prevalence of asbestos-related pleural disease, cryobiopsy may play an important role in achieving a diagnosis. Although a rigid thoracoscope can obtain larger biopsy specimens from thickened pleura, its maneuverability in the pleural space is limited.

The definition of bleeding severity varied across studies. In most of the studies, slight or self-limited bleeding was reported which was similar between cryobiopsy and forceps biopsy groups (12, 13, 18, 21, 23). Our pooled analysis revealed that there were no significant differences in the mild to moderate bleeding events between the cryobiopsy and forceps biopsy groups. No severe bleeding was reported that required blood transfusion, causing hemodynamic instability or ICU admission in the individual studies included in this meta-analysis. More RCTs assessing bleeding severity in standardized way are required to draw further conclusion regarding the safety of these biopsy methods. Histopathological diagnosis of malignant mesothelioma is particularly challenging due to the presence of diffusely thickened or fibrotic pleura (33). The role of pleural cryobiopsy is paramount in this regard as the higher number of deep biopsies containing fatty tissue should enable to detect mesothelioma more accurately compared to forceps biopsy. Pooled analysis of biopsy depth in our meta-analysis also revealed that the cryobiopsy was able to obtain biopsies containing fatty tissue or deeper layer than forceps biopsy. The study performed by Shafiq et al. (22) incorporated a similar result but they did not perform pooled analysis of biopsy depth. The presence of artifacts in histological sections obtained by flexible forceps biopsy is a very common finding and represents a potentially major pitfall for the pathological diagnosis of pleural disease (34, 35). Our pooled result showed that in comparison with forceps biopsy, crush artifacts were minimal with cryobiopsy. In line with our study Shafiq et al. (22) also reported fewer instances of crush artifacts with cryobiopsy but they just performed qualitative analysis regarding artifacts. This systematic review and meta-analysis has several limitations. First, the small number of studies identified, the studies were mostly small in sample size and retrospective in design. Second, study by Nakai et al. (16) included five patients with pleural effusion, and in this study they investigated the utility of cryoprobe and conventional biopsy in the diagnosis of malignant pleural mesothelioma, so its representativeness for undiagnosed pleural effusion may be open to doubt. Third, there was pronounced variation in institutional protocols for performing pleural cryobiopsy as there is no standardized methodology to perform it. Fourth, operator's skills in performing biopsy procedure was not reported by majority of the studies. Fifth, the risk of bleeding is not robustly reported in many published studies and the definition of bleeding with cryobiopsy and forceps biopsy was not uniform. Well designed, larger multi-center randomized trials and prospective studies are warranted to provide more evidence for efficacy and safety of pleural cryobiopsy.



CONCLUSIONS

In conclusion, despite the limitations noted, compared with forceps biopsy, cryobiopsy is relatively safe procedure with larger artifact-free specimen but does not offer high diagnostic yield. However, no meaningful conclusion can be drawn regarding severe bleeding events. Direct comparison of cryobiopsy and forceps biopsy through multi-center randomized, controlled trial would be valuable to verify our findings.
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Obstructive sleep apnea (OSA) is a common type of sleep-disordered breathing associated with multiple comorbidities. Continuous positive airway pressure (CPAP) is the first choice for moderate-severe OSA but poor compliance brings a great challenge to its effectiveness. Telehealth interventions ease the follow-up process and allow healthcare facilities to provide consistent care. Fifth-generation wireless transmission technology has also greatly rationalized the wide use of telemedicine. Herein, we review the efficacy of the telehealth system in enhancing CPAP adherence. We recommend applying telemonitoring in clinical practice and advocate the development of a biopsychosocial telemedicine model with the integration of several interventions. Big databases and promising artificial intelligent technologies make clinical decision support systems and predictive models based on these databases possible.
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INTRODUCTION

Obstructive sleep apnea (OSA) is a common type of sleep-disordered breathing caused by pharyngeal collapse during sleep (1). It is estimated that approximately 1 billion adults aged 30–69 years suffer from OSA worldwide (2). Several studies revealed comorbidities linked with OSA including cardiovascular, cerebrovascular, metabolic diseases, cancer, etc. (3). It is also associated with reduced quality of life (4), excessive daytime somnolence, elevated risk of accidents (5, 6), and sudden cardiac death (7). Since the 1980s, continuous positive airway pressure (CPAP) established as first-line therapy for moderate to severe OSA (8). However, low adherence to CPAP brings a great challenge to clinical practice (9–11). Several strategies are employed to promote adherence and enhance the efficacy of CPAP, i.e., multiple educational interventions, behavioral therapies, CPAP device modifications, etc. (12). During the past two decades, telehealth technology has been applied to the CPAP field, easing the follow-up process and allowing healthcare personnel to deliver more consistent care. Telehealth is defined as the application of telecommunications and digital communication technologies to deliver and facilitate health services (13). Telehealth adopted mobile health, video, audio, digital images, and telemonitoring (TM) to provide clinical and non-clinical services (14). The 2015 guidelines for telemedicine utilization published by the American Academy of Sleep Medicine (AASM) promoted telehealth technology development, and the coronavirus disease (COVID-19) pandemic has expedited internet-based home telemedicine for the diagnosis and treatment of OSA (15). Recent updates from AASM advocated the provision of high-quality sleep care through telehealth interventions and suggested a significant role of telehealth in maintaining the continuity of sleep health (16). Fifth-generation (5G) wireless transmission technology has increased the possibility of wider telemedicine applications. Herein, we aim to review the efficacy of the telehealth system on CPAP adherence and propose the possibility for future developments.



FACTORS ASSOCIATED WITH CONTINUOUS POSITIVE AIRWAY PRESSURE ADHERENCE

Patient characteristics such as age (17, 18), gender (17, 19), race (20), and smoking status (21) could affect adherence, although these factors were not consistent determinants of CPAP adherence (12). For example, the adherence to CPAP positively correlated with age was reported in a retrospective study (17), but a large cohort study showed a negative correlation with age, particularly in those aged >75 years old, which may be due to the body sickness, sleeping time, or sleep quality of the elderly can affect the adherence of CPAP (18). Smokers caused decreased CPAP adherence compared to non-smokers (21), which is attributed to those smokers being more susceptible to upper airway discomfort, the greater severity of OSA, and as a result, less likely to take advice from healthcare providers (21).

The severity of OSA or the symptoms affects CPAP compliance. Apnea-hypopnea index (AHI), oxygen desaturation index (ODI), and the severity of excessive daytime sleepiness are positively related to adherence (21–23). Further, side effects of CPAP may influence adherence, like mucosal drying, difficult nasal breathing, claustrophobia, etc. (24, 25). Additionally, patients’ psychosocial factors such as the internal locus of control (26), mental health, personality (27–29), and availability of social support (30) can affect adherence. Patients with greater locus control can overcome the side effect to achieve better adherence (26). Also, social support and bed partner is vital in improving CPAP compliance. The sleeping partner could give feedback and advice on the patients’ symptomatic improvements thus may help to improve the adherence (30). Moreover, those who are motivated to resolve their problems tend to have better adherence (27–29).

The higher income and education level is associated with increased adherence. The socio-economic status is positively correlated with health knowledge and accessibility to healthcare services (31). Medical cost, insufficient time, and transport issues concerning patients reduce CPAP adherence. Thus, CPAP adherence is determined by multifactor and should be individualized and closely monitored to address non-compliance and tolerance when prescribed (12, 25).



APPLICATION OF TELEMONITORING ON THE CONTINUOUS POSITIVE AIRWAY PRESSURE ADHERENCE


Effects of Tele-Monitoring on the Obstructive Sleep Apnea Outcome

TM is a subset of telehealth. Real-time feedback reduces clinical care time and ameliorates physiological health account for the positive short-term TM effect significantly (32–36). TM significantly improves psychological health score of Short Form-12 in TM after 6 months (p = 0.05) and also shows a higher positive change in score than standard group (SG) which (9.26 ± 2.09 vs. 0.73 ± 1.78, p = 0.003) (37, 38). Additionally, TM possessed significant clinical improvements and reduced side effects, and improved the tidal volume (TG = 9.4 mL/kg vs. SG = 8.7 mL/kg, p = 0.022) (39) and the blood pressure (systolic blood pressure reduces by 7.4 mmHg and diastolic blood pressure reduces by 4.1 mmHg) (40). It mitigates disease severity shown by improvements on the Epworth Sleepiness Scale (TG ranges from 3.7 to 4.58, SG ranges from 6.05 to 6.1) (38, 40, 41) and reduces residual AHI (TG = 1.3 ± 1.0 vs. SG = 3.2 ± 3.8, p = 0.04) (36). With a combination of patient engagement tools, TM even reduces treatment termination by 2.8–5.6% and reduces mask leakage [(TG = 16.9 L/min vs. SG = 19.4 L/min, p < 0.0001) and (TG = 2.7 ± 4.0 L/min vs. SG = 4.1 ± 5.3 L/min, p < 0.001)] in two respective studies (32, 33, 42).

TM system decreases patients’ burden of visits by enabling flexible timing and reduced traveling times greatly (36). It also reduces costs by €47.32–153.34 compared to inpatient care (43, 44). However, the greater costs of the advanced device and no reimbursement for telemedicine services from most insurance companies are still barriers to patients of lower socioeconomic status (45). Thus, insurance coverage for telemedicine and subsidizing CPAP devices might solve the patients’ financial concerns and secure long-term benefits. TM able to reduce nursing time but there is increased workload in CPAP technicians (36, 44, 46). Since OSA is associated with multiple comorbidities, we notice a distinct lack of studies exploring the associations between TM effects on those with disability.



Effects of the Telemonitoring in Enhancing Continuous Positive Airway Pressure Adherence

TM system transmits patients’ data to healthcare providers (HPs), enabling HPs to track CPAP usage and adherence at specific time intervals, i.e., 1, 3, and 6 months and more (Table 1) (35, 38, 40, 47–51). Optimally, the HPs will contact the patients through phone calls, messages, email, or by using the automatic feedback system to reinforce knowledge or encourage patients (40, 47, 48). The controlled pilot study and retrospective study demonstrate TM significantly enhanced CPAP mean daily usage hours and median CPAP usage after 1 month (36, 50), although a randomized controlled trial (RCT) finds no significant effect of TM in this 1 month (49).


TABLE 1. Summary of telemonitoring studies.
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Randomized trials illustrate CPAP adherence improves after 3-month of TM (35, 48). A shorter time to the first technical intervention might be associated with better compliance (35). Researchers have further confirmed that the combination of TM and education is more effective than TM alone (48). Notably, some prospective studies did not find significant effects at 3 months follow up, which may be attributed to the small sample sizes (37, 44, 46).

TM improves CPAP adherence at 6-month follow-up (38, 40, 47). TM significantly improves CPAP compliance [telemonitor group (TG) = 57.3 ± 34.5% vs. standard group (SG) = 27.5 ± 32.5%, p = 0.00025] and daily CPAP usage time (TG = 4.4 ± 2.5 h/night vs. SG = 2.1 ± 2.2 h/night, p = 0.000063) (40). A RCT observed a positive effect of multimodal TM in CPAP compliance compared to the usual care group (TG = 5.28 ± 2.23 h vs. SG = 4.75 ± 2.50 h, p = 0.05) (38). TM increases the percentage of days with good adherence from 76.6 ± 24.2% to 79.5 ± 22.0% (p < 0.01) after 6 months compared to baseline (47). Contrastingly, a RCT reported that TM did not improve overall adherence after 6 months, which might be due to the “ceiling effect” (52).

Finally, the current evidence has not confirmed the long-term effect on CPAP adherence at 1-year follow-up (36, 51). High dropout rates and telemonitoring during the habituation stage may account for the insignificant results (51). Compared to the titration stage, TM during the habituation stage might be another reason that leads to insignificant results (36). Although there are no significant improvements, TM still possesses a non-inferiority therapeutic effect compared to usual care after 1 year. We postulate that personality traits are a vital factor determining the length of effective TM intervention based on other researches (28) and suggest future research on interventions to secure long-term telemonitoring effects.

It should be noticed that most of the recent findings show equivocal effects similar to a meta-analysis which demonstrates a significantly higher mean difference of 0.79 h of CPAP compliance in the TM group for short-term follow-up (<3 months), but not for long-term follow up (45). Although the long-term effects remain contentious, we still recommend including telemonitoring in current clinical practice due to its multiple benefits and non-inferiority compared to usual care.



Various Telemonitoring Approaches Showed Different Effects for Continuous Positive Airway Pressure Adherence

Several TM approaches are used to improve adherence to CPAP (Table 2).


TABLE 2. Summary of telehealth approaches.
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Telephone: Health coaching through the phone improves CPAP usage in the past 30 days (p = 0.03) (53). The researchers call the patients in the intervention group three times in 30 days to identify and assist them in immediate problem-solving (53). The HPs checked CPAP usage, understood the obstacles, and provide patients with different solutions. A designed list of responses used to communicate helps solve issues more effectively in contrast to a study showing the negative result (49, 53). These well-designed interventions might account for the positive effect. In addition, other studies determine that positively framed message increases CPAP total use hours in week-2 but the effect diminishes in week-6 (54).

Text message: Text messages for reminding about CPAP use significantly improve overall compliance in the first 7 days, but the effect fades at 30 days (55). Other research utilizing email and automated message methods shows no significant effect on CPAP adherence (56). The different content of responses from HPs in these studies might account for the differing results. The faded effect might be due to reduced motivation, which could possibly be addressed by a lack of interesting content, videos, or further information on CPAP therapy (54).

Apps: During the past 5 years, a total of three new apps (“SleepMapper”; “MyPathway”; “Appnea”) have been reported in detail (57–59). The apps allow HPs to provide real-time feedback and education, it also allowed patients to self-monitor and receive a personalized prescription for CPAP usage. “SleepMapper” significantly increases any CPAP usage at night (SG = 55.5 ± 24.0% vs. “SleepMapper” group = 78.0 ± 22.0%, p < 0.001) and usage of CPAP > 4 h (SG = 37.0 ± 25.0% vs. “SleepMapper” group = 54.0 ± 27.0%, p = 0.02) compared to the standard care group (57). Compared to new CPAP patients, “Appnea” significantly improves CPAP adherence who frequently used when compared to rarely used patients (5.6 ± 1.4 vs. 4.3 ± 1.3 h/night, p = 0.008) (58). In contrast, although participants were satisfied with the “MyPathway” app, there was no significant modification in PAP adherence. Almost a quarter of patients were 70–79 years and senior patients are perhaps less motivated in learning and utilizing new technology, thus resulting in negative outcomes (59). Limitations of current studies are the small sample sizes and the short study duration (57, 58).

Despite inconclusive results, mobile apps, phone calls, and text messages still possess some advantages. Apps remain the most promising approach. Future app development should continue to focus on user-friendly, online educational programs, troubleshooting models, and real-time access to CPAP usage and AHI data for self-monitoring. They can encourage patients to maintain a healthy lifestyle and adhere to given therapy with minimal effort from HPs (60). The required smartphones or tablet devices are usually affordable (61). For telephone calls and text messages which displayed short-term effects, additional modulations are required to enhance adherence. We postulate that a convenient troubleshooting model and active approach are vital in determining the success of the intervention. Actively assisting users to troubleshoot problems shows better results than passively waiting for calls (59). Maintaining long-term compliance with CPAP therapy is challenging. Adherence to CPAP may decline over time exacerbated by the negative attitudes toward the treatment and insufficient support from family members and the healthcare team (62).



Application of Tele-Education in Improving Continuous Positive Airway Pressure Adherence

Tele-education is the application of technologies to provide distance learning. Patients’ negative perceptions of the benefit and health value of CPAP are the common causes of poor CPAP adherence (63, 64). Patients’ lack of confidence in the therapeutic effect of CPAP results in poor adherence (65, 66). Therefore, education is vital in enhancing patients’ perception of CPAP therapy. Tele-education is a well-known alternative model to educate patients. The modes of tele-education include slide shows, videos, audio, and web-based learning (67). Therefore, patients can watch the educational material as soon as they are available and shorten clinical care time (36). The recent COVID-19 pandemic has also accelerated the development of tele-education.

A few studies have investigated the effect of tele-education (Table 3). RCTs found educational videos have no significant improvement in CPAP adherence (48, 68). Although patients understood the given slideshow and educational booklet, there was no significant improvement in mean hours of CPAP (69). The Health Belief Model states that a change in health behavior is primarily due to health perception instead of knowledge (66). Confidence in the therapeutic effect is a key factor that alters health practice (66). Therefore, non-continuous tele-education alone is insufficient (48, 68, 69). Most studies had a small sample size (68, 69) and a short period of intervention (48, 68, 69), which may also influence the outcome. No examination of patients’ knowledge, attitude, and practice pre-and post-study is also a limitation of existing educational studies.


TABLE 3. Summary of tele-education studies.
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Educational intervention with motivation enhancement significantly improves CPAP adherence (70). Motivation enhancement is a behavioral intervention based on the principle of the motivational interview (71). Patients had a one-on-one conversation session with a psychologist, watched an educational video, and received follow-up phone calls from the psychologist (71). This intervention significantly increased the average nightly use of CPAP time by 99 min more than the CPAP-only group (p = 0.003) after 6 months (71).

The development of tele-technology concerning OSA patients’ psychology and social life remains scarce. Multiple healthcare-related parties should consider the implementation of tele-technology in the advancement of the biopsychosocial model. Since a recent study found group CPAP education enhanced acceptance of therapy, future studies can investigate educational interventions with peer support through social app platforms (72). Integration of continuous tele-education and online motivational interviews might maximize the positive effect on patients’ health behavior by enhancing their confidence level about the therapy (65, 71). We also suggest the inclusion of a polysomnography chart in the educational video, as one RCT found that this increased the mean usage hours (SG = 4.2 ± 2.5 h/night, interventional group = 5.2 ± 2.1 h/night, p = 0.027) and the compliance (SG = 68.3%, interventional group = 86.5%, p = 0.021) (73).



Future of Telehealth Systems for Enhancing Continuous Positive Airway Pressure Adherence

As individual treatments show heterogeneous results, we would like to propose an individualized telehealth model integrating all the interventions shown in Figure 1. Firstly, a new CPAP user should receive educational material in the form of a video, slideshow, or booklet. Then, adherence data should be transmitted to the cloud database, enabling HPs to analyze CPAP adherence. Patients with good compliance will use the apps for self-management and contact HPs when necessary. If HPs review the usage data periodically, then patients with poor adherence could receive the advice and combinations of interventions. Currently available interventions to combine included text message, telephone, motivational enhancement, and patient engagement tools. Developers and researchers could consider including family engagement tools (74), online patient support groups using telecommunication apps, and continuous tele-education in future research.
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FIGURE 1. Flowchart for future telehealth application. New CPAP users receive education and initiate a self-management approach initially. Then, healthcare providers remotely monitor CPAP usage data and identify the patient’s adherence occasionally. For the patient with good adherence, healthcare providers administrate an app for the patient to self-manage. Patients with insufficient adherence should join combining interventions. Currently available interventions include telephone, text message, psychological motivational enhancement, and patient engagement tools. Future studies on continuous tele-education, family engagement tools, and online patient support groups are required. Collection of adherence data able to build big data. Training artificial intelligence with big data might help to predict adherence of new CPAP users. Blue words and dotted lines represent future interventions.


Moreover, the collection of adherence data from CPAP devices into a database also facilitates big data development (35, 38, 40, 47–51). The application of cloud based-data allows an overview of real-world data and investigation of CPAP adherence patterns (75, 76). Besides, big data shows the effectiveness of different interventions with minimal effort required, compared to the traditional observational studies (33). An analysis of AirView alone compares adherence patterns among various countries (N = 4,181,490) and supports the positive effects of a patient engagement tool (77). Big data from German homecare providers also reveals several predictors of poor CPAP adherence and investigated the effect of shifting therapy (78). The current benefits of big data analysis imply the worthiness of building more cloud databases and collecting various types of data.

Recently, some studies have developed artificial intelligence models to predict adherence (79–81). A model predicting the next-30-day adherence phenotype achieved the highest sensitivity (90%), specificity (96%), and accuracy (95%) (79). However, the model for 6-month adherence had a sensitivity ranging between 71 and 77% and a specificity ranging between 69 and 72% (80). These promising results encourage future studies to use big data to develop clinical prediction models to identify patients with likely poor adherence. Additionally, future research could collect various types of data to integrate the biopsychosocial model into clinical prediction models. For example, responses from clinical and psychological questionnaires, the app usage data, and word patterns of patients’ responses can build a database to train more artificial intelligence models. Investigation of knowledge, attitude, and practice of CPAP adherence also assists in the generation of these prediction models (Figure 2).
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FIGURE 2. Integration of big data and artificial intelligence for the development of the predictive model. Collection of adherence data from telemonitoring able to generate adherence patterns database. Future studies can use the database to continue work on the artificial intelligence model to predict CPAP adherence. Researchers can also consider building biopsychosocial databases by retrieving data such as psychological, social, and clinical questionnaires in-app. Developers can collect app usage data and word patterns used in telecommunication apps to train the artificial intelligence model to predict CPAP adherence. For education, researchers could work on a prediction model based on the knowledge, attitude, and practice of CPAP users. The blue words represent future intervention.





CONCLUSION

Telemonitoring has been proven to improve the compliance of CPAP, resulting in the reduction of disease severity and side effects, and enhancement of social and psychological support. It also improves the quality of life and slightly alleviates the economic burden. We support the application of telemonitoring in CPAP management and following up. As tele-education alone is insufficient in improving CPAP adherence. Thus, we call for a bio-psycho-social care model integrating multiple interventions to promote better care for CPAP therapy.
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Background: Patients with chronic obstructive pulmonary disease (COPD) have systemic damage secondary to the primary pulmonary impairment, expressed in impaired peripheral musculature and a deficit in postural control compared to healthy subjects. This study aimed to determine the effects of rehabilitation on balance in patients with COPD.

Methods: An exhaustive search was conducted in four databases (Pubmed, Cochrane Library, EMBASE, Web of Science). Articles with a population of COPD receiving rehabilitation (therapeutic exercise, pulmonary rehabilitation, or physical therapy modalities) in an outpatient setting were included. Two independent reviewers selected and assessed the study quality. The risk of bias was assessed with the Cochrane Risk of Bias Tool for Randomized Controlled Trials.

Results: A total of eight studies involving 284 patients were included in the qualitative synthesis. The meta-analysis showed an overall result in favor of balance training for the Berg Balance Scale (mean difference 3.91 points; 95% CI: 1.51 to 6.31; P = 0.001), Timed Up and Go test (mean difference −1.58 s; 95% CI: −2.63 to −0.53; P = 0.003) and Unipedal stance test (mean difference 3.56 s, 95% CI: 2.58 to 4.54; P).

Conclusion: This meta-analysis revealed that rehabilitation improve static and dynamic balance in patients with COPD.

Systematic Review Registration: PROSPERO ID: CRD42020218367.

Keywords: exercise, postural control, risk of fall, rehabilitation, chronic obstructive pulmonary disease (COPD)


INTRODUCTION

Non-communicable diseases kill more than 40 million people each year, accounting for 71% of deaths worldwide, of which respiratory diseases are the third most prevalent cause (1). Chronic Obstructive Pulmonary Disease (COPD) is the fourth leading cause of death in the world and the World Health Organization (WHO) estimates that it will be the third by the year 2030 (1). The COPD is defined as a common, preventable, and treatable disease characterized by respiratory symptoms and persistent airflow limitation due to airway or alveolar abnormalities, usually caused by significant exposure to noxious particles or gases (2). There is sufficient evidence to state that COPD patients have systemic damage secondary to the primary pulmonary impairment, which is expressed in an impairment of peripheral musculature and a deficit of postural control compared to healthy subjects of the same age (3).

Musculoskeletal dysfunction in COPD is associated with different factors, including nutritional alterations, inflammation, oxidative stress, drugs, and the presence of different comorbidities (4). On the other hand, physical deconditioning caused by exertional dyspnea leads to a more sedentary lifestyle, generating greater respiratory and peripheral muscle mass loss (5). In this context, muscle weakness, physical inactivity, and limited mobility are associated with more significant deterioration of postural control in people with COPD, which is associated with increased mortality, less independence, a poorer quality of life, and a higher risk of falling (3, 6). Regarding the latter, it has been reported that the history of falls in people with COPD could range from 33 to 50% (7–10). In routine practice, different clinical tests can be used to predict the fall risk in patients with COPD. For example, the Timed Up and Go test has high reliability and predictive validity for falls in older people (11), and the Berg Balance Scale (BBS) has been identified as useful in successfully identifying individuals at risk for falls (12).

The traditional approach to treating this disease has been based on alleviating and/or improving respiratory symptomatology (13). Nevertheless, in recent decades, pulmonary rehabilitation protocols have been modified to provide more comprehensive and functional care to patients, focusing on increasing participation, minimizing health care costs, increasing exercise tolerance, improving quality of life, decreasing hospitalizations, and reducing mortality (14). In addition, balance training has been installed as a new treatment target in COPD patients to prevent falls (15).

A recent meta-analysis found that people with COPD have reduced balance compared to healthy subjects, which may be related to reduced muscle strength, physical activity, and exercise capacity (16). Although pulmonary rehabilitation has shown promising results in improving exercise capacity (17), outcomes related to balance have been little studied. Therefore, this study aimed to determine the effects of rehabilitation on static and functional balance in people with COPD.



METHODS

This systematic review was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) recommendations (18). The protocol was previously registered in the PROSPERO International Prospective Register of Systematic Reviews (CRD42020218367) in November 2020.


Eligibility Criteria

Inclusion criteria were based on PICO: P) Population: Adults with a confirmed diagnosis of COPD based on Global Obstructive Lung Disease (GOLD) criteria (2); I) Intervention: outpatient rehabilitation programs (e.g., therapeutic exercise, pulmonary rehabilitation, or physical therapy interventions); C (Comparison): conventional treatment, usual care or active controls (e.g., education) or no intervention; O (Outcome): The included studies should evaluate static or dynamic balance using clinical tests [i.e., Berg Balance Scale (BBS), Time up and go (TUG), Unipedal Stance Test (UST), Balance Evaluation Systems Test (BESTest), or similar]. Randomized controlled trials (RCTs), controlled intervention studies, and before and after (Pre-Post) studies were included. Patients with neurological conditions or patients with acute exacerbation of COPD in the last 4 weeks were excluded.



Search Strategy

An exhaustive search was conducted in the following databases: PubMed, Cochrane Library, EMBASE and Web of Science, with the keywords divided into four domains: (1) Population: chronic obstructive pulmonary disease OR COPD; (2) Intervention: rehabilitative interventions OR pulmonary rehabilitation OR treatment outcome OR physical therapy modalities OR physical therapy interventions; (3) Outcomes: postural balance OR accidental falls OR risk of falls. (4) Condition: adults OR elderly. No temporary or language filters were included. The search was performed on titles, abstracts, and keywords. The selected terms will be combined using Boolean logical operators (OR, AND, NOT). All references were analyzed using Rayyan web software (19). An additional hand search of the references included in the selected studies and in the previous systematic reviews was performed.



Selection of Studies

First, two independent reviewers (COV and ARA) screened the studies by title and abstract according to the eligibility criteria. A third reviewer (RNC.) resolved discrepancies, and references considered not relevant were discarded. After this selection, full-text articles were accessed to assess compliance with the eligibility criteria. Any discrepancies were resolved by consensus in consultation with a third reviewer (RNC). The exclusion criteria were: (1) Wrong study design: Letters to the editor, editorial, review articles, and in vivo and in vitro studies were excluded (including the type of wrong publication); (2) Wrong population: we excluded non-outpatients or patients with non-stable diseases; (3) Wrong outcome: Measurement of balance by instrumental tests (e.g., posturography).



Data Extraction

A Microsoft Excel (Microsoft® Excel 2010, Microsoft Corporation, Seattle, USA) table was designed for data extraction. Data extraction was performed in duplicate using a standardized form that included the following data: author, year of publication, country of origin, study design, number of patients, number of men and women, age, forced expiratory volume in the first second in percent predicted values (FEV1%pred), intervention (frequency, follow-up), results and conclusions. Disagreements were resolved by a third reviewer (RNC). If any relevant data were not included in the article, the authors were contacted by e-mail to obtain the information.



Methodological Quality Assessment

Risk of bias assessment of the included studies was performed using the Cochrane Risk for bias (RoB) tool for randomized clinical trials and ROBINS-I for non-randomized clinical trials (20). Three reviewers (COV, ARA, MCD) performed the assessment independently, and if there were discrepancies or disagreements between the reviewers' judgments, a fourth reviewer (RNC) was consulted.



Data Synthesis and Analysis

RevMan 5.3 software (The Cochrane Collaboration, Oxford, UK) was used for meta-analysis and generation of a forest plot that showed combined estimates with a 95% confidence interval. The mean difference of the results and the standard deviation were pooled for each study comparing an experimental intervention with a control group. Then, a random effects model with inverse variance (IV) method was used to obtain the combined effect measures for each primary outcome. This choice of weight minimizes the imprecision (uncertainty) of the pooled effect estimate. Statistical heterogeneity was assessed by I2 and classified as could be unimportant (I2 = 0-40%), moderate (I2 = 30-60%), substantial (I2 = 50-90%) or considerable (I2 = 75-100%) (20).




RESULTS


Study Selection

The initial search yielded 282 articles of interest, then 40 duplicates were eliminated and 225 were excluded in the screening of titles and abstracts. Of the 17 articles evaluated in the full-text screening, four were eliminated due to type of publication, two due to design, two due to study population, and one due to outcome. Finally, a total of eight articles were included in the qualitative synthesis (21–28). A detailed diagram of the selection process of these articles is presented in Figure 1.


[image: Figure 1]
FIGURE 1. Study selection process.




Characteristics of the Included Studies

The included articles were published between 2014 and 2020, of which six corresponded to randomized clinical trials (21–25, 28) one non-randomized clinical trials (26), and one quasi-experimental study (27). Of the total number of articles selected, three were from Europe, two from Africa, two from Asia and one from South America (Table 1). All were published in English.


Table 1. Characteristics of the studies.
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Participants

In total, 284 patients with COPD were enrolled in the included studies. The sample size was between 20 (25) and 68 (23) participants, with mean age varied between 55.2 ± 3.4 and 68.0 ± 11.8 years. Four studies included only male subjects with COPD (21–23, 28). Overall, most of the included patients were male (n = 247, 87%). The BMI ranged from 24.1 ± 3.8 to 29.9 ± 4.4 and FEV1%pred ranged from 38.6 ± 8.6% to 83.8 ± 6.4%. Total follow-up time ranged from 8 to 24 weeks.



Summary of Results

Seven of the selected studies included combined treatment protocols (21–26, 28), while only one study had an isolated intervention protocol (27). Regarding the intervention performed, can be classified into the following categories: balance exercises (22, 23, 25, 27, 28), strength training (21–28), endurance or walking exercises (21, 22, 24–28), aquatic exercises (24), and exercises with neuromuscular electrical stimulation (21). In addition, three articles included education and psychosocial support sessions (22, 23, 27). Table 2 summarizes the different therapeutic interventions (frequency, intensity, time and type, follow-up), results, and conclusions used in each of the included studies.


Table 2. Synthesis of interventions and results.
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Berg Balance Scale

Four studies reported changes in balance using the BBS comparing the results with a control group (21, 23, 25, 28). The overall result of the meta-analysis was in favor of the experimental group [mean difference 3.91 points (95% CI: 1.51 to 6.31; P = 0.001)] (Figure 2). Heterogeneity between studies was considerable (I2 = 95%).


[image: Figure 2]
FIGURE 2. Effects of rehabilitation interventions on the Berg balance scale. Each study considered in the meta-analysis corresponds to a point estimate, which is bounded by a 95% CI.




Timed Up and Go

Six studies reported changes in balance using the TUG, of which three studies were included in the meta-analysis (21, 23, 25) as they compared the intervention with a control group. The overall result of the meta-analysis was in favor of the experimental group [mean difference −1.58 s (95% CI: −2.63 to −0.53; P = 0.003)] (Figure 3). Heterogeneity between studies was considerable (I2 = 93%).


[image: Figure 3]
FIGURE 3. Effects of rehabilitation interventions on the Test timed up and go. Each study considered in the meta-analysis corresponds to a point estimate, which is bounded by a 95% CI.




Other Balance Measures

Four studies reported changes in balance using the UST of which two studies were included in the meta-analysis (23, 25) as they compared the intervention with a control group. The overall result of the meta-analysis was in favor of the experimental group [mean difference 3.56 s (95% CI: 2.58 to 4.54; P)] (Figure 4). Heterogeneity between studies was moderate (I2 = 41%). On the other hand, two studies used the Activities-Specific Balance Confidence (ABC) scale (23, 25), one study used the Balance Evaluation Systems Test (BESTest) (28) and one study used the Tinetti test score (23). These studies reported a significant improvement in balance compared to the control group.


[image: Figure 4]
FIGURE 4. Effects of rehabilitation interventions on the Unipedal stance test. Each study considered in the meta-analysis corresponds to a point estimate, which is bounded by a 95% CI.




Risk of Bias

Regarding the random sequence generation domain, only one study was found to be at high risk (25). In the allocation concealment domain, one study presented high risk (25) and two were uncertain (23, 24). Two studies presented high risk for blinding of participants and personnel (21, 24) while the rest of the studies were uncertain (22, 23, 25, 28). Two studies presented high risk for blinding of outcome assessment domain (21, 28) and three studies had a high risk of bias due to incomplete outcome data (21, 22, 24). None of the studies presented a high risk of bias in the selective reporting domain, but most of the judgment was uncertain (22, 23, 25, 28). Two studies presented high risk for other sources of bias (25, 28). Figure 5 shows the summary of each Risk of Bias domain.


[image: Figure 5]
FIGURE 5. Summary of the risk of bias assessment using the Cochrane Risk for bias (RoB) tool.





DISCUSSION

This systematic review collected information regarding physical therapy interventions and protocols focused on balance training and postural control in COPD patients. Most of the studies that added balance training found significant changes for balance improvement in COPD patients compared to conventional treatments.

Different interventions have been proposed in the current literature to improve balance, including strength training (21–28) endurance or walking exercises (21, 22, 24–28), aquatic exercises (24), exercises with neuromuscular electrical stimulation (21), and specific balance training in addition to traditional treatments (22, 23, 25, 26, 28). Significant improvements obtained in balance were evaluated with different clinical tests for functional balance (TUG) (21, 23, 25), static balance (UST) (22–25), or both (BBS and BESTestest) (21, 23, 25).

The minimum clinically important difference (MCID) with respect to TUG was recently established between 0.9 and 1.4 s (29). Therefore, our results indicate that balance training had an overall significant and clinically relevant effect for this outcome (mean difference −1.58 s). Regarding BBS, although the overall effect obtained from the meta-analysis (mean difference 3.91 points) was larger than the minimum detectable change described in the literature (3.49 points) (30), anchor-based MCID estimates range from 3.5 to 7.1 for BBS (31), making it difficult to estimate whether this change was clinically relevant. Regarding UST, the overall effect obtained from the meta-analysis (mean difference 3.56 s) was lower than the minimal detectable change (4.03 s) established in patients with COPD (30). The unipedal stance training protocols are effective for promoting balance gains in healthy adults (32). However, in COPD patients future studies are needed to establish the effectiveness regarding volume, frequency, and potential progressions of unipedal stance exercise protocols' (32).

These results agree with two similar systematic reviews; Delbressine et al. (33) found that exercise-based interventions have the potential to improve balance in COPD patients and pulmonary rehabilitation combined with balance training showed greater benefits. Chuatrakoon et al. (34) also found that available RCTs suggest that exercise interventions (e.g., cycling, Tai Chi) can improve balance performance in COPD patients, both in the outpatient and inpatient settings. However, in contrast to both reviews (33, 34), our study performed a quantitative synthesis of the effects of rehabilitation interventions on balance. This allows objective data to be obtained on the clinical relevance and accuracy of the differences between the proposed rehabilitation interventions and their comparators. In addition, our meta-analysis only included balance assessment by clinical testing in the outpatient setting, excluding studies that incorporated instrumental assessment or evaluations in the inpatient setting. Therefore, our results could be extrapolated to a primary health care context, where community-based rehabilitation appears as a possibility for constant treatment that allows permanent control, and at the same time, promotes the autonomy of individuals concerning their pathology (35).

The various clinical tests used indicate that an alteration in static or functional balance can increase the risk of falls in patients with COPD. In particular, this population presents an even higher risk of falls due to musculoskeletal disorders and age. Furthermore, the pharmacological treatment of COPD includes corticosteroids (2), and it has been reported that this group of drugs favors the production of osteoclasts and a decrease in osteocytes, leading to an increased risk of osteopenia or osteoporosis (36, 37). Therefore, the management of these risk factors must be comprehensive.

Given that falls are associated with an increased risk of all-cause mortality in patients with COPD (38), improving balance and preventing falls should become a priority treatment goal in these patients. In this context, we know that balance can be influenced by many factors, including muscle strength and cognitive aspects (39). In this context, new approaches to assess and improve postural control have been proposed in the literature, such as dual-task training (40–42). This proposed intervention (e.g., secondary tasks, counting backwards) was considered in only two of the included studies (23, 26), with a large effect on functional balance in COPD patients. Therefore, pulmonary rehabilitation programs should include all these aspects in future research.

This study has some limitations. In general, the sample size included in the studies was relatively small. In addition, most of the studies had a high risk of bias in some of the domains evaluated, the most critical being the incomplete reporting of results, blinding of the patient and staff, and blinding of the evaluator. Finally, despite the significant improvements obtained in meta-analyses for the overall effect size in each outcome, we observed substantial to considerable statistical heterogeneity, which could be attributed to the few studies included and the low sample size.



CONCLUSION

Our results revealed that rehabilitation improve static and dynamic balance in patients with COPD. Due to the small sample size in this meta-analysis and considering the high prevalence of falls in people with COPD, future large-scale randomized controlled trials are needed to evaluate different exercise protocols' efficacy to prevent falls.
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The introduction of the Sepsis 3.0 guidelines in 2016 improved our understanding of sepsis diagnosis and therapy. Personalized treatment strategies and nursing methods for sepsis patients are recommended in the “Save Sepsis Campaign” in 2021. However, mortality in sepsis patients remains high. Patients with sepsis-related acute respiratory distress syndrome account for around 30% of them, with fatality rates ranging from 30 to 40%. Pathological specimens from individuals with sepsis-related ARDS frequently demonstrate widespread alveolar damage, and investigations have revealed that pulmonary epithelial and pulmonary endothelial injury is the underlying cause. As a result, the purpose of this work is to evaluate the mechanism and research progress of pulmonary epithelial and pulmonary endothelial damage in sepsis-related ARDS, which may provide new directions for future research, diagnosis, and therapy.
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Introduction

Sepsis, one of the most prevalent complications in the ICU, has a high fatality rate due to its complicated molecular underpinnings. Sepsis was described in 2016 as a “life-threatening organ failure produced by an unbalanced host response to infection” (1). Sepsis is frequently characterized by a dysregulated host response to invading pathogens; this systemic inflammatory response can result in disseminated intravascular coagulation, multiple organ dysfunction syndromes (MODS), and mortality (2). With the incremental development of sepsis diagnosis, treatment, and management over the last several decades, and the ongoing updating of recommendations, the mortality rate of sepsis has significantly declined (about 20–30 percent) (3). However, early detection of sepsis, prevention of multiple organ failure, and improved prognosis remain pressing concerns.

Sepsis frequently causes organ dysfunction and damage, such as acute kidney injury (AKI), acute lung injury (ALI), and ALI can be exacerbated by acute respiratory distress syndrome (ARDS). As a result, ARDS is often regarded as a deadly consequence of severe sepsis, with sepsis accounting for around 32% of all cases. The major histological hallmark of ARDS is severe diffuse alveolar damage, which is frequently driven by endothelial dysfunction and local inflammation. As a diverse illness, ARDS frequently manifests as sudden exacerbations of non-cardiogenic pulmonary edema, severe hypoxemia, and the requirement for mechanical ventilation (4, 5).

The focus of this review is on the pathophysiology and current research on sepsis-associated ARDS. It also goes through the biomarkers that play a role in sepsis-related ARDS, which may provide new directions for future research, diagnosis, and therapy.



The potential mechanisms of sepsis-related ARDS

A significant pathogenic characteristic of ARDS is the damage to vascular endothelial (VE) cells, alveolar epithelial cells, and epigenetics. However, the complex pathways underlying sepsis-related ARDS remain unknown. We have illustrated some potential mechanisms in Figure 1.


[image: Figure 1]
FIGURE 1
 Illustration of an injured alveolus. Various damage factors (such as attack by bacteria and viruses) can directly or indirectly cause damage to the distal alveolar structure and the related microvascular regions. During the exudative phase, alveolar macrophages get activated, resulting in the release of powerful pro-inflammatory mediators and chemokines (such as TNF, IL-6, and IL-8) that promote the accumulation of neutrophils and monocytes. Activated neutrophils (such as cytokines) further promote damage by releasing toxic mediators. The resulting damage causes the loss of barrier functions as well as interstitial an intra-alveolar flooding. ATI, alvcolar type I cell; TNG, tumor necrosis factor; IL-6, interlcukin-6; Ang-2, angiopoietin 2; RAGE, receptor for advance glycation end-products.



VE injury

Although the nature and mechanism of endothelial injury in ARDS remain unknown, new research suggests that it is linked to inflammatory responses, VE-cadherin alteration, apoptosis, or other cell death pathways (such as pyroptosis and autophagy), and oxidative stress.


Inflammatory responses

In patients with sepsis, the immune system is usually in disequilibrium. Antigen-presenting cells activate a variety of signaling pathways between immune cells under external and internal stimulations, resulting in the release of inflammatory mediators such as interleukin (IL)-1, IL-6, IL-8, tumor necrosis factor-alpha (TNF-α), and the release of pro-inflammatory signals accelerates the vascular endothelial dysfunction, which, in turn, promotes the inflow of inflammatory cells (such as neutrophils, macrophages, monocytes, lymphocytes, and lymphocytes), forming a vicious pro-inflammatory cycle, which ultimately aggravates and amplifies lung or systemic inflammation (6, 7). Therefore, pathogen-derived inflammatory mediators and activated immune cells not only trigger immunological responses but also cause host cell harm in sepsis.

The activation and destruction of endothelial cells can result in the production of pro-inflammatory signaling molecules (such as platelet-activating factor, angiopoietin 2, tumor necrosis factor, VE growth factor, inflammasome product IL-1, and others) and the accumulation of leukocytes, resulting in the recruitment of neutrophils and macrophages, activation of alveolar epithelial cells, and effector T cells (5, 8), Leukocyte aggregation is most commonly seen in the form of neutrophil-platelet aggregates, which have complicated thrombo-inflammatory properties (9). This can lead to increased protein permeability in the pulmonary vascular system, which can lead to hypovolemia and multiple organ failure. Neutrophil extracellular traps (NETs), for example, have been linked to the disruption of alveolar-capillary and epithelial barriers in recent research on acute lung damage and ARDS, as well as having inflammatory effects on the lung and other organs (10).

In addition, alveolar macrophages (AM) can cooperate with other immune cells to regulate lung inflammation, and AM cell death plays an important role in the development process of lung inflammation (11–14). On one hand, a variety of proinflammatory cytokines (e.g., inflammasomes and IL-1 β) can activate or amplify the lung injury response of macrophages, T cells, and other immune cells (15–17). On the other hand, AM cell death or pyroptosis promotes neutrophil migration into the lungs, increases the concentration of cytokines (e.g., IL-6, TNF-α, and IL-1β) in the alveoli, and aggravates lung injury (18). Thus, the interaction between inflammation and cell death is expected to further affect and accelerate the progression of ARDS.

In addition, the bacterial endotoxin lipopolysaccharide (LPS), which is a typical activator of sepsis-induced lung injury, can activate the overexpression and release of a variety of pro-inflammatory proteins, resulting in severe cellular or organ damage.



Disruption of VE-cadherin

The synergistic effect of VE-cadherin and endothelial receptor kinase (TIE2), which is regulated by VE protein tyrosine phosphatase, ensures the integrity of VE cells (VE-PTP) (4, 19, 20). Several variables influence and regulate the activity of VE-cadherin and the stability of adhesive junctions, including cytoskeletal interactions, GTPases, phosphorylation, and dephosphorylation (21). Dissociation of VE-PTP from VE-cadherin has been linked to enhanced alveolar-capillary permeability in inflammatory acute lung damage, as well as endothelial cell junction relaxation and inflammatory alveolar protein leakage, according to research (9, 22). The inflammatory response can destabilize VE-cadherin by releasing a range of small molecules (such as angiopoietin 2 and VE growth factor). Furthermore, actin filaments that generate tension and actin stress fibers that generate tension work together to influence the stability of VE cell connections (23, 24). Loss of intercellular adhesion during actomyosin contraction causes gaps to emerge between endothelial cells. These mechanisms combine to promote endothelial and epithelial permeability, which contributes to edematous fluid buildup and hypoxemia.



Apoptosis or other cell death pathways

The clinical significance of neutrophil apoptosis sensitivity in the etiology of ARDS is unknown. ARDS has been linked to the influx of neutrophils into the alveoli in several studies. Apoptotic neutrophils amass in the alveoli as a result of decreased AM proliferation, resulting in secondary necrosis and the release of inflammatory mediators (25, 26). In addition, the buildup of a significant number of neutrophils plays a key role in the release of additional inflammatory mediators and pro-inflammatory factors throughout the ALI process (27).

Necroptosis has been studied extensively as a crucial contributor to apoptosis in ARDS. Under the stimulation of a death signal, receptor-interacting protein kinase 1 (RIPK1) and RIPK3 govern necrotic cell death, which can be suppressed by necrostatin-1 (NEC-1) (28, 29). The presence of HMGB1 in bronchoalveolar lavage of patients with acute lung damage generally indicates necroptosis. Similarly, numerous intracellular bacteria and viruses elicit necroptosis in the lungs and have a role in sepsis-induced ARDS development (30).

Pyroptosis plays a role in the pathophysiology of ARDS as well. Lipopolysaccharide, which is primarily mediated by the cysteine protease (Caspase) family, affects endothelial cell pyroptosis in animal models (such as Caspase-1, Caspase-4, Caspase-11). Gasdermin D can be cleaved by activated Caspase-1 to generate the N-terminus or C-terminus of Gasdermin D, which is a direct executive protein of pyroptosis. Gasdermin D's N-terminus attaches to phospholipid proteins on the cell membrane, creating a hole that allows a flood of inflammatory substances to escape the cell (31).

In conclusion, apoptosis overexpression is important in the development of acute lung damage and ARDS.



Oxidative stress

Oxidative stress is frequently associated with ARDS. A large number of cytokines and inflammatory cells can be released during the inflammatory response of sepsis, and a large number of reactive oxygen species (ROS) can be generated through the oxidative stress response, causing varying degrees of damage to the structure and function of cells, such as mitochondrial damage (32). As per a past report, when cells are exposed to bacteria, leukocyte respiration increases, which kills the pathogens by producing ROS, superoxide, hydrogen peroxide, and hydroxyl radicals (33). NADPH oxidase (NOX) is an enzyme that uses NADPH to catalyze the reduction of oxygen to produce superoxide (34). NOX is commonly referred to as a “professional ROS producer”. Currently, seven NOX isoforms are known, namely, NOX1, NOX2, NOX3, NOX4, NOX5, Duox1, and Duox2 (35). Among these, only NOX1, NOX2, and NOX4 are expressed in the vasculature, and all of them have been implicated in ROS-mediated vascular diseases (36). The ROS produced by LPS exposure has been demonstrated to be NOX1-dependent in macrophages and NOX2-dependent in LPS- challenged lungs (37, 38). The LPS activating the toll-like receptor 4 (TLR4) receptor induces NOX-mediated ROS generation (39), which in turn activates pro-inflammatory signaling factors such as the TNF-α and NF-κB (40, 41). Protein interaction with C-kinase 1 (PICK1) affects pulmonary vascular glutathione synthesis by influencing the substrate-specific component xCT of the pulmonary cystine/glutamate transporter, resulting in severe oxidative stress, according to an animal study on sepsis (42).




Alveolar epithelial injury

One of the key hallmarks of ARDS is alveolar epithelial injury, and the severity of epithelial cell injury is a significant factor in ARDS severity.

The early stage of lung injury, commonly known as the exudative phase of ARDS, is characterized by innate immune cell-mediated disruption of the alveolar endothelial cell barrier and accumulation of protein-rich edema fluid in the alveolar interstitium and alveolus (5). Macrophages in the alveoli generate pro-inflammatory substances, which attract neutrophils, monocytes, and macrophages, as well as activate alveolar epithelial cells and effector T cells, causing inflammation and tissue damage (43). Second, alveolar endothelial cells with enhanced permeability allow proteins and fluids to collect in the pulmonary interstitium, resulting in interstitial edema. The edema fluid is transmitted to the alveolar fluid at this moment due to the alveolar epithelium's normal tight barrier being compromised (4).


Dissociation of intercellular junctions

When endothelial cells mount a proinflammatory or procoagulant response to infection in neighboring epithelial cells, the alveolar epithelial-endothelial barrier occurs independently of endothelial cells, according to Kirsty et al. (44). Barrier injury, on the other hand, is linked to the breakdown of epithelial cells' tight junctions. The alveolar epithelium's tight junctions are critical for regulating fluid in the lung's distal space, and transmembrane tight junction proteins called Claudins play a significant role (45).

Claudins 3, 4, 5, 7, 8, 15, and 18 were all expressed in the distal lung. Claudins 3, 4, and 7 are mostly found in alveolar type II cells, whereas claudin-5 is found in nearly all alveolar epithelial cells (46). The loss of the tight junction protein claudin-4 is one of them, and it's linked to barrier destruction (44). Claudin-5 disrupts the function of the alveolar epithelial barrier by interfering with the interaction of claudin-18 with the scaffold protein ZO-1 (45).



Epithelial cell death

Lung epithelial cells are usually regarded as the lung's first line of defense, and epithelial cell death is the most prominent aspect of alveolar damage in ARDS, which can be induced directly by bacterial and viral invasion, acidic media, hyperoxia, hypoxia, and mechanical alterations (47, 48). Inflammatory macrophages can promote cell death through methods such as the production of tumor necrosis factors and similar apoptosis-inducing ligands, while neutrophil-derived mediators can induce cell death through many pathways, including the release of TNF (49, 50).




Epigenetics

The term “epigenetics” describes the regulatory systems that manage gene expression but are unrelated to changes in the DNA sequence. These changes include non-coding RNA control of transcription, DNA methylation, and histone changes (51). The confluence of genetics and environment is where epigenetic alterations, which affect gene expression in response to external stress, occur. Epigenetic control may be the key factor in the pathogenesis of sepsis, as per several recent types of research on immunology and human sepsis (52).


Epigenetics and sepsis-related immune suppression

Anti-inflammatory and pro-inflammatory symptoms are present in the early stages of sepsis, but, as the condition progresses, immunosuppression frequently predominates, which increases the risk of subsequent infection and death. Immunosuppression induced by sepsis is a complicated phenomenon. Endotoxin tolerance or the body's inability to respond to bacterial endotoxin is one of the current markers of sepsis-associated immunosuppression. Numerous in vitro studies support the idea that epigenetic changes are essential for the development of endotoxin tolerance. In researches by El Gazzar et al. (53, 54), it was demonstrated that the TNF promoter was methylated in monocytes in the stationary phase. The TNF promoter is quickly demethylated upon initial endotoxin exposure, inducing an immunological response. However, the TNF promoter is bound by the histone methyltransferase G9a throughout the endotoxin-tolerance phase, resulting in recurrent methylation of the TNF promoter, which eventually renders the TNF promoter insensitive to endotoxin activation. miRNAs may also play a role in endotoxin tolerance, where miR-125b, miR-146a, miR-221, and miR-579 are involved in controlling the transcriptional expression of TNF (55, 56).



Epigenetics and ARDS

ARDS is a common complication of sepsis, and past studies have demonstrated that DNA methylation plays an important role in its pathogenesis. In an LPS-induced ARDS rat model, the level of 5-methylocytosine was increased, which confirmed the increased DNA methylation level (57). In an epigenomic analysis of lung tissues, more than 1,700 genes exhibited methylation differences (58). Of the 42 differential methylation genes associated with MAPK signaling, seven were found to be associated with ARDS (59). In their recent study, Chen et al. (60) confirmed the METTL3-mediated abnormal n6-methyladenosine mRNA expression in the septic lungs. Moreover, decreased METTL3 levels could exacerbate lung endothelial injury and inflammatory responses in sepsis-related ARDS. These findings provide a new direction in the research of whether sepsis-related ARDS can develop METTL3 as a biomarker or as a therapeutic intervention point.





Biomarkers of sepsis-related ARDS

A variety of biomarkers can be used to determine the severity of ARDS and the characteristics of each stage. The ideal biomarker would be based on the more precise pathophysiological pathways that have been investigated thus far. It must be extremely dependable, repeatable, disease-specific, and sensitive. The procedure is easy and low-cost in clinical practice, and short-term volatility must also be considered. Blood or plasma, urine, feces, bronchoalveolar lavage fluid, cerebrospinal fluid, bone marrow, and other clinical test specimens are currently used. It can reflect the damage or activation of epithelial cells, endothelial cells, or the coagulation system in the ARDS inflammatory response by detecting the change of a single biomarker in the specimen, which can aid in the diagnosis of the disease or the judgment of the curative effect in the treatment of the disease. Predict the present patient's cure rate or fatality rate.


Interleukin-6

Interleukin-6 (IL-6) was first discovered in 1986 under the name B cell-stimulating factor. T cells produce it, but it can also cause B cells to create antibodies. IL-6 has become a key inflammatory regulator since its discovery, and it is secreted by a variety of cells, the majority of which are found in inflammatory, infectious, and neoplastic disorders (61). IL-6 levels have been discovered to be elevated in critical conditions including sepsis and ARDS, and studies have demonstrated that it plays a key role in the disease's progression. Because IL-6 is required for clearing infections in the immune process and plays an active role as an anti-inflammatory or protective factor in most cases, future research can use IL-6 concentrations in the blood or lung as a biomarker to explain the current status of the disease.

Classical signaling and trans-signaling are the two basic types of IL-6 signaling. In recent years, a third transduction mechanism known as trans-presentation has been found. IL-6 forms the IL-6-IL-6R complex with membrane-bound IL-6R, which subsequently binds to gp130 to form signal transduction via the JAK-STAT pathway in traditional signaling. Only a few types of cells, most notably hepatocytes and some leukocytes such as macrophages and T-cell subsets, express IL-6R, but gp130 is expressed by all cell types. IL-6 does not bind to gp130 on its own; it must first form a complex with IL-6R. This signal transduction pathway is primarily responsible for IL-6's anti-inflammatory and antibacterial actions (62). IL-6R is cleaved off the cell surface and alternatively spliced to produce the soluble receptor sIL-6R in trans-signaling. The capacity of sIL-6R to bind to IL-6, and the resulting IL-6-sIL-6R complex to bind to gp130, can be performed on cells without IL-6R, extending the range of IL-6 on target cells and explaining IL-6's versatility. Protease disintegrin and metalloproteinase domain-containing protein 17 (ADAM-17), which is activated during inflammation or infection, is the major enzyme capable of completing this cleavage event, hence the pro-inflammatory effect is mostly mediated through trans-signaling (63). Trans-presentation is the third signal transduction mode. IL-6 is expected to be delivered to the plasma membrane after engaging with antigen-specific dendritic cells (DCs) and binding to IL-6R on DCs. Under the joint action of transforming growth factor-beta 2(TGF-2) and the IL-6-IL-6R complex on the surface of dendritic cells, it binds to gp130 on the surface of T cells and activates pathogenic Th17 cells (64).

In the course of sepsis or ARDS, IL-6 plays a significant role, and its management can have a favorable influence on the condition. The current study focuses on blocking IL-6, and IL-6R, neutralizing gp130, and interfering with JAK-STAT signaling, and it has yielded some promising results (62). The research on IL-6 as a biomarker in critical diseases, particularly ARDS and COVID-19, has made some headway. It is difficult to determine the concentration of circulating IL-6 and interpret the results. The cytokine peaks at different times in different disorders, making the sample time more restrictive. Changes in circadian rhythm, exercise, certain medicines, and immunometabolism comorbidities can all impact IL-6 levels and release in the bloodstream (65). There are further needs for sample processing, as il-6 and other cytokines are produced from blood cells over time, altering results (66). COVID-19 has swept the globe in the last 2 years, and its severe sufferers are likely to develop ARDS. Due to the lack of a common definition, some of the data gathered in the current COVID-19 research on IL-6 may have varied results. Part of the explanation for this disparity could be the use of clinically-based IL-6 tests, which are notoriously less sensitive than currently available research-grade assays. A recent series of cytokine-focused prospective studies in critically ill COVID-19 patients found that IL-6 concentrations were significantly higher than previously reported using clinical IL-6 measurements, both in absolute terms and relative to other inflammatory airway conditions like ARDS (67–69). IL-6 was found to act as an independent predictor of 28-day mortality in sepsis patients, showing superior predictive power to procalcitonin and hypersensitive C-responsive proteins as per meta-analysis. With the combined application of IL-6 and neutrophil-lymphocyte ratio as a predictive model, the predictive power of death risk in sepsis patients was significantly improved (70). This aspect benefits clinicians for more appropriate and accurate management of patients with sepsis.



Angiopoietin 2

Davis et al. (71) found the vascular receptor tyrosine kinase Tie-2 and its ligand angiopoietin 1 (Ang-1) in the mid-1990s and then used homology screening of a cDNA library to find angiopoietin 2 (Ang-2). Tie-2 receptors can bind to both Ang-1 and Ang-2. Tie-2 receptors are activated and phosphorylated after Ang-1 binds, promoting blood vessel integrity and growth. Ang-2 functions as an antagonist of Ang-1, binding to Tie-2 receptors competitively and blocking Ang-1's actions, boosting inflammatory responses and capillary leakage. Because Ang-2 is implicated in the pathophysiology of a variety of disorders, it could be used as a therapeutic target, and certain Ang-2-targeted therapies have been demonstrated to be effective (72, 73).

ARDS is a leading cause of morbidity and mortality in patients around the world, and despite effective antibiotic treatment, pathogen-body interactions can lead to increased pulmonary endothelial cell permeability, which can lead to protein exudation and edema, and eventually life-threatening lung failure. Ang-2 is the principal cause of enhanced permeability in lung endothelial cells. Ang-2 has been validated as a biomarker for sepsis and ARDS risk assessment in several prior studies (74, 75). Despite considerable knowledge of Ang-2's expression and activity in pulmonary circulation, its significance in the development of pneumonia and ARDS is unknown. Gutbier et al. (76) confirmed that Ang-2 levels were significantly greater in ARDS patients than in healthy people in a prospective analysis of two different cohorts and that using Ang-2 as a particular biomarker could improve the CURB-65/CRB-65 grading system accuracy. International recommendations indicate the CURB-65 and CRB-65 scores as predictors of pneumonia fatality (77). It was discovered that Ang-1, Ang-2, and its receptor Tie-2 were considerably expressed in the lung tissue of patients with pneumonia after evaluating the lung tissue of the deceased patient. The Ang-1 protein is found in a variety of types, including lung parenchymal cells, endothelial cells, and epithelial cells. Ang-2 and Tie-2 proteins, on the other hand, were only found in pulmonary VE cells (76). Villar et al. (78) discovered that Ang-2 plays an essential role in ARDS prediction in septic patients in a multicenter observational study in Spanish intensive care units. In a prospective study, Ang-2 demonstrated a large independent association between severe sepsis and organ injury (79). These studies implied that Ang-2—a biomarker of endothelial dysfunction and damage—may play an important role in future studies on predicting the treatment and prognosis of sepsis.



Receptor for advanced glycation end products

RAGE (receptor for advanced glycation end-products) is an immunoglobulin superfamily multi-ligand pattern recognition receptor. It is mostly found in membrane-bound and soluble forms (sRAGE). Membrane-bound forms can identify a wide range of receptors, activate transcription factors via binding to receptors, and enhance pro-inflammatory factor production. The soluble form is a decoy receptor that suppresses membrane RAGE activation competitively (80). RAGE is extensively expressed in lung tissue under normal circumstances (81). By evaluating the level of RAGE in bronchoalveolar lavage fluid and serum of rats and people with acute lung damage, Uchida et al. (82) confirmed that RAGE is a biomarker of type I alveolar epithelial cell injury and a significant inflammatory mediator as early as 2006. This is critical because epithelial cell injury and inflammatory responses are both involved in the ARDS process, and RAGE is involved in both of these routes (80). Following research, it was discovered that sRAGE is linked to the severity of ARDS (83–85).

Two subtypes of sARGE, known as cRAGE and esRAGE, have been separated in recent years (for endogenous secretory RAGE). To facilitate the shedding of sARGE, inflammatory factors are amplified and result in the formation of cRAGE, which is created on the surface of the cell membrane by proteolytic cleavage at the extracellular and transmembrane boundaries (86). Less than 25% of the total circulating sRAGE is created by alternate splicing of the RAGE pre-mRNA (87, 88), and the specific process governing esRAGE production is currently unknown. Studies have shown that increased sRAGE levels during acute illness predict 90-day death in ARDS patients (89). RAGE is thought to be substantially overexpressed in the lung epithelium and that RAGE signaling may play a key role in the clinical symptoms of lung injury (90). High levels of sRAGE are also linked to potential mortality in sepsis (91). Theoretically, respiratory virus illnesses like Covid-19, which are currently wreaking havoc worldwide, may also be connected. The next study objective may be to construct risk classification and sRAGE thresholds for sRAGE levels in clinical practice, which will help sRAGE as a biomarker to better serve the clinic.

In summary, past studies on the biomarkers of sepsis-related ARDS were mostly focused on two aspects: the biomarkers of VE injury and alveolar epithelial injury. The common ones included IL-6, Ang-2, and sRAGE. Despite the lack of any substantial evidence supporting the specificity of these biomarkers for such diseases, recent studies have hinted that the levels of these biomarkers are associated with an increased risk of sepsis-related ARDS development (92–94). In recent years, the researchers turn their attention to the genetic basis of these relationships. Recent studies suggest that genomic or transcriptome-based biomarkers may facilitate the establishment of predictive or prognostic stratification approaches for sepsis-associated ARDS and may, thereby, facilitate the development of novel therapeutic targets. For example, epigenetic variants and circulating microRNA have become potential biomarkers for the diagnosis or prognosis of sepsis-associated ARDS (95). However, they are possibly limited by various factors such as the sample size, ethnicity, and phenotypic heterogeneity. The current study did not detected any exact association of these novel biomarkers with sepsis-related ARDS (96). Nevertheless, this finding also provides a new direction for further research.




Conclusions

Sepsis-related ARDS is an inherently heterogeneous clinical syndrome. Several potential biomarkers have been investigated so far, with no single biomarker yet identified that can specifically reliably diagnose this disease. Current research indicates that biomarker combinations that respond to different aspects (such as epithelial and endothelial injury, epigenetic variation, and inflammation) are more likely to be applied in clinical settings. Some studies have suggested and tested the combination of several biomarkers to explore the relationship with sepsis-related ARDS (97–101), with some success. For example, Zhao et al. (98) validated an ARDS-mortality prediction model, including the age, surfactant protein D, and interleukin-8, which may be useful for risk assessment in clinical trial enrollment. However, none of these candidate research schemes has yet been clinically applied in such patients. It is therefore important to further study and clarify the potential of these candidate schemes.

Our knowledge of sepsis-related ARDS disorders has grown over the last two decades, and our capacity to detect and treat such patients has steadily increased, saving the lives of a huge number of patients. The death rate of sepsis-related ARDS patients, on the other hand, remains at the forefront of many diseases, and long-term consequences for surviving patients are also a serious issue. Further research in the following areas could assist enhance patient outcomes to change this predicament. Exploring strategies to reduce lung endothelial and epithelial cell damage and finding ways to promote lung endothelial and epithelial cell repair is necessary from a molecular standpoint. On the clinical side, we will actively investigate particular biomarkers closely associated with the disease so that the disease may be diagnosed early in clinical work and early treatment intervention can be carried out to prevent the disease from progressing further.
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Lung cancer (LC) is one of the most incident malignancies and a leading cause of cancer mortality worldwide. Common tumorigenic drivers of LC mainly include genetic alterations of EGFR, ALK, KRAS, BRAF, ROS1, and MET. Small inhibitory molecules and antibodies selectively targeting these alterations or/and their downstream signaling pathways have been approved for treatment of LC. Unfortunately, following initial positive responses to these targeted therapies, a large number of patients show dismal prognosis due to the occurrence of resistance mechanisms, such as novel mutations of these genes and activation of alternative signaling pathways. Over the past decade, it has become clear that there is no possible cure for LC unless potent antitumor immune responses are induced by therapeutic intervention. Immunogenic cell death (ICD) is a newly emerged concept, a form of regulated cell death that is sufficient to activate adaptive immune responses against tumor cells. It transforms dying cancer cells into a therapeutic vaccine and stimulates long-lasting protective antitumor immunity. In this review, we discuss the key targetable genetic aberrations and the underlying mechanism of ICD in LC. Various agents inducing ICD are summarized and the possibility of harnessing ICD in LC immunotherapy is further explored.
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1 Introduction

Over decades, lung cancer (LC) has remained one of the most frequently diagnosed cancers and ranks as the leading cause of cancer-related death in human globally (1). The 5-year survival rate is disappointing: only 19% of patients have survived overall, and most of them have suffered from a high risk of cancer relapse (2, 3). In the past decade, significant progress has been made in the treatment of LC. Researchers found several driver gene mutations of LC and deeply investigated molecular targeted therapy, which obviously improves the landscape of non-small cell lung carcinoma (NSCLC) treatment (4). Genetic alterations, such as mutations of epidermal growth factor receptor (EGFR), KRAS, MET, and rearrangements of ALK and ROS1, are the main contributors to LC tumorigenesis and progression (5), which dysregulate proliferation, apoptosis, migration, and invasion of cancer cells through various downstream signaling pathways. Targeting these abnormal genes or/and their downstream signaling has been used for treatment of LC. However, owing to the high heterogeneity of LC and acquired resistance to treatment, therapeutic efficacy of the targeted therapy is not guaranteed (6, 7).

Immunogenic cell death (ICD) is a novel form of regulated cell death which can evoke an adaptive immune response against cancer cells (8). Dying cancer cells can secrete damage-associated molecular patterns (DAMPs), mainly including high mobility group box 1 (HMGB1), calreticulin (CRT), adenosine triphosphate (ATP) and Type I interferon (Type I IFN). Recognized by the pattern recognition receptors (PRRs), the DAMPs enhance function of the antigen-presenting cells (APCs), activate T cells, increase the immunogenicity of tumor cells and ultimately trigger ICD (9). ICD can be triggered by many kinds of anti-cancer therapies, including chemotherapy, radiation, targeted drugs, photodynamic therapy (PDT) and immune checkpoints inhibitors (ICIs) (10–12). A shared characteristic of these various ICD is their ability to provoke endoplasmic reticulum (ER) stress and reactive oxygen species (ROS) generation. By restoring the immunogenicity of poor ICD triggers and stimulating DAMPs secretion, (ER) stress and ROS are believed to be indispensable for ICD (13, 14). Therefore, harnessing ICD to maintain the efficacy of anti-tumor therapies is crucial and challenging for LC treatment (15).



2 Genetic alterations affecting signaling pathways in lung cancer

Mutations of EGFR, KRAS, BRAF, and MET, and rearrangements of ALK and ROS1 have aroused great interest in recent years. Plenty of studies have pointed out the significance of targeting tumor driver genes in cancer therapies nowadays due to their key roles in promoting cancer survival, proliferation and cell-cycle progression through modulating downstream signaling pathways in lung cancer (Figure 1).
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FIGURE 1
Genetic alterations of EGFR, ALK, and HER2 affecting signaling pathways in lung cancer. Tyrosine kinase inhibitors (TKIs) target receptor tyrosine kinases and prevent phosphorylation of the TK domain receptor of EGFR, thus inhibiting the activation of downstream signaling pathways such as the RAS/RAF/MEK/ERK pathway and the phosphatidylinositol 3-kinase (PI3K)-AKT pathway, thereby interfering with cell proliferation, differentiation, migration and survival. Activated KRAS proteins principally activate the downstream PI3K-AKT-mTOR signaling pathway that regulates cell proliferation and the RAS-RAF-MEK-ERK signaling pathway that regulates cell growth. Tumorigenic alterations contribute to EGFR overexpression, which ultimately increases the risk of cancer development by regulating related signaling pathways. EGFR, epidermal growth factor receptor; TKI, tyrosine kinase inhibitors; EML4-ALK, echinoderm microtubule associated protein like 4-activin-like kinase; HER2, human epidermal growth factor receptor 2; ATP, adenosine triphosphate; MEK, MAP kinase-ERK kinase; ERK, extracellular regulated protein kinases; PI3K, phosphoinositide 3-kinase; mTOR, mammalian target of rapamycin; GAP, growth-associated protein; GDP, guanosine diphosphate; GTP, guanosine triphosphate; GEF, Granule, Effervescent; RAL, Ras-like; NF-κB, nuclear factor-kappa B; RAF, rheumatoid arthritis factor; ERK, extracellular regulated protein kinases.



2.1 EGFR mutations

For Asian patients with lung cancer, EGFR mutant NSCLC is the most prevalent subtype (16). Over the past decades, more and more studies have showed that EGFR mutation is a common driver of tumorigenesis, and lung cancer is no exception (17, 18). EGFR mutations include in-frame mutations or point mutations and insertions, which typically occurs in exon18-21, encoding a portion of the EGFR kinase domain. In-frame deletions in exon 19 and the L858R point mutation in exon 21 account for nearly 90% of EGFR mutations and confer high sensitivity to clinical target therapies (19). These mutations confer higher sensitivity to clinical target therapies due to increased affinity of TKIs to the ATP-binding pocket of mutant EGFR compared to its wild-type. However, insertion mutation and T790M point mutation in exon 20 are often resistant to TKI (20). EGFR mutations are responsible for activation of constitutive ligand-independent receptor and regulation of downstream signaling pathways, promoting cancer proliferation and cell survival (21). Regulated downstream signaling pathways include activation of RAS/RAF/MEK/ERK, phospholipase C (PLCγ) and phosphoinositide 3-kinase (PI3K)-AKT, but inhibition the p38/MAPK and JNK/STAT pathway (22) (Figure 2). Oncogenic alterations may result in EGFR overexpression as well, which eventually increases the cancer incidence risk via regulating related signaling pathway (23).
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FIGURE 2
ROS1 rearrangements and MET mutations in the occurrence and development of lung cancer. When lung cancer is developed, the tyrosine kinase receptor (RTK) encoded by the ROS1 gene synergizes with oncogenic drivers such as KRAS to enhance MAPK-ERK signaling. Upon MET activation, PI3K associates with GAB1 and activates AKT/protein kinase. AKT inactivates the pro-apoptotic protein BCL-2 cell death antagonist (BAD) and triggers the E3 ubiquitin-protein ligase MDM2, thereby inhibiting apoptosis and promoting cell survival. In addition, AKT activates the mammalian target of rapamycin (mTOR) protein, promoting protein synthesis and cell growth, MET activation signals through the RAS-MAPK pathway as well. The nucleotide exchange protein Son of Sevenless (SOS) activates RAS upon binding to GRB2, which leads to activation of the v-Raf murine sarcoma viral oncogene homolog B1 (RAF) kinase, followed by stimulation of MAPK effector kinase (MEK) and resulting in MAPK activation. MAPK phosphorylates ERK, the ultimate effector of the cascade. The RAS-MAPK pathway is responsible for cell proliferation, cell motility, and cell cycle progression. Moreover, MET could relay signals to the activator of the transcription 3 (STAT3) pathway. STAT3 directly binds to MET, enabling STAT3 phosphorylation, which regulates cell transformation and invasion. RTK, receptor tyrosine kinases; Raf, rheumatoid arthritis factor; MEK, MAP kinase-ERK kinase; ERK, extracellular regulated protein kinases; HGF, hepatic growth factor; MET, mesenchymal to epithelial transition factor; GAB1, Grb2-associated binders 1; GAB2, Grb2-associated binders 2; PI3K, phosphoinositide-3 kinase; AKT, protein kinase B; mTOR, mammalian target of rapamycin; BAD, Bcl-xL/Bcl-2 associated death promoter; MDM2, murine double minute 2; SOS, son of sevenless; GTP, guanosine triphosphate; GDP, guanosine diphosphate; STAT3, signal transducer and activator of transcription 3.


Mutant EGFR could inhibit apoptosis via inhibiting BH3 -domain proteins, such as pro-apoptotic BIM and BMF (24). Trever et al. proposed that the FAS/NF-κB pathway, which promotes tumor growth, could rescue EGFR mutant lung cancer cells from EGFR inhibition (25). Karachaliou et al. found that knockdown of Orphan receptor 1 (ROR1) could inhibit the growth of NCI-H1975 cells [harboring EGFR L858R and T790M mutations (24)] via the ROR1/MEK/ERK signaling pathway, indicating the potential of ROR1 as therapeutic target for EGFR positive lung adenocarcinoma (LUAD) (26). The study of Kinehara et al. proposed that the GPI-anchored protein semaphorin 7A (SEMA7A) is overexpressed via induction of mTOR signaling in LUAD. Mutant EGFR lung cancer could upregulate SEMA7A/ITBG1 axis, which normally activates ERK signaling and leads to apoptosis resistance (27). Zhang et al. reported that phosphohistidine phosphatase 1 (PHPT1), often overexpressed and caused poor survival in lung cancer patients, could activate ERK/MAPK pathway targeting F-box protein 32 (FBXO32) as E3 ubiquitin ligase in EGFR mutant lung cancer (28). Previous studies have revealed that betacellulin (BTC) could binds to members of the ErbB family and mediating cancer development. Chava et al. firstly proposed that BTC could suppress apoptosis and promote cancer growth in EGFR-mutant LUAD in a MAP kinase-dependent way (29). The F-box protein FBXL2, a potential therapeutic target for EGFR mutant LC, could suppress EGFR-driven NSCLC cell growth. Niu et al. showed that glucose-regulated protein 94 (Grp94) protects the stability of EGFR via blockage of FBXL2, thereby promoting EGFR mutant cell proliferation and anti-apoptosis (30).

Epidermal growth factor receptor-positive lung cancer could confer potent invasive ability. Tsai et al.’s study showed that EGFR-L858R mutant LUAD could activate CXCL12-CXCR4 axis to enhance metastasis (31). Feng et al. reached a similar conclusion in their study that EGFR 19 exon deletion can promote the expression of MMP-2 and MMP-9 by enhancing the CXCR4/CXCL12 signaling pathway, leading to higher proliferation, migration, and invasion abilities (32). Li et al.’s study found that the EGFR-mutant NSCLC related brain metastasis is associated with downregulation of WNT5A by E2F1 via ERK1/2 pathway (33). A recent study elucidated that Y-box Binding protein (YB-1), an important drug sensitivity modulator, could activate AKT signaling and epithelial-to-mesenchymal transition (EMT) via targeting major vault protein (MVP), especially in EGFR mutant LAUD (34).

Moreover, the crosstalk of EGFR with the tumor microenvironment (TME) could affect the immunity to cancer. High level of IL-6 is a biomarker in lung cancer patients, Cao et al. revealed that mutant EGFR could upregulate IL-6 via gp130/JAK signaling pathway targeting signal transducer and activator of transcription (STAT) 3, a known oncogenic protein (35). Patients with EGFR activation showed upregulated CD73/adenosine via EGFR-ERK signaling pathway, which contributes to the immune-inert environment for EGFR-mutant NSCLC (36–39). Chen et al. reported that activated EGFR NSCLC cells enhance ILT4 expression, which suppresses T cell proliferation and immunity and thereby leads to immune escape (40).



2.2 KRAS mutations

RAS is the most frequent mutant oncogene in cancer (41, 42). Among all kinds of isoforms, KRAS, which belongs to GFPase superfamily, accounts for 86% RAS-mutants (43). Research demonstrated that 20–40% of LUAD and 30% NSCLC have been observed with KRAS mutation, which is more prevalent in smokers (44). KRAS mutation could destruct the activation of GTPase, which would lead to the accumulation of KRAS under GTP binding condition and thus cause the activation of basic downstream pathways related with cellular life events, including MAPK, PI3K, and Ras-like (Ral) 2 guanine nucleotide exchange factor (RalGEF) and so on (45, 46).

KRAS mutations act as strong drivers for tumorigenesis by modulating multiple signaling pathways. It has been demonstrated that mutant RAS gene, could activate Raf–MEK–ERK phosphorylation cascade to enhance tumorigenesis (47). SIRT1, an oncogene or tumor suppressor, was found decreased by KRAS in a PI3K and MEK dependent way, which contributes to lung carcinogenesis (48). RASSF1A is believed to be a weak suppressor of human tumors. Transgenic mice with RASSF1A-defective background demonstrated that the loss of RASSF1A apparently enhances the RAS-driven lung cancer (49). EGFR palmitoylation has been shown to inhibit EGFR activity and alter downstream signaling in the KRAS mutant lung cancer. Blocking EGFR palmitoylation decreased PI3K signaling, negatively regulating lung carcinogenesis (50, 51). The ERBB/EGFR signaling pathway is also dysregulated in lung cancer. The activation of KRAS induces the phosphorylation of iRhom2, which induces excessive shedding of ERBB ligand and tumorigenesis (52). Escaping from oncogene surveillance is a vital part in tumorigenesis. RUNX3, which serves as a mediator of multiple tumor suppressor pathways, is inactivated in KRAS mutant lung cancer. KRAS-activated cells could develop into ADCs when Runx3-mediated tumor suppress signaling pathways are abrogated (53).

Accumulating evidence suggests that inflammation is an essential factor for tumor promotion (54). The JAK-STAT pathway is considered as a central player for inflammation mediated tumorigenesis and targeting this pathway in KRAS-driven LC has been proposed. KRAS mutant LC secrete pro-inflammatory cytokines which activate JAK1 and JAK2, thereby improving cell survival. Besides, deletion of STAT3 could enhance KRAS-driven lung cancer development (55). Previous studies have found that the abnormal activation of STAT3 in the development of KRAS mutant lung cancer, which will be attenuated under anti-IL-6 therapy, suggesting a tight association between IL-6/STAT3 signaling and inflammation in KRAS-activated tumorigenesis (56, 57). A study established a murine model and confirmed that this route is gender-specific, deletion of epithelial STAT3 in KRAS mutant LC female mice will decrease tumorigenesis, while the outcome is completely opposite in male mice (58). Later, their team showed that NF-κB is activated in KRAS-driven mouse model of LUAD (59). Bassères et al.’s work indicated that NF-κB is significant in KRAS-driven tumorigenesis, as the deficiency of p65/RelA profoundly impairs KRAS-driven lung tumorigenesis. Besides, inhibition of IKKβ expression suppressed NF-κB expression in KRAS-driven lung cells (60).

More and more studies have explained the underlying mechanism from various perspectives including proliferation, invasion and EMT. By upregulating DUSP6, a negative regulator of p-ERK, KRAS mutant lung cancer retrained the ERK1/2 mediated toxicity and promote cell proliferation (61). Wang et al. demonstrated that mutant KRAS could enhance the Cathepsin L/CUX1 axis, thereby promoting lung cancer invasion and migration (62). Hsu et al. firstly reported Yes-associated protein (YAP) in LUAD, their study stressed that YAP promote the brain metastasis of NSCLC cell lines H2030-BrM3 (KRASG12C mutation), especially by, targeting the downstream genes CTGF and CYR61 (63).



2.3 BRAF mutations

V-raf murine sarcoma viral oncogene homolog B (BRAF), which plays a vital part in cell proliferation, differentiation, and growth through mediating the MAPK pathway, belongs to the RAF family of serine/threonine protein kinase (64). Over 40 missense mutations have been discovered in human, while the most common BRAF mutation occurs in exon 15 is a thymidine to adenosine transversion at the level of T1799A, leading to the valine to glutamate substitution at codon 600 (V600E), which contribute to approximately half of the BRAF-mutant NSCLC (65, 66). This alteration could result in the activation of B-RAF kinase and constitutive MAPK/ERK cascade signal transduction, which leads to 500 folds BRAF activity compared with WT (67).

Mutant BRAF plays a positive key player in the tumorigenesis (68). Li et al. reported that ARHGEF19, one of Rho guanine nucleotide exchange factors (RhoGEFs), could interact with BRAF and promote MEK1/2 phosphorylation during the NSCLC formation (69). Tumor necrosis factor receptor (TNFR)–associated factors (TRAF) is a kinases modulator of TNFR family. Wang et al. firstly proposed the relationship between BRAF and TRAF1. The study explained that overexpressed TRAF1 could regulate BRAF/MAPK/ERK axis to promote NSCLC cells’ viability (70). C-RAF, which could promote adenoma initiation and growth, belongs to RAF family as well. Zanucco et al. reported that elimination of BRAF in oncogenic C-RAF expressed alveolar epithelial type II cells inactivates MAPK signal and lung Tumor growth (71). Upregulated terminal differentiation-induced non-coding RNA (TINCR) is associated with poor survival in NSCLC patients, Zhu et al. pointed out that TINCR could target BRAF and mediate downstream MAPK pathway to promote NSCLC tumorigenesis (72).

Abundant evidence indicates that inactivation of BRAF could cause cancer cell apoptosis, thus demonstrating the necessity of mutant BRAF in tumor cells (73). Lin et al. comprehensively evaluated the molecular determinants of BRAF mutant in lung cancer. Their study summarized that inhibition of MEK/ERK signaling targeting p61VE could suppress the cell escape from BRAFV600E oncogenic inhibitions in NSCLC. Besides, they found the MAPK pathway could mediate EGFR signaling and alleviate the dependence on BRAFV600E (74). Kotani et al. analyzed the role of MAPK signaling in BRAFV600E mutant lung cancer. The results showed that EGFR signaling could govern MEK/ERK pathway more strongly, however, the situation is not the same in BRAFV600E mutant lung cancer, which induce the receptor tyrosine kinases (RTKs) resistance problem (75). However, a previous study claimed that although BRAFV600E could initiate some benign tumors, lung cancer is seldomly induced. Trejo et al. suggested that co-mutation of PIK3CAH1047R and BRAFV600E could promote lung cancer progression, including transformation of tumor phenotype into malignant and accelerate tumor growth rate (76). The team of Mcmahon also demonstrated similar conclusion. Their research confirmed that the co-mutant BRAFV600E and PIK3CAH1047R in alveolar type 2 pneumocytes accelerate cell dedifferentiation (77). Tumor suppressor STK11 (LKB1) gene is frequently deficient in lung cancer. A study revealed that Lkb1 loss could promote tumorigenesis in BRAFV600E induced LUAD (78).



2.4 ALK rearrangements

ALK gene locates on the short arm of chromosome 2 (2p23), and belongs to the insulin receptor superfamily (79). As a tyrosine kinase receptor, ALK generally expresses in the brain and spinal cord during embryo genesis and dominantly decreased following maturation (79). The high correlation between ALK and tumorigenesis was firstly identified in 1994 as a fusion partner of nucleophosmin (NPM) in anaplastic large-cell lymphoma (80). Further research revealed underlying mechanism of NSCLC genesis with ALK translocation, as well (81, 82). ALK rearrangement presented potent oncogenic drivers in approximately 5–6% of NSCLC patients population characterized with young age, barely smoking and adenocarcinoma histology (83, 84).

The most common fusion partner of ALK is EML4 (echinoderm microtubule associated protein like 4) (85). Heat shock protein 90 (Hsp90) is a novel cancer therapy target owning to its positive role in controlling oncogenic signaling proteins. Normant et al. proposed that inhibition of Hsp90 could decrease EML4-ALK thereby inducing tumor regression in ALK-driven NSCLC (86). The crosstalk between Programmed cell death-ligand 1 (PD-L1) and its receptor programmed cell death-1 (PD-1) conferred profound strength in immunotherapy. A study examined the role of ALK rearrangement in affecting PD-L1 expression, their result showed that EML4-ALK fusion could decrease the PD-L1 expression through suppression of PI3K–AKT or MEK–ERK signaling pathway, which contributes to the immune escape in NSCLC (87). Shen et al. reported that EML4-ALK G1202R mutation could increase the invasion and migration ability of A549 cells. Besides, their research proved the EML4-ALK G1202R mutation could lead to EMT phenotype transformation in NSCLC cells by activating STAT3/Slug pathway (88).



2.5 ROS1 rearrangements

The ROS1 gene, which is located on chromosome 6 (6q22.1), is a widely known proto-oncogenic gene that belongs to the sevenless subfamily of tyrosine kinase insulin receptor. ROS1 rearrangements were primarily described in glioblastoma, the close correlation with NSCLC was discovered in 2012 (89). The ROS1 tyrosine kinase has been discovered to play a vital role in plenty of intracellular signaling pathways (90).

The (c-ros oncogene1) ROS1 rearrangements, which drive malignant transformation of NSCLC, affect approximately 0.7–1.7% NSCLC patients (91). The fusion partners include CD74, SLC34A2, FIG, TPM3, SLC12A2, CCDC6, and SDC4, while CD74-ROS1 fusion is the most prevalent phenotype in NSCLC (92, 93). Gou et al. demonstrated that CD74-ROS1 mutation could lead to EMT and enhance the NSCLC invasion and migration ability by upregulating Twist1 (94). Chromosomal rearrangement of the Solute Carrier Family 34 Member 2 (SLC34A2)-ROS1 fusion accounts for more than 14% of all ROS1 fusion in NSCLCs. Cai et al.’s study revealed that BA/F3 fusion NSCLC cells (harboring SLC34A2-ROS1) could activate ROS1-SHP2 signaling to elevate PD-L1 expression and mediate immunogenicity (95). Interestingly, another study supplemented that ROS1-fusion positive NSCLC cells could target MEK/ERK signaling pathway to upregulate PD-L1 expression significantly (96).



2.6 MET mutations

The proto-oncogene MET, located on chromosome 7q31, is one of the tyrosine kinase receptors. HGF is a common ligand of MET, upon their binding, MET will be dimerized and auto-phosphorylate, thus leading to the activation of activity of intracellular tyrosine kinase. Activation of MET could lead to the modulation of multiple downstream signaling pathways including RAS/RAF/ERK/MAPKA, PI3K/AKT/mTOR, Wnt/β-catenin, STAT and so on, which play vital roles in regulating tumor growth, progression and migration (97). Aberrant activation of MET signaling pathway may contribute to the tumorigenesis process of lung cancer.

About 3–5% of NSCLC patients have MET mutations, most of which are adenocarcinoma. Up to date, various mutations of MET have been identified, including MET amplification, MET point mutations, exon 14 skipping mutation, fusions and overexpression, all of which are oncogenic in lung cancer (98). The skipping of MET exon 14 mutation occurs in 3% LUAD and 13–22% sarcomatoid lung cancer (99). Studies revealed that the exon 14 skipping could lead to the lack of Y1003-Cbl, a ligand mediating c-MET degradation and ubiquitination, which subsequently prolong the activation of c-MET, downstream proliferation, and tumorigenesis (100). MET amplification is another major subtype of MET mutations which occur mainly in TKI-resistance lung cancer. Because single amplification of MET rarely contributes significantly to cancer development, co-mutant of MET and other cancer drivers, such as EGFR, appear more commonly (101, 102). A study indicated that only high amplification level of MET could display an oncogenic effect (103). However, there’s still a lack of research to fully elucidate the mechanism of MET-driven tumor development.

Recently, more and more target therapies are focusing on mutant genes to improve the prognosis for lung cancer. However, disappointedly, clinical outcomes are not positive as expected. Firstly, the development of drug resistance is another unavoidable theme in lung cancer. Jackman et al. primarily defined acquired resistance when patients receive target therapy over 6 months but the disease progression keeps evolving (104). Accumulating evidence has elucidated that, although the acquired resistance mechanism varies, the main reasons are from three aspects: mutant gene modification, phenotypic transformation and alternative signal pathway activation (105). EGFR TKIs are the most commonly used target drugs in EGFR mutant lung cancer patients. Previous studies have revealed that the EGFR T790M mutation, MET amplification, epithelial-to-mesenchymal transition (EMT), activation of the NF-κB pathway, and so on are common foundations of later developed EGFR TKIs resistance (105–108). These various factors could induce signaling pathway cross talk in lung cancer. Hepatocyte growth factor (HGF) could induce acquired resistance to TKIs by restoring the PI3K/Akt signaling pathway via phosphorylation of MET in EGFR mutant NSCLC (109). Activation of Hedgehog (Hh) pathway is a common feature of TKIs resistance. A study fully illustrated the role of Hh signaling in EGFR mutant lung cancer, their result showed that, through the induction of mesenchymal properties, Hh could mediate the resistance of EGFR inhibitors (110). Several clinical studies reported acquired resistance to targeted drugs, such as Osimertinib, a MET tyrosine kinase inhibitor (111). The advance in K-RAS targeted medicine faced huge challenge (112). On one hand, clinical trial of K-RAS targeting drugs revealed disappointing results. It was found that K-ras could activate an alternative pathway via geranylation with resistant farnesyl transferase inhibitors (113). Blumenschein et al. reported that the downstream MEK signaling pathway inhibitor failed to achieve significant positive effect on improving the survival of lung cancer patients (114). ALK- independent resistance occurs as well. Activating bypass signaling pathways compromising KIT amplification, MAPK, MET amplification, EGFR and BRAF V600E leads to the ALK TKIs resistance (115–117). Additionally, more drugs targeting other mutant genes are under research, which is not warranted to have a certain therapeutic effect. What’s more, the narrow therapeutic window is worrying. For example, the second-generation EGFR TKI afatinib displayed an apparent adverse effect in clinical trials (118). Besides, recurrence or metastasis of lung cancer occurs frequently. Previous research has elucidated that brain relapse, bone relapse, and relapse of other organs can seriously affect the prognosis process of lung cancer (119, 120).

Taken together, gene alteration is a common and significant phenomenon in tumorigenesis progression. Slight changes in these central cancer-driven genes can lead to dysregulate in downstream signal pathways, which dramatically affect lung cancer from multiple perspectives (Figure 2). However, the therapeutic effect is not always as positive as considered, clinical feedback suggested that the developed drug resistance is uncontrollable (5). Appropriate drug concentration is still in preclinical trials and prognostic recurrence/metastasis is beyond expectation. Therefore, a novel way of overcoming existing dilemma is urgently needed.




3 ICD in lung cancer cells

Immunogenic cell death is a novel type of cell death which primes an adaptive immune response (Figure 3). Its main feature is that dying cells can secrete DAMPs, including HMGB1, CRT, ATP, and Type I IFN, which can enhance the antigen presentation capability of APCs, activate T cells, and enhance the immunogenicity of tumor cells, ultimately trigger the arise of ICD (9). In addition, induction of ER stress and ROS accumulation are indispensable components for ICD which increase the DAMPs (13, 14).
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FIGURE 3
Overview of necroptosis, apoptosis, and pyroptosis signaling pathways. Binding of tumor necrosis factor (TNF) to its receptor (TNFR) activates RIPK3 via RIPK1, leading to the formation of necrosome, which activates mixed-lineage kinase-like (MLKL), contributing to necrosis and membrane permeation. Activation of caspase-8 induces exogenous apoptosis by triggering caspase-3 and caspase-7 activation. Meanwhile, caspase-3 induces autophagy. The occurrence of ICD in tumor cells is accompanied by the production of a series of signaling molecules in which released DAMPs can bind to pattern recognition receptors such as toll-like receptors (TLRs) on the surface of DC cells, activating NF-κB and inducing expression of NLRP3 and IL-1β/IL-18 precursors. NLRP3 recognizes various DAMPs and becomes oligomerized, contributing to activation of caspase-1 and production of mature IL-1β/IL-18. Activated caspase-1 cleaves gasdermin D (GSDMD) and releases the n-terminal (GSDMDNT) pore-forming fragments, thereby resulting in membrane permeation and pyroptosis. DAMPs, damage-associated molecular patterns; TLR, toll-like receptors; NF-κB, nuclear factor-kappa B; IL-6, interleukin-6; TNF, tumor necrosis factor, TNFR, tumor necrosis factor receptor; TNF-α, tumor necrosis factor alpha; NLRP3, NOD-like receptor thermal protein domain associated protein 3; IL-1β, interleukin-1 beta; GSDMD, gasdermin D; FADD, Fas-associating protein with a novel death domain; TRADD, TNF receptor 1 associated via death domain; RIPK1, receptor interacting serine/threonine kinase 1; RIPK3, receptor interacting serine/threonine kinase; MLKL, mixed lineage kinase domain-like protein.


Apoptosis is one of the most researched forms of ICD. Apoptosis, mediated by the activity of caspases, is regulated by both endogenous and exogenous factors at the same time, and both of them rely on the activation of caspase-3 and caspase-7 (121). Yet, it has also emerged that non-apoptotic cell death can also be immunogenic, such as necrosis and pyroptosis. Necroptosis can be initiated firstly after activating the extended tumor necrosis factor alpha (TNF-α) receptor family on the surface of the cell, and transmitted in virtue of the serine/threonine kinases, RIP1 or RIP3 interact with receptors. Then dead cells release immunogenic DAMPs to greatly activate both innate and adaptive immune systems. Pyroptosis is a lytic pro-inflammatory modality of regulated cell death (RCD), which leads to the formation of plasma membrane pores with the help of members of the gasdermin protein family, particularly gasdermin D (GSDMD) (122). In addition, the anticancer immune response can be also triggered by autophagy, while autophagy was found to be related to the resistance of cancer cells to anti-cancer therapy (12).


3.1 Extra-cellular DAMP release

One of the main features of ICD is the release of molecular signals, which are usually called “DAMPs” (14). DAMPs can recognize specific receptors and attract adaptive immune cells like neutrophils, macrophages and dendritic cells (DCs). Then DAMPs promote activation and maturation of these immune cells, including dead cell removal, antigen uptake, processing, and presentation, and cytokine production (123). Some of the most widely researched ICD-linked DAMPs include HMGB1, CRT, ATP, and Type I IFN (124).

High mobility group box 1, which can trigger strongly inflammatory response when released from nucleus of dead cells, is an abundant nuclear non-histone chromatin-binding protein (125). HMGB1 binds to several receptors, such as Toll-like receptor 4 (TLR4), a type of receptor for advanced glycation end products (RAGE) to activate MAPKs and NF-κB in DCs, which are widely expressed in lungs (126–129). After CRT exposure, dead lung cancer cells will secrete HMGB1, which has a dual effect depending on whether it is extracellular or intracellular (14). Extracellular HMGB1 can facilitate the processing and presentation of antigens by DCs (128, 130), while intracellular HMGB1 can promote cancer cell growth and invasion, and resist therapy (129). Studies found that high level of HMGB1 is associated with poor prognosis in NSCLC (131). Moreover, Łagiedo et al. discovered that the levels of HMGB1 in NSCLC patients’ serum had a significant positive correlation with the size of the tumor (132).

Adenosine triphosphate is dependent on autophagy to be released from dying cancer cells in virtue of the active exocytosis of ATP-containing vesicles through pannexin channels (13, 133, 134). After being secreted out of cells and binding to purinergic receptor P2Y2 on the target cells, ATP will send a “find-me” signal to DCs and macrophages to promote DC maturation and macrophage expansion (135, 136). Moreover, ATP can mediate immune stimulation by activating the NLRP3 inflammasome and the subsequent secretion of interleukin 1 beta (IL-1β) (127, 137).

Calreticulin, a soluble protein in ER lumen, is exposed on the cell surface at a premortem stage and confers an “eat me” signal (122). After that, CRT interacts with the CD91 receptor in phagocytes to effectively engulf dead cells, thus providing abundant antigenic substance (13, 138). CRT also induces increased expression of endothelial cell adhesion molecules to promote infiltration of specific lymphocytes in the TME (139). Research has found that high CRT levels were shown to be in association with eIF2α phosphorylation in biopsies from NSCLC patients, which is independently relevant to better prognosis in NSCLC (140). Besides, in the treatment of lung cancer, CRT plays a similar role as HMGB1 so that it can be used to assess the extent of ICD induced by the treatment (141).

Type I IFNs, which can be driven by RNA or DNA species, are actively synthesized and activate other downstream genes including genes coding for chemokines to favor an immune response (142, 143). In RNA species, the receptor is endosomal TLR3, whereas the latter setting mainly works through cytosolic cyclic GMP-AMP synthase (CGAS) and its signal transducer stimulator of IFN response cGAMP interactor 1 (STING1) (144–146). Moreover, type I IFN can trigger macrophages to secrete pro-inflammatory mediators and inhibit the immunosuppressive functions of regulatory T cells (147, 148). Apart from these direct immunostimulatory functions, type I IFN can also elicit the synthesis of the CX-C motif chemokine ligand 10 (CXCL10) by tumor cells in ICD via an autocrine signaling loop (149).



3.2 ER stress

Immunogenic cell death can be divided into two modes according to its induction mechanism (13). Instead of inducing ROS and ER stress directly, type I ICD is stimulated by indirect signals. Quite the opposite, type II ICD targets the ER, inducing ER stress and immunogenic cell death (150). The process of ER stress activation is termed as unfolded protein response (UPR), featured with phosphorylation of eukaryotic translation initiation factor 2α (eIF2α) by Protein Kinase RNA-activated (PKR)-like ER Kinase (PERK) (151, 152). Several studies have shown that ER stress is the core of the occurrence of ICD (153). Moderate ER stress may be conducive to creating an immunosuppressive environment, while severe ER stress can stimulate immune response, as what happens in ICD (154). The more concentrated the ER stress is, the higher the immunogenicity of cell death is (155). ER stress is the main cellular mechanism for the cell surface exposure of CRT, which is closely linked to the phosphorylation of eIF2α. In Fucikova et al.’s study, they stated a subgroup of NSCLC associated with strong ER stress, which erupts in CRT expression and exposure (156). The high CRT driven by ER stress response has a positive prognostic value for NSCLC patients, however, its specific molecular mechanism remains to be further studied. ER stress also has an influence on levels of intracellular ATP by stimulating mitochondrial respiration, and cells can fill their bioenergy reserves in this way to restore cellular homeostasis (157).




4 Induction of ICD for lung cancer therapy

Immunogenic cell death can be caused by different types of stimulation and antitumor therapy, such as chemotherapy and radiation, some targeted drugs, oxygen-boosted PDT and ICIs. A lot of evidence shows that ICD can stimulate anticancer immune responses in vivo, and provide an opportunity to improve the cancer treatment and outcomes (158, 159). However, recently, only a few ICD inducers have been successfully translated into clinical practice. Here we elaborated on the role of ICD in the therapy of lung cancer.


4.1 Targeted therapy

Most anti-cancer drugs kill cancer cells in a non-immunogenic way. However, many studies demonstrated that ICD can be induced by different targeted agents. We will review these targeted drugs in detail to illustrate the important role of targeted therapy in the treatment of lung cancer (Table 1).


TABLE 1    Targeted therapies inducing immunogenic cell death (ICD) and their molecular targets in lung cancer treatment.

[image: Table 1]

Crizotinib, a TKI used to treat NSCLC carrying activated ALK, ROS1, and MET, serves as an ICD stimulator via off-target effects (160). Drewry et al. have provided preclinical evidence that crizotinib can be expediently in combination with non-ICD inducing chemotherapeutics, as much with immune checkpoint blockade, to treat NSCLC in an effective way (161). One research has shown that the combination of cisplatin and high-dose crizotinib brings about an increase of PD-1 and PD-L1, and induces greatly ICD in NSCLC cells (12, 162). Hence, a sequential combination treatment including conventional chemotherapy together with crizotinib and immune checkpoint blockade may be effective for NSCLC. Besides, another ALK inhibitor ceritinib also has the function of targeting which can induce ICD in ALK-dependent NSCLC cell lines (124). For the past few years, the receptor tyrosine kinase AXL has been considered as a promising target for tumor treatment. The AXL signaling can promote a pro-survival pathway and reduce reactivation of the MAPK pathway to develop acquired resistance to EGFR TKI in NSCLC cells. And there is a positive correlation between AXL and autophagy (163, 164). Boshuizen et al. showed that an antibody–drug conjugate targeting AXL called enapotamab vedotin (EnaV) not only has direct tumor killing, but also induces inflammation and ICD of tumor cells in melanoma and lung cancer models (165). Lotsberg et al. reported that a small molecule inhibitor bemcentinib inhibits the transcription of autophagy-associated genes, releases DAMPs and then gives rise to ICD in NSCLC cells by targeted inhibition of the AXL signaling pathway (164). Erlotinib, a kind of TKI, can inhibit tumor development by inhibiting intracellular phosphorylation of EGFR-related tyrosine kinases, which commonly used in the treatment of NSCLC and pancreatic cancer. Studies have shown that targeting AXL in ER cells induces massive autophagic vacuolation before death in erlotinib-resistant cancer cells and triggers ICD (164). Hence, we suggest that ICD induction may have an unexpected effect on AXL-targeted NSCLC with drug-resistant EGFR mutations. Besides, PLK1 is a member of polo-like kinase family associated with cell division. PLK1 is overexpressed in NSCLC and it often predicts a poor prognosis (166). A selective PLK1 inhibitor BI2536 can act as an ICD inducer to cause apoptosis and alter the tumor immune microenvironment by promoting DC maturation and increasing T-cell infiltration (167).

In addition, several drugs widely used for other diseases have been found to have the ability to induce ICD in lung cancer cells. Auranofin (AF), a thioredoxin reductase 1 (TrxR) inhibitor, is known as an antirheumatic drug (168). TrxR is considered as a potential target in NSCLC on account of its high expression in NSCLC patients. A recent study indicated that AF can initiate release of DAMPs and DC maturation, then trigger apoptotic and ferroptotic cell death by targeting TrxR and launching ICD. It may provide new ideas for the treatment of NSCLC (169). Moreover, statins are one of the most frequently used drugs to treat hyperlipidemia. Statins can stimulate CD8 + T cells and provoke severe ER stress by inhibiting RAS prenylation in KRAS-mutant (KRASmut) lung tumor models, thereby leading to the ICD effects (170). Besides, coumarin is a kind of natural compounds with anti-inflammatory and anti-cancer function. Lee et al. found that biscoumarin OT52 strongly inhibited the proliferation of KRASmut NSCLC cells via ICD pathways (171). Mechanistically, biscoumarin OT52 suppresses STAT3 transactivation and expression of its target genes. Altogether, these drugs may become novel candidates in the future for more effective treatment of lung cancer. However, the specific signaling pathway in ICD inducing and other mechanisms still need to be explored in-depth.



4.2 Chemotherapy and radiation therapy

Chemotherapeutic drugs are considered to kill cancer cells selectively via direct cytotoxicity (12). A main mechanism of immunity stimulation by chemotherapy involves the induction of ICD (121). Unfortunately, only a little part of anti-cancer drugs can effectively trigger ICD (172). Some kinds of chemotherapeutic agents have been tried to modulate activity of DCs, such as cyclophosphamide, doxorubicin, oxaliplatin and anthracyclines, which can make tumor antigens be vaccines to the immune system and induce ICD, consequently provoking robust adaptive immune response (173–175). Chemotherapy with a combination regimen of oxaliplatin with cyclophosphamide is approved in clinical practice for lung cancer. Previous studies found that in a lung mouse cancer model, this regimen can foster CD8+ T cell infiltration and increase TLR4+ DCs in tumor tissues, and further increase tumor sensitivity to immune checkpoint therapy (176). But the research by Fileswasser et al. has shown that oxaliplatin does not induce ICD in NSCLC cells (4). Pemetrexed, a multi-targeting antifolate antagonist which is established as the main chemotherapy drug for the first-line treatment of advanced non-squamous NSCLC (NSq-NSCLC) and mesothelioma, has also been shown to induce ICD and to increase of immune-regulatory genes (177, 178). Liu et al. found that crizotinib, a kind of drugs used to treat NSCLC patients which carries activated ALK/ROS1, is an efficient ICD stimulator via off-target effects (162). Wang et al.’s results show that trametinib also has the ability to induce ICD by sensitizing lung cancer cells to endoplasmic reticulum stress and triggering the release of DAMPs, and can be effective in treating KRAS-mutant LUAD when used in combination with interleukin-12 (IL-12) (179). A study by Gao et al. showed that, DOC, a kind of tubulin stabilizer belonging to the taxane family, can induce DAMPs and significantly upregulated release of HMGB1 in human NSCLC cell line (180). In addition, the results of Furuwaka et al. suggest that osimertinib induced NSCLC tumor cell death may lead to exposure and release of CRT to induce ICD, and then improve the anti-tumor immunity (181).

As a topical treatment approach, radiation therapy (RT) is widely used in clinical cancer treatment. RT can induce ICD, which promotes DCs activation and the presentation of tumor antigen to prime CD8+ T cells (182). The CD8+ T cells then enter the unirradiated tumor area and attack cancer cells (14, 183). RT and many traditional chemotherapeutic agents give rise to DNA damage and multiform cell death ultimately (184). In various preclinical settings, similar to chemotherapy, induction of ICD by RT has been shown associated with increased sensitivity to immune checkpoint blockade (144, 185), and many clinical trials have proven that (186). In the same way, ablative RT can induce necroptosis in NSCLC and mediate HMGB1-driven immunological response (187).



4.3 PDT

Photodynamic therapy is able to kill cancer cells by manipulating photosensitizers and generating reactive ROS, which triggers ER stress and induces the anti-tumor immunity to eliminate residual or metastatic tumors effectively and selectively (155, 171, 188). After accumulating selectively in the tumor area, the photosensitizer (PS) is activated by illumination with visible light of appropriate wavelength, and then illuminated by red light (690 nm), which can induce local ICD at the tumor sites and strong anti-tumor immunity (10, 189). In recent years, the concept of PDT has been actively pursued. The binding of near-infrared PS to antibodies or nanocarriers improves the efficiency of PDT (190). One typical PS shown to induce ICD is hypericin, which is an anthraquinone derivative of natural origin with specific ER localization (155, 171). The other promising non-porphyrin PS is benzophenazine, OR141, which also has specific location in the ER (191). OR141 induces cell death mainly via the mammalian target of rapamycin signaling pathway and by inhibition of proteasomal deubiquitinases, leading to ER stress (192). One study reveals that in a prophylactic tumor vaccination model using PDT-treated TC1 lung cancer cells, redaporfin acts as an ICD inducer that can trigger eIF2a phosphorylation, DAMPs release and inhibit tumor growth (193). ICD can also be induced by PDT based on 8-methoxypsoralen (8- MOP) (194). But it is worth noting that it doesn’t need oxygen but intercalates into DNA and forms cross-links with one or two DNA strands under UVA irradiation (195). Furthermore, it has been shown that photofrin-based PDT of Lewis lung carcinoma cells induced release of HSPs, and surface exposure of CRT in vitro and in vivo in an hour after PDT, as well as an increase of HMGB1 (196). These data also indicate that photofrin is a potential inducer of ICD.



4.4 ICIs

The antitumor effect of ICIs works by interfering with immune tolerance (178). The most clinically common immune checkpoints include: PD-1/PD-L1, cytotoxic T lymphocyte-associated antigen-4 (CTLA-4), indoleamine 2.3-dioxygenase (IDO), and CD47 (197, 198). ICIs have established a new model of lung cancer treatment and improved patients’ survival benefits (199, 200). It also has revolutionized the prognosis of multiple lung cancers, especially NSCLC, which have a high sensitivity to the immunotherapy against PD-1 (201). The combination therapy of platinum, PEM and ICIs has been proposed as a standard first-line treatment for advanced LUAD (202, 203). Also, numerous studies have shown platinum-based combination chemotherapy and combination ICIs, like PD-1 or for its ligand PD-L1, can markedly prolong survival in patients with stage III unresectable NSCLC (204–207). In clinical application, the combination of ICIs and chemotherapy can improve the efficacy of anti-tumor therapy, this may be because chemotherapy drugs increase tumor sensitivity to ICIs (208). Pemetrexed and ICIs targeting PD-1/PD-L1 are applied widely for the treatment of advanced NSq-NSCLC (178). Moreover, lurbinectedin is a kind of DNA-binding inhibitors of transcription, which is efficient at inducing ICD (209). The combination therapy of lurbinectedin and ICIs targeting PD-1/PD-L1 is supposed to be a salvage therapy for relapsed SCLC be over the years (172).




5 Conclusions and perspectives

Worldwide, lung cancer is one of the most common cancers and the leading cause of cancer-related deaths. For decades, researchers are exploring the pathogenesis of lung cancer and trying to find more effective treatments, such as by finding oncogenic driver gene mutations to improve targeted therapy. However, it is disappointing that clinical results have not been as positive as we expected. In recent years, ICD was noticed for evoking adaptive immune response of cancer cells. ICD can be induced by a variety of anticancer therapies, including chemotherapy, radiotherapy, targeted drugs, PDT and ICIs, etc. And it is becoming increasingly evident that ICD may offer a new idea in the anti-cancer therapeutic approaches in the future, especially for lung cancer.

In summary, it is a breakthrough to harness ICD to elevate the immunogenicity of tumor cells to maintain the efficacy of anti-tumor therapies for lung cancer. ICD induction is a promising area to explore and the mechanism of function and regulatory networks of ICD deserve further investigation. Finally, due to the limitations of current study, there are still many unanswered questions, such as whether ICD is associated with ferroptosis or cuproptosis, whether ICD is associated with anti-angiogenic drugs, and so on.
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Ferroptosis, a new type of cell death, is mainly characterized by intracellular iron accumulation and lipid peroxidation. The complex regulatory network of iron metabolism, lipid metabolism, amino acid metabolism, p53-related signaling, and Nrf2-related signaling factors is involved in the entire process of ferroptosis. It has been reported that ferroptosis is involved in the pathogenesis of neurological diseases, cancer, and ischemia–reperfusion injury. Recent studies found that ferroptosis is closely related to the pathogenesis of COPD, which, to some extent, indicates that ferroptosis is a potential therapeutic target for COPD. This article mainly discusses the related mechanisms of ferroptosis, including metabolic regulation and signaling pathway regulation, with special attention to its role in the pathogenesis of COPD, aiming to provide safe and effective therapeutic targets for chronic airway inflammatory diseases.
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In 2012, Dixon (1) first proposed a new type of iron-dependent programmed cell death named ferroptosis. As a new type of cell death, ferroptosis is mainly characterized by intracellular iron accumulation and lipid peroxidation. Ferroptosis differs from other forms of cell death such as apoptosis and necrosis in terms of morphology, biochemical characteristics, and genetics (2, 3). The morphological aspects of ferroptosis are mainly characterized by mitochondrial contraction and increased density of mitochondrial membranes with a decrease or disappearance of mitochondrial cristae and disintegration of the outer membrane (1). The biochemical features of ferroptosis are as follows: accumulation of ROS and iron ions, decreased cysteine uptake and GSH synthesis, activation of the mitogen-activated protein kinase system, and release of arachidonic acid (4). Iron metabolism, lipid metabolism, amino acid metabolism, p53-related signaling factors, and Nrf2-related signaling factors are involved in the entire process of regulating ferroptosis (5). Ferroptosis, a new programmed cell death mode, has been confirmed to be closely related to tumors, central nervous system diseases, arteriosclerosis, acute kidney injury, diabetes, and ischemia–reperfusion injury (6). Recent studies found that ferroptosis is also associated with the onset of chronic obstructive pulmonary disease (COPD) and has the potential to become a new therapeutic target. COPD is a common condition that can be prevented and treated, and it is characterized by persistent respiratory symptoms and airflow restriction; in addition, COPD is caused by airway and alveolar abnormalities due to heavy exposure to harmful particles or gases, and it is affected by host factors such as abnormal pulmonary development (7). COPD has developed into a major chronic respiratory disease that seriously threatens human health. Related studies showed that the disruption of iron homeostasis is related to the pathogenesis of COPD (8). With further study, the role of ferroptosis in the pathogenesis of COPD has gradually been revealed, and appropriate intervention in ferroptosis can delay the COPD process.


1. Mechanism of ferroptosis

The mechanism of ferroptosis is shown in Figure 1.


[image: Figure 1]
FIGURE 1
 Main regulatory pathways of ferroptosis. There are two main ways of regulating ferroptosis shown in the figure: the first is the pathway of abnormal iron, amino acid, and lipid metabolism; the second involves the related signaling pathways that regulate ferroptosis, such as the P53 and Nrf2 pathways. Glu, glutamic acid; GSH, glutathione; GPX4, glutathione peroxidase 4; Nrf2, Nuclear factor erythroid 2-related factor 2; GLS2, glutaminase 2; LOXs, lipoxygenases; ROS, reactive oxygen species; DMT1, divalent metal ion transporter-1; SAT1, spermidine N1-acetyltransferase 1; TfR, transferrin receptor.



1.1. Abnormal iron metabolism

Iron is an element necessary for lipid peroxide accumulation and ferroptosis. Excessive iron load promotes the production of ROS through the Fenton reaction and iron-binding proteins, thereby promoting the occurrence of ferroptosis (4, 9, 10). Iron intake, transport, and storage affect ferroptosis (5). Under physiological conditions, intracellular iron absorption and metabolism should always be in a dynamic and stable state. Iron uptake and export proteins play important roles in the process of iron metabolism. On the one hand, transferrin receptor 1 (TFR1) and divalent metal transporter-1 (DMT1) take up extracellular iron in cells. On the other hand, ferroportin (FPN) transfers excess intracellular iron to the outside of the cell, a process that maintains the “on” and “off” state of intracellular iron homeostasis (4, 11). Iron in the daily diet is usually absorbed by intestinal epithelial cells in the form of Fe3+ and then enters cells through the transferrin receptor (TFR) on the cell membrane after binding to transferrin. Afterward, Fe3+ in cells is reduced to Fe2+ by six-transmembrane epithelial antigens of prostate 3 (STEAP3). Then, Fe2+ is released into the cytoplasmic iron pool by divalent metal transporter 1 (DMT1) or zinc–iron regulatory protein family 8/14 (ZIP8/14) to meet its own metabolic needs. Abnormal expression or dysfunction of related proteins increases the concentration of intracellular iron ions and leads to excess iron. Excess intracellular iron can generate lipid reactive oxygen species (ROS) through the Fenton and Haber–Weiss reactions, which further accumulate and initiate lipid peroxidation (LPO) to induce ferroptosis (12).



1.2. Abnormal lipid metabolism

Lipid metabolism is critical for regulating cellular susceptibility to ferroptosis. Because plasma membrane damage caused by iron-dependent excess accumulation is an important feature during ferroptosis (13), reducing oxidative damage from lipid peroxidation is a fundamental process to inhibit ferroptosis (14–16). ROS interacts with polyunsaturated fatty acids (PUFAs) on lipid membranes to form lipid ROS, and excessive ROS accumulation in cells induces ferroptosis (17). When PUFAs exist in large amounts, they lead to more lipid peroxides and aggravate the degree of cell ferroptosis (18). Studies found that lipoxygenases (LOXs), non-heme iron-containing proteins, are involved in the formation of iron-dependent lipid ROS. When cells contain a large amount of iron ions, they catalyze PUFAs to form lipid hydroperoxides and toxic lipid-free radicals, which cause cell damage and promote ferroptosis (19). It was later found that antioxidants significantly inhibit LOXs and further inhibit the formation of lipid hydroperoxides to prevent cell ferroptosis (19). Acyl-CoA synthetase long-chain family member 4 (ACSL4) and lysophosphatidylcholine acyltransferase 3 (LPCAT3) are involved in helping PUFAs in cell membrane synthesis and esterification to generate PUFA-PEs, which accelerate the process of ferroptosis (20, 21). Therefore, PUFA-related biosynthetic enzymes may be potential targets for regulating ferroptosis.



1.3. Abnormal amino acid metabolism

Ferroptosis caused by abnormal amino acid metabolism is mainly related to the abnormal metabolism of GSH. GSH is a key substance in amino acid metabolism in ferroptosis and is mainly synthesized from cysteine, glutamate, and glycine (5). Extracellular cysteine and intracellular cysteine are essential for GSH biosynthesis. Cystine generates GSH through a series of enzymatic actions, and GSH is the basic substrate for the degradation of phospholipid hydrogen peroxide (PLOOH) by glutathione peroxidase 4 (GPX4). Decreased GPX4 activity leads to the accumulation of intracellular lipid peroxides, thereby inducing ferroptosis (22, 23).

Cystine/glutamate anti-transport system Xc- (System Xc-) on the cell membrane transports extracellular cystine and intracellular glutamate in a 1:1 ratio. Cells mainly acquire cystine from the extracellular space through System Xc-, where cystine is reduced to cysteine to participate in the synthesis of GSH, and erastin acts on System Xc- to inhibit the uptake of cystine by the cell membrane, thereby reducing the synthesis of GSH and further contributing to the accumulation of ROS (24). Because glutamate is a regulator of ferroptosis and is exchanged with cystine in a 1:1 ratio by System Xc-, the concentration level of glutamate affects the function of System Xc-. A previous study reported that a high concentration of extracellular glutamate further prevents the uptake of cystine by inhibiting the biological activity of System Xc-, thereby inducing ferroptosis (11, 25). Therefore, abnormal amino acid metabolism is another important mechanism in cell ferroptosis.



1.4. Pathways related to ferroptosis

The process of ferroptosis is affected by different signaling pathways. As a tumor suppressor gene for cell cycle inhibition, apoptosis, and senescence, p53 is also one of the main signaling pathways of ferroptosis in cells (26, 27). Related studies showed that p53 is involved in the ferroptosis process and is a key regulator of both the canonical and non-standard ferroptosis pathways (28–30). SLC7A11 is an important part of System Xc-, and p53 acts as a transcriptional repressor of SLC7A11, participates in the process of ferroptosis, and inhibits the acquisition of cysteine by downregulating the expression of SLC7A11 and reducing GPX activity and GSH synthesis ability; this allows ROS accumulation and induces ferroptosis (28). p53 also sensitizes ferroptosis by enhancing the expression of glutaminase 2 (GLS2) and spermidine/spermine N1-acetyl-transferase 1 (SAT1) (31, 32). In addition, p53 inhibits ferroptosis by directly inhibiting the activity of dipeptidyl peptidase 4 (DPP4) or by promoting the expression of cyclin-dependent kinase inhibitor 1A (CDKN1A/p21) (33, 34).

Nuclear factor erythroid 2-related factor 2 (Nrf2) is a key regulator of cellular antioxidant activity, and its targets play important roles in iron and lipid metabolism (35, 36). Studies found that Nrf2 further inhibits ferroptosis by increasing the expression of target genes related to iron and ROS metabolism (37). Under physiological conditions, Nrf2 expression is low, and its activity is tightly regulated by Keap1 (38). When oxidative stress occurs, Nrf2 dissociates from the Keap1 cytoplasmic inhibitor and activates the Nrf2 transcriptional gene and thus plays an antioxidant role in protecting cells from oxidative stress. Activation of Nrf2 greatly reduces iron absorption and inhibits the production of reactive oxygen species, thereby enhancing cellular antioxidant capacity (15, 39–41). Also, Nrf2 stimulates the expression of GPX4, thereby inhibiting the occurrence of ferroptosis under certain circumstances (42, 43). Thus, the regulation of the Nrf2 pathway inhibits ferroptosis.




2. Pathogenesis of COPD


2.1. Pathological mechanism of COPD

The pathogenesis of COPD is based on the response of the body to inhalation of harmful particles and gases, and it is complex and has not been fully elucidated. Smoking is the main cause of COPD, and the pathogenesis of COPD is mostly related to inflammatory mediators, inherent immunity, oxidative stress, and protease/antiprotease imbalance (7, 44). Among many theories regarding the pathogenesis of COPD, ferroptosis is likely to be a major internal manifestation (8), and environmental interaction that induces respiratory inflammation is the main factor leading to the pathogenesis (45). Chronic airway inflammation and defects in epithelial repair remain core problems in COPD (46).

Cigarette smoke (CS) and harmful particles induce the body to produce highly reactive molecules such as ROS and reactive nitrogen species (RNS), thus inducing oxidative stress. The accumulation of neutrophils and macrophages in airways and pulmonary blood vessels causes the release of a large number of inflammatory mediators, which induces an inflammatory response and leads to lung tissue damage and protease/antiprotease imbalance, ultimately accelerating the progression of COPD (47). Oxidative stress causes the release of IL-1β and tumor necrosis factor-α (TNF-α) by regulating redox transcription factors such as nuclear factor kappa B (NF-κB) and activator protein 1 (AP-1), thereby enhancing the inflammatory response of lungs. It is worth noting that the increase in inflammatory cells and pro-inflammatory cytokines not only maintains the chronic inflammatory response in this population but also causes systemic damage (48).



2.2. Iron-dependent oxidative stress

Oxidative stress is an important pathogenic factor in COPD, and the presence of a large amount of ROS in the inflammatory response inactivates antiproteases and leads to lung tissue damage. Excessive secretion and accumulation of neutrophils lead to the production of a large amount of reactive oxygen species (ROS). The accumulation of ROS reduces the activity of histone deacetylases (HDACs) and increases the activity of histone acetyltransferases, leading to further accumulation of neutrophils, which exacerbates oxidative stress (49).

Iron homeostasis may be disrupted in inflammatory diseases, resulting in the production of excess reactive oxygen species with deleterious effects on cells and tissues. Epithelial cells and macrophages in lung tissues produce iron metabolism-related proteins, which regulate iron homeostasis and prevent the occurrence of oxidative stress (50). Disruption of pulmonary iron homeostasis is closely related to the development of COPD (51), and oxidative stress occurs due to excess iron in the lungs caused by endogenous or exogenous factors. Studies in rats showed high levels of pulmonary oxidative stress following intravenous injection of iron-containing compounds (iron dextran and iron carboxymaltose), which are mainly manifested by increased levels of nitrotyrosine and protein carbonyl modifications (52). Lung administration of Fe2O3 nanoparticles by inhalation induces ROS generation in rat lungs (53). Chio et al. found that cigarette smoke (CS) has an important effect on iron homeostasis in the lungs. Exposure of mouse and human bronchial epithelial cells to CS increases the concentrations of iron, Ft, serum ferritin, and non-heme iron in lung cells (54).



2.3. Lipid peroxidation

Lipid peroxidation is the loss of hydrogen atoms of intracellular lipids under the action of peroxidase or free radicals, resulting in oxidation, fragmentation, and shortening of carbon chains as well as lipid-free radicals, malondialdehyde (MDA), and 4-hydroxy-2-nonenal (4-HNE) peroxidation products, which eventually oxidatively degrade lipids and damage the lipid bilayer structure of cell membranes. (55) Currently, MDA, HNE, F2-isoprostanes (F2-isoP), and 8-iso-prostaglandin F2α (8-iso-PGF2α) are the main biomarkers for evaluating lipid peroxides.

Smoking increases the content of lipid peroxidation in the body, and lipid peroxidation is closely related to the pathological progression of COPD (56). A survey of community residents in Germany showed that the level of cotinine in plasma and the amount of smoking in community residents are proportional to the level of 8-iso-PGF2α in urine, and the survey also reported that the level of 8-iso-PGF2α in smokers is significantly higher than that in non-smokers. The study further showed that the smoking index constructed based on 71 smoking-related methylation sites has a positive dose–response relationship with the log value of 8-iso-PGF2α (57). In addition, air pollution is also a major risk factor for COPD, and air pollutants lead to elevated levels of lipid peroxides in the body. In a cohort study of 97 elderly people in the United States, Zhang et al. found that the levels of carbon monoxide, nitrogen oxides, and other related pollutants and ultrafine particulate matter (PM0.18) are closely related to the elevation of the MDA oxidative stress marker, and they also reported that the effect of the component with a smaller particle size is stronger. (58) A survey of adults commuting on the highway for 3 h during the morning rush hour in Atlanta reported that exhaled nitric oxide, C-reactive protein, and MDA levels of patients with asthma and without asthma are significantly higher than baseline levels, indicating that the inhalation of harmful gases causes pulmonary inflammation and oxidative stress (59).




3. Role of ferroptosis in COPD

The role of ferroptosis in COPD is shown in Figure 2.
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FIGURE 2
 Possible relationship between ferroptosis and COPD, ROS, CS, and PM2.5 trigger COPD, resulting in an inflammatory reaction and abnormal levels of inflammatory factors. Conversely, abnormal inflammatory factors can aggravate COPD, Nrf2 can inhibit the production of reactive oxygen species and iron and the occurrence of COPD and ferroptosis. A direct link between ferroptosis and COPD remains unclear. Nrf2, Nuclear factor erythroid 2-related factor 2; CS, cigarette smoke; ROS, reactive oxygen species; AP-1, activator protein 1; NF-κB, nuclear factor of kappa B.


Ferroptosis is involved in the pathogenesis of COPD in a COPD mouse model. Murine lung epithelial cells exposed to CS exhibit unstable iron accumulation and increased lipid peroxidation accompanied by a non-apoptotic mode of cell death negatively regulated by GPX4. In addition, the mouse model further confirmed that the treatment of lung epithelial cells with deferoxamine and Fer-1 effectively reduces the lipid peroxidation induced by CSE, and inhibition of GPX4 also has the same effect (8). Therefore, related inhibitors such as deferoxamine and Fer-1 are potential approaches for the prevention of ferroptosis and COPD treatment. PM2.5 is one of the pathogenic factors of COPD. Studies found that, after inhalation of PM2.5 particles, the iron content and ROS concentration in human endothelial cells significantly increased, whereas the expression of GSH and NADPH decreased; in addition, the changes in the expression of TfR and Ft lead to an imbalance in cellular iron homeostasis, thereby inducing ferroptosis. The use of Fer-1 and deferoxamine improves GSH and nicotinamide adenine dinucleotide phosphate (NADPH) levels (60). Tang et al. found that cigarette smoke extract (CSE) aggravates the damage and death of BEAS-2B cells as well as increases the levels of IL-6 and TNF-α inflammatory factors, resulting in iron property changes. In vivo studies showed that CS causes lung injury in COPD rats, increases inflammatory cell infiltration, increases inflammatory cytokine secretion, and induces ferroptosis in lung tissue cells of COPD rats. In vitro and in vivo studies showed that CSE/CS increases the MDA content, increases the iron content, downregulates GPX4, decreases ferritin heavy chain levels, and upregulates transferrin receptor levels and also reported that curcumin reverses CS-induced lung inflammatory damage and epithelial cell ferroptosis (61).

Morphological aspects of ferroptosis mainly manifest as mitochondrial shrinkage, reduction or disappearance of mitochondrial cristae, and increased mitochondrial membrane density. Liu et al. found that dihydroquercetin (DHQ) inhibits CS-induced ferroptosis in the pathogenesis of COPD by activating the Nrf2-mediated pathway and attenuating CSE-induced mitochondrial morphological changes (62). In vitro and in vivo studies reported that the mRNA and protein expression levels of SLC7A11 and GPX4 are increased after DHQ treatment, and they also demonstrated that CSE-induced lipid peroxidation in HBE cells is significantly reduced after DHQ treatment. In addition, DHQ reverses CSE-induced excess MDA and ROS production, and it has also been reported that the DHQ-induced increase in SLC7A11 and GPX4 mRNA and protein levels is reversed by the use of an Nrf2-specific inhibitor (ML38.5). These findings suggest new options for the treatment of patients with COPD.

Nrf2 is a key factor in maintaining the oxidative/antioxidative balance, which can prevent the occurrence of COPD by resisting oxidative stress and lung inflammation. Recent studies reported that CpG hypermethylation in the promoter causes downregulation of Nrf2 expression in the lung tissue of patients with COPD (65). Zhang et al. found that, in HBE cells treated with CSE, the expression levels of reactive oxygen species (ROS), lipid peroxides, and MDA are increased, and they also reported that the levels of IL-1β and IL-8 are increased but that the expression levels of GPX4 and SOD are decreased, indicating that CSE induces ferroptosis in HBE cells and increases the release of inflammatory factors (63). However, increasing the expression of Nrf2 enhances the expression of GPX4 and SOD but inhibits the expression of ferroptosis and related inflammatory factors in the supernatant. Further studies found that CS-/CSE-induced hypermethylation may lead to abnormal expression of Nrf2, and targeting methylation and ferroptosis may prevent the progression of COPD, which may be a new strategy for the treatment of COPD in the future.

Macrophages are innate immune cells that play a key role in alleviating inflammation and defending against invasion by external pathogens (66, 67). Studies found that macrophage activation is closely related to the occurrence of COPD, and the total number of macrophages is proportional to the severity of smoking and COPD (68). Using both in vitro and in vivo studies, Liu et al. found increased levels of M2 macrophages, MMP9 expression, and MMP12 expression in patients with COPD, CS-exposed mice, and THP-M cells cocultured with CSE-treated human bronchial epithelial (HBE) cells, suggesting that NCOA4 and ferroptosis are involved in the pathogenesis of COPD (64). This trend is further reversed using NCOA4 siRNA and the ferrostatin-1 ferroptosis inhibitor. Therefore, blocking NCOA4 may be a promising therapeutic strategy for COPD, which provides a new direction for COPD diagnosis and treatment research. The Mechanism of ferroptosis in COPD is shown in Table 1.


TABLE 1 Mechanism of ferroptosis in COPD.
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4. Ferroptosis as a potential therapeutic strategy in COPD

The imbalance of iron absorption and metabolism is an important factor affecting the progression of COPD. Therefore, correcting the local metabolism of iron is another key method for the treatment of COPD. Studies showed that iron chelators, antioxidants, iron supplementation, and dietary restriction are effective ways to treat COPD.


4.1. Iron chelators

Common iron chelators include deferoxamine (DFO), deferiprone, and deferasirox. DFO is one of the drugs that have been approved by the FDA for the treatment of iron overdose (69). In addition, a previous study found that DFO reduces the levels of inflammatory factors and reactive oxygen species in vitro and that it exerts an anti-inflammatory effect and reduces the inflammatory response (70). However, genetic factors are one of the important factors in the complex pathogenesis of COPD (71). Another study showed that iron regulatory protein 2 (IRP2, also known as IREB2) is increased in the lung tissue of patients with COPD, and IRP2 has been identified as a COPD susceptibility gene (72). Through COPD model mouse experiments, Cloonan et al. found that mice lacking the IRP2 gene are protected from CS-induced COPD, and they identified IRP2 as a regulator of mouse lung mitochondrial function. They further found that mice treated with a mitochondrial iron chelator (deferiprone) or fed a low-iron diet are protected from CS-induced COPD; in addition, CS-induced mucociliary clearance (MCC) impairment, lung inflammation, and lung injury in mice are attenuated (73). Therefore, these findings suggest that mitochondrial iron chelators may be a new potential approach for treating COPD.



4.2. Antioxidants

Oxidative stress is an important cause of airway inflammation, lung parenchyma destruction, and lung function decline in COPD, mainly induced by inhalation of air pollutants such as CS/CSE and dust. The acute exacerbation of COPD is closely related to oxidative stress and oxidant/antioxidant imbalance in the blood (74). Studies showed that H2S-activated Nrf2 pathway-mediated antioxidant effects play an important role in the progression of COPD (75). Wang et al. found that, after PM2.5 treatment of airway epithelial cells, the mitochondrial membrane density increases and characteristic changes in ferroptosis occur. Furthermore, COX2 expression is increased in patients with COPD. In the PM2.5-mediated mouse model and cell injury model, the levels of LIP ROS, total ROS, and MDA increased, and the levels of GSH, GSH Px, and GPX4 antioxidants decreased, indicating that PM2.5-mediated ferroptosis is involved in the pathogenesis of COPD (76). Further studies found that H2S inhibits lipid peroxidation-mediated ferroptosis by restoring the redox balance and regulating the Nrf2–PPAR ferritin in the phagocytosis pathway, thereby reducing PM2.5-induced emphysema and airway inflammation. These results suggest that inhibition of ferroptosis may be a potential therapeutic target for diseases with oxidative stress as the core pathogenesis, and H2S may be a potential antioxidant that blocks PM2.5 and causes COPD pathogenesis.




5. Conclusion and outlook

Ferroptosis, a new type of cell death, is involved in the pathogenesis of various diseases. Ferroptosis is a process involving abnormal metabolism of iron, amino acids, and lipids, which are involved in cell proliferation and differentiation. The metabolic process of ferroptosis is complex, and its mechanism has been preliminarily studied. Both in vitro and in vivo studies showed that ferroptosis is closely related to a variety of disease processes, and appropriate intervention in ferroptosis can treat the disease and delay the progression of related diseases. Although some progress has been made in the role of ferroptosis in lung cancer, ALI, and pulmonary fibrosis, the role of ferroptosis in COPD is not fully understood, and further clinical and experimental studies are needed. Although the existing ferroptosis inducers are effective, the therapeutic modalities for ferroptosis are still insufficient and only include iron inhibitors, iron chelators, and antioxidants. Identifying effective diagnostic markers of COPD may aid in the treatment of ferroptosis in COPD. For example, the known important regulator of iron metabolism, hepcidin, and its receptor, Fpn1, have been demonstrated to be effective diagnostic markers for COPD, and they may be promising targets for future drug development. In conclusion, with increasing studies on ferroptosis, new related regulators and their functions are constantly being explored. Considering ferroptosis as an entry point to develop COPD treatment regimens and targeted drugs has important clinical value.
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A chronic inflammatory condition characterizes various lung diseases. Interestingly, a great contribution to inflammation is made by altered lipids metabolism, that can be caused by the deregulation of the mammalian target of rapamycin complex-1 (mTORC1) activity. There is evidence that one of mTOR downstream effectors, the sterol regulatory element-binding protein (SREBP), regulates the transcription of enzymes involved in the de novo fatty acid synthesis. Given its central role in cell metabolism, mTOR is involved in several biological processes. Among those, mTOR is a driver of senescence, a process that might contribute to the establishment of chronic lung disease because the characteristic irreversible inhibition of cell proliferation, associated to the acquisition of a pro-inflammatory senescence-associated secretory phenotype (SASP) supports the loss of lung parenchyma. The deregulation of mTORC1 is a hallmark of lymphangioleiomyomatosis (LAM), a rare pulmonary disease predominantly affecting women which causes cystic remodeling of the lung and progressive loss of lung function. LAM cells have senescent features and secrete SASP components, such as growth factors and pro-inflammatory molecules, like cancer cells. Using LAM as a paradigm of chronic and metastatic lung disease, here we review the published data that point out the role of dysregulated lipid metabolism in LAM pathogenesis. We will discuss lipids’ role in the development and progression of the disease, to hypothesize novel LAM biomarkers and to propose the pharmacological regulation of lipids metabolism as an innovative approach for the treatment of the disease.
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Introduction

Lungs rely on a unique lipid biology that ensures respiratory function and is involved in the regulation of the immune response. The alveolar area sustains active lipid metabolism to maintain surfactant homeostasis thus ensuring optimal respiration cycle. Mostly composed of phospholipids with 5–10% of cholesterol and small amount of sphingolipids, surfactant is essential in reducing the surface tension in the alveolar walls (1). Sterol-regulatory element-binding proteins (SREBPs) regulate lung lipid biosynthesis and sterol homeostasis at transcriptional level (2). This family of transcription factors promotes the expression of cholesterogenic and lipogenic genes involved in fat storage (3). Growing evidence shows that SREBPs are involved in numerous pathogenic processes such as endoplasmic reticulum stress and inflammation. LPS-challenged macrophages from mice with a targeted deficiency in the gene encoding SREBP-1a, failed to activate lipogenesis, secretion of IL-1β and gene encoding Nlrp1a, which is a core inflammasome component (4). Oishi et al. demonstrated that in macrophages, SREBP1 reprograms lipid metabolism to produce the anti-inflammatory polyunsaturated fatty acids thus promoting the late resolution of TLR4-induced gene activation (5). SREBP1 induction in alveolar type 2 cells of Insig1/2Δ/Δ mice causes neutral lipid accumulation in type II cells and in the alveoli, resulting in pulmonary inflammation and airspace remodeling (6). Transcriptome network analysis reveals that SREBP1 activation promotes lipotoxicity that in turn induces inflammation and fibrosis in the lung (7). Recent data have shown that SREBP2 integrates cholesterol metabolism with NLRP3 inflammasome activation in macrophages (8). SREBP1 is regulated by the mammalian target of rapamycin (mTOR) (9) that is a regulator of lipid and nucleotide synthesis. Once activated, SREBP1 translocates from the endoplasmic reticulum to the nucleus to promote the transcription of the enzymes responsible for glugoneogenesis and lipogenesis (10).

Lymphangioleiomyomatosis (LAM) is a rare progressive lung disease characterized by lung cystic destruction, and the progressive loss of lung function (11). LAM occurs sporadically or associated to Tuberous Sclerosis Complex (TSC) (12). Loss of TSC gene function causes to dysregulated mTOR signaling (13). mTOR has a central role in cell metabolism, integrating environmental signals to promote anabolic processes (14). Recently, likely because of mTOR dysregulation, several studies indicated the alteration of lipid metabolism in LAM as an interesting target to uncover novel therapeutic approaches (15).

The minireview describes the current state of knowledge of emerging role of lipids in LAM considering their contribution in inflammation and in the pathogenesis and progression of chronic lung diseases.



Lipids in pulmonary diseases


Inflammation

Lung inflammatory diseases are tightly linked with aberrant SREBP activity in respiratory epithelial cells and with dyslipidemia. SREBP2-mediated lipid metabolism promotion correlates with (COVID-19)-induced cytokine storm (16). The increased expression of SREBP-1 after respiratory virus infection (i.e., SARS-CoV), regulates the accumulation of lipid droplets, cell organelles involved in the amplification of inflammatory mediators’ production (17). Dysregulation of free fatty acids, cholesterol, and ceramides homeostasis in the lungs is associated with the pathogenesis and the progression of chronic obstructive pulmonary disease (COPD). Cigarette smoke–induced alveolar accumulation of lipids is an important event that triggers inflammation in alveolar macrophages (18). Several studies have demonstrated that ceramides, the central hub of sphingolipids metabolism, are elevated in COPD and contribute to chronic inflammation (19). Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease characterized by inflammation and fibrosis. As recently reviewed by Suryadevara et al. (20), bioactive lipid mediators derived from fatty acids, glycerolipids, phospholipids, and sphingolipids exhibit pro- or anti-fibrotic/inflammatory effects in lung tissues of IPF patients. Acute Respiratory Distress Syndrome (ARDS) is a severe form of clinical acute lung injury (ALI), both sharing severe inflammatory conditions. Phospholipase A2 enzymes (sPLA2s), that generate free fatty acids and lysophospholipids from glycerophospholipids, are upregulated in different cell types in the ALI/ARDS lung compartment. Significant evidence demonstrates that in these pathological settings, PLA2s are functionally important as regulators of inflammatory signaling (21). Caused by several factors, pneumonia is the inflammation localized to the terminal airways, the alveoli, and the interstitium of the lungs. A pilot study conducted in 2017 during community-acquired pneumonia (22), reported that monounsaturated and polyunsaturated fatty acid accumulation elicits an inflammatory response during pneumonia progression. Cystic Fibrosis (CF) is an inherited recessive disease. CF is caused by mutations in the CF transmembrane conductance regulator gene, with most of the mortality given by the lung dysfunction (23), being inflammation an independent risk factor for disease progression. We previously demonstrated that CF bronchial epithelial cells accumulate the sphingolipid ceramide (24), which contributes to CF airways inflammation (25), as well as glycerophospholipids and lyso-glycerophospholipids, the latest considered pro-inflammatory molecules (26), cholesterols, cholesterol esters and triacylglycerols (27), compared to normal cells.



Senescence-mediated inflammation

Senescence is a stress-response process characterized by the irreversible arrest of the cell cycle following DNA damage. Senescent cells develop a senescence-associated secretory phenotype (SASP) to maintain their status and to communicate within their microenvironment. SASP factors, both released as soluble molecules or within extracellular vesicles (EVs), have strong biological activities on neighboring cells, including the promotion of inflammation. Indeed, the study of SASP in all in vitro generated models demonstrated the presence of the proinflammatory interleukin-6 (IL-6), CXC chemokine ligand 8 (IL-8), and monocyte chemoattractant protein 1 (28). Even if senescence allows the maintaining of tissue homeostasis, an irreversible proliferation arrest might limit the regenerative capacity of the tissue, and the presence of a pro-inflammatory milieu might sustain the onset of pathological condition and age-related disorders. In pulmonary diseases, accelerated or premature aging emerged to be significant. The oxidative stress caused by cigarette smoke induces senescence in alveolar epithelial cells (AEC) and endothelial cells that accumulate in COPD lungs, while in IPF the shortening of the telomeres might be responsible for the senescent status of fibroblasts and AEC (29). Of note, AEC might be driven to senescence also after the serine/threonine kinase mTOR hyperactivation (30). The constitutive activation of mTOR in the lung epithelial cells of transgenic mice results in weakness tight junctions’ (TJ), that is a sign of injury in the lung epithelium. In parallel, also epithelial to mesenchymal transition (EMT) was enhanced, ultimately contributing to lung fibrosis. In this study, however, senescence was not observed, but the authors suggested that this might be due to differences in the timing of mTOR activation compared to previous studies (31). Moreover, the peculiar contribution of the AEC to local inflammation might be ascribed also to the release of EVs. Interestingly, it was recently demonstrated that AEC released EVs that differs on their miRNA content, depending on the apical or basolateral origin site of their release. EVs released from the apical side of epithelial cells are enriched in miRNAs enhancing the mTOR signaling pathways, probably being responsible for the TJ vulnerability and for the EMT, which can cause lung injury (32). Of note, senescence and lipid metabolism share many regulatory proteins, among which mTOR has a crucial role (33). Senescent cells have increased lipids uptake and accumulation in lipids droplets (34) and it has recently arisen that the regulation of specific lipid species plays a critical role in senescence contributing to the chronic inflammation associated with SASP (35). For example, the prostaglandin E2 (PGE2), which is synthesized from the arachidonic acid, is expressed at higher levels in COPD fibroblasts compared to healthy controls and is responsible for the autocrine and paracrine spreading of senescence in neighboring cells, as well as of the induction of inflammatory response through the up-regulation of its receptors EP2 and EP4 in a cyclooxygenase 2 -dependent reactive oxygen species response (36). Notably, PGE2 is released also by epithelial cells to relax airways smooth muscle cells, indicating that the roles of lipid molecules in the crosstalk between cells in the lung environment is complex and needs further investigation (37). Additionally, the signaling lipid leukotrienes, that are SASP components, are secreted by senescent fibroblasts and contribute to worsen IPF promoting fibrosis in lung (38). Finally, lysophosphatidylcholines (LPCs) have SASP activity, being expressed at high levels in senescent fibroblasts and being capable to induce the secretion of IL-8 and IL-6 (35).




LAM and mTOR

Lymphangioleiomyomatosis (LAM) primarily affects women of childbearing age. LAM cells are smooth muscle-like cells bearing a mutation in TSC1 or TSC2 tumor suppressor genes that causes the hyperactivation of Rheb with an increase of mTORC1 and adenosine 5′-monophosphate activated protein kinase (AMPK) activity (39, 40). AMPK control the energy levels by promoting the catabolic processes and by inhibiting the anabolic activities. Interestingly, tuberin-null cells show the AMPK hyperactivation which correlates with the cytoplasmic localization of p27Kip1 that negatively regulates the cyclin dependent kinase 2 (41). mTORC1 or mTORC2 induce the expression and the proteolytic process of SREBP1; therefore, mTORC1 hyperactivation, through SREBP1 and acetyl-CoA carboxylase, controls the lipid accumulation (10). Moreover, the synthesis of PC is controlled by mTORC1 through SREBP1 (9). As a consequence of the TSC mutations, the loss of heterozygosity in TSC1 or TSC2, which causes the lack of hamartin or tuberin, leads to the hyperactivation of mTOR that promotes cell growth and proliferation by stimulating anabolic metabolism with the increase of protein and lipid synthesis (42, 43). Furthermore, constitutive mTOR activation leads to an increased invasion of lymphatics and lungs where LAM cells and wild type stromal cells form cysts with the consequent pneumothorax and progressive loss of pulmonary function (44).

The proliferation of LAM cells in the lung parenchyma is associated with diffuse cystic lesions and their infiltration into the lymphatic walls causes lymphatic abnormalities leading to damage or obstruction of lymphatic vessels (45). Lymphangiogenesis plays a pathogenetic role whereby LAM cells invade and spread through the lymphatic, a process that is related to a high levels of vascular endothelial growth factor (VEGF)-D (46). As well, nearby and into the LAM lesions, the increased expression of VEGF-A stimulates angiogenesis that also might be a mechanism by which LAM cells invade the circulation (47). Clinical manifestations of LAM include progressive dyspnea, cough, chest pain, recurrent pneumothoraces, and chylous complications including chylothorax, chyloptysis, and chylous ascites (13). Angiomyolipomas, benign tumors composed of LAM cells, smooth muscle cells, adipose tissue, and vessels, can often occur in LAM patients.

The discovery of the genetic basis of LAM cells led to consider the inhibition of mTOR hyperactivation as a therapeutic approach. Rapamycin indeed inhibits LAM cell proliferation resulting in the stabilization of the lung function, in the reduction of lymphatic abnormalities, and of the angiomyolipoma volumes, with no efficacy in the regression of the existing pulmonary lesions. So far, the treatment with rapamycin is the only approved for LAM (48).

After being classified as an interstitial lung disease, LAM has been recently reconsidered as a low-grade, destructive, metastasizing neoplasm for several features as the invasive LAM cell properties, the recurrency in donor allografts of patients who have undergone lung transplantation, and the metabolic reprogramming. However, LAM differs from other neoplasms for the bilateral and symmetrical disruption of the lung without a clear primary tumor site and dominant mass lesions (49).

We recently demonstrated that LAM/TSC cells, derived by chylous thorax of a LAM/TSC patient, have senescent features dependent from mTOR hyperactivation and the capability to induce senescence in neighboring cells (50). As demonstrated in other respiratory disease such as IPF, senescence might drive the progressive loss of parenchymal structure in LAM which ultimately causes the impairment of lung function (51). It has been demonstrated that LAM cells secrete molecules known to be SASP components comprised metalloproteinases (52), proinflammatory cytokines IL-6 (53) and IL-8 (50), kathepsin K (54), and VEGF-D (39) reinforcing the hypothesis of a LAM cell communication with the microenvironment and a SASP modulation of the remodeling of the lung parenchyma. Interestingly, IL-8, a potent neutrophil chemotactic factor that triggers chemotaxis and neutrophil activation through a phosphorylation cascade in the inflammatory response (55), has been demonstrated to be involved in the pathogenesis and progression of lung diseases such as ARDS and SARS CoV-2, suggesting the possibility to use IL-8 as a biomarker or as a therapeutic target (56). In LAM, besides its role in senescence, IL-8 might reinforce the senescence/inflammatory milieu driving the progression of the disease.

Furthermore, mTOR role in LAM senescence can be supported by the senolitic effect of rapamycin and the relapse following the suspension of rapamycin treatment caused by an irreversible senescent state, called geroconversion, sustained by mTOR hyperactivation (57).



Lipids as novel potential therapeutic targets and biomarkers


Pulmonary diseases

In view of the deep interplay between dysregulated lipid metabolism and chronic inflammatory condition that characterizes several lung diseases, restoring lipid homeostasis could represent a novel therapeutic approach. Herein, there are examples of preclinical studies focusing on the potential anti-inflammatory efficacy of compounds targeting lipid pathway in pulmonary diseases (Table 1). Treatment with A922500, a pharmacological inhibitor of acyl-CoA:diacylglycerol acyltransferase-1, inhibits lipid droplets biogenesis triggered by SARS-CoV-2 infection in A549 human epithelial cells and in primary human monocytes. Thereon, the synthesis of pro-inflammatory lipid production and cytokinesis is downregulated (58). Interestingly, we were able to also reduce glycerol- and cholesterol-based lipids, to promote fatty acids oxidation, to reduce inflammation in in vitro model of CF by reducing ceramide accumulation with Myriocin, the inhibitor of the rate-limiting step in sphingolipid biosynthesis (27). Finally, in an in vivo model, the bleomycin-induced lung fibrosis and inflammation in rats was attenuated by AK106-001616 that inhibits the cytosolic PLA2 responsible for the generation of pro-inflammatory eicosanoids (59).


TABLE 1    Anti-inflammatory efficient compounds targeting lipid pathways in pulmonary diseases.

[image: Table 1]



LAM

Lymphangioleiomyomatosis (LAM) cells have a metabolic signature of increased fatty acid uptake and synthesis, a characteristic in common with cancer cells (60), making altered lipid species in LAM both disease relevant biomarkers and potential therapeutic targets.

For instance, in the perspective of a LAM immunotherapy, it was demonstrated that LAM lung sections of both patients and Tsc2–/– mice have a strong positivity to the ganglioside D3 (GD3), whose expression is a characteristic that LAM cells maintain also after multiple passages in vitro (61). Interestingly, LAM patients have lower anti-GD3 antibodies in their serum compared to healthy controls and the in vitro treatment of LAM cells with commercial anti-GD3 antibodies plus human complement induce death in the 12–42% of the population. This might suggest an approach similar to melanoma, in which the targeting of GD3 by antibodies reduces tumor growth through the activation of the natural killer T cells (62).

Even if GD3 expression in LAM cells and lipids accumulation in the renal angiomyolipomas of LAM patients can be considered a consequence of mTOR deregulation (63), emerging researches demonstrate the existence of uncovered TSC1/2-dependent-mTORC1-independent regulation of lipids metabolism that may contribute to the LAM pathogenesis and progression.

In the first systematic study of the LAM lipidome, high levels of four LPCs (C16:0, C18:0, C18:1, and C20:4) were found in the plasma of women with LAM compared with healthy controls, suggesting novel potential biomarkers (64). LPCs are bioactive lipids generated by the activity of phospholipase A (PLA) on the precursor PC (9) and preclinical models of lung cancer showed that those molecules might have a direct role in tumor angiogenesis (65), a condition that, together with lymphangiogenesis, is characteristic also in pulmonary and extrapulmonary LAM (49). Interestingly, the increase of LPCs were also observed in Tsc2–/– mouse embryonic fibroblasts (MEFs), consistently with the hypothesis that tuberin loss might enhance several phospholipid and neutral lipid species. The treatment with the mTOR inhibitors rapamycin or torin1, or the down-regulation of SREBP1 does not suppress LPCs, while the down-regulation of specific PLAs decreases selectively the proliferation of Tsc2–/– MEFs compared with Tsc2+/+ MEFs (58). Among PLAs, the accumulation of the PLA2G16 isoform was observed in the lung nodules and in the renal angiomyolipomas of LAM patients, and it was demonstrated that the presence of tuberin negatively regulates PLA2G16 overexpression both in vitro and in vivo, affecting also the production of prostaglandins, that are critical mediators of chronic inflammation and cancer progression. In the same study, Tsc2–/– MEFs treated with rapamycin or torin1 did not change the expression of PLA2G16, while the PLA inhibitor methyl arachidonyl fluorophosphonate (MAFP) reduced the growth and induced apoptosis on tuberin-deficient cells derived from LAM patient. Interestingly, the tuberin induced-expression in these cells prevents the effects of MAFP treatment (66).

Since mTORC1 hyperactivation causes the reduction of autophagy and induces a metabolic reprogramming of tuberin-deficient cells, a novel therapeutic approach was proposed in a recent study which demonstrates that Tsc2–/– MEFs are sensitive to the treatment with rintaserin in combination with chloroquine, while the impact of those two drugs on Tsc2+/+ MEFs is minimal (67). Rintaserin is an inhibitor of the diacylglycerol kinase alpha (DGKA), that induces the formation of the phosphatidic acid from diacylglycerol, ultimately regulating the homeostasis of cell membranes (68). Tsc2–/– MEFs increased the expression and the activity of DGKA, with a consequent 5-fold higher accumulation of phosphatidic acid compared to Tsc2+/+ MEFs and a higher capability to uptake nutrients from the extracellular space through macropinocytosis. The treatment with rintaserin blocks macropinocytosis and leads to the accumulation of diacylglycerol, reprogramming the phospholipid metabolism by reducing the storage of lipids in droplets and enhancing the synthesis of phospholipids (67). Interestingly, high levels of DGKA, DGKD, DGKQ, and DGKZ were found in the angiomyolipomas of TSC patients, that often develop LAM as pulmonary manifestation (69). In vivo, the injection of tuberin-deficient cells with the downregulation of DGKA does not cause the enlargement of lung alveoli observed in preclinical models of LAM (67, 70).

Taken together, these studies indicate that targeting of key metabolic pathways in lipids synthesis might be novel therapeutic approaches for LAM.

Moreover, lipids can be relevant biomarkers to understand LAM pathogenesis and progression. Indeed, the first evaluation of the LAM serum metabolome showed that there are differences in the metabolic profile when LAM patients were stratified according to menopausal status, lung function, disease burden and disease activity (15). These metabolic abnormalities involved almost exclusively sphingolipids, phospholipids and acylcarnitine fatty acids, reflecting metabolic processes downstream of mTOR. Remarkably, the observation that FEV1 loss, used as measure of airflow limitation, was related to sphingolipid and acylcarnitine fatty acid metabolism, might reflect the extent of lung parenchyma disruption, resulting in the loss of elastic recoil. In the same way, the airflow obstruction in patients with COPD is associated with glycerophospholipids and sphingolipids metabolites, suggesting a common mechanism involving mTOR hyperactivation (71). Moreover, uncovered changes in glycerophospholipids were observed in patients with sporadic LAM compared with LAM/TSC ones after rapamycin treatment (15).

Finally, the altered lipid metabolism in LAM cells can be exploited to identify novel metabolic imaging biomarkers for the disease. Indeed, the previously reported enhancing in PC levels and neutral lipids in LAM cells (64) allowed to test the in vivo uptake of [18F]fluorocholine (FCH) and [18F]fluoroacetate (FACE) to detect tuberin-deficient cells in solid tumors and to monitor the response to rapamycin through dynamic PET (72). [18F]FCH uptake, but not [18F]FACE uptake in tuberin-deficient xenografts was rapamycin-sensitive and in vitro study on tuberin-deficient cells indicated that this difference might be due to an accumulation of these two compounds in two different cells compartment. In fact, [18F]FCH is mainly incorporated into lipids, while [18F]FACE enters into mitochondria and can be used as marker of mitochondrial activity, which is not suppressed by rapamycin, confirming a specific metabolic feature of tuberin-deficiency in LAM cells (73).




Conclusion

Regulation of precise lipid species plays a critical role in senescence and senescence-mediated inflammation associated to chronic pulmonary diseases. Aberrant activity of SREBP and its upstream regulator, mTOR, is highly involved in lipotoxicity that induces inflammation and fibrosis in several lung diseases including LAM (Figure 1). The evidence of an altered lipid metabolism in tuberin-null cells, e.g., involving LPCs and GD3, and the demonstration of metabolic abnormalities in LAM patient serum, mainly LPCs, sphingolipids, phospholipids and acylcarnitine fatty acids, provides the need to promote the comprehension of lipid dysmetabolism in LAM as novel biomarkers for a metabolic signature for stratifying LAM patients and to suggest useful therapeutic targets, also to associate to mTOR inhibitor rapamycin, for the treatment of LAM.
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FIGURE 1
Deregulated lipids in lymphangioleiomyomatosis (LAM) and pulmonary diseases. GD3, ganglioside D3; LPC/PC, lysophosphatidylcholine/phosphatidylcholine; Cer, ceramide; Chol/CE, cholesterol/cholesterol esthers; SPL, sphingolipids; FA, fatty acids; TAG, riacylglycerols; PL/LPL, phospholipids/lysophospholipids; LD, lipid droplets; AEC, alveolar epithelial cells; ASM, airway smooth muscle.
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Introduction: The practice of thoracic surgery for lung cancer is subject to authorization in France. We evaluated the performance of hospitals using 30-day post-operative mortality as a quality indicator, estimating its distribution within each region and measuring its variability between regions.

Material and methods: All data for patients who underwent pulmonary resection for lung cancer in France (2013–2020) were collected from the national hospital administrative database. Thirty-day mortality was defined as any patient who died in hospital (including transferred patients) within the first 30 days after the operation and those who died later during the initial hospitalization. The Standardized Mortality ratio (SMR) was the smoothed, adjusted, hospital-specific mortality rate divided by the expected mortality. To describe the variation in hospital mortality between hospitals in each region, we used different commonly used indicators of variation such as coefficients of variation (CV), interquartile interval or range (IQR), extreme ratio, and systematic component of variance (SCV).

Results: In 2013–2020, 87,232 patients underwent lung resection for cancer in France. The number of deaths was 2,537, a rate of 2.91%. The median SMR of 199 hospitals was 0.99 with an IQR of 0.86 to 1.18 and a CV of 0.25. Among the regions that had the most hospitals performing lung resections for cancer, the extreme ratio was >2, which means that the maximum value is twice as high as the minimum value. The SCV between hospitals was >10 for two of these regions, which is considered indicative of very high variation. For the other regions (with few hospitals performing lung resections for cancer), the variation between hospitals was lower. Globally, the variability between regions concerning the SMR was moderate, 6% of the variance was due to differences across regions. On the contrary, the hospital volume was significantly related to the SMR (p = 0.003) with a negative linear trend, whatever the region.

Conclusion: This work shows significant differences in the practices of the various hospitals within regions. However, overall, the variability in the 30-day mortality rate between regions was moderate. Our findings raises questions regarding the regionalization of major surgical procedures in France.

KEYWORDS
lung cancer surgery, standardized mortality rate, variation, region, quality of care


Introduction

The practice of lung cancer surgery in France has been the subject of several publications using the national hospital (PMSI) medico-administrative database (1–3). Although the number of hospitals performing this surgery was reduced following the implementation of the French National Cancer Plan (4), the number still remains high. The corollary of this situation is that many surgical teams have relatively low surgical activity (1, 2). The number of lung resections performed per year, called hospital volume, is one of the indicators influencing post-operative mortality (2, 5). Post-operative mortality is one of the quality indicators of lung cancer surgery, as recently demonstrated by Fernandez et al. (6).

Thoracic surgery for lung cancer (LC) is a surgical act that is subject to authorization in France, and this authorization is granted to hospitals by the regional authorities (4). There is yet to be an evaluation of the quality of care of hospitals in different regions in France for this type of surgery.

Our work consisted of evaluating the performance of hospitals using one quality indicator, 30-day post-operative mortality, and then estimating the distribution of this indicator within each region. Our secondary objective was to measure the variability of this indicator from one region to another.



Materials and methods


Data source and study population

All data for patients who underwent pulmonary resection for LC in France from January 2013 to December 2020 were collected from the national hospital administrative database. This database, called PMSI for “Programme de Médicalisation des Systèmes d'Information,” was inspired by the US Medicare system. The reliability and validity of PMSI data have already been assessed (7). Routinely collected medical information includes the principal diagnosis, secondary diagnoses and procedures performed. Diagnoses identified during the hospital stay are coded according to the International Classification of Diseases, tenth revision (ICD-10) (8). We selected patients for whom a diagnosis of primary lung cancer was coded as the principal discharge diagnosis (all codes C34). Procedures are coded according to the CCAM (Classification Commune des Actes Médicaux). For all patients, LC was confirmed by pathology analyses according to the 2004 World Health Organization classification of LC (7). Surgery-related variables included the surgical approach [thoracotomy, video assisted thoracic surgery (VATS) or robot-assisted surgery], the type of resection (limited resection, lobectomy, bi-lobectomy and pneumonectomy), bronchioplasty, and the extent of the pulmonary resection (to the chest wall, the left atrium, the carina, the diaphragm, and the superior vena cava).

Patient consent was not required. Ethics approval for use of this database was obtained from the French National Commission for Data protection (Commission Nationale de l'Informatique et des Libertés: No 1576793), and this study adhered to the tenets of the Declaration of Helsinsksi.



Patient characteristics

Patient age and sex were included as baseline demographic characteristics. From the national administrative database, we included the following comorbidities: pulmonary disease (chronic bronchitis, emphysema), heart disease (coronary artery disease, cardiac arrhythmia, congestive heart failure, valvular heart disease, pulmonary artery hypertension, pulmonary embolism), peripheral vascular disease, liver disease, cerebrovascular events, neurological diseases (hemiplegia or paraplegia), renal disease, hematologic disease (leukemia, lymphoma), metabolic disease, anemia, other therapies (preoperative chemotherapy, steroids), and infectious disease. We also calculated the modified Charlson Comorbidity Index (CCI) as a marker of comorbidity (9).



Region and hospital characteristics

Metropolitan France comprises 13 regions: Auvergne Rhones-Alpes (ARA), Bourgogne Franche-Comté (BFC), Bretagne (BRE), Centre Val-de-Loire (CVL), Corse (COR), Grand-Est (GE), Hauts-de-France (HdF), L'ile de France (IdF), Normandie (NOR), Nouvelle Aquitaine (NA), Occitanie (OC), Pays de Loire (PdL) and Provence Alpes Côte d'Azur (PACA). For each hospital within a region, we determined the number of times each type of pulmonary resection was performed from January 1, 2013, to December 31, 2020. Hospital volume was defined as the median number of procedures performed per year. For the purpose of the analysis, the hospital volume was represented as a continuous variable that was transformed into a logarithm.



Outcome measurements

Thirty-day mortality for a patient was defined as the occurrence of death in hospital (including transferred patients) either within the first 30-days after the operation or later on during the initial hospitalization. In other words, in the calculation of 30-day in-hospital mortality, we included deaths that occurred during the surgical stay, as well as any death that occurred during a subsequent hospitalization within 30-days of admission for the initial surgery.



Statistical analysis

To obtain a reliable measure of hospital quality, we used the hierarchical logistic regression model with “shrinkage” estimators. The adjusted Standardized Mortality ratio (SMR) was determined as the smoothed, adjusted, hospital-specific mortality rate divided by the expected mortality. The expected mortality was estimated from a fixed-effects component of hierarchical logistic model regression (10), using comorbidities, age, sex, modified CCI score, and the type of pulmonary resection (the approach and extent of resection) as adjustment factors. The hierarchical logistic regression model was developed using BUGS software (Bayesian Inference Using Gibbs Sampling, version 0.60; MRC Biostatistics Unit, Cambridge, United Kingdom). The credible 95% probability interval (PI) for each provider was then estimated.

In addition, we constructed funnel plots to determine outliers for 30-day mortality according to Spiegelhalter's methodology (11).

We used several methods to describe between-hospital differences in patient characteristics, the different procedures and the SMR of the hospitals within each region. Two groups of statistics of variation are commonly used: those that describe the distribution of rates, such as coefficients of variation (CV), interquartile, interval or range (IQR), extreme ratio, and those that use differences between expected and observed cases, such as the systematic component of variation (SCV) (12). The CV is the ratio of the standard deviation to the mean and measures how the data spreads around the average. The higher the coefficient of variation, the greater the level of dispersion around the mean. If the coefficient of variation is >1, it shows relatively high variability in the data sets. The IQR defines the interval or the range between the 1st and the 3rd quartile of the distribution, and measures how the data spreads around the average. The wider the range, the greater the level of dispersion around the mean. The extreme ratio corresponds to the ratio between the maximum and minimum values. An extreme ratio >2 implies that the maximum value is twice as high as the minimum value. Finally, SCV is the variation arising from the differences between the independent variable. A SCV >10 can be considered indicative of very high variation.

To estimate the potential influence of hospital volume on the SMR, we also studied the relationship between hospital volume and SMR by calculating a linear trend.

To estimate the variability of the SMR between regions, we used the intraclass correlation coefficient (ICC), which was calculated by fitting a multilevel regression model with a fixed coefficient for hospital volume and random intercept for the region.

The calculations for the hierarchical and multilevel logistics regression models were carried out using STATA 14 software (StataCorp, College Station, Tex), and for the full Bayesian analysis we used the R2jags module of R software (http://www.r-project.org).




Results

From 2013 to 2020, 87,232 patients underwent lung resection for cancer in France. The number of deaths was 2,537, resulting in a death rate of 2.91%. The variations in patient characteristics between the 199 hospitals in the 13 French regions is reported in Table 1. Regarding demographics, the median rate of female patients was 0.33, with an IQR of [0.28–0.37], and the median age was 65 years with IQR of [64–66 years] (Table 1). The pneumonectomy and bilobectomy rates varied highly across hospitals, resulting in a CV of 1.7 and 2.09, respectively (Table 1). Hospitals in the different regions had a VATS or robot-assisted surgery rate ranging from 0.075 to 0.47 with a CV of 0.89 (Table 1). The median hospital volume was 37, with an IQR of 9 to 87 procedures per year and a CV of 1.49. Figure 1 illustrates the high variability in hospital volume across the regions.


TABLE 1 Between hospital variation in the characteristics of patients undergoing lung cancer surgery in France, January 2013 to December 2020.
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FIGURE 1
 Description of hospital volume per year for the different hospitals in each French region from January 2013 to December 2020. Metropolitan France comprises 13 regions: ARA, Auvergne Rhones-Alpes; BFC, Bourgogne Franche-Comté; BRE, Bretagne; CVL, Centre Val-de-Loire; COR, Corse; GE, Grand-Est; HdF, Hauts-de-France; IdF, L'ile de France; NOR, Normandie; NA, Nouvelle Aquitaine; OC, Occitanie; PdL, Pays de Loire; and PACA, Provence Alpes Côte d'Azur. The X axis of each figure represents the different hospitals per region and the Y axis the hospital volume.



Standardized mortality rate

In order to calculate the SMR, the model used to obtain the expected 30-day mortality included 16 comorbidities, age, sex, modified CCI score, and the type of pulmonary resection (the approach and extent of resection). The reliability of 30-day mortality was 0.43 with 95% confidence interval (CI) of 0.32 to 0.53. The median SMR of 199 hospitals was 0.99 with an IQR of 0.86 to 1.18 and a CV of 0.25.



Identification of quality-of-care outliers

The funnel plot for the SMR describing hospital performance is displayed in Figure 2. It shows that out of 199 hospitals, 13 lie below the lower limit of the central 95% region, indicating performance that was better than expected. The thirteen hospitals that lie above the upper limit performed significantly worse than expected.


[image: Figure 2]
FIGURE 2
 Funnel plot for the 30-day mortality with adjusted Observed/Expected ratio (SMR). The red line corresponds to the 95% control limit and the dash black line corresponds to the 90% control limit.




Regional variation

Out of the 13 regions, four regions (COR, BFC, CVL and NOR) had less than ten hospitals performing lung resections for cancer, five regions (HdF, BRE, PdL, PACA and OC) had between 10 and 20 hospitals, and four regions (GE, NA, IdF and ARA) had between twenty and thirty hospitals.

The variation in the SMR between hospitals in different regions is reported in Table 2, which shows the following measures: mean, CV, extreme ratio, interquartile ratio and SCV. Amongst the regions with the highest number of hospitals performing lung resections for cancer, the extreme ratio (i.e., the ratio of the highest SMR to the lowest SMR) was >2. On the other hand, the SCV was >10 in four regions (ARA, IdF, NOR, and PdL), which can be considered indicative of very high variation in these regions. For the OC region, the SCV was 4.9, while the extreme ratio was 4.45. Some regions with few hospitals, such as BRE, CVL, NOR and PdL had a high variability with an extreme ratio around 2. For the other regions, the variation between hospitals was smaller.


TABLE 2 Between hospital variation in adjusted standardized mortality rates in each region of France.
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Figure 3 shows the relationship between the hospital volume (i.e., the median number of procedures performed per year) and SMR. The hospital volume was significantly related to the SMR (p = 0.003) with a negative linear trend, whatever the region (Figure 3). However, we noted a difference in the slope of the linear trend of the SMR between regions. The variability between regions was globally moderate with an ICC of 0.06 (95% CI: 0.014–0.23), indicating that 6% of the SMR variance is due to differences across regions. This is consistent with the value of IQRs observed from one region to another, seeing as the intervals overlap (Table 2). Statistically, this means that the SMRs are not different from one region to another.


[image: Figure 3]
FIGURE 3
 The significant linear relationship between the standardized mortality rate and the hospital volume of the different hospitals in each region (each circle corresponds to a hospital and each line to a region).





Discussion

To the best of our knowledge, this is the first study of this type to be carried out in France. The literature on the study of regional variations in surgical practice in hospitals is fairly poor (13–15). Our work underscores the fact that there is currently a large number of French hospitals performing resections for lung cancer. Surgical practice is dispersed and in-hospital mortality varies considerably from one hospital to another. The mean SMR was similar across regions, but with great variability between hospitals within regions. Nevertheless, the variability was more marked for certain regions, particularly those in which many hospitals perform the surgery.

Our work reveals that there is variability in the practices of the different hospitals as well as in the different regions. There are still many low-volume hospitals in France despite the required authorization. One of the characteristics of French health care is the dispersed supply of care, which is also seen in other European countries (16–19). However, the number of hospitals per region practicing this type of surgery is not in line with the needs of the population in regions such as in Auvergne Rhône-Alpes or Nouvelle Aquitaine.

To our knowledge, the variation in hospital comorbidities within regions has not yet been described in the literature. Our work reveals a considerable variation in the rate of certain comorbidities, such as peripheral vascular disease, liver disease, anemia and hematological disease. The coefficient of variation was 1.18, 1.47, 1.22, and 2.22, respectively. It is possible that the patients managed in the different hospitals are different in terms of comorbidities or that the coding for the associated PMSI diagnoses is not consistent from one hospital to another. Because of our data source, it is not possible to know which of these hypotheses is most likely to explain the differences observed.

The type of lung resection also varied from one hospital to another, particularly bilobectomies and pneumonectomies, and we cannot compare our results with the literature because lung cancer surgery has not been published using the same methodology as ours. Pneumonectomies are complex procedures more often performed by specialized teams in high volume units, which may explain the variability observed between hospitals.

The median 30-day mortality rate was 3%, which appears to be higher than in some European countries, which is consistent with a recent systematic review (20) comparing mortality following lung cancer resection in France with other European countries. The systematic review showed that France has a higher rate than some other European countries, including England, Denmark, Holland or Finland. Our work confirms the great variability in post-operative mortality between hospitals, as shown by the interquartile values and the coefficient of variation. It is a complex issue to understand why France (20) has a higher rate of post-operative mortality than other European countries.

The fact that volume of hospital activity is significantly related to excess mortality (21–25) has been demonstrated many times in the literature. Countries in which fewer centers offer thoracic surgery, such as in the UK, have a lower overall post-operative mortality rate than France. On average, their centers also have a higher volume of activity than French centers (16–19), and an interesting English study showed that high-volume centers had better survival after lung cancer surgery (23). The literature unanimously illustrates that high-volume centers have better results in terms of mortality, confirmed by our study, whatever the French region. Obviously, hospital volume is not the only component of quality of care that can have a role in hospital mortality, and we know that the nurse to patient staffing ratio or the processes in the different units could have an important role. For example, in a study by Aiken et al. (26) in nine European countries, the authors showed that an increase of one patient per nurse is associated with a 7% increase in the risk of a surgical patient dying within 30-days of admission. Further studies are needed to assess these additional factors, but we unfortunately do not have access to such data in the PMSI database.

Our work provides an estimation of the variability in post-operative mortality between regions, a subject for which the literature is scarce (27). We have shown that the difference in 30-day mortality between regions is ultimately moderate, and the most striking variability was observed between hospitals within regions. Our findings raise questions regarding current regionalization policies for major surgical procedures such as lung cancer surgery. Some countries have moved toward the centralization of complex surgeries in selected hospitals in an attempt to group together the technical skills needed to improve quality of care (28, 29). This idea seems attractive, especially if we want to be able to measure hospital performance reliably. Compared with other countries, France offers dispersed care for major interventions like thoracic surgery or pancreatic surgery, which could be one of the reasons that the death rate is higher in France than in other countries (20).

The differences in the 30-day mortality of hospitals in France could also be explained by the lack of quality measurement, in contrast to certain European countries (16–19). European surgical teams that undertake regular assessments of their practice are informed of their level of performance and can thus implement actions to improve their results.

We recognize that our study has some limitations. In particular, the choice of mortality as the key outcome is a limitation because we did not assess the overall quality of care but only one indicator, the 30-day mortality rate, which is only one of several potential indicators. Other indicators, for instance post-operative complications after lung resection, such as pneumopathy or atelectasis, which are good quality indicators, cannot be obtained through the PMSI. We only had access to in-hospital mortality data, but it is nevertheless a relevant indicator for this type of surgery. Another limitation concerns the TNM stage, which is not recorded in the PMSI, but is a factor that can influence mortality. The final limitation concerns the risk of underestimating certain comorbidities because of the quality of the coding. Indeed, coding practices may vary among institutions since the people who perform the coding of diagnoses can be clinicians or information system technicians. Nevertheless, the quality of coding is checked in a standardized way by medical information professionals in each hospital in order to correct diagnoses (internal quality assessment), and the level of re-cording of co-morbidities has increased significantly in recent years, following its impact on the tariff of hospital stays. Because of the impact on hospital budget allocation, it has been shown that hospital claims data are becoming more accurate. In addition, a national external quality assessment program has been implemented to verify the quality of discharge abstracts in each hospital.

In conclusion, this work shows significant differences in the practices of the various hospitals within each French region. However, between regions, there were only moderate variations in the 30-day mortality rate. These results should encourage surgical teams in France to implement quality of care measures based on the analysis of outcomes. Finally, our findings call into question the current policies relative to the regionalization of major surgical procedures in France.
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Portopulmonary hypertension (PoPH) is a rare subtype of Group 1 pulmonary arterial hypertension (PAH) with a poor prognosis. According to the most up-to-date definition, PoPH is characterized by a mean pulmonary arterial pressure (PAP) of >20 mmHg at rest, a pulmonary artery wedge pressure of ≤15 mmHg, and a pulmonary vascular resistance (PVR) of >2 Wood units with portal hypertension. Like PAH, PoPH is underpinned by an imbalance in vasoactive substances. Therefore, current guidelines recommend PAH-specific therapies for PoPH treatment; however, descriptions of the actual treatment approaches are inconsistent. Given the small patient population, PoPH is often studied in combination with idiopathic PAH; however, recent evidence suggests important differences between PoPH and idiopathic PAH in terms of hemodynamic parameters, treatment approaches, survival, socioeconomic status, and healthcare utilization. Therefore, large, multi-center registry studies are needed to examine PoPH in isolation while obtaining statistically meaningful results. PoPH has conventionally been excluded from clinical drug trials because of concerns over hepatotoxicity. Nevertheless, newer-generation endothelin receptor antagonists have shown great promise in the treatment of PoPH, reducing PVR, PAP, and World Health Organization functional class without causing hepatotoxicity. The role of liver transplantation as a treatment option for PoPH has also been controversial; however, recent evidence shows that this procedure may be beneficial in this patient population. In the future, given the shortage of liver donors, predictors of a favorable response to liver transplantation should be determined to select the most eligible patients. Collectively, advances in these three areas could help to standardize PoPH treatment in the clinic.
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1. Introduction

Pulmonary hypertension (PH) is the overarching term used to describe a complex group of conditions that are characterized by loss and obstructive remodeling of the pulmonary vascular bed, leading to an increase in pulmonary vascular resistance (PVR) and pulmonary arterial pressure (PAP). These changes in PVR and PAP cause strain on the right side of the heart, and if this persists for a prolonged period, right-sided heart failure and functional decline can occur (1, 2).

In the World Health Organization (WHO) clinical classification (3), portopulmonary hypertension (PoPH) is positioned as a subtype of Group 1 pulmonary artery hypertension (PAH), and registry data suggest that PoPH accounts for 5–16% of cases of PAH (4–9). PoPH develops in 1.1–6.3% of patients with portal hypertension (10–13), and although most cases in this patient population are related to cirrhosis, non-cirrhotic causes of portal hypertension leading to PoPH have also been noted, including portal vein thrombosis, granulomatous disease, autoimmune diseases, drug reactions, infections (such as hepatitis C), and congenital abnormalities (such as congenital portosystemic shunt) (14–17). The prevalence of PoPH in liver transplant patients is 5–10% (18, 19), and among those with advanced liver disease, such as patients undergoing liver transplantation, women have a higher risk of developing PoPH than men; however, liver disease severity does not appear to be directly related to the risk of PoPH (11).

In terms of the diagnosis of portal hypertension, patients can be diagnosed by the presence of clinical signs, such as ascites, varices, or both, as well as splenomegaly, portal vein dilation, portal vein occlusion, collateral vessel formation, and declining platelet counts (20). Imaging studies, such as Doppler ultrasonography, computed tomography, and magnetic resonance imaging, as well as blood tests, are used to diagnose portal hypertension and determine the presence of the abovementioned features (20). Portal venous pressure is a product of the portal blood flow volume and the resistance to flow; however, direct measurement of portal pressure is not routine due to its invasive nature. A less invasive and indirect measure is the hepatic venous pressure gradient (HVPG), which is considered the best surrogate indicator of portal hypertension in patients with cirrhosis (21). In healthy individuals, the HVPG is 2–5 mmHg, while an HVPG of ≥6 mmHg constitutes portal hypertension and an HVPG of ≥10 mmHg constitutes clinically significant portal hypertension (20). The HVPG is calculated by subtracting the wedged hepatic venous pressure from the free hepatic venous pressure, which are determined by fluoroscopy (20).

In terms of the diagnosis of PH, many patients present as outpatients with symptoms, such as dyspnea, fatigue, or syncope. Others come to the attention of the clinician during screening evaluations, and some present acutely as inpatients (22). Once PH is suspected, echocardiography is commonly used to assess the tricuspid regurgitant velocity, pulmonary artery systolic pressure, and right ventricular wall thickness and function, and right heart catheterization may also be performed (23). Other tests may involve a clinical history and examination, complete pulmonary function testing, thoracic computed tomography, chest radiography, and nocturnal plethysmography to evaluate sleep-disordered breathing (23). The previous right heart catheterization criteria for the diagnosis of PoPH were a mean PAP of ≥25 mmHg at rest, a pulmonary artery wedge pressure of ≤15 mmHg, and a PVR of >3 Wood units with portal hypertension (9). However, the latest definition specifies a mean PAP of >20 mmHg (24). Certain et al. (25) also recently proposed a lower cut-off PVR value of 2 Wood units based on its benefit in achieving an early diagnosis. The cut-off value for pulmonary artery wedge pressure remains at ≤15 mmHg (24). For PoPH specifically, serological analysis for markers of liver failure will also be performed (23).

The pathogenesis of PoPH has been reviewed in detail previously (17) (Figure 1) (26–36). Briefly, cirrhosis causes an increase in intrahepatic resistance and an increased portal pressure gradient, which leads to portosystemic collateralization through the reperfusion/dilation of existing vessels and the generation of new vessels (37). At the molecular level, portosystemic shunting causes blood containing vasoactive substances to bypass the liver, thus evading hepatic metabolism. This reduction in peripheral vascular resistance, combined with indirect vasodilation via intestinal vasoactive substances that bypass the liver and reach the systemic circulation, culminates in a hyperdynamic state (37). Endothelin-1 and interleukin-6 are among the substances that are thought to increase in PoPH (38, 39), and this imbalance in vasoactive substances (such as endothelin-1) and pro-inflammatory cytokines (such as interleukin-6) in the pulmonary vasculature leads to net vasoconstriction and an increase in PVR. Thus, one commonly accepted pathogenic mechanism of PoPH is an imbalance in vasoactive substances in the pulmonary circulation in patients with cirrhosis (40, 41). Like PoPH, PAH also results in an imbalance in vasoactive substances and circulating factors; therefore, European Society of Cardiology and European Respiratory Society guidelines (42) recommend that PoPH treatment should follow that of PAH.

[image: Figure 1]

FIGURE 1
 Pathophysiology of portopulmonary hypertension. Liver cirrhosis increases intrahepatic resistance and increases the portal pressure gradient, leading to portal hypertension. The reperfusion/dilation of existing vessels causes portosystemic collateralization. Vasoactive substances bypass the liver and evade hepatic metabolism due to portosystemic shunting, leading to a hyperdynamic state. Endothelin-1 and interleukin-6 are among the circulating substances that reach the pulmonary vasculature, leading to net vasoconstriction and an increase in PVR. Smooth muscle cell proliferation, platelet aggregation, and in situ thrombosis also occur, leading to vascular remodeling and PAH. PAH, pulmonary arterial hypertension; PVR, pulmonary vascular resistance.


The 5-year survival rate of untreated patients with PoPH is as low as 14.2% (24); however, despite its poor prognosis, the rarity of this condition means that descriptions of the clinical features and treatment approaches for PoPH are scarce and inconsistent (43). A number of studies examining the treatment approaches to PoPH have been published in recent years (Table 1), many of which have not yet been reviewed. In this review, we aim to provide an up-to-date analysis of recent literature to establish the current clinical understanding and effectiveness of PoPH treatment. We will briefly discuss the reasons for the limited knowledge of PoPH; consider the controversies around studying PoPH in combination with idiopathic PAH; discuss treatment trends, including the potential of newer-generation endothelin receptor antagonists; and consider evidence for the usefulness of liver transplantation in PoPH patients. We will also provide our expert opinion on how this knowledge could be used to design future clinical trials to deepen the understanding of PoPH and standardize treatment in the clinic.



TABLE 1 Summary of recently published studies.
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2. Reasons for the limited knowledge of PoPH

Specific knowledge of PoPH is limited, and it is relatively understudied compared with other subtypes of Group 1 PAH. There are several possible reasons for this. First, PoPH has conventionally been excluded from drug trials because of concerns about hepatotoxicity (50). For example, in a previous study, bosentan (an endothelin receptor antagonist) led to an elevation in transaminases in approximately 10% of patients with Group 1 PAH without previous liver disease (51). Second, the low incidence of PoPH means that patients with this disease are often studied in combination with patients having idiopathic PAH to ensure sufficient sample sizes. Idiopathic PAH is defined as PAH of unknown cause under the WHO functional classification (3). Thus, the disease etiologies are highly variable, and the mechanisms that underpin disease development in specific patients may vary substantially. Multiple causes of PoPH have also been reported (14–17); however, case numbers are small, which further adds to the complexity of studying this condition in large enough numbers to obtain statistically meaningful results. Therefore, grouping PoPH patients with idiopathic PAH patients to study the effects of drug treatment means that the observations may not necessarily be an accurate reflection of the PoPH population. Third, PoPH has a lower prevalence than other complications, such as hepatic encephalopathy and ascites, in patients with portal hypertension. Therefore, the diagnosis of PoPH might be less of a priority for hepatologists who must diagnose and treat various complications in patients with liver cirrhosis.



3. Review of recent literature


3.1. Controversy in studying PoPH collectively with idiopathic PAH

Given the low incidence of PoPH, it is often studied in combination with idiopathic PAH when examining the effects of drug therapy. However, differences have been identified between these two patient populations, which suggests that they should be studied independently wherever possible (Table 1). For example, Takahashi et al. (16) extracted data on patients with PoPH from the National Research Project on Intractable Disease in Japan and compared them with data on patients with idiopathic PAH. Patients with PoPH had a higher cardiac output, higher cardiac index, lower PVR, and better 6 min walk distance than patients with idiopathic PAH. In another recent study, DuBrock et al. (47) studied health disparities and treatment approaches between PoPH and idiopathic PAH as part of the Pulmonary Hypertension Association Registry. Dissimilar to Takahashi et al. (16), the authors found that patients with PoPH had a similar 6 min walk distance to patients with idiopathic PAH, as well as a similar WHO functional class and mean PAP. However, similar to Takahashi et al. (16), they identified a higher cardiac index in patients with PoPH than in patients with idiopathic PAH.

In the study by Takahashi et al. (16), although treatments were similar between patients with PoPH and those with idiopathic PAH, the use of prostaglandin I2 and endothelin receptor antagonists was lower, and the use of phosphodiesterase type 5 inhibitors was higher in patients with PoPH than in patients with idiopathic PAH. Similarly, in DuBrock et al.’s study (47), fewer PoPH patients than idiopathic PAH patients underwent treatment with endothelin receptor antagonists, including macitentan (28.6% vs. 55.1%, respectively), at enrollment. Moreover, fewer PoPH patients than idiopathic PAH patients were treated with combination therapy (46.4% vs. 62.2%, respectively) at enrollment. However, treatment was similar between PoPH and idiopathic PAH at follow-up. Interestingly, patients with PoPH had more emergency department visits and hospitalizations in the 6 months before enrollment than patients with idiopathic PAH, which could suggest that the addition of endothelin receptor antagonists at follow-up (50% at follow-up vs. 28.6% at enrollment) was effective in reducing the rate of hospitalizations and emergency department visits. This observation corroborates the findings of recent studies by Sitbon et al. (44) and Preston et al. (45), which also demonstrated the beneficial effects of the endothelin receptor antagonists macitentan and ambrisentan, respectively, in patients with PoPH. Initial phosphodiesterase type 5 inhibitor monotherapy was initiated for most PoPH patients with preserved cardiac output and a lower PVR, and a second pulmonary vasodilator (endothelin receptor antagonist) was added sequentially if the improvement in mean PAP was not sufficient. Prior to the clinical trials on macitentan and ambrisentan, endothelin receptor antagonists were not often used as first-line agents in patients with PoPH because of their hepatotoxicity. Therefore, phosphodiesterase type 5 inhibitors were selected first, followed by endothelin receptor antagonists.

Overall, DuBrock et al. (47) showed that patients with PoPH had a worse socioeconomic status, were less likely to be treated with combination therapy at enrollment, and had increased healthcare utilization than patients with idiopathic PAH. However, the study noted that the sample size was too small to detect racial/ethnic differences and differences in survival between patients with PoPH and those with idiopathic PAH.

Adding to the differences between PoPH patients and idiopathic PAH patients identified by DuBrock et al. (47), the Spanish Registry of PAH (48) showed that patients with PoPH were predominantly male and had a better functional class and better hemodynamics than patients with idiopathic PAH. Similar to DuBrock et al.’s study (47), patients with PoPH were less likely to receive PAH-targeted therapy, which was associated with greater mortality. Moreover, first-line PAH monotherapy was associated with better survival. The Spanish Registry of PAH (48) also identified a significant difference in survival between PoPH and idiopathic PAH, reporting age- and sex-adjusted 5-year survival rates of 49.3 and 68.7%, respectively.

Taken together, this recent evidence illustrates important differences between the PoPH and idiopathic PAH populations, including differences in hemodynamics at diagnosis and differences in the therapeutic response to monotherapy, emphasizing the need for large-scale, multi-center trials to enable the PoPH population to be studied in isolation.



3.2. Potential of newer-generation endothelin receptor antagonists and treatment trends in PoPH

Although PoPH has conventionally been studied in combination with idiopathic PAH, Sitbon et al. (44) conducted the first randomized controlled trial of PAH therapy in a specific PoPH patient population. The trial adopted a prospective, multi-center, phase 4 study design, comparing the effects of macitentan with placebo in patients with PoPH without severe hepatic impairment. At baseline, 63.5% of patients were undergoing background PAH therapy. Preston et al. (45) conducted another prospective, multi-center, open-label trial in which patients were treated with ambrisentan for 24 weeks, followed by a long-term extension of 24–28 weeks. However, unlike Sitbon et al.’s study (44), patients were treatment-naïve. Importantly, in the study of Sitbon et al. (44), PVR was reduced by 35% in the macitentan group compared with the placebo group, with no hepatic safety concerns. A similar observation was made in the study of Preston et al. (45), in which ambrisentan was associated with a reduction in PVR.

Despite their effects on reducing PVR without hepatic safety concerns, macitentan (44) and ambrisentan (45) had no effect on 6 min walk distance. Moreover, macitentan (44) had no effect on mean right atrial pressure, while ambrisentan improved right atrial pressure as well as mean PAP and cardiac index. However, pulmonary capillary wedge pressure remained unchanged (45). Macitentan did not reduce WHO functional class (44); however, ambrisentan led to a significant improvement in WHO functional class (45). However, direct and simple comparisons of efficacy between these drugs may not be appropriate because the study design (open-label or double-blind) and sample size differed between these studies. For example, the clinical trial on ambrisentan included treatment-naïve patients, while more than half of the patients (64%) in the clinical trial on macitentan were already undergoing other treatments. This could explain the differences in the results between the two trials.

Given their ability to reduce mean PAP and WHO functional class (ambrisentan) and PVR (macitentan and ambrisentan), which are the defining features of PoPH, the endothelin receptor antagonists macitentan and ambrisentan illustrate great promise as therapeutic options for PoPH without causing hepatotoxicity (44, 45, 52), which is a fundamental reason why patients with PoPH have conventionally been excluded from clinical drug trials. However, it should not be disregarded that despite showing promising effects overall, macitentan and ambrisentan have been associated with adverse side effects, such as hypersensitivity, alveolitis, PAH worsening, anemia, peripheral edema, and headache (44, 45), which should be monitored in future trials.

Two recent studies on the current trends in PoPH therapy have been published in Japan. A recent database study by Atsukawa et al. (49) showed that of 386 Japanese patients with PoPH, the combined proportion of patients treated with pulmonary vasodilator monotherapy or combination therapy was 37.0% within 90 days (less than half of patients). Prostacyclin (prostaglandin I2) was used in 8.8% of patients within 90 days, and combination therapy with endothelin receptor antagonists plus nitric oxide was used in 7.05% of patients; thus, the use of vasodilators in patients with PoPH remains low.

The low proportion of patients treated with vasodilator therapy (49) is surprising given the beneficial effects demonstrated with these agents. For example, in the Japan Pulmonary Hypertension Registry, Tamura et al. (9) evaluated current treatment patterns and clinical events, as well as changes in hemodynamic and clinical parameters associated with PAH-specific therapy. The results showed that mean PAP, PVR, and cardiac index were significantly improved in the combination therapy group (defined as treatment with ≥2 PAH-specific drugs administered simultaneously during the follow-up period), although the improvement was not significant in the monotherapy group. There were no significant differences in mortality, PH worsening, PAH-specific drug discontinuation due to side effects, or WHO functional class improvement between the monotherapy and combination therapy groups.

Taken together, this new evidence suggests that although vasodilator therapy, and endothelin receptor antagonists in particular, has shown great promise for the treatment of patients with PoPH, its use remains limited. As a limitation of retrospective observational studies, potential bias between groups could be inevitable. Randomized controlled trials examining the use of monotherapy and combination therapy for PoPH should be conducted to validate these findings and to take a step toward treatment standardization in patients with PoPH.



3.3. The role of liver transplantation in patients with PoPH

A previous review by Thomas et al. (17) emphasized the controversy surrounding the role of liver transplantation in patients with PoPH; however, recent studies have reported the beneficial effects of this treatment approach. For example, in Savale et al.’s study (46), the effects of PAH-specific therapies were examined in a large cohort of patients with PoPH from the French Pulmonary Hypertension Registry. In total, 637 patients were analyzed, 57% of whom had mild cirrhosis. PAH-specific therapy was used in 74% of patients, and survival from PoPH was significantly better in the subgroup that underwent liver transplantation. In support of these findings, Deroo et al. (53) performed a meta-analysis in which pulmonary hemodynamics and survival were examined in patients with PoPH treated with vasodilators, liver transplantation, or both. They revealed that the risk of death in patients treated with vasodilators was significantly higher than in patients who underwent vasodilator therapy combined with liver transplantation. Furthermore, in a pooled analysis of the clinical outcomes of patients from all three Mayo Clinic liver transplantation centers, 50 out of 228 patients underwent liver transplantation and showed significant hemodynamic improvement after PAH-specific therapy, with 21 patients even able to discontinue PAH-specific therapy after liver transplantation (54).

Identifying the beneficial effects of PAH-specific therapy when used in combination with liver transplantation to treat patients with PoPH is important because liver transplantation is not without its complications. For example, on reperfusion of the liver graft, pronounced systemic hemodynamic changes, such as an increase in cardiac output, are often observed (55), which can exacerbate PH and cause potential right-sided heart failure with liver graft congestion and reverse flow in the hepatic veins (56). This condition is extremely difficult to treat with existing drugs, such as milrinone, nitric oxide, and norepinephrine. For example, milrinone increases myocardial contractility, reduces systemic afterload, and reduces PVR; however, its use is limited because it can cause systemic vasodilation and resultant hypotension (57). Therefore, the use of more effective treatments preoperatively, such as macitentan or ambrisentan, which can be used alongside liver transplantation (both preoperatively and continued postoperatively as needed) provides more options to manage such patients.

Despite the controversy around the role of liver transplantation in patients with PoPH, recent studies have demonstrated clear benefits regarding survival and the ability to subsequently discontinue PAH-specific therapy. However, given the shortage of liver donors, this approach is not feasible for every patient with PoPH. Therefore, further studies are needed to identify patients with PoPH that may benefit most from liver transplantation. Jose et al. (58) suggested that PVR predicts mortality and transplantation failure in patients with PoPH; however, the exact predictors of a favorable response to liver transplantation are still unknown and should be clarified in the future.




4. Future perspectives

Studies examining PoPH treatment have conventionally grouped PoPH patients with idiopathic PAH patients because of the low incidence of PoPH. However, several recent studies have demonstrated differences between idiopathic PAH and PoPH in terms of hemodynamic parameters, treatment approaches, and survival, as well as socioeconomic status and healthcare utilization. Thus, grouping PoPH and idiopathic PAH may not be the best approach to pharmacotherapy studies. Instead, further multi-center trials and registry studies, such as the recent Japan Pulmonary Hypertension Registry (9), should be encouraged to ensure sufficient sample sizes to study PoPH in isolation and to obtain more specific results in this patient population. Despite both reports being conducted in Japan, Atsukawa et al. (49) reported from the hepatologist’s point of view that PAH-specific drug use is limited, while Tamura et al. (9) reported that the combination of PAH-specific drugs was useful for PoPH. Collaboration between physicians specializing in hepatology and PH may help to bridge the gap in their treatment strategies. This collaboration would drive larger studies on the use of PAH-specific therapies in patients with PoPH.

Promisingly, the potential of newer-generation endothelin receptor antagonists, such as macitentan and ambrisentan, has been demonstrated recently in patients with PoPH, without hepatic safety concerns (44, 45), which is a fundamental reason why PoPH has conventionally been excluded from clinical trials. Moreover, PAH-specific monotherapy and combination therapy have demonstrated promise by leading to significant improvements in key hemodynamic parameters, including mean PAP, PVR, and cardiac index. In the future, we hope to perform a clinical trial to examine the efficacy of endothelin receptor antagonist-based combination therapy.

In addition to PAH-specific drug therapy, liver transplantation has demonstrated beneficial effects in patients with PoPH, including improved survival and lower mortality (46, 53). Moreover, some patients were able to discontinue PAH-specific drug therapy after liver transplantation (54). However, a shortage of liver donors limits the feasibility of implementing this treatment strategy in all PoPH patients; thus, it is important to ascertain the predictors of a favorable response to liver transplantation to identify suitable candidates. It would be clinically meaningful to examine the appropriateness of early intervention for PoPH, even in patients with mild disease, as this could improve survival during and after the liver transplantation waiting period.

Regardless of the indication for liver transplantation, patients with PoPH should undergo drug therapy with PAH-specific agents. Some patients with PoPH have advanced cirrhosis, while others do not. For those that do, it would be meaningful to evaluate the impact of PAH medication on survival to liver transplantation and transplant outcomes. In patients with mild cirrhosis, treatment evaluation of PH itself should be implemented, as in other types of PAH. Furthermore, as more is learned about this disease, stratification of the background liver disease status should be examined.



5. Conclusion

In summary, PoPH is classified as a subtype of Group 1 PAH that is primarily seen in patients with decompensated liver cirrhosis resulting from liver disease. PoPH has a poor prognosis; however, the rarity of PoPH limits the study of this disease in isolation. PoPH is often studied with idiopathic PAH; however, recent studies suggest important differences between PoPH and idiopathic PAH. Further large-sample, multi-center trials with sufficient sample sizes are required to generate statistically meaningful results in the PoPH population. In recent clinical trials, newer-generation endothelin receptor antagonists have shown beneficial effects in the treatment of PoPH without causing hepatotoxicity. Moreover, evidence suggests that liver transplantation is beneficial in patients with PoPH, with some patients being able to discontinue PAH-specific therapy. However, the predictors of a favorable response to liver transplantation are unknown and should be examined in future studies. Collectively, future advances in these treatment strategies could help to standardize the management of patients with PoPH in the clinic.
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Background: Breathing exercises improve oxidative stress in healthy young adults and patients with diabetes, hypertension, and chronic obstructive pulmonary disease. Furthermore, the mechanism of respiratory intervention is controversial. Therefore, in this meta-analysis, we aimed to systematically evaluate the effects of breathing exercises on oxidative stress biomarkers in humans and provide evidence for the clinical application of breathing exercises.

Methods: The Embase, PubMed, Cochrane Library, Web of Science, CNKI, and WANFANG databases were searched for studies about the effects of breathing exercises on human oxidative stress levels, with no restraints regarding time, race, or language. The experimental group included various breathing exercises, and the outcome index included malondialdehyde, superoxide dismutase, and glutathione, nitric oxide, vitamin C, or total antioxidant capacity levels from a randomized controlled trial. Data were extracted by more than two authors and reviewed by one author.

Results: Ten studies were included from five countries. Data from patients with no disease, chronic obstructive pulmonary disease, hypertension, or diabetes were included. Participants who performed breathing exercises had greater changes in the included biomarkers than those who did not, suggesting that these biomarkers can be used to evaluate oxidative stress after respiratory interventions.

Conclusion: Breathing exercises increased SOD and GSH activities and decreased MDA content.

Systematic review registration: https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42022337119, identifier CRD42022337119.
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1. Introduction

Oxidative stress (OS) is the imbalance between the production of the reactive oxygen species (ROS) by oxidation and the clearance of antioxidants in organisms (1, 2), which leads to the accumulation of free radicals, vascular endothelial lipid peroxidation, and inflammatory reactions in the body (3–6). ROS consist of O2 and oxygen-containing molecules that have not been completely reduced (7). ROS are mainly produced in mitochondria and released into the mitochondrial matrix, intermembrane space, and cytoplasm (8–10). A small amount of ROS promotes cell proliferation, although a large quantities accumulated ROS negatively affects cell functions, resulting in lipid peroxidation that produces malondialdehyde (MDA) and, ultimately, cell death (4). Superoxide dismutase (SOD), which is widely distributed in the body, plays an important role in protecting the body from injury by dismutating the superoxide ions in internal and external environments and is an important free radical scavenger in the body (11). Reducing glutathione (GSH) combines with superoxide and free radicals to resist ROS damage to thiol groups, protecting the cell membrane that contains sulfhydryl proteins and sulfhydryl enzymes and preventing free radical damage to important organs (12). Nitric oxide (NO) bioavailability–which is mediated by ROS via endothelial NO synthase (eNOS) activation–leads to chronic inflammatory responses and cardiovascular injury (13).

When the body is exposed to harmful stimuli, the oxidant-antioxidant imbalance leads to the imbalance of musculin breakdown and synthesis, ultimately resulting in varying degrees of skeletal muscle atrophy and thereby leading to decreased muscle strength, which affects exercise endurance and quality of life (14). Via the attenuation of the mitochondrial oxidative respiratory chain and cell death, inflammatory cells activate and accumulate a large number of free oxygen radicals to promote the lipid generation of MDA, aggravating the damage of OS (15–17). Changes in the OS index are related to harmful stimulation, aging, and disease progression (18–20). The diagnosis of a disease or chronic inflammation is associated with changes in OS markers and, often, with an increase in antioxidant biomarker levels and a decrease in oxidative stress biomarker levels as the disease ameliorates (21–28). OS is measured by analyzing the composition of urine, sputum, blood, and exhaled gas (29–31). The lipid peroxidation product MDA, antioxidant enzyme SOD, and non-enzyme GSH are the most commonly used indexes (2, 32).

Moderate-intensity training improves OS while high-intensity training does not reverse OS and muscle damage during aerobic exercises (33–37). Breathing exercises, a moderate-intensity training technique used in pulmonary rehabilitation, have been widely used in clinical practice (38). By prolonging the breathing time, slowing the breathing rate, and reducing the alveolar-arterial oxygen gradient, breathing exercises enhance the strength and endurance of the respiratory muscles to increase pulmonary ventilation and improve the efficiency of gas exchange (39–44). These exercises effectively relieve the body of hypoxia and improve endurance, maintaining the overall health of the body.

Breathing exercises improve OS in healthy young adults and patients with diabetes, hypertension, and COPD (12, 45–53). However, the sample sizes of the previous studies were small, and the impact of respiratory interventions on patients without primary lung diseases is also controversial (54, 55). Therefore, in this meta-analysis, we aimed to systematically evaluate the effects of breathing exercises on OS biomarkers in humans to provide evidence for the clinical application of breathing exercises.



2. Methods

The meta-analysis was registered with PROSPERO (registration number: CRD42022337119).


2.1. Data sources and eligibility criteria

The Embase, PubMed, Cochrane Library, Web of Science, CNKI, and WANFANG databases were searched for randomized controlled trials regarding the effects of breathing exercises. There were no restraints in terms of time, race, or language. The keywords “breathing exercise” and “oxidative stress” were used to link the corresponding free words for the advanced retrieval of studies. In two Chinese databases, Chinese vocabulary retrieval was used to obtain Chinese studies (Table 1).


TABLE 1    Electronic database search strategies.
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2.2. Inclusion criteria

Randomized controlled trials in which the intervention was breathing training, such as slow and fast deep breathing, a simple prototype respiratory muscle trainer, diaphragmatic breathing exercises, pranayama of yoga, straight leg raising breathing, inspiratory muscle training, or time-efficient inspiratory muscle strength training and the outcome indexes of OS were MDA, SOD, GSH, NO, vitamin C, or total antioxidant capacity (TAC) levels were included in this meta-analysis. The participants of the included studies were healthy individuals or patients with COPD, hypertension, or diabetes.

Studies that were not randomized controlled trials, including abstracts of conference papers, and those with missing data or data that could not be extracted or obtained from the author were excluded from the meta-analysis. Studies that used non-blood outcome indicators such as urine, sputum, and exhaled gas and those that did not include OS outcome indexes were also excluded. If the clinical randomized controlled trial design was determined as not rigorous, or the Jadad score was <3, the study was not included in the meta-analysis. Moreover, studies in which the breathing exercises were not included in the experimental group were excluded from the meta-analysis.



2.3. Study selection and data collection processes

Data extraction, including the title, author, year, country, the population in each group, intervention methods, intervention time, and outcome index data, was performed by two authors. Mean ± standard deviation values were directly extracted, while the data included in the figures were extracted using error bar graphs with error lines. Disputes were resolved by the examiner, and a consensus was achieved through discussion.



2.4. Quality evaluation

Quality assessment was independently performed by two authors using the Cochrane risk-of-bias tool to assess the literature grade based on the low risk criteria for A, B, and C. In cases of disagreement, the authors reevaluated their judgment and reached an agreement through discussion.



2.5. Statistical analysis

The extracted data were meta-analyzed using RevMan 5.4 and Stata 16.0 software. Continuous variables are presented as weighted mean differences (MD) or e mean differences, and the 95% CI was determined. Bias risk maps and forest maps were created. When I2 was 50% or less, the fixed-effects model was used. When I2 was more than 50%, the heterogeneity was considered to be large, and a sensitivity analysis was performed to reduce the heterogeneity. Statistical significance was set at P < 0.05.




3. Results


3.1. Description of studies

A total of 408 articles were identified in the database search. Of these, 32 duplicate articles were excluded and 356 were excluded based on the title and abstract. A total of 20 articles were read in full, and 10 articles were included in this meta-analysis. The references of the included studies were searched for additional studies, but none met the inclusion criteria (Figure 1).
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FIGURE 1
Flow diagram.


The 10 studies included in this meta-analysis were conducted in five different countries and included 519 participants, including 267 in the treatment group and 252 in the control group (Table 2). Breathing exercises included slow and fast deep breathing (52), a simple prototype respiratory muscle trainer (51), diaphragmatic breathing exercises (47), pranayama of yoga (45, 46, 48, 49), straight leg raising breathing (50), inspiratory muscle training (13), and time-efficient inspiratory muscle strength training (53). The shortest intervention time was 20 days (53), and the longest was 3 months (46, 47, 50). The earliest study was published in 2002 and revealed the changes in MDA and SOD levels in healthy, young individuals after pranayama yoga breathing interventions (45). Two studies were conducted in Thailand (51, 52), one in South Korea (48), five in India (45–47, 49, 50), one in the United States (14), and one in China (53). The most recent studies (13, 53) included inspiratory muscle training exercises. Patients with COPD (51–53), diabetes (46, 47, 49), and hypertension (13, 50) were included in some studies, and two studies included healthy, young adults (45, 48). The main indexes were MDA (45–48, 50–53), SOD (45–50, 53), GSH (46, 47, 49–53), and NO levels (13, 48, 51, 52). TAC (51, 52) and catalase (CAT) (48), vitamin C (46, 47, 50), and F2-isoprostane levels (48) were also measured in some studies (Table 2).


TABLE 2    Characteristics of included studies.
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3.2. Risk of bias in included studies

Among the 10 included articles, three were grade A and seven were grade B. Studies that did not explicitly refer to randomized trials and allocation concealment were included in the unclear category. One study (47) did not use randomness and was considered to have a high risk of bias for the generation of random sequences. Another study (51) regarding the application of a simple prototype respiratory muscle trainer for breathing exercises did not include a complete explanation of the experimental design (Figures 2, 3).


[image: image]

FIGURE 2
Risk of bias graph.
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FIGURE 3
Risk of bias summary.




3.3. Meta-analysis


3.3.1. MDA

The MDA level was used as the main OS index in eight studies including 443 participants. MDA levels decreased significantly more in the experimental group than in the control group (MD = −1.31; 95% CI = −1.93 to −0.7; P < 0.001) (Figure 4).
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FIGURE 4
Effects of breathing exercises on malondialdehyde levels.




3.3.2. SOD

The SOD level was used as an indicator of OS in seven studies including 433 participants. I2 was greater than 50%. The increase in SOD levels was significantly greater in the experimental group than in the control group (MD = 1.55; 95% CI = 0.53–2.57; P < 0.001). However, after removing one study (48) from the sensitivity analysis, there was no significant difference in the levels of SOD between the groups (MD = 0.73; 95% CI = −0.03–1.50; P = 0.001) (Figure 5).
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FIGURE 5
Effects of breathing exercises on superoxide dismutase levels.




3.3.3. GSH

Glutathione levels were recorded in seven studies including 383 participants. One study (53) may have included bias as the heterogeneity reduced after its removal (I2 = 76.7%). The GSH level of the experimental group was significantly higher than that of the control group (MD = 0.83; 95% CI = 0.28–1.38; P < 0.001) (Figure 6).
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FIGURE 6
Effects of breathing exercises on glutathione levels.




3.3.4. NO

Four studies including 111 participants reported NO level. The NO levels were not significantly different between the groups (MD = 2.55; 95% CI = –0.53 to 5.64; P < 0.001) (Figure 7).
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FIGURE 7
Effects of breathing exercises on nitric oxide levels.




3.3.5. Vitamin C

A total of three studies involving 220 patients discussed the changes in vitamin C levels in the human body. Vitamin C concentration did not change significantly (MD = 0.48; 95% CI = −0.08 to 1.04; P = 0.025) (Figure 8).
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FIGURE 8
Effects of breathing exercises on vitamin C levels.




3.3.6. TAC

Total antioxidant capacity levels were measured in 50 people in two studies. The difference was not statistically significant (MD = 0.18; 95% CI = –0.37 to 0.74; P = 0.596) (Figure 9).
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FIGURE 9
Effects of breathing exercises on total antioxidant capacity levels.






4. Discussion

Breathing exercises have been a method of rehabilitation of patients with respiratory system diseases for decades (56). Respiratory muscle training has been proven to improve lung function in healthy participants and in patients with COPD, hypertension, diabetes, and chronic kidney disease (57), as it increases exercise endurance and the overall quality of life. OS, as an indicator to measure the survival and mortality of human aging and later disease stages (26, 58–60), is a hotspot of current research, although few studies regarding the impact of breathing exercises on OS have been conducted. The role of breathing exercises in aging or disease progression can be investigated as the effect of respiratory interventions on OS indexes.

In this study, MDA, SOD, and GSH levels, the main outcome indexes of breathing exercises for OS, were investigated. Breathing exercise increased SOD and GSH activities and decreased MDA content. SOD is converted into hydrogen peroxide by catalyzing oxygen reduction, which is then converted to water by GSH. It can effectively remove oxygen free radicals, protect endothelial cells from damage, relax vascular smooth muscle by increasing NO release, thus achieving the purpose of lowering OS (48). Participants who performed breathing exercises had greater changes in these biomarkers than those who did not, suggesting that these biomarkers can be used to evaluate OS after respiratory interventions.

Malondialdehyde is an oxidation product. MDA levels decreased significantly more in participants who performed breathing exercises than in those who did not (45, 47, 48, 50, 51, 53). This may be due to the fact that MDA is the end product of lipid peroxidation (32), a reaction caused by oxygen free radicals by attacking polyunsaturated fatty acids of biofilms. MDA participates in various physiological and pathological processes in the body (4). Leelarungrayub et al. (52) and Hegde et al. (46) reported a significant decrease in MDA levels in the experimental and control groups in their studies but no statistical differences between the groups. In two studies (35, 54), non-aerobic exercises as part of the slow deep breathing method and yoga required a certain intensity of training, and both improved the body’s antioxidant capacity and reduced the MDA content compared with those in the control groups (35), accounting for the lack of significant differences between the groups. These results are similar to those of another study (54) that compared breathing exercises to aerobic exercises in patients undergoing hemodialysis.

In two studies (45, 47), SOD levels decreased in patients with diabetes who performed breathing exercises. This decrease may be due to the adverse effects of long-term, low-intensity training on the body’s antioxidant capacity (61). Chronically increased blood glucose levels increase the content of glycation end products in the body, leading to increased oxidase activity, self-oxidation of glucose, and glycosylation of proteins, resulting in OS reactions (62–64). However, Mahapure et al. (49) reported that SOD levels increased significantly in patients with diabetes performing breathing exercises, which may be related to yoga exercises that are more intense than the breathing exercises. High-intensity exercises resulted in increased SOD levels in patients with diabetes, improving the OS state (65). After a sensitivity analysis and the exclusion of this previous study, the total effect size was not statistically significant in this meta-analysis. In healthy participants and patients with hypertension and COPD (45, 48, 50, 53), SOD dismutates the superoxide anions to generate hydrogen peroxide and oxygen during stable breathing exercises, protecting the body from damage caused by the internal and external environments and maintaining normal physiological activities (11).

The total effect size of the increase in GSH levels was significant in participants performing breathing exercises in this meta-analysis; however, Leelarungrayub et al. (51, 52) concluded that there was no significant change in GSH levels in patients with COPD. This may be due to the training method or the disease period of the population of the included studies. Another study (53) used a Drager Evi-ta-II ventilator to conduct respiratory interventions on patients with acute exacerbations of COPD and reported increased GSH levels, which improved the antioxidant capacity of the body. However, the sensitivity analysis in this study showed that there may be some bias in the previous study. In studies regarding the increase in GSH levels in patients with metabolic diseases and in healthy participants (46–48, 50), GSH improved the antioxidant defense mechanism by reducing the hydrogen peroxide dismutated from SOD into water during breathing exercises (12).

In this analysis, the variation of NO levels was the biggest difference, which may be due to the specific exercise programs in each included study. Moderate exercise increases the secretion of NO by endothelial cells, while long-term and high-intensity exercise can reduce the secretion of NO by endothelial cells (65). In patients with COPD, different respiratory interventions have resulted in conflicting data (13, 48, 51). These differences may also be related to the stimulation degree of endothelial cells in different disease states (66). A high NO level in patients with COPD is related to the severity of the disease and airflow obstruction (67). Breathing exercises stimulate endothelial cells to reduce NO secretion, which helps to prevent deterioration due to the disease (52). In patients with hypertension, oxidation imbalance leads to the production of a large quantity of ROS (68). The bioavailability of NO is increased by the activation of eNOS with ROS, improving OS (13). Under normal conditions, no changes in OS will occur in healthy individuals, and the increase in NO levels will cause damage to the tissues and cells of the body (69). Breathing exercises do not increase NO levels in healthy individuals (48). Therefore, when NO is used as an indicator of OS in different physiological states of the body, its influence on overall OS should be further determined according to the reaction mechanism in the body.

Total antioxidant capacity and CAT, vitamin C, and F2-isoprostane levels were not included in the meta-analysis. TAC and CAT levels were not significantly different between the groups in three studies (48, 51, 52), which may be due to the low sensitivity of these indicators or because respiratory interventions did not result in significant changes. Vitamin C may not be an accurate biomarker of oxidation-antioxidant status, as it can be obtained through food and vitamins (70, 71). Of the 10 studies included in this meta-analysis, one (48) showed the serum F2-isoprostane levels in healthy individuals and reported that the experimental group had lower levels than the control group. The F2-isoprostane content in exhaled air among patients with COPD increased after breathing exercises were performed but decreased after 6 min of walking (72). This may be due to the high variability and small sample size in the previous study. Rapid or gentle breathing regulates the contraction and relaxation of skeletal muscle, which can affect the F2-isoprostane content in exhaled air (73, 74). Aerobic exercise has been reported to reduce F2-isoprostane levels in patients with circulatory system or metabolic diseases (75, 76). However, the effects and action mechanism of breathing exercises on F2-isoprostane remain unknown. Future studies evaluating the role of F2-isoprostane in the OS state are needed to confirm the reference values in patients performing breathing exercises.

In the early stages of aging and diseases, the body reacts to harmful environmental stimuli by increasing the antioxidant levels (77). However, when these levels exceed the antioxidant capacity of the body, exogenous ROS cause inflammation (78), stimulate the release of endogenous superoxide and hydrogen peroxide to produce OS, and lead to a series of pathological reactions such as mitochondrial disorders, lipid peroxidation, and apoptosis. Inflammatory and pathological reactions further promote OS, creating a vicious cycle that worsens the disease (79). Breathing exercises are steady and medium-intensity exercises (54, 74), which effectively inhibit lipid peroxidation reactions, maintain the antioxidant capacity at a high level, enhance the stability of the internal environment, and promote the removal of harmful substances (80, 81).


4.1. Study limitations

Owing to the limited number of published articles, the specific methods of respiratory interventions and disease types were not strictly distinguished in this study. The differences in conclusions regarding changes in OS indicators in the included studies may be related to different breathing exercises and disease states included in the studies.




5. Conclusion

Breathing exercises can improve the main biological indicators of OS toward the direction of antioxidation and improve the OS state by increasing the levels of antioxidants and reducing those of oxidative markers. In addition, the MDA level is the most commonly used and most sensitive indicator to evaluate the impact of breathing exercises on the OS state. However, the effect of SOD on patients with diabetes and the role of GSH in patients with COPD require further research. The reaction mechanism of NO in patients with different diseases should be considered when it is used as an indicator of OS.
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Cryptogenic organizing pneumonia (COP) is a form of idiopathic interstitial pneumonia that results from the pulmonary reaction to various unidentified injuries. Secondary organizing pneumonia is diagnosed when the triggering factor has been identified; it is mainly caused by infections, toxic substance exposure, drugs, connective tissue diseases, malignancies, autoimmune diseases, bone marrow, or organ transplantation, and radiotherapy. There has been an increase in the number of reports of drug-induced organizing pneumonia (OP). New biological therapies, interferon, monoclonal antibodies, anti-interleukin antibodies, and PD1/PDL-1 inhibitors may induce this specific pulmonary reaction. The classical form of COP is usually subacute and does not manifest as severe disease. Patients maintain sufficient respiratory function, and treatment with steroids is usually effective. Several specific forms of OP (e.g., the cicatricial variant or acute fibrinous type) have distinct clinical and histological features, require higher doses of immunosuppressive drugs, and have a worse prognosis. In the era of administering steroid-sparing therapies for the treatment of interstitial lung diseases, connective tissue dases, and other conditions, it is important to emphasize this type of therapy for patients with COP.
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Definition

Organizing pneumonia (OP) is a specific pulmonary reaction to a diverse range of pneumotoxic agents, both internal and external, which produce a radiologically and histologically characteristic type of inflammatory lesion that causes the distal airways to fill with an organizing fibrous exudate and inflammatory cells, in the absence of disrupted lung architecture (1–6).

According to the classification of idiopathic interstitial pneumonias proposed by the European Respiratory Society and the American Thoracic Society, OP is a separate clinical entity within this large group of diseases (1).

OP is regarded as cryptogenic organizing pneumonia (COP) when the causative factor has not been identified, and secondary organizing pneumonia (SOP) when the possible cause of disease is known (7–18) (Tables 1–3).



TABLE 1 Autoimmunological diseases and other causes of SOP.
[image: Table1]



TABLE 2 Infectious factors which can induce SOP.
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TABLE 3 Drug induced SOP.
[image: Table3]

The disease is classified into the following forms according to the course and nature of lesions detected during histological examination: OP, acute fibrinous organizing pneumonia (AFOP), and cicatricial variant of organizing pneumonia (CIOP) (1, 5, 6, 19–25).

Focal OP is a specific form that usually progresses asymptomatically; lesion resection is sufficient treatment in many cases (3, 5, 6).



Epidemiology

The epidemiology of OP is poorly documented. The incidence of OP differs among populations; it is estimated to be 1.97–7/100000 (3, 5, 6). An Icelandic study revealed incidences of 1.10/100000 for COP and 0.87/100000 for SOP (26). The incidence of COP has been decreasing in recent years because of improvements in the diagnosis of causative factors. Approximately 3% of patients with interstitial lung disease are presumed to have a diagnosis of OP (5, 6). According to a Greek registry, the COP prevalence is approximately 5% among patients with interstitial lung disease; a similar registry in Spain indicates that approximately 10% of patients with interstitial lung disease also have COP (26, 27). The number of patients with OP described in previous reports varies from a few cases to 48 in the study by Lazor et al., 66 patients with COP in the study by Radzikowska et al., 76 patients with COP in the study by Yoo et al., and 100 patients in the study by Yilmaz et al. (14, 28–39). Recently, Zhang et al. reported a cohort of 1,346 patients with OP, among which 176 had COP and 1,170 had SOP (40). Epler et al. evaluated 2,500 specimens from patients with interstitial lung disease; 57 (2.3%) cases exhibited bronchiolitis along with an organizing inflammatory exudate in the alveolar lumen (5).

The disease is most often diagnosed during the 5th or 6th decade of life, although cases in children have been reported. Generally, the disease exhibits no ethnicity- or sex-specific bias. Although some studies revealed that greater proportions of patients were women and nonsmokers, others indicated that OP was more common in men. At the time of diagnosis, < 30% of patients were smokers, and > 55% of patients were nonsmokers (28–40).



Etiology and pathogenesis

Damage to the alveolar basement membrane and type II pneumocytes induced by various intrinsic and extrinsic factors is an important aspect of OP development. Vascular endothelial cells are mostly undamaged. This disruption of alveolar integrity results in the leakage of a fibrotic inflammatory exudate into the alveolar lumen, which subsequently expands into alveolar ducts and respiratory bronchioles (3, 5, 6, 41–43). Polymorphic inflammatory cells and fibroblasts migrate; undergo transformation into myofibroblasts; and bind to fibronectin, collagen I, procollagen III, tenascin C, and proteoglycans within the loose extracellular matrix. The architecture of the lung parenchyma remains unchanged. Epithelial cells proliferate, causing re-epithelialization of damaged fragments. The loose extracellular matrix containing collagen III fibers is susceptible to degradation by metalloproteases, gelatinase, and stromelysin. This process also involves increased activity among inflammatory cells, which secrete multiple cytokines that stimulate the release of enzymes capable of degrading the fibrillar exudate; the cytokines also stimulate apoptotic activity in fibroblasts (44, 45). Vasculogenesis is another mechanism involved in the disease process; it is mediated by vascular growth factors, fibroblast growth factors, and matrix metalloproteinases. Although the role of alveolar macrophages is not fully understood, cytokines released by these cells (e.g., platelet-derived growth factor-β and interleukin [IL]-8) are involved in disease progression (3, 46). Elevated levels of IL-6, IL-8, transforming growth factor-β, monocyte chemoattractant protein-1, IL-10, and IL-12 are present in serum and bronchoalveolar lavage fluid (BALF) samples from patients with OP. These observations indicate that many inflammatory cells are involved in the disease process (3, 47–49). Moreover, reduced levels of IL-6 and transforming growth factor-β have been associated with response to treatment and disease resolution (47, 49). During the resolution process, the number of inflammatory cells decreases, and fibrin deposits are removed. Concentric clusters of myofibroblasts, collagen I fibers, procollagen III, and fibronectin are formed. These clusters move into the interstitium, forming collagen foci, and the alveolar surface undergoes re-epithelialization. High apoptotic activity has been observed in fibromyxoid lesions during vascularization; this process is important during lesion healing (44, 45). Disruptions during the resolution of intra-alveolar exudate and collagen foci result in the scarring variant of OP. In COP, the inflammatory process is generally simultaneous, and the lung architecture is preserved. The presence of fibrotic lesions usually suggests overlap syndromes, such as OP with nonspecific interstitial pneumonia or with usual interstitial pneumonia (3, 25, 50).



Symptoms

COP usually develops in a subacute manner, such that the first pseudo-flu-like symptoms precede diagnosis by 2–3 months. These symptoms generally include a subfebrile state, cough (often dry or with minimal sputum), decreased exercise tolerance, weakness, weight loss, chest pain, and night sweats. Rarely, patients report copious sputum; even more rarely, they report hemoptysis (< 5%) or pneumothorax. Uncharacteristic symptoms can lead to a diagnostic delay of 1–5 months (28–39).

Rarely, OP progresses to a severe form with features of respiratory failure. Its main histological counterpart is AFOP (19–24), which is characterized by richly fibrinous inflammatory exudate in the alveoli, respiratory tract, and bronchioles; this exudate comprises spherical conglomerates, observed as diffuse bilateral shadows on radiographic imaging. AFOP is most often secondary to lung transplantation, allergic alveolitis, reactions to pneumotoxic agents, connective tissue diseases, and infections. AFOP has a high mortality rate, particularly in transplant patients (3, 6, 28–40).

Patients with focal OP are usually asymptomatic.

Physical examinations reveal weakened protrusions in areas of lesions, along with the sound of fine-bubble rales. No lesions are detected during physical examinations in approximately 30% of patients (3, 5, 6, 28–39).

COP patients usually do not show clubbed fingers, but this phenomenon is evident in patients with overlap syndromes such as usual interstitial pneumonia or nonspecific interstitial pneumonia; it may also be present in patients with underlying diseases (f.c. circulatory insufficiency, neoplastic) (3, 5, 28–39).



Laboratory tests

Laboratory tests detect increases in serum C-reactive protein concentration, erythrocyte sedimentation rate, and lymphocytosis in approximately 40% of patients.

OP may precede the onset of autoimmune disease by many months or years. Thus, appropriate serological diagnostics should be conducted to assess rheumatic factor, anti-cyclic citrullinated peptide antibody, anti-nuclear antibody, anti-topoisomerase antibody (anti-SCl-70), anti-Jo-1 antibody, anti-Ro52 antibody, anti-dsDNA antibody, and other such factors (3, 5, 6, 28–39).



Radiological examination


Chest radiography

Routine chest radiography of patients with OP usually reveals bilateral opacities localized in peripheral parts of the lungs, without abnormal lung volume (Figure 1). Less frequently, diffuse lesions may be present, in the form of fine-spotted and nodules, single nodules, or mass like lesions. The changes are usually localized in the middle and lower lung fields, although they are also observed in the upper fields in one-third of patients. Lesions undergo migration in 50–75% of cases, and approximately 10% of patients exhibit spontaneous regression (3, 5, 6, 28–41, 43). The standard radiography is poorly sensitive and specific for OP.

[image: Figure 1]

FIGURE 1
 Chest X-ray of OP. Bilateral opacities localized in the peripheral parts of the both lungs.




Chest computed tomography

High-resolution computed tomography (HRCT) is the gold standard in the evaluation of OP. It reveals multifocal areas of consolidation, often with a characteristic air bronchogram. Additionally, patchy alveolar consolidations, nodules, areas of ground glass opacity, perilobular infiltrations, bronchial wall thickening, and reticular fibrous changes may be present in peripheral parts of both lungs. Thickening around areas of ground glass opacity with an “atoll” or “crazy-paving” pattern may also be present, although it is less common. Additionally, nodular lesions, pleural thickening, and rarely enlargement of hilar and mediastinal lymph nodes, are present; emphysema or pleural effusion may also be observed (28–40). Honeycomb-type lesions are not in the spectrum of pulmonary changes observed in COP but might be evident in patients who exhibit interstitial pulmonary fibrosis with a component of OP (Figures 2–6).

[image: Figure 2]

FIGURE 2
 High resolution computed tomography scan of a patient with COP. Bilateral ground glass opacities with associated peripheral consolidations forming an atoll sign.


[image: Figure 3]

FIGURE 3
 High resolution computed tomography scan of a patient with COP. Bilateral nodular consolidations.


[image: Figure 4]

FIGURE 4
 High resolution computed tomography scan of a patient with COP. Massive bilateral opacities with presence of air bronchogram and accompanying ground glass opacities on the right lung.


[image: Figure 5]

FIGURE 5
 High resolution computed tomography scan of a patient with SOP in the course of dermatomyositis. In both lungs evidence of GGO with patchy distribution and parenchymal banding with “arcade” sign typical of OP. Status post lung biopsy on the right side.


[image: Figure 6]

FIGURE 6
 HRCT scan. Etanercept induced AFOP, in patient with rheumatic arthritis and pulmonary fibrosis. Bilateral consolidations with air bronchogram, interlobular septa thickening, and ground glass opacities predominated in the peripheral parts of both lungs.


The micronodular form of OP is more frequently observed during the course of OP accompanying myeloproliferative diseases or infections, or after exposure to marijuana smoke (3, 28–40).

Some case series have reported higher numbers of solitary mass-like lesions mimicking lung neoplasia, whereas other case series have indicated that such lesions were present in only a few patients (Table 4) (3, 6, 40, 51, 52).



TABLE 4 Radiological findings detected in OP patients.
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Bronchoscopy and bronchoalveolar lavage

Bronchoscopy and bronchoalveolar lavage are used to exclude possible causes of the observed lesions (i.e., infections, neoplasia, eosinophilic pneumonia, and alveolar hemorrhage) (53). The lymphocyte percentage in BALF is usually high (20–40%), and eosinophils and neutrophils are present (approximately 7–10%). In approximately 40% of patients, lymphocytosis with a decreased CD4+/CD8+ lymphocyte ratio is detected, but this is not a pathognomonic finding for the disease. Patients with an increased eosinophil percentage may have overlap syndrome comprising OP with chronic eosinophilic pneumonia.

Specimens obtained via transbronchial lung biopsy may be insufficient for diagnosis, particularly when the clinical and radiological pictures are questionable. The positive and negative predictive values of transbronchial lung biopsy were approximately 94 and 40%, respectively (54). Cryobiopsy may be an effective diagnostic route (55, 56). However, the gold standard for diagnosis is histological evaluation of specimens obtained by open lung biopsy (1, 3, 5, 6, 57–59).



Histological examination

In OP, histological examination detects a rich fibrous exudate in alveolar spaces, which expands into alveolar ducts and respiratory bronchioles; it forms characteristic polypoid lesions accompanied by a polymorphic inflammatory infiltrate composed of macrophages, plasma cells, lymphocytes, and eosinophils (Figure 7).

[image: Figure 7]

FIGURE 7
 Histological image of organizing pneumonia (H-E). Alveoli filled with loose tissue forming polypoid formations extending into the respiratory tracts with a small diffuse inflammatory infiltrate in the interalveolar spaces.


Some degree of inflammation is observed in the lung interstitium, but the lung architecture remains intact. The lesions usually have a unilocular appearance; typically, advanced fibrotic changes are not present at the time of diagnosis. OP involves extensive apoptotic activity in the extracellular matrix. The damaged lung is remodeled by re-epithelialization and repair of the basement membrane, along with resorption of the accompanying inflammatory exudate.

During the development of CIOP, clusters of fibrin and banded fibrous lesions are present in peribronchial spaces, sometimes accompanied by foci of dendritic ossification. This form of disease presumably results in a predisposition toward the onset of nonspecific interstitial pneumonia. Rarely, typical lesions of OP are accompanied by poorly formed granulomas (3, 5, 41).

Similarly, AFOP is detected in cases of sporadic disease with a severe and aggressive course. Histological criteria for this form are the presence of balls of organized fibrin conglomerates in the alveoli and respiratory ducts, patchy distribution in the absence of vitreous membranes, inflammatory granulomas, eosinophilic pneumonia, and bronchiolitis with abscess formation (41, 42, 57).



Pulmonary function tests

Despite the extensive radiographic changes, ventilatory parameters usually are not significantly impaired; they are within normal ranges in approximately 30% of patients. Impaired transfer rate for carbon monoxide and restrictive-type ventilatory abnormalities are most commonly detected in approximately 60–70% of patients. Features of hypoxemic respiratory failure are less frequently observed. In contrast, increased ventilatory and blood gas abnormalities are more often associated with SOP (28–38, 60).

Arterial hypoxemia at rest is uncommon (< 20% of patients), whereas arterial hypoxemia during exertion is more frequent and corresponds to impairments in diffusion capacity for carbon monoxide (3, 6, 28–40).



Diagnosis

The diagnosis of the disease is based on:

• Analysis of the clinical and radiological findings

• Exclusion of all possible causes of OP

• Histological examination of samples obtained by open lung biopsy or transbronchial lung biopsy

• Examination of lung samples obtained during transbronchial lung biopsy may be insufficient for patients with atypical clinical and radiological pictures; the OP lesions may be accompanied by other forms of interstitial pulmonary fibrosis, infections, and tumors



Diagnosis of AFOP




• Rapid clinical course leading to respiratory failure

• Radiological picture of extensive interstitial opacities

• Histological findings of richly fibrinous inflammatory exudate within the alveoli and in the respiratory tract, along with the formation of fibrin conglomerates, while excluding the presence of vitreous membranes, eosinophilia, bronchiolitis, and granulomas

Generally, a diagnosis of COP should be based on multidisciplinary consultation (1, 3, 6).



Differentiation

Diagnosis requires a specific determination of possible etiology, particularly with respect to potentially reversible causes of disease, such as infections (e.g., coronavirus disease 2019), autoimmune disease, neoplastic disease, drug reactions, and toxic lung damage. Additionally, there is a need to determine whether OP is a component of another disease, including nonspecific interstitial pneumonia or usual interstitial pneumonia.

Chronic eosinophilic pneumonia may resemble OP in terms of clinical and radiological pictures. The disease more often affects women in the 5th to 6th decades of life, usually with a history of allergy, as well as sputum and > 25% eosinophils in BALF.

Opacities with air bronchogram are visualized by computed tomography, although they frequently do not exhibit migration; these shadows can be a sign of mucosa-associated lymphoid tissue lymphoma or adenocarcinoma of the lung.

Other forms of idiopathic interstitial pneumonitis should be considered in the differential diagnosis, and the key assessment comprises evaluation of lung sections.

Nodular lesions that raise suspicion of malignancy require histological verification. Patients who have undergone radiation therapy for breast cancer are at high risk, such that 1–3% subsequently develop OP (3, 6, 59, 61–65).



Treatment

Treatment strategies for COP should be based on assessment of the patient’s clinical status and the disease severity, with particular attention to respiratory sufficiency. The disease spontaneously resolves in <10% of cases.

Patients with localized COP treated by surgical resection of the lesion have a good prognosis; this is frequently sufficient treatment (40).

Steroid administration is the standard treatment for COP and SOP. Clinical and radiological improvements occur within a few days after the initiation of treatment; however, approximately 50% of patients experience recurrence, including approximately 20% who have multiple recurrences of COP. Relapses mainly occur during the first year after the initial episode. New infiltration occurs during steroid tapering (< 10 mg of prednisone) or within a few months after the completion of treatment. The factors associated with greater probability of relapse have not been fully elucidated, and different case series have yielded discordant results. However, putative factors include diagnostic and treatment delays, respiratory insufficiency, extension of pulmonary infiltrates, the presence of multifocal opacities, higher levels of inflammatory markers, and the presence of gastroesophageal reflux. Recurrence does not affect the mortality rate, and prolonged steroid treatment does not prevent recurrence. However, prolonged steroid treatment increases the likelihood of adverse events during therapy, which occur in 12–50% of patients; some events can be very severe, including pulmonary embolism, vertebral fracture, diabetes, and tuberculosis. The possibility of secondary causes of disease (e.g., autoimmune diseases and malignancy) should be considered in patients with recurrent OP. The optimal steroid dosage regimen and duration of therapy have not been established. The most common recommendation comprises the administration of 0.5–1 mg/kg per day of prednisone in gradually decreasing doses for 6–12 months. The dose and duration of treatment should be modified in accordance with the patient’s clinical condition. Relapses are usually treated with lower doses of steroids (approximately 20 mg/day for 6 months) (28–40) (Table 5).



TABLE 5 COP treatment with corticosteroids – observational retrospective studies of cohorts over than 20 patients (COP patients were extracted from presented populations).
[image: Table5]

Clinically severe forms of the disease, which mainly occur in patients with SOP, have been treated with intravenous boluses of corticosteroids (500–1,000 mg methylprednisolone intravenously for 3–5 days with subsequent oral prednisone treatment at 1 mg/kg) and other immunosuppressive drugs (e.g., cyclophosphamide, azathioprine, cyclosporine A, mycophenolate mofetil, and rituximab), usually in combination with glucocorticoids (3, 6, 24, 38–40).

Generally, COP exhibits a very good response to corticosteroid treatment in patients with respiratory sufficiency, good clinical status, and no symptoms of severe disease; steroid-sparing therapies with macrolides have demonstrated promising results. There is increasing evidence regarding the efficacy of clarithromycin (CAM) treatment in COP patients without features of respiratory distress (67–75) (Table 6). The most effective dosage regimen is oral administration of CAM at 2 × 500 mg/day for 3 months. Significant improvement occurs after 1 month of treatment, rather than within a few days (e.g., the duration expected during steroid treatment). More than 80% of patients achieve complete regression of lesions after a 3-month period of treatment, and the recurrence rate is <10%. Adverse effects of this treatment are limited to allergic reactions and dyspeptic symptoms (68). Lower doses of CAM (2 × 500 mg for 1 week, 500 mg for 3 weeks, and 250 mg for 8 weeks) in combination with prednisone also led to good therapeutic effects (63% complete regression and 38% partial regression), but 80% of the patients exhibited OP recurrence. In the control group treated for 6 months with prednisone alone, the proportions of patients who achieved complete and partial remission were 81 and 14%, respectively; relapses occurred in more than half of the patients (75).



TABLE 6 COP treatment with clarithromycin – observational retrospective studies.
[image: Table6]

CAM was effective treatment for patients with radiotherapy-induced OP.

Similar to the first-line treatment, steroids are used as treatment for relapses. However, relapses can be treated with lower doses of glucocorticoids (< 20 mg/day) or CAM (5, 68).

Prophylactic treatment of Pneumocystis jiroveci infection is recommended for patients receiving steroids.

There have been no randomized controlled trials of steroid or CAM treatments for COP. The recommendations for treatment are based on individual experience and the results of uncontrolled studies. Considering the treatment duration, results, adverse events, and probability of relapse, CAM should be the first choice for treatment in patients with COP who exhibit respiratory sufficiency. Steroids should be considered for patients with a severe and aggressive disease course, particularly patients with underlying conditions (e.g., connective tissue disease, malignancy, or suspected drug reaction). Among patients who fail to respond to steroids, more aggressive treatment with cyclophosphamide, azathioprine, or rituximab is recommended.



Monitoring

Relapses of OP are common, particularly in steroid-treated patients; they most frequently occur during the period of prednisone dose reduction to approximately 5–10 mg or within 2–3 months after the completion of treatment. Therefore, follow-up examinations are recommended during the first year after completion of treatment. Additionally, particular attention is necessary for patients whose lesions have not completely resolved, and for patients in whom OP is regarded as the first symptom of a developing connective tissue disease. Factors associated with a higher risk of recurrence are diagnostic delay (> 2 months), severe disease, the presence of multifocal lesions and dilatation with stretching on radiographs, transfer factor of the lung for carbon monoxide <50%, hypoxemia <70 mmHg, and the presence of fibrin conglomerates and cicatricial lesions on histological examination (3, 28–40, 66, 68, 75).



Prognosis

Typical COP has a good prognosis. Spontaneous regression occurs in approximately 10% of cases, and > 75% of patients recover fully.

Poor response to treatment occurs in patients with a disease pattern that is suggestive of OP overlap with nonspecific interstitial pneumonia, patients in whom the disease is caused by exposure to pneumotoxic agents, patients with connective tissue diseases (including diseases induced by biological drugs), patients with myeloproliferative diseases, and patients who underwent lung or bone marrow transplantation. Very rarely, COP can result in death (3, 6, 28–40, 68–75).



Prevention

Because the cause of disease is not fully understood, there are no established methods for prevention.

Avoidance of infection is recommended; this includes efforts to undergo immunization against influenza, pneumonia, and coronavirus disease 2019.



Variants of organizing pneumonia


AFOP

More than 150 patients with AFOP have been described thus far, and the significance of the histological findings remains unclear (24, 76–80). This disease may be idiopathic or (more frequently) secondary, related to diffuse alveolar damage, adverse drug reaction, transplantation, and connective tissue disease. Although AFOP was first identified in patients with acute respiratory failure, the course of the disease can be acute or subacute. Confluent, bilateral, massive consolidations in basal areas of the lungs are usually observed. Patients with a fulminant clinical course and rapid progression to death exhibit radiological findings similar to diffuse alveolar damage, along with diffuse consolidations and ground glass opacities in lower parts of the lungs. In patients with a subacute clinical course, the radiological picture is more compatible with typical OP, including diffuse and focal consolidations with an air bronchogram and ground glass opacities. These patients also have better prognoses. Histologically, AFOP is characterized by the presence of organized fibrinous balls filling the alveoli, combined with type II pneumocyte hyperplasia and the absence of hyaline membrane. In the original report by Beasley et al., 17 patients with AFOP were identified among 114 cases with diffuse alveolar damage and OP (19). Relevant possible causes of the lesions were present in 11 patients; the possible cause of disease was unknown in the remaining 6 patients. The prognosis of AFOP is poor; 50% of the patients in the cohort presented by Beasley et al. died, including all patients who received mechanical ventilation. Onishi et al. identified 19 cases of idiopathic AFOP in a group of 34 patients diagnosed with AFOP. Corticosteroids were effective in 94% of the patients in the AFOP group, but relapses occurred in 76% of the patients (23). Additionally, a higher corticosteroid dose was needed during recurrence than during the initial course of disease. These patients had favorable outcomes, but two deaths from respiratory failure occurred among patients with underlying diseases. In that study, AFOP was more common than previously reported, and the patient prognosis was better than in other studies. In a review of cases and cohorts of patients with AFOP, Chen et al. reported that 33% of patients had idiopathic AFOP; underlying conditions responsible for disease were identified in the remaining patients (i.e., those patients had secondary AFOP) (24). Dyspnea (72%), nonproductive cough (71%), and fever (43%) were the most common symptoms, and they usually exhibited subacute onset (41%). Acute disease onset was identified in 27% of patients; it was nonspecific in the remaining patients. Bilateral consolidations, mainly in the lower and peripheral parts of both lungs, were present in 77% of patients. Consolidations, ground glass opacities, and nodules were evident in 54, 42, and 20% of patients, respectively. Lesions in the form of consolidations were more common in patients with idiopathic AFOP than in patients with secondary AFOP (70% vs. 47%, respectively). Rarely, pleural fluid (5%) and solitary nodules (1.3%) were detected in patients with secondary AFOP. Steroid administration was the most frequently prescribed therapy (88%); the dose and duration considerably varied. Immunosuppressive agents (e.g., cyclophosphamide, mycophenolate mofetil, tacrolimus, and azathioprine) were administered to 17 patients, most of whom exhibited secondary AFOP during the course of autoimmune disease. Drug-induced AFOP was identified in 17 (11%) patients; withdrawal of the possible causative drug and administration of corticosteroids were recommended (3, 6, 12).

Disease-related deaths were reported in 20% of idiopathic AFOP patients and 49% of secondary AFOP patients (80).

Moreover, close monitoring of patients with cryptogenic AFOP is recommended because it can reveal connective tissue disease or malignancy as the cause of the lesions.



Cicatricial variant of organizing pneumonia

CIOP is a rare histological variant of OP, which has been referred to by various names, including fibrosing OP, collagenized OP, and scarring variant of OP; these names should be consolidated to a single term (16, 25, 81–83). Yousem et al. found this variant in histological specimens from 12 of 223 patients with OP, which had been collected over a 20-year period. Additionally, 30 other patients had CIOP secondary to connective tissue diseases and malignancies. In this group, the disease was mainly present in middle-aged men; bilateral nodular or reticulonodular lesions were the most frequent manifestation. Histological examination revealed that fibromyxoid material filled distant airways and alveoli; dense eosinophilic fibrosis was evident in the center of the lesions, along with preservation of the lung architecture. In the central parts of these changes, elastic tissue was revealed by specific stains (e.g., Elastica van Gieson). Mild lymphocytic bronchiolitis and patchy alveolar septal infiltrates were present. In some cases, dendriform ossifications, fibrous pleuritis, and dust deposits were present. The lesions were persistent or progressive in >50% of patients. There has been discussion of separating this variant from classical COP (25). Woge et al. reported the presence of OP in 56 cases diagnosed via surgical biopsy specimens that had been collected over a period of 9 years. Thirty-two of 56 cases (57.1%) exhibited ≥10% cicatricial elements within fibromyxoid balls; cicatricial elements comprised ≥50% of OP in 9 of these cases. Intraluminal ossification was present in five of these nine cases. In 6 of these patients with major cicatricial changes, the clinical condition was good over a median follow-up period of 47 months (83).

Recently, Zaizen et al. analyzed the histological findings of 121 patients with fibrotic interstitial pneumonia; they found that CIOP coexisted with usual interstitial pneumonia, nonspecific interstitial pneumonia, and chronic hypersensitivity pneumonia patterns. CIOP as a predominant type of lesion was present in 7 of 48 patients who exhibited any CIOP changes. CIOP was regarded as a variant of OP, as well as a histological lesion that can occur within other types of fibrotic interstitial pneumonia. Moreover, the presence of CIOP in patients with fibrotic interstitial pneumonia was associated with a low risk of acute exacerbation, slight improvement of ventilatory impairment, and better prognosis (82).




Conclusion

Cryptogenic organizing pneumonia (COP) is a result on the pulmonary reaction to various unidentified injuries. It has usually subacute course, and rarely manifests as severe disease.

The diagnosis of COP requires detailed evaluation of possible causes of secondary disease such as: infections, toxic substance exposure, drugs, connective tissue diseases, malignancies, autoimmune diseases, bone marrow or organ transplantation, and radiotherapy.

There have been no randomized controlled trials of steroid, clarithromycin, and other immunosuppressive treatments for COP. The recommendations for treatment are based on individual experience and the results of uncontrolled studies. Considering the treatment duration, results, adverse events, and probability of relapse, CAM should be the first choice for treatment in patients with COP who exhibit respiratory sufficiency. Steroids should be considered for patients with a severe and aggressive disease course, particularly patients with underlying conditions (e.g., connective tissue disease, malignancy, or suspected drug reaction). Among patients who fail to respond to steroids, more aggressive treatment with cyclophosphamide, azathioprine, or rituximab should be considered.
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Research into novel diagnostic techniques and targeted therapeutics in interstitial lung disease (ILD) is moving the field toward increased precision and improved patient outcomes. An array of molecular techniques, machine learning approaches and other innovative methods including electronic nose technology and endobronchial optical coherence tomography are promising tools with potential to increase diagnostic accuracy. This review provides a comprehensive overview of the current evidence regarding evolving diagnostic methods in ILD and to consider their future role in routine clinical care.
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Introduction

Interstitial lung diseases (ILDs), despite being a large group of diverse disorders, are grouped together since they are invariably characterized by inflammation and/or fibrosis of the lung parenchyma (1). Affected patients often have similar symptoms including cough and breathlessness. While some ILDs share overlapping radiological and histopathological features, there is a wide range of natural histories and responses to treatment across the ILD spectrum. Delays in diagnosis can lead to missed opportunities to intervene early and potentially prevent progressive pulmonary fibrosis (PPF), a recently defined disease behavior entity which is associated with high morbidity and mortality (1, 2). Idiopathic pulmonary fibrosis (IPF), the most common ILD, is universally progressive; however, antifibrotic therapy with nintedanib or pirfenidone significantly reduces the rate of decline in lung function in patients with both early and moderate disease. A similar treatment effect with nintedanib has been demonstrated in other causes of PPF (3).

Unfortunately, a specific ILD diagnosis remains elusive in up to 20% of cases; and is often delayed (4). The reasons for this are multifactorial, including heterogeneous clinical presentation, radiological and pathological features even within diagnostic subgroups, the rarity of some ILDs, under-recognition of ILD features in the primary care setting; and importantly, global inequality of access to expert care (1, 5–10). The ILD multidisciplinary meeting (MDM) is the current recommended “gold standard” method for diagnosing ILDs, yet several studies have demonstrated suboptimal agreement between clinicians and ILD MDMs for individual diagnoses (11–18).

While this might initially seem discouraging, the future is promising. Recent research into novel diagnostic techniques and targeted therapeutics in ILD is moving the field toward increased precision and improved patient outcomes (19).



Conventional and emerging ILD diagnostic tools in use

Detailed clinical assessment through history-taking and examination, has always been important in ILD diagnosis and remains an essential first step in the modern systematic approach (1, 20). A history of exposures in the home and workplace should be obtained, including to mold, asbestos, and other relevant occupational dusts, which may point toward an underlying inciting agent. Recently, the use of a standardized questionnaire has been shown to increase both diagnostic confidence and antigen recognition in chronic hypersensitivity pneumonitis (21). Similarly, physical signs detected during the examination might support presence of an ILD (nail clubbing, fine inspiratory crackles) or suggest an underlying connective tissue disease diagnosis (sclerodactyly, inflammatory arthritis, typical skin rash).

Serological tests for autoantibodies may also point toward systemic autoimmune disease. Many ILD centers will screen for antinuclear antibodies, rheumatoid factor as well as more specific connective tissue disease-associated antibodies such as anti-double stranded DNA, anti-Ro and anti-La, anti-Scl-70, anti-ribonucleoprotein, anti-cyclic citrullinated peptide (CCP) and the anti-tRNA synthetase antibodies. New immunoassay platforms and an extended panel of highly specific myositis antibodies (including antibodies to PM-Scl, MDA-5, Mi2, Ku, TIF1γ, and NXP2) are now also part of routine testing in many expert centers worldwide. Similarly, nailfold capillaroscopy has recently been suggested as an adjunctive clinical test to assess for the presence of vascular changes associated with systemic sclerosis and other connective tissue diseases such as the idiopathic inflammatory myopathies and mixed connective tissue disease (22–24). The high specificity of abnormal nailfold capillaroscopy findings has rendered it an integral tool in the diagnosis of these diseases. Although generally performed using conventional microscopy, nailfold capillaroscopy has also been performed at the bedside using smartphone-dermatoscopy (23).

A critical technological advance was the development of computed tomography (CT) in the 1970s, enabling detailed axial imaging of the lung parenchyma for the first time (20). The Fleischner Society and international expert groups have subsequently published numerous glossaries, white papers and clinical practice guidelines describing classifications of interstitial lung disease patterns on high resolution CT (HRCT) chest imaging, including usual interstitial pneumonia (UIP), non-specific interstitial pneumonia (NSIP) and other patterns which are associated with specific ILDs (25–32). In over two-thirds of ILD cases, the synthesis of HRCT pattern and clinical information enables a diagnosis to be made at the ILD MDM (1).

For patients in whom clinical and HRCT findings are not sufficiently characteristic to allow confident diagnosis, further investigation including bronchoscopy or tissue sampling for histopathological classification may be required. Flexible bronchoscopic diagnostic techniques including bronchoalveolar lavage (BAL) and transbronchial biopsy were integrated into clinical practice around the same time as early CT imaging (20). BAL remains a routinely performed diagnostic test in patients with newly detected ILD who do not have a definite UIP pattern on HRCT. Cellular analysis of BAL fluid can reveal lymphocytosis helpful for distinguishing hypersensitivity pneumonitis from IPF or sarcoidosis; or high eosinophil counts suggesting a diagnosis of eosinophilic pneumonia. BAL cultures can help exclude infection as an alternate cause of lung infiltrates prior to institution of specific immunosuppressive or antifibrotic therapies. Transbronchial biopsies with forceps (TBB) are not routinely recommended for histopathological diagnosis due to having generally low diagnostic yield and moderate risk of pneumothorax (31). However, they might be considered on a case-by-case basis for diagnosis of airway-centered processes such as sarcoidosis or organizing pneumonia, where the sensitivity is much higher. There is still widespread use for these indications in centers where clinicians have expertise in TBB.

Historically, tissue sampling required surgical lung biopsy (via open thoracotomy in the 1950s and 1960s and via video-assisted thoracoscopic surgery (VATS) in more recent decades) if the patient was considered suitable for thoracic surgery (20). Within the last decade, transbronchial lung cryobiopsy (TBLC) has emerged as a less invasive tissue sampling procedure for ILD diagnosis, with good diagnostic yield of ~80% (33–35), and comparable accuracy to VATS biopsy in some studies when considered within the MDM (36). Although the quality of available evidence is low, current systematic review and meta-analysis data demonstrate TBLC to have a lower 30-day mortality rate than VATS (0.6% versus 1.7%), and low risk of severe complications such as prolonged air leak or acute ILD exacerbation. These factors make TBLC a favorable alternative to SLB for tissue sampling in centers with expertise, with uptake of the procedure by centers across the world (33).

These diagnostic test results are considered by a multidisciplinary team within the MDM to formulate an ILD diagnosis – the recommended approach in IPF clinical practice guidelines in the last decade (2, 31). In recent years, there has been divergence of opinion regarding the need for strict pursual of specific ILD diagnosis versus “lumping” patients based on their expected and observed disease behaviors including those with a progressive fibrotic phenotype and those with non-progressive disease (37–39). Indeed, this is reflected in the variable recommendations of different MDMs. While some MDMs will recommend referral for biopsy in the event of unclassifiable or low confidence diagnoses, others will generate a working diagnosis (of lower confidence) to facilitate treatment institution. This is frequently related to a patient’s current degree of disability and burden of comorbidities, limiting ability to proceed to biopsy and therefore attainment of a high confidence diagnosis. In the future, standardization of the ILD MDM, including approach to clinical decision-making, will be required to reduce heterogeneity of outputs. Indeed, although the MDM is considered the current “gold standard” method for ILD diagnosis, there is a clear need for simpler, non-invasive, and more precise ILD diagnostic tests.



Emerging ILD diagnostic tests under investigation


Genetic testing

The advent of biobanks and evolution of methods for molecular analysis, including targeted next-generation sequencing and whole genome sequencing in the early 2000s revolutionized the concept of genetic testing in ILD (40–42). Single nucleotide polymorphisms (SNPs) in genes encoding for proteins expressed by airway epithelial cells, such as MUC5B, have been identified to have both diagnostic and prognostic significance in IPF and other fibrotic ILDs such as rheumatoid arthritis-associated ILD and chronic hypersensitivity pneumonitis. Patients with at least one MUC5B risk allele have a more than threefold increased risk of developing pulmonary fibrosis (41). However, IPF patients with at least one of these alleles have been shown to have slower disease progression and improved survival compared to patients without a risk allele in retrospective and post-hoc analyses (41). The first whole genome sequencing study of 2,180 IPF cases, recently published, found single rare variants in TERT and RTEL1 genes to be significantly associated with IPF development, and confirmed previously studied association with other more common genetic variants. SNP-heritability in IPF was estimated to be 32% (43).

Importantly, mutations in telomere-related genes such as TERT and PARN confer substantial risk of familial pulmonary fibrosis and are associated with more rapidly progressive disease, as well as poorer outcomes with immunosuppressive therapy and with lung transplantation (40, 44). A recent genome-wide meta-analysis of IPF patients showed a variant in the RNA antisense gene of protein kinase N2 (PKN2), rs115982800, to be significantly associated with FVC decline. Interestingly, no other genetic variants were associated with lung function decline, however this may have been due to study underpowering (45). Variability in the association between specific genetic variants and IPF increasingly suggest that it is a more heterogenous disease than traditionally thought, with different underlying pathophysiological mechanisms (46, 47).

Genetic variants that have been associated with ILD are described in Table 1 (40–47). In addition to direct cellular injury mediated by these genetic variants, pulmonary fibrosis may also be a consequence of chronic lung inflammation due to genetic mutations causing systemic autoimmune disease; for example, CTLA-4 haploinsufficiency with autoimmune infiltration (CHAI syndrome), or chronic respiratory infections; for example, hyper-IgE syndrome.



TABLE 1 Gene polymorphisms associated with ILD.
[image: Table1]

Variable penetrance of ILD-associated alleles, limited data on specific treatment response and limited access to genetic counseling and testing outside of tertiary centers currently limit the widespread implementation of genetic testing. However, it is increasingly used within the ILD multidimensional diagnostic paradigm to inform risk of progressive fibrotic ILD and treatment response for affected individuals with suspected familial pulmonary fibrosis and their family members (40). Genetic testing should also be considered where there is suspicion for a “short telomere syndrome,” and evidence is mounting that screening of unaffected family members may be reasonable to facilitate earlier diagnosis and treatment institution.


Key points

1. Genetic variants with diagnostic and prognostic importance have been identified in familial pulmonary fibrosis and other ILDs, including single nucleotide polymorphisms in telomere-related genes, surfactant-related genes and other genes associated with protein expression and function.

2. Where access is available, genetic testing should be considered for all patients with a family history of ILD or who have features of a telomeropathy.




Other molecular testing, including serum biomarkers

RNA sequencing and genomic classifier testing represent novel diagnostic methods of significant interest (48). RNA sequencing involves the use of high throughput sequencing technologies to identify and quantify RNA transcripts in either whole tissue or single cells (49). Analysis of the transcriptome can identify differentially expressed or regulated genes between diseased tissues compared with healthy tissues, with the aim of delineating biological mechanisms or pathways underlying disease pathogenesis. Multiple studies have evaluated the use of both bulk RNA sequencing and single-cell RNA-sequencing (scRNA-seq) to analyze fibrotic lung tissue samples (50).

A genomic classifier, developed from RNA sequencing data, has been proposed as a novel diagnostic tool that might increase diagnostic yield and accuracy in ILD. The Envisia™ genomic classifier, which employs a machine learning algorithm developed to classify UIP versus non-UIP histopathological pattern ILDs, uses bulk RNA sequencing data obtained from high throughput sequencing of exome-enriched RNA extracted from transbronchial lung biopsies or transbronchial lung cryobiopsies (TBLCs). Several subsequent studies have demonstrated the classifier to have high specificity (≥86%) to predict UIP, however its sensitivity was as low as 68% (51–54). When results were presented within the ILD multidisciplinary meeting, the genomic classifier increased diagnostic confidence for patients with probable UIP (55). However, the classifier had less impact on the proportion of high confidence diagnoses than the TBLC result; and the 2022 ATS/ERS/JRS/ALAT IPF clinical practice guideline update has made no recommendation for or against the use of genomic classifier testing in fibrotic ILD diagnosis (2).

The quest for a biomarker signature from peripheral blood to improve specific ILD diagnosis and accurate prediction of prognosis at first presentation has been world-wide. Multiple biomarkers have been identified and several have been validated across multiple cohorts. Peripheral blood biomarkers with promise for future translation to clinical use include matrix metalloproteinase 7 (MMP-7), Krebs von den Lungen (KL-6), osteopontin (OPN), periostin and surfactant protein D (SP-D); and various other cytokines, chemokines, growth factors, matrix metalloproteinases, extracellular matrix proteins and markers of epithelial injury and apoptosis (56) (Figure 1).

[image: Figure 1]

FIGURE 1
 Molecular mechanisms underlying fibrotic lung injury and potential serum biomarkers of ILD. Abbreviations: KL-6 Krebs von lungen 6; SP-A/SP-D surfactant protein A/D; cCK18 cleaved cytokeratin 18; CC16 Clara cell protein 16; MMP matrix metalloproteinase; OPN osteopontin, HSP47 heat-shock protein 47; sLOXL2 serum lysyl oxidase-like 2; ADAM a disintegrin and metalloprotease; CCL18 chemokine ligand 18; ICAM intercellular adhesion molecule; VCAM vascular cell adhesion molecule; CXCL13 C-X-C motif chemokine 13; CCL2 CC chemokine 2; IL-6 interleukin-6. Reprinted from Pharmacology and Therapeutics, 202, Jee et al. (56), with permission from Elsevier.


The landmark PROFILE study of incident cases of fibrotic interstitial lung disease involved a discovery analysis of concentrations of 123 previously described serum biomarkers using multiplex immunoassay, followed by a validation analysis employing independent immunoassays for each of the three identified biomarkers. SP-D, carbohydrate antigen 19.9 (CA19-9) and cancer antigen 125 (CA-125) were identified as prognostically important biomarkers, with higher baseline values of SP-D and CA 19–9 significantly associated with disease progression; and increasing levels of CA-125 over a three-month time period were associated with higher mortality risk (57). More recently, a panel of serum biomarkers was assessed in three separate IPF cohorts. Osteopontin, MMP-7, intercellular adhesion molecule-1 (ICAM-1) and periostin were differentially expressed between progressive and stable IPF. The investigators developed a statistical model incorporating these four biomarkers which was able to predict risk of disease progression in each cohort (58). Systematic review and meta-analysis data confirms the association between baseline MMP-7 levels and outcomes in untreated IPF, including disease progression and mortality risk (59).

Proteomic analysis of blood biomarkers for prediction of disease behavior holds promise as a future tool with potentially increased precision over individual biomarker measurement. Analysis of a cohort of connective tissue disease-associated ILD, chronic hypersensitivity pneumonitis and unclassifiable ILD patients’ serum samples at diagnosis identified and validated 17 novel biomarkers associated with progressive pulmonary fibrosis, including CXCL17 (C-X-C motif chemokine ligand 17) and TGFA (transforming growth factor alpha) (60). A proteomic “signature” of PPF was then developed and validated using machine learning algorithms, incorporating 12 serum biomarkers, which had a sensitivity of 0.90 for identifying a progressive fibrosing ILD phenotype. Patients with a high-risk proteomic signature experienced significant deterioration in their forced vital capacity (FVC) of −227.1 mL (95% CI −286.7 mL to −167.5 mL); as opposed to patients with low-risk proteomic signature whose FVC did not decline over 12 months (60).

Liquid biopsy is another emerging molecular diagnostic technique, which involves the extraction and analysis of circulating cell-free (ccf) DNA fragments from blood. Levels of ccfDNA have been shown to be significantly increased in IPF patients compared with age- and sex-matched healthy volunteers, and were also significantly associated with disease severity as measured by the previously validated IPF GAP (gender-age-physiology) score. In that study, the median plasma expression of ccfDNA fragments, 104 ng/mL differentiated between cases of more advanced IPF (GAP score 2–3), versus more mild disease (GAP score 1) (61). Interestingly, discordance between ccfDNA and genomic DNA extracted from peripheral blood mononuclear cells in some IPF patients, but not healthy controls, was observed. It has been hypothesized that ccfDNA in peripheral blood might encode genetic information present in the diseased lungs which is not measurable in genomic DNA (61).

Bulk RNA sequencing analyses the average expression level of genes across all cells in a tissue, as opposed to single-cell RNA sequencing, which quantifies differential gene expression by specific cell populations within tissues. Bulk RNA sequencing studies have contributed to increased knowledge of the pathobiology of IPF and other fibrotic lung diseases (62–64). Bulk RNA extracted from IPF lung explants demonstrated the severe IPF transcriptome to be enriched in pathways of T-cell infiltration and activation and tumor development, and a specific subset of genes correlated with patients’ forced vital capacities (FVC) (65). A 2019 exploratory study analyzed bulk RNA from IPF explants, and then subsequently performed micro-CT scanning and standard immunohistochemistry on cores of tissue taken from differentially affected lung regions (66). A core set of differentially expressed genes was identified to be present in the IPF lung before fibrosis was even histologically evident, and their profile was further altered in areas of more advanced fibrosis.

Single-cell RNA-sequencing studies, largely performed using explanted IPF lungs in comparison with control healthy donor lungs, have identified numerous upregulated and downregulated genes in fibrotic lungs expressed by specific cell populations (67). For example, altered alveolar type II epithelial cell and mesenchymal cell gene expression has been associated with the activation and proliferation of fibroblasts and excessive extracellular matrix deposition seen in IPF (50). Techniques such as confocal microscopy, immunohistochemistry, in-situ hybridization and/or proteomic analysis of lung tissues, BAL fluid and/or serum have been employed concurrently to ascertain the functional correlation of altered gene expression (68). For example, collagen-producing cell subpopulations in fibrotic lungs were observed to be concentrated within fibroblastic foci in fibrotic lungs (69). Table 2 summaries insights into the fibrotic lung transcriptome gained from single cell RNA sequencing studies performed in IPF and other fibrotic ILDs.



TABLE 2 Outcomes of single cell RNA sequencing studies in fibrotic ILD.
[image: Table2]

Clearly, RNA sequencing (RNA-seq) has advanced knowledge of the molecular and pathway alterations underlying fibrotic lung diseases. Additionally, RNA-seq and these other molecular tests have potential for future use in identification of novel biomarkers enabling “smart splitting” of ILD patients at diagnosis based on respective components of inflammation and fibrosis in their disease pathogenesis. In addition, this may lead to identification of more specific drug targets and improved disease behavior prediction.


Key points

1. RNA sequencing, involving the use of high throughput sequencing technologies to identify and quantify RNA transcripts in whole tissues or single cells, has identified differentially expressed genes between lung tissue obtained from ILD patients and healthy controls.

2. A genomic classifier developed from RNA sequencing data has demonstrated high specificity in differentiating UIP from non-UIP pattern ILDs, yet it has low sensitivity and little additional impact on diagnostic confidence at ILD MDM.

3. Peripheral blood biomarkers, including MMP-7 and SP-D, have been demonstrated to differentiate between specific ILD subtypes; and also predict disease behavior and response to treatment. These biomarkers need to be assessed for their utility in the integrated clinical setting.

4. Additional novel molecular diagnostic techniques include proteomic and metabolomic analysis of blood, bronchoalveolar lavage specimens and lung tissue samples; and “liquid biopsy” (analysis of cell-free circulating DNA fragments in blood). These techniques hold significant promise for improving future precision disease profiling and guiding therapeutic decision-making, yet require more extensive study before they are ready for implementation into routine clinical care.




Artificial intelligence technologies: deep-learning based radiologic and histopathological assessment

Computer-based deep learning techniques, consisting of convolutional neural network (CNN) algorithms able to autonomously detect features in images, have the potential to revolutionize ILD assessment by reducing human inter-observer variability in interpretation of diagnostic tests (80).

A 2021 systematic review, including 19 retrospective studies, demonstrated deep learning-based assessment of ILD CT scans to have good diagnostic accuracy for classification of ILD pattern, between 76.4–95.1%, when considering consensus radiologist assessment as the reference standard (81).

Walsh et al. (82) conducted a case-cohort study for deep learning algorithm development and assessment and included 1,157 high resolution CT scans obtained from patients with fibrotic ILD, separated into training, validation, and testing cohorts. An initial CNN segmented the lungs and then resampled them to create a maximum of 500 four-slice combinations per scan, creating montages which were fed into the training dataset. The final algorithm was able to classify each HRCT using the 2011 ATS/ERS/JRS/ALAT IPF guidelines with a diagnostic accuracy of 76.4% on the first testing set, and 73.3% on the second testing set which was comparable to the median accuracy of thoracic radiologists (70.7%) (82). In view of its ability to provide rapid and reproducible results, the investigators concluded that this technology could be beneficial for ILD assessment in centers without access to radiologists with ILD expertise. More recently, a retrospective multicenter study assessed the diagnostic ability of a deep-learning algorithm when applied to 1,239 high resolution CT scans of fibrotic ILD. The algorithm performed superiorly to two expert radiologists in predicting histopathologic UIP (area under the receiver-operating characteristic curve, 0.87 vs. 0.80, p < 0.05) (83).

Larger recent studies of HRCT scans obtained from participants in the Australian IPF Registry have also assessed the prognostic ability of deep learning algorithms. The extent of lung fibrosis on baseline HRCT, as assessed by data-driven texture analysis, a deep learning technique, significantly correlated with annual rate of decline in forced vital capacity and diffusing capacity for carbon monoxide (84). Another study employing the Systematic Objective Fibrotic Imaging Analysis Algorithm (SOFIA), which was also developed and validated in the identification of UIP-like features on HRCT in patients enrolled in the Australian IPF registry, demonstrated deep learning-based radiologic UIP probability to be predictive of survival in multivariable analysis, where radiologist-determined UIP probability was not (85). Figure 2 demonstrates SOFIA analysis of an HRCT montage.

[image: Figure 2]

FIGURE 2
 Four slice montage generated from a patient with an assigned HRCT diagnosis of probable UIP based on two expert thoracic radiologists, accompanied by a saliency map depicting parts of the lungs most influential in SOFIA-based decision-making. SOFIA probabilities for this montage were UIP: 0.224, probable UIP: 0.764, indeterminate for UIP 0.012, alternative diagnosis: 0.000. The SOFIA deep-learning algorithm generates up to 500 four axial slice montages from an HRCT scan by segmenting the lungs into quarters (excluding the apical 10%) and then randomly selecting slices from each quarter. The algorithm generates a set of numbers from 0 to 1, totalling 1.0, representing the probability of each of the UIP diagnosis categories (definite UIP, probable UIP, indeterminate, alternative diagnosis); which is the average probability for each diagnostic category across all the montages generated for each HRCT (85). Sourced and reproduced with permission from Simon L. F. Walsh, M.D., F.F.R.R.C.S.I., National Heart and Lung Institute, Imperical College London, London, United Kingdom.


The ability for deep learning algorithms to be applied in assessment of ILD histopathology specimens also requires consideration. Pilot studies have assessed automated digital quantification of extent of fibrosis in digital images of whole lung sections (86). One study of 71 IPF patients enrolled in the Finnish IPF registry developed and then tested the ability of a semi-supervised deep learning algorithm to identify and quantify specific ILD features in lung tissue samples. The most representative hematoxylin and eosin-stained slide for each patient was scanned at 40× magnification and 20 of the resulting whole slide images were used to train the algorithm. An expert pathologist manually annotated pathognomonic features in the images to train the model. In this cohort, increased number of fibroblastic foci were significantly associated with shortened survival; and high percentages of interstitial and intra-alveolar inflammatory cells were associated with prolonged survival (87).


Key points

1. Computer-based algorithmic analysis of radiology and histopathology in ILD, using deep-learning techniques, may be able to improve diagnostic and prognostic precision by reducing human inter-observer variability in their interpretation.

2. Deep-learning based assessment of radiologic UIP probability has been demonstrated to have excellent prognostic utility for mortality, and this technology may be integrated into ILD care, particularly in centers without access to expert radiologists (or pathologists).




Endobronchial optical coherence tomography

Optical coherence tomography (OCT) is a non-ionizing imaging technology that employs low coherence light waves to capture high resolution of soft tissues to a resolution of <10 μm. Endogenous tissue serves as an optical scattering media, enabling measurement of the time delay and magnitude of backscattered light to generate cross-sectional images (88, 89).

Endobronchial OCT (EB-OCT) is performed by passing an OCT probe through the working channel of a flexible bronchoscope to evaluate peripheral and subpleural lung tissue in-vivo. By conducting helical scanning and subsequent pullback of the probe, a three-dimensional reconstruction of sequential images along the airway path is produced. Additional advantages include the ability to image large tissue volumes to microscopic resolution without the need for tissue removal, as in surgical lung biopsy or transbronchial lung cryobiopsy, both associated with significantly higher risk of patient morbidity and mortality than diagnostic bronchoscopy (88).

Like exhaled breath analysis and other novel ILD diagnostic techniques, studies investigating the application of endobronchial OCT in ILD are scarce. Historically, this technology has been used for assessment of asthma and other airways diseases, for example, to assess airway caliber and extent of airway remodeling and quantify airway mucous (90–93). It has also been employed during bronchoscopic interventions for real-time imaging during treatment of airway obstruction (94, 95), and to guide lymph node or peripheral pulmonary nodule sampling via transbronchial needle aspiration for lung cancer diagnosis (96). More recently, small studies have demonstrated utility of EB-OCT in ILD diagnosis for patients with non-diagnostic HRCT or indeterminate biopsy. For example, by detection of microscopic honeycombing not seen on HRCT or by distinguishing between traction bronchiectasis or bronchiolectasis and microscopic honeycombing in the setting of a false-positive radiologic UIP diagnosis (97).

A 2021 prospective diagnostic accuracy study comparing EB-OCT to surgical lung biopsy in 27 patients with unclassifiable or low confidence fibrotic ILD diagnoses, demonstrated EB-OCT to have a sensitivity of 100% (95% CI 75.8–100%) and specificity of 100% (95% CI 79.6–100%) for both histopathologic diagnosis of UIP, as assessed by expert pathologist assessment of surgical lung biopsy specimens; and clinical diagnosis of IPF, as determined by the treating respiratory physician (88). Importantly, high agreement was also demonstrated between EB-OCT (interpreted by both an EB-OCT expert pathologist and novice pathologists who were trained in EB-OCT interpretation during the study) and histopathologic ILD pattern (weighted k:0.87 [0.72–1.0]). EB-OCT criteria used to distinguish between ILD diagnoses were developed from review of previous studies in IPF, lung cancer and other pulmonary pathologies. Features included subpleural fibrosis replacing normal alveolar tissue and microscopic honeycombing in UIP, non-destructive interstitial fibrosis in NSIP and fibrosis around airways with preserved distal alveolar architecture in “airway-centered fibrosis” (88).

These results are certainly very promising and propose EB-OCT as both a novel diagnostic tool and for use in monitoring treatment response and/or disease progression through serial quantifications of extent of lung fibrosis. Yet, larger studies in multiple sites are needed before EB-OCT is ready for implementation in routine clinical practice. It will be important to evaluate inter-observer variability in EB-OCT interpretation; particularly since poor inter-clinician (and inter-meeting) agreement are problems frequently encountered in traditional histopathologic ILD diagnosis by surgical lung biopsy and in the current “gold standard” method, the ILD multidisciplinary meeting (98). Technical issues such as validated methods for confirmation of correct subpleural EB-OCT probe positioning will also require further consideration (99). The use of polarization-sensitive EB-OCT, which has the added ability to detect birefringence from collagen in fibrosis, has recently been investigated as a tool for quantification of fibrosis in ILD; with positive early results (100).


Key points

1. Endobronchial OCT is a non-invasive, non-ionizing radiation technology which uses low coherence light waves to generate high resolution images of soft tissues.

2. Preliminary diagnostic accuracy studies suggest OCT is a promising method with high sensitivity and specificity for identifying UIP, and for differentiating between ILD subtypes through assessment of features such as subpleural fibrosis with and without associated architectural distortion, microscopic honeycombing, and airway-centered fibrosis.




Exhaled breath analysis–electronic nose (eNose) technology

“Breathomics,” a field of study involving the analysis of particles and molecules in exhaled breath, has also garnered significant interest in the last few years as an attractive potential ILD diagnostic tool since capturing exhaled breath is both simple and non-invasive (101).

Components of exhaled breath may be analyzed using real-time quantification of small volatile compounds like nitric oxide using chemiluminescence, electrochemical or laser analyzers (102). Alternatively, exhaled breath condensate can be obtained through cooling of exhalate in a collection device for subsequent laboratory analysis. Exhaled breath condensate contains water vapor plus small amounts of both volatile and non-volatile molecules arising from the alveoli and airways. Liquid chromatography-mass spectrometry or specific enzyme immunoassays can be performed for measurement of larger, non-volatile molecules; or analysis of volatile organic compounds (VOCs) can be performed using gas chromatography–mass spectrometry (GC–MS), a high-throughput technique which separates, then identifies and quantifies molecules in complex mixtures of compounds (102).

The thousands of VOCs detectable in exhaled breath (103) are either produced endogenously as by-products of cellular metabolism or may also reflect exposure to various exogenous compounds. For example, isoprene and acetone are commonly detectable endogenously produced VOCs; whereas acetonitrile is not produced endogenously but is found in the breath of cigarette smokers (103). Altered cellular metabolism in various disease states is supported by studies of VOCs in COPD (104), lung cancer (105, 106) and other respiratory illnesses (102). Significantly elevated levels of specific amino acids and other organic compounds have been demonstrated in the exhaled breath of IPF patients when compared with healthy controls (107–109). GC–MS analysis of exhaled breath samples obtained from ILD patients and healthy controls has also been able to distinguish between IPF and connective tissue disease-associated ILD (CTD-ILD) based on discriminating VOCs (110). Importantly, in this study, VOC profiles were also associated with measures of disease severity, including total lung capacity and six-minute walk distance (110).

Electronic nose (“eNose”) technology has been developed as a novel method of exhaled breath analysis. eNoses are devices containing multiple cross-reactive gas sensors, each with partial specificity to various molecules. Upon exposure to specific VOCs, an electronic response is generated from each sensor; and a unique pattern of sensor responses is produced for the individual whose breath is being tested, known as the “breathprint” (101, 111). A preliminary eNose ILD study of 31 sarcoidosis and 25 healthy controls previously demonstrated the breathprint of patients with untreated sarcoidosis to be distinct from healthy control individuals (112). Similarly, electronic nose analysis of exhaled breath-derived VOC profiles has been shown to distinguish between IPF patients and healthy controls, and to inversely correlate with bronchoalveolar lavage fluid total cell count in a small study of 32 IPF patients, 33 COPD patients and 36 healthy controls recruited from 2 centers (113). A single center analysis of the breathprint of 174 ILD patients, 23 COPD patients and 33 healthy controls demonstrated the VOC signature of ILD patients as measured using an eNose device to be distinguishable from those of healthy controls and patients with COPD. However, the specificity of the eNose for distinguishing between different ILD subgroups was poor (114).

A larger single center, cross-sectional study undertaken in the Netherlands demonstrated that an eNose device, the SpiroNose, was able to differentiate between ILD patients and healthy control subjects based on machine learning algorithmic analysis of their breathprint (101). Additionally, these pattern recognition algorithms were able to distinguish between IPF and non-IPF ILDs, with an area under the curve (AUC) of 0.91(95% CI 0.85–0.96) in the training set and an AUC of 0.87 (95% CI 0.77–0.96) in the validation set. Furthermore, the model directly compared individual diagnoses’ breathprints and was consistently able to distinguish between different ILD subgroups including IPF, chronic hypersensitivity pneumonitis, CTD-ILD, idiopathic non-specific interstitial pneumonia, interstitial pneumonia with autoimmune features and sarcoidosis; with AUCs ranging between 0.85–0.99 (101).

Another cross-sectional study performed in the Netherlands demonstrated eNose technology to be able to reliably differentiate sarcoidosis from control participants, and from other subgroups of ILD, including chronic hypersensitivity pneumonitis (115). Importantly, preliminary studies suggest that exhaled breath analysis using an eNose may also predict treatment response. A recent analysis of 42 treatment-naïve ILD patients, showed that patients who responded to both immunosuppressive and antifibrotic therapies (defined as FVC improvement of ≥5% after 1–3 months, or FVC decline of ≤2.5%, respectively) had distinguishable exhaled VOC profiles, compared with patients who did not respond to treatment (116).

Unlike GC–MS, eNose analysis of exhaled breath VOCs has been performed in real-time, by using cloud-connected collection devices connected to validated online analysis platforms (101) and has therefore been proposed as a novel point-of-care diagnostic tool that could readily be incorporated into clinical practice (111). Importantly, breath biomarkers such as FeNO (fractional exhaled nitric oxide) can potentially be obtained and analyzed remotely; and were thus considered a novel approach for diagnosis and monitoring of chronic lung diseases during the SARS-CoV-2 pandemic (117). It is clear however that their potential extends beyond the current pandemic and that the use of eNose technology could contribute meaningfully to ILD diagnosis and patient self-management in the future, should their use be validated in larger studies.


Key points

1. eNoses are a novel technology capable of analyzing volatile compounds present in exhaled breath via cross-reactive gas sensors.

2. Cross-sectional studies have demonstrated eNose exhaled breath analysis to consistently be able to distinguish between ILD patients and healthy controls; and to differentiate ILD subtypes including IPF, chronic hypersensitivity pneumonitis, sarcoidosis, NSIP and CTD-ILD.




Acoustic signatures and ultrasonography

Digital auscultation represents a novel tool to measure and digitally record lung sounds, a well-established clinical sign of ILD (118–121). Preliminary studies have evaluated multichannel lung sound analysis, using microphones placed on the anterior and posterior chest to acquire recording of lung sounds. The technique can distinguish the bibasal fine, “velcro-like” crackles associated with IPF from lung crackles due to other causes such as congestive cardiac failure (122). Clinician assessment in a tertiary ILD center with a traditional stethoscope has been shown to predict the presence of fibrotic ILD and UIP pattern as seen on HRCT, yet has clear limitations including inter-observer variability, particularly outside of this setting (123).

More recently, feasibility studies of digital lung sound recordings obtained using electronic stethoscopes have confirmed “velcro-like” crackles to be predictive of fibrotic ILD on HRCT, particularly UIP pattern (OR 19.8) and to positively correlate with specific radiologic features including reticulation, honeycombing and traction bronchiectasis (119, 120).

A 2019 pilot study of 19 IPF patients analyzing digital lung sound recordings at seven timepoints over 12 months identified a set of 19 acoustic features able to distinguish IPF patients from healthy subjects. These included features such as number of crackles, crackle onset timing and frequency range in hertz (120). Serial analysis of the digital sound recordings showed individual acoustic signatures to change over time and to correlate with markers of disease severity and progression, including visual scores of ILD extent on CT and volumetric analysis using Computer-Aided Lung Informatics for Pathology Evaluation and Rating (CALIPER) software (120). Additionally, a score integrating the acoustic signals and composite physiologic index (CPI), a well-established prognostic model in IPF (124), was better able to predict the extent of fibrosis on HRCT than the CPI alone.

Another Mexican study investigated the use of a mobile health application enabling clinicians to record and analyze respiratory sounds using a smartphone and acoustic sensors (121). Although this was only a small feasibility study, and further research into this technology is required, the prospect of this diagnostic tool is exciting since it is non-invasive and broadly accessible, potentially improving remote evaluation of ILD patients distant from tertiary centers.

There is also increasing interest in the use of thoracic ultrasound for diagnosis and monitoring of interstitial lung diseases. Currently, its use as a diagnostic tool is limited since features on ultrasound such as “B-lines,” although very sensitive, ultrasonographic signs of interlobular septal thickening in ILD, are not a specific finding, and may be seen in many other conditions including cardiac failure, atelectasis, pneumonia, and other diagnoses (125, 126). The potential for ultrasound however, as a screening tool is compelling, particularly in patients with established risk factors for ILD such as connective tissue disease (126), and for monitoring disease progression (127). A recent study evaluating lung ultrasound findings in 24 ILD patients over 12 months found that the lung ultrasound (LUS) score, the sum of B-lines counted in each intercostal space, using a standard 56-lung intercostal space LUS protocol, to correlate with HRCT Warrick score, a score of extent of radiologic fibrosis (127).


Key points

1. Digital analysis of lung sounds and thoracic ultrasonography might be able to detect early features of ILD, and also represent simple, non-invasive methods for monitoring of disease extent.





Future directions

There is a currently unmet need for improved diagnostic biomarkers and tests in ILD. While there has been great progress in this field, the next steps globally are to integrate such tools into clinical care. Some biomarkers, including MMP-7 or integrated scores, genetic testing, and even some radiological AI tools are prime for clinical integration. Others, including digital auscultation and eNose technology are promising as potential screening tests for early detection of ILD in primary care and other non-expert settings, as well as offering opportunities for remote assessment and monitoring. eNose technology, EB-OCT and deep-learning based radiologic assessment are particularly attractive diagnostic tests since they do not require invasive tissue sampling. While genomic testing and deep learning-based histopathological assessment currently do require tissue sampling, this research continues to further our knowledge of the pathobiological mechanisms underlying the development and progression of fibrotic lung diseases.

The future of ILD diagnostics is promising. Feasibly, machine learning algorithms may be trained to generate virtual biopsies from radiologic or EB-OCT data, negating the need for invasive investigations altogether. Liquid biopsies from blood samples may also play a role in elucidating key transcriptomic signatures for precision disease profiling and therapeutic strategies. Regardless, further research is needed to develop and externally validate novel diagnostic techniques to improve access to timely and accurate diagnosis for ILD patients.
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Eosinophilic granulomatosis with polyangiitis (EGPA) is a rare disease characterized by eosinophil-rich granulomatous inflammation and necrotizing vasculitis, pre-dominantly affecting small-to-medium-sized vessels. It is categorized as a primary antineutrophil cytoplasmic antibody (ANCA)-associated vasculitides (AAVs) but also shares features of hypereosinophilic syndrome (HES); therefore, both vessel inflammation and eosinophilic infiltration are suggested to cause organ damage. This dual nature of the disease causes variable clinical presentation. As a result, careful differentiation from mimicking conditions is needed, especially from HES, given the overlapping clinical, radiologic, and histologic features, and biomarker profile. EGPA also remains a diagnostic challenge, in part because of asthma, which may pre-dominate for years, and often requires chronic corticosteroids (CS), which can mask other disease features. The pathogenesis is still not fully understood, however, the interaction between eosinophils and lymphocytes B and T seems to play an important role. Furthermore, the role of ANCA is not clear, and only up to 40% of patients are ANCA-positive. Moreover, two ANCA-dependent clinically and genetically distinct subgroups have been identified. However, a gold standard test for establishing a diagnosis is not available. In practice, the disease is mainly diagnosed based on the clinical symptoms and results of non-invasive tests. The unmet needs include uniform diagnostic criteria and biomarkers to help distinguish EGPA from HESs. Despite its rarity, notable progress has been made in understanding the disease and in its management. A better understanding of the pathophysiology has provided new insights into the pathogenesis and therapeutic targets, which are reflected in novel biological agents. However, there remains an ongoing reliance on corticosteroid therapy. Therefore, there is a significant need for more effective and better-tolerated steroid-sparing treatment schemes.
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1. Introduction

Eosinophilic granulomatosis with polyangiitis (EGPA) is a rare disease characterized by late-onset asthma, blood and tissue eosinophilia, and small-to-medium vessel vasculitis (1). It was first described in 1951 by two pathologists (J. Churg and L. Strauss), based on an analysis of autopsies of 13 patients with asthma, eosinophilia, and specific organ lesions, such as cardiac insufficiency, renal failure, and peripheral neuropathy (2). Its annual incidence and pre-valence range from 1 to 3 per 1,000,000 and 11 to 45 per 1,000,000, respectively, without gender dominance (3). However, the disease may be underdiagnosed because of restrictive pathomorphological criteria (2). Patients with asthma are a particular risk group, as they experience EGPA 34 times more frequently than those in the general population (4). The mean age at disease onset is approximately 50 years (5), although the disease can also occur in children (6).

Eosinophilic granulomatosis with polyangiitis is often diagnosed in pneumonological departments, where patients are referred due to asthma and lung lesions in chest computed tomography (CT) scans. In a recent study, among 46 consecutive patients hospitalized in a respiratory center because of peripheral eosinophilia and respiratory/lung symptoms (from 2017 to 2019), EGPA was the most common cause of these conditions (45.6%) (7). According to the current nomenclature classification, EGPA belongs to the group of antineutrophil cytoplasmic antibody (ANCA)-associated vasculitides (AAVs), along with granulomatosis with polyangiitis (GPA) and microscopic polyangiitis (MPA) (8), however, it is clearly distinct from GPA to MPA (9, 10). This is a unique disease sharing features of vasculitis and hypereosinophilic syndrome (HES) (11). In addition, these two processes are responsible for the heterogeneous clinical symptoms and phenotypes. Therefore, diagnosis is challenging and requires careful differentiation under mimicking conditions. ANCA are present less frequently than GPA and MPA (up to 30–40% of patients), and primarily target myeloperoxidase (MPO) (9, 10).

Given its rarity and unique features (such as eosinophilia and eosinophilic inflammation), EGPA has often been excluded from AAV studies, which has resulted in a delay in progress in knowledge about the disease compared to other AAVs. However, recently, increasing interest in EGPA as a subject of clinical trials has been observed, and new international projects concerning EGPA are being developed (12). Significant improvements in our understanding of the disease reflect meaningful progress in its early diagnosis and treatment. In this article, we discuss advances in EGPA, including its pathogenesis, diagnosis, and treatment, considering novel drugs that have or are being evaluated to improve patient outcomes.

Eosinophilic granulomatosis with polyangiitis has been defined mainly based on the histologic findings known since the first EGPA description by Churg and Strauss (2). According to the 1994 Chapel Hill Consensus Conference (CHCC), EGPA is defined as an eosinophil-rich and necrotizing granulomatous inflammation often involving the respiratory tract, with necrotizing vasculitis affecting small to medium vessels, and is associated with asthma and eosinophilia (13). In 2012, the nomenclature and classification system was revised. The former name “Churg-Strauss syndrome” was replaced with EGPA, and the disease was classified into a new group “ANCA-AAVs” alongside GPA and MPA (8). However, recent data indicate that the current terminology “EGPA” is not entirely appropriate and requires revision. Although it implies that EGPA is a genuine vasculitis (“polyangiitis”), symptoms of vasculitis are not present in all patients, and it is still debated whether patients having asthma, hypereosinophilia, and eosinophil-rich granulomatous inflammation without necrotizing vasculitis, should be determined as having EGPA (14).



2. Pathogenesis and triggering factors

While the triggering factors for EGPA remain unknown, our understanding of its pathogenesis has significantly improved. The disease is considered an immune-inflammatory disorder based on the profound immunological dysregulation of both the innate and adaptive immune systems, including T and B lymphocytes, eosinophils, and neutrophils. In addition, genetic pre-dispositions have been reported (15).


2.1. T lymphocytes

In EGPA both Th1 and Th2 pathways are activated, and eosinophils contribute to organ damage (16). EGPA is mainly considered a Th2-response disease. This is evidenced by elevated serum levels of Th2-related cytokines (17, 18) and increased expression of Th2 and regulatory-type transcripts in bronchoalveolar lavage fluid (BALF) cells from patients with active EGPA (19). The T-cell receptors of patients with EGPA show a restricted repertoire (20), suggesting that an antigen-mediated process is likely responsible for their activation (1). Activated Th2 lymphocytes secrete many eosinophilotropic cytokines, including interleukins (IL) 3, 4, 5, 10, and 13, which enhance eosinophil maturation in the bone marrow and their peripheral activation (18, 19). Among these interleukins (ILs), IL-5 is the key cytokine that mediates the release of eosinophils into the bloodstream. It enhances eosinophil production, maturation, and activation and prolongs survival, mainly by inhibiting apoptosis (21), however, it is not responsible for fostering eosinophil infiltration of specific tissues (21). The relevance of the Th2 pathway is underlined by the efficacy of treatment based on the blocking of IL-5. IL-5 receptor (IL-5R) expression is specific to eosinophil differentiation, as it is almost exclusively expressed in eosinophils (22). Targeting IL-5 or IL-5R has become an attractive approach to treating eosinophil-related disorders, including EGPA (23).

Although the Th2 response plays a crucial role, Th17 and Th1 lymphocytes are also involved in EGPA pathogenesis. Th17 cells are specific lymphocytes that produce several proinflammatory cytokines (IL-17A, IL-17F, or IL-22) and are regulated by regulatory T-lymphocytes (Treg), which suppress the immune response and have a protective role in the development of autoimmune disorders (24). Elevated numbers of Th17 cells and decreased frequency of Treg cells have been found in patients with EGPA; the Th17/Treg ratio correlates well with markers of disease activity, and CCR4-active chemokines contribute to eosinophilia (25). The involvement of the Th1 pathway is evidenced by the increased serum concentration of interferon-gamma (IFN-γ) in EGPA patients (26). This cytokine is involved in granuloma formation to protect against the cytotoxic effects of eosinophils. Moreover, Th1 cells were detected in skin lesion biopsies (27), and the gut mucosa of patients with EGPA; the latter has a positive correlation with disease activity (28). Clonally expanded CD8 + T cells have also been described in patients with EGPA, suggesting their pathogenic role in vascular damage (29).



2.2. Eosinophils

Evidence supports that eosinophils play a key role in the pathogenesis of EGPA, with abnormal proliferation, impaired apoptosis, and increased tissue toxicity attributed to eosinophil products (5). Their increased number and extracellular protein deposition have been observed in various tissue specimens, including skin (30) and endomyocardial samples (31). The direct toxic effect is associated with the release of cytoplasmic granules upon eosinophil activation (32, 33). However, it can also be an indirect toxic effect as a result of the recruitment and activation of other inflammatory cells (26). There were two types of granule-characterized eosinophils. The primary granule contains Charcot-Leyden crystal proteins and lipid bodies, which are complex inducible organelles that are the site of eicosanoid synthesis, while the secondary granule contains a variety of pre-formed proinflammatory cytokines, enzymes, and growth factors, as well as specific cationic proteins [major basic protein (MBP); eosinophilic cationic protein (ECP); eosinophil peroxidase (EPO); eosinophil-derived neurotoxin (EDN)], which are mainly responsible for specific organ damage (26, 34). The effect of eosinophils depends largely on the tissue involved, however, complications of their accumulation and activation include thrombosis (34, 35), fibrosis (36), and allergic inflammation (26, 34, 37). In addition to being activated, eosinophils secrete many cytokines which enhance the Th2 response, thereby maintaining a vicious circle. Eosinophils are a key source of IL-25. Its elevated concentrations have been found in patients with EGPA and are associated with disease activity and the degree of eosinophilia (38).

In addition to the Th-2 pathway, eotaxins (CCL11-eotaxin, CCL24-eotaxin 2, and CCL26-eotaxin 3) are potent eosinophil activators. They are eosinophil-selected chemokines mainly secreted by endothelial cells but also by T lymphocytes; for example, both IL-4 and 13 released by Th2 cells are synergic promoters of eotaxin synthesis (39). Furthermore, eotaxin 3 is a particularly potent chemoattractant that binds to a specific CCR3 receptor (highly expressed in eosinophils) (22). Increased levels of eotaxin 3 have been described in patients with EGPA and are correlated with disease activity (40, 41).

One case report of Fip1-like1-plateled-derived factor receptor A (FIP1L1-PDGFRA) – positive EGPA implicated the role of tyrosine kinase pathways as drivers for eosinophilia in EGPA (42). The efficacy of imatinib in FIP1L1-PDGFR A-unmutated EGPA has also been previously described (43, 44). These findings indicate a possible shared pathogenic mechanism of EGPA with HES.



2.3. The innate immune system

Increased IL-33, thymic stromal lymphopoietin (TSLP), and type 2 innate lymphoid cells (ILC2) have been found in patients with active EGPA, indicating that the pathogenesis of EGPA involves interactions between the innate and adaptive immune systems (45). TSLP is a critical mediator of the Th2 response, acting on multiple cell lineages, including eosinophils and ILC2, affecting their maturation, survival, and recruitment. One activator of TSLP is IL-4, which is significantly increased in patients with EGPA. ILC2 are characterized by high expression of transcription factor 3 (GATA3) and production of IL-5 and IL-13 (28), which are key factors involved in the recruitment of eosinophils.



2.4. B lymphocytes, ANCA, and neutrophils

The role of B lymphocytes in the pathogenesis of EGPA has also recently been highlighted, although not well established, however, the promising results of anti-CD 20 B-cells depleting therapy can support this idea (46). In addition, many patients exhibit an abnormal humoral response, reflecting B lymphocyte activation. Elevated serum concentrations of total immunoglobulin E (IgE) and IgE-containing immune complexes are often observed in patients with EGPA (26). It has also been reported that immunoglobulin G subclass 4 (IgG4) levels are essentially increased (47) and correlated with the number of affected organs and disease severity in EGPA (48). Tsurikisawa et al. (49) showed a significant increase in the proportion of B lymphocytes positive for CD80, CD27, and CD95 in the blood of EGPA patients with frequent relapses, while those with the seldom-relapsing disease had higher CD19-positive B-cell counts and higher serum IgG levels, suggesting that frequently relapsing EGPA is associated with induced B-cell apoptosis. Finally, a comparison of lymphocyte immunophenotypes in EGPA patients showed that, in addition to increased T lymphocyte activity, they correlated with increased plasmablasts and T follicular helper lymphocytes (Tfh), indicating that B-cell activation is involved in the development of EGPA (50).

The presence of ANCA also reflects the activation of B lymphocytes, however, the pathogenic role of these antibodies in EGPA has not been firmly established and is suspected to be similar to MPA. Animal models have shown that MPO-ANCA has a direct damaging effect on endothelial cells, resulting in the development of necrotizing crescentic glomerulonephritis and pulmonary hemorrhage (51). In a human case study, a newborn was reported to develop pulmonary-renal syndrome with the placental transmission of MPO-ANCA (52). A study conducted by Falk et al. (53) made a breakthrough regarding the pathogenic role of ANCA in AAVs. The study proved that ANCA can activate primed neutrophils to produce reactive oxygen species (ROS) and release lytic enzymes that cause necrosis of endothelial cells and adjacent matrix. Unlike GPA and MPA, where the role of ANCA is well established, in EGPA it is still not fully understood. First, ANCA is detected in only one-third of patients, less frequently than GPA and MPA (9, 54, 55). Second, although EGPA and MPA are characterized by the same type of ANCA (anti-MPO), the diseases differ significantly in their clinical phenotype [e.g., renal involvement or diffuse alveolar hemorrhage (DAH) is much more frequent and more severe in MPA than in EGPA] (56). It has been suggested that alternative MPO epitopes, other than those in MPA, develop in ANCA-positive EGPA, contributing to mitigated vascular features (15). Finally, the presence of ANCA in EGPA does not always correlate with symptoms of vasculitis (14). Some authors speculate that for EGPA, a different targeted epitope, a change to the specific epitope conformation, or a failure in the masking process of this epitope by the ceruloplasmin fragment could explain the presence of MPO-ANCA (57).

In recent years, there has been much interest in neutrophil extracellular traps (NETs). NETs are defined as a network of chromatin threads containing histones and proteolytic enzymes (including MPO) that can be released by activated neutrophils to kill bacteria (58). Furthermore, NETs are considered to play an important role in the pathogenesis of AAVs and are a source of ANCA (59, 60). However, a recent study demonstrated enhanced NETs in patients with EGPA with no regard to ANCA status, significantly correlated with blood eosinophil count (61). Eosinophil extracellular traps (EETs) and eosinophil ETosis (EETosis) have also recently been studied in EGPA (62). Mukherjee et al. (63) demonstrated that immunoprecipitated immunoglobulins from ANCA (+) sputum derived from patients with EGPA allowed extensive EETs from both neutrophils and eosinophils in vitro. Direct evidence of EETs/EEtosis within the thrombus in patients with EGPA has been also provided (64).



2.5. Genetics

Several immunogenetic factors that pre-dispose patients to EGPA have been identified. It has been shown that the HLA-DRB1*07 and DRB1*04 alleles are associated with the development of EGPA, while DRB1*03 and DRB1*13 are protective (65). Another genetic risk factor is HLA-DRB4, which suggests a strong link with CD4 + T lymphocyte activation (66). In turn, functionally relevant variations in the IL-10 gene promoter (IL-10.2 haplotype) are associated with ANCA-negative EGPA (67).

Recently, a genome-wide association study (GWAS) demonstrated that ANCA status in EGPA is associated with a specific genetic background (56). EGPA with ANCA positivity is associated with human leukocyte antigen DQ (HLA-DQ), which shares both clinical and major histocompatibility complex (MHC) associations with anti-MPO AAV. In turn, ANCA-negative EGPA has a mucosal barrier origin and is associated with variants of the glycoprotein A33 (GPA33) and IL-5/interferon regulatory factor 1 (IRF1) (genotype sharing with asthma). There was an association of both EGPA subgroups (ANCA + and ANCA –) with variants at the TSLP, BCL2L11, and CDK6 loci and suggestive evidence for BACH2, Chromosome 10, and lipoma preferred partner (LPP), indicating that EGPA is characterized by certain genetic variants associated with the syndrome as a whole (56).




3. Triggering factors

There are no well-known triggering factors of EGPA, however, environmental factors, infections, and drugs have been speculated. Several cases of disease development following massive antigen inhalation (grain dust, flour dust, and cereal dust) (68) and exposure to pigeons have been described (69). Regarding infectious agents, Aspergillus fumigatus triggers EGPA. Some reports demonstrated that Aspergillus might be a pathogen common to both allergic bronchopulmonary aspergillosis (ABPA) and EGPA, and prolonged exposure to this fungus in some patients with ABPA may promote progression to EGPA (70). A case of concomitant ABPA and EGPA after Aspergillus niger infection has also been reported (71). Other infectious agents include viruses, among others. A case of EGPA following COVID-19 has been recently reported (72).

Other factors include drugs mainly used in asthma, such as leukotriene receptor antagonists (LTRAs) or anti-IgE antibodies, which are also suspected to induce EGPA (73, 74), however, the mechanism to induce vasculitis is not well-known. One hypothesis is that the administration of these drugs in the asthmatic phase of undiagnosed patients with EGPA may result in vasculitis burst due to reducing the steroid dose, previously masking symptoms of EGPA (5). Two case-controlled studies concluded that treatment with LTRAs did not increase the risk of EGPA (4, 75). However, a recent monocentric retrospective study found a significant correlation between LTRAs exposure and ANCA positivity in EGPA patients. The authors speculated that LTRAs could induce imbalanced stimulation of leukotriene receptors, which may cause neutrophil activation, NETs production, and subsequent ANCA stimulation, resulting in the development of vasculitis (76). Other suspected drugs include anti-IL therapies. Ikeda et al. (77) described a case of EGPA that became apparent following the discontinuation of dupilumab (anti-IL-4/IL-13 antibody). Additionally, Lim et al. (78) reported a case of EGPA during benralizumab (anti-IL5Rα) treatment.

As asthma is a major feature, allergy may also contribute to the development of EGPA. However, systematic allergy testing in patients with EGPA revealed evidence of allergy in less than one-third of patients (79). Other suspected factors include vaccination and desensitization (5). A case of EGPA that developed following a booster dose of the anti-SARS-CoV-2 vaccine has also been reported (80).



4. Clinical symptoms and disease stages

Classically, EGPA develops in three consecutive stages. The first is the prodromal phase dominated by asthma and allergic rhinosinusitis. After a variable period (mean 9.3 ± 10.8 years) (5), the eosinophilic phase develops—characterized by peripheral and tissue eosinophilia, which may result in pulmonary infiltrates, eosinophilic cardiomyopathy, or gastrointestinal involvement (GI). Next, the disease progresses into the vasculitic phase, in which organ manifestations consistent with vasculitis pre-dominate (81). However, disease succession does not always occur. In some patients, there is an overlap of these phases, or the disease may begin with the eosinophilic phase; in others, the absence of either eosinophilic or vasculitic phases is observed (1, 34). This complexity of the disease makes the clinical manifestation diverse. Interestingly, the spectrum of manifestations varies depending on the patient recruitment center, e.g., patients admitted to respiratory departments have more frequent cardiac involvement and limited features of vasculitis (14). The frequencies of organ involvement and phenotypic features in the selected EGPA cohort are presented in Table 1.


TABLE 1    Organ involvement and phenotypic features of selected eosinophilic granulomatosis with polyangiitis (EGPA) cohorts.
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4.1. The prodromal phase

Asthma is a major feature of EGPA usually preceding the symptoms of vasculitis (mean 9.3 ± 10.8 years) (5). It concerns 90–100% of patients (14, 54, 82–87) and is characterized by distinct features compared to asthmatic patients in the general population. First, it is usually late-onset asthma, which begins in adulthood at around 30–40 years of age. Second, an allergic background is present in less than one-third of patients with EGPA, compared with approximately 70% of patients with asthma in general, and there are no seasonal exacerbations (79). Atopy, if present, is associated with a better prognosis but with more severe or uncontrolled asthma manifestations in the year before the development of vasculitis (88). Third, asthma in EGPA is usually severe and often requires long-term treatment with oral corticosteroids (CS) despite the regression of systemic disease. In a retrospective study of 157 patients with EGPA, asthma was severe in 57% of cases, whereas persistent airflow obstruction was present in 38, 30, and 46% of patients at diagnosis, 3-year follow-up, and final visit, respectively (89). In another study, airflow obstruction was observed in approximately 40% of patients in clinical remission (90). It remains unclear why systemic therapy controls systemic manifestations in EGPA, but not asthma symptoms. Some authors speculate a dissociation between eosinophil bone marrow production and eosinophil recruitments in the airways which results that in sputum (but not blood), eosinophilia is still present in the group of EGPA patients in remission phase (91). Asthma, although often severe, may paradoxically improve during the full-blown vasculitic phase (92). However, it has recently been demonstrated that the severity of asthma increases 3–6 months before the onset of systemic symptoms (89). Furthermore, severe or uncontrolled asthma is associated with baseline pulmonary and ear, nose, and throat (ENT) manifestations but not with clear-cut vasculitic features (93).

Finally, asthma in EGPA is often accompanied by allergic manifestations in the upper respiratory tract, such as allergic rhinitis, chronic sinusitis (70–90%) (89), and nasal polyps (42–58%) (89, 94–96). At this stage of the disease, distinguishing prodromal ENT symptoms in the course of EGPA from chronic rhinosinusitis with nasal polyps (CRSwNP) is challenging; especially in the biopsy, both typical histological features of eosinophilic polyposis are present (96, 97). Lesions observed in GPA, such as destructive granulomatous inflammation or nasal crusting, are uncommon in EGPA. However, secretive otitis media, chronic ear drainage, sensorineural hearing loss, and facial nerve paralysis may occur (34, 98).



4.2. The eosinophilic phase

In this phase, clinical symptoms are due to eosinophilic infiltration of organs. Typically, the lungs, gastrointestinal tract, and heart are affected.

Lung involvement is present in 37–98% of patients with EGPA, depending on the study series (9, 55, 84, 99–102). In addition, a chest radiograph is abnormal in 70% of patients and shows bilateral pulmonary consolidative or reticulonodular opacities in a peripheral distribution (103). In high-resolution computed tomography (HRCT), which is a more precise method, pulmonary lesions can be classified as airspace and airway patterns (104), however, both types often coexist in one patient. Furthermore, all lung imaging changes observed in EGPA are not EGPA-specific and are frequently observed in other diseases (7, 105). The airspace pattern is mostly migrating patchy infiltrates with peripheral dominance corresponding to chronic eosinophilic pneumonia (EP), (104, 106) which antedate systemic vasculitis in 40% of cases (81). Other common findings are ground-glass opacities (39–53%), followed by consolidations (28–42%), and poorly defined nodules (24–63%) (89, 106). The airway pattern consists of small centrilobular nodules, tree-in-bud sign, bronchial dilatation, wall thickening, and mosaic perfusion pattern (89, 104, 106), which reflect airway involvement in the course of asthma generally, not only in EGPA (7). Greater severity and longer duration of asthma (>5 years) are significantly associated with a higher incidence of airway abnormalities on HRCT in patients with EGPA (107). Histologically, small nodules correspond to eosinophilic bronchiolitis and peribronchiolar vasculitis, whereas bronchial wall thickening is associated with airway wall eosinophil and lymphocyte infiltrations (106).

Other less frequent thoracic symptoms of EGPA include pleural effusion and hilar or mediastinal lymphadenopathy (108, 109). Pleural effusion may develop secondary to eosinophilic pleurisy as well as eosinophilic cardiomyopathy-associated congestive heart failure (1). Other HRCT findings may include interstitial edema, cardiac enlargement, or pericardial effusion, all of which are related to cardiac involvement. In some patients, these HRCT findings may be the only chest symptoms.

A small proportion of patients (3–4%) may experience DAH, which is a life-threatening vasculitic manifestation that can lead to acute respiratory distress (16).

GI is less common in EGPA, although it is significantly more frequent than in GPA or MPA (84). This organ manifestation is recognized in 24–78% of patients, depending on the series and diagnostic tests used (54, 55, 82–84, 100). Manifestations are non-specific and include abdominal pain, which is the most frequently reported symptom (30–91%) (54, 100, 110), followed by diarrhea (45%) (110) and minor bleeding (3–9%) (54, 82, 100). Cholecystitis, pancreatitis, intestinal infarction, and ischemic colitis have been described, but they are rarely present (1–3%) (54, 102). In a study of 383 patients with EGPA, symptoms of acute surgical abdomen occurred in approximately 6% of the cases (55). In another study, 22–45% experienced severe GI manifestations, potentially requiring surgery (16). In EGPA, clinical GI symptoms and findings on abdominal CT are non-specific and require differentiation from other diseases. Common CT features include bowel enlargement and pathologic enhancement (16), whereas histological examination demonstrates mainly eosinophilic infiltrations, sometimes with vasculitis and eosinophilic granulomas (5, 102, 111).

Among the three types of AAVs, cardiac involvement (CI) is most common in EGPA and is mostly present in ANCA-negative patients (9, 10, 55, 112). In Churg and Straus’s original cohort, it occurred in more than 50% of autopsies (2), however, its reported incidence varies from 11 to 74%, depending on the series and diagnostic techniques used (54, 55, 82, 84, 101, 113, 114). Clinical manifestations are variable and include myocarditis (often with thrombus formation), pericarditis, valvular insufficiency, or involvement of the conduction system, resulting in arrhythmia (5, 98, 115–117). The severity of clinical symptoms varies from mild to clinically overt and life-threatening. Patients most often complain of chest pain and dyspnea (116, 118, 119), but the first symptom may also be acute congestive heart failure, life-threatening arrhythmia, and cardiac death (119). In addition, cardiac involvement can be asymptomatic (83, 118, 120–123). In recent data of Polish 86 patients with EGPA, cardiac invasion was found in 76.7% of the cases, with almost 30% of the cases being asymptomatic (87).

Eosinophilia and its cytotoxicity play a crucial role in heart damage caused by EGPA (119). Patients with CI have been reported to have significantly higher eosinophil counts at diagnosis than those without this organ manifestation (118, 124); usually, they were younger, had negative ANCA, higher disease activity, and higher C-reactive protein (CRP) levels (118). Three successive stages of eosinophilic cardiac damage have been described. The first stage is necrosis due to the infiltration of eosinophils and the release of granular proteins. The second phase is characterized by thrombosis formation, whereas fibrosis of the endocardium and valves occurs in the final stage, resulting in restrictive cardiomyopathy and cardiac insufficiency (119). This phase corresponds to scarring of the endomyocardium and is irreversible; therefore, early detection of cardiac involvement is crucial for prognosis. This is because treatment at the earlier stages provides a chance to reverse the inflammatory process and limit myocardial necrosis.

CI of EGPA can also be derived from coronary vasculitis, which is a rare situation occurring in approximately 3% of patients and manifests as myocardial infarction with negative results on coronary angiography (82, 113).



4.3. The vasculitic phase

This phase manifests as a feature of vasculitis. Typically, the nervous system, skin, and kidneys are affected, with the latter being the rarest. However, every organ may be involved. This phase is often preceded by general symptoms such as fever, weakness, muscle pain, or arthritis.

Involvement of the nervous system is a prominent feature of the vasculitic phase. It affects 42–76% of EGPA patients (54, 55, 82, 84, 87, 102), mainly ANCA-positive (9, 10). Among other forms of AAVs, it is most prevalent in EGPA (65 vs. 23% in MPA, and 19% in GPA) (125). Frequently affected nerves include the peroneal, tibial, ulnar, and median nerves, but the typical presentation is mononeuritis multiplex, usually manifested by foot drop and symmetrical polyneuropathy, often progressing when left untreated (126). Patients complain of numbness, burning sensation, pain, limb weakness, and other sensory disturbances, which can be the first symptom, even in 63% of the cases (126, 127). Diagnosis is mainly based on clinical evaluation and may be confirmed by electromyography (EMG) or nerve biopsy. However, the latter procedure is infrequently performed in clinical practice. In a large study of 955 AAV patients, only 12% underwent nerve biopsies, of which 53% had definitive vasculitis (125). Pathophysiologically, nerve damage is caused by vasculitis and eosinophilic infiltrates, with the latter pre-dominating in ANCA-negative cases (128).

Central nervous system (CNS) involvement in EGPA is less common and is reported in 5–29% of cases with neurological symptoms (54, 55, 82, 83). The main neurological manifestations included ischemic cerebrovascular lesions (52%), intracerebral and/or subarachnoid hemorrhage (24%), loss of visual acuity (33%), and cranial nerve palsies (21%). The clinical course varies, with long-term neurological sequelae being common (43%). Intracerebral hemorrhages have the worst prognostic impact (129).

Skin involvement is the next most prominent feature of the vascular phase. Its frequency ranges from 23 to 68% in patients (54, 55, 83, 84, 87, 100, 101, 113), with vascular purpura being the most common (24–39%) (54, 55, 100, 113). Other findings include subcutaneous nodules that occur in 30% of cases (5) and less frequently, non-specific maculopapular rash, urticaria, petechiae, sterile pustules, livedo reticularis, vesicles, and pruritus (130). A wide range of histological changes is observed in the purpura of the skin, from eosinophilic vasculitis to leukocytoclastic vasculitis without eosinophilic infiltration, making diagnosis difficult (131). Other skin lesions in EGPA show extensive infiltration of eosinophils and surrounding inflamed small dermal blood vessels (132), however, eosinophil infiltration is not specific to EGPA and is a common finding in a broad spectrum of skin diseases (133).

In EGPA, renal involvement is less frequent and less severe than in other forms of AAV (134). In addition, its reported frequency depends on the profile of the medical facility. According to various studies from different centers, the frequency varies from 16.3 to 35% of patients (54, 55, 82–84, 87, 100, 113), with nephrological facilities even in 86% of patients presenting with renal diseases at vasculitis diagnosis (134). Renal involvement in EGPA pre-dominates in ANCA-positive patients, which is in line with the aforementioned study, in which 84% of patients had a positive ANCA test (134). The most common clinical symptom reported in different series was proteinuria (3.3–20%) (55, 82, 113), with renal insufficiency observed in 4.3–15% of cases (55, 83), and up to 75% of patients referred to nephrological facilities, in whom acute renal failure was the most common renal presentation (134). Histologically, the most typical pattern included pauci-immune necrotizing glomerulonephritis (78%), followed by membranous nephropathy (10%) and membranoproliferative glomerulonephritis (3%), both of which were ANCA-negative. Other findings include pure acute interstitial nephritis (10%) and interstitial eosinophilic inflammation in half of the patients, regardless of ANCA status (134).




5. Diagnosis, classification, and disease phenotypes

The diagnosis of EGPA is challenging and requires the correlation of clinical, laboratory, radiologic, and histopathologic findings, however, in cases with a history of asthma, eosinophilia, and both “vasculitic” and “eosinophilic” organ damage, the suspicion of EGPA is quite straightforward - in contrast to those with incomplete manifestations, which can be difficult to recognize. In addition, some patients lack evidence of vasculitis or ANCA, and there is an ongoing debate over whether EGPA can be recognized in these cases. Histology can confirm the diagnosis of EGPA, but the simultaneous presence of all three typical lesions is rare (135). In clinical practice, the diagnosis of EGPA is mainly clinical, however, considering the rarity of the disease and the variety of symptoms, the accuracy of the diagnosis increases with a multidisciplinary discussion among experienced clinicians (16, 103).


5.1. Diagnostic and classification criteria

To date, there are no validated or universally accepted diagnostic criteria for EGPA. The aforementioned CHCC is a nomenclature classification and not a diagnostic classification (8, 13). The first diagnostic criteria were proposed by Lanham et al. (81) which included asthma, eosinophilia ≥ 1,500 cells/μL, and manifestations of vasculitis involving at least ≥2 extrapulmonary organs. These criteria were developed before classifying EGPA into AAVs and do not require histological examination. However, they have been widely used by clinicians owing to their simplicity in capturing the essence of the disease. Recently, the Joint Task Force of the European Respiratory Society (ERS) and the Foundation for the Development of Internal Medicine in Europe (Groupe d’Etudes et de Recherche sur les Maladies Orphelines Pulmonaires; GERM’O’P) proposed new diagnostic criteria (14, 136). They restricted the EGPA terminology to ANCA-positive cases and/or to those with genuine features of vasculitis (or with surrogates of vasculitis) that are precisely defined. In addition, they proposed that patients with asthma, blood eosinophilia, and systemic manifestations, but non-vasculitic and without ANCA, are referred to as having hypereosinophilic asthma with systemic manifestations (HASM), not EGPA. The next criteria are those used in the MIRRA study assessing the safety and efficacy of mepolizumab in patients with EGPA (23). In contrast to the above-mentioned criteria, they were very loose, with the majority of patients not having ANCA or features of vasculitis. However, these criteria were developed for the purposes of a clinical trial (as an eligibility criteria), and are not widely used in clinical practice.

Classification criteria are often mistakenly used as diagnostic criteria, although they are not. Classification criteria were designed to distinguish EGPA from other types of vasculitis; therefore, they should be used only when a diagnosis of small- or medium-sized vessel vasculitis has been established.

The first classification criteria for EGPA were published in 1990 by the American College of Rheumatology (ACR). They were developed by comparing 20 EGPA-diagnosed patients with 787 control patients with other forms of vasculitis and included six items: asthma, eosinophilia > 10%, neuropathy, pulmonary infiltrates, sinusitis, and extravascular eosinophils in the biopsy. The presence of ≥4 of these six criteria allowed the classification of vasculitis as EGPA (137). These criteria were characterized by low sensitivity (67.1%, with 17% of cases meeting the criteria for other vasculitides), and although the specificity was high (64–98.9%), up to 27% of the comparators fulfilled at least one of these criteria (12). Despite poor methodology and lack of validation, these criteria have remained unchanged for several decades. In 2022, the ACR/EAAR (European Alliance of Associations for Rheumatology) established new classification criteria based on a prospective international multisite observational study (Diagnostic and Classification Criteria in Vasculitis; DCVAS project) conducted at 136 sites from 32 countries, including 107 cases of EGPA and 450 comparators. These criteria highlight the significance of peripheral eosinophilia, asthma, and eosinophilic inflammation and specify other features that function as important disease classifiers (such as mononeuritis multiplex, obstructive airway disease, or nasal polyps). Moreover, unlike the previous 1990 criteria, these are validated, have excellent sensitivity (85%) and specificity (99%), and incorporate ANCA testing. The criteria include seven items that have been assigned a point weight (positive or negative), and vasculitis could be classified as EGPA if the cumulative score was ≥6 points (138). Although these criteria were developed primarily for clinical trial purposes, they represent a major advancement in clinical practice as well, however, they are only for EGPA classification and do not solve the problem with diagnosis. A summary of the proposed diagnostic and classification criteria for EGPA (including the definition of the disease) is presented in Table 2.


TABLE 2    Eosinophilic granulomatosis with polyangiitis – definition, diagnosis and classification.
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It is worth noting that owing to its dual nature, EGPA has been also listed as an “associated syndrome” in the classification of HESs (11).



5.2. Diagnostic tests and differential diagnoses

To date, there are no reliable biomarkers of EGPA. The results of these studies were inconclusive, with varying success rates (Table 3) (17, 40, 45, 139–151). Active EGPA is characterized by marked eosinophilia, usually ≥1,500 cells/μL or >10%, which correlates with disease activity (1, 5). It is a fixed feature of EGPA and an important diagnostic criterion, however, in patients treated with systemic CS (e.g., asthma), eosinophil count may rapidly decline within a few days, and the results may be falsely normal (5). A significant proportion of patients have elevated inflammatory markers, such as C-reactive protein (CRP) and erythrocyte sedimentation rate (ESR), mainly at the onset of the disease (55). Non-specific elevations in IgE levels were detected in 75% of cases (26). MPO-ANCA should be tested with antigen-specific immunoassays in any patient with eosinophilic asthma and clinical features suggestive of EGPA (such as constitutional symptoms, purpura, polyneuropathy, unexplained heart, gastrointestinal or renal disease, and/or pulmonary infiltrates or hemorrhage) (152), however, only approximately one-third of patients are ANCA-positive (9). Recently, a novel observation of ANCA reactivity in the sputum of seronegative EGPA patients was reported (63). ANCA reactivity was associated with more severe respiratory symptoms and sputum eosinophilia. It is now being investigated whether ANCA sputum could be useful as a diagnostic tool for serum ANCA patients with EGPA as well as to identify a subset of patients with eosinophilic asthma who are at increased risk of developing EGPA in the future (63).


TABLE 3    Selected studies investigated biomarkers in EGPA.
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In EGPA, each organ may be affected; therefore, it is essential to conduct a thorough medical history interview and perform diagnostic tests assessing the functions and/or organ lesions. In addition, it is important to detect life-threatening organ involvement, as it requires rapid implementation of treatment (153). Generally, once EGPA is diagnosed, evaluating possible lung, heart, kidney, GI, and peripheral nerve involvement is recommended (153). Regarding the lungs and respiratory manifestations, a complete pulmonary diagnostic evaluation, comprising chest imaging at baseline and pulmonary function tests, should be performed (153). Every patient should have at least one chest radiograph, however, a CT scan is more sensitive and can provide a more precise assessment of lung lesions (153). Bronchoscopy with an evaluation of inflammatory cells in BALF can confirm pulmonary eosinophilia (defined as ≥25% eosinophils at differential cell count) (108). When DAH is present, BALF is bloodier and contains hemosiderin-laden macrophages (5).

Cardiac involvement, in particular, is associated with poor prognosis (114, 154); therefore, basic cardiological examinations are recommended in all patients (at diagnosis and in case of relapse), irrespective of clinical symptoms (118, 153, 155). These examinations include resting electrocardiography (ECG), echocardiography (ECHO), and serum concentrations of brain natriuretic peptide (BNP) and troponin (118, 153, 155). The 24-h ECG monitoring can help detect arrhythmias that cannot be captured on resting ECG and may be life-threatening, leading to sudden death. Recently, cardiac magnetic resonance (CMR) imaging has been considered the gold standard technique for evaluating cardiomyopathies (118, 121, 156). It is a safe and non-invasive tool for the assessment of cardiac involvement in AAVs (118, 121, 122, 156–158). Furthermore, it can help identify the individual stages of myocarditis (with better visibility of endocavitary thrombosis) and determine the activity of the disease (121, 156, 158, 159), however, its particular diagnostic importance is in asymptomatic patients, in whom this manifestation can be easily overlooked (118, 120–123, 155, 158, 160, 161). CMR is also a useful tool for monitoring treatment efficacy and fibrosis (121, 161). Late gadolinium enhancement (LGE) by CMR (mostly of subendocardial location) is characterized by high sensitivity and specificity for the detection of cardiac inflammation and fibrosis (121), and its persistence following treatment has become a marker of cardiac disease severity (112). However, CMR abnormalities are detected in a high proportion of patients in clinical remission and their clinical and prognostic significance remains unclear (123, 161). Although endomyocardial biopsy (EMB) is still considered the gold standard for the diagnosis of myocarditis, it is not routinely performed due to the risk of complications and organizational difficulties. This procedure may be considered in doubtful cases, especially, when the diagnosis of EGPA has not been established (155). Signs of heart involvement in cardiological tests in EGPA are demonstrated in Figure 1. Figure 2 presents chest imaging findings in patients with EGPA.
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FIGURE 1
Signs of heart involvement in cardiological tests in patients with eosinophilic granulomatosis with polyangiitis (EGPA) [based on Bond et al. (155)]. ECG, electrocardiogram; ECHO, echocardiogram; CMR, cardiac magnetic resonance; LGE, late gadolinium enhancement; EGE, early gadolinium enhancement.
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FIGURE 2
Chest imaging findings in patients with EGPA. (A,B) Chest X-rays of a 42-year-old female patient diagnosed with EGPA. They demonstrate migrating patchy infiltrates with peripheral dominance (black arrow), characteristic for eosinophilic infiltrates, and rapidly enlarging heart related to its acute injury in the course of EGPA. (C) Chest CT axial image (lung window) of a 40-year-old female EGPA patient showing pre-dominant massive bilateral ill-defined areas of airspace (white arrow) and ground-glass (white asterisk) opacities located in both lower lobes of the lungs. (D) Chest CT axial image (lung window) of a 37-year-old female patient presenting pre-dominant areas of ground-glass opacities of varying intensity in both upper lobes of the lung (black arrows); histological examination of the transbronchial biopsy specimen reveals features of eosinophilic pneumonia and eosinophilic vasculitis. (E) The image refers to a 46-year-old male patient admitted for worsening asthma and eosinophilia. Chest CT axial image (lung window) shows a pre-dominant airway pattern-bronchi wall thickening and small centrilobular nodules (white arrows). BALF examination indicated pulmonary eosinophilia (65% of eosinophils), and the patient complained of numbness of the feet, and for several days purpura-type skin lesions occurred; MPO-ANCA was detected in the sera. The patient was diagnosed with EGPA. (F) Chest CT axial image (lung window) of a 34-year-old female patient with EGPA and cardiac involvement showing pre-dominant features of cardiac insufficiency; the ground-glass opacities with interlobular septal thickening (red arrow) corresponding to interstitial edema; bilateral pleural effusion (white arrow) and enlarged heart is also present (black asterisk). (G) Chest CT axial image (mediastinal window) of a 38-year-old female patient diagnosed with EGPA and cardiac involvement. In addition to bilateral pulmonary infiltrates, an enlarged heart and pericardial effusion is visible (white asterisk). (H) CMR refers to a 32-year-old male patient with EGPA; late gadolinium enhancement (LGE) image in vertical long axis cross-section showing subendocardial enhancement pattern (typical for EGPA) of the anterior wall, subendocardial and transmural enhancement of the inferior wall, inferior papillary muscle and the left ventricle (LV) apex (black arrows); thrombus seen as an unenhanced mass in the apical part of the LV cavity. (I) CMR refers to a 26-year-old male patient diagnosed with EGPA with cardiac involvement; a T2-weighted turbo spin-echo (TSE) image with fat saturation in the short axis mid-cavity cross-section, presenting edema in the infero-lateral segment of the LV (white arrows).


Renal involvement is the next poor prognostic factor; therefore, renal function tests and urinalysis should be performed in all cases at baseline and during follow-up (153). In asymptomatic patients, routine screening for GI and peripheral nerve involvement is not required, however, when symptoms are present, appropriate diagnostic procedures should be implemented (e.g., radiologic and/or endoscopic evaluation of the digestive tract in cases of gastrointestinal symptoms or electromyography and nerve conduction studies in cases suspected of nerve involvement). Other evaluations should be guided by clinical symptoms and physical examination (153).

In the presence of demonstrable lesions, biopsy procedures should be considered when feasible, and the patient’s condition allows it, however, histological examination is not strictly necessary (153). Although pathomorphological lesions are well-defined (necrotizing vasculitis, extravascular granulomas, and eosinophil infiltration of arterial walls and adherent tissue), it is extremely rare to find all of them simultaneously (<20% of patients) (135). The most commonly biopsied organs are the skin, nerves, and muscles. Although EGPA is considered a multi-organ disease, it is well known that limited forms may also occur. When a single extrapulmonary manifestation attributable to systemic disease is present, the disease may be called “formes frustes” of EGPA (108). In such situations, diagnosis is only possible by organ biopsy (162).

While EGPA share features with eosinophilic inflammation and vasculitis, the primary differential diagnoses include other eosinophil-related disorders and vasculitides. First, other common causes of secondary eosinophilia should be excluded from the study. Eosinophilia can be reactive to drugs, and severe reactions may result in organ manifestations mimicking EGPA (e.g., drug rash with eosinophilia and systemic symptoms, DRESS syndrome) (16). A careful history of medication use is crucial to emphasize the association between drug use and symptom onset. Second, helminthic infections need to be ruled out. Serology of Toxocara and Strongyloides stercoralis is especially recommended (153). Both are associated with high eosinophilia and can be clinically inapparent (163, 164). Other parasite investigations depend on the patient’s country of origin and travel history, however, stool culture, although it has low sensitivity, should also be performed (16). Next, screening for HIV should be performed, even though eosinophilia in this infection is usually mild (153). Lymphocytic variant reactive hypereosinophilia should also be considered, especially when skin manifestations dominate, with accompanying hypergammaglobulinemia. In such cases, lymphocyte immunophenotyping and T-cell receptor rearrangement analysis are indicated (153, 165).

Eosinophilic granulomatosis with polyangiitis often manifests as respiratory symptoms and lung infiltrates; therefore, it should be differentiated from eosinophilic lung disorders. ABPA and idiopathic EP share many features with EGPA, including eosinophilia, cough, dyspnea, and lung infiltrates. Moreover, a large proportion of patients with these diseases have asthma, which is a cardinal feature of EGPA (166, 167). ABPA is characterized by elevated serum Aspergillus fumigatus-specific IgE and IgG concentrations (149, 162) and often isolated fungal cultures in sputum or BALF (153, 166). However, distinguishing idiopathic EP from the second stage of EGPA remains challenging. The lack of organ symptoms and ANCA may help differentiate between the two (5), however, patients with idiopathic EP should be monitored for extrapulmonary symptoms because they may develop EGPA in the future.

Hypereosinophilic syndromes are the next most important consideration in the differential diagnosis of EGPA, given the overlapping clinical, radiologic, and histologic features, and biomarker profile (105, 168). Depending on the pathogenesis, three main types of HESs are distinguished: reactive (rHES), neoplastic (nHES), and idiopathic (iHES). In rHES, eosinophils are non-clonal and are thought to be driven by Th2 cytokines, mainly IL-5. This group includes patients with classified conditions associated with secondary eosinophilia, including EGPA (11, 165, 169) (however, eosinophilia in EGPA is not entirely secondary, as it has a partially genetic background related to the IRF1/IL5 gene variant) (56). In nHES, eosinophils are clonal and derived from eosinophil progenitors containing genetic alterations in oncogenic tyrosine kinase receptors, such as platelet-derived growth factor receptor A (PDGFRA) and B (PDGFRAB) and fibroblast growth factor receptor 1 (PGFR1) (105, 165, 169). This group also encompasses other myeloid neoplastic diseases with associated eosinophilia (with or without genetic abnormalities), as well as chronic eosinophilic leukemia. In turn, iHES is the largest type of HES (comprising about 50% of cases) and is a diagnosis of exclusion once reactive and neoplastic causes have been excluded (105, 165).

Although organ damage may be similar, some symptoms, such as hepatomegaly or splenomegaly, can be suggestive of clonal eosinophilia and nHES. In addition, a proportion of patients have abnormal peripheral blood counts, such as anemia (53%) or thrombocytopenia (31%), and patients with nHES usually do not respond to treatment with systemic CS (169). Screening for serum vitamin B12 and tryptase levels is sensitive to nHES and is recommended for all patients diagnosed with eosinophilia (153). In cases of suspected nHES, fusion gene testing is indicated. However, although only to be positive in nHES, a case of PDGFRA-positive EGPA has been described (42); therefore, some authors believe that testing for PDGFRA mutation should be performed routinely in all cases with hypereosinophilia, regardless of clinical manifestation, suspected EGPA, or ANCA-status (170).

Idiopathic HES is the most difficult to distinguish from EGPA, especially in ANCA-negative cases without vasculitic symptoms (165, 169, 171, 172). Both clinical and radiological symptoms are similar, but HES is usually not considered to have asthma or nasal polyps. However, this is not a distinguishing feature. A case series of iHES with the first presenting asthma-like symptoms has been recently described (173). In addition, it has been reported that approximately 10% of patients with HES have rhinitis (169). Histological examination also showed no differentiation. HES is typically characterized by tissue infiltration by eosinophils, which is also often found in cases of EGPA (105). Other findings, such as vasculitis and granulomas, are not typical for HES but are considered hallmark features of EGPA (2). Recently, among patients with a diagnosis of HES lacking asthma, a group characterized by necrotizing eosinophilic vasculitis confirmed by biopsy has been distinguished (174). The distinction of EGPA from this entity is challenging, especially because it cannot be excluded that both may be a part of a common spectrum.

There is a need for further research on suitable features for distinguishing EGPA from HES. Finally, a comparative study of 166 patients with blood eosinophilia (>1.000 cells/μL) and systemic manifestations demonstrated that CRP level was a sound diagnostic biomarker that could accurately differentiate between HES and EGPA, with low levels (<36 mg/L) suggestive of HES (175). Other authors have proposed a HES-suggesting laboratory index (HSLI) based on white and eosinophil blood count, with values ≥4.25 exhibiting a significantly high relative risk for HES (176). Recently, a scoring system (E-CASE) for differentiating EGPA from other types of eosinophilic disorders, including HES, has been proposed. It was based on the clustering analysis of 19 parameters of 58 patients with eosinophil-related diseases at a tertiary hospital and was extensively validated in 40 patients at another tertiary institution. This system includes clinical (peripheral nerve disorder, asthma, lung, and skin involvement), laboratory (RF positivity, MPO-ANCA positivity, IgE, and CRP elevation), and histological features (vasculitis detected by pathological examination), which have been awarded a point weight. A score ≥12 was considered positive for EGPA (177).

The next diseases that should be differentiated include other forms of vasculitis, especially AAVs. GPA and MPA share several clinical and histological features with EGPA, however, there is usually a lack of asthma and eosinophilia. Nevertheless, eosinophilia may be present in GPA, although it is usually modest, and there are some clinical features distinguishing it from EGPA (Table 4) (178–180). EGPA may also need to be differentiated from polyarteritis nodosa (PAN), a rare form of necrotizing vasculitis that preferentially targets medium-sized arteries. Hypereosinophilia may occasionally be observed in PAN, and similar to EGPA, skin and peripheral nerves are the most frequently affected tissues. However, PAN is not associated with glomerulonephritis and small-vessel involvement, and ANCA is typically negative. In addition, it may be triggered by viral infections, particularly the hepatitis B virus; thus, patients may have positive viral serology and histological granulomas are usually absent (181).


TABLE 4    Differentiating EGPA from other AAVs [data based on the Samson et al. (54), Comarmond et al. (55), Tsurikisawa et al. (83), Fijolek et al. (87), Saku et al. (101), Puechal (178), Greco et al. (179), Nguyen et al. (180), Liu et al. (185), and Papo et al. (186)].
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Finally, because IgG4 may be elevated in a significant proportion of patients with EGPA (47, 48, 50), IgG4-RD has become an important differential diagnosis to consider. IgG4-RD may share some clinical features with EGPA, such as asthma, rhinitis, or peripheral eosinophilia (174, 182). Histopathologic examination is essential for diagnosis, which typically demonstrates lymphoplasmacytic infiltrate, storiform fibrosis, and obliterative phlebitis without vasculitis or granulomas (183).



5.3. Disease phenotypes

Although ANCA is detected in only 30–40% of patients, two main phenotypes of EGPA have been identified according to ANCA status, differing in clinical features, treatment response, and prognosis (Figure 3). First, the “vasculitic” phenotype (associated with ANCA-positivity and vasculitis symptoms), and second – the “tissular” phenotype (associated with ANCA-negativity and organ damage related to eosinophilic inflammation) (9, 10, 55, 100, 101, 184), both confirmed using GWAS, which found the distinct genetic background for each of them (56). However, these phenotypes rarely occur separately and tend to overlap in the same patient (128, 159). Generally, patients with positive MPO-ANCA have a more active disease with higher CRP levels, higher ratios of fever and myalgia (185), and significantly more common rhinosinusitis (184) than those with negative MPO-ANCA. However, the pre-valence of asthma does not appear to be dependent on ANCA status (184), although in some studies asthma was more common in ANCA-negative patients (185).
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FIGURE 3
Phenotypes of EGPA. ANCA, antineutrophil cytoplasmic antibodies; DAH, diffuse alveolar hemorrhage; ENT, ear, nose, throat; MEPO, mepolizumab; RTX, rituximab; AAV, antineutrophil cytoplasmic antibody vasculitis; HES, hipereosinophilic syndrome.


The next specific subgroup of EGPA patients was those with PR3-ANCA positivity. ANCA directed against PR3 is much less common in EGPA patients. In a recent large retrospective study of 734 patients with EGPA, PR3-ANCA was detected in 2% of cases and has been associated with a distinct clinical profile with features reminiscent of GPA (186). Compared to those with MPO-ANCA and ANCA-negative, patients with PR3-ANCA less frequently had asthma and peripheral neuropathy, while more frequently had skin symptoms, pulmonary nodules, and a lower median eosinophil count. Interestingly, myocarditis in this group was observed as frequently as in ANCA-negative patients and more frequently than in MPO-ANCA patients. In turn, long-term outcomes, such as relapse-free survival and overall survival in PR3-ANCA-positive EGPA patients were similar to those in patients with GPA PR3-ANCA (186).




6. Therapeutic management

The treatment strategy for EGPA depends on the severity of the disease (Table 5) and consists of induction and maintenance phases. The first phase aims to achieve remission of the disease, whereas the second phase prevents relapses. Other important objectives of treatment include limiting side effects and sequelae, improving the quality of life, and enabling the rapid return of the patient to normal activities (187). Prospective clinical trials specifically dedicated to EGPA are limited (188). Thus, treatment recommendations have been mostly derived from the results of trials involving other AAVs, rather than EGPA itself, and/or are based on expert opinion (153, 187).


TABLE 5    Eosinophilic granulomatosis with polyangiitis severity criteria according to the FVSG and ACR.
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6.1. Conventional agents

Induction therapy should be adapted according to disease severity (153, 187). Systemic CS is the cornerstone drug in EGPA, and treatment with CS alone is justified in patients with an Five-Factor Score (FFS) of 0 (153, 187). The initial recommended dose is 1 mg/kg/day of prednisolone equivalent with a maximum dose of 60 mg/kg/day for 2–3 weeks, followed by gradual reduction to the minimal effective dose or, if possible, until withdrawal (153). In severe cases with life-threatening manifestations, methylprednisolone pulses can be applied (at a dose of 7.5–15 mg/kg/day for 3 days, followed by oral CS) (153); however, there are no data to support favoring either intravenous pulse or high-dose oral CS for active severe EGPA (189). The French Vasculitis Study Group (FVSG) proposes a tapering-off schedule of CS between 12 and 18 months, of which the reference doses are around 20 mg/day, 10 mg/day, and 5 mg/day at 3 months, 6 months, and 1 year, respectively, of prednisolone equivalent (187), however, the threshold to which CS can be reduced without compromising asthma and/or ENT symptoms is unknown and varies from patient to patient. Optimization of local therapies may help reduce the risk of flares during oral CS tapering (e.g., increasing the dose of inhaled CS or nasal CS implementation) (190), while new biological therapies can make a significant contribution to lowering the dosage of maintenance CS therapy.

In cases with at least one poor prognostic factor (FFS ≥ 1), combined treatment with CS and IS is recommended (153, 187). No randomized controlled trial results are available to support this recommendation, however, the benefit of adding intravenous cyclophosphamide (CYC) to CS to achieve remission has been demonstrated (191). The preferred immunosuppressant is intravenously administered CYC at a dose adjusted for age and renal function (Table 6) (192). The FVSG guidelines recommend a dose of 0.6 g/m2/per infusion on days 1, 15, and 30, followed by a dose of 0.7 mg/m2/per infusion every 3 weeks, with a maximum of 1.2 g per infusion (153, 187). In cases with impaired kidney function (<65 years of age), treatment should be started with a lower dose of 0.5 g/m2/per infusion, while in elderly patients, a rigid dose of 0.5 g/per infusions is recommended (regardless of kidney status) (153, 187). CYC infusion should be combined with antiemetic therapy and good hydration, with 2-mercaptoethanesulfonate sodium (MESNA) prophylaxis to limit bladder toxicity (190). In addition, CYC can also be administered orally at a dose of 2 mg/kg/day (without exceeding 200 mg/day) for 3–6 months, however, intravenous treatment is preferred due to better compliance and lower cumulative drug dose (190). During the IS treatment, prophylaxis of Pneumocystis jirovecii is indicated (co-trimoxazole 400 mg/day or 980 mg thrice weekly), and screening for drug-induced neutropenia is necessary. The patient should be informed about the need for contraception and the possibility of egg/sperm freezing (153, 187, 190). If remission is achieved, maintenance treatment should be started 2–3 weeks following the last CYC pulse or a few days after oral CYC. The preferable drug is azathioprine (AZA), at a dose of 2–3 mg/kg/day, followed by methotrexate (MTX) at a dose of 0.3 mg/kg/week, for 18–24 months (153, 187, 190).


TABLE 6    Dosing of CYC pulses depending on age and renal function (EULAR).
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In cases of severe DAH, eye involvement, or fulminant mononeuritis multiplex, IS induction treatment should also be considered, although it is not listed in the FFS (153).

As previously mentioned, in patients without poor prognostic factors (FFS = 0), IS treatment in the induction phase is not indicated. This is supported by the results of the CHUSPAN 2 study, which demonstrated that adding AZA to CS in these patients did not improve remission rates, lower relapse risk, spare steroids, or diminish EGPA asthma or ENT exacerbation rates (193). However, treatment with IS as a second-line therapy can be considered in the group in two clinical situations: first, as a CS-sparing treatment in cases of CS dependence of >7.5–10 mg/day; second, in cases of CS intolerance. The preferred drugs are AZA and MTX, according to the scheme mentioned above (153, 187).

The recently published ACR guidelines differ from those of the FVSG (Table 7). According to these guidelines, the addition of an adjunctive IS is recommended in all patients with EGPA as the first-line therapy, regardless of the disease severity (not based on FFS), to reduce CS toxicity, however, no study results support this strategy (194).


TABLE 7    Key recommendations for the treatment of EGPA according to the FVSG and ACR taking into account biologics.

[image: Table 7]



6.2. Biological agents

In recent years, new treatment options for EGPA have emerged. The therapeutic array has expanded with the introduction of new biological drugs, which have been intensively studied (Table 8). Depending on the mechanism of action, these drugs can be divided into two groups: first, directed against eosinophilic inflammation; second, directed against the autoimmune component of EGPA and vasculitis. However, so far, no single agent allows complete control of EGPA, and the choice should be dictated by the clinical features (15).


TABLE 8    Completed and ongoing clinical trials with the use of biologics in EGPA.
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6.2.1. Anti-eosinophil-driving cytokines agents

In the pathogenesis of EGPA, eosinophils play a key role; therefore, agents inhibiting these cells may be effective. IL-5 is the main cytokine that drives eosinophil maturation and proliferation (21). The first clinical evidence of the successful use of mepolizumab—a monoclonal antibody that prevents the binding of IL-5 to its receptor—was described in 2010 in two distinct studies of patients with EGPA treated with mepolizumab infusions at a dose of 750 mg monthly (195, 196). The breakthrough was the randomized MIRRA trial investigating the safety and efficacy of mepolizumab at a dose of 300 mg s.c. monthly as an add-on therapy in 136 EGPA patients with relapsing or refractory disease. In that study, compared to placebo, patients treated with mepolizumab had significantly more accrued weeks of remission (28 vs. 3%, OR 5.91 for ≥24 weeks of accrued remission; p > 0.001) and a higher rate of remission at both weeks 36 and 48 (32 vs. 3%, OR 16.74; p < 0.001). Relapses at 52 weeks were less frequent (56 vs. 82%; p < 0.001), and the average dose of oral CS was lower in the mepolizumab group between weeks 48 and 52 (44 vs. 7%; p < 0.001). Importantly, there were no differences in drug safety between the two arms (23). This trial led to the approval of mepolizumab by the Food and Drug Administration (FDA) in 2017 as the first biologic drug for the treatment of EGPA.

Despite these promising results, the MIRRA trial has several limitations that need to be outlined. First, about half of the patients treated with mepolizumab did not achieve protocol-defined remission as the Birmingham Vasculitis Activity Score (BVAS) = 0 and less than 4 mg of daily prednisone (however, a post-hoc analysis, in which a comprehensive definition of clinical benefit was applied, revealed that 78–87% of patients experienced benefit with mepolizumab) (197); second, the diagnostic criteria of EGPA were very loose and active asthma was considered a feature of EGPA relapse; third, none of the patients received mepolizumab as first-line therapy (all were treated with oral CS with or without IS); finally, only 10% of the patients included in the study were ANCA-positive; therefore, the ability of mepolizumab to limit vasculitis could not be reliably assessed.

Mepolizumab is now considered a potential treatment for non-severe relapsing and/or refractory EGPA, with limited data available on its impact on vasculitic manifestations (198). It has been demonstrated that its effectiveness is not affected by the baseline treatment of EGPA, duration of disease, or refractory status of the disease (199). The expert panel of the FVSG recommends mepolizumab to treat EGPA patients whose asthma is CS-dependent (>7.5 mg/day) and/or ENT manifestation, starting at a dose of 100 mg monthly, which has been approved for the treatment of severe eosinophilic asthma and is three times lower than that approved for the treatment of EGPA (200). The use of mepolizumab in Europe at this dosage is currently off-label (198), but many real-life studies have shown positive results with low-dose mepolizumab in patients with EGPA (201–203). More recently, a retrospective collaborative study of 203 patients demonstrated that 100 mg can be an effective and safe dosage in EGPA and that its efficacy is comparable to that of 300 mg in remission rates, CS sparing effect, and rates of asthma/ENT exacerbations. In that study, improvement was observed in 10% of patients after dose escalation, suggesting that low-dose mepolizumab could be used as a first-line therapy with the possibility of an increase to 300 mg monthly in cases with an unsuitable response (204). Interestingly, out of 10 patients with CI treated with mepolizumab (at a dosage of either 100 or 300 mg/4 weeks), 9 achieved complete remission, suggesting that the inhibition of IL-5 signaling might be an effective novel treatment strategy for eosinophilic cardiac disease (204).

To date, no available data are evaluating the value of mepolizumab in the remission induction phase in patients with EGPA, however, some small retrospective studies have demonstrated that the use of mepolizumab as remission induction for severe EGPA might be safe and effective for controlling disease activity and reducing CS doses (205). Two randomized prospective trials of mepolizumab in EGPA are currently underway. One study assessed the long-term effectiveness of mepolizumab (at a dose of 300 mg) in patients with EGPA who required oral CS at a dose of ≥5 mg/day of prednisolone equivalent to control their symptoms (NCT 03298061). The second trial evaluated the efficacy of mepolizumab as a remission-inducing agent (at a dose of 300 mg) in comparison to the conventional therapeutic strategy guided by FFS (NCT 05030155).

Given the encouraging results of mepolizumab, other anti-IL5 therapies have also been investigated. These include reslizumab and benralizumab, which are anti-IL-5α receptors. Both were investigated in phase 2 open-label trials with a small number of patients, and the results were promising (206, 207). The efficacy and safety of benralizumab are currently evaluated in comparison to mepolizumab in patients with EGPA receiving standard care therapy (NCT 04157348). The other investigated agent was depemokimab, a long-acting (administered every 26 weeks at a dose of 200 mg) anti-IL-5α receptor drug (NCT05263934).

Since the Th2-pathway activation plays an important role in the pathogenesis of EGPA, drugs studied in asthma may open new possibilities for EGPA treatment. Dupilumab is a humanized monoclonal antibody to the IL-4α receptor that inhibits both IL-4 and IL-13 signaling (208) and is currently approved for moderate and severe uncontrolled asthma (209, 210), CRNP, and atopic dermatitis (21). Another promising drug is itepekimab, an anti-IL-33 monoclonal antibody. In the 2nd phase of a randomized trial, it led to a greater reduction in the mean blood eosinophil count, a lower incidence of asthma exacerbations, and improved lung function in patients with moderate-to-severe asthma with a good safety profile (211). Tezepelumab is the next most recently approved biologic drug (in December 2021) in the US for severe asthma, regardless of its phenotype or biomarkers. This human monoclonal antibody specifically binds to TSLP, preventing it from binding to its heterodimeric receptor (212). Blocking TSLP results in strong inhibition of the CCL2 -related eosinophilic pathway, as well as Th2- related cytokines (IL-4 and 13) and Th17 (212), all of which are involved in the pathogenesis of EGPA (16, 24, 44). Dexpramipexole is an orally bioavailable synthetic aminobenzothiazole that depletes eosinophils by inhibiting their maturation. In a phase 2 trial evaluating the effect of dexpramipexole in moderate-to-severe eosinophilic asthma, its administration led to a lowering of the absolute eosinophil count and improved the forced expiratory volume in 1 sec (FEV1) (213). The results of dexpramipexole in HES are also promising (214).



6.2.2. Anti-CD20 therapy

Rituximab (RTX) is a chimeric monoclonal antibody targeting the CD20 antigen present on B cells, resulting in its depletion (198). Clinical trials showed its effectiveness and safety in GPA and MPA both in the induction (215) and maintenance phases (216). Increasing experience in the treatment of other AAVs with RTX has also led to its use in EGPA. Several case reports and open-label studies have reported the efficacy of RTX in patients with EGPA (46, 217, 218). Recently published data from a retrospective European Collaborative Study involving patients with relapsing and/or refractory disease showed that in those receiving RTX (N = 63), the BVAS declined both at 6 and 12 months, and the frequency of remission, partial response, treatment failure, and stopping treatment due to adverse events was 49, 24, 24, and 3%, respectively, without statistically significant differences between ANCA-positive and ANCA-negative patients (219). In 2020, a randomized controlled trial (REOVAS) evaluating the efficacy and safety of RTX in comparison with conventional therapy for remission induction in EGPA was completed (220). In this study, patients with an FFS ≥ 1 (42/105) were randomized to receive CS and RTX/CYC for remission induction, followed by AZA for remission maintenance in both groups. Patients with FFS = 0 (63/105) were randomized to receive RTX with CS or CS as monotherapy. Remission rates for RTX and conventional treatment on days 180 and 360 were comparable in both groups (63.5 vs. 60.4%, and 59.6 vs. 64.2%, respectively). Similarly, the mean duration of remission, relapse rates, and cumulative dose of prednisone was also comparable (220). The study showed that RTX was not superior to the conventional therapeutic strategy to induce vasculitis remission, however, it also did not show that it was inferior to standard therapy. Randomized trial investigating RTX in maintenance therapy compared with standard treatment is underway (MAINRITSEG; NCT 03164473). FVSG experts do not recommend using RTX as first-line induction therapy for EGPA, however, it can be considered for second-line-or-later treatment of severe refractory or relapsed disease, especially following CYC failure (200), at the dosage recommended for GPA and MPA (to induce remission, 375 mg/m2 infused once a week for 4 weeks, or 1,000 mg twice at a 15-day interval, which is equally effective and safe; to maintain remission, renewed 500 mg infusions at 6-month intervals for at least 18 months) (200). The ACR guidelines are more flexible. According to these recommendations, RTX can be used in the first line of treatment on par with CYC (the choice is up to the physician), although it is especially preferred in patients with ANCA-positivity and glomerulonephritis. Among those with ANCA-negativity, heart involvement, GI, or severe nervous system involvement, CYC should be considered (200). The safety profile of RTX in patients with EGPA is similar to that of other AAVs, although some studies have reported more frequent allergic reactions to RTX infusion (217). However, recently, the case of non-ischemic cardiomyopathy following RTX treatment has been described (221), which suggests that RTX should be carefully used in case of heart failure, especially in patients with a previous history of cardiac disease. Interestingly, RTX in EGPA has been demonstrated to reduce the production of IL-5, probably by inhibiting B- to T-cell crosstalk (222). Some case series reports have shown the efficacy of RTX for asthma control in EGPA (223).

Recently, there have been reports on the effectiveness of a regimen based on sequential RTX and mepolizumab for the control of EPGA (224, 225). Bettiol et al. (226) published results of the European multicentre retrospective observational study and showed that sequential RTX and mepolizumab treatment (at a dose of 100 mg monthly) is effective to induce and maintain remission of both systemic and respiratory EGPA symptoms. These results seem to support the hypothesis that combining treatments with complementary mechanisms of action might lead to remission of both EGPA components.



6.2.3. Anti-IgE

Omalizumab is a monoclonal antibody that specifically binds to circulating IgE and blocks the inflammatory cascade, notably cell degranulation (mainly basophils and mastocytes), which causes a transient lowering of eosinophilia. It is currently used for the treatment of severe asthma with elevated IgE levels, chronic urticaria, and allergic rhinitis (198). In EGPA, data on the use of omalizumab are inconsistent and scarce and mostly come from case or case series reports. Some of them support the successful use of omalizumab as an adjunct therapy in EGPA patients with severe CS-resistant asthma, but not in those with extrapulmonary manifestations (227, 228). The results of a study comparing the efficacy of biologics in EGPA (RTX, mepolizumab, and omalizumab) showed that omalizumab was associated with significantly lower remission rates (15 vs. 78%) and significantly higher treatment failure (48 vs. 8%) than mepolizumab (219). Information on omalizumab efficacy against vasculitic features in EGPA is lacking, however, two life-threatening cases have been described, who were unresponsive to IS and eventually responded to omalizumab (229). In contrast, a relationship between omalizumab treatment and EGPA development has been described (230). Omalizumab is not recommended as a remission induction therapy for patients with EGPA. It may be considered only in patients who fail or are intolerant to conventional treatment and mepolizumab (200).




6.3. Other therapies

Other therapies include interferon α (IFNα), intravenous immunoglobulin (IVIg), and plasmapheresis. Data on the use of IFNα in EGPA are scarce and come mainly from case reports, suggesting that IFNα can induce EGPA remission (231). However, numerous adverse events (e.g., flu-like symptoms, cytopenia, hepatic toxicity, polyneuropathy, and depression) limit their use. Intravenous immunoglobulins may be used off-label in severe cases of refractory AAV in combination with other specific treatments, particularly in patients with severe infectious complications and secondary symptomatic immunological deficits (187). A multicenter double-blind trial showed the efficacy of IVIg as second-line therapy, especially in patients with neural involvement and residual peripheral neuropathy (232). A case of IVIg effectiveness in cardiac involvement in a patient with EGPA not responding to CYC has also been described (233). Regarding plasmapheresis, most data were based on studies that excluded EGPA. Recently published results of a large PEXOVAS study (involving GPA and MPA) showed that the use of plasmapheresis in patients with severe AAV did not reduce the incidence of death or end-stage kidney disease (234). Similar results were presented in a small prospective randomized study of 14 patients with EGPA showing any benefit in adding plasmapheresis to ongoing therapy (235).




7. Therapy of asthma

Therapy for asthma is indispensable in the treatment of patients with EGPA and does not differ from the treatment of asthma in the general population (190). Treatment should be adjusted to asthma severity using a stepwise pharmacological approach according to the current International Global Initiative for Asthma (GINA) recommendations (236). Anti-leukotriene drugs are not contraindicated if needed, however, patients require careful follow-up. The scheme of asthma management to control symptoms shows Table 9.


TABLE 9    The scheme of asthma management to control symptoms according to GINA 2022.
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8. Therapy for ENT manifestations

Management of ENT manifestations in EGPA can be challenging. The main effective therapy remain intranasal CS. In addition, multiple daily nasal rinses with normal saline may provide some benefit (237, 238). Other drugs, such antihistamines (for proven allergy) or long-term treatment of macrolides, can be tried in cases of intranasal CS inefficacy (190). In the last years, biologic treatment options have been proposed for ENT manifestations. Mepolizumab at a dose of 100 mg monthly has been approved by the FDA in 2021 as an add-on treatment option to standard of care in patients with CRSwNP. The approval has been based on data from the randomized trial (SYNAPSE) which explored the effect of mepolizumab vs. placebo in over 400 patients with CRSwNP, and showed that mepolizumab treatment significantly improved nasal polyp size and nasal obstruction; in addition, in the treated group there was a 57% reduction in the proportion of patients who had surgery compared with placebo group (239). In patients with EGPA, the MIRRA trial demonstrated that mepolizumab significantly reduced the frequency of disease relapses, including both asthma and sinonasal relapses (23).

Regarding to surgical treatment, the role of functional endoscopic sinus surgery (FESS) in EGPA is still a matter of debate. The results of the systematic review advise against FESS as a first-line treatment in EGPA and instead recommends a trial of maximal medication which is often successful in the initial treatment of nasal polyps (240). Surgical removal of nasal polyps can provide transient symptomatic relief but polyp recurrence is frequent (237). In the future, surgery in EGPA will probably collide with the introduction of new biologic drugs in the treatment regimens (238).



9. Prognosis and outcomes

Eosinophilic granulomatosis with polyangiitis is considered a milder form of AAV, with lower mortality compared to other AAVs (5, 95). It is now viewed as a chronic disease rather than a fatal condition due to the significant improvement in survival as a result of effective treatment based on CS and/or IS (55). In a monocentric study of 150 patients with EGPA, the 10-year survival rate was 89%, resulting in mortality comparable to that of the general population (82), while in others, overall survival reached 93% after a median follow-up of 6 years (100) and 90% at 7 years (54). However, the prognoses of patients with EGPA differ depending on the presence or absence of prognostic factors (FFS). In addition, relapses, asthma/ENT flares, and disease-related organ damage (sequelae) may severely impair the quality of life of patients with EGPA (54, 100).

Relapses in EGPA remain a major challenge. Their frequency rates vary between 25 and 49% (54, 55, 241). The factors predictive of relapse are not well established and are still under debate. Some studies have shown that peripheral eosinophil count at diagnosis (<3,000 cells/mm3), cutaneous manifestation, and positive MPO-ANCA are associated with a higher risk of relapse (54, 55). In others, high IgE levels at onset (101) and FFS > 1 were predictive of relapse (242). Recently, the FCGR3B polymorphism was described as a predictive factor for relapse among EGPA patients with ANCA positivity (243). As serial ANCA monitoring can have some utility in predicting relapses in GPA and MPA, EGPA data are limited because most studies did not provide complete results on repeat ANCA testing following treatment (244). However, according to the European EGPA Study Group recommendations, repeat ANCA testing is indicated in patients with MPO-ANCA-positive EGPA because persistence, rise, or reappearance of ANCA may justify more frequent clinical assessments (152).

The next problems in patients with EGPA are asthma and/or ENT flares, which are mostly independent of disease activity (82, 100). Although not life-threatening, both significantly contribute to patient morbidity, which is associated with persistent symptoms and exposure to long-term CS therapy and its associated adverse events (245). Among a multicenter cohort of 101 patients with EGPA with a median follow-up of 6 years, 92.5% still received systemic CS at the end of the study (100). In an American study involving 354 patients with a median follow-up of 7 years, at the last study visit, only 12.6% had been off all therapies for more than 2 years during their follow-up (241). While vasculitis relapses tend to ensue within the first 2 years following diagnosis, asthma and ENT manifestations tend to persist or relapse long after vasculitis has resolved (246). Sequeales are observed in 80% of patients with EGPA, regardless of the initial severity of the disease (54, 100). Next to asthma and ENT symptoms, it includes persistent polyneuropathy (45%), osteoporosis (30%), severe lung disease (17%), chronic kidney disease (13%), and chronic heart failure (11%) (54, 100).

A recent study from the US (247) excellently reflects the high burden of EGPA. The results showed that all-cause healthcare costs were 2.5-fold higher in patients with EGPA than in those with asthma alone (with similar geographic and insurance status). Furthermore, all-cause healthcare resource utilization and use of systemic CS were also significantly greater in EGPA, with more than one-third of these patients experiencing relapses (247). On the other hand, although the burden of the disease remains still high, the mortality and morbidity of patients have essentially decreased due to the change in approach toward the treatment over the years. A Spanish study analyzing the outcomes of AAV patients (including EGPA) showed improved results with a significant decrease in mortality and treatment-related morbidity in patients diagnosed after 2000 compared to those diagnosed prior to 2000, which was related to the use of less toxic regimens adapted to the disease activity and stage, and a drastic reduction in the cumulative CYC and CS dose (113). This trend in treatment continues with the implementation and search for new biologic therapies.



10. Conclusion

Despite notable progress in the understanding of its pathogenesis and disease management, EGPA remains a major diagnostic and therapeutic challenge. Its dual categorization with HESs and systemic vasculitides leads to varied clinical presentation, which requires careful differentiation from other mimicking disorders. To date, there are no universally approved diagnostic criteria, and diagnosis remains mainly clinical. The role of ANCA is not fully understood; but two phenotypes have been defined according to ANCA status, with consistently different genetic backgrounds, manifestations, prognoses, and treatment responses. However, ANCA is present only in approximately 30–40% of patients, and there is still an ongoing debate over whether EGPA should be recognized in cases without the presence of vasculitis and ANCA. Breakthroughs in clinical practice are novel classification criteria that are expected to accelerate clinical studies on EGPA in the future. Although the prognosis is good, relapses in EGPA are frequent, and many patients have chronic symptoms that require long-term treatment with CS. Although effective, conventional therapy is not satisfactory for relapse prevention and resolution of chronic symptoms and is burdened with high toxicity. In this context, new biological agents are a valid therapeutic alternative, although more data are required.
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