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“Phenomics” is an emerging area of research whose aspiration is the systematic 
measurement of the physical, physiological and biochemical traits (the phenome) 
belonging to a given individual or collection of individuals. Non-destructive or 
minimally invasive techniques allow repeated measurements across time to follow 
phenotypes as a function of developmental time. These longitudinal traits promise 
new insights into the ways in which crops respond to their environment including 
how they are managed.

To maximize the benefit, these approaches should ideally be scalable so that large 
populations in multiple environments can be sampled repeatedly at reasonable cost. 
Thus, the development and validation of non-contact sensing technologies remains 
an area of intensive activity that ranges from Remote Sensing of crops within the 
landscape to high resolution at the subcellular level. Integration of this potentially 
highly dimensional data and linking it with variation at the genetic level is an ongoing 
challenge that promises to release the potential of both established and under-
exploited crops.
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Editorial on the Research Topic

Phenomics

Developments in high throughput molecular technologies, from DNA sequencing to metabolite
analysis and proteomics, have opened up new and previously undreamt of vistas in biology.
Previously, one often had tomake a difficult choice between longitudinal and cross-sectional studies
but, with these highly scalable technologies, the number of individuals that can be screened has
increased so dramatically that temporal studies are possible on whole populations. The technologies
tend not to be specific to a given species, allowing us to sample the entire tree of life. One
consequence of this technological explosion is that measurement of phenotypic traits for large
populations over developmental time and in response to environmental variable has become highly
desirable, if not a necessity (Houle et al., 2010). In this context, the development of new technologies
to obtain reliable phenotypic data is a pre-requisite to approaching the overall challenge. As
compared to the genotype (or even the proteome), the phenotype is highly dimensional to the
extent that measuring all possible phenotypic traits is not feasible. However, the concept of
“phenomics” has been proposed to cover sets of technologies devised to obtain phenotypic data
in an analogous way to ‘omics associated with the various molecular technologies. Phenomics
therefore includes a vast array of approaches that, in most cases, include some sort of automatic
sampling or non-invasive methods to obtain repeated sampling from an individual or population.

The general requirement for reproducibility is an additional driver for phenomics. While
commercial phenotyping platforms can be very powerful (Virlet et al., 2017), the economic aspects
of purchasing and maintenance and the lack of flexibility (in what are emerging technologies) has
fostered in-house developments (Navarro et al., 2012; Lou et al., 2014). In plant biology, growth
conditions (the environment) play a key role in the final phenotype of a plant and having well-
defined growth parameters is not yet the rule (despite what the material and methods section of a
typical peer-reviewed research paper might imply). In this special topic on Phenomics, Negi et al.
addressed reproducibility of growth conditions, developing a modified hydroponic system to test
for phosphate deficiency on rice root traits. The digital nature of the data is a major advantage as it
allows sharing and re-use, both key to the success of the other ‘omics technologies. An open-source
software tool (Seedusoon) allows management of germplasm gathering together phenotypic and
genetic data for a given accession (Charavay et al.).

Many of the non-destructive phenomic approaches rely on image analysis systems to acquire
and process images. While the approach may seem straightforward, quantitative extraction of
interesting features, such as intensity of image pixels, geometry of pixels or textures, remains
challenging, and trade-offs between the ideal and the affordable are commonplace. For example,
a key decision involves the type of camera used for data capture as that can limit the band width
used to measure a given trait. This will have knock-on consequences, affecting the procedures used
for image analysis (Navarro et al., 2016; Perez-Sanz et al., 2017). In the current edition, several
publications t address issues associated with the analysis of a variety of plants using different
image acquisition devices. Standard cameras including those found in smartphones perform
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image acquisition with an RED-GREEN-BLUE or RGB sensor.
One study utilizes RGB images to determine wheat density at
early stages of development (Liu et al.). There is an increasing
number of publicly available libraries that facilitate image analysis
(see Perez-Sanz et al., 2017 for a review). OpenCV, a widely
used image processing library, underpinned development of
SeedCounter (Komyshev et al.). This free Android App for
mobile phone and pads, provides seed and grain morphometry
under lab and field conditions, with much of the functionality of
much more expensive equipment.

Stereo-vision is a long-established technique that uses two
carefully positioned RGB cameras to capture 3-D information.
Growth has been monitored in four species of tree seedling using
the green channel and a stereo-vision approach (Montagnoli
et al.). A regression model between the level of “greenness” and
the real biomass obtained by destructive measures gave R values
ranging between 0.67 for Fagus sylvatica and 0.95 forQuercus ilex,
again showing actual differences between plants for a given setup.
The interaction between canopy structure and photosynthesis has
been studied by coupling 3-D reconstruction with gas exchange
analysis showing that even complex traits such as 3-D structures
can be related to photosynthesis efficiency (Burgess et al.).

The non-visible wavelengths can provide additional
information on physiology and function. Thermal infrared
imaging devices mounted on unmanned aerial vehicles (UAV)
enables high throughput analysis of Populus nigra populations
for dynamic responses to drought stress (Ludovisi et al.).
Combined hyperspectral and thermal imaging of lettuce reveals
how these plants adapt to multiple stresses (Simko et al.).
Hyperspectral imaging has high information content and can
measure several parameters simultaneously when calibrated.
Thus, parallel analysis of chlorophyll a, chlorophyll b, total
chlorophyll, and carotenoid in rice showed high correlation
with hand measurements is 0.827–0.928 at the tillering
stage, illustrating great potential to screen large populations
(Feng et al.).

Using a combination of five non-invasive camera-based
imaging units equipped with fluorescent, RGB Visible Near

Infrared (VNIR), Short Wave Infrared and three dimensional
imaging, Lyu et al. determined a total of 200 quantitative traits
during leaf senescence. This illustrates the enormous potential of
phenomic approaches to have a comprehensive understanding of
biological variation.

High-throughput screening of combinations of traits is the
immediate promise of phenomics and is further exemplified
by the use of near-infrared reflectance spectroscopic (NIRS)
to undertake a coordinated analysis of oil, protein, carbon,
and nitrogen content in Arabidopsis seeds. As a result,
a set of QTLs controlling these traits, and the variance
component of genotype, culture, Genetic by Environment
interaction, and residual effect have been determined (Jasinski
et al.).

Image-based approaches can be compromised by the
quality of the signal obtained. This is an ongoing problem
common to many ‘omics technologies where assessment of
quality plays a key role in downstream data analysis. Directly
addressing this problem (Lobos and Poblete-Echeverría)

developed software to assess the quality of spectral reflectance
data. As spectral reflectance data are widely used to obtain
crop performance indices such as NDVI, this type of
exploratory data analysis is essential for evaluating data
quality.
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Deciphering Phosphate
Deficiency-Mediated Temporal
Effects on Different Root Traits in
Rice Grown in a Modified Hydroponic
System
Manisha Negi, Raghavendrarao Sanagala, Vandna Rai and Ajay Jain*

National Research Centre on Plant Biotechnology, Lal Bahadur Shastri Building, New Delhi, India

Phosphate (Pi), an essential macronutrient for growth and development of plant, is often
limiting in soils. Plants have evolved an array of adaptive strategies including modulation
of root system architecture (RSA) for optimal acquisition of Pi. In rice, a major staple
food, RSA is complex and comprises embryonically developed primary and seminal
roots and post-embryonically developed adventitious and lateral roots. Earlier studies
have used variant hydroponic systems for documenting the effects of Pi deficiency
largely on primary root growth. Here, we report the temporal effects of Pi deficiency in
rice genotype MI48 on 15 ontogenetically distinct root traits by using easy-to-assemble
and economically viable modified hydroponic system. Effects of Pi deprivation became
evident after 4 days- and 7 days-treatments on two and eight different root traits,
respectively. The effects of Pi deprivation for 7 days were also evident on different
root traits of rice genotype Nagina 22 (N22). There were genotypic differences in the
responses of primary root growth along with lateral roots on it and the number and length
of seminal and adventitious roots. Notably though, there were attenuating effects of Pi
deficiency on the lateral roots on seminal and adventitious roots and total root length in
both these genotypes. The study thus revealed both differential and comparable effects
of Pi deficiency on different root traits in these genotypes. Pi deficiency also triggered
reduction in Pi content and induction of several Pi starvation-responsive (PSR) genes in
roots of MI48. Together, the analyses validated the fidelity of this modified hydroponic
system for documenting Pi deficiency-mediated effects not only on different traits of
RSA but also on physiological and molecular responses.

Keywords: Oryza sativa, phosphate deficiency, aerated hydroponic system, root system architecture, Pi content,
Pi starvation-responsive genes

INTRODUCTION

Rice, a major staple food in Asia, is grown largely under rain-fed ecosystem on soils that are
naturally low in phosphorus (P) (Gamuyao et al., 2012). P is an essential macronutrient required
for growth and development of plant (López-Arredondo et al., 2014). Root system plays a key
role in acquisition of inorganic phosphate (Pi); a readily bioavailable source of P in rhizosphere

Frontiers in Plant Science | www.frontiersin.org May 2016 | Volume 7 | Article 5507

http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/Plant_Science/editorialboard
http://www.frontiersin.org/Plant_Science/editorialboard
http://dx.doi.org/10.3389/fpls.2016.00550
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.3389/fpls.2016.00550
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2016.00550&domain=pdf&date_stamp=2016-05-04
http://journal.frontiersin.org/article/10.3389/fpls.2016.00550/abstract
http://loop.frontiersin.org/people/344290/overview
http://loop.frontiersin.org/people/288386/overview
http://loop.frontiersin.org/people/201629/overview
http://loop.frontiersin.org/people/285823/overview
http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive


fpls-07-00550 May 2, 2016 Time: 11:20 # 2

Negi et al. Phosphate Deficiency-Mediated Effects on Root

(Marschner, 1995). However, Pi is often limiting due to its slow
diffusion rate and interactions with different soil constituents
(Raghothama, 1999). Therefore, soil exploration by roots is
critically important for optimal acquisition of Pi (Lynch, 2015).

Arabidopsis thaliana, a favored model plant species, has
been extensively used for elucidation of Pi deficiency-mediated
responses of root system architecture (RSA; Sánchez-Calderón
et al., 2005; Gruber et al., 2013; Kellermeier et al., 2014).
Conventionally, effects of Pi deprivation on RSA are documented
by either growing on agar plate (Williamson et al., 2001; López-
Bucio et al., 2002; Kellermeier et al., 2014) or hydroponically
(Jain et al., 2009; Alatorre-Cobos et al., 2014) under aseptic
condition. Pi deficiency induces inhibitory effects on the
developmental responses of both embryonically and post-
embryonically developed primary and lateral roots, respectively
(Sánchez-Calderón et al., 2005; Jain et al., 2007).

Root system of Oryza sativa (rice) is relatively complex,
comprising embryonically developed primary and seminal roots
with post-embryonic adventitious roots making up bulk of the
root system (Hochholdinger and Zimmermann, 2008). While
primary and seminal roots play important roles during seedling
stage, adventitious roots dominate the functional root system
in mature plant (Hochholdinger et al., 2004). Different types of
hydroponic system have been used for determining the effects of
Pi deficiency on root development (Yi et al., 2005; Zhou et al.,
2008; Dai et al., 2012, 2016; Wang et al., 2015). The effects of
Pi deprivation have largely been focused on only a few root
traits, i.e., total root length (Yi et al., 2005), primary root length
(Shimizu et al., 2004; Zhou et al., 2008; Zheng et al., 2009; Hu
et al., 2011; Dai et al., 2012, 2016; Wang S. et al., 2014; Wang et al.,
2015), lateral root number on primary root (Wang S. et al., 2014),
lateral root length (Yang et al., 2014), seminal root length (Ogawa
et al., 2014); and number and/or length of adventitious roots
(Zhou et al., 2008; Hu et al., 2011; Dai et al., 2012, 2016; Wang
et al., 2015). None of these studies provided a holistic overview
of the effects of Pi deficiency on different root traits. Different
concentrations of Pi considered as P+ and P− media, variation
in the duration of Pi deficiency treatment and use of different rice
genotypes in these studies further makes it difficult to draw any
explicit conclusion on the global effects of Pi deprivation on the
developmental responses of ontogenetically distinct root traits.

In this study, we used modified hydroponic system for
deciphering the effects of Pi deficiency on the developmental
responses of primary, seminal and adventitious roots and also
of lateral roots on each of them in rice cv. MI48 and N22. The
modified hydroponic system was equally efficient for generating
tissues for elucidation of Pi deficiency-mediated physiological
and molecular responses.

MATERIALS AND METHODS

Plant Material and Seed Germination
Seeds of rice (O. sativa L. ssp. indica) genotype MI48 and
Nagina 22 (N22) were used for this study. In Petri plate
(110 mm × 25 mm), lined with filter paper and wetted with
sterile water, 10 seeds were placed equi-distant and wrapped

in aluminum foil for maintaining dark condition. For each
experiment, about 150–200 seeds were used. Petri plates were
then placed in an incubator set at 28◦C for 4 days. After
germination, seedlings were transferred to Petri plate containing
1% (w/v) agar and scanned at 600 dots per inch (dpi) by
using a desktop scanner. Scanned images were then used
for documenting the radicle length by using ImageJ; a Java
image-processing program (1Collins, 2007). Seedlings often show
significant variation in their radicle length. Therefore, for
minimizing the effects of intrinsic variability on subsequent
treatment under different Pi regime, only those seedlings with
radicle length in the range of 2–3 cm were selected.

Modified Hydroponic System
Autoclavable hydroponic system was assembled by easily
available components, i.e., a standard polycarbonate
transparent Magenta (GA-7) box (width × length ×

height = 75 mm × 74 mm × 138 mm), support made of
polycarbonate sheet (0.030′′ thick), a polypropylene mesh
(250 µm mesh size, width × length = 24′′ × 12′′ by Small
Parts and available at amazon.com), aquarium air pump (power
5 W and pressure 2 MPa × 0.02 MPa), flexible air line tubing
(3 mm in diameter) and tee connector. Polycarbonate sheets
were cut into 80 mm × 40 mm rectangular pieces and notched
at midpoint up to 20 mm so that the two pieces could fit together
into an X-shaped support. Polypropylene mesh sheet was cut
into a square piece (50 mm × 50 mm) and four holes (4 mm
in diameter) were punched toward the perimeter for facilitating
the penetration of radicle through the mesh into the nutrient
medium. For experiments where rice seedlings are to be grown
for a longer duration, the height of the X-shaped support could
be easily increased up to 120 mm to ensure that root tip does
not come in contact with the bottom of the Magenta box.
Also, the number of seedlings in each magenta box could be
reduced from four to a lesser number by punching the required
number of holes in the mesh. Wedge support was placed into
the Magenta box, filled with enough deionized water so that
the level remained above the X-shaped wedge support and
autoclaved. After autoclaving, water was removed from the
Magenta box. To avoid warping, cut mesh pieces (10–15) were
stacked and wrapped in aluminum foil and autoclaved separately.
On each mesh, four germinated seedlings were placed close to
the hole to facilitate penetration of radicle through the mesh
and lowered gently on the wedge support placed in the Magenta
box. Nutrient medium was then added (about 200 ml) to the
hydroponic system to ensure that its level remained 2–3 mm
above the X-shaped wedge support. Nutrient media (P+ and
P−) were prepared as described (Jia et al., 2011) and buffered
to pH 5.7 with 0.5 mM 2-(N-morpholino) ethanesulfonic acid
(MES). P+ and P− represented 0.3 mM NaH2PO4 and 0 mM
NaH2PO4, respectively. Hydroponic system was placed under
controlled growth condition in the greenhouse (16-h day/8-h
night cycle, 28 ± 2◦C and relative humidity was maintained at
∼60–70%).

1http://rsb.info.nih.gov/ij
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Quantification of Total Shoot Area and
RSA Parameters
Seedlings grown under P+ and P− conditions in the hydroponic
system were removed along with the mesh sequentially 2,
4, and 7 days after treatment. Seedlings were transferred
in an inverted position to a Petri plate containing pool of
water. Under stereomicroscope, root and shoot were separated
at shoot:hypocotyl junction. Carefully, primary, seminal and
adventitious roots along with their lateral roots were separated
from each other. Dissected roots were then transferred
immediately to 70% (v/v) ethanol to avoid any desiccation and
for subsequent documentation. Shoots were gently spread and
pasted with glue stick on white sheet of paper. For revealing
RSA, dissected roots were transferred from 70% (v/v) ethanol to
a Petri plate containing 1% (w/v) agar. Lateral roots on primary,
seminal and adventitious roots were spread gently with a camel
hair brush under stereomicroscope ensuring no overlap. Glued
shoots on paper and spread out roots on agar plates were scanned
at 600 dpi using a desktop scanner. Scanned images were used for
documenting 15 different RSA parameters (Figure 1) and total
shoot area by using ImageJ program.

Soluble Pi Content
Harvested roots were rinsed 5–6 times in deionized water,
blot-dried gently, frozen in liquid nitrogen and ground to a

fine powder and stored at −80◦C till further use. Ground
tissue (25–50 mg) was homogenized with 250 µl of 1% (v/v)
glacial acetic acid, vortexed and centrifuged at 10,000 rpm
for 5 min. Supernatant was collected for assaying Pi content
by phosphomolybdate colorimetric assay as described (Ames,
1966). A standard curve generated with KH2PO4 was used for
determining the concentration of soluble Pi.

Real-Time PCR
The root samples collected from two independent biological
experiments were pooled for isolating total RNA by using
SpectrumTM Plant Total RNA kit as described (Sigma, USA).
DNase treatment was given for removing trace amount of DNA.
RNA was quantified by NanoDrop 1000 Spectrophotometer
(Thermo Scientific, USA) and its quality was assessed on 1.2%
(w/v) denatured agarose gel. First-strand cDNA was synthesized
from the total RNA (1 µg) using SuperScript R© III first-
strand synthesis system (Invitrogen, USA). Real-time PCR was
performed on Stratagene MX 3005P (Agilent Technologies, USA)
using SYBR GreenERTM qPCR Universal SuperMix (Invitrogen,
USA). Gene-specific primers were designed using PrimerQuest
software2. OsRubQ1 was used as an internal control. Amplicons
were subjected to meltcurve analysis for checking the specificity

2https://www.idtdna.com

FIGURE 1 | Schematic overview of rice RSA. Temporal effects of Pi deficiency was quantified on developmental responses of 15 roots traits comprising primary,
seminal and adventitious roots and lateral roots on each of them.
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of amplified products. Relative expression levels of the genes were
computed by 2−11C

T method of relative quantification (Livak
and Schmittgen, 2001). List of primers used for real-time PCR is
given in Supplementary Table S1.

Statistics
For each experiment, data were collected from 2 to 3 independent
biological experiments. Statistical significance of differences
between mean values was determined using Student’s t-test.
Different letters on histograms were used for indicating means
that were statistically different at P < 0.05.

RESULTS AND DISCUSSION

Selection of Seedlings Prior to Treatment
under Different Pi Regime
Radicle length of germinated rice seedlings varies significantly
across different genotypes. For Pi deficiency treatment, uniformly

grown seedlings are normally selected based on eyeballing,
which could often lead to an erroneous selection. Therefore,
to minimize the effects of intrinsic variability on radicle length
during subsequent Pi deficiency treatment, a more pragmatic
approach was adopted. Around 200 seeds were distributed
uniformly in Petri plates (10 seeds/Petri plate) lined with wet filter
paper and kept for germination at 28◦C for 4 days (Figure 2A).
Germinated seedling was transferred to 1% (w/v) agar plate and
scanned. Scanned image was used for measuring radicle length
using ImageJ program. Based on radicle length, seedlings were
grouped into different size ranges of 0.5 cm each and computed
per cent seedlings falling in each of these groups (Figure 2B).
Radicles of several seedlings (∼20%) exhibited stunted growth
with their lengths falling in the range of 0–0.5 cm. Per cent
seedlings with radicle length in other size categories varied
from ∼2 to 18%. It was interesting to note that ∼5% seedlings
revealed an exaggerated radicle growth (∼3–4 cm). It was evident
from this analysis that extensive variation in radicle length
of rice seedlings could exert significant erroneous influence

FIGURE 2 | Elimination of intrinsic variability in radicle length. (A) Seeds of rice genotype MI48 were germinated in a Petri plate lined with wet filter paper at
28◦C for 4 days in dark. (B) Radicle lengths of germinated seedlings were measured by ImageJ program and categorized into different size ranges of 0.5 cm each.
Histogram represents per cent seedlings in different size ranges. (C) About 30–40% seedlings falling in the size range of 2.0–3.0 cm were selected and transferred to
hydroponic set up for temporal treatment under P+ and P− conditions.
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on Pi deficiency-mediated effects on different root traits. To
circumvent this problem, only those seedlings were selected
whose radicle length was in the range of 2–3 cm (Figure 2C). Rest
of the seedlings outside this size range was discarded. Although,
several studies have reported the effects of Pi deprivation on
different root traits (Shimizu et al., 2004; Zhou et al., 2008; Dai
et al., 2012; Ogawa et al., 2014; Yang et al., 2014), it is not evident
from any of these studies as how the likely erroneous influence of
intrinsic variability in radicle length of rice seedlings prior to P+
and P− treatments was addressed.

Modified Hydroponic System
Conventionally rice is grown in a hydroponic system maintained
under green house condition for deciphering Pi deficiency-
mediated effects on the developmental responses of different root
traits (Zhou et al., 2008; Dai et al., 2012; Yang et al., 2014).
However, nutrient-rich medium of hydroponic system is often
susceptible to elemental contamination, which often results in
erroneous interpretations on the effect of Pi deficiency on various
morphophysiological and molecular traits (Jain et al., 2009).

In addition, growth of algal bloom, fungi, and bacteria in the
medium aggravates the problem.

To circumvent these multitude of problems, hydroponic
system was modified for growing rice under P+ and P−
conditions by assembling easily available autoclavable
components (Magenta box, polycarbonate X-shaped wedge
support and polypropylene mesh; Figure 3A). Further,
hydroponic set-up was aerated using aquarium air pump
for proper oxygenation and nutrient circulation (Figure 3B).
Non-aerated hydroponic system could limit oxygen availability
to plant roots, which could trigger ethylene production and
may exert adverse affects on root growth (Barrett-Lennard
and Dracup, 1988). Modified hydroponic system was used for
studying the temporal (2, 4, and 7 days) effects of Pi deficiency
on morphophysiological and molecular responses (Figure 3C).

Pi Deficiency-Mediated Affects on
Phenotypic Traits
Temporal effects of Pi deficiency was determined on shoot
phenotype and its total area (Figure 4). Pi deprivation for 2

FIGURE 3 | Modified hydroponic system. (A) Modified hydroponic system made of autoclavable Magenta box, polycarbonate wedge support, polypropylene
mesh and germinated rice seedlings placed on the mesh with radicle traversing through the hole punched around its perimeter. (B) Complete aerated hydroponic
system (AHS). (C) Seedlings were grown in AHS under P+ (0.3 mM NaH2PO4) and P− (0 mM NaH2PO4) conditions for 2, 4, and 7 days.
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FIGURE 4 | Temporal effect of Pi deficiency on shoot area. MI48 seedlings (4-days-old) were grown under P+ and P− conditions for 2, 4, and 7 days.
(A) Harvested shoots were gently spread and scanned to reveal the details of leaves. (B) Data presented for total shoot area. Values are mean ± SE and different
letters indicate that the means differ significantly (P < 0.05).

and 4 days did not exert any significant (P < 0.05) influence
on shoot phenotype (Figure 4A) and its total area (Figure 4B).
The effect of Pi deficiency became evident on shoot growth only
after 7 days treatment. Growth of P+ shoot was more vigorous
compared with P− shoot (Figure 4A) and also area of P−
shoot was ∼25% lower compared with P+ (Figure 4B). The
result was consistent with an earlier study, which also showed
attenuating effect of Pi deprivation on shoot length in rice (Yang
et al., 2014). This suggested the suitability of modified hydroponic

system for generating shoot tissues for Pi deficiency-mediated
responses.

Temporal effects of Pi deprivation was investigated on the
responses of embryonically (primary and seminal) and post-
embryonically (adventitious and lateral) developed roots. Two
distinct root phenotypes were observed for both P+ and P−
seedlings grown for 2 days (Figure 5). Although, majority
of the primary roots of P+ and P− seedlings did not show
lateral root growth (Figure 5Aa), 25–30% of them revealed
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FIGURE 5 | Effects of Pi deficiency for 2 days on RSA under different growth conditions. MI48 seedlings (4-days-old) were grown under P+ and P−
conditions for 2 days in a modified hydroponic system as shown in Figure 3C and in Petri plates lined with blotting paper. (A,C) Harvested roots were spread to
reveal the details of RSA showing (a) lack and (b) exuberant growth of lateral roots on primary root of P+ and P− seedlings during growth on modified hydroponic
system (A) and in Petri plates lined with blotting paper (C). Seminal roots (A,C) are indicated with blue dots at their tips. (B,D) Data presented for per cent seedlings
showing lateral root development on primary root during growth on modified hydroponic system (B) and in Petri plates lined with blotting paper (D).
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FIGURE 6 | Effects of Pi deficiency for 4 days on RSA. MI48 seedlings (4-days-old) were grown under P+ and P− conditions for 4 days. (A) Harvested roots
were spread to reveal the details of RSA showing (a) seminal and (b) primary roots with well developed lateral roots of both P+ and P− seedlings. Data are
presented for (B) number and (C) total length of lateral roots on seminal roots. Values (B,C) are mean ± SE and n = 12 replicates. Different letters on the histogram
indicate that the means differ significantly (P < 0.05).

their development (Figure 5Ab). However, there were significant
variations in both the number (P+, 2.58 ± 1.71 [SE]; P−,
4.01 ± 2.09 [SE]) and total length (P+, 2.98 cm ± 1.85 cm
[SE]; P−, 4.09 cm ± 2.07 cm [SE]) of these lateral roots.
This highlighted the prevalence of extensive variability in
the developmental responses of lateral roots on primary root
irrespective of Pi regime. There was no significant (P < 0.05)
difference in primary root length of P+ and P− seedlings
and was comparable to the radicle length before the treatment
(Figure 2C), which indicated no significant (P < 0.05) increment
in this root trait during 2 days treatment. There was thus an
apparent lack of correlation between growth responses of primary
root and occasional post-embryonically developed lateral roots
on them in P+ and P− seedlings. Number (P+, 7.01 ± 0.81
[SE]; P−, 6.75 ± 0.48 [SE]) and length (P+, 10.57 cm ± 1.85 cm
[SE]; P−, 10.95 cm ± 1.14 cm [SE]) of seminal roots varied but
the effect of Pi deficiency was not apparent. Neither lateral roots
on seminal roots nor adventitious roots in P+ and P− seedlings
could be detected after 2 days treatment.

To ensure that the responses of the root system under P+
and P− conditions in the modified hydroponic system was not

an artifact, MI48 seedlings with radicle length in the range of
2–3 cm (Figure 2C) were also grown on square Petri plate
(115 mm × 115 mm) lined with blotting paper kept moist
with these nutrient solutions for 2 days. Figure 5C presents the
RSA of these seedlings. Differences in primary root length of
P+ (2.14 cm ± 0.06 cm [SE]) and P− (2.21 cm ± 0.06 cm
[SE]) seedlings were insignificant (P < 0.05) and also the
corresponding values were comparable with those grown in
the modified hydroponic system. About 33% of both P+ and
P− seedlings developed lateral roots (Figure 5D). Sporadic
development of lateral roots on P+ and P− primary roots on
blotting paper was similar to that observed in P+ and P−
seedlings grown in the modified hydroponic system (Figure 5B).
These lateral roots exhibited significant variations in both the
number (P+, 3.08 ± 1.43 [SE]; P−, 4.75 ± 1.81 [SE]) and total
length (P+, 0.48 cm ± 0.27 cm [SE]; P−, 0.56 cm ± 0.28 cm
[SE]); a feature also observed with the seedlings grown in the
modified hydroponic system. Overall, these root traits (primary
root length, number and length of lateral roots) of MI48
showed comparable responses irrespective of Pi regime or growth
conditions (hydroponics and blotting paper). This suggested that
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FIGURE 7 | Effects of Pi deficiency for 7 days on MI48 RSA. MI48 seedlings (4-days-old) were grown under P+ and P− conditions for 7 days. (A) Harvested
roots were spread to reveal the details of RSA of P+ and P− seedlings showing (a) primary, (b) seminal and (c) adventitious roots along with their lateral roots. Data
are presented for primary root length (B), number (C), and total length (D) of 1st order lateral roots on primary root, number (E), and total length (F) of lateral roots
on seminal roots, number (G) and total length (H) of lateral roots on adventitious roots and total root length (I). Values (B–I) are mean ± SE and n = 12 replicates.
Different letters on the histogram indicate that the means differ significantly (P < 0.05).

developmental responses of these root traits under P+ and P−
conditions are not artifacts of the modified hydroponic system.
Pi deficiency also did not exert any significant (P < 0.05)
influence on the number (P+, 4.25 ± 0.65 [SE]; P−, 4.17 ± 0.49

[SE]) and total length (P+, 1.33 cm ± 0.29 cm [SE]; P−,
1.19 cm ± 0.19 cm [SE]) of seminal roots during growth on
the blotting paper. Although, the developmental responses of
seminal roots were not influenced by the Pi regime during
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FIGURE 8 | Effects of Pi deficiency for 7 days on N22 RSA. N22 seedlings (4-days-old) were grown under P+ and P− conditions for 7 days. (A) Harvested
roots were spread to reveal the details of RSA of P+ and P− seedlings showing (a) adventitious roots, (b) seminal and (c) primary roots along with their lateral roots.
Data are presented for primary root length (B), number (C), and total length (D) of 1st order lateral roots on primary root, number (E) and total length (F) of 2nd order
lateral roots on primary root, number (G) and total length (H) of seminal roots, number (I) and total length (J) of lateral roots on seminal roots, number (K) and total
length (L) of adventitious roots, number (M) and total length (N) of lateral roots on adventitious roots, and total root length (O). Values (B–O) are mean ± SE and
n = 12 replicates. Different letters on the histogram indicate that the means differ significantly (P < 0.05).
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FIGURE 9 | Effects of Pi deficiency on soluble Pi content. MI48
seedlings (4-days-old) were grown under P+ and P− conditions for 2, 4, and
7 days. Roots were harvested for determining soluble Pi content. Values are
mean ± SE and n = 12 replicates. Different letters on the histogram indicate
that the means differ significantly (P < 0.05).

growth in the modified hydroponic system and on the blotting
paper, the corresponding values (number and total length) were
significantly (P < 0.05) higher in the former. This suggested
better growth and development of root system of rice under
P+ and P− conditions in the modified hydroponic system
compared with the blotting paper. A lower total root length of
P+ (3.94 cm ± 0.52 cm [SE]) and P− (3.84 cm ± 0.41 cm [SE])
seedlings during growth on the blotting paper compared with
modified hydroponic system further provided evidence toward
the efficacy of the latter. Therefore, the modified hydroponic
system was employed for subsequent analysis of the effects of Pi
deprivation for 4 and 7 days on different root traits.

Seedlings were grown under P+ and P− conditions for
4 days and their RSA are presented in Figure 6A. Although,
there was no significant (P < 0.05) difference in primary
root length of P+ (5.22 cm ± 0.84 cm [SE]) and P−
(4.57 cm± 1.39 cm [SE]) seedlings, it was significantly (P < 0.05)
higher compared with corresponding 2 days seedlings. This
revealed a progressive increment in primary root length of
both P+ and P− seedlings over a period of time. There was
a significant (P < 0.05) increase in the percentage of P+ and
P− primary roots with well developed lateral roots from ∼25
(2 days) to ∼75 (4 days) suggesting a temporal delay in the
development of lateral roots irrespective of Pi regime. However,
there were substantial variations in both the number (P+,
28.92 ± 11.35 [SE]; P−, 19.58 ± 6.17 [SE]) and length (P+,
23.23 cm ± 8.91 cm [SE]; P−, 23.06 cm ± 7.47 cm [SE]) of
1st-order lateral roots of P+ and P− seedlings. A similar trend
was also observed for the number (P+, 8.42 ± 4.16 [SE]; P−,
3.67 ± 1.89 [SE]) and length (P+, 1.37 cm ± 0.65 cm [SE];
P−, 0.85 cm ± 0.44 cm [SE]) of 2nd-order lateral roots of
these seedlings. Therefore, it was not surprising to see a lack
of significant (P < 0.05) differences in any of these lateral root
traits under different Pi regime. The effect of Pi deprivation

was also not evident on the number (P+, 8 ± 0.57 [SE]; P−,
8 ± 0.61 [SE]) and total length (P+, 20.29 cm ± 2.99 cm [SE];
P−, 18.33 cm ± 1.88 cm [SE]) of seminal roots. Although,
both primary and seminal roots are embryonic in origin, the
latter contributed significantly toward the total root length under
both P+ and P− conditions. There is a positive correlation
between seminal root length and the ability of rice genotypes to
produce deep roots and high yield (Rahman and Musa, 2009).
Lateral root development on the seminal roots became apparent
only 4 days after treatment and both the number and total
length were significantly (P < 0.05) higher in P+ seedlings
compared with P− seedlings (Figures 6B,C). Adventitious roots
were not detected in these seedlings. Despite some effects of
Pi deprivation on the developmental responses of lateral roots
on seminal roots, differences in the total root length of P+
(58.01 cm ± 6.55 cm [SE]) and P− (48.81 cm ± 6.21 cm[SE])
seedlings were insignificant (P < 0.05).

Finally, the effects of Pi deficiency for 7 days on different RSA
traits were determined. Details of P+ and P− RSA are presented
in Figure 7A. Pi deficiency triggered significant (P < 0.05)
increase (∼20%) in primary root length compared with P+
seedling (Figure 7B). The result was consistent with earlier
studies reporting Pi deficiency-mediated accentuated growth
response of primary root in O. sativa ssp. indica genotype
Kasalath (Shimizu et al., 2004) and O. sativa ssp. japonica
genotypes Zhonghua10 (Dai et al., 2012, 2016) and Nipponbare
(Zhou et al., 2008; Torabi et al., 2009; Zheng et al., 2009; Hu
et al., 2011). Interestingly, a similar trend was also observed in
NIL6-4 derived from Pi deficiency-intolerant Nipponbare × Pi
deficiency-tolerant Kasalath (Torabi et al., 2009). Primary root
of P+ and P− seedlings exhibited exuberant growth of lateral
roots. There were significant (P < 0.05) increases in both
the number and total length of 1st-order lateral roots of P−
seedlings compared with P+ seedlings (Figures 7C,D). The
result was consistent with earlier studies on japonica genotypes
Dongjin and Nipponbare exhibiting augmented number and/or
length of lateral roots on primary root of Pi-deprived seedling
(Wang S. et al., 2014; Yang et al., 2014). Some of the older
1st-order lateral roots of P+ and P− seedlings developed
2nd-order lateral roots but differences in their number (P+,
52.5 ± 5.99 [SE]; P−, 44.58 ± 4.18 [SE]) and total length
(P+, 11.95 cm ± 1.48 cm [SE]; P−, 11.43 cm ± 3.57 [SE])
were insignificant (P < 0.05). Differences in the number (P+,
3.75 ± 0.22 [SE]; P−, 4.17 ± 0.52 [SE]) and total length
(P+, 13.98 cm ± 0.48 cm [SE]; P−, 16.39 cm ± 1.92 [SE])
of seminal roots were insignificant (P < 0.05) under P+ and
P−conditions. However, attenuating effects of Pi deprivation
were evident on both the number and total length of lateral
roots on seminal roots (Figures 7E,F). An earlier study has also
shown the attenuating effects of Pi deficiency on seminal root
length of O. rufipogon (wild rice species) and Curinga (tropical
japonica; Ogawa et al., 2014). There was also development of
adventitious roots from hypocotyls of P+ and P− seedlings.
Their number (P+, 4.25 ± 0.22 [SE]; P−, 4.08 ± 0.49 [SE]) and
length (P+, 11.48 cm ± 1.31 cm [SE]; P−, 8.73 cm ± 0.87 cm
[SE]) were not significantly (P < 0.05) influenced by Pi
status of the nutrient medium. Wang S. et al. (2014) also
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FIGURE 10 | Effects of Pi deficiency-mediated responses of genes involved in Pi homeostasis. Real-time PCR analysis of relative expression levels in roots
of MI48 seedlings grown under P+ and P− conditions for 7 days. OsRubQ1 was used as an internal control. Data presented are means of six technical
replicates ± SE.

did not observe any significant effect of Pi deficiency on
the number of adventitious root of genotypes Dongjin and
Nipponbare. On the contrary, in other studies Pi deficiency
was found to exert either inhibitory (genotype Zhonghua10,
Dai et al., 2016) or stimulatory (genotype Zhonghua10, Dai
et al., 2012; genotype Dongjin, Wang et al., 2015) effects on
the developmental responses of adventitious root. This clearly
suggested the influence of the genotype on Pi deficiency-
mediated effects on the number and/or length of adventitious
root. Inhibitory effects of Pi deprivation were evident on both
the number and total length of lateral roots on adventitious
roots compared with P+ seedlings (Figures 7G,H). Overall,
total root length of P− seedling was significantly (P < 0.05)
lower compared with P+ seedling (Figure 7I). Further, effects
of Pi deficiency for 7 days on different root traits were
evaluated in Nagina22 (N22) (Figure 8). Details of P+ and
P− RSA are presented in Figure 8A. Pi deficiency exerted
attenuating effects on the primary root length (Figure 8B),
which was consistent with an earlier study (Panigrahy et al.,
2014). Interestingly though, the response was contrary to the
stimulatory effect on this root trait in MI48. Shimizu et al.
(2004) also reported stimulation and no effect on the primary

root growth during Pi deprivation in Kasalath (indica) and
Gimbozu (japonica), respectively. Pi deficiency also exerted
inhibitory effects on both the number (Figure 8C) and total
length (Figure 8D) of 1st-order lateral roots on primary root
of N22, which was contrary to MI48. A similar inhibitory
influence of Pi deficiency was also evident on the number
(Figure 8E) and total length (Figure 8F) of 2nd-order lateral
roots on primary root, and number (Figure 8G) and total
length (Figure 8H) of seminal roots of N22. Comparatively,
none of these traits were significantly (P < 0.05) affected by
Pi deficiency in MI48. Although, Pi deficiency did not have
significant influence on both the number and total length of
adventitious roots in MI48, values for both these traits were
significantly (P < 0.05) higher in P− seedlings compared with
P+ seedlings of N22 (Figures 8K,L). Comparative analysis of
the effects of Pi deficiency on different root traits of MI48
and N22 clearly revealed the genotypic differences. In addition,
there were attenuating effects of Pi deprivation on the number
(Figures 8I,M) and length (Figures 8J,N) of lateral roots on
seminal and adventitious roots and total root length (Figure 8O)
of N22. A similar effect of Pi deficiency was also observed for
these root traits in MI48. The study thus indicated the efficacy of
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the modified hydroponic system in delineating both differential
and comparable effects of Pi deficiency on different root traits in
these genotypes.

Pi Deficiency-Mediated Molecular
Responses
Roots of seedlings grown under P+ and P− conditions for 2,
4, and 7 days were analyzed for soluble Pi content (Figure 9).
Compared with P+ roots, Pi content in P− roots was significantly
(P < 0.05) reduced by 33, 73, and 77% after Pi deprivation for 2, 4,
and 7 days, respectively. Several genes have been identified in rice
that play pivotal roles in the maintenance of Pi homeostasis in
rice (Wu et al., 2013). The effects of Pi deficiency on the relative
expression levels of these genes in the roots of seedlings grown
under P+ and P− conditions for 7 days were assayed by real-
time PCR (Figure 10). There was no induction of transcription
factor OsPHR2 in response to Pi deficiency and was consistent
with an earlier study (Zhou et al., 2008). Whereas, there were
69- and 18-fold induction in the relative expression levels of
OsmiR399d and OsmiR399j, respectively. An earlier study had
also reported Pi deficiency-mediated induction of OsmiR399s;
a pivotal component of Pi sensing and signaling pathway
downstream of OsPHR2 (Zhou et al., 2008). miRNA399 targets E2
ubiquitin-conjugase OsPHO2, which is expressed constitutively
irrespective of the Pi regime (Hu et al., 2011). Consistent with this
report, the relative expression levels of OsPHO2 were comparable
in P+ and P− roots. Further, Pi deficiency triggered 31-fold
induction in the relative expression level of OsIPSI. Hou et al.
(2005) also reported rapid induction of OsIPSI in Pi-deprived
roots of rice and has been implicated in potentially mimicking
OsmiR399 target thereby attenuating its suppressive effect (Wu
et al., 2013). Proteins harboring the SPX domain (OsSPX1–6)
play key roles in the maintenance of Pi homeostasis (Secco et al.,
2012). In P− roots, there were significant increases in the relative
expression levels of OsSPX1 (∼10-fold), OsSPX2 (∼10-fold), and
OsSPX3 (∼34-fold) compared with P+ roots suggesting their
roles in the maintenance of Pi homeostasis and were coherent
with an earlier study demonstrating their significant induction
during Pi deficiency (Wang et al., 2009). SPX1 and SPX2 act
as Pi-dependent inhibitors of OsPHR2 activity (Wang Z. et al.,
2014). Pi deficiency also triggered significant increases in the
relative expression levels of Pi transporters OsPT2 (∼40-fold),
OsPT3 (∼70-fold), OsPT6 (∼170-fold), and OsPT8 (∼3-fold)
in P− roots compared with P+ roots. OsPT2, a low-affinity
Pi transporter, plays a role in mobilizing stored Pi in plants
and high-affinity Pi transporter OsPT6 has been implicated in
uptake and translocation of Pi throughout the plant (Ai et al.,
2009). OsPT8, another high-affinity Pi transporter, is essential
for the maintenance of Pi homeostasis and proper growth and

development of plant (Jia et al., 2011). OsPT3 has not yet been
functionally characterized.

CONCLUSION

The modified hydroponic system was amenable for detailed
analysis of the temporal effects of Pi deprivation on the
developmental responses of primary, seminal and adventitious
roots and also of the lateral roots on each of them of rice
genotypes MI48 and N22. The data generated on Pi deficiency-
mediated effects on different root traits could be employed
for mathematical simulation and modeling. The modified
hydroponic system also facilitated generation of tissues for
physiological and molecular analyses. It is equally conducive
for studying the effects of other nutrient deficiencies or cross
talk between different nutrients on morphophysiological and
molecular responses of rice genotypes. This modified hydroponic
system would also facilitate in rapid identification of Pi
deficiency-responsive root traits in a large number of genotypes
for genome-wide association study (GWAS).
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Plant research is supported by an ever-growing collection of mutant or transgenic
lines. In the past, a typical basic research laboratory would focus on only a few
plant lines that were carefully isolated from collections of lines containing random
mutations. The subsequent technological breakthrough in high-throughput sequencing,
combined with novel and highly efficient mutagenesis techniques (including site-directed
mutagenesis), has led to a recent exponential growth in plant line collections used
by individual researchers. Tracking the generation and genetic properties of these
genetic resources is thus becoming increasingly challenging for researchers. Another
difficulty for researchers is controlling the use of seeds protected by a Material Transfer
Agreement, as often only the original recipient of the seeds is aware of the existence of
such documents. This situation can thus lead to difficult legal situations. Simultaneously,
various institutions and the general public now demand more information about the
use of genetically modified organisms (GMOs). In response, researchers are seeking
new database solutions to address the triple challenge of research competition,
legal constraints, and institutional/public demands. To help plant biology laboratories
organize, describe, store, trace, and distribute their seeds, we have developed
the new program SeedUSoon, with simplicity in mind. This software contains data
management functions that allow the separate tracking of distinct mutations, even in
successive crossings or mutagenesis. SeedUSoon reflects the biotechnological diversity
of mutations and transgenes contained in any specific line, and the history of their
inheritance. It can facilitate GMO certification procedures by distinguishing mutations on
the basis of the presence/absence of a transgene, and by recording the technology used
for their generation. Its interface can be customized to match the context and rules of
any laboratory. In addition, SeedUSoon includes functions to help the laboratory protect
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intellectual property, export data, and facilitate seed exchange between laboratories.
The SeedUSoon program, which is customizable to match individual practices and
preferences, provides a powerful toolkit to plant laboratories searching for innovative
approaches in laboratory management.

Keywords: software, database, plant, seed, genetics, genealogy, MTA

INTRODUCTION

Basic research in plant biology frequently relies on plants
whose genomes have been engineered for distinct purposes.
For example, biotechnological applications derived from the
machinery of the plant pathogen Agrobacterium allows the now
routine insertion of T-DNA from specific vectors into the plant
genome (Hellens et al., 2000). Inserted sequences can allow
the expression of a vast array of constructs of interest (such
as RNAi or antisense transcripts, GFP-protein fusions, over-
expressed genes, biosensors, reporters, and antibiotic or herbicide
resistance cassettes). In addition, the insertion of T-DNA into
the genome is used to generate libraries of knock-out (KO)
mutants. These insertions occur randomly in the plant genome,
even though collections of T-DNA insertional mutants will often
be enriched for insertions occurring within transcriptionally
active parts of the genome (Ortega et al., 2002; Kim and
Gelvin, 2007). Similarly, libraries of insertional mutants have
been built on the ability of transposons to replicate and insert
randomly into the plant genome (Greco et al., 2001; Wegmuller
et al., 2008). In addition to collections of T-DNA or transposon
insertional mutants, researchers have access to libraries of plant
lines containing point mutations or deletions that randomly
affect endogenous gene sequences through EMS treatments or
irradiations (Li et al., 2002; Kim et al., 2006; Svistoonoff et al.,
2007).

Recently, the panel of available mutations was further
expanded by engineering site-specific nucleases derived from
CRISPR/Cas9, TALEN, ZFN, and meganucleases (Fauser et al.,
2014; Baltes and Voytas, 2015). These techniques now make it
possible to generate random or precise mutations within specific
gene loci in plants, by performing site-directed mutagenesis.
Each mutagenesis often results in the generation of a whole
set of mutant alleles for a single targeted sequence. Due to
their simplicity, some of these applications are becoming routine
methods for synthetic biology applications and basic research
purposes. These genetic modifications are not only restricted to
DNA, as pentatricopeptide repeat proteins also make it possible
to alter RNA (Yagi et al., 2014).

The wide availability of efficient and affordable cloning,
mutagenesis and transformation techniques has accelerated the
generation of transgenic plants. In parallel, the availability
of mutant libraries combined with the development of high-
throughput sequencing methods has impressively facilitated the
precise genotyping of KO mutants. As a consequence, the
size of plant and seed collections has dramatically expanded
in the past 10 years for many typical research laboratories.
These collections contain lines derived from a large diversity
of mutagenesis methods, reflecting the ever-growing power

of genetics. Plant lines can also combine several mutations,
and today it is common to analyze triple, quadruple or
quintuple mutants for different loci that were obtained through
combinations of different mutagenesis technologies. A clear
understanding of the genetic diversity and biotechnological
origin of these seed collections is becoming more and
more crucial, as each technique presents different risks of
artifacts. For instance, CRISPR/Cas9 mutagenesis presents
risks of off-target mutations (Baltes and Voytas, 2015), and
EMS-mutagenized collections often contain numerous point
mutations in a single plant (Henikoff et al., 2004). This can
complicate phenotype studies, giving undesired effects that are
unrelated to the targeted gene. In addition, some particular
sequences (such as the 35S promoter) are known to trigger
progressive T-DNA silencing after each successive generation
(Mlotshwa et al., 2010). This underscores the importance of
maintaining a clear overview of the progeny of a seed (including
amplifications), as well as a record of the history of T-DNA
inheritance through crosses with other plant lines, or through
secondary mutagenesis of lines already containing a T-DNA
insert.

Another critical factor is the maintaining of an accurate
record of all stored plant lines to comply with procedures
linked to genetically modified organism (GMO) certifications.
Although the definition of GMOs itself is a matter of debate, the
current European regulation distinguished GMOs based on the
techniques used for the biotechnological engineering of plants
(Hartung and Schiemann, 2014). It will distinguish between
plants that contain recombinant DNA from other organisms
(classified as GMOs) and plants that contain only point mutations
of their native DNA (considered non-GMOs). Transposons are
a specific case, depending on whether or not the sequence of
the native transposons has been engineered (Greco et al., 2001;
Wegmuller et al., 2008). The ability to distinguish mutations
on a biotechnology basis (i.e., the presence or not of T-DNA
or transposon transgenes versus point mutations) would be a
first step toward the improved tracking of plant lines for GMO
certifications.

Seed collections are often the result of combined efforts
from several people and different laboratories. Resources can be
obtained through seed stock centers or by directly contacting
the laboratories that generated them. Although the use of most
plant lines is often unrestricted, some lines are protected under
a Material Transfer Agreement (MTA) signed between research
institutions, defining a strict set of acceptable uses of the seeds.
It is important to track the original plants protected by an MTA
or under the control of a GMO certification as well as their
progeny, through all the series of successive seed amplifications
and crosses with other lines. The possible use for all of these
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related plants is equally constrained within the limits of signed
MTAs or GMO certification documents. New tools that facilitate
tracking of GMOs and MTAs for scientists would greatly improve
the compliance within administrative and legal contexts.

Several affordable or free software programs are presently
available to improve plant line management. However, to our
knowledge none of them are capable of reflecting the inheritance
patterns of individual mutations through the successive rounds of
seed amplifications, line crossing or mutagenesis encountered in
a typical research laboratory. Indeed, most programs have been
designed for managers of plant transformation or greenhouse
facilities that use standardized procedures (Scott et al., 2003;
Henry et al., 2008; Kohl and Gremmels, 2010; Hanke et al., 2014),
or for plant breeding laboratories facing large sets of phenotyping
and genotyping data derived from accession sequencing or QTL
mapping (Lee et al., 2005; Jung et al., 2011; Milc et al., 2011;
Love et al., 2012). Nevertheless, several software programs have
been developed to track plant lines in basic research laboratories,
such as PlantDB and Phytotracker (Exner et al., 2008; Nieuwland
et al., 2012). Although they include such functions as plant,
seed and plasmid management modules along with genotyping
indications, these programs are not capable of independently
tracking individual mutations through successive crossings and
seed amplifications. In fact, they can only follow the general
relationship between seed batches, tracking all seed batches
derived from an individual plant.

Despite the presence of these programs, we could not identify
any software designed to specifically track the inheritance
of mutations or transgenes within the complex history of
seed collections, which would also be capable of reflecting
the ever-growing diversity of biotechnological applications for
plant mutagenesis and transgenesis. We therefore decided to
create a new seed and plant database solution that utilizes
strong genetic concepts, including mutation inheritance and
independent genotyping of each mutation. At the same time, we
wanted to provide a simple and intuitive interface that would
respect the habits of individual laboratories and their members.

To answer this need, we have developed the “SeedUSoon”
software. Its intuitive and flexible user interface permits the
tracking of plant lines along with plants and seed batches, and
it includes a graphical representation of the genetic link between
related plant lines arising from crosses or secondary mutagenesis.
Mutations inherited from parental lines can easily be identified
using our software, and transgenic (GMO)/non-transgenic (non-
GMO) types of mutations can be color-coded for fast visual
identification.

The program can be easily customized to the needs of
each laboratory through an administrative module, for use
with different plant models or mutagenesis techniques, for
instance. Users can also decide whether they enter each seed
generation, or only important seed batches. Other functions
include the uploading of genotyping protocols (for instance PCR
primers and programs used to identify a mutation), articles,
genotyping, and the phenotyping results of individual samples,
microscopy images, etc. We have also developed export/import
functions to facilitate seed exchange between laboratories, and
MTA tracking functions for improved intellectual property

management practices. Altogether, the SeedUSoon software is
an attractive and free solution for plant laboratories facing the
challenge of keeping accurate seed collection records.

MATERIALS AND METHODS

Implementation
We developed the SeedUSoon user interface (version 1.1.0) using
the platform-independent Java programming language1. This
choice allows the software to operate on any system running Java
1.8 or higher. It has been tested with the Windows XP, Windows
7, Windows 8, and Mac OS X (up to Mavericks) operating
systems.

The SeedUSoon software needs to connect to a database
(client/server architecture) that can be present on the same
computer, or preferably on a server for multiple user access. The
computer hosting the database must run MySQL (version 5.5.35
or higher). Extended computer knowledge is only necessary for
the database installation.

Software and Start-Up Database
Availability
SeedUSoon is distributed under a proprietary license, and is free
exclusively for academic purposes (i.e., non-profit institutions).
Non-academics interested in the program cannot access the
software and must contact us directly.

Academics can sign the proprietary license agreement through
the project website2. Once completed, this provides access to the
download page for the SeedUSoon software, a start-up database,
and the installation procedures.

An example of exported data, a template form to load
customized laboratory information, demonstration movies,
FAQs and access to updated versions of the software will be
posted on the project website. Specific questions can be directed
to the project leaders by using the dedicated email address
SeedUSoon@cea.fr.

RESULTS

SeedUSoon Concepts
“Line” Concept
SeedUSoon is designed around the core concept of “plant lines,”
whose definition is very similar to the one used by many plant
science researchers when referring to the series of successive
generations derived from particular plants. A “Plant line” is
defined by a set of unique traits (mutations or transgenes, named
“Genetic features” in SeedUSoon; Figures 1A,B) in a biological
context (species and ecotype). All plants and seeds arising from
selfcrosses or backcrosses are still considered part of the same
“Plant line,” so that under a single “Plant line” entry, the user can
record as many seeds or plants as desired. The precise genotyping
(such as the heterozygous/homozygous state of each mutation, or

1https://www.java.com
2http://biam.cea.fr/drf/biam/Pages/laboratoires/lbdp/SeedUSoon.aspx
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FIGURE 1 | User mode interface. (A) General organization of a plant line datasheet. (B) The two categories of genetic features (transgenesis/endogenous gene
mutagenesis) with examples of corresponding applications. (C) Detailed user mode organization; a: genetic features table, b: plant table, c: seed batches table, d:
access to the customized laboratory guidelines, e: access to the user mode, f: access to the administrative mode, g: search engine, h: plant line datasheet, i:
general information, j: genealogy tree, k: access to plant line generation wizards (new, crossing, mutagenesis, and import), l: addition of new genetic features, m,n:
lock buttons, o,p: export buttons.
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the segregation pattern of seed batches) can be recorded for each
individual plant or seed batch entry.

However, if crosses are performed with plants carrying other
types or mutations or with plants from another ecotype, the
genetic properties of the resulting line will significantly differ
from the original plant. For this reason, the progeny of these types
of crossings must be entered as a new “Plant line” entry. Similarly,
if a previously mutagenized plant line is subjected to a secondary
mutagenesis or transgenesis, the resulting progeny will constitute
a new “Plant line.”

A “Plant line” datasheet is organized in five different parts
(Figure 1A). The line name and general information associated
with this line are displayed in the upper left area, including
the plant species and ecotype, its origin and the existence of
any MTA protecting the material (“General information” fields,
Figures 1A,C, Supplementary Figure 1). In the center of the
screen, a table presents blue or green boxes containing the names
of all individual mutations or transgenes (i.e., “Genetic features”;
Figures 1A–C) along with their origin (in which “from. . .”
indicates the original plant line containing this mutation). The
content of each box can be expanded in order to access the
individual properties of each “Genetic feature” (“Genetic features
fields,” Supplementary Figure 1). If no green or blue box appears
inside this table, the genotype of the corresponding plant line
is considered to be WT. At the upper right corner, the parental
lineage and the mutagenesis/genetic history of the opened plant
line datasheet is represented by a tree.

Finally, two tables for plants (Figures 1A,C, left) and seed
batches (Figures 1A,C, right) are located in the lower part of
the datasheet. Generations of plants and seeds can be recorded
at any time, including the skipping of generations, which allows
users to avoid a strict “generation workflow.” The user enters
the generation stage and can record for each plant the precise
genotyping of each “Genetic feature” listed in the upper table
(or the segregation profile for each seed batch). Consequently,
by using a “Plant line” as the entry point, the user can access all
recorded generations of seeds or plants that share the same overall
genetic background.

By organizing the datasheet into five parts (general
information, genetic features, tree, the plants table, and the
seed batches table), users can focus on the core properties of each
line (genetic context and history, ecotype, etc.) before searching
through all available seeds or plants corresponding to these
criteria. The software also allows users to decide whether they
want to track all successive generations of a plant line, or to only
record a subset of particularly valuable seed batches.

During the development of our software, the ability to
compare the behavior and properties of successive seed
generations in a single table was a recurring request from
researchers that we spoke with. One reason for this is that
epigenetic phenomena can affect the behavior of descendants
of seemingly identical plants, in particular through DNA
methylation (Mlotshwa et al., 2010; Diez et al., 2014). A table
comparing the properties of distinct generations can thus be
instrumental in identifying the appearance or loss of specific
phenotypes, or the progressive silencing of T-DNA expression.
Similarly, the lack of a link between phenotype and desired

mutations might suggest the presence of an unknown off-target
mutation (frequent with CRISPR/Cas9 or EMS mutagenesis).

When performing T-DNA transformation for specific
purposes (such as RNAi silencing or expression of GFP-protein
fusions), it is convenient to visualize all available independent
transformants at once (along with their descendants). In this
case, a software user often prefers to record all independent
transformants within a single “Plant line” rather than as separate
“plant lines.” Properly speaking, the independent transformants
do not share the exact same genetic properties. The T-DNA
insertion sites are variable in these lines, and have a putative
impact on the properties of the resulting plants (Kohli et al.,
2006). Nevertheless, comparing all independent transformants
within a single plant line can be advantageous for tracking the
outcome of a T-DNA transformation; this approach can also
quickly identify undesirable effects, such as construct silencing,
patchy expression, etc. With SeedUSoon, laboratories can decide
if they want to record independent plant line datasheets for each
insertion or use a single datasheet for all independent transgene
insertion events, since T-DNA insertion sites can be defined
in two locations within the datasheet: either in the transgene
sequence section in the “Genetic feature” table (Figure 1A),
or for each of the individual plants recorded in the lower table
(i.e., different insertion sites can be recorded in the plant table
specifically for each plant entry; Figures 1A,C-a,b). Finally, seed
batches can be linked to these individual plants.

Two Categories of “Genetic Features”
Mutations or transgenes present in the genome of a “Plant
line” are recorded as unique “Genetic Features,” and listed in
the corresponding table of the plant line datasheet (Figure 1A).
There are two distinct feature categories, “Transgenesis”
and “Endogenous gene mutagenesis,” with the latter one
corresponding to point mutations, nucleic deletions and
insertions affecting an endogenous genomic sequence that does
not involve the insertion of a transgene (T-DNA or transposon).

The “Transgenesis” feature must be selected for T-DNA or
transposon mutagenesis (Clough and Bent, 1998; Greco et al.,
2001; Gomez et al., 2009), and corresponding mutations will
appear in green in the features table (Figure 1B). “Endogenous
gene mutagenesis” corresponds to mutations in endogenous
genes with no transgene insertion, such as EMS, gamma
irradiation, or natural variants (Kim et al., 2006; Svistoonoff et al.,
2007; Fauser et al., 2014). These will appear in blue in the features
table (Figure 1B). In the case of CRISPR, TALEN, or ZFN
mutagenesis, the plant line will contain both a “Transgenesis” box
in green (i.e., the T-DNA containing the mutagenic machinery)
and an “Endogenous gene mutagenesis” box in blue [i.e., the
targeted endogenous gene loci (Fauser et al., 2014)].

The blue/green color code allows the user to quickly recognize
the “Transgenesis” from “Endogenous gene mutagenesis”
features. Plants potentially containing transgenes (i.e., GMOs)
can thus be immediately distinguished from all other mutation
categories (Figure 1A).

Each feature category will call for a specific set of information
fields that are ready to be completed by the user (Supplementary
Figure 1). In particular, a single sequence can be recorded
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for “Endogenous mutagenesis” (the mutated genomic locus),
whereas a “Transgenesis” feature can record the transgene
sequence (in the “Genetic features” properties) as well as several
independent genomic insertion sites (in the plant table entries;
Figure 1A).

Easy Customization of SeedUSoon: Adaptation to the
Laboratory Context
Personalized “lab” guidelines
SeedUSoon contains a customizable document that will provide
laboratory members with specific guidelines and rules decided
within their own laboratory. An “Our lab” icon is always
visible on the SeedUSoon main page and provides access to
this document (Figure 1C-d). This document specifies how to
name lines and successive generations, and describes which file
formats are acceptable for upload into the database. In addition, it
provides details on the organization of the laboratory’s common
seed stock, how to store seeds, and protocols for seed selection,
transformation, etc.

A window asking the user to upload the manual will
appear following the first activation of the “Our lab” icon.
After this initial upload, the document will automatically open
whenever any user clicks on “Our lab.” Newer versions of the
manual can then be uploaded by following the path: Tools
tab/Options/Labo/User manual.

A document containing an example of laboratory guidelines is
provided for use as a template (see Supplementary Data Sheet 1
and the project website).

Customization of the user module
Parameters and methods susceptible to change between
laboratories are presented in scroll-down menus when in the
user mode. These menu options are customizable, but can only
be edited by the database administrator in the administrative
mode (see the corresponding section for details). This allows the
software options to closely match the habits and protocols of
each laboratory, while preserving a certain consistency.

Through these scroll-down menus, the user will have access to
a specific selection of laboratory member’s names, plant species,
ecotypes, strains, plant resistances, and mutation methods in
use in the laboratory. New entries or modifications to the
scroll-down menu options can be made at any time during the
database lifetime, and corresponding plant lines will be updated
accordingly.

User Mode
After starting the software, the user interface can be accessed
from the home page by clicking on “User” (Figure 1C-e).

Built-In Pop-Ups
Scrolling the mouse pointer over most fields or icons activates
pop-ups that provide more information to the user about the
purpose of these functions (Figure 2). In some cases, pop-ups
will recommend reading the “Our lab” document mentioned in
the previous section, to ensure that users will follow the specific
rules that have been decided for their laboratory.

FIGURE 2 | Search engine interface. Key words can be entered in a
generic field (“Gene/Line/Genetic feature” field) or in specific sub-categories to
narrow the search. A “%” symbol can be included to replace any number of
characters in the query. Including a “_” indicates the presence of a single
missing unknown character in the query. Adding a “$” before “_” or “%” in the
query field will allow the user to search for items containing the characters “_”
or “%,” bypassing the use of these symbols as replacements of any
characters in the query.

Searching for Available Plant Lines or Seed Batches
A search engine is located at the bottom of the user interface
(Figures 1C-g and 2), which can provide access to all “Plant
lines” present in the database (by clicking on “Show all lines”),
or only a subset of lines when “Search lines by criteria” is
selected (Figure 2). The first field (“Gene, Line, Genetic feature”)
can be used to search a keyword throughout all plant line
names, gene names and genetic features recorded in the database.
Alternatively, users can select more restrictive query criteria by
completing the fields specifically associated with the 4 individual
sub-parts of a plant line datasheet. These fields can be among
the general properties of the line, genetic feature properties,
and plant or seed batch properties (including seed batch name
or ID, person involved, etc.; Figures 1A and 2; Supplementary
Figure 1).

When there is some uncertainty regarding the exact spelling
of a query, a “%” symbol can be included at the beginning or end
of the word (Figure 2). This will identify any lines containing the
searched criteria, including any number of characters appearing
before or after the searched word (i.e., “%” = any number of
characters).

Clicking on the name of a plant line in the search
engine result table will open the corresponding datasheet
(Figure 1C-h).

Frontiers in Plant Science | www.frontiersin.org January 2017 | Volume 8 | Article 1326

http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive


fpls-08-00013 January 18, 2017 Time: 18:43 # 7

Charavay et al. SeedUSoon Software

Creating a Plant Line
There are four possible ways to create a new line in SeedUSoon:
through the generation of a “New record,” crossing, secondary
mutagenesis or by import. A button corresponding to each
mode is located at the upper left corner of the user interface
(Figure 1C-k).

New record in the database
The user can create a “Plant line” record de novo, by entering
any available information in the empty fields of the new
database entry (Figure 3). Most fields are optional and can be
completed later (mandatory and facultative fields are listed in
Supplementary Figure 1) to avoid any wrong assumptions when
recording data (arising from erroneous “guess work”). Data can
easily be saved, completed or modified at any time by clicking on
the lock buttons (Figures 1C-m,n and 3).

When starting the “new” plant line wizard, the user will only
be required to complete three mandatory fields: the line name,
the person associated with this datasheet, and the plant species.
No other additional information is needed in the case of a WT
plant.

If the plant line contains one or several mutations (or
transgenesis), the user can click on “Add a transgenesis”
or “Add an endogenous gene mutagenesis.” This will select
the correct category of “Genetic Features” to appear in the
“Genetic features” table (Figures 1B,C-a) with new empty fields
related to these specific mutations (such as gene, mutagenesis
method, transgene or mutation sequence, attached sequence files,
selectable marker in plants, etc. see Supplementary Figure 1).
Only the “designation” (i.e., a mutation name) is required for
each genetic feature, which allows their quick recognition in
the “Genetic features” table (for example: Pro35S:GUS). In the
“Genotyping protocol” field, the user can type or upload a
standard genotyping method for this particular feature (including
PCR primers, PCR programs, a picture of a typical gel,
etc.).

The user should add as many “Genetic features” as the line
contains mutations or transgenesis. The different mutations can
all be recorded during the “New” plant line wizard, or can be
completed after a plant line is created (by clicking on the buttons
located over the genetic features table; Figure 3).

Crossing two previously recorded plant lines
SeedUSoon is capable of predicting the genetic configuration
of plants resulting from the crossing of two plant lines that
are already present in the database. The software will import
all important properties from the parental lines and create a
new plant line that combines this data (mix of ecotypes, set of
combined genetic features, etc.). Only intra-species crosses are
permitted by the software.

After starting the “Cross” wizard (Figure 4), the user will
only need to specify which parents were used as male/female;
optionally, the seed batches used for the crossing can be included.
This will generate a new datasheet, to which the user can
allocate corresponding seeds or plants (the user can also specify
whether the mutations are homozygous or heterozygous). To
avoid mistakes, the user cannot modify the inherited properties,

as these come from the parental lines. Any modifications should
therefore be entered in the parental line, and all descendants will
be updated accordingly. All non-inherited fields can be edited.

Secondary mutagenesis of a recorded plant line
The “MUTAG” wizard can be used if a new mutagenesis has
been applied to a plant line previously recorded in the database
(Figure 5). As with the “Cross” wizard, “MUTAG” will import
all the genetic properties from the mother line into the new line
(species, ecotype, and genetic features). The user will only need
to complete the fields corresponding to the new “Genetic feature”
selected for the secondary mutagenesis (Figure 5).

Similarly to the “Cross” wizard, the data inherited from the
parental line cannot be edited in the datasheet of the resulting
line.

Importing/exporting a line
It is possible to export a database entry from a “Plant line”
(with or without the corresponding seed batches) into a single
file that can easily be sent to collaborators (Figure 6). This file
is generated using an exchange format (.json). Although this
format can only be partially read in a text processor such as
WordPad, it permits a very complete data exchange between
two SeedUSoon databases, including all attached files (plasmid
sequence, phenotyping results, etc.).

The export can be performed either from the Research
result table (Figure 6A) or directly from the opened plant line
datasheets (Figure 6B). The simultaneous export of several lines
is only possible through the Research result table, however, no
seed batches can be exported along with the line information in
this case. When exporting directly from the plant line datasheet,
it is possible to assemble the information from one or several seed
batches (with the exception of sensitive/personal information; see
Supplementary Figure 1). Any plant (from the plant table) that
is linked to a seed batch (identified as its mother plant) will be
exported as well.

Reciprocally, a plant line can be created by importing data
from other databases. To import data, the user must click on
the “Import arrow” at the upper left corner (Figures 1C-k and
6C), specify a name associated with this new database entry,
and select the .json file. If the import contains options that
are not available in the database scroll-down menus, a pop-
up window will warn the user that the administrator must
create the corresponding choices via the administration mode.
Alternatively, the missing entry can be edited directly by opening
the .json file in a text processor software; this can also serve
as a temporary solution if the administrator is not present.
For instance, a missing ecotype can be temporarily changed to
“(Other)”; this option is included by default in the scroll-down
menu.

When lines are imported, all links to parental lines are severed.
However, the imported line will contain the proper list of genetic
features. The graphical representation of the genealogical tree
(refer to the section below) will not be lost: it will be exported
as an image, and will be uploaded as a “File from source” in the
“General information” panel (Figure 1C-i).
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FIGURE 3 | Principle steps in the new plant line wizard. A new plant line can be recorded de novo following these successive steps. One or several “Genetic
features” can be included during the creation process. The resulting “tree” shows that this line does not depend on any parental lines present in the database (no
parental lines indicated in the tree). The icons at the bottom provide access to the number of descendants from the plant line, and to an export function of the
graphical representation.
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FIGURE 4 | Simulated crossing of two lines using the “cross” wizard. A new plant line can be created using the simulated crossing between two parental lines
present in the database. This line will inherit all genetic features from the parents. It is possible to add an extra genetic feature during the crossing process for the
specific case of pollen mutagenesis, where crossings are combined with additional mutagenesis. The resulting “genealogical tree” reflects the relationship between
the parental and resulting plant lines. A plant line protected by an Material Transfer Agreement (MTA) is indicated in red. The icons at the bottom provide access to
the number of descendants from the plant line, and to an export function of the graphical representation.
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FIGURE 5 | Creation of a line using the “MUTAG” wizard in order to apply a secondary mutagenesis to an existing plant line. A new plant line can be
created by secondary mutagenesis (addition of a genetic feature) to a parental line already present in the database. The new line will inherit all genetic features from
this parental line, and combine it to the new genetic feature. The resulting “genealogical tree” reflects the relationship between the parental and resulting plant lines.
The icons at the bottom provide access to the number of descendants from the plant line, and to an export function of the graphical representation.
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FIGURE 6 | Wizards for plant line export/import between SeedUSoon databases. (A) Batch export of plant lines through the result of the search engine
(without seed batches attached). (B) Single export of a plant line with attached seed batches (from a plant line datasheet). (C) Plant line import from a .json file into a
SeedUSoon database.
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FIGURE 7 | Two tables for recording biological material corresponding to a plant line. Samples are separated into two tables: plants (A) and seed batches
(B). In the example shown here, the researcher decided to record different T1 plants derived from a T-DNA transformation within a single plant line datasheet. The
number of insertion sites and location/sequences of independent insertions can be stored separately for each plant. Only the major fields are shown in the columns;
detailed information and attached files can be accessed by clicking on the eye icon. It is possible to link the mother plants to their seed batches. The “Copy” button
permits fast duplication of plant or seed batch data.

Most of the entries related to general information, genetic
features and seed batches will be imported (Figures 1A,C-i
and Supplementary Figure 1). However, any sensitive/personal
information (such as any personal name, notebook information,
storage place, or MTA details) will not be included in the export
format file.

Graphical representation of the genealogy of a line
On the right part of any “Plant line” datasheet is displayed a
graphical representation of the history (“genealogy” or “tree”) of
this plant line (Figure 1A) in relation to other plant lines. The
purpose of this is not to track successive generations of a single
plant line, but rather to represent the links toward the parental
“Plant lines” and visualize when new “Genetic features” were
brought into the genome of the plants.

A plant line created de novo (using the “New” plant line
wizard) will be represented by a simple rectangle containing its
name (Figure 3). If a line is crossed to another one (through the
“Cross” wizard), or if it was recorded for a secondary mutagenesis
(using the “MUTAG” wizard), both the parental lines and the
resulting line will appear in the graphics (Figures 4 and 5).
The graphical representation will reflect the complete origin of
a plant line, even for plant lines resulting from several rounds of
successive crossings and mutagenesis.

Although this tree does not directly track the individual
mutations, it is easy to infer from the adjacent “Genetic features”
table whether any mutations or transgenes are inherited from a
parental line. First, inherited genetic features cannot be edited
(no “lock” or “trash” icons appear in their corresponding boxes).
Second, the boxes contain the name of the plant line from which
the corresponding genetic feature (indicated by the name of the
feature followed by “from. . .”) originated. The color code of the
boxes (green/blue) permits the fast identification of the category
of the genetic feature (transgenic vs. non-transgenic).

The parental line can be directly accessed by clicking on its
name in the graphics. In addition, scrolling the mouse pointer

over the line connecting two lines displays the seed batches used
for their generation in a pop-up (if previously recorded).

The graphics only represent the parental lines of the line of
interest. However, placing the mouse pointer over the question
mark located beneath the graphic will display a pop-up indicating
the number of descendants derived from this specific line
(Figure 1C).

The parental lines are located at the bottom of the “genealogy”
tree in this software version. The tree orientation can be inverted
or modified by dragging its individual components inside the
graphics window with the mouse.

Graphics can be exported as an image (in .png format) by
clicking on “Export as image” underneath the tree (Figure 1C),
for inclusion in notebooks or PowerPoint presentations.
Furthermore, when exporting a line using the SeedUSoon
export/import format, the graphical representation of the
genealogical tree will be included as an image in the “File from
source” field, in the “General information” panel (Figure 1A).

Recording Plants and Seeds
Following the creation of a “Plant line,” it is possible to record the
corresponding seed batches or individual plants in two dedicated
tables (Figures 1A,C-b,c and 7A,B). These tables can contain any
generation of seed batches or plants sharing the same ecotype and
set of mutations (i.e., “Genetic features”), including descendants
of self-crossed or back-crossed plants. For each plant or seed
batch entry, the user can specify their specific genotype or
segregation profile (heterozygous/homozygous, single/multiple
transgene insertions, resistance or mutation segregation ratio).

The “Plant” and “Seed batch” wizards can be activated by
clicking on “Add a plant” or “Add a seed batch” located at
the right corner above the plant and seed tables, respectively
(Figures 7A,B). The only mandatory field here is the personal
plant or seed batch identifier. All other information (generation,
phenotyping, genotyping, harvest date, etc.) is optional (see
Supplementary Figure 1 for the list of available fields) and can
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be completed later. Generation stages are entered by the user in
the corresponding field, according to the recommendations of
the customizable “Laboratory guidelines.” These guidelines can
request the use of classical terms, such as T1, T2, F1, F3, as
well as other terms such as “unknown” or “Tx” when receiving
seeds from another laboratory, for example (see Supplementary
Data Sheet 1). Although there is no requirement to track all
successive generations, it is possible to associate specific plants
with their progeny using the “S” (seed batch) function available
for each plant table entry (Figure 7A). Reciprocally, mother
plants from seed batches can be indicated when using the “Seed
batch” wizard.

SeedUSoon will assign a unique ID number to each seed batch
(in addition to the identifier entered by the user; Figure 7B,
“ID” column). If a seed batch is deleted (for instance if no seeds
are left), this ID number can never be reallocated to any other
seed batch. Similarly, even if two seed batches possess the same
personal identifier, they will have two unique ID numbers. This
software-generated unique ID number therefore provides an easy
and secure way to unambiguously distinguish seed batches. This
feature can also be used to improve seed stock organization, if
included in the label present on the seed stock tubes. SeedUSoon
users can simply enter this ID number in the software search
engine, and, with this information alone, directly access the
corresponding seed batch and plant line information.

An additional field can only be activated for plants resulting
from transgenesis, to permit the recording of the location and
sequences of one of several insertion sites in individual plants.
This facilitates the work of users who prefer to record a series of
plants with independent T-DNA or transposon locations within
the same table of a unique “Plant line,” rather than in separate
“Plant lines” (an example of this application can be seen in
Figure 7B).

A “Copy” button is located at the left of each table entry
to accelerate the recording of similar seed batches or plants
(Figures 7A,B). Its activation will open a wizard, and the user
will only need to validate or edit the duplicated information. For
seed batches, the software will allocate a unique ID number to the
new entry.

Recording Phenotypical Data and Experimental
Results
Since phenotypical data are often influenced by plant or seed
batches, phenotypical results can be individually recorded for
each entry in the “Plant” and/or “Seed batch” tables of SeedUSoon
(Figure 1C-b,c, Supplementary Figure 1). The user can type a
short description of the phenotype in the corresponding wizard
field (this text will appear in the table; see the plant example in
Figure 1C-b). The user can also upload files describing detailed
phenotyping results in the same section. Scrolling the mouse over
the “phenotyping” section of the table will reveal the presence of
the uploaded file.

Results of tissue-expression patterns (such as from GFP-
fusion or reporter gene studies) can also be uploaded in this
“phenotyping” section of the “Plant” and “Seed batch” tables.

Germination assays, genotyping and sequencing results can
also be recorded or uploaded within individual seed or plant

batches. The reference number and pages of the laboratory
notebook can be indicated for each result section (phenotyping,
germination assay, genotyping, etc.), along with the name of the
person who conducted the experiment.

MTA Tracking
SeedUSoon includes a function to help protect the intellectual
property of laboratories, especially related to MTA tracking. An
MTA field is included in the plant lines “General information”
panel (Figure 1C-i). The “MTA details” field allows users to
record the recipient of the MTA, its location, or any particular
recommendation. When exporting a line, the information
regarding the presence of an MTA protecting the line is
preserved. However, the “MTA details” field is left empty for
confidential reasons.

SeedUSoon’s graphical “tree” representations of plant lines
allow users to immediately identify a protected material. Any
plant line protected by an MTA will be indicated in red (Figure 4),
so that tracking its descendants will be straightforward, even long
after obtaining and using the original seeds.

Administrative Mode
The “Admin” icon (Figure 1C-f) provides access to the
administrative mode (only for users with administrative rights)
to be able to customize the user interface, create SeedUSoon
user accounts, and specify their rights. All customization choices
recorded from the administrative mode (on a single computer)
will be effective for all computers that connect to the same
database.

The administrative mode is a very simple interface organized
in eight tabs, each giving access to a table with editable content
(Figure 8A). A wizard for generating new entries can be activated
by clicking on “New” at the bottom of each table. Existing entries
can be separately edited or deleted using the buttons at the right
of each table.

Defining User’s Rights
In the first tab (“SeedUSoon Users”), the administrator can
create login accounts and define distinct levels of user’s rights
(Figure 8A). SeedUSoon users will either be allowed to enter and
modify data (“Writer” level), or will only be able to access the
data without modifying them (“Reader” level). The final user level
(“Administrator”) gives additional access to the administrative
mode.

Scroll-Down Menu Customization
All tabs (aside from the one used to define “SeedUSoon
users”) are dedicated to the customization of the user’s module
(Figure 8B). This allows the administrator to specify the options
available in the scroll-down menus presented to the users. The
software comes with a set of pre-recorded options for each tab,
which can easily be edited by the database manager. For each
tab entry, the software will automatically verify and count lines,
features or experiments containing the corresponding scroll-
down menu option. This will help the manager visualize the
relevance of certain fields, in order to only delete unused menu
options.
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FIGURE 8 | Administrative mode and database configuration. (A) The administrative interface is organized in eight tabs: SeedUSoon users (selected here),
Persons, species, Ecotypes, Mutation methods, Method references, Strains and Resistances. (B) Persons tab, displaying how many lines or experiments are
associated with specific names corresponding to laboratory members. (C) Database configuration panel.

Persons
The “Persons” tab (Figure 8B) corresponds to current or
past laboratory members who contributed to the generation
or the analysis of any plant line recorded in the database.
This category should not be confused with the previously
mentioned “SeedUSoon users” category. If a “Person”
leaves the laboratory and no new entries will be generated
under this name, it is possible to deactivate (hide) the
name from the scroll-down menus when generating new
plant line entries. This limits the length of scroll-down
menus in laboratories with a high turnover of members. To

do this, the administrator must uncheck the box “Shows
up in the “Persons” Menu (User mode)” in the central
column of the “Persons” table (Figure 8B). Previous entries
containing a reference to this person will still display the
name.

Species and ecotypes
Laboratories can enter their plant models and favorite ecotypes
in the “Species” and “Ecotypes” tabs. In the scroll-down menus
of the user mode, ecotypes will be specific to each species. For
this reason, in the administrative mode, new species must be

Frontiers in Plant Science | www.frontiersin.org January 2017 | Volume 8 | Article 1334

http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive


fpls-08-00013 January 18, 2017 Time: 18:43 # 15

Charavay et al. SeedUSoon Software

recorded before registering ecotypes, so that the correct species
can be linked to the new ecotype when creating new entries in the
ecotype tab.

Mutation methods
The “Mutation methods” tab contains the common short terms
used to refer to standard mutagenesis techniques used in the
laboratory (such as: “T-DNA,” “CRISPR,” “EMS,” etc.). When
specifying a new “Mutation method,” the administrator must
first define its “Genetic features” category (i.e., “Transgenesis”
or “Endogenous gene mutagenesis”; Figure 1B and refer to the
dedicated section).

The “Mutation method references” tab can be used to record
a precise reference from the literature or a precise protocol
registered in the laboratory.

Finally, Agrobacterium strains and resistances originated by
T-DNA or transposon insertions in the plant genome can
respectively be recorded in the “Strains” and “Resistances” tabs.

Database Configuration
Database connection parameters must be entered at the first
startup of the software (Figure 8C). The software will then
restart to allow users (or administrators) to enter their login and
password to access the user (or administrative) mode after this
initial configuration.

If some users need to connect to a different database, these
connection parameters can be modified by following the path:
Tools tab/Options/Labo/Database.

CONCLUSION AND FUTURE
DEVELOPMENTS

SeedUSoon is a new plant line database software, built
upon a strong genetic foundation. The software’s ability to
track the history of mutations or transgene inheritance, in
addition to the possibility to record related seed batches,
provides the user with a more clear and organized view of
the genomic context of their biological material. SeedUSoon
contains novel functions related to MTA tracking and easily
distinguishes between GMO and non-GMO plant lines, to
facilitate administrative and legal compliance. Exporting data
between databases is also greatly simplified by the import/export
functions.

Our intention when we started to design SeedUSoon was
to improve the management of our own laboratory plant lines
and seed collections. Nevertheless, from the start, the software
was also meant to be able to adjust to the context and habits
of any other plant laboratories conducting basic research. We
achieved this goal by developing a customizable user’s module,
and by integrating choices for field entries that are respectful
of individual user habits. To help managers or PIs standardize
entries in their own database or seed collection, a customizable
“Laboratory guidelines” document is easily accessible from the
software.

Several additional functions were requested during the
development of SeedUSoon. The current version of the software

was designed in order to implement most of these requests in
the future. For instance, the possibility to connect to different
SeedUSoon databases using a simple Login/Logout could be
advantageous to access distinct databases dedicated to specific
projects. We also took into account future functions that can
print labels (with customizable content, including unique ID
numbers and plant line names), or export data in a diversity
of formats (to generate files necessary for GMO certification,
for instance). In collaboration with our Intellectual Property
department, we considered the possibility of generating MTAs
prefilled with plant line information, which would only require
the addition of the recipient identification and the approval
signatures. This feature would greatly facilitate and stimulate
this procedure, since the signing of MTAs when sending
seeds to other research groups is hard to implement in many
laboratories.

User feedback (through the project website and the dedicated
email address) will be important in helping us decide on the
strategy for future SeedUSoon developments. Similarly, the
design of the current version was improved by the feedback
from users of previous versions of SeedUSoon. In the current
configuration, this software has already helped laboratories
organize hundreds of plant lines, from their generation to
the organization of seed collections. Several plant biology
laboratories from our research organization have implemented
SeedUSoon in recent years, and it is now available for broader
distribution (under the protection of a proprietary license
agreement).

The design of this software is intended to help others
optimize the tracking of their biological material. Ultimately,
SeedUSoon will contribute to a facilitated and improved
exchange of information to accompany seed exchange between
laboratories.
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Crop density is a key agronomical trait used to manage wheat crops and estimate
yield. Visual counting of plants in the field is currently the most common method
used. However, it is tedious and time consuming. The main objective of this work is
to develop a machine vision based method to automate the density survey of wheat
at early stages. RGB images taken with a high resolution RGB camera are classified
to identify the green pixels corresponding to the plants. Crop rows are extracted and
the connected components (objects) are identified. A neural network is then trained to
estimate the number of plants in the objects using the object features. The method was
evaluated over three experiments showing contrasted conditions with sowing densities
ranging from 100 to 600 seeds·m−2. Results demonstrate that the density is accurately
estimated with an average relative error of 12%. The pipeline developed here provides
an efficient and accurate estimate of wheat plant density at early stages.

Keywords: plant density, RGB imagery, neural network, wheat, recursive feature elimination, Hough transform

INTRODUCTION

Wheat is one of the main crops cultivated around the world with sowing density usually ranging
from 150 to 400 seed·m−2. Plant population density may significantly impact the competition
among plants as well as with weeds and consequently affect the effective utilization of available
resources including light, water, and nutrients (Shrestha and Steward, 2003; Olsen et al., 2006).
Crop density appears therefore as one of the important variables that drive the potential yield. This
explains why this information is often used for the management of cultural practices (Godwin and
Miller, 2003). Plant population density is still investigated most of the time by visually counting the
plants in the field over samples corresponding either to a quadrat or to a segment. This is achieved
at the stage when the majority of plants have just emerged and before the beginning of tillering
(Norman, 1995) which happens few days to few weeks after emergence. This method is time and
labor intensive and may be prone to human error.

Some efforts have been dedicated to the development of high-throughput methods for
quantifying plant density. This was mainly applied to maize using either capacitive sensors during
the harvest (Nichols, 2000; Li et al., 2009) or optical sensors including 2D cameras (Shrestha and
Steward, 2003, 2005; Tang and Tian, 2008a,b) and range sensors (Jin and Tang, 2009; Nakarmi and
Tang, 2012, 2014; Shi et al., 2013, 2015). However, quantifying the population density of maize
is much simpler than that of wheat since maize plants are normally bigger, with larger plant
spacing along the row and more evenly distributed. In wheat crops, leaves between neighboring
plants overlap rapidly, and tillers will also appear, making the plant identification very difficult
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when they have more than three leaves, even using visual
counting in the field. Most studies during these early stages report
results derived from estimates of the vegetation fraction coverage
measured using high resolution imagery (Guo et al., 2013) or
based on vegetation indices computed with either multispectral
(Sankaran et al., 2015) or hyperspectral (Liu et al., 2008)
reflectance measurements. However, none of these investigations
specifically addressed the estimation of plant density. Advances
in digital photography providing very high resolution images,
combined with the development of computer vision systems,
offer new opportunities to develop a non-destructive high-
throughput method for plant density estimation.

The objective of this study is to develop a system based on
high resolution imagery that measures wheat plant population
density at early stages. The methods used to acquire the RGB
images and the experimental conditions are first presented. Then
the pipeline developed to process the images is described. Finally,
the method is evaluated with emphasis on its accuracy and on its
corresponding domain of validity.

MATERIALS AND METHODS

Field Experiments and Measurements
Three experiments were conducted in 2014 in France (Table 1):
Avignon, Toulouse, and Paris. In Avignon, four sowing densities
(100, 200, 300, and 400 seeds·m−2) with the same “Apache”
cultivar were sampled. In Toulouse, five plant densities (100,
200, 300, 400, and 600 seeds·m−2) with two different cultivars,
“Apache” and “Caphorn” were considered. In Paris, two cultivars
with a single sowing density of 150 seeds·m−2 were sampled.
All measurements were taken around 1.5 Haun stage, when
most plants already emerged. A total of 16 plots were therefore
available over the three experiments under contrasted conditions
in terms of soil, climate, cultivars, and sowing densities. All the
plots were at least 10 m length by 2 m width.

In Toulouse and Avignon, images were acquired using
an RGB camera fixed on a light moving platform, termed
Phenotypette (Figure 1). The platform was driven manually at
about 0.5 m·s−1. For each plot, at least 10 images were collected
to be representative of the population. For Paris experiment,
the camera was mounted on a monopod to take two pictures
with no overlap. In all the cases, the camera was oriented at 45◦
inclination perpendicular to the row direction and was pointing
at the center row from a distance of 1.5 m and with spatial
resolution around 0.2 mm (Figure 1 and Table 1). For each plot,
10 images were selected randomly among the whole set of images
acquired. The number of plants located in the two central rows
was then visually counted over each of the 10 selected images to
derive the reference plant density.

Image Processing
Each image was processed using the pipeline sketched on
Figure 2. It was mainly programmed using MATLAB and Image
Processing Toolbox R2016a (code available on request). To
facilitate the application, the corresponding MATLAB functions
used are also given in the text.

Classification of Green Elements
The images display green pixels corresponding to the emerged
plants, and brown pixels corresponding to the soil background.
The RGB color space was firstly transformed into Lab, to
enhance its sensitivity to variations in greenness (Philipp and
Rath, 2002). The Otsu automatic thresholding method (Otsu,
1975) was then applied to channel ‘a’ to separate the green
from the background pixels (function: graythresh). Results show
that the proposed method performs well (Figure 2b) under
the contrasted illumination conditions experienced (Table 1).
Further, this approach provides a better identification of the green
pixels (results not presented for the sake of brevity) as compared
to the use of supervised methods (Guo et al., 2013) based on
indices such as the excess green (Woebbecke et al., 1995) or more
sophisticated indices proposed by Meyer and Neto (2008).

Geometric Transformation
The perspective effect creates a variation of the spatial resolution
within the image: objects close to the lens appear large while
distant objects appear small. A transformation was therefore
applied to remap the image into an orthoimage where the
spatial resolution remains constant. The transformation matrix
was calibrated using an image of a chessboard for each camera
setup (Figure 2c). The chessboard covered the portion of the
image that was later used for plant counting. The corners of the
squares in the chessboard were identified automatically (function:
detectCheckerboardPoints). Then the transformation matrix can
be derived once the actual dimension of the squares of the
chessboard is provided (function: fitgeotrans) (Figure 2c). The
transformation matrix was finally applied to the whole image for
given camera setup (function: tformfwd) (Figure 2d). This allows
remapping the image into a homogeneously distributed domain
on the soil surface.

Row Identification and Orientation
The plant density measurement for row crops such as wheat is
achieved by counting plants over a number of row segments
of given length. Row identification is therefore a mandatory
step as sketched in Figure 2e. Row identification methods
have been explored intensively mostly for the automation of
robot navigation in field (Vidović et al., 2016). Montalvo et al.
(2012) reviewed the existing methods and found that the
Hough transform (Slaughter et al., 2008) is one of the most
common and reliable methods. It mainly involves computing
the co-distribution of the length (ρ) and orientation (θ) of
the segments defined by two green pixels (Figure 3A). The
Hough transform detects dominant lines even in the presence
of noise or discontinuous rows. The noise could include objects
between rows such as weeds or misclassified background pixels
such as stones (Marchant, 1996; Rovira-Más et al., 2005).
Although the Hough transform is computationally demanding,
its application on edge points of the green objects decreases this
constraint. Hence, the ‘Canny Edge Detector’ (Canny, 1986) was
consequently used to detect edges prior to the application of the
Hough transform. The Hough transform was conducted with
orientation −90o < θ < 90o with 0.1o angular steps and a radius
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TABLE 1 | Characteristics of the three experimental sites.

Sites Latitude Longitude Cultivars Sowing
density

(seeds·m−2)

Reference
density

(plants·m−2)

Illumination
conditions

Cameras Resolution Focal
length

Spatial
resolution

(mm)

Toulouse 43.5◦N 1.5◦E Apache 100, 200, 300,
400, 600

106, 187, 231,
350, 525

Diffuse Sigma
SD14

2640 by
1760

50 mm 0.23

Caphorn 100, 200, 300,
400, 600

118, 206, 250,
387, 431

Paris 48.8◦N 1.9◦E Premio 150 154 Flash NIKON
D5200

4496 by
3000

0.16

Attlass 150 182

Avignon 43.9◦N 4.8◦E Apache 100, 200, 300,
400

54, 129, 232,
425

Direct Sigma
SD14

4608 by
3072

0.13

FIGURE 1 | The image acquisition in the field with the Phenotypette.

−3000 < ρ < 3000 pixels with 1 pixel steps (function: hough)
(Figure 3A).

Five main components show up in the image (Figure 3A),
corresponding to the five rows of the original image (Figure 2a).
As all rows are expected to be roughly parallel, their orientation
could be inferred as the θ value, θrow (where θrow = 90o

corresponds to the horizontal orientation on the images on
Figure 2f), that maximizes the variance of ρ . The positions of
the rows are derived from the peaks of frequency for θ = θrow
(Figure 3B). Five lines on Figure 2e highlight the center of each
row. Because of the uncertainty in the orientation of the camera
along the row, the row line drawn on the images are not exactly
horizontal. This is illustrated in Figure 2f where θrow = −88.2o.
The images were therefore rotated according to θrow (function:
imrotate), so that the rows are strictly horizontal in the displayed
images Figure 2g.

Object Identification and Feature Extraction
An object in a binary image refers to a set of pixels that form a
connected group with the connectivity of eight neighbors. Each
object was associated to the closest row line and characterized
by 10 main features (function: bwmorph) (the top 10 features
in Table 2). Three additional features were derived from
skeletonization of the object: the length, number of branch and
end points of the skeleton (function: regionprops) (the last three
features in Table 2). More details on the feature extraction
function used can be found in https://fr.mathworks.com/help/
images/.

Estimation of the Number of Plants
Contained in Each Object
Machine learning methods were used to estimate the number
of plants contained in each object from the values of their 13

Frontiers in Plant Science | www.frontiersin.org May 2017 | Volume 8 | Article 73939

https://fr.mathworks.com/help/images/
https://fr.mathworks.com/help/images/
http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive


fpls-08-00739 May 13, 2017 Time: 16:27 # 4

Liu et al. Wheat Density Estimation from RGB Imagery

FIGURE 2 | The methodology involving image processing feature extraction. (a) Original image. (b) Binary image. (c) Image of a chessboard to derive the
transformation matrix. (d) Calibrated image. (e) Detecting rows in the image, corresponding to red dashed lines. (f) Labeling rows with different colors. (g) Correcting
row orientation to be horizontal.

FIGURE 3 | Hough transform to detect rows. (A) Hough transform. (B) Identification of the peaks of ρ corresponding to the rows.

associated features (Table 2). Artificial neural networks (ANNs)
have been recognized as one of the most versatile and powerful
method to relate a set of variables to one or more variables. ANNs
are interconnected neurons characterized by a transfer function.

They combine the input values (the features of the object) to
best match the output values (number of plants in our case)
over a training database. The training process requires first to
define the network architecture (the number of hidden layers and
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TABLE 2 | The 13 features extracted for each of the connected object.

# Name Meaning Unit

F1 Area Number of pixels of the connected
component (object)

Pixel

F2 FilledArea Number of pixels of the object with all
holes filled

Pixel

F3 ConvexArea Number of pixels within the associated
convex hull

Pixel

F4 Solidity Ratio of number of pixels in the region to
that of the convex hull

Scalar

F5 Extent Ratio of number of pixels in the region to
that of the bounding box

Scalar

F6 EquivDiameter Diameter of a circle with the same area as
the region

Pixel

F7 MajorAxisLength Length of the major axis of the ellipse
equivalent to the region.

Pixel

F8 MinorAxisLength Length of the minor axis of the ellipse
equivalent to the region.

Pixel

F9 Eccentricity Eccentricity of the equivalent ellipse to the
region

Scalar

F10 Orientation Orientation of the major axis of the
equivalent ellipse

Degree

F11 LengthSkelet Number of pixels of the skeleton Pixel

F12 NumEnd Number of end points of the skeleton Scalar

F13 NumBranch Number of branch points of the skeleton Scalar

nodes per layer and the type of transfer function of each neuron).
Then the synaptic weights and biases are tuned to get a good
agreement between the number of plants per object estimated
from the object’s features and the corresponding number of plants
per object in the training database. A one-layer feed-forward
network with kn tangent sigmoid hidden neurons and none
linear neuron was used. The number of hidden nodes was varied
between 1 ≤ kn ≤ 10 to select the best architecture. The weights
and biases were initialized randomly. The training was achieved
independently over each site considering 90% of the data set

corresponding to a total of the 606 (Toulouse), 347 (Paris), and
476 (Avignon) objects. The remaining 10% objects of each site
was used to evaluate the performance of the training. Note that
the estimates of number of plants per object were continuous, i.e.,
representing actually the average probability of getting a discrete
number of plants.

A compact, parsimonious and non-redundant subset of
features should contribute to speed up the learning process and
improve the generalization of predictive models (Tuv et al.,
2009; Kuhn and Johnson, 2013; Louppe, 2014). Guyon et al.
(2002) proposed recursive feature elimination (RFE) to select the
optimal subtest of features. Specific to ANN, the combinations of
the absolute values of the weights were used firstly to rank the
importance of predictors (features) (Olden and Jackson, 2002;
Gevrey et al., 2003). For the subset including n features, RFE
presumes that the subset of the top n features outperforms
the other possible combinations (Guyon et al., 2002; Granitto
et al., 2006). Then 13 iterations corresponding to the 13 features
need to be computed to select the optimal subset defined as
the smallest set providing a RMSEn lower than 1.02 RMSEbest,
where RMSEbest is the minimum RMSE value observed when
using the 13 features. To minimize possible overfitting of the
training dataset, a cross-validation scheme was used (Seni and
Elder, 2010) with the training data set including 90% of the cases
and the test data set containing the remaining 10%. The process
was repeated five times with a random drawing of the training
and test data sets for each trial.

RESULTS

Number of Plants per Object and Object
Feature Selection
The number of plants per object resulted in a consistently right-
skewed distribution over the three experimental sites (Figure 4).
For all the plots, objects containing single plants have the highest

FIGURE 4 | Number of plants per object over the three sites.
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FIGURE 5 | The correlation among the 13 objects’ features for the Toulouse site (∗∗: 0.01, ∗: 0.05). The abbreviation of features refers to names in Table 2.

probability of occurrence. However, objects contain generally
more plants for high density as compared to the low density
conditions. Note that 10–20% of the objects were classified as
null, i.e., containing no plants. This corresponds to errors in
separating plants from the background: objects such as straw
residues, stone, or weeds may show colors difficult to separate
in the classification step. Further, due to the variability of the
illumination conditions, plants may be misclassified into two
disconnected objects. In this case, the larger part is considered as a
plant while the smaller remaining part is considered as non-plant,
i.e., set to 0.

Most of the 13 features described in Table 2 are closely related
as illustrated by the plot-matrix of the Toulouse site (Figure 5).
Correlations are particularly high between the four area related

features (F1, F2, F3, F6), between the skeleton derived features
(F11, F12, F13), and between the area and skeleton related
features. Similar correlations were observed over the Paris and
Avignon sites. These strong relationships indicate the presence
of redundancy between the 13 features, which may confuse the
training of ANN. However, this could be partly overcome by the
RFE feature selection algorithm.

The estimation performances of the number of plants per
object were evaluated with the RMSE metrics as a function of the
number of features used (Figure 6 and Table 3). Note that the
RMSE value was calculated based on the visual identification of
the number of plants per object in the dataset. Figure 6 shows that
the RMSE decreases consistently when the number of features
used increases. However, after using the first four features, the
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FIGURE 6 | RMSE associated to the estimates of the number of plants
per object as a function of the number of features used. The RMSE was
evaluated over the test data set for each individual site.

TABLE 3 | Performance of the estimation of the number of plants per
object over three experiments.

Sites Training
size

nnode Number of
features

R2 RMSE Bias

Toulouse 606 2 10 0.83 0.83 0.28

Paris 347 2 8 0.79 0.47 0.077

Avignon 476 2 4 0.61 0.87 0.45

improvement in estimation performances is relatively small when
including remaining features. The number of features required
according to our criterion (1.02. RMSEbest) varies from 10
(Toulouse) to 4 (Avignon). A more detailed inspection of the
main features used across the three sites (Table 4) shows the
importance of the area related features (F1, F2, F3, F4, and F6)
despite their high inter-correlation (Figure 5). The length of
the skeleton (F11) also appears important particularly for the
Avignon site, while the orientation and extent do not help much
(Table 4).

As expected, the model performs the best for the Paris site
(Table 3) where the situation is simpler because of the low
density inducing limited overlap between plants (Figure 4).
For sowing density <= 300 seeds·m−2, a better accuracy is
reached in Toulouse (RMSE= 0.51) and Avignon (RMSE= 0.68)
sites. Conversely, the larger number of null objects (Figure 4)
corresponding to misclassified objects or split plants in the
Avignon site, explains the degraded performance (Table 3). The
bias in the estimation of the number of plants per object appears
relatively small, except for the Avignon site. Attention should be
paid on the bias since the application of the neural network on a
larger number of objects is not likely to improve the estimation
of the total number of plants. The bias is mostly due to difficulties
associated to the misclassified objects (Figure 7). Note that the

TABLE 4 | Features selected and the corresponding rank over three sites.

# Features Toulouse Paris Avignon

F1 Area 2 1 3

F2 FilledArea 1 3

F3 ConvexArea 4 4 2

F4 Solidity 10 7

F5 Extent

F6 EquivDiameter 3 2 4

F7 MajorAxisLength

F8 MinorAxisLength 5 5

F9 Eccentricity 8 8

F10 Orientation

F11 LengthSkelet 6 6 1

F12 NumEnd 7

F13 NumBranch 9

estimation performance degraded for the larger number of plants
per objects (Figure 7) as a consequence of more ambiguities and
smaller samples used in the training process.

Performance of the Method for Plant
Density Estimation
The estimates of plant density were computed by summing the
number of plants in all the objects extracted from the row
segments identified in the images, divided by the segment area
(product of the segment length and the row spacing). The
reference density was computed from the visually identified
plants. Results show a good agreement between observations
and predictions over sowing densities ranging from 100 to 600
plants·m−2 (Figure 8). The performances slightly degrade for
densities higher than 350 plants·m−2. This may be explained
by the difficulty to handle more complex situation when plant
spacing decreases, with a higher probability of plant overlap
(Figure 7). Note that the slight overestimation observed for the
low densities in the Avignon site is mainly attributed to the bias
in the estimation of the number of plants per object due to the
classification problem already outlined.

DISCUSSION AND CONCLUSION

The method proposed in this study relies on the ability to identify
plants or group of plants from RGB images. Image classification
is a thus a critical step driving the accuracy of the plant
density estimation. Wheat plants at emergence have a relatively
simple structure and color. The image quality is obviously very
important, including the optimal spatial resolution that should
be better than 0.4 mm as advised by Jin et al. (2016). Further,
the image quality should not be compromised by undesirable
effects due to image compression algorithms. As a consequence,
when the resolution is between 0.2 and 0.5 mm, it would be
preferable to record images in raw format to preserve its quality.
A known and fixed white balance should be applied to make the
series of images comparable in terms of color. Finally, the view
direction was chosen to increase the plant cross section by taking
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FIGURE 7 | Comparison between the estimated number of plants per object with the value measured over the test dataset for each individual site.

FIGURE 8 | Performance of density estimation over the three sites.

images inclined at around 45◦ zenith angle in a compass direction
perpendicular to the row orientation. Note that too inclined views
may result in large overlap of plants from adjacent rows which
will pose problems for row (and plant) identification.

Plants were separated from the background based on their
green color. A unique unsupervised method based on the Lab
transform on which automatic thresholding is applied was
used with success across a range of illumination conditions.
However, the method should be tested under a much larger
range of illumination and soil conditions before ensuring that
it is actually applicable in all scenarios. Additionally, attention
should be paid to weeds that are generally green. Fortunately,
weeds were well-controlled in our experiments. Although this
is also generally observed during emergence, weed detection
algorithm could be integrated in the pipeline in case of significant

infestation. Weeds may be identified by their position relative to
the row (Woebbecke et al., 1995). However, for the particular
observational configuration proposed (45◦ perpendicular to the
row), the application of these simple algorithms are likely to fail.
Additional (vertical) images should be taken, or more refined
methods based on the color (Gée et al., 2008) or shape (Swain
et al., 2011) should be implemented.

Once the binary images are computed from the original RGB
ones, objects containing uncertain number of plants can be easily
identified. An ANN method was used in this study to estimate the
number of plants from the 13 features of each object. Alternative
machine learning techniques were tested including random forest
(Breiman, 2001), multilinear regression (Tabachnick et al., 2001)
and generalized linear model (Lopatin et al., 2016). The ANN was
demonstrated to perform better for the three sites (results not
presented in this study for the sake of brevity). The RFE algorithm
used to select the minimum subset of features to best estimate
the number of plants per object (Granitto et al., 2006) resulted in
4–10 features depending on the data set considered. The features
selected are mainly related to the object area and the length of
the corresponding skeleton. Conversely, object orientation and
extent appear to contribute marginally to the estimation of the
number of plants per object. The RFE framework employed
here partly accounts for the strong co-dependency between the
13 features considered. The selection process could probably be
improved using a recursive scheme similar to the one employed
in stepwise regression, or a transformation of the space of the
input features.

The wheat population density was estimated with an average
of 12% relative error. The error increases with the population
density because of the increase of overlap between plants
creating larger objects, hence making it more difficult to associate
accurately the number of plants they contain. Likewise, a
degradation of the performances is also expected when plants
are well-developed. Jin and Tang (2009) found that the selection
of the optimal growth stage is critical to get accurate estimation
of the plant density in maize crops. A timely observation just
between Haun stage 1.5–2 corresponding to 1.5–2 phyllochron
after emergence appears optimal: plants are enough developed to
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be well-identified while the overlap between plants is minimized
because of the low number of leaves (between 1 and 2) and their
relatively erect orientation. However, in case of heterogeneous
emergence, it is frequent to observe a delay of about 1
phyllochron (Jamieson et al., 2008; Hokmalipour, 2011) between
the first and the last plant emerged. Observation between Haun
stage 1.5 and 2 can thus ensure that the majority has emerged.
Since the phyllochron varies between 63 and 150◦C·d (McMaster
and Wilhem, 1995), the optimal time window of 0.5 phyllochron
(between Haun stage 1.5 and 2) can last about 4–8 days under an
average 10◦C air temperature. This short optimal time window
for acquiring the images is thus a strong constraint when
operationally deploying the proposed method.

The success of the method relies heavily on the estimation
of the number of plants per object. The machine learning
technique used in this study was trained independently for
each site. This provides the best performances because it takes
into account the actual variability of single plant structure that
depends on its development stage at the time of observation,
on the genotypic variability as well as on possible influence
of the environmental conditions, especially wind. Operational
deployment of the method therefore requires the model to
be re-calibrated over each new experimental site. However, a
single training encompassing all the possible situations may
be envisioned in near future. This requires a large enough
training data set representing the variability of genotypes,
development stage and environmental conditions. This single
training data base could also include other cereal crop species
similar to wheat at emergence such as barley, triticale, or
oat.

Several vectors could be used to take the RGB images,
depending mostly on the size of the experiment and the

resources available. A monopod and a light rolling platform, the
Phenotypette, were used in our study. More sophisticated vectors
with higher throughput could be envisioned in the next step,
based either on a semi-automatic (Comar et al., 2012) or fully
automatic rover (de Solan et al., 2015) or on a UAV platform as
recently demonstrated by Jin et al. (2016).
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Grain morphometry in cereals is an important step in selecting new high-yielding plants.
Manual assessment of parameters such as the number of grains per ear and grain
size is laborious. One solution to this problem is image-based analysis that can be
performed using a desktop PC. Furthermore, the effectiveness of analysis performed in
the field can be improved through the use of mobile devices. In this paper, we propose
a method for the automated evaluation of phenotypic parameters of grains using mobile
devices running the Android operational system. The experimental results show that this
approach is efficient and sufficiently accurate for the large-scale analysis of phenotypic
characteristics in wheat grains. Evaluation of our application under six different lighting
conditions and three mobile devices demonstrated that the lighting of the paper has
significant influence on the accuracy of our method, unlike the smartphone type.

Keywords: wheat grain, phenotyping, computer image analysis, mobile devices, Android

INTRODUCTION

The grains per ear and grain size are important characteristics of cereal yield. Seed counting and
morphometry “by eye” is laborious. Therefore, various approaches have been suggested for efficient
grain morphometry using image processing techniques (Granitto et al., 2005; Pourreza et al., 2012;
Tanabata et al., 2012). Most of these approaches were implemented using desktop PC software
for analyzing grain images on a light background obtained using either a digital camera or a
scanner (Herridge et al., 2011; Tanabata et al., 2012; Whan et al., 2014). These approaches allow
users to estimate a large number of grain morphometric parameters describing shape and color
(Bai et al., 2013). They also facilitate methods for identifying the cereal variety using grain images
(Wiesnerová and Wiesner, 2008; Chen et al., 2010; Zapotoczny, 2011), determining seed moisture
content and predicting semolina yield in durum wheat (Novaro et al., 2001; Tahir et al., 2007). Duan
et al. (2011) developed a labor-free engineering solution for high throughput automatic analysis
of rice yield-related traits including the number of total spikelets, the number of filled spikelets,
the 1000-grain weight, the grain length, and the grain width. Roussel et al. (2016) proposed a
detailed analysis of seed shape and size. They used 3D surface reconstruction from the silhouettes
of several images obtained by rotation of a seed in front of a digital camera. This method was
implemented further in the phenoSeeder robotic platform (Jahnke et al., 2016), which was designed
for the high-quality measurement of basic seed biometric traits and mass from which seed density
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is calculated. Strange et al. (2015) used X-ray computed
tomography for the in situ determination of grain shape. The
engineering facilities for grain morphometry demonstrate high
performance and precision; however, they are installed in a
limited number of plant research laboratories. There is still a need
for low cost, high-throughput methods of grain analysis (Whan
et al., 2014).

Large-scale breeding experiments require processing
substantial phenotypic data, often in field conditions and thus
without access to desktop computers and scanners. In this case,
a digital camera is a viable option, but the images must be
subsequently copied to a laptop or PC.

Modern mobile devices (smartphones and Internet tablets)
contain digital cameras with high resolution. Mobile devices
have multicore processors with sufficient computational power
for image processing and analysis. These features allow users
to capture and process images wherever necessary. A number
of applications for mobile devices have been developed for the
morphometry of plant organs. Leafsnap (Kumar et al., 2012) is
able to identify plant species in real time based on their leaf
images: a user takes pictures of a plant leaf using a mobile
device and sends the images from the camera to a remote
server where they are processed. Leaf Doctor (Pethybridge and
Nelson, 2015) is another mobile application that estimates the
percentage of disease severity based on leaf images in a semi-
automated manner. Mobile devices can also serve as efficient
tools to estimate soil-color (Gómez-Robledo et al., 2013).

In this work, we present a mobile application, SeedCounter,
for the Android platform that performs automated calculation of
morphological parameters of wheat grains using mobile devices
in field conditions (without computer facilities). The application
estimates the number of grains scattered on a sheet of A4,
Letter, Legal, A3, A4, A5, B4, B5, or B6 paper and morphological
parameters such as length, width, area, and distance between the
geometric center of mass of the grain and the point of intersection
of its principal axes.

We conducted several seed counting tests under controlled
lighting conditions and daylight to estimate software
performance. We demonstrated that the SeedCounter can
estimate the number of grains in an image and their size
with high accuracy, but performance is dependent on lighting
conditions.

MATERIALS AND METHODS

Getting Images
The program input is a color image of grains placed arbitrarily
on a sheet of white paper (A4, Letter, Legal, A3, A5, B4, B5, or
B6). We recommend minimizing any contact between grains.
To reduce errors, users should provide the following conditions
for image capture: the paper sheet should be placed on a dark
background and bright side lighting should be avoided.

The boundaries of the paper sheet on the background should
be parallel to the sides of the frame (Figure 1A). The fixed size
of the paper makes it possible to calculate the scale of the image
and evaluate the grain sizes in metric units. The SeedCounter

application receives images directly from the camera of the
mobile device.

Image Processing Algorithm
The algorithm is implemented using the OpenCV image
processing library (Howse, 2013; Dawson-Howe, 2014) and
consists of several steps.

Paper Sheet Recognition
The paper sheet is recognized as a light area of tetragonal shape
on a dark background. For recognition, the original color image
(Figure 1) is converted to grayscale by the cvtColor() function.
To determine the area of the sheet, an adaptive binarization of the
entire image is performed by the adaptiveThreshold() function,
and the canny() function is used for paper boundary detection.
The set of lines close to the sheet boundaries is generated by
the houghLinesP() function with the length parameter varying
from 20 to 80% of the respective image side. Due to distortions
on the image, not all of these lines for the same side are
parallel and lines at the adjacent sides are not perpendicular.
Therefore, to select lines approximating the paper boundaries,
we cluster them with respect to their mutual angle and distance,
yielding four clusters of lines corresponding to the paper sides.
For each cluster, we reconstruct a sheet boundary line with
the smallest distance from the pixels of the cluster lines. The
intersections between the sheet boundary lines determine the
vertices of the paper tetragonal image. If the paper shape
on the image deviates from rectangular, affine transformations
convert it to rectangular. This step is performed using the
getPerspectiveTransform() function for transformation matrix
calculations, and the warpPerspective() function is used to
transform the image, making the opposite edges parallel and all
angles equal to 90◦.

Grain Identification and Morphometry
Grains are identified as contours by applying the findContours()
function to the image fragment corresponding to the paper sheet.
We make a further adjustment of the grain boundaries using
local Hue Saturation Value (HSV) channel binarization for the
neighboring regions of the original image. Local binarization
reduces the influence of shadowing during grain boundary
determination. It includes converting a local image segment to
HSV color space and a subsequent conversion into grayscale
based on calibration parameters and color histograms. The
resulting channel reflects the degree of conformity of image pixels
to the grain color. The local binarization yields more accurate
determinations of grain boundaries.

The marked watershed method (Roerdink and Meijster, 2000),
as implemented in the watershed() function, is used to resolve the
boundaries of seed grains that are in contact with one another.
The resulting contours are approximated by grain ellipsoids,
allowing for estimates of the size of the major and minor principal
axes corresponding to the length and the width of the grain
(Figure 1D). SeedCounter additionally identifies the grain image
area and the distance between the geometric center of mass and
the point of intersection of the principal axes.
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FIGURE 1 | The main steps of grain recognition on a sheet of paper. (A) Capturing an image using the camera of the mobile device and paper recognition.
(B) The image after affine transformation and binarization. (C) Grain contours identified on the image. (D) Grain image with the major axes shown by crossed lines.

FIGURE 2 | The SeedCounter application interface. (A) Main menu. (B) Selection of the paper size. (C) Output screen indicating the results of measurements
(grain count and length/width/area for each grain).

Android Application Interface
The mobile application user can adjust image processing and seed
recognition parameters by using the ‘Calibration’ option on the
main menu (Figure 2A). The user should provide a single seed
on the paper, process the image and verify that the algorithm
identifies the seed correctly and marks it as a red polygon. The
algorithm parameters at this stage are saved automatically. The
user can also use the program menu (Figure 2B) to define the size
of the paper sheet (including user-defined sizes) and the camera

and image resolutions to enable the touching seed separation
algorithm and HSV binarization.

Data on the number of counted seeds and seed shape
parameters for each seed are stored in XML format and can
be displayed using the ‘Seed data’ menu (Figure 2C). The user
can view the data, delete it, export in tsv format or send it to
the SeedCounter web-server. In the last case, the user obtains
the data URL that allows the uploading of the data in the web-
browser.
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Accuracy Estimation
We considered two types of errors. First, we estimated the
accuracy of the grain number identification. Fifty wheat grains
of the same variety were poured onto a sheet, and the number of
grains was estimated by SeedCounter. After that, one grain was
removed from the sheet, the grains were shuffled (no control for
the grain separation), and the number of grains was estimated
again. This procedure was repeated 40 times. We performed
this measurement series using different mobile devices, camera
resolutions, and illumination conditions. For each series of grain
number estimations, we calculated the mean absolute error
(MAE) and the mean absolute percentage error (MAPE) as
follows:

MAE =
1
M

j=M∑
j=1

|Nj −N
′

j|

MAPE =
100%

M

j=M∑
j=1

(
|Nj−N

′

j|

Nj

)

where j is the image number in the experiment, N j is the number
of grains on the sheet, N j

′

is the number of grains estimated
by SeedCounter and M = 40 is the number of images in the
experiment. The error in seed grain number estimation increases
as the MAE [Eq. (1)] and MAPE [Eq. (2)] values increase. If
the MAE and MAPE values are close to 0, the error is low. We
additionally estimated the Pearson correlation coefficient, rN ,
between N j and N j

′

. The closer rN is to unity, the smaller the error
in the grain number estimates.

Second, we evaluated the accuracy of the grain length and
width estimation. We measured the length and width of 250
grains of five wheat varieties, with each grain placed in a strict
order, using a Carl Zeiss Aioscop 2 plus microscope equipped
with a digital camera with the AxoCamHRc TV2/3c 0.63 adapter.
We placed grains on the paper sheet in the same order and
applied the SeedCounter software to estimate their length and
width. A series of morphometric measurements of the 250 grains
was performed using different mobile devices, camera resolutions
and illumination conditions. For each experiment, we calculated
MAE [Eq. (1))] separately for length and width and calculated
the average values. The same procedure was used to calculate
MAPE [Eq. (2)] for the width and length. The Pearson correlation
coefficients, rw and rl, were calculated for these parameters
separately.

To compare the accuracy of SeedCounter applications with
available software, we compared our results with measurements
obtained using the application SmartGrain (Tanabata et al., 2012)
running on a personal computer (Intel Core i7, 2400 MHz,
4 Gb RAM) and images from the scanner HP Scanjet 3800 with
600 dpi.

Experimental Conditions
We evaluated the accuracy of the morphometric parameter
estimation of grains using the following three mobile devices
running Android OS at maximal camera resolution: the
smartphones Samsung Galaxy Grand 2, Sony Ericsson XPERIA

pro mini, and the Internet tablet DNS AirTab m101w.
Characteristics for these devices are presented in Supplementary
Table S1.

We used the following three types of lighting devices: A 11-W
daylight lamp (color temperature 4000 K, luminous flux 900 lm),
a 5-W daylight lamp (4000 K, 400 lm), and a 35-W halogen lamp
(2700 K, 190 lm). Four types of artificial lighting were used, as
follows: a 11-W daylight lamp (L1); a 11-W daylight lamp and
two 5-W daylight lamps (L2); a 11-W daylight lamp and four
5-W daylight lamps (L3); and a 11-W daylight lamp, four 5-W
daylight lamps, and a halogen lamp (L4). The lamps were set at
a height of 60 cm above the sheet of paper. The sheet was placed
on a table with a dark top, and the experiments were performed
in a dark room. To assess the accuracy of the measurements
in the daylight, we also measured the grains without using
artificial lighting in cloudy weather indoors and on a clear day
outdoors. Details of the experimental conditions are listed in
Table 1.

We used two-way ANOVA tests to estimate the influence
of device type and lighting conditions on grain number and
shape accuracy. We considered device type and lighting to be
independent variables and error estimates (MAE and MAPE) to
be dependent variables. The Statistica 6.0 software was used to
perform this test.

Wheat Varieties
We used the grains from the following five wheat varieties from
the cereal collection of the Chromosome engineering laboratory,
Institute of Cytology and Genetics SB RAS: Alen’kaya 1102 II-
12, 84/98w 99 II-13, Synthetic 6x x-12, Purple Chance 4480 II-03,
and Alcedo n-99. Plants were grown in a field near Novosibirsk in
2014. These varieties have grains with different shapes and sizes.
The variety Alcedo is oval in shape and has an average length
of ∼7 mm and width of ∼3.6 mm. The Synthetic variety has
an elongated grain shape and an average length of ∼8 mm and
width of∼2.3 mm. The Alen’kaya variety has smaller dimensions,
with an average length of ∼5 mm and an average width of
∼2.4 mm. The 84/98w and Purple Chance varieties are similar

TABLE 1 | Light conditions for measuring the accuracy of the wheat grain
morphometry.

Number Lighting facilities Luminous flux
(lux)

Light
temperature

L1 11-W daylight lamp 900 lm 4000K

L2 11-W daylight lamp,
2 × 5-W daylight lamps

1700 lm 4000K

L3 11-W daylight lamp,
4 × 5-W daylight lamps

2500 lm 4000K

L4 11-W daylight lamp,
4 × 5-W daylight lamps,

35-W halogen lamp

2690 lm 4000 and
2700K

L5 Daylight, cloudy day,
indoors

(1280 lux) –

L6 Daylight, sunny day,
outdoors

(656000 lux) –

Lux units were used to evaluate the light intensity of natural lighting conditions.
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in appearance and have an average length/width of 6.5/2.6 mm
and 7/2.9 mm, respectively.

RESULTS

The SeedCounter mobile application for Android devices is free
to download at the Android Play Store1). The SeedCounter
application requires a minimum of Android API version 15, and
Oracle/Sun JDK 6 or 7 is recommended. SeedCounter uses the
OpenCV library for image processing. SeedCounter is distributed
under the BSD (Berkley Software Distribution) license.

The grain number estimation accuracies for different
experiment series are shown in Table 2. The table shows that
the MAE [Eq. (1)] of the estimate of the number of grains on
the sheet is close to 1% and that the MAPE [Eq. (2)] is close to
2%. A more detailed analysis showed that the largest errors in
counting the number of grains occur if two or more grains on
the paper are in contact and that under poor lighting conditions,
the algorithm does not separate most of the grains. If the grains
on the sheet are all separated, the seed counting error vanishes.

The accuracy of length and width estimation for the grains
by different devices in different conditions is shown in Table 3.
The table demonstrates that the grain size estimation accuracy
was approximately 0.30 mm (average for all series: 0.31 mm)
that is approximately 8% of the linear dimensions of the
grain (average for all series: 8.03%). The correlation coefficients
between the control length and its estimate in all experiments
were not lower than 0.79. For the grain width, this parameter

1https://play.google.com/store/apps/details?id=org.wheatdb.seedcounter

TABLE 2 | Evaluation of the accuracy of wheat grain counting using the
SeedCounter mobile application.

Experiment ID MAEa (mm) MAPEa (%) r (Nj , Nj
′)a

Sam_L1 1.425 0.035 0.996

Sam_L2 1.375 0.036 0.994

Sam_L3 0.65 0.015 0.998

Sam_L4 0.975 0.024 0.997

Sam_L5 1.15 0.029 0.992

Sam_L6 0.55 0.017 0.998

Sony_L1 1 0.024 0.995

Sony_L2 0.8 0.019 0.995

Sony_L3 0.675 0.017 0.996

Sony_L4 0.775 0.020 0.997

Sony_L5 0.75 0.018 0.996

Sony_L6 0.775 0.018 0.996

DNS_L1 1.2 0.031 0.997

DNS_L2 0.5 0.012 0.997

DNS_L3 0.125 0.003 0.999

DNS_L4 0.725 0.017 0.998

DNS_L5 1.175 0.030 0.996

DNS_L6 0.775 0.020 0.997

aMean absolute error (MAE), mean absolute percentage error (MAPE), and Pearson
correlation coefficient r (Nj, Nj

′) between the actual number and estimated number
of seeds.

TABLE 3 | The accuracy of estimates of the length and width of wheat
grains by SeedCounter mobile application and SmartGrain.

Experiment ID MAEa

(mm)
MAPEa

(%)
rl

a rw
a

Sam_L1 0.284 7.453 0.936 0.816

Sam_L2 0.296 7.576 0.928 0.824

Sam_L3 0.283 7.339 0.932 0.822

Sam_L4 0.327 8.306 0.923 0.811

Sam_L5 0.398 9.081 0.797 0.770

Sam_L6 0.349 8.437 0.875 0.769

Sony_L1 0.313 8.277 0.933 0.765

Sony_L2 0.310 8.121 0.931 0.767

Sony_L3 0.298 7.787 0.937 0.777

Sony_L4 0.327 8.418 0.920 0.755

Sony_L5 0.301 7.727 0.913 0.749

Sony_L6 0.338 8.546 0.899 0.730

DNS_L1 0.295 7.852 0.943 0.774

DNS_L2 0.296 7.688 0.935 0.777

DNS_L3 0.287 7.730 0.950 0.779

DNS_L4 0.311 8.229 0.940 0.780

DNS_L5 0.351 8.798 0.890 0.672

DNS_L6 0.346 8.264 0.890 0.787

SmartGrain 0.305 6.973 0.948 0.886

aMean absolute error (MAE), mean absolute percentage error (MAPE) averaged
over length and width, and Pearson correlation coefficients for length (rl) and width
(rw) between actual and estimated values.

TABLE 4 | Significance of the influence of the mobile device type and
lighting on errors in estimating grain number and dimensions.

Error type Lighting conditions Device type

Grain counting, MAE 0.004 0.365

Grain counting, MAPE 0.003 0.306

Grain dimensions, MAE 0.036 0.771

Grain dimensions, MAPE 0.094 0.890

ANOVA p-values of two factors are represented. Bold values are significant
(p < 0.05)

was smaller but greater than 0.67. Both correlation coefficients
were significant at p < 0.01. Interestingly, errors for grain length
estimates for SeedCounter and SmartGrain are close to each
other; however, for grain width SmartGrain demonstrates better
performance.

Average values for different devices under the same conditions
are shown in Supplementary Table S2. The mobile devices
on average demonstrate the best performance in grain size
estimation at L3 lighting conditions (two daylight lamps,
luminous flux is 2500 lm). The worst performance was obtained
at L5 conditions (cloudy day, indoors).

The two-way ANOVA test showed that the lighting conditions
significantly influence the estimation of the grain number and
the grain length and width (ANOVA p-value < 0.05; Table 4).
Interestingly, the largest mean MAE [Eq. (1)[ for grain counting,
0.458, was obtained for the lighting condition with the lowest
luminous flux (L1, 11-W lamp only), whereas the other lighting
conditions had lower MAE values: 0.058 for L2, 0.1 for L3,
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0.058 for L4, and 0.275 for L5. It should be noted that the
seed counting error under conditions without artificial light is
smaller than that for the lowest luminous flux but larger than
that obtained under all other controlled light conditions. The
results shown in Table 4 demonstrate that device type does
not have a significant effect on the grain number/dimension
measurements.

Figure 3 demonstrates the scatterplot of the length and
width measurements for 250 seeds obtained by microscope
and a Samsung camera using daylight lamps (L3) and sunlight
(L6) lighting conditions. This figure demonstrates that with
good lighting conditions, the grain size estimates obtained
by the mobile device are in agreement with the microscope
measurements. However, in sunlight conditions, our software
tends to underestimate the grain dimensions for larger grains and
overestimate them for smaller grains. This effect is likely due to
a shadow effect that introduces systematic bias in the grain size
estimation when an image is taken under direct bright sunlight.

We estimated the time used for the analysis of a single image
by mobile devices and SmartGrain software at different image
resolutions. The results are shown in Supplementary Table S3.
The time for low resolution image processing (2592 × 1944
pixels) is approximately 30 s. For a higher resolution camera
(Samsung 3264× 2448), this value is close to 1 min. Interestingly,
this is comparable with the time of image processing by
SmartGrain (at similar resolutions, 3510× 2550).

Using the SeedCounter mobile application, we performed
wheat grain morphometry of five varieties. For each variety, 50

grains were analyzed, and their length and width were measured.
The results are shown in Figures 4A–C.

The diagrams in Figures 4A–C demonstrate the reliability
of discriminating grains from different wheat varieties based
on their length and width estimates. The figure shows that the
Alcedo cultivar has the thickest grains (average width–3.59 mm)
and that the Synthetic cultivar has the longest grains (7.97 mm).
The separation of varieties by seed size is clearly demonstrated
in Figure 4C, where different varieties occupy different plot
areas.

DISCUSSION

Image processing methods for seed morphometry and
classification have been implemented since the 1980s (Sapirstein
et al., 1987). Updates of these methods appear constantly,
including in recent years (Smykalova et al., 2013; Whan et al.,
2014; Miller et al., 2016; Sankaran et al., 2016). New methods
use various optical sensing techniques to estimate seed quality
and safety (Huang et al., 2015), describe complex seed shapes
using 2D images (Williams et al., 2013; Cervantes et al., 2016).
Breakthrough 3D imaging technology and robotics (Jahnke
et al., 2016; Roussel et al., 2016) or X-ray computed tomography
(Strange et al., 2015) implemented for evaluating seed shape in
fine detail. However, there is still a need for seed phenotyping
using simple and low cost tools (Whan et al., 2014). They
can be effectively implemented with high throughput. Despite

FIGURE 3 | Scatter plot of seed sizes measured by Samsung mobile device (Y-axis) relative to the sizes measured under a microscope (X-axis).
(A) Seed length at L3 conditions; regression parameters: intercept = 0.25 (Lower 95%: −0.07, Upper: 95%: 0.57), slope = 0.96 (Lower 95%: 0.91, Upper 95%:
1.01). (B) Seed length in L6 conditions; regression parameters: intercept = 1.26 (Lower 95%: 0.86, Upper 95%: 1.64), slope = 0.83 (Lower 95%: 0.77, Upper
95%: 0.88). (C) Seed width in L3 conditions; regression parameters: intercept = 0.54 (Lower 95%: 0.33, Upper 95%: 0.73), slope = 0.79 (Lower 95%: 0.73, Upper
95%: 0.87). (D) Seed width in L6 conditions; regression parameters: intercept = 0.90 (Lower 95%: 0.58, Upper 95%: 0.68), slope = 0.64 (Lower 95%: 0.58, Upper
95%: 0.68).
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FIGURE 4 | Distribution of grain width and length for five different wheat varieties. (A,B) The histograms of the length and width distribution, respectively;
(C) 2D-scatter plot of grains from different varieties in length (X-axis) and width (Y-axis).

simplicity, they are powerful enough to identify QTL related to
seed morphology and size (Gegas et al., 2010; Herridge et al.,
2011; Moore et al., 2013; Williams et al., 2013). Mobile devices
are valuable tools in this regard. They provide the researcher
everything needed for simple phenotyping, including a digital
camera, a powerful processor, and Internet access. They can
be applied far from the lab, yet provide reasonable precision
for phenotypic parameter estimates. Mobile devices are also

convenient for the novel type of plant phenotyping ‘by crowd’
(Rahman et al., 2015).

We suggest a program for grain morphometry using mobile
devices. The protocol of the analysis setup is simple and uses
a white paper sheet of standard size as a background to
convert pixels into the metric scale. To test the accuracy of the
program, we performed a series of image analysis experiments
using three types of mobile devices and six lighting conditions.
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In our work, the mean absolute errors of the length/width
estimates are approximately 7–10% and correlation coefficients
for length and width between estimated and actual values at
ambient lighting are close to 0.93 and 0.77, respectively. Similar
analysis performed in a recent work, Miller et al. (2016) reported
r2
= 0.996 for maize kernel length estimated from digital images

and their actual values (flatbed document scanner Epson V700,
1200 dpi image, 24-bit color resolution). Sankaran et al. (2016)
reported Pearson correlation coefficients between image-based
estimates of chickpea seed size and their real values ranging
from 0.86 to 0.93 (Canon 70D digital SLR camera, tripod setup,
15–85 mm zoom lens, image resolution set to 2700 × 1800
pixels). Whan et al. (2014) analyzed performance of wheat
seed length and width measurements by the following three
methods: GrainScan (developed by the authors), SmartGrain
(Tanabata et al., 2012), and SeedCount (Next Instruments,
2015). They used an Epson Perfection V330 (Seiko Epson
Corporation, Suwa, Japan) scanner to obtain 300 dpi color
images. Whan et al. (2014) demonstrated that the average
accuracy (Pearson correlation between true parameters and
image-based estimates) for GrainScan was very high (0.981–
0.996), while the average accuracy for SmartGrain was lower
(0.871–0.947), similarly to that of SeedCount at the ambient
light conditions (0.731–0.940; Supplementary Table S2). Note,
the accuracy for length estimates was higher than for width for
all three methods. Our results demonstrate that SeedCounter
accuracy and efficiency are comparable with those obtained using
desktop PC/scanner/camera devices. Note that we used cameras
with moderate resolution and unpretentious lighting conditions
for our experiments.

Interference from uncontrolled or uneven lighting is the
most basic challenge for smartphone optical sensing (McCracken
and Yoon, 2016). We found that the lighting of the paper has
significant influence on the accuracy of our method, unlike
the smartphone type (Table 4; Supplementary Table S2). We
used ANOVA with six different classes of lighting not related
directly to luminosity. We chose this approach because our data
demonstrated that the influence of luminosity itself on accuracy
is not straightforward: images taken at high luminosity under
direct sunlight demonstrate increased error in comparison with
medium luminosity images and ambient lighting. Under low light
conditions (11-W daylight lamp or without artificial lighting),
grain number estimation accuracy decreases. Lighting conditions
with halogen and daylight lamps (experimental conditions of
Sam_L4, Sony_L4, and DNS_L4) caused a small shimmering
effect on the images. This effect can complicate the paper
recognition process and lead to distorted results. The flicker
effect was also present under Sam_L3 and DNS_L3 conditions
but could be significantly suppressed using the “night shot”
technique. The location of light sources and their angle with
the paper surface can distort the measurements and degrade
sheet recognition conditions. A brighter, diffused light eliminates
distortions associated with the appearance of dark spots on
the borders of the sheet that can be incorrectly recognized as
grains, allows for more efficient separation of touching grains and
reduces the likelihood that the grain in the image will merge with
the background.

There are several approaches suggested to improve
image quality and analysis precision. Some of them require
auxiliary/add-on devices (enclosed lighting and imaging
attachments) to improve the sensitivity of the smartphone
camera (Barbosa et al., 2015). Other methods implement
normalization algorithms to reduce lighting inhomogeneity on
the image (McCracken et al., 2016). There is still no perfect
solution to this problem and further investigation is required to
reduce image processing errors from these sources (McCracken
and Yoon, 2016).

Mobile applications can significantly accelerate the process
of counting the number of grains of wheat in an ear. The time
required to calculate approximately 50 grains using a mobile
device is approximately 20–55 s, depending on the mobile device
and camera resolution. The time required for manually counting
the same number of grains may be a little less but mobile
devices allow processing a series of images in the background
and automatically saving and transmitting data to the server.
Increasing the number of grains to 100 increases the running
time of the algorithm by 5–10 s. The time required to evaluate
the lengths and widths of 50 grains under the microscope is
approximately 40–60 min. The mobile application performs this
analysis in approximately 1 min.

Thus, the mobile application “SeedCounter” allows for the
large-scale measurement of the phenotypic parameters of wheat
grains, such as length, width, area, and number of grains per ear,
both in “the field” and in the laboratory.

AUTHOR CONTRIBUTIONS

EK developed algorithms, SeedCounter software, and performed
data analysis. MG contributed to algorithm development and
data analysis. DA conceived of the study and participated in its
design. All authors participated in writing the manuscript as well
as read and approved its final version.

FUNDING

This work was in part supported by the Russian Foundation for
Basic Research (project 16-37-00304) and Russian Government
Budget project 0324-2015-0003.

ACKNOWLEDGMENT

Authors are grateful to Tatyana Pshenichnikova for providing
wheat grain material, Sodbo Sharapov for providing Samsung
Galaxy Tab S2 for technical testing of the application and Sergey
Lashin for help in English translation.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online
at: http://journal.frontiersin.org/article/10.3389/fpls.2016.01990/
full#supplementary-material

Frontiers in Plant Science | www.frontiersin.org January 2017 | Volume 7 | Article 199054

http://journal.frontiersin.org/article/10.3389/fpls.2016.01990/full#supplementary-material
http://journal.frontiersin.org/article/10.3389/fpls.2016.01990/full#supplementary-material
http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive


fpls-07-01990 December 26, 2016 Time: 15:5 # 9

Komyshev et al. Mobile Application for Grain Phenotyping

REFERENCES
Bai, X. D., Cao, Z. G., Wang, Y., Yu, Z. H., Zhang, X. F., and Li, C. N. (2013). Crop

segmentation from images by morphology modeling in the CIE L∗a∗b color
space. Comput. Electron. Agric. 99, 21–34. doi: 10.1016/j.compag.2013.08.022

Barbosa, A. I., Gehlot, P., Sidapra, K., Edwards, A. D., and Reis, N. M. (2015).
Portable smartphone quantitation of prostate specific antigen (PSA) in a
fluoropolymer microfluidic device. Biosens. Bioelectron. 70, 5–14. doi: 10.1016/
j.bios.2015.03.006

Cervantes, E., Martín, J. J., and Saadaoui, E. (2016). Updated methods for seed
shape analysis. Scientifica 2016, 5691825. doi: 10.1155/2016/5691825

Chen, X., Xun, Y., Li, W., and Zhang, J. (2010). Combining discriminant analysis
and neural networks for corn variety identification. Comput. Electron. Agric. 71,
48–53. doi: 10.1016/j.compag.2009.09.003

Dawson-Howe, K. (2014). A Practical Introduction to Computer Vision with
OpenCV. Chichester: John Wiley & Sons.

Duan, L., Yang, W., Huang, C., and Liu, Q. (2011). A novel machine-vision-based
facility for the automatic evaluation of yield-related traits in rice. Plant Methods
7: 44. doi: 10.1186/1746-4811-7-44

Gegas, V. C., Nazari, A., Griffiths, S., Simmonds, J., Fish, L., Orford, S., et al. (2010).
A genetic framework for grain size and shape variation in wheat. Plant Cell 22,
1046–1056. doi: 10.1105/tpc.110.074153

Gómez-Robledo, L., López-Ruiz, N., Melgosa, M., Palma, A. J., Capitan-
Vallvey, L. F., and Sánchez-Marañón, M. (2013). Using the mobile phone
as Munsell soil-colour sensor: an experiment under controlled illumination
conditions. Comput. Electron. Agric. 99, 200–208. doi: 10.1016/j.compag.2013.
10.002

Granitto, P. M., Verdes, P. F., and Ceccatto, H. A. (2005). Large-scale investigation
of weed seed identification by machine vision. Comput. Electron. Agric. 47,
15–24. doi: 10.1016/j.compag.2004.10.003

Herridge, R. P., Day, R. C., Baldwin, S., and Macknight, R. C. (2011). Rapid analysis
of seed size in Arabidopsis for mutant and QTL discovery. Plant Methods 7: 3.
doi: 10.1186/1746-4811-7-3

Howse, J. (2013). Android Application Programming with OpenCV. Birmingham:
Packt Publishing Ltd.

Huang, M., Wang, Q. G., Zhu, Q. B., Qin, J. W., and Huang, G. (2015). Review
of seed quality and safety tests using optical sensing technologies. Seed Sci.
Technol. 43, 337–366. doi: 10.15258/sst.2015.43.3.16

Jahnke, S., Roussel, J., Hombach, T., Kochs, J., Fischbach, A., Huber, G., et al.
(2016). phenoSeeder – a robot system for automated handling and phenotyping
of individual seeds. Plant Physiol. 172, 1358–1370. doi: 10.1104/pp.16.01122

Kumar, N., Belhumeur, P. N., Biswas, A., Jacobs, D. W., Kress, W. J., Lopez, I. C.,
et al. (2012). “Leafsnap: A computer vision system for automatic plant species
identification,” in Proceedings of the 12th European Conference on Computer
Vision–ECCV, eds A. Fitzgibbon, S. Lazebnik, P. Perona, Y. Sato, and C. Schmid
(Berlin: Springer), 502–516.

McCracken, K. E., Angus, S. V., Reynolds, K. A., and Yoon, J. Y. (2016). Multimodal
imaging and lighting bias correction for improved µPAD-based water quality
monitoring via smartphones. Sci. Rep. 6: 27529. doi: 10.1038/srep27529

McCracken, K. E., and Yoon, J.-Y. (2016). Recent approaches for optical
smartphone sensing in resource limited settings: a brief review. Anal. Methods
8, 6591–6601. doi: 10.1039/C6AY01575A

Miller, N. D., Haase, N. J., Lee, J., Kaeppler, S. M., de Leon, N., and Spalding,
E. P. (2016). A robust, high-throughput method for computing maize ear, cob,
and kernel attributes automatically from images. Plant J. doi: 10.1111/tpj.13320
[Epub ahead of print].

Moore, C. R., Gronwall, D. S., Miller, N. D., and Spalding, E. P. (2013). Mapping
quantitative trait loci affecting Arabidopsis thaliana seed morphology features
extracted computationally from images. G3 3, 109–118. doi: 10.1534/g3.112.
003806

Next Instruments (2015). Seedcount. Condell Park, NSW: Next Instruments.
Novaro, P., Colucci, F., Venora, G., and D’egidio, M. G. (2001). Image

analysis of whole grains: a noninvasive method to predict semolina yield

in durum wheat. Cereal Chem. 78, 217–221. doi: 10.1094/CCHEM.2001.78.
3.217

Pethybridge, S. J., and Nelson, S. C. (2015). Leaf doctor: a new portable application
for quantifying plant disease severity. Plant Dis. 99, 1310–1316. doi: 10.1094/
PDIS-03-15-0319-RE

Pourreza, A., Pourrezab, H., Abbaspour-Farda, M. H., and Sadrniaa, H. (2012).
Identification of nine Iranian wheat seed varieties by textural analysis with
image processing. Comput. Electron. Agric. 83, 102–108. doi: 10.1016/j.compag.
2012.02.005

Rahman, M., Blackwell, B., Banerjee, N., and Saraswat, D. (2015). Smartphone-
based hierarchical crowdsourcing for weed identification. Comput. Electron.
Agric. 113, 14–23. doi: 10.1016/j.compag.2014.12.012

Roerdink, J. B. T. M., and Meijster, A. (2000). The watershed transform: definitions,
algorithms and parallelization strategies. Fundam. Inform. 41, 187–228. doi:
10.3233/FI-2000-411207

Roussel, J., Geiger, F., Fischbach, A., Jahnke, S., and Scharr, H. (2016). 3D surface
reconstruction of plant seeds by volume carving: performance and accuracies.
Front. Plant. Sci. 7:745. doi: 10.3389/fpls.2016.00745

Sankaran, S., Wang, M., and Vandemark, G. J. (2016). Image-based rapid
phenotyping of chickpeas seed size. Eng. Agric. Environ. Food 9, 50–55. doi:
10.1016/j.eaef.2015.06.001

Sapirstein, H. D., Neuman, M., Wright, E. H., Shwedyk, E., and Bushuk, W.
(1987). An instrumental system for cereal grain classification using digital
image analysis. J. Cereal Sci. 6, 3–14. doi: 10.1016/S0733-5210(87)80035-8

Smykalova, I., Grillo, O., Bjelkova, M., Martina, P., and Gianfranco, V. (2013).
Phenotypic evaluation of flax seeds by image analysis. Ind. Crops Prod. 47,
232–238. doi: 10.1016/j.indcrop.2013.03.001

Strange, H., Zwiggelaar, R., Sturrock, C., Mooney, S. J., and Doonan, J. H.
(2015). Automatic estimation of wheat grain morphometry from computed
tomography data. Funct. Plant Biol. 42, 452–459. doi: 10.1071/FP14068

Tahir, A. R., Neethirajan, S., Jayas, D. S., Shahin, M. A., Symons, S. J., and White,
N. D. G. (2007). Evaluation of the effect of moisture content on cereal grains by
digital image analysis. Food Res. Int. 40, 1140–1145. doi: 10.1016/j.foodres.2007.
06.009

Tanabata, T., Shibaya, T., Hori, K., Ebana, K., and Yano, M. (2012).
SmartGrain: high-throughput phenotyping software for measuring seed shape
through image analysis. Plant Physiol. 4, 1871–1880. doi: 10.1104/pp.112.
205120

Whan, A. P., Smith, A. B., Cavanagh, C. R., Ral, J. P. F., Shaw, L. M., Howitt,
C. A., et al. (2014). GrainScan: a low cost, fast method for grain size and colour
measurements. Plant Methods 10: 1. doi: 10.1186/1746-4811-10-2310.4225/08/
536302C43FC28

Wiesnerová, D., and Wiesner, I. (2008). Computer image analysis of seed shape and
seed color for flax cultivar description. Comput. Electron. Agric. 61, 126–135.
doi: 10.1016/j.compag.2007.10.001

Williams, K., Munkvold, J., and Sorrells, M. (2013). Comparison of digital image
analysis using elliptic fourier descriptors and major dimensions to phenotype
seed shape in hexaploid wheat (Triticum aestivum L.). Euphytica 190, 99–116.
doi: 10.1007/s10681-012-0783-0

Zapotoczny, P. (2011). Discrimination of wheat grain varieties using image analysis
and neural networks, Part I, single kernel texture. J. Cereal Sci. 54, 60–68.
doi: 10.1016/j.jcs.2011.02.012

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2017 Komyshev, Genaev and Afonnikov. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) or licensor are credited and that the original publication in this
journal is cited, in accordance with accepted academic practice. No use, distribution
or reproduction is permitted which does not comply with these terms.

Frontiers in Plant Science | www.frontiersin.org January 2017 | Volume 7 | Article 199055

https://doi.org/10.1016/j.compag.2013.08.022
https://doi.org/10.1016/j.bios.2015.03.006
https://doi.org/10.1016/j.bios.2015.03.006
https://doi.org/10.1155/2016/5691825
https://doi.org/10.1016/j.compag.2009.09.003
https://doi.org/10.1186/1746-4811-7-44
https://doi.org/10.1105/tpc.110.074153
https://doi.org/10.1016/j.compag.2013.10.002
https://doi.org/10.1016/j.compag.2013.10.002
https://doi.org/10.1016/j.compag.2004.10.003
https://doi.org/10.1186/1746-4811-7-3
https://doi.org/10.15258/sst.2015.43.3.16
https://doi.org/10.1104/pp.16.01122
https://doi.org/10.1038/srep27529
https://doi.org/10.1039/C6AY01575A
https://doi.org/10.1111/tpj.13320
https://doi.org/10.1534/g3.112.003806
https://doi.org/10.1534/g3.112.003806
https://doi.org/10.1094/CCHEM.2001.78.3.217
https://doi.org/10.1094/CCHEM.2001.78.3.217
https://doi.org/10.1094/PDIS-03-15-0319-RE
https://doi.org/10.1094/PDIS-03-15-0319-RE
https://doi.org/10.1016/j.compag.2012.02.005
https://doi.org/10.1016/j.compag.2012.02.005
https://doi.org/10.1016/j.compag.2014.12.012
https://doi.org/10.3233/FI-2000-411207
https://doi.org/10.3233/FI-2000-411207
https://doi.org/10.3389/fpls.2016.00745
https://doi.org/10.1016/j.eaef.2015.06.001
https://doi.org/10.1016/j.eaef.2015.06.001
https://doi.org/10.1016/S0733-5210(87)80035-8
https://doi.org/10.1016/j.indcrop.2013.03.001
https://doi.org/10.1071/FP14068
https://doi.org/10.1016/j.foodres.2007.06.009
https://doi.org/10.1016/j.foodres.2007.06.009
https://doi.org/10.1104/pp.112.205120
https://doi.org/10.1104/pp.112.205120
https://doi.org/10.1186/1746-4811-10-2310.4225/08/536302C43FC28
https://doi.org/10.1186/1746-4811-10-2310.4225/08/536302C43FC28
https://doi.org/10.1016/j.compag.2007.10.001
https://doi.org/10.1007/s10681-012-0783-0
https://doi.org/10.1016/j.jcs.2011.02.012
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive


fpls-07-01644 October 27, 2016 Time: 18:17 # 1

METHODS
published: 28 October 2016

doi: 10.3389/fpls.2016.01644

Edited by:
Marcos Egea-Cortines,

Universidad Politécnica de Cartagena,
Spain

Reviewed by:
Risto Sievänen,

The Finnish Forest Research Institute,
Finland

Yonghuai Liu,
Aberystwyth University, UK

*Correspondence:
Antonio Montagnoli

antonio.montagnoli@uninsubria.it

Specialty section:
This article was submitted to

Technical Advances in Plant Science,
a section of the journal

Frontiers in Plant Science

Received: 08 March 2016
Accepted: 18 October 2016
Published: 28 October 2016

Citation:
Montagnoli A, Terzaghi M, Fulgaro N,

Stoew B, Wipenmyr J, Ilver D,
Rusu C, Scippa GS and Chiatante D

(2016) Non-destructive Phenotypic
Analysis of Early Stage Tree Seedling

Growth Using an Automated
Stereovision Imaging Method.

Front. Plant Sci. 7:1644.
doi: 10.3389/fpls.2016.01644

Non-destructive Phenotypic Analysis
of Early Stage Tree Seedling Growth
Using an Automated Stereovision
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Jan Wipenmyr2, Dag Ilver2, Cristina Rusu2, Gabriella S. Scippa3 and Donato Chiatante1
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A plant phenotyping approach was applied to evaluate growth rate of containerized
tree seedlings during the precultivation phase following seed germination. A simple and
affordable stereo optical system was used to collect stereoscopic red–green–blue (RGB)
images of seedlings at regular intervals of time. Comparative analysis of these images
by means of a newly developed software enabled us to calculate (a) the increments of
seedlings height and (b) the percentage greenness of seedling leaves. Comparison of
these parameters with destructive biomass measurements showed that the height traits
can be used to estimate seedling growth for needle-leaved plant species whereas the
greenness trait can be used for broad-leaved plant species. Despite the need to adjust
for plant type, growth stage and light conditions this new, cheap, rapid, and sustainable
phenotyping approach can be used to study large-scale phenome variations due to
genome variability and interaction with environmental factors.

Keywords: plant phenotype, biomass, seedlings, Picea abies L., Pinus sylvestris L., Fagus sylvatica L., Quercus
ilex L., RGB image analysis

INTRODUCTION

Worldwide, an estimated two billion ha of forests are degraded (Minnemayer et al., 2011; Stanturf
et al., 2014). In addition to the continuing anthropogenic alterations of global ecosystems (Foley
et al., 2005; Kareiva et al., 2007; Ellis et al., 2013), the anticipated effects of global climate change are
expected to lead to further deforestation and forest degradation in the future (Steffen et al., 2007;
Malhi et al., 2008; Zalasiewicz et al., 2010; Stanturf et al., 2014). Recently, restoration of degraded
land has received increasing attention due to its potential to reconcile agricultural development
and forest conservation (Robertson and Swinton, 2005; Kissinger et al., 2012). Among the many
techniques and tools available for restoration strategies (Stanturf et al., 2014), container seedlings
may be the most cost-effective when the planting season is to be extended or adverse sites are
to be planted (Brissette et al., 1991; Luoranen et al., 2005, 2006; Stanturf et al., 2014). Container
seedlings are produced to meet desired characteristics for outplanting under specified conditions
(Brissette et al., 1991; Landis et al., 2010). This requires the artificial production of high-quality
forest planting stock material (Wang et al., 2007; Cole et al., 2011) able to successfully survive
and grow after outplanting (Wilson and Jacobs, 2006). To achieve this, there is an urgent need to
improve the phenotypic assessment of containerised tree seedlings.
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The phenotype of a plant is the result of a complex
interaction between morphological, ontogenetical, physiological,
and biochemical factors (Gratani, 2014). A thorough knowledge
of the phenotypic variation occurring spontaneously in nature
or after induction by non-intrinsic factors such as environmental
stressors is essential for a better understanding of all events taking
place in the life of a plant (Grant-Downton and Dickinson, 2006;
Kuromori et al., 2009). For the purposes of this paper, we refer to
phenotyping as a method to measure plant growth using non-
invasive technologies that have become increasingly available
in recent years (Fiorani and Schurr, 2013). Unfortunately,
measurements of relative growth rate on a mass basis still depend
on destructive and time-consuming approaches (Walter et al.,
2007; Fiorani and Schurr, 2013; Humplík et al., 2015) with the
result of limiting the possibility to examine (1) a large number
of samples enabling metadata analysis, and (2) the same sample
repeatedly over time (Furbank and Tester, 2011; Busemeyer et al.,
2013; Rahaman et al., 2015). To overcome these constraints
and to increase the usefulness of phenotype investigation, new
approaches based upon the use of technologically advanced
equipment that do not affect the samples under examination
have been attempted (Tsaftaris and Noutsos, 2009; Walter et al.,
2015). Among these, the one based on a non-destructive image
analysis seems to achieve a good reliability for rapid phenotyping
measurements of a number of plant traits (Li et al., 2014;
Humplík et al., 2015). The reliability of this approach was
demonstrated in shoot growth rate analyses in which increments
measured as differences of digital area showed a high degree
of correlation with those obtained by traditional fresh or dry
weights measurements (Humplík et al., 2015; Rahaman et al.,
2015; and reference herein). A further improvement of this
approach is likely to contribute to a better understanding of
the principles governing plant biomass distribution in all organs
during the lifespan of a plant, a factor of primary importance
for phenotype determination. Similarly, other investigations
based on measurements of morphometric parameters (i.e.,
leaf area, stem height, number of tillers, and inflorescence
architecture) of plant growth in controlled and natural conditions
could benefit from adopting this non-destructive approach
(Busemeyer et al., 2013; Fiorani and Schurr, 2013; Rahaman
et al., 2015). Moreover, in recent years a large body of literature
is rapidly accumulating, mainly for Arabidopsis and agricultural
plant species, demonstrating how non-destructive analysis of
plant phenotype supports other omics approaches to plant
science (Edwards and Batley, 2004; Kuromori et al., 2009).
However, despite the undeniable merits of this non-destructive
method, it cannot be ignored that a number of biases affect
these measurements due to overlapping, twisting, curling, and
circadian movement of plant organs during image acquisition,
especially when 2D color red–green–blue (RGB) image is taken
from a single direction (top view) (Lati et al., 2013; Tessmer
et al., 2013; Humplík et al., 2015). Indeed, it is difficult to reliably
separate overlapped plant canopies into individual plants and the
development and implementation of these methods is limited to
early growth stages of a specific plant (Jin and Tang, 2009). To
overcome these biases the utilization of a stereo vision system
has advantages over conventional 2D machine vision-based plant

sensing systems (Jin and Tang, 2009; Piron et al., 2009; Lati
et al., 2013). Even though stereo vision system appear promising
for estimation of plant growth parameters and development of
models, development and implementation of these methods is
still limited in terms of species and plant developmental stage
(Lati et al., 2013).

We have specifically developed a simple and flexible optical
system together with its associated imaging and processing
software able to compare acquired images and to obtain,
rapidly and efficiently, measurements of height and greenness of
young containerised seedlings during the precultivation period.
Unlike most of the commercially available solutions for plant
phenotyping which are costly and require a large space (Granier
et al., 2006; Tsaftaris and Noutsos, 2009), our system is low cost
and has the dimension of a bench instrument. In particular, the
small size characteristic makes the system easily transportable
and combinable with other equipment as well as with high
potential to be straightforward integrated in mass-industry. In
the present paper, we describe this in-house developed optical
system together with the results obtained from a growth kinetics
study on tree seedlings grown in a growth chamber, from seed
germination to 5-weeks-old plants. Plant biomass is defined as
the total mass of all the above- and below-ground parts at a given
point in a plant’s life (Roberts et al., 1993; Humplík et al., 2015;
Wang and Ruan, 2016). The rationale for testing the functioning
of our system with this important parameter is twofold: (a)
its considerable influence on the plant phenome, and (b) its
great variability in response to environmental factors (Coleman
et al., 1994; Di Iorio et al., 2011; Montagnoli et al., 2012, 2014;
Chiatante et al., 2015). In order to widen the implementation
and development of stereo vision method, seedling analysis
was performed with four different species characterized by
different canopy geometries and development, two broad-leaved
(Fagus sylvatica L., Quercus ilex L.) and two needle-leaved
(Picea abies L., Pinus sylvestris L.). Since different species and
types of plants are characterized by differences in architectural
organization (Barthélémy and Caraglio, 2007; Díaz et al., 2016),
the effectiveness of our in-house built optical system and its
corresponding software was characterized by using both broad-
leaved and needle-leaved. We present also a comparison between
the data obtained by automated imaging analysis with those
obtained with the traditional destructive method.

MATERIALS AND METHODS

Plant Material and Growth Chamber
Characteristics
Seeds of four tree species (Fagus sylvatica L., Quercus ilex L., Picea
abies L., and Pinus sylvestris L.) were provided by the National
Forest Service (National Centre for Study and Conservation of
Forest Biodiversity-Peri, Italy) and sorted for uniform size. Seeds
of F. sylvatica were first hydrated by soaking for 24 h in tap water;
then seeds were surface sterilized with 3,5% household bleach
for 2 min, and rinsed four times with sterile water to remove
all traces of bleach. Afterward, seeds were treated with “Teldor”
fungicide (3 ml in 1 l of sterile water per 10 min) and placed
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under a hood for 3 h to improve fungicide adherence to the
seed coat. Finally, seeds were subjected to cold stratification in
perlite at 4◦C for 2 months. Seeds of Q. ilex were hydrated by
soaking them for 24 h in tap water and sown without further
pretreatment. P. sylvestris and P. abies seeds were directly sown
directly without any pretreatment. A total of 104 seeds were
sown in four different mini-plug plastic container trays (QPD
104 VW – 104 cells; 33 mm × 33 mm × 45 mm; 40 mm/height;
27 cc) (QuickPot by HerkuPlast-Kubern, Germany), containing
sterile stabilized peat growing medium Preforma VECO3 (Jiffy R©

Products). The temperature and humidity settings in the growth
chamber are detailed in Table 1. The trays were placed on a steel
table with a 50 mm-high edge in order to fill it up with water. The
mini-plugs had drainage holes in their base, allowing watering
from underneath. Watering operations were made every 3 days
during germination and every 2 days during growth period to
maintain constant water content in each tray. Seed germination
was 78% for Q. ilex, 66% for F. sylvatica, 78% for P. sylvestris,
and 96% for P. abies. Plants were grown under fluorescent light
(FLUORA T8), yielding approximately 120 µmolm−2 s−1 (Light
Meter sensor – HD2302.0 – Delta Ohm, Italy) at tray height. Each
plant species was grown independently in the same chamber until
the harvest date. A single growth chamber was used to allow for a
strict control of environmental factors (uniform conditions) and
seedling development (coetaneous cohort).

Experimental Design
For each species, four trays were grown for a total of 416 seedlings
(104 seedlings per tray). To investigate the kinetics of plant
growth, half a tray was considered for destructive analysis and the
other half for non-destructive image analysis. The first sampling
point was 14, 15, and 21 days after germination (a.g.) depending
on the plant species. Following samplings were carried out at
intervals of no less than 6 days and not more than 12 days
depending on the plant species, for four sampling points and
4 weeks of growth period.

Measurement of Shoot Height and Plant
Biomass
At each sampling date, plant height of seedlings for non-
destructive analysis (n = 52) was measured manually with a
wooden measuring stick from the base of the seedling to the
highest leaf. Furthermore, five seedlings per tray (20 seedlings
in total per species) were randomly collected at each sampling

TABLE 1 | Growth chamber settings (number of dark/light hours, relative
temperatures, and humidity) for each species.

Plant species Photoperiod
(h) day/night

Temperature
(◦C)

Relative
humidity (%)

Pinus sylvestris L. 16/8 21–26 80 (germination),

55–70 (growth)

Picea abies L. 16/8 21–26 80 (germination),

55–70 (growth)

Fagus sylvatica L. 16/8 21–22 70

Quercus ilex L. 16/8 21–22 70

point. Leaves, shoots, and roots from each seedling were oven
dried (52 h at 75◦C) and weighed in order to measure total plant
biomass.

Optical System
The optical data acquisition system consists of two digital color
cameras equipped with identical lenses from Edmund Optics:
1/1.8” CMOS, 1280 × 1024 pixels, sensor area 6.79 × 5.43 mm,
5 mm fixed focal length lens, field-of-view of 65.5◦ (UI-1240SE:
USB 2.0 uEye industrial camera from IDS Imaging1). A rugged
USB cable is used for both data transmission and supplying the
current to the camera electronics.

The cameras are mounted next to each other as close as
possible (∼5.5 cm) for stereographic imaging technique for
the image color extraction of plant-green and for plant height
estimation.

Image Capture
Shoot stereoscopic images were taken at the same time as the
destructive sampling. The trays were manually moved into the
image capture cabinets where one stereoscopic image – top
view – of each experimental half tray was taken. The tested
optical sensing system is based on image acquisition and data
processing using in-house developed algorithms derived from
hue-saturation-value (HSV) analysis of the image data. Shoot
height sensing is based on analysis of reflected light by using a
stereoscopic imaging system (Figure 1). Total leaf area or green
biomass sensing is based on analysis of reflected light using the
percentage of green ground coverage by foliage when observed
from above. The same hardware is used for extraction of plant
greenness and stereoscopic analysis. The depth of focus of the
image is a combination of sensor size, focal length and aperture
of the lens, and the distance between camera and object. This
system can measure various leave colors (e.g., green, red–brown)
and different seedling heights (e.g., 4–5 cm, 15–20 cm). The
green pixel selection is sensitive to the light source; the proper
configuration is also controlled by the .ini file for the respective
camera. In particular, parameters in .ini file such as timing (pixel
clock, frame rate, exposure time), master and color gain (red,
blue, and green), were adjusted given their effect upon green
pixel selection. In fact, by setting these parameters it was possible
to level out the image colors recorded by the two cameras as
well as to distinguish more clearly leaves within the background
frame. A long enough sequence of these images can be used to
provide a time-series of plant growth – averaged either over the
entire scene, or for individual plants. The achieved resolution of
the height map is about 1mm that is adequate to follow plant
development. After image capture, all images were analyzed using
uEyeDualcam and HeightMap software products (Acreo Swedish
ICT).

Software for Data Acquisition with
Optical System
The control of the cameras is carried out using a vendor-
supplied software library, uEye (from IDS GmbH). This library

1https://en.ids-imaging.com/store/ui-1240se.html

Frontiers in Plant Science | www.frontiersin.org October 2016 | Volume 7 | Article 164458

https://en.ids-imaging.com/store/ui-1240se.html
http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive


fpls-07-01644 October 27, 2016 Time: 18:17 # 4

Montagnoli et al. Automatic Tree Seedling Phenotyping

FIGURE 1 | (A) Scheme of optical sensing set-up based on stereoscopic measurements. (B) Optical system for measuring shoot height and greenness; zoom-in
shows the dual cameras for stereoscopic imaging.

is linked to a graphical user interface (GUI) developed in-house
in Microsoft Visual C++. From now on, our developed GUI
software executable is referred to as uEyeDualCam.

This uEyeDualCam software has been designed to both
functioning for the configuration of individual parameters for
each camera as well as the extraction of the “green-only”
information for each picture taken. In particular, the automatic
setup of individual parameters configuration can be performed
by means of special initialization (.ini) files for each camera.
The .ini files can be edited by hand providing individual
setups for the different light sources because, for example, the
green-pixel selection is sensitive to the characteristics of the
light source. Moreover, the “green-only” information can be
extracted and saved in the PNG format, as a picture. The
extraction of the pixels with the relevant shades of plant color
is accomplished by converting the color information from RGB
format into the HSV format. Both formats are commonly
used in image processing and the conversion algorithm is
free. This step is relatively simple but time-consuming as each
image contains approximately 1.3 Mpixels for our system.
Afterward, the uEyeDualCam software allow editing the selection
of useful HSV color information corresponding to the “green-
only,” whatever color characterize leaves of the species analyzed
(e.g., bright green, reddish green, or orange). The shades of
useful color form a cylindrical segment in the HSV color
space. The uEyeDualCam software selects only pixels within
that segment, whereby the non-plant pixels are replaced by
the black color. At this point, the uEyeDualCam software
provides the percentage of plant pixels for the currently processed
image.

A separate set of processing tools (HeightMap software)
was developed for the function of height-mapping of each
stereoscopic image pair. A discussion of the basic principles
of stereoscopic analysis is available from Ensenso and Ids
Imaging Development Systems GmbH (2012). In particular, the
HeightMap software recalculated greenness using “green-only”
information in order to create a plant height map (cm) of the
tray conferring a value to the pixel of selected images. Thus,
the main innovation in our work is the removal of the soil
background and keeping only the plant information within each
image. This improves the processing speed and the ability of
the tool to match/correlate the relevant image pixels without
interference. The current revision of the HeightMap software
allows for computing the height distribution of each image at
the pixel level, within a selectable sub-set of the scene. The
HeightMap software provides a pixel map for the entire scene that
can be saved in the monochromatic PNG format.

Statistical Analysis
Morphological measurements were square root or log
transformed to ensure normal distributions and equal variances
for the use of parametric statistics. Analysis of variance (one-way
ANOVA) was carried out to test the effect of time on plant
height, greenness, and biomass. Post hoc Bonferroni tests were
conducted to detect significant differences between sampling
days. An independent samples t-test was applied to test the
significance of differences between plant height obtained by
destructive sampling and plant height obtained by sensor
analysis for each sampling date. Analyses of parametric methods
were applied at a 95% significance level.
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FIGURE 2 | Plant height (cm) during early seedling development measured by optical sensors (dark gray) and destructive sampling (light gray) for
Picea abies (A), Pinus sylvestris (B), Fagus sylvatica (C), and Quercus ilex (D). Data refer to each sampling date after germination and are represented as
means (n = 52) ± 1 SE. Lowercase letters indicate statistically significant differences (p < 0.05) between each sampling date (a, b, and c) and between sensor and
destructive analysis (x, y, and z).

Data of plant height and greenness were related to seedling
biomass and allometric equations were obtained by regression
analysis. Significant equations were used to develop a regression
growth model for each species based on the variation of
plant height or greenness over time. In order to test the
performance of applied models, the relative root mean squared
error (RMSE%) and the relative model bias (BIAS%) were
calculated by comparing biomass values predicted from plant
height or greenness model with actual biomass values in the
range of measured values. Statistical analysis was carried out

using statistical software package SPSS 17.0 (SPSS Inc, Chicago
IL, USA).

RESULTS AND DISCUSSION

Shoot Height and Plant Biomass
Results on plant height did not show significant differences
between manual and software measurements for all four
species and sampling points (Figure 2) demonstrating that the
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FIGURE 3 | Plant biomass (g) measured by destructive sampling for seedlings of Picea abies (A), Pinus sylvestris (B), Fagus sylvatica (C), and
Quercus ilex (D). Data refer to each sampling date after germination and are represented as means (n = 5) ± 1 SE. Lowercase letters indicate statistically
significant differences (p < 0.05) between each sampling date.

combination of optical sensors and software analysis constitutes
a valuable alternative to destructive methods. Shoot height
throughout the experiment showed different patterns for needle-
and broad-leaved species (Figure 2). In the case of both needle-
leaved species, no significant increment of plant height was
detected after the emergence of cotyledons (p = 0.240 and
p= 0.256 for P. abies and P. sylvestris, respectively; Figures 2A,B)
as internode elongation did not occur during the consecutive
emissions of new leaves at this early developmental stage.
Therefore, seedlings reached almost maximum height at the first
sampling point (day 14th and 15th a.g., respectively), with a slight
not significant increment detectable at the last sampling point
(day 42nd a.g.; Figures 2A,B). Our results fall within the range

of the rates measured by other researchers for pine species (Jarvis
and Jarvis, 1964; Grime and Hunt, 1975; Grotkopp et al., 2002).
Moreover, our findings are in line with those of other authors
(Evans, 1972; Causton and Venus, 1981; Hunt, 1982; Grotkopp
et al., 2002) who showed that growth of Pines typically increases
sharply between 2 and 4 weeks after seedling emergence and
then declines over time. This is probably due to the invaders
habit of Pinus species characterized by high growth rate, small
seed mass, and short generation time (Grotkopp et al., 2002; de
Chantal et al., 2003). Broad-leaved species showed a different
growth pattern. Plant height increased significantly (p < 0.001)
throughout the experiment that reached a maximum value of
13 and 7 cm for F. sylvatica and Q. ilex, respectively, at the
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FIGURE 4 | Plant greenness (%) measured by optical system analysis for seedlings of Picea abies (A), Pinus sylvestris (B), Fagus sylvatica (C) and
Quercus ilex (D). Data refer to each sampling date after germination and are represented as means (n = 52) ± 1 SE. Lowercase letters indicate statistically
significant difference (p < 0.05) between each sampling date.

third sampling point (day 28th and 40th a.g.), without further
increment until the end of the experiment (Figures 2C,D). As
plant growth at this stage of seed development is still depending
on endogenous factors (Bentsinka and Koornneef, 2008; Baskin
and Baskin, 2014), the observed pattern is probably attributable
to species-specific growth habits. Despite the importance of early
seedling development, studies evaluating this process remain
scarce or absent (Walter et al., 2007) as in the case of F. sylvatica
and Q. ilex. Concerning plant biomass development, all four
species showed a significant power function increase (p < 0.001)
throughout the experiment (Figure 3). Moreover, the two broad-
leaved species (Figures 3C,D) showed a 10-fold higher total
biomass than needle-leaved species (Figures 3A,B).

Shoot Greenness
Shoot greenness of the seedlings showed significant variation
throughout the experiment (p < 0.001) with different patterns
for each of the considered species (Figure 4). In the case
of F. sylvatica, the maximum value was reached at the third
sampling point (day 28 a.g.; Figure 4C) remaining stable until
the end of the experiment. P. abies, P. sylvestris, and Q. ilex
(Figures 4A,B,D) showed a continuous increase in greenness
throughout the experiment reaching maximum values at the last
sampling point (day 42, 42 and 49 a.g., respectively). In general,
broad-leaved species showed 10–20 time fold higher values of
greenness than needle-leaved species (Figures 4C,D). Seedling
leaves of F. sylvatica covered almost 80% of the trays at day
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FIGURE 5 | Relationships between greenness and plant biomass for seedlings of Picea abies (A), Pinus sylvestris (B), Fagus sylvatica (C), and
Quercus ilex (D). Data refer to all sampling dates.

21 a.g. while Q. ilex reached 80% tray coverage at day 49 a.g.
(Figures 4C,D). On the other hand, P. abies and P. sylvestris
covered less than 7% of the total tray area at 42 days a.g.
(Figures 4A,B).

Regression Model
In order to test our non-destructive measurement method as
a tool for monitoring tree seedling growth, patterns of tray
greenness and seedling height obtained by software analysis, were
related to seedling biomass data obtained by classical destructive
analysis. The power function was selected as best fit for all the
relationships. This might be explained by Richards (1959) which
demonstrated that in the allometric relationship between two
correlated growth characteristics, throughout plant development,

if the known growth characteristic is conforming to one curve
type, any other unknown characteristic increasing allometrically
with it will have the same family of growth curve. In our case,
plant height and greenness growth characteristics were related
to plant biomass which developed in time conforming to power
function curve.

The relationship between tray greenness and seedling biomass
showed a good correlation for all species until the tray was almost
fully covered (Figures 5). However, in the case of F. sylvatica
almost the whole tray was covered in less than 1 month
but, as its biomass continued to increase after full coverage
(Figures 3C and 4C), a lower coefficient of determination
(Figure 5C) was observed. This might be due to deviation
in the segmented plant’s area occurring when different plant
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FIGURE 6 | Relationships between plant height and plant biomass for seedlings of Picea abies (A), Pinus sylvestris (B), Fagus sylvatica (C), and
Quercus ilex (D). Data refer to all sampling dates.

leaves overlap (Jin and Tang, 2009; Lati et al., 2013). Alternative
approaches are offered by stereovision-based models which
allow plant characterization using 3D spatial properties. A weak
relationship between seedling height and biomass was found in
the case of the two needle-leaved species (Figures 6A,B) while a
strong relationship was found for the two broad-leaved species
(Figures 6C,D). Indeed, both needle-leaved species (P. abies
L. and P. sylvestris L.) did not significantly increase plant
height during the growth period (Figures 2A,B) despite the
continuous increment of seedling biomass. Regression growth
models, derived from the relationship of both height and
greenness with biomass and their variation with time (Table 2),
were compared with allometric equations obtained by destructive
sampling (Figure 7). Therefore, the greenness regression growth

model showed the best and the only fit for P. abies and P. sylvestris
(Figures 7A,B). Moreover, the RMSE values showed the best
fit to the plant height regression growth model for F. sylvatica
and Q. ilex (Figures 7C,D). As highlighted by previous studies
(Downie et al., 2012; Humplík et al., 2015; Walter et al., 2015),
image analysis is a robust method to record three-dimensional
information. Our study confirms this, showing a good fit to
models with destructive data. Furthermore, in the present work
is clearly demonstrated how crucial the choice of the parameter
to analyze is, depending on the species under investigation
and the growing conditions. In particular, for our system, the
possibility to choose plant greenness or plant height parameters
enhances the analysis over the other already existing systems.
In particular, the results obtained by stereo optical system were
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TABLE 2 | Regression growth model obtained by actually measured data and by predicted data based on height and greenness measured by optical
sensors.

Species Equation R2

Picea abies L. Actually measured Biomass = 0.00002 × Time1.8344 0.93

Predicted based on greenness Biomass = 0.00004 × Time1.5931 0.77

Pinus sylvestris L. Actually measured Biomass = 0.00003 × Time1.8447 0.88

Predicted based on greenness Biomass = 0.00004 × Time1.7889 0.93

Fagus sylvatica L. Actually measured Biomass = 0.0009 × Time1.6366 0.95

Predicted based on greenness Biomass = 0.1384 × ln(Time) – 0.2741 0.67

Predicted based on plant height Biomass = 0.0012 × Time1.5317 0.77

Quercus ilex L. Actually measured Biomass = 0.00007 × Time2.2141 0.92

Predicted based on greenness Biomass = 0.3118 × ln(Time) – 0.884 0.95

Predicted based on plant height Biomass = 0.0005 × Time1.6824 0.69

Models estimate biomass values at a certain time (day).

FIGURE 7 | Regression models of biomass growth for seedlings of Picea abies (A), Pinus sylvestris (B), Fagus sylvatica (C), and Quercus ilex (D),
calculated by destructive sampling (actually observed; solid line) and by plant height (dotted line) and greenness (dashed line) models. RMSE% and
BIAS% values were calculated comparing values predicted by plant height or greenness models with actual observations in the range of measurements (vertical
dot-dashed lines).
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highly comparable with results obtained with direct destructive
methods. This highlighted how the ‘choose’ function strongly
reduced problems often occurring in image-based phenotyping
such as overlapping, twisting, curling, and circadian movement.
Indeed, in the case of broad-leaved species (F. sylvatica and
Q. ilex) that fully cover a tray, the plant height parameter works
better than greenness because new leaves, although related to an
increase of plant height, overlap with other leaves and quickly
cover the entire tray. On the other hand, the greenness parameter
works better than plant height for needle-leaved species (P. abies
and P. sylvestris) because new leaves do not overlap while plant
height remains almost constant during the early growth period.

CONCLUSION

Automatic plant phenotyping is under rapid development due to
its potential for comparative phenotyping of a large number of
samples in an easy, rapid and not-destructive manner. Therefore,
technological effort is being put into the development of a
low cost and more accessible phenotyping stereo vision system.
Here we present a simple and flexible system that is less
inexpensive compared to most of the solutions available today
on the market and does not require any specific skills to be
run. The data collected refer to a comparative analysis of a
number of morphological traits obtained from containerised tree
seedlings at their precultivation stage. Results suggest that at
present the system is reliable, allowing for straightforward control
and adjustment of various plant and light source parameters.
Therefore, the system and models developed provided a strong
agreement between the actual and estimated growth parameters
for plants with interconnected canopies. Although the possibility
to adapt the system to other growing conditions, conclusion of
the present work are specie-specific and focus on containerized
early stage of seedlings. Further implementation in both software
and hardware can be done for improving the characterization

efficiency of bigger plants, different species and light conditions.
Finally, the phenotyping approach used to measure the growth
of young seedlings it might also be of support to different omics
investigations.

AUTHOR CONTRIBUTIONS

AM make substantial contributions to the study concept and
design, to data collection process and relative interpretation.
AM writes the article and dealt with manuscript process,
improvements and revisions. MT participate to all works aspects
such as concept and design, lab work, software development,
data collection and analysis. NF contribute to the experiment
design, seedlings growth and data collection. BS, JW, DI, and CR
make substantial contribution to the software development and
hardware settings for image acquisition and analysis. BS and CR
equally contribute in drafting and revising the article concerning
the optical sensors and image data acquisition parts. GS supervise
the research and contribute to all works aspects. DC conceive and
supervise the research in all aspects. Give important intellectual
content in outlining the article and revising it critically.

FUNDING

The European Commission within the Seventh Framework
Programme through Project ZEPHYR (grant number 308313)
supported this work.

ACKNOWLEDGMENTS

We are grateful to Dr. Barbara Baesso and Rosaria Santamaria
for helping in seedlings production, to National Forest Service
(National Centre for Study and Conservation of Forest
Biodiversity- Peri, IT) for providing seeds.

REFERENCES
Barthélémy, D., and Caraglio, Y. (2007). Plant architecture: a dynamic, multilevel

and comprehensive approach to plant form, structure and ontogeny. Ann. Bot.
99, 375–407. doi: 10.1093/aob/mcl260

Baskin, C. C., and Baskin, J. M. (2014). Seeds, Ecology, Biogeography and Evolution
of Dormancy and Germination, 2nd Edn. San Diego, CA: Academic/Elsevier.

Bentsinka, L., and Koornneef, M. (2008). Seed dormancy, and germination.
Arabidopsis Book 6:e0119. doi: 10.1199/tab.0119

Brissette, J. C., Barnett, J. P., and Landis, T. D. (1991). “Container seedlings,” in
Forest Regeneration Manual, eds M. L. Duryea and P. M. Dougherty (Boston,
MA: Kluwer Academic Publishers), 117–141.

Busemeyer, L., Mentrup, D., Möller, K., Wunder, E., Alheit, K., Hahn, V., et al.
(2013). Breedvision–a multi-sensor platform for non-destructive field-based
phenotyping in plant breeding. Sensors 13, 2830–2847. doi: 10.3390/s130302830

Causton, D. R., and Venus, J. C. (1981). The Biometry of Plant Growth. London:
Edward Arnold.

Chiatante, D., Tognetti, R., Scippa, G. S., Congiu, T., Baesso, B., Terzaghi, M., et al.
(2015). Interspecific variation in functional traits of oak seedlings (Quercus ilex,
Quercus trojana, Quercus virgiliana) grown under artificial drought and fire
conditions. J. Plant. Res. 128, 595–611. doi: 10.1007/s10265-015-0729-4

Cole, R. J., Holl, K. D., Keene, C., and Zahawi, R. A. (2011). Direct seeding of
late-successional trees to restore tropical montane forest. For. Ecol. Manag. 261,
1590–1597. doi: 10.1016/j.foreco.2010.06.038

Coleman, J. S., McConnaughay, K. D. M., and Ackerly, D. D. (1994). Interpreting
phenotypic variation in plants. Trends Ecol. Evol. 9, 187–191. doi: 10.1016/0169-
5347(94)90087-6

de Chantal, M., Leinonen, K., Kuuluvainen, T., and Cescatti, A. (2003). Early
response of Pinus sylvestris and Picea abies seedlings to an experimental
canopy gap in a boreal spruce forest. For. Ecol. Manag. 176, 321–336. doi:
10.1016/S0378-1127(02)00273-6

Di Iorio, A., Montagnoli, A., Scippa, G. S., and Chiatante, D. (2011). Fine root
growth of Quercus pubescens seedlings after drought stress and fire disturbance.
Environ. Exp. Bot. 74, 272–279. doi: 10.1016/j.envexpbot.2011.06.009

Díaz, S., Kattge, J., Cornelissen, J. H. C., Wright, I. J., Lavorel, S., Dray, S., et al.
(2016). The global spectrum of plant form and function. Nature 529, 167–177.
doi: 10.1038/nature16489

Downie, H., Holden, N., Otten, W., Spiers, A. J., Valentine, T. A., and Dupuy, L. X.
(2012). Transparent soil for imaging the rhizosphere. PLoS ONE 7:e44276. doi:
10.1371/journal.pone.0044276

Edwards, D., and Batley, J. (2004). Plant bioinformatics: from genome to phenome.
Trends Biotechnol. 22, 5. doi: 10.1016/j.tibtech.2004.03.002

Frontiers in Plant Science | www.frontiersin.org October 2016 | Volume 7 | Article 164466

http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive


fpls-07-01644 October 27, 2016 Time: 18:17 # 12

Montagnoli et al. Automatic Tree Seedling Phenotyping

Ellis, E. C., Kaplan, J. O., Fuller, D. Q., Vavrus, S., Klein Goldewijk, K., and Verburg,
P. H. (2013). Used planet: a global history. Proc. Natl. Acad. Sci. 110, 7978–7985.
doi: 10.1073/pnas.1217241110

Ensenso and Ids Imaging Development Systems GmbH (2012). Obtaining Depth
Information from Stereo Images. Whitepaper. Available at: https://en.ids-
imaging.com/whitepaper.html

Evans, G. C. (1972). The Quantitative Analysis of Plant Growth. Berkeley, CA:
University of California Press.

Fiorani, F., and Schurr, U. (2013). Future scenarios for plant phenotyping. Annu.
Rev. Plant Biol. 64, 267–291. doi: 10.1146/annurev-arplant-050312-120137

Foley, J. A., DeFries, R., Asner, G. P., Barford, C., Bonan, G., Carpenter, S. R.,
et al. (2005). Global consequences of land use. Science 309, 570–574. doi:
10.1126/science.1111772

Furbank, R. T., and Tester, M. (2011). Phenomics–technologies to relieve the
phenotyping bottleneck. Trends Plant Sci. 16, 12. doi: 10.1016/j.tplants.
2011.09.005

Granier, C., Aguirrezabal, L., Chenu, K., Cookson, S. J., Dauzat, M., Hamard, P.,
et al. (2006). PHENOPSIS, an automated platform for reproducible
phenotyping of plant responses to soil water deficit in Arabidopsis thaliana
permitted the identification of an accession with low sensitivity to soil water
deficit. New Phytol. 169, 623–635. doi: 10.1111/j.1469-8137.2005.01609.x

Grant-Downton, R. T., and Dickinson, H. G. (2006). Epigenetics and its
implications for plant biology 2. The “epigenetic epiphany”: epigenetics,
evolution and beyond. Ann. Bot. 97, 11–27. doi: 10.1093/aob/mcj001

Gratani, L. (2014). Plant phenotypic plasticity in response to environmental factors.
Adv. Bot. 2014, 208747. doi: 10.1155/2014/208747

Grime, J. P., and Hunt, R. (1975). Relative growth rate: its range and adaptive
significance in a local flora. J. Ecol. 63, 393–422. doi: 10.2307/2258728

Grotkopp, E., Rejmánek, M., and Rost, T. L. (2002). Toward a causal explanation of
plant invasiveness: seedling growth and life-history strategies of 29 pine (Pinus)
species. Am. Nat. 159, 396–419. doi: 10.1086/338995
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The arrangement of leaf material is critical in determining the light environment, and

subsequently the photosynthetic productivity of complex crop canopies. However, links

between specific canopy architectural traits and photosynthetic productivity across a

wide genetic background are poorly understood for field grown crops. The architecture

of five genetically diverse rice varieties—four parental founders of a multi-parent

advanced generation intercross (MAGIC) population plus a high yielding Philippine variety

(IR64)—was captured at two different growth stages using a method for digital plant

reconstruction based on stereocameras. Ray tracing was employed to explore the effects

of canopy architecture on the resulting light environment in high-resolution, whilst gas

exchange measurements were combined with an empirical model of photosynthesis

to calculate an estimated carbon gain and total light interception. To further test the

impact of different dynamic light patterns on photosynthetic properties, an empirical

model of photosynthetic acclimation was employed to predict the optimal light-saturated

photosynthesis rate (Pmax) throughout canopy depth, hypothesizing that light is the sole

determinant of productivity in these conditions. First, we show that a plant type with

steeper leaf angles allows more efficient penetration of light into lower canopy layers

and this, in turn, leads to a greater photosynthetic potential. Second the predicted

optimal Pmax responds in a manner that is consistent with fractional interception and

leaf area index across this germplasm. However, measured Pmax, especially in lower

layers, was consistently higher than the optimal Pmax indicating factors other than light

determine photosynthesis profiles. Lastly, varieties with more upright architecture exhibit

higher maximum quantum yield of photosynthesis indicating a canopy-level impact on

photosynthetic efficiency.

Keywords: 3D reconstruction, canopy architecture, crop productivity, light environment, MAGIC population,

photosynthesis, rice (Oryza spp.)
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INTRODUCTION

The rate of photosynthesis of a given stand of crops is dependent
on amultitude of factors including weather, temperature, leaf age,
and plant development. Photosynthesis, in turn, is closely linked
to potential yield (Murchie et al., 2009; Zhu et al., 2010). However,
the complex arrangement of overlapping leaves of different ages
and in different states of photosynthesis means that assessing
canopy level photosynthesis from individual leaf activity is
difficult and time consuming. For an accurate prediction of
canopy photosynthesis from leaf measurements, it is necessary
to have data on multiple leaf characteristics including physical
orientation, positioning and physiological characteristics, such as
photosynthetic acclimation and nutrient status (Burgess et al.,
2015, 2016). However, predicted productivity tends to be higher
than that measured in the field (Zhu et al., 2010). The cause
of this disparity is unclear, but may arise from suboptimal
photosynthetic responses to dynamic environmental changes
partly caused by architectural traits (Zhu et al., 2010; Burgess
et al., 2015).

In the absence of methods for whole canopy measurements,
such as in Song et al. (2016), predictions require knowledge
of the architectural characteristics and its effect on canopy
light distribution. Photosynthetic rate is highly sensitive to light
intensity, and, in turn, the light intensity within crop canopies
has high spatio-temporal variability, and is dependent upon
features such as leaf angle, size and shape, leaf number, and
the arrangement of this material in three-dimensional space.
These findings have led to the concept of an “idealized plant
type” or “ideotype.” For example, the International Rice Research
Institute (IRRI) proposed that upright leaves, large panicles
and fewer tillers would represent the ideal structure for rice
(Dingkuhn et al., 1991; Virk et al., 2004). Erect leaf morphology
is a characteristic that repeatedly arises within the concept of an
ideotype. This is due to the increased light penetration to deeper
canopy layers leading to uniformity of light within the canopy
setting and maximal net photosynthesis (Clendon and Millen,
1979; Hodanova, 1979; Turitzin and Drake, 1981; Setter et al.,
1995; Normile, 1999). Within dense canopies, steeper leaf angles
potentially lead to an improvement in whole day carbon gain
by enhancing light absorption at low solar angles (Falster and
Westoby, 2003). Erect leaf stature is also associated with reduced
susceptibility to photoinhibition and reduced risk of overheating
(King, 1997; Murchie et al., 1999; Werner et al., 2001; Falster and
Westoby, 2003; Burgess et al., 2015). As such, the erect ideotype is
predicted to be most effective in low latitudes but it has also been
found to be productive in high latitudes (Reynolds and Pfeiffer,
2000; Peng et al., 2008 and references within). However, despite
this, there is still variation in crop morphology and the erect
ideotype is not widespread in many species. As such, there may
still be potential for yield improvement by alteration of canopy
architectural characteristics (Reynolds et al., 2000; Khush, 2005;
Khan et al., 2015; Rötter et al., 2015).

There is currently no method for producing accurate high-
resolution 3D architectural reconstructions of entire field grown
crop canopies via imaging techniques for modeling purposes.
This is largely due to problems of occlusion at high leaf densities

i.e., of being unable to produce images of leaves deep within the
canopy using the most common optical techniques. Being able
to do so would be highly advantageous for testing hypothesis
about canopy structure within fundamental or applied research.
However, advances in hardware and image processing have led
to new methods for capturing and evaluating plant architecture.
These methods have been used for numerous purposes including
both plants grown in pots and those grown under field conditions
(e.g., Falster and Westoby, 2003; Godin and Sinoquet, 2005;
Watanabe et al., 2005; Quan et al., 2006; Sinoquet et al., 2007;
Zheng et al., 2008; Burgess et al., 2015). Whilst previous studies
have attempted to look at the relationship between canopy
architecture and the light environment (e.g., Zheng et al., 2008;
Song et al., 2013), these have been restricted due to the relatively
inaccurate manual reconstruction and modeling techniques used
and the limited genetic variation and architectural types studied.
Architectural traits are inherently linked to the resulting light
environment and since photosynthetic rate is strongly light-
dependent it therefore follows that photosynthetic rate will be
dependent upon architecture.

To overcome the limitations of previous studies we used a
new approach for high resolution 3D reconstruction of crop
plants (Pound et al., 2014; Burgess et al., 2015) to investigate
fundamental structure-function canopy properties. This is not
a high throughput technique but rather uses individual plants
extracted from field grown plots to generate highly accurate
representations that can then be used to populate a canopy in
silico for ray-tracing and photosynthesis modeling. The parental
lines used for the creation of multi-parent advanced generation
inter-cross (MAGIC) populations in rice (Bandillo et al., 2013)
were selected for analysis within this study. These lines have a
well-researched genetic background and contain desirable traits
for yield, grain quality, and biotic and abiotic stress resistance
(more details on each line are given in Supplementary Table S1).
Furthermore, the contrasting origin of each line means that they
are cultivated in diverse habitats with different stressors and
constraints. The initial phase of this study involved a preliminary
small-scale screening experiment to assess differences in terms
of architectural and physiological features for 15 of the lines
(referred to here as M1–M15 in Supplementary Table S1). Four
of these lines, Shan-Huang Zhan-2 (SHZ-2), IR4630-22-2-5-1-
3, WAB 56–125, and Inia Tacuari (referred to here as M2, M4,
M11, and M13, respectively), plus the Philippine high-yielding
variety IR64 were chosen for an in depth physiological study.
These lines were chosen due to their differences in a number
of features including leaf area index (LAI; leaf area per unit
ground area), chlorophyll a:b ratios (a reliable indicator of shade
acclimation state, reflecting the proportion of chlorophyll in
light harvesting complexes), chlorophyll content and physical
appearance. The aims are to: (1) assess the method for image
based reconstruction on genetically variable rice plants grown
in simulated field environment (see materials and methods);
(2) test the hypothesis that there are common links between
canopy architecture and photosynthetic traits across genetically
diverse rice cultivars (such as leaf angle, light distribution,
and photosynthetic capacity) and; (3) test the hypothesis that
canopy-induced dynamic light properties are associated with
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the acclimation status of leaves in genetically diverse cultivars.
The latter uses a new empirical acclimation model which
predicts the optimal Pmax (if light were the sole determinant;
Retkute et al., 2015). Acclimation is a process whereby leaves
adjust their photosynthetic capacity, dark respiration and light
compensation point according to long term changes in the light
environment. However, the ability to acclimate optimally in
fluctuating conditions has not been fully tested (Anderson et al.,
1995; Murchie and Horton, 1997, 1998; Yano and Terashima,
2001; Walters, 2005; Athanasiou et al., 2010; Retkute et al., 2015).

MATERIALS AND METHODS

Plant Material and Growth
The preliminary screening used 15 of the possible 16 parental
lines from aMAGIC rice population (Bandillo et al., 2013; details
given in Supplementary Table S1 with results of the screening
in Supplementary Table S2). Seeds were sown into module
trays containing Levington Module compost [N (96 ppm),
P (49 ppm), K (159 ppm)] mixed with 30% sand by volume in
the FutureCrop Glasshouse facilities, University of Nottingham
Sutton Bonington Campus (52◦49′59′′ N, 1◦14′50′′ W), UK on
the 7th May 2015. The FutureCrop Glasshouse is a south—facing
glasshouse designed and built by CambridgeHOK (Brough, UK)
for the growth of crop stands within a controlled environment.
It consists of a concrete tank 5 × 5 × 1.25m positioned at
ground level. The tank is filled entirely with a sandy loam soil,
extracted from local fields, and sieved through a fine mesh. The
seedlings were transplanted into microplots (containing 5 × 5
plants with 10 × 10 cm spacing between adjacent plants; 100
plants m−2) within soil beds 7 days after root establishment.
For the preliminary screen, key measurements were made 55–60
days after transplanting (DAT), corresponding to a vegetative
growth phase (Supplementary Table S2). Ten centimeters of
spacing is consistent with rice field planting guidelines (www.
irri.org). Following the preliminary screening, four lines; Shan-
Huang Zhan-2 (SHZ-2), IR4630-22-2-5-1-3, WAB 56–125, and
Inia Tacuari (referred to here as M2, M4, M11 and M13,
respectively), were selected for the in depth study as well as the
popular Philippine variety IR64, from IRRI. Selection was made
largely on the basis of contrasting architecture including leaf
area index (LAI; leaf area per unit ground area), chlorophyll a:b
ratios and content plus physical appearance. This selection also
represents rice from diverse origins (Supplementary Table S1)
and genetic backgrounds (M2, M4 and IR64 of indica and
M11 plus M13 of japonica). The seeds were sown into module
trays on the 15th October 2015 and transplanted into replicate
microplots of 6 × 6 plants (10 cm spacing as above) using a
completely randomized design. Plots were arranged in a 3 × 4
design that minimized edge effects and plants on edge of plots
were not used in this study. The glasshouse conditions were
kept consistent for both the screening and the in depth study.
Irrigation was supplied using drip irrigation for 15min, twice
daily. Sodium (Son T- Agro, Philips) lamps provided additional
lighting whenever the photosynthetically active radiation (PAR)
fell below 300µmolm−2 s−1 and a 12 h photoperiod (07:00–
19:00) was maintained using blackout blinds. A temperature of

28± 3◦C and relative humidity (RH) of 50–60% was maintained
throughout. Nutrient composition of plots was measured by
sampling soil at leaf 3, during the vegetative growth stage.
Consequently Yara Milla complex fertilizer (applied at rate
equivalent to 50 kg ha−1 of N plus micronutrients) was applied
to the plots, 80 days after transplanting (DAT).

Physiological Measurements: In Depth
Study
In depthmeasurements weremade at two different growth stages:
45 and 85 DAT, which correspond to an early (prior to full
canopy development) and late (full canopy development prior
to flowering) vegetative phase. Here, we refer to these stages as
growth stage 1 (GS1) and growth stage 2 (GS2), terms used in this
study only. Five replicate measurements of plant height per plot
were taken weekly, from four DAT. Five replicate measurements
per plot were taken for tiller numbers at each of the growth stages.
Three replicate plants per line were taken for leaf width, leaf
area, fresh, and dry weight measurements at each growth stage.
Individual plant dry weight and area was analyzed by passing
material through a leaf area meter (LI3000C, Licor, Nebraska)
and drying in an oven at 80◦C for 48 h or until no more weight
loss was noted. Measured LAI (leaf area per unit ground area: m2

m−2) was calculated as the total area (leaf + stem) divided by
the area of ground each plant covered (distance between rows ×
distance within rows) and averaged across the replicate plants. A
Walz MiniPam fluorometer was used to measure dark-adapted
values of Fv/Fm in the glasshouse at mid-day. Leaves were dark
adapted using clips (DLC-08; Walz) for at least 20 min and Fo
and Fm were measured by applying a saturating pulse (0.8 s,
6,000 µmol m−2 s−1). Five replicate measurements on different
leaves were taken per plot. Chlorophyll a and b content and ratios
were determined through chlorophyll assays corresponding to
GS2. Frozen leaf samples of known area were ground in 80%
acetone, centrifuged for 5min at 1,600 g, and the absorbance
(at 663.6 and 646.6 nm) of the supernatant was measured using
a spectrophotometer according to the method of Porra et al.
(1989).

Imaging and Ray Tracing
3D analysis of a plant from each plot (i.e., three replicate plants
per line which accounts for any within—genotype variability
caused by environment) was made according to the protocol
of Pound et al. (2014) based on stereo-imaging in the in-depth
analysis (GS1 and GS2). Briefly, plants were removed carefully
from the central part of the plots (with roots and soil). They were
positioned on a calibration target and turntable. SLR cameras
were placed at three positions and 45–60 images recorded as
the plant was carefully rotated. Automated reconstruction of
a 3-D point cloud and conversion of this to a 3D canopy
representation made up of 2D flat leaves took place using existing
software described in Pound et al. (2014). These reconstructions
were duplicated and rotated to form a 3 × 3 canopy grid
(with set 10 cm spacing between plants), with the same leaf
area index (LAI) as the measured plants (see Table 1). The
LAI of each reconstructed canopy was calculated as the area of
mesh inside the ray tracing boundaries divided by the ground
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TABLE 1 | Canopy reconstructions and description.

The means of three plots are shown with standard errors of the mean. P-values correspond to ANOVA. Plants were imaged and reconstructed as a single plant according to the protocol

of Pound et al. (2014). These were then duplicated and rotated and arranged on a 3 × 3 canopy grid. Rotating the plants enabled a similar leaf area index (LAI) to be achieved. Measured

LAI was calculated as the total area (leaf + stem), using a leaf area meter (LI3000C, Licor, Nebraska), divided by the area of ground each plant covered (distance between rows ×

distance within rows). The reconstructed LAI was calculated as mesh area inside the designated ray tracing boundaries (see Section Imaging and Ray Tracing). Following imaging and

measurement of leaf area, dry weights were calculated. The resting plant height (the plant height in the natural position, i.e., taking into account leaf curling), number of tillers, number

of leaves, and leaf width of five plants per plot was calculated. Growth stage 1 corresponds to 45 DAT and 2 at 85 DAT. M2, M4, M11, and M13 refer to Shan-Huang Zhan-2 (SHZ-2),

IR4630-22-2-5-1-3, 157 WAB 56-125, and Inia Tacuari, respectively. Growth stage 1 corresponds to 45 DAT and 2 at 85 DAT.

area. A forward ray-tracing algorithm, fastTracer (fastTracer
version 3; PICB, Shanghai, China from Song et al., 2013), was
used to calculate diurnal change in total light per unit leaf
area throughout the canopies. Latitude was set at 14.2 (for
the Philippines), atmospheric transmittance 0.5, light scattering
7.5%, light transmittance 7.5%, days 344 (GS1 10th December),
and 21 (GS2 21st January). The diurnal course of light intensities
over a whole canopy was recorded at 1min intervals. The aimwas
to study the effect of canopy architecture on the resultant light
environment and the impact on whole canopy photosynthesis
thus the same parameters for ray tracing were used for each of
the canopies, despite the diverse origin of each of the lines (see
Supplementary Table S1).

Gas Exchange
Photosynthesis-light response curves (LRC) and Photosynthesis
vs. Ci (leaf internal CO2 concentration; ACi) curves were taken
via infra-red gas exchange (IRGA). Leaves were not dark-adapted
prior to measurements. LRCs were taken at GS1 and 2
whereas ACi curves were taken at GS1 only. Leaf gas exchange

measurements (LRC andACi) were taken with a LI-COR 6400XT
infra-red gas-exchange analyser (LI-COR, Nebraska). The block
temperature was maintained at 30◦C using a flow rate of 500ml
min−1 and ambient humidity. For light response curves, light
was provided by a combination of in-built red and blue LEDs.
Illumination occurred over a series of 12 photosynthetically
active radiation values (low to high), between 0 and 2,000 µmol
m−2 s−1, with a minimum of 2min and maximum of 3 min at
each light level at two different canopy heights; top (center of
flag leaf) and bottom (25% of full canopy height). Therefore, the
positions were not affected by canopy height. Separate induction
curves showed that this was sufficient to fully induce leaves. For
the A-Ci curves; leaves were exposed to 1,500 µmol m−2 s−1

throughout. They were placed in the chamber at 400 p.p.m. CO2

for a maximum of 2min and then CO2 was reduced stepwise
to 50 p.p.m. CO2 was then increased to 1500 p.p.m. again in
a stepwise manner. Two replicates were taken per layer per
treatment plot for both sets of measurements apart from LRCs
for GS2, which has five replicates overall for each of the five
varieties.
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Statistical Analysis
Analysis of variance (ANOVA) was carried out using GenStat
for Windows, 17th Edition (VSN International Ltd.). Data was
checked to see if it met the assumption of constant variance and
normal distribution of residuals. A correlation matrix was used
to investigate the relationships between different physiological
traits.

Modeling
All modeling was carried out using Mathematica
(Wolfram).

Cumulative leaf area index (cLAI; leaf area per unit ground
area as a function of depth) was calculated from each of the
canopy reconstructions. cLAI was not measured in this study
but previous work has validated this method using manual
measurements of leaf area (Pound et al., 2014). Leaves are
represented here as a series of small 2D triangles. For each depth
(d; distance from the highest point of the canopy), all triangles
with centers lying above d were found (Equation 1).

di = maxj= 1,2,3; 1≤ i≤ n z
j
i −

(

z1i + z2i + z3i
)

/3 (1)

The sum of the areas of these triangles was calculated and divided
by the ground area. The cumulative LAI as a function of depth
through the canopy was calculated using Equation (2).

cLAI(d)

=

∑n
i= 1 I(di ≤ d)Si

(max1≤ i≤ n xi −min1≤ i≤ n xi)(max1≤ i≤ nyi −min1≤ i≤ n yi)

(2)

where I(A) = 1 if condition A is satisfied and Si is the area of a
triangle i.

The light extinction coefficient of the canopy was calculated
using the 3D structural data and the light distribution
obtained from ray tracing. In order to calculate fractional
interception (FI) within a canopy as a function of depth
at time t, all triangles lying above depth, d, were identified
(Equation 1). Their contribution to intercepted light was then
calculated by multiplying PPFD received per unit surface
area (ray tracing output) by the area of triangle. The light
intercepted was summed for all triangles above the set d,
and divided by light intercepted by ground area according to
Equation (3).

F(d, t) =

∑n
i = 1 I

(

di ≤ d
)

SiLi (t)

L0 (t) *ground area
(3)

where L0(t) is light received on a
horizontal surface with a ground area
(max1≤ i≤ nxi −min1≤ i≤ n xi)(max1≤ i≤ n yi −min1≤ i≤ n yi),
and Li (t) is light intercepted by a triangle i.

The light extinction coefficient, k, was calculated by fitting (by
least squares) the function,

f (x) = a
(

1− e−k x
)

(4)

to the set of points
{

cLAI
(

d
)

, F
(

d, t
)}

calculated by varying
depth from 0 to the height at total cLAI with step 1d = 1 mm, a
in Equation (4) is a fitted parameter.

The response of photosynthesis to light irradiance, L,
was calculated using a non-rectangular hyperbola given by
Equation (5):

FNRH (L,φ, θ , Pmax,α) =
φ L + (1+ α) Pmax −

√

(φL+ (1+ α) Pmax)
2 − 4θφL (1+ α) Pmax

2θ
− αPmax (5)

Values for Pmax were determined from leaf gas exchange
measurements (see Section Gas Exchange). The value of α was
obtained by fitting a line of best fit between all measured Pmax

and Rd-values. All other parameters (e.g., Pmax, Φ , and θ) were
estimated from the light response curves for three canopy layers
using the Mathematica command FindFit.

As each canopy was divided into two layers, and each triangle
from the digital plant reconstruction was assigned to a particular
layer,m, according to the triangle center (i.e. with triangle center
between upper and lower limit of a layer depth). Carbon gain per
unit canopy area was calculated as daily carbon assimilation over
a whole canopy divided by the total surface area of the canopy
according to Equation (6).

C =

∑n
i= 1 Pi

∑n
i= 1 Si

. (6)

Total canopy light interception per unit leaf area over whole day
was calculated according to Equation (7).

TLLA =

∑n
i= 1 Si

∫ 18
6 Li(t)dt

∑n
i= 1 Si

(7)

where Si is the area of triangle i.
An empirical model of acclimation was employed to predict

the distribution of optimal Pmax-values throughout each of
the canopies. Details of the model can be found in Retkute
et al. (2015). The model can be used to predict the maximum

photosynthetic capacity, P
opt
max, as the Pmax that represents

maximal carbon gain at a single point within the canopy, based
on the light pattern that point has experienced (i.e., using the
light pattern output from ray tracing). This was predicted across

250 canopy points, thus leading to distribution of P
opt
max -values

throughout each of the canopies. The canopy locations were
chosen as a subset of triangles that were of similar size (i.e., area)
and constitute a representative sample distribution throughout
canopy depth.

Carbon gain, C (mol m−2) was calculated over a given time
period (e.g., daily) t ε [6,18] (Equation 8).

C(L(t), Pmax) =

∫ 18

6
P(L(t), Pmax)dt (8)
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Experimental data indicates that the response of photosynthesis
to a change in irradiance is not instantaneous and thus to
incorporate this into the model Retkute et al. (2015) introduced a
time-weighted average for light (Equation 9).

Lτ (t) =
1

τ

∫ t

−∞

L(t′)e−
t−t′

τ dt′ (9)

This effectively accounts for photosynthetic induction state,
which is hard to quantify in situ as it varies according to the
light history of the leaf. The more time recently spent in high
light, the faster the induction response, thus the time-weighted
average effectively acts as a “fading memory” of the recent light
pattern using an exponentially decaying weight. If τ = 0 then
a plant will able to instantaneously respond to a change in
irradiance, whereas if τ > 0 the time-weighted average light
pattern will relax over the timescale τ. Within this study, τ was
fixed at 0.2 (unless otherwise stated) in agreement with previous
studies and fit with past experimental data (Pearcy and Seemann,
1990; Retkute et al., 2015) and measurements of induction state
in rice leaves. The time-weighted average only applies to the
transition from low to high light; from high to low, response
is instantaneous and does not use the weighted average (see
Supplementary Figure S1). The model was parameterised using
the convexity and dark respiration values taken from the fitted
LRCs. A moving average of the Pmax throughout canopy height
was fitted using the Mathematica command MovingAverage to
give an approximate relationship between canopy height and
optimal Pmax based on the light environment.

RESULTS

Architectural Features
Manual Measurements

A summary of the key architectural features is given in
Table 1 (see Supplementary Table S2 for the initial screening
experiment). Similarities can be seen between the key
architectural features: the initial screening experiment and
the in-depth study (Table 1 and Supplementary Table S2)
however the variation seen between the lines was reduced in
the second, in depth experiment. For the rest of the paper, only
data from the in-depth study will be considered. Plant height
varied between lines in both growth stages (P = 0.001 for GS1
and P= 0.005 for GS2), with M2 the shortest and M13 the tallest
of the five lines. The change in plant height over the course
of the experiment is given in Figure 1. One-hundred and fifty
DAT is full maturity and just before harvest and the increase
in height after 90 DAT likely corresponds to stem elongation.
Height is a relevant architectural trait since upland cultivars
can be taller than lowland, thought to be a trait associated with
weed competition. Here, M11 has aerobic adaptation and M13
is NERICA i.e., derived partly from Oryza glaberrima. Since
plant height infers greater stem and leaf sheath extension it
may be an important trait in determining partitioning, available
leaf area and productivity in a given environment. Leaf blade
width differed between the lines at each growth stage (P <

0.001 GS1 and 2) with M11 and M13 exhibiting the widest leaf

FIGURE 1 | Plant height over the course of the experiment, calculated

as the average of five measurements per plot. The means of three plots

are shown with standard errors of the mean. M2, M4, M11, and M13 refer to

Shan-Huang Zhan-2 (SHZ-2), IR4630-22-2-5-1- 3, 157 WAB 56-125, and Inia

Tacuari, respectively.

blades (Table 1). Leaf number and tiller number also differed
significantly between the lines (P < 0.001 both growth stages)
with M13 containing the fewest number of leaves and IR64 the
greatest, however there was no significant difference in leaf area
index (LAI) at either growth stage (Table 1). Dry matter was
not significantly different between lines (Table 1) indicating that
modeled photosynthesis was not a reliable predictor of biomass
production in this case. This could be caused by a number of
factors including lack of inclusion of partitioning of biomass to
roots or measuring photosynthesis at a limited number of stages.

Modeled Data

Each plant within the in silico canopy was rotated around
the vertical axis such that the LAI inside the ray tracing
boundaries was consistent with measured data (Table 1; see
Section Materials and Methods). Previous papers have validated
the modeling using measured data of LAI and extinction
coefficients (Burgess et al., 2015). Cumulative leaf area index
(cLAI) was calculated through canopy depth (i.e., from top-
down; see Section Modeling) for each of the canopies at each
growth stage (see Figures 2A,B). A curve was deliberately not
fitted because the reconstruction and modeling approach used
within this study permits the actual relationship between LAI
and depth in the canopy to be depicted, without the need for
curve fitting. Generally, a sigmoidal response was seen for most
genotypes with a more rapid accumulation of leaf area toward
the center of the canopy. At GS1, M2, and M13 show the greatest
difference among lines in terms of the position of accumulation
of LAI according to depth (distance from the top of the canopy)
with the latter accumulating more biomass in the bottom half of
the canopy (Figure 2A). At GS2 (Figure 2B) this pattern is not
pronounced with other lines showing a similar increase in cLAI
up to ∼20 cm depth. From here on, differences are shown with
M11 and M13 exhibiting least accumulation of leaf material and
IR64 exhibiting the greatest. This variation is consistent with total
measured LAI-values, with IR64 exhibiting a much higher overall
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FIGURE 2 | Modeled cLAI, the area of leaf material (or mesh area) per

unit ground as a function of depth through the canopy (i.e., distance

from the top) at 12:00 h for (A) GS1 and (B) GS2. M2, M4, M11, and M13

refer to Shan-Huang Zhan-2 (SHZ-2), IR4630-22-2-5-1- 3, 157 WAB 56-125,

and Inia Tacuari, respectively.

LAI compared to the other lines (Table 1), although according to
ANOVA on the measured leaf area, this is not significant.

These distinctive patterns are partly as a result of architecture
and arrangement, specifically angles of the leaves, within each
canopy. This technique allows automatic and rapid calculation
of leaf angle of every triangle in the reconstruction. Leaf
angle distributions were calculated (Burgess et al., 2015) for
each canopy and averaged at each canopy depth (see Section
Modeling; Figures 3A,B), where a leaf inclination angle toward
0 indicates a more horizontal leaf and an inclination angle of 90
indicates a more vertical leaf. M2, M4, and IR64 lines exhibited
a trend toward more horizontal leaves at base of canopy at both
growth stages 1 and 2, with M11 and M13 more vertical stature.

Light Environment
Modeled Data

To explore interactions between depth and light interception,
modeled fractional interception (FI) was calculated as a function
of depth (Figures 4A,B). This enables the interception to be
calculated at a resolution of 1 mm throughout the canopy.
Generally, the pattern was similar to that of modeled LAI. At GS1
(Figure 4A), M2, and M4 are achieving ∼60% of interception
within the top 25 cm of the canopy. This can be compared to
M13, which exhibits a near linear relationship between FI and
canopy depth. By GS2 (Figure 4B), the lines exhibit a more

similar interception within the top 20 cm of the canopy but a
greater variation in the bottom layers in the canopy. M2, M4, and
IR64 achieve the greatest FI and M11 and M13 the lowest.

We hypothesize that leaf angle will be related to vertical FI
and LAI distribution: we note that toward the top of the canopy,
leaves tend to be more horizontal (i.e., angles approaching 0) for
those lines with a higher LAI (Figures 2, 3), and this contributes
to a higher interception of light (Figure 4). In the lines studied
here, erectness does not seem to be associated with a higher LAI.

Photosynthesis
Measured Data

There were no significant differences between any of the ACi
curve parameters (Vcmax, J, and TPU) at either growth stage
(see Table 2). There was a significant difference in Chlorophyll
a content (P = 0.034) and total chlorophyll content (P = 0.041)
between the lines withM11 andM13 containing the highest levels
and Chl a:b ratios showing little change (Table 3). The dark-
adapted Fv/Fm measurement measured at the top of the canopy
also shows significant differences between the lines at both
growth stages under two different weather conditions, full sun
and cloudy with supplementary lights, (P< 0.002 for all) with the
lowest Fv/Fm-value found in M2 (Table 4). This is in agreement
with previous work on canopy architecture and susceptibility of
plants to photoinhibition, whereby erect architectures are less
susceptible to high light and have a higher Fv/Fm in accordance
with Burgess et al. (2015). Lowered Fv/Fm are seen under high
irradiance in healthy rice and wheat plants in the field and
represent a decline in maximum photosystem II quantum yield,
caused either by damage to reaction centers or another form of
sustained quenching (Murchie et al., 1999; Burgess et al., 2015).

We assessed photosynthesis at different canopy layers and
compared it to patterns of LAI accumulation above. Pmax for
the top layer varied between species for GS1 (P < 0.001), with
M13 having a higher Pmax than M4, but not GS2 (P = 0.053;
Table 2). There was no significant difference in Pmax for the
bottom layer at either growth stage (P = 0.062 for GS1 and P
= 0.321 for GS2). There were no apparent consistencies between
canopy structure and distribution of Pmax except that the highest
Pmax, and the largest decline in Pmax for the top layer between
GS1 and 2 is shown by M13; the line with the lowest cumulative
LAI (Figure 5).

Modeled Data

An empirical model of photosynthesis was employed to calculate
the total canopy carbon gain per unit leaf area and per unit
ground area (see Section Materials and Methods); results are
presented in Table 2. For GS1, M13 exhibits the highest carbon
gain per unit leaf area followed by M2 and M4, respectively,
with IR64 showing the lowest value. For carbon gain per unit
ground area, M13 remains the highest, followed by M2 and
M11. This can be attributed to the higher Pmax for that line,
despite the reduced LAI. At GS2, all canopies show a reduced
carbon gain per unit leaf area and increased carbon gain per
unit ground area. This is presumably due to an increase in
LAI of all canopies and a concurrent increase in proportion of
shaded leaves. Per unit leaf area M11 and M13 show the highest
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FIGURE 3 | Modeled leaf inclination angles throughout depth (i.e., distance from the top) in the canopy. (A) GS1 and (B) GS2. Representations of M2 (left)

and M13 (right) are shown at the side to make interpretation easier. As an additional visual aid, we have added lines of different angles which correspond to the leaf

angles shown on the X-axis. The average triangle inclination angle throughout the horizontal subsection was calculated with respect to vertical, where a leaf inclination

angle toward 0 indicates a more horizontal leaf and an inclination angle of 90 indicates a more vertical leaf. M2, M4, M11, and M13 refer to Shan-Huang Zhan-2

(SHZ-2), IR4630-22-2-5-1- 3, 157 WAB 56-125, and Inia Tacuari, respectively.

values of carbon gain and per unit ground area M11 is the
highest, followed by M2 and M13. However, we saw only weak
correlations between Pmax and carbon gain per unit leaf area and
ground area (Supplementary Figure S2).

Canopy structures result in dynamic fluctuations in light
from solar movement. The different architectures studied here
are likely to generate different characteristics of fluctuations, in
addition to the light interception shown above (Burgess et al.,
2015). The most appropriate approach is a functional analysis
of this variation in dynamic light via the impact that it has on
the predicted distribution of a modeled optimal Pmax. This was
calculated using an empirical model of acclimation (see Section
Modeling; Retkute et al., 2015). The model takes into account the
fluctuating light over a full day within the canopy and provides
an optimal Pmax; the value of Pmax that is optimized in terms
of carbon gain for that particular light pattern, if light were the
sole determinant, using the frequency and duration of high light
periods. This differs from previous models that use integrated
light over the whole day (e.g., Stegemann et al., 1999). Thus, the
optimal Pmax provides a means of analyzing both the frequency
and duration of high light events in the canopy.

The distribution in optimal Pmax for each of the canopies
is given in Figure 5. This shows distinctive differences between
the lines. At GS1, M4, M11, and IR64 show similar patterns
for distribution of optimal photosynthetic capacity. These rank
in the same order as FI and LAI for depths of 15–35 cm,
with lower FI and LAI leading to higher optimal Pmax, as

one would expect. M13 with its upright leaves and more open
canopy shows a similar pattern for reduction in optimal Pmax

throughout but a greater value achieved at all canopy layers
(depths) and a plateau in optimal Pmax toward the top of the
canopy. By GS2, differences between each of the canopies are
less obvious. All canopies exhibit similar steep gradients within
the top section of the canopy followed by a shallower gradient
at the bottom of the canopy. IR64 has the lowest predicted
optimal Pmax-values of all canopies with the bottom ∼40 cm
under 5 µmol m−2 s−1. However, the ranking is still persistent,
this time at lower canopy regions >40 cm. This indicates that
optimal Pmax can be consistently related to these features of
canopy architecture. However, the relationship with leaf angle is
less obvious. Measured Pmax-values in the lower regions of the
canopy were higher than the predicted optimal Pmax.

DISCUSSION

Canopy Reconstructions
Plant canopies often consist of an assemblage of structurally
diverse plants with particular spatial distributions of
photosynthetic material. The way in which these photosynthetic
surfaces intercept light energy and assimilate CO2 is the basis for
whole canopy photosynthesis, and thus the arrangement of plant
material that optimizes light interception will inherently lead to
increased productivity. If all incident light is absorbed (FI = 1)
then whole canopy photosynthesis is a result of the efficiency of
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FIGURE 4 | Modeled fractional interception as a function of depth in

the canopy at 12:00h for (A) GS1 and (B) GS2, using ray tracing data.

Curves were calculated with step ∆d = 1 mm. M2, M4, M11, and M13 refer to

Shan-Huang Zhan-2 (SHZ-2), IR4630-22-2-5-1-3, 157 WAB 56-125, and Inia

Tacuari, respectively.

distribution of light across a particular LAI. The architectures
of five diverse rice cultivars at two different growth stages were
captured using a low-tech method for high-resolution canopy
reconstruction. This reconstruction method has previously been
shown to provide an accurate representation of the plants with
replication of leaf area between 1 and 4% of that of measured
data and accurate capture of leaf angles (Pound et al., 2014;
Burgess et al., 2015). In combination with ray tracing using
fastTracer3, the reconstruction method provides an accurate
depiction of the light gradients found within real life canopies
in field settings (Burgess et al., 2015). The structural differences
(i.e., cLAI and leaf angle distributions) between diverse rice
lines and their relationship to whole canopy photosynthesis can
be explored in more depth using this modeling approach than
would be possible using manual methods under field conditions.

The Relationship between Canopy
Architecture and Photosynthesis
To investigate the relationships between architectural features
and photosynthetic traits, a correlation matrix was produced for
manually measured data. Significant correlations (both positive
and negative, given in bold) relating to canopy architectural
features are given in Table 5. Among the factors that influence
photosynthesis [here associated with Pmax for the top (T) and
bottom (B) canopy layers] are: tiller number, plant height, leaf
number, and leaf width. However, these relationships are only

TABLE 2 | Parameters taken from ACi curve fitting at GS1 (45 DAT) using

Sharkey et al. (2007) (fitting at 30◦C).

Line Layer Vcmax J TPU

M2 Top 140.5 ± 13.4 187.6 ± 11.1 13.1 ± 0.7

M4 145.9 ± 18.0 202.7 ± 9.0 13.7 ± 0.6

M11 135.6 ± 12.0 195.8 ± 16.3 12.9 ± 1.0

M13 143.4 ± 12.3 186.9 ± 12.3 12.4 ± 0.5

IR64 134.8 ± 12.7 181.3 ± 9.2 12.0 ± 0.6

Mean 140 190.9 12.82

P 0.982 0.847 0.695

SED 22.23 20.45 1.21

M2 Bottom 120.4 ± 8.0 173.1 ± 9.1 11.5 ± 0.8

M4 131.4 ± 19.9 180.2 ± 11.8 11.8 ± 0.5

M11 127.3 ± 10.8 201.6 ± 24.9 13.0 ± 0.8

M13 141.2 ± 17.0 182.0 ± 6.9 11.6 ± 0.5

IR64 126.1 ± 15.7 166.3 ± 11.0 11.4 ± 0.9

Mean 129.3 180.6 11.83

P 0.905 0.606 0.551

SED 22.05 22.07 1.05

Themeans of six independent curves are shown with standard errors of the mean. P-value

corresponds to ANOVA. M2, M4, M11, and M13 refer to Shan-Huang Zhan-2 (SHZ-2),

IR4630-22-2-5-1-3, 157 WAB 56–125, and Inia Tacuari, respectively.

TABLE 3 | Chlorophyll content and chlorophyll a:b ratio at GS2 (85 DAT),

top of canopy.

Line Chl a (µg/cm2) Chl b (µg/cm2) Chl a+b (µg/cm2) Chl a:b

M2 36.10 ± 2.40 8.46 ± 0.55 44.56 ± 2.92 4.27 ± 0.08

M4 36.53 ± 2.71 8.93 ± 0.85 45.46 ± 3.43 4.19 ± 0.19

M11 45.67 ± 3.78 10.30 ± 0.80 55.98 ± 4.57 4.42 ± 0.07

M13 53.69 ± 2.61 11.70 ± 0.50 65.40 ± 3.08 4.58 ± 0.08

IR64 39.01 ± 1.71 9.19 ± 0.39 48.20 ± 2.06 4.25 ± 0.09

Mean 42.2 9.72 51.9 4.344

P 0.034 0.126 0.041 0.356

SED 5.28 1.20 6.41 0.20

The means of three plots are shown with standard errors of the mean. P-value

corresponds to ANOVA. M2, M4, M11, and M13 refer to Shan-Huang Zhan-2 (SHZ-2),

IR4630-22-2-5-1-3, 157 WAB 56–125, and Inia Tacuari, respectively.

significant at the first growth stage, not the second, indicating (i)
the architecture at certain developmental stages (smaller plants)
are more critical in determining photosynthesis characteristics,
(ii) beyond a certain developmental stage, or a certain amount of
leaf area, the levels of light inside the canopy are below a certain
threshold so as to not significantly influence photosynthetic
characteristics in particular acclimation to light intensity or (iii)
photosynthetic performance is determined by factors other than
architectural traits. Given the data concerning optimal Pmax it
seems possible that all of these suggestions could be contributing,
as we explain below.

There is a positive correlation, although weak, between plant
height and photosynthesis during GS1, which may be initially
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TABLE 4 | Maximum quantum yield of PSII (Fv/Fm) measured after 20 min

dark adaptation.

Line GS1 GS2

Full sun Clouds + sup Full sun Clouds + sup

lights lights

M2 0.748 ± 0.009 0.780 ± 0.010 0.788 ± 0.005 0.801 ± 0.004

M4 0.785 ± 0.004 0.805 ± 0.003 0.803 ± 0.007 0.830 ± 0.006

M11 0.813 ± 0.001 0.828 ± 0.004 0.810 ± 0.007 0.838 ± 0.006

M13 0.814 ± 0.013 0.848 ± 0.009 0.841 ± 0.007 0.846 ± 0.004

IR64 0.792 ± 0.007 0.816 ± 0.003 0.816 ± 0.003 0.826 ± 0.003

Mean 0.791 0.819 0.812 0.828

P 0.001 0.002 0.001 <0.001

SED 0.0115 0.0090 0.0084 0.0067

Fivemeasurements were taken per plot. Themeans of three plots are shownwith standard

errors of themean. Growth stage 1 corresponds to 45 DAT and 2 at 85 DAT.M2,M4,M11,

and M13 refer to Shan-Huang Zhan-2 (SHZ-2), IR4630-22-2-5-1-3, 157 WAB 56–125,

and Inia Tacuari, respectively.

contrary to what would be expected. Whilst extra height may
provide an advantage during competition with shorter neighbors
(such as weeds in Upland cultivars), it is also possible that
height may increase self-shading over a greater surface area of
the canopy, thus could intuitively reduce canopy productivity
(diffuse light notwithstanding). Alternatively, plant height could
be linked closely with leaf angles, with taller plants containing
more elongated and erect leaves (as seen within our two tallest
study lines: M11 andM13), which can lead to greater penetration
of light throughout the canopy especially at mid-day, despite the
greater height. Conversely, increased photosynthetic potential
could provide plants with the means to achieve greater height.
There is increasing evidence that tall plants provide greater
sinks for photosynthate (i.e., within the stems) that can reduce
limitations based on source-sink processes. This can lead to
higher photosynthetic rates, at the leaf level, within taller crops.
Therefore, the positive correlation between plant height and
photosynthesis at GS1 could be a result of stem sink development
during this stage.

To explore how canopy architecture influences photosynthesis
and light interception at the whole canopy level, a line of
best fit between measured LAI and modeled data were made
(Supplementary Figure S2). Total canopy light interception is
negatively correlated to measured LAI at both growth stages
(R2 = 0.981 and 0.967 for GS1 and GS2, respectively).
Similarly, there is also a negative correlation between measured
LAI and carbon gain per unit leaf area (R2 = 0.775 and
0.914 for GS1 and GS2, respectively). Thus across the five rice
lines, an increase in leaf area leads to a decrease in total light
intercepted and in carbon gain per unit leaf area, possibly
representing the “dilution effect” (Field and Mooney, 1983),
although this does not translate to a significant decrease in
measured Pmax (Table 6), nor does it translate into an effect on
carbon gain per unit ground area, with no clear relationship at
either growth stage (R2 = 0.311 and 0.091 for GS1 and GS2,
respectively).

FIGURE 5 | Whole canopy acclimation model output. The acclimation

model was run at 250 locations throughout canopy depth to predict the

optimal Pmax at each location throughout canopy depth (i.e., from the top of

the canopy) dependent upon the light environment that it experienced,

calculated via ray tracing. A moving average has been fitted to the data. (A)

GS1 and (B) GS2. M2, M4, M11, and M13 refer to Shan-Huang Zhan-2

(SHZ-2), IR4630-22-2-5-1-3, 157 WAB 56-125, and Inia Tacuari, respectively.

This lack of a relationship may be due to a high canopy
density, high nutrient accumulation within the canopy leading to
a large proportion of shaded leaves with a high respiratory burden
(see below; Reich et al., 1998). It might be expected that leaf
angle, canopy light interception and LAI distribution are closely
related: indeed this was shown in Figures 2–4 at depths between
10 and 30 cm (e.g., where M11 and M13 have lowest LAI and
F but highest leaf angle). The conclusion is that a more upright
leaf angle permits a greater light penetration but a greater LAI
accumulation at GS2 lessens this effect. This is consistent with
previous work (e.g., Song et al., 2013).

The dynamic light pattern cast by canopies presents a complex
problem: how do leaves determine the optimal properties of a
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TABLE 5 | The relationship between measured canopy architectural traits and photosynthesis: the sample correlation coefficient value taken from the

correlation matrix output for select canopy architectural and physiological traits.

Growth Stage Tiller number Plant height Leaf area Leaf number Leaf width (B) Leaf Width (T)

1 Plant Height –0.638* –

Leaf Area 0.412 –0.221 –

Leaf Number 0.890* –0.629* 0.521* –

Leaf Width (B) –0.240 0.601* –0.045 –0.420 –

Leaf Width (T) –0.907* 0.635* –0.358 –0.813* 0.445 –

Pmax (B) –0.574* 0.601* 0.112 –0.425 0.513 0.519*

Pmax (T) –0.721* 0.730* –0.189 –0.624* 0.626* 0.737*

Fv/Fm Sun –0.561* 0.830* 0.066 –0.585* 0.480 0.555*

Fv/Fm Cloudy –0.755* 0.881* –0.150 –0.692* 0.589* 0.675*

FI/Height 0.101 –0.713* –0.012 0.158 –0.578* –0.2145

2 Leaf Area 0.389 –0.053 –

Leaf Number 0.689* –0.166 0.663* –

Leaf Width (B) –0.615* 0.408 –0.307 –0.627* –

Leaf Width (T) –0.819* 0.673* –0.413 –0.652* 0.683* –

Pmax (B) –0.524* 0.587* –0.357 –0.645 0.706* 0.825*

Pmax (T) –0.311 0.453 –0.088 0.165 –0.065 0.176

Fv/Fm Sun –0.736* 0.486 –0.040 –0.195 0.294 0.694*

Fv/Fm Cloudy –0.709* 0.661* –0.236 –0.382 0.441 0.734*

Chl a –0.752* 0.5645* –0.251 –0.470 0.401 0.689*

Chl b –0.692* 0.619* –0.290 –0.453 0.329 0.643*

Total Chl –0.7467* 0.5772* –0.2587 –0.4702 0.3913 0.6855*

FI/height –0.2241 –0.5415* –0.1975 –0.3912 0.2445 –0.0507

Growth stage 1 corresponds to 45 DAT and 2 at 85 DAT. (T) corresponds to measurements from the top canopy layer and (B) from the bottom canopy layer. FI/Height refers to fractional

interception as a function of height throughout the canopy. Significant correlations are given in bold, *indicates P < 0.05.

Correlations based on plot means. Dry weight was not significantly correlated to any trait and so is not shown.

light response curve for a given time period? We used a model
that predicts the optimal Pmax based on ray tracing throughout
the canopy depth. The optimal Pmax distribution (Figure 5)
follows a similar pattern (in terms of ranking responses among
lines) to LAI and FI at the first growth stage. The ranking
similarity is not so clear in the second, see above comment
regarding Pmax measurements. The differences between each of
the lines, particularly at the first growth stage, indicate that whilst
the quantity of leaf material (i.e., the LAI) may be similar, the
arrangement of this material in 3-dimensional space can lead
to dramatic changes in carbon assimilation in different canopy
layers.

The greater potential optimal Pmax at the bottom of the canopy
in M13 at GS1 relative to the other varieties can be linked
to the low accumulation of leaf material with canopy depth
(as seen with cLAI; Figures 2A,B) and the reduced FI of light
(Figure 4) but an increased total light intercepted over the whole
canopy (Table 6). This suggests that architecture which enables
greater light penetration to lower canopy layers leads to a greater
assimilation of carbon at lower canopy layers, which contributes
to overall canopy photosynthesis. This is seen as an increased
carbon gain per unit leaf area relative to the other lines (Table 6).
However, when assessing the carbon assimilation per unit ground
area, M13 ranks in the middle of the five varieties, indicating

that despite the open canopy and greater light penetration, the
reduced LAI of the variety leads to reduced productivity on a per
land area basis. This indicates a small level of consistency between
diverse canopy architectural traits and the long-term responses
of photosynthesis to the light environment in this study. It shows
that the architectural traits measured and modeled in this study
are having a consistent impact on the light dynamics within the
canopy, albeit over a limited number of genotypes. However,
it is not possible to conclude whether it is possible to predict
acclimation state from the distribution of FI and LAI within the
canopy without detailed direct photosynthetic analysis of a wider
range of genotypes.

When predicting optimal Pmax we assumed that light
dynamics are the sole factor determining photosynthetic capacity
and that canopy nitrogen profiles correlate with canopy
photosynthesis profiles. However, nitrogen profiles are frequently
suboptimal with respect to photosynthesis (Hikosaka, 2016).
The optimal Pmax measurement is therefore a novel and
potentially useful method for indicating photosynthetic nitrogen
use efficiency in crop canopies, clearly shown here for all lines,
even M13 with its more efficient light penetration. It needs
to be pointed out that the use of the “time weighted average”
or τ that was fixed at 0.2 was chosen to represent the time
taken for photosynthetic induction, but we do not know whether
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TABLE 6 | Gas exchange and modeling results at each growth stage.

Growth stage Line Pmax top layer (µmol

m−2 s−1)

Pmax bottom layer

(µmol m−2 s−1)

Carbon gain per unit leaf

area (mol m−2 d−1)

Carbon gain per unit

ground area (mol

m−2 d−1)

Total light

interception (mol

m−2 d−1)

1 M2 24.29 ± 1.61 20.23 ± 1.69 0.241 0.532 11.98

M4 22.67 ± 1.76 17.91 ± 1.82 0.220 0.489 12.25

M11 29.99 ± 2.37 24.52 ± 2.53 0.204 0.504 11.16

M13 38.65 ± 2.82 27.34 ± 3.54 0.432 0.798 13.34

IR64 25.96 ± 1.63 20.24 ± 1.70 0.169 0.480 10.18

Mean 28.31 22.1

P <0.001 0.062

SED 2.96 3.34

2 M2 20.15 ± 0.77 14.14 ± 1.82 0.174 0.827 7.08

M4 22.67 ± 1.78 14.78 ± 1.87 0.121 0.661 6.28

M11 26.83 ± 2.72 17.69 ± 1.63 0.232 0.968 7.72

M13 23.53 ± 1.11 18.83 ± 1.34 0.236 0.828 8.57

IR64 26.35 ± 1.02 15.90 ± 1715 0.082 0.714 4.08

Mean 23.91 16.33

P 0.053 0.321

SED 2.32 2.39

Measured Pmax for the top and bottom layer was calculated from light response curve fitting; the means of six (GS1) or five (GS2) measurements are shown with standard errors of the

mean. P-value corresponds to ANOVA. An empirical model of photosynthesis was employed to calculate carbon gain per unit leaf area and ground area using light levels predicted by

ray tracing for 10th December (GS1) and 21st January (GS2), respectively (see Section Imaging and Ray Tracing). Total light interception over the course of the day was also calculated.

Growth stage 1 corresponds to 45 DAT and 2 at 85 DAT. M2, M4, M11, and M13 refer to Shan-Huang Zhan-2 (SHZ-2), IR4630-22-2-5-1-3, 157 WAB 56–125, and Inia Tacuari,

respectively.

acclimation status according to canopy position will have an
effect on this.

The leaf inclination angle is critical in determining the flux
of solar radiation per unit leaf area (Ehleringer and Werk,
1986; Ezcurra et al., 1991; Falster and Westoby, 2003). Plants
containing steep leaf inclination angles tend to have a decreased
light capture when the sun is directly overhead (i.e., during
midday hours or during summer) but increases light capture
at lower solar angles (i.e., start/end of the day or during
seasonal changes in the higher latitude regions). This feature
has a number of practical applications including the decrease
in susceptibility to photoinhibition (Ryel et al., 1993; Valladares
and Pugnaire, 1999; Werner et al., 2001; Burgess et al., 2015);
reduced risk of overheating due to reduction in mid-day heat
loads (King, 1997); and minimized water-use relative to carbon
gain (Cowan et al., 1982). This architecture feature, combined
with a relatively open canopy, has been adopted within our
studied line; M13, and contributes to its inherent heat tolerance
and higher Fv/Fm-values (Figure 3, Table 4). The erect leaf
stature and higher Fv/Fm is also present in our studied line
M11 (Figure 3,Table 4). This may suggest a relationship between
erectness, maximum quantum yield, and latitude of origin of
the lines with M11 and M13 originating in locations closer
to the equator [Latin America including equatorial regions
and WARDA (now AfricaRice), Western Africa, respectively]
relative to the other lines. Such characteristics are in line with
previous work to predict the optimal leaf angle according
to latitude (Herbert, 2003; Baldocchi, 2005) and work in

Arabidopsis thaliana (Hopkins et al., 2008). Correlations between
architectural traits and latitude have also been seen within tree
species, with a linear decrease in petiole length with an increase in
latitude and change in leaf arrangement (King and Maindonald,
1999). The differences in Fv/Fm between the varieties may also
be linked to the genetic background of the lines M11 and M13
with the japonica background and M2, M4 and IR64 with the
indica background. This is in agreement with previous work
on rice with higher Fv/Fm-values found in japonica cultivars
relative to indica (Kasajima et al., 2011). Differences in Fv/Fm
between the two groups are also mirrored in the capacity for non-
photochemical quenching (NPQ) for energy dissipation, with
much higher NPQ-values found in japonica lines (Kasajima et al.,
2011).

Rice cultivation areas are highly diverse and are affected
in differing ways by fluctuations in environmental conditions.
Thus, the origin of each of the parental founders may also
indicate why these specific architectural traits are present and
how they interact with leaf photosynthetic properties. The five
lines selected for this study have diverse origins including China
(M2), South East Asia (International Rice Research Institute;
M4 and IR64), Africa (M13), and Latin America (M11). The
rapid maturation and early flowering of M13 relates to the short-
growing seasons of upland rice production in Western Africa
whilst stable yields under low nitrogen inputs enables relatively
high yields under low-input upland systems (Gridley et al., 2002).
Whilst there is little data relating to canopy architecture in
divergent rice lines grown across the world, there has been some
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work done studying architectural differences between key African
and Australian savannah tree taxa (Moncrieff et al., 2014). They
found distinct differences between the two sets of taxa in key
architectural traits including plant height and canopy area, and
attributed the differences not to disparities in the environmental
conditions in which the trees grew, but rather in the differing
evolutionary history of African vs. Australian savannas. This
may indicate that when assessing regional differences in rice
architecture, we must take into account not only the biotic
and abiotic differences between areas but also the biogeography,
interactions with other species and historic cultivation practices.

Structure function relationships in terms of canopy
architecture are complex and affected by growing environment.
Many factors, in addition to the ideotype principle, will shape
the commercial breeder’s decision making process. There may
be negative linkages with a particular trait (Rasmusson, 1991).
Erect leaved ideotypes do not necessarily perform (Breseghello
and Coelho, 2013) and architecture “performance” depends
on location and environmental factors, inputs, and agronomy
(Hammer et al., 2009). The erect ideotype means that a higher
LAI and hence higher canopy photosynthesis could be supported
but this also requires a high fertilizer (especially nitrogen) input
which raises cost and reduces sustainability.

This is the first high-resolution study that has been used
to attempt to assess the link between canopy architecture and
photosynthesis characteristics. One of the drawbacks of this
study was the inability to grow the lines in the location they
originated, or under a range of different environments. This
poses a challenge as canopy architecture is determined by a
combination of the genetics of plant but also the conditions
in which the plant was grown, including climate, weather
patterns, soil type and the competitive presence of neighboring
plants. Thus, the architecture adopted by the genotypes in
this study may not be totally representative to that when
grown elsewhere due to differences in growing conditions.
In this study, we used the latitude of the Philippines as a
fastTracer3 parameter as a standard to compare the different
lines, which will be a different light environment to those
in which the plants were grown or in which the lines
traditionally grow or have originated. However, the conditions
we used were enough to expose significant differences in
architecture between lines which are genetically different in
origin.

Other factors relating to whole canopy photosynthesis
must also be taken into account such as: the angular
relationship between the photosynthetic leaf surfaces and the
sun; environmental conditions (i.e., wind speed, temperature,
CO2 concentration); soil properties; the photosynthetic pathway
used and; the presence of other biotic or abiotic stressors
(Baldocchi and Amthor, 2001). This highlights the need for
more in depth studies of canopy photosynthesis and architecture
within the range of different environmental conditions in
which a plant is likely to be exposed to. Also for more
realistic modeling; i.e., modeling mimicking the weather
conditions or more realistic representations of the plant
stands in general (such as incorporating canopy movement
due to wind: Burgess et al., 2016). These high-resolution

studies will be critical in determining the exact relationships
between canopy architectural features, photosynthesis, the
light environment and productivity of our cropping systems
and will provide the framework necessary for any future
improvements.

Use of the parental founders of an elite MAGIC population
of rice leads to possibilities for future studies using a wider
number of crosses and their progeny into the genetic control of
specific architectural features or breeding attempts to produce
an “optimal plant type.” Whilst the genetic control of certain
architectural traits is relatively understood (e.g., Wang and
Li, 2006; Busov et al., 2008; Neeraja et al., 2009; Pearce
et al., 2011), the interactions between genotype, phenotype,
management, and the environment are less well-known. These
relationships are confounded further by the variability in weather
patterns and the relatively unknown effects of climate change on
our agricultural systems. However, combining high-resolution
studies and crop simulations with new breeding methods and
genetic modeling provides a promising future for accelerating
the discovery and creation of new idealized plant types.
Multi-parent populations provide an attractive background for
study when combined with high-throughput SNP genotyping
(Bandillo et al., 2013).
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Supplementary Figure S1 | Example of a time-weighted light pattern at

τ = 0.2 (black line) relative to a non-weighted line (i.e., τ = 0). The
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used to represent the fact that photosynthesis is not able to respond

instantaneously to a change in irradiance levels. If τ = 0 then a plant will

able to instantaneously respond to a change in irradiance, whereas if τ >

0 the time-weighted average light pattern will relax over the timescale τ.

Within this study, τ was fixed at 0.2.

Supplementary Figure S2 | Correlations for different parameters for the

two growth stages.

Supplementary Table S1 | Agronomic details on the 16 Parental Lines used

to develop the indica and japonica MAGIC Populations. Data for MAGIC

lines taken from Bandillo et al. (2013). The four MAGIC lines plus IR64 selected for

in depth study are given in bold.

Supplementary Table S2 | Physiological characteristics of the 15 parental

MAGIC lines + IR64 used in the initial screening. All measurements, apart

from harvest dry weight and seed dry weight, were taken 55–60 days after

transplanting (DAT), corresponding to the vegetative growth stage. SPAD and leaf

discs for chlorophyll samples were taken on the last full expanded leaf. The means

of three plots are shown with standard errors of the mean. The bold lines are

those selected for use in the in depth study due to their contrasting physiological

features.
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Poplars are fast-growing, high-yielding forest tree species, whose cultivation as
second-generation biofuel crops is of increasing interest and can efficiently meet
emission reduction goals. Yet, breeding elite poplar trees for drought resistance
remains a major challenge. Worldwide breeding programs are largely focused on
intra/interspecific hybridization, whereby Populus nigra L. is a fundamental parental pool.
While high-throughput genotyping has resulted in unprecedented capabilities to rapidly
decode complex genetic architecture of plant stress resistance, linking genomics to
phenomics is hindered by technically challenging phenotyping. Relying on unmanned
aerial vehicle (UAV)-based remote sensing and imaging techniques, high-throughput
field phenotyping (HTFP) aims at enabling highly precise and efficient, non-destructive
screening of genotype performance in large populations. To efficiently support forest-
tree breeding programs, ground-truthing observations should be complemented with
standardized HTFP. In this study, we develop a high-resolution (leaf level) HTFP approach
to investigate the response to drought of a full-sib F2 partially inbred population
(termed here ‘POP6’), whose F1 was obtained from an intraspecific P. nigra controlled
cross between genotypes with highly divergent phenotypes. We assessed the effects
of two water treatments (well-watered and moderate drought) on a population of
4603 trees (503 genotypes) hosted in two adjacent experimental plots (1.67 ha)
by conducting low-elevation (25 m) flights with an aerial drone and capturing 7836
thermal infrared (TIR) images. TIR images were undistorted, georeferenced, and
orthorectified to obtain radiometric mosaics. Canopy temperature (Tc) was extracted
using two independent semi-automated segmentation techniques, eCognition- and
Matlab-based, to avoid the mixed-pixel problem. Overall, results showed that the
UAV platform-based thermal imaging enables to effectively assess genotype variability
under drought stress conditions. Tc derived from aerial thermal imagery presented a
good correlation with ground-truth stomatal conductance (gs) in both segmentation
techniques. Interestingly, the HTFP approach was instrumental to detect drought-
tolerant response in 25% of the population. This study shows the potential of UAV-based
thermal imaging for field phenomics of poplar and other tree species. This is anticipated
to have tremendous implications for accelerating forest tree genetic improvement
against abiotic stress.

Keywords: UAV remote sensing, high-throughput field phenotyping (HTFP), phenomics, poplar thermal imagery,
image processing, stomatal conductance, drought
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INTRODUCTION

Fast growing Populus clones are among the most common
lignocellulosic feedstocks for second-generation bioenergy
production in Europe (Amichev et al., 2010; Sannigrahi et al.,
2010; Sabatti et al., 2014; Djomo et al., 2015). A recent report of
the International Poplar Commission indicates that the total area
of short rotation coppice (SRC) Populus across Europe is about
23,502 ha (FAO, 2016). However, the current surface area planted
with SRC Populus in Europe was estimated at about 45,000 ha by
Alasia Franco Vivai (Franco Alasia, Personal Communication),
taking into account the establishment of few thousands ha in
recent years in Poland. Compared to alternative bioenergy crops,
SRC plantations offer versatile year-round coppice cycles and
high yield to input ratio (Sims and Venturi, 2004). To alleviate
the conflict between food and biofuel production (Rockwood
et al., 2004; Edrisi and Abhilash, 2016), SRC plantations are
typically grown on marginal lands, which are inadequate for
high productivity crop growth (Herr and Carlson, 2013), thus
generating an income without the need for a land remediation
period (Paulson et al., 2003).

Short rotation coppice Populus clones are selected from world-
wide breeding programs based on interspecific hybridization,
whereby black poplar (Populus nigra L.) is a fundamental parental
pool (Stanton et al., 2013); being widely and naturally spread
in Europe, typically associated with riparian ecosystems, and
characterized by large phenotypic and genetic variability (van
der Schoot et al., 2000; Richardson et al., 2014; DeWoody et al.,
2015). Moreover, P. nigra has been thoroughly studied due
to its numerous adaptive characteristics, including easy clonal
propagation, good coppicing ability, resistance to pathogens and
parasites (Benetka et al., 2012), prolonged growing season (Rohde
et al., 2011), and high plasticity in response to environmental
conditions (Chamaillard et al., 2011). Breeding strategies based
on recurrent selection and testing are frequently implemented
for gradual population improvement (Neale and Kremer, 2011).
Acceleration of the Populus domestication is also expected
through recurrent intraspecific crossing and higher order species
mixes, yet to be supplemented by genomic selection, association
genetics, and genetic engineering (Harfouche et al., 2012). While
first-generation hybridization (F1) is adopted to obtain heterosis
for growth rate (Stettler et al., 1988), advanced generation
breeding, such as F2 hybridization, among closely related Populus
species, has proved to be an efficient strategy toward genetic
improvement (Stanton et al., 2010).

Field-grown trees are routinely exposed to environmental
stress and are likely to experience unprecedented rises in
temperature and increases in the frequency and severity of
summer drought episodes in the future (Lindner et al., 2014;
IPCC, 2014). The physiological responses to drought are complex
and traits vary in their importance depending on intensity,
duration, and timing of the drought (Bréda and Badeau, 2008;
Tardieu and Tuberosa, 2010; Harfouche et al., 2014). These traits
present as reduced leaf size, decreased leaf growth rate, lowered
stomatal aperture and density, reduced stomatal conductance
(gs), and altered patterns of root development (Tardieu and
Tuberosa, 2010). Furthermore, inside the leaf, prolonged drought

periods reduce CO2 assimilation rates and the extra energy
dissipation, with a consequent increase in reactive oxygen species
production, leading to leaf senescence and yield loss (Pintó-
Marijuan and Munné-Bosch, 2014). Physiological and molecular
studies on drought tolerance in Populus have shed light on the
considerable divergence in response to water deficit between
different genotypes (Marron et al., 2002; Monclus et al., 2006;
Street et al., 2006; Huang et al., 2009; Regier et al., 2009; Cocozza
et al., 2010; Viger et al., 2016).

Plant tolerance to abiotic stresses is an ambiguous concept,
even after distinguishing different strategies such as avoidance,
tolerance, and escape (Levitt, 1972). Depending on their
genetically dictated molecular and physiological attributes, plants
budget their water in very different ways, along a continuum
that ranges from the water-conserving or risk-aversion behavior
displayed by isohydric plants to the risk-taking behavior
displayed by anisohydric plants (Tardieu and Simonneau, 1998;
Moshelion et al., 2014; Sade and Moshelion, 2014; Attia et al.,
2015).

In reduced water availability conditions, the relationship
between gs and leaf temperature has been utilized as a valid
indicator of trees’ response (Chaves et al., 2003; Bréda et al., 2006;
Jiménez-Bello et al., 2011; Costa et al., 2013; Rebetzke et al., 2013;
Struthers et al., 2015). Therefore, relating the leaf temperature of
individuals to the average value of a population exposed to similar
environmental conditions may be indicative of the trees’ state of
stress.

A major obstacle to a more effective dissection of plant
response to drought is the difficulty in properly phenotyping in
a high-throughput fashion. To relieve a phenotyping bottleneck,
phenotypic traits should be turned into quantifiable, objective,
and consistent measures. Furthermore, automated and high-
throughput phenotyping (HTP) on large-scale plant populations
is expected to increase the probability of detecting crucial traits
and, thus, identifying effective genotype-phenotype relationships
(Goggin et al., 2015). HTP envisions a suite of strategies to
speed up the phenotyping process and maximize the number
of studied plants per experiment (Goggin et al., 2015). These
methods enable automated, non-destructive, and non-invasive
screening of high dimensionality populations, and thus, allowing
the same plants and their responses to changing environmental
factors to be monitored throughout their life cycle (Fahlgren
et al., 2015a). To facilitate data interpretation, HTP platforms
often involve observations in controlled conditions, such as
growth chambers and greenhouses. However, plant performance
in highly controlled conditions is poorly correlated with breeders’
target commercial and real-world environments (White et al.,
2012; Araus and Cairns, 2014; Deery et al., 2014; Ghanem et al.,
2015; Izawa, 2015; Poland, 2015). With regards to the specific
case of drought, phenotyping under controlled conditions is
highly challenging. In fact, the declining soil moisture content
and increasing mechanical impedance typical of droughts are
difficult to replicate in pots that are much smaller than the
volume of soil available in the field (Cairns et al., 2011; Passioura,
2012). This fact may result in fast plant response through
stomatal closure, which may, in turn, mask slower adaptive
processes.
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High-throughput phenotyping approaches seek to gather
remote information; however, close-range (proximal) sensing
is frequently required to provide the adequate resolution to
decipher phenotypic traits (White et al., 2012). Proximal HTP
combines robotic technology and imaging to enable high-
dimensional phenotype screening and capture. Unmanned aerial
vehicles (UAVs) equipped with cameras and sensors are proximal
remote sensing that bridge the gap between time consuming
ground-based measurements and satellite/airborne observations
(Gago et al., 2015). Compared to traditional ground-
based techniques, UAVs enable rapid and non-destructive
measurements. They also offer much quicker turnaround
times than satellites at competitive costs (Berni et al., 2009).
In terms of spatial resolution, different from satellites, UAVs
allow the acquisition of images whose pixels are significantly
smaller than objects of interest, thus minimizing the bias effect
due to background intensity (mixed-pixel problem) (Jones
and Sirault, 2014). In contrast to aircrafts, such as manned
helicopters, UAVs can safely hover at low altitudes in the
proximity of plants, thus allowing high resolutions at low costs
(White et al., 2012). In light of such advantages, UAVs are
expected to open new avenues in field-based phenotyping of
multiple stress traits and large populations rapidly, precisely, and
accurately.

With regards to the evaluation of drought response,
conventional ground-based methods typically require gs
measurements, which involve time consuming contact with
leaves (Maes and Steppe, 2012; Costa et al., 2013). Alternatively,
based on the relationship between gs and leaf temperature, UAVs
have been furnished with thermometers and thermal infrared
(TIR) cameras to capture images of large-scale populations
(Berni et al., 2009). TIR cameras show great potential in
phenotyping as thermal images contain spatially distributed
information about the energy emitted from body surfaces, such
as plant leaves. Thermal images can be used to detect the state
of stress due to drought and indirectly estimate gs through the
leaf energy balance equation (Jones, 1992, 1999). Since canopy
temperature (Tc) has long been recognized as a measure of plant
water status (Jones et al., 2009), UAVs mounting sensors have
been used for mapping drought response of agricultural crops at
20–40 cm spatial resolution (Sepulcre-Canto et al., 2006, 2007;
Zarco-Tejada et al., 2012).

Although imaging has revolutionized plant phenotyping
through the early and quantitative detection of plant traits in
objective terms (Dhondt et al., 2013; Goggin et al., 2015), massive
image data handling and processing remains the rate-limiting
step in HTP (Fahlgren et al., 2015b). Image post-processing
may include several steps, such as calibration and undistortion
(Berni et al., 2009; Zarco-Tejada et al., 2013; Araus and Cairns,
2014), which should be automated in data management pipelines
to boost HTP. Within data post-processing, the identification
of objects of interest in images against other objects and the
background (segmentation) (Jähne, 2005) is often the most
critical step (Dhondt et al., 2013). In phenotyping studies,
segmentation algorithms have been developed for plant three-
dimensional measurements (Chéné et al., 2012) and to estimate
crown architecture parameters (Díaz-Varela et al., 2015). For

imaging to substantially contribute to HTP, standardized semi-
automated image processing tools should be introduced and
complemented with ground-truthing through well-established
point measurement sensors (Fahlgren et al., 2015b).

Here, we developed a novel methodology for field HTP
(HTFP) of drought stress in a P. nigra F2 partially inbred
population using TIR images recorded from a UAV platform.
The objectives of this study were to establish a field-scale HTP
procedure to rapidly and precisely examine drought stress in
trees; to provide objective image-based tools and statistical
protocols to quantify phenotypic traits of moderately stressed
and non-stressed trees; and to use HTFP to identify promising
drought-tolerant genotypes for potential use within Populus
breeding programs.

MATERIALS AND METHODS

The workflow of the developed methodology is illustrated in
Figure 1. The HTFP method involves the following four steps: (1)
UAV-based thermography to capture tree Tc; (2) semi-automatic
georeferencing, orthorectification, and mosaicking of TIR
images; (3) tree canopy identification against bare soil through
two independent image segmentation approaches; and (4)
ground-truthing validation of UAV-based thermal data with gs
data.

Field Experiments
Plant Material and Experimental Design
POP6 is a full-sib F2 partially inbred population consisting of
691 genotypes obtained from an intraspecific controlled cross
between two P. nigra parents, P64 and P36. Parents have been
randomly selected from an F1 breeding population (POP5) of
457 genotypes, obtained from an intraspecific P. nigra controlled
cross between genotypes 58-861 and Poli (Figure 1A). Such
genotypes originated from natural populations in divergent
environmental conditions: 58-861 is from cold/wet climates
typical of Val Cenischia (Northern Italy; 45◦09′N, 07◦01′E, 597 m
above sea level), whereas Poli originates from warm/dry climates
typical of Policoro (Southern Italy; 40◦09′N, 16◦41′E, 7 m above
sea level). These genotypes are characterized by contrasting
responses to water stress (Regier et al., 2009; Cocozza et al., 2010).

In January 2012, F2 genotypes were used to establish a stool
bed and produce 1-year old material. Such material was harvested
in January 2013 to produce hardwood cuttings. A large number of
hardwood cuttings (20 cm long) was obtained per each genotype,
and cuttings whose diameter was within 3–4 cm and with a large
number of intact buds were labeled and stored at+4◦C.

The experimental field-scale plots were located in Savigliano
(Northern Italy; 44◦35′36.97′′N, 07◦37′15.27′′E, 349 m above
sea level), and were established in April 2013. Two adjacent
plots (1.67 ha of total extension) were developed to expose
POP6 genotypes to two different water treatments (see Section
“Water Treatment”) (Figure 1B). Each plot featured a completely
randomized block design with four blocks. A single hardwood
cutting per genotype was randomly assigned to each block to
minimize variability attributable to eventually uncontrollable
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FIGURE 1 | Workflow of the high-throughput field phenotyping (HTFP) methodology. (A) Plant material includes intraspecific Populus nigra full-sib F2 partially inbred
population (POP6) obtained from the controlled cross between two P. nigra parents, P64 and P36. These parents were selected from an F1 breeding population
(POP5) of 457 genotypes, obtained from an intraspecific P. nigra controlled cross between genotypes 58-861 and Poli. (B) Two adjacent plots were developed in

(Continued)

Frontiers in Plant Science | www.frontiersin.org September 2017 | Volume 8 | Article 168186

http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive


fpls-08-01681 September 25, 2017 Time: 13:40 # 5

Ludovisi et al. HTFP of Poplar Response to Drought

FIGURE 1 | Continued
Savigliano (Italy) to host POP6 genotypes exposed to well-watered (WW) and moderate drought (mDr) stress conditions. In a plot, WW conditions were maintained,
whereby water lost during the day through tree evapotranspiration (ETc, mm) was daily restored via drip irrigation. In the other plot, mDr conditions were maintained
by withholding irrigation. In each plot, soil water content was daily monitored through a time domain reflectometry SM150 Soil Moisture Sensor installed at 50 cm
underneath the soil surface. (C) Leaf stomatal conductance gs was collected using a dynamic diffusion porometer. Measurements were taken on three biological
replicates per treatment on each parental genotype (24 trees). (D) An unmanned FlyNovex R© multi-copter was integrated with a FLIR A35 TIR (thermal infrared)
camera. The UAV campaign allowed for capturing TIR images of both experimental plots. (E) The flight mission was planned using the open source autopilot Mission
Planner. The UAV was flown in the autonomous mode at a nominal speed of 3 m/s. (F) Fish-eye undistortion, image orthorectification, georeferencing, and
mosaicking were performed using 16 ground control points (GCPs) captured with a global positioning system (GPS). (G) Canopy identification was achieved through
two alternative automatic image segmentation approaches (an in-house algorithm in Matlab and eCognition).

environmental factors (such as soil composition and fertility).
Differently, for P64, P36, 58-861, and Poli, four cuttings were
replicated per each block to ensure larger data availability.
Cuttings were planted at a distance of 2.5 m × 1 m, between
and within rows, respectively. In addition, the border effect, i.e.,
trees planted at external locations of plots display better growth
conditions, was minimized by planting a double border row of
P. nigra cv. Jean Pourtet around the sides of each plot. Therefore,
a total of 6716 trees were planted in the experimental plots.

In March 2013, multiple sprouts were thinned to a single stem
per stamp, choosing the most vigorous. During the first growing
season in 2013, drought treatment was not applied to ensure
a homogeneous root system development and, thus, minimize
effects on shoot growth due to different cutting dimensions. In
the same growing season, both plots were regularly irrigated
with a drip irrigation system during dry periods, and weeds
were controlled using mechanized and chemical practices. In
February 2014, experimental plots were coppiced, and for the
second growing season in 2014, plots were managed similarly
to 2013. In February 2015, trees were again coppiced and, in
March 2015, re-sprouts were thinned to a single stem. Finally,
due to a mortality of 12.7% of the original trees planted in 2013,
4603 plants (503 genotypes) were available at the beginning of the
drought experiment in July 2015.

Weather and Soil Condition Analysis
Weather data at the experimental setup were obtained from
a meteorological station managed by Agency for Protection
of Environment – Piemonte (ARPA-Piemonte1) and located at
10 km from the experimental plots. Observations gathered from
1994 to 2013 indicate an annual mean temperature of 11.8◦C
and a total annual rainfall of 740 mm at the site. According to
Köppen-Geiger classification (Kottek et al., 2006), climate was
classified as Cfb, that is, warm temperate, fully humid and with
warm summers. During the experiment in 2015, a 2 km distant
meteorological station (Delta-T Devices Ltd., United Kingdom)
was also used to record hourly air temperature (Tair), air
humidity, and precipitation.

Soil samples were collected from the middle of plots to
quantify soil texture and to estimate field capacity and permanent
wilting point. These samples were taken from topsoil down
to a maximum depth of 0.5 m. The soil type was a sandy
loam (50.5% sand, 35.5% loam, and 14.0% clay), using the
United States Department of Agriculture soil taxonomy. Soil field

1http://www.arpa.piemonte.it

capacity and permanent wilting point were estimated to 34 and
9.5%, respectively. Soil texture was estimated using gravimetric
analysis, whereas soil field capacity and permanent wilting point
were evaluated using the pressure-based method (Richards and
Weaver, 1944).

Water Treatment
Response to drought stress was investigated by exposing POP6 to
different water regimes for a period of 26 days, from 2nd July 2015
(day of the year; DOY 183) to 28th July 2015 (DOY 209). In one
plot, well-watered (WW) conditions were maintained, whereby
water lost during the day through tree evapotranspiration
(ETc, mm) was daily restored via drip irrigation, see Figure 1B.
Water provisioned through drip irrigation was estimated based
on site-specific reference evapotranspiration (ET0, mm) and
on Populus crop coefficient (kc). ET0 was found according to
FAO-56 Penman-Monteith equation (Allen et al., 1998), and
kc was set to 0.84 in July and to 1.21 in August (Guidi et al.,
2008). In the other plot, moderate drought (mDr) conditions
were established by exposing plants only to natural rainfall.
Drought was imposed by withholding irrigation from DOY 183,
and monitoring the progressive reduction of soil moisture until
a pre-wilting (i.e., sub-lethal) level of soil water content was
achieved.

In each plot, soil water content was daily monitored through a
time domain reflectometry SM150 Soil Moisture Sensor (Delta-T
Devices Ltd., United Kingdom) installed at 50 cm underneath
the soil surface. Four measures per day were recorded using
a DL6 Data Logger (Delta-T Devices Ltd., United Kingdom),
and the daily average soil water content was estimated. Such
system allowed controllability over the experiment, by ensuring
that WW and mDr conditions were maintained in the plots.
During the drought experiment, daily average Tair (◦C), daily
rainfall (mm), daily water deficit (mm), and soil water content
expressed as percentage of water field capacity (%FC) in WW and
mDr plots were reported (Supplementary Figures S1A–C). Soil
permanent wilting point is reported as a percentage of the water
field capacity (%FC = 27.9%). Daily water deficit was calculated
as the difference between precipitation and ETc, according to
Cantero-Martínez et al. (2007).

Data Acquisition and Processing
UAV Campaign
An unmanned FlyNovex R© multi-copter (FlyTop, Italy) was
integrated with a FLIR A35 TIR camera (FLIR Systems,
United States), see Figure 1D. FlyNovex R© is a versatile and
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powerful (24V-6S motors) hexacopter (120 cm diagonal size)
with a highly resistant carbon fiber frame and offering a 7 kg
take-off weight. Its maximum transmission distance is 2 km
and its maximum flight time is 20 min. The FLIR A35 was
equipped with a 9 mm f1.25 lens. Its thermal sensitivity is less
than 0.05◦C at 30◦C and the camera enables measurements in
the range −25◦C to +135◦C. The image sensor is a Focal Plane
Array (FPA) based on uncooled microbolometers with a spectral
response in the range 7.5–13 µm. The camera field of view is
equal to 48◦ (horizontally) × 39◦ (vertically), its resolution to
320 pixels × 256 pixels, and its spatial resolution to 2.78 mrad.
The camera captures images at an acquisition frequency of 60 Hz.

Pictures are stored as 14 bit digital raw images. The camera
is radiometrically calibrated, and its high accuracy and pixel-
to-pixel sensitivity circumvent the need for ground infrared
calibration targets and temperature correction during post-
processing (Deery et al., 2016; Gómez-Candón et al., 2016). The
camera is controlled by an embedded computer (Pico PC with a
Cortex 9 processor) that stores raw images on an internal micro
SDD memory card for the entire duration of the flight.

A total of 16 highly visible targets were positioned along
the borders of the experimental plots (8 targets per plot were
located at the corners and in the middle of each side) and
used as ground control points (GCPs). The targets were used
for georeferencing thermal images. A Real-Time Kinematic
global positioning system (GPS; Leica Geosystems, Switzerland)
GS08plus model with an accuracy of 3 mm was used for capturing
GCP locations.

Flight Plan and Thermal Imaging
The flight mission was planned using the open source autopilot
Mission Planner (APM Mission Planner, United States). The
UAV was flown in the autonomous mode (GPS-waypoint
navigation) at a nominal speed of 3 m/s. Experimental plots
were scanned during two 11-min flights conducted on 28th July
2015 under stable cloudless and low-wind conditions. To ensure
similar solar illumination angles and consistent proportions
of sunlit and shaded leaves (Deery et al., 2014), flights were
performed at 13:41 local time above WW and at 14:30 local time
above mDr.

To capture the experimental plots in a single flight pass while
maximizing image resolution, flight plan consisted of transects
parallel to the plant rows, see Figure 1E. A ground station
processed the UAV safety manual control and sent telemetry
data (position, attitude, and status data) through a radio link at
2.4 GHz to a laptop computer. This communication link also
allowed operation of the onboard TIR camera.

Thermal images were recorded at an elevation of 25 m
from ground level, thus yielding an 8.9 (vertical) m × 11.1
(horizontal) m and a pixel size of 6 cm × 6 cm. Such a
resolution is within POP6 average leaf area (46.47 cm2 or
1.3 pixels, unpublished data). Flying at such an elevation
minimizes image distortions due to atmospheric effects.
The selected flight plan enabled capture of thousands of
high quality single images presenting 30% overlap and 50%
sidelap. Since images captured during take-off, landing, and
flight maneuvers were discarded from further processing,

acquisition of images took a few minutes per experimental
plot.

Stomatal Conductance Ground-truthing
To validate the UAV-based approach, we studied the relationship
between ground-based midday stomatal conductance (gs, mmol
m−2 s−1) and Tc collected from the UAV for selected genotypes,
see Figure 1C. At the same time of UAV flights, we collected
abaxial gs data using a dynamic diffusion porometer (AP4,
Delta-T devices Ltd., United Kingdom). Measurements were
taken on three biological replicates per two water treatments on
each of the four parental genotypes (3 × 2 × 4 = 24 trees). On
each tree, two gs technical replicates were taken on the first sunlit
fully expanded leaf from the canopy top. For each plot, before
measurements, the porometer was calibrated according to the
experimental site Tair and humidity. Instrument calibration, gs
measurements, and moving within and between plots required
approximately 3 h.

Thermal Image Processing
We collected a total of 7836 thermal images (“.fff” files) during
the UAV campaign. Given the high overlap and sidelap, one
frame every 20 (392 images) was converted to radiometric “.jpg”
through IRT Analyzer (Grayess, United States), and fish-eye
undistorted through Adobe Photoshop CC (Adobe Systems,
United States) (lens adjustment tool) by setting the camera
focal length to 9 mm, see Figure 1F. Image mosaicking was
performed with the Image Composite Editor software (Microsoft
Corporation, United States), and radiometric mosaics were
then converted to grid data with Surfer (Golden Software,
United States). Mosaics were orthorectified and georeferenced
with ArcGIS 9.2 (ESRI, United States). Orthomosaics were
georeferenced by manually matching the surveyed 16 GCPs
(Figure 1F).

Mosaics were processed to remove bare soil pixels (Jones
and Sirault, 2014), and used to estimate average Tc (◦C) for
each tree. In particular, radiometric mosaics were combined
with the position of the tree centers and spacing in the
experimental plots (Figure 2). Firstly, radiometric mosaics were
segmented to automatically identify regions depicting trees.
Canopy identification was achieved through two independent
semi-automatic image segmentation approaches (Figure 1G).
We utilized the eCognition commercial software (eCognition
Developer 9, Tremble Inc., United States) that is commonly
adopted in image-based analysis for environmental applications.
Further, we in-house developed a second segmentation algorithm
in a Matlab environment (Matlab R2014a, The Mathworks Inc.,
United States).

In the eCognition segmentation, parameters such as canopy
shape (set to 0.1), compactness (set to 0.5), and scale (set to 10)
were used to identify trees. To address bare soil pixel removal,
two pixel classes were introduced. One class included pixels at
temperatures ranging from 15 to 27◦C and from 14 to 28◦C
for WW and mDr, respectively (named “Poplar” in Figure 1G).
Conversely, the second class consisted of pixels at temperatures
lower and higher than the above ranges (named “Weed” and
“Soil” in Figure 1G). We visually ascertained in the radiometric
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FIGURE 2 | Canopy temperature (Tc) extracted from segmented radiometric mosaics. (A) eCognition-based segmentation of the WW radiometric mosaic with
temperature range between 14 and 63◦C (temperature color bar on the top left). (B) Intersection of the segmented mosaic with 40 cm-radius circular buffers
centered on the trees with Tc ranging between 15 and 27◦C (temperature color bar on the bottom right). (C) View of the intersection for six WW trees. Pixels
pertaining to “Soil” and “Weed” are assigned null temperature values (white areas) in the intersected buffer, whereas pixels relative to “Poplars” range from 15 to
27◦C and display different colors for segmented areas at homogeneous temperatures. Tc for each plant is estimated by averaging values of pixels lying inside each
intersected buffer.

mosaics that the first class of temperatures was related to plants,
and the second to soil and weed. Segmented areas “Weed” and
“Soil” were discarded in the subsequent temperature extraction
analysis.

In the alternative segmentation approach, Otsu’s threshold
selection method was implemented on the entire radiometric
mosaics (Otsu, 1979). Mosaic histograms were thresholded to
obtain nine level-segmented images. The effectiveness of the
segmentation was assessed through Otsu’s objective criterion
(N = 0.99 in case of eight thresholds). Based on visual inspection
of the mosaics, pixels at temperatures ranging from 15 to 27◦C

(WW) and from 14 to 28◦C (mDr) were retained for estimating
average Tc.

After segmentation, pixels relative to soil and weed were
assigned null temperature values in the radiometric mosaics.
Then, 40 cm-radius circular buffers centered on the trees
were intersected with the segmented mosaics (Figure 2).
Since neighboring plants were spaced by 1 m within a row,
such conservative buffer was selected to guarantee the precise
identification of each plant canopy. Finally, Tc for each tree was
calculated by averaging pixel values lying inside each intersected
buffer.
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Statistical Analysis
Phenotypic variance of a total of 503 genotypes was investigated
using R software (R v.3.1.3, R Foundation for Statistical
Computing, Austria). Due to natural replicates mortality since
plot establishment, only genotypes with at least three replicates
in both WW and mDr were retained in the analysis. Two-way
ANOVA (ANalysis Of VAriance) inferential statistic procedure
was used to describe the effects of genotype, treatment, and
their interaction on total phenotypic variance observed in POP6.
To respect ANOVA assumptions, the Box-Cox procedure (Box
and Cox, 1964) was performed on the additive model to yield
optimal data transformation, and Bartlett’s test was used to
test the homogeneity of variance. When statistically significant
differences among blocks were found, block effect adjustment
was conducted to minimize the influence of competition among
neighboring trees on genotype-specific response to drought
conditions. Adjustment was performed according to Dillen et al.
(2009), and it was repeated separately for each experimental plot.

The generalized linear mixed model was built to test
differences among genotypes within each treatment and between
the two treatments, and differences due to the genotype by
treatment interaction (G × T). G × T aims at testing the
consistency in the relative performance of genotypes grown in
different conditions (White et al., 2007). Statistical significance
was considered for p-values ≤ 0.05. To capture the proportion
of total phenotypic variance due to genetic variation, broad-
sense heritability (H2) was estimated for Tc in each treatment
according to Sehgal et al. (2015):

H2
= σ2

G/[σ2
G + (σ2

ε/r)] (1)

Here, σ2
G and σ2

ε are the genetic and residual variance
components, respectively, and r is the average number of
replicates for a genotype within treatment (i.e., 3.5).

Moreover, to provide a better estimation, H2 was calculated
over combined treatments, taking into account the G × T effects
on total variance:

H2
= σ2

G/[σ2
G + (σ2

G×T/n)+ (σ2
ε/nr)] (2)

Here, σ2
G×T is the G× T variance component, n is the number

of treatments, and r is the average number of replicates for a
genotype in the experiment (i.e., 7.3).

Variance components were obtained using the restricted
maximum likelihood (REML) procedure, with treatment as fixed
effect, and genotype and G× T as random effects.

Finally, to evaluate the robustness of the independent
segmentation procedures, differences between Tc datasets
obtained with eCognition and Matlab, and the precision of
both procedures was tested using the Student’s t-test and the
Spearman’s rank correlation test. Statistical significance of the
correlation coefficient (ρ) was considered for p-values ≤ 0.05.

Stress Susceptibility Index
Populus nigra genotype response to drought was dissected by
computing the Stress Susceptibility Index (SSI) on UAV-based Tc.
Such an index has proved to be an efficient tool to classify plants
according to their tolerance or sensitivity to water stress (Sánchez

et al., 2015). SSI was calculated based on genotypic mean Tc
according to Fischer and Maurer (1978):

SSI = [1− (TcmDr/TcWW)]/[1− (TcmDr/TcWW)] (3)

Here, TcmDr and TcWW correspond to genotypic means
under mDr and WW conditions, respectively, and TcmDr and
TcWW correspond to POP6 means in mDr and WW conditions,
respectively.

Negative SSI values correspond to a decrease in the genotypic
mean TcmDr with respect to TcWW together with an increase
in TcmDr with respect to TcWW. SSI values equal to 0
indicate consistent genotype means in mDr and WW conditions,
regardless to POP6 mean responses. SSI values comprised
between 0 and 1 indicate that Tc increase in mDr with respect
to WW in the genotype is lower than Tc increase observed in
the population. SSI values equal to 1 correspond to consistent
deviations between mDr and WW conditions for both genotype
and population means. SSI values greater than 1 indicate that
Tc increase in mDr with respect to WW in the genotype is
greater than Tc increase observed in the population. Therefore,
genotypes whose index lies between 0 and 1 suggest an improved
response to drought as compared to the overall population
behavior.

RESULTS

UAV-Based HTFP for Detecting
Response to Drought
The UAV-based methodology allowed collection of high-
throughput thermal data on experimental plots covering an area
of 1.67 ha in only 22 min. While ground-truthing required
3 h to obtain gs data on 24 trees, by performing only
two low-elevation UAV flights, we were able to capture the
response to drought of 6716 trees with a spatial resolution
of 6 cm × 6 cm, that is, at POP6 sub-leaf definition. The
methodology was simple to implement in the field: TIR
camera required no infrared target-based calibration; standard
GCPs were located in the experimental plots; and the UAV
was autonomously navigated based on pre-planned mission
(Figure 1). Data processing was almost fully automated: images
were undistorted, mosaicked, and orthorectified with commercial
user-friendly software. The supervision of an expert was
mandatory to georeference the orthomosaics and to segment
images. Image segmentation allowed for addressing the mixed-
pixel problem and automatically identifying tree canopies
through two independent algorithms. Both methodologies
required an expert user to set parameters and classes based on
visual inspection of the orthomosaics, and their implementation
was computationally inexpensive. The extraction of tree Tc
from radiometric orthomosaics for both treatments was executed
within 1 h, and computational time devoted to statistical analyses
was on the order of a few minutes.

To validate UAV-based data, we utilized Tc of selected
genotypes to recover the well-known inverse correlation between
gs and the difference between Tc and Tair (Farooq et al., 2009;
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FIGURE 3 | Relationship between gs (mmol m-2 s-1) and the difference between Tc and Ta (◦C) for parental genotypes. (A) eCognition-based data and
(B) Matlab-based data. For Poli (circle), 58-861 (triangle), P36 (square), and P64 (diamond), Tc and gs are obtained by averaging measurements taken on biological
replicates. Both sets of data are fitted with a linear function (R2 = 0.49). Data relative to mDr conditions are displayed as white symbols, whereas WW data are
shown as black symbols. During the UAV flights, Ta was equal to 28.75◦C. Statistically significant (p-value ≤ 0.05) regressions are indicated with the symbol ∗.

Costa et al., 2013; Virlet et al., 2014). Figure 3 illustrates the
relationship between gs and the difference between Tc and the
air temperature at the time of the UAV flight (Ta) for parental
genotypes. They were chosen due to specific morphological
and ecological traits, which were expected to lead to divergent
drought responses. In Figure 3A, we show eCognition-based
data, and, in Figure 3B, we report Matlab-based data. In both
graphs, data relative to mDr conditions are found at high values
on the X-axis and with gs ranging from 154–434 mmol m−2 s−1

on the Y-axis, whereas lower WW data correspond to higher gs
values (ranging from 422 to 700 mmol m−2 s−1). Both data sets
were fitted with a linear regression, statistically significant at an
R2 of 0.49 (p-value < 0.05), suggesting that UAV-based thermal
data accurately captured plant response to drought conditions.
Tc and gs mean values, with relative standard errors, are shown
in Table 1.

Remarkably, both segmentation approaches led to consistent
relationships. To further assess the robustness of the independent
segmentation methodologies, we computed the Student’s t-test
on POP6 genotypic mean Tc, separately for mDr and WW
conditions. Notably, differences in data obtained with eCognition
and Matlab were not statistically significant for both treatments

(WW: p-value = 0.82 and mDr: p-value = 0.36). Moreover,
on data sets obtained with eCognition and Matlab, we also
evaluated the Spearman’s rank correlation test, and ρ-values of
0.98 (p-value < 0.001) were found for both WW and mDr
conditions. Based on such strongly significant correlation, both
segmentation methods showed consistent Tc estimations and,
therefore, could be interchangeably utilized to extract Tc from
thermal images. In the succeeding figures, we report results for
eCognition data; genotypic mean Tc along with standard error
and SSI values for both eCognition and Matlab are provided in
the Supplementary Tables S1, S2.

POP6 Response to Drought
We report results for 503 genotypes (out of the original
691, due to tree mortality) for eCognition and Matlab-based
segmentations. We only retained genotypes with at least three
survived replicates in both mDr and WW conditions.

To show within-population and within-genotype variability in
Tc, Figure 4 displays genotypic mean Tc in WW (A) and mDr
(B) conditions as obtained after segmentation with eCognition.
In addition, in Figure 4C, we compared the genotypic response to
drought by reporting the relative increase in TcmDr with respect

TABLE 1 | Phenotypic data for Tc and gs for poplar parental genotypes.

gs (mmol m−2 s−1) eCognition-based Tc − Ta (◦C) Matlab-based Tc − Ta (◦C)

Genotype WW (Mean ± SE) mDr (Mean ± SE) WW (Mean ± SE) mDr (Mean ± SE) WW (Mean ± SE) mDr (Mean ± SE)

Poli 700 ± 60 434 ± 16 −7.86 ± 1.33 −7.08 ± 0.73 −7.86 ± 1.33 −7.08 ± 0.70

58-861 422 ± 32 154 ± 6 −9.48 ± 1.25 −5.77 ± 0.36 −9.29 ± 1.44 −5.95 ± 0.18

P36 631 ± 95 414 ± 215 −9.25 ± 0.80 −7.82 ± 1.50 −9.05 ± 0.99 −7.82 ± 1.49

P64 639 ± 120 366 ± 45 −9.66 ± 0.69 −5.96 ± 1.21 −9.66 ± 0.69 −5.99 ± 1.17

Mean values with standard errors (Mean ± SE) within each drought treatment for gs (mmol m−2 s−1) and for the difference between Tc and Ta (◦C).
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to TcWW (TcmDr/TcWW). Genotypes were ordered based on
increasing Tc (Figures 4A,B) and TcmDr/TcWW (Figure 4C).
Dashed red lines show POP6 mean Tc (Figures 4A,B) and
TcmDr/TcWW (Figure 4C).

In Figure 4A, a percentage of 49.3% of genotypes lies above
the average Tc of 19.55◦C. For Matlab, 48.4% of genotypes were
found above a consistent average Tc of 19.55◦C. Further, the
standard error of each genotypic mean ranges from 0.05 to 2.86
for eCognition and from 0.05 to 3.24 for Matlab. In Figure 4B,
a percentage of 46.3% of genotypes lies above the average Tc
of 21.60◦C. For Matlab, 47.4% of genotypes were found above
a similar average Tc of 21.55◦C. Further, the standard error of
each genotypic mean ranges from 0.08 to 3.56 for eCognition and
from 0.16 to 3.17 for Matlab. Genotypic mean Tc in mDr was
on average warmer than in WW conditions. In WW settings, in
eCognition, average Tc ranged from 16.62 to 23.33◦C (Matlab: Tc
ranged from 16.62 to 23.06◦C). With regards to mDr settings, in
eCognition, average Tc spanned from 18.16 to 26.00◦C (average
Tc in mDr ranged from 18.14 to 24.87◦C for Matlab).

In Figure 4C, the average ratio is equal to 1.11 for both
eCognition and Matlab. The percentage of genotypes lying above
such value (up to a maximum value of 1.41) is equal to 49.7 and
48.6% for eCognition and Matlab, respectively. A total of 37.38%
(Matlab: 38.49%) of genotypes are found between 1 and 1.11,
whereas only 12.92% (Matlab: 12.90%) of genotypes have ratios
ranging from 0.79 to 1.

To inspect the frequency distribution of genotypic response
to drought, in Figure 5 we report histograms for genotypic
mean Tc obtained with eCognition for WW (A) and mDr (B)
conditions. Such frequency distribution is expected to provide
insights into POP6 average response to treatments and also the
population response with respect to 58-861 and Poli. Both graphs
display an approximately symmetric distribution (skewness lower
than 0.4) with a slightly platykurtic shape (kurtosis almost
equal to 0). Similar data distributions were found for Matlab
(Table 2). Further, we show average Tc for 58-861 and Poli
genotypes. In WW, parental genotypes present a similar Tc
(58-861 equal to 19.84 and 19.80◦C; Poli equal to 19.76 and
19.75◦C in eCognition and Matlab, respectively). Conversely, a
greater difference in Tc between parental genotypes was found in
mDr than in WW (58-861 equal to 20.88 and 20.93◦C; Poli equal
to 21.78 and 21.66◦C in eCognition and Matlab, respectively).
Different from parental genotypes, POP6 showed a large range of
variation within WW and mDr treatments for both segmentation
procedures. Indeed, for eCognition, average Tc ranged from
16.62 to 23.33◦C in WW, and from 18.20 to 26.01◦C in mDr.
For Matlab, a very similar range of variation (with respect to
eCognition) was found in WW (from 16.62 to 23.05◦C), whereas
a narrower range was observed in mDr (from 18.16 to 24.84◦C).

To quantitatively assess the effect of the treatments on POP6,
a two-way ANOVA was used to analyze Tc differences among
genotypes, between treatments, and due to G × T interaction
(Table 3). Notably, differences among genotypes were not
statistically significant. On the other hand, differences between
treatments were statistically significant. Finally, G×T interaction
was not statistically significant for both eCognition- and Matlab-
based Tc.

FIGURE 4 | Average Tc (◦C) for each genotype in WW and mDr. (A) Genotypic
mean Tc (gray circles) and standard error (black bars) in WW conditions.
(B) Genotypic mean Tc (gray circles) and standard error (black bars) in mDr
conditions. (C) Ratio of TcmDr to TcWW (black circles). Genotypes in (A,B)
are ordered based on increasing Tc. Genotypes in (C) are ordered based on
increasing ratios. The dashed gray line and dashed red lines in (A,B) show Ta

during the unmanned aerial vehicle (UAV) flights and population averaged Tc,
respectively. The dashed red line in (C) displays population averaged
TcmDr/TcWW. A total number of 503 genotypes is shown in (A–C).

To address the relationship between genetic and
environmental sources of variance, H2 of the Tc was estimated.
Within treatment analysis resulted in very low H2 for both
eCognition (WW: 0.09, mDr: <0.01) and Matlab-based Tc
(WW: 0.10, mDr: <0.01). Similarly, very low H2 (0.015 in
eCognition and <0.01 in Matlab) was observed for combined
treatments.

Selection of Putative Drought-Tolerant
Genotypes
Although the genotypic effect did not show a statistically
significant influence on trait variance, we further analyzed Tc
data to identify genotypes with improved drought tolerance.
Genotype performance in response to drought is illustrated
in Figure 6. Herein, the difference between single genotypic
mean TcmDr and POP6 TcmDr is plotted against the difference
between genotypic mean TcmDr and TcWW conditions. Data
show a positive correlation, where highly stressed individuals
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FIGURE 5 | Frequency distributions of genotypic mean Tc (◦C).
(A) eCognition data for WW and (B) mDr conditions. Histogram bins are
0.5◦C in width. The triangle and circle indicate genotypic mean Tc for 58-861
and Poli, respectively.

are located at the tails of the distribution and correspond to a
less frequent behavior. Genotypes are mostly evenly distributed
above and below the X-axis; however, stressed conditions lead to
a majority of data points lying in the first and fourth quadrants.

From a drought-response perspective, the fourth quadrant in
the biplot in Figure 6 provides the most relevant information.
Genotypes lying in the first and fourth quadrants [436 (86.68%) in
eCognition and 438 (86.88%) in Matlab] present a TcmDr greater
than TcWW. While genotypes in the first quadrant have a TcmDr
greater than TcmDr, those in the fourth quadrant show a TcmDr

smaller than TcmDr. A few genotypes display greater TcWW
than TcmDr [data points in the second and third quadrants, 67
(13.32%) out of the total number of genotypes in eCognition and
66 (13.12%) in Matlab].

Due to mDr treatment, in genotypes found in the fourth
quadrant (TcmDr > TcWW and TcmDr < TcmDr), Tc increased
less than POP6 TcmDr. This suggested the onset of acclimation
mechanisms and, therefore, an improved response to drought
stress with respect to the overall population. Among such
drought-tolerant genotypes, 25% of the total number of tested
ones (25.65% in eCognition and 25.79% in Matlab) presented an
SSI ranging from 0 to 1, that is, the relative increase in Tc from
WW to mDr conditions was lower than the increase observed on
average in the population. Genotypes 58-861 and Poli were also
located in the fourth quadrant; however, none of them had an SSI
comprised between 0 and 1.

DISCUSSION

In this study, we developed a UAV-based HTFP approach to
investigate the response of P. nigra to mDr conditions in the field.
We assessed the effects of two water treatments on the observed
phenotypic variance of an F2 partially inbred population of
503 genotypes. Notably, we remotely captured high resolution
images, whereby image pixels were several orders of magnitude
smaller than a single tree crown, and smaller than POP6 average
leaf area. Such a resolution could be essential to uncover
physiological differences within single crowns. A large leaf-to-
leaf variability has been observed for gs and leaf temperature in
wheat (Triticum aestivum), which has led to low values of H2

when estimated on a single-leaf basis (Rebetzke et al., 2001, 2013).
Gonzalez-Dugo et al. (2012) detected in mildly stressed almond
(Prunus dulcis) that few areas within the crown had substantial
stomatal closure while, in the rest of the crown, the stomata were
still open and this increased heterogeneity of the Tc. It has also
been proposed that in cotton (Gossypium sp.) the variability of
leaf temperature may provide important information about the
degree of stomatal closure (Fuchs, 1990). In apple trees (Malus
pumila) grown under drought conditions, the spatial variability
of leaf temperature and gs was higher for the whole crown
than for the top crown (Ngao et al., 2017). By contrast, our
UAV-based thermal imaging provides an ideal approach for the
collection of the large number of individual leaf temperatures,
which are necessary for methods based on temperature frequency
distributions simultaneously in one image, rather than point-wise
approaches for investigating tree response to drought. We also
expect gs to be consistently homogeneous in the upper canopy,
that is, where gs measurements were conducted herein.

High image resolution enabled the extraction of biologically
meaningful data; in fact, plant leaves were attributed several
image pixels, thus allowing accurate estimations of Tc. Such
a rapid and non-invasive UAV-based procedure is expected
to highly benefit phenotypic-based assisted-mass selection in
early generation screening in breeding programs for bioenergy
purposes. UAVs could, indeed, be adopted to capture high
resolution images over sparsely vegetated environments, such
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TABLE 2 | Frequency distribution shape parameters.

Segmentation Procedure Treatment Mean (◦C) Median (◦C) Kurtosis Skewness

eCognition-based Tc WW 19.55 19.53 −0.13 0.27

mDr 21.60 21.49 −0.01 0.35

Matlab-based Tc WW 19.55 19.48 −0.13 0.28

mDr 21.55 21.48 −0.30 0.18

Tc Mean (◦C), median (◦C), kurtosis, and skewness values for histograms in Figure 5.

TABLE 3 | Two-way ANalysis Of VAriance (ANOVA) on eCognition and Matlab-based Tc (◦C) in POP6.

Segmentation procedure Source of variance Degrees of freedom Sums of squares Mean square F-ratio p-value

eCognition-based Tc
∗ Genotype 498 0.01564 0.000031 1.056 0.211

Treatment 1 0.02108 0.021077 708.437 <0.001

G × T 498 0.01542 0.000031 1.041 0.276

Error 2634 0.07836 0.000030

Total 3631 0.13050

Matlab-based Tc
∗∗ Genotype 498 0.0751 0.00015 1.037 0.295

Treatment 1 0.1038 0.10380 713.445 <0.001

G × T 498 0.0765 0.00015 1.056 0.209

Error 2642 0.3844 0.00015

Total 3639 0.6398

∗To respect ANOVA assumptions, individual eCognition-based Tc raw data were transformed by ˆ−1. ∗∗To respect ANOVA assumptions, individual Matlab-based Tc raw
data were transformed by ˆ−0.5. Effects of genotype, treatment (well-watered, WW and moderate drought, mDr), and two-factor interaction (G × T) on Tc.

as orchards (Sepulcre-Canto et al., 2006; Sepulcre-Canto
et al., 2007), or over very extended areas, such as natural
forests (Torresan et al., 2016). While UAV-based phenotyping
approaches have been already tested in agriculture, screening
high dimensionality populations is a remarkable bottleneck in
forestry applications and this is the first time that these measures
have been applied to forest species.

Image processing at high speeds is a central challenge in
the field of HTFP. Thermal imaging also allows leaves to be
distinguished from the background. If done manually, however,
the necessary image processing can be rather labor−intensive
and may also be dependent on subjective image interpretation.
Our images also identified thousands of tree canopies against
background soil and weed through two independent semi-
automated segmentation procedures. Segmentation was utilized
to reduce the mixed-pixel problem by extracting contours of
areas at consistent temperatures. Then, areas relative to trees
were identified based on visual inspection of orthomosaics
and retained for data processing. Alternative approaches,
which are based on manually drawing tree canopies (Virlet
et al., 2014), would be extremely time-consuming and may
lead to user-biased results. In this study, we developed and
standardized a semi-automated image-based analysis procedure
and directly applied it on thermal orthomosaics. Without relying
on RGB images, we evaluated the sensitivity of the method to
image segmentation by experimenting with two independent
algorithms. Remarkably, both segmentations led to statistically
similar tree responses to drought, thus supporting the robustness
of the methodology.

The level of stress induced by the treatment was fully captured
through thermal images. This was indicated by the inverse linear

relationship between gs and Tc. An increase in the difference of
Tc with respect to Ta corresponded to a decrease in transpiration
flux and, therefore, to a decrease in the ratio of actual to
potential transpiration (Farooq et al., 2009; Virlet et al., 2014).
Similar linear regressions with slightly higher R2 have also been
observed for orange (Citrus sinensis) (R2

= 0.70–0.78) (Zarco-
Tejada et al., 2012; Ballester et al., 2013a), persimmon (Diospyros
kaki) (R2

= 0.46) (Ballester et al., 2013b), and almond (Prunus
dulcis) (R2

= 0.59–0.66) (Gonzalez-Dugo et al., 2012), using
UAV, small airplanes, and ground screening techniques. However,
comparable results for forest tree species through UAV-based
phenomics are still undocumented.

As already pointed out in a previous greenhouse study on early
effects of drought on P. nigra, Poli tended to quickly respond
to stress by closing stomata due to the fact that Poli is adapted
to dry/hot climatic conditions. However, 58-861 reacted more
slowly to drought as it is considered better adapted to cool and
moist climates (Cocozza et al., 2010). This behavior could be
explained by proved geographical and environmental gradients
of gs, with higher gs values observed in northern proveniences of
Populus sp. (McKown et al., 2013; Kaluthota et al., 2015). This
motivates lower Tc values for 58-861 than Poli as observed in
Figure 5B.

Due to drought stress, POP6 Tc increased and tended to
the temperature of the environment as similarly seen in Mahan
and Upchurch (1988). During the UAV flights, Ta was equal
to 28.75◦C; in WW conditions, the average difference between
Tc and Ta was equal to −9.19◦C. Similar differences (from
10 to 15◦C) between air and leaf temperatures have already
been demonstrated to be plausible (Jackson et al., 1981). As
expected, such a difference decreased to −7.14◦C in case of
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FIGURE 6 | Biplot of genotype performance in response to drought stress.
The difference between genotypic mean Tc (◦C) and POP6 mean Tc in mDr is
plotted against the difference between genotypic mean Tc in mDr and WW
conditions. Genotypes are indicated with gray circles. White circles and white
triangles correspond to Poli and 58-861, respectively. Black crosses indicate
genotypes with (TcmDr – TcmDr) less than 0 (genotypes are less stressed
than the average POP6 response), and whose stress susceptibility index (SSI,
defined in Section “Stress Susceptibility Index”) lies between 0 and 1 (the
temperature increase in mDr with respect to WW in the genotype is lower than
the temperature increase observed in the population). Such genotypes
suggest an improved response to drought stress as compared to the overall
population behavior.

mDr conditions, when transpiration flux was reduced. These
findings are consistent with previous drought studies (Zarco-
Tejada et al., 2012; Ballester et al., 2013a,b). Also, in agreement
with Ballester et al. (2013a,b), and Costa et al. (2013), the
treatment resulted in a difference of 2◦C between WW and
mDr POP6 average Tc. Figures 5A,B demonstrated that drought
induced high phenotypic variability (large ranges of variation in
frequency distributions). In fact, genotypic mean Tc followed
a Gaussian distribution with a high degree of transgressive
segregation in both treatments (thermal response of POP6 was
extreme as compared to parental response). The high variability
in F2 populations may be due to the transgressive segregation
as was previously observed by Wu and Stettler (1994) and Rae
et al. (2009) for growth-related traits in similar populations. This
suggests that thermal response to drought is a quantitative trait
controlled by several genes (polygenic trait) (White et al., 2007),
and that Tc is under complex but repeatable genetic control
(Rebetzke et al., 2013). In our study, the lack of statistically
significant G × T interaction suggests that POP6 response
is consistent between both treatments (i.e., stressed genotypes
increase their Tc, and genotypes with higher TcWW with respect
to other genotypes also display higher TcmDr). Such consistency
may facilitate the selection of genotypes of interest.

Poplar Tc response to water stress was further explored by
investigating H2. A very low H2 was observed for POP6, due
to a large residual error and a modest genetic influence on
the phenotypic variance. Generally, H2 of a trait varies across
different populations and environments (Griffiths et al., 2000),
and it is overestimated when G × T interaction is significant
(White et al., 2007). To the best of our knowledge, H2 estimation
of Tc in forest tree species is still not reported. Yet, it was observed
in the range from 0.05 to 0.91 in T. aestivum, with higher
values of H2 obtained for multi-year and multi-environment
trials (Rebetzke et al., 2013). Such a large variation supports
the urge to conduct experiments in different environments
and water limitation conditions. Moreover, it is noted that
recurrent selection is optimal for improving traits with low
H2 (Hopkins et al., 2009). Therefore, recurrent selection of the
herein identified putative drought-tolerant genotypes would be
a promising approach to accumulate favorable alleles in future
crosses of POP6.

In addition, our technique aids in identifying genotypes that
appear to be risk-takers versus those that are risk-averse; such an
observation is known to occur in response to drought (Sade et al.,
2012; Moshelion et al., 2014; Attia et al., 2015). In our experiment,
Poli exhibits a risk-averse strategy by limiting transpiration and
allowing Tc to increase, as opposed to 58-861, which appears
to be a risk-taker genotype. In fact, Poli considerably increases
its Tc from WW to mDr conditions. This response supports
the fact that Poli could have a sensing mechanism that detects
reduced water availability, and thereby closes stomata to avoid
stress due to drought. Closed stomata at high light intensities
could lead to photo-damage, and thus drought stress may become
photo-oxidative stress, ultimately leading to biomass yield loss.
In 58-861, a lower Tc increment (1.05◦C in eCognition and
1.12◦C in Matlab) than Poli was observed between treatments.
This suggests that 58-861 could employ a less conservative
strategy, and thus, being a putative risk-taker, which developed
an anisohydric survival strategy to drought. This adaptive choice
may be beneficial in moderate stress conditions; however, it
may not provide any advantages in case of prolonged and
more intense drought conditions. The likelihood of anisohydric
genotypes to succumb earlier to drought would increase, and that
of isohydric genotypes to more likely die of carbon starvation is a
function of drought intensity and duration.

Our findings show that, among trees exposed to mDr
conditions, 63 (13.32%) out of 503 genotypes were found in
the third quadrant in Figure 6, thus indicating greater TcWW
than TcmDr. This behavior may be attributed to lower-density
canopies (with short and sparse branches and with a small
canopy surface area covered with leaves) in WW than in mDr.
Conversely, 129 genotypes (25%) were located in the fourth
quadrant and displayed an SSI comprised between 0 and 1. Even
though gs measurements are required to validate this response,
these POP6 genotypes could be considered more risk-takers,
which supposedly maintain high gs and lower Tc. However,
whether or not these risk-taker genotypes could be considered
drought tolerant would depend on the period and severity of
drought, and on the rate at which plants recover from drought
exposure (Sade et al., 2012). For example, in Alvarez et al. (2007),
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anisohydric purple lovegrass (Eragrostis spectabilis) maintained
higher gs and CO2 assimilation, and showed better performance
than isohydric miscanthus (Miscanthus sinensis) plants under
optimal and mild-to-moderate drought conditions, but little
difference was noted when both plants were subjected to severe
drought. A greater research effort is currently needed to better
understand the physiological mechanisms involved when plants
tend to be risk-takers in stressed and risk-averse in non-stressed
conditions.

Even if genotypic effect was not statistically significant,
risk-taking genotypes accounting for 25% of the tested ones
support that crossing genotypes with divergent morphological
and ecological traits, such as 58-861 and Poli, resulted in
augmented phenotypic variability (see also the large ranges of
variation in Figure 5) in the early F2 POP6 generation. Higher-
order crossings with differential breeding techniques based on
selection are expected to lead to higher H2 and improved genetic
gains. Promising genotypes were capable of controlling stomatal
closure to raise their Tc by less than 2◦C with respect to
non-stressed conditions (SSI ranging from 0 to 1). Interestingly,
in Rizhsky et al. (2002, 2004), upon similar drought conditions,
leaf temperature increased by 2–5◦C. This supports our finding
that trees whose Tc increases by less than 2◦C showed a better
response within POP6.

The extensive HTP executed in this study was done in
drought trials under natural field conditions. The results
of this study prove that this methodology enabled high-
throughput data analysis in the field upon fast and non-
invasive acquisition of thermal images. Notably, this approach
allowed efficient and precise phenotyping of large population
of individuals at the same time, thus minimizing the influence
of variable meteorological conditions on control (in this case
WW) and treated (in this case mDr) trees. Image resolution
was remarkably higher than in previous studies (Berni et al.,
2009) and highly sufficient for accurately characterizing tree
response even at crown and leaf levels. We indicate that flight
elevation was also standardized to 25 m to ensure high image
definition while guaranteeing that UAV rotor downwash did
not disturb Tc. Finally, the degree of automation employed
in the developed HTFP method is highly desirable and will
be widely adopted in field-based phenomics for forest trees
genetics and genomics research. Since Tc is strongly related
to gs, photosynthetic rate (Way and Oren, 2010), and leaf
water potential (Testi et al., 2008), UAV-based thermal sensing
may be an efficient, robust, and high-throughput tool for
indirectly screening breeding populations, for selecting drought-
tolerant, as well as risk-takers and risk-averse genotypes. This
methodology is also promising toward monitoring the dynamics
of stomatal movement in response to environmental stresses
through rapid and repeated surveys. Improved knowledge of
stress response will also be enabled through the synergistic
integration of UAV remote sensing with more direct ground-
based measurements (i.e., leaf fluorescence, leaf gas exchange,
leaf water potential, leaf morphology, tree sap flow, and
biomass production). Coupled with ground-penetrating radar,
field-based phenomics will accelerate screening for drought
tolerance by multi-scale analysis of root, crown, and leaf

traits. Currently, UAVs have been outfitted with multispectral,
hyperspectral, thermal, RGB, and near-infrared cameras, which
are useful to evaluate plant response to stress (Costa et al.,
2013; Shi et al., 2016). Future technological ameliorations
will afford unprecedented measurements such as chlorophyll
fluorescence imaging and 3D mapping using light detection and
ranging (LIDAR) sensors, directly from drones, thus opening
novel avenues in high-throughput stress phenotyping in forest
trees. Promising examples of this vision can also include
UAV integrated platforms equipped with multiple sensors for
simultaneous data collection.

In breeding programs, this new aerial screening method may
sensibly alleviate the effect of environmental factors such as
varying exposure to sunlight according to time of the day, local
climatic conditions, background radiation due to soil vegetative
cover and soil water content, being precise, automated and quick.
In fact, utilizing highly sensitive radiometrically calibrated TIR
cameras may speed up tree screening, thus enabling repeated
observations over longer periods of time and larger scale areas.
Furthermore, augmenting breeders’ visual definition by selecting
low flight altitudes may provide novel insights on the response to
drought stress at the single leaf scale.

CONCLUSION

In this study, we developed a high-resolution and high-
throughput UAV-based phenomics method to investigate
drought in the field. We applied this screening method to
precisely and efficiently assess the response to drought of a
P. nigra F2 population consisting of 503 genotypes planted on
an area of 1.67 ha. We captured thermal images of stressed and
non-stressed trees from an elevation of 25 m. We reconstructed
thermal mosaics and extracted the average Tc by using two
independent image segmentation techniques. We statistically
analyzed genotypic temperatures, and identified putative
drought-tolerant genotypes. This newly developed approach
enabled high resolution thermal orthomosaics from quick
UAV-based acquisitions and simultaneous screening of a
significant number of individuals.

Two segmentation techniques for accurately analyzing TIR
images, one developed in-house using Matlab, and another
relying on commercial software eCognition, were successfully
implemented to eliminate the mixed-pixel problem. They both
led to consistent results, indicating that it is possible to
use HTFP-based thermography for the screening of tolerance
to drought stress in forest trees. However, considering the
complexity of drought tolerance, we suggest it can only act
as an accessory means in an active breeding program for
drought by contributing significantly to phenotyping of tree
response to water stress. Future studies will aim at extending
the methodology to rapidly generate environmentally nuanced
temporal measurements of physiological differences to contribute
to predictive environmental stress response models. Through
the approach developed here, candidate genes for drought stress
responses can also be identified when this HTFP is combined
with advanced genomics approaches.
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Based on our analysis, a good correlation was found
between UAV-based parental genotypic mean Tc and ground-
truth gs measurements. Genotypic mean temperatures exhibited
a Gaussian distribution centered about parental behavior.
Furthermore, the statistically significant differences observed
between treatments were attributed to environmental conditions.
Finally, based on SSI values, 25% of the population exhibited
increase in temperature under mDr conditions by less than
2◦C, and, thus, can be regarded as candidate drought-tolerant
genotypes.

The use of UAV for field-based tree phenotyping under
drought conditions is novel, but is expected to become
an important tool for improving efficiency in forest-tree
breeding for climate change. To date, no studies have been
carried out attempting to use UAV-based HTFP for forest
tree phenotyping in managed stress trials in which specific
and well-defined conditions are imposed, and effectively
deploy such platform in a breeding program. Thanks to
its high resolution aerial imagery, accurate data processing,
and relatively simple implementation, this HTFP shows
promise as a precise and efficient tool for use in phenomics
studies.
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Rapid development of plants is important for the production of ‘baby-leaf’ lettuce
that is harvested when plants reach the four- to eight-leaf stage of growth. However,
environmental factors, such as high or low temperature, or elevated concentrations of
salt, inhibit lettuce growth. Therefore, non-destructive evaluations of plants can provide
valuable information to breeders and growers. The objective of the present study was
to test the feasibility of using non-destructive phenotyping with optical sensors for
the evaluations of lettuce plants in early stages of development. We performed the
series of experiments to determine if hyperspectral imaging and chlorophyll fluorescence
imaging can determine phenotypic changes manifested on lettuce plants subjected
to the extreme temperature and salinity stress treatments. Our results indicate that
top view optical sensors alone can accurately determine plant size to approximately
7 g fresh weight. Hyperspectral imaging analysis was able to detect changes in the
total chlorophyll (RCC) and anthocyanin (RAC) content, while chlorophyll fluorescence
imaging revealed photoinhibition and reduction of plant growth caused by the extreme
growing temperatures (3 and 39◦C) and salinity (100 mM NaCl). Though no significant
correlation was found between Fv/Fm and decrease in plant growth due to stress
when comparisons were made across multiple accessions, our results indicate that
lettuce plants have a high adaptability to both low (3◦C) and high (39◦C) temperatures,
with no permanent damage to photosynthetic apparatus and fast recovery of plants
after moving them to the optimal (21◦C) temperature. We have also detected a strong
relationship between visual rating of the green- and red-leaf color intensity and RCC and
RAC, respectively. Differences in RAC among accessions suggest that the selection
for intense red color may be easier to perform at somewhat lower than the optimal
temperature. This study serves as a proof of concept that optical sensors can be
successfully used as tools for breeders when evaluating young lettuce plants. Moreover,
we were able to identify the locus for light green leaf color (qLG4), and position this
locus on the molecular linkage map of lettuce, which shows that these techniques have
sufficient resolution to be used in a genetic context in lettuce.

Keywords: temperature stress, elevated salinity, relative chlorophyll content, relative anthocyanin content,
photosynthesis, relative growth rate, visual rating of color intensity
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INTRODUCTION

Lettuce is an economically valuable, leafy vegetable that is
harvested when the plant ‘head’ reaches maturity, or in the
early stages of development when plant leaves are cut for ‘baby-
leaf ’ or ‘spring-mix’ bagged salad (Simko et al., 2014). Plants
intended for baby-leaf production are grown in the extremely
high densities (7.4 million seeds per hectare) until they reach
four- to eight-leaf stage and then their leaves are cut. Because
baby-leaf lettuces may be cut repeatedly for multiple harvests
(Grahn et al., 2015), they need to regrow rapidly, and consistently
produce leaves with the shape, color, texture, and taste attractive
to consumers. Environmental conditions, such as temperature or
soil salinity, however, can severally affect plant growth. Lettuce is
rather sensitive to the elevated levels of salt (NaCl/CaCl2) in soil
or water. When the decline in yield was compared across several
vegetable species, lettuce was classified into the ‘most sensitive’
group (Shannon and Grieve, 1999). The increased sensitivity of
plants is accentuated during the early stages of development when
elevated concentrations of salt inhibit lettuce growth (Shannon
et al., 1983; Xu and Mou, 2015). Similarly, the photosynthesis
(Seginer et al., 1991) and the growth (Thompson et al., 1998) of
lettuce plants are significantly reduced at both suboptimal and
supraoptimal temperatures.

Simple optical sensors, such as photographic cameras, have
been used for non-destructive plant phenotyping for a long time
(Taubenhaus et al., 1929), but the recent technological progress
in the development of digital and spectral cameras together with
strides in analytical software made these tools more appealing to
plant scientists. Phenotyping with optical sensors can accurately
be performed on individual plants, plant organs, or a group
of plants in laboratory, growth-chamber, greenhouse, or field
conditions (Fiorani and Schurr, 2013; Araus and Cairns, 2014).
These sensors can be used individually and operated manually
or integrated into a high-throughput, fully automated, imaging
systems (White et al., 2012). The objective of the present study
was to test feasibility of using non-destructive phenotyping with
optical sensors for the evaluations of lettuce plants in early stages
of development. We performed the series of experiments to
determine if hyperspectral imaging and chlorophyll fluorescence
imaging can determine phenotypic changes manifested on lettuce
plants that were subjected to the extreme temperature and
salinity stress treatments. We also analyzed the relationship
between data obtained from visual observations of plant color
(a consumer’s perspective) and non-destructive phenotyping
with optical sensors. Hyperspectral imaging devices used in
our study collect data on electromagnetic radiation reflected
by a plant for each pixel of the image. These spectral data
can be combined to identify specific characteristics, such as
internal structure, chemical composition, physiological status,
or a damage that may not be evident in the visible spectrum
(Simko et al., 2015a, 2017). In difference from the devices that
use hyperspectral imaging, instruments based on chlorophyll
fluorescence detect only the light that is re-emitted by chlorophyll
after the light of the defined wavelength is directed to a plant.
Chlorophyll fluorescence analysis thus provides information
about the efficiency of photosynthesis (Maxwell and Johnson,

2000) and can detect photosynthetic response of a tissue to
environmental stress (Murata et al., 2007). Both the hyperspectral
imaging and the chlorophyll fluorescence imaging are routinely
used to analyze plant performance (Furbank and Tester, 2011),
but to our knowledge they have previously not been used to
analyze the early stages of lettuce development described in
the present work. Automated, high-throughput phenotyping
with optical sensors is well suited for fast evaluations of a
large number of plants, such as mapping populations. In this
study, we present the application of hyperspectral imaging for
rapid, non-destructive determination of chlorophyll content in
plants, and use of these data for mapping of the underlying
locus.

MATERIALS AND METHODS

Plant Material
The following lettuce accessions were used in one or more
experiments: Annapolis (Ann), Balady Banha (BB), Bibb (Bib),
Climax (Cli), Corsair (Cor), Eruption (Eru), Flashy Troutback
(FT), Grand Rapids (GR), Green Forest (GF), Green Towers
(GT), Ice Cube (IC), Iceberg (Ice), La Brillante (LB), Little Gem
(LG), Lolla Rossa (LL), Merlot (Mer), Nansen (Nan), Pavane
(Pav), Prizehead (Pri), Red Fox (RF), Red Leaf (RL), Redina
(Red), RH08-0464 (RH), Salinas (Sal), SM09A (9A), SM09B
(9B), SM13-L6 (L6), SM13-R1 (R1), Tom Thump (ToT), Triple
Threat (TT), US96UC23 (US), Valmaine (Val), Winter Marvel
(WM), and 56 F8 recombinant inbred lines (RILs) randomly
selected from the Salinas 88 (S88) × La Brillante population
(Hayes et al., 2014; Simko et al., 2015b). Five plants per accession
per treatment were used in all experiments. These plants were
selected from a larger group of plants to minimize differences
in plant size at the beginning of the experiment. In experiment
1 (described below), plants of a different size were selected
purposely.

Growing Conditions
Lettuce seeds were sown into square pots (68 mm × 68 mm,
95 mm depth) containing 1:1 mix of soil and sand. Seedlings
were grown in a controlled environment growth chamber
with 16 h photoperiod, 400 µmol m−2 s−1 photosynthetic
photon-flux density (PPFD), and constant temperature of 21◦C
(these conditions are called optimal throughout the text, OPT).
Temperature stress was applied by decreasing temperature to
3◦C (COLD), or increasing it to 39◦C (HOT) for the duration
described at individual experiments. Watering of plants at all
treatments was performed as needed to keep approximately
70% substrate water content (SWC). SWC was determined by
weighing the soil before and after drying (Granier et al., 2006).
Salt stress (SALT) was imposed by adding NaCl to irrigation water
to obtain salinity concentration of 100 mM.

Tests on Seedlings
In experiments where cotyledons of lettuce seedlings were
evaluated, the seeds were either germinated and grown on a wet
filter paper in Petri dishes, or in plastic boxes used for holding
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pipette tips. The boxes contained the same media as was used for
growing plants in pots and the seedlings were kept in a grid using
plastic that holds pipette tips (Badger et al., 2009). Seedlings were
cultivated in OPT conditions until temperature treatments were
applied.

Visual Observations
Visual estimates of plant color intensity were performed on
adaxial leaf surfaces. Green color intensity of lettuce leaves
was rated light green, green, and dark green, while intensity
of red color was rated as no red, light red, and red. These
visual estimates of color intensity were compared to relative
measurements of anthocyanin and chlorophyll content obtained
from hyperspectral imaging.

Hyperspectral and Chlorophyll
Fluorescence Imaging
Hyperspectral imaging was performed with an A-Series VNIR
Micro-Hyperspec Sensor (Headwall Photonics, Fitchburg, MA,
USA) with the spectral range from 380 to 1,012 nm. The
sensor was attached to a metal frame at the distance of 70 cm
from scanned samples together with a broad-spectrum halogen
lamp (ProLamp, Analytical Spectral Devices, Boulder, CO, USA).
Reflectance calibration was performed using Spectralon SRT-
MS-100 reflectance standard (Labsphere, North Sutton, NH,
USA) that was placed next to the samples at each scan. Images
were capture using XCAP v.3.7 software (EPIX, Buffalo Grove,
IL, USA) and analyzed with ImageJ 1.49k software (National
Institutes of Health, Bethesda, MD, USA).

Measurements of chlorophyll fluorescence were done with
PlantScreen (in tray scanning format) or FluorCam 800MF
(both from Photon Systems Instruments, Brno, Czech Republic).
The protocol parameters were: camera distance 20 cm, TS
20 ms, shutter 1, sensitivity 52%, super 87.2%, F0 duration
2 s, F0 period 200 ms, and pulse duration 800 ms. All
measurements were performed after 15 min of dark adaptations.
Analyses of fluorescence data were carried out using FluorCam 7
(Photon Systems Instruments, Brno, Czech Republic) and ImageJ
1.49k software. Both hyperspectral imaging and chlorophyll
fluorescence imaging scans of plants were taken from a top view
only.

Relative Content of Chlorophyll and
Anthocyanin
Relative chlorophyll (RCC) and anthocyanin (RAC) content
per leaf area were estimated by previously developed
indices. These indices are based on measurements of
tissue reflectance (R) at the specific wavelengths (shown
as subscript) obtained from hyperspectral imaging:
RCC =(R728 − R720)

/
(R728 + R720 − 2× R434) (Xue and

Yang, 2009) and RAC =
[
R800 ×

(
1
/
R550 − 1

/
R700

)]
(Merzlyak

et al., 2003). The indices showed very strong linear relationship
(R2 > 0.9) with a relative content of total chlorophyll (chlorophyll
a + b) and anthocyanin, respectively (Merzlyak et al., 2003; Xue
and Yang, 2009) when tested on a diverse set of samples.

Extent of Photoinhibition
The extent of photoinhibition due to stress caused by abiotic
factors was estimated through the analysis of maximum
quantum efficiency of photosystem II (PSII) photochemistry.
This parameter was calculated as Fv/Fm, where Fm is the
maximum chlorophyll a fluorescence yield in the dark-adapted
state, and Fv is the maximum variable fluorescence in the dark-
adapted state (calculated as Fm–Fo), and Fo is the minimum
chlorophyll a fluorescence yield in the dark-adapted state
(Maxwell and Johnson, 2000).

Total Projected Leaf Area, Relative
Growth Rate, and Fresh Weight
Total projected leaf area (APT; Munns et al., 2010) in mm2 was
determined from the images of chlorophyll fluorescence emission
at the Fm level (Barbagallo et al., 2003). To compare APT values to
the plant biomass that was produced above-ground, plants were
cut at the soil level and their fresh weight (FW) was determined
immediately. Relative growth rate (RGR) was calculated from
APT as RGR =

(
lnAPT2 − lnAPT1

)/
(t2− t1), where lnAPT1

and lnAPT2 are the means of natural logarithm transformed APT
at the times t1 and t2, respectively (Hoffmann and Poorter, 2002).
The values of RGR were multiplied by 100 to obtain units in mm2

per cm2 per day (mm2
× cm−2

× d−1).

Description of Individual Experiments
Experiment 1: Relationship between APT and FW, and
between Visual Observations of Leaf Color and RCC
and RAC
Accessions: Ann, Bib, Cli, Eru, FT, GR, GF, GT, Ice, LB, LG, LL,
Mer, Pav, RF, RL, RH, Sal, TT, and Val.

Growing conditions: 15 days in OPT.
Evaluations: APT, FW, visual observation of red and green leaf

color, RCC and RAC; in addition, disks (1 cm diameter) were
cut from selected leaves at the end of the experiment to make
comparisons of RCC, RAC, and Fv/Fm at adaxial and abaxial
surfaces of the leaves.

Note: Plants of highly different sizes were selected for the
analysis of relationship between APT and FW.

Experiment 2: Change in Growth and Photosynthesis
in Suboptimal Temperature
Accessions: Eru, GR, GT, LB, LG, Pav, RL, Sal, and TT.

Growing conditions: 10 days in OPT, then 10 days in either
OPT or COLD.

Evaluations: APT and Fv/Fm.

Experiment 3: Change in Growth, Photosynthesis,
RAC, and RCC in Suboptimal and Supraoptimal
Temperatures
Accessions: 110, 112 (two RILs from the S88 × LB population),
9A, 9B, Eru, GR, GT, LB, LG, Pav, R1, RL, and TT. Five of
the accessions (Eru, LB, LG, RL, and TT) were selected for
hyperspectral analyses to determine changes in RCC and RAC
after the temperature treatment.
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Growing conditions: 10 days OPT, then 8 days in either OPT,
COLD, or HOT, then 6 days in OPT (recovery).

Evaluations: APT, Fv/Fm, RCC, and RAC.

Experiment 4: Change in Growth and Photosynthesis
under Increased Salinity
Accessions: 9A, GT, LB, LG, Pav, RL, and R1.

Growing conditions: 10 days in OPT, then 8 days in either OPT
or SALT.

Evaluations: APT and Fv/Fm.

Experiment 5: Change in Photosynthesis in
Suboptimal Temperature – Seedlings in Petri Dish
Accessions: GR, LB, Sal, and TT.

Growing conditions: 4 days in OPT, then 1 day in either OPT
or COLD.

Evaluations: Fv/Fm.

Experiment 6: Change in Photosynthesis in
Suboptimal Temperature – Seedlings in Plastic Box
Accessions: 9A, 9B, Ann, BB, Bib, Cli, Cor, Eru, FT, GF, GR, GT,
IC, Ice, L6, LB, LL, Mer, Nan, Pav, Pri, Red, RF, RH, RL, R1, Sal,
ToT, TT, US, Val, and WM.

Growing conditions: 4 days in OPT, then 2 days in COLD.
Evaluations: Fv/Fm.

Experiment 7: Detection of RCC and Mapping
Locus – Seedlings in Plastic Box
Accessions: 56 RILs from the S88× LB population.

Growing conditions: 4 days in OPT.
Evaluations: RCC.
Note: Visual observations of leaf color were previously

performed on the same RILs grown under field conditions (Hayes
et al., 2014; Simko et al., 2015b). The evaluations were performed
on adult plants at harvest maturity using the same scale (light
green, green, and dark green) as in the experiment 1.

Statistical Analyses
Differences between means of two groups were tested with
t-test (or paired t-test), and among multiple groups with one-
way analysis of variance (ANOVA). If ANOVA results were
significant, the Tukey-Kramer HSD test was applied to compare
all pairs of groups. The F-test was used to test if two variances are
equal. The Pearson correlation coefficient was utilized to measure
a linear correlation between two variables. All statistical analyses
were calculated with JMP v. 11.1.1 (SAS Institute, Cary, NC,
USA).

Quantitative Trail Locus (QTL) Mapping
Quantitative Trail Locus for RCC and green leaf color visually
observed on RILs were mapped with QGene v. 4.3.9 software
(Joehanes and Nelson, 2008) using simple interval mapping. The
significance threshold for QTL scores was determined empirically
through permutations with 1,000 iterations (Churchill and
Doerge, 1994). Molecular linkage map developed for this
population was previously described in detail (Hayes et al., 2014;
Simko et al., 2015b).

RESULTS

A very strong, positive, linear correlation (r = 0.97, p < 0.0001)
was observed between APT and FW (Figure 1) in experiment
1, demonstrating that optical sensors can be used to accurately
estimate plant above-ground biomass from top view imaging
of leaf area in the early stages of lettuce development. Visual
classification of leaf color into three green and three red groups
was in good agreement with RCC and RAC (Figure 2) values
calculated from hyperspectral imaging. Differences in RCC
among three green groups were highly significant. When RAC
values were compared, a relatively small difference was detected
between ‘no red’ (mean of 2.61) and ‘light red’ (mean of 3.04)
groups, but this difference was also significant at p < 0.01.
These data indicate that visual classification of green and red
leaf color can be used for initial estimates of total chlorophyll
and anthocyanin concentration in lettuce leaves, and that the
combination of chlorophyll and anthocyanin concentration
has a substantial effect on a customer’s visual perception of
lettuce leaf color. When the measurements of RCC, RAC, and
Fv/Fm were performed on the adaxial and abaxial surfaces
of leaves, a strong, linear correlation was observed between
surfaces for each parameter (RCC: r = 0.90, p < 0.0001; RAC:
r = 0.86, p < 0.0001; Fv/Fm: r = 0.84, p = 0.001; Figure 3).
However, there were small, yet consistent differences between
values measured on the two surfaces when compared across
all tested leaves. The overall values of the parameters were
higher on the adaxial surface (RCC: 0.15 vs. 0.09, p < 0.001;
RAC: 2.72 vs. 1.80, p = 0.005; and Fv/Fm: 0.86 vs. 0.85,
p = 0.037) and the differences between the surfaces were
generally more pronounced at greater values of each parameter
(Figure 3).

RGR of all accessions significantly decreased when plants were
cultivated at COLD conditions (experiment 2). The average RGR
for nine tested accessions was 20.1 in OPT, while during the same
period of time it was only 2.5 in COLD (Figure 4). Similarly,
Fv/Fm significantly decreased for all accession when in COLD,
and the overall mean dropped from 0.75 in OPT to 0.68 in COLD
(Figure 4). No significant correlation was detected between RGR
and Fv/Fm in OPT (r = 0.66, p = 0.055), or in COLD (r = 0.21,
p= 0.568).

The growth of plants tested in the experiment 3 was
substantially reduced in both low and high temperatures. The
overall RGR was 34.7 in OPT, 1.9 in COLD, and 15.3 in HOT.
Significant decrease in RGR was detected for all accessions in
COLD or HOT when compared to OPT (Figure 5). However,
while all accessions almost completely stopped growing in COLD,
their growth was still noticeable in HOT. Similarly, as in the
experiment 2, the Fv/Fm parameter significantly decreased for
all accessions when cultivated in COLD (the overall average at
OPT = 0.76 and in COLD = 0.66; Figure 5). Though the overall
average of Fv/Fm remained the same in HOT (0.76) as in OPT,
the change in this parameter varied widely across accessions.
The Fv/Fm value significantly decreased in HOT compared to
OPT in three accessions (GR, LG, and RL), did not change
significantly in five accessions (112, Eru, LB, Pav, and TT), and
significantly increased in five accessions (110, 9A, 9B, GT, and
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FIGURE 1 | Relationship between the total projected leaf area (APT) determined from the images of chlorophyll fluorescence emission and the fresh
weight (FW) of lettuce plants (experiment 1).

R1). No significant correlation was detected between Fv/Fm and
RGR in any of the three growing conditions (OPT: r = 0.44,
p = 0.133; COLD: r = 0.36, p = 0.230; and HOT: r = 0.52,
p = 0.068). After returning plants cultivated in COLD to OPT
conditions for 6 days their growth markedly improved (Figure 6).
The overall RGR of plants constantly grown in OPT was 16.5,
while for those previously grown in COLD it was 39.5. Significant
increase in RGR (as compared to OPT) was detected for nine
out of 13 accessions that were previously in COLD (9A, 9B,
Eru, GR, GT, LB, LG, R1, and RL). The change in RGR was
not so obvious for plants cultivated in HOT after they were
returned to OPT. The overall RGR of these plants was 23.5, and
only a single accession (RL) showed significantly higher RGR
when compared to the plants constantly cultivated in OPT. The
overall Fv/Fm for plants constantly in OPT was 0.76, for those
moved from COLD 0.75, and for those previously in HOT 0.76
(Figure 6). These results show that the large drop in Fv/Fm
in COLD (the overall value of 0.66) was not permanent and
the plants recovered after moving to OPT. In cv. Eru, however,
the Fv/Fm value for plants constantly in OPT was significantly
higher (0.81) than for those moved in from HOT (0.78) or
COLD (0.76) conditions. This difference does not seem to be
caused by a damage to the light harvesting system but rather by
a gradual increase in the Fv/Fm value for the plants in OPT. It
has increased from 0.79 at the end of the temperature treatment
period to 0.81 at the end of the recovery period. Again, no
significant, linear correlation was detected between RGR and
Fv/Fm after recovery period (OPT: r = 0.14, p = 0.646; COLD:
r = 0.45, p = 0.123; and HOT: r = 0.03, p = 0.920). Five
selected accession submitted to hyperspectral imaging showed
significant changes in RCC and RAC when cultivated under

OPT, COLD, and HOT conditions. RCC gradually rose in all
accessions with increasing temperature (Figure 7). The overall
RCC values in COLD were 0.11, in OPT 0.17, and in HOT
0.33. In contrast, the overall RAC levels stayed almost the
same in different conditions (COLD = 3.3, OPT = 3.4, and
HOT = 3.2). Changes in RAC, however, varied across tested
accessions (Figure 7). While RAC gradually decreased with the
increasing temperature for the accession with the highest level of
RAC in COLD (Eru), RAC increased in the accessions that had
the lowest RAC in COLD (LG and LB). The changes in RCC
and RAC appear to be reversible as readjustments in green and
red coloring of foliage were already visually observable 1 day
after moving plants from COLD and HOT to OPT conditions
(Figure 8).

The addition of NaCl into irrigation water significantly
affected both plant growth (RGR) and the efficiency of
photosystem (Fv/Fm). The overall RGR decreased from 30.5 in
OPT to 17.9 in SALT (Figure 9). Though all accession had
lower RGR in SALT, the difference was significant in only three
(9A, LB, and RL) out of six tested accessions. Similarly, the
Fv/Fm parameter decreased in SALT for all accessions, though
the difference was not significant for R1 (Figure 9). The overall
value of Fv/Fm dropped from 0.76 in OPT to 0.73 in SALT. No
significant correlation was found between RGR and Fv/Fm in
OPT (r = 0.49, p = 0.320), SALT (r = −0.36, p = 0.478), or the
drop in the two parameters (r = 0.09, p= 0.867).

When young seedlings cultivated in Petri dishes were
transferred to COLD conditions their Fv/Fm significantly
decreased within a day as compared to the seedlings kept at OPT
(Figure 10). While the overall value of Fv/Fm for cotyledons in
OPT was 0.80, it was only 0.66 in COLD. Similar results were
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FIGURE 2 | Relative chlorophyll content (RCC) and relative anthocyanin content (RAC) in plants that were visually rated for the intensity of green (top)
and red (bottom) leaf color (experiment 1). Vertical bars show standard errors; different letters within each panel indicate means that are significantly different at
p < 0.05. Visual color rating scale was: LG – light green, G – green, DG – dark green, NR – no red, LR – light red, and R – red.

observed on young seedlings of 33 accessions grown in a soil/sand
mix in plastic boxes. After 2 days of temperature treatment, the
overall Fv/Fm value in OPT was 0.85, while in COLD it was
only 0.75. The Fv/Fm parameter significantly decreased in all
accessions (drop ranged from 0.05 to 0.20) with the exception of
cv. ToT, in which a drop of 0.03 occurred that, was not significant
at p < 0.05. A relatively low decrease of Fv/Fm (≤0.07) was also
observed in accessions L6, Cli, Cor, US, BB, WM, Nan, and IC.
In contrast, the largest decline in this parameter (≥0.12) was
observed in Eru, 9A, R1, RH, RL, Val, Pri, and 9B. There was a
weak, but significant correlation (r = 0.47, p = 0.005) between
Fv/Fm values in OPT and COLD (Figure 11).

Values of RCC measured on cotyledons of 56 randomly
selected F8 RILs from the S88× LB population were used to map
locations of loci underlying this trait. A single, highly significant
QTL (LOD = 5.5) was detected on linkage group 4 (LG 4),
tightly linked to the marker Lsat_1_v3_g_0_8627 (Figure 12;
Table 1). Data from the field evaluations of lettuce leaf color on
90 RILs from the same population yielded also only a single QTL
(LOD = 21.1) that was located at the same chromosomal region,
indicating that the measurements of RCC on cotyledons and
the visual assessment of green color on adult plants likely sense
the same trait. The QTL for light-green color (qLG4) explains
38 and 68% of the total phenotypic variation for RCC and the
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FIGURE 3 | Relationship between the relative chlorophyll content
(RCC), relative anthocyanin content (RAC) and Fv/Fm measured on the
adaxial and abaxial plant leaf surfaces (experiment 1). The linear
regression lines are in black, while the diagonal red lines indicate trends for the
parameters if values were the same on both leaf surfaces (1:1 relationship).

visual color rating, respectively. The linear correlation between
the phenotypic values of the two traits was highly significant
(r = 0.71, p < 0.0001).

DISCUSSION

Evaluation of Plant Size
Optical sensors that provide a top view image have commonly
been used for the non-destructive estimates of leaf area for
the plants with planophile growth habit (Barbagallo et al.,
2003; Jansen et al., 2009; Flood et al., 2016). We have
successfully used chlorophyll fluorescence imaging, rather than
color or monochrome images, to estimate APT that in turn
accurately predicts FW of young lettuce plants (Figure 1).
This evaluation is possible because lettuce plants in the early
stages of growth have almost planophile growth habit, with
relatively flat, non-overlapping leaves. When the plants develop
further, their growth habit become more erectophile, with leaves
starting to overlap. Therefore, we do not recommend using
the top view-based optical sensors alone for the estimates of
lettuce size above 7 g FW without multiple view imaging,
stereo imaging or other techniques to generate a height
dimension.

Evaluation of Leaf Color
Lettuce leaf color is critically evaluated by customers when
making purchasing decisions. The amount and the distribution of
leaf pigments contributes to the visual appeal of lettuce; thus it is
important to analyze changes in the color under different growing
conditions. We have determined that the visual rating of the
green and red leaf color is strongly associated with the values of
RCC and RAC obtained from hyperspectral imaging (Figure 2).
Previously, a good correlation (r = 0.76) was found between
the ratings of lettuce red color intensity performed by human
panelists and the direct measurements of anthocyanin levels
(Gazula et al., 2007). Panelists, however, could not determine red
color in a cultivar with a low anthocyanin level. Similarly, we
have detected anthocyanin through hyperspectral analysis in the
leaf samples with the ‘no red’ color rating, confirming that the
threshold level of anthocyanin needed for the detection by visual
observation is higher than is the actual level of anthocyanin in
some lettuces (Gazula et al., 2007).

Several previous studies (e.g., Merzlyak et al., 2003; Xue and
Yang, 2009) and our present analyses show that hyperspectral
imaging can be successfully used for the quantification of
chlorophyll and anthocyanin in leaves. There are certain
aspects, however, that need to be considered when using
optical sensors for such quantifications. The top view optical
sensors quantify levels of pigments on the adaxial surface only,
while extraction-based methods analyze samples that normally
represent the cross section of the leaf. Though we detected very
strong, linear correlations between RCC (r = 0.90) and RAC
(r = 0.86) on the abaxial and adaxial leaf surfaces (Figure 3),
the absolute difference between results obtained for the two
surfaces increased as the level of pigments in leaves increased.
This expanding difference is caused by a greater increase in
pigments on the surfaces that have a direct contact with light.
Therefore, scanning of both surfaces with optical sensors may
be considered when such analysis is feasible; e.g., at the end
of the experiment when plants can be removed from pots
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FIGURE 4 | Relative growth rate (RGR, top) and Fv/Fm (bottom) of plants cultivated in optimal (OPT, green color) or low (COLD, blue color)
temperature (experiment 2). Vertical bars show standard errors (n = 5); different letters within each accession indicate means that are significantly different at
p < 0.05.

or leaves cut. Also, when plants age and their leaves begin
overlapping, optical sensors cannot scan the hidden areas of
leaves, thus detecting pigments only on the visible areas exposed
to light. Nevertheless, the use of optical sensors has several
major advantages compared to the quantifications performed
on extracts from leaf tissue; it is much faster, it can analyze
the whole plant surface (and even multiple plants) at once and
promptly identify differences within a leaf, plant or between
plants non-destructively, thus allowing analysis of the same leaf
over time.

Effect of Suboptimal Temperature
Our results show that the suboptimal temperatures have a major
effect on the RGR, RCC and RAC levels (Figure 12), and the plant
photochemistry as measured by the Fv/Fm parameter. When
the plants were transferred from OPT to COLD conditions,
their growth immediately decreased to almost zero and was
followed by a drop in Fv/Fm and RCC. A similar decline
of RGR and Fv/Fm was previously observed in Arabidopsis
thaliana L. plants transferred from 22◦C/18◦C (day/night) to
5◦C (Jansen et al., 2009), in Fv/Fm and chlorophyll content
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FIGURE 5 | Relative growth rate (RGR, top) and Fv/Fm (bottom) of plants cultivated in optimal (OPT, green color), low (COLD, blue color), or high
(HOT, orange color) temperature (experiment 3). Vertical bars show standard errors (n = 5); different letters within each accession indicate means that are
significantly different at p < 0.05.

of watermelon plants [Citrullus lanatus (Thunb.) Matsum. &
Nakai] transferred to 12◦C/10◦C from 25◦C/15◦C (Hou et al.,
2016), and in Fv/Fm of lettuce plants submitted to 4◦C for 24 h
(Oh et al., 2009). When compared to OPT conditions, RAC in
COLD decreased in the accessions with low and intermediate
RAC levels, but increased in the accession with high RAC
(Figure 7). After returning plants to the OPT conditions, RGR,
RCC, RAC (Figure 8), and Fv/Fm went back to the levels
measured prior to the COLD treatment, indicating that the

plants were not permanently damaged at 3◦C. Remarkably,
lettuce plants showed a very high resilience to low temperatures.
In a single, unreplicated experiment, plants from each of the
accessions tested in the experiment 2 were kept at COLD
for 3 months (at 16 h photoperiod and 400 µmol m−2 s−1

PPFD). After moving plants to OPT they immediately recovered
without any obvious damage that could be visually observed
(data not shown). Our results indicate that lettuce plants have
a high adaptability to temperatures close to freezing, at least
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FIGURE 6 | Relative growth rate (RGR, top) and Fv/Fm (bottom) of plants constantly cultivated in optimal (OPT, green color) temperature, or
transferred to the optimal temperature after 8 days at low (COLD, blue color) or high (HOT, orange color) temperature (experiment 3). Vertical bars
show standard errors (n = 5); different letters within each accession indicate means that are significantly different at p < 0.05.

under the conditions tested in this study. We did not find any
significant relationship between the decrease in RGR and Fv/Fm
at COLD, or after moving plants from COLD to OPT. It was
reported previously, that Fv/Fm decreases faster in the cold-
sensitive A. thaliana plants than in the less sensitive plants when
cultivated at 5◦C (Jansen et al., 2009). These authors, however,

compared only two genotypes (wild type and transgenic); thus
the results may not represent the general trend across many
different genotypes. Still, it is possible, that Fv/Fm values in
lettuce may show a relationship to RGR if tested under different
environmental conditions (temperature, photoperiod, and/or
PPFD).
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FIGURE 7 | Relative chlorophyll content (RCC, top) and relative anthocyanin content (RAC, bottom) in plants cultivated in optimal (OPT, green color),
low (COLD, blue color), or high (HOT, orange color) temperature (experiment 3). Vertical bars show standard errors (n = 5); different letters within each
accession indicate means that are significantly different at p < 0.05.

Effect of Supra-Optimal Temperature
The increase in temperature from 21◦C (OPT) to 39◦C (HOT)
led to a significant decrease in RGR and increase in RCC
in all accessions (Figures 5, 7, 8, and 13). RAC substantially
decreased only in the accession with very high RCC at OPT,
but increased in the majority of the accessions with the lower
levels of RCC in OPT (Figures 7, 8, and 13). The change in the
Fv/Fm parameter varied greatly among accessions (increasing,

staying unchanged, or decreasing; Figure 5). A previous study
on watermelon reported only a slight drop in Fv/Fm when
temperature increased from 25◦C/15◦C to 42◦C/40◦C at the
irradiance level of 250 µmol m−2 s−2 (Hou et al., 2016).
When lettuce plants of a single cultivar were exposed to 38◦C
for 3 h the Fv/Fm ratio somewhat decreased, but returned to
almost the original values 21 h after the treatment (Oh et al.,
2009).
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FIGURE 8 | Changes in the leaf color for the plants cultivated in low (COLD), optimal (OPT), and high (HOT) temperatures. For each cultivar, the first
column shows the leaf color 1 day after transferring plants from OPT to the respective treatments, the second column shows the leaf color after 6 days in different
temperatures, and the third column shows the leaf color 1 day after moving plants back to the OPT temperature (recovery period). Notice that after 6 days in HOT
both cultivars showed almost the same dark green color, though in OPT and COLD temperatures the two cultivars differ substantially in their leaf color (cv. Eruption is
red while cv. La Brillante is light green). The total length of the temperature treatment period was 8 days. The color of temperature-treated plants was getting back to
typical already 1 day after moving them to the OPT temperature (column 3). After 6 days of recovery, the color of temperature-treated plants was visually
undistinguishable from those constantly kept at OPT temperature (experiment 3).

Reduced concentrations of chlorophyll and anthocyanin have
been observed in lettuce grown at supra-optimal temperatures
(Gazula et al., 2005; Chon et al., 2012). These changes in the
chlorophyll content are at odds with our observations that show
overall increases in RCC with growing temperature (Figures 7,
8, and 13). Similar to our results, almost a 10-fold increase in
chlorophyll content has been observed in plants of cultivar Grand
Rapids when the average temperature was raised from 23 to
33◦C (at 600 µmol m−2 s−1; Frantz et al., 2004). These large
differences between studies may be caused by numerous factors,
including accessions used in the studies, other environmental
conditions interacting with temperature (photoperiod, PPFD,
humidity, etc.), levels of nutrients in the growing substrate,
watering regime, and the age of plants. The HOT temperature
treatment used in our study (39◦C) is probably close to the upper
limit that cultivated lettuce could survive when continuously
exposed to for several days. In the preliminary test (data not
shown) we used the temperature of 42◦C that led to severe
stress and irreversible modifications in plants, such as chlorotic
lesions, malformed leaves, dropping of leaves, and also plant
death.

The overall mean of RAC stayed similar across treatments
(COLD = 3.26, OPT = 3.39, and HOT = 3.20), while the
variance among accessions radically decreased (significantly

smallest in HOT; Figure 14). Because the RAC variance within
accessions did not substantially change under the different
temperature treatments, the ANOVA F-value was over four
times greater for RAC in COLD than in OPT or HOT.
Hence, the breeders selecting for dark red color (high RAC)
may consider temporarily subjecting lettuce plants to low
temperatures where differences among genotypes are likely to
be more pronounced (assuming that the pattern of changes
in pigments is the same as in our study). These results
are somewhat unexpected, because several previous studies
reported that low temperatures lead to increased anthocyanin
production in lettuce (Gazula et al., 2005, 2007; Boo et al.,
2011; Chon et al., 2012; Becker et al., 2014a). However,
when the regulation of anthocyanin biosynthesis [quantified as
cyanidin-3-O-(6′′-malonyl)-glucoside] was compared in three
cultivars, a substantial difference in their response to varying
temperatures was detected. While anthocyanin production in
the red oak cultivar was negatively correlated with increasing
temperature, the correlation was positive in the two Batavia
cultivars (Marin et al., 2015). Nevertheless, it is problematic to
compare results of temperature treatments from diverse studies,
because several factors, including radiation (Tsormpatsidis et al.,
2008, 2010; Marin et al., 2015), relative humidity (Marin
et al., 2015), water availability (Rajabbeigi et al., 2013), light
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FIGURE 9 | Relative growth rate (RGR, top) and Fv/Fm (bottom) of plants cultivated in optimal (OPT, green color) or elevated salinity (SALT, purple
color) conditions (experiment 4). Vertical bars show standard errors (n = 5); different letters within each accession indicate means that are significantly different at
p < 0.05.

source (Park et al., 2012), CO2 availability (Park et al.,
2012), and plant growth stage (Becker et al., 2014b) affect
biosynthesis of anthocyanin in lettuce either directly or in
interaction. It is possible, that supra-optimal temperature (HOT)
in our experiments caused a drought stress, despite regular
watering. It was demonstrated that drought stress significantly
increases anthocyanin content in lettuce (Rajabbeigi et al.,
2013). Therefore, in future experiments, it may be useful to
assess also differences in plant transpiration among tested
accessions.

In contrast to RAC, the changes in temperature affected RCC
in all accessions similarly. The overall mean of RCC grew from
0.11 in COLD, to 0.17 in OPT, to 0.33 in HOT, while the variance
also gradually, but non-significantly, increased (Figure 14).

Differences in RCC among accessions suggest that the selection
for higher RCC may be performed at somewhat higher than the
optimal temperature, but the change in F-value was relatively
minor (1.5 higher in HOT than in OPT) compared to that seen
in RAC.

Effect of Elevated Salinity
Elevated salinity inhibits growth of young leaves (the rapid,
osmotic phase of the plant response to salt) and accelerates
senescence of mature leaves (the slower, ionic phase of the
plant response; Munns and Tester, 2008). Beside reducing plant
growth, increased concentrations of salt lead to decreased water
content in lettuce, lower concentrations of chlorophyll a and b,
smaller intracellular spaces, increased elasticity of leaves, higher
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FIGURE 10 | Fv/Fm on cotyledons of seedlings cultivated in optimal (OPT, green color) or low (COLD, blue color) temperature in Petri dishes
(experiment 5). Vertical bars show standard errors (n = 5); different letters within each accession indicate means that are significantly different at p < 0.05.

FIGURE 11 | Relationship between Fv/Fm measured on cotyledons of seedlings cultivated in optimal (OPT, x-axis) or low (COLD, y-axis) temperature
in plastic boxes (experiment 6). Red color indicates accessions with the largest decrease (≥0.12) in the Fv/Fm values, green color indicates accessions with the
lowest decrease (≤0.07) in the Fv/Fm values, and yellow color indicates accessions with the intermediate decrease (0.08–0.11) in the Fv/Fm values. The Fv/Fm

values in COLD were significantly (p ≤ 0.05) smaller for all but one accessions.

concentration of phenolic acids, and larger leaf areas occupied
by palisade and spongy parenchyma (Garrido et al., 2014). Our
study, focusing on detecting changes in RGR and photochemical
efficiency (Fv/Fm), determined that the growth of young plants
was substantially reduced after exposing them to 100 mM NaCl
for 8 days. The inhibition of plant growth did not significantly
correlate with the reduction of Fv/Fm (Figure 9). Slower growth
was previously observed for young lettuce plants (Xu and Mou,

2015) that were subjected to a mix of NaCl and CaCl2. Similar to
our study, the reduction in FW was not correlated with the Fv/Fm
values. These results suggest that Fv/Fm is not a robust indicator
of the performance of lettuce under salt stress, possibly because
growth may be more sensitive to the osmotic component of salt
stress than photochemical efficiency (Munns and Tester, 2008).
The impact of stress on Fv/Fm is strongly linked to the severity of
the stress, as its value has been observed to gradually decrease
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FIGURE 12 | Genomic position of the quantitative trail locus (QTL) for light green color (qLG4) on linkage group 4. Visual rating of the green color intensity
was performed on adult plants in field, while the relative chlorophyll content (RCC) was determined from hyperspectral reflectance measured on cotyledons of
seedlings cultivated in plastic boxes (experiment 7). The orange line parallel with the linkage map shows the significance threshold (α = 0.05). The allele for light
green color and low RCC originates from cv. La Brillante. Detailed description of the linkage map for this population and its construction was published previously
(Hayes et al., 2014; Simko et al., 2015b). Distance in cM is shown on the right site of the linkage map. LOD, logarithm of odds.

with increasing concentrations of NaCl applied (Bartha et al.,
2010; Qin et al., 2013); potentially due to tissue damage from salt
rather than an osmotic effect. Therefore, higher concentrations
of NaCl, or a longer exposure to the salinity would likely yield
different results.

Allele for Light Green Leaf Color
At least 10 genes related to the chlorophyll level in lettuce have
been described previously (Robinson et al., 1983), including the
lg gene for light green leaf color. Though the lg gene per se has not
yet been mapped, the gene is loosely linked to the lettuce mosaic

Frontiers in Plant Science | www.frontiersin.org December 2016 | Volume 7 | Article 1985115

http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive


fpls-07-01985 December 26, 2016 Time: 9:26 # 16

Simko et al. Non-destructive Phenotyping of Lettuce

TABLE 1 | Genomic location of the qLG4 locus and its effect on the intensity of green color and the relative chlorophyll content.

Trait No. of RILsc LG Markerd QTL location (cM)e Support interval (cM)f LOD R2%g

Colora 90 4 Lsat_1_v3_g_0_8627 51.3 49.3–53.0 21.1 67.6

RCCb 56 4 Lsat_1_v3_g_0_8627 49.7 44.5–53.9 5.5 38.4

aVisual evaluation of green color on adult plants in field. bRelative chlorophyll content measured on cotyledons of seedlings grown in plastic boxes. c90 RILs from the
S88 × LB population were visually evaluated for the leaf color, but only a subset of 56 RILs was evaluated for RCC. dMolecular marker nearest to the QTL. eLocation of
the QTL on the molecular linkage map. fThe range of 1-LOD support interval. gPercent of the total phenotypic variation of the trait explained by the QTL. The allele for
light green color and low RCC originates from cv. La Brillante.

FIGURE 13 | Comparison of the size and the color of plants cultivated at optimal (OPT), low (COLD), and high (HOT) temperatures (experiment 3).
Plants were initially grown at OPT for 10 days and then either continuously kept in OPT or transferred to COLD or HOT for 8 days. Sides of the square pots are
68 mm long.
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FIGURE 14 | Effect of increasing temperatures on relative chlorophyll content (RCC, x-axis) and relative anthocyanin content (RAC, y-axis) in five
cultivars (Eruption, Little Gem, La Brillante, Red Leaf, and Triple Threat). Plants were cultivated in low (3◦C, COLD, blue color), optimal (21◦C, OPT, green
color), and high (39◦C, HOT, orange color) temperatures. Rectangles indicate the extend of standard deviations that were calculated from the mean values of all
cultivars. The overall mean and the variance of RCC gradually grows with the increasing temperature. Opposite, the overall mean of RAC stays nearly stable while
the variance significantly decreases (experiment 3). The large difference in RAC among cultivars in COLD (3◦C) suggests that the selection for red color may be
performed at somewhat lower than the optimal temperature.

virus resistance gene mo-1 (Ryder, 1992) located on LG 4 (Nicaise
et al., 2003; McHale et al., 2009). It is plausible then that qLG4
(Figure 12) may be linked (or is allelic) to the lg gene. The qLG4
locus detected in our study is different from QTLs for the total
chlorophyll content that have previously been mapped to LGs 3,
7, and 9 (Damerum et al., 2015), or from those for chlorophyll
a and chlorophyll b content located on LGs 1, 2, and 8 (Hayashi
et al., 2012).

CONCLUSION

An application of optical sensors for the analysis of plants is
getting increased attention from plant scientists and growers, as
the cost of sensors decreases and they become to be more widely
available. Because sensors are amenable to automatization, high-
throughput, automatic phenotyping is particularly attractive for
the use in large-scale experiments (White et al., 2012; Fiorani
and Schurr, 2013; Araus and Cairns, 2014), performed under
field- or environmentally controlled conditions. Sensor-based
phenotyping of lettuce is still, however, in only early stages of
development. To our knowledge, automatic phenotyping with
optical sensors is not yet commonly applied for analysis of
lettuce plants in field, though optical sensor-based machines are
already commercially used for precise thinning of lettuce crop

(Blue River Technology, Sunnyvale, CA, USA). More studies are
needed to develop sensing and analytical tools and mathematical
models that can be applied for the precise evaluation of lettuce
plants in advanced stages of development when leaves from
the same or nearby plants overlap and heads (a grouping of
tightly packed, overlaying leaves) form. Such phenotyping tools
would be valuable for the evaluations of crop development and
its overall quality. Small-, and medium-size phenotyping studies
performed in environmentally controlled areas (e.g., greenhouse,
growth chamber, or laboratory) on young plants can be used
by lettuce breeders to evaluate plant growth, architecture, and
resistance and to select genotypes with desirable traits at early
stages of development.

The present study was designed to test feasibility of using
optical sensors for physiological evaluation of lettuce plants in
early stages of their development with the long term aim of
using these tools for breeding applications. Our results indicate
that top view sensors can accurately determine plant size to
approximately 7 g FW. Hyperspectral imaging analysis was able
to detect changes in the total chlorophyll and anthocyanin levels,
while chlorophyll fluorescence imaging revealed photoinhibition
and reduction of plant growth caused by the extreme growing
temperatures and salinity. Though no significant correlation was
found between Fv/Fm and decrease in plant growth due to stress
when comparisons were made across multiple accessions, it is
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possible that this parameter may be used to determine the level
of stress within an accession (e.g., gradual decrease in Fv/Fm
values with falling temperatures) or be useful at higher levels of
salt stress. It was demonstrated before that low temperatures,
moderate heat, salt stress, and CO2 limitation inhibit the repair
of PSII by suppressing the synthesis of D1 protein that is required
for the assembly of the active PSII complex (Murata et al., 2007).
Therefore, more detailed studies are needed to investigate the
genotype-specific effect of different stress factors on the decrease
of Fv/Fm in lettuce. This study, however, serves as a proof of
concept that optical sensors can be successfully used for non-
destructive phenotyping of young lettuce plants. Moreover, we
were able to identify the locus for light green leaf color (qLG4),
and position this locus on the molecular linkage map of lettuce
showing that these techniques have sufficient resolution to use in
a genetic context in lettuce.
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Pigments absorb light, transform it into energy, and provide reaction sites for

photosynthesis; thus, the quantification of pigment distribution is vital to plant research.

Traditional methods for the quantification of pigments are time-consuming and not

suitable for the high-throughput digitization of rice pigment distribution. In this study,

using a hyperspectral imaging system, we developed an integrated image analysis

pipeline for automatically processing enormous amounts of hyperspectral data. We

also built models for accurately quantifying 4 pigments (chlorophyll a, chlorophyll b,

total chlorophyll and carotenoid) from rice leaves and determined the important bands

(700-760 nm) associated with these pigments. At the tillering stage, the R2 values and

mean absolute percentage errors of the models were 0.827–0.928 and 6.94–12.84%,

respectively. The hyperspectral data and these models can be combined for digitizing

the distribution of the chlorophyll with high resolution (0.11 mm/pixel). In summary, the

integrated hyperspectral image analysis pipeline and selected models can be used to

quantify the chlorophyll distribution in rice leaves. The use of this technique will benefit

rice functional genomics and rice breeding.

Keywords: chlorophyll, hyperspectral imaging, image analysis pipeline, rice, phenomics

INTRODUCTION

Rice is a staple food for a majority of the world population (Zhang, 2007). To meet the increasing
demand due to natural disasters, human factors and the increasing world population on rice
growth and yield, it is important to breed new rice varieties. In breeding research, the plant
phenotype is essential for the evaluation of breeding results and gene functional analysis (Yang
et al., 2013; Jasinski et al., 2016; Montagnoli et al., 2016; Negi et al., 2016). Plants contain pigments
such as chlorophylls and carotenoids, which absorb light and provide energy for photosynthesis
(Blackburn, 1998b). Chlorophyll is the major nitrogenous substance in higher plants and can
be used for measuring plant growth (Kochubey and Kazantsev, 2007; Xue and Yang, 2009). The
amount of chlorophyll present also determines a plant’s photosynthetic capability, productivity and
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yield potential (Carter, 1998; Xue and Yang, 2009). Thus,
quantification of these pigments is vital for rice phenomics and
rice research.

Traditional methods for the quantification of plant pigments,
including spectrophotometry (Ergun et al., 2004), paper
chromatography (Sporer et al., 1954), thin-layer chromatography
(Sievers and Hynninen, 1977), and high-performance liquid
chromatography (Yuan et al., 1997), are time-consuming,
destructive and not suitable for high-throughput phenotyping.
Plant pigments have different absorption peaks under different
wavelengths, which means that their spectral reflectance
characteristics can be used for evaluating or distinguishing
pigments (Benedict and Swidler, 1961; Gamon and Surfus,
1999). Using spectroscopy and a portable chlorophyll meter,
several spectral indices have been identified, which can be used
for predicting plant chlorophyll content non-destructively.
Blackburn et al. reported that the amount of canopy chlorophyll
a and b is related to the original reflectance at 676 and 810
nm (Blackburn, 1998a; Blackburn and Pitman, 1999). Because
derivatization can reduce the noise caused by illumination,
soil background, and atmosphere (Collins, 1978; Baret et al.,
1992), derivative spectra have also been found to be more
sensitive to the chlorophyll content and more effective than
the original spectral index (Le Maire et al., 2004). Moreover,
spectral indices calculated by the red edge can provide a
more accurate estimation of pigment content (Miller et al.,
1990; Zou et al., 2011). Researchers have also found that the
ratio and normalized spectral indices are closely related to
the pigment content (Moss and Rock, 1991; Chappelle et al.,
1992). Yi et al. used partial least square regression and found
that the reflectance at 515–550 nm, 715 and 750 nm regions
had high sensitivity for detecting the carotenoid contents of
cotton (Yi et al., 2014). A recent study has used hyperspectral
imagery to estimate the spatial variability in the chlorophyll and
nitrogen content of rice, with an R2 of 0.69–0.82 (Moharana
and Dutta, 2016). Researchers also used canopy reflectance to
estimate the durum wheat nitrogen status, with an RMSECV of
19.3–36.3% (Thorp et al., 2017). Portable chlorophyll meters,
such as CCM-200 (Chlorophyll Content Meter) and SPAD-
502 (Soil and Plant Analyzer Development), are widely used
for measuring the chlorophyll content; however, manually
operated portable chlorophyll meters are relatively subjective,
and spectroscopy techniques cannot be used to digitize the
chlorophyll distribution in rice leaves. Moreover, we summarized
the recent studies on chlorophyll or nitrogen quantification
that used spectral techniques (Supplementary Table 1). These
studies showed that few efforts have been made to handle
massive amounts of hyperspectral data and automatically
digitalize the chlorophyll distribution in individual rice leaves
with high-resolution.

In this study, we developed an integrated image analysis
pipeline that can process extremely large amounts of
hyperspectral data and built models to accurately measure 4 rice
leaf pigments: chlorophyll a, chlorophyll b, total chlorophyll, and
carotenoid. Moreover, by combining the hyperspectral data and
the selected models, the distribution of these 4 pigments can be
digitized with high resolution.

MATERIALS AND METHODS

Materials and Experimental Design
At the tillering stage, 10 rice accessions (BLUE STICK,
Chenwan3hao, PSBRC82, Manawthukha, Guantuibaihe,
Xianggu, Wumanggaonuo, La110, Diantun502, TB154E-TB-
2, and Ajaya) were randomly selected from 533 rice core
germplasm resources, and each accession was planted in 15
pots. The 15 pots were divided into 5 nitrogen application
levels with 3 replicates: 0, 50, 100% (0.1 g nitrogen per kg
soil), 150, and 200%. At the heading stage, 15 accessions
(RP2151-173-1-8, MR77 (seberang), BASMATI 385, BLUE
STICK, Chenwan3hao, PSBRC82, Manawthukha, Guantuibaihe,
Xianggu, Wumanggaonuo, La110, Diantun502, TB154E-TB-2,
Ajaya, and Bg90-2) were randomly selected from 533 rice
core germplasm resources, and 10 replicates of each accession
were planted under the same nitrogen level (0.1 g of nitrogen
per kg of soil). To test the relationship between the leaf
nitrogen and hyperspectral indices, 90 accessions (seen in
Supplementary Table 2) were randomly selected from 533 rice
core germplasm resources and measured by an auto discrete
analyzer (Smartchen 200, France), SPAD-502, and hyperspectral
imaging. Detailed genetic information about these SNPs can
be downloaded from the “RiceVarMap” database (http://
ricevarmap.ncpgr.cn/) (Narsai et al., 2013).

Hyperspectral Imaging System and

Hyperspectral Indices Extraction
Three leaves were selected from the main stem of each rice
plant and scanned using the hyperspectral imaging system,
which consisted of 4 major parts (Figure 1A): a halogen lamp, a
translation stage, a hyperspectral camera (HyperspecTM VNIR,
Headwall Photonics, USA), and a computer (OXPCO3, Dell,
USA). To scan three leaves of one main stem simultaneously, the
field of view was set at 115 × 180 mm. The major configurations
of the hyperspectral imaging system are shown in Figure 1B, and
the main parameters of the hyperspectral imaging system are
shown in Table 1. The data were continuously stored as a binary
data stream to acquire and store the original hyperspectral data as
rapidly as possible. For each sample, the data size was 1.15 GBit.

After data acquisition, the binary data stream was
reorganized to build 188 hyperspectral images under different
wavelengths (Figures 2A–C). To process the massive number
of images automatically, an integrated hyperspectral image
analysis pipeline was developed (Figure 3). The detailed
image analysis pipeline designed by LabVIEW is shown in
Supplementary Figures 1–11, which included the following
steps: (1) Open one binary data stream with the band interleaved
by line format: The size of the hyperspectral data cube was
188 × 1,004 (W) × 1,637 (H). (2) The binary data stream
was reorganized to build 188 hyperspectral images. (3) Image
processing and ROI extracting: After image division, gray
conversion, image binarization, horizontal open operation,
removal of large areas, removal of noise, region growing,
and extraction of the area of interest, a region of interest
(ROI) was extracted for each leaf (Figures 2E–N). (4) ROI
reflectance extracting: 188 original average reflectance indices
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FIGURE 1 | Hyperspectral imaging system (A) and schematic diagram (B).

TABLE 1 | Main parameters of the hyperspectral imaging system.

Parameter Value

Object distance 500 mm

Field of view (FOV) 115 × 180 mm

Slit FOV 0.46 mm

Scan speed 2 mm/s

Hyperspectral data of one plant 1.15 GBit

Frame number 1,637

Spectral resolution 3.2 nm

Spatial resolution 0.11 mm

Spectral range 400–1,000 nm

Focal length 35 mm

Band numbers 188

CCD resolution 1,004 × 1,002

(R) were obtained. (5) Derived indices extracting: These included
376 pseudo-absorption indices, 564 first derivative indices,
564 second derivative indices, 316,404 ratio indices, 316,404
normalized indices, 20 spectral indices, and 95 published
indices. Finally, for each sample, 634,615 hyperspectral indices
(in Table 2, among them, 20 spectral indices were shown in
Supplementary Table 5, 95 published indices were shown in
Supplementary Table 6) were saved. (6) Pearson’s correlation
coefficient was calculated, and the max correlation coefficient
was obtained. (7) The binary data stream was closed.

Manual Measurement
After hyperspectral imaging system acquisition, the ROI of each
leaf was immersed in a 95% ethanol solution. When all of the

pigments had been dissolved, a spectrophotometer (L3, INESA,
China) was used to measure the absorbance values of the solution
at different wavelengths (470, 649, and 665 nm, Figure 2O).
Finally, the contents of 4 pigments, chlorophyll a, chlorophyll b,
carotenoid, and total chlorophyll, were calculated according to
Equations (1)–(4) (Arnon, 1949).

Ca = 13.95A665 − 6.88A649 (1)

Cb = 24.96A649 − 7.32A665 (2)

Cxc =
1000A470 − 2.05Ca − 114.8Cb

245
(3)

C = Ca + Cb (4)

Ca is the chlorophyll a content, Cb is the chlorophyll b content,
Cxc is the carotenoid content, and C is the total chlorophyll
content. A665, A649, and A470 represent the absorbance at 665,
649, and 470 nm, respectively.

The distribution of the pigments at the two stages of plant
growth is shown in Supplementary Table 3. For instance, at
the tillering stage, the chlorophyll a content ranged from
61.24 to 573.63 mg/m2. The average value, the standard
deviation, and the variable coefficient were 294.35 mg/m2, 92.19
mg/m2, and 31.32%, respectively. The correlation coefficients
(r) between the pigments for the two stages were all
above 0.88 (Supplementary Table 4), demonstrating that the
concentrations of the various pigments were highly correlated.

Data Analysis and Modeling
To determine the specific bands that are highly correlated with
chlorophyll a, we calculated all of the correlation coefficients
between 634,615 spectral indices and 4 pigments. The calculation
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FIGURE 2 | Flow chart of data processing. (A) System diagram. (B) Binary data stream acquired by the hyperspectral imaging system. (C) Hyperspectral images

reorganized from the binary data stream. (D) Reflectance of the rice leaf. (E) Divided results (float image) of the two hyperspectral images. (F) Conversion of the float

image to 8-bit grayscale. (G) Image binarization. (H) Horizontal open operation. (I) Removal of the large area. (J) Removal of small noise. (K) Image masking. (L)

Region growing. (M) Region extraction. (N) All extractive images. (O) Manual measurement of the pigments. (P) Modeling and validation.

of correlation coefficients was programmed using LabVIEW 8.6
(National Instruments, Inc., USA). The hot bands were found
using the heat maps of the correlation coefficients, which were
drawn using HemI software (Deng et al., 2014). After all of
the indices were obtained, the best index with the highest

r was identified and used to build 5 models (linear, power,
exponential, logarithmic, and quadratic models). The statistical
analyses of the 5 models (linear, power, exponential, logarithm,
and quadratic model) for 4 pigments and cross-validation were
implemented with LabVIEW 8.6 (National Instruments, Inc.,
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FIGURE 3 | Flow chart of integrated hyperspectral image analysis pipeline.

USA). To evaluate the model performance with primary indices
or multiple variables, stepwise regression analysis (SRA) was
conducted using SPSS software (Statistical Product and Service

Solutions, Version 13.0, SPSS Inc., USA) (Figure 2P). Finally,
the digitization of pigment distribution was performed using
LabVIEW 8.6 (National Instruments, Inc., USA).
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TABLE 2 | Table 2 Definition and calculation formulas of 634,615 hyperspectral indices.

Hyperspectral index Number Symbol*

Original average reflectance 188 Ri

Pseudo-absorption index 376 lg(Ri ), lg(1/Ri )

First derivative index 564 d(Ri ), d(lg(Ri )), d(lg(1/Ri ))

Second derivative index 564 dd(Ri ), dd(lg(Ri )), dd(lg(1/Ri ))

Ratio index 316404
Ri
Rj
,
lg(Ri )
lg(Rj )

,
lg(1/Ri )
lg(1/Rj )

,
d(Ri )
d(Rj )

,
d(lg(Ri ))
d(lg(Rj ))

,
d(lg(1/Ri ))
d(lg(1/Rj ))

,
dd(Ri )
dd(Rj )

,
dd(lg(Ri ))
dd(lg(Rj ))

,
dd(lg(1/Ri ))
dd(lg(1/Rj ))

Normalized index 316404
Ri−Rj
Ri+Rj

,
lg(Ri )−lg(Rj )

lg(Ri )+lg(Rj )
,
lg(1/Ri )−lg(1/Rj )

lg(1/Ri )+lg(1/Rj )
,
d(Ri )−d(Rj )

d(Ri )+d(Rj )
,
d(lg(Ri ))−d(lg(Rj ))

d(lg(Ri ))+d(lg(Rj ))
,
d(lg(1/Ri ))−d(lg(1/Rj ))

d(lg(1/Ri ))+d(lg(1/Rj ))
,
dd(Ri )−dd(Rj )

dd(Ri )+dd(Rj )
,

dd(lg(Ri ))−dd(lg(Rj ))

dd(lg(Ri ))+dd(lg(Rj ))
,
dd(lg(1/Ri ))−dd(lg(1/Rj ))

dd(lg(1/Ri ))+dd(lg(1/Rj ))

Spectral index based on spectral position and area 20 Supplementary Table 5

Published index 95 Supplementary Table 6

*0 ≤ i ≤ 187, 0 ≤ j ≤ 187.

RESULTS AND DISCUSSION

The Relationship between Chlorophyll a

Concentration and Hyperspectral Indices
The number of total indices was too large to handle (634,615
indices for each sample); thus, to decrease the number of
redundant indices, we first determined the relationship between
the chlorophyll content and all the hyperspectral indices.
Because the pigments were highly correlated with each other
(Supplementary Table 4), we used chlorophyll a as an example
to define the relationship between the pigments and the
hyperspectral indices. In the 500–700 nm region (Figure 4A),
the reflectance R was inversely correlated with the chlorophyll
a content, indicating that the higher the reflectance was, the
lower the chlorophyll a content was. This occurred because
leaves with high chlorophyll content absorbedmore light, causing
the reflectance to decrease (Figure 2D). From Figures 4A–F, we
found that compared with a logarithmic transformation, the
use of derivative transformations such as dR, ddR, d(lg(1/R)),
and dd(lg(1/R)) could provide more abundant hyperspectral
information.

Figures 4G–I show the correlation between the ratio index
as defined in Table 2 and chlorophyll a, and Figures 4J–L show
the correlation between the normalized index (also defined
in Table 2) and chlorophyll a. Each point on the heat map
represents the correlation coefficient between a hyperspectral
index and the chlorophyll a level. The correlation coefficients
for other indices and the chlorophyll a level are shown in
Supplementary Figures 12, 13. When Ri and Rj were both in
the 500–750 nm region, the correlation coefficient was high,
sometimes even close to 1. Thus, we can infer that useful
information for estimating chlorophyll a can be obtained in the
wavelength range 500–750 nm.

By comparing the data shown in Figures 4G–I, we
found that for the ratio indices, the correlation between the
derivative indices and chlorophyll a decreased, and the original
hyperspectral index (average reflectance, R) showed better
correlation with chlorophylla. As illustrated in Figures 4J–L,
the same results could be obtained for the normalized indices.
Thus, to decrease the redundant indices, primary indices,
including the original average reflectance (Ri), first derivative

index (d(Ri)), second derivative index (dd(Ri)), ratio index
(Ri/Rj), and normalized index ((Ri-Rj)/(Ri+Rj)), were used for
the subsequent modeling and prediction of chlorophyll levels.
A combined heat map obtained by adding together all of the
heat maps of ratio and normalization coefficients is shown in
Figure 5. From this, we found that the region of the highest
correlation was located between 700 and 760 nm. If only the
primary indices in the 700–760 nm region were used, the number
of indices would decrease from 634, 615 to 483.

Linear Modeling with a Single Variable
After all of the indices were calculated, the hyperspectral indices
with the highest correlation coefficients (r) of the pigments were
selected for the modeling step, as shown in Table 3. The single-
variable model for 4 pigments at the tillering and heading stages
is shown in Table 4, which show that R2 ranged from 0.654 to
0.928, and the mean absolute percentage error (MAPE) was 6.94–
12.84%. The scatter plots and the distribution of the relative
error are shown in Figure 6 and Supplementary Figure 14,
respectively, which show the points to be evenly distributed
around the line y = x and that most of the relative error within
the range ±10%. A 5-fold cross-validation of the single variable
model for the 4 pigments at the two stages is shown in Table 4,
which shows the ranges of R2 and MAPE as 0.671–0.930 and
7.49–13.02%, respectively.

To evaluate the model’s robustness, we evaluated the
relationship between lg(R715)/lg(R500) and the chlorophyll a level
for different accessions grown under different nitrogen regimes
at the tillering stage (Figure 7). The model was not sensitive
to accession or the nitrogen application level. Figure 7B shows
that the amount of chlorophyll an increased with increase in the
nitrogen application level. Moreover, we also compared the best
model for the 4 pigments in this study with the published indices,
as shown in Table 3 and Supplementary Table 6. The correlation
between the pigments and the indices selected in this study (0.81–
0.96) was higher than the correlation between the pigments and
the published index with the highest r (0.67–0.92). On the other
hand, all of the published indices with high r values were based
on at least one wavelength in the range of 700–760 nm, implying
that this range (700–760 nm) is important for the quantification
of leaf chlorophyll.
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FIGURE 4 | Correlation coefficients between chlorophyll a and (A) R, (B) dR, (C) ddR, (D) lg(1/R), (E) d(lg(1/R)), (F) dd(lg(1/R)), (G) ratio R, (H) ratio dR, (I) ratio ddR,

(J) normalization R, (K) normalization dR, and (L) normalization ddR at the tillering stage.

Comparison of Linear and Non-linear

Models
To determine the best model for determination of chlorophyll
a levels, 5 models, including the linear, power, exponential,
logarithmic, and quadratic models, were compared. The results
are shown in Table 5. We found that the linear model had

the highest R2 (0.928) and lowest MAPE (6.94%). Based on
the relative robustness of the models, the linear model was

selected as the final model for the quantification of chlorophyll.

The results also indicate that the best relationship between

the chlorophyll content and the index value was linear in our

study.
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FIGURE 5 | Summed coefficient image of all of the ratio and normalization coefficient images.

TABLE 3 | Hyperspectral indices that displayed the highest r values selected from all indices or primary indices for the 4 pigments and comparison with published indices.

Stage Pigment Best index selected in

all indices

r Best index selected in

primary indices

r Published indices with the

highest r

r

Tillering stage Chlorophyll a
lg(R715 )
lg(R500 )

0.963 R714 0.919
D705
D702

(Zarco et al., 2002) 0.919

Chlorophyll b
lg(R715 )
lg(R660 )

0.909 R721 0.886
R657
R700

(Chappelle et al., 1992) 0.876

Total chlorophyll
lg(R715 )
lg(R500 )

0.957 R718 0.920
R657
R700

(Chappelle et al., 1992) 0.915

Carotenoid
lg(R718 )
lg(R450 )

0.914 dd(R724) 0.848
R657
R700

(Chappelle et al., 1992) 0.852

Heading stage Chlorophyll a
d(R997 )−d(R747 )
d(R997 )+d(R747 )

0.873 dd(R721) 0.836
R728−R434
R720−R434

(Le Maire et al., 2004) 0.732

Chlorophyll b
d(R997 )−d(R728 )
d(R997 )+d(R728 )

0.855 R714 0.835
R728−R434
R720−R434

(Le Maire et al., 2004) 0.675

Total chlorophyll
d(R997 )−d(R747 )
d(R997 )+d(R747 )

0.872 R714 0.837
R728−R434
R720−R434

(Le Maire et al., 2004) 0.726

Carotenoid
d(lg(1/R747 ))−d(lg(1/R792 ))
d(lg(1/R747 ))+d(lg(1/R792 ))

0.809 dd(R721) 0.782
R728−R434
R720−R434

(Le Maire et al., 2004) 0.668

TABLE 4 | Details of the single-variable models for the 4 pigments.

Stage Chlorophyll Single-variable model* R2 MAPE RMSE

(mg/m2)

5-fold cross validation

Modeling Validation

R2 MAPE RMSE

(mg/m2)

MAPE RMSE

(mg/m2)

Tillering stage Chlorophyll a y = 1217.948x1 − 301.306 0.928 6.94% 24.73 0.930 6.93% 24.721 7.49% 24.944

Chlorophyll b y = 557.723x2 − 126.609 0.827 12.84% 11.19 0.832 12.86% 11.184 13.02% 11.323

Total chlorophyll y = 1596.104x1 − 405.674 0.916 7.48% 34.18 0.918 7.48% 34.179 7.53% 34.221

Carotenoid y = 188.087x3 − 22.582 0.835 8.75% 7.76% 0.833 8.74% 7.760 8.91% 7.786

Heading stage Chlorophyll a y = 7874.223x4 − 8009.138 0.761 8.25% 32.73 0.770 8.24% 32.703 8.46% 33.023

Chlorophyll b y = 933.651x5 − 1006.710 0.731 10.93% 10.40 0.732 10.94% 10.384 11.24% 10.594

Total chlorophyll y = 10159.684x4 − 10340.279 0.761 8.70% 42.32 0.768 8.68% 42.218 8.59% 43.702

Carotenoid y = 175.113x6 − 52.628 0.654 9.14% 8.53 0.671 9.13% 8.528 9.29% 8.586

*x1 = log(R715 )/ log(R500 ), x2 = log(R715 )/ log(R660 ), x3 = log(R718 )/ log(R450 ), x4 = (d(R997 ) − d(R747 ))/(d(R997 ) + d(R747 )), x5 = (d(R997 ) − d(R728 ))/(d(R997 ) + d(R728 )),

x6 = (d(lg(1/R747 ))− d(lg(1/R792 )))/(d(lg(1/R747 ))+ d(lg(1/R792 ))).

Comparison of Models with All Indices and

Models with Primary Indices
To compare the models that use all indices with those that
use primary indices, we used 634,615 indices, and 483 primary
indices for evaluating the model performance. The results

(Table 3) showed that the highest r of the models that used
primary indices (0.782–0.920) was similar to the highest r of

the models that used all indices (0.809–0.963), indicating that

the models that use primary indices are sufficiently accurate

for the quantification of the 4 pigments. If only the primary
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FIGURE 6 | Scatter plots of the single-variable model of pigments at the two stages. (A) Chlorophyll a at the tillering stage. (B) Chlorophyll b at the tillering stage. (C)

Total chlorophyll at the tillering stage. (D) Carotenoid at the tillering stage. (E) Chlorophyll a at the heading stage. (F) Chlorophyll b at the heading stage. (G) Total

chlorophyll at the heading stage. (H) Carotenoid at the heading stage.
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indices were extracted and analyzed, the volume of hyperspectral
data decreased from hundreds of thousands to hundreds, which
dramatically reduced the workload of data acquisition and data
analysis. The results of this comparison are shown in Table 3 and
Supplementary Table 7.

FIGURE 7 | Relationship between R715/R500 and chlorophyll a content for

different accessions (A) and for the same accessions under different nitrogen

application levels (B) at the tillering stage.

Linear Modeling with Multi-Variables
We also evaluated the model performance using multi-variables.
To faciliate the evaluation, only some primary indices, including
R, dR, and ddR, were used to build the model using a stepwise
regression analysis. The results (Supplementary Table 8) showed
that R2 and Radj

2 increased slightly and that MAPE and
RMSE decreased slightly as the number of independent
variables increased. The distribution of the relative error of
the model using a stepwise regression analysis and multi-
variables for chlorophyll a at the tillering stage is shown in
Supplementary Figure 15, and 5-fold cross-validation of these
models is shown in Supplementary Table 8.

Digitization of Leaf Chlorophyll Distribution
After the best single-variable model was built, it was used to
digitize the leaf chlorophyll distribution at a high resolution
(0.11 mm/pixel), as shown in Figure 8 (pseudo-color images).
Figures 8A–C show the results obtained for one accession
grown under different nitrogen application levels; with increasing
nitrogen application, the chlorophyll a content increased
dramatically. The chlorophyll a content of different accessions
grown under the same nitrogen application level also varied
(Figures 8D–F). Figures 8A–F show that for most samples, the
chlorophyll concentration in the middle portion of the leaf
was the highest, followed by the lower leaf and the upper leaf.
Moreover, for the same leaf, the chlorophyll a content of the leaf
vein was less than that of the leaf pulp, as shown in Figure 8G.

Modeling Nitrogen with Hyperspectral

Imaging
A recent study showed that R2 between the total chlorophyll
content and leaf nitrogen content of Papaya plants (Castro
et al., 2011) could reach 0.78, and hyperspectral reflectance
measurements could reflect the canopy nitrogen content of
winter wheat (Zhou et al., 2016). To test the correlation between
the nitrogen and hyperspectral indices in rice, we measured
90 rice accessions, selected from 533 rice core germplasm
resources, using an auto discrete analyzer (Smartchen 200,
France), SPAD-502, and hyperspectral imaging. The correlation

TABLE 5 | Statistical summary of the 5 developed models for chlorophyll a estimation (sample size = 425)*.

No. Model classification Model Coefficients R2 MAPE SDAPE

1 Linear y = a0 + a1 × x a0 = –284.78 0.928 6.94% 7.86%

a1 = 1351.04

2 Power y = a0x
a1 a0 = 1469.65 0.913 7.85% 10.16%

a1 = 1.92

3 Exponential mode y = a0 × ea1×x a0 = 49.69 0.887 9.65% 14.24%

a1 = 4.11

4 Logarithmic y = a0 ln(a1x) a0 = 568.05 0.911 8.23% 9.73%

a1 = 3.96

5 Quadratic y = a0 + a1 × x + a2 × x2 a0 = –305.10 0.922 7.54% 7.54%

a1 = 1446.59

a2 = –109.76

*y is chlorophyll a, x is lg(R715 )
lg(R500 )

.

Frontiers in Plant Science | www.frontiersin.org July 2017 | Volume 8 | Article 1238129

http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive


Feng et al. Digitization of the Chlorophyll Distribution

coefficient (r) between the SPAD value and the nitrogen content
was 0.766 (Figure 9A), and r between the nitrogen content
and hyperspectral measurements with 4 indices was 0.897
(Figure 9B). Moreover, only using one index, the r between
the nitrogen content and hyperspectral measurements was 0.773
(Figure 9C). The results showed that nitrogen in rice plants could
also be quantified using hyperspectral imaging.

Comparison of Recent Related Studies for

Quantifying Chlorophyll or Nitrogen

Distribution
We compared the present research with recent related studies
and found that several key wavelengths that reflect chlorophyll,
such as cotton at 715 and 750 nm (Yi et al., 2014), winter

wheat at 705 nm and the red edge (Zhou et al., 2016), and
grass at 690–750 (Tong and He, 2017), were co-determined.

Moreover, the commonly adopted tools, such as ENVI and SAS,

handled enormous amounts of hyperspectral data, particularly

image analysis, with difficulty. To relieve the bottleneck, we

developed an integrated image analysis pipeline in this study.

With a single variable, the measuring accuracy of chlorophyll, R2,

ranged from 0.654 to 0.928. Moreover, due to using hyperspectral

imaging in a higher resolution (0.11 mm/pixel), the distribution

of leaf chlorophyll could be clearly visualized. The goal of

this article was to quantify the chlorophylls in individual rice

leaves, which should be tested and verified in the field in future.

Combining the current field phenotyping tools, such as field

phenotyping at the plot level (Andrade-Sanchez et al., 2014)

FIGURE 8 | Digitization of the leaf chlorophyll distribution at the tillering stage. (A–C) One accession with different nitrogen application levels. (D–F) Different

accessions with the same nitrogen application level. (G) Detailed image of (C). (To facilitate comparison, the gray stretching parameters of A–C were the same, and

the gray stretching parameters of D–F were the same).

FIGURE 9 | The correlation coefficient (r) between the SPAD value and the nitrogen content (A), between the nitrogen content and hyperspectral measurements with

4 indices (B), and between the nitrogen content and hyperspectral measurements with 1 index (C).
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and movable imaging chambers in the field (Busemeyer et al.,

2013), the integrated image analysis pipeline could be expanded
to the field. Moreover, combined hyperspectral imaging with
a novel sensor for structure imaging, such as a micro-CT
(Mineyuki, 2014) and 3D laser scanning (Paulus et al., 2014),
could also reconstruct the 3D distribution of chlorophyll in a high
resolution.

CONCLUSIONS

In this study, we used a hyperspectral imaging system to develop
an integrated image analysis pipeline to handle extremely large
amounts of hyperspectral data automatically. We also built
models that could be used to accurately quantify 4 rice leaf
pigments and identify the important spectral bands (700–760
nm) associated with these pigments. Moreover, by combining
the hyperspectral data and these models, the distribution
of chlorophyll could be digitized with high resolution (0.11
mm/pixel). In the future, the pipeline and selected models can
potentially be applied to quantify the chlorophyll distribution
in individual plants non-destructively. Evidence from related
works shows that the image analysis pipeline combined with
hyperspectral imaging could also be extended for co-determining
wavelengths for quantifying chlorophyll in other crops.
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Leaf senescence is influenced by its life history, comprising a series of developmental
and physiological experiences. Exploration of the biological principles underlying leaf
lifespan and senescence requires a schema to trace leaf phenotypes, based on the
interaction of genetic and environmental factors. We developed a new approach
and concept that will facilitate systemic biological understanding of leaf lifespan and
senescence, utilizing the phenome high-throughput investigator (PHI) with a single-leaf-
basis phenotyping platform. Our pilot tests showed empirical evidence for the feasibility
of PHI for quantitative measurement of leaf senescence responses and improved
performance in order to dissect the progression of senescence triggered by different
senescence-inducing factors as well as genetic mutations. Such an establishment
enables new perspectives to be proposed, which will be challenged for enhancing
our fundamental understanding on the complex process of leaf senescence. We
further envision that integration of phenomic data with other multi-omics data obtained
from transcriptomic, proteomic, and metabolic studies will enable us to address the
underlying principles of senescence, passing through different layers of information from
molecule to organism.

Keywords: time-series analysis, leaf senescence, lifespan, life history, high-throughput phenotyping, phenome,
Arabidopsis

INTRODUCTION

Leaf senescence, although a degenerative cellular process, is finely regulated and occurs by an
intricate integration of multiple developmental and environmental signals. As a consequence,
it is assumed that leaf senescence is a highly complex process involving the collective actions
of thousands of genes and multiple pathways associated with aging, as well as their interplays,
thereby complicating genetic and molecular analyses of senescence (Buchanan-Wollaston
et al., 2005; Breeze et al., 2011; Schippers, 2015; Li et al., 2016; Liebsch and Keech, 2016;

Abbreviations: ABA, abscisic acid; BG1, blue/green index 1; Chlgreen, chlorophyll green index; DAE, days after emergence;
Mac, Maccioni; MCARI, modified chlorophyll absorption in reflectance index; MES, methyl ester sulfonate; NDVI,
normalized difference vegetation index; NORE, not oresara, ORE, oresara; PC, principal component; PCA, principal
component analysis; PHI, phenome high-throughput investigator; PRI, photochemical reflectance index; PSNDc, pigment-
specific normalized difference; QY_max, maximum quantum yield of photosystem II; RGB, red-green-blue; SE, standard
error; SIPI, structure intensive pigment index; SRWI2, simple ratio water index 2; SWIR, shortwave infrared; VNIR, visible
and near-infrared.
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Woo et al., 2016). Indeed, conventional molecular and genetic
approaches in which one gene or mutant at a time is identified
and characterized have been shown to be limited for revealing the
global picture of molecular programs involved in leaf senescence
(Guo, 2013; Kim et al., 2016). An additional pitfall experienced in
previous studies is that leaf senescence has been achieved through
a limited set of phenotypes in a narrow temporal window of
senescence, mostly at an aged stage (Thomas, 2013).

The recent advances within omics technologies, including
genomics, transcriptomics, proteomics, and metabolomics, have
facilitated open innovation strategies toward systematic
understanding of complex questions of plant growth,
development, and responses to environments (Mochida
and Shinozaki, 2011; Humplík et al., 2015; Rajasundaram and
Selbig, 2016). However, the high-throughput phenotyping
technologies for analyses of total physiological traits in plants
lag behind our ability to investigate molecular omics, although
measurement of physiological responses has been recognized as
being essential to determine the implications of their reactions
or responses (Furbank and Tester, 2011). One of the current
technical challenges is therefore to advance the phenotyping
system to allow numerous phenotypic analyses in an automated
and high-throughput manner for a large set of plant populations
under various conditions over time (Yang et al., 2013; Rahaman
et al., 2015). These efforts are also being extended to address
specific questions by establishing the phenotyping pipeline with
specialized and sophisticated experimental designs and tools
(Topp et al., 2013; Crowell et al., 2014; Slovak et al., 2014).

Toward this end, we are in the process of developing a cutting-
edge plant phenotyping facility, the “phenome high-throughput
investigator (PHI)”, which enables the evaluation of hundreds of
traits through non-invasive approaches over time (Figure 1A).
Our efforts further extend to establishing an operational pipeline
for single-leaf-based quantitative phenotypic analyses that allow
for the use of this efficient and powerful tool to study leaf
senescence and its lifespan. Here, we present our current progress
on the establishment of the PHI system and an evaluation of
its performance. Moreover, we highlight potential strategies and
tactics for phenome-level research toward understanding leaf
senescence and lifespan in plants.

EXPERIMENTAL SCHEME:
ESTABLISHMENT OF A SYSTEM FOR
ASSESSMENT OF PHYSIOLOGICAL
CHANGES IN Arabidopsis LEAVES
DURING SENESCENCE

Leaf senescence is the final stage of the life history of a leaf; thus,
all previous experiences prior to the senescence stage can affect
senescence and the lifespan process (Figure 1B-i). We assessed
the morphological and physiological changes occurring during
the entire leaf lifespan. In this regard, a quantitative phenotyping
system on a single-leaf basis along with age information should be
established. Measuring senescence parameters using a mixture of
several leaves at a given age of a plant is not a valid analysis of leaf

senescence and lifespan because individual leaves of a plant are of
different ages (Zentgraf et al., 2004). Leaf developmental events
such as senescence can also be modulated by external stresses or
exogenous hormones; therefore, kinetic phenotyping analysis in
leaves in response to these treatments is an additional valuable
approach to dissect responses of leaf senescence (Lim et al., 2007;
Schippers et al., 2015).

For the aforementioned purposes, we improved the PHI
system to allow the assessment of the imaging-based phenome
through single-leaf-based analysis, either in intact plants or
detached leaves in 24-well plates (Figures 1B-ii,iii). This leaf-
based analysis requires a specialized experimental scheme and
analytic modules beyond the configuration of a standardized
phenotyping system, as detailed below. First, leaf segmentation
and tracking in intact plants are necessary for chronological
analyses in leaves. Second, a plant mask generated in a RGB
image should be transferred and used for analyzing other images
(Figure 1C-i). This is necessary when the plant signature is
indistinguishable from the background soil or pot in a certain
image (e.g., fluorescence images in fully senesced leaves). Third,
plant trays should be located in the same position at each imaging
unit. This could help to segment and track a single leaf of interest
from the plants (Figure 1C-ii). Lastly, special manipulation is
necessary to monitor phenotypes in leaves from the vegetative to
senescing stages (Figure 1C-iii). Leaves are amenable to mature-
stage phenomic analyses; however, the inaccessibility of old leaves
covered by new leaves complicates the analyses of chronological
events. Thus, leaf separation by placing blue clips on the petiole
of the third and fourth leaves at DAE 14 is required for assays of
later senescence. In addition, primary or axillary shoots should
be directed to grow toward the central region of trays. On the
basis of the aforementioned setup, high-throughput phenotypic
traits occurring during leaf senescence in Arabidopsis would be
assessed.

PROOF-OF-CONCEPT: PHENOMIC
APPROACHES TO EVALUATE
RESPONSES OF SENESCENCE IN
Arabidopsis LEAVES

Recent advances in non-invasive high-throughput imaging
systems have allowed the monitoring of single to hundreds
of plant traits to access plant physiological statuses from
several thousands of plants in a kinetic manner (Chen et al.,
2014; Rahaman et al., 2015; Cabrera-Bosquet et al., 2016).
Leaf senescence occurs in an orderly and coordinated manner
and involves changes in diverse metabolic processes, including
catabolic processes of proteins, lipids, and carbohydrates, along
with dismantlement of the photosynthetic apparatus (Lim et al.,
2007; Watanabe et al., 2013). Thus, chronological analysis of
various biological phenotypic traits is essential for understanding
the processes of senescence.

Here, we explored the limited-scale feasibility of the
PHI system for dissecting phenotypic responses during leaf
senescence in Arabidopsis. System performance using PHI was
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FIGURE 1 | Scheme of the PHI and its application in leaf senescence research (A) Overview of the PHI system. (i) The PHI is an automated high-throughput
phenotyping system coupled with a controlled plant growth system. The image station is equipped with five non-invasive camera-based imaging units: fluorescent,
RGB [top and side views (line scanner)], infrared, hyperspectral (VNIR; 400 to 1,000 nm, SWIR; 1,000 to 2,500 nm), and three-dimensional (3D) imaging. (ii) Two
plant growth rooms supported the growth of different types of plants with an automatic and precise control of the environment. (iii) Screenshot of the PHI image
analyzer software and image data. (B) Leaf-based analysis during plant lifespan. (i) Life cycles of leaf organs and entire plants in Arabidopsis. Shown are
representative Arabidopsis plants and leaves when the age of the third rosette leave is within DAE 6 to DAE 30. Responses of leaf senescence in Arabidopsis were
assessed using developmental (ii) and stress- or hormone-induced (iii) senescence assays. (ii) Developmental senescence was monitored using leaf tracking and
leaf separation. A representative plant with the third and fourth leaves of DAE 6 through DAE 30 in the pot where blue felt was placed on the top of the soil (Upper),
and the pseudo-color image indicates correct recognition of individual leaves from plants (Lower). The third (brown) and fourth (yellow) leaves used for the
senescence assay are marked with circles. (iii) Stress- or hormone-induced senescence was monitored using 24-well plates containing stress-inducing chemicals or
hormones. (C) Leaf tracking for in planta senescence assay. (i) RGB image-based plant mask generation and its utilization in other image analyses. (ii) Location of a
tray in the same position. Overlays of time-series images of a tray taken at DAE 10, 14, and 18 (Top, Middle, and Bottom of the Right panel). Overlaid original image
(Left top) and plant image (Left bottom). (iii) Special manipulation of plants when assaying developmental senescence. Top-view RGB image at the senesced stage
(DAE 30) encountered problems with the main or axillary shoots disturbing leaf recognition. Manual relocation of shoots to grow toward the central region of the part
and leaf separation with blue clips was required.
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FIGURE 2 | Phenomic evaluation of leaf senescence responses triggered by various senescence-inducing factors as well as genetic mutations
through PHI system. (A,B) Phenomic evaluation of leaf senescence responses triggered by various senescence-inducing factors and its workflow. The workflow

(Continued)
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FIGURE 2 | Continued
involves trait extraction, preprocessing, heatmap analysis, and data mining. (A) Schematic workflow before data mining. (i) Picture of representative leaves incubated
for indicated days under various senescence conditions such as 50 µM ABA, 15 mM H2O2, 150 mM NaCl, darkness, or 3 mM MES as a control and the representative
plants harboring the third rosette leaf at DAE 14 to 34. (ii) Trait extraction, after multimodal imaging, nearly 200 quantitative traits were extracted from the
PHI data analyzer. (iii) Preprocessing, time-series numeric data were preprocessed by several steps as indicated. (iv) Heatmap analysis, temporal profiling of traits
in senescence conditions was visualized using a heatmap for pattern comparison. (B) Data mining. Detailed trait and sample analyses were performed by several
data mining techniques, including kinetic (i), clustering (ii), and exploratory PCA (iii) analyses. In kinetic analyses (i), data represent mean ± SE (n = 6). Mean
value for each genotype or for each age was used for clustering (ii) and PCA (iii) analysis. MCARI, modified chlorophyll absorption in reflectance index; QY_max,
maximum quantum yield of photosystem II; BG1, blue/green index 1; PSNDc, pigment-specific normalized difference; Chlgreen, chlorophyll green index;
Mac, Maccioni; SRWI2, simple ratio water index 2. PC, Principal component. The percent variations explained by PC1 and PC2 were 67.2 and 10.1%, respectively.
(C) PHI system-based phenomic evaluation of senescence responses in well-characterized leaf senescence mutants showing premature or delayed developmental
senescence phenotypes. (i) Two senescence assays, leaf tracking and leaf detaching, are compared. Shown are the pictures representative of the third leaves of
Col-0, ore3, ore12, and nore1 with different ages from DAE 14 to 34. (ii) Kinetic analysis of time-series data of QY_max, NDVI, SIPI, and PRI in wild-type and
senescence mutant leaves. NDVI, normalized difference vegetation index; SIPI, structure intensive pigment index; PRI, photochemical reflectance index. Data represent
mean ± SE (n = 6). (iii) PCA-based analysis of senescence progression in wild-type and senescence mutant leaves with different ages. Mean value for each genotype
or for each age was used for PCA analysis. The percent variations explained by PC1 and PC2 were 80.1 and 5.7%, respectively. (iv,v) Comparison of
senescence assays in terms of time resolution (iv) and statistical power (v). Data represent mean ± SE (n = 6).

first evaluated by monitoring the dynamics of phenotypic
traits in Arabidopsis leaves treated with various senescence-
inducing factors such as age, darkness, ABA, one of the stress-
related phytohormones, as well as external stresses, including
salinity (NaCl) and oxidative stress (H2O2; Figure 2A-i). These
phenotypic traits (Supplementary Table S1 and Figure 2A-ii)
include 208 indices that reflect multiple physiological statuses
such as color and growth (12 indices; RGB), metabolic content,
vital and vegetative status (77 indices; VNIR), water level or
cellular components (16 indices; SWIR), chlorophyll-related
photosynthetic performance (99 indices; fluorescence), and water
evaporation-based guard cell activity (four indices; infrared). To
analyze responses of senescence triggered by various senescence-
inducing factors in a comprehensive manner, raw numeric trait
datasets should be organized through a preprocessing pipeline
that involves (1) removal of outliers, (2) smoothing of time-
series data, (3) normalization to the initial value, and (4) data
integration throughout time adjustment and data standardization
(Figure 2A-iii, detailed in Supplementary Information). Such
a data integration is necessary for comparative analysis of
time-series data with different degrees of effectiveness. An
organized and tabled dataset can be displayed in a heatmap for
visual summarization and intuitive comparison among different
senescence conditions (Figure 2A-iv).

Using these datasets, further data mining, including kinetic,
clustering, and exploratory analyses, was performed (Figure 2B).
Kinetic analysis with individual phenotypic traits revealed
informative traits for primary or acute responsiveness to each
senescence-triggering factor (Figure 2B-i). Leaves at different
senescing conditions show phenotypic similarity in most of the
traits, as represented by a MCARI marker (detailed information
of markers in Supplementary Table S1). In contrast, rapid changes
of QY_max, a conventional marker reflecting the photochemical
quantum efficiency of photosystem II, were observed when
treated with H2O2 and NaCl, implying that QY_max is the
effective signature for monitoring responses of leaf senescence to
these treatments. This finding also suggests that photosynthetic
activity in chloroplasts might be affected as the primary target
during senescence, which is consistent with the results of
previous transcriptome and metabolome studies (Breeze et al.,

2011; Watanabe et al., 2013; Woo et al., 2016). In addition,
a distinct temporal pattern in different senescence conditions
was observed in some markers such as BGI1. Other markers
such as PSNDc, Chlgreen, Mac, and SRWI2 possess a feature
of primary responsiveness for H2O2, both of darkness and
H2O2, ABA, and NaCl, respectively. These traits can further
assist in dissecting the temporal progression or coordination
of the biological processes related to each condition. More
comprehensive relationships among traits and samples can be
dissected with further detailed analysis using clustering analysis
of phenome-wide data (Figure 2B-ii). Although many traits
(e.g., belonging to G3) exhibited temporal changes by more than
three factors, some groups of traits were associated with specific
senescence-inducing factors, including H2O2 (G1), age (G2), or
both dark and H2O2 (G4). Further detailed and comprehensive
sample analysis to dissect their phenotypic relationship requires
more sophisticated exploratory statistical techniques such as
PCA (Figure 2B-iii). PCA indicated that the initial senescence
responses, regardless of treatment, were similar among different
senescence processes; however, as leaf senescence proceeded
over time, the physiological status of leaf senescence caused
by different senescence factors changed quite differentially,
especially in the case of age and NaCl. It was also shown that dark-
induced senescence appeared to be more similar to that of ABA-
induced senescence, although senescence responses induced by
H2O2 and darkness shared common markers in the clustering
analysis. However, the possibility that different assay conditions
among treatments or age interfere with certain reflected or
fluorescent lights on the leaves cannot be excluded. Despite some
limitations to this study, these results suggest that phenome-wide
analyses using a couple of hundreds traits enable us to dissect
senescence responses triggered by various senescence inducers.

Next, we further validated the feasibility of this approach
by interrogating phenome-based senescence responses in the
well-characterized leaf senescence mutants, oresara 3 (ore3),
ore12, and not oresara 1 (nore1; Figure 2C-i). ore3, which
is allelic to ethylene insensitive 2, is insensitive to ethylene
signaling, whereas ore12, a dominant negative mutant of
ARABIDOPSIS HISTIDINE KINASE 3, exhibits constitutive
cytokinin responses, where both mutations delay leaf senescence
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(Oh et al., 1997; Kim et al., 2006). In contrast, nore1 accelerates
leaf senescence with enhanced defense response (Lee et al.,
2016). The chronological phenomic analyses using a leaf tracking
approach were performed at the third and fourth leaves of
the wild type (Col) and of these mutant plants from the
maturation to senescence stages (from DAE 14 to 36 at 2 days
intervals; Figure 2C-ii). As previously reported, ore3 and ore12
leaves showed delayed senescence phenotypes, whereas nore1
showed early senescence phenotypes, based on the QY_max
value. Although QY_max is widely used as a typical marker of
senescence progression, it was found to be less sensitive than
other vegetation indices such as NDVI, SIPI, or PRI in VNIR
imaging. This finding indicates that reflectance changes due
to loss of pigments occur earlier than loss of QY_max during
developmental senescence, and these appear to be more useful
markers to detect early symptoms of developmental senescence.
These kinetic analyses with a few valuable traits may also be
evaluated for the progression or rate of senescence responses;
ore3 exhibited a slightly slower change in senescence progression
relative to ore12. To further explore global changes of phenotypic
responses in leaves of these mutants during senescence, PCA
analysis was performed for all samples examined with all
phenotypic traits (Figure 2C-iii). Plotting the individual samples
against PC1 and PC2, which collectively explained 86.6% of
the variation in samples, afforded a clear separation of Col,
early, and delayed senescence mutants at a late senescence stage.
Since a slight difference among samples could be masked due
to drastic changes in old leaf samples, we further performed
PCA analysis to investigate some differences among samples
in the maturation to early senescence stages (DAE 14 to 24;
Figure 2C-iii, embedded graph). From this test, we observed
that nore1 and ore3 could be distinguished from Col and ore12,
although visible differences between them were not detected.
Interestingly, leaves of Col, nore1, and ore3 from DAE 24
were also resolved from other young leaves, implying that
physiological diversity might be explained by the interaction
of genetic and developmental factors. Considered together,
we conclude that quantitative measurement of phenotypic
traits from leaves appears to be important for dissecting leaf
senescence, and provides valuable information for phenotypic
regulation by senescence-inducing factors or genetic components
during senescence.

As the PHI system supports sequential leaf-based analysis
from intact plants using leaf tracking, we further addressed
advantages of the leaf tracking system by comparison with
a conventional leaf detaching assay (Figure 2C-i). Practically,
the non-invasive phenotyping system requires a much smaller
number of plants. In addition, subtle differences among samples
could be discerned; temporal analysis could be performed at
a higher resolution using leaf tracking (Figure 2C-iv), and
statistical powers could be increased with a larger number
of samples and pair-wise analysis (Figure 2C-v). In addition,
the performance of the association analysis between traits can
be increased, based on the possibility of their one-to-one
matching within one sample. Thus, not only is a PHI-based
high-throughput system beneficial for performance but it also
improves analytical capabilities.

CONCLUSION

Here, we developed a specialized high-throughput phenotyping
platform for analyzing senescence traits at a single-leaf basis,
which will facilitate an alleviation of the phenotyping bottleneck
in leaf senescence. As a proof of the concept, we dissected features
of various senescence responses through kinetic and PCA
analyses utilizing highly resolved and quantitative phenotyping
data. In addition, we evaluated advantages of the leaf tracking
system in a PHI high-throughput phenotyping system in terms
of performance and analytic capabilities. Considered together,
we demonstrated the pipeline of phenomics that allows the
dissection of a system as complex as leaf lifespan and senescence.

PERSPECTIVES

By virtue of great advances in omics technologies, big data
generation has resulted in a major paradigm shift toward data-
driven research in plant biology. Along with an increasing
feasibility of molecule-based omics, the implementation of
automated, high-throughput phenotyping at a similar level will
offer new opportunities to understand the complex biological
processes occurring in plants (Chen et al., 2014; Granier and
Vile, 2014). Our establishment, including the experimental setup
and phenotyping data analyses, will open up great opportunities
to address concepts and premises that are critical to enhance
our fundamental understanding of the as-yet incompletely
understood complex process of leaf senescence.

First, our PHI system would allow dynamic, longitudinal, and
multi-dimensional analyses that characterize the physiological
and regulatory changes along the entire leaf lifespan at a
system level. By taking advantage of the PHI system, systematic
quantification analyses of all possible traits during the entire leaf
development from a large population of plants, including many
genetic resources, can be performed. This should result in more
detailed insights into mechanisms governing developmental
transitions during leaf life history, thereby elucidating important
biological principles on how previous developmental programs
contribute to the senescence process on a genetic basis.
This would also contribute to infer the causal relationship
between phenotypic traits at an earlier stage and responses
of senescence, which might be valuable for screening during
breeding programs. Our pipeline can be extended to the
meta-analysis of multiplexed phenotyping data with large-
scale quantitative phenotype collections, thereby allowing the
depiction of the network relationship from gene- to senescence-
related phenotypic traits along the leaf lifespan.

Second, leaf senescence was long believed to be an
evolutionarily acquired beneficial process to maximize the fitness
of plants. However, no clear evidence has yet emerged linking leaf
senescence and fitness. A non-destructive senescence assay and
its following fitness measurement such as seed yield will allow the
elucidation of their relationship. Furthermore, high-throughput
phenotypic analysis of various physiological and developmental
traits from the large collection of genetic resources will allow
the evaluation of the contribution of each trait to fitness factors,
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which may thereby elucidate the importance of senescence for
fitness, relative to other traits.

Third, a PHI-based high-throughput system supports
controlled and precise environmental conditions. This
facilitates the investigation of the direct relationship between
environmental condition and senescence along with seed yield.
It further infers how senescence may contribute to fitness
under certain environmental conditions. In addition, high-
throughput phenotyping with a large collection of natural
accessions under different local simulated climates consisting of
photoperiod, light spectrum, temperature, and relative humidity
allow the identification of the relationship among senescence,
environments, and adaptation to local environmental conditions
(Li et al., 2010; Xu, 2016). Combined with genome-wide
association analysis, these endeavors will eventually elucidate
the mechanisms governing phenotypic plasticity and adaptive
mechanisms (Todesco et al., 2010; Brachi et al., 2013; Yang et al.,
2014).

Fourth, the main purpose of leaf senescence is the
redistribution of nutrients from one part of the plant to another.
Thus, senescence can be affected by the removal of sink or
neighboring organs, which indicates the existence of inter-organ
level coordination (Sekhon et al., 2012). Leaf-based analysis in
a PHI system provides favorable tools to dissect inter-organ
communication between individual leaves and leaves and other
organs such as shoot or root.

Fifth, senescence is regarded as a typical irreversible
phenomenon. However, depending on the leaf age and degree
of treatments that induce leaf senescence, the primary response
of senescence can be recovered. It is feasible to trace back
phenotypic changes from leaves with different fates, which might
provide some phenotypic clues on how the irreversible onset of
senescence is determined.

Phenomic studies can contribute to validate their findings
based on transcriptomic, genomic, proteomic, and metabolomic

data to senescence processes by providing the outer analytic layer
to illustrate collective outputs of dynamic molecular changes such
as genes, transcripts, proteins, and metabolites. Thus, combined
with these multi-omics data, our phenotyping system is a very
promising and valuable tool that allows the investigation of
changes to morphology, physiology, and molecular behaviors in
a comprehensive manner over leaf lifespan and senescence. This
will facilitate an understanding of the mechanisms of life history
and senescence over spatial and temporal scales.
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Seed storage compounds are of crucial importance for human diet, feed and industrial
uses. In oleo-proteaginous species like rapeseed, seed oil and protein are the qualitative
determinants that conferred economic value to the harvested seed. To date, although
the biosynthesis pathways of oil and storage protein are rather well-known, the factors
that determine how these types of reserves are partitioned in seeds have to be
identified. With the aim of implementing a quantitative genetics approach, requiring
phenotyping of 100s of plants, our first objective was to establish near-infrared
reflectance spectroscopic (NIRS) predictive equations in order to estimate oil, protein,
carbon, and nitrogen content in Arabidopsis seed with high-throughput level. Our results
demonstrated that NIRS is a powerful non-destructive, high-throughput method to
assess the content of these four major components studied in Arabidopsis seed. With
this tool in hand, we analyzed Arabidopsis natural variation for these four components
and illustrated that they all displayed a wide range of variation. Finally, NIRS was used
in order to map QTL for these four traits using seeds from the Arabidopsis thaliana
Ct-1 × Col-0 recombinant inbred line population. Some QTL co-localized with QTL
previously identified, but others mapped to chromosomal regions never identified so
far for such traits. This paper illustrates the usefulness of NIRS predictive equations to
perform accurate high-throughput phenotyping of Arabidopsis seed content, opening
new perspectives in gene identification following QTL mapping and genome wide
association studies.

Keywords: Arabidopsis thaliana, seed storage contents, near infrared spectroscopy, plant, natural variation,
quantitative trait loci

BACKGROUND

Plant seeds constitute a key component of both human and livestock diets, as seed storage
compounds are mainly composed of protein, oil and starch. Seed oil from oleaginous crops are
composed mainly of triacylglycerols, which are structurally similar to long chain hydrocarbons
derived from petroleum, and thus represent ecologically and economically competitive alternatives

Abbreviations: QTL, quantitative trait loci; RIL, recombinant inbred line.
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to petroleum-based products for the production of molecules for
green chemistry (e.g., detergents, paints, plastics, and lubricants)
as well as for the production of biofuels (Durrett et al.,
2008; Dyer et al., 2008). The increasing demand of plant-
derived products for nutritional and industrial applications
highlights the urgent need to develop new methodologies to
increase the overall seed oil and protein content. Although,
most of the biochemical steps involved in oil and protein
biosynthesis are known and the key genes have been identified
(Shewry et al., 1995; Beisson et al., 2003), the regulation
of the processes that results in the final oil and protein
content is not well-understood. Even more, the genetic factors
that control the oil/protein ratio in the seeds have to be
identified.

Seed oil and protein accumulation processes, like many
important agronomical traits are quantitative and have a complex
genetic basis. The method most commonly used for inferring the
presence and position of such genes in the genome is based upon
analysis such as QTL and more recently genome wide association
studies (GWASs). Quantitative genetics has been used to search
for genetic factors controlling oil and/or protein quantity in a
variety of agronomically important species including rapeseed
(Sun et al., 2012; Li et al., 2014), soybean (Eskandari et al., 2012;
Hwang et al., 2014), maize (Zheng et al., 2008; Li et al., 2012;
Yang et al., 2012), pea (Irzykowska and Wolko, 2004; Tar’an et al.,
2004), rice (Ying et al., 2012), wheat (Plessis et al., 2013), oat
(Kianian et al., 1999), sunflower (Mokrani et al., 2002), linseed
(Kumar et al., 2015), cotton (Liu et al., 2015), and Jatropha
(Liu et al., 2011). However, with the exception of one QTL
affecting seed oil content in maize (Zheng et al., 2008), none
of these studies have gone beyond the gene mapping stage. In
the model species Arabidopsis, using natural variation resources,
QTL involved in seed oil content and/or quality have also been
detected (Hobbs et al., 2004; Jasinski et al., 2012; O’Neill et al.,
2012; Sanyal and Linder, 2012) as well as “regions of interest”
by GWAS (Branham et al., 2015), but only the study published
by Jasinski et al. (2012) identified the gene involved. Since QTL
cloning is often easier in model species for which substantial
genetic resources exist, we implemented a QTL approach to study
storage compound metabolisms in Arabidopsis seed (Jasinski
et al., 2012; Chardon et al., 2014). Seed metabolism is very
similar between Arabidopsis and Brassica species and the close
relationship between them allows the use of comparative genetics
to predict orthologous genes and alleles within the Brassica
genome (Parkin et al., 2005). This will enable the translation of
discoveries from Arabidopsis into Brassicaceae and other crops
breeding programs.

Quantitative genetics relies on statistical links between
phenotype and genotype, implying genotyping and phenotyping
of 1000s of lines. In Arabidopsis, genotyping is not a limiting
factor and many genetic and genomic resources are available
including complete genome sequence of many accessions, data
on gene structure, gene expression, DNA and seed stocks, genome
maps, molecular markers. Seed oil and protein content are usually
determined by standard analytical methods such as Soxhlet or
gas chromatography (following fatty acid methyl ester extraction)

for oil content and combustion analysis or Kjeldahl for protein
content. Although, these standard analytical techniques offer
a high level of accuracy and precision, they also show some
limitations, such as indirect determination (combustion analysis
and Kjeldahl determine nitrogen content rather than actual
protein content), high costs, time-consuming experiments and
use of hazardous chemicals. For many of these reasons, they
are not fully appropriate for high-throughput phenotyping
required in genetics approaches. Near infrared spectroscopy
(NIRS) is a vibrational spectroscopy technique, providing a
spectrum representative of the “signature” of all components
present in the analyzed sample. It possesses numerous advantages
compared to classical analytical techniques. NIRS analyses
show high degree of repeatability and are carried out with
considerable saving of time (spectrum acquisition lasts only a
few seconds), cost and without using hazardous chemicals. In
addition, samples can be analyzed in their natural form without
destruction neither any special sample preparation. However,
a calibration has first to be established: regression modeling
is used to relate NIRS spectra to chemical concentrations
determined by a standard analytical method. After calibration,
the developed regression equations allow accurate analysis of
many other samples by prediction of data based on the spectra.
Moreover, from only one spectrum, different components
can be predicted using different predictive equations. In
recent decades, NIRS has been widely used as a fast and
reliable method for qualitative and quantitative analysis in
many fields (Font et al., 2006) and International Standards
Committees have formally accepted methods using NIRS for
analysis of many compounds (Batten, 1998). Regarding Brassica
seeds, many authors have reported NIRS models for different
components, such as glucosinolates (Velasco and Becker, 1998;
Font et al., 2004), fiber (Font et al., 2003), protein and oil
contents (Tkachuk, 1981; Font et al., 2002a,b; Rossato et al.,
2013).

Surprisingly, NIRS technique has not been applied to
the analysis of Arabidopsis seed. Some people used nuclear
magnetic resonance spectroscopy (NMR) as rapid technique
to measure Arabidopsis seed oil content (O’Neill et al., 2003,
2012; Hobbs et al., 2004). However, NMR is not suitable for
protein detection and was thus not suitable for our purpose.
In this study, the potential of NIRS was evaluated for the
simultaneous analysis of total oil and protein content of
Arabidopsis seeds, as well as nitrogen and carbon contents,
which allow studies of global metabolic fluxes. A calibration
set of 90-112 seed samples was subjected to both NIRS and
appropriate reference methods and predictive equations for seed
(1) oil, (2) protein, (3) carbon, and (4) nitrogen content were
developed.

These equations were further used to analyze Arabidopsis
natural variation for these four major seed components. Finally,
a search for genetic factors governing the accumulation of these
four components in Arabidopsis seed was carried out by a
QTL analysis (this work and Chardon et al., 2014), allowing
the mapping of new QTL involved in seed oil and protein
content.
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RESULTS

Development of NIRS Predictive
Equations for Seed Oil, Protein, Carbon,
and Nitrogen Content
Four calibration models in order to predict oil, protein, carbon,
and nitrogen content in Arabidopsis seeds were developed as
indicated in Section “Methods.”

The oil calibration set of 112 samples showed a wide range
of variation for oil content from 18.70%, corresponding to the
wri1 low-seed-oil T-DNA insertion mutant (Focks and Benning,
1998), to 46.90%, with a mean of 38.78% (Table 1) and a
standard deviation (SD) of 3.88%. The predictive equation for
seed oil content was developed with five partial least square (PLS)
factors and first evaluated through cross-validation (leave-one-
out method). Very high coefficient of determinations between
Soxhlet and NIRS values were observed for both calibration and
cross-validation (r2

C = r2
CV = 0.98, Table 1; Figure 1A). The

standard error of cross-validation (SECV) was 0.606% (Table 1).
The 36 additional seed samples were used to carry out an external
validation to better assess the accuracy of this calibration model.
This showed a coefficient of determination of 0.99 and a standard
error of prediction (SEP) of 0.505% (Table 1; Figure 1A).

As for oil, the three other calibration sets showed a wide
range of variation (Table 1). For each of the three components,
a predictive equation was developed and the external validation
sample set was further used to evaluate its performance. For the
three developed models, a limited number of PLS factors (≤4)
was used and very high coefficients of determination between
the reference method and NIRS values were observed for both
calibration and cross-validation (Table 1; Figure 1).

The ratio of performance deviation (RPD), an indicator for
the usefulness of the calibration model was calculated for each
component (Table 1). According to the American Association of
Cereal Chemists Method-39-00.01 (AACC International, 1999),
a RPD ≥ 2.5 indicates that a calibration equation is useful for
screening in breeding programs, a RPD ≥ 5 that a calibration is
acceptable for quality control and a RPD ≥ 8 that a calibration is
good for process control, development, and applied research. For
all the models developed in this study, a RPD > 2.5 was achieved,
with a RPD of 7.68 (close to 8) for the oil content model and a
RPD close to 5 for the nitrogen model. This indicates that the
four models developed in this study are suitable for quantitative
genetic approaches.

NIRS Is a Suitable Tool for
High-Throughput Phenotyping of
Arabidopsis Seed
In order to fully demonstrate that the developed NIRS models
were suitable to study seed composition in Arabidopsis, we
analyzed mutants altered in seed filling. Pyruvate kinase (PK)
catalyze the irreversible synthesis of pyruvate and ATP (Valentini
et al., 2000), which are essential for fatty acid production in the
plastids of maturing Arabidopsis embryos. Baud et al. have shown
that the plastidial PK isoform PKp2 plays an important role in

seed oil synthesis, with pkp2-1 mutant exhibiting a 50% reduction
in seed oil content compared to wild-type (Baud et al., 2007).
More recently, Chen et al. showed that seed filling in Arabidopsis
requires sucrose transporters from the SWEET family (Chen
et al., 2015). In particular, they showed that seed oil content was
reduced by 34% in the sweet11;12 double mutant (Chen et al.,
2015). Seeds from pkp2-1 and sweet11;12 mutants were analyzed
by NIRS. For pkp2-1, a 36% decrease in oil content compared
to wild-type was observed (Figure 2A), which is comparable to
the decrease described by Baud et al. (2007) on the same seed
lot. Sweet11;12 mutants displayed a 17% reduction in seed oil
content compared to wild-type (Figure 2B), which is half the
one described by Chen et al. (2015) on another seed lot. The
sweet11;12 seed lot measured by NIRS was then subjected to Gas
Chromatography and resulted in a 15% decrease in seed oil (result
not shown). This result suggested that the difference observed is
probably due to environmental effect on seed filling more than to
NIRS method.

Furthermore, since it is known that nitrogen nutrition impacts
seed filling (Masclaux-Daubresse and Chardon, 2011), we
analyzed seed content of wild-type plants (Col-0 and Ws) grown
under low nitrogen (LowN; 2 mM nitrate) or under high nitrogen
(HighN; 10 mM nitrate) nutrition conditions. As already
published (Masclaux-Daubresse and Chardon, 2011), both
accessions displayed higher seed nitrogen content under HighN
compared to LowN (Figure 2C) and reversely a higher seed
carbon content under LowN compared to HighN (Figure 2D).

These results demonstrate that NIRS is a powerful method to
determine Arabidopsis seed composition.

Natural Variation for Oil, Protein, Carbon,
and Nitrogen Content in Arabidopsis
Seed
The development of NIRS predictive equations allowing high-
throughput phenotyping opened the door to quantitative genetics
study. First, we decided to explore Arabidopsis natural variability
for oil, protein, carbon, and nitrogen content in seeds. For this
purpose, we cultivated the Versailles BRC 48 core-collection of
Arabidopsis in addition to the Col-0 accession and mini sets of 20
lines (maximizing genotypic variability, Simon et al., 2008) from
eight populations (see Methods). Each genotype was cultivated
in triplicate and three successive and independent cultures (C1,
C2, and C3) were performed in growth chambers with similar
global climate conditions. We estimated the natural variability
of the four traits by NIRS phenotyping (Figure 3). The four
traits displayed a wide range of variation in each culture, with
C1 displaying the wider range going from 23.23 to 47.72% for
oil, from 14.24 to 28.72% for protein, from 52.27 to 60.22% for
carbon, and from 3.27 to 5.78% for nitrogen. The modal class is
different in each culture, highlighting the environmental effect on
these four traits.

In order to quantify the relative contribution of the genotype
(G), the culture (C) and the G*C interaction on the variation
of these four traits, a global analysis of variance (ANOVA) was
performed on the measures from the three cultures (Figure 4).
The genotypic effects ranged from 53.0% for oil to 32.3%
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TABLE 1 | Near-infrared reflectance spectroscopic (NIRS) calibration and cross validation statistics for seed oil, protein, carbon, and nitrogen contents
(%).

Cross-

Calibration validation External validation

PLS

n Mean (%) Range (%) SD factors SEC r2
C SECV r2

CV n Mean (%) SD SEP r2
V RPD

Oil 112 38.78 18.70–46.90 3.88 5 0.541 0.98 0.606 0.98 36 38.45 4.39 0.505 0.99 7.68

Protein 98 19.99 11.89–27.73 3.39 3 1.219 0.88 1.287 0.85 33 19.73 3.32 1.228 0.86 2.76

Carbon 91 57.39 51.41–60.69 1.25 3 0.424 0.88 0.460 0.86 30 57.39 1.04 0.432 0.82 2.90

Nitrogen 90 4.34 3.14–5.52 0.43 4 0.081 0.96 0.091 0.95 30 4.32 0.41 0.087 0.96 4.91

n, number of samples; SD, standard deviation; PLS, partial least square; SEC, standard error of calibration; r2C, coefficient of determination in calibration; SECV, standard
error of cross-validation; r2CV, coefficient of determination in cross-validation; r2V, coefficient of determination in validation; SEP, standard error of prediction; RPD, ratio of
performance deviation (SD/SEP).

FIGURE 1 | Regression curves between near-infrared reflectance spectroscopic (NIRS) and reference methods for oil, protein, carbon, and nitrogen
content. Scatter plots of NIRS versus reference method values for oil % (A), protein % (B), carbon (C), and nitrogen (D) in the calibration and validation sets.

for protein, explaining the most important part of the total
phenotypic variation except for protein. However, culture effect
explained an important part of the total phenotypic variation

varying from 19 to 39% for oil and protein respectively. This
result showed that nitrogen and protein contents were more
influenced by the culture than oil and carbon.
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FIGURE 2 | Near-infrared reflectance spectroscopic phenotyping allows detecting seed filling modifications. (A,B) Graphs showing seed oil content of
two mutants: pkp2-1 (A) and sweet11;12 (B) compared to wild-type. (C,D) Graphs showing seed nitrogen (C) and carbon (D) content of two accessions (Col-0 and
Ws) on two nitrogen nutrition conditions (2 and 10 mM). Bars represent SE (n = 3 in A,B, n = 4 in C,D). Significance in t-test, ∗∗p < 0.01, ∗∗∗p < 0.001.

FIGURE 3 | Frequency distribution of seed oil, protein, carbon, and nitrogen content in three independent cultures. Frequency distributions of oil (A),
protein (B), carbon (C), and nitrogen (D) content mean values for 183 genotypes (n = 3) corresponding to Arabidopsis accessions and RILs from eight populations.
The same genotypes were cultivated in three independent cultures (C1, C2, C3).
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FIGURE 4 | Variance component analysis for seed oil, protein, carbon, and nitrogen content. An ANOVA was performed on all genotypes from the three
cultures for seed oil, protein, carbon, and nitrogen content. Histograms show the effects due to genotype, culture, interaction genotype∗culture and the residual as a
percentage of the variation explained.

Identification of QTL Involved in Seed Oil
and Protein Content
The availability of NIRS predictive equations together with the
large range of variation observed and the high contribution of
genetic part to phenotypic variation for oil, protein, carbon,
and nitrogen content opened the door to QTL study. From
this previous study of natural variation, the Ct-1 × Col-0 RIL
population was selected for QTL determination. A subset of
164 RILs, optimized for QTL mapping (Simon et al., 2008)
was cultivated (see Methods) and seeds were phenotyped for
oil, protein, carbon, and nitrogen content by NIRS. These RILs
exhibited a wide range of values for these four traits as well
as transgression beyond the parental line values (not shown),
highlighting the potential of this subset to study the variation
of these traits. QTL detection using standard procedures (see
Methods) was carried out, allowing QTL detection for oil and
protein content (this work) as well as for carbon, and nitrogen
content (Chardon et al., 2014).

Five QTL for seed oil content were identified, explaining 44.5%
of the total phenotypic variance observed (Table 2). The strongest
QTL (Oil.4, explaining more than 15% of the phenotypic
variance) is located between 31.6 and 46 cM on chromosome 4.
Four QTL were detected for protein content, explaining 34% of
the total phenotypic variance observed for this trait (Table 2).
The strongest QTL (Prot.3, explaining more than 10% of the
phenotypic variance) co-localized with Oil.4 on chromosome 4.
Three out of five oil QTL, Oil.2, Oil.4, and Oil.5 overlapped with
protein QTL Prot.1, Prot.3, and Prot4 respectively, but having
an opposite effect on the corresponding traits, highlighting the
strong negative correlation observed between oil and protein
seed content, as already observed for carbon and nitrogen by
Chardon et al. (2014). Interestingly, QTL specific to oil (Oil.1,
i.e., without noticeable effect on protein) and protein (Prot.2,
i.e., without noticeable effect on oil) were also identified in this

study. Altogether, these results illustrate that NIRS phenotyping
of mature seeds allow identification of genetic factors involved in
different pathways of oil and protein accumulation.

DISCUSSION

Quantitative genetic relies on statistical links between phenotype
and genotype of 100s of lines. In Arabidopsis, genotyping is no
more a limiting factor, whereas high-throughput phenotyping
can be an obstacle. Thus, our first objective was to establish near-
infrared reflectance spectroscopic (NIRS) predictive equations in
order to estimate oil, protein, carbon, and nitrogen content in
Arabidopsis seed with high-throughput level.

TABLE 2 | List of QTL detected for oil and protein in the Ct-1 × Col-0 RIL
population.

QTL Position LOD Additive

name Chr. (cM) score CI (cM) effect R2 (%)

Oil.1 2 66.9 3.47 47.7–70.8 0.8 4.93

Oil.2 3 6.0 4.57 0–15.8 −0.95 4.73

Oil.3 3 63.6 7.65 48.9–70.9 1.28 9.86

Oil.4 4 36.7 15.30 31.6–46 1.61 15.65

Oil.5 5 13.3 5.58 8.9–17.4 1.82 9.38

Prot.1 3 6.0 4.62 0–11.8 0.58 9.29

Prot.2 4 4.1 4.60 0–12.4 0.61 9.25

Prot.3 4 36.7 5.34 31.6–46 −0.65 10.23

Prot.4 5 13.3 3.84 4.5–17.4 −0.74 5.23

For each QTL, the chromosome (Chr.), the position of the nearest marker of the
LOD score peak with the LOD score at the corresponding marker as well as the
confidence interval (CI) are indicated. The additive effect represents the mean effect
on trait of the replacement of both Col-0 alleles by Ct-1 alleles at the QTL. R2

represents the proportion of phenotypic variance of the trait explained by the QTL.
cM, centiMorgans.
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Near-infrared reflectance spectroscopic calibration models for
these four components were established on entire seeds using
PLSs regression and leave-one-out cross-validation technique. To
assess the accuracy of each model, an external validation with
samples not included in the initial model was carried out.

The four developed models display good performances as
evaluated by different parameters of the external validation set
such as r2

V, coefficient of determination; SEP and RPD (Table 1).
The r2

V values range from 0.82 for carbon content to 0.99 for oil
content, indicating that the four models developed in this paper
show good to excellent quantitative information (Font et al.,
2006). As expected, SECV ≥ SEC (and then R2

CV ≤ R2
C) for the

four models and SEP ≥ SEC (and then R2
V ≤ R2

C) for three out
of the four models (Table 1). SEP < SEC (and R2

V > R2
C) for the

oil model, which is unexpected and illustrates that the restricted
validation set (36 samples, i.e., about one third of calibration
sample number) fits better to the model. For each model, the
validation set shows statistics very close to the calibration set,
illustrating robustness and absence of overfitting of the models.
Concerning oil content, the model described in this paper for
Arabidopsis display better performance than the ones described
for rapeseed (Tkachuk, 1981; Hom et al., 2007; Rossato et al.,
2013). Interestingly, the models were developed on entire seeds
without destruction neither any special sample preparation,
which is a great advantage compared to calibration developed on
powder or oil for example (Khamchum et al., 2013) as it’s faster
and allow the seeds to be used for other applications.

Seeds produced by a plant are heterogeneous (in size and
composition) depending of their position on the mother plant
and the environmental conditions during their development.
This could induce huge phenotypic variation when phenotyping
is performed on very little amount of seeds. The protocol
described in this paper overcomes this problem since spectra are
determined on a large number of seeds (160 mg, i.e., about 8000
seeds), allowing robust sampling. In favorable environmental
condition, an Arabidopsis plant produces on average 1 g of seeds,
highlighting that the quantity required for NIRS analysis is not a
limiting factor. However, in stressful conditions, Arabidopsis may
produce very few seeds. In this case, NIRS will not be suitable for
seed content analysis.

Using pkp2 and sweet11;12 described mutants and two
different nitrogen nutritions, we demonstrated that NIRS is a
powerful method to determine Arabidopsis seed composition
and that NIRS can probably replace labor intensive methods
such as fatty acyl methyl ester extraction followed by Gas
chromatography analysis for lipids or elemental analyzer
measurements for nitrogen and carbon content.

With NIRS calibrations in hand, natural variation of
Arabidopsis seed composition was explored. Three independent
cultures (C1, C2, and C3) of a 48 core-collection, Col-0 and
minimal sets of eight RIL populations were performed, allowing
the estimation of environmental effect on the four seed traits
analyzed (seed lipid, protein, carbon, and nitrogen content). As
shown in Figures 3 and 4, the four traits display a wide range
of variation and are strongly impacted by the environment.
However, most of the genotypes (75, 97, and 91% from C1,
C2, and C3 respectively) display oil content between 32.8 and

43.8%, as already observed by O’Neill et al. (2003) while studying
360 accessions. Similarly, in our three experiments, Cvi-0 was
recorded with low oil content (36.21, 33.56, and 34.90%) while
Ct-1 was recorded with high oil content (46.26, 42.40, and 45.3%)
as in O’Neill et al. (2003). Even thought seed composition is
strongly impacted by environmental conditions, the four traits
analyzed are also controlled by genetic factor as illustrated by
Figure 4. Indeed nine QTL were identified for seed oil and
protein content in the Ct-1 × Col-0 RIL population (Table 2).
Most of the QTL for oil content co-localized with QTL for protein
content but with opposite effect on each traits, highlighting the
negative correlation between seed oil and protein content. Oil.1
and Oil.2 co-localized with seed oil content QTL previously
identified by Hobbs et al. (2004) in the Ler × Cvi-0 RIL
population and by O’Neill et al. (2012) in the Cvi-0 × Ag-0
RIL population for Oil.1. Interestingly, Oil.1 does not co-localize
with seed protein QTL in the Ct-1 × Col-0 RIL population,
suggesting that Oil.1 may regulate oil content without affecting
protein content and thus represents a very good candidate to
specifically modify oil content without affecting protein content
in Arabidopsis seed. Conversely, Prot.2 may regulate protein
content independently of oil content and could be used to solely
modify seed protein content. Fine mapping is required to confirm
Oil.1 and Prot.2 specificity as well as to identify the genes under
the nine QTL identified.

CONCLUSION

In summary, the results of the present work show that NIRS
predictive equations developed in this study can be used to
reliably predict oil, protein, nitrogen and carbon content of
Arabidopsis seed samples without destruction neither any special
sample preparation. This high-throughput method opens the
way for quantitative genetic such as QTL cloning (up to gene
identification and not only detection), as well as GWASs but
also to mutant library screening. As a first attempt to identify
genetic factor controlling seed oil and protein content, QTL for
these traits have been mapped in the Arabidopsis Ct-1 × Col-
0 RIL population. Some of the oil content QTL detected co-
localized with QTL identified previously, thus validated our
approach, but many novel QTL were also identified. In particular,
to our knowledge, this is the first report of seed protein
content QTL in Arabidopsis. The fine mapping of some of
these QTL is underway and should give new insights on the
regulatory pathway involved in Arabidopsis seed oil and protein
accumulation.

METHODS

Plant Material
The 48 core-collection of Arabidopsis (McKhann et al., 2004)
in addition to Col-0 accession, wri1-3, wri1-4, tag1-2, pkp2-1,
and sweet11;12 mutants, a minimal set (20 lines) of eight RIL
populations (2RV, 3RV, 7RV, 8RV, 13RV, 17RV, 20RV, and 21RV)
as well as the core-pop of 164 RILs of the Ct-1 × Col-0
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population were used in this study (Simon et al., 2008). wri1-3,
wri1-4, pkp2-1, and tag1-2 seeds were provided by S. Baud and
sweet11;12 seeds were provided by R. Le Hir. The other seeds
were obtained from the Versailles Biological Resource Centre
for Arabidopsis1. Seeds were sown on damp Whatman filters,
stratified for 3 days at 4◦C and then transferred to a growth
cabinet under long-day conditions at 21◦C for 2 days. Three
seedlings (with emerging radicle) per genotype were planted in
soil in 7 cm pots and transferred to a non-heated and naturally lit
greenhouse to be vernalized from November to February. After
8 weeks, one plantlet per pot was randomly retained without
phenotype selection. After 12 weeks of vernalization, plants were
transferred to a growth chamber under long-day conditions
(16/8 h photoperiod at 150 mmol photons m−2 s−1); 21◦C day
temperature and 18◦C night temperature; relative humidity of
65%. From this time, three times a week the plant trays were
moved around the growth chamber to reduce position effects.
Bags were put over the plants to prevent seed dispersion as
soon as the first silique had turned yellow. The plants were no
longer watered once the youngest silique had turned yellow.
Plants were kept in the growth chamber until dry and then
harvested.

Three cultures (C1, C2, and C3) including the 48 core-
collection, Col-0, the minimal sets of the 8 RIL populations and
wri1-3, wri1-4, and tag1-2 mutants for C3, as well as one culture
(C4) of the core-pop of 164 RILs of the Ct-1 × Col-0 population
were performed following this protocol.

Near-Infrared Spectroscopy
NIR Spectra Acquisition
Seed samples were placed in a 9 mm diameter clear glass
bottle (Agilent, 5182-0714) on 4 mm height for NIRS spectra
acquisition and were analyzed as intact (without any treatment).
This corresponds to about 300 µl of Arabidopsis seeds (about
160 mg or 8 000 seeds).

Spectra acquisition was performed with a Fourier transform
near-infrared (FTNIR) analyzer (Antaris II spectrometer;
Thermofisher Scientific, France). Spectra were collected in
reflectance mode with an 8 cm−1 optical resolution and were
obtained as an average of 16 scans. Spectra were collected over the
range 4000 to 10000−1 and calibrations done using four spectral
ranges: from 4100 to 4940 cm−1; from 5390 to 6690 cm−1; from
6900 to 7130 cm−1, and from 7185 to 9000 cm−1. These spectral
regions provide useful information about the organic signature of
the Arabidopsis samples and exclude the water spectral regions.
They have been selected by looking at the regression vector from
the PLS (see Development of NIRS Calibration Models) and
using a Thermo proprietary pure component algorithm.

Selecting the Samples for NIRS Calibration
The robustness and accuracy of a NIRS model are strongly
dependent on the accuracy of the reference method but also
of the samples chosen for calibration development. Indeed,
the calibration samples have to be representative of the

1http://publiclines.versailles.inra.fr/

spectral variability and must cover the range of the component
concentration of the samples that will be further monitored.

As the NIR spectral variability of Arabidopsis seeds was not
known, NIR spectra of 650 samples (one spectrum per sample)
from two independent cultures (C1 and C2) were collected.
Spectra were treated with a multiplicative signal correction
(MSC) to correct multiplicative effects due to light scattering
in spectral data and a Principal component analysis (PCA)
was performed in order to select samples maximizing spectral
variability. PC1 and PC2 explained 84.5 and 11.9% of the spectral
variation respectively. Their graphic representations were similar
to a seed spectrum and suggested that they reflect variations due
to differences in spectra baseline or particle size for example.
PC3 explained 1.9% of the spectral variation and its graphic
representation displayed peaks at wavelengths specific to seed
storage compounds. Thus the PC1/PC3 graph was used as a
criterion for selecting 100 samples in the population as being
more variable on the basis of spectra features (Shenk and
Westerhaus, 1991).

Seed oil content of these 100 samples was determined by the
Soxhlet reference method and a preliminary calibration model
was set up. Using this model, seed oil content of samples available
at this time (1788 samples from three independent cultures and
including wri1 and tag1 low-seed-oil insertion mutants) was
predicted. This prediction allowed the selection of 48 additional
samples with extreme values (maximal and minimal) in order
to extend the range of concentration of the final calibration
set. Seed oil content was measured with the Soxhlet method on
these 48 additional samples. The same procedure was applied to
choose samples for seed protein, carbon, and nitrogen content
calibration models.

Development of NIRS Calibration Models
Calibration models were developed using TQ Analyst software
(Thermofisher Scientific, France) using PLSs regression and
leave-one-out cross-validation technique. Prior to the PLS
regression, all spectra were pre-treated with the scatter correction
MSC and by applying a first derivative transformation and a
Norris derivative filter (segment length 5, gap size: 5). The use
of derivative spectra instead of the raw optical data to perform
calibration is a way of solving problems associated with offsets
and overlapping peaks.

Near-infrared reflectance spectroscopic calibration models
were established for oil, protein, carbon, and nitrogen content
by using a number of PLS factors optimal for each component
(i.e., only the primary, most important factors were used, the
“noise” being encapsulated in the less important factors). The
optimal number of PLS factors was determined as the minimum
of the PRESS (predicted residual error sum of squares) curve
when doing a leave-one-out cross validation method.

The quality of each calibration model was then evaluated
by several parameters: the determination coefficients between
concentrations predicted from NIRS and from reference
analysis, r2

c and r2
CV, calculated for calibration and cross-

validation (leave-one-out) data processing respectively, and
their respective standard errors [calibration (SEC) and cross-
validation (SECV)].
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To assess the accuracy of each newly developed calibration
model, an external validation with samples not included in the
initial model was carried out. The total number of samples was
divided into calibration and external validation sets in a rate
3:1. For that purpose, the samples were ranked according to
their reference values and then about one sample every four was
assigned to the external validation set. In addition, to account for
environmental variation in seed composition, the seed samples
chosen for the calibration and external validation sets were
derived from the three cultures (C1, C2, and C3). The prediction
quality of NIRS analyses was then quantified by the SEP and the
determination coefficient (r2

V) between concentrations obtained
from NIRS and from reference analysis for the validation set. The
RPD was calculated as the ratio between the SD of the reference
values and the SEP. RPD is indicative of the usefulness of the
NIRS calibrations.

Analysis of Seed Oil Content (Reference
Method)
Oil was extracted following the standard NF V03-908 protocol
(extraction by hot solvent with a “Soxlhet” extractor). About 1 g
of seed was dried (103◦C during 20 h) and ground in hexane
with a grinder. Oil was then extracted with hexane by the Soxhlet
method. The total seed oil content was expressed as percentage of
the dried seed weight.

Analysis of Seed Protein Content
(Reference Method)
Phenol extraction of seed protein was adapted from Meyer et al.
(1988). Ten mg of seeds were homogenized in a 2 ml tube
containing a ceramic bead and 1 ml of an emulsion of 50% (v/v)
phenol (previously equilibrated in 1 M Tris HCl pH8) in 0.1 M
Tris HCl pH8 1% SDS using a Fastprep-24 Instrument (MP-
Biomedical, maximal intensity, twice 1 min). After centrifugation
(13 000 g, 20 min), 200 µl of the phenolic phase was accurately
delipidated twice with 500 µl of hexane. One hundred µl of the
phenol phase was taken after centrifugation (13 000 g, 10 min)
and the proteins were precipitated with five volumes of methanol
containing 0.1 M ammonium acetate at −20◦C overnight. The
precipitate was collected by centrifugation and washed four times
with methanol (−20◦C) containing 0.1 M ammonium acetate,
and twice with 80% acetone (in water). The resulting pellets
were dried under reduced pressure and then resuspended in 1 ml
of 0.1 M Tris-HCl pH8 1% SDS. After overnight agitation, the
fully dissolved solution was then cleared by centrifugation (13
000 g, 10 min) and the protein concentration was determined by
spectrometry at 280 nm, assuming that 1 OD corresponds to
1mg/ml protein solution.

Seed Nitrogen and Carbon Content
(Reference Method)
Five mg of seeds, dried overnight at 100◦C, were weighed on a
lab balance model M2P (Sartorius, Göttingen, Germany) with a
readability of 0.001 mg, then analyzed for nitrogen and carbon
concentration by the Dumas combustion method (Anonymous,

1990) with an automated CN analyzer (Heraeus CN-Rapid,
Hanau, Germany).

QTL Detection
For each RIL, the mean value from three plants was taken for each
measured trait for QTL analysis.

Quantitative trait loci analyses were performed using R/qtl
library in the R environment (Broman et al., 2003; Arends
et al., 2010) with standard methods for interval mapping
(IM) and multiple QTL mapping (MQM) (Arends et al.,
2010). First, IM was carried out to determine putative QTL
involved in the variation of the trait, and then MQM model
was performed on the same data: the closest marker to each
local logarithm-of-odds (LOD) score peak (putative QTL)
was used as a cofactor to control the genetic background
while testing at another genomic position. The significance
threshold (p < 0.05) of LOD was determined by permutation
test (n = 1000) for each trait (Churchill and Doerge, 1994).
The estimated additive effect (representing the mean effect
of the replacement of the Col-0 alleles by Ct-1 alleles at
the locus) and the percentage of variance explained by each
QTL (R2) affecting a trait were obtained for the final MQM
model.
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This article describes public, free software that provides efficient exploratory analysis

of high-resolution spectral reflectance data. Spectral reflectance data can suffer

from problems such as poor signal to noise ratios in various wavebands or invalid

measurements due to changes in incoming solar radiation or operator fatigue leading

to poor orientation of sensors. Thus, exploratory data analysis is essential to identify

appropriate data for further analyses. This software overcomes the problem that analysis

tools such as Excel are cumbersome to use for the high number of wavelengths

and samples typically acquired in these studies. The software, Spectral Knowledge

(SK-UTALCA), was initially developed for plant breeding, but it is also suitable for other

studies such as precision agriculture, crop protection, ecophysiology plant nutrition,

and soil fertility. Various spectral reflectance indices (SRIs) are often used to relate crop

characteristics to spectral data and the software is loaded with 255 SRIs which can

be applied quickly to the data. This article describes the architecture and functions of

SK-UTALCA and the features of the data that led to the development of each of its

modules.

Keywords: phenotyping, phenomic, scan, wavelength, noise, outlier, spectral reflectance index (SRI), collinearity

INTRODUCTION

The responses of any living organism are ultimately controlled by genes (G), but the expression of
these are modulated in several ways, partly because of the action of other genes, and the complex
interaction between them, butmostly in response to the environment (E) where the plant grows and
develops (GxE interaction). Gene sequencing is becoming more routine, economical, and fast, but
for proper analysis and interpretation of the information an adequate phenotypic characterization
is essential, even though it poses one of the greatest difficulties (Lörz and Wenzel, 2005; Finkel,
2009; Lobos et al., 2014; Estrada et al., 2015).

Progress in science and technology have made it possible to study different processes involved
in multiple areas of knowledge. In agronomy and biological sciences, sensors, and instrumentation
have been developed to characterize the behavior of a particular organism, or a group of them,
under a specific environmental condition or situation.

Currently, equipment, techniques, and analyses are available that have proved helpful in
characterizing the phenotype (phenotyping), and in the case of remote sensing, quick and high
predictive power (Lobos and Hancock, 2015; Camargo and Lobos, 2016).

153

http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org/Plant_Science/editorialboard
http://www.frontiersin.org/Plant_Science/editorialboard
http://www.frontiersin.org/Plant_Science/editorialboard
http://www.frontiersin.org/Plant_Science/editorialboard
https://doi.org/10.3389/fpls.2016.01996
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2016.01996&domain=pdf&date_stamp=2017-01-09
http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive
https://creativecommons.org/licenses/by/4.0/
mailto:cpe@sun.ac.za
mailto:globosp@utalca.cl
https://doi.org/10.3389/fpls.2016.01996
http://journal.frontiersin.org/article/10.3389/fpls.2016.01996/abstract
http://loop.frontiersin.org/people/196110/overview
http://loop.frontiersin.org/people/358940/overview


Lobos and Poblete-Echeverría Spectral Knowledge (SK-UTALCA)

Among the available remote sensing tools, spectrometers, or
spectroradiometers mainly exploit the principle of quantifying
the proportion of reflected radiation by an object relative to
the incident radiation (Borengasser et al., 2008). Reflectance
(graphically represented by the spectral signature) is related
to the absorption and transmission of each wavelength, thus
representing plant status under ambient or experimental
conditions (Garriga et al., 2014). For example, compared to a
senescing plant, a healthy one should absorbs more in the visible
(blue and red light) and reflect more in the near infrared range.

Nowadays plant reflectance can be measured from space by
satellites (with certain limitations on interpretation due to pixel
resolution) or from the troposphere by manned and unmanned
aerial vehicles (problems related to the number and resolution of
the spectrum bands; Araus and Cairns, 2014). Equipment used
on the ground covers a wider range of the spectrum, with a
better resolution. The most modern devices not only measure
into the near infrared region (700–1300 nm; NIR), but also from
the ultraviolet (∼200 nm) up to the short wavelength infrared
(∼2500 nm) (Cabrera-Bosquet et al., 2012). This high-resolution
technology allows examination of plants beyond the 1000 nm
region of the spectrum, with great potential for phenotype
prediction (Garbulsky et al., 2011; White et al., 2012; Araus and
Cairns, 2014; Lobos et al., 2014).

Several critical issues for making good reflectance
measurements in the field have been reported in the literature
(e.g., Curtiss and Goetz, 1994; Milton et al., 1995; Salisbury,
1998; Schaepman, 1998; Curtiss and Goetz, 2001). Independent
of the equipment used on the ground, a correct measurement of
the reflectance in the field is mandatory. Ideally, measurements
should be restricted to clear sky conditions, performing a
radiometric calibration every 10–15 min to limit variations in
reflectance induced by changes in the angle of the sun, and
taking in account basic but important considerations such as
maintaining the same orientation, angle, and distance to the
canopy on each assessed plot or ensuring dark colored clothing
for the operators. Although instrument settings vary among
brands and models, a number of steps should be followed to
optimized data capture. The equipment should be turned on
in advance to allow the device to equilibrate with the ambient
temperature, the integration time for a single scan or sample
needs to be defined (maximizing sensitivity, but avoiding
saturation), the number of scans per sample or samples per plot
and the convenience of averaging them before data processing
should be determined, and the exact sequence for checking darks
and standards recommended by the manufacturer needs to be
ascertained.

In general, due to its simplicity and ability to forecast
several phenotypic characteristics, reflectance is used to calculate
“Spectral Reflectance Indices” (SRIs) (Lobos and Hancock,
2015). SRIs are based on relationships between wavelengths
or spectrum bands, usually designed to be relatively immune
to changes in solar radiation between measurements, relating
them quantitatively to changes in plant phenotype (Mullan,
2012). Today there are hundreds of SRIs proposed to estimate
different traits (e.g., leaf area index, yield, gas exchange,
fluorescence, pigment content, plant water status, carbon isotopic

TABLE 1 | Nomenclature related to spectrometer data collection.

In this article In other articles or

manuals

Definition

Plot Land area where a single

genotype is growing; in other

studies it could be considered

as a replication.

Scan Data collection, spectrum

or spectra collection,

scanning

Action oriented to collect the

spectrum or spectra by one

scan or shoot (informal

terminology).

Samples Sample spectra, samples

of scan, scanned

samples, scanned data,

artifacts, features

Some spectrometers are able to

register several samples within

the same scan; number of

spectral signatures captured

per scan.

Integrations

per sample

Spectrum average or

averaging

Integration of spectra within the

same sample.

discrimination, etc.) but because of the lack of tools capable of
assessing several SRIs at the same time, most of the published
works focus on a small percentage of them (e.g., SR, NDVI, WI,
NDWI, PRI, SAVI, etc.).

In breeding programs, there is a need to regularly evaluate
hundreds or thousands of genotypes in a short time. Therefore,
due to the time and cost involved breeders have not been able to
perform a thorough phenotypic characterization of the material,
limiting their evaluations to the yield, its components and some
others traits that are relatively easy to assess (Kipp et al., 2014;
Lobos and Hancock, 2015; Camargo and Lobos, 2016). With
the emergence of phenomics, which is the acquisition of high-
dimensional phenotypic data (high-throughput phenotyping)
for characterization of the phenotype of organisms in a
multidimensional manner (Houle et al., 2010; Kipp et al., 2014),
measurements that used to take weeks or months can now
be performed in a few hours (White et al., 2012; Lobos and
Hancock, 2015). The implementation of phenomics in plant
breeding programs is relatively new, and is an area where more
development is likely to be needed (Lobos and Hancock, 2015).

For a correct interpretation of spectral reflectance data, it
is essential to have reliable and representative information,
especially when it comes from field measurements. The use of
reflectance data in breeding programs has several advantages but
probably the major problem is the amount of data originated
by the numbers of wavelengths and genotypes assessed. If the
reflectance data is analyzed in a conventional way (e.g., Excel
files), the detection of measurement errors, the study of the
spectral noise (originating from absorption by environmental
compounds such as water or CO2) or the relationship between
a specific wavelength and a response variable become difficult or
subjective. Nevertheless, as far as we are aware there is currently
no free software available that allows detailed exploratory analysis
of high-resolution spectral reflectance data. Therefore, the aim
of this article is to present an overview of the architecture
and functions of Spectral Knowledge (SK-UTALCA), software
that has been specially developed for exploratory analysis of

Frontiers in Plant Science | www.frontiersin.org January 2017 | Volume 7 | Article 1996154

http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive


Lobos and Poblete-Echeverría Spectral Knowledge (SK-UTALCA)

high-resolution spectral reflectance data, with applications in
plant breeding research and also in many other fields.

Due to the broad nomenclature related to spectral
measurements, some definitions are given in order to facilitate
the understanding of this article and software (Table 1).

MAIN SK-UTALCA ARCHITECTURE AND
FUNCTIONALITIES

Spectral Knowledge (SK-UTALCA) is a software package
developed in Matlab R© and is available compiled for use in a
Windows 64-bit environment from a download link or as source

code in supplementary material. This program allows, in an
efficient and versatile manner, two types of actions: (i) cleaning
of the data matrix by studying the spectral noise, and detecting

within- and between- measurement errors; and (ii) application

of a preliminary analysis of wavelength collinearity, and the

detection of wavelengths or SRIs related to a response variable

(Table 2).

After X and Y are loaded, the user can perform any main

command, without a specific order. At the same time, each

analysis can be run considering the previous exploration (Run

from current data) or from the original data (loaded as X) (Run
from original data). On each section of the cleaning data matrix

TABLE 2 | Main SK-UTALCA functionalities according to the program menu.

Main objective Main commands Secondary commands Description

Input and output of information Import X and Y data Spectral data (X) Import spectral data: first column or row (depends on the equipment)

must include the assessed wavelengths.

Samples per plot Indicate samples per scan (definitions in Table 1).

Transpose data Software works only with wavelengths as columns; the user will be

able to transpose their data.

Response variable (Y) Import response variables data (on columns) where the three first

columns must be codes (free criteria).

Export data Average It is possible to export the average of the samples per scan or each

sample individually.

Empty data Data can be exported including or excluding cells deleted during the

cleaning of the data matrix.

Cleaning data matrix Noise analysis Wavelength segments Ten different segments to analyze in relation to the percentage

change among a determined neighbor size.

Noise elimination can be applied equally to all data (Group) or for each

sample (Individual). Additionally, negative values can be also deleted.

Scan analysis Maximum variation coefficient Criteria to select samples within a same scan where the variation

coefficient, at any wavelength, is lower than the established threshold

(Scans without problems) and those that exceeded it (Scans with

problems).

Samples to delete If there are inconsistencies in one or more samples within the same

scan, it is possible to select and delete them.

Outlier analysis Through a graphical analysis of the cloud of data points (response

variable vs. SRI), it is possible to detect those out of range, identify

the source of the problem and delete them in the case of clear

evidence of a mistake.

Preliminary analysis Collinearity analysis For a given response variable, through linear or artificial neural

network (ANN) analysis, it is possible to identify wavelengths without

collinearity.

Individual wavelength analysis Through different regression models and statistical parameters, it is

possible to identify wavelengths better associated with a given

response variable.

SRI analysis Full report Through different regression models and a coefficient of

determination threshold, it is possible to identify SRIs that are better

associated with a given response variable. The software will be

launched with a database of 255 SRIs (Supplementary Table 1).

Detailed index report For subsequent graphical representation it is possible to export, for

each genotype or measurement, individual values of SRIs and

response variables.
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or the preliminary analysis, the user will be able to export the
analyzed information (csv format).

Main Menu (Data Set)
In the main menu, users are required to load the spectral
reflectance data [Spectral data (x)]. The first step in the use of
SK-UTALCA software is to load the data set in Microsoft Excel
format (xlsx format). To read the spectral data it is necessary
to indicate the number of samples taken in each plot (Samples
per plot). Depending on the equipment used, reflectance data is
organized in columns or rows. In the software, the spectral bands
need to be located in columns and the spectral data in rows (it is
possible to use the “Transpose data” option to relocate the data
set as needed). The first wavelength measured must be in the
second column (the first column is for codification purposes and
depends only on the user).

The second file needed (xlsx format) contains the values for
the independent variables [Response variables (y)] for each plot.
In this case, the spreadsheet must consider three codification
columns and the first variable should be allocated to the fourth
column.

The software has no limitation on the number of spectral data
points (wavelengths or measurements) or response variables.

Noise Analysis
This first filter removes the spectral noise originated by the
natural presence of certain elements in the atmosphere, such
as water and carbon dioxide, which absorb specific wavelengths
(Salisbury, 1998; Curtiss and Goetz, 2001; Psomas et al.,
2005; Ma and Chen, 2006; Clevers et al., 2008). Researchers
who screen hundreds or thousands of genotypes under field
conditions usually consider at least three or four spectral
samples per plot, generating a matrix of data that makes it
difficult to objectively select the noise segment(s) for deletion.
Furthermore, spreadsheet graphical options are usually restricted
to a maximum number of data series per chart (e.g., ∼255 in
Excel for Windows or Mac), so there is no easy way to take
a decision based on this tool. For this reason, for breeding
purposes, conventional visual noise elimination is not a real
alternative, restricting the criteria to the assumption of arbitrary
limits, usually following thresholds from a third person or related
articles.

With this module, it will be possible to analyze the spectral
noise by considering up to ten independent segments. This will
allow the user to set up different criteria in each segment, being
more or less strict depending on the wavelengths analyzed, the
data collected or previous knowledge. To apply the filter on each
spectral signature, it is necessary to indicate the lower and upper
limit for each segment (Wavelength segments), the maximum
accepted percentage of variations (%) between two neighboring
wavelengths, and the number of neighbors (N size) where the
previous condition is found consecutively. The graphic window
will show red crosses where the first criterion is satisfied and black
ones where both have been met, this last condition determining
where the software will perform the cleaning.

However, an objective selection is not the only important
aspect of spectral noise. During the day there are environmental

changes (e.g., relative humidity) that not only affect the
magnitude of each problematic wavelength, but also the number
of wavelengths involved. For instance, measurements performed
under conditions of higher relative humidity (usually before
midday) produce wider noise segments beyond 1000 nm; if
the determination of the number of wavelengths to eliminate
considers measurements across the whole day, the noise edges
will be established by genotypes evaluated early in the day
(broader noise segments), risking the loss of important spectral
information from those assessed under lower relative humidity
(usually after midday) and therefore possessing narrower noise
segments.

Because of this, after the noise selection criteria (% and N
Size) are established, the user has an opportunity to filter by
considering all the measurements as one group (Group) or as
individual scans (Individual). When the group filter is selected
in a specific segment, the program analyzes each sample where
the selection criteria are met, identifying the minor and major
wavelengths that have problems in the spectral data file, and uses
these two wavelengths to eliminate the noise from each sample
uniformly. This is very similar to what is done visually, but with
an objective approach. For the individual option, each sample
will be filtered independently from the others, rescuing important
information for modeling, or the use of SRIs.

Scan Analysis
In this module, the user will be able to analyze, identify and
correct inconsistencies between spectral signatures from the
same scan or plot, a problem that is often unnoticed. In general,
for simplicity or to dilute any errors generated while collecting
the data, there is a tendency to average samples within the same
scan, which most of the time is done without any deeper analysis.
As mentioned before, this should not be a complication when
the data analysis considers a few measurements, but in breeding
programs this search would be time consuming.

There are several aspects influencing the homogeneity
between samples within the same scan, especially if the
measurements were performed under field conditions.
Unnoticed modification of the measurement angle during
plot screening is probably the main source of variability. In
practical terms it is difficult to maintain the exact angle of
measurement, even for a few seconds (hand steadiness of the
operator, distractions, or fatigue); each sample is derived from
several integrations, usually more than 10, so the chance of
making a mistake is not uncommon. When a plot is screened,
it can be performed by keeping the fiber aimed at a single point
(lower variability and representation) or across several plants
(higher representation but greater variability); when the second
option is taken, the chances of integrating other materials into
a single scan or sample (e.g., soil, weeds, or air) are increased,
and also enhanced by changes in measurement angles. Other
considerations such as the effect of the wind speed or turbulence
on the measured surface would be detected.

The user needs to set up the Maximum variation coefficient
accepted for the samples belonging to the same scan. The
software will find the scans where the limit is exceeded, at any
wavelength, and this will be reported in the Scans with problems
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section. The samples that need to be checked can be individually
analyzed on the graphical window, where it is possible to visualize
all the samples in a single graph, identifying (zooming in and out)
and deleting those spectral signatures with problems.

It is important to mention that the samples selected with
problems within a same scan, do not necessarily need to be
modified. This decision will depend on the magnitude of the
differences between samples and the number of wavelengths
involved. In cases where the user decides to intervene in a scan,
it is possible to select and delete one or more samples from the
Samples to delete section.

Outlier Analysis
This third filter is designed for rapid identification of problems
associated with inconsistencies within spectral data. When
outlier data is found, it will be necessary to evaluate the
permanence of these in the data matrix.

Because of the high number of genotypes and samples per
scan, it is difficult to identify data points that do not follow the
general trends. Field experience has proven that is common to
find small clouds of data whose main source of error comes

from the calibration process. For example, the sun’s movement
throughout the day requires calibrations to be performed every
10–15 min. Due to distractions or tiredness during long working
hours, the calibration can be forgotten, generating differences
in the sun’s incidence angle and therefore variations in the
reflectance readings. Another form of user error, although less
common and related to specific devices, may occur if the user
has left the mouse cursor on one of the calibration icons
(optimization, dark current, or white reference), performing an
unconscious and incomplete calibration with a random click and
thus generating undetectable reading errors.

In this module, it is possible to integrate a visual analysis of the
reflectance and the response variable data at the same time. The
user has four graphs to explore outlier information, evaluating
different SRIs, and traits. In this section, it is also possible to Edit
each graph, selecting data that need to be removed from the data
matrix.

For these actions, the software will average the samples per
scan to generate each SRI. This is important because the user
should check the Noise Analysis and Scan Analysis modules
first.

FIGURE 1 | Main screen divided horizontally into three sections: analysis, input data, and command history. Screen shows loaded databases (spectral and

response variable data files); the transpose data option is also available for the spectral matrix.
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FIGURE 2 | Example of noise analysis showing 400 scans (x 3 samples ea.) prior to (A) and after (B) the noise filter was applied. On both windows, red crosses

(top) show where the maximum percentage of variations was exceeded and black crosses (top) where both criteria (% and the number of neighbors) were detected.

Collinearity Analysis
Collinearity or multicollinearity is a problem in regression
analysis where the predictor variables “X” are themselves
highly correlated (Draper and Smith, 2003). With the use
of high-resolution spectral reflectance data, the collinearity
problem is inherent to the data collection method employed
because several wavelengths are highly correlated. If the
goal is to understand how several predictor variables impact
on a specific response variable “Y,” the collinearity is a
big issue. Therefore, depending on the modeler’s interest, it
may be necessary to implement a collinearity analysis before
construction of complex models (e.g., multilinear regression
model).

In this module, the user can identify wavelengths that
deliver the same predictive information for a given response
variable, keeping only those that best explain it. This analysis
can be performed (collinearity test setting) by linear regression,
indicating the threshold coefficient of determination (R
square cutoff ), or through Artificial Neural Networks (ANN),
considering a training process by Levenberg-Marquardt
(trainlm), and Mean Squared Error (MSE) as a performance
indicator. Depending on the data matrix and computer
performance, the non-linear approach (ANN) could take several
minutes or hours.

Individual Wavelength Analysis
For the construction of new SRIs and regression models, it
would be desirable to know the degree of dependency between
individual wavelengths and the response variable. In this module,
the researcher can study the behavior of each wavelength relative
to each variable under study, considering one, or more of the
following models:

(1) Polynomial 1: y = p1 · x+ p2
(2) Polynomial 2: y = p1 · x2 + p2 · x+ p3

(3) Weibull: y = p1 · p2 · x(p2−1) · e(−p1·xp2)

(4) Exponential: y = p1 · e(p2·x)

(5) Power: y = p1+ p2 · x(p3)

(6) Logarithmic: y = p1 · ln(x)+ p2

For this analysis, the user can select different statistics to sort
the results (adjusted and non-adjusted determination coefficient,
root mean squared error, sum of squares due to errors, and
degree of freedom). It is also necessary to set up a minimum
or maximum value for the selected statistics in order to export
just those results (Values above or below). The exported file
will show, for each wavelength, the statistics values for the
selected model(s) where those minimum or maximum values
were met.

This module and the following one (SRI analysis) work
with sample averages, forcing the user to perform a deep
preliminary analysis, thus avoiding any error in the data
matrix.

Spectral Reflectance Index (SRI) Analysis
The implementation of concatenate formulas in spreadsheets is
helpful for automating time-consuming procedures. However,
due to the number of scans, samples per scans, measured
wavelengths, evaluated response variables, and tested SRIs, the
physical size of the resulting spreadsheets (several MB) implies
the need for high performance computers.

By evaluating the same regression models reviewed with the
previous function, the user will be able to identify the SRIs
(initially 255: Jordan, 1969; Rouse et al., 1973; Rouse, 1974;
Tucker, 1979; Hardisky et al., 1983; Guyot and Baret, 1988;
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FIGURE 3 | Example of scan analysis. The software divided the scans or plots between those that did not surpass the maximum accepted variation coefficient

(Scans without problems) and those where it was exceeded (Scans with problems). Scan 399 was selected, and its first sample (red) was identified for deletion (Apply

filter).

Guyot et al., 1988; Huete, 1988; Baret et al., 1989; Clevers, 1989;
Curran, 1989; Hunt and Rock, 1989; Major et al., 1990; Barnes
et al., 1992, 2000; Chappelle et al., 1992; Gamon et al., 1992;
Peñuelas et al., 1993a,b, 1994, 1995, 1997; Vogelmann et al., 1993;
Carter, 1994; Gitelson and Merzlyak, 1994, 1997; McMurtrey
et al., 1994; Qi et al., 1994; Roujean and Breon, 1995; Smith et al.,
1995; Chen, 1996; Chen and Cihlar, 1996; Filella et al., 1996;
Fourty et al., 1996; Gao, 1996; Ma et al., 1996; Rondeaux et al.,
1996; Huete et al., 1997; van Deventer et al., 1997; Blackburn,
1998, 1999; Datt, 1998, 1999; Merton, 1998; Peñuelas and Filella,
1998; Gamon and Surfus, 1999; Gitelson et al., 1999, 2001,
2003, 2005, 2006; Merzlyak et al., 1999; Peñuelas and Inoue,
1999; Daughtry et al., 2000; Marshak et al., 2000; Thenkabail
et al., 2000; Broge and Leblanc, 2001; Raun et al., 2001; Zarco-
Tejada et al., 2001, 2003a,b, 2005; Broge and Mortensen, 2002;
Haboudane et al., 2002, 2004; Read et al., 2002; Serrano et al.,
2002; Sims and Gamon, 2002; Gupta et al., 2003; Hansen and
Schjoerring, 2003; Steddom et al., 2003; Viña, 2003; Dash and
Curran, 2004; Gandia et al., 2004; Le Maire et al., 2004, 2008;
Schlemmer et al., 2005; Zhao et al., 2005; Vincini et al., 2006;
Babar et al., 2006a,b; Mirik et al., 2006a,b; Inoue et al., 2007,

2008; Prasad et al., 2007; Rodríguez-Pérez et al., 2007; Zhu et al.,
2007; Rama Rao et al., 2008; White et al., 2008; Wu et al.,
2008a,b; Richter et al., 2009; Serbin et al., 2009; Stroppiana et al.,
2009; Yañez et al., 2009; Dzikiti et al., 2010; Herrmann et al.,
2010; Mistele and Schmidhalter, 2010; Yao et al., 2010, 2011;
Garrity et al., 2011; Hernández-Clemente et al., 2011; Main et al.,
2011; Pimstein et al., 2011; Tian et al., 2011, 2014; Winterhalter
et al., 2011; Wang et al., 2011a,b) having the higher adjusted
coefficients of determination (Adj. RSquare values above) in
relation to a response variable. Internally, the software will select
all combinations (regression model, SRI, and response variable)
where the adjusted coefficient of determination was reached. The
Export data option will generate a report that includes all the
statistics analyzed in the previous function for the best-evaluated
regression model and for each one (in the case that more than
two were tested).

For publication purposes this module also includes an
exportable Detailed index report, where it is possible to select
specific SRIs and response variables. The report will include the
SRI and variable values for each of the measurements, allowing
the user to create XY graphs.
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FIGURE 4 | Example of outlier analysis showing four scatterplot graphs (NDVI, SR, PRI and WI vs. Yield) (A). Using the Edit function, NDVI vs. Yield was

used to select scans with NDVI values below 0.31 (B) for deletion (C).

FIGURE 5 | Example of collinearity analysis for deletion of wavelengths delivering the same predictive information for Yield. The analysis, considering a

linear regression method (R square cutoff = 0.95), selected 131 wavelengths without collinearity.

OPERATIONAL EXAMPLES OF SK-UTALCA

Testing Data Sets
During the 2011/12 growing season, 386 genotypes of wheat

(Triticum spp. L.) from different breeding programs (INIA-Chile,

INIA-Uruguay and CIMMYT) were assessed under three water
regimens (fully irrigated, mild water deficit and severe water
deficit). This trial was established at Santa Rosa Experimental
Station (36◦ 32′ S, 71◦ 55′ W; 217 m.a.s.l.), Regional
Research Center INIA Quilamapu (Chillán, VIII Region, Chile),
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FIGURE 6 | Example of the individual wavelength analysis module. The relationships were searched by considering Yield and a coefficient of determination

higher than 0.3 (A). Results were plotted for visual analysis (B) and exported to a spreadsheet (C).

considering an alpha-lattice design (386 genotypes + 2 cvs.
replicated seven times to assess field variability) and two
replications.

Reflectance measurements were performed using a portable
spectroradiometer (FieldSpec R© 3 Jr, ASD Inc., Boulder, CO,
USA) (350–2500 nm), between 12:00 and 16:00 h, on clear
days (solar radiation higher than 800 Wm−2). Prior to the first
measurement and every 15 min, the equipment was calibrated
using a field reference panel (Spectralon, ASD Inc., Boulder, CO,
USA). The equipment was configured to read three samples per
scan. Each plot (genotype) was scanned once.

A detailed methodology can be found in Lobos et al.
(2014). For purposes of this article, only one environment (fully
irrigated), one phenological stage (grain filling) and one replicate
will be considered.

Data Analysis
In this section, we highlight some of the key results of the analysis
performed using the SK-UTALCA software.

Setting Up
Prior to analysis the user needs to: (i) load the spectral data file
(denoted as “x”); (ii) load the response variable(s) file (denoted as
“y”); and (iii) define the number of samples per scan (in this case
three). Wavelengths need to be placed in columns and samples in
rows; the transpose data function is available.

The file format for the spectra (Genotype, Wavelength1,
Wavelength2, Wavelength3, ... Wavelengthn) and the response
variables (Plot, Genotype, Replication, Variable1, Variable2,...
Variablen) are presented in Figure 1. If for any reason the user

realizes that there are missing plots (no spectral information)
before the spectral data is uploaded, keeping in mind the sample
number per scan, those rows can be left empty. If calibration
data is among the spectral data output from the spectrometer, it
should be removed prior to uploading the reflectance data (x).

Once the data has been loaded into the software and the
wavelengths are arranged into columns, it is possible to start the
analysis.

Noise Analysis
To apply this filter it is necessary to indicate the wavelength
segment for analysis, the cutting criteria (Group or Individual),
the maximum percentage of variations accepted (%), and the
number of neighbors (N size). The selection of each wavelength
segment and the criteria for each one (% and N Size) will
depend on the user experience and the environmental conditions
where the measurements were taken; for example, noise at 1800–
1950 nm and 2350–2500 nm is usually wider and stronger than at
1300–1400 nm, so the criteria should consider higher values of %
andN Size for the first two segments. In this operational example,
the filter was applied to the whole spectral range (350–2500 nm)
considering a group filter, with five wavelengths as N size and
a maximum accepted variation among them of 20%. Figure 2
shows the results prior to (A) and after (B) the filter was applied.
In this case, the filter was able to detect two main noise zones
from 1833 to 1935 nm and from 2422 to 2500 nm.

Scan Analysis
The Scan analysis module allows detection of abnormal
variations among samples within the same scan. In this
operational example, the Scan analysis was applied using the
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FIGURE 7 | Example of the SRI analysis module. Three regression models were selected to search for SRI and response variables with a minimum adjusted

coefficient of determination of 0.25 (A). The exported file shows the adjusted coefficient of determination for the best approximation (Best) and for each selected

regression model (B). When a detailed report is required (C), the SRI value for each scan is calculated automatically (D).

function Run from the current data, that is to say, considering
the results obtained using previous filter (without spectral noise).
TheMaximum variation coefficient was set at 0.5%. The software
was able to select 383 scans or plots without problems and
17 where the threshold was exceeded (5, 26, 36, 112–113, 119,
144, 181, 223, 233, 274, 348, 356–358, 395, and 399). In the
Figure 3, scan or plot 399 is graphed, and the first sample
(1195 on red) was selected for deletion. This result could be an
indicator of a measurement problem associated with the operator
(modification of the measurement angle) or external conditions
(e.g., wind speed) during the first sample integrations. In case of
all samples from a specific scan need to be deleted, the software
will maintain this scan as empty rows, avoiding problems in
further analyses.

Outlier Analysis
This module is a simple and exploratory analysis to identify
outlier scans, allowing the user to detect field measurement
problems (e.g., calibration). Four scatterplot graphs will show the
relationship between any SRI available on the software database

and the loaded response variables. If a problem is detected,
it is possible to use the Edit option to manually remove the
samples. In this operational example, the relationship between
NDVI and Yield was used to inspect the possible outlier samples.
Figure 4A shows how different SRIs (NDVI, SR, PRI, and WI)
can generate different data distributions, helping the user in cases
where problems are not so evident; on the top left graph (NDVI
vs. Yield) two clouds of data points can be identified, divided at
the NDVI value of 0.31.

Once the information from the smaller data cloud was
analyzed (NDVI < 0.31), it was evident that the data set
corresponded to 96 contiguous scans or plots (104–200),
suggesting that there were problems associated with the
measurement. When information from the spectrometer was
checked, it was concluded that the operator had skipped one
calibration. It is always important to check the pertinence
of negative SRI values because they are probably related to
measurement errors.

After identification of the origin of a particular problem, any
graph can be selected for editing. In this example (NDVI vs.
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Yield), the scan with the problem can be selected (Figure 4B) and
deleted (Figure 4C).

Collinearity Analysis
Using linear regression or ANN, the collinearity analysis
module identifies wavelengths that delivering the same predictive
information for a given response variable, keeping only those
that best explain it. In this operational example, collinearity
analysis was applied by considering the results obtained from
the scan analysis (Run from current data), with Yield being the
response variable in the linear regression (R square cutoff =

0.95). Results of this analysis found 131 wavelengths without
collinearity (Figure 5).

Individual Wavelength Analysis
In this module it is possible to assess the relationship of individual
wavelengths and a given response variable. Three regression
models were selected (Polynomial 1 and 2, and Exponential)
to search for wavelengths with determination coefficients above
0.3 in relation to Yield (Figure 6A). If the user selects Plot all
results, a graph will show the wavelengths below and above
the determination coefficient cutoff (Figure 6B). These results
can be exported to a spreadsheet; for each selected regression
model, only wavelengths where the chosen statistic surpassed the
cutoff will be shown (Figure 6C). In this operational example,
there were three groups of wavelengths with determination
coefficients above the threshold: 733–1139, 1409–1815, and
1936–2421 nm.

Spectral Reflectance Index (SRI) Analysis
As in the previous module, when different regression models
were considered, SRI analysis has the option to evaluate the
relationship between all loaded response variables and all
SRIs available in the software database. For this example,
three regression models were selected (Polynomial 1 and 2,
and Exponential) to search the SRIs and response variables
with an adjusted determination coefficient higher than 0.25
(Figure 7A). When Export data is selected, all relationships
with adjusted determination coefficients higher than 0.25 will
be reported (Figure 7B); the results, which are organized
according to the loaded variables (column A) and SRIs
(column B), show which regression model had the highest
determination coefficient (Best) for each SRI, as well as its
statistics [adjusted and non-adjusted determination coefficient,
root mean squared error (RMSE), sum of squares due to errors
(SSE) and degree of freedom (DFE)] (columns C–H). The
results for each evaluated regression model are also described
(Polynomial 1: columns I–M; Polynomial 2: columns N–R, and
so on). In this screen example, the adjusted R2 varied between
0.257 (Datt 850;710;680) and 0.406 (DLAI 1725;970), with
these SRIs having the highest and lowest RMSEs, respectively
(Figure 7B).

The selection of Open selection dialog (Detailed index report)
enables the user to select specific SRIs and response variables for
figure elaboration (Index report, Figure 7C). In this operational
example, three SRIs (AI, BI, and CI) and one response variable
(Yield) were selected. The SRI value for each scan or plot is given

(Figure 7D) so the user can generate XY scatter plots for each
tested SRI (X) and response variable (Y).

CONCLUSIONS

Spectral Knowledge (SK-UTALCA) is a software package
that allows an easy and fast exploratory analysis of high-
resolution spectral reflectance data, providing the user with
tools to detect measurement problems and the generation
of key information for later modeling. SK-UTALCA is
especially useful for plant breeding or any other research
area where the number of measurements (big data files)
involves long working hours that increase the risk of making
involuntarily mistakes. This freely-available software is the
result of several years of measurements and analysis of
spectral data oriented toward the prediction of traits in plant
breeding.
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Seed shattering in crops is a key domestication trait due to its relevance for seed

dispersal, yield, and fundamental questions in evolution (e.g., convergent evolution).

Here, we focused on pod shattering in common bean (Phaseolus vulgaris L.), the most

important legume crop for human consuption in the world. With this main aim, we

developed a methodological pipeline that comprises a thorough characterization under

field conditions, including also the chemical composition and histological analysis of the

pod valves. The pipeline was developed based on the assumption that the shattering

trait itself can be treated in principle as a “syndrome” (i.e., a set of correlated different

traits) at the pod level. We characterized a population of 267 introgression lines that

were developed ad-hoc to study shattering in common bean. Three main objectives

were sought: (1) to dissect the shattering trait into its “components,” of level (percentage

of shattering pods per plant) andmode (percentage of pods with twisting or non-twisting

valves); (2) to test whether shattering is associated to the chemical composition and/or

the histological characteristics of the pod valves; and (3) to test the associations between

shattering and other plant traits. We can conclude the following: Very high shattering

levels can be achieved in different modes; shattering resistance is mainly a qualitative

trait; and high shattering levels is correlated with high carbon and lignin contents of the

pod valves and with specific histological charaterstics of the ventral sheath and the inner

fibrous layer of the pod wall. Our data also suggest that shattering comes with a “cost,”

as it is associated with low pod size, low seed weight per pod, high pod weight, and low

seed to pod-valves ratio; indeed, it can be more exaustively described as a syndrome at

the pod level. Our work suggests that the valve chemical composition (i.e., carbon and

lignin content) can be used for a high troughput phenotyping procedures for shattering

phenotyping. Finally, we believe that the application of our pipeline will greatly facilitate

comparative studies among legume crops, and gene tagging.

Keywords: domestication, domestication syndrome, shattering, common bean, phenotypic analysis, element

composition analysis, cell wall analysis
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INTRODUCTION

The loss of seed shattering occurred independently in several
crops and in different areas of the world during the domestication
of many food crops, as this loss was crucial for adaptation of
the plants to the agro-ecosystem, to provide ancient farmers
with easier and more abundant harvests (Tang et al., 2013).
Non-shattering/indehiscent types emerged in maize, barley,
and rice (see Li and Olsen, 2016, for a review). Maize was
domesticated in the New World, in Mexico, while barley and
rice were domesticated in the Fertile Crescent of the Old
World and in south-east Asia, respectively. Similarly, among
the legume crops, indehiscent phenotypes emerged in soybean
and common bean, which were domesticated in the Old
World and the New World, respectively (Hymowitz, 1970;
Harlan, 1992; Bitocchi et al., 2012; Schmutz et al., 2014).
However, fully indehiscent phenotype emerged in common
bean only after domestication with the development of snap
varieties that are used for the production of green beans
due to the absence of fiber strings along the pod valves.
In other domesticated commercial classes (e.g., dry beans)
shattering traits it is only reduced from that observable in wild
populations.

Thus, deciphering the genetic basis of pod shattering is
important for evolutionary studies, particularly to unravel the
mechanisms of parallel evolution (Lin et al., 2012; Dong and
Wang, 2015), and also because this will provide breeders with key
information to manipulate this trait to reduce yield loss (Singh,
2001; Santalla et al., 2004). For the same reason, the genomic
information would be a great tool to facilitate the exploitation
of exotic germplasm in common bean breeding. The potential
of these studies is well-represented by those that have been
conducted in cereals (Lin et al., 2012). However, in legumes,
“studies of the identification of pod-shattering genes lag far
behind those of the cereal crops” (Li and Olsen, 2016).

The shattering system of legume crops is distinct from that of
cereals (Li andOlsen, 2016). In legumes, dehiscence is subsequent
to the “hygroscopic movement” of the pod valves following
dehydration. The release of the accumulated elastic tension
during dehydration results in the splitting of the valves along
their suture lines (Elbaum and Abraham, 2014). The ability to
undergo this movement has often been attributed to specific
patterns of lignification of the pod-valve tissues.

Among legumes, The most relevant studies on pod dehiscence
have been conducted in soybean. Histological analysis has
shown that shattering wild genotypes differ from non-shattering
varieties in terms of the degree of lignification of the cells along
the suture lines of the pod valves (Dong et al., 2014). Among the
cultivated germplasm, differential lignification of the lignin-rich
inner sclerenchyma of the pod walls also influences the level of
shattering (Funatsuki et al., 2014). Single major genes underlying
these histological differences have also been cloned (Dong et al.,
2014; Funatsuki et al., 2014). The loss of pod dehiscence has
been studied to some extent in lupin, chickpea, pigeonpea, pea
yardlong bean, and wild cowpea (Ladizinsky, 1979; Muehlbauer
et al., 1998; Boersma et al., 2007, 2009; Weeden, 2007; Abbo et al.,
2009; Suanum et al., 2016).

In common bean, there are few such data available. The
pioneering studies date to almost a century ago (Lamprecht,
1932; Prakken, 1934). These attempted to index pod-shattering
resistance not only based on the occurrence of valve splitting
(presence/absence), but also depending on the mode of
shattering; i.e., based on the degree of torsion (twisting/spiral
coiling) of the pod valves after dehiscence (Lamprecht, 1932),
and on suggested histological differences between shattering and
non-shattering types, mainly in the lignification patterns of the
valves tissues (Prakken, 1934). Oligogenic (Lamprecht, 1932)
and monogenic (Prakken, 1934) bases for the genetic control
of this trait were also proposed. Several decades later, in the
pioneer study of Koinange et al. (1996) the pod strings locus (St)
was mapped on chromosome 2, and it was proposed to control
the differences in shattering between the wax snapbean Midas,
an Andean commercial cultivar, and the wild Mesoamerican
accession G12873 (Koinange et al., 1996). This locus did not co-
segregate with two candidate genes PvSHP1 and PvIND, even if
PvIND is linked to the St locus (Nanni et al., 2011; Gioia et al.,
2012).

The aim of this study was to conduct a comprehensive
phenotypic investigation of pod shattering in common bean.
With this aim, we also set up a phenotyping pipeline that
comprises characterization under field conditions, including the
chemical composition, and histological analysis of the pod valves.
Following this pipeline, we characterized a population of 267
introgression lines (ILs) that were developed ad-hoc to study
pod shattering in common bean. In more detail, we pursued the
following three goals:

1) To dissect the shattering trait into its “components,” as
level (percentage of shattering pods per plant) and mode
(percentage of twisting and non-twisting pods per plant). This
will answer the question of how the level and the mode of
shattering predict the resistance to (manual) shattering.

2) To test whether the occurrence, level, and mode of shattering
depend on the chemical composition and histological
characteristics of the pod valves. This will help to determine
the mechanism of shattering, and it will also allow
identification of traits that are useful to surrogate or
complement the phenotypic characterization. This might be
useful for the development of screening methods that are
implementable for high-throughput phenotyping platforms
(Fiorani and Schurr, 2013).

3) To test the relationships between pod shattering and other
plant traits. This will allow the question to be answered
in terms of whether pod shattering itself can be treated
as a “syndrome” (i.e., a set of correlated phenotypic
characteristics), particularly at the pod level, instead of as a
single individual trait.

MATERIALS AND METHODS

Plant Materials
A population of 267 introgression lines was phenotyped, which
was representative of a larger set of about 1200 introgression
lines developed in the Papa laboratory (Università Politecnica
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delle Marche, Ancona, Italy) in collaboration with the Attene
laboratory (Università degli Studi di Sassari, Sassari, Italy).
The population was developed starting from a backcross
between the line MG38 belonging to the recombinant inbred
line (RIL) population used by Koinange et al. (1996) and
the recurrent parent MIDAS (Figure 1). The MG38 line is a
RIL obtained from a cross between the wild Mesoamerican
genotype, G12873, and the Andean snap bean variety MIDAS.
The MG38 genotype was selected for some wild pod traits
(small size, curved shape, pigmented valves, pod shattering), and
seed characteristics (very small size). However, for other traits
(e.g., determinacy, seed dormancy, photoperiod sensitivity),
MG38 was selected for domesticated phenotypes to facilitate
the population development and increase. Based on amplified
fragment-length polymorphism analysis, MG38 has 55% of the
genome attributable to the wild Mesoamerica parent G12873
(Papa, unpublished data). MIDAS is characterized by large and
relatively straight, yellow and snap bean non-shattering pods,
with relatively large seeds.

To obtain the introgression lines, MG38 was back-crossed
with MIDAS as a recurrent parent, and different cycles of back-
crossing and selfing were carried out together with selection
for the wild characteristics of the pods and seeds. Among the
267 lines analyzed in this study, 70 belonged to BC3/F4:F5
families, and 217 to BC3/F6:F7 families. Overall, in the field 130
families were represented. Among these families, 101 families
were represented by at least two ILs. In some case, there were
three ILs per family (i.e., 29 families were represented by one
individual). Precisely, there were 19 BC3/F4:F5 families and 82
BC3/F6:F7 families represented with at least two ILs summing up
to 232 ILs.

Phenotypic Characterization
The phenotyping data presented here were obtained in 2014,
between May and October (sowing date, May 19). The
experimental layout comprised eight rows, each with 35–38
holes; the distance between rows was 1.5 m; the distance between
holes (within the rows) was 0.8 m. For each line, a single
plant was grown in each single hole. The two parents, MIDAS
and MG38, were replicated three times. The positions of the
lines were completely randomized. A plastic sheet was used
along each row to facilitate weed control (Supplementary Figure
1A). Standard agronomic practices were adopted, in terms of
irrigation, fertilization, and pest control. The meteorological
conditions were hot and dry with many days with maximum
temperature over 30◦ (Supplementary Figure 1B). Under these
conditions, ILs had the opportunity to fully express their
shattering phenotype.

Measuring Pod Shattering in the Field
We evaluated shattering after each plant reached full maturity.
For each plant, we first distinguished between fertile and sterile
pods. The numbers of “naturally” shattering and non-shattering
pods were then counted. Fertile pods were further classified
into different types, as exemplified in Figure 2A. Four pod
categories were recognized: Indehiscent; “fissured,” with valves
that were not perfectly closed along the ventral suture; dehiscent

FIGURE 1 | Representative photographs of the differences between

the MG38 (Left) and MIDAS (Right) common beans for pod and seed traits

(photographs: M.L. Murgia, D. Rau).

with non-twisting valves; and dehiscent with twisting valves.
It was sometimes difficult to distinguish between these last
two categories because of the presence of intermediate cases.
Nonetheless, on the basis of this classification, the number of
pods falling into each category was counted for each plant
(Figure 2B). For the statistical analysis, the number of pods was
expressed as the percentage of the fertile pods produced by each
plant.

Furthermore, for each line separately, the shattering of
indehiscent pods was promoted by hand, for the evaluation of
the “resistance to manual shattering,” based on a scale from
1 (i.e., very low resistance to shattering, where valves abruptly
shattered under very light pressure on the distal part of the pod)
to 9 (i.e., very high resistance to shattering, where valves did
not separate and it was necessary to “break” them) (Figure 2C;
see also Supplementary Information and videos). To avoid bias,
the determination of the resistance to manual shattering was
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FIGURE 2 | (A) Flow diagram of the methods used to classify the pods

produced by each plant based on the shattering trait. (B) Manual count of the

pods produced by the individual plants. (C) Classification of the resistance to

“manual shattering” of the pods, into discrete scores from 1 (very easy) to 9

(very difficult) (see also Supplementary videos).

performed independently (i.e., at a different time) from the pod
classification.

Chemical Characterization of the Pod Valves
The chemical composition of the pod valves was investigated to
determine whether the pod shattering was correlated to these

characteristics. This element composition analysis looked at
carbon, hydrogen, and nitrogen. Here, for each introgression line,
2 g dried pod valves was pulverized in a grinder (18,000 rpm, 1
min). The pulverized tissue was transferred into plastic 50-mL
tubes and stored for a few days at room temperature in a cool,
dry place. The analyses were performed using 0.080 g pulverized
tissue from each line. The samples were combusted at 1,000◦C in
an excess of oxygen using an element analyser (LECO CHN 628;
Leco Corporation, St. Joseph,MI, USA), to determine the carbon,
hydrogen, and nitrogen contents. The instrument was calibrated
using the “oat meal 502276” forage standard with 46.43% carbon
and 2.64% nitrogen. For each run, three independent samples of
the standard were included.

The analysis was first performed considering the two parental
lines, MIDAS and MG38, with each as three biological replicates
(i.e., three plants were grown for each parent). For each
biological replicate, there were three technical replicates (i.e.,
three independent analyses). As there were highly significant
differences between the two parents (see Results), the analysis
was extended to all of the introgression lines. Three technical
replicates were performed for each introgression line.

Cell-wall Analysis
For each individual plant, 6 g dried valves were pulversed in a
mill (Retsch SM 100) for 10 min. The procedure of Van Soest
and Wine (1967) was then followed. First, the neutral detergent
fiber was quantified, which represents the total content in the
cell wall of the analyzed sample. Thus, the acid detergent fiber
was determined, which mainly represents an intermediate step
that is necessary to extract the acid detergent lignin, which
correlates with the lignin content of the sample analyzed. We
also calculated the differences for the neutral detergent fiber
minus the acid detergent fiber, and the acid detergent fiber minus
the acid detergent lignin, which provided rough estimations of
the hemicellulose and cellulose contents, respectively (Van Soest
and Wine, 1967). All of these chemical fractions are expressed
as percentages of the dried organic matter after subtracting the
weight of the ashes (see Supplementary Information for further
details).

This analysis was initially performed for MIDAS and MG38,
for which three biological replicates were available. For each
biological replicate, three technical replicates were included. As
the analysis of variance (ANOVA) showed clear-cut differences
between the parent lines, the cell-wall analysis was extended
to 12 indehiscent introgression lines, and 12 high-shattering
introgression lines (>65% shattering, as seen for MG38, the
wild-like parent).

Anatomical and Histological Study of the Pod Valves
This study had the specific aim to look for differential patterns
between the shattering and non-shattering lines, particularly for
lignin deposition. The analysis was conducted considering 5- and
20-days-old pods, and pods at the maturation stage. The pods
were kept in a solution of 95% ethanol and glacial acetic acid (5:2,
v/v) for 3 days, and then stored at 4◦C in 70% ethanol. Sections
of the ventral and dorsal suture sheath were obtained manually.
The sections were treated with Javelle water (an aqueous solution
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containing sodium hypochlorite and some sodium chloride, used
as a bleach and disinfectant) for∼10 min. After this washing, the
sections were immersed in 50% acetic acid for a few minutes.

The pod valves were also embedded in paraffin, and 10-µm
sections were obtained using a sliding microtome (Reicher) (see
Supplementary Information for further details). The manually
obtained sections were stained according to two different
methods: Toluidine blue O (TBO), and carmine-iodine green;
whole microtome sections were stained only with toluidine
blue O. The toluidine blue O was used to differentially stain
polysaccharides and lignin, whereby cells with thick lignified
walls are sky blue, and cellulose and hemicellulose are dark blue
(Mitra and Loqué, 2014). With carmine-iodine, lignin is green,
and cellulose is pink (Deysson, 1954).

Phenotyping of the Other Plant Characteristics
To allow the study of the relationships between shattering and the
other plant traits, a total of 27 traits were recorded (7 qualitative,
20 quantitative). These were: Number of cotyledonary leaves
(two, three); angle of the cotyledonary leaves (60◦, 120◦, 180◦);
lobature of the cotyledonary leaves; stem color (green, red);
growth type (non-climbing, intermediate, climbing); flower color
(white, light purple, dark purple); pod color (yellow, striped,
with from 1 to 3 stripes); plant height (cm); plant vigor (height
per width; cm2); flowering time and pod setting (days from
May 19); pod weight per plant (g); valve weight per plant (g);
seed weight per plant (g); number of pods per plant; number
of seeds per plant; mean pod weight (g); mean valve weight
(g); 100-seed weight (g); weight of seeds per pod (g); number
of seeds per pod; Harvest Index at pod level. To avoid loss of
seeds at the maturation stage in the shattering plants, mature
pods were (almost) enveloped in plastic nets (Supplementary
Figure 2). Moreover, at the end of the ripening stage (i.e.,
before shattering occurred), 10 pods per introgression line were
randomly sampled. These were scanned, and the acquired images
(600 dpi) were processed with the Tomato Analyzer software
(Rodríguez et al., 2010), to determine the following pod traits:
Perimeters; area; curved height; maximum height; maximum
width (Supplementary Figure 3). All of these measures were
in pixels. We also calculated the ratio of the curved length
to maximum height, where a ratio of 1.0 indicates a perfectly
straight pod, while ratios <1 indicate a more or less marked “C”
shapes of the pods. All of these variables must be referred to the
projection area of the pod on the scanner glass. The procedure
was first set up for the parental lines, MG38 and MIDAS. The
analysis was then extended to all of the other introgression
lines. For statistical analysis, 10 pods per introgression line were
considered, and the means were calculated.

Statistical Analysis
For each variable used to describe shattering, the frequency
distribution was first determined. Associations between variables
were quantified using Pearson “r” coefficient (quantitative traits)
or contingency analysis (qualitative traits). Differences among
groups of lines for the various phenotypic and chemical traits
were tested using one-way analysis of variance (ANOVA),
considering each line as a “replicate” of the group.

Resistance to manual shattering was modeled based on the
other six indicators of pod shattering: Indehiscent (%); valves
separated to some degree (%); fissured (%); shattering (%); non-
twisting (%); twisting (%) (see Figure 2). With this aim, the
method of recursive partitioning was adopted, which is also
known as decision-trees analysis. This is particularly indicated to
investigate relationships among variables without having an a-
priori model, and it is particular powerful as it considers a very
high number of possible partitions, and takes into consideration
only the best one (see JMP version 7, User Manual; SAS Institute
Inc., Cary, NC, USA). In this case, the categorical X variable was
the degree of “resistance to manual shattering” (scored as 1 to 9),
while all of the other six indicators of shattering were considered
as possible explanatory Y variables. Thus, it was possible to obtain
a hierarchal system of (dichotomic) criteria that allowed the
prediction of the manual shattering resistance from the observed
level andmode of shattering. Statistical analysis of the phenotypic
data was all performed using JMP version 7 (SAS Institute Inc.,
Cary, NC, USA).

RESULTS

Shattering Level and Mode
As expected, the two parental lines showed highly contrasting
phenotypes for pod shattering: MIDAS was completely
indehiscent, while MG38 was highly dehiscent, with a mean of
65% shattering pods per plant. Moreover, 98% of the variance for
shattering occurrence was located among-families indicating a
very limited role of environmental factors influencing this trait
in the population of ILs grown under our field conditions (see
Supplementary Information and Supplementary Table 1).

Table 1 gives the descriptive statistics for the six variables
measured to characterize the introgression lines for the pod-
shattering trait.

The introgression lines were highly variable for the pod-
shattering trait, as the indehiscent pods per plant ranged from
3.9 to 100%, with a mean of 50.4%. Twenty-nine introgression
lines (∼10% of the total) were completely indehiscent. The pods
per plant with valves separated to some degree ranged from 0
to 96.1%, with a mean of 49.6%. The distribution of these two
variables tended to bimodality (Supplementary Figure 4). The
fissured pods per plant ranged from 0 to 71.7%, with a mean of
18.0%.

The levels of shattering were highly variable, as the shattering
pods per plant ranged from 0 to 82.6%, with amean of 31.6%. The
modes of shattering were also highly variable, as the non-twisting
and twisting pods per plant both ranged from 0 to ∼60%. Non-
twisting pods were more frequent than twisting pods, with means
of 11.1 and 20.1%, respectively.

The distribution of the trait “resistance to manual shattering”
is illustrated in Figure 3. MIDAS had a score of 8 (i.e., high
resistance), while MG38 had a score of 2 (i.e., low resistance).
The mean for this trait was 4.12 (i.e., medium-low resistance; σ
= 1.96; S.E.= 0.12), and the distribution appeared to be bimodal.
About 15% of the introgression lines showed scores of 1 and 2
(i.e., ≤MG38), while about 10% showed scores of 8 and 9 (i.e.,
≥MIDAS).
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TABLE 1 | Descriptive statistics for the six variables used to measure the

pod shattering trait in the population of bean introgression lines.

Shattering trait Statistics

Mean

(%)

Standard

deviation

(%)

Standard error

of the mean

95%

confidence

interval

Completely

non-dehiscent

50.4 26.7 1.6 47.2–53.6

Valves separated

to some degree

49.6 26.7 1.6 46.4–52.8

– Fissured 18.0 13.4 0.8 16.4–19.7

– Dehiscent 31.6 21.3 1.3 29.1–34.1

– Twisting 11.5 10.9 0.7 10.2–12.8

– Non-twisting 20.1 14.3 0.9 18.4–21.8

Relationships among the Measures of Shattering
Figure 4A shows the relationships between the levels and modes
of shattering. Introgression lines with the same or very similar
levels of shattering (percentage shattering pods per plant) showed
a very different ratio between the twisting and non-twisting
types. For example, among the introgression lines with very high
levels of shattering (>65%), the ratio of non-twisting to twisting
pods per plant varied from ∼25:50 (1:2) to about 60:15 (4:1).
Moreover, these data also suggested that transgressive variation
probably occurred for ∼10% of the lines, which showed higher
shattering thanMG38 (>65%), the highly shattering parental line
(Figure 4A).

The level of shattering was more strongly correlated with the
frequency of non-twisting pods (R2 = 0.71, P < 10−4) than with
the frequency of twisting pods (R2 = 0.57; P< 10−4) (Figure 4B).
In particular, while a low number of twisting pods corresponded
to different levels of shattering, a low number of non-twisting
pods was more indicative of low levels of shattering.

The resistance to manual shattering was modeled considering
the six variables measured to dissect out the shattering trait
(Figure 2, Table 1), with recursive partition analysis applied
(Figure 5). The variable that best predicted resistance to manual
shattering was the shattering pods per plant; i.e., the level of
shattering. Indeed, the threshold of 10% shattering pods defined
two groups of plants with different mean shattering resistance
scores of 3.3 and 7.1; this partition captured 65% of the total
variance for shattering resistance (P < 0.0001; Figure 5). A
second partition suggested a role for the mode of shattering.
Indeed, within the group of introgression lines showing <10%
shattering pods per plant, a threshold of 9% twisting pods defined
two subgroups of plants that had mean shattering resistance
scores of 2.9 and 4.1. This partition captured a small portion,
6%, of the total variance for resistance to manual shattering
(P < 0.0001; Figure 5). A third partition was found within
the group of introgression lines with shattering pods ≥10%.
Here, the threshold of 4.2% of non-sigaroid pods defined two
subgroups of plants with mean shattering resistance scores of
5.3 and 7.5, and these explained an additional 4% of the total
variance for shattering resistance (Figure 5). Thus, cumulatively
these three partitions explained 75% of the total variance. The

FIGURE 3 | Frequency distribution of the scores for resistance to

manual shattering. Scores are from 1 (very easy) to 9 (very difficult) (see

Figure 2C).

fourth partition (not shown) explained 0.8% of the total variance
for shattering resistance, which indicated that dealing with a
more complex model was not necessary.

Chemical Analysis
The pod valves of the two parental lines, MG38 and MIDAS,
had significantly different carbon contents (ANOVA, P <

0.0001; Table 2). The highly dehiscent MG38 had a carbon
content of 43.8% dry weight, which gave a 6.8% increase in
the carbon content of the indehiscent MIDAS, from 41.0% dry
weight (Table 3). ANOVA also revealed a marginally significant
difference for the hydrogen contents (P < 0.047; Table 2), again
in favor of MG38 (6.7% dry weight) compared to MIDAS (6.5%
dry weight; Table 3). The difference in the nitrogen contents was
not significant (P = 0.502) (Tables 2, 3).

The comparison of the indehiscent vs. dehiscent introgression
lines was highly significant for the carbon contents (Table 2).
The dehiscent introgression lines showed a 6.9% increase in the
carbon content of the indehiscent introgression lines, according
to dry weight (Table 3). The indehiscent introgression lines
had the same carbon content as MIDAS, while the dehiscent
introgression lines had the same carbon content as MG38. The
difference between these dehiscent and indehiscent introgression
lines was small, but significant for the hydrogen content although
not for the nitrogen content (Tables 2, 3). The frequency
distribution for the carbon contents tended to be bimodal, while
this was less evident for the hydrogen and nitrogen contents
(Supplementary Figure 5).

The relationship between the carbon contents and the
shattering pods per plant (Figure 6) showed an abrupt transition
in the carbon content that occurred between 5 and 10% shattering
pods per plant (Figure 6A). Partition analysis showed that this
transition occurred at 7.14% shattering pods per plant (not
shown). The definition of the introgression lines into two groups
based on this transition, with the first with <7.14% and the
second with ≥7.14% shattering pods per plant, captured 47% of
the total variance for the carbon contents (Table 2). When the
introgression lines with <7.14% shattering pods were excluded
from the analysis, there was a weak, but significant, negative
correlation (r=−0.296; P< 0.0001) between shattering level and
carbon content (Figure 6B).
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FIGURE 4 | (A) Relationship between level of shattering (percentage

shattering pods per plant) and mode of shattering (percentages twisting and

non-twisting). Deep blue, no shattering; red, high shattering. (B) Left:

Association between levels of shattering and frequencies of twisting pods.

Right: Association between levels of shattering and frequencies of non-twisting

pods. In both cases, linear and smoothing spline (λ = 10,000) fits are shown.

The associations were tested excluding the completely indehiscent plants.

Cell-wall Analysis
The pod valves of MIDAS and MG38 had significantly
different total fiber contents (ANOVA, P < 0.0001; Table 4).
The fiber content of the highly dehiscent MG38 (62.0%)
showed a ∼48% increase of that of the completely indehiscent
MIDAS (42.0%; Figure 7A). The contents of the three cell-
wall components of lignin, hemicellulose, and cellulose were
always higher for MG38 than MIDAS, with the greatest
difference seen for lignin, followed by hemicellulose and cellulose
(Figures 7B–D). Statistical analysis was carried out to compare
the two groups of introgression lines, the first comprising
the completely indehiscent plants (i.e., non-shattering), and
the second including the plants with >65% shattering pods
per plant (i.e., high shattering) (Table 4, Figures 7A–D). These
two groups strongly differed in their lignin contents, with the
difference for the latter representing a 180% increase of the
former, which was much greater than the increase from the
MIDAS to MG38 parental lines (80%) (Figure 7B). The high
shattering group also showed increases of the non-shattering
group for hemicellulose (33.9%) and cellulose (7.6%) contents,
which were here less than for the parental lines (79.5%, 30.1%,

respectively) (Figures 7C,D). These highly dehiscent (i.e., high
shattering) introgression lines showed lower total fiber content
than MG38 (Figure 7A), which was mainly due to reduction in
the cellulose content, and to a slight, although not statistically
significant, reduction in the hemicellulose content (Figure 7D).
In contrast, these lines had higher lignin content compared to
MG38 (Figure 7B). This suggested that the achievement of the
very high pod shattering ability (here even higher than the wild-
like MG38) is associated with an increase in the proportion of
lignin in the cell wall.

Correlations between the Element
Compositions and the Cell-wall Analysis
The carbon content was strongly correlated with the total
fiber content of the pod valves (r = 0.685); moreover, among
the three cell-wall components (i.e., lignin, hemicellulose,
cellulose), the carbon content showed the best correlation with
the lignin content (r = 0.672; Table 5). Stepwise multiple
regression analysis was performed with the carbon content as the
dependent variable and lignin, hemicellulose, and cellulose as the
independent variables (Supplementary Table 2). Here, the only
variable that entered into the model was the lignin content (P
= 1.85 × 10−5). This thus indicates that the hemicellulose and
cellulose correlation to the carbon content was mainly due to
their correlation with the lignin content.

Anatomical and Histological Analysis of
the Pod Valves
The analysis conducted with 5-day-old pods showed no obvious
differences between the shattering and non-shattering genotypes
(Supplementary Figure 6). The ventral sheath showed only a few
cells with very low levels of lignification. A similar situation was
observed for the dorsal sheath (not shown). There was no lignin
deposition in correspondence with the inner parenchyma cells of
the pod walls.

Analyses of 20-day-old pods showed evident lignin deposition
in the ventral sheath of the pod valves, and a clear-cut
difference between the shattering (i.e., MG38) and non-
shattering (i.e., MIDAS) genotypes (Figures 8A,B). Indeed, the
proportion of cells with thick secondary cell-wall formation
(i.e., sclerenchymatic cells) was clearly greater for MG38 (highly
dehiscent), compared to MIDAS (indehiscent). The absence of
cells with thick secondary cell-wall formation for MG38 was
limited only to the external layer of the cells of the sheath
and to the dehiscence zone, while for MIDAS this involved all
of the sheath (Figure 8B). Moreover, for MG38, the cell-wall
thickness tended to reduce when moving from the sheath to
the dehiscence zone (Figure 8A), where there was the tendency
to easily “fracture” (Figure 8A). A similar pattern was observed
for the dorsal sheath (Supplementary Figure 7). A clear-cut
difference was also seen between the parental MG38 and MIDAS
for the degree of lignification in the inner cells of the pod walls,
with very strong lignification (i.e., sclerenchyma) for MG38, and
complete absence of lignin deposition for MIDAS (Figure 9).

As not all anatomical or histological differences between
the wild-like parent (MG38) and the cultivated varieties
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FIGURE 5 | Results of the recursive partition analysis. Resistance scores for manual shattering varied from 1 (low resistance) to 9 (high resistance). The first

partition identified two groups of introgression lines (with <10% and with ≥10% shattering pods). Within each of these two groups, the second and third partitions

identified two further subgroups, based on the percentages of twisting and non-twisting pods, respectively.

TABLE 2 | Results for the ANOVA performed for the chemical element analysis of the pod valves.

Element MIDAS vs. MG38 Indehiscent vs. dehiscent <7.14 vs. ≥7.14% shattering

M.S. F1,4 P R2
adj

M.S. F1, 227 P R2
adj

M.S. F1, 227 P R2
adj

Carbon 12.30 256.0 < 0.0001 0.92 191.93 105.2 < 0.0001 0.31 286.04 202.92 < 0.0001 0.47

Hydrogen 0.04 8.1 0.047 0.15 0.72 6.7 0.010 0.02 0.29 2.63 0.110 0.01

Nitrogen 0.00 0.5 0.502 0.00 0.10 2.3 0.130 0.01 0.05 1.34 0.250 0.00

ANOVA was applied to the following comparisons: Parental lines MG38 (dehiscent) vs. MIDAS (indehiscent); indehiscent vs. dehiscent introgression lines; and introgression lines with

<7.14 vs. ≥7.14% shattering pods. M.S., Mean Square; Fx/y, F ratio with x and y degrees of freedom for the numerator and denminator, respectively. R2
adj , adjusted R

2; P, significance

level.

(MIDAS) are necessarily correlated with the shattering traits,
two introgression lines (one with shattering >MG38, the
other without shattering) were also compared (Supplementary
Figures 8A–C). Encouragingly, here the patterns were similar
to those observed between MG38 and MIDAS, which suggests

that the histological differences seen do indeed underlie the
shattering/non-shattering phenotypes.

It was difficult to obtain good sections of the pod valves at the
maturation stage because of the fragility of the tissue. However, it
can be noted that at this stage, the ventral sheath of MIDAS had
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TABLE 3 | Mean contents of carbon, hydrogen, and nitrogen of the pod valves as applied to the following comparisons: two parental lines MG38

(dehiscent) vs. MIDAS (indehiscent); indehiscent vs. dehiscent introgression lines; and introgression lines with <7.14 vs. ≥7.14% shattering pods.

Element Comparison N Statistic (% dry weight) Comparison N Statistic (% dry weight) Comparison N Statistic (% dry weight)

Mean 95% confidence

interval

Mean 95% confidence

interval

Mean 95% confidence

interval

Carbon Midas 3 41.0 40.7-41.4 Indehiscent 26 41.7A 41.2–42.2 <7.14% 41A 41.8 41.5–42.2

MG38 3 43.9 43.5-44.2 Dehiscent 203 44.6B 44.4–44.8 ≥7.14% 188B 44.8 44.6–44.9

Hydrogen Midas 3 6.5 6.4-6.6 Indehiscent 26 6.3A 6.2–6.5 <7.14% 41 6.4 6.3–6.5

MG38 3 6.7 6.6-6.8 Dehiscent 203 6.5B 6.5–6.6 ≥7.14% 188 6.5 6.5–6.6

Nitrogen Midas 3 0.6 0.5-0.8 Indehiscent 26 0.5 0.5–0.6 <7.14% 41 0.5 0.5–0.6

MG38 3 0.6 0.5-0.7 Dehiscent 203 0.5 0.5–0.5 ≥7.14% 188 0.5 0.5–0.5

Groups of introgression lines with different letters have significantly different means (P <0.05; Tukey-Kramer multiple comparison tests).

FIGURE 6 | (A) Relationship between carbon contents and levels of shattering. Green shading, individuals for which shattering was <7.14%; orange shading,

individuals for which shattering was ≥7.14%. (B) Relationship between carbon contents and shattering levels excluding individuals with low or no shattering. R2 given

for smoothing spline (λ = 10,000) (red) and linear fit (green).

TABLE 4 | Results for the ANOVA performed for the cell-wall analysis.

Cell-wall component Midas vs. MG38 Indehiscent vs. highly dehiscent

M.S. F1, 4 P R2
adj

M.S. F1, 22 P R2
adj

Total fiber (NDF) 600.2 98.7 <10−3 0.95 825.15 273.04 <.0001 0.92

Lignin (ADL) 9.5 163.0 <10−3 0.97 115.74 305.35 <.0001 0.93

Hemicellulose (NDF-ADF) 129.3 14.0 0.02 0.72 151.43 140.95 <.0001 0.86

Cellulose (ADF-ADL) 100.9 134.1 <10−3 0.96 32.05 14.64 0.0009 0.37

ANOVA was applied to the following comparisons: Parental lines MG38 (dehiscent) vs. MIDAS (indehiscent); and two groups of 12 introgression lines, one completely indehiscent vs.

one highly dehiscent (i.e., with percentage shattering pods >65% of MG38). M.S., Mean Square; Fx/y, F ratio with x and y degrees of freedom for the numerator and denominator,

respectively. R2adj , adjusted R
2; P, significance level.

NDF, neutral detergent fiber; ADL, acid detergent lignin; ADF, acid detergent fiber.

more mechanical resistance than that of MG38, which appeared
to be very fragile instead (Supplementary Figure 9).

Relationships between Pod Shattering and
the Other Plant Characteristics
Table 6 gives the associations between the levels of shattering
(percentage shattering pods per plant) and the other 28

phenotypic traits, of which seven are qualitative and 21 are
quantitative. These included morphological, phenological, and
productive traits. Overall, shattering was very poorly correlated
with all of these plant traits considered. Significant weak
associations were detected for three qualitative traits, four
quantitative–productive traits, and six precision phenotyping
traits that describe pod size and shape (Table 6).
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FIGURE 7 | Results of cell-wall analysis. (A) Total fiber, (B) Lignin, (C) Cellulose and (D) Hemicellulose composition. Comparisons between parental lines MIDAS

(indehiscent) and MG38 (highly dehiscent), and between nonshattering and highly shattering introgression lines. Each group of introgression lines comprised 12

individuals. The group of highly shattering introgression lines had percentages of shattering pods >MG38 (>65%). Green, MIDAS; red, MG38; light green,

non-shattering introgression lines; light red, highly shattering introgression lines. Columns with different letters have significantly different means (P < 0.05;

Tukey-Kramer multiple comparison tests).

For the associations with the qualitative traits, it was observed
that: Plants with red stems showed higher shattering (59.6 ±

12.66%) than those with green stems (31.25 ± 1.30%); plants
with white flowers showed higher shattering (36.52 ± 1.44%)
than those with purple (22.85± 2.67%) and light purple (13.66±
3.96%) flowers; plants with yellow pods showed higher shattering
(35.89 ± 1.44%) than those with striped/yellow pods (17.58 ±

2.80%), with an intermediate position seen for those with striped
pods (30.55± 6.33%) and yellow/ stripped pods (24.92± 5.77%).

For the correlations with the productive traits, valve weight
per plant and mean valve weight increased when the shattering
level increased, with the opposite for 100-seed weight and
Harvest Index at pod level, which decreased when the shattering
level increased (Table 6). In more detail, the oneway ANOVA
between the dehiscent vs. indehiscent introgression lines showed
that the former had significantly higher valve weight per plant
and mean valve weight than the latter, with increases in the
indehiscent introgression lines of 35.4% (P = 0.0085; t-test) and
26.2% (P = 0.0004). In contrast, the opposite was seen for the
100-seed weight and the Harvest Index at pod level, where the
indehiscent introgression lines showed an increase of 15.9% (P

= 0.0002) and 8.9% (P < 0.0001), respectively, to the dehiscent
introgression lines.

The correlations between the levels of shattering with the
six precision phenotyping variables that describe the pod
morphology were significant (from P < 0.0001 to = 0.021) and
all negative (Table 6).

DISCUSSION

Field Phenotyping of the Shattering Trait in
Common Bean
High variations for both levels and modes of pod shattering were
recorded. All of the shattering types were distinguishable, which
varied from completely indehiscent to “twisting,” passing through
the two defined “intermediate” states of “fissured” and “shattering
but non-twisting” (Lamprecht, 1932). Each introgression line was
characterized by counting and classifying the pods into these four
categories, with the degree of resistance to manual shattering also
independently measured.

As shown by the partition analysis, the best predictor of
resistance to manual shattering was the level of shattering
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TABLE 5 | Correlations between the element compositions and cell-wall

fiber contents for the pod valves of the 24 introgression lines, 12

non-shattering, and 12 very high shattering.

Cell-wall component Element composition

%Carbon %Hydrogen %Nitrogen

Total fiber (NDF) 0.685*** 0.038 0.218

Lignin (ADL) 0.672*** 0.081 0.247

Hemicellulose (NDF-ADF) 0.623** 0.140 0.195

Cellulose (ADF-ADL) 0.527* −0.183 0.134

NDF, neutral detergent fiber; ADL, acid detergent lignin; ADF, acid detergent fiber; *P <

0.05; **P < 0.01; ***P < 0.001.

(percentage of shattering pods per plant), while the mode of
shattering (twisting/non-twisting) was less relevant. Moreover, a
low threshold of shattering pods per plant (10%) was sufficient
to distinguish between the low and medium-high resistant
introgression lines. All this suggests that shattering might be
controlled by the “switching” of the mechanism of control that
determines the abrupt change in the possibility of splitting the
pod valves. These data also indicate that when considering both
natural or artificial plant populations, genetic studies aimed at
deciphering the genetic architecture of the pod shattering trait
would benefit from a step-wise approach that comprises the
following: (1) comparing indehiscent vs. dehiscent introgression
lines (regardless of the degree of shattering); (2) considering only
dehiscent introgression lines (regardless of the mode); and (3)
considering separately among the dehiscent introgression lines
those with twisting and non-twisting pods. Indeed, this approach
would allow the genetic basis of the occurrence of shattering
(yes/no) and also its tuning (low/high) and mode (twisting/non-
twisting) to be described. It should also be noted that the variable
of “fissured pods” did not prove useful to predict resistance to
manual shattering; this suggests that this trait would be better
investigated separately from the others.

Element Composition and Cell-wall
Analysis of the Pod Valves
These shattering and non-shattering genotypes clearly differed
in their carbon contents. The contents of carbon, hydrogen,
and nitrogen are expected to be stoichiometrically correlated to
the amount of organic matter in the tissues (Chiariello et al.,
2000), and thus to the cumulative content of carbohydrate,
protein, lipid, and all other organic compounds. However, in
plants, differences in the carbon content have frequently been
correlated to differences in lignin content (Loader et al., 2003).
This was also the case for the valves of common bean; indeed,
the cell-wall analysis here confirmed that the differences in
the carbon contents between the shattering and non-shattering
types were mainly correlated with the differences in the lignin
contents, in comparison with the other cell-wall components (i.e.,
hemicellulose, cellulose).

There was an abrupt increase in the carbon content at
a level of shattering of ∼7.14%. This value was similar to
the threshold of 10% of the shattering pods per plants that
explained the largest proportion (65%) of the variance for

FIGURE 8 | Representative images from the histological study of the

ventral sheath of the pod valves. (A) toluidine blue O (TBO) staining,

showing ventral sheath of pod valves from MG38 (highly dehiscent), and

details of dehiscent zone, thick lignified fibers (sclerenchyma), wood cells,

dehiscent zone after cracking (arrow). (B) TBO staining, showing ventral

sheath of pod valves from MIDAS (indehiscent), with two details of the

indehiscence zone. LF, lignified fibers; WC, wood cells.

resistance to manual shattering. These observations suggest that
environmental effects might act on the level of shattering, and
that the complementation of the whole-plant characterization
and chemical element composition analysis can lead to
more precise and alternative or complementary phenotyping
option.

The comparison of the data in the present study with those
from the literature reveal differences between common bean and
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FIGURE 9 | Representative images with toluidine blue O (TBO) (Upper panels) and carmine-iodine green staining (Lower panels), illustrating differences

between pod valves from MG38 (shattering; left) and MIDAS (non-shattering; right) in terms of the degree of lignification of the inner layer of the sclerenchymatic cells

of the pod wall. VS, ventral sheath; LFL, lignified fiber layer; NLFL, non-lignified fiber layer.

soybean. Indeed, in soybean, the high-shattering cultivars were
shown to have similar lignin contents (not higher, as observed
here for common bean) to the low-shattering cultivars (see
Table 1 of Romkaew et al., 2008). Moreover, in F2 and back-
crossed populations between yardlong and wild cowpea, among
these three fiber components, the contents of hemicellulose
showed the highest correlation with pod shattering (Suanum
et al., 2016). All this suggests that there are histological differences
between other legumes species and common bean, which appear
to be due to differences in the patterns of cell-wall lignification of
the pod tissues, or differences in the prevalent fiber type.

Histological Characterization of the Pod
Valves
The data from the histological characterization of pod valves
in the present study parallel the observations at the chemical
level. Indeed, overall, cell-wall lignification is much more
pronounced in the shattering type than the non-shattering
type for common bean. Specifically, the ventral sheath of the
wild-like genotype (MG38) was characterized by very strong
sclerenchymatization of the cells, while the opposite was seen
for the domesticated cultivar (MIDAS). This observation is
consistent with Prakken (1934), who indicated this anatomical
difference at the basis of the presence/absence of pod strings,
and on the basis of the shattering/non-shattering phenotypes.
Moreover, the presence/absence of pod strings has been shown
to be under the control of the St gene (Koinange et al., 1996).

The histological differences between the shattering and non-
shattering genotypes for common bean in the present study
appear to be more pronounced than those for soybean. Indeed,
for soybean, the differences were limited to the dehiscent zone,
where excessive lignification of the fiber cap cells was seen in
the cultivated non-shattering genotypes, as compared to the wild
shattering genotypes (Dong et al., 2014). Furthermore, a major
gene, known as SHA1-5, was identified as being responsible for
lignin deposition in the fiber cap cells of soybean (2014). The
present study did not show any clear histological differences
in the common bean dehiscence zone. Albeit it cannot be
completely excluded that there were some undetected histological
differences here in the dehiscence zone in common bean, these
data suggest that the histological basis of pod shattering in bean
and soybean are different, at least partially.

Furthermore, the shattering genotypes here had a fibrous
and strongly lignified cell layer between the inner and outer
parenchyma of the pod wall, while this was not seen for the non-
shattering genotypes. This difference was also noted for common
bean by Prakken (1934), in their comparison of the “stringy” and
“stringless” types. Funatsuki et al. (2014) noted that in cultivated
soybean, the differential lignification in the lignin-rich inner
sclerenchyma of the pod walls influenced valve twisting and pod
shattering. Furthermore, they showed that lignin deposition in
this layer was under the control of a major gene, known as
PDH1. We note here that in soybean, the difference between the
shattering and non-shattering types appears to be in the degree of
lignification of this inner sclerenchyma layer (Funatsuki et al.,
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TABLE 6 | Correlations between level of shattering (percentage shattering

pods per plant) and the 28 phenotypic traits.

Trait Association

Qualitative R2
adj

M.S. F P

Number of cotyledonary leaves 0.000 106.86 0.24 0.628

Angle of cotyledonary leaves 0.000 99.21 0.21 0.810

Lobature of cotyledonary leaves 0.010 672.75 1.48 0.229

Stem color 0.020 2446.21 5.50 0.020

Growth type 0.000 15.59 0.04 0.950

Flower color 0.140 8396.23 21.45 <10−4

Pod color 0.120 4708.32 11.75 <10−4

Quantitative R2 R N P

Plant height 0.010 0.102 264 0.099

Flowering time 0.000 0.000 266 0.998

Pod setting 0.001 0.034 264 0.058

Pods weight per plant 0.003 0.056 267 0.366

Valve weight per plant 0.029 0.169 264 0.006

Seed weight per plant 0.000 −0.003 265 0.949

Number of pods per plant 0.014 0.117 265 0.055

Number of seeds per plant 0.010 0.100 266 0.103

Mean pod weight 0.001 −0.031 267 0.611

Mean valve weight 0.071 0.267 264 <10−4

100-seed weight 0.045 −0.212 265 0.001

Seeds per pod 0.014 −0.119 265 0.052

Number of seeds per pod 0.006 0.770 266 0.211

Harvest Index at the pod level 0.106 −0.327 265 <10−4

Pod perimeter 0.089 −0.298 259 <10−4

Pod area 0.022 −0.148 259 0.017

Pod maximum width 0.181 −0.425 259 <10−4

Pod maximum height 0.020 −0.143 259 0.021

Pod curved height 0.071 −0.266 259 <10−4

Pod maximum/ curved height 0.120 −0.347 259 <10−4

Bold, significant associations. M.S., Mean Square; F, F ratio; R
2
adj , adjusted R

2; r, Pearson

correlation coefficient; P, significance level.

2014), while the present study indicates that in common bean
this difference is much stronger, with the presence/absence of the
lignified layer seen. This suggests that the role of this lignified
layer in the shattering might be more relevant (or at least
different) in common bean compared to soybean. This might
mark another difference between these two closely related crops,
of common bean and soybean. Prakken (1934) suggested that
in common bean, the control of the traits of “stringlessness”
(which depends on the characteristics of the ventral sheaths)
and “parchment” (which depends on the layer between the inner
and outer parenchyma of the pod wall) was independent, and
in both cases was under simple monogenic control. Another
study suggested oligogenic control for the stringless trait, with
the contribution of either environmental effects or epistatic
interactions (Dong and Wang, 2015). Thus, in common bean,
the artificial selection might have targeted multiple genes to
minimize the seed loss during domestication. This evokes a

scenario that arises from the joint consideration of the data
obtained in soybean by the independent studies of Dong et al.
(2014) and Funatsuki et al. (2014).

Based on the data in the present study, two further conclusive
considerations can be made that might be useful to support
the identification of shattering genes in common bean. First,
it is likely that the genes underlying the shattering trait in
common bean are involved in the regulation of the secondary
cell-wall deposition or fiber-cell differentiation. This is well-
supported by the data from the chemical analysis and the
anatomical–histological investigations here; indeed, fibers are
mainly composed of sclerenchymatic cells, that have well-
developed secondary cell walls. This possibility is also suggested
by the data of Suanum et al. (2016), who reported co-localization
of QTLs for pod fiber content and pod shattering in back-cross
populations between yearlong bean and wild cowpea. Secondly,
as the comparison with the literature indicates some chemical
and histological differences between soybean and common bean,
it might be useful to consider as candidate genes not only those
involved in the shattering of soybean, but also those from other
phylogenetically more distant species (Dong and Wang, 2015; Li
and Olsen, 2016).

Relationships between Shattering and the
Other Plant Traits
The shattering levels were very poorly correlated with the other
morpho-phenological traits and productive characteristics of the
plants investigated here. However, an interesting consideration
arises from the observation that shattering is significantly
(albeit poorly) associated with low 100-seed weight, small pod
size, and low Harvest Index at pod level. This suggests that
pod shattering might have an “energy cost” for the plant
(McGinley and Charnov, 1988; Chiariello et al., 2000); i.e., the
synthesis of the biomolecules and the creation of the tissues
needed for shattering might reduce the resources available for
seed and pod development. In agreement with this energy
cost hypothesis, the carbon contents of the pod valves were
strongly and positively correlated with the levels of shattering.
This all suggests that shattering can be better viewed as a
syndrome at the pod level. However, as the same data can
be explained by pleiotropic effects or linkage drag, more data
will need to be collected also in other species to confirm this
hypothesis.

CONCLUSIONS

Pod shattering in common bean was investigated in the present
study. With this objective, we set up and adopted a pipeline
for phenotypic characterization of this trait. Four main results
were achieved: (1) very high shattering levels can be obtained
with a high percentage of either twisting or non-twisting pods,
or with a balanced combination between these two; i.e., in
common bean, the modes of shattering do not have any great
impact on the levels of shattering; (2) shattering appears to be
controlled by a “switching”mechanism that determines an abrupt
change in the ability to split the pod valves; (3) high shattering
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levels is correlated with high carbon and lignin contents of the
pod valves, and with specific histological charaterstics of the
ventral sheath and the inner sclerenchymatic layer of the pod
wall; and (4) shattering appears to have a “cost.”, and it might
be more exhaustively described as a “syndrome” at the pod
level.

Overall, our pipeline will help with the deciphering of
the genetic architecture of shattering in different crops, thus
facilitating comparative studies in legumes.
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and Kristiina Himanen 1, 2*

1Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland, 2 Viikki Plant Science Centre, University of

Helsinki, Helsinki, Finland

Flowering time control integrates endogenous as well as environmental signals to

promote flower development. The pathways and molecular networks involved are

complex and integrate many modes of signal transduction. In plants ubiquitin mediated

protein degradation pathway has been proposed to be as important mode of signaling as

phosphorylation and transcription. To systematically study the role of ubiquitin signaling

in the molecular regulation of flowering we have taken a genomic approach to identify

flower related Ubiquitin Proteasome System components. As a large and versatile gene

family the RING type ubiquitin E3 ligases were chosen as targets of the genomic

screen. The complete list of Arabidopsis RING E3 ligases were retrieved and verified

in the Arabidopsis genome v11 and their differential expression was used for their

categorization into flower organs or developmental stages. Known regulators of flowering

time or floral organ development were identified in these categories through literature

search and representative mutants for each category were purchased for functional

characterization by growth and morphological phenotyping. To this end, a workflow

was developed for high throughput phenotypic screening of growth, morphology and

flowering of nearly a thousand Arabidopsis plants in one experimental round.

Keywords: Arabidopsis, flower, RING E3 ligase, ubiquitin, high throughput, image based phenotyping, phenomics

data analysis

INTRODUCTION

Flowering time control is a complex network that integrates many modes of signal transduction
promoting transition from vegetative stage to reproduction and ultimately leading to the
development of flower organs. The endogenous changes that signal the beginning of flowering
are referred as autonomous pathways (Amasino and Michaels, 2010). Multiple studies have
established the major role that photoperiod has in flowering (Piñeiro and Jarillo, 2013). Flowering
in Arabidopsis is strongly promoted in long day (LD) conditions but will also ultimately occur
under short day (SD) conditions (Steffen et al., 2014). Under LDs, flower induction is dependent
on the expression and protein levels of CONSTANS (CO; Suárez-López et al., 2001). Light
controls the CO transcription via the circadian clock system, inducing a CO mRNA peak
during the latter part of the day (Suárez-López et al., 2001). CO transcription is repressed by
CYCLING DOF FACTORs (CDFs; Fornara et al., 2009). Under LDs, the CO mRNA afternoon
peak coincides with a blue-light activated complex containing FLAVIN-BINDING, KELCH
REPEAT, F-BOX 1 (FKF1) and GIGANTEA (GI), which lead CO transcription repressors
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CDFs to degradation (Sawa et al., 2007; Fornara et al., 2009;
Song et al., 2012). Additionally, the FKF1-GI complex also
stabilizes CO protein in the afternoon (Sawa et al., 2007;
Song et al., 2012). CO protein degradation is promoted
by at least two ubiquitin E3 ligases: HIGH EXPRESSION
OF OSMOTICALLY RESPONSIVE GENES 1 (HOS1) and
CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1; Jang
et al., 2008; Lazaro et al., 2012). In the morning, red light
promotes HOS1 interaction with CO via phytochrome B
activation (Lazaro et al., 2012). COP1 mediates CO protein
degradation in a complex with SUPPRESSOR OF PHYA-105
(SPA; Laubinger et al., 2006). In the afternoon, blue light
inhibits COP1-SPA-mediated CO degradation by activating
CRYPTOCHROME 2 (CRY2) interaction with COP1 (Liu
et al., 2008). Thus, both CO transcription is up-regulated and
CO protein stabilized allowing up-regulation of the mobile
flowering signal gene FLOWERING LOCUS T (FT) expression
in the phloem during the afternoon under LDs, but not under
SDs (Piñeiro and Jarillo, 2013). Also regulation of flower
development is likely to involve Ubiquitin Proteasome System
(UPS) components (Vierstra, 2009).

The UPS has emerged as a powerful regulatory mechanism
that facilitates irreversible transitions between developmental
stages, and responses to environmental stimuli by selectively
degrading short-lived regulators, such as transcription factors
and receptors (Sadanandom et al., 2012). Genetic analyses in
plants have proposed that this pathway plays a vital role in
hormone regulation, floral homeostasis, stress responses and
pathogen defense; however, very few targets have been identified
in plants apart from the hormone signaling components
(Santner and Estelle, 2010). In the UPS system, the highly
conserved 76-amino acid protein, ubiquitin, acts as a covalent
molecular tag to signal target proteins for proteasome mediated
degradation. Ubiquitin attachment requires three distinct
enzymatic activities: E1, ubiquitin activating enzymes; E2,
ubiquitin conjugating enzymes; and E3, ubiquitin ligase enzymes.
Moreover, the UPS consists of accompanying proteins that
modulate target recognition and degradation (such as RAD23,
SPA1), deubiquitinating enzymes (DUB1) and the proteasome
(26S and 20S structures). According Vierstra (2009) over 6%
of the Arabidopsis proteome is potentially involved in UPS.
However, the common strategy for functionally addressing the
role of all UPS components is still evolving. The ubiquitin E3
ligases are the most abundant UPS components and mediate the
important recognition of the target proteins for ubiquitination
(Kosarev et al., 2002; Stone et al., 2005). The E3 ligases found in
plants belong to one of four subtypes: single subunit Homology to
E6-AP C-Terminus (HECT), U-box and Really Interesting New
Gene (RING) or multisubunit cullin-RING ligases (Sadanandom
et al., 2012). The RING-type E3 proteins are the most abundant
among the single subunit E3 ligases (Kosarev et al., 2002; Stone
et al., 2005).

To unravel the role of the RING type ubiquitin E3 ligase
protein family, we took a reverse-genetics approach to identify
the RING E3 ligases that could be involved in regulation
of Arabidopsis flowering time and/or flower development.
To this end, we first curated the RING E3 protein family,

earlier described by Stone et al. (2005), in the most recent
Arabidopsis genome release. The Arabidopsis protein sequences
were subjected to InterProScan for protein domain search and
the number of ubiquitin E3 ligases containing RING domains
was established to be 509. Association of these RING protein
encoding genes with Arabidopsis flowering and floral organs was
done through the Genevestigator transcriptome database (Hruz
et al., 2008). To this end, the expression profiles were divided
into categories based on their specificity, high expression or
enrichment in flower organs and in the developmental stages
of Arabidopsis. Several already characterized regulators were
identified among these genes, such as the anther dehiscence
regulating DAF gene family (Peng et al., 2013), flower size
regulating DA2 (Xia et al., 2013) and FRG1 involved in flowering
time related DNA methylation (Groth et al., 2014). The well-
established flowering time regulator COP1 fell just below the cut
off criteria due to its wide expression profile. A representative
mutant collection for each category was obtained from NASC
stock center. Additional candidates were also selected based
on literature. The genotypically verified mutant collection was
subjected to systematic morphological and growth analysis using
an automated imaging based plant phenotyping facility. After the
thorough vegetative assessment, the flowering time parameters
such as number of leaves at bolting and days to bolting were
recorded together with morphological analysis of the flower
structures. The phenotypic assessment indicated lines with
altered growth, morphology, or flowering time. Furthermore, one
of the lines showed growth defects in sepals and petals.

MATERIALS AND METHODS

Bioinformatic Screens
To curate putative RING-type ubiquitin E3 ligases in Arabidopsis
thaliana genome version ARA11, classification made by
Kosarev et al. (2002) and Stone et al. (2005) were used. To
this end, the whole Arabidopsis proteome was downloaded
from ARAPORT (https://www.araport.org/downloads/), and
screened with InterProScan for protein families and domain
architecture. To confirm that the newly identified RING domain
containing protein sequences indeed represented ubiquitin
E3 ligase type RING domains, InterProScan 5 (v5.16-55.0)
Gene3D, SUPERFAMILY, ProSiteProfiles, SMART, Pfam, and
ProSitePatterns signatures were used. Most of InterProScan
tools use Hidden Markov Models (HMMs) to detect conserved
domains along protein sequences. HMMs have been developed
for conserved protein domains and they define for the software,
which and where critical residues should be located along the
analyzed protein sequence. From the protein domain collection,
the ubiquitin E3 ligase type RING domains were filtered
according to the criteria provided by Kosarev et al. (2002) and
Stone et al. (2005) for canonical RING domains. Once the RING
domains were identified, they were aligned with Jalview using
ProbCons algorithm with two rounds of pre-training. The metal
ligand binding residues were manually inspected and corrected,
and small misalignments were edited. Sequences that failed
to meet the criteria of InterProScan search engines were not
considered in this study.
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Transcriptomic Database Screens
To associate the curated collection of 509 RING type ubiquitin
E3 ligases with flowering the Genevestigator gene expression
database software was used (Hruz et al., 2008). The experiments
AT-00087, AT-00088, AT-00089, and AT-00090 containing
developmental expression data of AtGenExpress initiative
microarrays were selected for the analysis (Schmid et al., 2005). In
the selected experiments, hybridization probes were available for
393 RING E3 genes out of the 509. From these experiments, the
linear expression data was extracted for the developmental stages
of developed rosette, bolting, young flower, developed flower, and
flower and silique. For flower organs, the gene expression profiles
were extracted for categories of shoot apical meristem (SAM),
sepal, petal, stamen, and carpels. In these categories, genes were
ranked for their at least 2-fold differential expression against the
developed rosette. Their relative expression levels were obtained
by log2(FC)= log2(FL)− log2(R), where FC is fold of change, FL
is flower organ or development stage and R is rosette. The results
for each category were sorted by their log2(FC) and all genes with
log2(FC) > 1 were considered as up-regulated.

Candidate Genes Selected by Literature
For the candidate approach, we used interaction networks from
BioGRID (http://thebiogrid.org/) and cross-checked them with
flowering pathway genes listed in the Flowering Interactive
Database FLOR-ID (Bouché et al., 2016) to identify RING
E3 ligases interacting with known flowering time regulators
CONSTANS (CO), CONSTITUTIVE PHOTOMORPHOGENIC
1 (COP1), and TARGET OF EARLY ACTIVATION TAGGED
(EAT) 2 (TOE2).

Plant Material and Growth Conditions
For functional characterization of the identified top most
differentially expressed genes and for the selected candidates,
Arabidopsis mutant lines were obtained from the NASC stock
center representing CATMA, SAIL, SALK, and GABI-Kat
collections (Alonso et al., 2003; Rosso et al., 2003; Schmid
et al., 2005; Kleinboelting et al., 2012). Altogether 49 lines were
genotyped by combination of segregation analysis and T-DNA
PCR with primers listed in Supplemental Table 1. From these,
43 lines represented 30 unique gene accessions (Supplemental
Table 1). As a wild type control, Columbia (Col-0) ecotype of
Arabidopsis thaliana was used.

For genotyping, plants were grown in vitro on MS
media supplemented with the corresponding selection. For
phenotyping, seeds were sown directly on soil with 50% peat
and 50% vermiculite. Trays were covered with plastic wrap
and cold stratified at +4 ◦C for three nights, after which they
were transferred to the growth chamber (FytoScope, PSI, Czech
Rep.). Seven days after stratification (DAS) the seedlings were
transferred to their own pots, placed on the analysis trays and
sand was added on top of the peat to prevent growth of any
green algae. From the full water saturation of the soil, the water
content was let to decrease until 70% and was kept at this level
through daily weighing and watering. Growth conditions in the
Arabidopsis growth chambers were 16 h light/8 h darkness and
22 ◦C. Relative air humidity of the growth chambers was targeted

at 60%. The light intensity was set and controlled at 130 µE
(MS6610, Mastech, China).

Genotyping of the Mutant Lines
Homozygous one locus mutant lines were confirmed by
segregation analysis and T-DNA specific PCRs. The PCR primers,
T-DNA position and line information were summarized in
Supplemental Table 1. The transcript levels of the T-DNA
targeted genes were verified by quantitative real-time PCR
(qPCR) analysis. The sample material for qPCR was harvested
from the tissue indicated by Arabidopsis eFP Browser for
each gene expression pattern: if the gene expression pattern
indicated at least moderate expression in flower parts during
floral development, tips of inflorescences with developing and
open flowers were pooled from three to five individual plants.
If the expression was in the seeds, young to mature siliques
were pooled. If no expression data via eFP was found, new
leaves were pooled with developing and open flowers. Three
to four biological replications were harvested for each RNA
preparation. RNA was extracted using InviTrap R© Spin Plant
RNA Kit (STRATEC Molecular), complementary DNA was
prepared with SuperScript R© IV Reverse Transcriptase (Thermo
Fisher Scientific), and the qPCRs were performed using Roche
Lightcycler R© 480 Instrument II (Roche Diagnostics) using
LightCycler R© 480 SYBR Green I Master (Roche Diagnostics)
with primers listed in Supplemental Table 1. Primers were
primarily designed to locus downstream of the T-DNA. The
fold up values (mutant line against Col-0) were calculated
using the 2−11CT method according to Livak and Schmittgen
(2001). Reference genes used in this study were the most
stable Arabidopsis genes according to Czechowski et al.
(2005): TIP41 LIKE (AT4G34270, forward: GTGAAAACTGTT
GGAGAGAAGCAA, reverse: TCAACTGGATACCCTTT∧CG
CA), AP2M (AT5G46630, forward: TTGAAAATTGGAGTAC
CGTACCAA, reverse: TCCCTCGTATACATCTGGCCA) and
PTB1 (AT3G01150, forward: TTGAAGGAGTGGAATCTCAC
G, reverse: ATGTGCGGAAAGCAGATACC). Significance level
of the qPCR were set at 0.1–0.5 FC for knock-down; <0.1 FC for
knock-out; and >2 FC for up-regulated (Supplemental Table 1).

High Throughput Plant Phenotyping
Platform
The plant phenotyping facility at the University of Helsinki
Viikki campus (http://blogs.helsinki.fi/nappi-blog/) was used
for the phenotypic characterization of the selected Arabidopsis
mutant collection. The plants were imaged daily by overhead
CCD camera for RGB images positioned in a PlantScreenTM

analysis chamber with automated plant transportation between
the imaging, weighing and watering stations. The RGB images
were obtained for 20 plants at the time and stored in central
database. The images were pre-processed online as described
in Awlia et al. (2016) to allow collecting binary and RGB
data for each plant. The obtained binary images were used
for calculating growth parameters of area and perimeter. The
obtained parameters of area, perimeter and the convex hull were
then used for automatic online calculations of morphometric
rosette parameters including: roundness1, roundness2, isotropy,
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eccentricity, compactness, Rotational Mass Symmetry (RMS),
and Slenderness of Leaves (SOL) (PlantScreenTM analyzer, PSI,
Czech R.). To characterize the general morphology of the mutant
lines these nine morphological parameters were grouped into
four categories based on their type: raw, circularity, symmetry
and center distance, and compared over time (Figure 1). Raw
parameters were represented by area and perimeter of the rosette
and they were calculated by counting pixels of a rosette picture
and the edge pixels respectively and transformed to millimeters
(Figure 1A). The parameters of roundness1 and roundness2
and isotropy represented the circular parameters (Figure 1B).
The parameter roundness describes rosette area in comparison
to perfect circle with same perimeter and is affected by leaf

slenderness, petiole length and leaf perimeter. For wild type
plant, this parameter usually takes values between 0.1 and 0.5
while a perfect circle has value 1. Roundness value tends to
decay overtime due to leaf development that at the same time
increases the rosette perimeter. Roundness 2 uses rosette convex
hull area and perimeter for its computation and for wild type
plants this parameter appears to have values between 0.7 and 1.0
following an oscillating pattern with less steep peaks over time
(Figure 1B). Isotropy uses the area of a drawn polygon on top of
the rosette (Figure 1B). Thus, isotropy has a behavior similar to
roundness 2 over time, but with less steep peaks and decreasing
tendency similar to roundness. The eccentricity and RMS were
symmetric parameters (Figure 1C). Eccentricity describes how

FIGURE 1 | Rosette morphology parameters. (A) Area and perimeter of the rosette are raw parameters and are calculated by counting pixels of rosette binary

images and the edge pixels respectively and transformed to millimeters. (B) The parameters of roundness and roundness 2 and isotropy represented circular

parameters. (C) Eccentricity and RMS were symmetric parameters. (D) Compactness and SOL were based on the center distance. Pink area around RMS,

compactness and roundness 2 represent rosette convex hull, and for isotropy it represents rosette polygon. The characteristics of the parameters are described in

detail in the Section Materials and Methods.
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elliptical the plant rosette is, where a value close to 1 corresponds
to a rosette with highly sharp elliptical shape, while a value close
to 0 describes a circular shape. Wild type rosette shows a high
eccentricity peak that decays over time with a second smaller
peak by the end of growth, thus the rosette shape fluctuates
between a round and an elliptical shape. On the other hand,
RMS describes the symmetry of the plant rosette by making a
ratio between the non-overlapping rosette convex hull area and
a perfect circle of the same area centered in the plant centroid
and the overlapping area of both. RMS shows a similar pattern
as eccentricity, but with higher absolute values and a sharper
peak. Compactness and SOL were based on the center distance
(Figure 1D). Compactness is the ratio between the rosette area
and the rosette convex hull area. This parameter tells about
petiole length and leaf blade width. The parameter SOL explains
how sharp the leaf blades are, but it is also affected by the leaf
number. SOL was derived from the ratio between squared rosette
skeleton and rosette area. Thus, SOL can take values greater
than 0 and below 50 in dimensionless units for wild type plants
(Figure 1D).

Experimental Design
Ten days old (10 DAS) Arabidopsis plants were subjected
to growth and morphological characterization by top view
imaging for the following 10 days. One phenotyping round
was designed to accommodate a maximum of 960 Arabidopsis
plants representing 36 genotypes at a time in six consecutive
experimental rounds called F006–F011. The total number of
lines analyzed throughout the six rounds was 43. The maximum
of 36 genotypes were divided in three batches that were
rotating between the growth area and the PlantScreenTM analysis
chamber. Each batch consisted of three experimental units of four
mutant genotypes randomized with Col-0, each represented by
20 individual plants. One experiment consisted thus of five trays
of altogether 100 plants. Each experimental unit had their own
Col-0 wild type in randomized block design to normalize for any
local differences in the microenvironments of the PlantScreenTM

or the growth area. Each line showing any phenotypic responses
was analyzed in at least three independent experimental rounds.
Lines that did not show differences as compared to the Col-0 wild
type were excluded from the subsequent rounds thus resulting in
reduced numbers of genotypes included.

Phenotypic Analysis of Flowering Time and
Flower Structures
After the image based growth and morphological measurements
of the 20 mutant and 20 Col-0 plants in the PlantScreenTM

system, the flowering time parameters leaf numbers at bolting
(LAB) and days to bolting (DTB), were manually counted for
each of the plant individuals. The number of rosette leaves were
counted at the appearance of the flower bud (developmental
stage 5.10, Boyes et al., 2001) and the DTB was recorded at
the same time. The flowering time phenotypes were observed
in two to three independent experimental rounds. Finally,
flowers of the main inflorescences were photographed and
further dissected for floral organ analysis under stereomicroscope
(SteREO Discovery.V20, Zeiss). Microscopic pictures of the

inflorescence tips, single flowers, sepals and petals were taken
with the attached camera (AxioCam ICc3, Zeiss). The analyzed
inflorescences and flowers originated from several independent
experiments. Flower developmental stages were determined as
in Smyth et al. (1990). To confirm pollen viability pollen
grain staining according to the modified Alexander method
was performed (Peterson et al., 2010). Anther images were
captured using Leica DFC420 C camera attached to an optical
microscope.

Statistical Analysis
The significance of the differences between mutant lines and
Col-0 was computed by contrasting two fitted models to the data
points using several order polynomials (Mirman, 2014). First,
a model was fitted to all data points and then a second model
was fitted including the factor genotype (wild type and mutant).
These two models were then compared using the Chi square test
to determine if the second model explained more variance than
the first one beyond the significance (α = 0.05). If the second
model was statistically different from the first one, it implied that
the compared genotypes were different. These statistical analyses
were conducted in R software (https://www.r-project.org/). LAB
and DTB analysis were performed by Analysis of Variance using
GLM procedure and pairwise comparisons against Col-0 using
option Dunnett in the MEANS statement using SAS/STAT©
software version 9.4 (SAS Institute Inc., Cary, NC, USA).

RESULTS

Curation of the Arabidopsis RING-Type
Ubiquitin E3 Ligase Protein Sequences
To re-confirm the published RING-type ubiquitin E3 ligase
proteins encoded in Arabidopsis genome the 27,667 Arabidopsis
proteins from the latest genome annotation release (ARA11)
were scanned for RING domains. Through filtering the
signatures in Gene3D, SUPERFAMILY, ProSiteProfiles, SMART,
Pfam, ProSitePatterns altogether 509 putative RING domain
containing protein sequences were obtained (Supplemental Table
2). RING gene names and descriptions were obtained from
Araport using Thalemine tool (Supplemental Table 2). Araport
used curated but also automatic gene annotation, therefore
many RING domain containing proteins were annotated as
RING/U-box protein although they did not contain U-box
domain. Similarly, some were annotated as RING/FYVE/PHD
zinc finger superfamily proteins. The 509 RING sequences
were compared to the previously described RING-type protein
sequences (Kosarev et al., 2002; Stone et al., 2005). From the
509 identified RING domain proteins 457 matched with the
490 previously described, thus resulting in 31 non-matching
sequences (Figure 2). These non-matching sequences were
thoroughly analyzed and, 6 of them were found to be merged
with other gene models, 10 had no RING domain, 3 were not
found in the database, 3 corresponded to pseudogenes, 7 were
split and a new locus identifier had been assigned for them,
and 2 were transposable elements (Supplemental Table 3A). The
50 additionally identified RING domain proteins were shown
to represent diverse RING domains such as, 1 of D type, 4 of
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FIGURE 2 | RING gene family of 509 as identified by: this study

(Kosarev et al., 2002; Stone et al., 2005). This study brought in 50 new

RING genes and 31 from the earlier studies were excluded.

C2 type, 20 of H2, 16 of HC, 2 of S/T, and 7 of V (CH) type,
according to the Stone et al. (2005) classification (Supplemental
Table 2).

Differential Gene Expression Data
Identifies 122 Flower Related RING
Ubiquitin E3 ligases
To associate the RING domain proteins with flowering or flower
development two approaches were followed: (1) identifying
those with gene expression enhanced or enriched during flower
development or in flower organs, and (2) by searching RING
proteins interacting with known flower regulators. For the first
approach Genevestigator (Hruz et al., 2008) tool was used to
rank differentially expressed genes (DEG) of the identified RING
genes overArabidopsis developmental stages and in flower organs
relative to their expression in developed rosette (Figures 3A,B).
In the selected experiments in Genevestigator database, probes
were available for 393 of the 509 RING E3 ligases analyzed. The
cut off for DEGs was set at 2-fold to be included in the selection
resulting in lists of genes of interest for each of the categories.
This process was repeated to identify gene expression enrichment
at each of the development stages of bolting, young flower,
developed flower, and flower and siliques. For the developmental
categories altogether 71 DEGs were identified (Figure 3C). In
addition to the developmental stages, enrichment for shoot apical
meristem, sepal, petal, stamen and pistil organs were retrieved
and resulted in 109 DEGs (Figure 3D). Some of the RING genes
were common between these two categories and in total 122
unique RING genes were up-regulated in the flower related
processes. The gene identifying AGI codes of these 122 flower
related candidates are provided in the Supplemental Table 3B.

For the second approach we identified 6 additional genes of
interest through literature study and from interaction networks
of CO, COP1, and TOE2 from BioGRID (http://thebiogrid.
org/). Based on these interaction screens 5 RING E3 ligases
were selected to the study, represented by the following
mutant lines; N656705 (AT5G65683), N686069 (AT1G61620),
N372291 (AT3G29270), N2037522 and N67002 (AT4G17680),
and N742646 (AT2G44410). In addition, a mutant line for COP1,
cop1-6, and RED AND FAR-RED INSENSITIVE 2 (RFI2) for
which a role in mediating red and far-red light signaling and
ubiquitination activity has been shown in vitro, were included
(Stone et al., 2005; Chen and Ni, 2006a). This E3 ligase was
selected as a candidate since its expression is regulated by
circadian clock and rfi2-1 mutant flowers early (Chen and Ni,
2006b). Thus, onemutant allele for RFI2 (N878610) was included
in the study. Mutants representing these genes were analyzed
together with the flower up-regulated RINGs and were named
flower related UPS candidates in the Supplemental Table 1.

Representative Mutant Collection
For functional characterization of the 122 flower related UPS
candidates and those selected based on literature, a mutant
collection was obtained from the NASC stock center. The
mutants represented lines from CATMA, SAIL, SALK, and
GABI-Kat collections (Alonso et al., 2003; Rosso et al., 2003;
Schmid et al., 2005; Kleinboelting et al., 2012). Altogether 43
lines were shown to contain T-DNA insertion in one locus,
six were doubtful and were omitted from the analysis. To
confirm that the T-DNA insertion had interrupted the gene
of interest, their altered expression levels were confirmed by
qPCR analysis with primers listed in Supplemental Table 1. For
43 accessions representing 30 unique loci from the 122 flower
related UPS candidates and the selected candidates a differential
gene expression pattern was analyzed. Altogether 19 lines were
knock-outs, and 13 knock-down mutants, and for 10 lines up-
regulation of the gene of interested was observed (Supplemental
Table 1). For one line, no differential expression was confirmed
and this was excluded from the phenotyping. For 14 lines alleles
were available with similar or opposite gene expression patterns.

Phenotypic Screen of the Mutant
Accessions
From the genotypically and qPCR confirmed T-DNA insertion
mutant lines, 43 were subjected to phenotypic characterization
by top view RGB imaging using the PlantScreenTM system.
Image series of each analyzed line were collected daily allowing
analyzing the growth and changes in morphology over time.
For scoring those lines showing phenotypes, we fitted general
additive models (GAM) to each parameter of each analyzed
lines (data not shown). Most of the lines showed no differences
to their corresponding Col-0 controls. However, three lines
were consistently different across the experiments compared to
Col-0 in both growth and rosette morphology: csu1-4 (cop1
suppressor 1-4, N686069), sinal7-2 (seven in absentia like 7-
2, N833574) (Peralta et al., 2016) and rha1a-1 (ring-h2 finger
a1a-1, N2045046) (Table 1, Supplemental Tables 1, 4). The csu1-
4 mutant rosette was clearly smaller than Col-0 and showed a
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FIGURE 3 | (A) Differential expression profiles of developmental stage enriched RING genes relative to developed rosette. (B) Differential expression profiles of flower

organ enriched RING genes relative to rosette; SAM, Shoot apical meristem. (C) Venn diagram of RING genes expressed in the different developmental stages (B,

bolting; YF, Young flower; DF, Developed flower; FS, Flowers and siliques). (D) Venn diagram of RING genes expressed in the different flower organs; SAM, Shoot

apical meristem; SP, Sepal; PT, Petal; ST, stamen; PS, pistil.

yellowish coloration (Figure 4). The mutant line rha1a-1 seemed
to have smaller leaves than Col-0, however, at the end of growth it
appeared to have more leaves that resulted in similar final rosette
area as compared to Col-0. This line also had shorter petioles and
leaf serration. The third line sinal7-2 rosette was clearly larger
than Col-0 but did not show major differences in color, shape or
number of leaves (Figure 4).

To further analyze these three lines, mixed non-linear models
were fitted to their data using several order polynomials for
parametric analysis of the models. This analysis confirmed
the earlier observations of significant changes in growth and
development for these lines over time (Table 1). Line csu1-4
showed slower growth, reduced rosette area and perimeter
compared to Col-0 along the complete measured period
(Figures 5A,D). For line rha1a-1 the rosette area was very similar
to Col-0 being, however, slightly but significantly larger over time
probably due to its higher number of leaves (Figure 5B, Table 1).
Although the differences between rha1a-1 and Col-0 were small

the statistical model was able to capture those. Conversely, sinal7-
2 showed both area and perimeter larger than Col-0 indicating
more vigorous growth (Figures 5C,F).

Circularity Parameters
Morphological data for parameters of circularity that include
roundness, roundness 2 and isotropy were also evaluated for
these lines (Figure 1). Line csu1-4 showed increased roundness
over the total period analyzed in comparison to Col-0
(Figures 6A–C, Table 1). However, csu1-4 roundness curve had
similar pattern to Col-0 but shifted to the right (Figure 6A).
Similar situation was observed for sinal7-2, where the roundness
curve shape was almost identical to Col-0 but in this case was
shifted to the left, showing lower roundness along the total time
period (Figure 6C, Table 1). Roundness curve of rha1a-1 was
neither shifted nor similar to Col-0 curve. This line showed a
lower roundness than Col-0 at the beginning of the analysis,
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FIGURE 4 | Rosette growth of csu1-4, rha1a-1 and sinal7-2 mutants. Representative rosette images are shown from days 10 to 20 after stratification. DAS,

days after stratification.

TABLE 1 | Polynomial order and their respective Chi square probability

from ANOVA test for each parameter used in this study.

Parameter Polynomial Chi square probability*

order used
csu1-4 rha1a-1 sinal7-2

Area 3 <2.2e-16*** <2.2e-16*** <2.2e-16***

Perimeter 3 9.116e-15*** 9.076e-11*** 1.506e-10***

Compactness 4 <2.2e-16*** 1.274e-10*** 1.132e-06***

Roundness 5 <2.2e-16*** 2.665e-15*** 1.613e-06***

Roundness 2 5 <2.2e-16*** <2.2e-16*** 8.43e-06***

Isotropy 6 0.0008271*** 8.16e-08*** 5.058e-05***

Eccentricity 6 <2.2e-16*** <2.2e-16*** 5.102e-14***

RMS 6 <2.2e-16*** <2.2e-16*** 4.53e-05***

SOL 3 0.0006792*** 3.867e-07*** 0.006651**

*Comparison was performed using an ANOVA test between a base model and a model

including the genetic background as factor. Significance codes: ***p < 0.001; **p < 0.01;

*p < 0.05.

Base model = Parameter ∼ polynomial of Day + Random factor Day and Plant ID.

Model = Parameter ∼ polynomial of Day * genetic background (Col-0 or knockout line) +

Random factor Day and Plant ID.

reaching a stabilization point around 16 DAS (Table 1). For Col-
0 plants roundness continued decreasing until it become lower
than rha1a-1 (Figure 6B).

Line csu1-4 showed a similar roundness 2 pattern as Col-0 that
is shifted to the right by approximately 2 days (Figures 6D–F).
Line rha1a-1, showed an oscillating pattern too, however, its
roundness 2 values were constantly close to 0.9 with less steep
peaks than Col-0, presenting the highest differences between
days 12 and 16 (Figure 6E, Table 1). Similarly, to line csu1-
4, line sinal7-2 presented an oscillating pattern very similar to
Col-0, however, this time the curve had shifted to the left by
approximately 1 day (Figure 6F).

Isotropy showed similar results as roundness and roundness
2, where line csu1-4 and sinal7-2 had similar oscillating pattern
as Col-0, but csu1-4 curve is shifted to the right, while the
curve for sinal7-2 is shifted to the left (Figures 6G–I). Line
rha1a-1 showed a constant high isotropy value decreasing
over time until reaching Col-0 pattern by day 23 (Figure 6H,
Table 1).

Symmetry Parameters
The morphological parameters describing symmetry were
eccentricity and rotational mass symmetry (RMS) (Figure 1). For
eccentricity, line csu1-4 showed a similar pattern as Col-0 plants
with a large and a small eccentricity peak, but shifted to the right
(Figure 7A). Line rha1a-1 presented no shift in its curve, but it
showed a rather flat peak around days 11 and 15, remaining lower
than Col-0 until the end of the analysis (Figure 7B, Table 1). This
result shows that rha1a-1 is less eccentric than Col-0 along the
complete analysis. Line sinal7-2 showed also a similar pattern
to Col-0 plants with two eccentric peaks, but slightly shifted
to the left (Figure 7C). For RMS line csu1-4 showed similar
pattern as Col-0 plants, but shifted again to the right about
1 day for the highest peak and remained higher than Col-
0 in the last days of the analysis (Figure 7D). On the other
hand, rha1a-1 presented no shift in its curve, but it showed a
decrease in the peak around days 11 and 15, decaying faster and
remaining lower than Col-0 plants (Figure 7E, Table 1). Like in
eccentricity, sinal7-2 was almost indistinguishable from the Col-
0 plants, except for a slight shift to the left captured by the model
(Figure 7F).

Center Distance Parameters
The last two morphological parameters analyzed were
compactness and slenderness of the leaves (SOL), which
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FIGURE 5 | Growth measurements from day 10 to 20. Area (A) csu1-4, (B) rha1a-1, and (C) sinal7-2. Perimeter (D) csu1-4, (E) rha1a-1, and (F) sinal7-2.

Markers, daily mean; error bars, 95% confidence interval; Curves, fitted models; n = 20 plants. The experiment was repeated at least 3 times with similar results. DAS,

days after stratification.

were based on the center distance (Figure 1). Here line
csu1-4 showed a decay of compactness overtime in a similar
way to Col-0 plants, but its curve was shifted to the right
(Figure 8A). Lines csu1-4 and sinal7-2 presented quite normal
compactness curves, while for rha1a-1 the pattern that was less
compact than Col-0 plants at the beginning of the analyzed
period (Figure 8B, Table 1). The compactness later rises
above Col-0, showing higher compactness values. Like for
the previously described parameters, sinal7-2 compactness
curve showed slightly lower values than Col-0, except for the
last 2 days where Col-0 plants reached sinal7-2 compactness
(Figure 8C).

Line csu1-4 showed lower SOL values than Col-0, while
rha1a-1 and sinal7-2 showed higher SOL values than Col-0
(Figures 8E,F, Table 1). The main differences in SOL could be
observed during the exponential growing phase of the rosette
and reaching a plateau at the end of the analyzed period
where the differences to Col-0 plants become insignificant
(Figures 8D–F).

Flowering Time Phenotypes
Flowering time mutants identified in the screen represented
both with reduced and increased leaf numbers at bolting
(Table 2). Line csu1-4 (AT1G61620) was clearly early-flowering
in both experimental replications. AT5G63970, a putative
forkhead box protein, mutant line was early flowering in one

of two experimental replications. SBP (S-ribonuclease binding
protein) family protein (AT4G17680) was late flowering in
both experimental replications. As already shown by others,
cop1-6 mutant was early flowering in both LAB (7) and
DTB (22). In most of the mutant lines, LAB did not
differ from Col-0 in all experimental replications, but the
trend was observed in both or all. LAB or DTB of sinal7-
2 did not differ from Col-0 in either of the experimental
replications.

Mutation in SINAL7 Causes Flower Growth
Phenotypes
Flower morphology of the analyzed mutants was observed
under stereomicroscope. The mutant line sinal7-2 was found
to produce flower buds of abnormal shape, characterized by
presence of cavities in the bud tips (Figures 9A,B). These
openings were present at one or both sides of the affected
buds and were caused by tips of the lateral sepals bending
inwards (Figures 9E,F). Also medial sepals frequently showed
altered morphology: their tips covered the buds to a lesser
extent than in Columbia, resulting in their “blunt” appearance.
Whereas these phenotypes were present in all 18 analyzed
inflorescences of sinal7-2 plants, regardless of the plant age—
only two out of 13 analyzed wild type inflorescences showed
similar sepal features, restricted to the first six flowers on the
main stems. Scoring flowers stage late 12–15 (located between
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FIGURE 6 | Circularity measurements from day 10 to 20. Roundness (A) csu1-4, (B) rha1a-1, and (C) sinal7-2. Roundness2 (D) csu1-4, (E) rha1a-1, and (F)

sinal7-2. Isotropy (G) csu1-4, (H) rha1a-1, and (I) sinal7-2. Markers, daily mean; error bars, 95% confidence interval; Curves, fitted models; n = 20 plants. The

experiment was repeated at least 3 times with similar results. DAS, days after stratification.

positions 1st and 20th on the main inflorescences) revealed that
in 54% of the mutant flowers (43/80) at least one lateral sepal
tip was bent inwards—as compared to 6/50, i.e., 12% in Col-
0 (the analyzed flowers came from 13 to 9 individual plants,
respectively).

Dissecting flower buds at the end of stage 12 revealed that
the occurrence of ingrown lateral sepal tips was accompanied
by petal wrinkling, as the sepal shape interfered with elongation
of the petals (Figures 9G,H). Indeed, in some of the mature
flowers with bent lateral sepal tips, the petal blades remained
wrinkled; in several cases also pistil or stamen shape was affected
(Figures 9C,D,I,J).

SINAL7 has been shown to mediate ubiquitination of
glyceraldehyde-3-phosphate dehydrogenase 1 (GAPC1) enzyme
in vitro and to affect its enzymatic activity and subcellular
localization in Arabidopsis (Peralta et al., 2016). In plants lacking
GAPC1 male sterility was observed (Rius et al., 2008). To
investigate whether deficiency of SINAL7 impairs male fertility
in the sinal7-2mutant, pollen viability was inspected according to
the modified Alexander method (Peterson et al., 2010). Anthers
of 12 mutant and 11 Col-0 flowers in the developmental stages
late 12 and 13 were stained (early and late flowers, originating
from at least five individual plants per line). However, no
difference between the mutant and Col-0 pollen was observed:
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FIGURE 7 | Symmetry measurements from day 10 to 20. Eccentricity (A) csu1-4, (B) rha1a-1, and (C) sinal7-2. Rotational Mass Symmetry (RMS) (D) csu1-4, (E)

rha1a-1, and (F) sinal7-2. Markers, daily mean; error bars, 95% confidence interval; Curves, fitted models; n = 20 plants. The experiment was repeated at least 3

times with similar results. DAS, days after stratification.

anthers of both lines contained almost exclusively viable pollen
grains (Figures 9K,L).

DISCUSSION

Genomic knowledge in bothmodel plants and crops is expanding
at a fast pace. However, translating the knowledge from sequence
to function and thereby frommodels to applications is hampered
by bottlenecks in screening for the phenotypes associated with
the genotypes. Here, we set out to conduct a reverse genetic
approach (Bolle et al., 2011) by defining a proportion of the
RING type ubiquitin E3 ligases to the developmental processes
of flowering time control or flower development. To this end,
the RING type ubiquitin E3 ligases were first curated in the most
recent Arabidopsis genome annotation (ARA11) that had been
improved, e.g., by the next generation sequencing techniques
(Krishnakumar et al., 2015). Thereby, many gene models had
indeed become obsolete, split, merged or their original sequence
had changed. We also found that in the annotations there are
a considerable number of RING domain containing proteins
annotated as RING/U-box genes. RING and U-box share similar
functions and are structurally and functionally similar, both are
ubiquitin E3 ligases that work as scaffolds between the ubiquitin
E2 conjugase and substrate. However, at the amino acid residual
level RING and U-box domains are significantly different; in
the RING domain the arrangement of cysteines and histidines

mediate binding of two zinc ions to stabilize the RING domain,
while the U-box domains are stabilized by a set of hydrogen
bonds and salt bridges (Wiborg et al., 2008).

Recent studies have revealed complexmolecular networks that
include ubiquitin E3 ligases in regulation of flowering (Lazaro
et al., 2012; Peng et al., 2013; Xia et al., 2013). To start defining the
genomic flower related Ubiquitin Proteasome System of RING
E3 ligases, we first verified the gene expression patterns of the
curated RING genes. RING E3 ligases work at protein level but
are likely to be transcriptionally directed to their relevant tissues.
From the 509 RING genes, 122 were indeed associated with
flowering with enrichment of gene expression in flower organs
or during flowering. This observation prompted us to obtain a
representative mutant collection for phenotypic evaluation.

To screen for phenotypes associated with the mutant
collection, an automated plant phenotyping facility was utilized.
To facilitate a phenotypic screening of a large Arabidopsismutant
collection a phenomics workflow was established to analyze
simultaneously up to 36 genotypes in a PlantScreenTM imaging
system installed at the Viikki campus of theUniversity of Helsinki
(http://blogs.helsinki.fi/nappi-blog/). Although T-DNA insertion
knock-out mutants do not always impair gene function (Bolle
et al., 2011), the high-throughput phenomics screen of altogether
43 genotypes singled out threemutant lines with clear growth and
morphology phenotypes, three mutant lines with flowering time
phenotypes and only one with altered flower structure.
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FIGURE 8 | Center distance measurements from day 10 to 20. Compactness (A) csu1-4, (B) rha1a-1, and (C) sinal7-2. Slenderness Of Leaves (SOL) (D)

csu1-4, (E) rha1a-1, and (F) sinal7-2. Markers, daily mean; error bars, 95% confidence interval; Curves, fitted models; n = 20 plants. The experiment was repeated at

least 3 times with similar results. DAS, days after stratification.

For the Arabidopsis growth assessment, we analyzed rosette
growth from 10 to 20 DAS. The analysis of such longitudinal
data is challenging and demands automated statistical analysis
and modeling steps. The rosette growth normally follows a
sigmoid pattern showing a lag phase represented by slow growth
around the first 10 days, accelerating in the middle and slowing
down when getting close to the transition from the vegetative to
reproductive phase. The best way to model data with sigmoid
behavior is by fitting a three parameter logistic regression (3PL)
to explain the three stages (Paine et al., 2012; Tessmer et al.,
2013; Neilson et al., 2015). However, our analysis time window
captured only the lag and the exponential phases, so a 3PL model
was not suitable for our data. Therefore, we used polynomials for
more flexibility and a better explanation of the data for all the
parameters. This was particularly useful for the initial screening
of the data of the tens of lines for the complex parameters like
roundness, roundness 2, isotropy, compactness and RMS.

Typically, the parameters of roundness 2, isotropy and RMS
increase and decrease over time. This behavior is due to the
natural cycle of leaf initiation and expansion. At the beginning
when the two first true leaves are developed, the rosette has
an elliptical shape that becomes more circular when the leaves
3 and 4 appear and start to expand. Because leaves 3 and
4 keep on expanding, while the leaves 1 and 2 have already
stopped expanding, the rosette takes an elliptical shape around
day 12 (Figure 4). This process is repeated each time two new

leaves develop and expand, explaining the oscillating behavior of
these parameters. The steepness of each peak decrease over time
because previously generated leaves expand making the rosette
more circular. Thus, recording fluctuations in these parameters
allows establishing the developmental timing of leaf initiation
and expansion.

Here, three lines showed consistently significant differences in
growth and morphology compared to the wild type Col-0. The
mutant lines csu1-4 and sinal7-2 showed similar growth curve
shapes as Col-0, but shifted to the left or right, respectively,
for all morphological parameters. This behavior was explained
by their speed of growth over time. If two lines differ in their
growth rate but were analyzed only on one particular day after
germination, they could show high differences in morphological
parameters. Therefore, longitudinal time course analysis of
Arabidopsis rosette growth and shape became compulsory for
making accurate conclusions about the effect of a mutation
also on morphology. On the contrary, the rha1a-1 mutant did
not show major differences in growth, but did for morphology.
The increased number and serration of rosette leaves in rha1a-
1 rendered the rosette perimeter and the skeleton longer,
thereby, reducing the roundness and increasing SOL during
all time points (Figures 6B, 8E). Furthermore, the increased
number of leaves of rha1a-1 prevented its rosette from taking
overly elliptical shape, keeping it more circular than Col-0
plants over time (Figure 4). This characteristic was translated in
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TABLE 2 | Number of leaves and number of days to bolting in Arabidopsis mutant lines grown in LDs.

AGI NASC ID Leaves at bolting Days to bolting

Mutant line Dunnett Col-0 Mutant line Dunnett Col-0

AT1G61620 N686069 9.7 ± 2.1 * 13.5 ± 1.8 25.2 ± 1.6 25.7 ± 2.2

CSU1 csu1-4 9.9 ± 1.5 * 15.5 ± 1.1 23.6 ± 1.6 * 26.8 ± 0.7

12.1 ± 0.4 * 15.1 ± 0.4 24.9 ± 0.6 * 26.2 ± 0.7

AT1G68820 N667194 15.8 ± 1.5 * 13.5 ± 2.0 27.2 ± 1.5 * 25.3 ± 1.6

RING E3 16.0 ± 1.2 16.6 ± 1.4 28.3 ± 1.2 28.0 ± 1.1

14.3 ± 0.7 * 15.9 ± 0.3 24.9 ± 0.9 * 27.2 ± 0.6

N659628 14.1 ± 1.8 13.6 ± 2.0 26.9 ± 1.6 * 25.5 ± 1.7

16.5 ± 1.1 15.4 ± 0.9 28.2 ± 1.1 * 26.7 ± 1.3

16.1 ± 1.3 16.6 ± 1.4 27.9 ± 1.1 28.0 ± 1.1

AT2G22680 N219963 16.4 ± 1.0 * 12.6 ± 1.7 27.9 ± 1.3 * 25.2 ± 1.4

WAVH1 16.6 ± 1.3 15.6 ± 1.7 27.7 ± 1.2 * 26.1 ± 1.2

N653622 13.3 ± 2.0 12.5 ± 1.9 25.0 ± 1.5 25.0 ± 1.6

15.5 ± 1.0 14.6 ± 1.4 26.2 ± 1.0 25.4 ± 1.5

AT2G32950 7.5 ± 0.6 * 12.6 ± 0.7 22.7 ± 1.4 * 28.4 ± 0.9

COP1 cop1-6 6.7 ± 0.7 * 13.7 ± 0.3 21.1 ± 0.6 * 27.3 ± 0.9

AT2G37150 N685421 15.3 ± 1.5 * 13.5 ± 2.0 27.2 ± 1.1 * 25.3 ± 1.6

RING E3 16.4 ± 1.9 15.4 ± 0.9 27.0 ± 1.3 26.7 ± 1.3

16.6 ± 1.3 16.6 ± 1.4 28.3 ± 0.8 28.0 ± 1.1

AT2G47700 N878610 15.5 ± 2.1 * 13.0 ± 1.4 26.6 ± 1.5 25.6 ± 1.3

RFI2 rfi2-3 16.5 ± 1.4 15.5 ± 1.1 27.7 ± 0.9 26.8 ± 0.7

AT3G07200 N481270 15.3 ± 2.0 * 13.5 ± 1.8 27.7 ± 1.7 * 25.7 ± 2.2

STUBL3 stubl3 15.6 ± 2.0 15.5 ± 1.1 27.3 ± 1.7 26.8 ± 0.7

AT3G09760 N653280 13.0 ± 1.8 12.6 ± 1.7 24.8 ± 1.4 25.2 ± 1.4

RING E3 13.9 ± 1.5 14.6 ± 1.4 23.9 ± 1.3 * 25.4 ± 1.5

AT4G17680 N67002 15.2 ± 2.1 * 13.5 ± 1.8 27.2 ± 1.7 * 25.7 ± 2.2

SBP 16.8 ± 1.3 * 15.5 ± 1.1 27.9 ± 1.3 * 26.8 ± 0.7

AT5G37890 N596989 13.1 ± 2.1 13.0 ± 1.4 25.6 ± 1.9 25.6 ± 1.3

SINAL7 sinal7-2 14.4 ± 1.7 15.1 ± 1.3 25.7 ± 1.3 26.6 ± 1.4

N833574 14.0 ± 0.7 * 15.1 ± 0.4 24.3 ± 0.5 * 26.2 ± 0.7

AT5G63970 N694155 13.3 ± 2.2 13.6 ± 2.0 25.6 ± 1.8 25.5 ± 1.7

RING E3 13.5 ± 1.3 * 15.4 ± 0.9 24.6 ± 1.5 * 26.7 ± 1.3

14.4 ± 0.7 15.1 ± 0.4 24.8 ± 1.0 * 26.2 ± 0.7

Pairwise comparisons were performed against corresponding Col-0-line using Dunnett’s test.

*Indicates statistically significant difference (α = 0.05).

N = 19–20 in each row.

higher roundness 2, isotropy, compactness and lower eccentricity
and RMS (Figures 6E–H, 7B–E, 8B). Thus, the morphological
parameters can be used not only to record developmental timing
but also to explain the plant architecture in a numeric manner.

The line showing an early flowering time phenotype was
COP1 SUPPRESSOR1 (CSU1). csu1-4 plants flowered three to six
leaves earlier than Col-0 grown under LDs (Table 2). In addition
to early flowering, csu1-4 plants showed vegetative phenotypes:
plants were smaller than Col-0 (Figure 5), the eccentricity, RMS
and roundness2 development started later than Col-0 (Figures 6,
7), and SOL was smaller than in Col-0 (Figure 8). CSU1 has been
shown to negatively regulate hypocotyls length in the dark, via
ubiquitination of COP1 and repression of SPA1 (Xu et al., 2014).
Our results indicate that CSU1 may regulate both vegetative
and generative development. The line showing a late flowering

phenotype, SBP family protein (AT4G17680), flowered one to
two leaves later than Col-0 (Table 2). This gene was selected
for the phenotypic analysis based on its interaction with TOE2.
toe2 is late flowering, and toe1 toe2 double mutant represses
FT expression (Zhai et al., 2015). Our results suggest that this
SBP family protein could be involved in regulation of flowering
time possibly through TOE2. Some SBP family members are
known to regulate flowering time. Four SBP proteins, BOTRYTIS
SUSCEPTIBLE1 INTERACTOR (BOI) and its three homologous
repress flowering by repressing FT expression in a CO dependent
manner and a CO independent manner via DELLA proteins
(Nguyen et al., 2015). This evidence suggests that there might be
a connection between SBP proteins and flowering time control.

In the sinal7-2 mutant defects in flower morphology
were observed. SINAL7 has been shown to ubiquitinate
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FIGURE 9 | Flower phenotypes of the sinal7-2 mutant. Flower developmental stages assigned according to Smyth et al. (1990). Scale bars: 1mm (A–J) and

100µm (K,L). (A,B) Representative inflorescences of Col-0 (A) and sinal7-2 (B). All flowers and siliques older than stage 12 have been removed. Mutant flower buds

contain cavities beneath the bud tip (indicated with white arrows). (C,D) Petals of a Col-0 (C) and a sinal7-2 (D) flower at stage 15. White arrows pointing at the

wrinkled mutant petals. (E,F) Adaxial surface of the sepals from a Col-0 (E) and a sinal7-2 (F) flower at stage 15. White arrow pointing at the bending lateral sepal tip

of sinal7-2. (G,H) Late stage 12 flower buds of Col-0 (G) and sinal7-2 (H). The medial sepals have been removed to reveal the elongating and wrinkling petals blocked

by the ingrown lateral sepals of the mutant. (I,J) Col-0 (I) and sinal7-2 (J) flowers stage 15. (K,L) Representative anthers from Col-0 (K) and sinal7-2 (L) flowers stage

12–13 stained for pollen viability.
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glyceraldehyde-3-phosphate dehydrogenase 1 (GAPC1) and to
regulate its enzymatic activity and movement to nucleus (Peralta
et al., 2016). GAPC1 plays a role in glycolysis, thus regulating
carbon metabolism, and it has been also associated with
cytoskeleton and mitochondria (Giegé et al., 2003; Anderson
et al., 2004). SINAL7 gene is differentially expressed in the
gapc1 knockout mutant as well as in u-ATP9 plants with
mitochondrial dysfunction (Rius et al., 2008; Busi et al., 2011).
Although both gapc1 and u-ATP9 lines showed defects in male
fertility (Gómez-Casati et al., 2002; Rius et al., 2008), we did
not observe increased number of aborted pollen grains in
the sinal7-2 mutant (Figures 9K,L), suggesting that SINAL7-
mediated GAPC1 regulation does not impact pollen maturation.
Although we have not tested if the sinal7-2 mutation influences
pollen germination and pollen tube growth, fertility of the
mutant did not seem to be strongly compromised. Instead, we
observed defects in sinal7-2 flower morphology - cavities in
flower buds and wrinkled petals. Sepal curvature is controlled
by giant cells in the abaxial epidermis, in which cell expansion
is connected with endoreduplication (Roeder et al., 2010, 2012).
A couple of mutants have been identified in which reduction
of giant cells was accompanied by their sepals bending inwards.
Closer examination of sinal7-2 sepal epidermis will showwhether
the observed bent sepal tips and resulting flower bud cavities
(Figures 9A,B,E–H) originate from endoreduplication defects,
which could suggest a novel role for the SINAL7 protein. Other
flower phenotypes of the mutant—wrinkling of petals as well as
bending of stamens and pistils (Figures 9C,D,G–J)—seem to be
a direct consequence of the abnormal shape of sepals posing an
obstacle for the developing floral organs during their growth and
release from the buds. Nevertheless, at this point it cannot be
ruled out that the SINAL7 ubiquitin E3 ligase could be involved
in the development of these flower organs in other ways.

Here we showed that automated, imaging based phenotyping
platform is an efficient tool to overcome the limiting factors
of manual and visual phenotypic measurements of large plant
collections. Imaging based platforms also allow deep resolution

of the phenotypes and thereby more precise association with the
genotypes. Furthermore, the automated plant management and
transportation to imaging, facilitates time course experiments.
Thereby, recording longitudinal numeric values indicating
changes in rosette size and morphology can be utilized in
developmental timing of plant growth and development. Here
the customized solution of the PSI PlantScreenTM system by top
view CCD camera in combination with online data processing
was used for high throughput phenotyping of an Arabidopsis
mutant collection. The obtained resolution and high throughput,
whereby hundreds of plants can be analyzed in the time
that normally a handful would be analyzed, is an obvious
advantage.
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Recording growth stage information is an important aspect of precision agriculture, crop

breeding and phenotyping. In practice, crop growth stage is still primarily monitored

by-eye, which is not only laborious and time-consuming, but also subjective and

error-prone. The application of computer vision on digital images offers a high-throughput

and non-invasive alternative to manual observations and its use in agriculture and

high-throughput phenotyping is increasing. This paper presents an automated method

to detect wheat heading and flowering stages, which uses the application of computer

vision on digital images. The bag-of-visual-word technique is used to identify the

growth stage during heading and flowering within digital images. Scale invariant feature

transformation feature extraction technique is used for lower level feature extraction;

subsequently, local linear constraint coding and spatial pyramid matching are developed

in the mid-level representation stage. At the end, support vector machine classification is

used to train and test the data samples. The method outperformed existing algorithms,

having yielded 95.24, 97.79, 99.59% at early, medium and late stages of heading,

respectively and 85.45% accuracy for flowering detection. The results also illustrate

that the proposed method is robust enough to handle complex environmental changes

(illumination, occlusion). Although the proposed method is applied only on identifying

growth stage in wheat, there is potential for application to other crops and categorization

concepts, such as disease classification.

Keywords: image categorization, computer vision in agriculture, automated field phenotyping, automated growth

stage observation, Field Scanalyzer, wheat heading stage, wheat flowering time

1. INTRODUCTION

An estimated doubling in required crop production is projected by 2,050 in order to meet
the demand of the rapid growth human population (Tilman et al., 2011). To achieve this, an
approximate 38% increase over current increases in annual crop production rates is required, and
on not much more arable land. Further concerns exist around not only achieving this target in a
changing climate, but also achieving it sustainably, whereby reducing agricultural inputs to reduce
the environmental degradation caused by our agricultural footprint (Tester and Langridge, 2010).
With wheat providing >20% of the worlds calorie and protein intake (Braun et al., 2010), the
requirement to increase yield and production is widely recognized.

Breeding and precision agriculture, including information-based management of agricultural
systems, are fundamental for achieving sustainable increases in wheat productivity and production.
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One component critical to both crop breeding and precision
agriculture is the monitoring of developmental growth stages, as
(i) it helps crop producers understand which phases of wheat
development are most vulnerable to biotic and environmental
stresses, and (ii) supports precision agriculture by helping
making informed-decisions around which treatment should be
applied, to what location and when to apply it. Two critical
growth stages monitored in crops, including wheat, are heading
date and flowering time, as cultivars with appropriate heading
time to their target environment and life cycle duration will help
maximize yield potential (Snape et al., 2001; Zhang et al., 2008).

The monitoring of heading and flowering stages are still
primarily performed by human eye, which is labor-intensive and
time-consuming, as these observations need to be performed
on up to thousands of cultivars/varieties on a daily or bi-daily
basis, given the importance in catching the starting date of these
growth stages. Given that manual growth stage monitoring is
also subjective, different observers may likely perceive the growth
stage of the same plot differently, which introduces human-error
into obtained data.

Computer vision offers an effective alternative for growth
stage monitoring because of its low-cost (relative to man-hours
invested in to manual observations) and the requirement for
minimal human intervention. Computer vision has facilitated
automation in high-throughput phenotyping, as well as areas
of agriculture, such as disease detection (Pourreza et al., 2015),
weed identification (Guerrero et al., 2012) and quality control
(Alahi et al., 2012; Valiente-González et al., 2014). Despite the
efforts of computer vision specialists over the past decades,
developing reliable image-based model to identify and categorize
images based on visual information is still difficult to achieve
and remains an unsolved problem in the computer vision
community. The visual recognition of object categories is a
natural and trivial task for humans. Humans can recognize
objects effortlessly even with changes in an object’s appearance,
such as viewing direction or a shadow being cast across the
object. On the other hand, in computer vision it can be a
challenging task to achieve such level of performance due to the
difficulties inherent in the problem. Images are quite abstract
and subjected to illumination, scale, deformation, background
clutter, etc. Moreover, in computer vision, teaching a machine to
distinguish and categorize objects is all about teaching it which
differences in the image is matters and which don’t, by scanning
through diverse datasets, which is a computationally exhaustive
process.

Computer vision has shown promise in detecting growth
stages of crops. For seedling emergence, color segmentation
approaches have been applied in maize (Yihang et al., 2014)
and oilseed rape (Yu et al., 2013), using images acquired from
a digital camera. Some approaches for observing later growth
stages, such as heading date and flowering stage, have also been

Abbreviations: BoVW, bag of visual words; SVM, support vector machine;

SPM, spatial pyramid matching; RBF, radius basis kernel; LLC, local linear

constraint; SIFT, scale invariant feature transform; DoG, difference-of-gaussian;

LoG, laplacian-of-gaussian; PCA, principle component analysis; SURF, speeded up

robust features; KNN, k-nearest-neighbors, UAV, unmanned aerial vehicle.

developed. Zhu et al. (2016), developed a method to detect wheat
heading stage from RGB images using a two-step coarse-to-fine
detection approach. For flowering stages, Guo et al. (2015) used
object-recognition to detect flowering stages from rice panicles.
Although the approaches by Zhu et al. (2016) and Guo et al.
(2015) were effective on a single variety, within small patches of
whole canopies, applications that are more versatile and that also
can be applied on different varieties on larger scale canopies are
required.

This study utilizes a novel visual-based approach to monitor
heading and flowering stage of field grown wheat, through the
automated learning of the visual consistency between classes of
canopy images, in order to identify the critical growing stages of
wheat (e.g., whether ears are emerging in canopies). This method
searches through an image database to identify and retrieve
images containing emerged wheat ears and ears at flowering
stages. This visual-based approach is:

i. Not limited to specific wheat cultivars and is applicable to
a variety of categorical wheat without implementing specific
tuning for each category.

ii. Robust to handle illumination changes and natural lightning
conditions in the field.

iii. Robust in distinguishing the early emerged ears, despite
the color difference between ears and leaves being hardly
distinguishable to the naked eye.

2. MATERIALS AND METHODOLOGY

The introduced technique is performed in four main steps
(Figure 1):

• Image acquisition: A RGB image is captured from 8 MP
camera mounted inside the camera bay.

• Pre-processing of the images to improve the contrast.
• Extracting features that contain suitable information to

discriminate images at the category level.
• Classification: Images classified in different categories as

specified.

Bag of VisualWords (BoVW) proved to be the leading strategy in
computer vision applications such as image retrieval and image
categorization (Csurka et al., 2004); thus, it is being opted for
the presented work. Categorizing digital images, embarks on
extracting features and creating a visual vocabulary for the given
dataset. It comprises of following states:

1. Extracting features.
2. Constructing visual vocabulary by clustering.
3. Using multi-class classifier for training using bags as feature

vector.
4. For the testing image, obtain the nearest vocabulary based on

the most optimum prediction of classifier.

However, in this study, several steps are integrated in the process
to improve the overall performance compared to Csurka et al.
(2004) described in Section 2.3. Our method treats canopy
images acquired automatically in the field as a collection of
unordered appearance descriptors extracted from local patches;

Frontiers in Plant Science | www.frontiersin.org February 2017 | Volume 8 | Article 252201

http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive


Sadeghi-Tehran et al. Automated Identification of Wheat Heading and Flowering

FIGURE 1 | Schematic representation of the method.

then, quantizes them into discrete visual words. Each image is

defined by a feature vector listing the number of regions which
belongs to each cluster and are later used to train a classifier.

In addition, the location information is taken into account
which is one of the important factors in object recognition

scenarios. In the final step, a linear Support Vector Machine
(SVM) classifier is used to determine pre-defined classes (e.g.,

ear emergence, flowering). The experimental results show that

the introduced method is capable of automatically identifying
key wheat growing stage with high accuracy and efficiency

(Section 3).

2.1. Field Experiment and Image
Acquisition
Six wheat cultivars (Triticum aestivum L. cv. Avalon, Cadenza,
Crusoe, Gatsby, Soissons and Maris Widgeon) were grown in the
field at Rothamsted Research, Harpenden, UK, sown in Autumn
2015 and maturing in 2016. These cultivars were selected as
they had different properties visible to the naked-eye (awns/no
awns, differing wax properties, straight/floppy leaves, different
ear morphology) (Figure 2). All cultivars were sown 20 October
2015, at a planting density of 350 plants/m2. Nitrogen (N)
treatments were applied as ammonium nitrate in the spring, at
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FIGURE 2 | Digital images of the six contrasting wheat cultivars (Triticum aestivum L. cv. Avalon, Cadenza, Crusoe, Gatsby, Soissons, and Maris

Widgeon) used, at growth stage Z5.9.

rates of 0 kg ha−1 (residual soil N; N1), 100 kg ha−1 (N2) and
200 kg ha−1 (N3) (Figure 4).

The Field Scanalyzer phenotyping platform (LemnaTec
GmbH; Virlet et al., 2017) was used to acquire all images
(Figure 3). The Field Scanalyzer is a fully-automated, high-
throughput, fixed-field phenotyping platform, carrying
multiple sensors for non-invasive monitoring of plant
growth, morphology, physiology and health. The on-board
visible camera (color 12 bit Prosilica GT3300) was used to
acquire RGB images at high-resolution (3,296 × 2,472 pixels).
The camera is positioned perpendicular to the ground, and
automatically adjusts to ensure a 2.5 m distance is maintained
between the camera and canopy. The camera is set up in
auto-exposure mode, to compensate for outdoor light changes.
Wheat canopies were imaged daily during three stages of
ear emergence: Stage 1 (Zadoks scale Z5.0; 3–5 June 2016
Zadoks et al., 1974); Stage 2 (Z5.3–Z5.7; 7–10 June 2016)
and Stage 3 (> Z5.9; 12–14 June 2016), as well as flowering
stage (14–18 June 2016). In addition, illumination conditions
were recorded during the image acquisition (Table 1). Manual
growth stages were recorded daily or on alternating days
during heading and flowering. The growth stage of the plot
was defined manually by the stage of >50% of the plot. Videos
and more information of the Field Scanalyzer platform can be
accessed in our website: http://www.rothamsted.ac.uk/field-
scanalyzer.

2.2. Image Pre-processing and
Enhancement
The color of ears at early development stages are very similar to
leaves and hardly discernable with the naked-eye (Figures 5A,C).
In order to make the ears stand out in canopies and discriminate
them from the background more easily, a pre-processing method
is applied on plot images before extracting features, known

FIGURE 3 | The Field Scanalyzer at Rothamsted research.

as decorrelation stretching (DS). The decorrelation stretching
technique enhances the color differences and increasing the
image contrast in each plot image by removing the inter-
channel correlation found in the pixels (Gillespie et al., 1986).
Therefore, it allows to see details such as ears that are otherwise
too subtle for the naked-eye (Figures 5B,D). If the red, green,
and blue values of pixels are treated coordinates in space,
decorrelation stretch moves these points in space further apart,
so they become much easier to see a difference between
them.

The DS among the RGB channels is achieved through
principle component analysis (PCA) to remove inter-channel
correlation in an image. The application of PCA to the
digital analysis of an image is based on first, calculating the
covariance matrix between the three RGB bands. Then, obtaining
eigenvectors and eigenvalues. Finally, rotating the original image
vector to a new space by multiplying it by the eigenvectors
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FIGURE 4 | Digital images highlighting the impact of 0 kg ha−1 (N1), 100 kg ha−1 (N2) or 200 kg ha−1 (N3) nitrogen fertilizer application on canopy

complexity. Images were acquired 2.5 m above Triticum aestivum L. cv. Soissons canopies.

TABLE 1 | Date, start/end time, and PAR values of each images

acquisition periods during ears emergence and flowering stages.

Date Start End PAR (µmol.m−2.s−1)

03/06/2016 11:19:16 12:08:24 404 ± 58

04/06/2016 11:53:11 12:42:41 512 ± 67

05/06/2016 08:29:34 09:18:38 287 ± 43

07/06/2016 13:33:40 14:25:07 1,037 ± 95

08/06/2016 08:07:05 08:58:46 315 ± 19

08/06/2016 18:05:53 18:38:33 528 ± 180

09/06/2016 08:32:25 09:24:05 530 ± 215

10/06/2016 07:43:46 08:37:33 461 ± 33

12/06/2016 14:32:33 15:26:18 703 ± 304

13/06/2016 09:49:04 10:41:12 555 ± 110

14/06/2016 10:14:16 11:06:10 800 ± 196

14/06/2016 15:01:19 15:33:55 569 ± 121

16/06/2016 08:02:55 08:35:57 363 ± 31

18/06/2016 10:51:31 11:44:17 919 ± 238

PAR mean and standard deviation values are computed from the 54 scans collected

during one acquisition periods.

(Equation 1) (Jolliffe, 2002; Cerrillo-Cuenca and Sepúlveda,
2015).

pn = RT in (1)

where in is the image vector; n is the number of pixels; and R is
the rotation matrix.

Campbell (1996) proposed a general framework consists of the
following steps:

(i) Calculating pn from Equation (1), eigenvalues and
eigenvectors are obtained from the correlation matrix or
alternatively from the covariance matrix.

(ii) Generating a stretch vector: diagonalize the covariance
matrix composed by the inverse of the eigenvectors:

D =







1√
v1
0 0

0 1√
v2
0

0 0 1√
v3






(2)

where D is a diagonal matrix; v denotes each of the
eigenvalues. Alternatively,D can be multiplied by an integer
value that serves to achieve a higher contrast in the image
(Alley, 1996). Finally, the resultant matrix is applied to pn
(Equation 3). At this step, the matrix is re-centered and
stretched its values to a maximum.

wn = Dpn (3)

(iii) The inverse transform is applied to map the colors back
to the original space. The information is decorrelated
into a new vector cn composed of three matrices (RGB)
(Equation 4)

cn = Rwn = RDRT in (4)

(iv) Finally, a standard deviation value is applied to visually
increase the contrast (Alley, 1996).

2.3. Bag of Visual Words Construction
The first step of BoVW framework corresponds to feature
extraction. Fixed length feature extraction techniques based on
color (Swain and Ballard, 1991; Chen et al., 2010), texture (Duda
et al., 2000), shape (Mehrotra and Gary, 1995), or a combination
of two or more techniques, extract pixel values of an image only.
These are excellent in comparing the overall image similarity
(Angelov and Sadeghi-Tehran, 2016); however, they are not scale
or rotation invariant. Moreover, they are very sensitive to noise
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FIGURE 5 | Digital image of wheat (Triticum aestivum L. cv. Soissons) canopy (A) before and (B) after enhancement of image contrast and application of

decorrelation stretching. Scatterplot of every pixels normalized red, green blue (RGB) values from (C) the original image and (D) after applying the decorrelation stretch

and contrast increase.

and illumination changes; thus, are unable to describe the object-
based properties of the image content.

As opposed to global feature extraction methods mentioned
earlier, local extraction algorithms are robust to partial visibility
and clutter. It is an ideal candidate for object recognition,
template matching and image mosaicing. There are several
feature detector methods, which are scale and rotation invariant.
They are also robust enough to handle illumination changes
and resistant to geometry (Bay et al., 2006; Leutenegger et al.,
2011; Alahi et al., 2012). Among the proposed descriptors, Scale
Invariant Feature Transform (SIFT) is selected due to its excellent
performance attested in various applications (Mikolajczyk and
Schmid, 2005). It returns anN×128 dimension image descriptor,
where N is the number of features.

SIFT consists of Lowe (2004):

• Constructing a scale space: in this stage, location and scales
of each keypoint are identified. Laplacian-of-Gaussian (LoG)
is calculated for an image with various σ . Due to change in σ ,
LoG detects blobs of various sizes, then the local maxima can
be found across the scale and space with a list of (x, y, σ ) values,
which show there is a candidate keypoint at location x, y with
scale of σ . However, in order to reduce the computational

complexity, SIFT uses Difference-of-Gaussian (DoG) which
is a convolved image in scale space separated by a constant
factor k:

D(x, y, σ ) = (G(x, y, kσ )− G(x, y, σ )) ∗ I(x, y)

= L(x, y, kσ )− L(x, y, σ ) (5)

where I(x, y) is an input image; L(x, y, kσ ) is the scale space of
an image; G(x, y, kσ ) is variable-scale Gaussian.

D is computed by simple image subtraction and the
Guassian image is sub-sampled by a factor of 2 and produces
DoG for the sampled image. Once the DoG is computed,
images are searched for local extrema over space and scale. For
instance, one pixel is compared with its n × n neighborhood
(n = 3 in our experiment) as well as 9 pixels in the next scale
and 9 pixels in previous scales (Lowe, 2004).

• Keypoint localization and filtering: Once the location of
keypoints candidates are found, they are refined and some are
eliminated to get a more accurate location of extrema. For
instance, if the intensity at the extrema is less than a certain
threshold (threshold <0.03) it is rejected. In addition, edges
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FIGURE 6 | (A) A single keypoint candidate in the image; (B–D) SIFT descriptor calculated at different scales of 4, 8, and 10; At each scale, the descriptor has 4× 4

patches (color coded in yellow), which are rotated to the dominant orientation of the feature point. Each patch is represented in gradient magnitudes of eight

directions, represented by yellow arrows inside each bin.

and low contrast regions are considered as bad keypoints and
will be rejected.

• Orientation assignment: The orientation of each keypoint is
obtained based on image gradient and local image gradient
directions to achieve rotation invariance. Depending on the
scale a neighborhood is taken around the keypoint location
and the gradient magnitude and direction is calculated in that
region.

• Keypoint descriptor: In order to generate a keypoint
descriptor, the local image descriptor is computed for each
keypoint based on image gradient magnitude and orientation
at each image sample point in a region centered at keypoint.
These samples build a 3D histogram of gradient location and
orientation; with a 4 × 4 array location grid and 8 orientation
bins in each sample, which creates 128 element dimensions of
the keypoint descriptor, causing robustness against changes in
scale and rotation (Figure 6).

The next step is to form clusters of similar features and assign
them as visual words. The objective of constructing codebook
is to relate features of testing images to the features previously
extracted from the training image samples (Figure 7). Although
in the field of unsupervised learning, clustering is a standard
procedure, there is no single clustering algorithm that can be
applied uniformly to all the application domains or address all
related issues in a satisfactory manner. Here, a partition-based
clustering approach known as K-means clustering is used to
quantize each descriptor and generate a codebook. The process
is iterative as follows (Lloyd, 1982):

Algorithm 1 K-means clustering procedure

1: Select K points as initial centers
2: repeat

3: Assign each input data to its closest center
4: Re-compute the center of each cluster by averaging all the

members in the clusters
5: until

6: convergence which means no pixel shifts from one cluster to
another; centers do not change

In K-means the number of clusters is pre-defined beforehand
and it should be large enough to identify relevant changes
in each wheat cultivars. For an image having N features,
the model will distribute the features with K clusters,
which is the size of the visual vocabulary. We have been
able to find the optimum numbers and get very good
results with number of vocabulary (codebook) K = 2000
(Table 2).

The codebook is used for quantizing features. A vector
quantizer takes a feature vector and maps it to the index
of the nearest code vector in a codebook. In our work, in
order to project the descriptors onto the codebook elements,
Local Linear Constraint (LLC) (Wang et al., 2010) is used
to generate a final vector which represents an image. LLC
reduces the computational complexity to O(K + K) (where
K is the length of the codebook; K = 2000 in this case) for
each descriptor and can achieve acceptable image classification
accuracy even with a linear SVM classifier (Wang et al.,
2010).

The main drawback of BoVW is that it is unable to
capture spatial relationships between images. In order to
preserve the spatial relations of the code vector Spatial
Pyramid Matching (SPM) is implemented where the entire
image is divided into levels. Each image is divided into
spatial sub-regions and computes histograms of features
from each sub-region. Each level divides the image into
2l × 2l−1; where l is level (Grauman and Darrell, 2005;
Lazebnik et al., 2006). The features are computed locally
for each grid and the spatial information is incorporated
into histograms. A three level SPM is used with first,
level 0 which comprises of a single histogram; level 1,
comprising of 4 histograms, finally level 2, comprising
of 16 histograms (Figure 7). The histogram from all the
sub-region are concatenated together to generate the
final representation of the image for classification. The
result is a feature weighted histogram of 21 × K (number
of words = 2000). Using such method will preserve the
discriminative power of the descriptors; in addition, changes
in the positioning of the objects and variations in the
background will not affect the overall performance of the
method.
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FIGURE 7 | Schematic representation of the proposed method.

2.4. Learning Model
The construction of the model for our image annotation is
based on the supervised machine learning principle. Supervised
learning can be thought as learning by examples represented by
a set of training-testing samples. In order to classifying unknown
testing images, a certain number of training images are used for
each class to train the classifier. A classifier approximates the
mapping between the images and correctly labels the training set,
called the training phase. After the model is trained, it is able to
classify unknown image, into one of the learned class labels.

In our model, the complexity of visual categorization is
reduced to two-class with positive and negative training patches.
The SVM classifier is used as our classifier of choice as it is fast
and can handle the long feature vectors generated by the SPM.
During the training phase, labeled images (ears and background)
are fed to the classifier and used to adapt a statistical decision
procedure. Among many available classifiers, linear SVM with
Hellinger kernel is used to predict the unlabeled test images and
retrieve as much of the data as possible in a high ranked position.
Feature vectors generated from each image are normalized to a
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TABLE 2 | Comparison of different methods applied on the three heading stages.

Decorrelation

pre-processing

Feature extraction Coding method Spatial pyramid Vocabulary length Accuracy

Z5.0 (%)

Accuracy

Z5.3–Z5.7 (%)

Accuracy

≥ Z5.9 (%)

Yes SIFT LLC Yes 2,000 95.24 97.79 99.59

No SIFT LLC Yes 2,000 57.29 82.20 85.38

Yes SIFT k-NN Yes 2,000 90.54 94.48 96.97

Yes SIFT LLC No 2,000 92.90 96.54 96.90

Yes SURF LLC Yes 2,000 56.84 71.55 78.45

Yes SIFT LLC Yes 1,000 93.91 97.52 98.91

Yes SIFT LLC Yes 1,500 94.61 97.64 99.24

Yes SIFT LLC Yes 2,500 94.90 97.59 99.49

unit Euclidean norm and used for a linear SVM classifier with
the Hellinger kernel to compute the feature map (Vedaldi and
Zisserman, 2012).

K(n, n′) =

d
∑

m=1

√

nmn′m; n = [n1, . . . , nd]; n
′
= [n′1, . . . , n

′
d]

(6)
where n and n′ are normalized histograms; d = 42, 000

One-vs.-all strategy is chosen to train the SVM. Two classes
are trained, each labels the sample inside one class as +1 and other
samples (background) as -1. The SVM calculates the similarity of
all trained classes and assigned the test image to the class with the
highest similarity measure.

3. EXPERIMENTAL RESULTS AND
DISCUSSION

The experiment is divided into two sections of identifying ear
emergence and flowering stages from the digital images acquired
in the field. In the first section, ear emergence was tested at
different time points, from early stages where only few spikelets
are visible, to a more advanced stage where ears are fully
emerged (Section 3.1). In the second part of the experiment,
the method was tested to identify flowering growth stage during
anthesis (Section 3.2). The training dataset for the ear emergence
experiment includes images with ears at different emergence
stages (positive class) and leaves, soil, etc. (negative class), which
are manually cropped and stored in the dataset. On the other
hand, the training dataset for the flowering experiment contains
ears at different flowering time points (positive class) and ears
before and after flowering (negative class). The collected dataset
focuses on different challenges regardless of light conditions
in the field and to demonstrate the robustness of the method
to environmental changes. In addition, the versatility of the
proposed technique were also tested by minimizing the number
of cultivars as training patches, and evaluating the method on
more varieties.

The research was conducted with the following specifications.
System comprised of 24 GBRAM, Intel quad core Processor (3.40
GHz) with Windows 10 OS. The models have been developed in
MATLAB (Mathworks Inc.); however, to improve the processing

time, some of the algorithm, such as SIFT were written in C++
programming language. Utilities like VLFeat library (Vedaldi and
Fulkerson, 2010) to extract features as well as LibLinear library
(Fan et al., 2008) to train and test the SVM classifier. Using
the above configured computer system, extracting features and
generating code vectors from each training image approximately
takes 0.45 s. However, the processing time increases to 5.4 s for
each testing patch with resolution of 3,298× 2,474 pixels.

Precision (Pr) and Recall (Re) are the most commonly used
measurements to evaluate the performance of image retrieval
systems. Thus, it is used in our experiment to quantitatively assess
the precision of the proposed approach in detecting the two
main growing stages of ear emergence and flowering. Precision
is defined as the ratio of the number of retrieved relevant images
Nr to the total number of retrieved images N (Equation 7); on
the other hand, Recall is defined as the number of retrieved
relevant images Nr over the total number of positive images Nt

available in the database. In an ideal scenario, both Pr and Re
should have high values (1). Therefore, instead of using Pr and
Re individually, usually accuracy curve is used to characterize the
performance of the retrieval system.

Pr =
Nr

N
; Re =

Nr

Nt
(7)

3.1. Ear Emergence
The learning process starts with 1,000 training image samples
divided into 500 ears (positive class), which are manually
cropped from full size canopy image and 500 background
images (negative class). Figure 8 shows image samples randomly
selected from training patches which are not necessarily the
same dimensions. Moreover, to observe the field challenges
during data acquisition, ears are selected from different positions
and illumination conditions (with or without occlusions
and overlapping; sunny or cloudy days). Three different
wheat cultivars are used as a training dataset including
Avalon, Cadenza, and Soissons. Cadenza can present short
awnlettes/scurs at the ear tip, although most of the times no awns
are present in contrast to Soissons which is an awned variety.
Although three wheat cultivars were used as a training dataset,
six cultivars including Maris Widgeon, Avalon, and Gatsby are
tested to highlight the versatility of the proposed technique.
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FIGURE 8 | Example of ear emergence training patches. Note that the training patches are not necessarily of equal size and resized for illustration purposes. (A)

Examples of positive training patches of three different wheat cultivars (Triticum aestivum L. cv. Soissons, Avalon, and Cadenza). (B) Examples of negative training

image patches.

Ear identification was evaluated at three different time points
of the emergence period, (i) at Z5.0, when the ears start to be
visible (first spikelet of inflorescence visible), (ii) between Z5.3–
Z5.7, when 1/4 to 3/4 of the ears are emerged and (iii) at Z> 5.9,
when ears are fully emerged (Figure 8). Each time point was
tested independently from datasets containing 80 images (40 with
ears present and 40 without) of full size wheat canopies with the
original resolution of 3,298× 2,474 pixels.

The results for each ear development stage are shown in
Table 2. The accuracy of the method is evaluated using different
techniques at different processing stages. (i) presence/absence of
decorrelation processing, (ii) SIFT vs. SURF, (iii) LLC vs. KNN,
(iv) presence/absence of spatial pyramid and (v) the vocabulary
length. As shown in the Tables, the best performance was
obtained using decorrelation pre-processing, SIFT, LLC coding,
and a 2,000 entry codebook. The best performance at heading
stage Z5.0 is 95.24%, and for heading stages Z5.3–Z5.7 and >

Z5.9 are 97.79 and 99.59%, respectively (Figure 9). Out of the
eight tested scenarios, we achieved accuracy of> 90% at Z5.0 and
> 96% at Z5.9 in six scenarios. The impact of codebook size on
the performance of the method was also investigated. It is clearly
shown that the increasing number of codebook improves the
accuracy; however, the accuracy plateaus at 2,000 visual words.
Moreover, the low-level feature extraction and the decorrelation
pre-processing technique has the biggest influence in the quality
of results; especially in the early heading (Z5.0). The main
conclusion is that mid-level feature coding and classification
are highly impacted by the low level pre-processing and feature
extraction techniques.

Figure 10 illustrates the performance evolution of the heading
stage Z5.0 over the number of images in the training dataset.
for both positive and negative data. Training patches of 50, 100,
300 were selected randomly apart from the full set when all 500
samples were used. The accuracy improves by increasing the
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FIGURE 9 | Three ear development stages visually scored and used to

evaluate the performance of the proposed method.

FIGURE 10 | Accuracy of the proposed method over number of training

image samples.

number of training samples. The accuracy increased from 75.77
to 90.65% when the training dataset increased from 50 to 100.
On the other hand, there was no substantial change in accuracy
between 100 and 200 samples. However, the performance jumped
by more than 5% from 90.80 to 95.24% when the dataset
increased to 500.

3.2. Flowering Time
Similarly to ear emergence identification, two training classes
were created, which comprised of three wheat cultivars (Soissons,
Maris Widgeon, and Cadenza). The first class (positive class)
contained 140 manually cropped images at flowering stage while
the second class (negative class) contained the same number
of images as the positive class, but with ears before and after
flowering.

Figure 11 shows randomly selected samples from the training
patches. All training images were collected without considering
the environmental changes and positioning or occlusion. As

flowering development may be completed in only a few days, the
beginning or intermediate stages can be easily missed. Therefore,
all flowering images along the flowering duration were included.
For the testing dataset, 108 full size canopy images were used
with the original resolution, which includes 54 canopies with
ears during flowering stage and 54 canopies with ears before or
after flowering stage. The method selected to test the flowering
stage was the one which produced the best result in the ear
emergence experiment (decorrelation stretching, SIFT, LLC, and
SPM algorithms with the vocabulary length of 2,000). The
method was tested on each cultivar separately, as well as all three
together. For all three cultivars, 38 images out of 54 images were
retrieved correctly, which shows 82.54% accuracy. On the other
hand, the accuracy when testing Soissons, Cadenza, andWidgeon
individually was 76.72, 92.91, and 80.33%, respectively (Table 3).

3.3. Discussion
To the best of our knowledge, few efforts have been made
to automate the detection of crop growth stage (Thorp and
Dierig, 2011; Yu et al., 2013; Guo et al., 2015; Zhu et al., 2016).
Furthermore, the published methods have only been applied to
small sections of the crops and generally tested only on a single
cultivar. Unlike alternative methods, such as Yu et al. (2013),
which used color properties to determine growth stages of maize,
our approach uses rich feature collection techniques, such as
SIFT, which carry suitable information to discriminate images at
the category level on the canopy scale. The technique used byGuo
et al. (2015) was only tested on two rice varieties individually at
flowering stage and obtained just over 80% accuracy. However,
our method integrated statistical variables, such as vector coding
and spatial pyramid matching, which improved the accuracy and
general versatility of the growth stage identification. On the other
hand, their training system contained only flowering rice as the
positive class and leaves as the negative class; failing to define rice
before and after the flowering stage. This may have likely made
their dataset more challenging because more variables would be
added to the training dataset and distinguishing between non-
flowering and flowering panicles would have added difficulty,
potentially detecting false positives, ultimately reducing the
accuracy of their method.

In our case, the accuracy of flowering detection is less than
heading. This could be due to the size and color of anthers.
The color of anthers can range from yellow to white depending
on the cultivar, and the pale color of the anther has increased
the sensitivity to over/under exposure as a result of changes in
ambient illumination. Moreover, anthers are far smaller objects
compared to wheat ears and are prone to noise, adding difficulty
to detection them accurately. Nevertheless, the proposed method
yielded greater accuracy than the existing method (Guo et al.,
2015).

Pre-processing is also an important factor in our method.
Newly emerging ears are difficult to distinguish as they are
nearly the same color as the canopy, making methods based on
color features inadequate for this purpose. However, the use of
color enhancement methods, such as decorrelation stretching,
yields higher accuracy. In our case, the absence of decorrelation
stretching, results a decrease in accuracy from 95.24% to 57.29%
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FIGURE 11 | Example of flowering training patches. Examples of positive training patches of three different cultivars; ( Triticum aestivum L. cv. Soissons, Maris

Widgeon, and Cadenza), which contain flowering ears. Examples of background training patches which do not contain flowering ears.

and from 99.59 to 85.38% at earliest and latest stage of heading,
respectively. Moreover, applying decorrelation stretching as a
color enhancement tool early in the process minimize various
ambient light conditions. The other important factor is the

low level feature extraction in the BoVW process. SIFT was
replaced by SURF as an alternative technique; however, although
SURF performs faster as a result of using integral images
and Hessian Matrix (Bay et al., 2006); SIFT still outperformed
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TABLE 3 | Comparison of flowering accuracy between three wheat

cultivars.

Wheat cultivar No. training images No. testing images Accuracy (%)

Cadenza 410 16 92.91

Soissons 410 23 76.72

Maris widgeon 410 15 80.33

All three 410 54 82.54

SURF (Table 2) in our experiment. It has also been examined
that SIFT showed more stability on blurry images and more
robust to rotation and scale invariants (Mikolajczyk and Schmid,
2005).

It should also be highlighted that the quality of the training
dataset plays an important role in the overall performance.
We aimed to define more scenarios for the system (e.g.,
ears at different positions, scales, and illumination conditions
in the field, etc.). As shown in Figure 11, the accuracy of
the ear emergence detection would increase by adding more
training data. We would expect to improve the accuracy of the
flowering experiment, by collecting data more frequently during
the flowering period and increasing the size of the training
dataset.

4. CONCLUSION

We proposed an automated observing system using computer
vision to determine two key growth stages in wheat: ear

emergence and flowering time. The proposed method is capable
of distinguishing the critical growth stages from the RGB
images taken in the field. The approach demonstrated a high
performance for identifying such development changes and was
not affected by the environmental conditions or illumination
invariants in the field.

In future work, we aim to test our proposed method on
additional wheat genetic material and other species, and in
addition, to investigate the effect of alternative computer vision
techniques from features extraction to classification on the
performance and overall accuracy. Finally, we aim to apply
the proposed method on images acquired by Unmanned Aerial
Vehicles (UAVs) to monitor large fields efficiently and believe it
will dramatically accelerate the recording of such development
stages.
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The expression and glycosylation patterns of anti-colorectal cancer therapeutic
monoclonal antibody (mAb) CO17-1A recognizing the tumor-associated antigen
GA733-2, expressed in human colorectal carcinoma cells, were observed in the leaf
and stem tissues of primary (0 cycle), secondary (1 cycle), and tertiary (2 cycle) growths
of seedlings obtained from the stem cut of T2 plants. The bottom portion of the stem
of T2 seedlings was cut to induce the 1 cycle shoot growth, which was again cut to
induce the 2 cycle shoot growth. In the 1 and 2 cycle growths, the periods for floral
organ formation (35 days) was shorter than that (100 days) for the 0 cycle growth. The
genes of heavy and light chains of mAb CO17-1A existed at the top, middle, and basal
portions of the leaves and stem obtained from the 0, 1, and 2 cycle plants. The protein
levels in the leaves and stem tissues from the 1 and 2 cycles were similar to those in the
tissues from the 0 cycle. The glycosylation level and pattern in the leaf and stem did not
alter dramatically over the different cycles. Surface plasmon resonance (SPR) confirmed
that mAbs CO17-1A obtained from leaf and stem tissues of the 0, 1, and 2 cycles
had similar binding affinity for the GA733-2 antigen. These data suggest that the shoot
growth by bottom stem cutting is applicable to speed up the growth of plant biomass
expressing anti-colorectal cancer mAb without variation of expression, glycosylation,
and functionality.

Keywords: plant product system, axillary bud, biomass, recycling plant, anti colorectal monoclonal antibody

BACKGROUND

Plants are well recognized as alternative hosts for production of highly valuable recombinant
proteins, such as antibodies, vaccines, human blood products, hormones, and growth regulators
(Fernandez-San Millan et al., 2003; Rigano and Walmsley, 2005; Schillberg et al., 2013). They offer
mass production and safety advantages, with ease of seed storage, compared to the microbial and
animal cell-based systems (Twyman et al., 2003; Fischer et al., 2013; Shanmugaraj and Ramalingam,
2014). Plant cultivation can easily be modulated in response to the demand for the recombinant
protein by controlling the number of seeds sown (Fischer and Emans, 2000; Leckie and Stewart,
2011). The speed of obtaining plant biomass is essential in the application to save time for
production of recombinant proteins. In general, however, more than 14 weeks are required for
the development of a fully grown tobacco plant from the time of sowing of its seeds (Lim et al.,
2015). A plant-based recombinant protein production system might have drawbacks, such as
relatively long cultivation period for obtaining full biomass from the seeds, especially when there is
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time-constraint for use of the field for cultivation of such
plants. Therefore, rapid enhancement of the plant biomass is
imperative for increasing the efficiency of plant-based systems for
production of recombinant proteins.

Physiological mechanisms responsible for rapid growth of
lateral shoots, without a corresponding increase in root growth,
can promote biomass accumulation (Vysotskaya, 2005). Auxin,
an important hormone of shoots, in particular, regulates apical
dominance (Cline et al., 1997; Teale et al., 2006). The lower
lateral buds can be induced by cutting the terminal bud to
remove apical dominance (Skoog and Thimann, 1934; Leyser,
2003; Umehara et al., 2008). Moreover, the speed of plant shoot
growth could be enhanced by lowering the shoot/root ratio
(Vysotskaya, 2005), to overcome the space and time limitations.
The cutting of lower branches could be a strategy for plant
recycling system to speed up the biomass production without
the need for further sowing of seeds. In this study, the effect of
cutting the stem to remove apical dominance on shoot growth
rate was determined. Furthermore, the expression, glycosylation,
and function of a recombinant anti-colorectal cancer monoclonal
antibody (mAb) CO17-1A, expressed in the newly induced
shoots was determined to confirm whether secondary shoot
growth would be applicable as a plant recycling system to obtain
increased biomass for enhanced production of recombinant anti-
cancer mAb proteins.

MATERIALS AND METHODS

Plant Material and Cultivation
Forty seeds of transgenic tobacco T2 plants, with plant-
derived anti-colorectal cancer mAb (mAbP CO17-1A)
production capability (So et al., 2012), were sown in pots
(18.5 cm × 18.5 cm × 14.5 cm) filled with steam-sterilized
commercial soil mixture (Sun Gro Horticulture, Agawam,
MA; Figure 1A), respectively. Forty seedlings were grown in
greenhouse under simulated natural light conditions with an
average 12 h light/12 h dark photoperiod. The growth of plants
was measured immediately before flowering. The lower branch
of the primary plant seedling (0 cycle) was cut to induce axillary
buds for growth of lateral branches (1 cycle) on the remnant
10 cm long base stem (Figure 1A). The base stem of the 0 cycle
plant in the pot was maintained to induce the 1 cycle for the
growth of lateral branches until the appearance of inflorescence
on the shoot obtained from the axillary bud (Figure 1A). The
growth of tertiary (2 cycle) shoots was induced from the cut stem
of the fully grown l cycle plant (Figure 1A).

Polymerase Chain Reaction (PCR)
Amplification from Genomic DNA of Leaf
and Stem in 0, 1, and 2 Cycle Plants
Genomic DNA was isolated from approximately 100 mg of
leaf and stem tissues from the plants (0, 1, and 2 cycles) using
DNeasy kit (Qiagen, Hilden, Germany), according to the
manufacturer’s recommendations. The extracted DNA was
amplified by polymerase chain reaction (PCR) to confirm the

presence of genes for mAb CO17-1A heavy chain (HC; 1,471 bp)
and light chain (LC; 764 bp), by using the following forward and
reverse primers: HC forward primer, 5′-GCGAATTCATGGAA
TGGAGCAGAGTCTTTAT C-3′; HC reverse primer, 5′-GATTA
ATCGATTTTACCCGGAGTCCG-3′; LC forward primer, 5′-GC
CTCG AGATGGGCATCAAGATGGAATCACAG-3′; LC reverse
primer, 5′-GAGGTACCCTAACACTCATTCCTGTTGAAGCTC-
3′.

Western Blot Analysis
Eighty milligram of fresh leaves and stems (from top, middle,
and basal portions of plants) was crushed by cryo-milling to
extract the total soluble proteins. The homogenized plant samples
were mixed with 280 µL of sample buffer (1 M Tris-HCl, 50%
glycerol, 10% SDS, 5% 2-mercaptoethanol, 0.1% bromophenol
blue), and the homogenates were loaded on a sodium dodecyl
sulfate polyacrylamide gel. The electrophoresed proteins were
transferred on to a nitrocellulose membrane (Millipore Corp.,
Billerica, MA, USA), which was blocked with 5% skimmed milk
(Sigma, St. Louis, MO, USA), prepared in 1× phosphate-buffered
saline (PBS), for 2 h. The blot was subsequently probed with
goat anti-murine IgG Fcγ and anti-murine IgG F(ab)′2, which
recognize the HC and LC of mAb CO17-1A, respectively. The
purified mAbP CO17-1A was used as a positive control (Ko et al.,
2005).

Purification of Recombinant mAbP

CO17-1AK from Leaf and Stem of Plant
from Each Cycle
For purification of mAbP CO17-1AK, the leaves and stem from
the tobacco plants of the 0, 1, and 2 cycles were homogenized on
ice in the extraction buffer (37.5 mM Tris-HCl pH 7.5, 50 mM
NaCl, 15 mM EDTA, 75 mM sodium citrate, and 0.2% sodium
thiosulfate) using a blender. After centrifugation at 8,800 × g for
30 min at 4◦C, the supernatant was filtered through a Miracloth
(Biosciences, La Jolla, CA, USA), and its pH was adjusted to
5.1 with acetic acid. The supernatant was further centrifuged
at 10,200 × g for 30 min. The pH of the supernatant, thus
obtained, was adjusted to neutral by addition of 3 M Tris-
HCl. The total soluble protein was precipitated with ammonium
sulfate after overnight incubation in a cold room followed by
centrifugation at 4◦C for 30 min. The pellet was resuspended
in one-tenth of the starting volume of extraction buffer, and the
obtained solution was centrifuged at 10,200 × g for 30 min at
4◦C (Park et al., 2015). The mAbP CO17-1A protein was purified
using protein A Sepharose 4 Fast Flow (GE Healthcare, Sweden,
NJ, USA), according to the manufacturer’s recommendations.
The mAbP CO17-1A protein was dialyzed against 1× PBS (pH
7.4). The protein concentration was determined using a Nano-
drop (Biotek, Highland, VT, USA) and the purified protein was
visualized by SDS-PAGE. Aliquots of the purified protein were
stored at−80◦C for further studies.

Glycan Analysis
The purified mAbP CO17-1A protein samples were treated
twice with 1 µL pepsin in an incubator at 37◦C for 16 h to
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FIGURE 1 | Continued
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FIGURE 1 | Continued

Schematic diagram for the primary (0 cycle), secondary (1 cycle), and tertiary (2 cycle) growth of plants expressing the anti-colorectal cancer
mAb CO17-1A. (A) Schematic diagram showing primary (0 cycle), secondary (1 cycle), and tertiary (2 cycle) growths from T0 transgenic plants. The base
stem of 0 cycle plant was cut to induce axillary buds for secondary plant growth (1 cycle), and the base stem of the 1 cycle plant was cut for the tertiary
plant growth (2 cycle). T, top of the whole plant; M, middle of the whole plant; B, base of the whole plant. (B) Comparison of plant growth period for
flowering in 0, 1, and 2 cycles. The growth of 0 cycle plants was compared with 1 and 2 cycle plants obtained from base stem cutting. The asterisks
indicate statistically significant differences (∗∗p < 0.01). (C) PCR analysis to confirm the existence of HC and LC genes in top, middle, and basal portions
of both the leaves and stems of transgenic plant (0, 1, and 2 cycles). The genomic DNA fragments of mAbP CO17-1A were amplified and
electrophoretically separated on a 1% agarose gel. NT, non-transgenic plant; HC, heavy chain of mAbP CO17-1A; LC, light chain of mAbP CO17-1A. (D,E)
Western blot analysis to confirm the mAbP CO17-1A HC and LC expression in the leaves and stems of transgenic plants through 0, 1, and 2 cycles. The
bands for HC (50 kDa) and LC (25 kDa) were detected with horse radish peroxidase-conjugated goat anti-mouse Fc and goat anti-mouse F(ab)′2-specific
antibody, respectively. +, purified mAb CO17-1A from plant (So et al., 2012); Top, top portion of plant; Middle, middle portion of plant; Base, basal portion
of plant (A).

digest the protein into glycopeptides. The glycopeptides were
collected using a C18 Sep-Pak cartridge (Waters, Lexington,
MA, USA). The N-glycosidase (PNGase) A glycan enzyme was
added to the collected glycopeptides to release the N-glycans,
and the mixtures were incubated overnight at 37◦C. The released
N-glycans were purified from the samples by using a graphitized
carbon resin from Carbograph (Alltech, Lexington, MA, USA).
The purified glycans were 2-aminobenzamide (2-AB)-labeled
using previously described methods (Bigge et al., 1995). The 2-
AB-labeled glycans were separated on a TSK amide-80 column
(5 µm, 4.6 mm × 250 mm; Tosoh Bioscience, Prussia, PA, USA)
using a high performance liquid chromatography (HPLC) system
with a fluorescence detector (330 nm excitation and 425 nm
emission; Lim et al., 2015). The separation of the labeled glycans
was achieved at a flow rate of 1.0 mL/min using a mixture of
solvent A (100% acetonitrile) and solvent B (50 mM ammonium
formate, pH 4.4). After the column was equilibrated using 30%
solvent B, the sample was injected and then eluted by a linear
gradient to 45% of solvent B for 60 min. HPLC analysis was
repeated more than three times.

Surface Plasmon Resonance Analysis
The surface plasmon resonance (SPR) analysis was performed
to confirm the affinity of mAbP CO17-1A to GA733 antigen
using a commercially available GLC chip on an XPR36 surface
instrument (Bio-Rad, Hercules, CA, USA). The GA733 protein
was immobilized on a GLC chip, and an acidic buffer at pH
6.0 was allowed to flow over the biochip surface at a rate of
50 µL/min. One microgram of the purified mAbP CO17-1A from
leaf and stem (0, 1, and 2 cycle samples) was dissolved in 300 µL
of 1× PBS, and the 300 µL was applied to immobilized receptors
with a flow rate of 50 µL/min at 25◦C and pH 6.0. After each
measurement, the surface of the sensor chip was regenerated
using phosphoric acid buffer.

RESULTS

Induction and Growth of Axillary Buds by
Bottom Stem Cut
Agrobacterium-mediated tobacco plant transformation was
conducted to generate transgenic plants expressing the anti-
colorectal cancer mAb CO17-1A (Ko et al., 2005; So et al., 2012).

The seeds of T2 transgenic plants were obtained by consecutive
self-fertilization of the T0 and T1 plants. Two well-expanded
true leaves appeared in the plantlets 21 days after sowing of T2
seeds. The growth period of the T2 plants until flower formation
was around 100 days (Figures 1A,B). The lateral shoot was
induced after retaining the root system by cutting the bottom
stem of transgenic plants expressing the anti-colorectal cancer
mAb CO17-1A (Figure 1A). Only a single lateral shoot was left
to grow until just before the floral organ formation (Figure 1A).
The bottom stem cutting was conducted in 2 cycles (Figure 1A).
However, the growth period of the axillary shoot to the flowering
stage from the cut stem was 30 and 35 days in the 1 and 2 cycles
(Figure 1B). Overall, the growth period of the lateral shoot in 1
and 2 cycles was almost three times shorter compared to that of
the primary shoot from the seedlings (0 cycle).

Existence of mAb CO17-1A HC and LC
Genes in 0, 1, and 2 Cycle Plants
The PCR analysis was conducted to confirm the existence of HC
and LC genes of mAb CO17-1A in the leaf and stem tissues
from top, middle, and base stem portions in 0, 1, and 2 cycles
(Figure 1C). The HC and LC genes existed in all the portions of
leaf and stem tissues of lateral shoot in all the cycles (Figure 1C).
No HC or LC gene was amplified in the samples from the
non-transgenic (NT) plants.

HC and LC Protein Levels of mAb
CO17-1A in the Leaf and Stem Tissues
from Top, Middle, and Base Portions
Through Recycling
The changes in HC and LC protein levels in top, middle, and
basal leaves and stems in 0, 1, and 2 cycles were investigated
by western blotting (Figures 1D,E). In the leaf tissue, the HC
and LC protein levels were stable over the cycles (Figure 1D left
and right panels, respectively). In the top leaves, the HC levels
slightly increased with the cycles. The LC levels were steady over
the cycles. In the stem tissue, the HC and LC levels were stable
over the cycles (Figure 1E left and right panels, respectively). In
the basal stems, the HC levels slightly decreased over the cycles
(Figure 1E left panel). Overall, the HC and LC protein levels were
similar in the samples from all the portions of stem through the
cycles.
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Glycan Analysis of mAbP CO17-1A
Purified from Leaf and Stem of 0, 1, and
2 Cycle Plants
The N-glycans of mAbP CO17-1A purified from the leaf and
stem of 0, 1, and 2 cycle plants were analyzed by HPLC. The
glycosylation patterns were analyzed in the leaf and stem (0, 1,
and 2 cycles) tissues (Figures 2A,B). The glycan profile of leaf
and stem from plants (0, 1 and 2 cycles) was similar and showed a
high mannose-type glycan structure profile. The percentages (%)
of oligomannose glycan in leaf and stem were ∼15 and ∼13.7–
14.9, respectively, through the cycles (Figures 2A,B). The glycan
structure profiles of mAbP CO17-1A in 0, 1, and 2 cycle plant
leaves and stems were similar.

SPR Analysis of mAb CO17-1A Purified from
Leaf and Stem of 0, 1, and 2 Cycle Plants
SDS-PAGE analysis was performed to identify the HC and
LC of the purified mAb CO17-1A in the plant leaf and stem

samples obtained in each cycle (0, 1, and 2; Data not shown).
The purified mAb CO17-1A from 0, 1, and 2 cycle plants
showed the same band sizes for HC and LC. Although the
cycle number increased, there was no change in the quality of
mAb CO17-1A, which remained undegraded. Expression and
purity of mAb CO17-1A in stems was also confirmed in 0, 1,
and 2 cycle plants. mAbP CO17-1A purified from the leaf and
stem samples of 0, 1 and 2 cycle plants were compared for
their binding activities (Figures 2C,D). All the mAbP CO17-1A
purified from leaf and stem tissues collected in different cycles
showed relatively similar interaction with the antigen GA733-
Fc using SPR (Figures 2C,D). The binding affinities of the mAb
CO17-1A purified from leaf and stem samples collected from
different cycle plants were similar except for the 2 cycle where the
mAb CO17-1A purified from stem (Figure 2D) showed slightly
higher affinity for the antigen than the mAb purified from the
leaf (Figure 2C). When the binding activities of mAb CO17-1A
purified from the leaf and stem samples were compared among
the cycles, the 1 cycle showed slightly lower affinity than the 0

FIGURE 2 | Glycosylation and function analyses of mAb CO17-1A protein purified from leaves and stem of 0, 1, and 2 cycle plants. (A,B) Profiles of
N-glycan from mAbP CO17-1A were analyzed using high performance liquid chromatography of the 2-AB labeled glycans. (A) Glycan structure profiles of mAbP

CO17-1A purified from leaf of 0, 1, and 2 cycle plants. (B) Glycan structure profiles of mAbP CO17-1A purified from stem of 0, 1, and 2 cycle plants. GlcNAc,
mannose, and xylose are depicted using black square, white circle, and white star, respectively. The ratios of oligomannose (white) and plant-specific (gray) glycans of
mAbP CO17-1A in leaves and stem of 0, 1, and 2 cycle plants were shown in a pie chart. Binding affinity of mAb CO17-1A purified from leaves (C) and stem (D) of 0,
1, and 2 cycle plants to GA733 antigen using surface plasmon resonance (SPR). Purified mAbP CO17-1AK from the leaves of 0, 1, and 2 cycle plants was incubated
with the GA733 adsorbed biochip (C). Purified mAbP CO17-1A from the stem of 0, 1, and 2 cycle plants was incubated with the GA733 adsorbed biochip (D).
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and 2 cycles (Figures 2C,D). In general, however, the peaks of
mAb CO17-A from both the leaf and stem samples were similar
between the 0 and 2 cycles.

DISCUSSION

In the present study, we demonstrate that fresh stem and
leaves regrow from axillary buds after cutting of the stem. The
lateral shoots, thus generated, could stably express functional
anti-colorectal cancer therapeutic antibody, mAb CO17-1A
recombinant protein, without alterations in its glycosylation
pattern.

The lateral shoots emerge from axillary meristems when the
apical dominance is removed (Leyser, 2003). In the present study,
the plants (1 and 2 cycles), induced to produce lateral branches
from the axillary buds, grew faster (∼30–35 days) to their full size
and flowered than the plants grown from the seedlings (0 cycle),
which required∼100 days to reach their full size.

In fact, the use of plant expression systems has been limited
due to longer growth period to obtain a full-sized plant with high
biomass (Hood et al., 2002; Horn et al., 2004; Teli and Timko,
2004). In our previous study, fully grown Nicotiana tabacum
plants started to form the floral organs at 12 weeks after sowing
(Lim et al., 2015), which is much longer than N. benthamiana
(7 weeks; Conley et al., 2011). N. benthamiana is another host
plant for production of recombinant proteins such as vaccine
and antibody, and has been established for their transient
expression (Gomez et al., 2013; Li et al., 2016). N. benthamiana
needs to be transfected every time with expression vector
inoculums to produce recombinant proteins. In addition, their
left over biomass should be properly discarded for avoiding
contamination, and the transfected plant can not be regrown for
further transfection usage. Thus, the transgenic plant regrowth by
axillary shoot induction with less than 4 weeks appears to be an
easy method to quickly increase the full biomass for production of
recombinant proteins even under limitations of space. Our results
suggest that axillary bud induction from the base stem with root
could be used in molecular biofarming strategies to overcome the
constraints of space and time.

The existence of HC and LC genes in both the leaves and stem
generated from the axillary buds during the regrowth cycles was
confirmed using PCR analysis, which revealed that the genes were
present in the top, middle, and basal portions of the leaves and
stem of the plants (0, 1, and 2 cycles) without any deletion.

The expression of HC and LC of mAb CO17-1A in the leaves
and stem from the top, middle, and basal positions obtained from
0, 1, and 2 cycle plants was confirmed by western blot. The HC
and LC expression rates were not significantly different among
the samples.

The mAb CO17-1A purified from the plants had a mainly
oligomannose structure profiles because of the C-terminus KDEL
signal tagging of HC for ER retention (So et al., 2012). The
glycosylation profiles were unmodified in leaf and stem in
samples from the 0, 1, and 2 cycles.

The mAb CO17-1A purified from primary (0 cycle), secondary
(1 cycle), and tertiary (2 cycle) plants showed similar binding
affinity to the GA733 antigen in SPR analysis. Leaves and stem
from the 1 cycle showed slightly lower binding activity than
those from the 0 and 2 cycle plants. However, it is speculated
that the slight fluctuation in the binding activity was due to the
variation in sample preparation, and not due to an actual loss
in the activity. The binding activities of mAb CO17-1A purified
from both the leaves and stem of plants from the same cycle were
similar. The results present notable evidence that plant recycling
can be applied for efficient biomass enhancement without any
variation in expression and function of the recombinant anti-
cancer therapeutic mAb. The rapid plant regrowth using by the
existing lateral buds in stem attached to the root is possible for
the plant biomass production in a limited space.

Taken together, the leaf and stem of the secondary and tertiary
cycles of plant growth (1 and 2 cycles) had similar mAb CO17-
1A expression rate, and the antigen affinity as well as glycan
structure profile of the purified mAb were comparable to the
purified mAb samples obtained from the primary plant growth
(0 cycle). This study shows that novel recycling plant system by
using regrowth from axillary buds can effectively circumvent the
space and time limitations for cultivation of plants. The strategy
of recycling plant production could be exploited for obtaining
increased transgenic plant biomass in less time and could be
useful for producing highly valuable recombinant proteins for
varied use.
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