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Mechanosensory feedback loops
during chronic inflammation

Sarbari Saha1,2,3, Dafne Müller1 and Andrew G. Clark1,2,3*
1University of Stuttgart, Institute of Cell Biology and Immunology, Stuttgart, Germany, 2University of
Stuttgart, Stuttgart Research Center Systems Biology, Stuttgart, Germany, 3University of Tübingen, Center
for Personalized Medicine, Tübingen, Germany

Epithelial tissues are crucial to maintaining healthy organization and
compartmentalization in various organs and act as a first line of defense
against infection in barrier organs such as the skin, lungs and intestine.
Disruption or injury to these barriers can lead to infiltration of resident or
foreign microbes, initiating local inflammation. One often overlooked aspect of
this response is local changes in tissue mechanics during inflammation. In this
mini-review, we summarize known molecular mechanisms linking disruption of
epithelial barrier function to mechanical changes in epithelial tissues. We consider
directmechanisms, such as changes in the secretion of extracellular matrix (ECM)-
modulating enzymes by immune cells as well as indirect mechanisms including
local activation of fibroblasts. We discuss how these mechanical changes can
modulate local immune cell activity and inflammation and perturb epithelial
homeostasis, further dysregulating epithelial barrier function. We propose that
this two-way relationship between loss of barrier function and altered tissue
mechanics can lead to a positive feedback loop that further perpetuates
inflammation. We discuss this cycle in the context of several chronic
inflammatory diseases, including inflammatory bowel disease (IBD), liver
disease and cancer, and we present the modulation of tissue mechanics as a
new framework for combating chronic inflammation.

KEYWORDS

epithelial barrier, inflammation, immune cells, extracellular matrix, tissue mechanics,
chronic inflammatory diseases, immuno-biophysics, immuno-mechanobiology

Introduction

Epithelial barrier tissues maintain a tight seal between the outside environment and
the inside of the body. Loss of barrier integrity leads to local activation of immune cells
and fibroblasts, which can remodel local ECM networks, the major determinants of
tissue mechanics. Over time, these structural and molecular changes result in tissue
stiffening (Barron and Wynn, 2011; Chrysanthopoulou et al, 2014; Curaj et al, 2020).
During acute inflammation, increased tissue stiffness can be beneficial for regeneration
and wound healing, for example, by enhancing immune cell activity and stimulating
immune cell migration and infiltration (Sridharan et al, 2019; Gaertner et al, 2022;
Millán-Salanova and Vicente-Manzanares, 2022; Nalkurthi et al, 2022). However,
during chronic inflammation, modifications in local ECM networks can become
permanent, leading to irreversible stiffening of the tissue and culminating in fibrosis
(Jeljeli et al, 2019; Velotti et al, 2020).

Pathologically stiff tissue can promote immune cell recruitment and activation via
mechanosensing pathways, leading to increased immune cell migration and
differentiation and activation of fibroblasts (Chen et al, 2020; Atcha et al, 2021;
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Chirivì et al, 2021; Jiang et al, 2022). Increased tissue stiffness also
results in epithelial cell depolarization, reduced cell-cell junctions
and increased migration (Discher et al, 2005; Aparicio-Yuste
et al, 2022). While in the short-term this may aid in wound
resealing, epithelial cells on stiff environments are less able to
maintain a tight barrier, creating a feedback loop between
increased barrier permeability and inflammation mediated by
changes in tissue mechanics (Figure 1). Such mechanical
feedback can ultimately disrupt organ function and presents a
major risk factor for cancer development. Here, we discuss the
molecular mechanisms that contribute to these feedback loops as
well as pathologies where such mechanical feedback can play a
role in disease progression.

Epithelial barrier disruption leads to
inflammation and local ECM
remodelling

Loss of barrier integrity leads to infiltration of microbes,
initiating a cascade of immune reactions whereby neutrophils
and monocytes are first recruited to the site of infection (Jenne
et al, 2018; Herrero-Cervera et al, 2022). These first responders not
only trigger inflammation by releasing cytokines and chemokines,
but also modify local extracellular matrix (ECM) structures by
secretion of neutrophil elastase (NE), cathepsins, gelatinases and
matrix metalloproteinases (MMPs; Delclaux et al, 1996; Ong et al,
2015; 2017; Medeiros et al, 2017). These enzymes promote the

FIGURE 1
Mechanosensory feedback loops during inflammation. Loss of barrier integrity results in infiltration of microbes that initiates acute inflammation.
Inflammation is led by neutrophils and macrophages, which release cytokines and chemokines and modify local extracellular matrix (ECM) structures by
secretion of ECM proteins and matrix metalloproteinases (MMPs). Activated immune cells also stimulate fibroblasts, which secrete, assemble and
physically remodel ECM networks, resulting in a stiffening of ECM networks. During chronic inflammation, pathologically stiff tissue can lead to
over-activation of immune cells via mechanosensing pathways, resulting in increased immune cell migration and differentiation. Increases in tissue
stiffness can also lead to epithelial cell depolarization, reduced cell-cell junctions and increased migration. While in the short-term this may aid in wound
resealing, epithelial cells on stiff environments are less able to maintain a tight barrier, creating a positive feedback loop between increased barrier
permeability and inflammation mediated by changes in tissue mechanics.
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degradation of ECM components such as collagen, laminin, elastin,
fibronectin and matrix bound glycoproteins (Ong et al, 2015; Xu
et al, 2020). Activated neutrophils release exosomes and Neutrophil
Extracellular Traps (NETs) rich in NE. NE-rich exosomes can bind
to the ECM via the integrin Mac1 and degrade Collagen-I
(Genschmer et al, 2019). NEs found in NETs have been shown
to degrade cartilage matrix synovium, resulting in synovial joint
injury (Carmona-Rivera et al, 2020). Collagenase and elastase
treatment in lung tissues causes a loss and shortening of ECM
fibers and decreases mechanical tissue stiffness by up to 50%
(Mariano et al, 2023). In addition to degrading local ECM
networks, neutrophils are also involved in tissue repair and scar
formation. In response to liver injury, neutrophils physically
transport existing ECM fibers to the wound site, leading to ECM
accumulation at the site of damage (Fischer et al, 2022).

Similar to neutrophils, macrophages also produce and secrete
various ECM-degrading enzymes (Sutherland et al, 2023). In
addition, macrophages ingest and degrade ECM structures by
integrin-mediated phagocytosis and receptor-mediated
endocytosis (McKleroy et al, 2013; Zhao et al, 2022). On the
other hand, macrophages also secrete ECM proteins including
fibronectin, laminin and versican, which can help to provide a
mechanical scaffold following injury and aid in the renewal of
tissue architecture (Tomlin and Piccinini, 2018). Exposure to
inflammatory cytokines including Transforming growth factor
beta (TGF-β), Interleukin (IL)-10 and IL-13 can stimulate
secretion of collagen-IV in macrophages (Schnoor et al, 2008).
Differentiation of macrophages to myofibroblasts results in the
production of fibrillar collagen during scar formation and ECM
remodelling (Simões et al, 2020). Both macrophages and neutrophils
are thus involved in degradation, production and remodeling of
ECM networks and are crucial to maintaining a proper balance
during homeostasis and regeneration.

When this balance is disturbed, for example, during chronic
inflammation, macrophages and neutrophils can activate fibroblasts,
which secrete, assemble and physically remodel ECM networks
(Jeljeli et al, 2019). Culturing fibroblasts in conditioned medium
fromM2-like macrophages causes an increase in Col5a1 and Col6a1
production, leading to the production of thinner and more aligned
collagen matrices. On the other hand, treating fibroblasts with
hybrid M1/M2-conditioned medium results in the production of
thicker, randomly oriented collagen networks. This suggests that
shifting the phenotype of macrophages can promote architectural
changes in the ECM via modulation of fibroblast activity (Witherel
et al, 2021). In addition to molecular signals, physical cues from the
microenvironment can also influence fibroblast-mediated ECM
remodeling. When fibroblasts treated with M1/M2 conditioned
medium are cultured on stiff substrates, they produce more
aligned collagen networks compared to when they are cultured
on softer hydrogels (Li and Bratlie, 2021). Fibroblasts also
regulate their own activity via autocrine signaling. For example,
during the inflammatory phase of myocardial infarction, activated
fibroblasts produce and assemble fibrin and fibronectin and begin
secreting TGF-β1, leading to a positive feedback loop of enhanced
fibroblast differentiation, collagen synthesis and macrophage
polarization. After reaching a stable state, a negative feedback
loop is initiated, reducing TGF-β1 expression and resulting in
completion of the mature scar (Curaj et al, 2020). Repeated

injury and scarring can lead to a build-up of stiff fibrotic tissue
that triggers fibroblasts to secrete more collagen, further driving the
cycle of ECM deposition (Liu et al, 2010). Interestingly, a number of
inflammatory conditions can also lead to tissue hypoxia, which, at
least in tumors, can stimulate fibroblast-mediated collagen
deposition and secretion of collagen-modifying enzymes
including prolyl and lysyl hydroxylases (Gilkes et al, 2013).
Together, these studies suggest that in various inflammatory
conditions, activation of immune cells and fibroblasts leads to the
reorganization of local ECM structures. During chronic
inflammation, this results in a build-up of ECM and stiffening of
the tissue, which can in turn stimulate immune cell activity via
various mechanosensitive pathways.

Immune cell activation by
mechanosensing pathways

The innate immune system forms the first line of defense against
pathogens entering the body. Leucocytes involved in the innate
immune response, or myeloid cells, including macrophages,
dendritic cells and mast cells, are adherent and contact-
dependent, making them sensitive to changes in tissue
mechanics. In particular, increased substrate stiffness, which is a
result of long-term chronic inflammation, leads to increased
immune cell activation and secretion of inflammatory cytokines.
Lipopolysaccharide (LPS)-Activated macrophages and bone-
marrow derived dendritic cells (DCs) both display enhanced
production of inflammatory cytokines when cultured on
mechanically stiff substrates as compared to soft hydrogels (Meli
et al, 2023). DCs cultured on stiff substrates also show increased
expression of glucose metabolism genes and an overall increase in
their glycolytic rate, suggesting that DCs are more metabolically
active on stiff substrates (Chakraborty et al, 2021). Mast cells, which
are implicated in pulmonary fibrosis, are also mechanosensitive.
Reseeding of healthy mast cells onto decellularized fibrotic lung
tissue leads to increased degranulation and secretion of histamine
and TGF-β1 compared to mast cells reseeded on healthy
decellularized lung. Mechanical stretching of mast cells can
produce a similar phenotype, further implicating mechanosensing
in this response (Shimbori et al, 2019). The regulation of immune
cell activity by increased substrate stiffness and mechanical stress is
mediated by various mechanosensitive pathways including Yes-
associated protein 1 (YAP) and Transcriptional coactivator with
PDZ-binding motif (TAZ). High substrate stiffness leads to
increased stress on the nuclear envelope, resulting in the
accumulation of nuclear YAP and activation of downstream
targets (Elosegui-Artola et al, 2017). In addition to YAP/TAZ
signaling, stretch-activated ion channels such as piezo type
mechanosensitive ion channel component 1 (PIEZO1) and
Transient Receptor Potential Cation Channel Subfamily V
Member 4 (TRPV4) are also involved in mechanosensing
responses (reviewed in Du et al, 2022). Together, these studies
suggest that immune cells involved in the innate immune
response are mechanosensitive and display pro-inflammatory
phenotypes in response to increased mechanical stiffness.

Cells involved in the adaptive immune response are also
mechanosensitive. In order to carry out their effector functions,
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naïve B cells and T cells must first be activated, or “primed,” by
antigen presenting cells (APCs) such as DCs. Increased stiffness of
substrates designed to mimic the APC cell surface has been shown to
facilitate the activation of B cells, T cells and Natural Killer (NK)
cells (Judokusumo et al, 2012; Comrie et al, 2015; Meng et al, 2020).
Similarly, increased stiffness of the actomyosin cortex of antigen
presenting DCs enhances T cell activation (Blumenthal et al, 2020).
Experiments using optical tweezers or fluid flow have demonstrated
that direct application of mechanical force on T cell receptors
(TCRs) can induce T cell activation (Kim et al, 2009; Li et al,
2010). Although adaptive immune cell activation is clearly
mechanosensitive, it is not clear how tissue stiffness influences
adaptive immune cell activity. Furthermore, B cell and T cell
priming typically occurs in lymph nodes, not in the inflamed
tissue. The relationship between tissue stiffness and adaptive
immune priming therefore remains an open question. However,
recent studies have suggested that T cell migration, along with the
migration of DCs and mast cells is increased on stiff environments
(Meng et al, 2020; Yu et al, 2021). This suggests that increased tissue
stiffness may enhance local immune activity by stimulating both
innate and adaptive immune cell migration. Increased mechanical
stiffness during inflammation not only affects immune cell activity
but can also have an impact on epithelial barrier integrity by directly
regulating epithelial cells.

Modulation of epithelial cell behavior
by mechanical cues

The maintenance of epithelial barrier integrity is most commonly
associated with tight junctions (TJs), which provide a tight seal at cell-
cell boundaries and prevent the passage of materials across the
epithelial layer. Recent work also suggests that adherens junctions
(AJs) play a major role in epithelial integrity, either directly through
mechanosensing pathways or by mediating TJ stability (Yap et al,
2018). A number of studies have demonstrated that both AJs and TJs
are mechanosensitive in response to in-plane stresses arising from
actomyosin contraction or external stretch, whereby moderate
amounts of tensile stress led to junction reinforcement, while very
high stresses cause epithelial tearing and rupture (Spadaro et al, 2017;
Acharya et al, 2018; Schwayer et al, 2019). In addition to in-plane
stresses, mechanosensing at cell-substrate adhesions can also affect
cell-cell junction integrity. The balance between cell-cell and cell-
substrate adhesions has been described as an “active wetting”
phenomenon (Gonzalez-Rodriguez et al, 2012; Beaune et al, 2014;
Pérez-González et al, 2019). For surfaces where cell-substrate
adhesion is low, for example, very soft substrates, cell-cell
adhesions dominate, leading to rounding and aggregation. This is
analogous to water droplet formation on a hydrophobic surface,
where liquid-substrate interactions are unfavorable and the surface
tension of the droplet dominates. On substrates where cell-substrate
adhesions are high, for example, on very stiff substrates, cell-substrate
adhesions dominate, causing the multicellular structure to spread, or
“wet” (Gonzalez-Rodriguez et al, 2012). Softer substrates therefore
favor stable junctions and a tight barrier, whereas a stiff substrate
favors more loosely attached cells and can also lead to dispersal into
individual cells (Gonzalez-Rodriguez et al, 2012; Pérez-González et al,
2019; Ilina et al, 2020). In addition to mechanical wetting/dewetting

resulting from the balance between cell-cell and cell-substrate
adhesions, molecular cross-talk between different adhesion
structures has also been shown to regulate cell-cell junction
integrity in a substrate stiffness-dependent manner (Haas et al, 2020).

In addition to stabilization of junction proteins, efficient wound
healing is a crucial aspect of tissue barrier maintenance.Wound healing
requires cell migration to rapidly infiltrate the wound and actomyosin
contraction to reseal the damaged area (Martin and Leibovich, 2005;
Rodrigues et al, 2019). Higher substrate stiffness leads to faster wound
closure mediated by increased collective migration speed and more
coordinated cell movements. On stiffer substrates, actomyosin
contraction slows down due to increased drag from the substrate,
while crawling migration is independent of the substrate mechanics
(Staddon et al, 2018; Ajeti et al, 2019). Other reports have suggested that
higher stiffness can increase collective migration speeds and correlation
in wound healing assays (Ng et al, 2012). It is likely that the dependence
on stiffness is biphasic and highly cell-type dependent. In addition to
elastic stiffness of tissues and cellular substrates, viscoelastic properties
of ECM networks also influence coordinated cell movements.
Crosslinking of collagen networks leads to increased network
stiffness and reduces viscoelasticity, resulting in reduced collective
migration (Murrell et al, 2011; Clark et al, 2022). Interestingly,
changes in tissue viscoelasticity have also recently been shown to
regulate collective cell behavior during development and cell
invasion (Barriga and Mayor, 2019; Elosegui-Artola, 2021; Elosegui-
Artola et al, 2023). Along with cell rearrangements to seal the wound,
increased cell division is required to repopulate the wounded area.
Substrate mechanics also regulates this process by modulating in-plane
stresses generated during the resealing response, which can stimulate
cell division (Zhang et al, 2003; Gudipaty et al, 2017; Donker et al, 2022).
Themechanisms underlying the regulation of epithelial cell division and
turnover in response to in-plane forces has been studied in several
contexts (reviewed in Ragkousi and Gibson, 2014). Taken together,
these studies indicate that increased substrate stiffness can perturb cell-
cell junctions and cell polarity and impair the wound healing response.
This suggests that the mechanical changes induced during
inflammation can feed back onto epithelial cell function, resulting in
further loss of barrier integrity.

Mechanosensing feedback loops in
chronic inflammatory diseases

Mechanical feedback loops are likely to play a role in a number
of chronic inflammatory diseases including IBD, liver disease and
cancer. IBD is characterized by a cycle of increased intestinal barrier
permeability and inflammation. Both immune cells and fibroblasts
participate in ECM deposition and reorganization in IBD, leading to
the onset of pathological tissue stiffening (Wang et al, 2022). Once
tissue stiffening has begun, additional feedback mechanisms drive
further tissue stiffening, leading to fibrosis and stricture formation
(Figure 2A). During intestinal fibrosis, mast cell infiltration and
degranulation leads to the release of large amounts of tryptase
through the PAR-2/Akt/mTOR pathway, which converts
fibroblasts into activated myofibroblasts. This results in
deposition of collagen and fibronectin to promote intestinal
fibrosis (Liu et al, 2021). Other recent work has suggested that
ubiquitin-specific protease 2 (USP2), which is upregulated in
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intestinal myeloid cells during IBD and mouse models of colitis,
increases the expression of collagen and alpha smooth muscle actin
(αSMA), leading to further ECM remodeling and tissue stiffening
(An et al, 2022). Collagen-I deposition in the intestine also activates
the YAP/TAZ pathway in epithelial cells through Fak/Src signaling
to initiate a regenerative cascade to induce a fetal-like state in the
colonic epithelium, where cells become more motile and prone to
reorganization compared to homeostatic conditions (Yui et al,
2018). Downstream effects of YAP/TAZ also induce the secretion
of IL-33 and IL-18 and lead to cytoskeletal re-organization
(Kobayashi et al, 2022). Together, these studies suggest that
mechanical reorganization of ECM networks during IBD can
drive further tissue stiffening, prolonged inflammation and
reduced barrier function.

The liver is also exposed to various external stresses arising from
dietary factors, exposure to gut microbe metabolites and alcohol and
drug use, leading to tissue damage and inflammation (Lang and
Schnabl, 2020; Yahoo et al, 2023). In the case of persistent
inflammation, increased accumulation of ECM results in the

replacement of healthy liver parenchyma with fibrotic scar tissue,
further driving mechanosensitive feedback pathways (Figure 2B;
Dhar et al, 2020). In mouse models of liver fibrosis, excess deposition
of collagen and fibronectin along with accumulation of αSMA-
expressing myofibroblasts leads to cirrhosis and increased
expression of ECM genes, which correlates with poor patient
prognosis (Wu et al, 2021). During this process, hepatic stellate
cells (HSCs) transdifferentiate into fibroblast-like cells that express
αSMA and secrete ECM components such as collagen-I and-III,
fibronectin and laminin, contributing to the development of fibrosis
(Friedman, 2008). HSCs also produce MMPs and Tissue Inhibitors
of Metalloproteinases (TIMPs) which are the major drivers of ECM
remodelling during hepatic fibrosis (Duarte et al, 2015). Chronic
overexpression of TIMPs prevents normal collagen remodeling,
leading to an increased collagen build-up that drives liver fibrosis
(Benyon and Arthur, 2021). The resulting altered biomechanical
environment can also drive liver tumorigenesis by activation of
integrin-β1 and focal adhesion kinase, leading to increased cell
proliferation (Schrader et al, 2011).

FIGURE 2
Mechanosensory feedback loops in chronic inflammatory diseases. (A) During Inflammatory Bowel Disease (IBD), a cycle of reduced intestinal
barrier function and chronic inflammation results in increased collagen deposition and secretion of tissue inhibitors ofmetalloproteinases (TIMPs) by local
activated fibroblasts, leading to stiffening of the underlying ECM and tissue fibrosis. (B) Persistent injury and inflammation in the liver results in the
differentiation of hepatic stellate cells (HSCs) into activated fibroblast-like cells which secrete collagen and TIMPs and express α-SMA. This results in
a replacement of the normal liver parenchymawith fibrotic scar tissue, eventually leading to fibrosis and cirrhosis. (C) The cross-talk between cancer cells
and stromal cells leads to the activation of cancer-associated fibroblasts (CAFs), which secrete ECM proteins and matrix remodelling enzymes that
contribute to increased stromal stiffness and invasion and metastasis. (D) Mechanochemical feedback during chronic inflammation involves various
mechanosensing pathways. (i) Increased substrate stiffness results in mechanical stress on the nucleus, which inhibits nuclear export of yes-associated
protein (YAP). In the nucleus, YAP acts as transcriptional coactivator to increase expression of downstream genes involved in cell proliferation and
migration. (ii) High substrate stiffness leads to increased integrin clustering, which activates downstream signal transduction pathways leading to
destabilization of cell-cell junctions. (iii) Mechanical stretching of the plasma membrane opens stretch-activated channels including PIEZO1 and TRPV4,
leading to an influx of Ca2+ ions and several downstream effects including changes in actin dynamics, cytokine release and cell proliferation. (iv)
Activation, or “priming”, of B cells and T cells involves heterotypic binding of membrane receptors between the B or T cell and an antigen presenting cell
such as a dendritic cell. Increased stiffness of the actomyosin cortex in the dendritic cell limits mobility of the membrane receptors, resulting in increased
mechanical stress on the B or T cell receptor, which enhances the activation process.
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Chronic inflammation is a risk factor for tumorigenesis and
cancer not only in the liver, but also in other tissues. The evolution
of the tumor microenvironment shares many similarities with
chronic inflammation, and tumors have been notably
characterized as “wounds that never heal” (Dvorak, 1986; Hua
and Bergers, 2019). One prominent feature of tumor progression is
the cross-talk between tumor cell behavior and the increased
stiffening of connective tissue surrounding the tumor (the
“stroma”; Figure 2C). High stromal stiffness can lead to
increased cytoskeletal activity and migration, reduced polarity
and epithelial-mesenchymal transition (EMT; Clark and
Vignjevic, 2015). Changes in stromal network architecture and
mechanics are mediated primarily by cancer-associated fibroblasts
(CAFs), which share many common features with activated
fibroblasts during chronic inflammation. CAFs display increased
secretion of cytokines, growth factors and matrix remodeling
enzymes as well as increased mechanical force production
(Sahai et al, 2020). Together, these factors drive changes in
ECM organization that contribute to increased stromal stiffness,
tumor invasion and metastasis. In addition, CAFs secrete proteases
that cleave and activate ECM-bound cytokines and cell adhesion
molecules, promoting increased migration of cancer cells and EMT
(Fiori et al, 2019). The mechanical properties of the tumor stroma
are also thought to contribute to immune escape mechanisms
during cancer and could interfere with cancer immunotherapy
(Denton et al, 2018; Ollauri-Ibáñez et al, 2021). Together, these
studies suggest that similar to chronic inflammatory diseases,
mechanosensory feedback loops can drive local tissue stiffening
and cancer progression.

Conclusion and outlook

Disruption of epithelial barrier tissues leads to local
inflammation and activation of immune cells and fibroblasts that
modify local ECM structures. Repeated injury or chronic
inflammation can lead to permanent ECM remodeling and tissue
stiffening, which can further exacerbate inflammation, excess
fibroblast activity and barrier disruption via various
mechanosensing pathways (Figure 2D). Altered tissue mechanics

represents a common and general feature of chronic inflammatory
diseases, despite differences in the molecular profiles of these
pathologies. Future translational studies aimed at modulating
tissue mechanics therefore have the potential to identify exciting
new therapeutic approaches with broad applications from chronic
inflammation to cancer.
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Intestinal epithelial cells (IECs) perform several physiological and metabolic
functions at the epithelial barrier. IECs also play an important role in defining
the overall immune functions at themucosal region. Pattern recognition receptors
(PRRs) on the cell surface and in other cellular compartments enable them to
sense the presence of microbes and microbial products in the intestinal lumen.
IECs are thus at the crossroads of mediating a bidirectional interaction between
the microbial population and the immune cells present at the intestinal mucosa.
This communication between the microbial population, the IECs and the
underlying immune cells has a profound impact on the overall health of the
host. In this review, we focus on the various PRRs present in different cellular
compartments of IECs and discuss the recent developments in the understanding
of their role in microbial recognition. Microbial recognition and signaling at the
epithelial barrier have implications in the maintenance of intestinal homeostasis,
epithelial barrier function, maintenance of commensals, and the overall
tolerogenic function of PRRs in the gut mucosa. We also highlight the role of
an aberrant microbial sensing at the epithelial barrier in the pathogenesis of
inflammatory bowel disease (IBD) and the development of colorectal cancer.

KEYWORDS

intestinal epithelial cells (IECs), pattern recognition receptors (PRRs), mucosal immunity,
intestinal homeostasis, microbiome, inflammatory bowel disease (IBD)

1 Introduction

Intestinal epithelial cells (IECs) form a dynamic monolayer called the epithelial barrier,
and together with the muscular layer, and connective tissue, make up the intestinal mucosa.
A variety of absorptive and secretory cells, including the absorptive enterocytes, goblet cells,
Paneth cells, tuft cells, and enteroendocrine cells, make up the intestinal epithelial layer. M or
microfold cells contribute to an active microbial recognition and sampling in the intestinal
lumen. These cells perform several metabolic and immune functions that are involved in
maintaining intestinal homeostasis and overall epithelial barrier function. The intestinal
epithelial layer is constantly exposed to a large population of microbes, both as part of the
microbiota and potential pathogens, and pathobionts. IECs are thus at the crossroads of
mediating a bidirectional interaction between the immune cells present at the mucosal layer,
and the environment. However, to ensure a symbiotic relationship between the host and the
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indigenous commensal microorganisms, while allowing for efficient
recognition and clearance of invading pathogens, microbial sensing
at the mucosal surface of the gut must be tightly controlled (Shibolet
and Podolsky, 2007). This is primarily achieved by a complex
recognition system via pattern recognition receptors (PRRs),
including the toll-like receptors (TLRs), NOD and NOD-like
receptors (NLRs), RIG-I-like receptors (RLRs), C-type lectin
receptors (CLRs), and Alpha-protein kinase 1 (ALPK1).

Microbial interaction with IECs also define several developmental
and physiological functions in the host, and dysbiosis has been
implicated in the pathogenesis of inflammatory bowel disease
(IBD) and colorectal cancer (Tamboli et al., 2004; Carvalho et al.,
2012). Of the trillions of microbes that occupy the habitat in close
proximity to the epithelial barrier, both the microbial population and
their interactions with different epithelial cells vary largely along the
lengths of the small and the large intestine. PRR signaling, mediated
by theMyD88 pathway in IECs, play a key role in controlling both the
spatial segregation and composition of commensals. Secretion of
mucus from the goblet cells in the colon and antimicrobial
peptides from Paneth cells in the small intestine facilitate spatial
segregation of commensals in the respective regions (Johansson et al.,
2008; Vaishnava et al., 2011), suggesting that diverse mechanisms are
involved in the establishment of an immunologically tolerated
interaction between the IECs and the commensal microbes. Studies
in germ-free mice demonstrate the beneficial effects of microbial
colonization of the gut lumen on intestinal epithelial metabolism,
proliferation, survival, barrier function, and on IEC communication
with immune cells (Smith et al., 2007). This interaction at the
epithelial barrier also promotes the development and the
maturation of diverse immune cell populations residing in the
underlying lymphoid tissues. Thus, the overall crosstalk between
microbes, IECs, and the underlying immune cells define the
immune responses in the region and shapes the overall metabolic
and physiological processes in the host tissue.

2 Microbial recognition at the intestinal
epithelial barrier

A number of somatically encoded PRRs are expressed in
different cellular compartments of the IECs. The juxtaposition
and varying expression patterns of these receptors long the small
and the large intestine determine the microbial recognition and
effector function of IECs at the epithelial barrier. Based on their
location in the cell, PRRs can be broadly divided into two
classes—those located on the cell membrane and those localized
within cellular compartments such as the cytosol and endosomes.

2.1 Toll-like receptors, NOD and NOD-like
receptors

Toll-like receptors (TLRs) are found on the cell surface as well as
in cytosolic compartments like the endosomes. It has been reported
that TLR expression varies significantly along the length of the small
and large intestine (Price et al., 2018). In-situ and organoid-based
studies of the differential expression patterns of TLRs reveal very low
or no expression of TLR(s)- 2, −4, −5, −7, and −9 in IECs of the small

intestine, while very high expression of TLR(s)- 2, −4, and −5 along
colonic epithelial cells (Price et al., 2018). This differential pattern of
expression of PRRs along the small and the large intestine defines an
immunologically important effector function of epithelial cells in the
context of their interaction with the microbial population.
Classically, the majority of cell surface TLRs are involved in the
recognition of bacterial surface structures such as lipopolysaccharide
(LPS), lipoproteins, or flagellins. TLRs located in cytosolic
compartments such as endosomes are involved in the recognition
of nucleic acids such as microbial dsRNA, ssRNA, and dsDNA.

Nucleotide oligomerization domain (NOD)-like receptors
(NLRs) and retinoic acid inducible gene-I (RIG-1)-like receptors
(RLRs) are found in the cytosolic compartments of epithelial cells
(Martinon and Tschopp, 2005; Thompson et al., 2011). NOD1 and
NOD2 have been intensively studied in the gut and are responsible
for recognition of bacterial cell wall peptidoglycan (PGN).
NOD1 senses the meso-diaminopimelic type of PGN, which is
most commonly found in Gram-negative bacteria (Girardin et al.,
2003a; Girardin et al., 2003b). NOD2 has a broader sensing
spectrum, recognizing the muramyl dipeptide N-acetylmuramyl-
L-alanyl-D-glutamate, which is common to both Gram-negative and
Gram-positive bacteria (Girardin et al., 2003b; Girardin et al.,
2003c). NOD2 is highly expressed in Paneth cells of the small
intestine and leads to cellular responses such as antimicrobial
peptide (AMP) production, cytokine secretion, induction of
autophagy, intracellular trafficking, and activation of epithelial
regeneration (Couturier-Maillard et al., 2013; Nigro et al., 2014a;
Ramanan et al., 2014). NOD1 and NOD2 have also been implicated
in mediating beneficial interactions with the commensal flora (Eberl
and Boneca, 2010).

Activation of PRRs leads to a signaling cascade that triggers a
transcriptional program, and many of these receptors share a
common downstream signaling pathway. Nuclear factor kappa
light chain enhancer of B cells (NF-κB) is known as a master
transcription factor involved in immune signaling. In a resting
state, it is sequestered in the cytosol. Activation of the NF-κB
cascade leads to release of NF-κB from its inhibitors, resulting in
nuclear translocation and transcription of genes. TLR signaling also
activates MAPKs, which synergise with NF-κB to express cytokines,
chemokines and antimicrobial effectors (Kagan et al., 2008)
(Figure 1). TLRs, with the exception of TLR3, transmit signaling
information through the recruitment of the adaptor molecule
myeloid differentiation primary response gene 88 (MyD88). In
contrast, TLR3 has been shown to induce IRF3 activation
through the TRIF pathway. TLR4 and TLR5 are also involved in
TRIF pathway signaling in IECs, activating IRF3 and type I
interferon production. Notably, while TLR4 signaling via
MyD88 not always requires plasma membrane trafficking to
endocytic vesicles, it has been shown that TRIF-mediated
signaling of TLR4 requires internalization of the receptor (Kagan
et al., 2008). NOD1 and NOD2 also activate NF-κB through the
receptor-interacting serine/threonine kinase (RIPK1) signaling
pathway. NOD1 and NOD2 in the cytosol signal through MAPK
and NF-κB and their activation requires both molecules to get
recruited to the plasma membrane (Barnich et al., 2005; Lecine
et al., 2007; Kufer et al., 2008). NF-κB activation by NOD1/2 requires
the adaptor molecule RIPK2 (Park et al., 2007), whereas the MAPK
pathway is mediated by CARD9 (Hsu et al., 2007).
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NLRs are involved in the intracellular recognition and
sensing of microbes or microbial products via the formation
of molecular scaffold complexes called inflammasomes.
Inflammasomes are macromolecular complexes that initiate an
inflammatory response by activating caspase-1 in response to
microbial recognition, cellular stress, or cellular damage (Von-
Moltke et al., 2013). Inflammasome complexes contain a sensor
protein from the nucleotide-binding domain and leucine-rich
repeat protein (NLR) family, an adaptor protein such as
apoptosis-associated speck-like protein containing a CARD
(ASC), and caspase-1 (Figure 1). The activation of the
inflammasome complex leads to the induction of
inflammatory signals through the cleavage of pro-IL-1β and
IL-18 into their active forms (Kamada et al., 2013).

Microbial recognition leads to the activation and expression of
inflammasome components, and substrate cytokines in the infected
cells. Several other cues, such as cellular insults like loss of
membrane integrity due to pathogen invasion, can provide the
second signal for activation, as in the case of the (NLR) family
pyrin domain-containing 3 (NLRP3) inflammasome. This leads to
caspase-1 cleavage and cytokine release. NLRP3 senses danger
signals such as ATP release or potassium imbalance during
infection (Petrilli et al., 2007). NLRP1 is expressed in glandular
epithelial structures in the intestine (Kummer et al., 2007) and is
involved in the detection of cellular toxins. The NLRP6-
inflammasome is also highly expressed in IECs and drives mucus
secretion from goblet cells by promoting autophagy (Wlodarska
et al., 2014). However, the specific NLRs involved, the mechanism of

FIGURE 1
TLR-, NOD-, and NLR-mediated Signaling Pathways in Intestinal Epithelial Cells: Pattern recognition receptors (PRRs) such as toll-like receptors
(TLRs) and nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs) are present on intestinal epithelial cells (IECs). TLR recognition of
MAMPs such as unmethylated CpG-containing DNA, flagellin, lipopolysaccharide (LPS) and lipoproteins, induces the recruitment of adaptor proteins like
MyD88 and TRIF, leading to activation of the NF-κB and MAPK signaling pathways. NLRs such as NOD1 and NOD2 recognize bacterial
peptidoglycans and activate theNF-κB andMAPK pathways through the recruitment of RIPK2. Members of the NLR family also initiate a pro-inflammatory
response by activating the inflammasome complex and secreting active forms of IL-1β and IL-18. Under steady-state conditions, PRR stimulation in IECs
leads to the production of AMPs and other mediators of gut homeostasis. Under inflammatory conditions, both surface and endosomal PRRs are
stimulated, leading to a pro-inflammatory response and pathogen clearance. The basolateral and intracellular localization of PRRs is one of the
mechanisms of immune response dampening and microbial tolerance at the epithelial barrier. TLR, Toll-like receptors; NOD, nucleotide-binding
oligomerization domain; RIPK2, Receptor-interacting protein 2; MyD88, myeloid differentiation primary-response gene 88; MAPK, mitogen-activated
protein kinase; NF-κB, nuclear factor-kB; NLR, nucleotide-binding oligomerization domain (NOD)-like receptors; TRIF, TIR-domain-containing adaptor
protein inducing interferon-β; NLRP, NLR family pyrin domain-containing.
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activation of different inflammasomes and their exact role in
intestinal epithelial function remain poorly understood (Cario,
2010).

Autophagy is a crucial cellular defense mechanism involving
microbial recognition and clearance by targeting them to the
lysosomal compartment for degradation. Activation of
NOD1 and NOD2 induces autophagy in response to pure
microbe-associated molecular patterns (MAMPs) as well as
bacterial infections such as Listeria monocytogenes and Shigella
spp. in a RIPK2-independent manner (Travassos et al., 2010).
TLR signaling also induces autophagy via the engagement of the
adaptor molecule MyD88 and the TRIF pathway in macrophages
and epithelial cells (Shi and Kehrl, 2008; Benjamin et al., 2013). Both

MyD88 and the TRIF molecule interact with Beclin-1, the primary
inducer of autophagosome formation, leading to its dissociation
from the anti-apoptotic proteins Bcl-2 and Bcl-XL, thereby
promoting autophagy (Figure 2) (Shi and Kehrl, 2008).

TLR and NLR activation lead to the recruitment of different
adaptor molecules but result in similar downstream signaling with
activation of NF-κB, MAPK, the inflammasome, and
autophagosome formation. There is a dynamic crosstalk between
the individual signaling pathways through the TLRs and NLRs that
can be either synergistic or antagonistic in effect (Figure 2). For
example, NOD2 activation in IECs has been shown to dampen
TLR2 and TLR4 signaling, thereby preventing enhanced
inflammation in the gut (Barreau et al., 2010). This suggests an

FIGURE 2
Immune Signaling Pathways shared by the PRRs in Intestinal Epithelial Cells: The PRRs present in the different cellular compartments of IECs, such as
the cell surface, and endosomes, share a common downstream signaling pathway and thus have an overall complementary or inhibitory effect on each
other. The TLRs signal downstream through the common MyD88, TRIF, and IRF3 signaling molecules. Signaling via the MyD88 and TRIF signaling
components leads to nuclear translocation of NF-κB via the common TRAF6 molecule and production of pro-inflammatory cytokines. In addition,
both TLR and NOD signaling converge to activate the MAPK pathway, amplifying the inflammatory response. Conversely, NOD2 activation is known to
dampen TLR signaling such as TLR4 in certain inflammatory conditions. TLR signaling via the MyD88 and TRIF pathways also influences the induction of
autophagy by interacting with Beclin-1, a key inducer of autophagosome formation. Beclin-1 directly interacts with the anti-apoptotic proteins Bcl-XL
and Bcl-2, and TLR activation leads to the phosphorylation and subsequent disassociation of Beclin-1 from Bcl-2 and Bcl-XL, resulting in the initiation of
autophagy.
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interplay between PRRs present in different cellular compartments
at the intestinal barrier, and an unequal division of the labor between
them could explain the tolerogenic effect towards the commensal
MAMPS at the epithelial barrier. However, the interplay between
different PRRs has primarily been documented in immune cells
(O’Neill, 2008) and their role in IECs needs further investigation
(Rosenstiel et al., 2003).

2.2 C-type lectin receptors and RIG-1-like
receptors

Members of the C-type lectin receptor (CLR) family recognize
fungal pathogens and are also responsible for maintaining the fungal
microbiota in the gut. Dectin1/2/3 and Mincle are the most notable
members of the CLR family and are involved in the recognition of
specific carbohydrate motifs on the fungal cell surface (Geijtenbeek
and Gringhuis, 2016; Goyal et al., 2018). CLRs have been mainly
characterized to be expressed on myeloid cells in the lamina propria,
where the fungal molecules rarely come into direct contact during
homeostasis (Volman et al., 2010). However, the role of CLRs in
maintaining epithelial integrity and homeostasis cannot be
undermined. Dysbiosis, in terms of loss of both bacterial and
fungal populations from the gut, leads to the manifestation of
IBD, and thus CLRs may play a critical role in microbial
recognition and signaling even at steady-state (Belkaid and Hand,
2014; Francescone et al., 2014; Meng et al., 2018).

CLRs have been shown to exert a host-protective function in the
context of dysbiosis. Dectin-2 knockout mice were found to be more
susceptible to Candida albicans infections, an opportunistic
pathobiont. This suggests a role for dectin-2 in recognizing the
yeast and in suppressing the overgrowth of C. albicans (Ifrim et al.,
2016). There are several factors that can lead to a breach in epithelial
barrier integrity during different physiological states in the gut. A
lack of, or over-activation of, certain immune responses due to a
disturbance in the gut flora can damage the intestinal epithelial
barrier, compromising the spatial separation between microbes and
host tissue (Candela et al., 2014). This is one of the many plausible
scenarios for the interaction of microbes with CLRs residing in the
epithelial cells. Alternatively, microfold (M) cells serve as a portal for
microbes to cross the barrier and induce subsequent immune
responses in the lamina propria (Mabbott et al., 2013). CLRs are
thought to play an important role in mediating pathogen
recognition and immune response, and dectin-1 has been shown
to play a role in defining the first line of defense in the gut. Dectin-1
pairs with Siglec-5 receptors and mediates the delivery of soluble
immunoglobulin A (sIgA) via M cells (Rochereau et al., 2013).
Members of the CLR family also perform immune functions by
cooperating with other PRRs in the cell. Dectin-1 activation has been
shown to act synergistically with TLR2, and TLR4 (Taylor et al.,
2007; Ferwerda et al., 2008) in immune cells, and thus the possibility
of similar associations in IECs may provide a basis by which CLRs
mediate fungal recognition and signaling in epithelial cells.

Retinoic acid-inducible gene (RIG-I)-like receptors (RLRs) are a
family of RNA helicases that recognize viral RNAs and induce innate
antiviral responses via activation of pro-inflammatory cytokines and
type-I interferon (IFN) (Rehwinkel and Reis-e Sousa, 2010). RLRs,
RIG-I, and MDA-5 are RNA helicases containing a DExD/H box

RNA helicase domain and two CARD-like domains and are located
in the cytoplasm (Kawai and Akira, 2008). These protein domains
can recognize viral RNA molecules and signal via NF-κB, MAPK,
and IRFs. These translocate to the nucleus to promote transcription
of genes encoding type I IFN and other proinflammatory cytokines.
RIG-I, through the induction of an RNA polymerase III-transcribed
RNA intermediate, has also been shown to sense AT-rich double-
stranded DNA (Ablasser et al., 2009). However, the role of RLRs in
viral DNA and RNA sensing and the effects of RLR-specific
knockouts in viral microbiome maintenance and inflammation
have only been studied in immune cells in the lamina propria,
and their role in IECs requires further investigation. Furthermore,
the ligands involved as well as the exact mechanism of activation of
different RLRs like the RIG-I are not fully understood.

2.3 Alpha-protein kinase 1 (ALPK1)

The ALPK-1-TIFA-dependent cytosolic surveillance pathway is
efficient at sensing the bacterial metabolites heptose-1,7-
bisphosphate (HBP) and ADP-β-d-manno-heptose (ADP-
heptose), both of which are an intermediate in bacterial LPS
secretion (Gaudet et al., 2017; Pfannkuch et al., 2019) (Figure 3).
HBP and ADP-heptose are produced by both pathogenic and
commensal bacteria. A recent study showed that ADP-heptose
has significantly higher activity than HBP and that cells are
specifically able to detect the presence of the β-form, even when
the compound is added extracellularly (Pfannkuch et al., 2019). The
same study also found lower levels of HBP in Helicobacter pylori
lysates, suggesting their inability to successfully activate the NF-κB
pathway during infection and cytosolic invasion.

Pathogenic bacteria such as Yersinia pseudotuberculosis and H.
pylori inject ADP-heptose into host cells using type III and IV
secretion systems (Zimmermann et al., 2017; Zhou et al., 2018). In
contrast, HBP recognition in the cytoplasm requires translocation
by bacterial injection systems and must be enzymatically converted
to ADP-heptose-7P to be detected by the cytoplasmic ALPK1-TIFA-
associated surveillance system. However, ADP-heptose can freely
cross the host cell membranes and enter the host cytoplasm (Xue
andMan, 2018). HBP and ADP-heptose are metabolic intermediates
in bacterial LPS biosynthesis and represent novel PAMPs, specific to
Gram-negative bacteria (Gaudet et al., 2015). Host recognition of
HBP requires its release from the bacterial cytosol by extracellular or
intra-phagosomal bacteriolysis in case of enteric bacteria (Gaudet
et al., 2015; Gaudet and Gray-Owen, 2016).

Thus, the alpha-protein kinase-1 (ALPK1) is primarily involved
in the detection of freely replicating cytosolic bacteria and elicits a
robust NF-κB response following activation of the peptidoglycan
sensor NOD1 (Gaudet et al., 2017). NOD1 is known to mediate an
initial transient burst of NF-κB activation during bacterial invasion
(Girardin et al., 2003a). The ALPK1-TIFA-mediated pathogen
recognition system is thought to play a role in supporting a
sustained inflammatory response during the later stages of
bacterial infection after the initial transient NOD1-mediated NF-
κB activation.

Contamination of the cytosol with HBP/ADP-heptose has been
shown to induce oligomerization of TIFA dependent on Thr-9
phosphorylation, which recruits and activates the E3 ubiquitin
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ligase TRAF6 to initiate a NF-κB-dependent pro-inflammatory
transcriptional response. ALPK1 is responsible for TIFA
oligomerization and IL-8 expression in response to the infection.
The ALPK1-TIFA cytosolic surveillance pathway thus represents a
NOD-independent mechanism for detecting invasive Gram-
negative bacteria (Milivojevic et al., 2017). Intracellular infections,
such as Shigella flexneri, can also be detected indirectly via damage-
associated molecular patterns (DAMPs). Membrane vacuolar
remnants produced after vacuolar lysis have been shown to be
detected by host cells and the signals produced contribute to
enhanced inflammation (Dupont et al., 2009). Accumulation of
diacylglycerol around the bacterial entry site and within membrane
remnants has been shown to activate NF-κB via a mechanism
dependent on the CARD–BCL10–MALT1 complex and TRAF6
(Sanada et al., 2012).

The exact mechanism by which HBP and/or ADP-heptose
induces TIFA-dependent activation in both infected and
bystander cells is not fully understood. Gaudet et al.
demonstrated IL-8 production in response to S. flexneri and
Salmonella typhimurium infection due to HBP endocytosis
(Gaudet et al., 2015). However, studies by Kasper et al. have
shown that non-invasive S. flexneri bacteria do not induce an IL-
8 expression (Kasper et al., 2010). Studies by Lippmann et al. also
show that IL-8 expression in bystander cells requires bacterial
internalization and that mere diffusion of HBP does not lead to
TIFA activation (Lippmann et al., 2015).

Therefore, a more detailed investigation of intracellular HBP/
ADP-heptose detection and its ability to induce TIFA activation is
warranted. ADP-heptose can be classified as a small-diffusing
molecule, but its role as a potent PAMP for PRR activation

FIGURE 3
ALPK1-TIFA Signaling Pathway in Intestinal Epithelial Cells: Heptose 1,7-Bisphosphate (HBP) and ADP-β-d-manno-heptose (ADP-heptose) are
intermediates in the biosynthesis of lipopolysaccharide (LPS). Both HBP, and ADP-heptose can activate a pro-inflammatory signaling pathway via ALPK1-
dependent TIFA oligomerization in the cytosol.
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depends on its ability to serve as a marker of microbial invasion and
cytosolic proliferation.

2.4 Other receptors involved in microbial
recognition

There are other receptors on IECs that are involved in the
detection of various microbial components and metabolites, and
their role is of paramount importance in both defense and
maintenance of intestinal homeostasis.

IECs are actively involved in the sensing of microbial
metabolites produced by bacterial fermentation of dietary
components in the gut, which may be particularly important for
establishing a symbiotic relationship with the commensals and
thereby defining a number of physiological roles in the gut. The
pregnane X receptor (PXR) (Venkatesh et al., 2014) and the aryl
hydrocarbon receptor (AhR) (Zelante et al., 2013; Metidji et al.,
2018) are involved in the sensing of tryptophan catabolites produced
by microbes in the lumen. PXR is sensitive to indole-3-propionic
acid, a metabolite of tryptophan that is produced by the commensal
Clostridium sporogenes. PXR knockout mice have increased
inflammatory damage to the epithelium and decreased expression
of the tight junction protein (TJP) (Venkatesh et al., 2014),
supporting its role in a variety of anti-inflammatory and
protective barrier functions in the gut.

IECs infected with Yersinia enterocolitica have been shown to
use β1 integrins as Pathogen Recognition Receptor that recognize
the bacterial adhesin called invasin. The invasin-integrin interaction
provides an initial signal for activation of the NLRP3 inflammasome
(Thinwa et al., 2014). Hydroxycarboxylic acid receptor-2 (GPCR-
109A) is involved in the sensing of butyrate and niacin. Together
with AIM-2 (Singh et al., 2014; Macia et al., 2015) and NLRP3,
hydroxycarboxylic acid receptor-2 is involved in fine-tuning of IL-
18 levels in the intestine. Epithelial IL-18 plays a central role in
orchestrating the intestinal host–microbial homeostasis, and genetic
deletion of these receptors results in intestinal inflammation,
tumorigenesis, and increased susceptibility to enteric infections
(Song-Zhao et al., 2014; Man et al., 2015).

More recently, the role of tuft cells in eliciting type 2-mediated
immunity to allergens, helminth and protist infestations has been
linked to their chemosensory capabilities in the small intestine. Tuft
cells are a part of an elaborate tuft type 2 innate lymphoid cell (ILC-
2) network and are critical for the activation of ILC-2 cells through
the secretion of IL-25 and its downstream adaptor Act-1 (Kang et al.,
2012). Tuft cells are thought to have distinct sensing mechanisms for
both helminth and protist infestations with specific enrichment in G
protein-coupled sensory receptor(s) and transmit downstream
signals to activate type 2 immune cells (Nadjsombati et al., 2018).
The extracellular succinate receptor (SUCNR1) has been identified
to be expressed in both IL-25+ and TRPM5+ tuft cells in the small
intestine (Bezencon et al., 2008; Lei et al., 2018; Nadjsombati et al.,
2018), and succinate has been shown to act as an innate immune
ligand sufficient to activate type 2 inflammation in mice.
Furthermore, tuft cells also express other metabolic sensing
receptors such as free fatty acid receptor 3 (FFAR3) (Schneider
et al., 2018), but their role in orchestrating the type 2-mediated
immune response is not fully understood. Tuft cells also express

enzymes involved in the biosynthesis of eicosanoids, such as 5-
lipoxygenase (Alox5), Cox-1, Cox-2, and hematopoietic PG-D
synthase (HPGDS), and proliferate in an inflammatory
environment (Gerbe et al., 2011; Von-Moltke et al., 2016).

3 Impact of microbial recognition at the
intestinal epithelial barrier

3.1 Barrier function and maintenance of
intestinal homeostasis

Upon detection of microbial patterns in the intestinal lumen,
IECs enhance intestinal barrier functions, including mucus and
AMP production, improved tight junction integrity, and
mediating cell proliferation and differentiation to protect the
bowel wall from microbial infiltration. We summarize different
PRR mediated downstream signaling in cells on the epithelial
barrier and their role in mediating either a pro- or anti-
inflammatory response in Table 1.

IECs secrete a variety of AMPs through PRR/MyD88-dependent
mechanisms (Vaishnava et al., 2008), which accumulate in the
mucus layer and exert antimicrobial activities (Fahlgren et al.,
2003). Paneth cells are involved in the secretion of α-defensins
such as HD-5/6 in humans and cryptidins and CRS in mice. They
also secrete other AMPs like RegIIIα/β/γ, sPLA2, and lysozyme-C in
humans and mice (Brandl et al., 2007; Rakoff-Nahoum and
Medzhitov, 2007; Gong et al., 2010). Enterocytes are primarily
involved in the secretion of β-defensins in both humans and
mice (O’Neil et al., 1999; Simmons et al., 2002). During an
infection with Citrobacter rodentium, MyD88 signaling in IECs
alone was found to be sufficient to improve epithelial barrier
integrity and to increase production of RegIII-γ and the acute
phase protein serum amyloid A1 (SAA1) (Friedrich et al., 2017).

Goblet cells form a viscous layer of mucus on the epithelial
surface by secreting mucin glycoproteins. A discontinuous mucus
layer in the mouse cecum and corresponding areas of the epithelium
have been shown to form hotspots for microbial infection (Furter
et al., 2019). Recognition of microbial LPS by LPS binding protein
(LBP) and TLR4 elicits a pro-inflammatory response that induces
expression of mucins in goblet cells (Smirnova et al., 2003).
Inflammasome-mediated activation of NLRP6 has also been
implicated in goblet cell mucus secretion through the promotion
of autophagy (Cario, 2010).

The interaction of PRRs with commensal MAMPs also has a
positive effect on mucus production by goblet cells at the epithelial
barrier under homeostatic conditions. Amuc-1100 is a membrane
protein of the commensal Akkermansia muciniphila that actively
interacts with TLR2, resulting in increased mucus thickness and TJP
expression at the epithelial barrier (Plovier et al., 2017). Microbiota-
derived short-chain fatty acids (SCFAs) have been shown to regulate
a number of IEC functions, including cell turnover (Park et al.,
2016), TJP expression (Zheng et al., 2017), and upregulation of
inflammasome- or hypoxia-inducible factor (HIF)-mediated
epithelial integrity (Kelly et al., 2015; Macia et al., 2015).

Bacterial LPS can directly stimulate Paneth cells and apical
stimulation of TLRs-2/3/4, NOD1/2 and NLRP3 leads to
secretion of AMPs via immediate degranulation (Yokoi et al.,
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2019). MyD88-deficient mouse models have shown decreased
production of RegIIIγ, RELMβ, and RegIIIβ in the intestinal
epithelium (Gong et al., 2010), suggesting a correlation between
PRR stimulation and AMP secretion. Paneth cells also interact with
both pathogenic and commensal microbes in an alternative,
indirect manner through the release of pro-inflammatory IFN-γ
(Farin et al., 2014; Burger et al., 2018) to further secrete
antimicrobial peptides.

The production of mucus and AMPs such as RegIIIγ in response
to the microbial recognition by epithelial cells is critical for
maintaining overall immune homeostasis and defining the spatial
segregation between the host tissue and the commensals (Vaishnava
et al., 2011). MyD88-dependent TLR signaling has been shown to be
critical for protection against mucosal damage (Fukata et al., 2005;
Choi et al., 2010). TLR2 signaling in IECs induce the expression of
the TJP ZO-1, strengthening the epithelial barrier integrity and
providing resistance to apoptosis (Cario et al., 2004; Cario et al.,
2007). TLR2 signaling also induces the production of cytoprotective
trefoil factor, involved in mucosal tissue repair (Podolsky et al.,
2009). TLR4-mediated signaling in IECs via MyD88 further induces
cyclooxygenase 2 (COX-2), which enhances prostaglandin E2
(PGE2) synthesis, thereby promoting epithelial cell survival (Pull
et al., 2005; Fukata et al., 2006; Brown et al., 2007; Hernandez et al.,
2010). TLR4 signaling in IECs has further been shown to induce the

secretion of amphiregulin and epiregulin, which activate epidermal
growth factor (EGF) receptors (Fukata et al., 2007).

Intestinal stem cells (ISCs) located at the bottom of crypts of
Lieberkühn play a critical role in the maintenance of epithelial
barrier integrity due to their ability to propagate progeny that
differentiate into diverse cell-types depending on the
physiological demands. The Lgr5+ ISCs are known to express
PRRs, in particular TLR4 and NOD2. These play important roles
in the maintenance of intestinal homeostasis by effecting stem cell
survival, proliferation, and apoptosis (Nigro et al., 2014b).
TLR4 signaling has been demonstrated to affect ISC proliferation
and differentiation by influencing Wnt and Notch signaling in the
intestinal crypts (Sodhi et al., 2011; Sodhi et al., 2012). Stem cells are
key to warrant repopulation of the intestinal epithelium during the
resolution phase of inflammation when the inflammation-induced
damage has to be repaired. Although stem cells reside deep within
the crypts in an area considered largely inaccessible for microbes in
healthy individuals, in the inflamed gut with epithelial erosions and
barrier dysfunction, TLR-mediated signaling in stem cells driving
proliferation and inhibiting cell death becomes highly relevant for
tissue recovery.

TLR signaling in Paneth cells has been shown to regulate the
release of antimicrobial peptides and to play an important functional
role in host defense and in the maintenance of gut homeostasis. For

TABLE 1 Pathogen Recognition Receptors (PRRs) expressed on different cells at the intestinal epithelial barrier and their downstream signaling effect in mediating
a pro- or anti-inflammatory response in IECs.

Pathogen
Recognition
Receptor (PRR)

Expressed in IEC
cell-type

PRR activation results in Pro/Anti-
inflammatory

References

Toll-like Receptors (TLRs)

TLR-1 Enteroendocrine cells NF-icB and MAPK activation; TNF-a
expression

Pro-inflammatory Bogunovic et al. (2007)

TLR-2 Enteroendocrine cells NF-icB and MAPK activation; TNF-a
expression

Pro-inflammatory Bogunovic et al. (2007)

TLR-3 Paneth cells Paneth cell degranulation Anti-inflammatory Rumio et al. (2011)

TLR-4 Enteroendocrine cells NF-icB and MAPK activation; TNF-a
expression Chemokine induction

Pro-inflammatory Bogunovic et al. (2007); Selleri et al. (2008)

Paneth cells Paneth Cell Degranulation Anti-inflammatory Rumio et al. (2011)

TLR-5 Enteroendocrine cells Chemokine induction Pro-inflammatory Selleri et al. (2008)

Paneth cells Paneth cell degranulation Anti-inflammatory Rumio et al. (2011)

Chemokine and cytokine production Pro-inflammatory Price et al. (2018)

TLR-9 Enteroendocrine cells Secretion of cholecystokinin Anti-inflammatory Daly et al. (2020)

NOD and NOD-like receptors (NLRs)

NOD-1 Paneth Cells NF-icB and MAPK activation; TNF-a
expression Paneth Cell degranulation;
induction of autophagy

Pro-inflammatory Barnich et al. (2005), Lecine et al. (2007), Kufer
et al. (2008)

NOD-2 Paneth Cells NF-icB and MAPK activation; TNF-a
expression Paneth Cell degranulation;
induction of autophagy

Pro-inflammatory Couturier-Maillard et al. (2013); Nigro et al.
(2014a); Ramanan et al. (2014); Barnich et al.
(2005); Lecine et al. (2007); Kufer et al. (2008)

NLRP3 Paneth Cells Paneth Cell degranulation Pro-inflammatory Yokoi et al. (2019)

NLRP6 Goblet Cells Inflammasome activation; Induction of
autophagy leading to mucus secretions

Anti/Pro
inflammatory

Cario (2010)

Other Receptors on IECs

SUCNR1 Tuft Cells Induction of type-2 inflammatory
reaction

Pro-inflammatory Bezencon et al. (2008); Lei et al. (2018);
Nadjsombati et al. (2018)
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example, Rumio and others showed that engagement of TLR9, using
the agonist CpG oligodeoxynucleotide (ODN) in vivo, leads to
Paneth cell degranulation. Similarly, the TLR3 agonist
polyinosinic-polycytidylic acid induced a strong and rapid
degranulation, whereas the TLR4 agonist LPS and the
TLR5 agonist flagellin induced only a late degranulation of
Paneth cells (Rumio et al., 2011). Interestingly, a recent study by
Price et al. examined TLR expression along the intestine and villus-
crypt axis and showed that TLR5 expression in the small intestine is
restricted to the Paneth cells, suggesting that TLR5 is particularly
important for microbial sensing via Paneth cells. Remarkably, in this
study, TLR5 signaling in Paneth cells did not induce antimicrobial
peptides itself, but rather elicited chemokine and cytokine responses
via Ccl20 and TNF-α, as well as NF-κB pathway-related molecules,
including A20, Iκbα and Nfκb2. Antimicrobial peptide production
was then shown to be indirectly induced by these inflammatory
cytokines (Price et al., 2018). Paneth cells not only express TLR, but
also express NLRs such as NOD2 (Lala et al., 2003) and NOD2−/−

mice have reduced Paneth cell-related α-defensin transcripts,
including cryptidin-4 and cryptidin-10, and show increased
susceptibility to infection when challenged with Listeria
monocytogenes (Kobayashi et al., 2005).

Enteroendocrine cells also express several functional TLRs,
including TLR1, TLR2, and TLR4, ultimately leading to NF-κB
and MAPK activation and TNF-α expression (Bogunovic et al.,
2007). Interestingly, a study by Selleri et al. showed that the TLR
agonists LPS and flagellin are able to induce pro-inflammatory
chemokines, such as CXCL1 and IL-32 specifically within
enteroendocrine cells, suggesting this rare cell type as an
important contributor in inflammatory processes in the gut
(Selleri et al., 2008). More recently, TLR9 has been shown to
be specifically expressed by enteroendocrine cells of the proximal
intestine, where it leads to the secretion of cholecystokinin upon
stimulation, which could ultimately lead to the elimination of
pathogens through cholecystokinin-stimulated emesis,
demonstrating a critical role for enteroendocrine cells in
enteric infections (Daly et al., 2020). Altogether, these data
demonstrate multiple layers of PRR-mediated interaction
between the microbiota and the gut epithelium with its diverse
cell types. Signaling via different PRR located in different
compartments on the cell surface but also within the cell and
its organelles allows epithelial cells to detect the nature of the
microbial signal and the potential challenge it might pose for host
defense. Receptor activation induces signaling cascades that
regulate diverse epithelial cell functions, including
proliferation and cell death, barrier integrity, metabolism and
innate immunity.

3.2 Impact on the diversity of the gut
microbiota

The presence of PRRs in different cellular compartments of the
IECs has a profound effect on the overall maintenance of the
commensal microbial population at the intestinal barrier. In
exchange for this symbiotic relationship, several factors produced
by the microbial population shape the overall immune system at the

mucosal region and influence the various developmental and
metabolic processes in the host tissue.

Metabolites of certain commensal spore-forming bacteria such
as Clostridium spp. are known to promote serotonin (5-
hydroxytryptamine (5-HT)) secretion from a subtype of
enteroendocrine cells called enterochromaffin cells in colonized
mice (Yano et al., 2015). The neurotransmitter serotonin is an
important regulator of enteric nervous system development,
gastrointestinal tract motility, and inflammation (Terry and
Margolis, 2017). Microbial sensing by TLRs present on
enteroendocrine cells also promotes the secretion of several other
hormones such, as glucagon-like peptide 1 (GLP-1) (Lebrun et al.,
2017) and peptide tyrosine-tyrosine (PYY) (Larraufie et al., 2017).
Collectively, these hormones increase insulin secretion (Grøndahl
et al., 2017), regulate mood, and induce satiety (Loh et al., 2015),
thereby influencing overall host physiology.

Stimulation of the innate immune response by the microbiota
also provides indirect resistance to infection in the gut. The
depletion of commensal microbes in the gut has a direct effect
on the viral immunity (Ichinohe et al., 2011; Abt et al., 2012).
Induction of IFN-λ and IL-18 or IL-22 is essential for an effective
antiviral innate immunity in the gut (Zhang et al., 2014; Nice et al.,
2015). Commensals stimulate the production of IL-18 and IL-22, but
actively suppress IFN-λ production, promoting viral persistence as a
part of the gut microbial population (Baldridge et al., 2015).
However, dysbiosis can lead to an imbalance in this complex
loop, resulting in pronounced antiviral immunity in the gut.

Alterations in the normal resident microbial flora alter the
normal gut immune response, as has been shown in the case of
altered antimicrobial response following antibiotic treatment (Cash
et al., 2006). As the production of AMPs requires TLR-dependent
stimulation of Paneth cells, an imbalance in the microbiota
population has been associated with impaired resistance to
bacterial infections (Brandl et al., 2007; Brandl et al., 2008).
MyD88-dependent TLR signaling at the intestinal barrier is also
essential for maintaining the spatial segregation of commensal
microbes and host tissues (Vaishnava et al., 2011). MyD88-
mediated secretion of RegIIIγ anti-bacterial lectin has been
shown to define both the composition and the spatial localization
of the intestinal microbiome. This could fundamentally determine
the balance between tolerogenic and pro-inflammatory immune
responses in the gut. In the absence of MyD88, commensal bacteria
have been shown to gain proximity to the intestinal surface, resulting
in a manifold increase in mucosa-associated bacteria compared to
that in wild type mice (Vaishnava et al., 2011).

PRR signaling also plays a pivotal role in defining the diversity of
the commensal population at the gut. This has been suggested by the
occurrence of dysbiosis (Tamboli et al., 2004), its association with
polymorphisms in the gene encoding for NOD2, and its overall
impact on host susceptibility to IBD such as Crohn’s disease (Hugot
et al., 2001; Ogura et al., 2001). Thus, the antimicrobial peptides and
secretory IgA produced in response tomicrobial sensing, balance the
microbial composition, thereby limiting the penetration of
commensal bacteria into the gut (Macpherson and Uhr, 2004).
This regulation of bacterial load and composition may be one of
the primary functions of PRRs in maintaining intestinal
homeostasis.
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3.3 IEC-microbiota-immune cells cross-talk

The signaling at the epithelial layer is not limited to the barrier
region, but the resulting effector molecules are actively disseminated
to the underlying mucosal layer. This, in turn influences the
development and maturation of the underlying immune cells.

The presence and function of M-cells at the epithelial barrier
suggests a much more dynamic role for epithelial cells in microbial
sensing and sampling than that of a rigid barrier system. M cells are
specialized cells that mediate a direct uptake of antigens and intact
microbes from the intestinal lumen and transport them for
presentation to resident immune cells. This effectively activates
the adaptive immune system. M-cells initiate phagocytosis of the
pathogen at the intestinal barrier upon recognition via PRRs.
GP2 functions as a receptor for type I pili on a subset of Gram-
negative enterobacilli (Hase et al., 2009) and is essential for immune
surveillance at mucosal surfaces. Cellular prion protein (PrPc) is a
glycosylphosphatidylinositol (GPI)-anchored protein that is
expressed on the apical surface of M cells (Nakato et al., 2009).
PrPc interacts with pathogens that contain heat shock protein 60
(HSP-60), a conserved surface protein with immunogenic properties
(Kaufmann, 1990).

Specific microbial signaling at the epithelial barrier also plays a
role in immune cell development. In particular, epithelial
NOD1 signaling has been shown to be important for C-C motif
chemokine 20 (CCL20)-mediated generation of isolated lymphoid
follicles from cryptopatches (CPs) in the gut (Bouskra et al., 2008).
Likewise, signaling via the innate receptors present on myeloid
cells of the lamina propria also affects epithelial cells and the
microbial population further in the intestinal lumen. Myeloid cells
modulate key pathways such as IL-22 cytokine expression by
innate lymphoid cells (ILCs) and induce the production of the
antimicrobial peptides RegIIIβ and RegIIIγ, which are important
for maintaining a spatial separation between the commensals and
the intestinal epithelial layer. This modulation plays an integral
role in supporting the spatial separation between commensals and
the intestinal mucosa (Zheng et al., 2008; Vaishnava et al., 2011;
Sonnenberg et al., 2012).

Another direct consequence of microbial sensing at the
epithelial layer is related to the secretion of immunoglobulin A
(IgA) in the gut. IgA has a specific role in the mucosal immune
system and also plays an important role in maintaining the spatial
segregation and composition of luminal microorganisms. TLR
signaling in IECs induces expression of B cell activating factors
that induce immunoglobulin class switch recombination in lamina
propria B cells in a T cell-independent manner (He et al., 2007;
Shang et al., 2008). TLR signaling in IECs also results in the secretion
of April and BAFF. April directly induces IgA class switching
recombination, while BAFF promotes B cell proliferation and
survival. Furthermore, IECs can also indirectly induce class
switching recombination by secretion of TSLP, which stimulates
dendritic cells in the lamina propria to secrete April (He et al., 2007).

Activation of TLR3, and TLR4 has also been shown to induce the
expression of polymeric immunoglobulin receptors involved in the
epithelial transport of immunoglobulin, thereby enhancing the
luminal IgA secretion (Schneeman et al., 2005). Thus, TLR
signaling in IECs is actively involved in multiple steps of
intestinal IgA secretion.

3.4 Tolerogenic effect of microbial
recognition at the epithelial barrier

A very important aspect of the overall immune function at the
intestinal mucosa is the ability of both the epithelial and immune
cells to discriminate microbial cues from commensals as opposed to
invasive pathogens. This is critical for maintaining a symbiotic
relationship between the host and the microbial population
present at the epithelial barrier. The successful establishment of
the microbial niches along the elaborate spaces of the epithelial
barrier is the result of the selective tolerogenic effect of the immune
system towards commensal microbes. A number of topological,
metabolic and genetic factors play an important role in establishing a
fine line between the tolerogenic and defensive functions of the
immune system.

The juxtaposition and polarity of PRR expression on epithelial
cells play a very primitive but consequential role in determining the
tolerogenic effect at the epithelial barrier. The unequal division of
labor between the PRRs present on the epithelial cell surface and
those in the cytosolic cellular compartments also provides a basis for
tolerance. Only invasive microbes that manage to penetrate the
barrier are detected by cytosolic and endosomal PRRs and trigger an
inflammatory response. TLR9 is expressed on both the apical and
basolateral sides of IECs (Figure 1). Ligand recognition on the apical
side activates a tolerogenic effect, whereas stimulation of TLR9 on
the basolateral side induces a robust inflammatory response (Lee
et al., 2006). However, apical stimulation of TLRs primed by LPS
leads to immediate degranulation and secretion of AMPs in Paneth
cells (Yokoi et al., 2019).

IECs also have an overall muted response to LPS due to a low
expression of TLR2, TLR4, the co-receptor MD-2, and CD14 (Abreu
et al., 2001; Funda et al., 2001). Many of the TLRs are expressed and
localized exclusively in the crypt epithelial cells of both the stomach
and intestine (Cario et al., 2000; Kawai and Akira, 2008; Abreu,
2010), where they are inaccessible to commensal bacteria. Small
intestinal IECs have been found to express very low levels of several
TLRs that are normally highly expressed in the colonic IECs (Price
et al., 2018). Furthermore, TLR4 has been reported to be sequestered
in the Golgi apparatus (Hornef et al., 2002) and requires prior
internalization of LPS to induce an immune response (Hornef et al.,
2003).

There are other mechanisms that have been investigated to
better understand commensal tolerance at the epithelial barrier. It
has long been speculated that bacterial pathogens may modulate
host epigenomics as a part of their virulence to establish contact
during invasion. In the case of commensal microbes, the analysis of
epigenetic modifications in the IECs of germ-free mice revealed a
low level of methylation on the genes encoding for the LPS sensor
TLR4, suggesting that commensal bacteria may be able to induce
tolerance through epigenetic repression of genes encoding for PRRs
(Takahashi et al., 2011). Commensal microbes have been shown to
actively dampen the overall immune response to their MAMPs by
suppressing the activation of pro-inflammatory pathways upon PRR
sensing. In resting cells, NF-κB is sequestered in the cytoplasm by
IκB, which masks NF-κB’s nuclear localization sequences. When the
receptor is stimulated, classical NF-κB activation occurs by
phosphorylating IκB, targeting it for ubiquitination and
subsequent proteasomal degradation (Nigro et al., 2014a).
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Commensal bacteria have been shown to prevent the degradation of
phosphorylated IκB by interfering with the host cellular machinery
that controls the processes of ubiquitination and degradation (Neish
et al., 2000; Collier Hyams et al., 2005; Tien et al., 2006).

A variety of inhibitors such as IRAK-M, Tollip, SIGIRR, and
A20 regulate TLR and NLR responses in IECs (Shibolet and
Podolsky, 2007). These inhibitors regulate the potential for
chronic inflammation in the gut by dampening the response of
the PRRs. SIGIRR has been characterized to play an active role
specifically in the IECs (Shibolet and Podolsky, 2007). Inhibitors
such as A20 have been studied to regulate NLRs in immune cells, but
the same has not yet been demonstrated in IECs (Hitotsumatsu
et al., 2008). miRNA-mediated regulation has also emerged as a
central regulatory mechanism supporting tolerance to commensal
MAMPs in the gut. In particular, MiR-155 plays an important role in
attenuating Helicobacter pylori–induced inflammation in gastric
epithelial cells (Xiao et al., 2009).

4 Epithelial recognition of microbial
signals and its implications in diseases

4.1 Infection and inflammatory state

Despite an overall muted response to the presence of microbial
cues and a tolerogenic response to MAMPs at the epithelial barrier,
the primary function of IECs remain to be the identification and
expulsion of any invading pathogen. The inflammasome-forming
NLRC4 is a sensor of flagellin and bacterial secretion systems, and its
epithelial expression promotes the extrusion of infected IECs from
the epithelial layer (Nordlander et al., 2014; Sellin et al., 2014).
NLRC4 has also been implicated for its role in protecting the host
from intestinal carcinogenesis (Hu et al., 2010; Allam et al., 2015).

Interestingly, PRR signaling is tightly connected to
mitochondria and the cellular response to microbial stimulation
can be orchestrated at mitochondria. For example, it is well
established that activation of various TLRs, including TLR1,
TLR2, and TLR4, induce translocation of TRAF6 to
mitochondria, resulting in increased ROS production, thereby
promoting an inflammatory response (West et al., 2011).
Interestingly, in addition to mitochondrial ROS production under
pro-inflammatory conditions, mitochondria are also capable of
releasing mitochondrial DNA, which acts as a DAMP, thereby
promoting inflammatory pathways mediated by TLR9-dependent
mechanisms. These pathways might play a role in the
pathophysiology of chronic inflammation in humans, as
mitochondrial DNA levels are significantly elevated in plasma
samples of both UC and CD patients and correlate with disease
severity (Boyapati et al., 2018). Pro-inflammatory mechanisms are
also mediated by the binding of oxidized mitochondrial DNA to the
NLRP3 inflammasome, which induces inflammasome activation
during apoptosis (Shimada et al., 2012; Iyer et al., 2013).

Mouse models of ulcerative colitis (UC) are effective tools for
studying inflammation in the context of diseases, and several models
have successfully established the relationship between excessive NF-
κB activation and the pathogenesis of IBD. However, several mouse
models have also demonstrated a beneficial role for NF-κB (Wullaert
et al., 2011) in maintaining intestinal homeostasis. NEMO is

involved in the activation of the canonical NF-κB signaling
pathway, and a mouse model with IEC-specific deletion of
NEMO shows spontaneous development of severe chronic colitis,
characterized by epithelial ulceration, infiltration of immune cells,
increased expression of pro-inflammatory mediators, impaired
expression of antimicrobial peptides, and translocation of bacteria
into the bowel wall (Nenci et al., 2007). This is thought to be due to
the fact that NF-κB deficiency leads to apoptosis of colonic epithelial
cells, triggering a chronic inflammatory response in the colon.
NEMO deficiency also sensitizes epithelial cells to tumor necrosis
factor (TNF)-induced apoptosis, triggering inflammation even in
the absence of NF-κB activation (Nenci et al., 2007). Mice lacking
TAK1, a molecule that acts upstream of the IKK complex in IECs,
have also been shown to develop spontaneous intestinal
inflammation, supporting the role of NF-κB activation in
maintaining intestinal mucosal homeostasis (Nenci et al., 2007).
These phenomena suggest a double-edged function of inflammatory
pathways in epithelial cells, as they both contribute to the
maintenance of intestinal homeostasis and facilitate a rapid
detection and clearance of pathogens upon invasion.

4.2 Inflammatory bowel disease (IBD)

Chronic inflammation in the gut is a causative factor in the
pathogenesis of IBD, including Crohn’s disease and ulcerative
colitis. Several factors related to PRR signaling at the epithelial
barrier are involved in the induction and development of an
inflammatory state in the gut.

Dysbiosis is strongly implicated in causing IBD. Exogenous
introduction of an Escherichia coli strain associated with Crohn’s
disease into TLR5 KO mice has been shown to promote disease
pathogenesis (Carvalho et al., 2012), suggesting that immune
dysfunction is an adjunct to specific microbial alterations in the
development of IBD. A number of genetic aberrations, including
NOD2 (Ogura et al., 2001; Macpherson and Uhr, 2004), which is
associated with immune activation by peptidoglycans, and
ATG16L1 (Hampe et al., 2007; Rioux et al., 2007), which plays a
role in autophagy, have been implicated in the development of
chronic inflammation. Variations in the TLR(s)- 2, −4, −5,
and −9 genes have also been implicated in the pathogenesis of
Crohn’s disease (Pierik et al., 2006; Toeroek et al., 2009; Eberl and
Boneca, 2010; Chassaing et al., 2014). Epithelial-specific deletion of
TLR5 has also been shown to result in microbial dysbiosis and low-
grade chronic inflammation (Chassaing et al., 2014).

The individual role of TLR signaling in the development of gut
inflammation may depend on the cell type and the interactions
between individual TLRs. In the case of colitis development
associated with TLR4 signaling, constitutively active TLR4 in
epithelial cells did not induce mucosal inflammation in villin-
TLR4 transgenic mice (Shang et al., 2008; Fukata et al., 2011).
Although selective deletion of MyD88 in IECs results in
spontaneous inflammation of the small intestine (Gong et al.,
2010), suggesting a protective function of MyD88,
MyD88 signaling in myeloid cells was found to be a driver of
intestinal inflammation (Asquith et al., 2010).

One of the major factors contributing to the development of
chronic inflammation in IBD is the loss of tolerance to commensal
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MAMPs at the epithelial barrier. Suppression of TLR9 signaling by
adenoviral oligodeoxynucleotides has been shown to suppress
intestinal inflammation in several mouse models of chronic
colitis (Obermeier et al., 2005). Adenoviral oligodeoxynucleotides
block the effect of bacterial cytosine-phosphate-guanosine
oligodeoxynucleotides, and therefore innate immune signaling by
commensal-derived DNA has been demonstrated as one of the
factors inducing intestinal inflammation through activation of
TLR9 during chronic colitis. Thus, while TLR signaling
contributes to cytoprotection and mucosal restitution in the DSS
colitis model, it may also be involved in promoting persistent
mucosal inflammation in response to commensal bacteria
(Obermeier et al., 2005).

NOD2 regulates the intestinal commensal flora through the
secretion of bactericidal factors (Petnicki-Ocwieja et al., 2009).
Impaired NOD2 signaling has been shown to alter commensal
composition and increase susceptibility to intestinal inflammation
due to defective secretion of antimicrobial peptides in the gut,
followed by an abnormal immune response to the altered
commensal flora (Petnicki-Ocwieja et al., 2009). Impairment of
epithelial repair due to certain polymorphisms associated with
TLRs is one of the factors contributing to the development and
progression of IBD. TLR2 has been shown to play an important role
in the induction of connexin-43 (Cx43)-mediated intracellular
communication through intracellular gap junctions and controls
IEC barrier function and restitution during acute and chronic
inflammatory injury (Ey et al., 2009).

The nuclear receptor peroxisome proliferator-activated
receptor-γ (PPAR-γ) regulates the expression of NLRP6 in IECs.
PPAR-γ, in turn, is known to be induced by TLR4 signaling. This
provides a potential anti-inflammatory role for TLR4 as it indirectly
regulates NLRP6-mediated protection against DSS-induced mucosal
damage (Dubuquoy et al., 2003; Kempster et al., 2011). Furthermore,
NLRP3 has a prominent role in intestinal stromal cells in providing
resistance to DSS-induced colitis. Both Caspase-1−/− and NLRP3−/−

mice have impaired epithelial proliferation and increased mucosal
permeability accompanied by defective healing responses tomucosal
damage during DSS-induced colitis (Zaki et al., 2010a). However,
the mechanism of NLRP3-mediated regulation of epithelial
proliferation is still unknown, although it may involve IFN-γ and
IL-18 in the regulation of cell proliferation (Fantuzzi et al., 1998;
Nava et al., 2010; Zaki et al., 2011). Dectin-3 deficiency was also
found to promote colitis development through severe colonic
epithelial cell damage and impaired mucosal healing in the DSS
colitis model. This suggests that CLRs may have additional roles in
disease pathogenesis (Wang et al., 2016).

4.3 Colorectal carcinoma

Chronic intestinal inflammation triggers tissue transformation
to become neoplastic and promotes a higher incidence of colorectal
cancer in patients with IBD. Abnormal PRR signaling is thought to
result in the dysregulated expression of genes and enzymes that
regulate cell apoptosis, proliferation, and DNA repair. Frequent
cycles of epithelial injury and repair, as in the case of chronic
intestinal inflammation, in the presence of tumor-promoting
cytokines, chemokines, and prostaglandins, may also act as a

predisposition to genetic mutations, thereby increasing the risk of
neoplastic transformation (Kundu and Surh, 2008; Ono, 2008).
TLR4 stimulation has been shown to promote the proliferation
of human IECs via epidermal growth factor receptor ligand
expression (Hsu et al., 2010). Abnormal signaling via TLR2 and
TLR4 in both IECs and sub-epithelial macrophages has been shown
to induce dysregulated epithelial proliferation and therefore may
promote the development of malignancies in the setting of chronic
intestinal inflammation. Dysbiosis that arises in the absence of
NLRP6 has also been demonstrated to promote cancer
development through IL6-induced epithelial proliferation (Hu
et al., 2013).

In the AOM-DSS-induced colitis-associated cancer model in
mice, a single injection of azoxymethane (AOM) followed by
repeated cycles of DSS treatment and periods of recovery is used
to model colitis-associated cancer. The model represents recurrent
mucosal injury and repair leading to dysplastic transformation in the
colon (Suzuki et al., 2005). Some of the work in this mouse model
provides a better understanding of the interplay between the various
IEC-expressed TLRs in inducing epithelial hyperplasia under
chronic inflammatory conditions. The TLR4−/− mouse has been
shown to be protected against tumor development with reduced
expression of mucosal COX-2, PGE2 and amphiregulin (Fukata
et al., 2007). Bone marrow transplant-based analysis of the role of
selective TLR4 signaling in colonic epithelial cells versus the myeloid
cells showed a seminal role TLR4 signaling in epithelial cells in the
development of dysplastic lesions (Fukata et al., 2009). This
highlights the central role of innate immune signaling in
epithelial cells in the formation of dysplastic lesions, as well as
the recruitment of Cox-2-expressing macrophages and neutrophils
during the development and progression of colorectal cancer.
Conversely, TLR2−/− mice treated with AOM-DSS have been
shown to have an increased tumor incidence with rampant
proliferation and dampened apoptosis, although TLR2 deletion
under normal conditions shows a reduced proliferation and
increased apoptosis in IECs (Lowe et al., 2010). This increased
tumor burden in TLR2−/− mice was further explained by the
overactivation of signal transducer and activator of transcription
3 (STAT3) in epithelial cells and the elevated expression of tumor-
promoting cytokines, such as IL-6, IL-17A and TNF-α in the gut
mucosa.

MyD88−/− mouse models show variable responses to carcinoma
challenge, depending on the differential inflammation in the models
(Uronis et al., 2009; Salcedo et al., 2010; Schiechl et al., 2011).
MyD88−/− mice show no proliferation in IECs after AOM-DSS
treatment (Schiechl et al., 2011), however, MyD88−/− mice show
an overall increased susceptibility to AOM-DSS induced intestinal
tumors due to an upregulation of Wnt signaling associated genes,
angiogenesis and DNA repair. MyD88−/− mice also show a higher
mutation rate in the β-catenin gene in IECs as a result of AOM-DSS
treatment, explaining the susceptibility to tumor pathogenesis
(Salcedo et al., 2010). MyD88−/− mouse models further explain
the development of tumorigenesis in the context of chronic
inflammation. In the absence of a chronic inflammation,
MyD88 deficiency has been shown to result in resistance to
intestinal tumor development in the ApcMin/+ and AOM mouse
models (Rakoff-Nahoum and Medzhitov, 2007; Salcedo et al., 2010),
demonstrating that MyD88 signaling can have both tumorigenic
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and anti-tumorigenic effects depending on the inflammatory
context (Brandl et al., 2010).

The NLRP3−/− as well as the NLRP6−/− mice have been shown to
have a higher incidence of intestinal tumors in the AOM-DSS model
due to their inability to produce mature forms of IL-18 and IL-1β
(Allen et al., 2010; Zaki et al., 2010b; Hu et al., 2010; Chen et al.,
2011). Deletion of functional NLRC4, NLRP12, and caspase-1 also
results in increased incidence of tumorigenesis in mouse models
(Chen et al., 2008; Hu et al., 2010). The exact mechanism underlying
increased IEC proliferation in NLR-deficient mice remains largely
unknown, but NLRP6−/− mice have shown increased expression of
proto-oncogenic genes such as Mycl1 involved in the Wnt pathway
in the AOM-DSS model (Normand et al., 2011), highlighting the
possibility of similar mechanisms involved in the tumorigenesis in
other knock-out models.

MUC2 deficiency in mice results in an increased predisposition
to inflammation-induced colorectal cancer due to the inability to
produce mucin via goblet cell stimulation (Velcich et al., 2002; Van-
der Sluis et al., 2006). The specific role of epithelial cell signaling in
the pathogenesis of colorectal cancer, independent of myeloid cells,
is a very interesting facet of studying the immunogenic role of IECs
in the gut. Deficiency of the epithelial cell-specific MyD88-
dependent MMP7 molecule in the ApcMin/+ mouse model of
human familial adenomatous polyposis has been shown to
reduce the incidence of tumorigenesis by more than 60% (Wilson
et al., 1997; Rakoff-Nahoum and Medzhitov, 2007). Furthermore,
MyD88-mediated tumorigenesis driven by epithelial cell signaling
has been shown to result in the post-transcriptional stabilization of
the c-myc protein, which is involved in the upregulation of anti-
apoptotic mechanisms, proliferation and angiogenesis (Lee et al.,
2010). This study using the ApcMin/+ mouse model provides direct
evidence of the IEC-dependent signaling pathway leading to
rampant IEC proliferation and tumor growth.

The relative role of epithelial cells versus the myeloid cells in
colitis-associated tumor development is further validated by the
observed reduction in tumor incidence in IEC-specific IKK-β
deletion, without affecting the overall intestinal inflammation of
both AOM and ApcMin/+ mouse models (Greten et al., 2004).
NOD1 signaling has been shown to be protective against colon
tumor development in both AOM-DSS and ApcMin/+ models, where
NOD1 plays a pivotal role in maintaining the intestinal epithelial
barrier against chemically induced chronic injury, as in the case of
these mouse models (Chen et al., 2008). In humans,
NOD2 mutations have been associated with a significant risk of
developing colorectal cancer (Mockelmann et al., 2009; Tian et al.,
2010).

5 Summary

PRR-mediated microbial recognition and signaling at the
intestinal epithelial barrier plays a multifaceted role in
maintaining epithelial barrier function and homeostasis,
microbial composition and localization, development of overall
mucosal immune functions, and defines a number of host
physiological and metabolic functions. Several mouse model-
based studies using IEC-specific PRR knockouts have
demonstrated the importance of PRR signaling at the epithelial

barrier and its impact on the various immune and metabolic
functions in this region. However, further investigation is
required to characterize the expression and specific roles of a
number of these PRRs in IECs, independent of their roles in
myeloid cells. Recently, the β-glucan receptor Dectin-1 has been
shown to be a positive inducer of intestinal prostaglandin E2 (PGE2)
secretion by myeloid-derived suppressor cells (MDSCs), leading to
enhanced colorectal tumorigenesis in human colorectal cancer
patient cohorts as well as in AOM-DSS and ApcMin/+ mouse
models. Dectin-1 signaling was correlated with increased PGE2-
synthase expression and suppressed IL22RA2 in human CRC-
infiltrating cells (Tang et al., 2023). The intestinal epithelial
barrier is the primary site of CRC disease pathogenesis and
progression, and thus it is intriguing to question the exact role of
Dectin-1 signaling, among other innate immune signaling in IECs in
CRC development and pathogenesis. Several innate immune
receptors and the resulting crosstalk between the drivers of these
signaling cascades have so far only been characterized in myeloid
cells, and their independent roles on IECs warrants further
investigation. However, in the above-mentioned study, Tang
et al. could not specifically determine the effect of Dectin-1
receptor ablation on PGE2, as well as Il22ra2 expression in the
intestinal epithelial cells (Tang et al., 2023).

Innate immune signaling at the epithelial barrier has a complex
role due to its proximity to the gut microbiota. Although dysbiosis,
or a shift in the overall microbial population at the mucosal region,
has been implicated in the pathogenesis of several inflammatory
diseases as discussed in this review, there is no consensus on the
exact composition of the microbiota in health versus disease
(McBurney et al., 2019). In addition, it would be critical to
understand the multitude of factors that lead to the loss of an
overall tolerogenic immune response in the mucosal region, leading
up to a chronic inflammatory state. Dysbiosis, as a pathologically
relevant factor in intestinal inflammatory disorders, is further
hampered by the limitations in understanding weather a change
in the commensal microbial population is a prerequisite for the
development of inflammation or whether the onset of an
inflammatory setting leads to a shift in the microbial population.
Furthermore, the labeling of certain commensals involved in the
development of inflammatory diseases as pathobionts has been
questioned and the inclusion of additional factors such as the
‘microbial context’ has been emphasized to play a key role in
defining the opportunistic properties of the gut microbiota in
inflammation (Jochum and Stecher, 2020). A deeper
understanding of the role of different commensal strains in
different contexts of infection and inflammation would allow a
broader definition of their contribution to disease pathogenesis.

Crosstalk between the various drivers of innate immune
signaling pathways is another very interesting component of PRR
signaling at the epithelial barrier. The mechanistic activation of IEC-
bound PRRs by their cognate ligands and how activation of these
PRRs influence the various canonical and non-canonical signaling
pathways requires further investigation. In this context, an orphan
nuclear receptor, Nur77, has recently been shown to sense
intracellular LPS, leading to non-canonical NLRP3 inflammasome
activation via gasdermin-D (GSDMD) processing in macrophages
(Zhu et al., 2023). Nur77 expression in macrophages was shown to
increase upon treatment with various cognate TLR ligands,
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suggesting a possible crosstalk between the canonical and non-
canonical signaling pathways of LPS sensing. Further studies
investigating such convergent signaling pathways would highlight
such crosstalk and their net physiological impact on innate immune
signaling in IECs.
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The development of inflammatory bowel diseases (IBD) involves the breakdown of
two barriers: the epithelial barrier and the gut-vascular barrier (GVB). The
destabilization of each barrier can promote initiation and progression of the
disease. Interestingly, first evidence is available that both barriers are
communicating through secreted factors that may accordingly serve as targets
for therapeutic modulation of barrier functions. Interferon (IFN)-γ is among the
major pathogenesis factors in IBD and can severely impair both barriers. In order to
identify factors transmitting signals from the GVB to the epithelial cell barrier, we
analyzed the secretome of IFN-γ-treated human intestinal endothelial cells
(HIEC). To this goal, HIEC were isolated in high purity from normal colon
tissues. HIEC were either untreated or stimulated with IFN-γ (10 U/mL). After
48 h, conditionedmedia (CM) were harvested and subjected to comparative hyper
reaction monitoring mass spectrometry (HRM™ MS). In total, 1,084 human
proteins were detected in the HIEC-CM. Among these, 43 proteins were
present in significantly different concentrations between the CM of IFN-γ- and
control-stimulated HIEC. Several of these proteins were also differentially
expressed in various murine colitis models as compared to healthy animals
supporting the relevance of these proteins secreted by inflammatory activated
HIEC in the inter-barrier communication in IBD. The angiocrine pathogenic
impact of these differentially secreted HIEC proteins on the epithelial cell
barrier and their perspectives as targets to treat IBD by modulation of trans-
barrier communication is discussed in detail.
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Introduction

Inflammatory bowel diseases (IBD) affect several million
individuals worldwide, with Crohn’s disease (CD) and ulcerative
colitis (UC) being the clinically predominant forms. IBD similarities
are based on their common presentation as intestinal chronic
inflammatory disorders characterized by cyclic flares of
destructive inflammation resulting in severe impact on the
intestinal barrier functions (Zhang and Li, 2014). Heterogeneity
is present at the levels of clinical presentation, immune reactions,
molecular-genetic components and microbial players involved
(Lloyd-Price et al., 2019).

The intestinal barrier serves manifold tasks, which is also evident
from its complex structure composed of two sequential physical
barriers. The first barrier from the intestinal lumen is established by
the epithelial barrier that consists of a single cell layer of epithelial
cells overlaid by a mucus layer, which physically separates the
microbiota in the gut lumen from epithelial cells (Stürzl et al.,
2021). Directly below this epithelial barrier lies the gut-vascular
barrier (GVB) controlling the entry of molecules and cells into the
portal circulation and their subsequent delivery to the liver (Spadoni
et al., 2015; Spadoni et al., 2017).

The structure and functions of the epithelial barrier have been
comprehensively described in previous work (López-Posadas et al.,
2017). In contrast, the existence and significant contribution of the
GVB to IBD has been recognized only recently. Clinical evidence for
a role of the GVB in IBD was obtained by the observation that the
vasculature in patients exhibits increased permeability during acute
phases of the disease, which is decreasing or absent in remission
phases (Langer et al., 2019). In addition, studies in preclinical mouse
models revealed that a breakdown of the GVB in the colon allows the
permeation of bacteria into the blood with access to distant organs,
including the liver, with significant impact on IBD pathogenesis
(Spadoni et al., 2015). In own studies, we detected that IFN-γ, an
immune-modulatory cytokine with driver activity in IBD
pathogenesis, increases vascular permeability in the dextran
sodium sulfate (DSS)-induced colitis model (Langer et al., 2019).
Increased intestinal blood vessel permeability was associated with
structural and functional perturbations of the adherens junction
protein vascular endothelial (VE)-cadherin and significant
worsening of the disease. An endothelial specific knock-out of
the IFN-γ-receptor 2 (IFNγR2) as well as pharmacological vessel
stabilization in mouse models suppressed vascular permeability and
the development of acute and chronic DSS-colitis (Langer et al.,
2019). These results provided clear evidence for the importance of
the vascular barrier in IBD.

Effective cooperation of two different barriers requires
coordinated action and communication. Well-established
communication pathways between the epithelial barrier and the
GVB are indicated by the observation that nutrient composition in
the gut can affect the blood flow (Stan et al., 2012; Gentile and King,
2018). In addition, epithelial cells can secrete factors in response to
pathogens such as cytokines, chemokines, reactive oxygen species,
and lipid mediators, which can activate endothelial cells (Boueiz and
Hassoun, 2009; Franze et al., 2016; Ferrari et al., 2017; Gentile and
King, 2018).

However, the endothelium is not only a passive tube system
transporting blood and receiving signals from surrounding cells, but

exerts perfusion-independent functions, which actively contribute to
the tissue microenvironment in organ development and diseases. In
IBD, the intestinal microvasculature is notably involved in immune
cell recruitment through expression of cell adhesion molecules
(CAMs), such as VCAM1 or MadCAM1 (Binion et al., 1998).
The inhibition of T-cell recruitment by targeting the binding of
α4β7 integrins to endothelial MadCAM1 represents a new
therapeutic axis in IBD (Neurath, 2017).

The first hint for an active paracrine function of the endothelium
within the tissue microenvironment was derived from cancer
research (Butler et al., 2010). Subsequent studies identified tumor
repressive molecules that are expressed and released from
endothelial cells, including the slit homolog 2 protein (Slit 2),
perlecan, thrombospondin and SPARCL1 (Butler et al., 2010;
Franses et al., 2011; Naschberger et al., 2016; Hinshaw and
Shevde, 2019). Now, it is generally accepted that endothelial cells
can actively trigger the microenvironment via so called “angiocrine
factors” -a term that. includes secreted and membrane-bound
inhibitory or stimulatory growth factors, trophogens, chemokines,
cytokines, extracellular matrix components, exosomes, and other
cellular products expressed by endothelial cells (Rafii et al., 2016).

Angiocrine functions in IBD have not been extensively
investigated as yet. Only recently, we performed a meta-analysis
to investigate whether angiocrine signaling in the colon may impact
epithelial barrier functions (Stürzl et al., 2021). This approach
yielded six putative candidates that are secreted from endothelial
cells and may contribute to IBD pathogenesis, including proteins of
the von Willebrand factor domain superfamily (VWA1, vWF),
tissue inhibitor of metalloproteinases (TIMP)-1, matrix
metalloproteinase (MMP)-14, the chemokine CXCL10, and the
matricellular protein SPARCL1 (Stürzl et al., 2021). The
expression and known functions of these proteins supported the
hypothesis that they may be active in IBD. However, the
bioinformatical analysis also showed that the overlap of genes
retrieved from the different studies was very low, which was well
in agreement with the high variation of activation and organ-
dependent plasticity of endothelial cells (Stürzl et al., 2021).

Analysis of the IFN-γ-induced
secretome in HIEC

Here we aimed to determine putative angiocrine factors released
from cultivated primary human intestinal endothelial cells (HIEC)
under pathogenically relevant stimulation in an experimental
approach. Based on own previous results we used IFN-γ as a
model cytokine for stimulation (Langer et al., 2019). In order to
reduce pathogenesis-related heterogeneity we refrained from using
patient-derived human HIEC but focused on highly pure cultures of
healthy HIEC instead. To this goal, HIEC were isolated from healthy
colon areas of five patients who underwent surgical therapy for
colorectal cancer (CRC) (see Supplementary Methods). Endothelial
cells were isolated by FACS-based cell sorting following previously
established protocols (Naschberger et al., 2016; Naschberger et al.,
2018). A purity above 98% of all five cultures was determined with
reverse transcription quantitative polymerase chain reaction (RT-
qPCR) and cytochemistry as described previously (Naschberger
et al., 2016; Naschberger et al., 2018) and is exemplarily shown
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FIGURE 1
The secretome of IFN-γ-treated human intestinal endothelial cells. (A) Cultivated human intestinal endothelial cells (HIEC) uniformly express the
endothelial cell-specific CD31 antigen whereas the epithelial colorectal cancer cell line DLD1 is negative. (B) No difference in the cell phenotype is
detected in untreated and IFN-γ-treated HIEC. (C) IFN-γ treatment (10 U/mL, 48 h) induces expression of GBP-1 in all HIEC cultures as determined by RT-
qPCR. (D) Volcano blot of the secretome of IFN-γ-treated HIEC. Proteins present in significantly different concentrations in the cell culture
supernatants of IFN-γ-treated and untreated HIEC are indicated in red. (E) Box blots showing differential secretion of the different factors in all HIEC
cultures (n = 5) in response to IFN-γ. p-values were calculated with the one sample t-test (μ = 0) and were corrected for overall FDR using the q-value
approach (Storey and Tibshirani, 2003). (F) IFN-γ treatment (10 U/mL, 48 h) induces secretion of GBP-1 in all HIEC cultures as determined by GBP-1-
specific ELISA. (G) Expression of genes encoding the top ten secreted proteins from IFN-γ-treated HIEC in different experimentally inducedmurine colitis
models. Expression relative to healthy control mice is indicated by color code. Numbers are representing adjusted p-values of statistical differences. (A,B)
Scale bars correspond to 500 µm. (C,F) p values: *** = p <0.001, ** = p <0.01, and * = p <0.05, paired t-test.
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TABLE 1 Significantly changed proteins between the supernatants of IFN-γ treated and untreated HIEC.

Protein description Gene ID Number of precursors Ratio p-value

C-X-C motif chemokine 9 CXCL9 3 3625.19 8.43E-09

C-X-C motif chemokine 10 CXCL10 8 348.02 2.00E-09

Probable carboxypeptidase X1 CPXM1 1 126.95 3.15E-03

Secreted and transmembrane protein 1 SECTM1 4 112.59 1.70E-06

Gamma-interferon-inducible lysosomal thiol reductase IFI30 5 92.04 1.89E-07

Fractalkine CX3CL1 2 58.11 3.79E-04

Interleukin-18-binding protein IL18BP 3 20.93 2.32E-06

Complement factor B CFB 2 15.52 3.60E-04

Guanylate-binding protein 2 GBP2 3 11.41 2.94E-03

Guanylate-binding protein 1 GBP1 14 10.09 1.27E-11

Hyaluronan and proteoglycan link protein 3 HAPLN3 7 6.86 3.88E-05

Cathepsin S CTSS 11 4.23 1.13E-07

Signal transducer and activator of transcription 1-alpha/beta STAT1 3 4.00 2.74E-04

Tryptophan-tRNA ligase. cytoplasmic WARS1 12 3.91 2.85E-10

Golgi membrane protein 1 GOLM1 16 3.67 6.27E-15

Complement factor H CFH 31 3.57 5.47E-19

Galectin-3-binding protein LGALS3BP 15 3.20 3.72E-13

Complement C1r subcomponent C1R 11 2.65 6.89E-17

Cytosol aminopeptidase LAP3 3 2.58 1.86E-03

Tissue-type plasminogen activator PLAT 20 2.41 7.70E-08

Legumain LGMN 11 2.07 3.38E-04

HLA class I histocompatibility antigen. C alpha chain HLA-C 13 1.91 5.51E-04

Cystatin-C CST3 10 1.88 1.88E-03

Keratin. type I cytoskeletal 14 KRT14 10 1.88 6.29E-05

Midkine MDK 8 1.74 3.10E-03

Beta-2-microglobulin B2M 5 1.72 2.06E-07

Procathepsin L CTSL 7 1.61 8.39E-04

Glypican-1 GPC1 7 0.67 1.87E-03

Basement membrane-specific heparan sulfate proteoglycan core protein HSPG2 170 0.64 7.03E-37

Clathrin heavy chain 1 CLTC 30 0.64 5.30E-08

X-ray repair cross-complementing protein 6 XRCC6 6 0.63 5.72E-03

Endothelial cell-specific molecule 1 ESM1 6 0.60 1.67E-03

Ephrin type-B receptor 4 EPHB4 2 0.60 1.71E-03

Ephrin-A1 EFNA1 4 0.59 2.42E-03

MAM domain-containing protein 2 MAMDC2 20 0.58 1.55E-08

Eukaryotic translation initiation factor 3 subunit B EIF3B 4 0.57 4.86E-03

Vesicle-trafficking protein SEC22b SEC22B 2 0.57 4.10E-03

Lymphatic vessel endothelial hyaluronic acid receptor 1 LYVE1 4 0.53 4.67E-04

(Continued on following page)
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here by the uniform expression of the endothelial marker CD31 in
all HIEC of the different patients but not in the CRC tumor cell line
DLD1 (Figure 1A, Supplementary Figures S1A).

The five HIEC cultures were treated with IFN-γ which did not
induce different morphology in untreated as compared to treated
HIEC (Figure 1B, quantitative evaluation Supplementary Figures
S1B). However, successful stimulation of all five cultures was
indicated by the expression of IFN-γ-induced guanylate binding
protein-1 (GBP-1), a well-established marker for IFN-γ stimulation
of eukaryotic cells (Guenzi et al., 2001; Lubeseder-Martellato et al.,
2002), which was highly increased in all stimulated HIEC
(Figure 1C).

Next, cell culture supernatants were harvested from the IFN-γ-
treated and untreated HIEC and subjected to hyper reaction
monitoring mass spectrometry (HRM™ MS). Comparison of
stimulated and unstimulated cultures identified 1,713 proteins
detected by a mean of 5.79 peptides per protein. From all
proteins identified, 1,084 were of human origin (629 from
medium FBS) with 43 proteins differentially secreted between the
CM of IFN-γ-stimulated and unstimulated HIEC (Figure 1D, red;
Table 1). The top ten differentially secreted proteins included the
chemokines CXCL9, CXCL10 and fractalkine as well as the IFN-γ-
induced secreted proteins secreted and transmembrane protein 1
(SECTM1 or K12), gamma-interferon-inducible lysosomal thiol
reductase (IFI30) and GBP-1 (Figure 1E). Of note, increased
secretion of GBP-1 by IFN-γ-treated HIECs as detected by mass
spectrometry was confirmed by independent ELISA (Figure 1F).

Interestingly, with the exception of CXCL10 no further top
candidate of our previous meta-analysis was detected in the present
study confirming that endothelial cells exhibit high tissue-related
heterogeneity and suggesting that HIEC should be preferentially
used in order to obtain data of relevance for IBD.

Pathogenic impact of the vascular IFN-
γ-secretome in IBD

In order to determine the pathogenic impact of the intestinal
vascular IFN-γ-induced secretome, the expression of the top ten
secreted proteins was examined in different murine models of
experimentally induced colitis, including acute and chronic DSS-
colitis as well as oxazolone-induced colitis and T-cell transfer colitis
in a next step. The expression of the genes encoding CXCL9,
CXCL10, CPMX1, IL18BP and GBP2 was highly significantly
increased in each of the different models (Figure 1G). Moreover,

GBP-1 and IFI30 showed an increased expression in three and two
of the models, respectively (Figure 1G). Only SECTM1, fractalkine
and CFB did not show a significant increase of expression in any of
the different colitis models (Figure 1G). Altogether, seven of the ten
genes, encoding for the most differentially secreted proteins from
HIEC in the presence of IFN-γ, also showed significantly increased
expression in experimentally induced colitis models, supporting
their function in pathogenesis. In the following, the most relevant
top candidates involved in IBD pathogenesis retrieved by our
screening are discussed in detail.

Discussion

CXCL10

CXCL10 is an 8.7 kDa non-glutamic acid leucine-arginine
(ELR)-CXC chemokine, which acts as a ligand for the
CXCR3 receptor (Singh et al., 2007). CXCL10 is secreted by
several cell types, including endothelial cells, in response to IFN-
γ to induce the recruitment and activation of CXCR3+ cells (Singh
et al., 2007). CXCL10 is upregulated in colonic tissues of patients
with UC and CD compared to control non-IBD tissues (Uguccioni
et al., 1999; Zahn et al., 2009; Schroepf et al., 2010; Hosomi et al.,
2011; Ostvik et al., 2013). Accordingly, the number of CXCR3-
expressing immune cells is increased in the lamina propria of IBD
patients (Singh et al., 2007). Expression of CXCL10 in colon biopsies
correlates with secondary loss of response to anti-TNF-α therapy
after achieving an initial response (Luther et al., 2018). Elevated
CXCL10 serum levels correlate with extra-intestinal manifestations
indicating that CXCL10 is released into the circulation during IBD
(Martinez-Fierro et al., 2019). Furthermore, CXCL10 serum levels
are increased in IBD patients with unstable remission compared to
patients with stable remission (Kessel et al., 2021). Based on these
findings, several clinical trials were performed to test the efficacy of
eldelumab, a human monoclonal antibody against CXCL10, as
treatment for UC (Trivedi and Adams, 2018). Despite trends
towards clinical response and remission, the primary and
secondary end points were not met and further dose-response or
combination studies are warranted (Danese and Panés, 2014; Mayer
et al., 2014; Sandborn et al., 2016). In murine colitis models,
inhibition of CXCL10 reduces intestinal inflammation (Sasaki
et al., 2002; Singh et al., 2003; Hyun et al., 2005; Suzuki et al.,
2007; Zhao et al., 2017) but also had unexpected effects on intestinal
epithelial cells (Sasaki et al., 2002; Singh et al., 2003; Hyun et al.,

TABLE 1 (Continued) Significantly changed proteins between the supernatants of IFN-γ treated and untreated HIEC.

Protein description Gene ID Number of precursors Ratio p-value

Splicing factor. proline- and glutamine-rich SFPQ 4 0.52 6.29E-03

Annexin A6 ANXA6 6 0.50 1.91E-04

Stromelysin-2 MMP10 9 0.48 7.77E-06

Placenta growth factor PGF 3 0.47 1.22E-03

Protein SETSIP; Protein SET SETSIP, SET 2 0.42 8.19E-05
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2005; Suzuki et al., 2007; Zhao et al., 2017). Neutralization of
CXCL10 resulted in increased epithelial cell proliferation and
decreased apoptosis, which resulted in reduced epithelial
ulceration and longer colon crypts (Sasaki et al., 2002; Suzuki
et al., 2007). In addition, CD patients with the highest levels of
the IFN-γ-induced chemokines CXCL9, CXCL10 and
CXCL11 showed hypertrophied epithelial layers at multiple sites
(Singh et al., 2007). These findings suggest that CXCL10 secreted by
endothelial cells during intestinal inflammation is not only involved
in immune cell recruitment but also crypt cell growth regulation and
extra-intestinal manifestations.

CXCL9

Similarly to CXCL10, CXCL9 is a CXC-chemokine induced by
IFN-γ in numerous cell types. It also binds to the CXCR3 receptor,
and is involved in the recruitment of granulocytes and
mononuclear cells. CXCL9 expression is increased in mucosal
samples of UC and CD patients (Hosomi et al., 2011; Elia and
Guglielmi, 2018; Caruso, 2019) and positively correlates with
disease activity and negatively with response to treatment using
corticosteroids in UC or anti-TNF-α in CD (Egesten et al., 2007;
Lacher et al., 2007; Luther et al., 2018; Zhong et al., 2022). Serum
CXCL9 levels also reflect disease activity in both UC and CD
(Caruso, 2019; Bergemalm et al., 2021; Boucher et al., 2022; Chen
et al., 2022) and circulating CXCL9 was identified in preclinical CD
and UC as an IBD-risk biomarker (Bergemalm et al., 2021;
Leibovitzh et al., 2023) that predicts relapse in UC and CD
(Kessel et al., 2021; Walshe et al., 2022). At the molecular level,
CXCL9 has been shown to inhibit the reconstitution of the
intestinal mucosa after injury (Lu et al., 2015) and to control
E. coli overgrowth through the pyruvate dehydrogenase-encoding
aceE gene in a DSS-induced colitis model (Wei et al., 2022). Hence,
CXCL9 released by endothelial cells might not only increase
immune cell recruitment but also may compromise the
epithelial barrier and alter the microbiota in intestinal
inflammation.

Fractalkine/CX3CL1

Fractalkine (FKN/CX3CL1) is a transmembrane protein which
mediates leukocyte adhesion to endothelial cells (Sans et al., 2007).
In addition, a soluble form of fractalkine with chemoattractive
properties is secreted by cleavage. Its receptor, CX3CR1, is
expressed primarily on the surface of monocytes, natural killer
cells, and CD8+ T cells and mediates both adhesive and
chemoattractive functions (Sans et al., 2007). Fractalkine
expression is upregulated by inflammatory cytokines (IFN-γ,
IL-1β and TNF-α) or by direct leukocyte contact (Muehlhoefer
et al., 2000; Sans et al., 2007), and has been detected in intestinal
epithelial cells and endothelial cells both in normal small intestine
and in active Crohn’s disease mucosa (Muehlhoefer et al., 2000).
However, significantly higher levels of fractalkine mRNA were
found in the intestine during active CD and UC (Muehlhoefer
et al., 2000; Brand et al., 2006; Kobayashi et al., 2007). Similarly,
HIECs isolated from IBD patients exhibited significantly stronger

fractalkine expression as compared to control HIECs (Sans et al.,
2007). This correlated with significantly higher numbers of
mucosal circulating CX3CR1+ T cells in active IBD compared
to inactive IBD or healthy subjects (Kobayashi et al., 2007; Sans
et al., 2007). The presence of two CX3CR1 polymorphisms (T280M
and V249I) has been associated with intestinal stenosis in CD
patients (Brand et al., 2006; Sabate et al., 2008). The knockout/
blockade of fractalkine attenuated mucosal inflammation in
murine colitis models and showed a moderate clinical response
in CD patients (Wakita et al., 2017; Kuboi et al., 2019; Tabuchi
et al., 2019; Matsuoka et al., 2021). Targeting endothelial
fractalkine might be particularly important to block leukocyte
adhesion and migration, platelet adhesion and even
angiogenesis (Scaldaferri et al., 2009; Rutella et al., 2011).

GBP-1 and GBP-2

Two members of the guanylate binding protein family, GBP-1
and GBP-2, were detected in our analysis. GBPs are large GTPases,
which are expressed in response to stimulation by inflammatory
cytokines (Britzen-Laurent et al., 2016). GBP-1 is among the most
highly induced proteins by IFN-γ in eukaryotic cells. In vivo, a
strong expression of GBP-1 is associated with the presence of
inflammation and was detected in inflamed tissues during
autoimmune diseases or IBD, where it is mostly associated with
blood vessels (Lubeseder-Martellato et al., 2002; Haep et al., 2015;
Ning et al., 2023). In pediatric patients with IBD, a high expression
of GBP-1 was associated with an absence of early response to anti-
TNF treatment (Salvador-Martín et al., 2021). Murine GBP-1/GBP-
2b is also upregulated during experimental colitis (de Buhr et al.,
2006). Intracellular expression of GBP-1 inhibits angiogenesis in
endothelial cells (Guenzi et al., 2001), and inhibits proliferation and
migration in tumor cells and intestinal epithelial cells, while
preventing cell apoptosis (Schnoor et al., 2009; Britzen-Laurent
et al., 2013; Ostler et al., 2014). GBP-1 is also able to regulate
T-cell receptor signaling (Forster et al., 2014). Interestingly, GBP-1 is
specifically and efficiently secreted from endothelial cells by a non-
classical, likely ABC transporter-dependent, pathway (Naschberger
et al., 2006; Naschberger et al., 2017; Carbotti et al., 2020). GBP-1 has
been detected in the serum or cerebrospinal fluid during infectious
and inflammatory diseases including bacterial meningitis, systemic
lupus erythematosus, rheumatoid arthritis and systemic sclerosis
(Naschberger et al., 2006; Hammon et al., 2011; Naschberger et al.,
2017). The functions of secreted GBP-1 and GBP-2 remain
unknown and further studies are warranted to investigate their
potential as blood biomarkers in IBD, as well as their function on the
intestinal epithelial barrier.

IL-18BP

IL-18 binding protein (IL-18BP) is a natural circulating high-
affinity antagonist of interleukin-18 (IL-18), which belongs to the
IL-1 superfamily. While IL-18 is produced by a range of immune
and non-immune cells including macrophages, dendritic cells
(DCs), fibroblasts and intestinal epithelial cells, its receptor (IL-
18R) is expressed by T cells, macrophages, NK-cells or endothelial
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cells (Kaplanski, 2018). IL-18BP blocks the binding of IL-18 to IL-
18R, thereby dampening IFN-γ production. In children and adult
CD patients, elevated expression of both IL-18 and IL-18BP has been
detected in mucosal samples, with intestinal endothelial cells and
macrophages being the major sources of IL-18BP (Corbaz et al.,
2002). Higher IL-18 and IL-18BP levels have also been observed in
the serum of IBD patients as compared to controls, which might be
attributed to secretion by endothelial cells (Corbaz et al., 2002;
Ludwiczek et al., 2005; Naftali et al., 2007; Leach et al., 2008). In
particular in CD, circulating levels of both IL-18 and IL-18BP
correlated with disease activity, which is well in agreement with
the exacerbated Th1 immune response characteristic of the disease
(Corbaz et al., 2002; Ludwiczek et al., 2005; Naftali et al., 2007; Leach
et al., 2008). However, high levels of free unbound IL-18 are still
detectable in CD patients, suggesting that IL-18BP is not produced
in sufficient amounts to compensate the effects of IL-18 (Corbaz
et al., 2002; Ludwiczek et al., 2005; Naftali et al., 2007; Leach et al.,
2008). In DSS-induced experimental colitis the administration of IL-
18BP or the neutralization of IL-18 was able to attenuate intestinal
inflammation and weight loss (Siegmund et al., 2001; Sivakumar
et al., 2002; Siegmund et al., 2004). IL-18BP may act anti-
inflammatory not only by inhibition of immune cell recruitment
but also through inhibition of IL-18-induced intestinal epithelial
permeability (Allam et al., 2018). This is supported by the fact that,
the knock-out of IL-18 in endothelial cells, hematopoietic cells or in
intestinal epithelial cells was found to abrogate DSS-induced colitis,
while the knock-out of IL-18R was only protective when present in
intestinal epithelial cells (Nowarski et al., 2015). Overall, IL-18BP is
produced and released during IBD, notably by endothelial cells,
where it exerts protective effects by dampening the pro-
inflammatory effects of IL-18.

Complement factors

Our analysis has revealed an increased secretion of three
complement system members in IFN-γ-stimulated intestinal
endothelial cells: the complement C1r subcomponent (C1R) from
the classical pathway and the complement factor B (CFB) and H
(CFH) from the alternative pathway (Lubbers et al., 2017).
Complement proteins are produced and secreted mostly by
hepatocytes but also by endothelial cells, epithelial cells and
leukocytes (Morgan and Gasque, 1997; Lubbers et al., 2017). IBD
patients exhibit increased levels of circulating CFB (Nielsen et al.,
1978; Campbell et al., 1982; Adinolfi and Lehner, 1988) and a similar
increase of serum CFB has been observed in DSS-induced and
bisphenol A (BPA)-induced experimental colitis in mice (Huang
et al., 2022). More recently, genome-wide association studies
(GWAS) have identified one SNP (rs4151657) at the CFB locus,
which represents a risk variant for UC susceptibility (Juyal et al.,
2015; Gupta et al., 2016; Shi et al., 2020; Mortlock et al., 2023). The
presence of the rs4151651 SNP was associated with increased CFB
expression, and CFB expression was shown to correlate with disease
activity (Shi et al., 2020; Mortlock et al., 2023). CFB expression can
be induced in human glomerular endothelial cells and intestinal
epithelial cells by different inflammatory cytokines and is found in
increased concentrations in the jejunal fluid of IBD patients
(Ahrenstedt et al., 1990; Ostvik et al., 2014; Sartain et al., 2016).

In contrast to CFB, very little is known about the role of CFH and
C1r in IBD. C1r concentration was significantly increased in the
serum of CD patients in clinical and serological remission in
response to treatment with the anti-TNF-α antibody infliximab,
suggesting an inverse correlation between C1r production and
disease activity (Gazouli et al., 2013).

Potential new angiocrine factors in IBD

Little is known about the role of CPXM1, IFI30 and SECTM1 in
IBD, which were also among the top ten candidates of our screening.
SECTM1 is an IFN-γ-regulated molecule acting as a co-stimulatory
molecule in T and NK cells, where it binds CD7 (Lyman et al., 2000;
Wang et al., 2012; Hubel et al., 2019). SECTM1 is expressed by
antigen-presenting cells and epithelial cells that may also secrete a
soluble form (Lam et al., 2005; Kamata et al., 2016).
Carboxypeptidase X-1 (CPX-1), an inactive member of the
metallocarboxypeptidase family encoded by the CPXM1 gene, is
also a secreted protein (Reznik and Fricker, 2001; Kim et al., 2015).
CPXM1 expression is upregulated in the inflamed intestinal mucosa
of CD patients (Hong et al., 2017). Finally, IFN-γ-inducible
lysosomal thiol reductase (IFI30/GILT) is a thiol reductase
involved in the processing of antigenic proteins for antigen
presentation by MHC class II molecules (Barjaktarević et al.,
2006). Upregulation of IFI30 has been observed in uterine
microvascular endothelial cells in response to IFN-γ (Kitaya
et al., 2007).

In conclusion, the important pathogenic role of the
vasculature in IBD has been appreciated only recently. Here,
we identified and discussed factors secreted from HIEC in the
presence of IFN-γ stimulation. Among these factors, CXCL9,
CXCL10 and fractalkine have been already described to be closely
associated with IBD pathogenesis either in preclinical murine
models or in patients. Moreover, we identified novel factors
secreted from IFN-γ-activated HIEC including GBP-1, GBP-2,
CPXM1, IFI30 and SECTM1. These factors may warrant further
studies on their role in IBD pathogenesis and as target for disease
monitoring.
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Non-IgE-reactive allergen
peptides deteriorate the skin
barrier in house dust
mite-sensitized atopic dermatitis
patients
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Atopic dermatitis (AD) is a chronic inflammatory skin disease characterized by type
2 cytokine-driven skin inflammation and epithelial barrier dysfunction. The latter is
believed to allow the increased penetration of chemicals, toxins, and allergens into
the skin. House dust mite allergens, particularly Der p 2, are important triggers in
sensitized individuals with AD; the precise actions of these allergens in epithelial
biology remain, however, incompletely understood. In this study, we compared
the effects of the protein allergen Der p 2 and a mix of non-IgE-reactive Der p
2 peptides on skin cells using patch tests in AD patients and healthy participants.
We then analyzed mRNA expression profiles of keratinocytes by single-cell RNA-
sequencing. We report that existing barrier deficiencies in the non-lesional skin of
AD patients allow deep penetration of Der p 2 and its peptides, leading to local
microinflammation. Der p 2 protein specifically upregulated genes involved in the
innate immune system, stress, and danger signals in suprabasal KC. Der p
2 peptides further downregulated skin barrier genes, in particular the
expression of genes involved in cell–matrix and cell–cell adhesion. Peptides
also induced genes involved in hyperproliferation and caused disturbances in
keratinocyte differentiation. Furthermore, inflammasome-relevant genes and
IL18 were overexpressed, while KRT1 was downregulated. Our data suggest
that Der p 2 peptides contribute to AD initiation and exacerbation by
augmenting hallmark features of AD, such as skin inflammation, barrier
disruption, and hyperplasia of keratinocytes.

KEYWORDS

skin barrier, epithelial barrier disruption, atopic dermatitis, Der p 2, house dust mite,
allergy, allergen response in the skin, keratinocytes
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1 Introduction

The human skin shields the body against physical, chemical, and
immunological threats, preventing the loss of body fluids and the
entry of substances from the environment. The epidermis is the
outermost layer of the skin and builds the first line of defense. It
consists of keratinocytes (KCs) that are continuously renewed and
maintained by proliferating cells in the basal layer (Blanpain and
Fuchs, 2009). Basal KCs are located on the basement membrane
(BM), a sheet-like extracellular matrix (ECM) that separates the
dermis and epidermis. The BM is composed of collagen type IV (Col
IV), laminin, and fibronectin. Basal KCs strongly adhere to ECM
molecules of the BM through supramolecular cell adhesion
complexes called hemidesmosomes that contain α6β4 integrin
receptors (Garrod, 1993). These complexes establish connections
with keratin intermediate filaments (KRT5 and KRT14) and
transmembrane Col XVII (Nahidiazar et al., 2015). Basal KCs
also exhibit focal adhesion through α/β1 integrins, linking F-actin
fibers to the ECM and allowing cell attachment to the BM
(Muroyama and Lechler, 2012).

When differentiating into suprabasal KCs, encompassing cells of
the stratum spinosum and granulosum, basal KCs weaken their
connection with the BM and migrate to the upper layers of the skin.
During this process, differentiating KCs reduce their mitotic activity
and increase cell–cell interactions in a calcium-dependent
mechanism (Carter et al., 1990). Suprabasal KCs downregulate
the expression of KRT5 and KRT14 and instead express
KRT1 and KRT10, which are connected to robust intercellular
junction complexes called desmosomes that stabilize cells and the
epithelium (Garrod, 1993; Candi et al., 2005; Blanpain and Fuchs,
2009). Another stabilizing cell–cell connection in the epidermis is
adherens junctions, which connect the actin cytoskeleton to the
plasma membrane through cadherins (Candi et al., 2005).
Additionally, KCs in the granular layer form tight junctions,
which contribute to the formation of a dense skin barrier,
limiting the entry of molecules that are larger than 500 Da (Da)
(Kabashima et al., 2019; Beck et al., 2022). Tight junctions are
intercellular belt-like adhesion complexes that connect to F-actin
and consist of occludins, claudins, and junctional adhesion
molecules (Mertens et al., 2005). They regulate the paracellular
molecule passage and prevent transepidermal water loss (Tsakok
et al., 2019; Yazici et al., 2022). The barrier function of the skin is
mostly dependent on tight junctions and the stratum corneum, the
outermost epidermal layer. The stratum corneum is formed through
crosslinking of structural proteins and lipids during the terminal
differentiation of KCs (Zeeuwen, 2004). Desmosomes,
hemidesmosomes, and focal adhesions further regulate the skin
barrier function and must be dynamically controlled during cell
proliferation and differentiation (Huber et al., 2023).

Atopic dermatitis (AD) is a chronic or relapsing inflammatory
skin disease affecting 10%–20% of people in the Global North
(Weidinger and Novak, 2016). AD typically develops in early
childhood and can persist into adulthood, manifesting in dry,
itchy, and inflamed skin lesions (Weidinger and Novak, 2016).
This skin disease is characterized by elevated type 2 cytokines,
high allergen-specific IgE (in atopic forms), an imbalance of skin
microbiota, and a pronounced disruption of the epidermal barrier.
In 20%–40% of patients, the barrier dysfunction is caused by a

loss-of-function mutation of filaggrin, which is mainly expressed in
granular KCs (Langan et al., 2020). Filaggrin binds keratin filaments
and is secreted into the stratum corneum, contributing to the barrier
formation along with lipids (Langan et al., 2020). Even in the
absence of this mutation, filaggrin expression is often decreased
in AD patients through downregulation by type 2 cytokines such as
IL-4 and IL-13 (Moosbrugger-Martinz et al., 2022). Type 2 immune
responses also weaken the skin barrier by reducing the expression of
stratum corneum lipids and genes involved in the formation of tight
junctions (Langan et al., 2020; Beck et al., 2022). A dysfunctional
epidermal barrier induces stress on KCs, resulting in the secretion of
proinflammatory cytokines and chemokines, DAMPs, and alarmins,
such as IL-1 family cytokines, KRT6, and KRT16 (Lessard et al.,
2013; Leung et al., 2020). Pruritus-induced scratching and an
imbalance in the bacterial skin microbiome can also induce
alarmins, which, in turn, can provoke type 2-mediated immune
responses (Leung et al., 2020). This often results in chronic
inflammation through a positive feedback loop.

The factors responsible for initiating the development of AD and
triggering relapse after the clearance of inflammation are yet not well
understood. However, it has been suggested that a dysfunctional
epidermal barrier plays a crucial role by allowing the penetration of
chemicals or allergens. House dust mite (HDM) allergens, in
particular, can induce skin inflammation in allergic patients with
AD, but the exact mechanisms are not fully understood (Kaplan
et al., 2012; Serhan et al., 2019). Der p 2 from Dermatophagoides
pteronyssinus is one of the major air-borne HDM allergens (Huang
et al., 2019). It can trigger type I hypersensitivity reactions, resulting
in IgE responses, high type 2 cytokine production, and histamine
release. HDM allergens can also act as a contact allergen and cause
local skin inflammation in sensitized individuals, which has been
shown in isolated human cells and mouse models (Liedén et al.,
2009; Kaplan et al., 2012; Stremnitzer et al., 2014). In healthy skin,
allergens with molecular weights of >500 Da cannot pass through
the epidermal barrier due to size constraints (Smith et al., 2017). The
HDM allergen Der p 1 is approximately 25 kDa in size and can
directly bypass the skin barrier using its intrinsic papain-like
proteases to disrupt cell–cell adhesions between KCs (Reithofer
and Jahn-Schmid, 2017). This is in contrast to Der p 2 (15 kDa),
which has no protease activity but may be fragmented into peptides
through highly abundant proteases in HDM feces. Furthermore, the
skin of people with AD is believed to be more permissive due to a
barrier deficiency and may allow deeper penetration of allergens
compared to healthy skin.

To date, there is limited understanding of the mechanisms
underlying the transition from a non-lesional skin with a barrier
deficiency to acute lesional skin with a pronounced barrier
disruption in AD. In this study, we compared the ability of the
recombinant HDM allergen Der p 2 and a mix of hypoallergenic Der
p 2 peptides, which lack IgE reactivity and do not induce basophil
activation (Huang et al., 2019), to induce skin inflammation in both
AD patients and healthy participants using single-cell RNA
sequencing (scRNA-seq). We report here that the existing barrier
deficiency in the non-lesional skin of AD patients allowed deep
penetration of both protein and peptide allergens. Der p 2 protein
caused local microinflammations, as evidenced by the activation of
immune system-relevant genes. Non-IgE-reactive Der p 2 peptides
downregulated the expression of KRT1 and upregulated the
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expression of the inflammasome gene PYCARD and the alarmin
IL18. Furthermore, Der p 2 peptides significantly disrupted the skin
barrier by downregulating the expression of cell–cell and cell–matrix
adhesion genes and induced genes associated with
hyperproliferation in KCs. Based on our observations, we
propose that Der p 2 peptides are involved in disrupting the skin
barrier in AD patients sensitized to HDM and thereby contribute to
acute disease exacerbations.

2 Materials and methods

2.1 Study participants and ethics statement

The study was approved by the Ethics Committee of the Medical
University of Vienna (#2472/2020) and is in accordance with the
Declaration of Helsinki principles. Patients were informed about the
study procedures, benefits, and risks and gave their written informed
consent. Four patients, who were diagnosed with atopic dermatitis
according to the Hanifin–Rajka criteria and with reported allergy to
house dust mite (HDM), and four healthy participants without any
records of chronic inflammatory skin diseases and HDM
sensitization were recruited to participate in this study. All
participants were aged between 18 and 80 years (Supplementary
Figure S1A). Adult human skin samples were obtained as discarded
materials from routine plastic surgery in accordance with the
Declaration of Helsinki principles and after approval by the
Ethics Committee of the Medical University of Vienna.

2.2 Expression and purification of
recombinant Der p 2 and synthesis of Der p
2-derived peptides

For the expression and purification of recombinant Der p 2 (Der
p 2 rec), the cDNA coding for Der p 2 (GenBank accession number
AF276239) was amplified by RT-PCR using mite RNA, as previously
described (Chen et al., 2008). PCR products of Der p 2 cDNA
contained NdeI and EcoRI sites in the upstream region and an EcoRI
site in the downstream region, as well as six His codons, and were
subcloned into the plasmid pET-17b expression vector (GenScript,
United States). The vector was introduced into ClearColi™ BL21
(DE3) electrocompetent cells (Lucigen,Wisconsin, United States) by
electroporation using a MicroPulser Electroporator (program Ec2:
0.2-cm cuvette and 2.5 kV) (Bio-Rad, United States). Expression of
Der p 2 rec was induced by adding 1 mM isopropyl-β-
thiogalactopyranoside (IPTG) at an OD600 of 0.6 for 4 h at 37°C
in the LB medium with 100 μg/mL ampicillin. Cells from 500 mL
cultured medium were harvested by centrifugation (2,000 g for
20 min at 4°C), and cell pellets were then dissolved in 15 mL lysis
buffer (25 mM imidazole, 0.1% Triton X-100, and pH 7.4) by mixing
for 20 min at room temperature. Cell lysates were obtained by three
consecutive freeze–thaw cycles (−70°C/+50°C). Incubation with 2 μg
DNase I for 10 min at room temperature was performed to remove
DNA, and thereafter, 100 mM NaCl was added to the lysates. Der p
2 rec was detected in the pellets (inclusion body) after centrifugation
(38,900 g for 20 min at 4°C) and solubilized by mixing with a buffer
containing 8 M urea, 100 mMNaH2PO4, and 10 mMTris-Cl (pH 8)

for 3 h at room temperature. After centrifugation (38,900 g for
20 min at 4°C), Der p 2 rec protein in the supernatant was
incubated with Ni-NTA resin overnight at 4°C and bound Der p
2 rec was eluted from Ni-NTA resin affinity columns (QIAGEN,
Hilden, GER) using 8 M urea, 100 mM NaH2PO4, and 10 mM Tris-
Cl (pH 4.5). Purified Der p 2 rec was then dialyzed with 10 mM
NaH2PO4 (pH 4.7) to increase solubility and prevent precipitation.
Endotoxin of Der p 2 rec was <10 EU/mL determined by LAL assays
(Pierce™ LAL Chromogenic Endotoxin Quantitation Kit, Thermo
Scientific, United States).

Five overlapping peptides derived from Der p 2 with a length
between 31 and 42 amino acids covering the full sequence of Der p
2 were synthesized using a peptide synthesizer (Liberty, CEM
Corporation, Kamp-Lintfort, GER) and reconstituted in sterile
endotoxin-free water, as previously described (Huang et al.,
2019). Der p 2 peptides were defined as hypoallergenic peptides
due to the lack of IgE reactivity and the disability to induce basophil
activation. Five Der p 2-derived peptides (Der p 2 pep) and Der p
2 rec were filtered using 0.2-μm sterile syringe filters (Thermo
Scientific), and the concentration of protein and peptides was
determined using the BCA Protein Assay Kit (Pierce, Rockford,
Illinois, United States).

2.3 Patch test, tissue sampling, and cell
isolation

Non-inflamed skin on the upper back of AD patients and
healthy participants was tape-stripped 10 times, and 40 μg of Der
p 2 rec, and an equimolar mix of Der p 2 pep, saline (0.9% NaCl),
and water (all sterile) were applied onto four separate nonwoven
fabric spots of adhesive strips for patch tests (Curatest®, Lohmann &
Rauscher, GER). The adhesive strips were further secured using a
water-repellent plaster. Participants were invited back to the clinics
72 h later, and patch test areas were evaluated for inflammation. One
6-mm biopsy was taken from the skin treated with allergen and one
from the skin treated with allergen-derived peptides (two biopsies in
total per participant), and biopsies were separately stored in sterile,
precooled phosphate-buffered saline for a maximum of 20 min until
further processing. Skin biopsies were cut into small pieces using a
scalpel, and cells were isolated via enzymatic digestion for 1.5 h
using the Gentle MACS Whole Skin Dissociation Kit, according to
the manufacturer’s protocol (Miltenyi Biotec, GER). Single cells
were resuspended in scRNA-seq resuspension buffer (1x PBS
+0.04% BSA (w/vol), sterile), and counted using 0.4% trypan blue
solution in saline (Corning, United States). Overall, all samples were
processed within 3 h from taking the biopsy until processing for
next-generation sequencing.

2.4 Single-cell RNA sequencing (scRNA-seq)

In total, 30,000 living cells were loaded into a 10x Genomics
Chromium Controller for the generation of single-cell droplets.
DNA and transcriptome libraries were generated following the
10x Genomics Next GEM Single Cell 5ʹ V2 protocol. Quality
control was performed using Qubit (Invitrogen #Q33231) and
the TapeStation system (Agilent). Libraries of six samples from
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three donors were sequenced on two lanes of one NovaSeq SP flow
cell using a NovaSeq 6000 system with a read length of 2 × 50 bp,
resulting in an average of 100 million reads per sample. Reads were
demultiplexed and analyzed using Cell Ranger.

2.5 EmptyDrops, doublet removal, and
quality control (QC) for scRNA-seq

To differentiate between background noise and cell containing
droplets, we used emptyDrops (Lun et al., 2019), which models the
ambient RNA background within the dataset and identifies
deviations from this background RNA. We applied a false
discovery rate cut off of 0.05 to identify cells to be included into
further analysis. To eliminate droplets containing more than one
cell, we utilized the scran package from Bioconductor (Lun et al.,
2016). The doublet score was calculated based on the simulation of
thousands of doublet cells by adding together two randomly chosen
single-cell profiles. For the doublet score calculation, the cells and
the set of randomly generated doublet cells were clustered. Then, for
each cell, the number of simulated doublets in its neighborhood was
recorded and used as the input for score calculations. We used
200 nearest neighbors for each cell and applied a threshold of
doublet score >4 to identify doublets in each dataset separately.
The doublet score was defined as log10 of the ratio between
simulated doublet cells and the total number of neighbors taken
into consideration for each cell. Following the quality control
process, we obtained a count of more than 3,000 cells for each
sample (total of 50,000 cells), with approximately 1,690 genes per
cell and 169 UMI per gene for the final analysis (Supplementary
Table S1).

2.6 Analysis of scRNA-seq data

After performing individual quality control of the samples,
the raw read counts from all datasets were merged into one count
matrix. To conduct principal component analysis and differential
gene expression analysis, we used Pearson residuals that were
derived from a generalized negative binomial model of UMI
counts, which is implemented in the R package sctransform
(Hafemeister and Satija, 2019) using Seurat (Satija et al.,
2015). In addition, we adjusted the regression model for
sequencing depth, mitochondrial RNA content, and
experimental batch effects. We removed cells with the
mitochondrial RNA content above 15%. Furthermore, batch
correction across individual datasets was performed using the
Harmony algorithm (Korsunsky et al., 2019). Harmony uses
batch information provided by the user and then utilizes fuzzy
clustering to assign cells to multiple clusters in a manner that
maximized batch diversity within each cluster. Correction factors
for each cell were obtained by calculating global and batch-
specific centroids for each cluster, and the procedure was
repeated until convergence of global and batch-specific
centroids. tSNE analysis of whole skin samples was performed
using PCs 1–15. Clusters were assigned based on the nearest-
neighbor-based clustering analysis. We observed a saturation of
possible generated cluster at a resolution of 0.7, which was then

chosen for further analysis. To assign clusters to known cell types
in the skin (Tan et al., 2013; Shih et al., 2017; Cheng et al., 2018;
Haensel et al., 2020; Wang et al., 2020; Reynolds et al., 2021;
Polkoff et al., 2022), we visualized known cell type-specific
markers within the tSNE plot. We also performed a cluster-
specific regression analysis, providing us with a list of specific
markers for each cluster. Out of approximately 50,000 analyzed
cells, we identified 18 skin cell clusters, among which we found
4 KC clusters that were extracted for further analysis (data not
shown). Extracted KC cells were re-analyzed including filtering
out low expressed genes, calculating Pearson residuals from
count data (i.e., data normalization), PC calculation, and
clustering. Due to less variability in the keratinocyte dataset, it
was sufficient to include PC 1–5 into cluster analysis and tSNE
projections. We performed cluster assignment at a resolution of
0.2 to identify eight separate KC clusters. Based on the visual
inspection of gene expression of cluster-specific markers
(Supplementary Figure S1C) and analysis of gene lists from
the Wilcoxon rank-sum test specific for each KC cluster, we
defined the following KC cell clusters: basal 1, basal 2,
proliferating/mitotic, granular 1, granular 2, spinous, hair
follicle, and sebaceous gland KC clusters. To see whether or
not the numbers of cells per cluster differ between AD patients
and healthy controls, we counted the cells per cluster separately
for AD and healthy control samples and performed a chi-squared
test to evaluate whether cell numbers differed significantly.

2.7 Trajectory analysis

Trajectory analysis was performed using scVelo (La Manno
et al., 2018). The analysis framework is based on the abundance
of unspliced and mature (spliced) mRNA. This method
assumes that differentiation takes place on a timescale
similar to the typical half-life of mRNA. The ratio of spliced
and unspliced mRNAs in each cell is used to model the
progression of cell states. Thus, the arrows in the trajectory
analysis plot (Figure 2) indicate a decrease in unspliced mRNA
and/or an increase in spliced mRNA, as shown in
Supplementary Tables S11–S13.

2.8 Pathway analysis

Downregulated genes in AD versus healthy skin (Supplementary
Table S6) and differentially regulated genes in AD_pep versus AD_
rec (Supplementary Table S10) were used to identify gene sets
enriched in GO biological process pathways in the STRING
database (Snel et al., 2000). Furthermore, pathway analyses of all
genes differentially regulated in AD_pep versus AD_rec were
analyzed using the fold change values for gene expression data in
the Reactome database (Fabregat et al., 2015). Genes driving RNA
velocity trajectories for the merged dataset comprising AD_rec, AD_
pep, H_rec, and H_pep were analyzed using Enrichr (Chen et al.,
2013). Identified pathway genes were used for bubble plots and to
visualize the percentage of cells expressing involved genes in AD, H,
AD_rec, or AD_pep using Prism (GraphPad Software,
United States).
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2.9 Intercellular communication network
analysis

The probability of cell–cell communications via soluble cytokines
and ligands was analyzed using CellChat (Jin et al., 2021). Briefly, gene
expression data from our scRNA-seq dataset were integrated with the
published data on signaling ligands and receptors to model the
probability of cell–cell communications. We modeled the
intercellular communication probability for keratinocyte and
fibroblast subsets of the merged AD or H datasets for CCL and
CXCL signaling pathways to investigate signals from the epidermis
to the dermis and vice versa using hierarchy plots.

2.10 In vitro barrier disruption assay

KCs were isolated from human skin after 16–18 h incubation with
2.4 U/mL dispase II (Roche Diagnostics) in PBS at 4°C. The epidermis
was separated from the dermis, and single cells were prepared using 0.5%
trypsin-EDTA (Invitrogen). KCs were expanded using a serum-free Ca2+

low growth medium (PromoCell). For imaging, KCs were seeded into
eight-well imaging dishes (IBIDI) and differentiated using 2mM Ca2+.
KC sheets were incubated with 5 μg/mL sterile Der p 2 rec or Der p 2 pep
(or equal volumes of the solvents PBS or H2O) for 24 h and thereafter
washed with 1x PBS, fixed with 4% PFA, permeabilized with 0.2% Triton
X-100, blocked for 1 hwith 5%BSA–PBS, incubated for 2 hwith primary
Ab, (monoclonal mouse anti-human claudin 1, clone 2H10D10,
Invitrogen), and detected with an anti-mouse secondary Ab
conjugated to AF488 (Invitrogen). Cell nuclei were stained with
DAPI, and cells were imaged using a confocal microscope
(FV3000 from Olympus). Images were analyzed using Fiji (Schindelin
et al., 2012), and intensities were expressed as arbitrary units (mean
fluorescence intensity) normalized to the respective control.

2.11 ELISA

IL18 was detected andmeasured in the serum fromHDM-sensitized
AD patients or non-sensitized healthy participants using an ELISA Kit
(Cloud-Clone Corp.), according to the manufacturer’s instructions.

2.12 Statistical analysis

Statistical tests were performed using Prism 9 (GraphPad).
Unless stated otherwise, statistical differences were evaluated
using the Student’s t-test. Data are expressed as mean ± SD, and
a p-value < 0.05 was considered significant.

3 Results

3.1 KC subsets in the human skin

Allergic diseases and chronic inflammatory skin pathologies are
increasing, but whether skin flares and epithelial barrier impairment
can be directly triggered by aeroallergens is still elusive. Here, we
investigated the effect of the house dust mite allergen Der p 2 on the

skin of AD patients sensitized to house dust mite (HDM) and
healthy non-sensitized individuals (Supplementary Figure S1A).
Recombinant Der p 2 allergens (Der p 2 rec) or a mix of
hypoallergenic Der p 2 peptides (Der p 2 pep) were applied onto
the non-inflamed back skin of HDM-allergic AD patients or non-
allergic healthy individuals (Figure 1A; Supplementary Figure S1B).
Biopsies for rec and pep-exposed skin were taken after 72 h, and KCs
were analyzed by single-cell RNA sequencing (scRNA-seq).

We identified eight KC clusters (Figure 1B; Supplementary Figure
S1C) in our merged dataset with a unique expression pattern of specific
genes (Supplementary Tables S2–S5 and Figure 1D). Cells of all KC
clusters were found in the skin of AD patients (AD) and healthy
participants (H) 72 h after Der p 2 protein and peptide exposure at
slightly varying amounts (Figure 1B). KCs from the clusters basal 1,
granular 2, and sebaceous gland were reduced, whereas KCs from the
clusters basal 2, proliferating/mitotic, and spinous were increased in AD
compared to H skin. The basal 1 cluster was defined by high expression
of hemidesmosome genes, such as alpha 6 and beta 4 integrins
(ITGA6 and ITGB4), which bind to laminin, and collagen type 17
(COL17A1, Figure 1D). Both basal 1 and basal 2 expressed high
amounts of the intermediate filaments keratin KRT5 and
KRT15 and the integrins ITGA2 and ITGB1, which localize to focal
adhesions and bind to collagen but have also been shown to be
important for cell–cell interactions (Carter et al., 1990). KCs of the
basal 2 cluster expressed high amounts of ASS1, which is enriched
between rete ridges and may play a role in regulating dermal papilla
integrity (Wang et al., 2020). The proliferating/mitotic KC cluster was
defined by elevated expression of cell cycle regulator genes, such as
RRM2, PTTG1, CDC20, TYMS, and HIST1H4C (Wang et al., 2020).
KRT1 gene expression was already detectable in mitotic KCs and was
most abundant in granular KCs (clusters granular 1 and 2), as described
previously (Cohen et al., 2022). The granular KC clusters granular 1 and
granular 2 and spinous KC specifically expressed KRT10, CDH1,
EPHA2, and the desmosome-specific genes desmoglein (DSG1) and
desmocollin (DSC1) at various levels (Figure 1D) (Wang et al., 2020).
Spinous KC expressed high levels of the differentiationmarker cornifin-
B (SPRR1B), CD24, involucrin (IVL), and mesotrypsin (PRSS3) (Tan
et al., 2013; Miyai et al., 2014; Cheng et al., 2018;Wang et al., 2020). The
spinous cluster also expressed KRT6A, KRT6C, and KRT16, which
have been associated with inflammatory skin diseases and barrier
dysfunction (Lessard et al., 2013; Cheng et al., 2018; Leung et al.,
2020). Both spinous and hair follicle KCs expressed the gap junction
genes GJB2 and KRT17. KCs in the hair follicle cluster expressed the
stem cell marker SOX9, galectin 1 (LGALS1), basonuclin 2 (BNC2), and
latrophilin 3 (ADGRL3), and KCs from the sebaceous gland cluster
expressed KRT79, fatty acid-binding protein FABP7, fatty acid
hydroxylase FA2H, fatty acid synthase FASN, and the sebocyte
marker MGST1 (Shih et al., 2017; Cheng et al., 2018). Taken
together, we found all major KC subsets that have been previously
identified in the adult human skin (Cheng et al., 2018; Reynolds et al.,
2021).

3.2 Trajectory and pathway analyses identify
AD-specific perturbations in KCs

To understand the relationship between different KC clusters,
we analyzed KC data using the trajectory analysis pipeline scVelo.
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FIGURE 1
Keratinocyte subsets from AD and H after exposure to HDM allergens. (A) Schematic outline of the study strategy: 1) the recombinant HDM allergen
Der p 2 (Der p 2 rec), a mix of five hypoallergenic Der p 2 peptides (Der p 2 pep) and negative controls were 2) applied onto the non-lesional back skin of
four non-sensitized participants without AD (healthy) and four HDM sensitized participants with AD using patch tests. 3) Biopsies of Der p 2 rec- and pep-
treated skin were taken after 72 h, and single cells were produced by the digestion of whole skin tissue. 4) NGS libraries were prepared and 5)
sequenced using scRNA-seq technology. 6) Sequencing data from 16 skin sampleswere processed and KC analyzed. (B) tSNE plot showing eight different
KC clusters from the merged dataset comprising 16 skin biopsies (4x AD and 4x H, each 1x rec and 1x pep; summing up to 52,975 KC in total). (C) Bar
charts showing the relative abundance of KC subsets within AD and H samples (n = 8 biopsies for AD and H). (D) Bubble plot shows the expression of
cluster specific markers (x-axis) for KC subsets (y-axis). The average expression is represented by blue values (low expression, light blue; high expression,
dark blue). The percentage of cells expressing the respective marker is represented by the size of the circles. AD, atopic dermatitis; H, healthy; HDM,
house dust mite; KC, keratinocyte; scRNA-seq, single-cell RNA sequencing; rec, recombinant; pep, peptide; tSNE, t-distributed stochastic neighbor
embedding.
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FIGURE 2
Analysis of the ratio between unspliced and splicedmRNAs reveals AD-specific disturbances in KC differentiation. (A) Left: RNA velocity vectors were
projected on the tSNE plot from Figure 1B showing KC clusters of the whole dataset (cells from 16 biopsies, AD and H). Right: 140 genes that were driving
RNA dynamics were analyzed using Enrichr (Chen et al., 2013). The bar graph shows gene set enrichments in the GO biological process 2023 database
(sorted by p-value ranking). (B) RNA velocity vector projections are shown for KC from treated AD (left) and H (right) skin. (C) Functional enrichment
analysis identified cell–cell junction perturbations in AD. Downregulated genes in AD were analyzed using the STRING network database The network
view of gene names (circles) and their predicted associations (lines) is shown. (D) Percentage of KC fromAD andH skin expressing genes listed in (C) (eight
biopsies per group). AD, atopic dermatitis; H, healthy; KC, keratinocyte; tSNE, t-distributed stochastic neighbor embedding.
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This tool identifies cell differentiation paths and cell states by
analyzing the ratio of unspliced to spliced mRNAs in each cell
for a gene transcript (Supplementary Tables S11–S13). When all
KCs were used for analysis (AD and H; rec and pep), we found that
basal and suprabasal KCs originate from the mitotic cell cluster, and
hair follicle and sebaceous gland KCs (skin appendage-associated
KCs) have their own progenitor cells (Figure 2A). The four major
pathways that were identified as drivers of the trajectory analysis
were “supramolecular fiber organization,” “epidermis
development,” “RNA destabilization,” and “epithelial cell
differentiation,” suggesting that ECM organization, keratinocyte
differentiation, and epidermis development are the main
pathways associated with RNA dynamics in the whole dataset
comprising AD and H samples. When we analyzed KC data
from AD and healthy participants separately, we found that
trajectories from healthy KC (Figure 2B, right panel) showed
again a clear separation between basal and suprabasal KCs. Data
from healthy skin highlighted a clear dependency between cell
division and KC differentiation and a fluid transition between
spinous and granular KCs. A closer look on AD-derived KCs
(Figure 2B, left panel) revealed highly disordered trajectories.
Mitotic cells were again the origin of basal and suprabasal KCs,
but there was higher entropy within different clusters, in particular
for the KC clusters basal 1 and basal 2 and the spinous KC cluster.
Interestingly, KRT5 and KRT14 expression levels, which is highest
in basal KCs in healthy skin, were not efficiently downregulated in
differentiating cells in AD patients, further suggesting a disturbance
in KC differentiation pathways in AD skin (Supplementary Figure
S2A). Suprabasal KCs comprising clusters granular 1 and granular
2 and spinous KC maintained high expression levels of KRT5/14.
Our data confirm disturbances in KC cell differentiation pathways in
AD skin, which contributes to the disease-specific weakened skin
barrier function.

To further understand preexisting perturbations in AD skin, we
compared the gene expression profile of AD with healthy skin
(pooled data from rec and pep for each group, Supplementary
Table S6; see also Supplementary Tables S7, S8 for individual
analysis of separate KC clusters). We identified over
2,000 significant genes that were differentially regulated between
AD and H (Supplementary Table S6). As we aimed to identify
pathways involved in AD barrier dysfunction, we further analyzed
genes that were downregulated in AD using the STRING database.
We identified functional enrichments in GO biological process
pathways, such as the “cell–cell junction assembly,” (Figure 2C)
“tight junctions,” and “cell–cell adhesion mediated by cadherin”
(Supplementary Figure S1D), which are essential components of a
functional epidermal barrier. When we had a closer look at genes
that are specific for the cell–cell junction assembly (Figure 2C), we
identified downregulated gene expression for adherens junction
markers, such as E-cadherin (CDH1), alpha- and delta-catenin
(CTNNA1 and CTNND1), afadin (AFDN), DLG1, GRHL2, and
plakoglobin 4 (PKP4). T-cadherin (CDH13) was previously
described to be expressed in basal KCs, and it has been suggested
that it plays a role in cell–matrix adhesion (Zhou et al., 2002;
Mukoyama et al., 2007). Furthermore, we identified
downregulated genes that are involved in the tight junction
assembly, such as claudin 1 (CLDN1), PATJ, and PARD3
(Figure 2C; Supplementary Figure S1D). Reduced protein kinase

C alpha (PRKCA) expression may downregulate both adherens and
the tight junction assembly. Gene expression for cell–cell junction
genes was not only downregulated, but also the percentage of KCs
expressing those genes was reduced in AD compared to H skin
(Figure 2D). Furthermore, we analyzed cell–cluster-specific
expression of the tight junction genes CLDN1, PARD3, and
TIAM1 (Mertens et al., 2005) in KCs from AD patients treated
with recombinant Der p 2 (AD_rec) and Der p 2 peptides (AD_pep)
and compared it with KCs from healthy individuals that were treated
with the same allergens and allergen peptides (H_rec and H_pep)
(Supplementary Figure S2B). Tight junction gene expression was
highest in granular, spinous, and hair follicle KCs from healthy skin
and clearly downregulated in AD patients, independent of allergen
exposure. Our data reveal preexisting epithelial barrier damage in
AD patients in suprabasal KCs, which is mainly driven by
downregulation of cell–cell adhesion genes and confirms
previously published data for chronic type 2-driven inflammation
(Akdis, 2021).

3.3 Der p 2 induces a pro-inflammatory gene
expression signature in granular and
spinous KCs

We then wanted to investigate the potential of HDM allergens
and allergen peptides to induce the expression of inflammation
markers in AD and H skin (Figure 3A). Analysis of relevant immune
system-related genes in KC from AD_rec, AD_pep, H_rec, and H_
pep revealed an upregulation of pro-inflammatory markers that can
be assigned to the innate immune system (POLR2L, PYCARD, PI3,
CST3, FABP5, FLT, SERPINB1, SERPINB3, and CXCL1) in AD_rec
and AD_pep, compared to H_rec and H_pep. Furthermore, markers
reported to be relevant for adaptive immune responses (CALR,
CLEC2B, AP2S1, and CCL27) and genes encoding for interleukin
signaling molecules (NMU, IL18, and HMGV1) showed increased
expression, and a high number of KCs from Der p 2 rec- and Der p
2 pep-treated AD skin were expressing these genes. Remarkably,
there was also a tendency for increased IL18 levels in the serum of
AD patients (Supplementary Figure S3E). Markers that are relevant
for stress response and danger signaling, such as the alarmins
S100A7, S100A8, and S100A9, the antimicrobial peptide
lactotransferrin (LTF), and the interferon inducible protein
(IFI27) were upregulated in KCs from AD patient skin treated
with either Der p 2 rec or Der p 2 pep. In contrast, expression of
the actomyosin stabilizing non-muscle myosin IIA (MYH9) and
moesin (MSN), and the anti-inflammatory gene ANXA1 were
downregulated by Der p 2 rec and pep treatment (Figure 3A).
Some of the genes with increased expression levels have been
reported to be specifically upregulated in lesional skin in AD. For
instance, the serine protease inhibitor SERPINB3 is upregulated in
AD patients, where its expression correlates with skin inflammation
and returns to baseline levels in non-inflamed skin upon treatment
(Kawashima et al., 2000; Mitsuishi et al., 2005). Interestingly, despite
only mild inflammation after patch testing (Supplementary Figure
S1B), SERPIN levels were strongly induced in KC upon Der p 2 rec
and pep exposure in AD patients (Figure 3A). Further analysis of
SERPINB1 and SERPINB3 in KC clusters revealed that SERPIN was
highly upregulated in both AD_rec and AD_pep (Figure 3B), but the
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FIGURE 3
House dust mite allergen Der p 2 initiates inflammatory pathways in KC. (A) Bubble plot depicting the expression of immune system-relevant genes
in KC from skin exposed to Der p 2 protein (AD_rec, H_rec) and Der p 2 peptides (AD_pep, H_pep). Blue rectangles highlight genes relevant for the innate
IS, the adaptive IS, interleukin (IL), and stress/danger signaling. (B) Violin plots show the average gene expression in KC clusters from AD_rec (dark pink),
AD_pep (light pink), H_rec (dark blue), and H_pep (light blue) skin samples (n = 4). (C) Analysis of signaling crosstalk via soluble and membrane-
bound factors in KC and FB. Hierarchy plots with the signal source plotted left for autocrine signaling (pink) and right for paracrine signaling (green) are
shown. The receiving cell subsets (signal target) were plotted in the middle (left plot: signaling to epidermis; right plot: signaling to dermis). The plots
illustrate the probability of cell–cell communications in AD and H for CCL (top panel) and CXCL signaling pathways (lower panel). Thick lines represent
high probability of cell–cell interactions. AD, atopic dermatitis; H, healthy; FB, fibroblast; IL, interleukin; IS, immune system; KC, keratinocyte; rec,
recombinant; pep, peptide.
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fully functional protein Der p 2 rec induced the strongest response in
KCs from AD patients, particularly in suprabasal KC (Figure 3B).
This suggests that Der p 2 rec induced sub-clinical inflammation,
which is called microinflammation in AD skin (Akdis, 2021). It has
been shown in an AD mouse model that SERPINB3 regulates the
epidermal barrier function, and its overexpression is accompanied
by increased expression of S100 proteins (Sivaprasad et al., 2015).
Especially, the onset of acute skin lesions in AD is associated with
elevated S100A7, S100A8, and S100A9 levels in humans (Gittler
et al., 2012). We found that S100A7 expression was highly
upregulated in all KC clusters, except sebaceous glands
(Figure 3B). S100A7 expression was highest in granular and
spinous KC clusters of AD patients upon exposure to Der p
2 rec. Moreover, genes that are relevant for adaptive immune
responses appeared to be specifically induced by recombinant
Der p 2. CCL27, for instance, acts as a chemotactic signal for
T cells, enabling KCs to recruit T cells into the skin upon an
allergen encounter. CCl27 expression was upregulated in KCs of
the spinous and granular 2 clusters in AD patients through the
recombinant Der p 2 protein and remained lower in AD_pep, H_
rec, and H_pep samples, reinforcing the idea that the Der p 2 protein
can efficiently induce a pro-inflammatory environment in
suprabasal KCs.

KCs are one of the first cells that encounter environmental
allergens and respond quickly by secreting cytokines that may
distribute into deeper layers of the skin. To investigate
transcriptional changes in the dermis in response to epidermis-
derived signals and vice versa, we analyzed CCL and CXCL signaling
interaction pathways between KC and fibroblasts (FB) using
CellChat (Jin et al., 2021). Interestingly, we found that in AD, FB
did not respond to KC-derived CCL signals with altered gene
expression, whereas FB from healthy skin responded to signals
originating from late differentiating KCs (Figure 3C, upper
panel). In contrast, KC-derived signals assigned to CXCL
signaling pathways could be associated with gene expression
responses in FB clusters 2, 3, and 4 with a high probability for
AD (Figure 3C, lower panel). Interestingly, there was no association
of KC responses to CXCL signaling derived from FB in AD, whereas
KC received signals from FB cluster 4 in healthy skin (Figure 3C,
lower panel). This suggests that CCL and CXCL signaling crosstalk
pathways between KC and FB may be disrupted in AD.

3.4 Der p 2-derived peptides downregulate
cell–cell and cell–matrix adhesion genes in
AD patients

Our next aim was to understand the differences between the
effects of Der p 2 rec and Der p 2 pep on the skin of AD patients
and healthy participants. We did not observe any differential gene
expression for the comparison of H_pep versus H_rec, suggesting
that recombinant Der p 2 protein and Der p 2 peptides did not
induce any significant changes in healthy skin. The global
comparison of gene expression data from AD_rec versus AD_
pep revealed 19 differentially expressed genes and an enrichment
for genes belonging to cell cycle and mitosis pathways
(Supplementary Tables S9, S14). In contrast, when we
calculated average log2 fold changes between AD_pep and

AD_rec for each KC cluster separately, we identified in total
98 significantly down- and 197 significantly upregulated genes
(Supplementary Table S10). Downregulated genes were imported
into the STRING database and lead to the identification of genes
enriched in the GO pathway “cell–matrix adhesion,” such as
TIAM1, LYPD3, β4 integrin (ITGB4), β1 integrin (ITGB1),
beta-catenin (CTNNB1), COL17A1, BCAM, and alpha-actinin-1
(ACTN1). (Figure 4A). When we had a closer look at the
percentage of KC expressing cell–matrix adhesion genes, we
saw a reduction in the percentage of KC expressing these
marker genes in AD_pep compared to AD_rec (Figure 4B).
TIAM1 (T-lymphoma invasion and metastasis) is a Rac-specific
guanine nucleotide exchange factor and has been shown to control
tight junction biogenesis in KC, thereby controlling barrier
formation (Mertens et al., 2005). Alpha actinin-1 (ACTN1) is
an F-actin crosslinking protein, which connects F-actin fibers to
focal adhesions and hemidesmosomes through interaction with
integrins and Col XVII and thereby promotes matrix adhesion
(Carter et al., 1990; Hamill et al., 2015). Both BCAM (laminin
α5 receptor) and LYPD3 (Ly6/PLAUR domain-containing protein
3) bind laminin in the BM, whereas beta-catenin (CTNNB1)
indirectly regulates cell–matrix adhesions by controlling the
hemidesmosome assembly through WNT signaling (Kosumi
et al., 2022). In addition, the expression of known cell–cell
adhesion and ECM organization genes was even further
downregulated upon AD skin exposure to Der p 2 pep
compared to Der p 2 rec (Supplementary Figures S3A,B). To
investigate whether Der p 2 rec or Der p 2 pep could reduce
cell–cell adhesion molecules in vitro, isolated primary KC were
differentiated to form tight junctions incubated with Der p 2 rec or
Der p 2 pep, and claudin 1 (CLDN1) expression was analyzed by
confocal microcopy (Supplementary Figure S3C). Interestingly, we
found that Der p 2 pep significantly reduced CLDN1 protein
expression after 24 h of incubation (Supplementary Figure
S3D), suggesting a potential direct effect of Der p 2 peptides on
keratinocytes.

For a more comprehensive observation at cell–cell and
cell–matrix adhesion molecules, we included additional pathway-
specific markers into our analysis and compared the average
expression and percentage of cells expressing the respective genes
for AD_rec, AD_pep, H_rec, and H_pep (Figure 4C). The majority
of cell–matrix and cell–cell adhesion genes and genes encoding for
ECM organizational proteins (see also Supplementary Figure S3B)
was downregulated in KC from the skin of AD patients exposed to
Der p 2 pep (AD_pep) compared to AD_rec with the exception of
the upregulation of cathepsin L (CTSL) and cathepsin D (CTSD)
expression (Figure 4C, blue rectangle). Our data suggest an IgE-
independent downregulation of cell–cell and cell–matrix gene
expression in the KCs of AD skin, identifying a yet unknown
effect of Der p 2 peptides on the skin barrier function.

3.5 Der p 2-derived peptides upregulate
IL18 and downregulate KRT1 gene
expression in AD patients

Cathepsins are proteases, which are considered to be
involved in various biological processes such as proenzyme
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FIGURE 4
Der p 2 peptides downregulate cell–matrix adhesion genes and upregulate alarmin IL18 in AD. (A) Differential gene expression analysis of AD_pep
and AD_rec revealed the downregulation of cell–matrix adhesion genes by Der p 2 peptides in KC. The STRING network and predicted functional
associations of cell–matrix adhesion genes (n= 4) are shown. (B) Percentage of KC-expressing genes (A) from AD_pep and AD_rec skin (four biopsies per
group). (C) Bubble plot showing the expression of cell–cell and cell–matrix interaction genes in KC from skin exposed toDer p 2 protein (AD_rec and
H_rec) and Der p 2 peptides (AD_pep and H_pep). (D) Percentage of KC expressing PYCARD, IL18, and KRT1 from AD skin exposed to Der p 2 peptides
(pep) and recombinant protein (rec). (E) Violin plots depicting the average gene expression of PYCARD (upper plot), IL18 (middle plot), and KRT1 (bottom
plot) in KC clusters from AD_rec (dark pink), AD_pep (light pink), H_rec (dark blue), and H_pep (light blue) skin samples (n = 4). AD, atopic dermatitis; H,
healthy; KC, keratinocyte; KRT, keratin; rec, recombinant; pep, peptide.
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and enzyme activation, tissue remodeling, and matrix
remodeling (Zeeuwen, 2004). In particular, lysosomal
cathepsins have been shown to activate
NLRP3 inflammasomes, which are involved in the
recognition of pathogen-associated molecular patterns
(PAMPs) and danger-associated molecular patterns
(DAMPs) (Li et al., 2021). This prompted us to further
investigate inflammasome-related genes that may be
involved in danger sensing in the human skin. When we
plotted the percentages of KC expressing PYCARD, we
found higher amounts of KC expressing this NLRP3-
inflammasome adapter protein, which is involved in
recruiting the protease caspase-1, in AD_pep compared to
AD_rec (Figure 4D, left plot). Interestingly, all KC subsets
expressed high levels of PYCARD in AD_pep, except sebaceous
gland KCs (Figure 4E, upper plot). In addition, the percentage
of KCs expressing the alarmin IL18, a substrate of caspase-1,
was increased in KC from the skin of AD patients exposed to
Der p 2 pep (Figures 4D and E, middle plots). The upregulation
of NLRP3 inflammasome and IL18 gene expression suggests
the activation of PAMP or DAMP receptors by Der p 2 pep, and
enhanced cathepsin expression may further boost
NLRP3 inflammasome activity. Pro-IL18 is processed by
activated inflammasomes into its biologically active form. A
mouse study has shown that downregulation of KRT1 can
further upregulate IL18 expression and diminish the skin
barrier function (Roth et al., 2012). In accordance with this
study, KRT1 expression was downregulated in KCs from AD_
pep (Supplementary Figures S4C, E), and we found elevated
IL18 protein levels in the serum from AD patients, although
not significant (Supplementary Figure S3E). However, we only
identified a minor reduction in the percentage of KC expressing
KRT1 (Figure 4D, right plot), suggesting that KRT1 expression
was decreased specifically in KRT1-expressing KC subsets.
When observing different KC clusters, we identified the Der
p 2 pep-specific downregulation of KRT1 expression in
proliferating/mitotic, granular, and spinous KCs (Figure 4E,
bottom plot). In addition to PYCARD, IL18, and CTSD, we
found several other leukocyte-related activation genes to be
upregulated in KCs from AD_pep compared to AD_rec such as
S100A7-9, which is reported to be upregulated in KRT1 knock-
out mice alongside IL18 (Roth et al., 2012) (Supplementary
Figures S4A, B). Furthermore, several genes involved in KC
differentiation and epidermal keratinization were differentially
regulated in AD_pep versus AD_rec (Supplementary Figure
S4C). For instance, KRT5, KRT6A/B/C, KRT14, and
KRT16 gene expression was upregulated, whereas KRT1,
KRT10, and KRT15 expression was downregulated.
KRT6 and KRT16 are involved in danger sensing via
DAMPs and their expression levels have been shown to be
elevated in stressed KC during wound healing and chronic skin
inflammation (DePianto and Coulombe, 2004; Hobbs et al.,
2012; Rotty and Coulombe, 2012; Lessard et al., 2013). KRT15,
in contrast, is expressed in the hair bulge and in
undifferentiated KCs of the basal layer (Cheng et al., 2018;
Cohen et al., 2022). Hence, our data suggest that Der p
2 peptides induce perturbations in KC differentiation and
keratinization in basal, suprabasal, and hair follicle KCs.

3.6 Der p 2-derived peptides upregulate the
expression of mitotic and cell cycle
progression genes in AD patients

Overexpression of alarmin IL18 can promote hallmark features
of AD, such as type 2 skin inflammation and IL4- and IL13-induced
epidermal hyperplasia (Leung et al., 2020; Beck et al., 2022). As
hyperplasia is the result of increased cell proliferation, we
investigated the expression of cell cycle and mitotic genes in KCs
from AD_rec, AD_pep, H_rec, and H_pep samples (Figure 5A).
Interestingly, a plethora of cell cycle and mitotic genes were
upregulated in KCs from AD patients exposed to Der p 2 pep
(Figure 5A, blue rectangle), such as DNA topoisomerase 2 (TOP2A)
and centromere protein F (CENPF), which are important for
chromosome segregation in mitosis; cytoskeletal genes such as
tubulin beta (TUBB2); microtubule-stabilizing NUSAP1 and
microtubule-destabilizing stathmin (STMN1); the cyclin-
dependent kinase CKS2; and CDC20, UBE2C, and UBE2S, which
encode for anaphase-promoting complex/cyclosome-regulating
genes. When we analyzed genes that were specifically upregulated
in AD_pep using STRING, we identified an enrichment of genes in
the GO biological process pathway “mitosis” (Figure 5B) and found
that a higher percentage of KCs from AD_pep expressed mitosis
relevant genes compared to AD_rec (Figure 5C). This suggests that
Der p 2-derived peptides can activate KC hyper-proliferation and
thereby increase epidermal hyperplasia. Further investigation of
genes reportedly upregulated in hyperplasia (Beck et al., 2022)
revealed that Ki-67 (MKI67) expression is increased upon Der p
2 pep exposure in KC clusters basal 1 and basal 2, mitotic and hair
follicle KC, and also in the suprabasal KC clusters granular 1 and
granular 2 but not in spinous and sebaceous gland KCs (Figure 5D,
upper panel). We found a similar expression pattern for CDC20 and
the G2/M-specific cell cycle gene CCNB1, which both showed
increased expression for AD_pep in basal, mitotic, and hair
follicle KCs. Similar to MKI67, CDC20 was upregulated in
granular KCs as well (Figure 5D, middle and bottom panel). Our
data reveal the specific induction of hyperplasia-related genes in KC
through Der p 2-derived peptides that were applied to non-inflamed
skin of AD patients.

4 Discussion

The epidermal barrier plays a crucial role in preventing the entry
of microbes, chemical irritants, and allergens into the skin. To date,
there is limited information available on how allergens affect human
tissue-resident skin cells at the single-cell level in terms of gene
expression. To address this, we conducted patch tests on the non-
lesional skin of patients with AD and healthy participants using the
HDM allergen Der p 2. Although Der p 2 itself does not possess
proteolytic activity like Der p 1, proteases present on the skin or in
HDM feces can break down Der p 2 into smaller fragments.
Therefore, we chose to compare gene expression responses to
both Der p 2 protein and a mix of Der p 2 peptides in KCs from
AD patients and healthy individuals using single-cell RNA
sequencing technology.

Our KC cluster analysis of allergen-exposed skin confirmed the
presence of all major KC subsets reported for adult skin
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FIGURE 5
Der p 2 peptides upregulate KC hyperproliferation in AD. (A) Bubble plot showing the expression of cell cycle and mitotic genes in KC from skin
exposed to Der p 2 protein (AD_rec and H_rec) and Der p 2 peptides (AD_pep and H_pep). (B) Functional enrichment analysis identified mitotic genes
enriched in AD skin exposed to Der p 2 peptides. Genes identified by differential gene expression between AD_pep and AD_rec were further analyzed
using the STRING network database. Identified genes are visualized by circles and their predicted associations with lines. (C) Percentage of KC-
expressing genes identified with STRING is shown in (B) for AD skin exposed to Der p 2 peptides (pep) and recombinant protein (rec). (D) Violin plots show
the average gene expression in KC clusters from AD_rec (dark pink), AD_pep (light pink), H_rec (dark blue), and H_pep (light blue) skin samples (n = 4 per
group). AD, atopic dermatitis; H, healthy; KC, keratinocyte; rec, recombinant; pep, peptide.
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(Cheng et al., 2018; Reynolds et al., 2021) (Figure 1). However, we
could not identify a decrease in the percentage of spinous KCs in AD
compared to healthy individuals, as previously suggested (Leung
et al., 2020). Overall, our data revealed a clear AD-specific signature
in KC from patients compared to healthy participants, confirming
that skin cell differentiation is disrupted even in the absence of
severe skin inflammation, as described previously (Suárez-Fariñas
et al., 2011). This finding was confirmed by the global comparison of
gene expression data from AD and H, where we found a significant
impairment of the skin barrier in AD patients (Akdis, 2021;
Mitamura et al., 2021) characterized by the downregulation of
genes involved in the cell–cell junction assembly (Figures 2B, C).
Consistent with this, we also observed a profound downregulation of
genes regulating tight junctions, namely, CLDN1 (De Benedetto
et al., 2011), PARD3 (Ali et al., 2016), and TIAM1 (Mertens et al.,
2005), another hallmark of AD (Supplementary Figure S2B).

Recombinant Der p 2, but not hypoallergenic Der p 2 peptides,
can be presented by IgE-facilitated mechanisms. This may explain
the specific upregulation of certain immune system relevant genes
by the full protein, such as SERPINB1, CALR, CCL27, and S100A7
(Figure 3). Furthermore, Der p 2 protein has been shown to activate
the innate immune system by mimicking MD2-related lipid
recognition domains (Trompette et al., 2009; Kaplan et al., 2012;
Eyerich and Novak, 2013; Reithofer and Jahn-Schmid, 2017; Smith
et al., 2017). The protease inhibitor SERPINB3 has been found to be
upregulated in the lesional skin of AD patients, and its expression is
induced by type 2 cytokines (Mitsuishi et al., 2005). Despite low
inflammation scores in our patch tests, we observed an upregulation
of SERPINB3 in basal, spinous, granular, and hair follicle KCs of AD
skin (Figure 3). Previous studies in mice have shown that
SERPINB3 likely contributes to early skin inflammation in AD
(Sivaprasad et al., 2015). Interestingly, exposure to Der p
2 recombinant proteins further increased SERPINB3 expression,
particularly in spinous KC. This suggests that even without
proteolytic cleavage of tight junctions, allergens can overcome the
skin barrier in AD, induce inflammatory pathways, and activate an
early inflammatory gene expression signature in KC. This fact can be
attributed to the preexisting barrier dysfunction in AD, allowing
proteins such as allergens to penetrate deep into the skin.

Increased expression of S100A7 in suprabasal KCs has been
reported after barrier disruption by tape stripping of the healthy skin
(Gläser et al., 2009). Analysis of S100A7 expression in our samples
using feature plots (data not shown) and violin plots (Figure 3B)
revealed that S100A7 was not uniformly expressed in KCs. In
particular, granular and hair follicle KCs illustrated a bimodal
expression pattern of S100A7. We speculate that certain KC cells
that reside on the outer surface of the skin may be more prone to
experiencing environmental impacts and consequently respond
with similar gene expression patterns compared to KC in deeper
epidermal layers. Further studies will show whether cells expressing
high levels of S100A7 localize to the same niche within the skin.

Comparing gene expression changes induced by Der p 2 protein
and Der p 2 peptides, we found amarked reduction in the expression
of genes associated with hemidesmosomes and focal adhesions in
KCs fromAD skin treated with Der p 2 peptides (Figures 4A, B). In a
mouse model, the disruption of the anchorage of intestinal epithelial
cells to the BM through loss of hemidesmosomes led to caspase-1
activation and increased IL18 secretion (De Arcangelis et al., 2017).

Similarly, exposure of skin in AD patients to Der p 2 peptides
reduced the expression of hemidesmosome genes and increased
PYCARD and IL18 expression in proliferating/mitotic, spinous, and
granular KCs (Figures 4D, E). This suggests a similar activation
pathway in skin KC, which may be further enhanced by the
disruption of ECM organization (Supplementary Figure S3B)
(Bhattacharjee et al., 2019; Pfisterer et al., 2021). Another study
in mice demonstrated that the downregulation of KRT1, along with
increased IL18, S100A8, and S100A9, caused barrier defects in the
skin (Roth et al., 2012). In AD patients, HDM extracts have been
shown to increase the Th2 signature and upregulate S100A7 and
S100A8 in the skin (Malik et al., 2017). Our in vitro barrier
disruption experiment suggests that Der p 2 peptides can directly
affect tight junctions by downregulating claudin 1 expression in the
absence of other cells. Although the mechanism remains elusive, our
findings suggest that Der p 2 peptides in HDM feces may play a role
in driving this switch.

KRT1 expression was particularly downregulated in KC clusters,
showing the upregulation of PYCARD and IL18 upon skin exposure
to Der p 2 peptides (Figure 4E). In vitro studies with isolated KC
have shown that Der p 1, but not Der p 2, induced the assembly of
the NLRP3 inflammasome, leading to caspase-1 activation, and IL-
1β and IL18 secretion (Dai et al., 2011). In contrast, we observed a
clear upregulation of PYCARD and IL18 by Der p 2 peptides and a
less pronounced effect by the full protein. This discrepancy may be
due to the higher sensitivity of scRNA-seq, which can detect subtle
changes in gene expression on the single-cell level. Moreover, our
data suggest that the effect seen for recombinant Der p 2 protein may
depend on IgE-dependent immune system activation, whereas Der p
2 peptides may directly affect KCs in the absence of IgE reactivity.
High levels of IL4 and IL13 have been reported to reduce
KRT1 expression in the lesional skin of AD patients (Beck et al.,
2022). Interestingly, we found in our study that KRT1 expression
was particularly downregulated upon AD skin exposure to Der p
2 peptides (Supplementary Figure S4C). In contrast, KRT6A/B/C
and KRT16 were upregulated, which, along with
KRT1 downregulation, have been implicated in causing barrier
disruptions (Hobbs et al., 2012).

IL18, a proinflammatory pleiotropic cytokine, can modulate
both the innate and the adaptive immune systems. When
IL18 was identified and named interferon-gamma-inducing
factor, it was found to induce type 1 cytokine production in the
presence of IL12. However, in the absence of IL12, IL18 enhances
type 2 cytokine production by helper T cells, mast cells, and
basophils (Yoshimoto et al., 1999). Our data suggest that Der p
2 peptides induced IL18 and may skew the immune system toward
an elevated type 2 response as we detected IL13 but not IL12 in our
dataset comprising all skin cells (data not shown). As IL18 can
potentially regulate both type 1 and type 2 cytokine productions, it
makes it a prominent candidate to control the switch between acute
and chronic AD, which are characterized by type 2 and type
1 cytokines, respectively (Langan et al., 2020).

IL4 and IL13 promote epithelial cell proliferation and
hyperplasia, which are specifically triggered during AD initiation
and acute lesions (Gittler et al., 2012; Beck et al., 2022). We
examined the expression of cell cycle and mitosis genes and
found a specific upregulation of mitosis genes in KC from AD
skin exposed to Der p 2 peptides (Figure 4). Further analysis of
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upregulated genes in Der p 2 peptide-treated skin revealed an
enrichment of genes involved in the mitosis pathway and a
higher percentage of KC expressing mitosis genes in AD_pep
compared to AD_rec. Known markers for hyperplasia, such as
MKI67, S100A8, S100A9 (Beck et al., 2022), and K16, were all
upregulated. Interestingly, MKI67 was upregulated in most KC
clusters, indicating a proliferative response to Der p 2 peptides in
both basal and suprabasal KC, with the exception of spinous and
sebaceous KCs.

In conclusion, our findings suggest that Der p 2 peptides may
contribute to initiating major hallmark features of AD, including
allergic inflammation, barrier disruption, and hyperplasia. Future
studies will reveal that whether the observed net effect on KC is due
to immune cell activation or a direct effect of Der p 2 peptides on KC
in AD.
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intestinal epithelial barrier
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The intestinal mucosal surface forms one of the largest areas of the body, which 
is in direct contact with the environment. Co-ordinated sensory functions of 
immune, epithelial, and neuronal cells ensure the timely detection of noxious 
queues and potential pathogens and elicit proportional responses to mitigate the 
threats and maintain homeostasis. Such tuning and maintenance of the epithelial 
barrier is constantly ongoing during homeostasis and its derangement can 
become a gateway for systemic consequences. Although efforts in understanding 
the gatekeeping functions of immune cells have led the way, increasing number 
of studies point to a crucial role of the enteric nervous system in fine-tuning and 
maintaining this delicate homeostasis. The identification of immune regulatory 
functions of enteric neuropeptides and glial-derived factors is still in its infancy, 
but has already yielded several intriguing insights into their important contribution 
to the tight control of the mucosal barrier. In this review, we will first introduce 
the reader to the current understanding of the architecture of the enteric nervous 
system and the epithelial barrier. Next, we discuss the key discoveries and cellular 
pathways and mediators that have emerged as links between the enteric nervous, 
immune, and epithelial systems and how their coordinated actions defend 
against intestinal infectious and inflammatory diseases. Through this review, the 
readers will gain a sound understanding of the current neuro-immune-epithelial 
mechanisms ensuring intestinal barrier integrity and maintenance of intestinal 
homeostasis.

KEYWORDS

enteric nervous system, enteric glia, gut epithelial barrier, intrinsic primary afferent 
neurons, inflammatory bowel disease

1. Introduction

1.1. The enteric nervous system architecture, composition, 
and epithelial communication

The enteric nervous system (ENS) encompasses two interconnected layers that span the 
entire length of the intestines: the myenteric (Auerbach’s) plexus and the submucosal (Meissner’s) 
plexus (1). These layers are anatomically separated by the circular muscle layer, and the 
myenteric plexus plays a crucial role in coordinating the motor movement of the gut.

1.1.1. Overview of enteric neuron subtypes
Comprised of a network of large unmyelinated neurons and enteric glial cells, the 

myenteric plexus forms an extensive ganglionic structure. Within this network, excitatory 
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(PEMN/eMN) and inhibitory (PIMN/iMN) motor neurons 
innervate both the circular and longitudinal muscles and are 
connected by interneurons (PIN/IN). Sensory neurons (PSN) extend 
through the circular muscle layer, innervating the submucosal 
plexus as well as the epithelial layer. With the advent of single cell 
transcriptomic technologies four major studies have reported the 
single cell transcriptomes of the human and mouse ENS. Following 
clustering and annotation of neuronal function, combined with 
cluster-labelling gene expression patterns, there have emerged seven 
distinct subtypes. Although studies have found common cell 
clusters, the readers should note that the annotation of these clusters 
varies between studies. This highlights the lack of a consensus for an 
integrated nomenclature and annotation of common clusters 
emerging from multiple studies.

Additionally, there are intramuscular glial cells situated directly 
between the muscle fibers. The submucosal plexus, located beneath 
the circular muscle layer, primarily innervates the submucosal layer 
and the surrounding crypts of the enteric epithelium. It receives input 
from primary afferent neurons (IPAN) or secretomotor/vasodilator 
neurons (PSVN) and exhibits a more compact network with fewer cell 
bodies compared to the myenteric plexus. The main function of the 
submucosal plexus is to regulate secretory activity (1). Although the 
ENS operates autonomously, it maintains innervation connections 
with the central nervous system through the vagus nerve and 
prevertebral ganglia (2). It also interacts with stromal cells, interstitial 
cells of Cajal, and immune cells, including scattered single glial cells 
throughout the enteric tissue. Thus, there has been a growing interest 
in understanding the neuronal regulation of the immune system in 
the context of intestinal inflammatory disorders and for the 
advancement of cell-based therapies for aganglionic gut motility 
disorders (3, 4). To facilitate a better understanding of the currently 
recognized enteric neuronal subtypes, we have provided a comparative 
Table 1 as a reference guide for neuronal subtypes identified by single-
cell transcriptomic studies.

1.1.2. Overview of enteric glial subtypes
Recent single cell transcriptomic studies have identified four (9) 

to seven (7) major enteric glial cell types, which provide support to the 
various types of neurons and interneurons, along with enteric 
mesothelial fibroblasts derived from the neural crest. During prenatal 
development, these glial cells originate from neuroblasts, with sacral 
neural crest cells contributing to the development of posterior 
intestinal enteric neurons and glial cells (10). Signaling molecules such 
as GDNF and NT-3 are essential for the development of the ENS in an 
age-dependent manner, with lower efficacy in inducing ENS cell 
development in older individuals (11). A brief summary of anato-
morphological and transcriptomic composition of enteric glial cells 
can be  found in Box 1 and Table  2, which shows the anato-
morphological and single-cell transcriptomic classification of enteric 
glial subtypes.

Furthermore, we  strongly recommend the readers to visit two 
outstanding and recent reviews to gain an appreciation of the breadth 
of the developments that have occurred in the ENS field (14–16). 
These two reviews collectively summarize the discoveries from the 
initial description of neuronal morphotypes by Dogiel to the recent 
-omics driven transcriptomic classification of neurons and glial cells 
of the ENS (14, 15).

1.2. The gut epithelial barrier components 
that maintain host-environment 
homeostasis

1.2.1. Intestinal epithelial cell composition
The intestinal epithelial barrier, found in both the large and small 

intestine, is a remarkably dynamic tissue that undergoes self-renewal 
every 4–7 days. This continuous renewal process is made possible by 
a cluster of stem cells located at the base of the intestinal crypts. 
Within this niche, intestinal epithelial cells (IECs) undergo 
proliferation and differentiation, giving rise to various specialized cell 
types as depicted in Figure 1.

The maintenance of the IEC stem cell niche has been shown to 
heavily rely on WNT signaling from enteric glial cells of the enteric 
nervous system (ENS), as demonstrated in the study conducted by 
Baghdadi et al. (17). As IECs proliferate, they gradually move upwards 
within the crypt-villus structure until they reach the apex, where they 
reach full maturation. Upon completion of their lifespan, these mature 
cells undergo controlled cell death, known as anoikis, and are 
subsequently shed from the intestinal barrier, making room for new cells.

Among the IEC stem cells within the intestinal crypts, Paneth cells 
play a significant role by producing antimicrobial peptides that protect 
against potential pathogens and influence the microbiota. Additionally, 
they contribute to the regulation of stem cells through the secretion of 
Wnt molecules and metabolic intermediates. Enterocytes, the most 
abundant cell type among the IECs, specialize in nutrient absorption 
and the release of enzymes into the lumen. Goblet cells, crucial for the 
barrier function, produce mucins that serve as a physical barrier 
against the intestinal microbiome. The thickness of the mucus layer 
increases from the small to the large intestine in response to higher 
microbial pressure. Enteroendocrine cells, which engage in  local 

Abbreviations: ENS, enteric nervous system; PEMN/eMN, peripheral excitatory 

motor neurons or  motor neurons; PIMN/iMN, peripheral inhibitory motor neurons 

or inhibitory motor neurons; PIN/IN, peripheral interneurons or interneurons; 

PSN, peripheral sensory neurons; EGC, enteric glial cells; IEC, intestinal epithelial 

cells; ENC, enteric nerve cells; IPANs, intrinsic primary afferent neurons.

BOX 1: Anato-morphological classification of mouse EGCs: elucidated 
by Boesmans et al. (12, 13).

 •  Type I: highly branched, irregular pattern, “astrocyte-like” EGC, in contact 
with multiple neurons. 70–80% express GFAP, S100B and SOX10 expression 
is conserved.

 •  Type II: fibrous interganglionic connections, contact to neural fibers, but 
no ensheathing. ~50% express GFAP, S100B and SOX10 expression 
is conserved.

 •  MP/SMP Type III: sit in extraganglionic regions, up to four major processes 
with secondary branching running along neuronal processes or small blood 
vessels. 20–30% express GFAP, S100B and SOX10 expression is conserved

 •  Type IV: bipolar morphology sitting within the circular and longitudinal 
smooth muscle layers along nerve fibers. Expression pattern: N/A.

 •  Mucosal glia: sit within the lamina propria of the mucosa, similar 
morphology as M/SMP associated Type III. GFAP Expression 20 to 30%, 
S100B and SOX10 expression is conserved.
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TABLE 1 Molecular taxonomy of the human and mouse ENCs based on single cell transcriptomic studies.

Wright et al. 
(5)

Drokhlyansky et al. 
(6)

Zeisel et al. (7) Morarach et al. 
(8)

Neuron type Key genes

Chat 1 PEMN 1, 3, 4, 6 ENT5 ENC1,7 Intrinsic sensory neurons, 

Interneurons

Chat, Slc18a3, Tac1, 

Calb2

Chat 1 PEMN 1, 3, 4, 6 ENT5 ENC1,7 Intrinsic sensory neurons, 

interneurons, 

mechanosensitive

Chat,Slc18a3, Tac1, 

Piezo1

Chat 2 PEMN 2, or PIN1, PIN2 (ENT6-7) No equivalent 

cluster

ENC2-4 Interneurons or excitatory 

motor neurons 1

Chat, Tac1, Penk

Chat 3 (Met) PIN1, PIN2 or PEMN 2 (ENT6) No equivalent 

cluster

ENC4 Interneurons or excitatory 

motor neurons 2

Chat, Met, Penk, Tac1

Chat 4 (Vglut2) PIN3 or PSN3 ENT7 ENC12 > ENC7 Interneuron Slc18a3,Chat, Nos1, 

Vip, Calb1, Penk, Nefm, 

Slc17a6

Calcb PSN1 ENT9 ENC6 > ENC5 Intrinsic sensory neuron Calcb, Nefm, Scn11a, 

Calb2, Tacr1, Htr3a, 

Htr3b, P2rx2, Nmu, 

Grp, Avil

Nos 1 PIMN1-7 ENT2 > ENT1 ENC8-10 Inhibitory motor neurons 1 Nos1, Vip, Gal, Npy, 

Htr3a, P2rx2

Nos 2 PIMN1-7 ENT1,3 > ENT2 ENC8-10 Inhibitory motor neurons 2 Nos1, Vip, Gal, Npy

Adult colon Adult Colon Adult small intestine Adult small intestine

TABLE 2 Molecular taxonomy of mouse and human enteric glial cells.

Mouse EGC

Ziesel et al. (7) Drokhlyansky et al. (6) Cell annotation Genes enriched

Small intestine Colon

ENTG1 Glia1/2 Proliferating Gfra2, Frmd4a, Sox12

ENTG2 n.a. n.a. n.a.

ENTG3 Glia2 n.a Tmem200c

ENTG4 n.a. n.a. n.a.

ENTG5 Glia1/2 n.a. Slc18a2, Scn7a

ENTG6 Glia1/2 n.a. Lbp, Slc18a2, Scn7a

ENTG7 Glia2/3 n.a. Slc18a2, Fam184b, Lsamp, Otor

ENMFB Glia3 Enteric mesothelial fibroblasts Ntsr1, Pdpn

Human EGC

Elmentaite et al. (10) Drokhlyansky et al. (6) Cell annotation Genes enriched

Developing colon Colon

Glia1(DHH+) Glia2, Glia3, Glia 4, Glia5 n.a. DHH, RXRG, NTRK2, MBP, MPZ

Glia2(ELN+) Glia1, Glia2, and Glia3 n.a. TELN, TFAP2A, SOX8, and 

BMP8B, MPZ

Glia3(BCAN+) Glia1 and Glia6 n.a. BCAN, APOE, CALCA, HES5, 

FRZB

Differentiating glia Glia1, Glia2, Glia5 Differentiating glia NRXN1

First two columns refer to specific studies to draw equivalence between clusters from different studies. Readers should note that the study by Elmentaite et al. investigates human developing 
colon post conception week 6–17.
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signaling and chemoreception through hormones or peptides, directly 
interface with the ENS and the innate immune system to aid in 
microbial defense. They also serve as sources of important 
neuropeptides, including NPY, PYY, CCK, STT, GIP, GLP-1, GLP-2, 
among others. Lastly, Tuft cells, although rare, play a critical role in 
defense and chemosensation, particularly in response to parasitic 
infections. There is some evidence that Tuft cells may also interact 
with enteric neurons, however this is a hotly debated topic and several 
groups are trying to elucidate the existence of an IPAN-Tuft cell 
axis (18).

1.2.2. Overview of the intestinal epithelial barrier
The intestinal epithelial barrier relies on the formation of tight 

junctions (TJs) between individual cells. These TJs serve as the 
primary physical barrier that prevents the invasion of the microbiome 
into the host. They create a diffusion barrier for metabolites and 
maintain the polarity of the monolayer by acting as a fence for 
membrane components. The key proteins involved in TJ formation are 
claudins and occludin. Occludin, an integral membrane protein, 
consists of four transmembrane domains. Its N- and C-termini are 
located on the intracellular side of the membrane, resulting in one 
intracellular loop and two extracellular loops. These extracellular 
loops attach to neighboring cells through their respective occludin 
domains on the extracellular side. Claudins exhibit a similar structure, 
with one intracellular and two extracellular loops. However, they are 
more structurally and functionally diverse, with 23 genes identified in 
humans. In mammals, there are 27 known types of claudins, which 

exhibit high structural conservation but not genetic conservation. The 
composition of claudins in TJs varies, contributing to the specificity 
of ion diffusion. For example, in the blood–brain barrier, claudins 
create a more specific diffusion barrier, while in the intestinal barrier, 
they allow for less specific ion diffusion. Claudins are linked to the 
cellular cytoskeleton scaffold through proteins called zonula occludens 
(ZO). For a more detailed understanding of the structure and function 
of TJs and their associated proteins, we recommend referring to the 
reviews by Zihni et al. (19) and Otani and Furuse (20).

2. The enteric glia and the 
maintenance of the gut barrier

2.1. Direct modulation of epithelial barrier 
function by EGCs

2.1.1. Enteric glial-ablation and impact on gut 
barrier homeostasis

Research over the past two decades, has uncovered a wealth of 
information on the important role that enteric glial cells (EGCs) play 
in maintaining the integrity and function of the intestinal epithelial 
barrier. In particular, studies have shown that S-100β-immunoreactive 
EGCs form dense networks around the intestinal epithelial crypts, and 
that in co-culture settings; EGCs were able to inhibit the proliferation 
of the transformed IEC cell line Caco2. This effect was found to be due 
to EGC-derived TGF-β, as the addition of an anti-TGFβ antibody to 

FIGURE 1

Depiction of the enteric nervous system and its components which influence the IEC barrier. The left panel depicts the effects mediated by enteric 
neurons and the right panel those exerted by enteric glia. Note that indirect effects via immune cells have been left out for simplicity.
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the co-cultures effectively nullified the anti-proliferative effect exerted 
by the EGCs on the Caco2 cells (21).

Interestingly, in vivo ablation of EGCs via an injection of 
ganciclovir in transgenic mice expressing the Herpes Simplex Virus 
type 1 (HSV)-thymidine kinase (tk) gene under the Gfap promoter 
was associated with an increase in the incorporation of tritiated 
thymidine into epithelial cells (21, 22). Other studies used the same 
model of EGC ablation and identified specific EGC-derived molecules 
that are involved in maintaining IEC barrier function, promoting 
epithelial cell proliferation and differentiation, and protecting IECs 
from pathogens. The authors showed that EGC-derived 
S-Nitrosoglutathione improves IEC barrier function by regulating the 
expression of tight junction-associated protein F-actin. Exogenous 
administration of S-Nitrosoglutathione rescued the intestinal 
inflammation and barrier dysfunction in mice where EGCs were 
ablated and prevented Shigella flexneri invasion of IECs (23, 24). In 
addition, EGC-derived S-Nitrosoglutathione was shown to protect 
against cytokine-induced barrier defects in an ex vivo co-culture 
model of IECs with EGCs, via the increased expression and 
localization of occludin and ZO-1 (25). Van Landeghem et  al. 
identified proEGF as another EGC-secreted factor that promotes IEC 
healing using a combination of techniques involving EGC ablation via 
the HSV-tk system and in vitro assessment of the effects of the 
EGC-like cell line JUG2 on Caco2 monolayer proliferation in a scratch 
assay (26).

However, later studies that systematically analyzed the effect of 
EGC ablation independently of HSV-tk or the Gfap promoter 
identified off-target toxicity of the ganciclovir derivatives on adjacent 
cells as the main cause of the effects reported in this model, rather 
than EGC ablation as previously suggested (22, 27, 28). In addition, 
outstanding work on the classification of EGC subtypes has shown 
that only a subpopulation of EGCs expresses GFAP (9, 29). This 
implies that GFAP-driven recombination does not extend to the entire 
EGC population. Therefore, caution should be  exercised in 
interpreting the conclusions drawn from studies using the HSV-tk-
mediated EGC ablation strategy.

2.1.2. Enteric glia and glia-derived factors in the 
regulation of the epithelial barrier

Furthermore, other studies continued to identify various 
EGC-derived secreted factors, which affect the epithelial barrier. Some 
of these factors are graphically outlined in Figure 1. Enteric glial cell-
derived GDNF was shown to ameliorate inflammation in a mouse 
model of barrier damage induced colitis. The authors showed that 
treatment of mice with recombinant adenoviruses to overexpress 
GDNF ameliorated dextran sulfate sodium (DSS)-induced colitis, 
improved colonic transit defects, and in vitro IEC healing responses 
(30–32). The role of GDNF in promoting intestinal barrier integrity 
was further confirmed in vitro using a co-culture model employing 
EGC and rat IEC cell lines (33). Mechanistically Meir et al. showed 
that GDNF binding to the RET receptor was important in the 
stabilization of the desmosomal protein desmoglein 2 in Caco2 cell 
membranes. Furthermore, the authors reported that inflammatory 
bowel disease and experimental colitis were associated with a 
reduction in the expression of GDNF and that restoring GDNF was 
sufficient to inhibit the inflammation-induced compromise in the 
epithelial barrier both in vivo and in vitro (34). In a separate study, 
Meir et al. used Gfap-Cre driven reporter system to FACS sort EGCs 

from the myenteric plexus of mice and showed that these cells indeed 
produced GDNF and the knockdown of GDNF in an EGC cell line, 
abrogated the IEC barrier promoting effects on Caco2 cells in vitro 
(35). However, it should be noted that recent single cell transcriptomic 
data from the human intestinal stromal cells have identified that apart 
from EGCs, a few other stromal cell types might also be a potential 
source of GDNF in the gut (36). Other members of the oxylipin family 
including prostaglandins can also influence the proliferation and 
differentiation of IECs. Indeed, Bach-Ngohou et  al. reported that 
human submucosal plexus EGCs express lipocalin and EGC cell lines 
secrete the PPAR-γ ligand 15-deoxy-12, 14-prostaglandin J2 (15d-
PGJ2) (37). The authors found that the EGC-derived 15d-PGJ2 
exerted inhibitory effects on Caco2 cell proliferation but promoted 
their differentiation by upregulating the expression of E-cadherin and 
intestinal alkaline phosphatase (37).

Furthermore, the inhibition of inducible nitric oxide synthase 
(iNOS) was shown to enhance the IEC barrier protective effects 
exerted by EGCs in the context of LPS induced barrier disruption 
arguing that EGC-IEC NO signaling is detrimental under 
inflammatory contexts (38). Another study investigating the role of 
iNOS in regulating electrical stimulation evoked chloride and ion 
secretion the context of trinitrobenzene sulfonic acid− or DSS −
induced colitis. The authors found that colitis dependent abrogation 
of ion secretion was reversed by the inhibition of iNOS, an effect that 
was mimicked by blocking EGC function with fluoroacetate. In all 
three colitis models that the authors tested, fluoroacetate mediated 
inhibition of EGC functions restored the impairment in electrogenic 
ion transport (39). Nonetheless, it should be noted that fluoroacetate 
is a non-specific metabolic poison and as such, the possibility of 
off-target toxicity to other cells cannot be excluded.

It is worth noting that one of the complications of studies that 
used isolated primary EGC cultures from the myenteric plexus was 
the question of culture purity. To address this issue, Soret et  al. 
compared and characterized EGC cultures from human, mouse, and 
rat longitudinal muscle myenteric plexuses and found that 
approximately 80% of these cells were GFAP, S100β, and SOX10 
immunoreactive EGCs (40). Additionally, the authors confirmed the 
previously described effects of EGCs on promoting IEC barrier and 
reducing IEC proliferation using the IEC transformed cell line 
Caco2 (40).

Although several reports involving the assessment of EGCs effects 
on the IEC barrier using in vitro testing of cell lines were indicative of 
a beneficial effect robust and direct evaluation of the roles of EGCs in 
maintaining the epithelial barrier were lacking. Important 
contributions were made over the last 5 years in our understanding of 
the effects of EGC on the gut barrier using cleaner Cre driver lines and 
a detailed assessment of barrier function in vivo during homeostatic 
and pathological conditions (27, 41, 42). These studies collectively 
challenged the paradigm that EGC are necessary for maintaining the 
IEC barrier. For, e.g., using the Sox10-CreERT2 driver line, which drives 
recombination in all EGCs, Grubišić et al. conditionally and inducibly 
knocked out connexin 43 in EGCs. Connexin 43 is crucial for EGC 
activity and upon its tamoxifen induced removal from IECs, caused 
an impairment in secretomotor functions by regulating electrogenic 
ion transport, but had no consequences on the IEC barrier (42). In 
addition, when Rao et al. specifically ablated, EGCs using transgenic 
diphtheria toxin subunit A (DTA) expression via the pan-EGC 
inducible driver Plp1-CreERT, the authors failed to see any observable 
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defects in the barrier integrity and IEC proliferation (27). Based on 
these findings, one may infer that the EGCs are rather innocuous in 
mediating barrier changes, but in an interesting twist, Grubišić et al. 
identified a pathogenic role for the Sox10+ EGCs in barrier 
modulation. The authors showed that the Sox10-CreERT2 mediated 
knockout of the adenosine 2B receptor ADORA2B, in EGCs protected 
against DSS-induced colitis and normalized the mRNA expression 
and distribution of tight junction proteins (41). The view that EGCs 
do not influence the IEC barrier was also challenged recently in a 
study, which investigated distinct roles for the Gfap+ and Plp1+ EGC 
subsets in regulating the IEC barrier (17). The authors ablated EGCs 
using conditional and tamoxifen-inducible transgenic expression of 
the DTA in either Plp1-CreERT, or Gfap-CreERT2 and performed single 
cell RNA-Seq to identify specific EGC subsets. The authors elegantly 
demonstrated the critical role of Gfap+ pericryptal submucosal EGC, 
but not the Plp1+ EGC subset in regulating the proliferation of the 
IEC (17). By using the conditional inducible DTA expression 
approach, the authors also successfully overcame the previously 
reported off–target toxicity of the HSV-tk and ganciclovir method for 
EGC ablation. In addition, the authors also identified that the subset 
of Gfap+ pericryptal submucosal EGCs are an important source of 
WNT signals driving the proliferation of the intestinal stem cells (17).

Collective evidence in the field demonstrates an important direct 
role of EGC subsets in regulating the IEC barrier by controlling 
proliferation and differentiation of IECs. Further evaluation of other 
EGC subsets and their influence on IECs will yield greater insights 
into the role of EGCs in barrier protection.

2.2. EGC-mediated immune cell 
modulation in the regulation of the 
intestinal barrier

2.2.1. Enteric glia - adaptive immune interactions 
and influence on the gut barrier

The discovery of EGCs took place over a century ago, but their 
contribution to regulating intestinal immunity has remained 
eclipsed due to their classification as cells that provide trophic and 
protective support to enteric neurons. The immune functions of 
EGCs were initially explored after the identification of MHC class 
II molecules expressed by EGCs in inflamed tissues of Crohn’s 
disease patients. This raised the possibility of an inflammation-
induced exogenous antigen presentation capability by EGCs to 
CD4+ T-cells in the gut (43, 44). Subsequent studies have shown 
that human GFAP+ EGCs cultured from non-involved margins of 
small bowel tumor resections, responded to exogenous 
enteroinvasive Escherichia coli in  vitro, via upregulating the 
MHC-II mRNA and protein expression (45). Recently Chow et al. 
formally tested the hypothesis whether EGCs are capable of 
presenting exogenously phagocytosed antigens (46). The authors 
showed that a combination of IFNγ and LPS drove the expression 
of MHC-II in mouse GFAP+ EGCs at the mRNA and protein level. 
However, they could not detect any phagocytic activity in EGCs 
and concluded that the antigens presented by EGCs on the MHC-II 
are derived from autophagy (46). Furthermore, the authors showed 
that the EGC MHC-II molecules were involved in modulating 
TH17 and Treg T-cell subsets in the gut, affecting the regulation of 
the gut barrier and tolerance (46).

The functional significance of IFNγ signaling on enteric glial cells 
(EGCs) goes beyond just the upregulation of MHC-II. A recent study 
by Progatzky et al. has revealed an intriguing aspect of this signaling 
pathway in the context of helminth-induced intestinal inflammation 
(47). The authors demonstrated that the injury sustained by EGCs in 
mouse models and human gut inflammation is associated with an 
EGC-specific IFNγ transcriptional signature. Through single-cell 
transcriptomic analyses, they identified a subset of mouse and human 
EGCs, referred to as EGC2 that expresses high levels of GFAP and 
exhibits a transcriptional enrichment in the IFNγ response pathway. 
(47). Furthermore, the authors observed that EGCs produce CXCL10, 
which recruits CD8+ T-cells, as we have summarized in Figure 1. They 
also demonstrated that the EGC-specific ablation of the Ifngr2 gene 
leads to a worsening of infection parameters, a reduction in CD8+ 
T-cell numbers, and elevated histological damage scores. These 
findings underscore the crucial role of the IFNγ-EGC axis in the 
initiation of CD8+ T-cell mediated intestinal tissue repair (47).

2.2.2. Enteric glia - innate immune interactions 
and influence on the gut barrier

In a recent study by Grubišić et al., it was found that inflammation 
triggers the production of M-CSF from S100β + EGCs in both humans 
and mice. This subsequently modulates the proinflammatory 
phenotypic switch in muscularis macrophages (48). The authors 
discovered that the production of M-CSF from EGCs was dependent 
on the Connexin-43 protein and required signaling via TNF-alpha 
converting enzyme. Additionally, EGC Connexin-43 was found to 
be  crucial for visceromotor responses, as a measure of visceral 
hypersensitivity, during chronicity of colitis (48). Although changes in 
gut barrier were not directly measured, the accumulation of 
proinflammatory macrophages can be  detrimental to the barrier 
function in chronic colitis. This suggests that EGCs may function in 
perpetuating barrier damage. However, a recent study by Stakenborg 
et al. indicated a barrier-protective role of EGCs. The authors found 
that EGCs are involved in polarizing muscularis macrophages to an 
anti-inflammatory state (49). During early inflammation, EGCs 
recruit monocytes by producing CCL2, and during the resolution 
phase, EGC-derived CSF1 is required for the polarization of 
monocytes to two pro-resolving macrophage subsets, namely the 
Cd206+, MhcIIHi, and the Timp2+, MhcIILo subsets (49). The apparent 
contradiction in pro- versus anti-inflammatory effects of EGCs on 
macrophages reported by these two studies may be  due to the 
differences in the phase and type of inflammation investigated and the 
choice of promoters used to drive recombination in the EGCs. used 
by the two studies are different. Grubišić et  al. investigated the 
inflammatory phase of DSS-colitis using the Sox10-CreERT2 line, 
whereas Stakenborg et al. describe the effects during the resolution 
phase of muscularis inflammation induced by surgical manipulation 
and used the Plp1-CreERT2 line.

An important study by Dora et al. investigating the macrophage 
populations in the avian and murine myenteric plexuses has indicated 
the presence of a myenteric plexus barrier modulated by unique 
macrophage populations (50). Their study revealed that the GFAP+ 
EGCs possess the ability to secrete extracellular matrix molecules that, 
along with the continuous layer of glial end feet, create a protective 
barrier around the healthy myenteric plexus of the gut. This barrier 
effectively blocks macromolecules larger than 4 kDa from entering the 
myenteric plexus. The authors further demonstrated that during 
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experimental colitis, this barrier is disrupted in a macrophage-
dependent manner (50). The identification of the myenteric plexus 
barrier has contributed significantly to our understanding of the host 
organism’s diverse mechanisms to separate self from the environment.

Previously, EGCs have been demonstrated to be  a source of 
specific cytokines that are implicated in barrier repair and IEC 
proliferation, as opposed to mononuclear immune cells of the plexus 
(51, 52). Using purified GFAP+ EGC cultures from rat longitudinal-
muscle myenteric plexuses, it has been shown that EGCs are a source 
of bioactive IL-6, and that the production of IL-6 from EGCs is 
dependent on IL1-β stimulation (51). In addition, a recent report by 
Schneider et al. showed functional IL1 signaling on EGCs regulated 
macrophage activation and enteric gliosis in a model of post-operative 
ileus (53). This indicates that EGCs can modulate the local immune 
milieu via cytokine signaling under specific inflammatory states. One 
of the most potent cytokines which promotes gut barrier function is 
IL-22. An important study by Ibiza et  al. revealed the role of 
EGC-derived GDNF in the regulation of type 3 innate lymphoid cells 
(ILC3) in the gut. It was found that ILC3 express the high-affinity 
receptor RET for GDNF and responds to GDNF via the STAT3-
mediated production of IL-22 (54). Knocking out the RET receptor in 
ILC3s or MYD88  in GFAP+ EGCs led to a reduction in IL-22 
production and increased gut barrier damage and consequent 
inflammation. These findings highlight the important role of EGCs in 
modulating ILC3s and the intestinal barrier through microbial sensing 
functions (54).

While the mechanisms underlying how EGCs regulate intestinal 
immunity are still being explored, emerging studies have revealed the 
intricate regulatory involvement of EGCs in modulating the cell states 
or functional responses of multiple immune cells, including 
macrophages, T-cells, and ILCs that are critical in the maintenance of 
the intestinal barrier.

3. The enteric neurons in mucosal 
barrier function

3.1. Direct modulation of epithelial cells by 
enteric neurons

3.1.1. Epithelial innervation and modulation of 
fluid flux

Specific enteric neurons known as Dogiel type II multi-axon 
bearing neurons have long been considered as cells that directly 
regulate mucosal functions by innervating the mucosa. However, the 
exact functional significance of this anatomical finding has only 
recently become clearer. Direct neuron-epithelial innervations have 
been difficult to prove, but recent research by Bohórquez et al. has 
revealed the presence of neuropod extensions from the basolateral 
surfaces of intestinal and colonic enteroendocrine cells that allow 
them to directly synapse with mucosal efferent and afferent neuronal 
innervations (55, 56). These findings raise the intriguing possibility of 
a direct neuroepithelial circuit that allows the enteric nervous system 
(ENS) to sense and respond to environmental cues.

Previously, it was thought that cholinergic enteric neurons 
innervating IECs regulated fluid secretion from colonic IECs and 
granule release from ileal Paneth cells. Acetylcholine (ACh) was also 
shown to increase paracellular and transcellular permeability and 

induce chloride ion secretion across the IEC via muscarinic receptors 
(57, 58). The barrier protective role of ACh became apparent in a 
mouse model of severe burn-induced distal organ failure. Severe 
burns can lead to systemic shock, which has been associated with a 
compromised gut barrier. Constantini et al. measured the gut barrier 
function in male BALB/c mice exposed to a severe, 7-s steam burn 
over 30% of the body surface either with or without the administration 
of α-7 nicotinic acetylcholine receptor agonists (59). The authors 
reported a significant reduction in the appearance of 4 kDa 
fluorescently labelled dextran molecules, in the serum of mice that 
received the cholinergic agonist compared with those that received 
vehicle. In mice with a healthy gut barrier, the orally administered 
4 kDa dextran is incapable of permeating through the gut into the 
blood stream (59). Recent discoveries have raised an interesting 
possibility of non-neuronal sources of ACh in the gut. Tuft cells, a 
specific type of IECs, can produce ACh, forming a non-neuronal 
cholinergic system in the gut upon sensing luminal components (60–
62). However, relative contributions of the neuronal versus 
non-neuronal cholinergic systems in the regulation of IEC functions 
in homeostasis and disease remains to be evaluated.

3.1.2. Neuropeptides and cytokines from enteric 
neurons in epithelial barrier control

Recent research has revealed the direct effects of specific neuronal 
factors on the regulation of the IEC barrier via diverse mechanisms. For 
instance, an important function of nociceptive calcitonin gene-related 
peptide (CGRP) + enteric neurons that sense commensal microbiota 
was recently discovered (63). The authors showed that mouse and 
human goblet cells express the high affinity CGRP receptor, RAMP1 
enabling a CGRP-mediated regulation of mucous secretion from goblet 
cells and protection against experimental colitis coupled with microbial 
sensing by these neurons (63). A subset of the enteric nociceptive 
CGRP+ sensory neurons also express vasoactive intestinal polypeptide 
(VIP). VIP has large effects on the intestinal barrier function by 
regulating multiple barrier functions. For example, VIP stimulates the 
release of mucous, induces electrolyte and fluid movement across the 
IECs, induces ZO-1 tight-junction mRNA and protein expression in 
IECs, and induces the expression of trefoil factor-3 leading to the 
stabilization of the mucous layer (64–67). Moreover, human nitrergic 
neurons, which express VIP, inhibit IEC proliferation and improve 
barrier integrity in ex vivo co-culture systems (68).

A subpopulation of enteric interneurons is Substance P (SP) + and 
innervate the peri-cryptal submucosal plexuses (6). Interestingly, 
exogenous SP supplementation protects against acute and chronic 
DSS-induced colitis and barrier breakdown via the upregulation of 
intestinal epithelial proliferation (69). Another neuropeptide which 
has strong direct effects on the IECs is neuropeptide Y (NPY). NPY 
acts on the IECs via the peptide YY receptors subtype 1, which is 
expressed highly on colonic absorptive enterocytes, goblet cells, and 
enteroendocrine cells through which NPY negatively regulates ion 
transport and secretion.

Apart from neuropeptide-mediated regulation of IEC function, 
recent research has revealed the role of neuronally derived 
interleukin-18 (IL-18) in regulating the IEC barrier by controlling the 
expression of antimicrobial peptides in IECs (70). When the authors 
knocked out IL-18  in epithelial and immune cells, the control of 
intestinal S. typhimurium remained unaffected. However, upon specific 
ablation of IL-18 from neuronal cells, bacterial killing and goblet cell 
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antimicrobial peptide expression was derailed (70). Interestingly, the 
IL-18 expressing neurons were VIP+, CHAT+, and nNOS+ and are 
most likely a population of peripheral sensory neurons (6). However, 
the conditions that trigger the expression and release of this neuronally-
derived barrier protective factor is currently not known.

3.1.3. Enteric neurons as regulators of 
post-translational mechanisms of barrier 
protection

Fucosylation, a crucial post-translational modification of 
membrane glycoproteins and glycolipids, plays a vital role in the 
production, function, and integrity of intestinal mucous as well as in 
maintaining microbial homeostasis. Interestingly, a recent study by Lie 
et al. shed light on the function of VIP+ intestinal neurons in regulating 
IEC fucosylation, which in turn regulated microbial homeostasis. (71). 
The authors demonstrated that activation of VIP receptor 1 on IECs by 
enteric VIP+ neurons had a significant impact on α1,2-fucosylation on 
IECs by modulating the expression of fuscosyltransferase-2 and various 
glycoproteins and glycolipids. The absence of extrinsic vagal gut 
innervation or the chemogenetic perturbation of the ENS VIP+ 
neurons altered IEC fucosylation and the balance between 
opportunistic and commensal microbial communities (71). These 
findings support previous studies highlighting the crucial role of VIP 
in regulating intestinal barrier homeostasis, as germline VIP deficiency 
renders mice more susceptible to DSS- and 2,4-dinitrobenzenesulfonic 
acid-induced colitis, which can be  rescued by exogenous VIP 
administration (72). Thus, it is evident that ENS-derived VIP directly 
regulates gut barrier function.

Enteric neurons have a profound impact on the intestinal 
epithelium by regulating mucous production, differentiation, and ion 
and fluid exchange. Future studies aimed at understanding IEC 
innervation and barrier integrity will reveal how dense axonal 
innervations and neuronally-derived factors impact the IEC barrier.

3.2. The enteric neurons modulate 
intestinal innate and adaptive immunity in 
maintaining the gut barrier

Recent studies have shed light on the complex interplay between 
various cellular components and neuropeptides involved in regulating 
barrier integrity. Macrophages in the muscularis have been found to 
possess unique characteristics and exhibit distinct polarization states 
regulated by catecholaminergic signaling. However, the impact of this 
polarization on barrier integrity remains unclear. Additionally, IPANs 
have emerged as potential sensors of tissue damage caused by 
microbial dynamics, with the activation of IPANs potentially mediated 
by intermediate cells such as Tuft IECs or myeloid dendritic cells. 
Furthermore, sensory neuropeptides like CGRP and NPY, as well as 
enteric neuropeptide Nmu, have been implicated in regulating 
immune responses and barrier defense. This section will discuss some 
of the key findings that link enteric neurons, immune cells, and the 
gut barrier.

3.2.1. Enteric neuron-macrophage axis in gut 
barrier protection

Gabanyi et  al. in 2016 demonstrated that macrophages in the 
muscularis exhibit unique characteristics compared to those in the 

lamina propria and mucosa. These macrophages have a distinct tissue-
protective phenotype which is regulated by norepinephrine signaling 
through the β2 adrenergic receptors in response to infection (73). The 
authors showed that infection elicited extrinsic sympathetic nerves to 
signal to these macrophages. However, the impact of this polarization 
on the IEC barrier integrity was not directly assessed. It would 
be  interesting to note that taken together with the population of 
macrophages described as the intraplexial macrophages by Dora et al. 
(50) the role of enteric neuron – macrophage interaction in 
maintaining the gut barrier as well as the myenteric plexus barrier 
needs further exploration.

In studies exploring the gut sensory systems during pathogen 
intrusion, most focus has been on intermediary cells that respond to 
pathogen- or tissue-derived molecular patterns. However, it is possible 
that IPANs directly sense tissue damage caused by changes in 
microbial dynamics through alarmins like IL-25, given that there is 
some evidence from single cell transcriptomic studies indicating that 
both the IL-25 receptor chains are expressed by enteric neurons (6). 
The activation of IPANs in the context of infection may occur through 
intermediate cells such as Tuft IECs or myeloid dendritic cells via 
unknown mechanisms.

3.2.2. Enteric neuron-T-cell crosstalk in the 
regulation of barrier function

Although the governing mechanisms are unclear, functional 
neuro-immune effects have been identified. For instance, the sensory 
neuropeptide CGRP negatively regulates the proliferation of mouse 
naïve splenic T-cells and the production of IL-2 ex vivo, but whether 
similar effects are exerted on activated lamina propria T-cells in the 
context of inflammation has not been formally tested (74). 
Interestingly, a CGRP antagonist was found to worsen the severity of 
DSS-induced colitis, suggesting a barrier-protective role for CGRP 
(75). Similarly, in the context of Trichinella spirali infection, an IL-4-
producing type 2 lymphocyte - CCK-producing enteric neuron axis is 
associated with enhanced barrier defence, but the exact mechanism of 
neuron activation during infection remains unknown (76). On the 
same lines, a subpopulation of CCK producing enteric neurons were 
recently transcriptomially classified as the mechanosensitive 
intestinofugal afferent neurons that co-transcribe the Il4ra and can 
induce intestinal smooth muscle contractions leading to worm 
expulsion and enhanced barrier defence. The exact mechanism of how 
these neurons is activated in the context of infection remains to 
be identified.

Specific mucosa innervating secretomotor neurons express the 
neuropeptide NPY, the transcript levels of which are induced by TNF 
treatment in primary enteric neuronal cultures (6, 77, 78). 
Furthermore, the ablation of NPY has been shown to ameliorate tissue 
injury and barrier disruption, which occurs due to DSS- or 
S. typhimurium- induced colitis (79). Contrary to these findings, in an 
adoptive T-cell transfer -induced model of colitis, Wheway et  al. 
demonstrated a putative anti-inflammatory function of NPY on 
T-cells. When the authors transferred Y1 receptor deficient T-cells 
into leukopenic Rag1 knockout recipients, this caused aggressive 
colitis (80). Conversely, when the authors challenged Y1 deficient 
mice with DSS to induce colitis, or with methylated BSA to induce 
foot pad swelling, the levels inflammation indicators were lower in the 
knockout mice compared with the controls. Mechanistically, the 
authors could dissect distinct effects of NPY which strongly represses 
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T-cell activation but promotes antigen presentation (80). Therefore, 
over all action of NPY the gut seems to promote inflammation and 
reduce contractility and secretion, all of which are counterproductive 
for a healthy gut barrier. Further research is necessary to dissect the 
exact mechanism of NPY-mediated effects on the gut barrier in 
pathophysiological conditions.

3.2.3. Enteric neurons and the regulation of the 
gut barrier via the innate lymphoid cells

Regarding helminth control in the gut, neuromedin U (Nmu) 
has emerged as an important enteric neuropeptide expressed by a 
subset of IPANs. The receptor for Nmu, Nmur1 is highly expressed 
on type 2 innate lymphoid cells (ILC2), which play a crucial role in 
the regulation of type 2 immunity in the gut. Infections by helminth 
pathogens like Nippostrongylus brasiliensis induce Nmu 
transcription, leading to elevated IL-13 release from ILC2s, increased 
mucous production from IECs, and smooth muscle contraction for 
worm expulsion and barrier protection (81, 82). Recent work has 
shown that CGRP counters the IL-33 and NMU mediated effector 
functions and proliferation of ILC2s (83, 84). The authors 
demonstrated that ILC2s are not only sensitive to, but are also 
capable of producing this sensory neuropeptide and its genetic 
ablation correlates with improved helminth clearance from the small 
intestine. Mechanistically, specific ILC2 subsets express CGRP and 
its CGRP receptors, which are responsible for limiting ILC2 
proliferation and inhibiting IL-13 production, a barrier protective 
cytokine. Interestingly, CGRP uncouples the regulation of the ILC2 
IL-5 and IL-13 production such that IL-5 production is enhanced, 
whereas IL-13 production is inhibited by CGRP (83, 84). This 
sensory neuropeptide – ILC2 regulatory axis also plays an important 
role in regulating anti-helminth responses in the lung, which is 
another barrier tissue (85).

Intestinal VIP+ neurons also regulate the type 3 innate lymphoid 
cells (ILC3) via the VIPR2 expressed on the ILC3. When the authors 
knocked out the VIP receptor 2 gene on RORγt+ ILC3, they 
observed an enhancement in the production of barrier protective 
cytokines such as IL-22. Moreover, the chemogenetic inhibition of 
the VIPergic neurons was associated with a heightened protection 
from pathology caused by the enteropathogenic bacterium 
Citrobacter rodentium. In addition, the barrier disruption, systemic 
infection, and organismal death observed by chemogenetic 
activation of the VIPergic intestinal neurons was reversed by 
exogenous administration of recombinant IL-22 showing that VIP 
mediated inhibition of ILC3s critically impacts IL-22 mediated 
barrier protection (86). In line with these findings, Vu et al. reported 
that the germline deficiency of the VIP gene or pharmacological 
antagonism of its receptors, protected mice from the adverse 
pathological and barrier damaging effects of DSS-induced 
colitis (87).

4. ENS and regulation of the gut 
barrier in IBD

Excessive diarrhea and arrhythmic gut motility are some of the 
indications for an altered ENS function during IBD. However, not 
much information is available on whether ENS alterations 
themselves can impact barrier function in IBD patients. Most of 

IBD research is being advanced through patient-derived mucosal 
biopsies, which fail to recapitulate the changes in the neurons and 
glia in the myenteric plexus embedded deep within the muscularis 
layers. At a histological level, myenteric plexitis, hyperplasia, and 
altered neuropeptide code are a common and well-documented 
finding in Crohn’s disease and ulcerative colitis, especially in ileal 
manifestations of Crohn’s disease with structuring fibro-stenosis 
(88–90). A positive evaluation of myenteric plexitis at the margins 
of the resection site is predictive of an earlier post-surgical 
recurrence and reflects functional consequences of such plexitis 
besides the obvious consequences on neuroinflammation and 
motility (91–96). Elevated levels of EGCs have been reported in 
patients with IBD, and elevated GFAP+ EGCs were encountered in 
the payer’s patches of patients with ileal Crohn’s disease (97). 
Interestingly, the EGC mediators S-nitroglutathione and GDNF 
worsened paracellular permeability in Crohn’s disease, but not in 
non-IBD patients (97). However, the specificity of this finding 
using multiple glia markers such as S100B or PLP1 was not 
determined. Interestingly, while profiling the polyunsaturated fatty 
acids that may be  secreted by EGCs, Pochard et  al. found that 
human and rat EGCs produced the lipoxin precursor 
15-HETE. They then showed that the levels of 15-HETE secreted 
by EGCs from Crohn’s disease patients were lower than healthy 
controls EGCs. In addition, 15-HETE administration improved 
transepithelial permeability by increasing ZO-1 expression in an 
in vitro assay using Caco2 cell monolayers (98). Another interesting 
correlation is the simultaneous upregulation of TNF and NPY 
immunoreactivity in inflamed IBD patient samples (79, 99). 
Nevertheless, it must be noted that not only NPY but also other 
neuropeptide transcript signatures in bulk tissues may reflect 
cumulative expression from enteroendocrine cells and ENCs. 
Therefore, in contexts where there is no evidence of epithelial 
erosion, such results should be interpreted carefully and should 
be clearly ascribable via immunohistochemistry to nerve cells. On 
the same lines, a recent report showed that inflamed tissues from 
IBD patients have an elevated NPY immunoreactivity and that 
pharmacological inhibition of the NPY receptors was able to 
prevent the release of inflammatory cytokines from IBD patient 
tissue biopsies, as well as protect against experimental colitis and 
preserve barrier integrity (78, 100). Further studies which 
investigate the mechanisms of EGC and ENC mediated control of 
the intestinal barrier in IBD are warranted.

5. Conclusion

In conclusion, emerging evidence has highlighted the roles of the 
enteric glial and neuronal cells in coordinating the immune and 
epithelial barrier in the gut so as to detect and respond to potential 
threats while maintaining homeostasis. The maintenance of the gut 
barrier is crucial, as its disruption can have systemic consequences. 
The emerging understanding of immune regulatory functions 
mediated by enteric neuropeptides and glial-derived factors provides 
intriguing insights into their contributions to the tight control of the 
mucosal barrier. Figure 1 summarizes the neuronal and glial effectors 
covered in this review that impact the gut barrier. Continued research 
in this field holds great promise for developing targeted therapies to 
manage intestinal infectious and inflammatory diseases.
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Calpain-1 and calpain-2 are calcium-dependent Cys-proteases ubiquitously
expressed in mammalian tissues with a processive, rather than degradative
activity. They are crucial for physiological mammary gland homeostasis as well
as for breast cancer progression. A growing number of evidences indicate that
their pleiotropic functions depend on the cell type, tissue and biological context
where they are expressed or dysregulated. This review considers these
standpoints to cover the paradoxical role of calpain-1 and -2 in the mammary
tissue either, under the physiological conditions of the postlactational mammary
gland regression or the pathological context of breast cancer. The role of both
calpains will be examined and discussed in both conditions, followed by a brief
snapshot on the present and future challenges for calpains, the two-gateway
proteases towards tissue homeostasis or tumor development.

KEYWORDS

breast cancer, involution, apoptosis, CAPN, adhesion, nucleus, differentiation

Introduction

Calpains are a family of calcium-dependent intracellular Cys-proteases involved in a
number of different physiological and pathological processes. Since the first description of
calpain in 1964, up-to-date 15 different genes have been described, encoding CAPN1 to
3 and 5 to 16, which are the large catalytic subunit of different isoforms. In addition, two
small regulatory subunits with non-catalytic activity, CAPNS1 and CAPNS2 have been also
identified. The different isoforms have been classified as classical and non-classical calpains,
according to the presence or absence of a penta-EF (PEF) hand domain at the C-terminal
domain of large subunits and the N-terminal domain of small regulatory subunits. The
presence of PEF in classical calpains allows the heterodimerization of both, catalytic and
regulatory subunits (for structural review see Sorimachi et al., 2011; Campbell and Davies,
2012; Briz and Baudry, 2017; Nian and Ma, 2021).

Although most of these isoforms (CAPN1, 2, 5, 7, 10 and 13–16) are ubiquitously
distributed in mammalian tissues, classical calpain-1 and calpain-2 were the first to be
identified and the isoforms best studied in different tissues and pathological conditions.
These two isoforms share high sequence homology (Sorimachi et al., 2011) and are known as
conventional calpains. Both, calpain-1 and calpain-2 (originally known as µ-calpain and
m-calpain, respectively) are formed by heterodimers, consisting of a ~80 KDa large catalytic
subunit (CAPN1 or CAPN2) and a common ~28 KDa small regulatory subunit CAPNS1
(also, CAPN4), which provides stability to the enzyme (Nian and Ma, 2021).
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Conventional calpains are processing rather than degradative
enzymes (Nian andMa, 2021). Indeed, in contrast to other proteases
calpains are intracellular proteases that exhibit a limited proteolytic
activity on their substrates, acting as regulatory proteases. The end-
products of calpains may have functions, protein-protein
associations or subcellular distributions different from the
corresponding unprocessed substrates (Ono and Sorimachi, 2012;
Raimondi et al., 2016; Briz and Baudry, 2017; Miyazaki et al., 2021).
However, the governing rules of substrate recognition by calpains
are still elusive. Calpains do not recognize a specific sequence in the
primary structure of their substrates or a post-translational
modification (Sorimachi et al., 2011). Instead, the overall three-
dimensional conformation or higher order structures in their
substrates have been pointed as the main determinants for
substrate recognition (Pariat et al., 2000; Ono and Sorimachi,
2012). Hundreds of substrates have been described as in vitro
targets of calpain activity, which does not indicate they are
necessarily processed by calpains in vivo. All in all, calpain-
mediated cleavage has been observed in cytoskeleton proteins,
membrane-associated proteins, receptors/channels, scaffolding/
anchoring proteins, and protein kinases and phosphatases in a
variety of tissues and cell types (Croall and Ersfeld, 2007; Ono
and Sorimachi, 2012).

Earlier works on the role of calpain system were focused on the
activity and in vitro regulation of conventional calpains. Since then,
several mechanisms have been described to modulate (either
activating or inhibiting) their enzymatic activity, such as Ca2+

concentration, phosphorylation by ERK1/2 or PKA, binding to
phospholipids and acyl-CoA-binding protein, or even to its
endogenous inhibitor, calpastatin (CAST) (Ono and Sorimachi,
2012; Nian and Ma, 2021). However, the identity of the calpains
end-products and consequently, the isoform-specific functions of
both proteases in most tissues is still poorly understood. Are they
pro-apoptotic or pro-survival proteases? Do they promote cell
proliferation or cell differentiation? Is an isoform limiting the
activity of the other or they can compensate each other?
Although it is generally accepted that they are not redundant
enzymes and that the target-specificity of each isoform depends
on their subcellular distribution (Shao et al., 2006; Raynaud et al.,
2008; Leloup et al., 2010; Kosenko et al., 2011; Arnandis et al., 2012;
Arnandis et al., 2014; Rodríguez-Fernández, 2019; Telechea-
Fernández et al., 2018; Rodríguez-Fernández et al., 2021) or the
signaling pathways in which they are involved (Wang et al., 2020), a
number of reports indicate that the cell type and biological context
need to be considered when trying to answer those questions.

Herein we will review the role of conventional calpains in the
context of mammary tissue, either under the physiological
conditions of the pregnancy/lactation cycle or the pathological
breast cancer. Interestingly, these two biological processes share
more key regulatory proteins than could be thought at first glance. In
fact, much of the molecular signaling regulating the mammary gland
homeostasis during the pregnancy/lactation cycle was first identified
as oncogenic drivers of breast cancer.

Janus, the classical god of changes and transformations, is
represented with two faces symbolizing the uncertainty of what is
to come. Likewise, calpain-1 and calpain-2 could be considered the
proteases of two faces controlling physiological mammary gland
homeostasis, but also promoting breast tumor progression. In this

review we will summarize the main findings related to the regulatory
and sometimes contradictory role of conventional calpains in these
two biological contexts of mammary gland, focused in cell adhesion,
cell death and cell proliferation/differentiation. Unfortunately,
although an increasing number of reports describe the important
functions and effects of calpain activity in different tissues including
mammary gland, the specific regulation of calpain distribution and
activity to modulate these processes in mammary tissue remains
unknown.

Expression of conventional calpains in
the mammary tissue

The pregnancy/lactation cycle

Themammary gland is a complex and specialized tissuewhosemain
function is to synthetize milk, providing nutrition and immunological
protection to mammalian offspring (Ward and German, 2004). It is a
compound tubule-alveolar gland embedded within an irregular
connective tissue known as mammary fat pad (Figure 1A). The
glandular epithelial compartment shows two different cell
populations, epithelial and myoepithelial, lining ducts, and alveoli.
The inner layer of epithelial cells are luminal secretory and ductal
cells, undergoing functional differentiation during pregnancy to form
the milk-producing secretory acini. The outer myoepithelial/basal cells
encasing the luminal cells, are contractile and participate in the delivery
of milk in response to oxytocin stimulation. This basal epithelium also
harbors stem and progenitor cells, which form both luminal and
myoepithelial cells/layer. Finally, the basement membrane separates
this epithelial tissue from the surrounding stroma, mainly composed
of adipocytes, fibroblasts, macrophages, and other immune and
endothelial cells (Stewart et al., 2020; Watson and Khaled, 2020;
Biswas et al., 2022) (Figure 1B).

Mammary gland is a unique organ mostly developed after birth,
with just the primordia of the gland formed early in embryogenesis.
This highly dynamic organ undergoes a series of physiological
changes in morphology and function throughout life from
menarche to menopause, during each menstrual and pregnancy/
lactation cycles (Biswas et al., 2022). At menarche, a rudimental
mammary gland is expanded to invade the subjacent mesenchymal
tissue creating a more extensive ductal network (Watson and
Khaled, 2020). At puberty, the increase in breast size is mainly
caused by the accumulation of adipose tissue within the gland.
Terminal functional differentiation is reached with the development
of alveoli and the synthesis of specific milk proteins late in
pregnancy and during lactation. At this point, the mammary
gland consists almost entirely of secretory epithelium forming
alveolar structures with lumens full of milk fat globules and milk.
After weaning, at the end of lactation, there is an extensive
regression of mammary tissue in a process known as involution
(Wang and Scherer, 2019; Biswas et al., 2022) (Figure 1C).

The process of postlactational involution is finely orchestrated and
takes place in two phases in mice. The first stage lasting for 48 h after
weaning, is driven mainly by local factors due to milk accumulation
within the lumen. This phase is reversible if the suckling stimuli is
recovered. Although detectable by regular Western blot, the expression
levels of conventional calpains during lactation and the early onset of this
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phase remain low and constant. Upon weaning, there is a decrease of
systemic lactogenic hormones, epithelial cells of the lobulo-alveolar
compartment rapidly undergo cell death with increased caspase
3 activation, breakdown of tight junctions, shedding of alveolar dead
cells into the lumen and stimulation of a pro-inflammatory
environment. A controlled flow of macrophages and other immune
cells to the mammary gland would clear dead milk-secreting cells;
moreover, some of the survival secretory epithelial cells become
phagocytes to remove dying cells from milk (Monks et al., 2005;
Atabai et al., 2007). The transcription factor NFκB has been
recognized as one of the most important nodes of regulation of
mammary gland involution after lactation. This factor known to
modulate a number of pro-inflammatory pathways, was shown to be
activated in mammary gland and to bind to CAPN-1 and -2 gene
promoters at 48 h after weaning (Torres et al., 2011). The expression
levels of conventional calpains progressively increase from the first phase
of involution through the second phase, reaching their higher levels at
72 h involution (Arnandis et al., 2012; Dang et al., 2015). Mammary
tissue during this second and irreversible phase is characterized by the
proteolytic degradation of the basement membrane and a massive
remodeling of the glandular architecture with alveolar collapse,

increased number of immune cells within the stroma, and epithelial
cell replacement with re-differentiated adipocytes. In the end, mammary
gland returns to a pre-pregnant state in preparation for subsequent
pregnancies (Landskroner-Eiger et al., 2010; Arnandis et al., 2014;
Howard and Lu, 2014; Zaragozá et al., 2015).

From these data and data elsewhere, it can be inferred that all
these processes during mammary gland involution must be tightly
coordinated by a complex regulatory network where several proteins
will play crucial functions as nodes of regulation or as effectors for
the final resolution of the biological response (Zaragozá et al., 2015;
Biswas et al., 2022) The role of conventional calpains as important
effectors for the appropriate physiological resolution of the
pregnancy/lactation cycle seems unquestionable. Consequently,
dysregulation of calpain-1 and -2 is expected to have important
consequences for the homeostasis of this tissue.

Breast cancer

Altered regulation of conventional calpains have been described
in breast tumors or breast cancer cell lines. Indeed, calpain activity

FIGURE 1
Schematic representation of the structure and morphological changes in the mammary tissue. (A) Normal breast anatomy (B) Alveolar structure of
the gland. Polarized secretory epithelial cells form the lumen of the alveoli and are stretched by contractile myoepithelial cells and basement membrane.
Surrounding these glandular structures, the mammary stroma is mainly formed by extracellular matrix, adipocytes, fibroblast, macrophages, and
endothelial cells. (C)H&E stained sections of lactating and involuting mice mammary gland. The progression of epithelial cell death and remodeling
is represented together with the levels of calpains expression. Lactating tissue shows the glandular structure, with several ducts and alveoli tightly closed
together, surrounded by extracellular matrix, blood vessels and residual adipocytes. At 48 hweaning, alveoli start to collapse and detached epithelial cells
are shed into the lumen. Collapse of alveoli progresses and at 72 h of involution the glandular structures are reduced and adipocytes repopulate the
mammary fat pad. Scale bar: 250 μm.
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affects several signaling pathways related to tumorigenesis (Storr
et al., 2011a; Potz et al., 2016; Chen et al., 2019; Nian and Ma, 2021),
including cell death/survival pathways, adhesion/migration and
invasion, cell cycle control or even the function of different
oncoproteins such as HER2 (Pianetti et al., 2001; Kulkarni et al.,
2010; Ho et al., 2012; MacLeod et al., 2018). In addition, several
studies in HER2+ breast cancer cell lines have correlated calpain
expression with resistance to chemotherapeutics such as
trastuzumab, doxorubicin and cisplatin (Kulkarni et al., 2010;
Grieve et al., 2016; Al-Bahlani et al., 2017; MacLeod et al., 2018).
Nevertheless, these studies were carried out in cultured cell lines not
reflecting the biological conditions found in mammary tissue where
calpain expression or activity could be differentially modulated.

Some clinical studies have tried to correlate the clinical outcome
of breast cancer patients with calpain protein levels. High calpain-1
protein levels correlated with poor relapse-free survival of HER2+
breast cancer patients treated with trastuzumab following adjuvant
chemotherapy (Storr et al., 2011b; Pu et al., 2016). No correlation
was found between calpain-2 levels and clinicopathological variables
in this group of patients. However, as stated by the authors this in
vivo study cannot be compared to previous in vitro studies since
calpain levels in the clinical study were examined before
trastuzumab treatment, calpain activity in these patients was not
measured and finally, the number of patients included in the study
was limited. Therefore, the potential of calpain-1 as a specific
biomarker for trastuzumab resistance could not be definitively
established.

Additional reports in the literature about the correlation
between expression of conventional calpains and relapse-free
survival in breast cancer patients result confusing and
contradictory at times. Indeed, translational studies in a large
cohort of triple-negative and basal-like breast cancer patients
found that calpain-1 was not associated with relapse-free survival
and identified calpain-2 as the isoform associated with adverse
outcomes (Storr et al., 2012). Other clinical study also showed
that calpain-1 was overexpressed in breast triple-negative tumors
with a significant correlation to lymph node status but not with the
other clinicopathological variables, recurrence-free survival, or the
overall survival of patients (Al-Bahlani SM et al., 2017). In contrast,
high calpain-1 expression was associated with improved disease-free
survival of all patients enrolled in a clinical study including different
breast cancer subtypes, although improved rates of overall survival
were found in the triple negative breast cancer subgroup (Rajković-
Molek et al., 2020). In summary, some reports correlate high
calpain-1 expression with adverse disease outcome, some with
improve disease-free survival and some others found that the
levels of calpain-1 did not correlate with any clinicopathological
variable. Consequently, a definitive prognostic value for calpains
levels in these patients could not be demonstrated (Chen et al.,
2019).

It has been argued that discrepancies among reports are most
probably caused by the type of analysis and classification of breast
tumor subtypes, the limited number of patients in clinical studies
and comparison of data obtained in vitro and in vivo
(Storr et al., 2011a; Storr et al. 2011b; Storr et al. 2012; Rajković-
Molek et al., 2020; Shapovalov et al., 2022). Calpain activity, protein
levels and mRNA levels do not necessarily correlate (Rodriguez-
Fernández, 2019; Shapovalov et al., 2022). Importantly, most of

clinical reports only study levels of calpain expression, and no data
about enzymatic activity or subcellular distribution of calpains in
breast cancer patients have been shown (Sorimachi et al., 2011; Storr
et al., 2015; Storr et al., 2016). In that sense, early studies showed that
calpain-1 is differentially expressed in the peritumoural and
intratumoral area of breast cancer patients. Interestingly, only
peritumoral calpain-1 expression correlated with relapse-free
survival (Storr et al., 2011b). Although the meaning of this
observation is unclear, it suggests a complex mechanism of
calpains regulation yet to be determined. In addition, calpain
activity can be modulated by a number of factors and signaling
pathways which could be influenced by the type of tumor and
peritumoral area (Ono and Sorimachi, 2012; Nian and Ma, 2021).

Thus, while most authors suggest a pro-tumorigenic role for
calpains in cancer progression, discrepancies among reports suggest
that calpains may also have anti-tumorigenic roles in different
tumor subtypes, phases during cancer progression or context
found in the tumoral and peritumoral tissue. In agreement with
this, it has been suggested that the effect of overexpression of a
specific calpain isoform on breast cancer-survival might depend on
the inflammatory context of breast tumors. While high calpain-2
and low CAST expression was associated with improved survival in
patients with non-inflammatory breast cancer treated with
neoadjuvant chemotherapy, high calpain-1 and high CAST
expression in the inflammatory group was associated with
improved breast cancer survival (Storr et al., 2016).

The influence of the pro-inflammatory environment on the
role of each calpain-isoform is an important aspect to consider
in the pregnancy associated breast cancer risk. It has been
suggested that the pro-inflammatory environment of
mammary gland involution could promote tumor progression
(Lim et al., 2010; Torres et al., 2011; Rauner and Kuperwasser,
2021). In addition, the immune tolerance found in mammary
gland after weaning has been proposed to also contribute to the
neoplastic promotion in mammary tissue (Betts et al., 2018).
Many of the regulatory nodes of mammary gland involution,
such as STAT3, TGF-β or NFκB, have been identified as
persistently activated oncogenes or pro-inflammatory factors
favoring neoplasia transformation and metastasis; a notable
observation, since as mentioned above, the expression of both
calpains is modulated by NFκB. A recent study shows that forced
weaning induces morphological changes in the murine
mammary gland after short lactation, which were not evident
in the long-lactation mice (Basree et al., 2019). Mammary gland
from the short-lactation mice exhibited ductal hyperplasia and
squamous metaplasia at 4 months after parturition, both
preneoplastic conditions for breast cancer and accordingly, a
breast cancer risk factor. Moreover, a prevalence study in women
showed increased breast cancer risk during the 5 years following
parturition (Meier-Abt and Bentires-Alj, 2014). The same study
reports that pregnancy-associated increase in breast cancer risk
becomes more pronounced with increasing age at first
pregnancy.

In the near future, to decipher the potential relationship between
calpains dysfunction and pregnancy-associated breast cancer risk, or
the isoform-specific role of conventional calpains in breast cancer
progression, the subcellular distribution, the cell type and the tissue
context need to be considered.
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TABLE 1 Direct targets of calpain activity in mammary gland.

Target Isoform Experimental model References

Cell Adhesion and cytoskeleton pathways

Cortactin CAPN1 MDA-MB-231 Hoskin et al. (2015)

CAPN2 MTLn3 Cortesio et al. (2008)

E-cadherin CAPN2 Mouse mammary gland Rodríguez-Fernández (2019)

CAPN1 MCF-7, BT-474 Rodríguez-Fernández (2019)

n.s. MCF-7 Rios-Doria et al. (2003)

Ezrin CAPN2 TS/A Lee and Shyur (2012)

FAK CAPN1 MDA-MB-231 Hoskin et al. (2015)

CAPN2 MCF-7 Li et al. (2017)

n.s BT20, MDA-MB-231 Xu et al. (2010)

CAPN2 TS/A Lee and Shyur (2012)

CAPN2 MCF-7, T47D Libertini et al. (2005)

CAPN1 MCF-7 Hou et al. (2012)

Fodrin n.s. MCF-7 Sareen et al. (2007)

CAPN1 MDA-MB-231 Al-Bahlani et al. (2017)

α-Spectrin n.s. MCF-7 Rios-Doria et al., 2003, 2004

LIMK1 CAPN2 MDA-MB-231 Rodríguez-Fernández et al. (2021)

Paxillin n.s BT20, MDA-MB-231 Xu et al. (2010)

Pp60c-Src n.s. MDA-MB-231 Xu et al. (2010)

n.s. MDA-MB-435 Tan et al. (2005)

PTPμ (PTP1B) CAPN2 MTLn3 cells Cortesio et al. (2008)

Talin n.s. Mouse mammary gland Rodríguez-Fernández (2019)

CAPN1 MDA-MB-231, MDA-MB-468, MCF-7, BT-474 Rodríguez-Fernández (2019)

CAPN1 MDA-MB-231 Hoskin et al. (2015)

n.s. MDA-MB-231 Xu et al. (2010)

Vimentin n.s. MDA-MB-231, Hs578T Kim et al. (2017)

β-catenin n.s. MCF-7 Rios-Doria et al. (2004)

n.s. Mouse mammary gland Rodríguez-Fernández (2019)

CAPN1 MCF-7, BT-474 Rodríguez-Fernández (2019)

δ-catenin (p120) n.s. Mouse mammary gland Rodríguez-Fernández (2019)

CAPN1 MCF-7, BT-474 Rodríguez-Fernández (2019)

Epithelial cell death pathways

Bax n.s. MCF-7 Sobhan et al. (2013)

CAPN1 MCF-7 Gao and Dou (2000)

Bid n.s. MDA-MB-231, MCF-7 Mandic et al. (2002)

Bcl-2 n.s. MCF-7 Pozo-Guisado et al. (2005)

Caspase-12 CAPN1 MDA-MB-231 Al-Bahlani et al. (2017)

Lamp2a CAPN1 Mouse mammary gland Arnandis et al. (2012)

(Continued on following page)
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Role of calpains within the mammary
tissue

Calpains in the modulation of cell adhesion

Conventional calpains have been recognized as key proteases for
the regulation of cell adhesion promoting either, epithelial cell
clearance during mammary gland involution after lactation or
cell migration and invasion during breast tumor progression and
metastasis.

Adherens junctions (AJs) are cell-cell adhesion complexes
crucial for tissue homeostasis and barrier function of the
epithelia. At the cytoplasmic side, AJs are linked to the actin
cytoskeleton, stabilizing the epithelium, establishing epithelial cell
polarity, and facilitating the cell-to-cell communication needed to
regulate cell proliferation and movement. Consequently, disruption
of AJs is one of the hallmarks of cancer of epithelial origin including
breast carcinoma (Bruner and Derksen, 2018). However, disruption
of AJ is not necessarily a pathological condition, but a required
mechanism for cell plasticity and tissue reorganization during
development, cell proliferation or cell death.

One of the major players of cell-cell adhesion during mammary
gland development is E-cadherin. E-cadherins are transmembrane
receptors with extracellular regions mediating cell-cell adhesion and
their intracellular tails interacting with anchor proteins clustered
with several actin binding proteins. Both, calpain-1 and 2 are known
to target directly or indirectly several proteins from this junctional
network, going from E-cadherin, to different anchor proteins and
actin binding proteins (Table 1). E-cadherin is broadly expressed in
luminal epithelial cells in the mammary gland during all

developmental stages, from early embryonic stages to pregnancy
or lactation (Bruner and Derksen, 2018). E-cadherin disruption in
mammary gland from conditional knockout mice triggers luminal
cell apoptosis and cell clearance soon after parturition, preventing
the terminal differentiation of milk-producing cells (Boussadia et al.,
2002). From a physiological point of view, during mammary gland
involution after lactation, disruption of epithelial cell adhesion is an
important mechanism to remove undesired secretory cells and to
remodel the tissue for the next pregnancy/lactation cycle. Both,
calpain-1 and calpain-2 can proteolyze E-cadherin and other
adhesion proteins from lactating mammary tissue in vitro
(Rodríguez-Fernández, 2019). However, according to a cell type
and biological context-dependent role of calpains, calpain-2 is the
only isoform colocalizing with E-cadherin at epithelial cell
membranes during post-lactating mammary gland involution
(Figure 2, left). This finding further highlights the context-
dependent role of each isoform which will be specifically
regulated. Indeed, calpain-2/E-cadherin interaction barely
detected at the peak of lactation, increases as the involution
progresses. Mice treatment with calpeptin, the inhibitor of
calpain activity, was reported to prevent the E-cadherin cleavage
during mammary gland involution after lactation (Rodríguez-
Fernández, 2019).

Calpain-mediated cleavage of E-cadherin has been shown to
disrupt its interaction with its anchor proteins β-catenin and p120,
promoting the disassembly of protein complexes crucial for
cytoskeleton function (Rios-Doria et al., 2003; Bruner and
Derksen, 2018). In addition, proteolysis of anchor proteins is also
known to decrease the stability of E-cadherin at AJs (Davis et al.,
2003). Interestingly, both β-catenin and p-120 are also targets of

TABLE 1 (Continued) Direct targets of calpain activity in mammary gland.

Target Isoform Experimental model References

VATB2 n.s. Mouse mammary gland Arnandis et al. (2012)

Nup62 CAPN1 Mouse mammary gland Arnandis et al. (2014)

PARP CAPN1 MCF-7 Tagliarino et al. (2003)

n.s. MCF-7 and T47D Pink et al. (2000)

n.s. MCF-7 Cui et al. (2007)

p53 CAPN2 MCF-7, T47D Libertini et al. (2005)

PP2A (B56) n.s MCF-7 Bertoli et al. (2009)

RelA n.s. MCF-7 Fei et al. (2013)

PMCA1a/b n.s. MCF-7 Sareen et al. (2007)

Proliferation/Differentiation pathways

Cyclin E CAPN2 MCF-7, T47D and xenografts Libertini et al. (2005)

CAPN1 MCF-7 Hou et al. (2012)

n.s. ZR-75 Wang et al. (2003)

Cyclin D1 n.s. MDA-MB-231 Choi et al. (1997)

p21waf1/cip1 n.s. MCF-7 Khan et al. (2002)

Histone H3 CAPN1 Mouse mammary gland Arnandis et al. (2014)

n.s. CAPN isoform was not specified. Name of breast cell lines is indicated.
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calpain activity during mammary gland involution (Rodríguez-
Fernández, 2019), an event which further assures the complete
disassembly of AJs during mammary gland remodeling (Figure 2,
left). However, a fast AJ reassembly should be guaranteed for the
next pregnancy/lactation cycle.

Cleavage of E-cadherin induced by a number of stress stimuli,
including high calcium concentration and its accumulation in
cultured medium was long ago reported in mammary tumor cells
(Wheelock et al., 1987). E-cadherin undergoes endocytosis when AJs
are disrupted. It seems that the fate of truncated E-cadherin (ΔE-
cadherin) is not necessarily degradation, but will rather depend on
whether it is bound to AJs or is a free E-cadherin-complex (Bruner
and Derksen, 2018). Calpain-2/ΔE-cadherin complex, analyzed by
PLA assay in mammary gland during postlactating involution, was
not degraded but instead accumulated in the cytoplasm of
epithelial cells (Rodríguez-Fernández, 2019). The cytoplasmic
accumulation of several forms of ΔE-cadherin as a result of
calpain proteolytic activity was also demonstrated in breast and
prostate carcinoma cell lines as well as in several types of

adenocarcinoma (Rios-Doria et al., 2003). Although a soluble
ΔE-cadherin product of calpain activity has been proposed to
have prognosis value for breast cancer (Hofmann et al., 2013), the
role of the cytosolic ΔE-cadherin accumulation in breast epithelial
cells has not been completely elucidated.

Although mammary gland-specific depletion of E-cadherin did
not develop tumors in knockout mice (Boussadia et al., 2002),
several evidences indicate that inhibition of E-cadherin function
is sufficient to induce invasion of cancer cells (Bruner and Derksen,
2018). It has been hypothesized that tumors will not develop unless
the pro-tumorigenic event that induces the loss of E-cadherin is
preceded or occurs concomitantly with the loss of protecting signals
such as p53 or PTEN (Bruner and Derksen, 2018). Consistently, the
combined loss or inactivation of E-cadherin/p53 or E-cadherin/
PTEN in mammary gland leads to the development of invasive
lobular carcinoma (Libertini et al., 2005; Annunziato et al., 2016).
However, it seems that alternative mechanisms to disrupt
E-cadherin function must contribute to the invasive phenotype; a
fraction of patients with invasive lobular carcinoma retain

FIGURE 2
Schematic representation of the context-dependent role of conventional calpains in mammary tissue. Cell adhesion is disrupted during mammary
gland involution to clear milk-secreting cells (left). While calpain-2 cleaves E-cadherin and other proteins from AJ, an unknown calpain isoform (most
likely calpain-1) cleaves proteins from FA complex. Detached cells are shed into the lumen of alveoli. In contrast, in mammary tumors (right), calpain-1 is
the isoform cleaving proteins from both, AJ and FA to induce cell migration and promote invasion and metastasis. In addition, calpain-2-mediated
cleavage, and activation of LIMK1 induce phosphorylation and inactivation of the acting severing protein CFL-1, further contributing to cytoskeleton
remodeling, cell spreading and mitosis.
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E-cadherin expression and 50% of patients showing loss of
E-cadherin do not have CDH1 inactivating mutations (Bruner
and Derksen, 2018). According to a putative role of calpains in
these alternative mechanisms, calpain-1 has been shown to disrupt
cell-cell adhesion and promote cell migration in breast cancer cells
(Rios-Doria et al., 2003; Rodríguez-Fernández, 2019) (Figure 2,
right). In addition, both p53 and PTEN are well known targets of
calpain activity in breast cancer cells as well as in other cell types
(Kubbutat and Vousden, 1997; Libertini et al., 2005; Kulkarni et al.,
2010). Interestingly, although calpain-1 has been described to
proteolyze E-cadherin in breast cancer cell lines (Annunziato
et al., 2016; Rodríguez-Fernández, 2019), it is not involved in the
physiological cleavage of E-cadherin during mammary gland
involution after weaning. The pro-tumoral environment might
trigger the molecular switch from the physiological calpain-2/
E-cadherin to the metastatic calpain-1/E-cadherin-cleavage
observed in breast cancer cell lines. It is tempting to speculate
that the fate of ΔE-cadherin might be conditioned by the
calpain-isoform inducing its cleavage. After cleavage by calpain-2
in physiological conditions, ΔE-cadherin is internalized and stored
in the cytoplasm. This mechanism would allow the remaining
epithelial cells in the tissue to re-express cadherin at the cell
surface and to re-establish AJs in a more efficient manner, a
mechanism predicted to have important implications during
mammary gland remodeling after lactation.

In addition to AJs, the presence of integrin receptors and the
cytoplasmic proteins that form the focal adhesion (FA) complexes
also contribute to the process of cell detachment or migration.
Calpains are long ago known to be involved in FA turnover. An
increasing number of reports identify different calpain targets either
in integrin clusters, FAs, or downstream pathways (Bialkowska et al.,
2000; Franco and Huttenlocher, 2005; Paavolainen and Peuhu,
2021) (Table 1).

Integrin β3, described to be the target of calpain activity is an
essential integrin for lobulo-alveolar differentiation of mouse
mammary gland. Moreover, integrin clusters seem to be
dependent on calpain activity for their formation (Bialkowska
et al., 2000). Talin is a key protein from FAs that directly
connects integrins to the actin cytoskeleton and is the protein
from FA complexes most frequently reported to be a calpain
target in different tissues (Franco and Huttenlocher, 2005; Storr
et al., 2011a; Chen et al., 2019; Nian andMa, 2021). Mutation of talin
at its calpain cleavage site skipped proteolysis in response to
increased Ca2+ influx, but most importantly, it also attenuated
the degradation of the other proteins from the FA complex
which retained their interaction (Chang et al., 2017). During
mammary gland involution talin-1 was shown to be the target of
calpain activity (Figure 2, left), although the precise calpain isoform
involved in such cleavage has not been identified yet (Rodríguez-
Fernández, 2019). However, in either luminal or triple negative
breast carcinoma cell lines talin-1 was proteolyzed only by calpain-1
(Rodríguez-Fernández, 2019) (Figure 2, right). Since calpain-2
protein levels are much higher than calpain-1 levels in triple
negative breast cancer cell lines, the latter observation suggests
that the isoform-specific role of calpains in FAs is not dependent
on calpain levels but on the cell context regulation of its activity or
subcellular distribution. In agreement with this, in other cell types
such as fibroblast, calpain-2, but not calpain-1, is required for

proteolysis of talin (Franco et al., 2004; Franco and Huttenlocher,
2005).

RhoA is another downstream effector of FA described to be the
target of both calpains and crucial for the modulation of cell
spreading and morphology (Figure 2, right). Although not
specifically studied in mammary gland, the resultant effect of
RhoA cleavage is again dependent on the cell type and context.
Calpain-1 cleavage of the RhoA C-terminal domain inhibits
integrin-induced actin filament assembly and cell spreading in
endothelial cells (Kulkarni et al., 2002). The same effect was
observed in cultured fibroblast where calpain-1 degrades a stable
and functional N-terminal-RhoA fragment produced by serin
proteases (Girouard et al., 2016). On the contrary, calpain-2
promotes mTOR/ROCK-RhoA pathway and actin polymerization
through the cleavage and inactivation of PTEN in rat hippocampus
(Briz and Baudry, 2017). Nevertheless, since RhoA activity is tightly
regulated through several mechanisms (De Seze et al., 2023), is not
surprising that calpain activity on different targets might either
induce or block RhoA activity in specific cell types and conditions. In
this sense, Piezo channels, functionally expressed in malignant
breast cancer cell lines, mediate Ca2+-influx to activate RhoA by
a calpain-dependent mechanism regulating the formation and
orientation of FAs (Pardo-Pastor et al., 2018). RhoA is known to
induce the phosphorylation of the actin-severing protein cofilin-1
(CFL-1) through the activation of ROCK/RhoA/LIMK1 pathway
(Briz and Baudry, 2017). However, recent data suggest a calpain-2-
mediated cleavage of LIMK1 as a novel RhoA-independent
mechanism for LIMK1 activation and CFL-1 phosphorylation in
breast cancer cell lines (Rodríguez-Fernández et al., 2021) (Figure 2,
right).

All in all, these data highlight the important role played by
conventional calpains on cell adhesion disruption and actin
dynamics. Depending on the cell type and context, cleavage of
adhesion complexes or their downstream effectors by specific
calpain isoforms will lead to a different outcome; while cell
adhesion disruption will result in cell death during mammary
gland involution, in breast cancer cells it will promote cell
migration. Moreover, the role of calpains on cytoskeleton
organization and cell adhesion might be extended to other
biological and pathological processes modulated by actin-
dynamics yet to be determined.

Calpains functions in epithelial cell death

Following milk stasis, mammary involution is the process by
which senescent mammary cells are cleared, the lobuloalveolar
structures regress and the gland returns to a pre-pregnant state.
Among the signaling pathways regulating this programmed cell
death both, STAT3 and NFκB are essential (Watson, 2006; Torres
et al., 2011; Zaragozá et al., 2015; Watson and Khaled, 2020). As
mentioned before, conventional calpains are NFκB target-genes
upregulated early during the weaning process. Calpains will then
propagate the response proteolyzing various substrates to promote
cell apoptosis (Table 1); indeed, several caspases such as caspase-7,
-9, -10 and -12 have been identified as calpain-targets (Storr et al.,
2011a; Nian and Ma, 2021). Besides, activated calpains are involved
in endoplasmic reticulum-mediated apoptosis (Storr et al., 2016),
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and in the mitochondrial apoptotic pathway through the cleavage of
proteins from the Bcl-2 family (Storr et al., 2011a; Nian and Ma,
2021). Both conventional calpains are known to cleave the
N-terminal domain of Bcl-2, Bax, and Bid proteins and these
truncated forms translocate to the mitochondria where they
induce mitochondrial permeabilization and the release of
cytochrome c and apoptosis inducing factor (AIF) to the cytosol.
This mitochondrial leakiness will lead to the activation of caspase-3
and initiate apoptotic execution. In fact, mitochondrial fractions
incubated with either recombinant Bcl-2 or Bid showed only very
low cytochrome c release whereas incubation of mitochondria with
calpain-truncated Bcl-2 or Bid induced substantial or almost
complete release of cytochrome c (Gil-Parrado et al., 2002).
Similarly, Bax cleavage generates a potent proapoptotic 18 kDa
fragment that does not interact with the antiapoptotic Bcl-2
protein and mediates cytochrome c release (Gao and Dou, 2000).
It is noteworthy that calpain proteolysis of Bcl-2 transforms it from
an anti- to a pro-apoptotic molecule whereas the proapoptotic
proteins Bax and Bid become even more active in their calpain-
truncated forms.

In the murine mammary gland, initial studies on the mechanism
of cell death during involution focused on the activation of the
intrinsic apoptotic pathway, characterized by mitochondrial outer
membrane permeabilization, release of cytochrome c and other
proapoptotic factors (Zaragozá et al., 2005; Watson, 2006;
Kreuzaler et al., 2011; Wang and Scherer, 2019). It has been

demonstrated that calpain-1 is involved in this mitochondrial
proapoptotic pathway in either, physiological or pathological
mammary gland (Arnandis et al., 2012; Sobhan et al., 2013; Al-
Bahlani et al., 2017; Ciscato et al., 2020). Indeed, calpain-1 is present
in mitochondrial fractions in both, lactating and involuting
mammary gland; however, its protease activity increases as
weaning progresses, presumably due to the cytosolic increase in
calcium levels as a result of milk stasis, reaching its highest level at
72 h involution. Concomitant with calpain-1 activation at the
mitochondria, there is cytochrome c release from mitochondrial
fractions to the cytosolic compartment during involution, suggesting
that calpain-1 is the major player in mitochondrial destabilization
(Figure 3) (Arnandis et al., 2012). Similarly, in MCF-7 treated with
the proapoptotic drug zerumbone, calpain activity is required for
Bax activation preceding the mitochondrial permeabilization and
caspase-dependent cell death (Sobhan et al., 2013). Other studies
have shown that cisplatin-induced apoptosis of triple negative MB-
231 breast cancer cells takes place through the calpain-1-mediated
cleavage of caspase-12. Cisplatin treatment induced endoplasmic
reticulum stress and structural changes in mitochondria in a
concentration-dependent manner. In contrast, calpain-1 silencing
or calpeptin treatment, attenuated cisplatin-induced apoptosis in
these cells (Al-Bahlani et al., 2017). However, other studies in
human and murine breast cancer cells, have suggested that
mitochondrial permeabilization and mitochondrial calcium
overload are a priming event needed for calpain activation and

FIGURE 3
Activated calpains trigger cell death during the weaning process. Upon calcium overload, calpains become activated and translocate to different
subcellular organelles where they cleave target proteins, inducing nuclear, lysosomal, and mitochondrial membrane destabilization, the release of
cathepsins and pro-apoptotic proteins, and prompting cell death.
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induction of cell death (Sareen et al., 2007; Ciscato et al., 2020).
Nonetheless, the role of calpain-1 on the mitochondrial death
pathway described in mammary gland seems to be common to
other tissues. Calpain-1 found in mitochondrial-enriched fractions
from ischemic neurons (Cao et al., 2007) cleaves substrates such as
the Na+/Ca+2 exchanger NCX3 in the inner mitochondrial
membrane, causing mitochondrial calcium overload and release
of cytochrome c and apoptosis-inducing factor (Kar et al., 2009;
Norberg et al., 2010; Chelko et al., 2021). Whatever the sequence of
events that occur in the mitochondrial membrane, these studies
pinpoint the importance of the subcellular location of calpains for
their subsequent activation, substrate accessibility and final fate of
the cell.

Apart from this mitochondrial apoptotic pathway, several
findings in the involution process pointed out that there were
other mechanisms in the mammary tissue early in involution
that also led to programmed cell death of epithelial cells.
Alteration of nuclear morphology is a common feature shared by
different cell death programs. In this sense, calpains translocate to
the nuclear membrane during mammary gland involution affecting
nuclear pore complexes and, thus, nuclear membrane permeability
(Arnandis et al., 2014) (Figure 3). Conventional calpains were
present in nuclear fractions after 72 h involution;
immunofluorescence or immunoprecipitation analysis showed
that both proteases interacted with several nucleoporins that
form the nuclear pore complex. Indeed, it was demonstrated that
calpains cleave several peripheral nucleoporins during involution,
affecting the structure of nuclear pore complexes with the
subsequent impairment of nuclear transport selectivity. Calpain
activity and location within the nucleus has already been
described in other tissues, causing altered permeability of the
nuclear membrane and cell death (Bano et al., 2010; Chang et al.,
2015; Sheng et al., 2015). Alteration of the nuclear envelope may
have a key role in the redistribution of death-inducing factors, in a
positive amplification loop that would contribute to cell death and
disassembly. Supporting the cell-context dependent role of calpains,
their nuclear targets in transformed breast cancer cells are not at the
nuclear pore complex but in the nucleoplasm. Induced apoptosis in
MCF-7 or MD-468 breast cancer cells was shown to be mediated by
calpain-1 translocation into the nucleus. Upon calpain-dependent
endonuclease activation, PARP and p53 were proteolytically cleaved,
leading to DNA fragmentation and apoptosis (Tagliarino et al.,
2003; Cui et al., 2007). However, given the pleiotropic role of
calpains, these proteases may have contradictory roles in the cell
nucleus. Studies in non-transformedmammaryMCF10A found that
the calpain-2-mediated cleavage of nuclear Ku80 could be a
mechanism of resistance to induced-DNA double-strand breaks
(Baek et al., 2016). In contrast, calpain-2 played an important
role in the nucleocytoplasmic trafficking of forkhead box protein
P1 (FOXP1) via the PI3K-AKT pathway in breast cancer patients;
cytoplasmic relocalization of FOXP1 correlated with reduced overall
survival in breast invasive ductal carcinoma patients (Yu et al.,
2018).

On the other hand, the relevance of calpain in the modulation of
other cell death pathways during mammary gland involution have
been also studied. Mitochondrial or nuclear permeabilization are not
the only pathways to be modulated by calpain activity to induce cell
death. Further studies on murine mammary gland involution

showed that during the involution first phase, luminal alveolar
cells also die via a lysosomal-mediated pathway (Kreuzaler et al.,
2011; Arnandis et al., 2012). Lysosomal activity is essential to
preserve cellular homeostasis in mammary gland, and lysosomal
membrane permeabilization results in massive release of the
lysosomal contents into the cytosol (Kreuzaler et al., 2011; Lloyd-
Lewis et al., 2018). Therefore, the lysosomal-mediated cell death is
triggered by disruption of lysosomal membrane stability. The role of
calpains in the lysosomal-mediated death pathways during
mammary gland involution has been studied. It has been
demonstrated that calpain activity in lysosomal-enriched fractions
increased by twofold after 24 h weaning and remained elevated
thereafter, leading to lysosomal destabilization and the release of
lysosomal proteases into the cytosolic compartment (Figure 3)
(Arnandis et al., 2012). Lysosomal-membrane integrity is ensured
by several membrane proteins such as HSP70, the glycoproteins
LAMP1 and LAMP2 (Eskelinen, 2006) or the vacuolar-type H+-
ATPase (V-ATPase). Cleavage of these proteins will destabilize the
lysosomal membrane and induce cell death. The identification of
calpain targets in lysosomal fractions of involuting mammary gland
revealed the mechanisms of the calpain-mediated destabilization of
lysosomes. Indeed, it was observed that as involution progressed,
calpain-1 and calpain-2 translocated from the cytosol to the
lysosomal membrane where they degraded the cytosolic tail of
LAMP2A and the subunit b of the vacuolar-type proton ATPase.
Furthermore, calpain-1 silencing with siRNA prevented LAMP2A
degradation in 72 h weaned mice (Arnandis et al., 2012).

The consequences of the calpain-mediated destabilization of
lysosomes have been reported. Activation of STAT3 in mammary
tissue during involution upregulates the expression of cathepsins B
and L which are known lysosomal proteases (Kreuzaler et al., 2011).
Calpain-mediated lysosomal destabilization triggers the release of
cathepsins (Zaragozá et al., 2009; Margaryan et al., 2010). Since these
cathepsins will act on downstream targets such as MMP-9, calpains
will expand the signaling cascade that leads to epithelial cell death
and mammary tissue remodeling through lysosomes-leakiness.

Lysosomal weakness that involves cathepsins release is a known
pathway to be targeted in breast cancer cells (Ostenfeld et al., 2005)
and, based on current knowledge, one could hypothesize that
calpains are key mediators in this lysosomal cell death. VATB2,
identified as a calpain-target, is crucial for lysosomal-mediated cell
death. In breast and gastric cancer cell lines, inhibition of the
V-ATPase causes lysosomal dysfunction and induces apoptosis
(McHenry et al., 2009; Chen et al., 2022), sensitizing cancer cells
to chemotherapy (Piao and Amaravadi, 2016; Dong et al., 2022).
Nevertheless, the release of lysosomal content, such as cathepsins B
and D, initiates a cascade of cell signaling events that may not always
lead to cell death. Under specific circumstances cell fate can be the
opposite and lysosomal leakage may be associated to cell survival, as
it is the case for cancer cells, in which partial release of lysosomal
cathepsins has a key role in tumor progression. Indeed, V-ATPases
participate in the invasion and metastasis of tumor cells facilitating
cathepsins activation and release; a process associated with cell
invasion through matrix metalloproteinase activation (Jung et al.,
2021).

All these studies in mammary gland involution and breast
cancer emphasize the complexity of the calpain system. As
inferred from the information previously given, calpains can be
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both, proapoptotic or survival factors depending on cellular context,
type of apoptotic stimuli and subcellular localization of the protease
(Tan et al., 2006). Although several studies in breast cancer cells have
shown that calpain activation and mitochondrial dysfunction are
key mechanisms for the cytotoxicity of different pharmacological
anticancer drugs (Tagliarino et al., 2003; Cui et al., 2007; Sareen
et al., 2007; Sobhan et al., 2013; Al-Bahlani et al., 2017; Ciscato et al.,
2020), calpain activity has also been implicated in the pro-survival
activity of NFlB or p53 in cancer cells (Pianetti et al., 2001; Pozo-
Guisado et al., 2005; Fei et al., 2013). Interestingly, these two calpain-
targets are crucial regulatory nodes for mammary gland involution,
(Zaragozá et al., 2009; Torres et al., 2011); indeed, this process is
delayed in the absence of a functional p53 gene (Jerry et al., 1999;
Jerry et al., 2002) or NFκB (Connelly et al., 2010). Once again, it has
been remarked the multi-faceted role of calpains in diverse signaling
pathways. The findings presented herein highlight the context-
dependent and opposing pro-survival or pro-apoptotic roles of
conventional calpains, though further research is needed to
elucidate the precise mechanisms and the specific isoforms
playing a particular role in each cellular context.

Role of calpains in proliferation/
differentiation in mammary gland

Cell proliferation and differentiation take place in different cell
types throughout the whole pregnancy/lactation/involution cycle.
Some of the signaling pathways involved in the latter processes are
also triggered and altered during breast tumorigenesis. Calpains are
long known to be involved in the process of cell differentiation and
proliferation. The important function of calpains in those processes
was reported in early experiments where calpain inhibitors such as
calpeptin and other thiol protease inhibitors were shown to restrict
cell cycle progression or reduce the growth rate of transformed and
non-transformed mammalian cells in response to a number of
stimuli. Exogenous overexpression of CAST, or depletion of
specific calpain isoforms facilitated the identification of calpain
substrates as well as those signaling pathways modulated by
calpains during cell proliferation. Calpain activity promotes the
cell cycle progression through the modulation of key proteins for
G1 restriction checkpoint, such as Cyclins E, D1, p21 (waf1/cip1),
CDKs or RB. In addition, calpains also have an important function
in other phases of cell cycle (Table 1) (Nian and Ma, 2021).

Unfortunately, the role of calpains in epithelial cell proliferation
and differentiation during pregnancy or lactation has not been
studied yet. However, 3D studies in MCF-10A non-tumoral
breast cell line to mimic structures that resemble the acini of
human breast, revealed that the architecture of acini derived
from CAPNS1 depleted cells is altered (Raimondi et al., 2016).
Although not identifying the specific isoform, the authors conclude
that calpains may play an important role in the initiation of the
differentiation process in this system. Nevertheless, during
mammary gland involution after lactation most cells undergoing
proliferation/differentiation are not epithelial but stromal cells. In
fact, most of the non-lactating mammary gland mass consists of
stromal adipose tissue (Landskroner-Eiger et al., 2010). During the
second phase of involution, after epithelial cell death, the basement
membrane and ECM break down and, dedifferentiated adipocytes

proliferate and re-differentiate back into mature adipocytes to
repopulate the mammary fat pad (Wang and Scherer, 2019).
Calpain-1 was shown to be localized in the nucleus of
dedifferentiated adipocytes during the second phase of involution
(Arnandis et al., 2014). Conversely to its subcellular distribution in
epithelial cells, nuclear calpain-1 was not found to be associated to
the nuclear pore complex, but interacting with histone H3. This
calpain-1/histone H3 interaction seems to be part of the
differentiation program of pre-adipocytes repopulating the
mammary fat pad during involution. Analysis of adipocyte
fractions from involuting mammary gland as well as in vitro
enzymatic assays showed that calpain-1 was the specific isoform
cleaving the N-terminal tail of histone H3. Although the functional
consequences of calpain-1-mediated cleavage of histone H3 are
unknown, it is tempting to speculate that this cleavage might be
an epigenetic signature for selected genes upon adipocyte
differentiation. In this sense, differentiating preadipocytes have
been reported to experience important epigenetic changes in the
nuclear compartment affecting chromosome positioning (Kuroda
et al., 2004), promoter interactions prior to adipogenic genes
activation and expression (He et al., 2018) and chromatin
remodeling (Salma et al., 2004). In agreement with this, a full
colocalization of calpain-1 and the euchromatin/active marker
H3K4me3 was observed in tissue sections from mammary gland
involution (Arnandis et al., 2014). Interestingly, this colocalization
was exclusively observed in stromal cells. In addition, it is well-
established that adipogenic gene promoters are marked by early
changes in histone modification patterns (Macchia et al., 2021) to
keep an opened chromatin structure accessible to transcription
factors. Accordingly, cleavage of the histone H3 tail might result
in a decondensed chromatin structure in those adipogenic genes
which need to be expressed during the differentiation process
(Figure 4A). Calpain-1 was found to bind to the C/EBPα and
leptin gene promoters, two adipogenic genes involved in terminal
differentiation and the acquisition of the adipocyte phenotype,
respectively. Consequently, the expression of these two genes was
increased in mammary stroma during involution compared to the
lactating mammary gland (Arnandis et al., 2014).

Interestingly, further reinforcing the idea of a context-
dependent role of conventional calpains, observations from our
group (Rodríguez-Fernández, 2019) indicate that both calpain
isoforms interact with N-terminal tail of histone H3 during the
differentiation of 3T3-L1 pre-adipocytes (Figure 4B). However, their
distribution during preadipocyte mitotic clonal expansion is
completely different. Calpain-1 was observed surrounding
condensed metaphasic chromosomes, but not colocalizing with
them, and at telophase, it was widely distributed into the cytosol.
In contrast, calpain-2 was found either colocalizing with the
prometaphasic chromosome rosette, surrounding chromosomes
along the metaphase plate or concentrated in the whole nucleus
during telophase. These data suggest that although not observed in
mammary gland, both calpains might have different and important
functions for adipocyte differentiation. In that sense, it has been
proposed that calpain-2 limits the activity of calpain-1 (Shinkai-
Ouchi et al., 2020) and consequently, the pattern of activation of
each isoform might be sequential. However, this hypothesis has not
been demonstrated in vivo and in addition, the inflammatory
component from mammary gland involution, which is absent in
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cultured cells, might condition the behavior of both calpains.
Although this epigenetic mark was exclusively observed in
adipocytes, the possibility of calpains also having a role in the
nuclear compartment of mammary epithelial cells during cell
proliferation or progenitor differentiation is yet to be explored.

The role of calpains in proliferation of breast cancer cells has
been more extensively studied. Depletion of CAPN2 or CAPNS1 by
knockdown experiments in breast carcinoma cell lines reduced
tumor growth in mouse orthotopic xenografts, (Ho et al., 2012;
Grieve et al., 2016). Ablation of the regulatory subunit CAPNS1 in
the mammary epithelium delays spontaneous tumor onset in a
model of mammary HER2+ tumorigenesis (MacLeod et al., 2018).
Through the modulation of PP2A/Akt/FoxO3a pathway, CAPN2
silencing induces the expression of cyclin-dependent
p27Kip1 kinase inhibitor and reduces breast carcinoma cell
proliferation (Ho et al., 2012). Furthermore, accumulation of
nuclear calpain-2 has been associated to breast cancer cell
proliferation. Nuclear calpain-2 has been observed in both, triple-
negative and luminal breast cancer cell lines (Telechea-Fernández
et al., 2018). CAPN2 knockdown in triple-negative breast cancer cell
lines causes a higher percentage of cells at G2/M, aberrant mitosis,
fails in cytokinesis and consequently, an increased number of
multinucleated cells (Rodríguez-Fernández et al., 2021). All these
data suggest that while calpain-1, or both conventional calpains,
participate in the differentiation program of adipocytes during
mammary gland involution, calpain-2 preferentially accumulated
in the nuclear compartment, seems to be the main isoform
modulating cell proliferation in breast tumor cells.

However, the nuclear localization of calpain-2 has been
described also in non-transformed epithelial cells. It has been
reported that while in proliferating cells calpain-2 is mainly
localized in the nucleus (König et al., 2003; Raynaud et al., 2004;
Raynaud et al., 2008), in fully differentiated quiescent cells calpain-2
is restricted to the cytosol (Raynaud et al., 2004). High expression of
CAPN2 has been associated to its nuclear accumulation and active
mitosis in ES cells as well as in 8-cell embryos (Raynaud et al., 2008).
According to these data, calpain-2 might be expected to modulate
cell proliferation and differentiation of epithelial cells in mammary
gland during the pregnancy/lactation cycle. However, the effect of
tissue and cell type in the physiological or pathological mammary
gland needs to be considered. The physiological mammary stroma
consists of adipocytes, fibroblasts, endothelial and inflammatory
cells, as well as ECM, tightly regulated during each phase of the
pregnancy/lactation cycle. The communication and interaction
between the mammary epithelium and stroma drive the proper
patterning and function of the normal mammary gland (Howard
and Lu, 2014) and consequently, they will be determinant for the
different functions of conventional calpains. Likewise, a malignant
breast carcinoma includes more components than just epithelial
tumor cells. Disruption of the above mentioned interactions or
altered stroma composition in breast cancer (Landskroner-Eiger
et al., 2010; Vizovisek et al., 2021) could alter the subcellular
distribution and functions of conventional calpains in specific cell
types. Although much progress has been made in understanding the
function of conventional calpains on cell proliferation using breast
cancer cells, these data highlight the need to consider the tissue

FIGURE 4
Calpains and chromatin interaction during pre-adipocyte differentiation. (A) Schematic representation of the epigenetic cleavage of Nt-histone
H3 by calpain-1 in adipocytes. During mammary gland involution calpain-1 binds to and cleaves Nt-histone H3 on adipogenic gene promoters inducing
chromatin relaxation and gene expression (B) Representative images of CAPN1 and CAPN2 interaction with Nt-histone H3 during the differentiation of
3T3-L1 cells are shown. CAPNs/Nt-histone H3 interaction was analyzed by PLA (red) during pre-adipocyte monoclonal expansion (MCE) and
transition from early to terminal differentiation (ED-TD). Nuclei were counterstained with DAPI (blue). Scale bar, 21 μm. (Nt: N-terminal tail).
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composition and particular microenvironment when trying to
elucidate the specific role and regulation of each calpain isoform.

Challenges of calpains as therapeutic
targets and concluding remarks

As we have extensively covered in this review, in vitro and in vivo
experiments demonstrate that conventional calpains are involved in
tumor progression and metastasis. Moreover, calpain inhibition has
the potential to attenuate carcinogenesis and block metastasis of
aggressive tumors and particularly, of breast cancer. Hence,
targeting calpain-1 and calpain-2 was proposed as a novel
therapeutic strategy for mammary tumors. However, there are
not clinical trials involving inhibitors of conventional calpains for
breast cancer treatment. One of the main reasons for failure in
calpain-targeted chemotherapies is that calpains are a big family of
proteases with more than 15 isoforms, and even when only limited
to conventional calpains, the same isoform can have opposite effects
in different tissues or cell types. Since it is difficult to dissect the
isoform-specific role of both calpains for each particular cell context,
the potential use of calpains as therapeutic targets is necessarily
limited. In addition, when we consider that the role of each isoform
might also depend on its subcellular location, targeting calpains
seems an a priori unaffordable task.

Indeed, ablation of CAPN2 in mice is embryonically lethal (Dutt
et al., 2006) which further remarks the essential role of these
proteases for the epithelial homeostasis. Consequently, the
complete suppression of calpain activity can be harmful to the
organism. However, conditional deletion of total or tissue-specific
CAPNS1, which abrogates both conventional calpains, has been well
tolerated and has been demonstrated to be a useful tool to unveil the
essential role of calpains in maintaining tissue homeostasis (Grieve
et al., 2016; MacLeod et al., 2018).

Recent advances in biomedicine and technology have further
contributed to the design of new site-directed inhibitors of
conventional calpains with promising effects on inhibition of the
enzymatic activity. Nevertheless, many of these inhibitors, like the
classical inhibitors ALLN or calpeptin, resulted not as specific as
desired and the activity of other proteases such as cathepsins or
caspases was also blocked (Shapovalov et al., 2022).

The main calpain inhibitors that have been disclosed over the
last 10 years include different types of agents such as calpastatin-
based peptidomimetics, thalassospiramide lipopeptides, disulfide
analogs of α-mercaptoacrylic acids, allosteric modulators,
azoloimidazolidenones and, macrocyclic/non-macrocyclic
carboxamides (Donkor, 2020). All of them showing different
characteristics, benefits, and disadvantages.

To name some of them, the peptidomimetics calpain inhibitors
include agents based on the CAST structure. CAST is the only
known endogenous inhibitor of conventional calpain (Kiss et al.,
2008). Although other compounds can also inhibit other
unconventional calpains like calpain-8 or -9, these agents inhibit
mainly calpain-1 and -2 (Hata et al., 2016). Even though these
peptides show higher specificity than others, they still show poor cell
permeability and pharmacokinetic properties. As a result, a
structure-guided design of isoform-specific inhibitors of calpains
is yet to be accomplished.

The thalassospiramide are lipopeptides isolated from marine
bacteria, found to inhibit human calpain-1 in the nanomolar range
(Ross et al., 2013). These compounds have potential anti-
inflammatory properties and exhibit low toxicity and good
selectivity (Lu et al., 2015). Other compounds in this group
include derivatives of the MG132, a tripeptide that inhibits both,
26S proteasome and calpain activity (Pehere et al., 2019). The
detailed structure of the latter agents and the effectiveness of
some of the inhibitors in preclinical animal models has been
thoroughly discussed elsewhere (Donkor, 2020).

Having said that, there are some phase II/III and even preclinical
studies with calpains inhibitors, but they have been tested in the
context of other diseases, such as Alzheimer’s disease, multiple
sclerosis, spinal muscular atrophy, traumatic brain injury, acute
myocardial infarction, ophthalmic diseases, or muscular dystrophy
(Ono et al., 2016). As commented in this review, the calpain system
has been predicted to be an important target for cancer treatment
(Miyazaki et al., 2015). In that sense, calpain-1 activity was shown to
be important in the treatment of other types of cancer such as
myelodysplastic syndrome (Fang et al., 2016) colorectal cancer
(Vaish and Sanyal, 2012) or melanoma (Del Bello et al., 2007).
However, although the latter reports show the initial benefits of
inhibiting conventional calpains, other studies in melanoma have
suggested that calpain activity is required for the success of cisplatin-
induced apoptosis of cancer cells (Moretti et al., 2014).

In summary, as we have highlighted throughout this review,
conventional calpains can have different or even opposite functions
in different cell types or biological contexts. It is noteworthy to
mention that a scarce number of reports in the literature show in
vivo models for the study of conventional calpains in physiological
or pathological mammary gland. Even more, while a limited number
of publications show studies in breast cancer cell lines, most of
reports on the role of conventional calpains do not use mammary
cells as experimental models. Consequently, the mechanisms of
regulation of calpain activity in mammary tissue are still
unknown. Indeed, it is not known how conventional calpains are
regulated to specifically recognize a substrate among all the proteins
known to be their targets in mammary tissue. Although the effect of
calpains have been studied in breast cancer or mammary gland
involution, the mechanisms of calpain activation have not been
studied and only hypothetical and not demonstrated connections
between regulatory factors and calpains can be found in the
literature.

On the other hand, the subcellular compartmentalization of
calpains, which limits their access to substrates, seems to be a key
event for their functions. Thus, understanding the mechanisms
underlying subcellular distribution of calpains will be crucial to
decipher or inhibit their functions. A major challenge in targeting
conventional calpains as a therapeutic approach for breast cancer
would be to specifically abolish a calpain isoform within a cell
compartment and cell type in mammary tissue. Hence, important
questions to be answered are: How are conventional calpains
differentially distributed into cell compartments in breast cancer
cells? Might the subcellular localization of calpain isoforms, instead
of the expression levels of calpains or calpastatin, have a prognosis
value in breast cancer? In the meanwhile, post-lactation mammary
gland involution seems to be the most useful model to answer those
questions. Pregnancy associated breast cancer has been explained as

Frontiers in Cell and Developmental Biology frontiersin.org13

García-Trevijano et al. 10.3389/fcell.2023.1249317

82

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2023.1249317


the progression of a pre-existing disease promoted by the
microenvironment of post-lactating mammary gland (Macdonald,
2020). If involuting mammary gland mimics the microenvironment
of a developing tumor, unraveling the multifaceted and isoform-
specific roles of calpains in the context of mammary gland
involution will lead us to gain insights into breast cancer
development and the design of new calpain-targeting therapies.
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In inflammatory bowel disease (IBD), chronic inflammation in the gastrointestinal
tract can lead to tissue damage and remodelling, which can ultimately result in
fibrosis. Prolonged injury and inflammation can trigger the activation of fibroblasts
and extracellular matrix (ECM) components. As fibrosis progresses, the tissue
becomes increasingly stiff and less functional, which can lead to complications
such as intestinal strictures, obstructive symptoms, and eventually, organ
dysfunction. Epithelial cells play a key role in fibrosis, as they secrete cytokines
and growth factors that promote fibroblast activation and ECM deposition.
Additionally, epithelial cells can undergo a process called epithelial-
mesenchymal transition, in which they acquire a more mesenchymal-like
phenotype and contribute directly to fibroblast activation and ECM deposition.
Overall, the interactions between epithelial cells, immune cells, and fibroblasts
play a critical role in the development and progression of fibrosis in IBD.
Understanding these complex interactions may provide new targets for
therapeutic interventions to prevent or treat fibrosis in IBD. In this review, we
have collected and discussed the recent literature highlighting the contribution of
epithelial cells to the pathogenesis of the fibrotic complications of IBD, including
evidence of EMT, the epigenetic control of the EMT, the potential influence of the
intestinal microbiome in EMT, and the possible therapeutic strategies to target
EMT. Finally we discuss the pro-fibrotic interactions epithelial-immune cells and
epithelial-fibroblasts cells.

KEYWORDS

fibrosis, epithelial cells, intestinal fibrosis, inflammatory bowel disease, crohn, colitis,
epithelial mesenchymal transition

1 Introduction

Inflammatory bowel disease (IBD) is a complex condition influenced by a combination
of genetic, environmental, and immunological factors. Environmental factors, such as
changes in diet, increased hygiene practices, and alterations in the gut microbiota, are
believed to play a role in the development of IBD. The two main types of IBD are Crohn’s
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disease (CD) and ulcerative colitis (UC). CD is characterized by
inflammation that can occur anywhere in the gastrointestinal (GI)
tract, although it affects most commonly the small intestine and the
right colon. The inflammation in CD involves multiple layers of the
bowel wall. On the other hand, UC is limited to the colon and the
rectum. Both, CD and UC, are chronic conditions characterised by
periods of active disease and periods of remission, and the eventual
development of intestinal fibrosis. This inevitable progression
towards fibrosis suggests that fibrosis becomes inflammation-
independent and auto-propagative (Santacroce et al., 2022; Park
et al., 2023). The course and extent of fibrosis show significant
variability between individual patients, indicating a genetic
component (Jarmakiewicz-Czaja et al., 2023; Macias-Ceja et al.,
2023). In CD, approximately 50% of patients develop fibrotic
strictures or penetrating lesions (Cosnes et al., 2011) and it is
estimated that up to 70% of patients will eventually require
surgery at some point during their disease course (Yoo et al.,
2020). Despite undergoing surgical interventions, it is not
uncommon for patients to experience post-operative recurrence
of fibrosis, particularly at the site of an ileocolonic anastomosis.
This recurrence can lead to the development of re-stricturing
disease, potentially necessitating additional surgeries (Gklavas
et al., 2017). The incidence of intestinal strictures in CD has not
significantly changed, as current anti-inflammatory therapies
neither prevent nor reverse the established fibrosis/strictures,
indicating that control of inflammation does not essentially affect
the fibrotic course.

Intestinal fibrosis involves the accumulation of extracellular
matrix (ECM) components in the intestinal wall, and this process
is driven by activated cells of mesenchymal source, including
fibroblasts, myofibroblasts, and smooth muscle cells. The
deposition of ECM differs between UC and CD: in UC, fibrosis
is primarily restricted to the superficial layers of the intestine
(mucosal and submucosal layers) (Gordon et al., 2014), while
fibrosis in CD occurs mainly in the ileocecal valve and can affect
the entire thickness of the bowel wall due to the transmural nature of
the inflammation (Yoo et al., 2020). Currently, one of the main goals
of IBD treatment is to induce wound healing. Mucosal healing is a
biological process activated by inflammation that is capable,
depending on the equilibrium between production/degradation of
the ECM component, of either restoring the integrity of the damaged
epithelial barrier with reconstitution of normal intestinal function or
triggering fibrosis (D’Haens et al., 2022; Otte et al., 2023).

Various factors contribute to the development and progression
of fibrosis in IBD. Soluble molecules, including growth factors and
cytokines, play a significant role, with transforming growth factor-
beta 1 (TGFβ1) being considered a key player. These molecules are
released by activated immune and nonimmune cells and contribute
to the activation of fibroblasts and myofibroblasts, leading to
excessive ECM production and fibrotic remodelling. In addition
to soluble molecules, other mechanisms involved in intestinal
fibrosis include G protein-coupled receptors, the gut microbiota
and epithelial-to-mesenchymal transition (EMT) or endothelial-to-
mesenchymal transition (EndoEMT), which are processes where
epithelial or endothelial cells acquire a mesenchymal phenotype and
contribute to fibrosis (D’Alessio et al., 2022).

Since fibrosis can progress once established, regardless of
whether inflammation is suppressed or not, antifibrotic drugs are

now targeting mechanisms that are independent of inflammation
(Solitano et al., 2023). Science has focused on various aspects,
including the inflammation-independent mechanisms behind the
gut fibrotic process (Zhao et al., 2020), or environmental (Amamou
et al., 2022) and genetic risk factors (Macias-Ceja et al., 2023). This
has led to a deeper exploration of aspects such as aberrant wound
healing, dysregulated extracellular matrix production, and activation
of specific cell types (such as fibroblasts) that promote fibrogenesis
(Yoo et al., 2020). The traditional opinion that intestinal fibrosis is
an irreversible process is changing in light of an improved
understanding of the cellular and molecular mechanisms that
underline the pathogenesis of fibrosis.

Epithelial cells are involved in the fibrotic process at both the
cellular and molecular level. They can secrete cytokines and growth
factors, such as TGFβ and platelet-derived growth factor (PDGF),
that promote the activation of fibroblasts or extend the pool of
mesenchymal cells through the EMT process. The interactions
between epithelial cells, immune cells, and fibroblasts form a
complex network that promotes the development and
progression of fibrosis in IBD. In this review, we have collected
and discussed the recent literature highlighting the contribution of
epithelial cells to the pathogenesis of the fibrotic complications of
IBD, including evidence of EMT, the epigenetic control of EMT, the
potential influence of the intestinal microbiome in EMT, and the

FIGURE 1
Role of the epithelial barrier in the pathophysiology of
Inflammatory Bowel Diseases (IBDs). Simplified illustration of the role
of epithelial barrier in the pathophysiology of IBD. The illustration
shows themain processes in which epithelial cells are involved in
the pathogenesis of IBD. Antimicrobial peptide (AMP); Tight
junction (TJ).
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possible therapeutic strategies to target EMT. Finally, we discuss the
pro-fibrotic interactions between epithelial cells, immune cells, and
fibroblasts.

2 A brief outline of the epithelial barrier
role in the pathophysiology of IBD

Under normal and homeostasis conditions, the intestinal
epithelial barrier comprises a thick mucosal layer that is
associated with specialized intestinal epithelial cells (IECs) linked
together by tight junctions (TJs) and resident microbiota,
collectively forming a healthy layer. Intestinal stem cells, located
in the base of the crypt, divide and differentiate to give rise to five
different types of IECs (enterocytes, Paneth cells, goblet cells (GCs),
enteroendocrine cells and microfold cells) maintaining the integrity
of the intestinal epithelium.

It is known that the loss of barrier integrity and the increase in
overall barrier permeability are fundamental processes in the IBD
pathophysiology (barrier loss activates immunoregulatory
processes) (Kotla and Rochev, 2023). The barrier loss can be
triggered by various factors, including disruptions in the tight
junction, abnormal mucus production, impaired antimicrobial
peptide (AMPs) secretion, altered wound healing, or
environmental and genetic factors (Figure 1). In IBD, the high
levels of proinflammatory (T helper type 1 (Th1)) cytokines (Tumor
necrosis factor alpha (TNFα), Interleukin (IL)1β, and IL6) change
the composition of the TJs decreasing transepithelial electrical
resistance and amplify mucosal inflammation (Lee, 2015). Along
this line, clinical studies have shown a decrease in the expression and
redistribution of the junctional complexes in both UC (Blair et al.,
2006) and CD (Zeissig et al., 2007) patients.

Over the years, a series of studies showed that mucin expression/
secretion by GCs (the primary secretory cells of the GI trac) is
mediated by cytokines (both Th1 and Th2 cytokines),
inflammasome related proteins (autophagy dysregulation), gut
microbiota and the diet (Melhem et al., 2021). For instance,
Western diets (high fat/high sugar) lead to endoplasmic
reticulum stress and oxidative stress in GCs reducing the
production/secretion of mucins (Gulhane et al., 2016) and alters
microbial communities, improving the colonization of E. coli
(Martinez-Medina et al., 2014) or favouring an overgrowth of
pro-inflammatory bacteria, such as Proteobacteria (Agus et al.,
2016). This, together with the fact that the products derived from
bacteria can regulate the production and secretion of mucin, thus
promoting the loss of the integrity of the epithelial barrier (Figure 1).
Lastly, epithelial repair is known to be altered in IBD and this is
reflected in the creation of aberrant intestinal anastomosis after a
bowel resection, giving rise to the recurrence of the disease in the
same place (Kelm and Anger, 2022).

Mucosal healing is a complex process that encompasses the
migration/proliferation of IECs as well as regulation by gut
microbial peptides, and growth factors (Alam and Neish, 2018),
that can be altered by genetic and epigenetic factors. Genome-wide
association studies (GWAS) have indicated risk alleles in IBD
patients in genes involved in intestinal cell restitution (ERRFI1,
PTGER4 or HNF4), in cell polarity (PARD3) or in intercellular
junctions (MYO9B, MAGI2, GNAI2, LAMB1 or CDH1) (McCole,

2014). At a epigenetic level, long non coding RNA (ncRNA)
CCAT1 and FBXL19-AS1 (Ma et al., 2019; Zhao et al., 2022),
circular CDKN2B-AS1 and SMAD4 (Rankin et al., 2019; Zhao
et al., 2023) and microRNAs (miR) miR-21, miR23a, miR-182-5p
(Shi et al., 2013; Yang et al., 2013; Felwick et al., 2020; Xu et al., 2022)
overexpression can increase the degradation of the epithelial barrier
while miR-195-5p reduces the permeability (Scalavino et al., 2022).

Currently, the goal of IBD therapy (gold standard) in long
remission is the epithelial repair and mucosal healing (Colombel
et al., 2020; D’Arcangelo and Aloi, 2020). However, there are no
approved therapies targeting the epithelium. There are indeed
various approaches being explored in the field of epithelial
research that have the potential to lead to new therapies, such as
the use of epithelial stem cells, growth factors or cytokines, and
modifications of the intestinal microbiota (Liu et al., 2021). It is
worth noting that these approaches are still under active research
and development. However, they represent exciting paths for
potential therapeutic interventions in IBD.

3 EMT role in intestinal fibrosis

EMT, first described in 1995 (Hay, 1995), is a reversible process
in which the characteristics of epithelial cells are modified until
reaching the characteristics of mesenchymal cells, passing through
intermediate characteristics between both cell types. In the literature,
there are three types of EMT described: the ones associated with
embryogenesis/development (type-1 EMT); the ones involved in
wound healing (type-2 EMT); and the ones associated with cancer
progression (type-3 EMT) (Marconi et al., 2021). Several studies
have reported that damaged epithelial cells may act as crucial
sources of fibroblasts and contribute to organ fibrosis through
type-2 EMT in different fibrotic tissues (Tennakoon et al., 2015;
Rout-Pitt et al., 2018; Ortiz-Masiá et al., 2020a; Macias-Ceja et al.,
2022; Hadpech and Thongboonkerd, 2023) where specialized
epithelial cells give rise to myofibroblasts with profibrotic and
pro-inflammatory activity, which expresses α smooth muscle
actin (α-SMA) and VIMENTIN but does not express epithelial
markers, such as E-CADHERIN (CDH1), ZONULAE
OCCLUDENTES (ZOS) or claudins. Various transcriptional
factors regulate the process, such as SNAIL Family
Transcriptional Repressor (SNAIL1/2), ZINC-FINGER E-BOX-
BINDING (ZEB1/2), SLUG or TWIST transcription factors
(TWIST1/2) (Xu et al., 2019).

Numerous studies support the role of EMT in the pathogenesis
of intestinal fibrosis. In this section we will review the contribution
of EMT to the pathogenesis of the fibrotic complications of IBD.
Specifically, we review the evidence of EMT in patients, the
molecular mechanisms involved, and the role of epigenetic and
genetic. Finally, we discuss the role EMT as a therapeutic target
in IBD.

3.1 Evidence of EMT in IBD patients and in
vivo models

In IBD, EMT was observed for the first time in 2008 in the
intestinal fistulae of CD patients (Bataille et al., 2008). From
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2008 to 2023, several studies have revealed the presence of EMT
markers in CD and UC patients (Table 1). In CD, the presence of
EMT markers has been demonstrated in all disease phenotypes
[Montreal classification (Satsangi et al., 2006)]: in transitional
cells from entero-cutaneous surrounding fistulae, in fibrotic
areas from fistulae, in stenotic tissues and in inflamed
mucosa. In relation with type-3 EMT, SLUG expression has
been related with tumor progression in CD (Scharl et al., 2014).
Regarding UC, the literature about type-2 EMT in intestinal
fibrosis is limited. The intestinal samples analysed in most
studies do not specify the presence of fibrosis or are
performed on inflamed tissue (Table 1). Penetrating or
stricturing complications are more common in CD (Thia
et al., 2010) than in UC (Yamagata et al., 2011). However, the
core problem in UC is the risk of dysplasia/cancer (CD, 2.4%;
UC, 10.0%) (Fumery et al., 2015). This could be an explanation
about why studies in patients with UC are more directed towards
type-3 EMT (Saito et al., 2011; Wang et al., 2012; Tahara et al.,
2014; Zhao et al., 2015).

Animal models have played a crucial role in advancing our
understanding of intestinal fibrosis. Murine models of intestinal
fibrosis include chemical induction (trinitrobenzene sulfonic acid
(TNBS) or dextran sodium sulfate (DSS)), genetic manipulation
(IL-10KO), ionizing radiation, or surgical techniques (hetero
transplantation of small bowel) (Li et al., 2021). A very
interesting animal model that has helped to gain insight into

the EMT process in intestinal fibrosis are the VillinCre;
R26Rosa-lox-STOP-lox-LacZ double transgenic mice, which
have made it possible to track mesenchymal cells derived from
epithelial cells (Flier et al., 2010). The presence of EMT markers in
fibrotic mouse models has been widely demonstrated by Lovisa’s
review (Lovisa et al., 2019). Two interesting findings from animal
models are that one-third of the fibroblasts are derived from
epithelial cells in the TNBS model (Flier et al., 2010), or that
the cells that enter in EMT do not move and remain in their
original anatomical location in the DSS model, favouring
fibroblasts transdifferentiation through the release of profibrotic
mediators (Zeng et al., 2022).

3.2 EMT in intestinal fibrosis: molecular
mechanism

Type-2 EMT is particularly observed in CD. Although the
factors that drive type-2 EMT in IBD are not yet fully
understood, various signalling pathways (TGFβ/SMAD, WNT,
NOTCH, hypoxia-inducible factor-1α (HIF1α) and Hedgehog
pathways) and molecules (growth factors, cytokines, proteases,
oxidative stress, and hormones) have been implicated. In this
section, we review the main pathways and molecules involved in
the EMT-modulation of intestinal fibrosis associated with IBD
(Table 2) (Figure 2).

TABLE 1 Reports of EMT in inflammatory bowel diseases (IBDs). Alpha Smooth Muscle Actin (α-SMA); E-cadherin (CDH1); Crohn’s disease (CD); N-cadherin (CDH2);
Epithelial growth factor (EGF); Fibroblast activation protein (FAP); Fibroblast growth factors (FGF); Fibronectin (FN); Matrix metalloproteinase (MMP);
Transforming growth factor β (TGFβ); Tumour necrosis factor (TNF); Tumour necrosis factor receptor (TNFR); Zinc-finger E-box-binding (ZEB).

Intestinal fibrotic samples EMT histological localization/EMT markers References

CD N = 15 resections Entero-cutaneous fistula specimens (+) CYTOKERATIN 8/20, β6-
INTEGRIN, nuclear B-CATENIN, TGFβ1/2 (−) VIMENTIN, CDH1

Bataille et al. (2008)

IBD N = ¿? resections Intestinal crypts ↑ α-SMA/↓ CDH1 cells Flier et al. (2010)

CD N = 7 resections Entero-cutaneous fistula specimens (+) SNAIL, FGF1/2/4/7 (−) EGF/
TWIST

Scharl et al. (2011)

Fibrotic lesions (+) SLUG, TNF/TNFR1

IBD N = 22 biopsies Inflamed mucosa (+) N-CADHERIN, ↑VIMENTIN/↓CDH1 cells Chen et al. (2013)

CD N = 18 biopsies/resections Fibrotic lesions (+) nuclear B-CATENIN, SLUG, FAP, TGFβ1 Scharl et al. (2015)

IBD N = 20 resections Inflamed mucosa (+) SLUG/SNAIL Zidar et al. (2016)

CD N = 26 resections Fibrotic lesions ↑VIMENTIN ↓CDH1 Xu X et al. (2017)

IBD pediatric N = 44 biopsies Inflamed mucosa ↑ SNAIL/↓CDH1 Pierdomenico et al. (2018)

IBD N = 10 biopsies Inflamed mucosa ↑ SNAIL, ZEB2, VIMENTIN, MMP9, ↓CDH1 Boros et al. (2018)

CD N = 31biopsies Inflamed mucosa ↑FSP1, VIMENTIN, nuclear B-CATENIN, ↓CDH1 He et al. (2018)

CD N = 57 resections Fibrotic lesions/Entero-cutaneous fistula specimens/Intestinal crypts
↑VIMENTIN/↓ CDH1cells ↑ SNAIL/SLUG, CDH2, DESMIN, ZEB1

Ortiz-Masià et al. (2020b)

IBD N = 16 resections Inflamed mucosa ↑ SNAIL/SLUG Ortiz-Masiá et al. (2020a)

IBD N = 32 resections Fibrotic lesions ↑FSP1 and α-SMA/↓CDH1cells (+) nuclear B-CATENIN Wenxiu et al. (2021)

CD N = 30 biopsies Fibrotic lesions (+) CDH2,VIMENTIN, TIMP1, FN Wang et al. (2022)

IBD N = 133 biopsies Inflamed mucosa ↑ SNAIL, CDH2 ↓CDH1 Ghorbaninejad et al. (2022)

IBD N = 5 biopsies Inflamed mucosa ↑VIMENTIN/↓ CDH1 cells, nuclear B-CATENIN Pompili et al. (2023)
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3.2.1 Cytokines and intestinal type-2 EMT
To begin with, TGFβ is the most important trigger of EMT

(Yun et al., 2019). In the canonical pathway TGFβ induce the
activation of the Small mothers against decapentaplegic (SMAD)2/
3/4 complex which regulates the transcription of pro-EMT
transcription factors (such SNAIL, ZEB or TWIST). Non-
canonical (non-SMAD) TGFβ signalling mediates the induction
of EMT through the activation of several kinases (ERK1/2, Akt,
NFκB, TAK1, p38, JNK, ILK). Several studies indicate that aberrant
signalling of TGFβ and its pathways lead to profibrotic EMT in IBD
(Johnson et al., 2013; Di Gregorio et al., 2020). In vitro studies have
shown that TGFβ induces the expression of IL13 via Dickkopf-
homolog-1 (a WNT signalling antagonist) in IEC, and both
cytokines exert a synergic effect on EMT activation (Frei et al.,
2013; Scharl et al., 2013). In fact, the fourth European Crohn’s and
Colitis Organisation (ECCO) guidelines state that the TGFβ/
SMAD pathway activated by IL13 is a central process in the
formation of intestinal fibrosis (Latella et al., 2014). Elevated
secretion of IL13 is also associated with the expression of TNF-
like cytokine 1A (TL1A) in vivo models (Giuffrida et al., 2019), a

factor that is also capable of promoting EMT via TGFβ/SMAD
(Wenxiu et al., 2021), which endorses the role of IL13 in fibrosis.
Indeed, TL1A expression is upregulated in both UC and CD
patients (Arimura et al., 2014).

Other cytokines involved in triggering EMT in intestinal fibrosis
in vivo models include IL22 (Delbue et al., 2021) and IL17A (H.-
J. Zhang et al., 2018). IL17A is a pro-inflammatory cytokine, mainly
produced and secreted by Th17 cells, which contribute to the fibrotic
process in multiple organs (Ramani and Biswas, 2019). On the other
hand, the role of IL22 (a member of the IL-10 family) is more
controversial and seems to depend on the cell type or type of
inflammatory trigger (Keir et al., 2020). For instance, in spite of
high levels of IL22 seen in IBD, epithelial barrier dysfunction persists
(Pelczar et al., 2016) and IL22 trigger EMT via ERK in some
preclinical models (Delbue et al., 2021). Interferon gamma
(IFNγ) is another cytokine implicated in the activation of EMT
in IBD, which acting on macrophages activate WNT signalling
pathway (Macias-Ceja et al., 2022).

To sum up, the cytokines released during chronic inflammation
can create an environment conducive to EMT, triggering fibrotic

TABLE 2 Molecular mechanism implicated in upregulation of type-2 EMT in IBD samples, and in vivo and in vitro IBD related models. The symbol “/” indicates
treatment. Advanced oxidation protein products (AOPPs); Carbohydrate sulfotransferase 15 (CHST15); Crohn’s disease (CD); Bone morphogenic protein-7 (BMP7);
Dextran sodium sulfate (DSS); Dickkopf-homolog-1 (DKK1); Intestinal epithelial cell (IEC); Interferon (IFN); lipopolysaccharide (LPS); Parathyroid hormone-like
hormone (PTHLH); parathyroid hormone receptor 1 (PTH1R); protein kinase A (PKA); Runt-related transcription factor 2 (Runx2); Sonic Hedgehog (SHH);
Trinitrobenzene sulfonic acid (TNBS); Tumour necrosis factor-like ligand 1A (TL1A); Transititonal cells lining the fistula tract (TC); Transforming growth factor
(TGF); Interleukin (IL); Tumour necrosis factor (TNF); Toll-like receptor 4 (TLR4); Ulcerative colitis (UC); Zinc-finger E-box-binding (ZEB).

Protein Type of study EMT Molecular mechanism
in EMT

References

TGFβ In vitro HT29 cells/TGFβ ↑ IL13, SNAIL1 Scharl et al. (2013)

IL13 In vitro HT29 cells/IL13 ↑ SLUG Scharl et al. (2013)

DKK1 In vitro Human HT29 cells/TGFβ1 CD: ↑DKK1 in TC ↑ IL13 Frei et al. (2013)

TL1A In vitro In vivo
Human

HT29 cells/TL1A/BMP7 DSS TL1A overexpression IBD:
↑TL1A

↑ TGFβ/Smad3 Wenxiu et al. (2021)

IL22 In vitro I n In vivo Caco-2, HT29 and T84 cells/IL22, TGFβ1, IFNγ, TNFα
Toxoplasma model IL22−/−

↑ ERK Delbue et al. (2021)

IL17A In vitro In vivo IEC6/IL17A Mouse intestine ↑ SNAIL Zhang et al. (2018)

IFNγ In vitro Human HT29 cells cocultured with IFNγ -U937 macrophages CD:
↑IFNγ and IFNγ receptor

↑ WNT/FZD4 Macias-Ceja et al. (2022)

SHH In vitro Human Caco2 cells coculture with LPS-RAW264.7cells/HPI-1 or
GANT-61 (HH inhibitors) IBD: ↑SHH activity

↑ SHH Ghorbaninejad et al.
(2022)

WNT2b/
FZD4

In vitro Human HT29 cells/WNT2b CD Biopsies/WNT2b CD: ↑WNT2B/
FZD4

↑ FZD4 Ortiz-Masiá et al.
(2020a)

SUCNR1 In vitro In vivo
Human

HT29/TGFβ Hetero transplantation SUCNR1−/−CD B3:
↑Succinate, SUCNR1

↑ WNT Ortiz-Masiá et al.
(2020a)

AXL In vitro In vivo
Human

HT29 cells/TNFα TNBS IBD: ↑AXL ↑ ZEB/SNAIL Boros et al. (2017)

TLR4 In vitro In vivo HCT116 cells/LPS DSS TLR4−/− ↑ Cytokine expression Jun et al. (2020)

AOPPs In vitro In vivo
Human

IEC6/AOPPs Rats/AOPPs, apocynin CD: ↑AOPPs ↑ PKC δ- NFκB Xu X et al. (2017)

ZNF281 In vitro In vivo
Human

HT29, IBD Biopsies/IFNγ,TNFα DSS IBD: ↑ZNF281 ↑ SNAIL Pierdomenico et al.
(2018)

CHST15 In vitro In vivo HCT116/TGFβ DSS CHST15 siRNA ↑ BMP7 Suzuki et al. (2016)

PTHLH In vivo Human TNBS overexpression PTH1R CD: ↑PTHLH and PTH1R ↑ PKA-Runx2 He et al. (2018)
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processes and therefore the progression of the disease. In IBD
fibrotic context, the main pro-EMT cytokines described are Th1,
Th2 or Th17 (TGFβ1, TL1A, IL17A, IL13, IL22 and IFNγ), where
TGFβ1 is the best characterized pro-EMT agent, capable of
triggering the induction of other pro-EMT cytokines. In addition,
cytokines can exert their pro-EMT role both directly on epithelial
cells but also indirectly through macrophages, further amplifying
their pro-fibrotic effect. So, the intricate interplay between cytokines,
EMT, and fibrosis highlights the complexity of cellular processes and
the importance of maintaining proper balance for healthy tissue
repair and function.

3.2.2 Immune system and intestinal type-2 EMT
Macrophages play an important role in intestinal fibrosis

since they are capable of generating a profibrotic environment,
triggering EMT or fibroblast activation, and perpetuating the
disease (Lis-López et al., 2021). In this line, Lipopolysaccharide
(LPS)-treated macrophages induce EMT through Sonic
Hedgehog (SHH) signalling (Ghorbaninejad et al., 2022),
while IFNγ -treated macrophages (Macias-Ceja et al., 2022)
trigger EMT via the WNT/FZD4 pathway. SHH and WNT
signalling are evolutionary conserved signalling pathways
which play a regulatory role in gut development and
homeostasis and are both related with tumor progression and
fibrosis (Castellone and Laukkanen, 2017). SHH protein is
highly expressed in IEC and is involved in the regulation of
epithelial cell turnover. In the inflamed tissues of IBD patients,
SHH signalling components are overexpressed and in vitro
assays have shown that inhibition of epithelial SHH

signalling exerts a dual protective effect against inflammation
and EMT (Ghorbaninejad et al., 2022). On the other hand, the
WNT signalling pathway plays a vital role in homeostasis and
repair, and has also been related to intestinal fibrosis (Lewis
et al., 2022) and penetrating behaviour in CD (McGregor et al.,
2023). In relation to the modulation of intestinal EMT, it has
been described that IEC cocultured with IFNγ -treated
macrophages (Macias-Ceja et al., 2022) or WNT2b (Ortiz-
Masiá et al., 2020a) trigger EMT via the FZD4 receptor.
These in vitro assays have been endorsed by the fact that
IFNγ, the IFNγ receptor and the WNT2b/FZD4 pathway are
overexpressed in CD patients with stenotic and/or penetrating
behaviour (Ortiz-Masiá et al., 2020a; Macias-Ceja et al., 2022).

Other proteins involved in immune responses in fibrotic
conditions are Toll-like receptors (TLRs) and TAM receptors.
Within the family of TAM receptors (pleiotropic negative
regulators of the immune system), the AXL receptor has been
specifically implicated in the regulation of cell motility and EMT in
IBD. In both in vivo models and in IBD tissue, inflammation has
been shown to trigger AXL overexpression in epithelial cells and
macrophages which is accompanied by an increase in the EMT
markers (VIMENTIN, ZEB2 and SNAIL) (Boros et al., 2017; Boros
et al., 2018). However, the TLR4 receptor (a facilitator of
inflammatory responses through maturation of innate
immunity) also triggers intestinal EMT in vivo and in vitro
models (Jun et al., 2020). The actions of both receptors are
mediated through profibrotic NFκB signalling, which may partly
explain that both trigger EMT (Lemke and Rothlin, 2008; Jeong
and Lee, 2011).

FIGURE 2
Molecular mechanisms implicated in epithelial mesenchymal transition (EMT) in IBD. The figure shows: solublemolecules, cells or hormones related
with the induction (INDUCERS) or inhibition (INHIBITORS) of the EMT process; receptors or enzymes implicated in the EMT process (TRANSDUCTORS)
and pathways related with EMT (PATHWAYS). Advanced oxidation protein products (AOPPs); Bone morphogenic protein-7 (BMP7); Carbohydrate
sulfotransferase 15 (CHST15); Crohn’s Disease (CD); Dickkopf-homolog-1 (DKK1); Hypoxia inducible factor (HIF); Inflammatory Bowel disease (IBD);
Interferon (IFN); Interleukin (IL); Lipopolysaccharide (LPS); Macrophage (M⊝); Nuclear Factor kB (NFκB); Toll-like receptor 4 (TLR4); Parathyroid hormone-
like hormone (PTHLH); Parathyroid hormone receptor 1 (PTH1R); Protein kinase (PK); Peroxisome proliferator-activated receptor (PPARγ); Runt-related
transcription factor 2 (Runx2); Silent information regulator 1 (SIRT1); Sonic Hedgehog (SHH); Transforming growth factor (TGF); Tumour necrosis factor-
like ligand 1A (TL1A); Ulcerative Colitis (UC); Vitamin D receptor (VDR); Zinc-finger E-box-binding (ZEB).
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In summary, macrophages and immune receptors (such TLRs
and TAM receptors) in IBD exert their pro-fibrotic role through the
activation of pro-EMT pathways related with development and
homeostasis regeneration (WNT or SHH pathways) and NFκB
signaling, respectively. These results support the close
relationship between inflammation and fibrosis in IBD, such that
imbalance between immune responses and tissue repair processes
potentially promotes fibrosis.

3.2.3 Oxidative stress and intestinal type-2 EMT
Oxidative stress is a hallmark of IBD and there is a well-

established link between ROS production, oxidative stress, and
the activation of pro-fibrotic growth factors and cytokines,
suggesting the existence of feedback as well as feed-forward
cycle in intestinal fibrosis (Latella, 2018). In relation to EMT-
type 2, oxidative stress is considered a stimulus in lung fibrosis
(Cheresh et al., 2013). In IBD, the accumulation of advanced
oxidation protein products (AOPPs) promote inflammation and
fibrosis formation by activating cellular oxidative stress (Balmus
et al., 2016). AOPPs correlate with the expression the EMT
markers in intestinal fibrosis, and in vitro and in vivo
administration of AOPPs induces EMT via the protein kinase
C δ isoform (PKC δ) that triggers NFκB pathway (Xu X et al.,
2017).

Another molecule implicated in oxidative stress is succinate.
Succinate levels and its receptor SUCNR1 are increased in CD
patients and correlate with EMT markers. (Macias-Ceja et al.,
2019; Ortiz-Masiá et al., 2020a) (Table 2). Succinate is an
important metabolite at the cross-road of several metabolic
pathways, also involved in the formation and elimination of
reactive oxygen species (ROS), and succinate accumulation
contributes to oxidative stress and mitochondrial ROS
production (Zhang et al., 2021). SUCNR1 is activated by
succinate when this metabolite is secreted to the extracellular
milieu after accumulation inside cells suffering metabolic
alterations provoked by inflammatory mediators. In IBD models,
succinate and SUCNR1 are capable of triggering EMT through the
WNT pathway in vitro and in vivo (in a heterotopic intestinal
transplant model of fibrosis in SUCNR1−/− mice) (Ortiz-Masiá
et al., 2020a) (Table 2).

3.2.4 Other molecules related with intestinal type-
2 EMT

Other novel molecules that have been linked to intestinal EMT
are the transcription factor ZNF281 (Pierdomenico et al., 2018), the
enzyme carbohydrate sulfotransferase 15 (CHST15) (Suzuki et al.,
2016) and the parathyroid hormone–like hormone (PTHLH) (He
et al., 2018). The novel factor ZNF281is overexpressed in IBD
patients and required for the induction of SNAIL-dependent
EMT. CHST15 is an enzyme biosynthesizing chondroitin
sulphate E which binds to various proinflammatory and
profibrotic mediators and is known to create local fibrotic
lesions. In fact, STNM01, a synthetic double-stranded RNA
oligonucleotide directed against CHST15, is currently in a Phase
1 Clinical Study (safety) in CD patients (Suzuki et al., 2017). Finally,
PTHLH is a multifunctional peptide implicated in fibrosis formation
(Ardura et al., 2010), and induces EMT in IEC of CD patients by
modulating protein kinase A (He et al., 2018).

3.2.5 Molecular mechanisms implicated in the
downregulation of type-2 EMT in IBD

At the other end of the spectrum of the molecular mechanisms
involved, there are the molecules or pathways that favour
mesenchymal epithelial transition (MET) or prevent EMT
(Table 3) (Figure 2). For instance, bone morphogenic protein 7
(BMP7) is a member of the TGFβ family and prevents TGFβ-
induced EMT in vivo and in vitro due to its ability to counteract the
profibrotic effect of TGFβ (Flier et al., 2010). Other molecules that
appear to downregulate EMT are the peroxisome proliferator-
activated receptor (PPAR)γ and SIRT1 (a class III lysine
deacetylase) as their ablation has been shown to exacerbate EMT
in vivo models of intestinal fibrosis (Di Gregorio et al., 2017; Chen
et al., 2021). PPARγ is a well-known inhibitor of TGFβ-induced
EMT by antagonizing SMAD3 function (Reka et al., 2010), and
PPARγ activators seem to reverse intestinal fibrosis (Di Gregorio
et al., 2017; Xu S et al., 2017). SIRT1 is an enzyme that plays a crucial
role in aging and chronic diseases. It functions by deacetylating
several transcription factors, thereby regulating various pathways.
One such pathway in which SIRT1 has been implicated is intestinal
fibrosis-associated EMT (Chen et al., 2021), in which deacetyl
SMAD4 and subsequently block the signalling TGFβ (Simic
et al., 2013). Finally, it has been shown that the vitamin D
receptor (VDR) inhibits EMT modulating the mitochondrial
respiratory chain. VDR deficiency causes mitochondrial
dysfunction in the intestinal epithelium and promotes fibrosis by
upregulating the EMT pathway. In fact, low levels of VDR have been
detected in patients with CD (Yu et al., 2021).

Dysregulated autophagy is a hallmark of IBD (Shao et al., 2021),
and while its role in intestinal fibrosis is controversial (Macias-Ceja
et al., 2023), several studies support that autophagy stimulation may
be an antifibrotic strategy (Cosin-Roger et al., 2019; Zeng et al.,
2022). It has been reported that autophagy activation can suppress
EMT by crosstalking with various signaling pathways (e.g., WNTs,
NF-kB, TGF-β, NOTCH and Fibrinogen-like protein 1 (FGL-1)
signaling pathways) (H.-T. Chen et al., 2019; Gao et al., 2023; Hill
et al., 2019). Indeed, in lung fibrosis, autophagy inhibition-induced
EMT of alveolar epithelial cells contributes to fibrosis not only by
affecting the epithelial phenotype but also via aberrant
epithelial–fibroblast crosstalk (Hill et al., 2019). In intestinal
fibrosis, Zeng’s work showed that autophagy stimulation
inhibited EMT in a DSS model, ameliorating intestinal fibrosis
(Zeng et al., 2022) (Table 6).

EMT and its converse, MET, are integral stages of many
physiologic processes (e.g., wound healing) and as such, are
tightly coordinated. In wound healing, EMT as a response to
injury can be beneficial. However, if the wound healing process is
exaggerated, it may lead to fibrosis. Carrying this idea over to IBD,
intestinal epithelial cells are chronically immersed in a pro-EMT
factor-rich environment that disrupts the EMT/MET imbalance. In
the previous sections, numerous pro-EMT factors have been
described that are increased in tissues from patients with IBD,
such as cytokines (IL13, TGFβ, TL1A, or IFNγ), pathways
involved in development and homeostasis regeneration (WNT or
SHH pathways), among others (Table 2). But in addition, there are
processes such as the inhibition of autophagy that would also
contribute to the imbalance, favoring and further perpetuating
intestinal fibrosis in IBD.
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3.3 Epigenetic factors in intestinal EMT

Epigenetic modifications, which include DNA methylation, or
ncRNA molecules, can play a crucial role in regulating EMT.
ncRNAs have been proved to participate in the fibrotic diseases of
multiple organs (e.g., liver diseases, myocardial fibrosis, and renal
fibrosis). The ncRNAs involved in fibrotic diseases mainly consist of
microRNAs (miRNAs), long noncoding RNAs, and circular RNAs
(circRNAs). NcRNAs modulate the function of mesenchymal cells,
inflammatory cascades, ECM, and microbiota via mechanisms of
endogenous RNA competition, RNA transcription regulation,
protein sponges, and translation regulation (Zhou et al., 2021). The
role of microRNAs in the intestinal EMT has been extensively studied
(Boros et al., 2017; Boros and Nagy, 2019). Most of the works analyse
the role of miRNAs in type-3 EMT, that is, in the progression of
colorectal cancer in IBD. However, miR-200b has been shown to be
effective in preventing EMT and in alleviating intestinal fibrosis. miR-
200b functions by targeting the 3′untranslated region (UTR) of
ZEB1 and ZEB2 mRNAs, leading to translational repression (Chen
et al., 2012; 2013; Zidar et al., 2016) (Table 4). Indeed, a downregulation
of the miR-200 family has been described in patients with IBD (Zidar
et al., 2016). Other microRNAs with a potential role in the type-2 EMT
associated to IBD are miR-199a, miR-34a, miR-155-5p, miR-146a-3p,
and miR-213p (Table 4). In the inflamed tissue of patients with IBD, it
has been described that miR-199a and miR-34a expression is reduced
and is accompanied by a high expression of AXL tyrosine kinase
receptor (Boros et al., 2018). It is interesting that, in a similar way,
both miRNA downregulate AXL in lung, colorectal, and breast cancer
models (Mudduluru et al., 2011). More recently, miR-155-5p, miR-
146a-3p and miR-213p expression have been shown to be inversely
correlated with E-cadherin gene expression in tissue biopsies from CD
patients (Guz et al., 2020), but further investigations are necessary to
establish their specific mechanisms. Finally, a recent study has shown
that Circ_0001666, a circRNA, controls EMT by regulating the stability
of BMP7 mRNA through its interaction with Serine/arginine-rich
splicing factor 1 (SRSF1), thus promoting fibrosis in pediatric CD.
Indeed, the expression of circ_0001666 is upregulated in CD pediatric
tissues (Table 4) (Li et al., 2023).

In relation to DNA methylation, several studies suggest a link
between EMT and UC progression/prognosis (type-3 EMT),
specifically in the context of epigenetic modifications of EMT-
related genes (Saito et al., 2011; Wang et al., 2012; Tahara et al.,
2014; Zhao et al., 2015). The findings suggest that hypermethylation

of CDH1, CDH13, NEUROG1, CDX1, and miR-1247 are associated
with inflammatory rectal samples compared to non-inflammatory
mucosa in control samples. Furthermore, this hypermethylation is
correlated with a more severe clinical phenotype in UC patients.

3.4Microbiome as inductor of intestinal EMT

Several studies indicate that gut microbiota plays crucial roles in
fibrosis. In several animal models, microbes initiate or perpetuate gut
fibrosis (Rieder, 2013). In CD fibroblasts, there is an increased
expression of several TLRs that can be activated by perceiving
microbial components and promote transdifferentiation (Zorzi
et al., 2015). However, there is little direct evidence so far on the
possible involvement of EMT in microbiome-induced intestinal
fibrosis, and the studies are indirect and involve TGFβ changes. In
this line, antibiotic treatment significantly inhibits TGFβ1 or the
injection of faecal material or extracts from anaerobic bacteria into
the bowel wall induced fibrosis and increased levels of TGFβ1
(Mourelle et al., 1998).

Some enteric pathogens have been shown to be able to modulate
EMT in IECs (Table 5), such us Helicobacter pylori (Yin et al., 2010;
Ouyang et al., 2021), Citrobacter rodentium (Chandrakesan et al.,
2014), Escherichia coli (Cane et al., 2010) or Clostridium butyricum
(Zhang et al., 2023), however these infections are not related with
intestinal fibrosis.

3.5 EMT as a therapeutic target in intestinal
fibrosis associated with IBD

Although organ fibrosis was considered an irreversible process,
it is now known to be a dynamic process with the potential for
reversibility and restoration of near-normal tissue architecture and
organ function. Several approaches (antioxidants, inhibition of
fibrotic signalling pathways, stem cell therapies, modulation of
fibrogenic cells or anti-inflammatory targets) have shown anti-
fibrotic effects in animal models of organ fibrosis (Horowitz and
Thannickal, 2019; Lurje et al., 2023), and some of them are currently
approved for human use in certain fibrotic diseases (Bocchino et al.,
2023). Given the potential role of EMT in IBD-associated fibrosis,
several strategies targeting EMT have been explored as potential
therapeutic approaches for IBD. In this section, we review the main

TABLE 3 Molecular mechanisms implicated in the downregulation of type-2 EMT in IBD samples, and in vivo and in vitro IBD related models. The symbol “/”
indicates treatment. Bone morphogenic protein-7 (BMP7); Dextran sodium sulfate (DSS); Glycogen synthase kinase (GSK); Intestinal epithelial cell (IEC);
Peroxisome proliferator-activated receptor (PPARγ); Silent information regulator 1 (SIRT1); Transforming growth factor (TGF); Trinitrobenzene sulfonic acid
(TNBS); Vitamin D (VD); Vitamin D receptor (VDR).

Protein Type of study EMT Molecular mechanism in EMT References

BMP7 In vivo TNBS VillinCre; R26Rosa-lox-STOP-lox-LacZ mice
(trace IECs)

↓ BMP7 is an inhibitor of TGFβ Flier et al. (2010)

GSK3β/
PPARγ

In vivo DSS/GW9662 (PPARγ inhibitor) DSS/GED-0507-
34 Levo (PPARγ agonist)

↓ GSK3β activate PPARγ signaling Di Gregorio et al. (2017)

SIRT1 In vitro In vivo IEC6/TGFβ TNBS SIRT1−/− ↓ Blocks TGFβ through SMAD4 and
KDM4-DBC1axis

Simic et al. (2013), Chen
et al. (2021)

VDR In vitro In vivo
Human

HT29, CCDA18Co cells/VD TNBS
VDR−/−CD: ↓VDR

↓ Epithelial mitochondria-mediated EMT Yu et al. (2021)
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products tested in vivo and in vitro models of intestinal fibrosis,
whose main mechanism is to modulate intestinal EMT (Table 6).

The use of natural products and derivatives, including those
derived from traditional Chinese medicine, has gained attention in
the field of fibrosis research. Many natural products have been
investigated, in vivo models of IBD, for their potential anti-fibrotic
effects by targeting EMT pathways. Most products have TGF-
mediated EMT as their primary target: both canonical (curcumin
(Xu S et al., 2017), silibin (Kim et al., 2017), Abelmoschus manihot
(Yang et al., 2018), Wu-Mei-Wan (Wu et al., 2020), halofuginone
(Duan et al., 2020), and Atractylenolide III (Huang et al., 2022)) and
non-canonical downstream pathways (Wu-Mei-Wan (Wu et al.,
2020), Forsythia koreana (T.-W. Kim et al., 2019), HLJ2 (Song et al.,
2020) and Artemisinin (Huai et al., 2021)).

Several studies support that autophagy stimulation may be an
antifibrotic strategy (Cosin-Roger et al., 2019; Zeng et al., 2022). In
this sense, Xue-Jie-San, a traditional Chinese herb, protects against
EMT-mediated fibrosis through the stimulation of autophagy,
blocking the NOTCH1 and FGL1 signalling pathways (Gao et al.,
2023). In fact, NOTCH signalling is a profibrotic pathway that has
been little studied in IBD-related intestinal fibrosis (Marti-Chafer
et al., 2023). Other molecule that prevents intestinal EMT by
stimulating epithelial autophagy is resolvin D1, an omega-3
polyunsaturated fatty acid (Zeng et al., 2022).

There is growing evidence suggesting that the interactions
between the gut microbiota and the host can influence EMT and
contribute to the development of intestinal fibrosis (Table 5).
Modifying the microbiota through dietary interventions has
emerged as a potential strategy to influence EMT and attenuate
fibrosis in various intestinal fibrotic models (Yang et al., 2017a; Zhou
et al., 2018; Chung et al., 2021). Similarly, cell therapy as a control
mechanism for EMT has also been analysed in intestinal fibrosis.
Indeed, TNBS models have shown that: mesenchymal stem cell
(MSC) exert anti-fibrogenic activity by regulating the inflammatory
environment, inhibiting the TGFβ/SMAD signalling pathway and
ameliorating EMT (Lian et al., 2018). Likewise, the delivery of miR-
200b through bone marrow MSC-derived microvesicles inhibits
EMT and ameliorate fibrosis (Yang et al., 2017b).

Finally, there are other synthetic molecules tested in preclinical
models that inhibit intestinal EMT which have a promising future:
the recombinant human BMP7 (rhBMP7), GED-0507-34 Levo,
AMA0825 or A83-01. In preclinical studies, rhBMP7 has
demonstrated the ability to inhibit EMT and attenuate fibrosis in

various organs (Weiskirchen and Meurer, 2013), including the
intestine (Flier et al., 2010). It exerts its anti-fibrotic effects by
antagonizing TGFβ-induced EMT and promoting tissue repair
and regeneration. GED-0507-34 Levo is an orally active synthetic
compound and a selective agonist of PPARγ that has been shown to
inhibit EMT, reduce inflammation, and ameliorate fibrosis in a DSS
model (Di Gregorio et al., 2017; Pompili et al., 2023). In fact, GED-
0507-34 is in a Phase 2 clinical trial in subjects with active, mild-to-
moderate UC (ClinicalTrials.gov Identifier: NCT02808390).
AMA0825, a Rho kinase inhibitor, is a synthetic small molecule
that has been studied in intestinal fibrosis due to its potential effects
on EMT and autophagy (Holvoet et al., 2017). Finally, A83-01, a new
type I receptor ALK5 kinase inhibitor molecule, that in an in vitro
assay blocks TGFβ-induced EMT (Gao et al., 2023).

In summary, there have been multiple trials focused on targeting
EMT to manage intestinal fibrosis in the context of IBD. While
many of these trials are still in the preclinical stages, some have
progressed to clinical trials, such as the trial involving GED-0507-34.

4 Other roles of epithelial cells in
intestinal fibrosis: lessons from other
fibrotic tissues

Epithelial cell injury and death are common events in
inflammatory diseases, such us UC and CD, but they have been
only recently recognized as drivers of fibrosis. For instance, an
increasing number of studies have linked necroptosis (a form of
programmed necrosis) to inflammation and fibrosis in renal, liver,
heart or lung fibrosis (Liu et al., 2022). Cell products released by cells
undergoing necrosis (passive, programmed, or after apoptosis) are
called damage-associated molecular patterns (DAMPs), that can
directly activate profibrotic responses of immune cells or
nonimmune cells (epithelial cells, endothelial cells, and
fibroblasts) triggering fibrosis (Liu et al., 2022). In addition,
epithelial cells contain a myriad of intracellular substances
normally not recognized by the immune system but, during cell
necrosis, they are passively released in the surrounding
microenvironment and trigger inflammation. These responses
may represent a novel fibrotic pathogenic component of IBD
since epithelial damage is a typical feature of both UC and CD.

DAMPs are classified into molecules that perform
noninflammatory functions or alarmins. The noninflammatory

TABLE 4 Genes involved in intestinal EMT and their non-coding RNA (ncRNA) regulators in IBD. The symbol “/” indicates treatment. Bone morphogenic protein-7
(BMP7), E-cadherin (CDH1), N-cadherin (CDH2), Crohn’s disease (CD); Dextran sodium sulfate (DSS); Epithelial Growth factor (EGF); Fibroblast growth factor (FGF);
Intestinal epithelial cell (IEC); Serine/arginine-rich splicing factor 1 (SRSF1); Transforming growth factor (TGF); Trinitrobenzene sulfonic acid (TNBS); Zinc-finger
E-box-binding (ZEB).

ncRNA Target Type of study Effect in EMT References

miR-200 ZEB1/
SMAD2

In vitro
Human

IEC6/TGFβ1 IBD: ↓ miR-200b ↓ ↑CDH1 ↓Vimentin Chen et al. (2012), Chen et al. (2013), Zidar et al.
(2016)

miR-199a and miR-34a AXL Human IBD: ↓ miR-199a and miR-34a ↓ ↓ZEB2, SNAIL1 Mudduluru et al. (2011), Cho et al. (2016), Boros
et al. (2017), Boros et al. (2018)

miR-155-5p, miR-146a-
3p, miR-213p

CDH1 Human CD: ↑miR-146a3p, miR-155-
5p and miR-213p

↑ ↓CDH1 Guz et al. (2020)

Circ_0001666 SRSF1/
BMP7

In vitro
Human

IEC/TGFβ1 CD: ↑
Circ_0001666

↑ ↓CDH1 ↑Vimentin,
SNAIL, CDH2

Li et al. (2023)
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DAMPS in living cells (such as high-mobility group box 1, HMGB1)
can acquire immunomodulatory properties when released, secreted,
modified, or exposed on the cell surface during cellular stress,
damage, or injury. On the other hand, alarmins alert the immune
system and trigger a sterile inflammatory response (such as IL1α,
S100A8, and IL33) (Kaczmarek et al., 2013). IBD tissue releases
calprotectin (S100A12, S100A8/S100A9 complexes) and
HMGB1 which serve as faecal biomarkers of intestinal
inflammation (Nanini et al., 2018). The role of several
necroptotic DAMPs and their receptors have been described in
the main fibrotic diseases, except in intestinal fibrosis associated to

IBD (Liu et al., 2022), where further studies are needed. In this line,
Scarpa and collaborators have reported that epithelial cell-derived
DAMPS (IL1α) elicit a potent proinflammatory cytokine response
from human intestinal fibroblasts. Fibroblasts would act as first
responders to products of IECs necrosis due to their anatomical
proximity (Scarpa et al., 2015). Necroptotic DAMP receptors have
also been reported to promote fibrosis. In IBD, genetic knockout
TLR4 (a well-known necroptotic receptor) can alleviate systemic
inflammation and tissue fibrosis in intestine, via cytokine expression
and EMT (Jun et al., 2020). In the same line of the role of epithelial
cells as sources of profibrotic ligands, accumulated data regarding

TABLE 5 Microbiome as inductor of intestinal EMT in IBD. Hypoxia inducible factor (HIF); vascular endothelial growth factor (VEGF); m6A methyltransferase
(METTL3).

Microbiome Effect in EMT References

Helicobacter pylori ↑ AKT/GSK3β signaling Yin et al. (2010), Ouyang et al. (2021)

Citrobacter rodentium ↑ WNT/NOTCH signaling Chandrakesan et al. (2014)

Escherichia coli ↑ HIF1α/IL8/VEGF/TWIST1 Cane et al. (2010)

Clostridium butyricum ↓ METTL3 Zhang et al. (2023)

TABLE 6 EMT as a therapeutic target in intestinal fibrosis associated to IBD. Activating Protein-1 (AP1); Crohn’s disease (CD); Dextran sodium sulfate (DSS); Hypoxia
inducible factor (HIF); Intestinal epithelial cell (IEC); Ionizing radiation (IR); Nuclear Factor kB (NFκB); Peroxisome proliferator-activated receptor (PPARγ);
Recombinant human bone morphogenic protein-7 (rhBMP7); Signal transducer and activator of transcription (STAT); Transforming growth factor (TGF);
Trinitrobenzene sulfonic acid (TNBS); Zinc-finger E-box-binding (Zeb).

Product Target Type of study References

Exopolysaccharide Bacillus subtilis NFΚb, STAT3 Immune cell infiltration In vivo DSS Chung et al. (2021)

Curcumin PPARγ activator In vivo TNBS Xu S et al. (2017)

Silibinin TGFβ1 In vivo/vitro IR, CD Kim et al. (2017)

Abelmoschus manihot TGFβ1 In vitro IEC6 Yang et al. (2018)

Halofuginone TGFβ/Smad In vitro IPEC-J2 cells Duan et al. (2020)

Atractylenolide III TGFβ1 In vitro IEC6 Huang et al. (2022)

Wu-Mei-Wan NFκB, STAT3 TGFβ/Smad Wnt/β-catenin In vivo TNBS Wu et al. (2020)

Forsythia koreana AP1, NFκB, and STAT1/3 macrophages In vivo/vitro DSS, RAW264.7 cells Kim et al. (2019)

HLJ2 (berberine) NFκB In vivo DSS Song et al. (2020)

Artemisinin ERK/MYD88 signaling M2 macrophages In vivo/vitro DSS, CD, RAW264.7 cells Huai et al. (2021)

Xue-Jie-San Autophagy stimulation In vivo TNBS Gao et al. (2023)

Resolvin D1 Autophagy stimulation In vivo DSS Zeng et al. (2022)

Mesenchymal cells TGFβ/SMAD In vivo TNBS Lian et al. (2018)

miR-200b Zeb1/2 In vivo/vitro TNBS, IEC6 Yang et al. (2017b)

A83-01 TGFβ1 In vitro Caco2 Ghorbaninejad et al. (2023)

rhBMP7 TGFβ1 In vivo TNBS Flier et al. (2010)

GED-0507-34 Levo PPARγ activator In vivo DSS Di Gregorio et al. (2017), Pompili et al. (2023)

Saccharomyces boulardii HIF1/2 In vivo DSS Zhou et al. (2018)

AMA0825 Rho Kinases In vivo DSS Holvoet et al. (2017)

Xue-Jie-San Autophagy stimulation In vivo TNBS Gao et al. (2023)
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pulmonary fibrosis show that EMT transdifferentiation does not
occur completely Rather, the EMT cells act as sources of soluble
ligands that favour the transdifferentiation of fibroblasts (Hill et al.,
2019; Yue et al., 2022). This phenomenon has also been observed in
IBD by Zeng and collaborations, who found that the co-culture of
EMT cells with intestinal fibroblast induced fibroblast activation
(Zeng et al., 2022).

On the other hand, there is the epithelial-immune crosstalk
described in both pulmonary and cutaneous fibrosis (Planté-
Bordeneuve et al., 2021; Rosenblum and Naik, 2022). Interactions
between epithelium and the immune system involve a tight regulation
to prevent inappropriate reactions. Recent data regarding pulmonary
fibrosis suggest a two-way process, so that epithelial cells’ biology and
their crosstalk with immune cells and microbes may trigger aberrant
pro-fibrotic signalling (Planté-Bordeneuve et al., 2021). Intestinal
epithelium and immunity have been implicated in the
pathogenesis and disease course of IBD. However, consequences of
their abnormal interplay in fibrosis remain unknown.

5 Conclusion and remarks

Intestinal fibrosis associated with IBD is a complex condition
that has been the focus of ongoing research in the last decade,
especially in CD. The role of epithelial cells in the pathogenesis of
intestinal fibrosis has been widely studied and currently, one of
the main cellular mechanisms involved in intestinal fibrosis is the
epithelial-mesenchymal transition. Given the potential role of
EMT in IBD-associated fibrosis and the lack of pharmacological
therapies for this condition, several novel strategies targeting
EMT have been explored. It is important to note that these
therapies hold promise, but more research is needed to
determine their efficacy, safety, and long-term outcomes in the
IBD setting.

In relation to future perspectives, more in-depth studies are
required on the role of the microbiota and epigenetics in EMT-
mediated intestinal fibrosis since the available works are focused
either on the oncological progression of the disease or not directly
related with intestinal fibrosis. Similarly, outside the epithelial
transition, evidence for the involvement of epithelial-immune or
epithelial-mesenchymal crosstalk in IBD fibrosis is limited.
Determining the exact contribution of these mechanisms is
challenging, as they are at the crossroads of multiple regulatory
networks. Nonetheless, in-depth understanding of the epithelial

contribution to the fibrotic paradigm will help to design more
specific and effective anti-fibrotic therapies.
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Healing of the epithelial barrier in 
the ileum is superior to endoscopic 
and histologic remission for 
predicting major adverse outcomes 
in ulcerative colitis
Timo Rath 1, Raja Atreya 1, Julia Bodenschatz 1, Wolfgang Uter 2, 
Carol I. Geppert 3, Francesco Vitali 1, Sebastian Zundler 1, 
Maximilian J. Waldner 1, Arndt Hartmann 3 and 
Markus F. Neurath 1,4*
1 Department of Gastroenterology, Ludwig Demling Endoscopy Center of Excellence, University 
Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuernberg, Erlangen, Germany, 2 Institute 
for Medical Informatics, Biometry and Epidemiology, Friedrich-Alexander University Erlangen-
Nuernberg, Erlangen, Germany, 3 Institute for Pathology, University Hospital Erlangen, Friedrich-
Alexander University Erlangen-Nuernberg, Erlangen, Germany, 4 Deutsches Zentrum für Immuntherapie 
DZI, Friedrich-Alexander University Erlangen-Nuernberg, Erlangen, Germany

Background: Achieving endoscopic remission is a key therapeutic goal in patients 
with ulcerative colitis (UC) that is associated with favorable long-term disease 
outcomes. Here, we prospectively compared the predictive value of endoscopic 
and/or histologic remission against ileal barrier healing for predicting long-term 
disease behavior in a large cohort of UC patients in clinical remission.

Methods: At baseline, UC patients in clinical remission underwent ileocolonoscopy 
with assessment of ileal barrier function by confocal endomicroscopy. 
Endoscopic and histologic disease activity and ileal barrier healing were scored 
using validated scores. During subsequent follow-up (FU), patients were closely 
monitored for clinical disease activity and occurrence of major adverse outcomes 
(MAO) defined as the following: disease relapse; UC-related hospitalization; UC-
related surgery; necessity for initiation or dose escalation of systemic steroids, 
immunosuppressants, small molecules or biological therapy.

Results: Of the 73 UC patients included, 67% experienced MAO during a mean 
FU of 25 months. The probability of MAO-free survival was significantly higher in 
UC patients with endoscopic and/or histologic remission compared to patients 
with endoscopically and/or histologically active disease. Ileal barrier healing on 
endomicroscopy was highly accurate for predicting the further course of UC and 
outcompeted endoscopic and histologic remission for predicting MAO-free survival.

Conclusion: Ileal barrier healing in clinically remittent UC patients can accurately 
predict future MAO development and is superior in its predictive capabilities than 
endoscopic and histologic remission. Ileal barrier healing therefore represents a 
novel and superior surrogate parameter for stratification of UC patients according 
to their risk for development of complicated disease behavior.

Clinical trial registration: https://classic.clinicaltrials.gov/ct2/show/NCT05157750, 
identifier NCT05157750.
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Introduction

Ulcerative colitis (UC) patients that achieve endoscopic remission 
have a more favorable course of disease with decreased flaring of 
disease and increased rates of steroid free clinical remission and 
colectomy-free survival as compared to UC patients without 
endoscopic remission. Therefore, achieving endoscopic remission in 
patients with ulcerative colitis is a major treatment goal that is 
advocated by several guidelines for clinical practice and for trial 
endpoints (1–5). In addition to endoscopic remission, histologic 
remission is another emerging endpoint in patients with ulcerative 
colitis that is associated, as consolidated by several meta-analyses 
(6–8), with better disease outcome compared to clinical remission 
and/or endoscopic healing. However, assessing histological remission 
UC is complex with currently 26 different histopathological scores out 
of which only two are validated (9). Furthermore, although 
acknowledged as a sensitive measure of inflammation, the STRIDE 
working group does not recommend histologic remssion as a formal 
treatment target in UC (4).

Just recently, we compared the value of endoscopic remission and 
histologic remission against the integrity of the intestinal barrier for 
predicting long-term disease behavior in clinically remittent IBD 
patients for predicting major adverse outcomes (MAO). In this ERIca 
trial (Erlangen Remission in IBD), a large cohort of IBD patients in 
clinical remission were prospectively included and closely monitored 
during long term follow for more than 2 years and this study provided 
first evidence that assessing the integrity of the intestinal barrier with 
confocal laser endomicroscopy (CLE) can not only accurately predict 
disease behavior but also that intestinal barrier healing is superior 
compared to endoscopic and histologic remission for predicting 
MAOs (10). However, in the ERIca trial, we only analyzed colonic 
barrier function for predicting disease behavior in UC. Therefore, 
we now aimed to extend these observations and to explore whether 
assessment of ileal barrier function in patients with ulcerative colitis 
can predict the occurrence of major adverse outcomes in clinically 
remitted patients with ulcerative colitis.

Study design and participants

This study was an extended analysis of data from the ERIca trial 
which was conducted at the Ludwig Demling Endoscopy Center of 
Excellence and the IBD outpatient department at the University 
Hospital of Erlangen as a prospective observational study (10). The 
study was approved by the local ethics committee as well as the 
Institutional Review Board of the Medical Faculty of the Friedrich-
Alexander University Erlangen-Nuremberg. After written informed 
consent was obtained, patients with an established diagnosis of UC for 
at least 12 months and which presented in clinical remission were 
enrolled. Exclusion criteria were as follows: poor bowel preparation, 

total colectomy, concomitant beta blocker therapy, known allergy to 
fluorescein or a planned change in IBD-related pharmacotherapy. 
Clinical disease activity was assessed along the Mayo clinical disease 
activity score (MCS) prior to study inclusion (11). After 
ileocolonoscopy with confocal laser endomicroscopy, close meshed 
followed up in our IBD outpatient department every 4 to 8 weeks for 
patients under biological therapy and every 8 weeks for patients under 
conventional therapy was performed. At each visit, clinical disease 
activity using the MCS along with routine laboratory parameters and 
current and past medications were assessed. Furthermore, major 
adverse outcomes (MAO), defined as the following, were recorded at 
each visit: (i) disease relapse; (ii) UC-related hospitalization, (iii) 
UC-related surgery, (iv) necessity for initiation or dose escalation of 
systemic steroids, immunosuppressants, small molecules or 
biological therapy.

Colonoscopy and confocal laser 
endomicroscopy

Bowel preparation was performed with low-volume PEG-based 
bowel lavage in a split dose regimen in all patients scheduled for 
ileocolonoscopy. In case the patients were scheduled for 
sigmoidoscopy only, the patients received dihydrogen dihydrate 
enema prior to sigmoidoscopy. According to consensus statements, 
endoscopic remission and/or healing during WLE were defined in the 
following way (3, 12): Endoscopic remission, Mayo Endoscopy Score 
(MES) ≤1; Endoscopic healing, MES = 0 (13, 14). Representative 
endoscopic images of patients with and without endoscopic remission 
are shown in Supplementary Figure S1.

Confocal Laser Endomicroscopy was performed as previously 
described (10). After reaching the terminal ileum, 5 mL Fluorescein 
10% were intravenously injected as a contrast agent. Afterwards, the 
CLE probe was positioned under endoscopic guidance onto the 
mucosa of the terminal ileum, low-powered blue laser light of a 
wavelength of 488 nm was activated for tissue illumination by the hit 
of a foot pedal and a CLE video of approximately 2 min was recorded 
with an image acquisition rate of 8 frames per second. All CLE images 
for each patient were stored on an external hard drive and were 
independently reviewed for presence of ileal barrier dysfunction by 
three expert readers (T.R., J.B., F.V.) blinded to the clinical results of 
the patients.

Barrier dysfunction in the terminal ileum was assessed using the 
semi-quantitative Watson score into three grades as previously 
described (10, 15–20): (I) intact epithelial barrier with no fluorescein 
leakage, (II) functional barrier defect with shedding of single epithelial 
cells and fluorescein leakage into the intestinal lumen, (III) structural 
barrier defect with shedding of multiple epithelial cells, exposure of the 
lamina propria to the lumen and fluorescein leakage into the lumen. 
The different grades of ileal barrier (dys)function as assessed by CLE 
are shown in Supplementary Figure S2.

Histologic analysis

From each patient, samples for histopathology were obtained at 
the sites where CLE imaging was performed. In addition, in case 
macroscopic inflammation was present during WLE, these areas were 

Abbreviations: CD, Crohn’s disease; CLE, Confocal Laser Endomicroscopy; FU, 

Follow up; IBD, Inflammatory Bowel Diseases; IO-IBD, International Organization 

for the Study of Inflammatory Bowel Disease; MES, Mayo Endoscopy Score; MAO, 

Major adverse outcome; MCS, Mayo Clinical Score; MH, Mucosal healing; NHI, 

Nancy Histological Index; RHI, Robarts Histopathology Index; STRIDE, Selected 

Therapeutic Targets in Inflammatory Bowel Disease; UC, Ulcerative Colitis.
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also biopsied matching those areas that were also examined by 
CLE. All samples were scored by an experienced GI pathologist (A.H.) 
blinded to clinical and endoscopic patient data. For histopathological 
scoring in UC, Robarts Histopathology Index (RHI) [24] as well as 
Nancy histological index (NHI) [25] were used as validated histology 
scores. Histologic disease remission was defined as a RHI ≤ 3 without 
lamina propria or epithelial neutrophils or a NHI ≤ 1. Representative 
histolopathologic images are shown in Supplementary Figure S3.

Endpoints, sample size and statistical 
analysis

The primary endpoint of this study was to compare the predictive 
values of ileal barrier healing, endoscopic remission and histologic 
remission for predicting occurrence of MAO in UC patients. Statistical 
analyzes were performed using the R statistical software package, 
version 4.0.x.1 All statistical tests were considered explorative without 
alpha adjustment. Moreover, Kaplan–Meier analysis was performed 
to examine the time to the occurrence of MAOs (or censoring at end 
of follow-up).

Results

Study inclusion and clinical patient 
characteristics

Between 2017 and 2019, a total of 81 UC patients were included 
in the study. From these 81 patients, 73 patients had valid and 
complete information regarding the occurrence of MAOs during 
follow-up and data on endoscopic remission and healing, histologic 
remission and barrier function in the terminal ileum were available 
for all patients. Clinical, endoscopic and histological characteristics of 
the UC patient cohort are summarized in Table 1.

From these 73 UC patients included in the final analysis, 41 
(56.2%) patients had endoscopic remission on WLE, as defined by a 
MES ≤ 1, at study inclusion (Table 1). Histologic remission, as defined 
by RHI and NHI, was observed in 56.2 and 53.4% patients, 
respectively, during baseline endoscopy. In 34 UC patients (44.4%), 
the combination between endoscopic and histologic remission (as 
assessed by the RHI), was present. In contrast, barrier healing in the 
ileum was observed in only 22 UC patients in the terminal ileum 
(30.1%) during baseline endoscopy. Detailed clinical, endoscopic and 
histologic characteristics in UC patients with and without ileal barrier 
healing are comparatively displayed in Supplementary Table S1. In 
additional studies, we determined levels of serum zonulin, as a marker 
that has been used in a variety of studies to assess integrity of the 
intestinal barrier, and noted that serum zonulin levels did not 
significantly differ between UC patients with intact ileal barrier as 
compared to those with ileal barrier dysfunction 
(Supplementary Figure S4).

1 www.r-project.org

TABLE 1 Clinical, endoscopic and histologic characteristics of the UC 
patient cohort.

Ulcerative colitis (n  =  73)

Clinical characteristics

  Age (y)

   Mean, range 38.3 (18–69)

  Sex (m/f) 36/37

  BMI

   Mean, range 25.6 (17.2–39.2)

  Disease duration (y)

   Mean ± SD 9 ± 7.6

  Extent of disease, n (%)

   Proctitis 5 (6.8)

   Leftsided colitis 34 (46.6)

   Pancolitis 34 (46.6)

  Extraintestinal manifestations, n (%) 18 (24.7)

  Primary sclerosing cholangitis, n (%) 2 (2.7)

Medication, n (%)

  5-ASA derivates

   Mesalazin 12 (16.4)

  Corticosteroids

   Budesonide (with colonic delivery) 2 (2.7)

   Prednisolone (n) 2 (2.7)

    Mean dose (mg) ± SD 10 ± 4

  Immunomodulator

   6-Mercaptopurin 1 (1.4)

   Azathioprin 3 (4.1)

  Biological therapy

   Anti-TNF 28 (38.4)

   Vedolizumab 11 (15.1)

   Tofacitinib 3 (4.1)

   Ustekinumab 2 (2.7)

  Combination therapy 5 (6.8)

  No medication 4 (5.5)

Laboratory parameters, mean ± SD

   Leukocyte count (109/L) 7.9 ± 3.3

    C-reactive Protein (mg/L) 5.0 ± 8.3

    Hematocrit (%) 41.5 ± 4.1

Endoscopic and histopathologic data

  Mayo endoscopic score, n (%)

   ≤ 1 41 (56.2)

   > 1 32 (43.8)

  Barrier function, n (%)

   Ileum

    Barrier healing present 22 (30.1)

  Histopathology scoring, n (%)

   RHI ≤ 3 41 (56.2)

(Continued)
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Follow up and occurrence of major 
adverse outcomes in UC patients

Mean follow up in UC patients was 26 months (Table 1). In 24 UC 
patients, no MAOs occurred in the course of follow up, while in the 
remaining 49 patients it was, with a mean time lag for MAO 
occurrence of 3.2 months (SD ± 2.5 months, range 1–10 months) from 
baseline endoscopy.

The MAO rates in patients with endoscopic and histologic 
remission and in patients with barrier healing are summarized in 
Table  2. As shown in Table  2, of the 41 patients with endoscopic 
remission at study inclusion, 19 developed MAOs during FU, leading 
to a MAO rate for endoscopic remission of 46.3%. Time to event 
analysis using Kaplan–Meier estimates showed that UC patients with 
endoscopic remission had a significantly higher probability of 
remaining free of MAOs during FU compared to those patients with 
endoscopically active disease (p < 0.0001, Figure 1A). When applying 
a more stringent endoscopic definition considering only patients with 
a MES = 0 (i.e., endoscopic healing), a total of 16 UC patients exhibited 
endoscopic healing. Of these, 5 experienced MAO during the course 
of follow-up, leading to a MAO rate in patients with MES = 0 of 31.3% 
(Table 2). Correspondingly, the probability for MAO-free survival 
during FU was significantly higher in UC patients with endoscopic 
healing as compared to those with a MES > 0 (p = 0.007, Figure 1B).

From the 41 UC patients with histologic remission as defined by 
the RHI, 20 developed MAO during follow-up (RHI MAO-rate: 
48.8%) while in 18 out of 39 patients with histologic remission as 
defined by the NHI, MAO occurred during the course of follow-up 

(NHI MAO-rate: 46.2%). On Kaplan–Meier analysis, patients with 
histologic remission along the RHI and the NHI were significantly 
more likely to remain MAO-free during FU as compared to UC 
patients with histologically active disease (both p < 0.0001, Figure 2). 
From those 34 patients with combined histologic (as defined by the 
RHI) and endoscopic remission, 14 experienced MAOs during study 
follow-up (MAO rate: 41.2%) and likewise, those patients with 
combined endoscopic and histologic remission had a significantly 
better course of disease in terms of remaining free of MAO on 
Kaplan–Meier estimates (p < 0.0001, Figure 3).

Of the 22 UC patients with barrier healing in the terminal ileum, 
only 2 patients developed MAO during FU, hence MAO rate in 
patients with ileal barrier healing was 9.1% (Table 2). Consistent with 
this, UC patients with barrier healing in the terminal ileum had a 
significantly more favorable course of disease as shown by Kaplan–
Meier analysis (p < 0.0001, Figure 4).

Diagnostic performances of endoscopic 
healing, histologic healing and barrier 
healing for the prediction of the course of 
disease

Based on the low MAO rates in UC patients with intact ileal 
barrier and the high probabilities for remaining without MAOs during 
follow up, we  further set off to directly compare the diagnostic 
performances of endoscopic and histologic remission as established 
parameters against ileal barrier healing for the prediction of long-term 
disease outcome.

Endoscopic remission (MES ≤ 1), had an overall accuracy of 
71.2% for predicting the further course of disease with positive and 
negative predictive values of 53.7 and 93.8%, respectively (Table 3). 
Considering only patients with endoscopic healing (MES = 0), the 
accuracy for predicting MAO-free course of disease was increased 
with an accuracy of 75.3% and positive and negative predictive values 
of 68.8 and 77.1%, respectively (Table 3).

Histologic remission, as defined by the RHI and the NHI, 
exhibited an accuracy of 68.5 and 71.2%, respectively, with comparable 
positive and negative predictive values of the two histopathology 
scores for predicting the occurrence of MAO (Table 3).

Using the combination of endoscopic remission (as defined by a 
MES ≤ 1) and histologic remission as assessed by the RHI, overall 
accuracy for predicting the occurrence of major clinical events was 
increased to 75.3% with a positive and negative prediction of 58.8 and 
89.7%, respectively (Table 3).

In contrast, the diagnostic performance of ileal barrier integrity 
as a new surrogate parameter for the prediction of long-term disease 
behavior was increased compared to the aforementioned parameters. 
In this regard, barrier healing in the terminal ileum had an overall 
accuracy of 91.8% with a positive and negative prediction of 90.9 and 
92.2% (Table 3) and was therefore clearly superior in its predictive 
capabilities compared to the other parameters.

Discussion

Increased intestinal permeability in IBD patients was first noted 
already more than 30 years ago and found to predict clinical relapse in 

TABLE 2 Major adverse outcome (MAO) rates in patients with ulcerative 
colitis.

Parameter MAO rate

Endoscopic remission 46.3% (19/41)

Endoscopic healing 31.3% (5/16)

RHI histologic remission 48.8% (20/41)

NHI histologic remission 46.2% (18/39)

Endoscopic remission + RHI histologic remission 41.2% (14/34)

Barrier healing ileum 9.1% (2/22)

MAO, major clinical events (disease flare; IBD-related hospitalization; IBD-related surgery; 
necessity for initiation or escalation of systemic steroids, immunosuppressants, small 
molecules or biological therapy) Endoscopic remission, MES ≤ 1; Endoscopic healing, 
MES = 0; RHI Histologic remission, RHI ≤ 3 without lamina propria or epithelial neutrophils; 
NHI Histologic remission, NHI ≤ 1.

Ulcerative colitis (n  =  73)

   RHI > 3 32 (43.8)

   Nancy <1 39 (53.4)

   Nancy ≥1 34 (46.6)

Follow up (FU)

  Mean ± SD (months) 26 ± 12

  Patients without MAO during FU, n (%) 24 (32.9)

RHI, Robarts Histology Index; Nancy, Nancy Histological Index; MAO, major adverse 
outcomes: disease flare; UC-related hospitalization; UC-related surgery; necessity for 
initiation or escalation of systemic steroids, immunosuppressants, small molecules or 
biological therapy.

TABLE 1 (Continued)
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CD patients in remission (21, 22) and even earlier evidence on 
relatives of CD patients already suggested that increased intestinal 
permeability is not secondary to clinically manifest intestinal 
inflammation but rather constitutes a primary defect that is 
etiologically involved in disease pathogenesis (23).

In addition to this almost historic evidence, a just recently 
published study assessed intestinal permeability by the lactulose-
mannitol-ratio (LMR) in over 1,400 asymptomatic first-degree 
relatives of CD patients. Importantly, as observed during long term 
follow up, increased LMR as a marker of increased intestinal 

FIGURE 1

Kaplan–Meier analyzes for the occurrence of major adverse outcomes in UC patients with endoscopic remission and endoscopic healing. (A) In UC 
patients with endoscopic remission, as defined by an MES  ≤  1, the probability of remaining free of major adverse outcomes (MAO) during FU was 
significantly higher compared to patients with endoscopically active disease (MES  >  1). (B) UC patients with endoscopic healing, as defined by an 
MES  =  0, exhibited a significantly higher likelihood of remaining without MAO during FU as compared to UC patients with a MES  >  0.

FIGURE 2

Kaplan–Meier analyzes for the occurrence of major adverse outcomes in UC patients with histologic remission. (A) In UC patients with histologic 
remission, defined by a Robarts Histology Index (RHI)  ≤  3, the probability of remaining free of major adverse outcomes (MAO) during FU was 
significantly higher compared to patients with histologically active disease (RHI  >  3). (B) UC patients with histologic remission, as determined by a 
Nancy Histology Index (NHI) ≤1, exhibited a significantly higher likelihood of remaining without MAO during FU as compared to UC patients with an 
NHI  >  1.
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permeability acted as an independent risk factor for developing 
Crohn’s disease in first degree relatives in the future conferring a 
3-fold risk increase (24).

Several studies have already used CLE for dynamic 
visualization and assessment of intestinal barrier integrity. 
Published already a decade ago, Kiesslich and co-workers were 
able to show that in CD and UC patients in clinical remission 
increased cell shedding with fluorescein leakage in the ileum, as 

visualized with CLE, is associated with subsequent disease relapse 
within 12 months after endomicroscopic examination. 
Importantly, in this study a novel scoring system for 
semiquantitative grading system (the “Watson-Score”) of ileal 
barrier dysfunction was devised that exhibited a specificity >90% 
for predicting subsequent disease flare in clinically remittent IBD 
patients. Using this score, these results were subsequently 
corroborated in an independent cohort of IBD patients by 
Karstensen and co-workers. In this study, a Watson-Score of 2 or 
3, representative of functional or structural ileal barrier 
dysfunction, exhibited a sensitivity of 89% for predicting disease 
relapse within the next 12 months in clinically remittent CD 
patients (16). Another prospective study on 110 IBD patients with 
endoscopic mucosal healing was able to establish an association 
between impaired intestinal permeability, as assessed by 
quantitative grading of barrier dysfunction by CLE, and 
persistence of clinical symptoms. Importantly, increases in 
intestinal permeability in the ileum directly correlated with 
severity of diarrhea in both, UC and CD patients and led the 
authors to speculate that resolution of mucosal permeability 
beyond mucosal healing might improve outcomes of patients with 
IDB (15).

Just recently, we  reported the results of our ERIca trial in 
which we  compared the value of endoscopic and histologic 
remission against intestinal barrier healing for predicting the 
further course of disease in a large cohort of clinically remitted 
IBD patients (10). As shown in this trial, in CD patients barrier 
healing in the ileum and colon by far outcompeted endoscopic 
and histologic remission in forecasting the further course of 
disease during close-meshed multiannual follow-up. In UC 
patients, we observed that barrier healing in the colon was also 
associated with decreased risk of development of major adverse 
outcomes with superior predictive performance compared with 
endoscopic and histologic remission. However, in the ERIca trial, 
we did not analyze barrier function in the ileum for predicting 
disease behavior in UC patients.

Therefore, against the background of published reports on the 
relevance of ileal barrier function in UC (15, 17), we now aimed 
to extend the observations of the ERIca trial and explored whether 
assessment of ileal barrier function in patients with UC can 
likewise be  used to predict the occurrence of major adverse 
outcomes in clinically remitted UC patients. Our results show that 
ileal barrier healing is indeed related with favorable disease 
outcome: of the 73 UC patients included, 22 patients exhibited 
ileal barrier healing and of these 22 patients with barrier healing, 
only 2 patients developed major adverse outcomes during a mean 
follow-up period of 26 months. Consistent with this, time-to-
event analysis using Kaplan Meier estimates showed that ileal 
barrier healing was associated with a significantly more favorable 
course of disease over a mean follow-up period of 26 months in 
clinically remittent UC patients. In addition to that, our data 
clearly indicate that ileal barrier is superior to endoscopic or 
histologic remission, or the combination of the later. As such, the 
MAO rate was by far lower for ileal barrier healing as compared 
to endoscopic or histologic remission and the diagnostic accuracy 
of ileal barrier healing for forecasting the further course of disease 
outcompeted those of endoscopic or histologic remission or 
their combination.

FIGURE 3

Kaplan–Meier analyzes for the occurrence of major adverse 
outcomes in UC patients with combined endoscopic and histologic 
remission. In UC patients, in which the combination between 
endoscopic and histologic remission was present, the probability of 
MAO-free survival was significantly higher compared to UC patients 
without combined endoscopic and histologic remission.

FIGURE 4

Kaplan–Meier analyzes for the occurrence of major adverse 
outcomes in UC patients with ileal barrier healing. UC patients with 
ileal barrier healing exhibited a significantly higher likelihood of 
remaining free of MAO during FU as compared to UC patients in 
which ileal barrier dysfunction was present during baseline 
endoscopy.
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In parallel to these clinical data strengthening the relevance of 
impaired function in IBD patients, basic science has identified 
impairments in tight junctions and epithelial resistance in both, 
UC and CD (25–27). In their togetherness, impaired barrier 
function leading to increased intestinal permeability is increasingly 
recognized a key etiologic factors in the development of IBD (28). 
Based on our observation that ileal barrier healing is highly 
predictive for more favorable disease outcome in UC, which has 
been commonly defined as a disease confined to the colon and the 
rectum, the following aspects are worth considering: (i) although 
traditionally regarded as two distinct diseases with clear distinction 
between UC and CD, emerging evidence suggests that IBD is more 
and more perceived as a continuous spectrum. As such, already a 
decade ago whole genome gene expression meta-analysis in IBD 
demonstrated a lack of major differences between Crohn’s disease 
and ulcerative colitis (29) and aggregated genetic risk scores 
representing the cumulative burden of mutations in known IBD 
risk loci introduced the concept of a disease spectrum along the 
disease location axis (30) and (ii) the affection of the terminal 
ileum in patients with UC is increasingly recognized as a further 
disease manifestation that is different from clinical evident 
backwash ileitis. As such the existence of ulcerations in the 
terminal ileum without co-existing evidence of backwash ileitis in 
UC patients have been described with varying frequencies (31) and 
a recent review proposed that ileal inflammation in UC represents 
a primary manifestation of UC which has been referred to as 
“UC-associated ileitis” (iii) we  and others have previously 
identified macroscopically intact ileum as a site of increased 
intestinal permeability not only in CD but also in UC (15, 17). 
Although, these studies, by the nature of their methodology, do not 
provide a mechanistic explanation of increased permeability in 
macroscopically unaffected ileal mucosa, they strengthen the 
concept that the ileum is critically involved in disease etiology and 
disease behavior in UC patients.

Recently, Hiyama analyzed whether the phenotypic appearance of 
Peyer’s Patches in the terminal ileum, evaluated under narrow-band 
imaging and magnification endoscopy, is associated with clinical 
disease behavior. As such, this multicenter study on 105 UC patients 
in clinical remission was able to demonstrate that the presence of a 
“Villi Index Low” type was a significant factor for predicting sustained 
clinical remission (32).

In summary, in this additional analysis of our ERIca trial on 
the relevance of barrier function in IBD patients, we were able to 
show that ileal barrier healing is a novel parameter that is highly 
predictive of the further course of disease in clinically remittent 
UC with superior predictive capabilities compared to endoscopic 
and histologic remission. With this, CLE-based assessment of ileal 
barrier function during routine ileocolonoscopy might be  a 
helpful tool in clinical practice for stratification of UC patients 
according to their risk for development of complicated 
disease behavior.
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TABLE 3 Diagnostic performances of endoscopic remission, histologic remission and ileal barrier healing for predicting major adverse outcomes in UC 
patients.

Parameter Accuracy (95% 
CI-Interval)

Sensitivity (95% 
CI-Interval)

Specificity (95% 
CI-Interval)

PPV (95% 
CI-Interval)

NPV (95% 
CI-Interval)

Endoscopic remission (MES ≤ 1) 71.2% (59.5–81.2%) 91.7% (73–99%) 61.2% (46.2–74.8%) 53.7% (44.4–62.7%) 93.8% (79.6–98.3%)

Endoscopic healing (MES = 0) 75.3% (63.9–84.7%) 45.8% (25.6–67.2%) 89.8% (77.8–96.6%) 68.8% (46.3–84.9%) 77.1% (69.8–83.2%)

Robarts histologic remissiona 68.5% (56.6–78.9%) 87.5% (67.6–97.3%) 59.2% (44.2–73%) 51.2% (42.1–60.3%) 90.6% (76.6–96.6%)

Nancy histologic remissionb 71.2% (59.5–81.2%) 87.5% (67.6–97.3%) 63.3% (48.3–76.6%) 53.9% (44–63.5%) 91.2% (77.8–96.8%)

Endoscopic remission (MES ≤ 1) + Robarts 

histologic remissiona

75.3% (63.9–84.7%) 83.3% (62.6–95.3%) 71.4% (56.7–83.4%) 58.8% (47–69.7%) 89.7% (77.9–95.6%)

Barrier healing ileum 91.8% (83–96.2%) 83.3% (62.6–95.3%) 95.9% (86–99.5%) 90.9% (71.8–97.5%) 92.2% (82.7–96.6%)

PPV, positive predictive value; NPV, negative predictive value; CI, confidence interval.
aHistologic remission according to the Robarts’ histology index.
bHistologic remission according to the Nancy histology index.
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SUPPLEMENTARY FIGURE S1

Endoscopic disease activity under high definition white light endoscopy. 
Endoscopic disease activity was assessed along the Mayo Endoscopy Score 
(MES). According to consensus statement, endoscopic remission was defined 
as a MES≤1 (upper row) while endoscopically active disease was defined as a 
MES>1 (lower row).

SUPPLEMENTARY FIGURE S2

Ileal barrier (dys)function under CLE. Watson °I is defined by an intact 
epithelial barrier without sites of fluorescein leakage (left image). A functional 
defect of the ileal barrier (Watson °II) is characterized by single cells that lost 
epithelial integrity, leading to the formation of an epithelial gap which is 
accompanied by the efflux of fluorescein into the intestinal lumen (middle 
image). A structural barrier defect (Watson °III) is defined by shedding of 
multiple neighboring, leading to the formation of microerosions, and the 
efflux of fluorescein through the site of epithelial damage into the lumen 
(right image). White arrows: sites of ileal barrier defect.

SUPPLEMENTARY FIGURE S3

Histopathologic disease activity. For histopathological scoring in UC, Robarts 
Histopathology Index (RHI) and Nancy Histopathology Index (NHI) as 
validated histopathological scores were used. Histologic disease remission 
was defined as a RHI≤3 without lamina propria or epithelial neutrophils or a 
NHI≤1. Representative histopathology images under 20-fold and 40-fold 
magnification are shown.

SUPPLEMENTARY FIGURE S4

Serum zonulin levels in UC patients with and without ileal barrier dysfunction.
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The RNA binding proteins ZFP36L1
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airway epithelium in human and a
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Introduction: Asthma is the most common chronic inflammatory disease of the
airways. The airway epithelium is a key driver of the disease, and numerous studies
have established genome-wide differences in mRNA expression between health
and asthma. However, the underlying molecular mechanisms for such differences
remain poorly understood. The human TTP family is comprised of ZFP36, ZFP36L1
and ZFP36L2, and has essential roles in immune regulation by determining the
stability and translation of myriad mRNAs encoding for inflammatory mediators.
We investigated the expression and possible role of the tristetraprolin (TTP) family
of RNA binding proteins (RBPs), poorly understood in asthma.

Methods:We analysed the levels of ZFP36, ZFP36L1 and ZFP36L2mRNA in several
publicly available asthma datasets, including single cell RNA-sequencing. We also
interrogated the expression of known targets of these RBPs in asthma. We
assessed the lung mRNA expression and cellular localization of Zfp36l1 and
Zfp36l2 in precision cut lung slices in murine asthma models. Finally, we
determined the expression in airway epithelium of ZFP36L1 and ZFP36L2 in
human bronchial biopsies and performed rescue experiments in primary
bronchial epithelium from patients with severe asthma.

Results: We found ZFP36L1 and ZFP36L2 mRNA levels significantly
downregulated in the airway epithelium of patients with very severe asthma in
different cohorts (5 healthy vs. 8 severe asthma; 36moderate asthma vs. 37 severe
asthma on inhaled steroids vs. 26 severe asthma on oral corticoids). Integrating
several datasets allowed us to infer that mRNAs potentially targeted by these RBPs
are increased in severe asthma. Zfp36l1 was downregulated in the lung of amouse
model of asthma, and immunostaining of ex vivo lung slices with a dual antibody
demonstrated that Zfp36l1/l2 nuclear localization was increased in the airway
epithelium of an acute asthma mouse model, which was further enhanced in a
chronic model. Immunostaining of human bronchial biopsies showed that airway
epithelial cell staining of ZFP36L1 was decreased in severe asthma as compared
with mild, while ZFP36L2 was upregulated. Restoring the levels of ZFP36L1 and
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ZFP36L2 in primary bronchial epithelial cells from patients with severe asthma
decreased the mRNA expression of IL6, IL8 and CSF2.

Discussion:We propose that the dysregulation of ZFP36L1/L2 levels as well as their
subcellular mislocalization contributes to changes in mRNA expression and
cytoplasmic fate in asthma.

KEYWORDS

airway and lung cell biology, RNA binding protein, asthma, post-transcriptional control,
tristetraprolin, ZFP36L1, ZFP36L2

1 Introduction

Asthma is a common chronic respiratory disease affecting
between 1%–29% of the population in different countries (Asher
et al., 2021; Mortimer et al., 2022; GINA, 2023). It is characterised by
variable symptoms of wheeze, chest tightness, shortness of breath
and variable expiratory airflow limitation. Asthma is often defined as
an inflammatory disease, implying that asthma has a major
immune-related component. However, it is well established that
structural cells including smooth muscle and airway epithelium play
a major role in the disease.

Airway epithelial cells lie at the interface between the lung
and the external environment, primarily acting as a protective
barrier but also as immune modulators (Holgate, 2008; Frey et al.,
2020). The importance of airway epithelial cells is well described
in the pathophysiology of asthma. Patients with asthma present
altered barrier function, mucus overproduction by goblet cells,
epithelial cell damage and impaired epithelial repair. All these
features contribute to airway remodelling, which is a broad term
to define the airway structural changes that are always present in
asthma (Holgate et al., 2015). Multiple genome-wide approaches
have been implemented to further our understanding of asthma
and the role and profile of the bronchial epithelium in patients
with this disease. These include RNA expression analysis (Kuo
et al., 2017; Hekking et al., 2018), breathomics (Rufo et al., 2016),
metabolomics (Kelly et al., 2017) or sputum proteomics
(Schofield et al., 2019). However, there is poor insight into the
underlying mechanisms regulating gene expression or driving
their phenotype at the molecular level.

From transcription to translation into protein, RNA undergoes
multiple steps such as splicing, transport and stability, encompassed
under ‘post transcriptional regulation’. Post transcriptional
regulation is mainly undertaken by microRNAs and RNA
binding proteins (RBPs). Most omics approaches overlook these
regulatory mechanisms and consider that mRNA expression is
synonymous with corresponding protein levels. However, not all
RNAs encode for proteins and there is little mRNA-to-protein
correlation in many coding genes (Liu et al., 2016; Brion et al.,
2020). To further our understanding of mRNA cytoplasmic fate, we
developed subcellular fractionation and RNA-sequencing (Frac-seq)
(Sterne-Weiler et al., 2013). Frac-seq enables analysing mRNA
steady levels (transcriptional) and those of transcripts bound to
the translation machinery (ribosomes), the latter a better proxy for
protein levels (King and Gerber, 2016). Our previous work showed
the disconnection between steady and ribosome-bound mRNA
levels in bronchial epithelial cells from patients with asthma
(Martinez-Nunez et al., 2018). We identified a network of six

microRNAs that accounted for roughly 50% of the changes we
observed in mRNA dysregulation (Martinez-Nunez et al., 2018).
Thus, the remaining 50% levels must be mostly driven by RBPs.
There is some evidence of RBP levels being dysregulated in airway
epithelium in other respiratory diseases such as chronic obstructive
pulmonary disease (Ricciardi et al., 2018), however, their role in
airway epithelium in asthma remains poorly understood.

The tristetraprolin (TTP) family of RBPs, consisting of ZFP36,
ZFP36L1 and ZFP36L2 in humans, has been implicated in the
regulation of immune responses (Makita et al., 2021), but little is
known about their role in epithelium or asthma. These RBPs inhibit
mRNA expression by binding to AU-rich elements (ARE) present in
the 3′UnTranslated Region (UTR) of their target RNAs (Blackshear,
2002; Cassandri et al., 2017). TTP is known to modulate the effect of
glucocorticoids (Ishmael et al., 2008), and we have recently
discovered that ZFP36L1/L2 modulate the effect of
glucocorticoids and the expression levels of mRNAs encoding
epithelial-related functions (Rynne et al., 2022). Considering that
glucocorticoids are the mainstay treatment of patients with asthma
(Chung et al., 2014), we hypothesised that the TTP family may be
dysregulated in asthma and set out to investigate their expression
and potential roles in airway epithelium of human samples and
asthma murine models.

2 Results

2.1 ZFP36L1 and ZFP36L2 mRNA levels are
downregulated in bronchial epithelial cells
from patients with severe asthma

We initially mined our previous Frac-seq dataset to determine
the levels of all TTP members. Patient details were reported
previously (Martinez-Nunez et al., 2018). Changes in mRNA
levels were determined by comparing total (Total) and
polyribosome bound (Polyribosome) mRNA in health vs. asthma.
Polyribosome fractions excluded the monosomal (80 S or one
ribosome) fraction. We observed significantly decreased binding
of ZFP36L1 and ZFP36L2 mRNAs to polyribosomes in primary
bronchial epithelial cells from severe asthma patients compared to
age- and sex-matched healthy controls (both p < 0.05, Figure 1A).
Comparing total mRNA from healthy controls to severe asthma
patients showed no difference in the expression of ZFP36, ZFP36L1
or ZFP36L2 mRNA (Figure 1A).

These data prompted us to further interrogate the levels and
role of these RBPs in asthma in a larger cohort. We analysed
datasets from U-BIOPRED, the largest European consortium of
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severe asthma patients. The U-BIOPRED dataset (GSE76227)
consists of transcriptomic arrays from bronchial brushings,
which are enriched in bronchial epithelium (Perotin et al.,
2019). The authors compared moderate asthma patients on
inhaled glucocorticoids (MO), representing patients with
disease control, to severe asthma patients (SA), without
differentiating between corticosteroid use. SA patients taking
oral corticosteroids represent patients with inadequate control
of disease. Figure 1B depicts graphs displaying the log intensity
values from the microarray probes showing that there was no
difference in ZFP36, ZFP36L1 or ZFP36L2 mRNA expression.
Upon stratification of severe asthma patients into those on
inhaled glucocorticoids (SA-no OC) or taking oral
glucocorticoids (SA-OC), we observed downregulation of
ZFP36L1 mRNA expression in SA-no OC patients compared
to MO patients (p < 0.05), and a further downregulation in SA-
OC versus SA-no OC patients (p < 0.05, Figure 1C). We also

found that the expression of ZFP36L2mRNA was downregulated
in SA-OC patients compared to SA-no OC (Figure 1C). We did
not observe differential expression of ZFP36 mRNA levels.

2.2 ZFP36L1 and ZFP36L2 modulate
genome-wide expression changes in
bronchial epithelium in asthma

We further explored the potential role of ZFP36L1 and ZFP36L2 in
bronchial epithelial cells in asthma. Our Frac-seq dataset consisted of
mainly basal epithelial cells, while bronchial brushings from
U-BIOPRED will contain a mixture of different airway epithelial
cells. We interrogated the Lung Cell Atlas datasets comparing very
mild patients with asthma not on inhaled corticosteroid therapy vs.
healthy controls (Vieira Braga et al., 2019). In health, ZFP36L1mRNA
was expressed quite broadly in most epithelial cell types while ZFP36L2

FIGURE 1
Analysis of the expression of the TTP family in human bronchial epithelial samples. (A) Frac-seq data showing the log counts for ZFP36, ZFP36L1 and
ZFP36L2 in bronchial epithelial cells from severe asthma (SA, n = 8) vs. healthy control (HC, n = 5) donors from (Martinez-Nunez et al., 2018) in total mRNA
(Total) or polyribosome-boundmRNA (Polyribosome). (B) Analysis of GSE76227 dataset fromU-BIOPRED showing the log intensity values ofmicroarrays
in bronchial brushings from patients with moderate (MO) and severe asthma (SA). (C) Analysis of GSE76227 dataset from U-BIOPRED showing the
log intensity values of microarrays in bronchial brushing from patients with moderate (MO, n = 36), severe asthma on oral corticoids (SA (OC), n = 26) and
severe asthma on inhaled GCs (SA (no OC)), n = 37). Statistical significance was assessed by two-tailed t-tests on log transformed data. *p < 0.05.

Frontiers in Cell and Developmental Biology frontiersin.org03

Rynne et al. 10.3389/fcell.2023.1241008

113

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2023.1241008


mRNAs appeared more present in Basal 1 and Basal 2 cells
(Supplementary Figure S1). In asthma samples, ZFP36L1 mRNA
was decreased in mucous ciliated cells while it appeared to increase
in ionocytes, ciliated and basal cycling cells (Figures 2A,B). ZFP36L2
mRNA showed a trend towards downregulation in most airway cell
types, with only submucosal and Club cells showing an increase in
expression. Thus, single cell data support the concept that RBP mRNA
expression is decreased in specific epithelial cell subsets in asthma.

We next analyzed if mRNAs containing AREs (Bakheet et al., 2018)
were dysregulated in our Frac-seq dataset comparing health vs. severe
asthma (Martinez-Nunez et al., 2018). ARE-containing transcripts are
targets of ZFP36L1 and ZFP36L2. Although we observed that a

proportion of differentially expressed genes (DEGs) in total mRNA
and differentially bound genes to polyribosome (DBGs) contain ARE in
their 3′UTR (Figure 2C), these did not appear to be significantly
enriched amongst DEGs or DBGs. To determine if ZFP36L2,
specifically, may target DEGs and DBGs, we extracted known targets
to be bound by ZFP36L2 from (Zhang et al., 2013) and analyzed their
presence in our Frac-seq DEGs and DBGs. Figure 2D shows that direct
targets of ZFP36L2 were predominantly upregulated in polyribosome-
bound genes in severe asthma. This enrichment was absent in total
DEGs between healthy controls and severe asthma patients.

Considering that patients with severe asthma are treated with
high doses of inhaled and/or oral corticosteroids, we also

FIGURE 2
Airway epithelial cell-specific patterns of ZFP36L1 and ZFP36L2mRNA expression and ZFP36L2 targets’ behaviour in severe asthma. (A) t-Distributed
Stochastic Neighbor Embedding (t-SNE) plots representing the different airway epithelial cell types present in very mild asthma as per (Vieira Braga et al.,
2019) (left), with ZFP36L1 and ZFP36L2 mRNA expression patterns represented on the tSNE’s on the right. (B) Relative expression ZFP36L1 and ZFP36L2
mRNA levels between health and asthma per airway epithelial cell type. IO: Ionocytes, SM: Submucosal, MC: Mucous ciliated, GO: Goblet, CI:
Ciliated, BA: Basal activated, BC: Basal Cycling, B1: Basal 1, CL: Club, B2: Basal 2. (C) Left: Venn diagram representing the overlap of differentially expressed
genes (DEGs in Total, red) or differentially bound genes (DBGs in Polyribosome, green) containing AU-rich element (ARE, blue) (Bakheet et al., 2018) when
comparing health vs. severe asthma. Right: bar plot showing the proportion and direction of changes (Up or Downregulated) of ARE-containingmRNAs in
DEGs and DBGs when comparing health vs. severe asthma. (D) Bar plot showing the proportion of ZFP36L2 targets as per (Zhang et al., 2013) present per
subcellular fraction in our Frac-seq health vs. severe asthma dataset. Statistics were done employing a two-sided Chi-square test. ****: p < 0.0001.
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investigated if the changes seen in the DEGs and DBGs between
health and SA were due to glucocorticoid (GC) exposure. We cross
referenced our health vs. severe asthma Frac-seq dataset with our
recent Frac-seq data investigating post-transcriptional changes
induced by GCs in primary bronchial epithelial cells (Rynne
et al., 2022). To that end, we compared upregulated and
downregulated DEGs and DBGs between health and severe

asthma and upregulated and downregulated DEGs and DBGs
upon GC exposure. We only found 5 DEGs and 1 DBG between
healthy controls and severe asthma that followed the same trend
(up- or downregulated in a fraction-dependent manner) upon GC
treatment). We also investigated the expression of these mRNAs in
the U-BIOPRED dataset and found only 3 were present, namely,
DUSP1, SRM, and PTK2B. These genes were not altered between

FIGURE 3
Zfp36l1 and Zfp36l2mRNA expression in the lungs differentmousemodels of asthma. (A) Representative images of Hematoxilyn and Eosin (H and E)
staining of FFPE lung sections frommice treatedwith PBS as a control or with HDM for different times as indicated in the figure. Scale bars 125 μm. (B). The
expression of two cytokines (Ccl20 and Il13) in whole lung mRNA was analyzed by quantitative qPCR for 1 week and in (C) for 5 weeks. Bar graphs
represent mean fold change (±SEM) over the average PBS-treated control (n = 3mice per group at PBS/HDM for 1 week and n = 5mice per group in
3 independent experiments for the 5 weeks treatment). (D) Expression of both Zfp36l1 and Zfp26l2 in whole lung mRNA analysed by quantitative PCR for
1 week and in (E) for 5 weeks. Bar graphs represent mean fold change (±SEM) over the average PBS-treated control (n = 3mice per group at PBS/HDM for
1 week and n = 5 mice per group in 3 independent experiments for the 5 weeks treatment). Statistical significance was assessed by multiple two-tailed
parametric t-tests on log transformed data. p < 0.05*, p < 0.01**, p < 0.001*** and p ≤ 0.0001****. Black arrows point towards increased epithelium
height.
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moderate and severe asthma patients, or between severe asthma
patients stratified by OCS usage (Supplementary Figure S2). These
data suggest that decreased RBP expression in severe asthma is
unlikely to be due simply to oral corticosteroid use.

In summary, our analysis inferred that ZFP36L1 and ZFP36L2
encoding mRNAs are present in distinct airway epithelial cells and
that ZFP36L2 preferentially targets mRNAs that are bound to
polyribosomes in bronchial epithelial cells from patients with
severe asthma.

2.3 Zfp36l1 mRNA levels are downregulated
in the lungs of mice with asthma-like
characteristics

After having analysed the levels of ZFP36L1 and ZFP36L2 in
omics mRNA datasets and inferring their role in ARE regulation and
epithelial cell biology, we interrogated their expression levels in an in
vivo model of asthma. The House Dust Mite (HDM) model is an
established model of allergen-induced inflammation and one of the

FIGURE 4
Intracellular mislocalization of Zfp36l1/Zfp36l2 in airway epithelial cells of mice with asthma-like characteristics. (A) Representative spinning disc
confocal images of ex vivo lung slices from healthy controls and HDM-treated (3 weeks) mice were fixed and immune-stained for asthmatic markers of
mucus (Muc5ac) and neutrophils (Ly-6G) to demonstrate an asthma phenotype (scale bars are 100 and 50 microns, respectively). (B) Confocal
projections of healthy and HDM-treated airway epithelial cells immune-stained for Zfp36l1/l2, actin and nuclei (scale bar 25 microns), with insets
highlighting Zfp36l1/Zfp36l2 intracellular localization in epithelial cells in health (Control), HDM after 3 weeks of exposure (HDM 3 weeks) and after
5 weeks of exposure (HDM 5 weeks). (C): Insets highlighting its nuclear accumulation of Zfp36l1/l2 in epithelial cells in HDM. (D)Quantification of nuclear
and cytoplasmic mean fluorescence intensity of Zfp36l1/Zfp36l2 in control and HDM-treated airways (3 weeks and 5 weeks of exposure), using regions
of interest (ROIs) defined by the DAPI (nuclei) and actin (cytoplasm) channels. Mann-Whitney test was performed on 100 cells from 3 mice per
group. ****: p < 0.0001. Ctrl: Control. HDM: House dust mite.
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most used in vivo models of asthma (McMillan and Lloyd, 2004).
C57BL/6J mice were administered intranasally 25 μL (1 mg/mL)
protein weight solution dissolved in PBS of HDM extract (Citeq) or
equal volumes of PBS five times a week for 1 week or 5 weeks, to
produce acute or chronic inflammation. This model has already
been published elsewhere (Johnson et al., 2004; Ortiz-Zapater et al.,
2022) but we tested the effect of the HDM at different times using
both H&E staining from formalin-fixed paraffin embedded (FFPE)
sections of mice from the different groups (Figure 3A).
Supplementary Figure S3 shows a diagram of the different lung
reagions employed in each experiment. We can observe immune
infiltration in the section of HDM mice, increased after chronic
exposure of HDM. After 5 weeks, the increase in the epithelium
height is also evident (see arrows in Figure 3A). Total RNA from
whole lung tissue from the different four groups was also analysed
for the expression of two asthma-associated inflammatory cytokines,
Ccl20 and Il13. As expected, there was a clear increase in the
expression of both transcripts after 1 week of HDM treatment
(Figure 3B) and 5 weeks of HDM treatment (Figure 3C). We
then assessed the mRNA levels of both Zfp36l1 and Zfp36l2 after
both acute and chronic HDM treatment. As shown in Figure 3D, the
expression of both Zfp36l1 and Zfp36l2 was not modified between
PBS and acutely HDM treated mice. However, the mRNA
expression of Zfp36l1 in total lung tissue was significantly
downregulated after chronic HDM exposure (Figure 3E, left
panel). This was not seen for Zfp36l2, although there was lower
expression compared to PBS mice in around half of the mice
(Figure 3E, right panel).

2.4 Zfp36l1/l2 are mis-localized in the
airways of mice with asthma-like lung
characteristics

To further investigate our findings in vivo, we assessed the
localization of Zfp36l1 and Zfp36l2 in the airways of HDM
exposed mice. We employed mice exposed to HDM over three
and 5 weeks; these mice produced a robust T2-driven
inflammatory response and asthma-like phenotype including
airway hyperresponsiveness, mucus hyperproduction, and
immune cell infiltration by 3 weeks. PBS- and HDM-treated
mice were sacrificed and lungs harvested and processed to
obtain precision-cut ex vivo lung slices (PCLS) that were fixed
and analyzed by immunofluorescence and confocal imaging.
Indeed, in healthy airways and bronchioles there was little to
no Muc5ac (a pathological mucin highly upregulated in
asthma) expression in the epithelial monolayer, nor immune
cell infiltrate near airways in the surrounding alveolar space
(Figure 4A, top left panels). Unsurprisingly, HDM-treated
airways had drastically increased expression of Muc5ac in the
epithelium and significant immune cell infiltration near airways as
shown by Ly-6G + neutrophils (immune cell type notoriously
increased in many patients with asthma) (Figure 4A, top right
panels). We found that Zfp36l1/Zfp36l2 (using a dual-staining
antibody for both Zfp36l1 and Zfp36l2 proteins) were expressed in
airway epithelial cells and nearly evenly distributed between the
nucleus and cytoplasm in healthy mice. However, in airways
exposed to HDM, Zfp36l1/Zfp36l2 became robustly recruited

into the nucleus of airway epithelial cells (Figures 4B,C).
Notably, nuclear accumulation of Zfp36l1/l2 at 5-week HDM
treatment was even more dramatic, demonstrating a positive
correlation between nuclear Zfp36l1/l2 and asthma severity
(Figures 4B,C). To confirm this, measurements of fluorescence
intensity were made for nuclear and cytoplasmic Zfp36l1/
Zfp36l2 and ratios calculated from healthy and HDM treated
airways at three and 5 weeks, demonstrating a dramatic
recruitment of Zfp36l1/l2 to the nucleus with HDM treatment
that increased over time and disease severity (Figure 4D).

2.5 ZFP36L1 and ZFP36L2 immunostaining
of bronchial biopsies differs with severity in
human asthma and rescuing ZFP36L1/L2 in
severe asthma decreases mRNA expression
of pro-inflammatory mediators

To further investigate the dysregulation of both ZFP36L1 and
ZFP36L2 mRNA levels in human (Figure 1) and mouse asthma
(Figure 3; Figure 4) we performed immunostaining of ZFP36L1 and
ZFP36L2 in bronchial biopsies from patients with different asthma
severities and non-asthma controls. Our results show that
immunostaining with both ZFP36L1 and ZFP36L2 was
predominant in bronchial epithelium (Figures 5A,B) while also
present in other cell types. Analysis of the positively stained
airway epithelial cells showed that patients with mild asthma had
increased staining of ZFP36L1 in epithelial cells as compared with
healthy controls and severe asthma (Figure 5C). Patients with severe
asthma showed low ZFP36L1 staining, significantly decreased as
compared with mild but not healthy controls. ZFP36L2 staining was
increased in patients with severe asthma as compared to both
healthy controls and mild patients (Figure 5D), but there was no
difference in the ZFP36L2 staining between healthy controls and
mild asthmatic patients. To determine the effects of restoring
ZFP36L1 and ZFP36L2 levels, we employed a vector to
overexpress Zfp36l1 and siRNAs to deplete ZFP36L2 in primary
bronchial epithelial cells from patients with severe asthma.
Transfection efficiency showed increased ZFP36L1 and decreased
ZFP36L2 mRNA levels (Figure 5E) and led to decreased levels of
pro-inflammatory IL6, IL8 and CSF2 mRNAs.

Taken together, our data show that ZFP36L1 and ZFP36L2 are
expressed in airway epithelial cells and that their levels and
subcellular localization are modified in asthma, in a severity-
dependent manner. Restoring ZFP36L1 and ZFP36L2 levels in
primary bronchial epithelial cells from patients with severe
asthma led to decreased expression of mRNAs encoding pro-
inflammatory factors. ZFP36L1 and ZFP36L2 alter post-
transcriptional gene expression in bronchial epithelial cells in
severe asthma, granting further investigation into their role in
chronic airway inflammation.

3 Discussion

Our data demonstrate that ZFP36L1 and ZFP36L2 levels and
subcellular localization are dysregulated in primary samples from
both human and murine-like asthma. We have also performed
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FIGURE 5
Immunohistochemistry staining of ZFP36L1 and ZFP36L2 in from bronchial biopsies from healthy controls and patients withmild and severe asthma.
(A) Representative images of sections from patients classified as healthy controls (A, D), mild asthmatics (B, E) or patients with severe asthma (C, F).
Staining was performed for ZFP36L1 and ZFP36L2 as indicated in the figure. Scale bar represents 100 μm. (B) Insets of the different sections shown in (A).
The scale bar represents 50 μm. (C) and (D). Quantification of ZFP36L1 and ZFP36L2 staining in FFPE sections from each experimental group. In (C)
Healthy controls n = 7, Mild asthmatics n = 9 and severe asthmatics n = 6. InD, Healthy controls n = 6, mild asthmatics n = 6 and severe asthmatics n = 7.
Statistical significancewas assessed bymultiple two-tailed t-tests on log-transformed data. (E): transfection efficiency of primary bronchial epithelial cells
from patients with severe asthma (2 donors, 1 donor at two different passages, n = 3). Co-transfection of an overexpression vector for Zfp36l1 and siRNAs
against ZFP36L2 led to upregulation of ZFP36L1 and downregulation of ZFP36L2 mRNAs. (F): IL6, IL8 and CSF2 mRNA expression was decreased upon
upregulation of ZFP36L1 and downregulation of ZFP36L2. One-tailed t-test of log transformed data. *: p < 0.05, **: p < 0.01. oeC, overexpression control;
oeL1, overexpression plasmid for Zfp36l1; siC, siRNA control; siL2, siRNA targeting ZFP36L2.
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in silico analysis of publicly available datasets of Zfp36l2 targets and
observed that these are particularly enriched in genes that present
increased binding to polyribosomes in severe asthma human
primary bronchial epithelium. Modulating ZFP36L1 and
ZFP36L2 in primary bronchial epithelial cells from patients with
asthma decreased the expression of known pro-inflammatory
mediators. Together, our data strongly suggest that ZFP36L1 and
ZFP36L2 drive changes in gene expression in primary epithelial cells
in asthma.

Airway epithelial cells contribute to disease pathobiology in
asthma through immune modulation, defective barrier function,
and airway remodelling. All asthma phenotypes present epithelial
cell damage (Holgate, 2008; Xiao et al., 2011; Hardyman et al., 2013;
Calven et al., 2020), and airway structural changes can be present
before the onset of inflammation (Pohunek et al., 2005; Barbato
et al., 2006). These observations are contrary to the old paradigm of
repeated inflammation driving epithelial damage and deficient
repair resulting in airway remodelling (Bush, 2008). Thus,
epithelial changes appear to occur early on and be central to
disease progression. It is possible that early epithelial cell gene
expression reprogramming occurs leading to these cells behaving
differently in asthma. This is indeed supported by studies that have
determined a differential epigenetic signature in primary airway
epithelium in asthma (McErlean et al., 2020). It is also possible that
relatively small changes in master-regulators, such as RBPs, cause a
sustained effect that leads to a different profile and cellular
behaviour.

RBPs can modulate mRNA transcript levels and fate by binding
to their targets and controlling most post-transcriptional steps,
including alternative splicing, export, stability, storage, decay or
translation into protein. The role of post-transcriptional gene
expression regulation in inflammation is well established
(Piccirillo et al., 2014; Makita et al., 2021) and defective RNA-
RBP interactions can contribute to dysregulated immune responses
(Liu and Cao, 2023). Additionally, RBPs have been found
dysregulated in the epithelium of patients with chronic
obstructive pulmonary disease (Ricciardi et al., 2018). There is no
literature, to our knowledge, about the role of RBPs in asthma, where
research in post-transcriptional regulation has focused on
microRNAs (Solberg et al., 2012).

Amongst RBPs, the TTP family has well-established roles in
modulating the immune system (Galloway et al., 2016; Vogel et al.,
2016; Salerno et al., 2018), as well as the response to glucocorticoids
(Ishmael et al., 2008; Rynne et al., 2022). Our data in Figure 1
showed a decreased expression of ZFP36L1 and ZFP36L2 mRNA in
airway epithelial cells from patients with severe asthma, particularly
of those that are undergoing oral corticosteroid treatment. We also
found decreased of Zfp36l1 and Zfp36l2 mRNA in chronic asthma-
like inflammation (akin to human severe asthma) in mice (Figure 3).
At the protein level, in human bronchial biopsies (Figure 5),
ZFP36L1 showed an increase in expression in mild patients,
i.e., not taking glucocorticoids, as compared to healthy controls,
and a decrease in patients with severe asthma (Figure 5). Contrary to
mRNA expression, ZFP36L2 protein appeared upregulated in
patients with severe asthma, i.e., on high doses of inhaled and/or
oral glucocorticoids. These data highlight the importance of
performing validations at the protein level, and the poor
correlation existing between mRNA and protein levels (Gygi

et al., 1999). It is also important to highlight that
immunohistochemistry is a good methodology to indicate where
a protein is expressed, but it is semi-quantitative. Further analysis of
protein levels in specific airway epithelial types employing other
methodologies such as fluorescent western blotting could offer
further insight into total protein levels.

Mechanistically, it possible that expression levels of ZFP36L1
and ZFP36L2 are driven by different mechanisms in, particularly,
severe/chronic asthma. Our data on murine models of acute and
chronic asthma-like inflammation (Figure 3) showed decreased of
Zfp36l1 mRNA in the lung of chronic asthma-like inflammation
(akin to human severe asthma), although these data correspond to
whole lung. More detailed time courses of HDM exposure and
analysis of specific cell types may unravel the dynamics of
expression of these RBPs. Zfp36l1/l2 nuclear localization was
increased in the airways of mice with asthma-like characteristics
(Figure 4). ZFP36L1 and predominantly ZFP36L2 are increased in
bronchial epithelial cells exposed to glucocorticoids, while their
nuclear localization is also enhanced upon glucocorticoid exposure
(Rynne et al., 2022). Noteworthy, our antibody staining for
immunofluorescence (in both (Rynne et al., 2022) and Figure 4
PCLS) did not allow us to distinguish between ZFP36L1/
Zfp36l1 and ZFP36L2/Zfp36l2, which is a caveat in our study.
Further determination of the localization of each protein
separately is warranted. In bronchial biopsies, we observed a
trend towards increased nuclear localization for ZFP36L2 in
patients with severe asthma (Supplementary Figure S4) while
ZFP36L1 appeared more localised in the cytosol. Together,
these data point towards chronic inflammation driving changes
in ZFP36L1 expression in asthma, while glucocorticoids may be the
main drivers of ZFP36L2 protein expression in severe asthma. In
either case, it appears that there is an increase in nuclear
localization for these proteins in asthma. While this may infer
an increase in their nuclear role, our integration of Zfp36l2 targets
showed that ZFP36L2 exerts its effects mainly by modulating
polyribosome association of mRNAs in severe asthma
(Figure 2C). Thus, it is possible that the changes exerted by
ZFP36L2 in the cytosol are driven by is nuclear kidnapping.

ZFP36L1 and ZFP36L2 encoding mRNAs also contain ARE in
their 3′UTRs and can therefore regulate the expression of one
another. Although our ARE analysis did not show an enrichment
in ARE-containing mRNAs in patients with severe asthma, ARE-
containing mRNAs accounted for 20%–28% of the genes
differentially expressed and differentially bound to polyribosomes
between health and severe asthma (Figure 2C). Our co-transfections
also demonstrated that restoring the levels of ZFP36L1 and ZFP36L2
decreased the levels of IL6, IL8 and CSF2 (Figures 5E,F) mRNAs,
which are known to contain AREs. However, TNFA and VEGF were
not modulated (Supplementary Figure S5), suggesting a more
complex interplay of these RBPs. Further investigation into the
specific dynamics of these two RBPs in primary epithelium will
enable elucidating their potential influence on each other’s
expression and/or targets. Determining the levels of ZFP36L1 and
ZFP36L2 in bronchial biopsies and those of their direct targets
employing methodologies such as spatial omics would enable
dissecting their complementary, separate or synergistic roles in a
cell-type dependent manner. It is also possible that these proteins
exert distinct effects in an airway cell-type manner. ZFP36L1 and
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ZFP36L2 mRNAs appeared differentially expressed in individual
airway epithelial cell types, with these expression patterns varying
between health and asthma (Figures 2A,B). This granularity is lost in
bulk RNA-sequencing and these data suggest that these RBPs are
indeed not redundant.

In summary, we provide, to our knowledge, the first evidence
that RBPs are dysregulated in airway epithelial cells in human
asthma and murine models of asthma in a severity-dependent
manner. ZFP36L1/L2 appear to be modulated post-
transcriptionally and post-translationally, with their subcellular
localization influenced by chronic inflammation and possibly
glucocorticoids. Recent evidence shows that ZFP36L1/
L2 modulate epithelial-encoding mRNAs (Rynne et al., 2022).
We propose RBPs as novel modulators of inflammation and
epithelial structure in asthma and their further investigation in
chronic airway disease.

4 Materials and methods

4.1 Human samples

Our Frac-seq cohort (n = 5 healthy and n = 8 severe asthma) and
those utilized in biopsy staining were part of the Wessex severe
asthma cohort (Azim et al., 2019), in which patients with severe
asthma were defined as those fulfilling the European Respiratory
Society/American Thoracic Society (ERS/ATS) criteria for severe
asthma (Chung et al., 2014) and thus treated with high doses of
inhaled and/or oral corticosteroids. Bronchial biopsies from Figure 5
were also part of the same cohort. Primary bronchial epithelial cells
from Figures 5E,F and Supplementary Figure S5 were collected
under REC 23/YH/0018. For all the rest of data we are using
previously collected data that is publicly available. REC Numbers
06/Q0505/12 and 05/Q1702/165.

4.2 In vivo experiments: house dust mite
sensitization

All the research in this manuscript complies with ethical
regulations. The use of animals for this study was approved by
the Ethical Review Committee at King’s College London and the
Home Office, United Kingdom. All animals were housed in the
Biological Support Unit (BSU) located in New Hunt’s House at
King’s College London. All experiments were carried out under
project license number P9672569A and personal license number
I0F9CA46A. For House Dust Mite (HDM) immune-sensitised
protocol, 6–8 weeks female C57BL/6 mice, were anaesthetised
with isofluorane and administered either 25 μg (total protein) of
HDM extract (Citeq Biologics; 1 mg/mL protein weight solution
dissolved in PBS) or 25 μL of PBS intranasally 5 times per week for
5 consecutive weeks. Control mice received 25 μL of PBS. Mice were
culled 24 h after the final HDM or PBS dose. Mice were sacrificed in
a CO2 gas chamber for lung dissection.

4.3 RNA extraction, reverse transcription
and quantitative PCR (RT-qPCR)

RNA was isolated from cells or lung tissues using the RNeasy
Qiagen kit (Qiagen; cat no 74004) following the manufacturer’s
instructions. In the case of isolating RNA from lung tissue, lung
lobes were chopped and stored in TRIzol. The tissue was then
disaggregated using a Bullet Blender. RNA was used for cDNA
synthesis using the LunaScript RT SuperMix Kit (NEB; cat no.
E3010). cDNA synthesis reaction, consisting of 4 µL of 5X
LunaScript RT SuperMix, 1 µg of RNA and Nuclease-free water,
was prepared. Using a thermal cycler, the reaction was initialised by
a primer annealing step of 25 °C for 2 min, followed by a cDNA
synthesis step of 55 °C for 10min, and a heat inactivation step of
95 °C for 1 min. Quantitative real-time PCR (qPCR) was performed
using a QuantStudio 5 (Applied Biosystems/ThermoFisher) thermal
cycler, the reaction was first heated to 95 °C for 1min, followed by
40 cycles of 95 °C for 10 s. This was followed by an extension time of
30 s at 60 °C. We employed TaqMan assays (ThermoFisher
Scientific).

4.4 Tissue processing and analysis of
immunohistochemistry

Immunohistochemistry staining of ZFP36L1 and ZFP36L2 in
lung tissue from bronchial biopsies in non-asthmatic patients, mild
asthma, and severe asthma was carried out by Dr Jon Ward at the
University of Southampton. Briefly, 10 µm thick sections paraffin-
embedded sections were melted at 95°C for 2 h and de-waxed by
dipping slides in xylene 2 × 10 min, 100% EtOh 2 × 5 min, 70%
EtOH 1 × 5 min and 50% EtOH 1 × 5 min. Antigen retrieval was
carried using sodium citrate buffer (0.0874 M sodium citrate,
0.0126 M citric acid pH 6) and incubating the slides for 20 min
in a pressure cooker at 95°C. Endogenous peroxidase activity was
blocked via 10 min incubation in hydrogen peroxide (3% in TBS) for
DAB staining. Tissues were then washed 3 × with TBS and non-
specific binding was blocked via incubation with TBS-1%BSA-1%
FBS blocking solution for 1 h at room temperature. Primary
antibody was added to the tissues, and these were left at 4°C
overnight. After 3 × washes with TBS, DAB staining was
visualised by adding DAB developing solution for up to 20 min
(Dako). Tissues were then counterstained using haematoxylin for
1 s. Finally, tissues were dehydrated with graded alcohols and xylene
before being mounted with DPX. The slides were stained for
ZFP36L1 (abx124297, Abbexa, 1:3000 dilution) and for ZFP36L2
(PA5-30644, Invitrogen, 1:1500 dilution). Immunohistochemistry
analysis was done employing Qupath (https://qupath.github.io/) for
quantitative analysis. Positive epithelial cells were counted and
expressed as a percentage of the total epithelium per slide. Mild
asthma patients had controlled asthma, while severe asthma samples
were obtained from the Wessex Severe Asthma Cohort and were
classified as having inadequately controlled disease and fulfilled the
ERS/ATS criteria for severe asthma.
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4.5 Precision-cut ex vivo lung slices

Ex vivo lung slices were obtained from mice, within 48hrs of
their last allergen priming challenge, adapted from the protocol
of (Akram et al., 2019). Briefly, mice were humanely killed by
CO2 inhalation followed by cervical dislocation. The lungs were
inflated with 2% low melting agarose (Fisher–BP1360) prepared
in HBSS+ (Gibco–14,025) before lungs, along with the heart and
trachea, were excised, washed in PBS, and the lobes separated.
Individual lobes were then embedded in 4% low melting agarose
and solidified on ice. 200micron thick slices were cut on a Leica
VT1200S vibratome and washed and incubated in DMEM/F-
12 medium supplemented with 10% foetal bovine serum (FBS)
and antibiotics.

4.6 Immunofluorescence and imaging of
fixed PCLS

PFA fixed ex vivo lung slices were incubated for 1 hour at room
temperature in blocking solution: PBS containing 0.1% triton X-100,
0.1% sodium azide, and 2% bovine albumin (BSA), before incubating
overnight a 4°C at 1:100 in blocking solution for all primary antibodies
used: mouse anti-Muc5ac (Abcam ab3649), rat anti-Ly-6G (Abcam
ab2557), rabbit anti-Zfp36l1/l2 (Cell Signaling Technologies). Ex vivo
lung slices were washed 3 × 30 min in PBS+0.5% Triton X-100) before
incubating overnight at 4°C overnight with: 1:100 Alexa Fluor 488 goat
anti-rabbit (Thermo Scientific - A11008) or anti-mouse (A32723) IgG,
Alexa Fluor 568 goat anti-rabbit (A11011) or anti-mouse (A11004) IgG,
or Alexa Fluor 647 goat anit-rabbit (A32733) or anti-mouse (A21235)
IgG +1:250 Alexa Fluor 488, 568, or 647 Phalloidin (Thermo
Scientific–A12379, A12380, A22287, respectively). Slices were
washed 3 × 30 min in PBS+0.5% Triton X-100, stained with 1:
1000 DAPI in PBS for 20 min, mounted in ProLong Gold
(Invitrogen P36930), and imaged on a Nikon Eclipse Ti2 spinning
disc confocal microscope with a 20X or ×40 objective.

4.7 Transfection

Primary bronchial epithelial cells were cultured on collagen-
coated 24 well plates and transfected employing Interferin
(Polyplus) with an over-expression vector for Zfp36l1 (courtesy
of Prof Mayr, Memorial Sloan Kettering Cancer Center,
United States) and siRNAs against ZFP36L2. RNA was extracted
using TRIzol following manufacturer’s instructions. RT was
performed employing H-minus RT (ThermoFisher Scientific) and
qPCRperformed using LunaUniversal Probe qPCRMasterMix (New
England Biolabs) using TaqMan primers (ThermoFisher Scientific).

4.8 Statistical analyses

GraphPad Prism and R studio software was used for the
generation of graphs and analysis of data. All packages are
available at CRAN. Two group analyses were done employing
one or two-tailed tests. Enrichment analysis was performed using
binomial tests. Differential proportions in Figure 2 were done

employing a Chi-Square test. In all cases, p < 0.05 *, p < 0.01 **,
p < 0.001 ***. RNA-seq analysis was evaluated using the
DESeq2 package for differential gene expression, for details
please see (Rynne et al., 2022). Microarray analysis was
performed using the limma package.
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PRELP secreted from mural cells
protects the function of blood
brain barrier through regulation of
endothelial cell-cell integrity
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Introduction: Proline/arginine-rich end leucine-rich repeat protein (PRELP), is a
small secreted proteoglycan expressed by pericytes and vascular smooth muscle
cells surrounding the brain vasculature of adult mouse.

Methods: We utilised a Prelp knockout (Prelp−/−) mouse model to interrogate
vasculature integrity in the brain alongside performing in vitro assays to
characterise PRELP application to endothelial cells lines. Our findings were
supplemented with RNA expression profiling to elucidate the mechanism of
how PRELP maintains neurovasculature function.

Results:Prelp−/−micepresentedwithneuroinflammationand reducedneurovasculature
integrity, resulting in IgG and dextran leakage in the cerebellum and cortex. Histological
analysis of Prelp−/− mice revealed reducedcell-cell integrity of the blood brain barrier,
capillary attachment of pericytes andastrocyte end-feet. RNA-sequencing analysis
found that cell-cell adhesion andinflammation are affected in Prelp−/− mice and
gene ontology analysis as well as gene set enrichment analysis demonstrated
that inflammation related processes and adhesion related processes such as
epithelial-mesenchymal transition and apical junctions were significantly affected,
suggesting PRELP is a regulator of cell-cell adhesion. Immunofluorescence analysis
showed that adhesion junction protein expression levels of cadherin, claudin-5, and
ZO-1, was suppressed in Prelp−/− mice neurovasculature. Additionally, in vitro studies
revealed that PRELP application to endothelial cells enhances cell-cell integrity, induces
mesenchymal-endothelial transition and inhibits TGF-β mediated damage to cell-cell
adhesion.

Discussion: Our study indicates that PRELP is a novel endogenous secreted
regulator of neurovasculature integrity and that PRELP application may be a
potential treatment for diseases associated with neurovascular damage.
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1 Introduction

The blood-brain barrier (BBB) is a tight functional barrier
composed of capillary endothelial cells, astrocytes, pericytes, and
neurons, which prevents neurotoxic plasma components, blood cells,
and pathogens from entering the brain (Weiss et al., 2009; Sweeney et al.,
2019). Defects in the integrity of the BBB results in the accumulation of
toxic molecules leaked from the vasculature in the brain. This leakage
causes central nervous system (CNS) diseases such as Alzheimer’s
disease, Huntington’s disease, and stroke (Weiss et al., 2009; Sweeney
et al., 2019). The BBB is characterized by strong cell-cell adhesions
through adherens and tight junctions (Alahmari, 2021). These dynamic
structures are governed by diverse proteins secreted from the neuro
vascular components, which trigger downstream signalling events
involved in cytoskeletal reorganization, and endothelial permeability
(Gaengel et al., 2009). The endothelial-to-mesenchymal transition
(EndMT) has been recognized as a major biological event that
controls vascular leakage (Cho et al., 2018; Man et al., 2019; Piera-
Velazquez and Jimenez, 2019).

Recently, we have reported that two secreted proteoglycans,
proline/arginine-rich end and leucine-rich protein (PRELP) and
osteomodulin (OMD) function as inhibitors of bladder cancer
initiation by inhibiting epithelial-mesenchymal transition (EMT)
and by activating cell-cell adhesion of bladder epithelial cells
(Papadaki et al., 2020). Intriguingly, PRELP expression was
regulated by epigenetically through acetylation of lysine residue
5 of histone H2B in the PRELP gene promoter region in bladder
cancer (Shozu et al., 2022). In addition, we demonstrated that Prelp
was expressed in mouse retina and loss of Prelp contributed to
retinoblastoma cell progression by reducing cell-cell adhesion and
facilitated EMT (Hopkins et al., 2022). We further investigated the
roles in other tumors and identified that PRELP showed a tumor
suppressive role by regulated PI3K-AKT signalling pathway in high-
grade ovarian cancer (Dozen et al., 2022).

PRELP is a class II member of the small leucine rich
proteoglycan (SLRP) family (Dellett et al., 2012; Iozzo and
Schaefer, 2015). SLRP family members bind various extracellular
proteins such as TGF-β, BMP, EGF, IGF, Wnt, and collagens and
can regulate multiple signalling pathways in context dependent
manners (Morris et al., 2007; Dellett et al., 2012; Chacon-Solano
et al., 2022; Lopez and Bonassar, 2022). They are involved in various
biological processes such as cancer, inflammation, and development
(Birke et al., 2014; Luehders et al., 2015; Papadaki et al., 2020). In this
paper, we report that PRELP is selectively expressed in mural cells
around the neurovasculature and contributes to the regulation of
BBB integrity. PRELP depletion in mouse brain caused blood
leakage, indicating that PRELP is responsible for BBB integrity.
Our results suggest that PRELP could be used as a new strategy to
inhibit neurovascular leakage or protect BBB dysfunction against
neurological disorders.

2 Materials and methods

For Antibodies, reagents, data accession number, software,
and primes, all antibodies, reagents, accession number, software
and algorithms, and primes used in this study were listed in
Supplementary Tables S1, S2.

2.1 Omd−/− and Prelp−/− mice

Mouse lines were generated by Takeda Pharmaceutical Company
andwild type and heterozygote founders were imported to our animal
facility. All animal procedures were performed in accordance to the
Animals (Scientific procedures) Act 1986 of the United Kingdom
Government and housed in compliancewith theHomeOffice Code of
Practice. Mice were kept in individually ventilated cages (IVCs), in a
12 h light: dark cycle and were fed a complete pelleted mouse diet and
with constant access to water.

Briefly, Omdflox or Prelpflox ES cells were generated from C57BL/6J
ES cells by homologous recombination. Targeting vectors were
constructed by insertion of the first LoxP sequence upstream of
exon two, containing the initiation codon on the Omd or Prelp
locus. A second LoxP sequence, neomycin resistant unit, and LacZ
unit was inserted downstream of exon three. Cre expression plasmid
was electroporated into the recombinant flox ES cells to generate ES
cells harboring the knockout allele. The resulting cells were injected into
ICR tetraploid blastocysts to generate chimeric male mice which were
backcrossed to C57BL/6J females. Single knockout mice (OmdLacZ/LacZ

and PrelpLacZ/LacZ) were generated by cross breeding within the colony.
Genotyping: Genotyping PCR reactions were performed as

follows. Mouse ear punches were mixed with 180 μL DirectPCR
Lysis Reagent (Viagen Biotech) and 0.4 mg/mL Proteinase K
(Sigma) solution before rocking at 55°C overnight. The samples
were then incubated at 85°C for 45 min before centrifugation and
collection of the resulting lysate. OMD samples were genotyped
using an Invitrogen kit. A master mix was prepared according to the
manufacturers protocol using the primers described in
Supplementary Table S2 and added to 5 μL genomic DNA.
Samples were incubated at 95°C for 3 min prior to 35 cycles
consisting of 30 s at 95°C, 90 s at 61°C and 90 s at 72°C. The final
extension was 10 min at 72°C. This produced amplicons of different
lengths: 298 bp in wild type mice with OMD-A and OMD-B2
primers; 541 bp in knockout mice with OMD-B2 and LacZ-5756
primers; or both amplicons present in heterozygotic mice. PRELP
samples were genotyped using a Multiplex PCR kit (Qiagen). A
master mix was prepared according to the manufacturers protocol
using the primers described in Supplementary Table S2 and added to
2.5 μL genomic DNA. Samples were incubated at 95°C for 15 min
prior to 40 cycles consisting of 30 s at 94°C, 90 s at 63°C and 90 s at
72°C. The final extension was 10 min at 72°C. Amplicons were
846 bp for wild type mice with PRELP-A and PRELP-B primers,
634 bp for knockout mice with PRELP-C and LacZ-B primers, or
both amplicons present in heterozygotic mice.

2.2 Tissue processing and staining

Mouse brains were isolated and fixed in 4% PFA for 24 h before
paraffin embedding and sectioning. Tissue for paraffin sectioning was
processed in the Institute’s Pathology department using an automated
machine (Leica ASP300S). Samples were sectioned into 5 μm slices on
superfrost slides treated with poly-L-lysine, dried and stored at room
temperature. Histological staining was performed in an automated
system in the Pathology department. H&E, von Kossa, alcian blue,
congo red and MSB, were performed in the Pathology department
following department’s specific protocol for each stain.Methylene blue

Frontiers in Cell and Developmental Biology frontiersin.org02

Davaapil et al. 10.3389/fcell.2023.1147625

125

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2023.1147625


and basic fuchsin staining was performed on semi-thin sections of
xenografted tumors. For immunostaining, slides were dewaxed for
10 min in Histoclear and rehydrated in an ethanol-water graded series.
Antigen retrieval was performed by boiling the samples for 15 min in
citrate (pH 6.0) or Tris-EDTA buffer (pH 9.0) depending on the
antibody. Sections were blocked for 1 h in 10% goat serum in PBS and
were incubated overnight with primary antibodies at 4°C. Detection
was performed by incubation with anti-rabbit or anti-mouse Alexa
Fluor 488 secondary antibodies, for 1 h at room temperature
(1:500 dilution, Life technologies).

2.3 β-Galactosidase analysis

Mouse brains were isolated from adult mice and were fixed in
4% PFA at 4°C briefly for 2 h with gentle agitation. Afterwards they
were washed in PBS and left at 30% sucrose at 4°C overnight before
subsequently frozen in OCT. Cryosections 10 μm thick were washed
twice in PBS +2 mM MgCl2 for 20 min and were stained overnight
in X-gal at 37°C. Sections were washed in PBS and then either
counterstained and mounted in Nuclear Fast Red (Vector
Laboratories) or followed by IHC. For IHC, briefly, samples were
immediately blocked for 1 h with 10% goat serum and were
incubated with the primary antibodies overnight. Secondary
staining was completed with anti-rabbit or anti mouse Alexa
Fluo-488 antibodies, counterstained in DAPI and mounted.

2.4 Immunocytochemisty

Coverslips with cell monolayers were washed in PBS and fixedwith
either 4% PFA or ice-cold methanol for 10 min. Samples were then
washed and incubated for 1 h in blocking buffer. After blocking and
incubation with primary antibodies overnight at 4°C, the samples were
incubatedwith secondary Alexa Fluor 488 (1:500, Life Technologies) in
blocking buffer for 1 h at room temperature, counterstained with
Hoechst solution (Invitrogen) and mounted. Slides were imaged
using a Zeiss LSM710 at ×10 and ×40 magnification. After laser
intensity settings were optimized, images were processed on ImageJ
and a standard threshold to remove background noise across all
samples.

2.5 Microscope settings and image analysis

A preliminary analysis determined the thickness of samples, and
the microscopic settings were adjusted accordingly to enable the
detection of structures. In this setting, Hamamatsu ORCA-ER
Digital Camera (Hamamatsu, Japan) and μManager software
(Edelstein et al., 2010) were used to obtain fluorescent images on
an Axioskop 2 Plus (Zeiss, Germany) from sections. A ×40 differential
interference contrast objective with an aperture of 0.95 and
0.25 working distance and 10X ocular lens were used to obtain
each region of interest. Imaging parameters of laser intensity and
exposure time were optimized and uniformly set in the same
experiments. Images were then processed, despeckled, background
subtracted and applied with a median filter at 2px in order to remove
all background noise. Huang auto threshold was then applied, and the

threshold was saved as an ROI. This ROI was then used as the
“outline” of immunostaining to measure, and regions of interest
measured and quantified with FIJI software.

2.6 Vascular capillaries leakage studies

25 mg/mL 70 kDa Dextran-Texas Red was injected into mice by
intravenously. After circulation for 3 h, mice were culled and brain
tissues harvested. Perfusion was performed through the heart before
collecting tissues. Dye excess was washed out through fixation and
washing in PBS before cryoprotection. Sample preparation was done
as described above. Vascular permeability was then visualized with
fluorescence microscopy. Vessels were traced on ImageJ and interior
staining removed. The resulting external staining was then
quantified by methods mentioned above.

2.7 Expression profiling of meningeal vessels
in RNA-seq analysis

2.7.1 Sample preparation
Four wild-type mice, three Omd−/− and three Prelp−/− knockout

mice meningeal samples were used for RNA-seq analysis. RNA was
extracted via ARCTURUS PicoPure RNA Isolation kit for mouse
samples or PureLinkTM RNA Mini Kit for HUVECs. In brief,
meningeal vessels were excised and homogenized using a rotor-
stator homogenizer. After centrifugation at 3,000 × g for 2 min and
extracted in accordance with manufacturer’s instructions RNA was
quantified and qualified by Agilent’s 2200 TapeStation, measuring
RNA concentration and agarose gel electrophoresis.

2.7.2 Library preparation
Samples were processed using the KAPA mRNA HyperPrep Kit

(Roche KK8580) according to manufacturer’s instructions.
Briefly, mRNAwas isolated from total RNA using Oligo dT beads

to pull down poly-adenylated transcripts. The purified mRNA was
fragmented using chemical hydrolysis (heat and divalentmetal cation)
and primed with random hexamers. Strand-specific first strand cDNA
was generated using Reverse Transcriptase in the presence of
Actinomycin D. This allows for RNA dependent synthesis while
preventing spurious DNA-dependent synthesis. The second cDNA
strand was synthesized using dUTP in place of dTTP, to mark the
second strand. The resultant cDNA is then “A-tailed” at the 3’ end to
prevent self-ligation and adapter dimerization. Full length xGen
adaptors (IDT), containing two unique 8 bp sample specific
indexes, a unique molecular identifier (N8) and a T overhang are
ligated to the A-Tailed cDNA. Successfully ligated cDNA molecules
were then enriched with limited cycle PCR (50 ng of starting material,
15 PCR cycles). The high fidelity polymerase employed in the PCR is
unable to extend through uracil. This means only the first strand
cDNA is amplified for sequencing, making the library strand specific
(first-strand).

2.7.3 Sequencing
Libraries to be multiplexed in the same run are pooled in

equimolar quantities, calculated from Qubit and Bioanalyser
fragment analysis.
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Samples were sequenced on the NextSeq 500 instrument
(Illumina, San Diego, US) using a 75 bp single read run with a
corresponding 16 bp UMI read.

2.7.4 Data analysis
Run data were demultiplexed and converted to fastq files using

Illumina’s bcl2fastq Conversion Software v2.19. Fastq files were
then aligned to the Mus musculus genome GRCm38 or Homo
sapiens genome GRCh38 using RNA-STAR 2.5.2b then UMI
deduplicated using Je-suite (1.2.1). Reads per transcript were
counted using FeatureCounts and differential expression was
estimated using Galaxy. Log2 fold change and p values of
pairwise differential expression between wild type samples and
knockout samples or PRELP treated and untreated samples were
then analysed using Qiagen’s Ingenuity Pathway Analysis (version
48207413).

2.8 Measurement of microglial
morphological change

Microglial morphological change was measured using the
previously reported protocol with minor modifications (Morrison
and Filosa, 2013). Briefly, images of Iba-1 staining were processed to
remove noise and any background staining. A threshold was applied
to produce a binary image and skeletonized which was analysed
using Analyse Skeleton plugin. The image was then analysed, and
the sum of all branch lengths were extracted and used for further
quantification. All images were processed using the same
parameters. Branch lengths were normalized by number of
microglia per area and the resulting value was expressed as
branch length per microglial density.

2.9 Brain integrity studies

Transepithelial/transendothelial electrical resistance (TEER)
were used to assess the brain integrity using an EVOM Volt-
Ohmeter (World Precision Instruments). STX2 probes were
disinfected and air-dried before being inserted into upper and
bottom chambers. Resistance was measured for empty wells
containing media before determined across monolayers. Values
were calculated by multiplying raw values by transwell growth
area once the base value for empty wells had been subtracted.
70,000 cells per 24-well transwel insert were seed and allow them
to grow for 4 days in control and PRELP conditioned media. TEER
measurements were completed 96 h after PRELP treatment.

For the membrane permeability, permeability assays were
completed using an in vitro vascular permeability assay kit
(Merck). In brief, inserts were hydrated and seeded with 0.5 ×
105 cells/insert in media and incubated until a monolayer formed.
PRELP conditioned media was applied and incubated for 24 h.
FITC-Dextran was added to each insert and incubated for 20 min
in the dark before the insert was removed from the well. Media in the
well was mixed and transferred to black 96-well opaque plate to
measure fluorescence intensity at 485 nm and 535 nm excitation and
emission respectively.

2.10 Experimental design and statistical
analysis

Experiments were performed at least in three independent
replicates. All data shown as the mean ± SEM. All data was
tested for normal distribution before a Student’s T-test was used
to calculate significance. A two-tailed student-t test was used for
statistical analysis. *p < 0.05, **p < 0.01 and ***p < 0.001. NS, not
significant. Imaging data were analysed by NIH software ImageJ
(Ljosa et al., 2012). N shown in the figure legends indicates the
number of animals used in the experiments. For image analyses, five
fields were randomly imaged per animal.

2.11 Data availability

The data that support the findings of this study are available
from the Gene Expression Omnibus (GEO) (GSE199122) and from
the corresponding author upon reasonable request.

3 Results

3.1 PRELP is selectively expressed in vascular
smooth muscle cells (vSMCs) and pericytes
around brain vasculature

PRELP expression in the CNS was examined by X-gal staining of
Prelp+/LacZ mouse brain. The mouse expresses the lac-Z gene under
the control of endogenous PRELP transcription elements (Papadaki
et al., 2020). At embryonic stages, we observed expression in the
cortical hem of the hippocampal allocortex (Figure 1A, arrowheads)
and at sites of bone formation around the CNS (Figure 1B).
However, we did not observe any other strong PRELP expression
in the head (Figure 1C).

At the adult stages, a unique X-gal staining was observed in
mural cells around the CNS vessels, covering both the dorsal and
ventral part of the brain, as well as around the optic nerves, the space
between the two hemispheres (superior sagittal sinus) and the
central canal of the spinal cord (Figures 1D–G). Enlarged images
revealed X-gal staining (Figures 1H, I), reminiscent of pericytes
which encircle capillaries and vascular smooth muscle cells (vSMCs)
around large arterial and venous vessels (Chen et al., 2017;
Vanlandewijck et al., 2018). Staining with PRELP antibodies (α-
PRELP #15) identified secreted PRELP protein largely localized
around large arterioles/venules (Figure 1J) and capillaries
(Figure 1K). In addition to vascular mural cells, we observed
strong staining at ependymal layers of the ventricle walls
(Figure 1L), the choroid plexus (Figure 1M), and non-pigmented
layer of ciliary body of the retina (Figure 1N).

The analysis of PRELP expression in pericytes and vSMCs, but
not in endothelial cells has been confirmed by published single cell
mRNA expression profiling data (Zeisel et al., 2015; He et al., 2016;
Vanlandewijck et al., 2018) (Figure 2A). To confirm these previously
published results in this study, we performed double staining to
examine where PRELP was expressed. X-gal staining did not overlap
with endothelial marker PECAM-1 positive cells (Figures 2B–D).
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We observed that X-gal staining was co-localised with α-SMA,
marking vSMCs (Figures 2E–G). There was no detectable
staining of X-gal with astrocyte marker GFAP on capillaries
(Figures 2H–J) although single cell analysis indicated gene
expression of PRELP in astrocyte subpopulations (Figure 2A).
Double staining with pericyte marker, NG2, showed that co-
staining was limited to the pericyte processes around the
vasculature (arrowhead) and not the pericyte cell body
(Figure 2K–M) (arrow in Figure 2M). This suggests that the

receptor gene may be expressed by pericytes—localisation with
the X-gal staining (Figures 2N–P), indicating PRELP was not
expressed in the endothelial cells and expressed in vSMCs and in
pericytes at specific locations, rather than astrocytes surrounding
vascular capillaries.

In addition to the Prelp−/− mice, we examined the vasculature in
Omd−/− mice. OMD is also a class II SLRP family, highly conserved
with PRELP. We previously demonstrated that OMD and PRELP are
both expressed in umbrella bladder epithelial cells and involved in

FIGURE 1
PRELP is expressedmural cells around brain vasculatures and ependymal cells in mouse brain. (A–C) Embryonic PRELP expression of head. Sections
of Prelp+/LacZ embryos were stained for X-gal. (A) Embryonic day 12.5 (E12.5). Arrowhead indicate cortical hem. (B) Embryonic day 17.5 (E17.5). Arrow
indicate the nasal septum and arrowhead indicate the sites of bone formation (C) Embryonic day 15.5 (E15.5). (D–I)Whole-mount X-gal staining of adult
Prelp+/LacZ brains. (D–E) Dorsal and ventral views. X-gal staining is observed in the blood vessels. Scale bar: 2 mm. (F)Magnified from (E) around the
ventral-posterior area. (G), Magnified from (E) around ventral lateral. (H) Magnified from (D) around cerebrum. (I) Sagittal section of X-gal stained brain
around cerebellum. Scale bar: 500 μm. (J–K) Anti−PRELP antibody staining of rat brain. Staining is visible in large arterioles/venules (J) and (K) capillaries
Scale bar: 20 μm. (L) Section around lateral ventricle (LV). Ependymal layer (EL). Choroid plexus (CP). Scale bar: 50 μm. (M) Section around 4th ventricle
(4V). Scale bar: 50 μm. (N), Section of retina around ciliary body (CB). Scale bar: 50 μm.
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FIGURE 2
PRELP is expressed in vSMCs around vascular vessels and pericyte around capillaries. (A) Single cell analysis data of PRELP expression in cortical and
hippocampal cells were obtained from previously published studies (Zeisel et al., 2015). Figure was generated by tool provided by the paper (Zeisel et al.,
2015). (B–D)Double staining images with X-gal (B) and PECAM-1 (endothelial cell marker) antibody (C) of Prelp−/+ large vascular. (D)Merged image. (E–F)
Double staining with X-gal (E) and α-smooth muscle actin (α-SMA) antibody ((F); vSMC marker) of Prelp−/+ intermediate vasculature. (G) Merged
image. (H–J) Double staining images with β-galactosidase (β-gal) antibody (H) and GFPA antibody [(I); astrocyte marker) of Prelp−/+ brain capillaries. (J)
Merged image. Scale bar: 25 μm (J,M,P). (K–M) Double staining images with β-gal antibody (K) and NG2 antibody (L); pericyte marker) of Prelp−/+ brain
capillaries. (M) Merged image. (N–P) Double staining images with β-gal antibody (N) and Isolectin IB4 (O); endothelial cell marker) of Prelp−/+ brain
capillaries. (P) Merged image. Pericyte bodies are marked by arrows. Pericyte processes are marked by arrowheads.
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FIGURE 3
PRELP deletion results in leakage from the BBB. (A–D) Assessment of BBB integrity in the cerebellum by IgG staining in wild-type (A),Omd−/− (B) and
Prelp−/− (C). Immunofluorescence was performed using anti-mouse IgG conjugated with Alexa Fluor A594 fluorophore. DAPI was used as a nuclear stain.
Scale bar: 10 μm. (D) IgG signal outside blood vessels was quantified (n = 4). (E–G) BBB disruption in Prelp−/− is more apparent in the cerebellum. IgG and
DAPI staining of Prelp−/− cerebellum (E) and cortex (F). Scale bar: 10 μm. (G), Quantified result (n = 3). (H–M) 70 kDa Dextran injection confirms BBB
leakage in Prelp−/− cerebellum. Wild-type (H–J) and Prekp−/− (K–M) mice were injected with 70 kDa Dextran-Texas Red (H,K). Tissues were processed
and stained with tomato lectin (TL, vascular vessel and microglia marker) (I,L). Merged image (J,M). Scale bar: 20 μm.
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bladder cancer initiation in a partially redundant manner (Papadaki
et al., 2020). Omd expression was observed across the cerebrum, but
not the cerebellum, optic nerves or optic chiasm (unpublished result).
Omd was also strongly expressed in neurons and weakly expressed in
cells around vasculature (unpublished result). Thus, besides wild-type
controls, we also examined Omd−/− mice as the second control.

3.2 Cell-cell adhesion weakened in Prelp−/−

mice results in leakage from vascular
capillaries in mouse brain

vSMCs and pericytes have important roles in controlling
endothelial cell-cell integrity (Armulik et al., 2010; Hayes et al.,
2022), therefore, we examined the effect of PRELP deletion on
leakage from neural capillaries and the BBB. Firstly, the status of
vascular integrity or BBB was assessed by immunoglobulin G (IgG)
staining using one-year-old mice. IgG is a 160 kDa protein, which
exclusively localizes in blood plasma. The intact BBB prevents IgG from
passing through the vasculature and coming into contact with neural
tissues. Using anti-mouse IgG-Alexa Fluor 594, we stained for plasma
IgG in wild-type, Omd−/− and Prelp−/− mouse cerebellum (Figures
3A–C). In wild type, IgG staining was retained within the
vasculature and along the walls of the blood vessels in a regular
striated pattern perpendicular to the length of the vessel. In the
Omd−/− mice brain, diffused staining outside the vasculature was not
observed (Figure 3B). However, in the Prelp−/− brain, IgG was often
found to be highly diffused outside vasculature. (Figures 3C, D). This
suggests that PRELP, but not OMD, is responsible for the regulation of
neurovasculature integrity. Disruption of the Prelp−/− BBB was most
intense in the cerebellum, compared with the cortex (Figures 3E–G).
This may reflect the higher levels of PRELP expression in the
cerebellum. To confirm the BBB damage in Prelp−/−, we performed
another leakage assay through injection of Texas Red conjugated
70 kDa-Dextran. Consistent with the IgG staining result, Dextran
was restricted to the vasculature in wild type animals (Figures
3H–J). In comparison, we detected areas of the posterior brain
where the dye was detected outside of the vasculature in Prelp−/−

(Figures 3K–M).
One of the proposed mechanisms of vascular leakage is

activation of EndMT of vascular endothelial cells (Sweeney
et al., 2019), which is associated with a reduction in adherens
and tight junctions. Recently, we demonstrated that PRELP has
the ability to activate mesenchymal-to-epithelial transition
(MET), resulting in the enhancement in bladder epithelial
cell-cell and retinoblastoma cells (Papadaki et al., 2020;
Hopkins et al., 2022). As the EndMT/MEndT mechanism is
largely conserved with EMT/MET, loss of PRELP may cause
vascular leakage through activation of EndMT (Saito, 2013; Hong
et al., 2018).

We previously demonstrated the cell-cell junction dysfunction
in response to the OMD and PRELP expression levels in bladder
cancer cells using electron microscope analysis along with
immunofluorescence analysis (Papadaki et al., 2020). Therefore,
we performed immunostaining against an adherens junction
marker (VE-cadherin) and tight junction markers (Claudin-5 and
ZO-1). In Prelp−/−, we observed uneven, inconsistent VE-cadherin
staining in contrast to the uniform staining in wild type and

Omd−/− mice (Figures 4A–I). Quantification of VE-cadherin
signal revealed that there was significant reduction of VE-
cadherin in Prelp−/− (Figure 4J). For claudin-5, we observed
uniform membrane staining in the wild type and Omd−/−

neurovasculature, although in Prelp−/− mice presented
significantly weaker expression (Figures 4K–T). ZO-1 formed a
stripe-type staining pattern around the membrane in wild type
mice, which was punctuated in Prelp−/− mice (Figures 4U–CC).
ZO-1 staining intensity of Prelp−/− was also significantly reduced
compared to controls (Figure 4DD). These observations indicate
weakened cell-cell contacts between VSMCs in Prelp−/− mice.

Next, we examined neurovascular unit (NVU) components in
the Prelp−/− mouse. The basement membrane (BM) is a relatively
thick layer of secreted proteoglycans, laminins, collagens and
perlecan which underlies endothelial cells. These components are
organised by SLRP proteins, with most SLRPs able to bind collagen
(Tashima et al., 2018) and PRELP specifically shown to interact with
perlecan (Bengtsson et al., 2002). Laminin staining in wildtype and
Omd−/− is intense, clearly surrounding blood vessels (Supplementary
Figures S1A–F). This intensity is lost in Prelp−/− mice, especially at
sites with intense IgG leakage (Supplementary Figures S1G–J).
Perlecan staining was also reduced in Prelp−/− (Supplementary
Figures S1K–T). However, we did not observe a significant
reduction of collagen IV staining in Prekp−/− compared with
wild-type mice (Supplementary Figures S1U–DD), suggesting
collagen IV expression was maintained independent of IgG
leakage in the Prelp−/− vasculature (Supplementary Figures
S1AA–CC, arrows).

Next, we examined the effect of PRELP on the distribution of
pericyte and astrocyte perivascular end-feet. Aquaporin 4 (AQP4) is
a water channel found on astrocyte end-feet (Haj-Yasein et al.,
2011). Double staining with AQP4 and IgG in mouse cerebellum
revealed that there was a significant decrease in AQP4 signal around
the vasculature in Prelp−/−, whereas no difference was observed in
Omd−/− (Supplementary Figures S1EE–NN). We then examined the
effect on pericytes. Pericytes were distinguished from endothelial
cells by their nuclear morphology and the staining pattern of
PDGFR-β. The point of association between endothelial cells
with pericytes was diminished (Supplementary Figures
S1OO–XX), suggesting pericyte detachment from capillaries
(Supplementary Figures S1UU, arrow).

3.3mRNA expression profiling and the effect
of PRELP on neuroinflammation in knockout
mice

The meninges contain two sites highly expressing PRELP: the
meningeal vessels and cells directly contacting with cerebrospinal
fluid (Figure 5A), similar to ependymal cells and choroid plexus
(Figures 1L, M). To elucidate PRELP mediated biological events and
their molecular mechanisms, we performed mRNA expression
profiling of meninges on wild-type and Prelp−/− mice as the
meninges is easily dissected with less contamination of neural
tissues. However, a major disadvantage of studying the meningeal
vessels is a lack of astrocytes, although as PRELP is not expressed in
astrocytes surrounding neurocapillaries, this may not be important
(Figures 2H–J).
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FIGURE 4
Cell-cell adhesion of cerebellum vasculature is downregulated in Prelp−/−mice. (A–J) Reduced VE-cadherin coverage of Prelp−/− vessels. Sections of
wild-type (A–C), Omd−/− (D–F) and Prelp−/− (G–I) cerebellums were stained with VE-cadherin (A,D,G) and TL (B,E,H). Staining of Prelp−/− vessels was
found to be uneven, inconsistent (arrows). Scale bar 15 μm. (J) VE-cadherin staining intensity was quantified (n = 3). (K–T) Weaker claudin-5 staining in
Prelp−/− vessels. Claudin-5 and TL staining was performed in wild-type (K–M), Omd−/− (N–P) and Prelp−/− (Q–S) cerebellum. Staining in Prelp−/−

vessels was found to bemore discontinuous (arrow). (T)Quantification of staining intensity (n = 3). (U–DD) ZO-1 staining is reduced in Prelp−/−. Wild-type
(U–W), Omd−/− (X–Z) and Prelp−/− (AA–CC) sections were stained with ZO-1 and TL. Punctated staining along vessels were found (arrow). (DD)
Quantification of staining intensity (n = 3). TL; Tomato lectin.
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RNA for expression profiling was obtained from isolated
meninges from wildtype (n = 3) and Prelp−/− (n = 3) mice. We
identified 288 statistically differentially expressed genes (p <
0.01), of which 87 genes encode extracellular proteins.

Ontological analysis was performed using the tools provided
by GO consortium to produce four sets of analyses; GO
Biological Processes (Figure 5B), GO Cellular components
(Figure 5C), Gene set enrichment analysis (GSEA) of genes

FIGURE 5
Expression profiling analysis of wild type and Prelp−/−mousemeninges. (A) Schematic draw ofmeninges. (B) Top 10GOBiological Processes. (C) Top
10 Cellular components over-representative analysis. (D) GSEA of genes upregulated in Prelp−/−. (E) GSEA of genes downregulated in Prelp−/−.
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upregulated in Prelp−/− (Figure 5D), and GSEA of genes
downregulated in Prelp−/− (Figure 5E).

The top 10 GO Biological Processes showed that two
inflammation related processes of “Macrophage activation” and
“Immune system process” were the most strongly affected followed
by two adhesion related process; “Cell-cell adhesion” and “Cell-matrix
adhesion”. “Blood circulation” was also significantly affected. In the
case of GO Cellular components, the majority of affected cellular
components were related to the extracellularmatrix. This is probably a
reflection of the extracellular localization of PRELP. In addition, eight
categories were associated with change in cellular morphology,
including “Cell projection part” and “Plasma membrane bounded
cell projection”. As changes to cell-cell adhesion is a major biological
event that induces alterations in cell morphology, these results suggest
PRELP is a regulator of cell-cell adhesion.

To further elucidate PRELP function, we utilized GSEA. We
analysed upregulated and downregulated genes separately
(Figures 5D, E). Interestingly, gene sets related to
inflammation such as “Interferon γ response”, “Interferon α
response” and “Complement” were strongly affected in Prelp−/−

meninges. Cell-cell adhesion related categories, “EMT” and
“Apical Junction” were significantly affected (Figure 5E),
which suggests that the functional role of PRELP as regulator
of partial EMT may be conserved across tissues (Papadaki et al.,
2020; Hopkins et al., 2022). In summary, ontological analysis
proposes two main biological roles of PRELP within the
meninges: cell-cell adhesion and inflammation.

Expression profiling data and vascular analyses suggest that,
in the Prelp−/− brain, vascular leakage may trigger inflammation.
We therefore examined the status of microglia and astrocytes in
the mouse cerebellum by the labelling with Iba-1 and GFAP
antibodies, respectively. Firstly, the number of microglia cell
bodies was counted. Irrespective of morphological change
(Figures 6A–C), quantification revealed that there was an
increase in the number of Iba-1 positive microglia in Prelp−/−

sections (Figure 6D). Microglial functional responses in
accordance with the protocol established by Morrison
(Morrison and Filosa, 2013) was used with some minor
modifications to examine inflammation and the sum of the
branch lengths was used for quantification (Figures 6E, F).

FIGURE 6
Microglia is activated in Prelp−/− mouse cerebellum. (A–G) Iba-1 staining of wild-type (A),Omd−/− (B), and Prelp−/− (C) cerebellum sections. Microglia
were manually counted based on Iba-1 and nuclear DAPI staining (arrows). Scale bar 25 μm. (D) Microglial density was quantified. (E-F), Skeletonizing
images of Iba-1 staining to quantify microglial branch length. (G), Quantification of branch length per microglial density in wild-type,Omd−/− and Prelp−/−

brains (n = 3).
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Quantification of branch length per microglial density revealed
that there was a statistically significant decrease in Prelp−/− mice
(Figure 6G), indicating increased microglial response and
supporting the findings in our expression profiling
(Figure 5B) as microglia are known as a neural type of
macrophages (Masuda et al., 2020). Furthermore, we
investigated the effect of PRELP on the morphology and the
number of astrocytes using antibody to GFAP. However, there
were no differences in astrocyte number, morphology, and
staining intensity between wild-type, Omd−/−, and Prelp−/−

mice (Supplementary Figures S2A–E). While leakage of fluids
from vasculature or ependymal layer can affect water content in
the brain causing hydrocephalus (Karimy et al., 2017), we did
not observe differences of water content between the wild type
and Prelp−/− brain (Supplementary Figures S2F).

3.4 Application of PRELP protein enhances
endothelial cell-cell integrity by affecting
EMT-related events

To determine the role of PRELP protein in consolidating BBB
integrity and elucidate its mechanism, we performed in vitro

experiments using either PRELP conditional medium (PRELP CM)
or purified recombinant PRELP protein, produced in Mimic
Sf9 insect cells (Supplementary Figure S3) (Kosuge et al., 2021). All
PRELPproteins showed a phenotypic effect in our assays as shownbelow.

To ensure that PRELP is not secreted from the vasculature, we
examined the expression of PRELP inHUVECs and found extremely low
expression. This is consistent with RNA-seq results in other papers that
showed no or very low expression in mouse brain endothelial cells
(Vanlandewijck et al., 2018). Thus, we examined the effect of PRELP on a
transepithelial/transendothelial electrical resistance (TEER) using a
simple Human umbilical vein endothelial cells (HUVECs) monolayer
(Figure 7A). After confirming HUVECs formed a monolayer via
PECAM1 immunostaining (Figure 7B), we found that application of
PRELP CM significantly increased TEER (Figure 7C), indicating that
PRELP can enhance endothelial cell-cell integrity. Furthermore, we also
examined the effect of PRELP on permeability using fluorophore-tagged
70 kDa dextran. Under these conditions, PRELP CM did not reduce
permeability compared to the control but was effective at preventing
TGF-β-mediated permeability, suggesting that PRELP can inhibit TGF-β
signalling (Figure 7D).

EMT exists along a spectrum of different states. These partial EMT
states, pEMT, are important for understanding human diseases such as
cancer (Lamouille et al., 2014; Nieto et al., 2016; Aiello et al., 2018;

FIGURE 7
Effect of PRELP on leakage from endothelial cell monolayer. (A,B) Effect of PRELP on HUVEC monolayer TEER. (A) Schematic drawing of the assay.
(B) Confirmation of HUVECs monolayer confluency by PECAM-1 staining. (C) TEER measurement. (D) Permeability assay was performed using HUVEC
monolayer.
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Brabletz et al., 2018). Recently, we reported that PRELP regulates cell-
cell adhesion of bladder umbrella epithelial cells and retinoblastoma
cells through pEMT (Papadaki et al., 2020; Hopkins et al., 2022).
Similar mechanisms, endothelial-mesenchymal transition (EndMT)
has been demonstrated in vascular cells (Lamouille et al., 2014; Nieto
et al., 2016; Kovacic et al., 2019). EndMT is important for regulating
vascular leakage. Our expression profiling analysis of meninges
showed that EMT was strongly affected by PRELP deletion
(Figure 5E), suggesting that the vascular leakage in PRELP−/− mice
might be caused by partial EndMT. TGF-β is a potent mediator of
EMT and PRELP-mediated inhibition through the application of
PRELP CM in TEER and permeability assay may increase cell
adhesion via pMEndT (Figures 7C, D).

To elucidate the mechanism of PRELP action, we applied
purified recombinant PRELP protein to HUVEC monolayers.
HUVECs exhibit pEndMT states which contributes to cell-cell
permeability (Guo et al., 2015). mRNA expression profiling was
performed on HUVEC cultures incubated with PRELP for 48 h.
Using Ingenuity Pathway Analysis (IPA) software, we performed
ontological analysis to identify 1,903 significantly affected genes and
220 significantly affected canonical pathways. These pathways were
largely classified into three categories; EndMT/cell adhesion
(Supplementary Figure S4A), cancer (Supplementary Figure S4B),
inflammation (Supplementary Figure S4C) and EMT related
Signalling pathways. EndMT/cell adhesion events included
“Regulation of the EMT pathway”, “Hepatic Fibrosis Signalling
Pathway”, “Epithelial adherens junction signalling”, and “Integrin
Signalling” (Supplementary Figure S4A). As EMT is strongly
implicated in cancer-related pathways, we found many associated
pathways such as “Molecular Mechanism of Cancer”, and “Bladder
Cancer Signalling” which were also affected (Supplementary Figure
S4B, (Brabletz et al., 2018). Furthermore, several interleukins related
proinflammation pathways were negatively affected (IL-8, IL-3, IL-
7, IL-6, and IL-4) (Supplementary Figure S4C), suggesting that
PRELP may have an anti-inflammatory role as we discussed in
the previous section (Effect of PRELP on neuroinflammation) and
activated EMT through TGF-β, Met and Wnt signalling was
observed in the “Regulation of the EMT pathway” (Supplementary
Figure S5).

3.5 PRELP activates cell-cell adhesion of
HUVEC cell culture and reverses TGF-β
mediated pEndMT

The membrane localization of β-catenin, an intracellular protein
directly associated with cadherin molecules, was enhanced by
PRELP (Supplementary Figure S6A–F). These data indicate that
PRELP enhances adherens junction formation and/or stability. We
examined the effect of PRELP on tight junctions using ZO-1
(Supplementary Figures S6G, H) and claudin-5 (Supplementary
Figures S6K, L) staining but could not detect tight junction
formation in our conditions.

TGF-β is the strongest activator of EndMT. As observed in
many other biological systems, TGF-β has complex and dual roles
in vascular biology. This includes a dual role as an activator and an

inhibitor of BBB function in context dependent manners (Li et al.,
2011; Diniz et al., 2019). Application of TGF-β to HUVECs has
been reported to cause damage to endothelial cell-cell adhesion
through activation of pEndMT (Guo et al., 2015). Using this
system, we examined the effect of PRELP on TGF-β mediated
pEndMT. As shown in Supplementary Figure S6 , 20 ng/mL TGF-β
resulted in the increase of β-catenin membrane staining
(Supplementary Figure S6C). PRELP application reversed all
TGF-β mediated effects (Supplementary Figures S6D, J, N)
suggesting that PRELP can rescue TGF-β mediated vascular
damage in association with inhibition of pEndMT and all of
these may be associated with activation of pEndMT (Guo et al.,
2015).

4 Discussion

4.1 PRELP is a novel regulator of pEndMT in
vascular homeostasis

Our in vitro studies show that PRELP activates EndMT and
enhances cell-cell adhesion of endothelial cells which may occur
in a TGF-β-dependent manner. Conversely, the in vivo
phenotype in Prelp−/− mice also demonstrated pEndMT
activation and reduced cell-cell adhesion in the cerebellum.
Furthermore, involvement of PRELP mediated regulation of
EndMT in both in vivo and in vitro was confirmed by expression
profiling of PRELP-treated HUVECs and Prelp−/− meninges. As
we previously mentioned in the result section in Figure 2A, the
analysis of PRELP expression in pericytes and vSMCs, but not in
endothelial cells has been confirmed by published single cell
mRNA expression profiling data (Zeisel et al., 2015; He et al.,
2016; Vanlandewijck et al., 2018). Our RNA-seq result shows
that there are very low expression levels of PRELP in HUVECs.
One paper demonstrated that the proteoglycan agrin, which is
widely expressed in neurons and microvascular basal lamina in
the rodent and avian central nervous system (Donahue et al.,
1999) regulated the junction proteins of VE-cadherin, β-
catenin, and ZO-1, and stabilized junctional localization of
VE-cadherin in vivo (Steiner et al., 2014). This indicates that
proteoglycans, including PRELP can maintain BBB function by
regulating and stabilizing junction protein expression without
being express in endothelial cells.

Recently we showed that PRELP activates bladder epithelial
cell-cell adhesion by activation of MET. This was mediated via direct
inhibition of TGF-β and/or EGF mediated pEMT (Papadaki et al.,
2020).

Indeed, an independent study demonstrated that PRELP can
antagonize TFG-β (Chacon-Solano et al., 2022). This activity is
important for maintenance of the blood-urine barrier (Kreft et al.,
2010). In addition to the BBB, the blood-CSF barrier, where cell-cell
adhesions between choroid plexus and ventricle ependymal cells, plays an
important role in separating the brain from non-brain tissues (Liddelow,
2015). These observations indicate that PRELP may have a conserved
function to maintain biological barriers by regulating either pEndMT
or pEMT.
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4.2 The mechanism of PRELP deletion
mediated leakage from BBB

In the Prelp−/− mouse brain, NVU components, BM proteins,
pericytes and astrocyte endo-feet, were downregulated. Downregulation
of BBB components has been frequently reported to cause leakage of
the BBB. For example, mice lacking laminin α2 or laminin γ1 display
significant abnormalities to brain vasculature integrity (Menezes et al.,
2014; Yao et al., 2014; Gautam et al., 2016). Ablation of PDGF-β results
in reduction of pericyte coverage and subsequent decreased vascular
density and increased vascular permeability and vessel diameter
(Bjarnegard et al., 2004). Interestingly, deletion of CD146, an EMT
inducer in pericytes, results in reduced coverage of pericytes around
vasculature (Zeng et al., 2012; Chen et al., 2017), suggesting that EMT/
EndMT might be involved in interaction between pericytes and
endothelial cells. We observed a decrease in the intensity of
AQP4 staining in Prelp−/−, which is often found in other BBB
breakdown model mice (Menezes et al., 2014; Gautam et al., 2016).

These observations suggest that in addition to the direct effect of
PRELP-mediated regulation of cell-cell adhesion between endothelial
cells, PRELP may also indirectly control BBB integrity through
regulation of the NVU components.

4.3 The mechanism of PRELP deletion
mediated neuroinflammation

Our expression profiling analysis of meninges and
immunohistochemical analysis of microglia indicated the
presence of neuroinflammation in the Prelp−/− brain. This is
likely to be an indirect effect, since blood proteins leaking into
the brain tissue cause neuroinflammation and can perpetuate to
neurodegenerative disorders (Weiss et al., 2009; Sweeney et al.,
2019). Indeed, our expression profiling of HUVECs demonstrated
that PRELP application inhibited proinflammatory interleukins
including IL-8, IL-3, IL-7, IL-6, and IL-4. Moreover, PRELP has
previously been reported to bind to C9 complement to prevent the
formation of the membrane attack complex (Happonen et al., 2012)
and acts as a potent inhibitor of complement-mediated damage in
mouse eyes (Birke et al., 2014). Indeed, “Complement” pathway was
also significantly affected in Prelp−/− meninges. Furthermore, the
importance of EMT/EndMT in inflammation has been recognized
(Lopez-Novoa and Nieto, 2009; Cho et al., 2018). Together these
observations suggest that PRELP may regulate to neural
inflammation as an anti-inflammatory factor.

Severe neural inflammation can lead to alterations in the BBB
(Gaillard et al., 2003). However, our results provide evidence that
inflammation in Prelp−/− mice was relatively mild and may not be
sufficient to cause the BBB damage observed. We did not observe
activation of astrocytes in Prelp−/− brain, common inflammation
markers or abnormal behavior of mice and there was no change
in water content (unpublished data). A cumulation of factors,
including PRELP, may therefore be required to generate damaging
levels of neuroinflammation.

In conclusion, our results indicate that PRELP, a secreted novel
regulator of pEndMT, enhances BBB integrity, maintains vasculature
homeostasis in the brain andmight be a potential treatment for neural
diseases associated with BBB leakage and neuroinflammation.

5 Limitation of the study

There are some limitations in analysing the effect of glycosylated
proteins. First, proteoglycans including PRELP have different
formulas based on varied amounts of post-translational sugar
chain modifications which can modifications vary among species.
Although two sources of PRELP proteins showed almost identical
phenotypes, sugar modification may affect activity.
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The epithelium is a dynamic barrier and the damage to this epithelial layer governs
a variety of complexmechanisms involving not only epithelial cells but all resident
tissue constituents, including immune and stroma cells. Traditionally, diseases
characterized by a damaged epithelium have been considered “immunological
diseases,” and research efforts aimed at preventing and treating these diseases
have primarily focused on immuno-centric therapeutic strategies, that often fail
to halt or reverse the natural progression of the disease. In this review, we intend
to focus on specific mechanisms driven by the epithelium that ensure barrier
function. We will bring asthma and Inflammatory Bowel Diseases into the
spotlight, as we believe that these two diseases serve as pertinent examples of
epithelium derived pathologies. Finally, we will argue how targeting the
epithelium is emerging as a novel therapeutic strategy that holds promise for
addressing these chronic diseases.

KEYWORDS

epithelium, barrier, mucus, asthma, IBD, therapeutics

1 Introduction

The epithelium has an essential role in development, physiology, andmucosal immunity. Its
primary function is to act as a dynamic barrier, not only providing physical protection but also
central tomaintaining homeostasis and avoiding disease. Remarkably, despite experiencing high
rates of cellular death and division, the epithelium maintains barrier function, underscoring the
tissue’s need for precise spatial and temporal regulation. Healthy epithelial monolayers
effectively shield against toxins, viruses, pollutants, pathogens, and a long list of insults and
attacks. Notably, when the integrity of the monolayer is compromised, a range of disorders
follow, many of which remain classified as inflammatory disease, such as asthma and
Inflammatory Bowel Disease (IBD) that we discuss herein.

Epithelial barrier damage triggers manifold and complex, inter-connected mechanisms
involving not only epithelial cells, but also other resident cells within the mucosa, including
immune and stroma cells. Traditionally, the immune cell population has been viewed as the
“police” of the barrier, and many diseases known to have damaged epithelium and
dysfunctional barriers have long been regarded by the scientific community as
“immunological diseases”. Subsequently, studies aimed at understanding, preventing,
and treating these diseases have heavily relied on immune-centric therapeutic strategies
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that even though, effective at symptom management, cannot stop,
nor revert, the disease’s natural progression. For example, targeting
inflammation in asthma has been successful in managing major
symptoms resulting in decreased exacerbation, hospitalization, and
mortality (Rupani et al., 2021). However, it has been clearly
demonstrated that these treatments do not impede the relentless
progression of the disease, suggesting we are missing an underlying
aetiology. Indeed, epithelial damage is seen in every type of asthma
and is correlated with disease severity (Holgate, 2007; Lambrecht
and Hammad, 2012; Calven et al., 2020; Porsbjerg et al., 2023). We
can observe a similar situation in IBD, where past clinical practice
has been restricted to symptom control using unspecific
immunosuppressive drugs. But in the last years, the concept of
mucosal healing has revolutionized the medical management of IBD
patients, which goes beyond the symptom control towards the
resolution of inflammation and ultimately complete healing (Rath
et al., 2021; Neurath and Vieth, 2023). Thus, endoscopic and
histological remission are nowadays considered as key
therapeutic goals and prognostic parameters. More recent studies
also argue for the importance of intestinal barrier healing in this
context (Rath et al., 2023), highlighting again the role of epithelial
function in the disease pathogenesis. In fact, several observations in
the last 20–30 years support the causative role of epithelial
alterations in IBD pathogenesis. For instance, there is a familial
background in the increased intestinal permeability in IBD patients
and their relatives (Munkholm et al., 1994; Soderholm et al., 1999;
Irvine and Marshall, 2000), and the occurrence of epithelial leakage
has been shown to be reliable for the prediction of IBD flares
(Kiesslich et al., 2012), while does not correlate to inflammation
severity (Benjamin et al., 2008). The lack of response to current
therapy in chronic diseases, such as asthma or IBD, and the low
safety profile of immunosuppressive drugs implies the need of
alternative therapies. In fact, strategies targeting epithelial
restoration emerge as attractive candidates and deserve further
investigations.

In this review, we aim to discuss specific epithelial-driven
mechanisms that ensure barrier function. These include 1)
mechanisms related to the architecture and structure of the
epithelium that regulate epithelial paracellular permeability, 2)
the existence of a mucus layer that is able to eliminate particles
and impact on the microbiota and 3) secretion of chemo/cytokines
or antimicrobial substances (Ganesan et al., 2013; Mookherjee et al.,
2020).We will discuss in detail the epithelium in the lungs and in the
gut with the goal of understanding the different mechanisms named
above and how those are dysregulated in respiratory and intestinal
diseases, putting both asthma and IBD in the focus. We will also
argue how targeting the epithelium is emerging as a new therapeutic
strategy that could provide solution for these two chronic diseases
and others.

2 Structure of the epithelial layer in the
lung and in the gut

2.1 Cell types in the lung and gut epithelium

Epithelia are formed by a continuous layer of interconnected
cells encapsulating organs and lining cavities. Epithelial cells are

anchored to the basal lamina or basement membrane, a thin layer of
extracellular matrix that provides structural support and signalling
cues and sits on top of the underlying stromal tissue, which provides
nutritional support and contains nerve terminals and immune cells
that exchange signals with the epithelial sheet, capable of actively
orchestrating and maintaining adaptive responses in health and
disease (Lambrecht and Hammad, 2012).

For decades, researchers relied on microscopy-based
morphological criteria to define different epithelial cell types that,
combined with tissue architecture, determine the balance between
different epithelial functions: protective, absorptive, and/or
secretory. As an example, airway ciliated cells were first described
in 1837, followed in 1852 by description of cells lacking cilia, loaded
with granules, with a narrow stem connected to the basement
membrane by a circular structure (goblet cells) and two cell types
lacking access to the airway lumen: spherical cells, adjacent to the
basement membrane (basal cells) and two layers of elongated cells
(intermediate cells) (Figure 1). Remarkably, these early studies
already were able to appreciate cell type similitudes between
different tissues and proposed basal cells were precursors of the
other airway epithelial cell types (for comprehensive historical
perspective of airway cell type discoveries, see (Widdicombe, 2019).

Later, development of molecular markers and transgenics
offered functional criteria to further define these cell types,
genealogies, and functions, and how all these depend on tissue
architecture. The gut is an example with clear spatial segregation of
division, differentiation, tissue-specific functions, and death.
Intestinal stem cells residing at the bottom of the crypts give rise
to transient-amplifying cells (Duckworth, 2021). These are
pluripotent cells that sequentially differentiate into absorptive
(enterocytes) and secretory lineages. The latter gives rise to
different cell subtypes achieving pleiotropic functions: i)
antimicrobial peptide-producing paneth cells, not present in the
colon; ii) mucus secreting goblet cells; iii) enteroendocrine cells
releasing hormones, and chemosensory tuft cells (Fre et al., 2005).
Epithelial cell differentiation is linked to migration upwards from
the crypt to the villus or surface epithelium; except for paneth cells in
the small intestine, which remain at the crypt bottom in close
connection with stem cells (Garabedian et al., 1997). Cell
migration and compartmentalization of crypts and villus is
regulated by the activation and/or gradient between different
pathways (Wnt, EGF, Notch or BMP), in most cases due to the
contribution of pericryptal cells and the sub-epithelial
microenvironment (Reynolds et al., 2014; Chen et al., 2019).
Finally, differentiated cells at the villus tip will be extruded into
the lumen where they finally die, to allow the renewal of the
epithelial layer or epithelial turnover (Watson et al., 2009) (Figure 2).

In recent years, single cell and spatial transcriptomics have
redefined and expanded cell types in virtually all tissues analysed,
highlighting commonalities and tissue-specific features, echoing
Waymouth Reid’s conclusion that “it is extremely probable that
several varieties of such [secreting] structures exist” and greatly
contributing to the description of cellular complexity of the
intestinal and respiratory epithelia. Single-cell RNA sequencing
(sc-RNA-Seq) has confirmed the suggested variability in terms of
cell composition and heterogeneity between organs and regions, e.g.,
small intestine vs. colon, crypt vs. villi, different airway regions, like
trachea, airways or alveoli (McKinley et al., 2017; Beumer et al.,
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FIGURE 1
Simplified diagram of airway epithelial cell types, their molecular markers, and main functions. PNEC: Pulmonary Neuro-Endocrine Cell. Adapted
from (Ortiz-Zapater et al., 2022a) using Biorender.com.

FIGURE 2
Epithelial composition and architecture in the small intestine, including epithelial turnover along the crypt-villus axis. Created with Biorender.com.
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2018; Montoro et al., 2018; Moor et al., 2018; Plasschaert et al., 2018;
Burclaff et al., 2022).

Additionally, sc-RNA-Seq has identified previously
uncharacterised rare types of tissue-specific cells (e.g., lung
ionocytes (Montoro et al., 2018; Plasschaert et al., 2018) and
ones shared by different epithelia (e.g., tuft cells in airways,
gastrointestinal tract, and other tissues (Elmentaite et al., 2021).
Importantly, these techniques have demonstrated that the
transcriptional profile between different cell subtypes, and thus
our distinction between secretory and absorptive (gut) or ciliated
types (airways), is not as clear as previously thought. Examples of
this are colonic deep secretory cells contributing to the stem cell
niche but with classical markers of differentiated goblet cells (Parikh
et al., 2019) or mucous-ciliated and suprabasal cells in the airways
(Elmentaite et al., 2021). Moreover, these techniques enable tracking
of cells transitioning between states (trajectories), identifying new
regulatory roles for Sox4, Foxm1, Mxd3, Batf2 in enterocytes (Haber
et al., 2017) or Foxi1 in airway ionocytes (Montoro et al., 2018); as
well as segregated populations within a given trajectory, such as tuft-
2 cells displaying immunological functions (Haber et al., 2017). By
enabling comparison between airway states (development,
homeostasis, disease) these techniques have shed light on disease
mechanisms like a general upregulation of secretory gene expression
in all asthmatic airway epithelial types, in addition to a novel
intermediate mucous-ciliated cell state expressing markers of
both classic cell types that, with goblet cell hyperplasia,
contributes to mucous hyperplasia in asthma. In the gut, the
same approach has also identified defective mucus maturation in
goblet cell as a potential driver of IBD and colorectal cancer, in
addition to a new pH-sensing absorptive cell type, pericryptal
stromal signalling, lymphocyte imbalance, and platelet
aggregation as key contributors to barrier dysfunction in IBD
(Regev et al., 2017; Beumer et al., 2018; Kinchen et al., 2018;
Huang et al., 2019a; Parikh et al., 2019; Vieira Braga et al., 2019;
Deprez et al., 2020; Jackson et al., 2020; Travaglini et al., 2020;
Beumer and Clevers, 2021; Elmentaite et al., 2021; Haniffa et al.,
2021; Tang et al., 2022).

All this demonstrates how recent advances in genomics, cell
lineage tracing, and sc-RNA-Seq have revealed not only the need to
redefine the meaning of cell identity, but also have uncovered new
cell types involved in epithelial homeostasis and disease.

2.2 No cell is an island: how to build a
monolayer from a single cell

Cell-cell junctions weave single epithelial cells into a functioning
and dynamic monolayer that acts as a polarized barrier while
selectively allowing transepithelial movement of water, ions, and
macromolecules. Physiological transepithelial transport is classified
as transcellular (mediated by transporters in apical and basolateral
membranes) and paracellular transport (mainly determined by tight
junctions). In the later, pore and leak pathways act in an
interdependent manner (Weber et al., 2010). All these aspects
have been nicely reviewed recently (Horowitz et al., 2023).
Conversely, in damaged epithelia, transport becomes unrestricted
and unselective, even allowing passage of bacteria from the lumen to
the underlying tissue.

According to their location, composition, and function,
epithelial intercellular junctions are classified as tight junctions
(TJs), adherens junctions (AJs) or desmosomes, but all have
common features like transmembrane components that physically
link neighbour cells, in complex with cytoplasmic scaffolding and
adaptor proteins linking the junctions to the cytoskeleton, which
confers them mechanosensitivity (Garcia et al., 2018; Beutel et al.,
2019; Pannekoek et al., 2019; Angulo-Urarte et al., 2020; Haas et al.,
2022). TJs are formed by homotypic claudin and occludin contacts
at the apex of lateral membranes between contacting cells. TJs form a
regulable belt around a cell, separating the apical and basolateral
membrane domains, while also sealing the paracellular pathway to
control water and solute diffusion. The cytoplasmic side of TJs binds
to adaptor proteins (ZO-1, -2, -3, cingulin) that interact with
microtubules and the cytoskeleton. AJs are formed by the calcium-
dependent extracellular trans binding of cadherins and force-
dependent cytoplasmic binding to actin and microtubules via catenins.
AJs are essential for cell-cell adhesion and epithelialmechanical responses,
detailed later. Desmosomes are strong intercellular junctions based on
cadherins desmoglein and desmocolin, bound to intermediate filaments
via catenins plakoglobin and plakophilin. Moreover, junctions act also as
signalling hubs, in close interconnection with Rho GTPases (Citi et al.,
2014). Small GTPases are frequently found inactive, bound to GDP. After
GDP-GTP replacement by Guanine Exchange Factors (GEFs), GTPases
are recruited and interact with effector proteins, regulating essential cell
functions controlling cell-cell adhesion and barrier function like
mechanotransduction, vesicle trafficking, or junctional component
dynamics (Braga, 2018). In summary, junctional integrity is essential
for epithelial function, and its disruption is a key aspect of diseases like
asthma and IBD.

In fact, mechanotransduction between epithelial cells determines
tissue homeostasis at different levels. External forces (breathing,
circulation flow, peristaltic movements), GTPases, and cytoskeletal
contractility control long-term biological outcomes at cell (identity,
proliferation, migration, extrusion) and tissue levels (folding,
compartmentalization) in development, differentiation, homeostasis,
and repair at the cell (identity, proliferation, migration and extrusion)
and tissue levels (folding, compartmentalization) (Mahoney et al.,
2014; Zhao et al., 2014; Goodwin and Nelson, 2021; Alvarez and
Smutny, 2022; Perez-Gonzalez et al., 2022; He et al., 2023).
Architecture of the gut epithelium represents a good example in
this context; thus, myosin contractility initiates crypt invagination,
the GTPase Rac1 controls crypt-villus compartmentalisation, and
mechanical tension drives homeostatic intestinal cell migration
from crypts to villus (Sumigray et al., 2018; Yui et al., 2018; Krndija
et al., 2019; Perez-Gonzalez et al., 2021; Yang et al., 2021; Perez-
Gonzalez et al., 2022).

As mentioned, mechanical forces also regulate cell identities,
frequently via the transcriptional regulator YAP and its interplay
with other signalling pathways, with remarkable tissue-specific
features. In the gut, stiffening decreases stemness and promotes
YAP-dependent gut stem cell differentiation into goblet cells (He
et al., 2023); whereas in the lung, YAP is essential to maintain tissue
organization and prevent stem cell loss and excessive goblet cell
differentiation and mucin hypersecretion during homeostasis
(Mahoney et al., 2014; Zhao et al., 2014; Hicks-Berthet et al.,
2021). These differences could be partly explained by YAP being
essential in all regenerative scenarios and lung homeostasis, but not

Frontiers in Cell and Developmental Biology frontiersin.org04

López-Posadas et al. 10.3389/fcell.2024.1258859

143

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2024.1258859


in gut homeostasis (Camargo et al., 2007; Barry et al., 2013; Zhao
et al., 2014; Yui et al., 2018; Hicks-Berthet et al., 2021).

Mechanical forces also regulate cell numbers in shorter time
scales. Cell stretching signals through E-cadherin and Piezo1 to
increase nuclear levels of YAP and β-catenin and CDK1 activity,
driving cell cycle re-entry (Streichan et al., 2014; Benham-Pyle et al.,
2015; Gudipaty et al., 2017; Uroz et al., 2018). Conversely, crowding
or compression arrests cell cycle and restores homeostatic cell
numbers via cell extrusion, an evolutionarily conserved
mechanism where a supracellular actomyosin cable formed
around the unwanted cell ratchets in and down, resulting in
seamless cell eviction without compromising barrier function
(Rosenblatt et al., 2001; Eisenhoffer et al., 2012; McClatchey and
Yap, 2012; Puliafito et al., 2012). In that sense, extrusion also works
as an innate defence mechanism against external aggression, with
healthy cells collectively squeezing cells infected by bacteria or
viruses, thus limiting pathogen spreading in the monolayer and
ensuring epithelial barrier function (Bastounis et al., 2021; Hippee
et al., 2021; Lin et al., 2021; Moshiri et al., 2023).

3 The mucus and the secretome: let’s
keep it wet and clean!

Epithelial barrier function is not limited to a single sheet of
interconnected epithelial cells; a layer of mucus coats the apical side
of these cells and acts as a first barrier coating internal surfaces of
organs. In turn, epithelial cells not only act to form a barrier. Instead,
they communicate with other cell types, including immune or
stromal cells, via secreted molecules, what can be defined as the
“epithelium secretome”. For a detailed description of the evolution
of the cell secretome, we recommend (Sanchez-Guzman et al., 2021).

3.1 The mucus

Both the gut and the respiratory epithelium luminal surface are
protected by mucus, a selective barrier to particles and molecules

that is built around a family of polymeric glycoproteins called
mucins. Mucus that coats the epithelium is a complex hydrogel
biopolymer barrier, present not only in the airways and the
gastrointestinal tract, but also in the reproductive tract and eyes
(Lieleg and Ribbeck, 2011). During homeostasis, the protective
mucus layer is produced by the goblet cells that are equipped
with specific biological machinery for the secretion of mucins.
Notably, some respiratory diseases are characterised by changes
in goblet cells function (like asthma or COPD, see Table 1) and we
will discuss later the importance of mucus production dysregulation
in the pathology of asthma and IBD.

In the gut, mucus offers moisturising and lubricant properties,
protecting the epithelial cells from dehydration and mechanical
stress during the passage of luminal content and peristalsis forces
(Johansson et al., 2013). It also operates as a surface cleaner,
removing debris and bacteria, through binding, collecting, and
flushing them away via intestinal flow. The small intestine has a
single layer of mucus; while in the stomach and colon, the mucus
layer is composed by an inner layer, attached to the epithelium, and
an outer layer that interacts with luminal components. The inner
layer is impermeable to bacteria and renewed by globlet cells every
hour. The outer mucus layer is less dense and is the habitat for
commensal bacterial (Hansson, 2019). Notably, in the small
intestine, mucus leaves pores that allow the bacteria to penetrate,
which is not the case in the large intestine, where the mucus layer is
thick and completely avoids the contact with bacteria and the
epithelial cells (Paone and Cani, 2020). In the gut, the main
mucin is MUC2, which composes the skeleton of the mucus
layer. In addition to MUC2, the IgG Fc-binding protein, FCGBP
and the intestinal trefoil factor, TFF3 act synergistically to enhance
the mucus barrier and exert antibacterial effects, while the
metalloenzyme CLCA1 is involved mainly in the stratification
and expansion of mucus. Moreover, ZG16, RELMβ, Lypd8, sIgA,
and AMP exert bacteriostatic or bactericidal effects under different
conditions (Song et al., 2023).

In the airway, mucus is composed of water, different proportions
of polymerizing mucin glycoproteins MUC5B and MUC5AC in
proximal versus distal regions (Meldrum and Chotirmall, 2021), a

TABLE 1 Examples of mucus-related diseases and alterations.

Alteration in which mucus-related components? Disease References

GUT (Main mucin: MUC2)

Alteration of the mucin O-glyocosylation profile IBD and colorectal cancer Etienne-Mesmin et al. (2019)

Increase of mucin degradating bacteria such as Ruminococcus family Ulcerative colitis Hansson, (2019)

loss of mucus viscoelastic properties and consequently a loss of protective function Crohn’s disease Cornick et al. (2015)

LUNG (Main mucins: MUC5B and MUC5AC)

Alterations in the CTFR channel in the Goblet cells, mucin hyperconcentration and
corresponding impaired mucus clearance

Cystic fibrosis Gustafsson et al. (2012), Henderson et al. (2014),
Hill et al. (2018)

Trapped mucus in the epithelium Asthma, COPD Fahy et al. (1993)

Increased ratio of MUC5AC to MU5B Pediatric asthma Welsh et al. (2017)

Elevated sputum production with both MUC5AC and MUC5B Non-CF bronchiectasis Ramsey et al. (2020)

Reduced MUC5B Pulmonary alveolar
proteinosis

Takeyama K et al. (2015)
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range of antimicrobial molecules (defensins, lysozyme, etc.), cellular
debris including DNA, and protective factors (trefoil factors)
(Thornton et al., 2008). The protective response is driven by
microbial sensors in the goblet cells that initiate secretion of
mucus, to entrap invading microbes and remove bacteria away
through mucociliary clearance (Abdullah et al., 2018). The
ciliated cells, which line the surface epithelium of the airways,
provide the force necessary for mucociliary clearance by the
coordinated beating of their cilia, which confers an escalator
motion to bring unwanted material to the mouth to be coughed
out. These highly specialized cells are therefore critical to the health
and function of the pulmonary system, and often preferential
destroyed in favour of mucus producing cells in pathologies like
asthma, with mucus hyper-production and -secretion remaining a
massive obstacle in asthma treatment.

Many diseases arise from an imbalance between mucus
production and elimination. The role of mucus and mucins in
diseases of the intestinal and respiratory tracts is excellently
reviewed by Hansson and others (Hansson, 2019) and we will
describe later the specific importance of mucus regulation in
asthma and IBD. We have included in Table 1 other diseases
showing specific alteration linked to respiratory or intestinal
diseases and the link to different respiratory and digestive
diseases. See also (Meldrum and Chotirmall, 2021) for additional
information.

It is now clear that the maturation and function of the mucus
layer are strongly influenced by the microbiota (Schroeder, 2019). In
fact, the consideration of the microbiota as a continuous element of
homeostatic regulation of the epithelium has undoubtedly made
physicians and researchers to confirm the relationship between the
microbes and the epithelial barrier, and to adopt a more holistic view
of the disease (Runge and Rosshart, 2021).

On of the main factors that influences the presence of a specific
microbiota is the composition of the mucosal layer. Indeed, the mucin
glycosylation profile influences the composition of mucus-associated
bacteria, selecting specific species (Bergstrom and Xia, 2013). The
composition of the mucus not only controls bacteria adhesion, but
mucin glycans can also serve as nutrients for specific microorganisms,
depending on their glycan-degrading enzyme’s content, highlighting an
example of how the host controls themicrobiota within themucus layer
(Paone and Cani, 2020). Finally, bacteria can use host glycans to form
new polymers used in the creation of their capsule, promoting evasion
from the immune system (Martens et al., 2009).

Factors like age, diet, drugs, or disease affect microbiota
composition too, even compromising its barrier function. For
example, during pulmonary infection, microbial dysbiosis leads
to invasion by opportunistic pathogens. These communities
disrupt tissue compartments within the airway lumen, including
mucus and causing progressive, localized, and chronic infection,
particularly in pulmonary diseases (Montassier et al., 2023).
Moreover, in asthma, exacerbations are classically induced by
infections, like the ones produced by P. aeruginosa, which
disrupts pulmonary mucins significantly contributing to disease
progression (Meldrum and Chotirmall, 2021). Although the
association between IBD and dysbiosis is accepted, whether
alterations of the microbiota represent a cause or consequence of
the disease is still a matter of discussion (Palm et al., 2014; Forbes
et al., 2016; Schaubeck et al., 2016; Becker et al. 2015).

3.2 The secretome: secreted molecules in
the gut and lung

Epithelial cells produce and secrete several molecules that
contribute to epithelial integrity and elimination of
microorganisms and contaminants, as well as intercellular
communication. These molecules, collectively known as “the
secretome” support epithelial homeostasis by controlling
important cellular processes like proliferation, different
mechanisms of cell death, safeguarding of epithelial tight
junctions, maintenance of a healthy microbiota, and of course,
communication with other cell types, like immune or stromal
cells. We will cover some of the key players in the epithelium
secretome in the gut and lung and we have summarised their
main function in Figure 3.

3.2.1 Cationic host defense peptides (CHDP)
CHDP are one of the major components of the inmate

immunity both in the lungs and in the gut. Also known as
antimicrobial peptides, CHDP are amphipathic peptides that
combat infections through their direct microbicidal properties
and/or by influencing the host’s immune responses. There are
two main classes of CHDP in vertebrates, defensins and
cathelicidins, produced as prepropeptides later cleaved to yield
mature active peptides (Mookherjee et al., 2020). The last
25 years have seen an increasing interest in using CHDP as
therapeutical targets, with potential clinical uses for asthma
(Piyadasa et al., 2018) or colitis (Ho et al., 2013) treatment.

Defensins are key effector molecules in host defense against
infection due to their broad-spectrum, and they contribute specially
to the defense in the skin, lung, and gut. Defensins form producing
destructive pores in the membrane of pathogens, and are also
involved in inflammation, modulation of immune responses,
wound repair, and disease (Weber, 2014). Epithelial cells are the
main cellular sources, but they are also produced by neutrophils
and other immune cells (Hiemstra, 2006). The main defensins
produced by the epithelial cells in the respiratory tract and the gut
are the β-defensins, with human β-defensin 2 mutations associated
to asthma and atopy in children (Borchers et al., 2021) and their
inhibition suppressing features of asthma in murine models
(Pinkerton et al., 2021). Defensins produced by paneth cells in
the small intestine contribute to tissue homeostasis by directly
affecting the microbiota composition, but also by regulating the
function of immune cells. In fact, reduced α- and increased β-
defensins expression, as well as imbalance between the different
mocules in therm of expression have been detected in the gut of IBD
patients (Wehkamp et al., 2005; Elphick et al., 2008; Simms et al.,
2008). In addition, a gene cluster polymorphism with low gene copy
number of β-defensin-2 shows a predisposition for colonic CD
(Fellermann et al., 2006).

Cathelicidins are also produced by epithelial cells of the
respiratory and gastrointestinal tracts, but also by keratinocytes
and neutrophils (Mookherjee et al., 2020). Cathelicidins have
been studied in asthma in relation with viral-induced
exacerbations, as its level could be used as a predictor marker
(Arikoglu et al., 2017). In the gut, the cathelicidin LL37 has been
shown to have a protective role and it has been postulated as a
biomarker of pediatric IBD (Krawiec and Pac-Kozuchowska, 2021).
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3.2.2 Cytokines
TSLP (thymic stromal lymphopoietin), interleukin 33 (IL33) and

interleukin 25 (IL25) are three typical epithelial cytokines that
contribute to epithelial homeostasis and alert the immune system to
external insults in order to regulate tissue restoration and repair (Ham
et al., 2022; Mahapatro et al. 2021; Roan et al. 2019). These three
“alarmin” cytokines are specifically potent in activating type 2 innate
lymphoid cells (ILC2s) and therefore their roles have been widely

studied in allergic inflammation and exacerbations, as well as parasite
infections in the gut (Hammad and Lambrecht, 2015; Topczewska et al.,
2023). Amplification or intensification of their secretion signals lead to
different inflammatory diseases that we have tried to summarise
in Table 2.

TLSP is a member of the IL2 cytokine family mainly produced
by epithelial cells in the lungs, but also by other cells types like
intestinal tuft-2 cells, an example of finding made possible by sc-

FIGURE 3
Schematic diagram of effects of epithelial damage in asthma and IBD. We have illustrated the release of CHDP and cytokines from the epithelium
after different insults and the different cell populations that these molecules activate. Created using Biorender.com.

TABLE 2 Summary of characteristic of main epithelial cytokines.

Alarmin Produced by Produced
because of. . .

Main targets Related disease in the
respiratory or gut
epithelium

Receptor and
signaling pathway

TSLP Epithelial, stromal, dentritic
cells, mast cells and
basophils

Infection, inflammation,
trauma, mechanical injury
or proteases such as trypsin
and papain (Allakhverdi
et al., 2007)

Dendritic cells, Tregs,
basophils and innate
lymphoids cells (ILCs) (Roan
et al., 2019)

Asthma, allergic
rhinoconjunctivitis, nasal
polyposis, COPD, esophagitis,
gastrointestinal allergy,
ulcerative colitis and Chron’s
Disease

Heterodimer receptor,
TSLPR/IL-7Ra,
recruitment of JAK1 and
JAK2 and activation of
STAT5 that is translocated
to the nucleus

IL33 Epithelial, endothelial,
smooth muscle cells,
fibroblasts, platelets and
mast cells

Cellular stress, injury or
necrosis

ILC2s, memory Th2 cells and
Tregs (Salimi et al., 2013;
Halim et al., 2014;
Vasanthakumar et al., 2015)

Asthma, COPD, gastrointestinal
allergy, ulcerative colitis,
Chron’s Disease

Heterodimer receptor,
formed by ST2 and IL-
1RAP and activation of
MYD88. This can activate
both the NF-kB or the AP-
1 pathway

IL25 Lung epithelial cells,
endothelial cells, fibroblasts,
alveolar macrophages, mast
cells, basophils, eosinophils,
chemosensory cells in the
nasal mucosa

Allergen and viruses T cells, ILC2s, Natural Killer
Cells (NK), fibroblasts,
epithelial, mesenchymal or
endothelial cells (Stock et al.,
2009; Saenz et al., 2010;
Huang et al., 2015; Roan
et al., 2019)

Asthma, atopic disease Heterodimer receptor
composed of IL17RA and
IL17 RB. Binding recruits
the adaptor proteins, such
as ACT1 and TRAF6, and
then activates NF-kB,
MAPK-ERK and JNK.

Frontiers in Cell and Developmental Biology frontiersin.org07

López-Posadas et al. 10.3389/fcell.2024.1258859

146

http://Biorender.com
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2024.1258859


RNASeq techniques (see Table 2 and (Kashyap et al., 2011; Roan
et al., 2019). Basal TSLP secretion is increased by several stimuli,
although the existence of two isoforms of TSLP, long and short, may
indicate status-dependent expression and secretion in homeostasis
and disease. This has been studied in mice but its conservation in
humans and the functional consequences of the variants remain
unknown (Fornasa et al., 2015). Several publications have shown
that a TSLP/ILC axis may play a pivotal role in steroid-resistant
allergic airway inflammation (Kabata et al., 2013; Liu et al., 2018),
very important in the treatment of asthma. IL33 is enriched in the
barrier surfaces of the skin, lung, and intestine. Epithelial, and
endothelial, cells express IL33 constitutively in the nucleus.
Although some studies suggest that IL33 could have a role as a
transcription factor (Ali et al., 2011), the nuclear localization is
better explained as a mechanism to fine the release of this cytokine
(Travers et al., 2018). IL33 can be present as a full-length protein, but
proteolytic cleavage by other cell types or by molecules as caspases
can produce both its activation or inactivation (Luthi et al., 2009;
Lefrancais et al., 2014; Clancy et al., 2018). TSLP and IL33 have been
suggested as protective molecules in IBD (Taylor et al., 2009). UC
patients show reduced expression of TSLP (Tahaghoghi-
Hajghorbani et al., 2019) and controversial data are available
concerning IL33 in CD and UC (Seidelin et al., 2010;
Tahaghoghi-Hajghorbani et al., 2019). Finally, IL25 can be
secreted by specific subtypes of epithelial cells (Kohanski et al.,
2018), but also other cell types, such as mastocytes and macrophages
(Ikeda et al., 2003; Kang et al., 2005). In the gut, tuft cells are the
main source of this cytokine (von Moltke et al., 2016). IL25 is
secreted as a disulfide-linked homodimer. The activity of IL25 can be
regulated by the matrix metalloproteinase, MMP7, which can cleave
IL25 (Goswami et al., 2009); and also by splicing mechanisms.
Although these three cytokines share target cells and have been
implied in promoting type 2 inflammation, it could be interesting to
understand what the interplay is among the three of them is, and
whether pattern of expression of these epithelia cell-derived
cytokines may distinguish distinct allergic endotypes or phenotypes.

There are other cytokines produced by the barrier epithelium
that we cannot cover in this review. For example, cigarette smoke,
another important insult for the barrier, and also other inhaled
irritants promote expression and release of inflammatory mediators
such as tumor necrosis factor (TNFα), IL1β, CXCL8 or the
granulocyte-macrophage colony-stimulating factor, GM-CSF
(Gao et al., 2015). The attenuation of GM-CSF signalling has
been seen to decrease allergic inflammation in different mice
models (Sheih et al., 2017). IL18 has been shown to be critical in
driving the pathological breakdown of barrier integrity (Nowarski
et al., 2015). On the other hand, IL-1α, produced by keratinocytes,
can drive chronic skin inflammation (Archer et al., 2019).

3.2.3 TGFβ
Finally, another important molecule for the communication

between epithelial cells and stromal cells in the context of the
extracellular matrix (ECM) remodelling that can occur after
dysfunction of the epithelial barrier is the transforming growth
factor β (TGFβ). The role of TGFβ has been extensively studied in
the epithelium, where it enhances epithelial barrier dysfunction, cell
differentiation or epithelial to mesenchymal transition (Kahata et al.,
2018). TGFβ is secreted in an inactive form bound to the latency-

associated peptide (LAP) and its activation requires conformational
changes leading to the protein cleavage of LAP (Bauche and Marie,
2017). In its canonical pathway, TGFβ, in a dimeric form, binds to a
tetrameric complex composed of TGFβ receptor I and II. The
activated receptor phosphorylates Smad2/3 transcription factors,
triggering their translocation to the nucleus (Meng et al., 2016) to
regulate the transcription of several genes like collagens (I and IV) or
fibronectin, components of the ECM (Huang et al., 2020). We
believe that it is important to highlight the role of TGFβ as the
main character of fibrosis, understanding fibrosis as an excessive
way of healing a wound after putting at risk the epithelial barrier.
This has been for example, demonstrated in mice models of asthma
where disruption of the barrier produces an increase in TGFβ
production and consequent remodelling (Ortiz-Zapater et al.,
2022a) or in the gut (Yun et al., 2019), just to name some.
Moreover, TGFβ is one of the main communication molecules
between the epithelium, immune cells and, especially in the
context of ECM and remodelling, fibroblasts. In fact, TGFβ is
the main molecule implicated in the differentiation/activation of
myofibroblasts (see among many others (Ortiz-Zapater et al.,
2022b), the main cell type producing ECM seen in many
chronic pathological diseases including asthma and IBD. In that
sense, there are numerous studies demonstrating the importance
of TGFβ in the asthmatic inflammation and remodelling (Halwani
et al., 2011; Al-Alawi et al., 2014) and more recently, it has
postulated that the study of TGFβ polymorphisms, in
combination with clinical factors, could predict asthma
diagnosis with high sensitivity (Panek et al., 2022). In IBD,
TGFβ has been studied due to its effect from and towards the
epithelium, but also related to the immune response, and curiously,
acting directly on the intestinal microbiota (Ihara et al., 2017).

4 Asthma

In this review, we have described so far molecules and
mechanisms involved in epithelial homeostasis. In the next two
sections, we will describe in detail both asthma and IBD as two
example diseases where different epithelial driven alterations lead to
epithelial barrier dysfunction, highlighting work done in this field
and focusing on the epithelium as the potential therapeutic target,
alone and in combination with established treatments.

4.1 Asthma, the attack, and inflammation

In the second century, Aretaeus of Cappadocia described asthma
as aazein: a short-drawn breath or panting, a death rattle. Aretaeus
went on to describe the defining characteristic of all asthmatics, the
attack: “. . .they open the mouth since no house is sufficient for their
respiration, they breathily standing, as if desiring to draw in all the
air which they possibly can inhale . . . ”, and if the symptoms abate,
he concludes, “the asthmatic escapes death, but in the intervals
between severe attacks or even when they are walking on ground
level, they bear in mind the symptoms of the disease (Karamanou
and Androutsos, 2011).” The haunting trauma of an asthma attack is
echoed in Henry Salter’s account, “. . .not only is asthma not an
uncommon disease, but it is one of the direst suffering; the horrors of

Frontiers in Cell and Developmental Biology frontiersin.org08

López-Posadas et al. 10.3389/fcell.2024.1258859

147

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2024.1258859


the asthmatic paroxysm far exceed any acute bodily pain”. The
language defining asthma has remained abstract and scantily more
informative through the centuries. And it was not till 2017, when the
Global Initiative for Asthma (GINA) defined asthma as, “a
heterogenous disease usually characterised by chronic
inflammation. It is defined by a history of respiratory symptoms
such as wheeze, shortness of breath, chest tightness, and cough that
vary over time and in intensity, together with variable expiratory
airflow limitations.”

Today, asthma affects more than 300 million people globally, at
a staggering financial cost and a burden to quality of life and remains
one of the most common, non-communicable diseases (Papi et al.,
2018; Pavord et al., 2018; Porsbjerg et al., 2023). Significant advances
have been made in asthma care, as hospital admissions and deaths
due to asthma are on the decline since the 1990s. The majority of
asthma sufferers present with a type 2 inflammatory response and
profile characterised by hyper-production of IL4, IL5, and IL13,
increased blood eosinophils and fractional exhaled nitric oxide
(FeNO) (Porsbjerg et al., 2023). However, current treatments
only manage symptoms and have little-to-no effect on the
natural progression of this disease. Even the diagnosis and term
itself is umbrella, widely understood by clinicians that asthma could
represent manifold pulmonary diseases. The use of inhaled
corticosteroids became aggressively prescribed in the late 1980s,
which resulted in fewer exacerbations and better control of patient
symptoms and mortality. This biased physicians and researchers to
approach asthma as a chronic inflammatory disorder, where disease
symptoms are to be managed but not cured. This “inflammatory-
centric” approach was implemented with wilful disregard that
asthma attacks, or airway hyperresponsiveness, the sentinel event
of all asthmatics, can occur in individuals without inflammation.
Further, the degree of inflammation and the types of inflammation
effecting asthmatics (eosinophilic, non-eosinophilic, high-type 2,
low-type 2, etc.) is well documented to be highly variable (Hammad
and Lambrecht, 2021; Porsbjerg et al., 2023). To this, commissions
have been gathered to address the problem of asthma, focusing on
the outdated thinking and antiquated research practices governing
its treatment and prevention (Papi et al., 2018; Pavord et al., 2018;
Porsbjerg et al., 2023). Recently, the Lancet compiled a commission
to redefine asthma with the aim, “. . .to identify entrenched areas of
asthma management and treatment in which progress has stalled
and to challenge current principles . . . “We believe that the most
important cause of this stagnation is a continued reliance on
outdated and unhelpful disease labels, treatment and research
frameworks, and monitoring strategies, which have reached the
stage of unchallenged veneration and have subsequently stifled new
thinking (Pavord et al., 2018).”

4.2 Epithelial dysregulation and damage in
all asthma

It has long been speculated that epithelial loss or damage in
asthma studies is due to artefacts from the harvesting and
processing protocols while obtaining and analysing tissue
samples (e.g., bronchial brushings and biopsies). However, an
ever growing number of studies are revealing the loss, damage,
and dysregulation of the epithelium in all asthmatics

(Payne et al., 2003; Pohunek et al., 2005; van Rijt et al., 2011;
Papi et al., 2018; Hammad and Lambrecht, 2021). Loss of the
superficial epithelial layer, preferential destruction of ciliated
cells, and over expression and activation of EGFR with
increases in growth factors, including TGFβ (Hoshino et al.,
1998; Shahana et al., 2005; Boxall et al., 2006; Holgate, 2007),
are found in the majority of asthma suffers; even occurring in
mild, early, and non-fatal asthma. Discussed earlier, damaged
epithelium releases a number of soluble mediators promoting
remodelling and inflammation (e.g., TSLP, IL25, and IL33), and
are not only highly expressed in asthmatic airways, but represent
genetic loci identified in a number of genome-wide association
(GWA) studies correlating with asthma susceptibility (Cookson,
2004; Allakhverdi et al., 2007; Grotenboer et al., 2013;
Moheimani et al., 2016). As an example, Steven Holgate’s
group demonstrated that asthmatic children have damaged
epithelium with increased expression of EGFR, that was
significantly correlated with basement membrane thickness (an
important pathological feature of adult asthma), by excessive
deposition of collagen III, seen in the absence of eosinophilic
inflammation (Fedorov et al., 2005). Moreover, using bronchial
biopsies from healthy and asthmatic cohorts, Barbato et al.,
showed loss of epithelium, increase in angiogenesis, and
basement membrane thickening in asthmatic children prior to
a mounted inflammatory state (Barbato et al., 2006). In an even
earlier study, Marguet and co-workers found increased numbers
of epithelial cells in the bronchoalveolar lavage fluid from
asthmatic children compared to health controls (Marguet
et al., 1999), further suggesting that epithelial loss and
damage-not present at birth-is occurring before-or-at disease
conception, and likely initiating and sustaining the adaptive
response characteristic of most asthmatics.

4.3 Barrier dysfunction and asthma

As reviewed before, the epithelium can act as a barrier through
the cooperative action of cell junctions with the cytoskeletal
apparatus, essential for barrier function and downstream
signalling. Dysregulation of the junctions themselves can
orchestrate pro-inflammatory signalling pathways, fuelling an
inflammatory cascade and feed-forward mechanisms initiated by
the wounded barrier. A consequence of barrier damage, is the release
of pro-inflammatory factors (e.g. alarmins), known to elicit a type-2
response resulting in increased IL4 and IL13 in airways that are now
appreciated to also perpetuate junction dysfunction by
downregulation of claudins, occludin, JAM proteins and ZO-1
(Ahdieh et al., 2001; Ortiz-Zapater et al., 2022a). House dust
mite (HDM) extract, one of the major causes of asthma (and
asthma exacerbations) in children, contains proteases that are
known to cleave junctional proteins including occludin and ZO-
1, directly participating in barrier dysfunction. Notably, Tan et al.,
demonstrated that three chronic HDM experimental asthma mouse
models, with distinct inflammatory profiles (eosinophilic,
neutrophilic, and mixed granulocytic), all had decreased
expression of claudin-5, -8, -18, and -23, ZO-1, and occludin,
further suggesting that a dysfunctional epithelium is activating
and maintaining inflammatory pathologies rather than
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inflammation as the initial source of epithelial wounding (Tan et al.,
2019). This has been recapitulated in human bronchial epithelial
cells in air-liquid interface (ALI) culture systems, and bronchial
brushings from asthmatic patients. Downregulation of E-cadherin
alone resulted in an EGFR-dependent, type 2-biased inflammatory
response, and claudin-18 deficiency was demonstrated to promote
barrier dysfunction in asthmatic mice and human epithelial cells
(Heijink et al., 2007). An ultra-structural analysis of bronchial
biopsies of both allergic and non-allergic asthmatics showed
junctions and desmosomes damaged, as well as the destruction of
ciliated cells in favour of goblet cell hyperplasia and impaired wound
healing, with increased basement membrane thickening (Shahana
et al., 2005).

The destruction of barrier proteins results in the activation of
signalling pathways promoting asthmatic inflammation while
directly inhibiting barrier function through the decreased
expression of junctional proteins providing a viscous feed-
forward cycle of wounding, repair, inflammation, and re-
wounding. This highlights the need for therapeutics that are
targeted to maintain barrier proteins and function in chronic
disease, such as asthma and IBD.

4.4 Mechanics effecting epithelium
and asthma

There is an established notion that chronic inflammation results
in airway hyper-responsiveness, and numerous studies have
demonstrated that high doses of oral and inhaled corticosteroids
are unable to stop, nor reverse, asthma exacerbations (Childhood
Asthma Management Program Research Group et al., 2000; Kips
et al., 2000; Guilbert et al., 2006; Porsbjerg et al., 2023). Ultimately,
bronchoconstriction is the result of airway remodelling and as we
have discussed above, when the epithelium is damaged and
junctional proteins disrupted, downstream signalling occurs to
respond to assaults; this is true of mechanical forces applied to
monolayers. Unique to the lung (and the heart) is that at birth its
movements, required for respiration, will not cease until death,
causing the lung to be under constant, and constantly changing
mechanical forces. Indeed, these forces are required for healthy lung
development in utero and after birth, and regulated repair responses
(Liu et al., 2016; Li et al., 2018). As earlier discussed, mechanical
forces govern epithelial numbers within a monolayer. When
crowded regions experience compression, unwanted cells are
removed by extrusion to regain homeostatic densities, relieving
mechanical stresses (Bagley et al., 2023; Eisenhoffer et al., 2012).
Airway epithelium during bronchoconstriction will experience
dramatic compressive forces, likely causing excessive cell
extrusion, damaging the epithelium, while losing barrier function,
and promoting further inflammation (Bagley et al., 2023).
Importantly, the mechanically-activated protein YAP1 is well-
characterized in airway homeostasis and disease, required for
proper airway branching (Lin et al., 2017), maintenance, size
regulation, and identity of epithelial cells. Mechanical forces are
deeply integrated and unavoidably required for all biological aspects
needed for lung development, homeostasis, and pathology, and
these mechanically-activated epithelial pathways represent a
novel, druggable target in wound repair and disease.

The compressive forces applied to the epithelium during an
asthma attack is estimated to be about 30 cm H2O, at least an order
of magnitude greater than the forces felt during normal respiration
(Park et al., 2015). Stealing a line from Chris Grainge’s review on
airway mechanical compression, “Bronchoconstriction is not only a
symptom of asthma but is also a disease modifier” (Veerati et al.,
2020). It has now been demonstrated that compressive forces,
in vitro and vivo, lead to expression of genes known to elicit
pathological responses in lung disease, including early growth
response-1 (EGFR-1), platelet-derived growth factor (PDGF), and
TGFβ. Stimulation of repair response pathways through EGFR
activation and down-stream signalling, leads to the release of
growth factors (e.g., TGFβ) and ECM components (collagens)
involved in airway remodelling and disease progression (Ressler
et al., 2000). Incubating fibroblasts with conditioned medium from
compressed airway epithelial cells resulted in increased collagen
deposition, all in the absence of an inflammatory component
(Tschumperlin et al., 2003). Park et al. nicely demonstrated that
repeated compressive forces alone, over a relatively short time
period, could elicit mucus production, e.g., Muc5AC, in normal
human bronchiole epithelial cells that was dependent upon EGFR
and TGFβ2 (Park and Tschumperlin, 2009). This work was
confirmed in humans: volunteers underwent methacholine
challenges (only three times over 4 days) to induce
bronchoconstriction that lead to increases in TGFβ, collagen, and
mucus production in airway epithelial cells, also in the absence of an
inflammatory response (Grainge et al., 2011). This is important as
mucus hyper-production and secretion remains an intractable
problem in many pulmonary disorders, including asthma.
Indeed, in a study of 93 fatal asthma cases, near all had mucus
obstructions in their airways, where half had more than 80% of
airways occluded withmucus plugs (Aegerter and Lambrecht, 2023).
Now we appreciate that this mucus problem is not simply a result of
goblet cell hyperplasia but also, the expression of mucus in bona fide
ciliated cells, which is important if we are to develop effective and
targeted therapeutics currently missing in today’s clinics. Finally,
wounding epithelium itself can induce airway smooth muscle
constriction, actively participating in the airway compression-
remodelling response. Elegant work by Steven George’s group
used ex vivo lung slices from rats and laser ablation to destroy
signal airway epithelial cells that resulted in a 70% reduction in
airway lumens within seconds of cell wounding, followed by further
airway smooth muscle contractions over minutes, again in the
absence of an inflammatory response by inflammation (Zhou
et al., 2012).

4.5 The epithelium as a druggable target
in asthma

Currently, asthma therapy is big business with annual revenues
in the billions, which is on the rise, as all these medications can do is
manage symptoms of this common disease, not capable of stopping
or reversing its progression. This sentiment is not new, and indeed
clinical trials targeting the epithelial-derived alarmins, released by
wounded epithelial barriers, have shown promising results. The
monoclonal antibody inhibiting TSLP, Tezepelumab, has been
demonstrated to significantly supress all three type-2 clinical
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biomarkers for asthmatics: peripheral blood eosinophils and total
IgE (Schleich et al., 2024); while the anti-IL25 and IL33 drugs,
Brodalumab and Itepekimab, respectively, were less successful
(Chan et al., 2022). Promising work by Wawrzyniak and others
in primary human cells were able to reconstitute barrier function,
damaged by IL4 and IL13 exposure, from asthmatic patients by
inhibiting histone deacetylases (upregulated in asthma), resulting in
junctional protein synthesis (Wawrzyniak et al., 2017). Lastly, as we
have discussed, mucus is a problem in many pulmonary diseases,
and asthma is no exception, with little treatment options available.
However, using a mouse model of IL13-induced mucus hyperplasia
and primary cells from asthmatics, inhibiting the heat shock protein
90 (HSP90), upregulated in asthma with geldanamycin, blocked, and
even reverted, mucus hyperproduction and goblet cell hyperplasia
(Pezzulo et al., 2019). In fact, there are ongoing clinical trials for
HSP90 inhibitors for various disease (Kitson and Moody, 2013).

To expand upon current asthma treatments and experimental
approaches, we need pathophysiologically relevant platforms that
allow for efficient and effective drug discovery and development. In
the 1990s, Martin Sanders began iconoclastic work in the use of
precision cut lung slices (PCLSs) to study lung physiology and
pathology (Martin et al., 1996) that has snowballed over the last
three decades, as more researchers are being introduced to the power
of this ex vivo system in basic cell biology and translational studies
(Davies et al., 2015; Alsafadi et al., 2017; Huang et al., 2019b; Lam
et al., 2023). PCLSs are thin sections of live tissue containing all
resident cell-types, while maintaining proper tissue architecture,
preserving cell-to-matrix relationships, within complex,
interconnected cellular hierarchies, which make up all tissues and
organs. Ex vivo lung slices have been successfully used in studies
from, mice, rats, pigs, sheep, non-human primates, and humans
(Alsafadi et al., 2020). They have been used to study airway and
arteriole contraction (Martin et al., 1996), tumour biology within
intact tissue (Davies et al., 2015), viral infection (Rosales Gerpe et al.,
2018), HDM-induced asthma (Ortiz-Zapater et al., 2022a), and
fibrosis (Alsafadi et al., 2017), with seemingly endless potential in
novel therapeutic development (Liu et al., 2021; Lam et al., 2023).
Importantly, the use of ex vivo tissue slices reduces the ethical
burden for in vivo models, because dozens of slices can be obtained
from a single lung, decreasing the number of animals needed, and
allowing for multiple treatments assessed in a lone animal. And
PCLSs are amenable to many live and fixed imaging techniques
(including watching an asthma attack in real time), as well as genetic,
biochemical, and molecular biology analyses. An important
limitation to PCLSs is that viability decreases in culture
conditions over time (usually 7–14 days). Therefore, ex vivo
modelling of chronic diseases or assessing treatments to reverse
established pathologies can be limited, requiring the development of
better culturing conditions to overcome this problem. Regardless,
the power of PCLSs to bridge disease characterization in animal
models, and humans, with translational research and positive
clinical outcomes is undeniable.

5 Inflammatory bowel disease (IBD)

Medical reports from the 17th and 18th century described cases
of patients dying after prolonged episodes of diarrhoea, abdominal

pain and fever. Later, the first cases of Crohn’s Disease (CD) and
Ulcerative Colitis (UC) were described in Great Britain, in 1859 and
1875, respectively. The pathology of UC was firstly described as
affecting themucosa and submucosal of the rectum and extending to
the whole colon, featuring a marked infiltration of inflammatory
cells, vascular congestion, goblet cell depletion and crypt abscesses
(Kirsner and Palmer, 1951). In the case of CD, Warren mentioned,
“A progressive sclerosing granulomatous lymphangitis, probably a
reaction to an irritative lipid substance in the bowel content.”
(Warren and Sommers, 1948), and etiologically associated with
microorganisms, abdominal trauma, or impaired vascular/
lymphatic circulation. Currently, IBD is used as an over-reaching
term to name chronic and relapsing inflammation of the
gastrointestinal tract; being CD and UC the most common
clinical manifestations. The first epidemiologic approach to study
IBD in 1955 initially suggested the impact of the life-style (Melrose,
1955). Ulterior population studies pointed to key epidemiological
features of IBD, such as the ethnicity contribution, environment, as
well as the familial background. Increasing incidence during the 20th

century has been largely seen and presently it is well accepted that
IBD has a worldwide distribution, with 6.8 million people being
affected in 2017 (GBD, 2017 Inflammatory Bowel Disease
Collaborators, 2020).

Most IBD research between the 19th and the 20th centuries was
aimed at a differential diagnostic and the development of a therapy
in order of improve the life quality of these patients, until the
introduction of biological drugs, mainly anti-TNF antibodies. While
in the 21st century, researchers focused on the identification of
causative pathological mechanisms, which has spotlighted different
players leading to the complex breakdown of gut mucosa
homeostasis. Currently, IBD is considered a multifactorial
disease, which occurs because of an interplay between genetics,
environmental and immunological factors, resulting in an
uncontrolled immune response against the intestinal microbiome.
The complex nature of the disease pathogenesis implies a clear
limitation for the development of curative pharmacological
treatments, but also highlight the importance of considering
alternative approaches. To this, clinicians are beginning to exploit
epithelial features for the diagnosis or treatment of IBD patients that
have shown promising results, supporting further investigations to
understand the causative role of epithelial dysregulation in IBD.

5.1 Barrier dysfunction in IBD

In order to maintain tissue homeostasis, the intestinal
epithelium acts as a physical and immunological barrier
separating the lumen, which contains the microbiota, and the
host. “Epithelial leakage”, a common feature in IBD, allows for
the invasion of luminal components, which can activate immune
cells located at the sub-epithelial space contributing to intestinal
inflammation (Martini et al., 2017). Abnormalities in epithelial
barrier function can be reflected by an increased permeability,
which has been observed in small bowel and colon in CD
patients (Jenkins et al., 1988), and has been correlated to the
degree of inflammation (Jenkins et al., 1987; Sanderson et al.,
1987; Suenaert et al., 2002; Turpin et al., 2020). Moreover, it has
been shown that increased intestinal permeability in IBD patients in
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remission can predict the occurrence of relapse or flares (Wyatt
et al., 1993; Irvine and Marshall, 2000; Tibble et al., 2000; Vivinus-
Nebot et al., 2014). Together, the occurrence of epithelial barrier
dysfunction before the outbreak of the inflammatory response
supports the hypothesis of epithelial defects as etiological factors
in IBD pathogenesis. GWAS studies identified genes linked to
altered barrier function to be associated to IBD; including genetic
variants of CARD15/NOD2 gene, resulting in severe forms of CD
(D’Inca et al., 2006; Buhner et al., 2006). In fact, several genes
relevant to epithelial barrier function have been categorized as IBD
loci, such as HFN4, CDH1 and LAMB1 in UC (Consortium et al.,
2009). In agreement, several animal models demonstrate that
epithelia permeability precedes the development of intestinal
inflammation, for example, the IL10 KO (Madsen et al., 1999),
and the SAMP/YitFc mouse (Olson et al., 2006), as well as the mouse
strain deficient for the xenobiotic transporter mdr1a (Resta-Lenert
et al., 2005). The etiological role of epithelial leakage in
inflammation is further supported by IBD-like phenotypes in
patients suffering from monogenic diseases. For instance, the
very-early onset IBD called Tufting enteropathy is caused by
mutations in EpCAM, leading to cell-cell contact disruption
(Sivagnanam et al., 2008). Although these and other data support
the epithelial contribution to the onset and progression of IBD, the
low IBD-like phenotype penetrance of these monogenic diseases
indicates the existence of functional redundancy between different
proteins/pathways within the enterocyte, and/or the requirement for
non-epithelial factors for the onset of intestinal inflammation. This
idea was indeed confirmed by other mouse models targeting TJ
proteins, showing that a leaky barrier is not sufficient to trigger
intestinal inflammation, such as JAM-a deficient animals
(Khounlotham et al., 2012), or transgenics mice with expression
of claudin-2 in IECs (Ahmad et al., 2014).

5.2 Epithelial alteration in IBD

As mentioned above, increased epithelial permeability is a
hallmark of patients suffering from IBD (Teshima et al., 2012).
In 2007, Zeissig et al. described upregulation of the pore-formin
Claudin-2 and downregulation and/or redistribution of claudin-5,
-8 and occludin as the main alterations affecting the apical
junctional complex (AJC), and thereby contributing to impaired
barrier function in CD (Zeissig et al., 2007). In UC, claudin-2 is also
upregulated, while the barrier forming claudin-4 and -7 are
downregulated (Oshima et al., 2008), as well as occludin (Heller
et al., 2005). In IBD or immune-driven colitis the upregulation of
claudin-2 can be attributed, at least partially, to the increased levels
of several proinflammatory cyotkines, such as IL13 (Heller et al.,
2005). Conversely, Myosin Light Chain Kinase (MLCK) activation
causing phosphorylation of MLC and occludin endocytosis
contribute to permeability mediated by the leak pathway
(Clayburgh et al., 2005; Marchiando et al., 2010; Van Itallie et al.,
2010). Previously mentioned, occludin is downregulated in IBD
patients (Heller et al., 2005; Kuo et al., 2019), which can be triggered
by cytokines such as TNF (Su et al., 2013) or LIGHT (Schwarz et al.,
2007). Additionally, the tricellular TJ proteins tricellulin (Krug et al.,
2009; Saito et al., 2021) and angulin-1 (Sugawara et al., 2021) also
contribute to the leak pathway permeability. Recent studies also

pointed to a downregulation of tricellulin expression in UC patients
(Krug et al., 2018). Indeed, in vitro studies have shown that the pro-
inflammatory milieu in the inflamed gut of IBD patients can lead to
alterations on several proteins within the AJC, as upon stimulation
with IL1β (Al-Sadi et al., 2008), IL6 (Suzuki et al., 2011), IL4 and
IL13 (Ceponis et al., 2000), TNF-α (Ma et al., 2004) or IFN-γ
(Madara and Stafford, 1989; Wang et al., 2005).

Regulated cytoskeleton function is crucial for TJ assembly and
epithelial barrier function, In fact, transcriptional regulation of
ACF7, a cytoskeleton crosslinking protein, is observed in UC
patients (Ma et al., 2017). Accordingly, mice with an epithelial-
specific knockout of non-muscle MyosinIIA suffer from increased
intestinal permeability, low scale mucosal inflammation, and
increased susceptibility to experimental colitis (Naydenov et al.,
2016). Cell stress can also induce changes in actin dynamics and
affect actin-binding proteins, such as Villin-1 and Gelsolin, which in
turn control survival of Intestinal Epithelial Cells (IECs) and barrier
function (Roy et al., 2018). Recent in vivo studies demonstrated that
prenylation of Rac1 and RhoA, tightly associated to the cytoskeleton,
significantly contribute to epithelial barrier function in the gut, and
this correlated with alterations of its expression and/or subcellular
localization in the intestinal epithelium of IBD patients (Lopez-
Posadas et al., 2016; Martinez-Sanchez et al., 2022).

Beyond structural defects, IBD is associated with changes in the
epithelial secretome. IBD has been associated to defects of goblet cell
differentiation, supporting the key role of the mucus in the intestine
(Gersemann et al., 2009). Indeed, the composition of gut mucus is
altered in IBD, which is depicted by reduced TFF3, expression
diminished levels mucin2 and reduced mucus sulfatation (Tytgat
et al., 1996). Focusing on alarmins, TSLP and IL33 have been
suggested as protective molecules in IBD (Taylor et al., 2009).
Although UC patients show reduced expression of TSLP
(Tahaghoghi-Hajghorbani et al., 2019); controversial data are
available concerning IL33 in CD and UC (Seidelin et al., 2010;
Tahaghoghi-Hajghorbani et al., 2019).

5.3 Leaky epithelium as a diagnostic tool

The increasing acceptance of the causative role of epithelial-
derived mechanisms in IBD pathogenesis is also reflected by the
current effort to exploit this in the clinic, both for treatment and
diagnosis of chronic inflammatory diseases. Traditional sugar
permeability assays (Meddings and Gibbons, 1998; Teshima and
Meddings, 2008) are giving way to molecular imaging, such as
confocal-laser endomicroscopy (CLE) using a tracer dye to assess
intestinal permeability. This technique permits the identification of
epithelial gaps (Kiesslich et al., 2007), even correlating to the
occurrence of relapses (Kiesslich et al., 2012) and the
identification of subclinical lesions in IBD (Lim et al., 2014; Zaidi
et al., 2016). Using this CLE, a recent cross-sectional diagnostic
study demonstrated the superiority of barrier healing (versus
endoscopic/histologic remission) for the prediction of adverse
outcomes in CD and UC, validating epithelial leakage as a
prognostic marker of the disease (Rath et al., 2023). In order to
overcome safety limitations of CLE, a multimodal imaging label-free
imaging technique has been used to assess intestinal permeability in
UC patients (Quansah et al., 2023). Despite these advanced imaging
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techniques, there is a clear need for the identification and validation
of non-invasive methods for the diagnosis of “leaky gut”. Although
several biological markers have been suggested in this context
[plasma/serum citrulline, FABP-2, alpha-GST or zonulin; urine
claudin-3; or faecal defensins (Bischoff et al., 2014)], none of
them has been efficacious in disease prognosis or progression.
We believe that the use of CLE (or alternative imaging methods)
alone, or in combination with other standard methods (endoscopy/
histology), and the identification of biomarkers for impaired
intestinal permeability, will allow us to define the functional state
of epithelial integrity and contribute to the prediction of IBD flares.

5.4 Epithelium as a druggable target in IBD

Currently, the clinical management of IBD strives to control
symptoms and mucosal healing (Neurath and Travis, 2012).
However, the lack of response to therapy and the low safety profile
of immunosuppressive drugs implies the need of alternative therapies,
and epithelial restoration emerges as a key component to achieve
mucosal healing in IBD, with the final objective of achieving sustained
clinical remission, reduced rate of surgery and lower incidence of long
term complications. Thus, new knowledge of epithelial dysfunction
would likely impact IBD clinical management.

Therapeutic strategies based on promoting the integrity of TJs
might have a beneficial effect in IBD. For instance, the zonulin
inhibitor AT-1001 (lazarotide) impairs TJ disassembly due to
cytoskeleton rearrangement and ameliorates experimental colitis
in mice (Arrieta et al., 2009; Sturgeon et al., 2017). Inhibition of
the pore function from TJ can limit increased paracellular
permeability, which can be achieved for example, by inhibiting
casein kinase 2 (Raleigh et al., 2011), indeed providing a certain
protection against experimental colitis (Raju et al., 2020). On the
other hand, the group of JR. Turner has extensively characterized the
MLCK-dependent signaling transduction regulating the leak
pathway, culminating in the identification of the small molecule
divertin (Graham et al., 2019). Divertin blocks the
MLCK1 recruitment via the IgG3 domain to the perijunctional
actomyosin ring inhibiting occludin endocytosis and promoting
barrier function without altering MLCK enzymatic activity (He
et al., 2008; Graham et al., 2019). Strikingly, divertin showed a
similar therapeutic effect as anti-TNF in immune-mediated mouse
experimental intestinal inflammation (Graham et al., 2019).

The accumulated evidence about the causative role of barrier
function in IBD implies the need of assessing the impact of current
treatments on the intestinal epithelium, and the potential link to
success/lack of response in specific patients. One case in this context
is the barrier repair observed upon anti-TNF treatment in CD
patients (D’Haens et al., 1999; Rutgeerts et al., 2012; Kierkus
et al., 2012), which has been mechanistically linked to the
inhibition of IEC apoptosis and Notch pathway modulation
(Kawamoto et al., 2019). Additionally, mesalamine treatment
improved mucosal healing in clinical trials including mild-to-
moderate UC patients (Lichtenstein et al., 2011; Bokemeyer et al.,
2012; Probert et al., 2014). In this case, epithelial wound healing can
also be promoted by increasing epithelial cell migration and
proliferation (Baumgart et al., 2005) and impaired cytokine-
driven paracellular permeability (Khare et al., 2019). The

beneficial effects of corticosteroids was initially thought to be
through the regulation of inflammatory factors (Wild et al., 2003).
However, it was recently shown that the exposure of intestinal
organoids derived from CD patients to prednisolone rescued the
modulated expression/distribution of E-cadherin, ILDR-1, Claudin-2,
MLCK and phospho-STAT1 upon cytokine treatment (Xu et al.,
2021). Elegant work by Zuo et al. described the capacity of tacrolimus
to interact with FKBP8, which in turn impairs their interaction with
MLCK1 for its recruitment to the acto-myosin ring for the induction
of epithelial barrier function (Zuo et al., 2023). Together, this shows
the potential contribution of classical immunosuppressive drugs and
biologicals to epithelial restoration in the context of IBD.

Many experts have demonstrated that there is a way to confer
benefit to the host by administration of probiotics. Probiotics are live
organisms that can shape the commensal microbiota and the
composition of the mucus. Thus, bacteria such as Bacillus subtilis
(Li et al., 2020b; Ahl et al., 2016), or Lactobacillus spp (Bron et al.,
2017) or the Lactobacillus reuteri alter mucin production. In fact,
Lactobacillus showed a protective effect, increasing the mucus layer
thickness (Ahl et al., 2016). There are also many different studies
reporting the beneficial effects of the supplementation with A.
muciniphila (Wu et al., 2017; van der Lugt et al., 2019).
Moreover, bacteria-derived metabolites altering the mucus
composition, such as indoleacrylic acid, have shown protective
effects in experimental colitis (Wlodarska et al., 2017). Thus,
probiotics and their impact on the mucus layer emerge as
interesting mechanisms to impact on intestinal epithelial integrity.

Despite attractive strategies, there is still no pharmacological
treatment for epithelial restoration in IBD. This is partially because
the limitations for primary intestinal epithelial cultures until the
development of intestinal organoids, which impeded the segregation
of epithelial intrinsic mechanisms. Organoids are multicellular
culture systems embedding in an ECM-like matrix mimicking the
3D architecture of the intestinal epithelium, which are valuable
surrogates for intestinal tissue. Importantly, the cellular complexity
and plasticity of the intestinal epithelium can also be mimicked in
intestinal organoids (Basak et al., 2017; Treveil et al., 2020; Martinez-
Silgado et al., 2023), and they can be used for genetic manipulation,
biobanking (van de Wetering et al., 2015), and translational studies,
since they conserve genetic and epigenetics of the original tissue if
derived from ASCs (Dotti et al., 2017). The use of organoids has
made possible the validation of molecular signatures linked
epithelial alterations in disease (Bigorgne et al., 2014), as well as
the identification of new targets in epithelial cell biology with a
potential direct application in IBD (Bayrer et al., 2018; Glal et al.,
2018; Deuring et al., 2019; Li et al., 2020a). Functionally,
permeability assays can be applied to intestinal organoid cultures
(Bardenbacher et al., 2020; Rallabandi et al., 2020). For example, the
restoration of permeability and remission upon low dose naltrexone
organoids studies showed the restoration (Lie et al., 2018), or the
cytokine-mediated induction of impaired barrier function in
human-derived material (Gleeson et al., 2020). Moreover, the use
of organoids has made it possible to study epithelial crosstalk with
other players within the intestinal tissue, such as the microbiota
(Leber et al., 2018; Roodsant et al., 2020) and immune cells. Thus,
co-cultures of mononuclear phagocytes and organoids
demonstrated that this intercellular communication is involved in
epithelial cell differentiation and can be targetable in IBD (Ihara
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et al., 2018). Moreover, organoid culture has opened the path to the
development of stem cell transplantation therapy to treat refractory
ulcers in IBD patients (Yui et al., 2012). Technical development in
the field has also allowed to overcome inherent limitations: the use of
microinjection into the organoid lumen to study host-microbiota
interactions (Saxena et al., 2016); or the inverted polarity of apical-
out organoids mimicking the open intestinal lumen (Co et al., 2021).
Further, the development of gut-on-a-chip models including non-
epithelial cells within the gut tissue, such as the enteric nervous
system, the endothelium and immune mediators will for sure have
an enormous impact on biomedical research (Shin and Kim, 2022).
Altogether, organoids are nowadays an indispensable tool for the
development of new therapies in IBD in general, as nicely reviewed
by Yoo and Donowitz (Yoo and Donowitz, 2019).

6 Concluding remarks

In this review, our aim is to highlight a body of past and present
research demonstrating the epithelium’s supremacy in orchestrating all
the necessary molecular players and signalling pathways needed to
initiate and sustain inflammatory disorders. There is now abundant
data to this, clearly demanding a response from researchers, clinicians,
and pharmaceutical industries. Using technologies like PCLSs and
organoids focusing on the epithelium and its intrinsic pathways and
responses will likely produce needed new therapies in chronic
inflammatory disorders. Combing these new and evolving epithelial-
centric drug targeting strategies with current anti-inflammation
treatments could have a powerful impact on the presently situation
we find ourselves with chronic disease prevention and progression,
especially in asthma and IBD.
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