
Edited by  

Xiaomin Yang, Yin Tian, Gwanggil Jeon and 

Yu Pang

Published in  

Frontiers in Neuroscience

Neural signals acquisition 
and intelligent analysis

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/research-topics/43949/neural-signals-acquisition-and-intelligent-analysis#overview
https://www.frontiersin.org/research-topics/43949/neural-signals-acquisition-and-intelligent-analysis#overview


August 2023

Frontiers in Neuroscience frontiersin.org1

About Frontiers

Frontiers is more than just an open access publisher of scholarly articles: it is 

a pioneering approach to the world of academia, radically improving the way 

scholarly research is managed. The grand vision of Frontiers is a world where 

all people have an equal opportunity to seek, share and generate knowledge. 

Frontiers provides immediate and permanent online open access to all its 

publications, but this alone is not enough to realize our grand goals.

Frontiers journal series

The Frontiers journal series is a multi-tier and interdisciplinary set of open-

access, online journals, promising a paradigm shift from the current review, 

selection and dissemination processes in academic publishing. All Frontiers 

journals are driven by researchers for researchers; therefore, they constitute 

a service to the scholarly community. At the same time, the Frontiers journal 

series operates on a revolutionary invention, the tiered publishing system, 

initially addressing specific communities of scholars, and gradually climbing 

up to broader public understanding, thus serving the interests of the lay 

society, too.

Dedication to quality

Each Frontiers article is a landmark of the highest quality, thanks to genuinely 

collaborative interactions between authors and review editors, who include 

some of the world’s best academicians. Research must be certified by peers 

before entering a stream of knowledge that may eventually reach the public 

- and shape society; therefore, Frontiers only applies the most rigorous 

and unbiased reviews. Frontiers revolutionizes research publishing by freely 

delivering the most outstanding research, evaluated with no bias from both 

the academic and social point of view. By applying the most advanced 

information technologies, Frontiers is catapulting scholarly publishing into  

a new generation.

What are Frontiers Research Topics? 

Frontiers Research Topics are very popular trademarks of the Frontiers 

journals series: they are collections of at least ten articles, all centered  

on a particular subject. With their unique mix of varied contributions from  

Original Research to Review Articles, Frontiers Research Topics unify the 

most influential researchers, the latest key findings and historical advances  

in a hot research area.

Find out more on how to host your own Frontiers Research Topic or 

contribute to one as an author by contacting the Frontiers editorial office: 

frontiersin.org/about/contact

FRONTIERS EBOOK COPYRIGHT STATEMENT

The copyright in the text of individual 
articles in this ebook is the property 
of their respective authors or their 
respective institutions or funders.
The copyright in graphics and images 
within each article may be subject 
to copyright of other parties. In both 
cases this is subject to a license 
granted to Frontiers. 

The compilation of articles constituting 
this ebook is the property of Frontiers. 

Each article within this ebook, and the 
ebook itself, are published under the 
most recent version of the Creative 
Commons CC-BY licence. The version 
current at the date of publication of 
this ebook is CC-BY 4.0. If the CC-BY 
licence is updated, the licence granted 
by Frontiers is automatically updated 
to the new version. 

When exercising any right under  
the CC-BY licence, Frontiers must be 
attributed as the original publisher  
of the article or ebook, as applicable. 

Authors have the responsibility of 
ensuring that any graphics or other 
materials which are the property of 
others may be included in the CC-BY 
licence, but this should be checked 
before relying on the CC-BY licence 
to reproduce those materials. Any 
copyright notices relating to those 
materials must be complied with. 

Copyright and source 
acknowledgement notices may not  
be removed and must be displayed 
in any copy, derivative work or partial 
copy which includes the elements  
in question. 

All copyright, and all rights therein,  
are protected by national and 
international copyright laws. The 
above represents a summary only. 
For further information please read 
Frontiers’ Conditions for Website Use 
and Copyright Statement, and the 
applicable CC-BY licence.

ISSN 1664-8714 
ISBN 978-2-8325-3156-3 
DOI 10.3389/978-2-8325-3156-3

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/about/contact
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


August 2023

Frontiers in Neuroscience 2 frontiersin.org

Neural signals acquisition and 
intelligent analysis

Topic editors

Xiaomin Yang — Sichuan University, China

Yin Tian — Chongqing University of Posts and Telecommunications, China

Gwanggil Jeon — Incheon National University, Republic of Korea

Yu Pang — Chongqing University of Posts and Telecommunications, China

Citation

Yang, X., Tian, Y., Jeon, G., Pang, Y., eds. (2023). Neural signals acquisition and 

intelligent analysis. Lausanne: Frontiers Media SA. doi: 10.3389/978-2-8325-3156-3

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
http://doi.org/10.3389/978-2-8325-3156-3


August 2023

Frontiers in Neuroscience frontiersin.org3

04 Editorial: Neural signals acquisition and intelligent analysis
Gwanggil Jeon, Xiaomin Yang, Yin Tian and Yu Pang

06 Frequency set selection for multi-frequency steady-state 
visual evoked potential-based brain-computer interfaces
Jing Mu, David B. Grayden, Ying Tan and Denny Oetomo

19 A multimodal fusion method for Alzheimer’s disease based 
on DCT convolutional sparse representation
Guo Zhang, Xixi Nie, Bangtao Liu, Hong Yuan, Jin Li, Weiwei Sun and 
Shixin Huang

33 Detection of astrocytic slow oscillatory activity and response 
to seizurogenic compounds using planar microelectrode 
array
Taeko Kuroda, Naoki Matsuda, Yuto Ishibashi and Ikuro Suzuki

50 Empirical comparison of deep learning methods for EEG 
decoding
Iago Henrique de Oliveira and Abner Cardoso Rodrigues

62 Abnormal structural and functional network topological 
properties associated with left prefrontal, parietal, and 
occipital cortices significantly predict childhood TBI-related 
attention deficits: A semi-supervised deep learning study
Meng Cao, Kai Wu, Jeffery M. Halperin and Xiaobo Li

74 Epileptic prediction using spatiotemporal information 
combined with optimal features strategy on EEG
Lisha Zhong, Jiangzhong Wan, Fangji Yi, Shuling He, Jia Wu, 
Zhiwei Huang, Yi Lu, Jiazhang Yang and Zhangyong Li

87 Energy minimization segmentation model based on MRI 
images
Xiuxin Wang, Yuling Yang, Ting Wu, Hao Zhu, Jisheng Yu, Jian Tian 
and Hongzhong Li

98 Study on characteristic of epileptic 
multi-electroencephalograph base on Hilbert-Huang 
transform and brain network dynamics
Xiaojie Lu, Tingting Wang, Mingquan Ye, Shoufang Huang, 
Maosheng Wang and Jiqian Zhang

107 A data security scheme based on EEG characteristics for body 
area networks
Tong Bai, Yuhao Jiang, Jiazhang Yang, Jiasai Luo and Ya Du

Table of
contents

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


TYPE Editorial

PUBLISHED 20 July 2023

DOI 10.3389/fnins.2023.1251280

OPEN ACCESS

EDITED AND REVIEWED BY

Michele Giugliano,

International School for Advanced Studies

(SISSA), Italy

*CORRESPONDENCE

Gwanggil Jeon

gjeon@inu.ac.kr

RECEIVED 01 July 2023

ACCEPTED 04 July 2023

PUBLISHED 20 July 2023

CITATION

Jeon G, Yang X, Tian Y and Pang Y (2023)

Editorial: Neural signals acquisition and

intelligent analysis.

Front. Neurosci. 17:1251280.

doi: 10.3389/fnins.2023.1251280

COPYRIGHT

© 2023 Jeon, Yang, Tian and Pang. This is an

open-access article distributed under the terms

of the Creative Commons Attribution License

(CC BY). The use, distribution or reproduction

in other forums is permitted, provided the

original author(s) and the copyright owner(s)

are credited and that the original publication in

this journal is cited, in accordance with

accepted academic practice. No use,

distribution or reproduction is permitted which

does not comply with these terms.

Editorial: Neural signals
acquisition and intelligent analysis

Gwanggil Jeon1*, Xiaomin Yang2, Yin Tian3 and Yu Pang4

1Department of Embedded Systems Engineering, College of Information Technology, Incheon National

University, Incheon, Republic of Korea, 2College of Electronics and Information Engineering, Sichuan

University, Chengdu, China, 3Department of Biomedical Engineering, Chongqing University of Posts and

Telecommunications, Chongqing, China, 4School of Communication and Information Engineering,

Chongqing University of Posts and Telecommunications, Chongqing, China

KEYWORDS

signal, neural network, intelligent system, EEG, medical information

Editorial on the Research Topic

Neural signals acquisition and intelligent analysis

Neural signals include physiological and pathological information, which requires

psychological, biological, cognitive neuroscience, and clinical medicine information to

efficiently analyze them. So far, it has been possible to record and analyze neural signals

using EEG, brain magnetometer, functional magnetic resonance imaging, and computed

tomography. On the other hand, artificial intelligence technology is becoming increasingly

popular, and a neuroscience technology based on deep learning has recently been

announced. This Research Topic aims to apply research on AI-based pattern recognition

and signal processing to neuroscience. Interactions between these signal processing fields

and the medical field will aid in the diagnosis, monitoring and treatment of neurological

disorders. A total of 9 papers were published in this Research Topic.

EEG is used to measure the brain’s electrical activity in a non-invasive brain-machine

interface. Since the EEG signal is a non-linear and non-static signal, interpretation is

difficult, but improved results have been obtained with the development of deep learning

technology. In the contribution by de Oliveira and Rodrigues “Empirical comparison of

deep learning methods for EEG decoding,” the authors present two deep learning-based

decoder implementations and compare their results with other state-of-the-art deep learning

methods. The first method uses LSTM recurrent neural networks, and the second method

combines EEGNet with LSTM. The results of this work could be important for new research

and development as well as EEG-based BMI systems that can exploit the high precision of

neural decoders.

In the contribution by Kuroda et al. “Detection of astrocytic slow oscillatory activity and

response to seizurogenic compounds using planar microelectrode array,” the authors studied

the measurement of the spontaneous electrical activity of astrocytes alone using MEA. It was

revealed that MEAmeasurement focused on the low frequency band could be used as one of

the methods to evaluate drug response in vitro. The authors established nine parameters to

evaluate astrocyte activity and evaluated five paroxysmal drug responses in human primary

astrocytes and human iPSC-derived astrocytes. Astrocytes showed the most significant dose-

dependent changes with pilocarpine. Principal component analysis using these parameter

sets isolated the drug response to each seizure-inducing compound.

A multi-frequency steady-state visual evoked potential stimulation and decoding

method enables the representation of various visual objects in a brain-computer interface.

However, unlike single-frequency SSVEP, multi-frequency SSVEP is difficult to use. One

of the main reasons is that it is difficult to define an effective set of frequencies for an

interface due to duplication of input options. In the contribution by Mu et al. “Frequency

set selection for multi-frequency steady-state visual evoked potential-based brain-computer
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interfaces” provides guidelines for frequency set selection

in multi-frequency SSVEP. The proposed method showed

a significant improvement in BCI performance (decoding

accuracy) compared to the existing method. Both hypotheses were

verified experimentally.

Medical information represented by MRI and PET has

contributed to the development of intelligent diagnosis of

Alzheimer’s disease and multimodal medical imaging. This

improves the existing multi-medical image fusion method based

on sparse expression in terms of energy and contrast. In the

contribution by Zhang et al. “A multimodal fusion method

for Alzheimer’s disease based on DCT convolutional sparse

representation,” the authors propose a multimodal convergence

algorithm for Alzheimer’s disease based on DCT convolutional

sparse representation. Extensive experimental results demonstrate

that the proposed method has excellent performance in enhancing

contrast and maintaining texture and contour information.

Although many studies have been conducted on the

characteristics of epileptic electroencephalograms,many studies are

still needed. In the contribution by Lu et al. “Study on characteristic

of epileptic multi-electroencephalograph base on Hilbert-Huang

transform and brain network dynamics,” a combination method

of multi-channel characteristics in time-frequency and spatial

domains was studied to study the characteristics of epileptic

EEG signals from the perspective of the whole brain. The two

contributions of the proposed study are: First, the signal was

converted into a 2D Hilbert Spectrum image reflecting time-

frequency characteristics through the Hilbert-Huang Transform.

Second, multi-channel signals were converted into brain networks

reflecting spatial characteristics by Symbolic Transfer Entropy

between different EEG channels. When looking at the experimental

results, it was found that it is effective in identifying and predicting

epileptic seizures.

Traumatic brain injury, one of the major public health

problems in children, leads to the development of attention

deficit. Existing studies have shown that structural and functional

changes in several brain regions are associated with TBI-related

attention deficits in children. In the contribution by Cao et al.

“Abnormal structural and functional network topological properties

associated with left prefrontal, parietal, and occipital cortices

significantly predict childhood TBI-related attention deficits: a semi-

supervised deep learning study,” the authors developed a method to

provide accurate diagnosis by applying deep learning technology to

multidimensional and non-linear information. In addition, a semi-

supervised autoencoder, a deep learning model, was constructed

to investigate the phase change of both structural and functional

brain networks in children with TBI and their predictive power

for attention deficit after TBI. As a result of the experiment, the

proposed model was able to discriminate children with TBI and

control groups with an average accuracy of 82.86%.

Epilepsy is the second most common cranial nerve disease after

stroke. Seizure prediction is critical to improving patients’ quality of

life. In the contribution by Zhong et al. “Epileptic prediction using

spatiotemporal information combined with optimal features strategy

on EEG,” the authors constructed an optimal spatiotemporal

feature set to predict seizures from multidimensional perspectives

including time-frequency, entropy, and brain networks. The

proposed method shows strong independence and capacity

for large-capacity information, and a two-dimensional feature

screening algorithm was performed to remove unnecessary

redundant features. As a result of the experiment, the proposed

method was able to effectively extract spatiotemporal information

of epileptic EEG signals to predict epileptic seizures with

high performance.

BAN is a body-oriented network of wireless wearable devices

and is a basic technology for telemedicine service. However, when

strengthening BAN security, there is an aspect that makes it difficult

to improve performance. In the contribution by Bai et al. “A

data security scheme based on EEG characteristics for body area

networks,” a data encryption method based on EEG feature values

and LFSR is proposed to solve the data security problem in BAN.

To this end, first, based on the wavelet packet conversion method,

the characteristics of the human brain wave signal are extracted as

MD5 input data to ensure randomness, and then the LFSR stream

key generator is adopted. The effectiveness of the proposed security

technique was verified through various experimental evaluations.

Segmentation technology in medical imaging is a key

technology that helps doctors accurately analyze the volume of

brain tissue and lesions, and is important for accurate diagnosis

of brain diseases. Existing manual methods are time-consuming,

subjective, and difficult to reproduce in segmentation. In the

contribution by Wang et al. “Energy minimization segmentation

model based on MRI images,” the authors present a method for

detecting, characterizing, and quantifying brain tissue and lesions

using non-invasive imaging techniques. We also address the effect

of multiple sclerosis lesions on the segmentation accuracy of

MRI. Experimental verification showed that the proposed AR-

FCM algorithm better overcomes the problem of low segmentation

accuracy of the RFCM algorithm for tissue border voxels.
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Objective: Multi-frequency steady-state visual evoked potential (SSVEP)

stimulation and decoding methods enable the representation of a large

number of visual targets in brain-computer interfaces (BCIs). However,

unlike traditional single-frequency SSVEP, multi-frequency SSVEP is not yet

widely used. One of the key reasons is that the redundancy in the input

options requires an additional selection process to define an e�ective set of

frequencies for the interface. This study investigates systematic frequency set

selection methods.

Methods: An optimization strategy based on the analysis of the frequency

components in the resulting multi-frequency SSVEP is proposed, investigated

and compared to existing methods, which are constructed based on the

analysis of the stimulation (input) signals. We hypothesized that minimizing

the occurrence of common sums in the multi-frequency SSVEP improves the

performance of the interface, and that selection by pairs further increases

the accuracy compared to selection by frequencies. An experiment with 12

participants was conducted to validate the hypotheses.

Results: Our results demonstrated a statistically significant improvement

in decoding accuracy with the proposed optimization strategy based on

multi-frequency SSVEP features compared to conventional techniques. Both

hypotheses were validated by the experiments.

Conclusion: Performing selection by pairs and minimizing the number of

common sums in selection by pairs are e�ective ways to select suitable

frequency sets that improve multi-frequency SSVEP-based BCI accuracies.

Significance: This study provides guidance on frequency set selection in

multi-frequency SSVEP. The proposed method in this study shows significant

improvement in BCI performance (decoding accuracy) compared to existing

methods in the literature.

KEYWORDS

brain-computer interface (BCI), brain-machine interface (BMI),

electroencephalography (EEG), dual-frequency, multi-frequency, optimization,

steady-state visual evoked potential (SSVEP)
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1. Introduction

A steady-state visual evoked potential (SSVEP) is brain

activity that frequency-locks to periodic visual stimulation

(Zander et al., 2009). SSVEP is widely used in brain-computer

interfaces (BCIs) due to its relatively high accuracy and

information transfer rate as well as minimal training required

of users compared to other modalities, such as motor imagery

(Nicolas-Alonso and Gomez-Gil, 2012).

A standard SSVEP-based BCI includes multiple stimuli in

the workspace that each flashes at a different frequency while

electroencephalography (EEG) is measured primarily from the

occipital lobe. The measured EEG reflects the frequency of

the stimulus the user is focusing upon visually, as well as the

harmonics of that frequency. The presence of the harmonics

provides more reference points in the decoding process, but

also presents additional complexities and challenges in the

design of SSVEP-based BCIs. For example, if a frequency

and its harmonic are both used in the same BCI for two

different stimuli, there will be common frequencies in the

recorded EEG from the two stimuli, which may confound the

decoding algorithm. Therefore, in the literature, some studies

intentionally avoided the use of frequencies with common

harmonics in the stimulation (Volosyak et al., 2009; Chen

et al., 2015). This harmonic issue, together with the limited

responsive frequency range of the human brain to periodic

visual stimulation (Regan, 1989), constrains the number of

unique frequencies that can be used in standard SSVEP-based

BCIs; i.e., low signal-to-noise ratio EEG recordings and small

frequency separation impairs decoding performance. Therefore,

it is challenging to use standard SSVEP-based BCIs in scenarios

that require large numbers of unique frequencies to label all

the targets.

To address this problem, multi-frequency stimulation

methods utilizing more than one frequency in each stimulus

have been introduced, with two frequencies (dual-frequency)

being the most widely used modality (Shyu et al., 2010; Zhang

et al., 2012; Chen et al., 2013; Hwang et al., 2013; Kimura

et al., 2013; Chang et al., 2014; Mu et al., 2021a). However,

these studies focused primarily on introducing multi-frequency

stimulation methods, and did not explore frequency selection

methods. The use of multiple frequencies on each stimulus or

targets can exponentially increase the number of targets that can

be represented in the work space as the number of frequencies

used to label each target increases. Multi-frequency stimulation

generates a complex periodic stimulation signal that triggers a

more complex SSVEP response. In Mu et al. (2021a), it was

demonstrated that multi-frequency SSVEP response contained

not only the input frequencies and their harmonics, but also the

integer linear combinations of the input frequencies with low

order interactions more likely to be observed in the recorded

SSVEP. Note that the order of interaction was defined as

the sum of absolute values of the coefficients in the linear

combination (Mu et al., 2021a). A dedicated decoding algorithm,

multi-frequency canonical correlation analysis (MFCCA), was

also introduced to decode complex multi-frequency SSVEP,

leveraging the linear combinations produced by the frequency

interactions (Mu et al., 2021b). A 20% increase in accuracy was

observed when linear combinations of frequencies were utilized

to capture the interactions between the input frequencies in

the decoding algorithm; however, the study did not investigate

whether this information could be used in frequency selection

to further improve the performance of the multi-frequency

SSVEP-based BCI.

While multi-frequency SSVEP can provide a large number

of inputs for the interface, there is a need to select the most

effective set of input frequencies to construct a high-performing

BCI. In traditional single-frequency SSVEP, frequency selection

is usually done following very simple rules: avoid harmonics

in the same set (Volosyak et al., 2009), as mentioned above,

and avoid small frequency intervals. In studies with a relatively

large number of targets (40 targets) by Chen et al. (2015),

Wang et al. (2016), and Liu et al. (2020), stimulation frequencies

were equidistantly selected in a range (8–15.8 Hz with 0.2

Hz intervals) that avoided the existence of harmonics in the

same range. Another common way to select frequencies in

constructing an SSVEP-based BCI is based on the refresh rate of

the screen (refresh rate divided by integer numbers; Bakardjian

et al., 2010; Zhu et al., 2010; Hwang et al., 2013). In dual-

frequency SSVEP, this problem was explored by minimizing the

maximum input (stimulation) signal correlation (Liang et al.,

2020). Although this optimization method demonstrated its

advantage in improving the accuracy of the interface, only the

optimization of input signals was investigated. Since multi-

frequency SSVEP response shows more complex frequency

interactions between the multiple frequencies used in the

stimulation, optimization that takes into account such frequency

interactions at the output signals may outperform techniques

that only take into account the stimulation signals.

This work built upon Liang et al. (2020) and investigated

whether optimizing on a known multi-frequency SSVEP feature

would result in different performance in the multi-frequency

SSVEP-based BCI. In this paper, the dual-frequency SSVEP is

considered as a special case of multi-frequency SSVEP. Under

such a setting, an optimization strategy based on not only the

input frequencies, but also their harmonics and the integer linear

combinations of the input frequencies, is proposed and tested.

The number of frequencies used in constructing the targets, i.e.,

whether to select frequencies to make all the pairs or to select

pairs directly from the range without any constraint, is also

considered along with the output-based optimization. This work

contributes toward the framework of increasing the number of

commands in “BCI as a processor,” where command processing

capacity is a key (Xu et al., 2021).
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2. Materials and methods

2.1. Definitions

To avoid confusion, some terms used in this paper are

defined below.

Selection by frequencies

A frequency selection approach where the minimum

number of frequencies in the given range are selected to

construct the required number of targets.

Selection by pairs

Select the required number of pairs directly from the

given frequency range (from all the possible pairs made by

the frequencies within the range). Selection by pairs provides

more freedom in frequency selection as opposed to selection by

frequencies. Selection by pairs ignores additional constraints the

system may have, for example, limited number of frequencies

that can be produced by the hardware, in which case selection

by frequencies would be preferred.

Frequency pair

In a dual-frequency application, the frequency pair refers to

the two stimulation frequencies used to represent one target.

Frequency set

The set of all frequency pairs used in the interface.

Common sums

The common frequencies resulted from the integer linear

combinations of different pairs of frequencies, where at least one

of the coefficients is not zero. The number of common sums

refers to the counted number of common sums between the

frequency pairs in the frequency set [bounded by order, where

order is the sum of absolute values of the coefficients in the linear

combination (Mu et al., 2021b)].

Optimization strategy

In this paper, optimization strategy refers to the optimization

problem formulations, which includes the cost function and the

parameters to tune.

The following example is provided to help illustrate use of

the terms. Given a 6-target setup and five frequencies to select

from, selection by frequencies selects four frequencies out of the

five because it needs at least four frequencies to make six targets

with dual-frequency stimulation (C4
2 = 6). For example, the

five frequencies are 5, 6, 7, 8, and 9 Hz. The frequencies 5, 6,

TABLE 1 Integer linear combinations up to order 2 in frequency set

{(5, 7), (7, 9)}.

Operation f1 f2 2× f1 2× f1 f1+f2 |f1−f2|

Frequency pairs (5, 7) 5 7 10 14 12 2

(f1 , f2) (7, 9) 7 9 14 18 16 2

7, and 9 Hz are selected from selection by frequencies, so the

resulting frequency set will be {(5, 6), (5, 7), (5, 9), (6, 7), (6,

9), (7, 9)}, where each parenthesis includes one frequency pair;

for example, (5, 6). On the other hand, selection by pairs selects

6 pairs from the C52 = 10 total pairs of frequencies available.

An example of the selected frequency set from selection by pairs

could be {(5, 6), (5, 8), (5, 9), (6, 7), (6, 8), (8, 9)}.

Common sums can be found among the frequency pairs,

for example between {(5, 7), (7, 9)}. Table 1 lists all the linear

combinations (up to order 2) from the 2 frequency pairs. We

can see from the table that there are three frequencies that are

common to the two pairs (the common sums): 7, 14, and 2.

Therefore, the number of common sums in the frequency set

{(5, 7), (7, 9)} is 3. Note: the term “order” refers to the sum of the

absolute values of the coefficients in the linear combination.

2.2. Hypotheses on frequency set
selections

In multi-frequency SSVEP, the resulting brain response

shows not only the input frequencies and their harmonics, but

also the interactions between the input frequencies, in the form

of the integer linear combinations of the input frequencies (Mu

et al., 2021a). These peak occurrences in the SSVEP response

increase the chances of the common sums as described above.

Common sums are significant as they introduce ambiguity as to

which frequency pair produces an identified SSVEP peak during

decoding. Hence, we expect to see an increase in decoding

accuracy when the number of common sums in the multi-

frequency SSVEP is reduced. It is also worth noting that, in some

SSVEP-based BCI setups, there are additional constraints, such

as a limited number of frequencies that can be produced by the

hardware. Therefore, we also consider the case where only the

minimum number of frequencies needed for constructing all

the targets can be selected (selection by frequencies). Selection

by frequencies has more constraints compared to selection

by pairs, so a less optimal result was expected, whereas the

result from selection by pairs is anticipated to be closer to

optimal. Therefore, in this work, two hypotheses on frequency

set selection in dual-frequency SSVEP are tested:

Hypothesis 1. The performance (accuracy) of the

multi-frequency SSVEP-based BCI

will be improved when the number of
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TABLE 2 Frequency set selection methods and the hypotheses.

Not minimizing the number of
common sums

Minimize the number of
common sums

Maximize the number of
common sums

Selection by
frequencies

Method 1 Method 2

Selection by
pairs

Method 5 Method 3 Method 4

common sums is minimized in the selected

frequency set.

Hypothesis 2. In frequency set selection in multi-

frequency SSVEP-based BCIs, selection by

pairs results in better performance than

selection by frequencies.

In order to test the two hypotheses, four cases are considered:

1. Selection by frequencies without minimizing the

number of common sums;

2. Selection by frequencies by minimizing the number of

common sums;

3. Selection by pairs without minimizing the number of

common sums;

4. Selection by pairs by minimizing the number of

common sums.

We have added a fifth case to the list — selection by pairs

by maximizing the number of common sums — to examine the

efficiency of optimizing on the number of common sums.

2.3. Frequency set selection methods

In this work, a frequency range of 11–16 Hz and a 15-target

arrangement were used. Single-frequency SSVEP was tested as

a benchmark.

The test range 11–16 Hz was selected because it is within

the most responsive range of SSVEP (5–25 Hz; Regan, 1989),

large enough to test a couple of scenarios but keeping the

experiment duration manageable and optimization not too

computationally heavy.

2.3.1. Single-frequency

The frequencies selected was evenly spaced within the range

with a varying 0.3 or 0.4 Hz interval between the frequencies:

[11.3, 11.7, 12.0, 12.3, 12.7, 13.0, . . . , 15.7, 16.0].

2.3.2. Dual-frequency

The entire dual-frequency set selection is based heavily on

the two hypotheses, which made the five cases for us to consider.

Therefore, we decided upon five methods in frequency set

selection. Table 2 illustrates the relationship between these five

methods and the two hypotheses. Details about the five methods

will be provided later in this section.

The decision tree method was selected for optimization

because it produces a similar result to the global search method

and is fast to calculate (Liang et al., 2020). In the decision

tree method, two matrices are first constructed. A matrix A is

constructed of size N × N, where N is the total number of pairs

available, and the value in each cell is the optimization parameter

between the two pairs whose indices are the row and column

indices. In our case, this is the number of common sums between

the two pairs. The other matrix is B that is initialized to be a

zero matrix of the same size asA. In each optimization iteration,

the minimum (or maximum, if maximizing) value in A is first

identified, then the value in this cell is updated to a large (or

small) value to avoid being selected in the following iterations,

and the value in the corresponding location in B is set to 1 (or

any non-zero value). The B matrix then goes through a check

to see if there exists a reduced B matrix, B′, of size NT that has

all elements non-zero. If there exists a B
′ matrix that does not

contain any zero elements, then the optimization is done and

the resultant frequency set is made up of the frequency pairs

whose indices are the selected rows and columns in the B to B
′

reduction. Otherwise, continue to the next iteration.

The number of common sums is calculated as the number

of times the linear combination frequencies are repeated in the

frequency set between the pairs up to a given order. In other

words, the number of common sums is the number of times a

frequency is repeated in the list of integer linear combinations of

all the pairs in the frequency set up to a given order, and only the

between-pairs repetitions are counted, any repetitions within a

pair is ignored.

Since we are using a 15-target setup, six frequencies should

be selected when selecting frequencies (C62 = 15) and 15 pairs of

frequencies should be selected when selecting pairs. To ensure

there are sufficient numbers of frequencies to select from and

not to over-complicate this problem, the frequency candidates

were designed to be 0.5 Hz apart within the range 11–16 Hz; i.e.,

[11.0, 11.5, 12.0, 12.5, 13.0, 13.5, 14.0, 14.5, 15.0, 15.5, 16.0].

The methods used in this study are listed below:

Method 1: Selection by frequencies with evenly spaced

frequency interval. Thus no effort was made to
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minimize the number of common sum.

Frequencies are selected from the full range

with even intervals (on the six integers).

Method 2: Selection by frequencies with unevenly spaced

frequency interval, which was designed to

enable the minimization of the number of

common sum.

Frequencies are selected from the range with

minimized number of common sums. The

number of common sums is first checked at

order 2, the pairs with the smallest number of

common sums are then checked at order 3, etc.

We bounded this process to check up to order 5.

Method 3: Selection by pairs with decision tree method

(Liang et al., 2020) optimizing (minimizing) the

number of common sums between the pairs.

Frequency pairs are selected from all possible

pairs made by the frequency candidates with

minimized number of common sums using

decision tree. The common sums are calculated

up to order 5.

Method 4: Selection by pairs with decision tree method

maximizing the number of common sums

between the pairs.

Frequency pairs are selected from all possible

pairs made by the frequency candidates to

maximize the occurrences of common sums

using decision tree. The common sums are

calculated up to order 5.

Method 5: Selection by pairs with decision tree method

minimizing the maximum correlation between

the input signals constructed with the pairs

(Liang et al., 2020).

Frequency pairs are selected from all possible

pairs made by the frequency candidates with

minimized maximum correlations between the

input signals using decision tree.

The resulting frequency sets and the their numbers of

common sums are listed in Table 3.

2.4. Experimental setup

In the experiments, participants sat 70 cm away from a

computer screen where the stimuli were shown. Participants

were positioned to be centered to the screen and height adjusted

to a comfortable level. All experiments were done in a dim,

quiet room.

2.4.1. Stimulation methods

Visual stimulation was delivered through an Alienware

monitor AW2518HF (24.5 inch, 1920 × 1080) running Unity

programmed interface at 120 Hz. White color was used for

all stimuli. The size of each stimulus was 108 × 108 pixels;

the distance between adjacent stimuli was 108 pixels both

horizontally and vertically. The 15 targets followed a 3 by 5

layout on the screen as shown in Figure 1.

Single-frequency stimulation was performed by presenting

50% duty cycle square waves on the screen at full brightness. All

signals commenced with zero phase shift.

In this work, we have chosen frequency superposition (Mu

et al., 2021a) as the multi-frequency stimulation method for its

simplicity. Multi-frequency SSVEP stimulated with frequency

superposition contains not only the input frequencies and

their harmonics, but also the integer linear combinations of

the input frequencies, with lower order interactions are more

likely to be observed (Mu et al., 2021a,b). Considering the

use of input frequencies with narrow frequency gaps (0.5 Hz),

ADD logic with equal brightness distribution was selected for

superimposing the input frequencies; i.e., in the dual-frequency

case, the two input frequencies each correspond to half of the full

brightness and the superimposed signal becomes the stimulation

signal. Square waves at 50% duty cycle and zero phase shift were

used in frequency superposition in this work.

2.4.2. Data acquisition

EEG data was recorded with g.USBamp EEG system and

g.SAHARA dry electrodes (g.tec medical engineering GmbH,

Austria). The recorded EEG signals were sampled at 512 Hz,

with 50 Hz notch and 0.5 − 100 Hz band pass filters on all

channels. A 16-channel measurement was taken (P3, Pz, P4,

PO3, POz, PO4, O1, Oz, O2, Fz, FCz, FC1, FC2, Cz, C1,

and C2); however, only the first nine channels were used for

SSVEP processing as these are closest to the visual cortex.

Reference and ground electrodes were placed at the left and right

mastoids, respectively.

2.4.3. Participants

Fifteen participants participated in the frequency selection

experiment; however, three of them did not complete the

experiment due to extremely low accuracy experienced in the

experiment (on average below three out of 15 trials correct,

which makes chance a factor that heavily affected the results).

Therefore, data from 12 participants (nine males, three females)

aged 22–34 years (28.08± 3.70) were included in the analysis.

The experiments were approved by the University of

Melbourne Human Research Ethics Committee (Ethics ID:

1851283). Written consent was collected from all participants

prior to the experiment.
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TABLE 3 Frequency sets obtained from optimization and their corresponding number of common sums.

Method Frequencies/frequency pairs Number of
common
sums

Selection by frequencies

1 11.0 12.0 13.0 14.0 15.0 16.0 355

2 11.0 12.0 12.5 14.5 15.5 16.0 282

Selection by pairs

3

(11.0, 14.5) (11.5, 14.0) (11.5, 15.0) (12.0, 14.5) (12.0, 15.5)

285(12.5, 15.0) (12.5, 16.0) (13.0, 15.5) (11.5, 15.5) (12.0, 16.0)

(13.5, 16.0) (11.0, 11.5) (11.0, 15.5) (11.5, 16.0) (15.5, 16.0)

4

(11.0, 11.5) (11.0, 12.5) (11.0, 13.0) (11.0, 13.5) (11.5, 13.0)

311(12.0, 12.5) (12.0, 13.0) (12.5, 15.0) (13.5, 16.0) (14.0, 15.5)

(14.0, 16.0) (14.5, 15.0) (14.5, 16.0) (15.0, 15.5) (15.5, 16.0)

5

(11.5, 13.5) (11.5, 15.5) (11.5, 12.0) (11.5, 14.5) (13.5, 14.5)

301(14.5, 15.0) (14.5, 16.0) (15.5, 16.0) (11.5, 15.0) (12.5, 14.5)

(12.5, 13.5) (12.5, 16.0) (13.5, 16.0) (11.0, 11.5) (13.5, 14.0)

FIGURE 1

Stimuli layout on the screen.

2.5. Experimental protocols

The experiment contained four sessions with each session

having six tests that evaluated the six stimulation frequency

setups (five dual-frequency and one single-frequency) once each.

Each test had 15 trials (15 targets, one trial per target). Each

trial started with a 1 s cue (green outline at intended target,

Figure 2A), followed by 5 s stimulation (with a fixation cross

at the center of the intended target, Figure 2B, all targets are

flashing during this stimulation period), then 1 s feedback (solid

green or red square for successful or erroneous identification,

respectively, Figures 2C, D), and 1 s rest. A score was shown to

the participant after each completed test indicating the number

of correct trials for the test (Figure 2E) with 0 indicating none of

the 15 trials was identified correctly and 15 indicating all trials

were correctly identified. 1 min breaks were provided after each

test, 5–10 min breaks were placed between the sessions. The

length of breaks were adjusted to the participant’s need.
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FIGURE 2

Interface at di�erent stages. (A) Cue. (B) Fixation cross. All targets are flashing during stimulation. (C) Feedback (correct). (D) Feedback

(incorrect). (E) Score.

In each test, the participant was asked to go through each

of the 15 targets one-by-one following the cue. To simplify the

participant’s task, in each test, the trial sequence was always from

left-to-right, top-to-bottom, going through the targets in target

index ascending order (Figure 1). However, the stimulation

frequencies or frequency pairs were randomly shuffled among

the 15 targets.

To ensure the experimental results were not affected by

user fatigue, Sudokus were used to generate randomized

yet balanced test sequences. With six setups to test in this

experiment, 6-by-6 Sudokus in brickwall style, as shown

in Figure 3, were used. Numbers 1–5 in the Sudoku

match to methods 1–5 in dual-frequency selections,

and 6 matches to the single-frequency setup. These six

different setups will be henceforth referred to as test 1, 2,

. . . , 6.

The experiments were arranged so that each participant used

one row in each Sudoku and each session had a different Sudoku.

Therefore, with four sessions in the experiment, at least four

FIGURE 3

Example of a 6-by-6 Sudoku in brickwall style.

Sudokus were needed. In order to accommodate 12 participants,

eight Sudokus were used in total in this experiment to make 12

rows for the 12 participants.
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Participants were trained with up to two sessions with six

tests (one test per setup) in each session in a random sequence

before the experiment.

2.6. Data processing

During the experiments, 5 s of data was used for decoding

to produce feedback to the participants. Canonical correlation

analysis (CCA; Lin et al., 2006) with number of harmonics

set to 3 was used in single-frequency SSVEP decoding. Multi-

frequency canonical correlation analysis (MFCCA; Mu et al.,

2021b) with order set to 1 was used in dual-frequency SSVEP

decoding. The frequency candidate that gave the highest

correlation was taken as the decoder output.

Information Transfer Rate (ITR) is often reported in SSVEP

experiment results, defined as

ITR =
60

T

[

log2 N+p log2 p+(1−p) log2

( 1− p

N − 1

)

]

(bits/min),

(1)

where T is the time window (seconds) for a trial or time needed

to produce one result, N is the number of targets or possible

choices (N ∈ Z,N ≥ 2), p is the mean accuracy (p ∈ (0, 1));

(Wolpaw et al., 2000). In this work, since a consistent setting (15

targets; trials consisted of 1 s cue, 5 s stimulation, 1 s feedback,

and 1 s break) was used throughout both experiments, ITR is

a static conversion from accuracy and so conveys equivalent

information. Therefore, results are mainly shown in terms of

accuracy.

3. Results

The average dual-frequency SSVEPs recorded in test 1 were

plotted in both time domain and frequency-domain as shown in

Figures 4, 5. The plots shown in the figures are averaged across

all participants and all sessions. Figure 4 shows the first second

(starting from stimulation onset) of the averaged filtered SSVEP

(blue) in comparison to the waveform of the stimulation signal

(orange). The SSVEPs recorded from channel Oz were bandpass

filtered between 9 and 18Hz usingMATLAB function “bandpass”

with “ImpulseResponse” set to “auto,” 0.85 “Steepness,” and 60

dB “StopbandAttenuation,” then averaged across all participants

and all sessions. Figure 5 plots the averaged SSVEP recorded

from channel Oz in frequency domain. The crosses label the

two stimulation frequencies and their harmonics, circles label

the linear interactions (integer linear combinations) of the two

frequencies. The harmonics and linear interactions at different

orders NO (sum of absolute values of the coefficients in the

integer linear combination Mu et al., 2021b) are labeled with

different colors as explained in the figure caption.

Figure 6 plots the average accuracies and standard errors for

the frequency set selection experiment. The yellow dots in the

figure give the average accuracies for each subject. Tests 1–5

are dual-frequency methods with tests 1 and 2 implementing

selection by frequencies and tests 3–5 implementing selection

by pairs, and test 6 is single-frequency. Figure 6 shows that dual-

frequency setups have similar accuracies, except test 3, where the

number of common sums is minimized in selection by pairs. All

dual-frequency tests (tests 1–5) showed a lower average accuracy

compared to the single-frequency test (test 6).

Three-factor analyses of variance (ANOVAs) were

performed using data from tests 1–5 with factors subject, test,

and session, and the data was fitted using a linear mixed model.

The normality of data was confirmed with box plots. Tukey

correction was applied to correct for multiple comparisons in

the family of five estimates (tests 1–5). Significant differences

(adjusted p-value padj < 0.05) were found between tests 2 and

3 (padj = 0.02), and between tests 3 and 5 (padj = 0.019), as

labeled in the figure with *.

Table 4 lists the ITR from the six tests calculated based on 8s

trial duration and 15 targets. Note that the focus of this work is

not to increase ITR, but rather to explore and compare different

frequency set selection methods in multi-frequency SSVEP.

3.1. E�ectiveness of minimizing the
number of common sums

Our first hypothesis was that minimizing the number of

common sums in the frequency set can improve performance.

Here, we will check the effectiveness of minimizing the number

of common sums in both selection by frequencies and selection

by pairs cases.

3.1.1. Selection by frequencies: Even vs. uneven
frequency interval

As described in Section 2.3.2, both Method 1 (selection

by frequencies with even frequency intervals) and Method 2

(selection by pairs with minimized number of common sums)

were on selection by frequencies; Method 1 uses an even

frequency interval of 1 Hz and Method 2 selects the same

number of frequencies in the range with 0.5 Hz frequency

interval, which naturally gives uneven frequency intervals in the

selected frequency list. SinceMethod 1 selects frequencies evenly

in the full frequency range, there is no possibility of optimization

in Method 1. Method 2 selects frequencies from all candidates

using optimization (minimization) on the number of common

sums. From Figure 6, we can see that Method 1 did not have

a significantly different accuracy to Method 2 (padj = 0.98).

However, there are actually two factors that contribute to this

result: one is the optimization on the number of common sums,

the other is the frequency interval in the selected frequencies.

To make a comparison between even and uneven frequency

selection in the same frequency range, it is unavoidable to have
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FIGURE 4

Average SSVEP from Test 1 in time domain. Blue lines plot the average SSVEPs from channel Oz after bandpass filtered between 9 and 18 Hz.

Orange lines show the waveforms of the dual-frequency stimulation signals.

different frequency intervals in the two frequency sets. The

uneven frequency interval, while it minimizes the number of

common sums, may result in some intervals that are narrower

than that employed in the evenly spaced frequency selection

method (Method 1). Therefore, the potential advantage of the

optimization may be reduced by the smaller frequency interval.

3.1.2. Selection by pairs: E�ectiveness of
minimizing the number of common sums
compared to minimizing maximum correlation

In all selection by pairs methods (Methods 3–5), a consistent

0.5 Hz frequency interval was used. Therefore, the comparison

here potentially reflects the effectiveness of minimizing the

number of common sums better.

Methods 3 and 5 are based on different optimization

strategies: Method 3 optimizes (minimizes) on the number

of common sums while Method 5 optimizes (minimizes) on

the maximum correlation between input stimulation signals.

Hence, a comparison between Methods 3 and 5 demonstrates

the effectiveness of minimizing the number of common sums.

It can be seen in Figure 6 that the accuracy of Method 3

was significantly (padj = 0.019) higher than Method 5

by about 10%. This shows that minimizing the number of

common sums is an effective optimization strategy in selecting

frequency sets with selection by pairs, at least in dual-frequency

SSVEP using frequency superposition with ADD, where the two

single-frequency square-wave signals each corresponds to half

brightness are superimposed on the target.

While both Methods 3 and 5 use decision trees to perform

selection by pairs, the fundamental difference between these two

optimization strategies is the parameter that is being optimized.

Method 3 optimizes (minimizes) the number of common

sums, focusing on the frequency domain characteristics of the

input/stimulation signals. Method 5 minimizes the maximum

correlation between input (stimulation) signals, focusing on the

time domain characterization of the expected SSVEP response

elicited by the multi-frequency stimulations. Since the brain is a

highly non-linear system, optimizing the system output (EEG

signals) might further reduce the confusion in the decoding

process, hence the difference.

3.2. Selection by frequency vs. selection
by pairs with number of common sum
minimized frequency selection

The second hypothesis was that selection by pairs results

in better performance than selection by frequencies. Here, we

compare Methods 2 and 3 as both were optimized (minimized)
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FIGURE 5

Average SSVEP from Test 1 in frequency domain. Red crosses label the two stimulation frequencies. Crosses and circles indicate harmonics and

linear combinations of the two frequencies, respectively. Orders NO are shown with di�erent colors: red–NO = 1; blue–NO = 2; green–NO = 3;

cyan–NO = 4; magenta–NO = 5.

on the number of common sums and used 0.5 Hz frequency

intervals.

The result from Figure 6 shows that Method 3 had a

significantly (padj = 0.02) higher average accuracy compared

to Method 2. This showed that, when we have the freedom

to select pairs freely in the whole range of frequencies, we

could achieve higher accuracy in the interface compared to

when we were constrained on the number of frequencies that

could be selected. This difference might be amplified when there

are larger numbers of frequencies in the candidate set, more

frequencies superimposed on the same target, and/or numbers

of targets (NT) increase, because the number of frequency pairs

we can select from (NF) and the number of possible frequency

sets becomes larger as shown in Equations 2, 3.

NF,pair = C
NF
N , (2)

NF,set = C
NF,pair

NT
, (3)

where NF,pair is the total number of possible frequency pairs,

NF,set is the total number of possible frequency sets, N is the

number of frequencies superimposed on each target.

3.3. E�ciency of number of common
sum minimization

Methods 3 and 4 are explicitly designed to test the efficiency

of number of common sum minimization; Method 3 minimizes

the number of common sum and Method 4 maximizes the

number of common sum. The result from Figure 6 showed

an insignificant difference between the average accuracy of the

two tests after adjustment for multiple comparisons (padj =

0.21), which is unexpected. This will be discussed in Discussion

section.

4. Discussion

4.1. E�ciency of number of common
sum minimization

It is interesting to see that Methods 3 and 4 were not

significantly different, andMethod 4 resulted in a higher average

accuracy compared toMethod 5.We believe this was because the

decision tree method is not the most suited for finding optimal

frequency sets based on the number of common sums due to

the integer nature of these numbers, which are the number

of times the common sums are observed. As a performance
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measure in an optimization, this metric does not provide very

high resolution as it does not entertain fractions and decimals,

which are applied to Methods 3 and 4. Method 5, while also

utilizing the decision tree mechanism, uses the correlation

between input signals as its performance measure in the

optimization. This allows a high degree of resolution, as decimals

are allowed, providing better outcome of the optimization

process. As such, Method 3 and Method 4 do not perform

optimally. Table 3 reveals this issue to some extent, where it

can be seen that, toward the end, Methods 3 and 4 arrived

at the same frequency pair (15.5, 16) after the optimization

process even though they were designed to be doing completely

opposite tasks.

Method 3 is designed with what we expected to be

minimum number of common sums. As it was not optimal,

the accuracy was expected to be an underestimate of its

potential. However, compared to Method 5, it still yields

significantly higher accuracy. Method 4 is designed to maximize

the number of common sums. This was expected to yield

the lowest accuracy among Methods 3, 4, and 5. As it is

not optimal, the resulting accuracy was higher than what

was expected.

FIGURE 6

Accuracy from the six tests in frequency set selection

experiment. Heights of the bars represent the mean accuracy,

error bars show standard error of the average accuracies from

12 participants, and yellow dots label the average accuracy from

each participant. * Indicates significant di�erence (p < 0.05,

corrected) pair-wise between each two tests with ANOVA. Test

1: dual-frequency method 1; test 2: dual-frequency method 2;

test 3: dual-frequency method 3; test 4: dual-frequency method

4; test 5: dual-frequency method 5; test 6: single-frequency.

4.2. General SSVEP performance

In terms of time-domain waveform, in Figure 4, we can

see that some SSVEP waveforms are highly consistent with

the stimulation waveform (e.g., 11 and 12 Hz), whereas some

other waveforms are more complex. This is likely because the

human brain is a highly nonlinear system that produces complex

response to even simple single-frequency stimulation. For the

plots that show SSVEPs stimulated by dual-frequency signals,

it is expected that there will be more frequency components

(interactions between the two input frequencies) in the EEG

signal. Thus, when some frequency interactions are dominating

the response, the SSVEP waveform may look different to the

stimulation waveform.

While the focus of this study was not on boosting the SSVEP

performance, we are aware of the difference in performance

from our results compared to some studies in the literature

for both dual-frequency SSVEP (Liang et al., 2020) and single-

frequency SSVEP (Chen et al., 2015). One source of the

difference might be attributed to the use of dry electrodes in

our study as opposed to wet electrodes commonly used in

other studies. It has been shown that there is a 20% accuracy

drop when using dry electrodes compared to wet electrodes

even though the signals look similar in both time domain and

frequency domain (Zhu et al., 2021).

4.3. Limitations

Even though both hypotheses were validated, this work

was only tested with the selected multi-frequency stimulation

method (frequency superposition). This means that the result

may vary if a sufficiently different stimulation method which

triggers completely different multi-frequency SSVEP patterns

were used. We also acknowledge that only the decision tree

methodwas implemented in optimization in this study and it has

its own limitations though its effectiveness compared to global

search was already proven (Liang et al., 2020). Furthermore,

since MFCCA is the only purposefully designed generalized

multi-frequency SSVEP decoder, it was used in this study to

avoid extensive training and prolonged experiment duration.

However, the accuracies from the dual-frequency tests were at

a lower level compared to the single-frequency test. This is

not considered a problem here because this study focuses on

understanding the difference between different frequency set

selection methods in multi-frequency SSVEP and the single-

frequency test was included for bench-marking purpose only.

TABLE 4 Information transfer rate (ITR) from the six tests (mean ± standard deviation).

Test 1 2 3 4 5 6

ITR (bits/min) 11.5± 6.6 10.7± 5.5 14.2± 7.0 11.9± 7.3 11.1± 7.6 22.0± 6.3
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Nonetheless, this suggests that more effort should be spent

on developing generalized multi-frequency SSVEP decoding

algorithms to improve the overall performance of multi-

frequency SSVEP-based BCIs.

4.4. Future work

As part of future work, other optimization methods should

be explored to address the potential pitfall in the decision

tree when working with the number of common sums. Other

optimization strategies regarding the frequency set selection in

multi-frequency SSVEP should also be further explored. Last,

but not least, a comprehensive comparison between single-

frequency and multi-frequency SSVEP should be conducted

with finer frequency intervals and larger frequency coverage.

5. Conclusion

The results from the frequency set selection study showed

that selection by pairs (compared to selection by frequencies)

and optimizing (minimizing) the number of common sums

in selection by pairs significantly increased the accuracy of

the interface. Furthermore, a potential pitfall was observed

in the decision tree method in optimizing the number of

common sums, which resulted in a sub-optimal result from the

optimization process and subsequently a smaller than expected

difference between the best and worst case scenarios in the

number of common sums optimization.
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Introduction: The medical information contained in magnetic resonance

imaging (MRI) and positron emission tomography (PET) has driven the

development of intelligent diagnosis of Alzheimer’s disease (AD) and

multimodal medical imaging. To solve the problems of severe energy loss,

low contrast of fused images and spatial inconsistency in the traditional

multimodal medical image fusion methods based on sparse representation.

A multimodal fusion algorithm for Alzheimer’ s disease based on the discrete

cosine transform (DCT) convolutional sparse representation is proposed.

Methods: The algorithm first performs a multi-scale DCT decomposition of

the source medical images and uses the sub-images of different scales as

training images, respectively. Different sparse coefficients are obtained by

optimally solving the sub-dictionaries at different scales using alternating

directional multiplication method (ADMM). Secondly, the coefficients of

high-frequency and low-frequency subimages are inverse DCTed using an

improved L1 parametric rule combined with improved spatial frequency novel

sum-modified SF (NMSF) to obtain the final fused images.

Results and discussion: Through extensive experimental results, we show

that our proposed method has good performance in contrast enhancement,

texture and contour information retention.
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Alzheimer, multimodal, sparse, fusion, convolutional
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1. Introduction

Alzheimer’s disease (AD) is a common neurodegenerative
disease with concealed onset and incurable in the elderly.
In clinical, AD is characterized by general dementia such
as cognitive decline and memory loss (Dubois et al., 2021).
Advanced multimodal neuroimaging techniques, such as
magnetic resonance imaging (MRI) (Thung et al., 2014; Liu M.
et al., 2016; Lian et al., 2018; Fan et al., 2019) and positron
emission tomography (PET) (Chetelat et al., 2003; Liu M. et al.,
2017) use different imaging mechanisms to reflect the location
of organs or lesions from different angles, and can clearly
show human tissue or metabolism and blood flow of organs.
This technique has the complementarity and irreplaceability of
medical information, which provides a good prospect for the
early diagnosis of AD (Perrin et al., 2009; Mohammadi-Nejad
et al., 2017; Wang et al., 2021).

Medical image fusion includes image decomposition, fusion
rules, and image reconstruction. The main purpose of image
decomposition is to extract the feature information from the
image. The effectiveness of feature extraction determines the
quality of fusion results. The current image fusion algorithms
can be divided into three categories. The first kind of image
fusion is based on wavelet and pyramid transform (Da Cunha
et al., 2006; Yang et al., 2010; Miao et al., 2011; Liu S. et al.,
2017; Liu X. et al., 2017). Among them, the Laplace pyramid
transform has the best robustness in the sampling operator.
Wang and Shang (2020) proposed a fast image fusion method
based on discrete cosine transform (DCT), which decomposes
each source image into a base layer and a detail layer for image
fusion. And optimize the calculation method of the base layer
to better preserve the structure of the image. In addition, non-
subsampled shear wave transforms (NSST) (Kong et al., 2014)
are also widely used in AD diagnosis because of their translation
invariance and multidirectional. The second kind of image
fusion is based on edge-preserving filtering (Farbman et al.,
2008; Xu et al., 2011; He et al., 2012; Hu and Li, 2012; Zhang
et al., 2014; Kou et al., 2015). This method can filter the image
while erasing the details and retaining its strong edge structure.
It can decompose the input image into smooth layers and detail
layers. The smooth layer contains the main energy information
of the image; the detail layer contains texture features. The third
type is the feature selection method based on sparse learning,
for example, the multiplier alternating directional multiplication
method (ADMM) algorithm (Liu and Yan, 2011) organizes the
whole learning and decomposition process into vectors, and
iterates with a sliding window to achieve the convergence effect.

Sparse representation (SR) is a widely used image
representation theory. It deals with the natural sparsity of
signals according to the physiological characteristics of the
human visual system. It is widely used in image classification
(He et al., 2019), image recognition (Liu H. et al., 2016), image
feature extraction (Liu et al., 2014), and multimodal image

fusion (Zhu et al., 2016). The fusion method based on SR and
dictionary learning is widely used in image fusion proposed by
compressed sensing theory (Donoho, 2006), and it is generally
better than most traditional fusion methods (Zhang and Patel,
2017). It usually represents the source image in the form of a
linear combination of overcomplete dictionaries and sparse
coefficients. Because the weighted coefficients obtained are
sparse, the significant information of the source image can
be represented by a small number of non-zero elements in
the sparse coefficients. In the methods based on SR, sparse
coding is usually based on local image blocks. Yang and Li
(2009) first introduces SR into image fusion. This method
uses sliding window technology to make the fusion process
robust to noise and registration errors. Because the adjacent
image blocks overlap each other, the result of each pixel is
multi-valued. Ideally, multiple values of each pixel should
be equal to maintain the consistency of overlapping image
blocks (Gu et al., 2015). However, sparse coding is performed
independently on each image block. The correlation between
image pixels is ignored, resulting in multiple unequal values for
each pixel. At the same time, most fusion methods adopt the
strategy of aggregation and averaging to obtain the final value
of each pixel, which will cause the image details to be smoothed
or even lost in fusion (Rong et al., 2017). Yin et al. (2016)
obtained a joint dictionary by using the source image as training
data and then fused the image using the maximum weighted
multi-norm fusion rule. But the problem of missing details still
exists. Zong and Qiu (2017) proposed a fusion method based
on classified image blocks, which uses directional gradient
histogram (HOG) features to classify image blocks to establish
a sub-dictionary. Although the problem of loss of details has
been reduced, it still inevitably leads to some details being
smoothed. Zhang and Levine (2016) proposed an improved
fusion method of multitasking robust SR combined with spatial
context information. Like most methods based on SR, this
method encodes for local image blocks rather than for the
whole image. As a result, it can still lead to poor preservation of
details. And usually, the fusion methods based on sparse coding
use only one dictionary to represent the different morphological
parts of the source image, which is easy to cause the loss of
image information.

Therefore, we propose a multimodal fusion method for
Alzheimer’s disease based on DCT convolution SR to solve the
above problems. It was evaluated on the neuroimaging database
of Alzheimer’s disease (ADNI) (Veitch et al., 2022), and its
effectiveness was verified by experiments.

The contribution of this paper has the following three
aspects:

1. An improved multiscale decomposition method of DCT
is proposed. Firstly, the M× N size image is divided into blocks
of 8 × 8 size, and then the DCT transform is applied to each
small block separately. The DCT coefficients of each image block
are normalized separately and their low-order DCT coefficients
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are calculated. The ratio of the energy of the higher-order DCT
coefficients to the energy of the lower-order DCT coefficients is
used as the focus evaluation function. To solve the problem of
fused image capability loss and contrast reduction.

2. A convolutional SR method is proposed to solve
the problem of spatial inconsistency of multimodal image
fusion by combining the high-frequency and low-frequency
components obtained from the multiscale decomposition and
adopting the improved rules of spatial frequency and L1

parametric combination according to the characteristics of AD
multimodal images.

3. To address the problem of limited detail preservation
capability of medical image fusion methods based on SR and
the lack of expression capability of single dictionary, the detail
texture and contour of the fused image are enhanced by
constructing multiple sub-dictionaries, and finally the fused
detail layer image is fused and reconstructed with the fused base
layer image to obtain the fused image. The fused AD medical
information features are preserved.

2. Materials and methods

In the process of image fusion, the most important thing is
how to extract low-high-frequency coefficients and the fusion
criteria of low-high-frequency coefficients. First of all, the DCT
transform is used to decompose the MRI image in multi-
scale; the DCT coefficients of each image block are normalized
respectively, and its low-order DCT coefficients are calculated.
The ratio of the energy of the higher-order DCT coefficient to
that of the lower-order DCT coefficient is used as the focusing
evaluation function. Then, the sub-images on each scale are
convoluted sparsely encoded, and the sparse coefficients of
different sub-images are obtained. The high-frequency sub-
image coefficients are combined with the improved L1 norm
and the novel sum-modified SF (NMSF), and the low-frequency
sub-images are fused with the improved L1 norm and regional
energy. Finally, the fused low-frequency sub-band and high-
frequency sub-band are transformed by inverse DCT transform
to get the final fused image. The principle of the image fusion
algorithm based on DCT transform is shown in Figure 1:

2.1. DCT decomposition

2.1.1. Low-frequency component
The most important part of information for vision is

concentrated in the low frequencies of the image. Low
frequencies represent the slow variation between image pixels.
It is the large flat area of the image that describes the main part
of the image and is a comprehensive measure of the intensity
of the whole image. In order to maintain the visibility of the
image, the low-frequency part of the image is preserved, and

changes in the low-frequency part may cause large changes in
the image. The low-frequency coefficients of the fused image
based on the DCT transform are averaged, assuming that there
are p multi-exposure images, which can be defined as:

G(i, j) =
p∑

k=1

wkGk(i, j) (1)

p∑
k=1

wk = 1 (2)

w1 = w2 = · · · = wn = · · ·wp = 1/p (3)

where Gk(i, j) is the low-frequency coefficients extracted from
the source image after DCT transformation; G(i, j) is the fused
low-frequency coefficients; and wk is the weighting factor.

2.1.2. High-frequency component
The high-frequency coefficients correspond to detailed

information in the image, such as edges, and are extracted
from the 8 × 8 chunked image after the DCT transform. The
standard deviation of the high-frequency coefficients D

(
i, j
)

in
the

(
2k+ 1

)
×
(
2k+ 1

)
neighborhood centered on pixel

(
i, j
)

is
calculated separately.

C(i, j) =

√√√√√√ i+k∑
m=i−k

j+k∑
n=j−k
[D(m, n)− M̄(m, n)]2

d − 1
(4)

where, D is the number of pixel points in the region(
2k+ 1

)
×
(
2k+ 1

)
; D is the value of the high frequency

coefficient corresponding to the (m, n) point; M(m, n) is the
average value of pixels in the region, which can be defined as:

M(i, j) =
1
d

i+k∑
m=i−k

j+k∑
n−j−k

D(m, n) (5)

The regional standard deviation of the high-frequency
coefficients for each of the P multi-exposure images is[
C1
(
i, j
)
,C2

(
i, j
)
, . . . ,Cp

(
i, j
)]

, then the weight coefficients
corresponding of the extracted high-frequency coefficient is:

wk(i, j) =
Ck(i, j)∑p
k=1 Ck(i, j)

(6)

where, the weights of the P multi-exposure images are compared
to them, the fused high-frequency coefficient D

(
i, j
)

is the high-
frequency coefficient corresponding to the largest weighting
factor.

wk(i, j) = max
[
w1(i, j),w2(i, j), · · · ,wk(i, j), · · · ,wp(i, j)

]
(7)

D(i, j) = Dk(i, j) (8)
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2.2. Sparse representation

The medical image fusion method consists of the following
four parts: (1) Multi-scale dictionary learning to train sub-
dictionaries on different scales of sub-images as training images.
(2) Convolutional sparse coding of the dictionaries at different
scales to find their convolutional sparse coefficients. (3) Low-
frequency sub-band coefficient fusion rules for low-frequency
sub-images are fused according to the set fusion rules. (4) High-
frequency sub-band coefficient fusion rules fuse high-frequency
sub-images at different scales.

2.2.1. Multi-scale dictionary learning
The source images A and B are firstly decomposed by l-level

DCT to obtain their decomposition coefficients
{
Hl,k
A , LA

}
and{

Hl,k
B , LB

}
, respectively. Where, Hl,k

A and Hl,k
B denote the high-

frequency sub-band coefficients of source images A and B at
decomposition scale l and orientation k. LA and LB are the low-
frequency sub-band coefficients of images A and B, respectively.
The sub-band images of each scale are used as training images to
train the corresponding convolutional sparse sub-dictionaries.
The different convolutional sparse sub-dictionaries capture the

FIGURE 1

Flowchart of image fusion algorithm for discrete cosine transform (DCT) transform.

FIGURE 2

Flow chart of multi-scale dictionary learning.
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features of the sub-images at different scales. Finally, the low-
frequency and high-frequency sub-dictionaries are formed by
combining the sub-dictionaries at different scales. The high-
frequency first-scale images Hl,k

A and Hl,k
B of source images

A and B are used as training images
{
ym
}M
m=1, and the

corresponding convolutional sparse dictionary learning models
are built. The formula is as follows:

arg min
d,x

1
2

M∑
m=1

∣∣∣∣∣
∣∣∣∣∣ym −

K∑
k=1

dk × xm,k

∣∣∣∣∣
∣∣∣∣∣
2

2

+ λ

M∑
m=1

K∑
k=1

∣∣∣∣xm,k∣∣∣∣1
(9)

where, xm,k is the sparse coefficient corresponding to the mth
training image; dk is the corresponding filter; ∗ denotes the
two-dimensional convolution operation; λ is the regularization
parameter; and ||·||1 denotes the l1 parametric number, which
represents the sum of the absolute values of the elements.

(1) Dictionary update phase. By keeping the sparse
coefficients constant, each filter is optimally updated with the
following equation:

arg min
dk

1
2

M∑
m=1

∣∣∣∣∣
∣∣∣∣∣ym −

K∑
k=1

dk × xm,k

∣∣∣∣∣
∣∣∣∣∣
2

2

(10)

To optimize the filter in the discrete Fourier domain, the
filter dk needs to be zero-filled to the same size as xm,k . Taking
into account the normalization of dk with zero padding, the
formula is as follows:

arg min
{dm},{gm}

1
2

∑
k

∣∣∣∣∣
∣∣∣∣∣∑
m

xm,k × dm − sk

∣∣∣∣∣
∣∣∣∣∣
2

2

+

∑
m

lCPN

(
gm
)

(11)

The ADMM algorithm shows that
CPN =

{
x ∈ RN :

(
I − PPT

)
x = 0, ||x||2 = 1

}
represents the

FIGURE 3

CT-MRI fusion images obtained by five fusion methods. (A) Computed tomography (CT) source image; (B) magnetic resonance imaging (MRI)
source image; (C) nonsubsampled contourlet (NSCT) fusion result; (D) non-subsampled shear wave transform (NSST) fusion result; (E) guided
filter ng fusion (GFF) fusion result; (F) Laplacian redecomposition (ReLP) fusion result; (G) fusion result of the proposed method.
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constraint range, the indicator function is defined as

ls(X) =

{
0 if X ∈ S
∞ if X /∈ S

, and gm is an auxiliary variable

introduced to facilitate optimal derivation. The resulting
updated convolution filter dk can be obtained.

(2) Convolutional sparse coefficient update phase. Update
the coefficients by keeping the filter unchanged:

arg min
xm,k,zm,k

1
2

M∑
m=1

∣∣∣∣∣
∣∣∣∣∣ym −

K∑
k=1

dk × xm,k

∣∣∣∣∣
∣∣∣∣∣
2

2

+ λ

M∑
m=1

K∑
k=1

∣∣∣∣zm,k∣∣∣∣1
(12)

where, zm,k is the introduced auxiliary variable. We obtain
the updated convolutional sparse coefficients by alternating
iterative solutions.

In Figure 2, the cyclic execution of the dictionary and the
convolutional sparse coefficients are updated to a predetermined
maximum number of cycles or a set parameter threshold to
stop. The convolutional sub-dictionary D1 for the first scale of
the high-frequency sub-image is output. The second and third
scales of the high-frequency sub-images are dictionary learned
separately to obtain the convolutional sub-dictionaries D2, D3.
By combining each high-frequency sub-dictionary, and the
high-frequency dictionary Dh = [D1,D2,D3] is obtained. The
low-frequency sub-images are subjected to dictionary learning,
and the low-frequency dictionary Dl is obtained.

2.2.2. Convolutional sparse coding
To better capture the detailed texture information of

medical images and reduce the influence of artifacts, a high-
frequency dictionary Dh and a low-frequency dictionary Dl are
obtained by learning. Convolutional sparse coding is performed
on the decomposition coefficients

{
Hl,k
A , LA

}
of the source

image A. The TV regularization is then incorporated into the
convolutional sparse coding model. The formula is as follows:

arg min
{xk}

1
2

∣∣∣∣∣
∣∣∣∣∣s−∑

k

dk × xk

∣∣∣∣∣
∣∣∣∣∣
2

2

+λ
∑
k

||xk||1 + λ1TV

( K∑
k=1

dk ∗ xk

)
(13)

where, TV(X) =
∣∣∣∣g0 × x

∣∣∣∣
1 +

∣∣∣∣g0 × x
∣∣∣∣

1, g0 and g1 are the filters
used to calculate the gradients along the rows and columns of
the image, respectively. The sparsity coefficients

{
xAm,L, x

A
m,l,k,H

}
and

{
xBm,L, x

B
m,l,k,H

}
of the coefficients in the sub-bands of the

source images A and B, respectively, are obtained by optimal
solution in the discrete Fourier domain. Where, m denotes the
number of filters and convolutional sparse coefficient maps; L
denotes the low frequency image; Hdenotes the high frequency
image; and l and k denote the scale and orientation of the
corresponding sub-bands, respectively.

2.2.3. Low-frequency coefficient fusion rules
After DCT decomposition, the energy information of the

image is contained in the low-frequency sub-bands LA and
LB of the source images A and B, which are displayed as
basic information such as the contour and brightness of the
image. The averaging strategy generally used for low-frequency
coefficient fusion tends to lead to a reduction in the contrast of
the image. In the case of fusion using the Max− L1 rule with SR,
the reduction of contrast can be effectively avoided. However, it
can lead to the problem of spatial inconsistency of the image. At
the same time, because the region energy can better reflect the
energy and significant features of the image, and the convolution
sparse coefficients of the L1 parameter averaging strategy can
effectively reduce the effect of misalignment. Therefore, a
combination of region energy and averaged L1 parameter is used
to fuse the low-frequency sparse coefficients.

LF =
M∑

m=1

dlm × xFm,L (14)

2.2.4. High-frequency coefficient fusion rules
The high frequency sub-bands Hl,k

A and Hl,k
B of the source

images A and B contain a large amount of information such as
texture details of the images. The convolutional SR of the fusion
method has good performance in preserving detail information,
and the improved spatial frequency and can well reflect the
gradient changes of the image texture. Therefore, the improved
spatial frequency combined with the average L1 parameter
strategy is used to fuse the high frequency sparse coefficients.

Hl,k
F =

M∑
m=1

dhm × xFm,l,k,H (15)

2.2.5. Multimodal medical image fusion
The problem of spatial inconsistency in multimodal images

is caused when the L1 parametric maximum fusion rule is
used in traditional SR-based fusion methods. Therefore, we
decompose the source image by performing DCT on it. Different
sub-dictionaries are trained for features of different scales.
A rule combining region energy and activity coefficients is
used for fusion of the low frequency component coefficients,
and a modified rule combining spatial frequency and activity

TABLE 1 Average values of index evaluation of different fusion
methods for CT-MRI.

Methods SF SD RMSE GSM VIF

NSCT 23.5217 1.4275 0.1617 0.9631 0.2376

NSST 23.3269 1.4729 0.1678 0.9620 0.2582

GFF 23.8825 1.4681 0.1604 0.9715 0.2265

ReLP 24.2733 1.4953 0.1539 0.9743 0.2674

Proposed 25.1246 1.5203 0.1482 0.9776 0.2743
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coefficients is used for fusion of the high frequency component
coefficients. The problems of reduced contrast, blurred details
and inadequate information extraction are avoided. The specific
steps are as follows:

(1) The DCT decomposition of source images A and B is
performed to obtain the respective decomposition coefficients{
Hl,k
A , LA

}
and

{
Hl,k
B , LB

}
.

(2) In the dictionary learning stage, the images at different
scales corresponding to the multimodal source images are
used as training sets, and the sub-dictionaries D0, D1, D2,
D3 corresponding of each scale is derived. The low-frequency
dictionary is Dl = D0. The high-frequency dictionary is
Dh = [D1,D2,D3 ].

(3) Sparse coding stage. Convolutional sparse coding is
performed on the sub-images of different orientations at
each scale to obtain the corresponding convolutional sparse{
xAm,L, x

A
m,l,k,H

}
and

{
xBm,L, x

B
m,l,k,H

}
.

(4) Low-frequency component fusion stage. The regional
energies EA and EB of LA and LB, and the active level maps
ᾱA and ᾱB are calculated. The convolution sparsity coefficients

xFm,L are obtained after fusion. Finally, the convolution sparse
coefficients are reconstructed with the low-frequency dictionary
convolution to obtain the low-frequency sub-band image LF .

(5) High-frequency component fusion stage. The fused
convolutional sparse coefficients C are obtained by calculating
the improved spatial frequencies ofHl,k

A andHl,k
B . Then the high-

frequency sub-band images Hl,k
F are obtained by convolutional

fusion with the high-frequency dictionary Dh.
(6) Finally, the fused image F is obtained by performing

inverse DCT on the fused sub-band image
{
H
′,k
F , LF

}
.

3. Results and discussion

3.1. Data set and training parameter
settings

(1) Experimental settings
All our experiments are conducted on a computer with Intel

Core i7-10750H CPU 2.60 GHz, 16 GB RAM, NVIDIA GeForce

FIGURE 4

MRI-PET fusion images obtained by five methods in Paras1. (A) Magnetic resonance imaging (MRI) source image; (B) positron emission
tomography (PET) source image; (C) nonsubsampled contourlet (NSCT) fusion result; (D) non-subsampled shear wave transform (NSST) fusion
result; (E) guided filter ng fusion (GFF) fusion result; (F) Laplacian redecomposition (ReLP) fusion result; (G) fusion result of the proposed method.
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FIGURE 5

MRI-PET fusion images of five methods in Paras2. (A) Positron emission tomography (PET) source image; (B) magnetic resonance imaging (MRI)
source image; (C) nonsubsampled contourlet (NSCT) fusion result; (D) non-subsampled shear wave transform (NSST) fusion result; (E) guided
filter ng fusion (GFF) fusion result; (F) Laplacian redecomposition (ReLP) fusion result; (G) is the fusion result of the proposed method.

TABLE 2 Average values of index evaluation of different fusion methods for MRI-PET.

CT-MRI Methods MI SF AG EI NIQE TMQI

Paras1 NSCT 3.7269 15.2214 6.1476 45.3264 4.5158 0.8123

NSST 3.8261 15.3842 6.1842 47.8139 4.5927 0.8546

GFF 4.1027 16.7253 6.0878 46.9367 4.5231 0.7712

ReLP 4.1503 17.2636 6.2913 48.4811 4.6080 0.8582

Proposed 4.2018 17.3059 6.3682 50.6531 4.6675 0.8654

Paras2 NSCT 3.6535 16.1356 6.0631 46.6235 4.6825 0.7403

NSST 3.7282 16.8575 6.0051 45.3315 4.7057 0.6790

GFF 3.7451 17.2243 6.2527 46.8728 4.6817 0.7052

ReLP 3.7871 17.7991 6.3517 46.3297 4.7354 0.7106

Proposed 3.8010 18.1052 6.4063 47.2031 4.7521 0.7149

GTX 3090 Ti. We train the convolutional sparse and low-rank
dictionary with sliding step size set to 1, sliding window size set
to 8× 8, dictionary size set to 64× 512, error set to E = 0.03,
and decomposition level set to 3.

(2) Data sets and comparison methods

To validate the performance of the proposed method. We
selected 136 sets of aligned AD brain medical images (image
size of 256× 256 pixels) as the source images to be fused.
All image slices were obtained from the Harvard Whole Brain
Atlas database (Johnson and Becker, 2001), and the three AD
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medical image types included 42 sets of CT-MRI images; 42 sets
of MRI-PET images; and 52 sets of MRI-SPECT images. Four
contrast algorithms were adopted for comparison, including
nonsubsampled contourlet (NSCT) (Li and Wang, 2011), NSST
(Kong et al., 2014), guided filter ng fusion (GFF) (Li et al., 2013),
and Laplacian redecomposition (ReLP) (Li et al., 2020).

(3) Objective evaluation metrics
We selected 10 metrics for objective index evaluation and

analysis: mutual information (MI) (Xydeas and Petrovic, 2000),
natural image quality evaluator (NIQE) (Mittal et al., 2012),
average gradient (AG) (Du et al., 2017), edge intensity (EI)
(Wang et al., 2012), tone-mapped image quality index (TMQI)
(Yeganeh and Wang, 2012), spatial frequency (SF) (Eskicioglu
and Fisher, 1995), SD (Li et al., 2008), root mean square error
(RMSE) (Zhang et al., 2018), gradient similarity mechanism
(GSM) (Liu et al., 2011), and VIF (Sheikh and Bovik, 2006).
SF is the spatial frequency, which is a measure of the richness
of image detail and reflects the sharpness of image detail.
A larger value means that the image detail is richer. SD is the
standard deviation, which measures the contrast of the image;

a larger value indicates a better contrast of the image. RMSE
is the root mean square error, which measures the difference
between the fused image and the source image; a smaller value
indicates that the fused image information is closer to the
source image. GSM measures the gradient similarity between
images; a larger value indicates that the gradient information
of the fused image is closer to the source image. NIQE index,
the smaller the value, the smaller the distortion. VIF is an
image information measure that quantifies the information
present in the fused image; larger values indicate better fusion.
NIQE measures the simple distance between the model statistic
and the distorted image statistic. AG indicates the average
gradient, which is used to extract the contrast and texture
change features of the image. EI reflects the sharpness of
the edges. TMQI index measures the significant features of
brightness and contrast between the reference image and the
fused image, and measures the structural fidelity of the fused
image. Larger values of MI, SF, AG, EI, and TMQI indexes
indicate better fusion.

FIGURE 6

MRI-SPECT fusion images of the five methods in Paras1. (A) Single photon emission computed tomography (SPECT) source image; (B) magnetic
resonance imaging (MRI) source image; (C) nonsubsampled contourlet (NSCT) fusion result; (D) non-subsampled shear wave transform (NSST)
fusion result; (E) guided filter ng fusion (GFF) fusion result; (F) Laplacian redecomposition (ReLP) fusion result; (G) fusion result of the proposed
method.
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FIGURE 7

MRI-SPECT fusion images of the five methods in Paras2. (A) Single photon emission computed tomography (SPECT) source image; (B)
magnetic resonance imaging (MRI) source image; (C) nonsubsampled contourlet (NSCT) fusion result; (D) non-subsampled shear wave
transform (NSST) fusion result; (E) guided filter ng fusion (GFF) fusion result; (F) Laplacian redecomposition (ReLP) fusion result; (G) fusion result
of the proposed method.

TABLE 3 Average values of index evaluation of different fusion methods for MRI-SPECT.

MRI-SPECT Methods MI SF AG EI NIQE TMQI

Paras1 NSCT 3.6302 16.4106 6.2750 46.6732 4.2038 0.7931

NSST 3.6231 15.8942 6.1773 47.0792 4.3107 0.7785

GFF 3.7047 16.5378 6.2035 47.6470 4.2619 0.8063

ReLP 3.8503 17.0346 6.3106 48.5718 4.3250 0.8307

Proposed 3.8826 17.2069 6.4209 49.5014 4.4030 0.8526

Paras2 NSCT 3.6057 15.7431 6.1821 47.1003 4.3717 0.7352

NSST 3.6183 15.7215 6.1040 46.6993 4.4602 0.7075

GFF 3.6903 15.4903 6.2183 47.2854 4.3736 0.7202

ReLP 3.7681 16.3107 6.3608 48.5810 4.4071 0.7464

Proposed 3.7916 16.5012 6.4112 48.7106 4.5306 0.7503

3.2. CT-MRI fusion results comparison

In Figure 3, we used 42 sets of CT-MRI fused images and
randomly selected seven fused images for comparison. From

the figure, we can see that the images fused by NSCT and GFF
algorithms are too dark. The images fused by NSST are not only
darker but also distorted. The images fused by ReLP algorithm
have better brightness but not enough texture details. Our fusion
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FIGURE 8

Comparison of running time.

algorithm performs best in terms of brightness, detail texture
and edge contour.

The mean values of objective evaluation metrics for fusion
results corresponding to different rules are given in Table 1,
where bold indicates that the method ranks best in the metrics.
NSCT is low in SD in terms of metrics, indicating insufficient
image contrast. NSST is lowest in SF in terms of metrics, with
poor image details. ReLP is less distorted with our method
in terms of RMSE and GSM. Our proposed method performs
better performance in terms of color retention, contrast, and
detail retention, and achieves the optimum.

3.3. MRI-PET fusion results comparison

Figures 4, 5 use 42 sets of MRI-PET images from MRI-
PET datasets Paras1 and Paras2, respectively. We randomly
selected eight fused images. From Figure 4, it can be seen that
NSCT and GFF show severe distortion, and the fused images of
NSST and ReLP algorithms are too dark and have loss of detail
information. In Figure 5, NSCT and NSST have dark luminance
and GFF has distortion, while ReLP and our fusion algorithm
have better visual effect.

In Table 2, by comparing 42 sets of fused images on the
MRI-PET dataset, our proposed algorithm has the best mean
value in objective evaluation metrics. Higher contrast, sharper
edges and finer details were obtained. The subjective results of
the fused images of the two algorithms, NSCT and GFF, were not
satisfactory. NSCT and GFF had more color distortion. NSST
showed abnormal brightness. ReLP performed better and was
close to our average value. So far, it is easy to see that the
multi-objective evaluation index of the integrated information
is consistent with the conclusions of the subjective analysis.
Our proposed algorithm significantly outperforms the average

of all algorithms. In summary, we have a more comprehensive
advantage over existing algorithms in the evaluation of objective
metrics.

3.4. MRI-SPECT fusion results
comparison

Figures 6, 7 we used MRI-SPECT datasets Paras1 and
Paras2, respectively 52 sets of AD MRI-PET image fusion images
for comparison. It can be seen from the figures that NSCT
shows severe distortion, NSST fused images are too dark, GFF
shows brightness anomalies, and ReLP does not perform well in
terms of detail texture. Our fusion algorithm performs best in
brightness, detail texture and edge contour.

InTable 3, we use 52 sets of fused images on the MRI-SPECT
dataset for comparison, and our proposed DCT multiscale
decomposition obtains sharper edges and finer details. The
improved NMSF fusion rule obtains better brightness and
contrast. The superiority of our method over other algorithms
is demonstrated.

To compare the advantages of the proposed methods
more comprehensively, we calculate the running times of the
comparison methods on the same pair of images of 256× 256
size. Figure 8 shows the line graphs of the average running
times of our method and the four comparison methods. The
ReLP method has the longest running time and GFF has the
shortest running time. From the line graph, it can be seen that
our fusion method has the second best running speed than most
of the other algorithms. However, medical image fusion is used
to assist in diagnosis and treatment, and the effectiveness of the
proposed method is demonstrated from objective and subjective
evaluations. Therefore, the proposed method guarantees the
quality of fusion results within an acceptable time consumption.
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3.5. Comparison of subjective
evaluation

Computed tomography (CT) or MRI unimodal imaging
can no longer meet the demand for precise diagnosis in
neurosurgery. A multimodality imaging technique that can
clearly, visually, and holistically show AD brain atrophy and its
association with surrounding cerebral vessels, nerves, and brain
tissues can only accommodate the development of neurosurgical
precision surgery. Quality assessment of multimodal fusion
requires additional medical expertise. Therefore, we invited six
chief neurosurgeons with more than 5 years of experience,
and we randomly selected a test sample of 10 groups, each
group including five fusion images. The subjective evaluation
criteria were double stimulus continuous quality scale (DSCQS)
including contrast, detail and invariance and acceptability scores
of [1 (worst) to 5 (best)]. 1 indicates a non-diagnostic image
and 5 indicates a good quality diagnostic image. Pathological
invariance was scored as 0 (change) or 1 (no change). Table 4
shows the ratings of six clinicians, and the optimal values are
shown in bold.

In Table 4, the subjective physician evaluations of CT-
MRI and MRI-SPECT fusion are presented. The NSCT and
GFF contrast and brightness were insufficient and therefore
rated low. The GFF showed the worst distortion acceptability
evaluation. The ReLP was very close to our evaluation among the
four evaluation metrics. Our algorithm has the best performance
in edge detail, luminance, contrast and spatial coherence, and
received the best physician evaluation.

4. Conclusion

Multimodal neuroimaging data have high dimensionality
and complexity, and seeking efficient methods to extract
valuable features in complex datasets is the focus of current
research. To address the shortcomings of AD multimodal
fusion images such as contrast reduction, detail blurring and
color distortion, we propose a multimodal fusion algorithm
for Alzheimer’s disease based on DCT convolutional SR. The
DCT multi-scale decomposition of the source medical image is
performed to obtain the basic layer, local average energy layer
and texture layer of the input image, and then the sub-images
of different scales are used as training images respectively.
The sub-dictionaries at different scales are optimally solved
using the ADMM algorithm, and then convolutional sparse
coding is performed, and the inverse DCT transform of
the subimage coefficients is performed using a combination
of improved L1 parameters and improved NMSF rules to
obtain the multimodal fusion images. We experimentally
demonstrate that the algorithm has sharper edge details,
better color and spatial consistency than other algorithms by
fusing medical images in three modalities, CT-MRI, MRI-PET,
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and MRI-SPECT. This proves that our algorithm outperforms
existing state-of-the-art algorithms. In the future, we will
use deep learning models for medical image multimodality
classification and prediction, and apply them to early clinical
diagnosis of AD.
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Detection of astrocytic slow
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using planar microelectrode
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Since the development of the planar microelectrode array (MEA), it has

become popular to evaluate compounds based on the electrical activity of

rodent and human induced pluripotent stem cell (iPSC)-derived neurons.

However, there are no reports recording spontaneous human astrocyte

activity from astrocyte-only culture sample by MEA. It is becoming clear

that astrocytes play an important role in various neurological diseases, and

astrocytes are expected to be excellent candidates for targeted therapeutics

for the treatment of neurological diseases. Therefore, measuring astrocyte

activity is very important for drug development for astrocytes. Recently,

astrocyte activity has been found to be reflected in the low-frequency

band < 1 Hz, which is much lower than the frequency band for recording

neural activity. Here, we separated the signals obtained from human primary

astrocytes cultured on MEA into seven frequency bands and successfully

recorded the extracellular electrical activity of human astrocytes. The slow

waveforms of spontaneous astrocyte activity were observed most clearly

in direct current potentials < 1 Hz. We established nine parameters to

assess astrocyte activity and evaluated five seizurogenic drug responses in

human primary astrocytes and human iPSC-derived astrocytes. Astrocytes

demonstrated the most significant dose-dependent changes in pilocarpine.

Furthermore, in a principal component analysis using those parameter sets,

the drug responses to each seizurogenic compound were separated. In

this paper, we report the spontaneous electrical activity measurement of

astrocytes alone using MEA for the first time and propose that the MEA

measurement focusing on the low-frequency band could be useful as one

of the methods to assess drug response in vitro.

KEYWORDS

MEA - microelectrode array, astrocyte, seizure, human, culture, toxicology, iPSC
(induced pluripotent stem cell), slow-oscilatory activity
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Significance statement

Planar microelectrode array (MEA) is recognized as a
useful method for evaluating the toxicity of compounds to
in vitro human neurons. However, there are no reports directly
recording spontaneous human astrocyte activity from astrocyte-
only culture sample by MEA, and no drug evaluation methods
are established. Here, we successfully recorded extracellular
electrical activity of human astrocytes using MEA in low-
frequency band. Furthermore, we established a method to assess
the activity of primary human astrocytes and human iPSC-
derived astrocytes, and evaluated astrocyte drug responses to
five seizurogenic compounds. We expect that the MEA-based
system for assessing astrocyte activity will not only provide
new insights into the mechanisms of neurological diseases, but
will also help in the evaluation of drug efficacy in the drug
development for diseased astrocytes.

Introduction

The microelectrode array (MEA) is a planar substrate
embedded with an array of microelectrodes capable of
measuring extracellular potentials. In 1972, Thomas et al.
reported activity recordings of cultured cells using MEA
(Thomas et al., 1972). Since then, MEA has been used to record
from a wide variety of neuronal preparations (Gross et al.,
1977; Gross, 1979; Pine, 1980). Furthermore, improvements
to the MEA have made it possible to measure from brain
slices as well as from cultured neurons (Jobling et al., 1981;
Wheeler and Novak, 1986; Novak and Wheeler, 1988). Since
then, active research has been conducted mainly using rodent
neurons and brain slices. With the development of human
induced pluripotent stem cells (iPSCs), it is possible to induce
human neurons from iPSCs, and human neural function can be
evaluated in vitro (Amin et al., 2016; Odawara et al., 2016, 2022;
Frega et al., 2017; Grainger et al., 2018; Autar et al., 2022; Pré
et al., 2022).

Microelectrode array measurement is a noninvasive, high-
temporal-resolution method and can simultaneously measure
multiple points of neural network activity. MEA has been
proposed as a high-throughput, accurate, and rapid screening
method for toxicity testing. Indeed, studies using rodent
neurons and human iPSC-derived neurons have reported the
usefulness of the MEA method as an evaluation system for
identifying seizurogenic compounds (Johnstone et al., 2010;
Bradley et al., 2018; Odawara et al., 2018; Tukker et al., 2018,
2020; Fan et al., 2019). We reported that co-culturing neurons
and astrocytes on MEA promotes early maturation of neural
networks and enhances drug responsiveness (Odawara et al.,
2014).

For over a century, glial cells have been regarded as merely
passive glue that connects and supports neurons. However, in
recent years, they have been found to have diverse roles within

the central nervous system (CNS). In particular, astrocytes, the
most abundant cell type in the human CNS, are considered
to be directly involved in brain signaling via astrocyte–neuron
interaction at tripartite synapse (Perea et al., 2009; Bindocci
et al., 2017; Martin-Fernandez et al., 2017). Recently, it has been
proposed that astrocytes contribute to the progression of various
neurodegenerative disorders such as Alzheimer’s, Parkinson’s,
and Alexander’s disease (Brenner et al., 2001; Liddelow et al.,
2017). Moreover, neurons and astrocytes have been reported to
be closely involved in the onset of epileptic seizures (Onodera
et al., 2021; Sano et al., 2021). Furthermore, in vivo experiments
in rats demonstrated that antiepileptic drugs act on astrocytes,
which may be related to their antiepileptic actions (Mukai et al.,
2018).

From an electrophysiological perspective, epilepsy studies
have indicated that wide-band electroencephalogram (EEG)
activity in epileptic patients may reflect glial and neural activity.
Ikeda et al. (2020) reported that recent improvements in digital
electroencephalography have revealed that direct current (DC)
potentials, which indicate activity in the low-frequency band
below 1 Hz, reflect astrocyte-derived depolarization, whereas
high-frequency oscillations (HFOs), which indicate activity in
the high-frequency band above 200 Hz, reflect neuron firing
activity. On the other hand, Fleischer et al. (2015) have shown
that rat primary astrocytes respond to electrical stimulation with
HFO. The relationship between DC potentials and HFO remains
uncertain. Further studies at the cellular level are required in the
future.

Most current MEA measurements focus on the spiking
component of neurons in the frequency band above 50 Hz.
In recent years, studies focusing on low-frequency components
other than the spike component have been reported in MEA
analysis of neural activity (Odawara et al., 2018; Trujillo et al.,
2019; Yokoi et al., 2021; Sharf et al., 2022). To date, no
MEA method has been established to measure glial-derived
DC potentials in the lower-frequency band. In this study,
we established a new measurement and analysis method
focusing on DC potentials and report the first recording
of spontaneous slow oscillatory activity of human cultured
astrocytes using MEA. Furthermore, we demonstrated that
this analysis method could be used to evaluate astrocyte drug
responses to seizurogenic compounds.

Materials and methods

Culture of human astrocytes

Human primary astrocytes (Gibco) were cultured at
5.0× 105 cells/cm2 on 16 channels per well across 24-well MEA
plates (MED-Q2430M; Alpha Med Scientific Inc.) coated with
Geltrex (Gibco). Cells were maintained in astrocyte medium:
Dulbecco’s modified Eagle medium (DMEM; Gibco) containing
10% fetal bovine serum (FBS; Gibco) and N-2 Supplement
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(Gibco). For culture on MEAs, a φ3.4-mm glass ring was
placed in the middle of the MEA probe at the location of the
electrode array, and cells were seeded inside the ring. After 1 h,
astrocyte medium was added around the ring, and the ring
was carefully removed. A frozen vial of human iPSC-derived
mature astrocytes purchased from XCell Science was plated at
2.5× 104 cells/cm2 in tissue culture plates coated with Geltrex in
STEMdiff Astrocyte Maturation Basal Medium kit (STEMCELL
technologies). After 7 days, the astrocytes were sub-cultured at
5.0 × 105 cells/cm2 on 24-well MEA plates in the same manner
as above. All cells were maintained in astrocyte medium, and
half the medium was replaced after 3 days.

Immunocytochemistry

Sample cultures were fixed with 4% paraformaldehyde in
phosphate-buffered saline (PBS) on ice (4◦C) for 10 min. Fixed
cells were incubated with 0.2% Triton X-100 in PBS for 5 min,
followed by preblock buffer (0.05% Triton X and 5% FBS in
PBS) at 4◦C for 1 h. Samples were then incubated overnight at
4◦C with primary antibodies diluted in preblock buffer. Primary
antibodies used were glial fibrillary acidic protein (GFAP;
1:100; #3670, Cell Signaling Technology), human nuclei (1:100;
MAB1281, Sigma-Aldrich), and MAP2 (1:1000; AB5622, Sigma-
Aldrich). After being washed with PBS, samples were incubated
with secondary antibodies, Alexa 488- or Alexa 546-conjugated
anti-mouse IgG, anti-rabbit IgG (Invitrogen) for 30 min at room
temperature. Cell nuclei were counterstained with 1 µg/mL
Hoechst 33258 (H341, DOJINDO). All images were taken
using an A1 Nikon confocal microscope system (Nikon). Image
intensity was adjusted using ImageJ software (NIH).

MEA measurements

This study requires the sensitivity of MEA to analyze
signals in the frequency range below 1 Hz. Therefore, we used
the MEA systems of Alpha Med Scientific Inc., which are
excellent at detecting low-frequency components. Extracellular
field potentials were measured using the 24-well MEA system
(Presto) with a 20-kHz/channel sampling rate at 37◦C under 5%
CO2. The MEA system is implemented with a 0.1 Hz two pole
Butterworth high-pass filter and a 5 kHz single pole Butterworth
low-pass filter. 16 electrodes per well are arranged in a 4 × 4
array, with each electrode measuring 50 µm × 50 µm and
spaced at 300 µm. All MEA measurements were performed in
the astrocyte cell culture medium.

Pharmacological test

After 1 week of culture, five seizurogenic compounds
and two neutral compounds were cumulatively administered

to human astrocytes. The following compounds were used
as seizurogenic drugs: the potassium channel blocker 4-
aminopyridine (4-AP; 0.3, 1, 3, 10, and 30 µM: 275875-1G,
Sigma-Aldrich), the muscarinic receptor agonist pilocarpine
(0.3, 1, 3, 10, and 30 µM: P6503-5G, Sigma-Aldrich),
the GABAA receptor antagonist picrotoxin (0.1, 0.3, 1, 3,
and 10 µM: P1675-1G, Sigma-Aldrich), 1,5-pentamethylene-
tetrazole (PTZ; 30, 100, 300, 1,000, and 3,000 µM: P0046,
Tokyo Chemical Industry Co.), and the D2 receptor antagonist
chlorpromazine (0.1, 0.3, 1, 3, and 10 µM: C8138-5G, Sigma-
Aldrich). Acetaminophen (1, 3, 10, 30, and 100 µM: A7085-
100G, Sigma-Aldrich) and DMSO (D2650, Sigma-Aldrich) were
used as neutral controls. VU0134992 (0.3, 1, 3, 10, 30 µM:
6877, Tocris Bioscience) and cilnidipine (1, 3, 10, 30, 100 µM:
C2564, Tokyo Chemical Industry Co.) were used for blockage
of Kir4.1 and calcium channels. The final concentrations of
these drugs were adjusted to contain 0.1% DMSO. DMSO
(0.1%) was administered in all wells as a vehicle control prior
to cumulative administration of the compound. Spontaneous
activities were recorded for 10 min after 5 min of rest following
drug administration (n ≥ 3).

Analysis parameters

The electrophysiological activity of astrocytes was analyzed
by using Presto and Multi-bandpass Analysis software (Alpha
Med Scientific). To separate the astrocyte activity to each
frequency band, two pole Butterworth high-pass and two pole
Bessel low-pass filters were used (DC, 0.1–1 Hz; delta, 1–
4 Hz; theta, 4–8 Hz; alpha, 8–14 Hz; beta, 15–30 Hz; gamma,
35–50 Hz; high gamma, 80–150 Hz). The waveforms in each
frequency band were converted into root mean square (RMS)
histograms, and the threshold value was set at 10% of the highest
potential value obtained during the total measurement time in
16 electrodes per well. RMS was calculated with a time window
of 100 ms and shifted by 10 ms. Therefore, 90 ms was calculated
by overlapping. We established nine analytical parameters for
the RMS above the threshold value to evaluate the responses to
compound: average total RMS, peak potential RMS, oscillation
potential (OP), oscillation width (OW), coefficient of variation
(CV) of OW, total OW, total oscillations, interpeak interval
(IPI), and CV of IPI (Table 1).

Frequency analysis

Power spectral analysis using Short-time Fourier transform
(STFT) was performed on the base activity downsampled
to 1kHz of primary astrocytes, no cells, fibroblasts, and
DMSO 10% treated. A 20 s sliding temporal Hanning window
was used in the spectral analysis and spectral power was
calculated every 50 ms. To calculate the oscillation intensity
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without baseline effects, the moving sum of 400 points of
the power spectrum was calculated, the minimum sum was
defined as the baseline power, and the maximum sum of
the spectrum minus the baseline power was calculated as the
oscillation power.

Statistical analysis

All data are representative of at least three independent
sets of experiments. Analyses were conducted using GraphPad
Prism software and the statistical software package R (http://
www.r-project.org/). One-way ANOVA followed by Dunnett’s
test was used to calculate the significant difference between
each concentration and the vehicle. Statistical significance is
indicated by the following: ∗p < 0.05, ∗∗p < 0.01. Results are
presented as mean± SEM.

Principal component analysis

We prepared a matrix using all well data (seizurogenic
compounds: 4-AP, pilocarpine, picrotoxin, PTZ, and
chlorpromazine; neutral controls: DMSO and acetaminophen)
with nine analytical parameters obtained using the RMS
histogram of DC- and delta-band activity. We performed
principal component analysis (PCA) on 502 parameter
sets to select two or more from nine analytical parameters
using the MATLAB function PCA as previously reported
(Ishibashi et al., 2021). One-way MANOVA was used to
calculate the significant difference between each concentration
and the vehicle in the first two principal components. We

TABLE 1 Description of analytical parameters.

Analytical parameter Description

Average total RMS Average of RMS calculated in 10 min

Peak potential RMS Average peak value of RMS for all
oscillations

Oscillation potential (OP) Average of the sum of RMS values per
bin for all oscillations

Oscillation width (OW) Average duration of all oscillations

CV of OW Coefficient of variation of total
oscillation duration

Total OW Sum of total duration of all
oscillations

Total oscillations The total number of all oscillations in
10 min

Inter peak interval (IPI) Average time between peaks of all
oscillations

CV of IPI Coefficient of variation of time
between peaks for all oscillations

Nine analytical parameters were calculated by multi-bandpass analysis.

identified several parameter sets with significant differences
between seizurogenic compounds and neutral compounds as
effective parameter sets for detecting drug responses.

Results

Spontaneous activity of human
astrocytes detected by MEA
measurements

Immunocytochemical staining was performed to
confirm that the cultured cell samples on MEA were
human astrocytes. Immunostaining with GFAP, a marker
for astrocytes, and human nuclei, a marker for nuclei of
all human cell types, indicated that the cells were human
astrocytes (Figure 1A and Supplementary Figure 1A).
To determine whether these cell populations contained
neurons, the cells were stained with MAP2, a marker for
mature neurons. No MAP2-positive cells were found in
the cultured cells, confirming that astrocytes on MEA
did not contain neurons (Figure 1B and Supplementary
Figure 1B).

Spontaneous activity of human primary astrocytes was
measured 7 days after the culture on MEA plates. Figures 1C, D
show representative oscillation waveforms of spontaneous
activity of astrocytes. To characterize the astrocyte activity
obtained from MEA measurements, the acquired voltage
waveforms were low-pass filtered at 50 Hz, and the maximum
amplitude in 10 min for each electrode was calculated
(n = 24 wells/360 electrodes). Figure 1E shows a plot of
the maximum amplitude for each well. The minimum and
maximum amplitude values of the electrodes at which
oscillations were observed were 8.36 and 196.6 µV, respectively.
We also observed spontaneous activity of human iPSC-
derived astrocytes and compared to the primary astrocytes
(Supplementary Figures 1C, D). The minimum and maximum
amplitude values of the electrodes at which oscillations were
observed in iPSC-derived astrocytes were 4.45 and 213.0 µV,
respectively (Supplementary Figure 1E). Slow oscillatory
activity was detected in all wells for human primary astrocyte,
and 97% (33/34 wells) for iPS cell-derived astrocytes. The
percentage of electrodes per well in which oscillatory activity
was detected was 59.4% ± 12.5% (n = 24 wells) for human
primary astrocyte and 26.7% ± 2.5% (n = 34 wells) for
iPSC-derived astrocytes.

Next, to ensure whether the waveforms obtained reflected
spontaneous activity derived from astrocytes, we performed
several control experiments. To examine artifacts caused by
electronics, we recorded from MEA covered with culture
medium without cells for 3 weeks. Power spectral analysis
using STFT was performed on the base activity of primary
astrocytes and control samples. Figure 1F showed the waveform
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FIGURE 1

Spontaneous activity in human primary astrocytes detected by MEA. (A,B) Immunofluorescent images of astrocytes cultured on MEA at 8 days
in vitro (8 DIV). Immunocytochemistry of GFAP (green), human nuclei (red), cell nuclei by Hoechst 33,258 (blue), merged images in A, and MAP2
(red) in (B) Scale bar = 200 µm. (C) Representative oscillation waveform at the spontaneous activity measurement for 10 min at 7 DIV. (D) The
magnified waveform of the red underlined time in (C). (E) Plot of maximum amplitude in 10 min oscillation waveform of each well. Error bars
indicate the SEM. (F) Waveforms (upper panel) and their power spectrogram (lower panel) at maximum spectral intensity. (a) astrocytes, (b) no
cells, (c) fibroblasts, (d) after 10% DMSO treatment. The vertical axis of the spectrogram shows the linear frequency from 0.1 Hz to 50 Hz, and
the color indicates power. A 20 s spectrogram was extracted from the 40 s waveform. (G) Oscillation power of the control experiments. (a)
Human primary astrocytes, no cells, fibroblasts, and (b) human primary astrocytes before and after 10% DMSO treatment. unpaired two-tailed
t-tests, ∗∗∗p < 0.001 versus astrocytes. Error bar, SEM.
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for the 40-second period of highest oscillation power (upper
panel) and the power scalogram calculated from that waveform
using STFT (lower panel). The frequency spectrum of astrocyte
oscillations showed an intensity distribution in the 0.1 Hz
to 10 Hz band [Figure 1F(a)]. In contrast, electrode not
seeded with cells were observed every 7 days up to 3 weeks,
but no oscillation was observed [Figure 1F(b)] and mean
value and SEM of oscillation power was 0.016 ± 0.003 mV2

for astrocytes compared to 0.002 ± 0.00003 mV2 for the
medium alone. [Figure 1G(a); n = 6 wells/96 electrodes;
∗∗∗p < 0.001 versus astrocytes; unpaired two-tailed t-tests].
To test for astrocyte specificity, human fibroblasts were seeded
on MEA at high density to cover the electrodes with cells.
We observed up to 3 weeks, and any oscillation were not
detected [Figure 1F(c)]. The oscillation power of fibroblasts
was 0.003 ± 0.00008 mV2 [Figure 1G(a); n = 6 wells/96
electrodes; ∗∗∗p < 0.001 versus astrocytes; unpaired two-
tailed t-tests]. Finally, to exclude that a layer of biological
materials of dead cells could cause the signals, primary
astrocytes cultured on MEA were treated by 10% DMSO
for killing cells. The oscillation was recorded before and
2 h after addition of DMSO. No oscillations were observed
after the treatment [Figure 1F(d)] and DMSO addition
significantly decreased oscillation power from 0.016 ± 0.003
mV2 to 0.002 ± 0.00007 mV2 [Figure 1G(b)]; n = 6 wells/96
electrodes; ∗∗∗p < 0.001 versus astrocytes; unpaired two-
tailed t-tests]. These results indicated that the slow oscillations
observed by MEA are spontaneous activity of astrocytes on the
electrode.

Analytical parameters of spontaneous
activity in human primary astrocytes

To assess astrocyte activity, the spontaneous activity of
astrocytes was divided into the following frequency bands:
DC potentials (0.1–1 Hz), delta (1–4 Hz), theta (4–8 Hz),
alpha (8–14 Hz), beta (15–30 Hz), gamma (35–50 Hz), and
high gamma (80–150 Hz) (Figure 2A). In addition, the
waveforms in each frequency band were converted into RMS
histograms in Figure 2B. The RMS histograms show that the
slow waveforms of astrocyte spontaneous activity observed
in the MEA measurements were most clearly reflected in
DC potentials below 1 Hz, as reported in previous studies
using electroencephalographs (Figure 2B). In contrast, astrocyte
activity was not observed in the frequency bands higher than
delta band (Figure 2B). Thus, the RMS of DC potential and delta
band were used to analyze astrocyte activity. The threshold value
was set at 10% of the highest potential value in all electrodes per
well, and nine parameters were set for RMS above the threshold
value: average total RMS, peak potential RMS, OP, OW, CV of
OW, total OW, total oscillations, IPI, and CV of IPI (Figure 2C
and Table 1).

Astrocyte activity depends on ion
channel modulations

We next explored a mechanism of the astrocyte spontaneous
slow oscillatory activity by using human primary astrocytes.
Ikeda et al. reported that DC potential observed in wide-band
EEG activity of epileptic patients associated to extracellular
potassium, and hypothesized the potassium homeostasis are
relative to regulation by Kir4.1 channels in astrocytes. Therefore,
we first investigated the effect of extracellular potassium
concentration on astrocyte slow oscillations. Based on the
chemical composition of ACSF, which maintains comparable
electrolyte concentration as cerebrospinal fluid, the extracellular
potassium concentration at physiological levels is considered
to be 3.0 mM. On the other hand Ullah et al. (2009)
measured extracellular neuro-glial potassium concentrations
and reported that the extracellular potassium concentration
at epileptogenic levels was approximately 40 mM at peak
values. They also reported that neuronal firing is induced
from an extracellular potassium concentration of 8.5 mM.
Medium used for MEA measurements in this study contained
5.3 mM of KCl, and its potassium concentration is close to
physiological levels compared to epileptogenic levels and do
not reach concentrations that would induce neuronal firing.
Therefore, we treated human primary astrocytes with KCl
10 mM, the concentration at which nerve firing can be
induced, and KCl 40 mM, the epileptogenic level, and observed
changes in oscillation in DC potential. The oscillation frequency
decreased with increasing KCl concentrations [Figure 3A(a)].
To analyze the effect on astrocyte activity, we examined two
parameters: average total RMS, which indicates the intensity of
oscillations, and total oscillations, which reflects the frequency
of oscillations. A dose-dependent decrease in these two
parameters was observed [Figures 3A(b, c)]; n = 5 wells;
∗p < 0.05, ∗∗∗p < 0.001 versus control; one-way ANOVA
followed by Dunnett’s test]. We next investigated whether
regulation of extracellular potassium concentrations by Kir4.1
channels was involved in the formation of astrocyte slow
oscillations. The results showed loss of oscillation at 30 µM with
100% inhibitory effect [Figure 3B(a)]. We also found significant
reductions at 30 µM in average total RMS and total oscillations
[Figures 3B(b, c); n = 6 wells; ∗∗∗p < 0.001 versus vehicle;
one-way ANOVA followed by Dunnett’s test]. These results
indicate that extracellular potassium concentration through
Kir4.1 channels is involved in slow oscillation formation in
astrocytes. Finally, to confirm the effect of calcium, which
plays an important role in astrocyte function, we performed
experiments with the calcium channel inhibitor cilnidipine.
Cilnidipine showed reduced astrocyte slow oscillations in dose-
dependent manner and also indicated in average total RMS and
in total oscillations (Figure 3C; n= 4 wells; ∗p< 0.05, ∗∗p< 0.01,
∗∗∗p < 0.001 versus vehicle; one-way ANOVA followed by
Dunnett’s test). These results suggested that calcium regulation
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FIGURE 2

Analytical parameters of spontaneous activity in human primary astrocytes. (A) Representative oscillation waveform of spontaneous activity in
human primary astrocytes at 3 DIV (top), and waveform separated into seven frequency bands (DC, 0.1–1 Hz; delta, 1–4 Hz; theta, 4–8 Hz;
alpha, 8–14 Hz; beta, 15–30 Hz; gamma, 35–50 Hz; high gamma, 80–150 Hz). (B) The waveforms in each frequency band were converted into
RMS histograms. (C) Schematic diagram of analysis parameters. The red area are subject to analysis for each parameter.

plays an important role in the formation of slow oscillations in
astrocytes.

Drug response of human primary
astrocytes in MEA

We assessed the drug responses of astrocytes during
1–3 weeks of culture using nine analytical parameters.
Five representative seizurogenic compounds, namely, 4-AP,
pilocarpine, picrotoxin, PTZ, and chlorpromazine, were
added to the medium of astrocytes cultured on MEA, and
the responses of astrocytes against these compounds were
examined. Acetaminophen and DMSO responses were used as
neutral controls. Figure 4A represents the astrocyte waveforms
for each compound. Among the five seizurogenic compounds,
the most significant change was observed with the muscarinic
receptor agonist pilocarpine, which increased the oscillation
frequency on the waveform in a dose-dependent manner
[Figure 4A(b)]. Figures 4B, C show the analysis results of the
compound responses using nine analysis parameters in DC
potential and delta band, respectively (n = 6 wells for each
compound; ∗p < 0.05, ∗∗p < 0.01 versus vehicle; one-way
ANOVA followed by Dunnett’s test). The rate of change
and its significance were indicated when each sample with
vehicle only was defined to be 100%. Among those analytical
parameters, the average total RMS is graphed in Figure 4D.
Pilocarpine administration lead to significantly elevated
average total RMS of the DC potential at concentrations above
1 µM [Figures 4B, D(b)]. Pilocarpine also showed some
significant increases in other parameters at high concentrations
(Figure 4B). Picrotoxin, a GABAA receptor antagonist, showed
the highest frequency of oscillations at 0.1 µM, with significant

increases in several parameters, including average total RMS
[Figures 4A(c), B, D(c)]. With PTZ treatment, the average
total RMS increased at 100 µM and showed a dose-dependent
decrease with subsequent concentrations [Figures 4A(d), B,
D(d)]. Chlorpromazine, a D2 receptor antagonist, showed
reduced astrocyte oscillations, with a significant decrease at
3 µM in average total RMS [Figures 4A(e), B, D(e)]. Unlike the
other seizurogenic compounds, chlorpromazine demonstrated
significant decreases for many parameters. Interestingly, the
K-ion channel blocker 4-AP, a typical seizurogenic compound,
showed no significant changes, although some parameters
tended to increase [Figures 4A](a), B, D(a)]. Although the
analytical parameters that showed changes differed among
the compounds, the 4-AP results were similar to those of the
neutral controls, acetaminophen and DMSO, which showed less
significant changes [Figures 4A(f, g), B, D(f, g)].

Analysis of the delta frequency band showed a dose-
dependent increase only for pilocarpine in average total RMS
(Figures 4C, D; n = 6 wells for each compound; ∗p < 0.05,
∗∗p < 0.01 versus vehicle; one-way ANOVA followed by
Dunnett’s test). For the other parameters, there were slightly
different parameters and concentrations that showed significant
changes for each compound, but the tendency of increase
or decrease was similar to the results of the analysis of DC
potentials (Figure 4C).

PCA of drug response in human
primary astrocytes

To examine whether the response of astrocytes to
seizurogenic and neutral controls can be separated, a PCA was
performed using the nine parameters in DC potential and delta
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FIGURE 3

Astrocyte activity depends on ion channel modulations. (A) high potassium experiments by cumulative administration of KCl (n = 5). (a)
Representative oscillation waveform. (b) Average total RMS and (c) Total oscillations. (B) Inhibitory experiment by VU0134992 (n = 6). (a)
Representative oscillation waveform. (b) Average total RMS and (c) Total oscillations. (C) Inhibitory experiment by cilnidipine (n = 4). (a)
Representative oscillation waveform. (b) Average total RMS and (c) Total oscillations. KCl and inhibitors were added to astrocytes at 7 DIV.
One-way ANOVA followed by Dunnett’s test, ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001 versus control/vehicle. Error bar, SEM.

band. Using one-way MANOVA, we identified five parameters
that showed no significant differences between neutral controls
in PC1 and PC2 and displayed significant differences between
seizurogenic and neutral controls and between all seizurogenic
compounds (Table 2). Figure 5 shows the results of the PCA
with the identified parameters. No significant differences
were found between the neutral compounds DMSO and
acetaminophen, and significant differences of p < 0.05 were
detected between the seizurogenic and neutral compounds and
between all seizurogenic compounds (Table 3). The cumulative
contribution of PC1 and PC2 was 73.9%. These results indicate
that astrocyte responses to seizurogenic and neutral compounds

can be separated by MEA measurements. Furthermore, since
the response to each seizurogenic compound was also separable,
it was suggested that the mechanism of action of each drug
could also be separated by MEA measurement. The most
pronounced changes, pilocarpine and chlorpromazine, were at
a greater distance from the neutral controls, with pilocarpine
exhibiting a dose-dependent change in the upper right diagonal
of the PC1–PC2 plot and chlorpromazine in the lower left
diagonal. Picrotoxin and PTZ showed a dose-dependent PC1
shift in a negative (leftward) direction, whereas 4-AP showed a
slightly upper left diagonal shift. It is suggested that the present
results reflect differences in astrocyte drug response (Figure 5).
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FIGURE 4

Drug responses of primary astrocytes detected by MEA. (A) Representative oscillation waveform after the cumulative administration of
seizurogenic compounds (a) 4-AP, (b) pilocarpine, (c) picrotoxin, (d) PTZ, and (e) chlorpromazine, and neutral compounds (f) acetaminophen
and (g) DMSO. Compounds were added to astrocytes during 1–3 weeks of the culture. Vertical scale bar, 40 µV; horizontal scale bar, 20 ms.
(B,C) Heatmaps of the analytical parameters of seizurogenic compounds and neutral compounds in DC potential (B) and in delta band (C). 4-AP
(n = 6), pilocarpine (n = 6), picrotoxin (n = 6), PTZ (n = 6), chlorpromazine (n = 6), acetaminophen (n = 6), and DMSO (n = 6).
(D) Dose-dependent changes of average total RMS in DC potential (upper) and in delta band (lower). One-way ANOVA followed by Dunnett’s
test, *p < 0.05, **p < 0.01 versus vehicle. Error bar, SEM.
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TABLE 2 Principal component loadings for PCA using effective
parameter set for detecting the drug responses in human
primary astrocytes.

Principal component loadings

Parameter PC1 PC2

OW_DC 0.31 0.86

Average total RMS_Delta 0.43 −0.31

Peak potential RMS_Delta 0.56 −0.02

OP_Delta 0.54 0.01

Total oscillations_Delta 0.34 −0.40

Drug response of human iPSC-derived
astrocytes in MEA

Next, drug responses of human iPSC-derived astrocytes
were examined and compared with those of human primary
astrocytes. Five seizurogenic compounds with different
mechanisms of action (4-AP, pilocarpine, picrotoxin, PTZ,
and chlorpromazine) and two neutral controls (DMSO and
acetaminophen) were added to human iPSC-derived astrocytes
on MEA during 2–4 weeks of culture (Figure 6A), and astrocyte
responses to each drug were evaluated using the nine analytical
parameters. The rate of change and its significance of DC and
delta bands were indicated when each sample with vehicle
only was defined to be 100% (Figures 6B, C; n = 6 wells for
each compound; ∗p < 0.05, ∗∗p < 0.01 versus vehicle; one-way
ANOVA followed by Dunnett’s test). Comparison of DC
potentials and delta band indicated similar changes in both
frequency bands, but DC potentials showed a greater rate of
change. This suggests that DC potentials below 1 Hz in human

iPSC-derived astrocytes as well as in human primary astrocytes
more strongly reflect astrocyte responses to drugs. Among the
five seizurogenic compounds, pilocarpine demonstrated the
most significant changes. Although significant increases were
observed at 0.3 µM for average total RMS and CV of OW for
DC potential, pilocarpine showed dose-dependent changes
in many parameters for both DC potential and delta band
(Figures 6B, C). This result was similar to that of primary
astrocytes (Figure 4B). Interestingly, significant increases were
observed at concentrations higher than 30 µM for 4-AP and
3 µM for picrotoxin (Figures 6B, C). A significant decrease
was also observed with PTZ and chlorpromazine compared to
vehicle (Figure 6B). For the neutral compounds, there was a
significant increase in average total RMS at 0.5% DMSO, but
great increase or decrease was not found in both DC potential
and delta band (Figures 6B, C). These results indicated that
the rate of change was smaller in iPSC-derived astrocytes than
in primary astrocytes. Although the concentrations at which
significant changes were observed differed in some compounds
from those in primary astrocytes, there was a similar trend of
increase or decrease depending on the compound.

We next performed a PCA using nine parameters to
determine whether responses to the compounds could be
separated in iPSC-derived astrocytes. Five parameters were
identified that showed no significant differences between neutral
compounds in PC1 and PC2, and significant differences
between seizurogenic and neutral compounds and between
all seizurogenic compounds (Table 4). Figure 7 is the results
of a PCA using these parameters. No significant differences
were observed between the neutral controls DMSO and
acetaminophen; however, significant differences were observed
between the seizurogenic and neutral controls, p < 0.01

FIGURE 5

Scatterplots of principal component analysis (PCA) using the effective parameter set for detecting the drug responses of primary astrocytes.
There was a clear separation between the seizurogenic and neutral compounds and between all seizurogenic compounds. In neutral
compounds, DMSO and acetaminophen were not separated. DMSO (n = 6, blue), acetaminophen (n = 6, gray), 4-AP (n = 6, red),
chlorpromazine (n = 6, orange), PTZ (n = 6, purple), picrotoxin (n = 6, green), and pilocarpine (n = 6, yellow). Higher concentrations are
indicated by darker colored symbols.
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(Table 5). There was also a significant difference between all
seizurogenic compounds, p < 0.05 (Table 5). The cumulative
contribution of PC1 and PC2 was 82.5%. The PCA result
of human iPSC-derived astrocytes indicated that the largest
change was observed in pilocarpine and 3 mM of PTZ
(Figure 7). Similar to the results for human primary astrocytes,
pilocarpine showed a dose-dependent change in the upper right
diagonal of the PC1–PC2 plot. In PTZ, as same as primary
astrocytes, the concentrations under 1 mM showed a dose-
dependent PC1 shift in a negative direction, but 3 mM of
PTZ showed a big change in the opposite direction. Figure 7B
shows magnified scatterplots excluding the plots of pilocarpine
and PTZ. In the principal component plot, the tendency for
pilocarpine and chlorpromazine to increase their distances in
the opposite direction was similar to that of primary astrocytes.
Picrotoxin demonstrated a dose-dependent change in a different
direction (lower right diagonal) from PTZ, chlorpromazine
and pilocarpine. 4-AP showed a different distribution from the
neutral compounds, although the percentage change was small.
These results indicated that it is possible to separate responses to
seizurogenic and neutral compounds in iPSC-derived astrocytes
as well as in primary astrocytes and that it is also possible to
separate responses to each seizurogenic compound.

Discussion

Since the first report of neural activity by Thomas et al.
(1972) in, extracellular electrical activity has been recorded in
various types of neurons and neural tissues (Thomas et al.,
1972; Johnstone et al., 2010). However, to the best of our
knowledge, there have been no reports of extracellular electrical
activity recorded in human astrocyte-only culture samples
using MEA. In this study, we have succeeded in measuring
the slow oscillatory activity of cultured astrocytes using MEA.
Furthermore, we established a method for assessing astrocyte
activity using nine analytical parameters and demonstrated
that drug responses to five seizurogenic compounds could be
separated by PCA.

In this study, we used two types of commercially
available astrocytes, human primary astrocytes and human
iPSC-derived astrocytes, and measured their spontaneous
activity and responses to the drugs. For spontaneous activity,
compared to primary astrocytes, the percentage of oscillations
detected was lower in human iPSC-derived astrocytes. The
average maximum voltage of oscillation at each electrode was
25.51 ± 1.68 µV (n = 191 electrodes) for primary astrocytes
and 22.72 ± 1.95 µV (n = 142 electrodes) for iPSC-derived
astrocytes, p = 0.28. This might be due to the immaturity of
human iPSC-derived astrocytes compared to primary astrocytes
and the relationship between astrocyte maturation and signal
acquisition is a future issue.
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FIGURE 6

Drug responses of human iPSC-derived astrocytes detected by MEA. (A) Representative oscillation waveform after the cumulative administration
of seizurogenic compounds (a) 4-AP, (b) pilocarpine, (c) picrotoxin, (d) PTZ, and (e) chlorpromazine, and neutral compounds (f) acetaminophen
and (g) DMSO. Compounds were added to astrocytes during 2–3 weeks of the culture. Vertical scale bar, 40 µV; horizontal scale bar, 20 ms.
(B,C) Heatmaps of the analytical parameters of seizurogenic compounds (4-AP, n = 6; pilocarpine, n = 6; picrotoxin, n = 6; chlorpromazine,
n = 6) and neutral compounds (acetaminophen, n = 6; DMSO, n = 6) in DC potential (A) and in delta band (B). One-way ANOVA followed by
Dunnett’s test, *p < 0.05, **p < 0.01 versus vehicle.

We demonstrated that extracellular potassium
concentration is involved in generation of astrocyte slow
oscillations observed in MEA (Figures 3A, B). In Ikeda
et al.’s paper, one hypothesis is related to deficient potassium
buffering capacity of astrocytes related to Kir4.1 channels
and a high extracellular potassium concentration leading to
epileptiform activity (Ikeda et al., 2020). However, astrocyte
oscillations detected by MEA were significantly reduced in
both intensity and frequency when treated with 40 mM KCl at
epileptogenic levels (Figure 3A). On the other hand, this result

was similar to that of Fleischer et al. who recorded stimulation-
dependent astrocyte activity of HFOs using MEA (Fleischer
et al., 2015). Regarding the effect of calcium modulation, the
results of inhibition experiments with cilnidipine showed
dose-dependent decrease in astrocyte oscillations, and it was
consistent with those reported by Fleischer et al. (Figure 3C).
In addition, many previous studies reported that intracellular
Ca2+ concentration in astrocytes dynamically changed in
response to drugs (Heuser and Enger, 2021). Therefore, changes
in calcium concentration have a role in astrocyte oscillations
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TABLE 4 Principal component loadings for PCA using effective
parameter set for detecting the drug responses in human
iPSC-derived astrocytes.

Principal component loadings

Parameter PC1 PC2

Peak potential RMS_DC 0.47 0.14

OW_DC 0.45 0.57

Total OW_DC 0.42 0.34

OW_Delta 0.45 −0.52

Total OW_Delta 0.44 −0.52

observed in this study. For the baseline signal, we observed a
heterogeneity of oscillations. The oscillations were found to
be dependent on ion channels, but it is still difficult to define
the influx of various ions from the shape of the waveform. The
amplitude of the signal varies depending on the location of the
electrodes and the cells. In addition, it is the sum of ion influxes
from multiple channels. Therefore, we hypothesize that this is
the reason for the heterogeneity of the waves. The physiological
significance of waveforms and signal propagations are subjects
for future study.

To examine astrocyte drug responses, five seizurogenic
compounds were added to human primary astrocytes and
human iPSC-derived astrocytes. The drug that showed the most
significant response in both cells was pilocarpine, a muscarinic
receptor agonist. (Figures 4, 6). Pilocarpine is one of the most
widely used seizure-inducing compounds to prepare animal
models of epilepsy in glia research. Astrocytes, as well as
neurons, express muscarinic receptors (Murphy et al., 1986;
Guizzetti et al., 1996), and our results of the dose-dependent

increase in oscillation frequency indicated that pilocarpine
affected muscarinic receptors in astrocytes. The EEG analysis
in a rat model of epilepsy using pilocarpine has reported that
the low-frequency component DC shift may reflect a disruption
of spatial K+ interference function in astrocytes (Ikeda et al.,
2020), suggesting that changes in K+ concentration may also be
affected in the astrocyte oscillation activity observed in our DC
potentials in this study.

Chlorpromazine, a D2 receptor antagonist, was observed
to reduce oscillation activity in both primary astrocytes
and iPSC-derived astrocytes (Figures 4, 6). D2 receptors
are known to be expressed in astrocytes (Bal et al., 1994;
Zanassi et al., 1999; Miyazaki et al., 2004), but the effects
of chlorpromazine on astrocyte D2 receptors are not yet
well understood. Chlorpromazine also acts as a calmodulin
antagonist, which inhibits the catalytic activity of plasma
membrane Ca2+-ATPase to prevent transfer of calcium ions
from cytosol into the extracellular space (Khan et al., 2001;
Plenge-Tellechea et al., 2018). Our results showing the negative
change in astrocyte activity with chlorpromazine treatment
suggested that the transfer of calcium ions might have been
inhibited by chlorpromazine. Furthermore, Chu et al. (2022)
reported that when human primary astrocytes were treated with
chlorpromazine at concentrations from 10 to 50 µM for 24 h,
cell death was observed at 50 µM, but [Ca2+]i measurements
using a spectrophotometer with Fura-2-AM showed no change
at 10–30 µM. Our MEA measurements successfully captured
astrocyte responses at concentrations (0.1–10 µM) even lower
than those concentrations.

Interestingly, although both picrotoxin and PTZ are
GABAA receptor antagonists, the responses of astrocytes in

FIGURE 7

Scatterplots of PCA using the effective parameter set for detecting the drug responses of iPSC-derived astrocytes. (A) DMSO (n = 6, blue),
acetaminophen (n = 6, gray), 4-AP (n = 6, red), chlorpromazine (n = 6, orange), PTZ (n = 6, purple), picrotoxin (n = 6, green), and pilocarpine
(n = 6, yellow). Higher concentrations are indicated by darker colored symbols. (B) The magnified scatterplots excluding the plots of pilocarpine
and PTZ.
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this study to each drug showed different trends and were
separated in PCA (Figures 5, 7). PTZ has been reported to
inhibit the GABAA receptor by interacting with the picrotoxin-
barbiturate binding site, closing Cl− channels, and provoking
seizures (Qu et al., 2005). Similarly, Fraser et al. (1995) have
shown that treatment of astrocytes with picrotoxin inhibits
GABAA-activated Cl− conductance by using whole-cell patch
clamping. These reports suggested that the astrocyte responses
to picrotoxin and PTZ in this study involves changes in
Cl ion concentration. However, PTZ has been reported to
affect mitochondrial metabolism and glycolysis in cortical and
cerebellar astrocytes in culture (Qu et al., 2005). Another group
has demonstrated that mitochondria presenting within the fine
processes of astrocytes contribute to local Ca2+ signaling within
the astrocyte (Jackson and Robinson, 2018). These reports
suggest that PTZ may be involved in Ca2+ signaling as well as
Cl− signaling. Experiments on zebrafish compared the effects
of picrotoxin and PTZ and demonstrated that each drug has
a different mechanism in vivo (Yang et al., 2017). Our PCA
results demonstrated that the drug responses of PTZ and
picrotoxin were separated in the primary and iPSC-derived
astrocytes (Figures 5, 7). This indicated that our evaluation
system assessed the subtle differences in the mechanism of
action of each drug.

4-AP, a typical seizurogenic compound, showed a
comparable response to neutral controls in both primary
astrocytes and iPSC-derived astrocytes (Figures 4, 6). Recently,
it has been reported that astrocytes have a protective function
for neurons during seizures induced by 4-AP in neuron-
astrocyte co-cultures (Ahtiainen et al., 2021). 4-AP is a
voltage-gated K+ channel blocker. Astrocytes express voltage-
gated K+ channels and non-voltage-gated K+ channels (e.g., Kir
channels, Na+/K+-ATPase, and Na+/K+/2Cl− cotransporters).
Ahtiainen et al. (2021) suggested that the protective role of
astrocytes under 4-AP treatment may have been due to the
non-voltage-gated K+ channels in astrocytes that maintained
K+ homeostasis. In the present study, it was possible that
astrocytes may have maintained K+ via the non-voltage-gated
K+ channel, which was not inhibited by 4-AP, resulting in no
significant change in K+ and a response comparable to that of
the negative compound. From these results of drug responses,
we demonstrated that it is possible to measure astrocyte drug
response using MEA. Our results of the drug response showed
that astrocytes responded differently to each drug, suggesting
that the oscillation pattern of astrocytes is a phenomenon
caused by the balance of factors on which each drug acts, such as
K+, Cl−, and Ca2+. The PCA in this study might have captured
the changes in oscillation patterns resulted from those ion
balance and successfully separated drug reactions (Figures 5, 7).
However, the physiological relevance of each parameter and
channel responses has not yet been understood. In order to
develop MEA measurements of astrocytes, this is an important
issue to be resolved in the future.
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For drug responses, both astrocytes demonstrated the dose-
dependent response to pilocarpine and showed the negative
response to chlorpromazine. These results indicated that
our MEA method for cultured astrocytes could assess drug
responses even in astrocytes derived from different cell sources.
However, slightly different responses were observed between
the two cell types. Primary astrocytes responded more strongly
to drugs than did human iPSC-derived astrocytes. These
observed differences between primary astrocytes and iPSC-
derived astrocytes may be due to astrocyte maturity, but they
may also be due to the diversity of gene expression in astrocytes.
Lundin et al. (2018) reported large diversity among astrocytic
models derived from various sources using several analytical
methods, including transcriptomic and proteomic analyses. The
PCA results also suggested that primary astrocytes and iPSC-
derived astrocytes have different properties, since the parameter
sets of primary and iPSC-derived astrocytes were different.
The parameters of the set showed that primary astrocytes had
more delta components than iPSC-derived astrocytes. This
suggests that different cells may have slightly different main
frequency bands for astrocyte signals. The correlation between
astrocyte diversity and the differences in drug response in each
astrocyte in the MEA measurement should be evaluated in the
future.

MEA is a measurement method with high temporal
resolution and noninvasiveness that enables long-term
electrical activity recording. In the current astrocyte research,
two major methods are used to assess real-time astrocyte
electrophysiological activity: one is the traditional patch clamp
method, and the other is the Ca imaging, which has been
used extensively in astrocyte research since the 1990s. In
addition to these methods, the evaluation of extracellular
potential activity of astrocytes using the MEA method
proposed here is expected to enable more detailed analysis of
astrocyte activity. In recent years, the involvement of glia in
various neurological diseases has been reported, and studies
using patient iPSC-derived astrocytes for Rett syndrome,
Alexander’s disease, Alzheimer’s disease, and autism spectrum
disorder, in which astrocytes are thought to be involved,
are actively conducted (Williams et al., 2014; Kondo et al.,
2016; Jones et al., 2017; Russo et al., 2018; Salcedo et al.,
2021; Allen et al., 2022). We expect that the MEA-based
system for assessing astrocyte activity will not only provide
new insights into the mechanisms of neurological diseases,
including epilepsy, but will also help in the evaluation of
drug efficacy in the drug development for astrocyte related
diseases.
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SUPPLEMENTARY FIGURE 1

Spontaneous activity in human iPSC-derived astrocytes detected by
MEA. (A,B) Immunofluorescent images of astrocytes cultured on MEA at
35 DIV. Immunocytochemistry of GFAP (green), human nuclei (red), cell
nuclei by Hoechst 33258 (blue), merged images in (A) and MAP2 (red) in
(B). Scale bar = 200 µm. (C) Representative oscillation waveform at the
spontaneous activity measurement for 10 min at 14 DIV. (D) The
magnified waveform of the red underlined time in (C). (E) Plot of
maximum amplitude in 10 min oscillation waveform of each well. Error
bars indicate the SEM.
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Electroencephalography (EEG) is a technique that can be used in non-invasive

brain-machine interface (BMI) systems to register brain electrical activity.

The EEG signals are non-linear and non-stationary, making the decoding

procedure a complex task. Deep learning techniques have been successfully

applied in several research fields, often improving the results compared with

traditional approaches. Therefore, it is believed that these techniques can

also improve the process of decoding brain signals in BMI systems. In this

work, we present the implementation of two deep learning-based decoders

and we compared the results with other state of art deep learning methods.

The first decoder uses long short-term memory (LSTM) recurrent neural

network and the second, entitled EEGNet-LSTM, combines a well-known

neural decoder based on convolutional neural networks, called EEGNet, with

some LSTM layers. The decoders have been tested using data set 2a from

BCI Competition IV, and the results showed that the EEGNet-LSTM decoder

has been approximately 23% better than the competition-winning decoder.

A Wilcoxon t-test showed a significant di�erence between the two decoders

(Z = 2.524, p = 0.012). The LSTM-based decoder has been approximately 9%

higher than the best decoder from the same competition. However, there was

no significant di�erence (Z = 1.540, p = 0.123). In order to verify the replication

of the EEGNet-LSTM decoder on another data, we performed a test with

PhysioNet’s Physiobank EEG Motor Movement/Imagery dataset. The EEGNet-

LSTM presented a higher performance (0.85 accuracy) than the EEGNet (0.82

accuracy). The results of this work can be important for the development of

new research, as well as EEG-based BMI systems, which can benefit from the

high precision of neural decoders.

KEYWORDS

brain machine interface, deep learning, long short term memory, EEG, machine

learning

1. Introduction

Brain-machine interfaces (BMI) aim to translate brain signals into commands

that allow the control of machines or computer interfaces (Niemeyer, 2016). One of

BMI’s best-known paradigms is motor imagery, which refers to the act of imagining a

movement without executing it (Mulder, 2007). Thus, if a system can correctly classify

the brain signals patterns of motor imagery, patients without motor function can benefit
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from prostheses, orthoses, exoskeletons, and other

neuroprosthetic devices, controlled using thought.

A common method used to record brain electrical activity

in non-invasive BMI systems is electroencephalography (EEG)

(Bansal and Mahajan, 2019). The EEG signals have complex

non-linear properties, low spatial resolution, and are non-

stationary (Bhuvaneswari and Kumar, 2015). These limitations

make decoding EEG signals a complex and challenging task.

Several statistical methods can be used as neural decoders

in BMI systems, such, as an example, Kalman filter (Alarcón-

Domínguez, 2017) and linear discriminant analysis (Ahangi

et al., 2012). However, as deep learning (DL) is adequate for this

purpose, some works are analyzing its feasibility.

Decoders based on convolutional neural networks have been

successful in decoding brain signals (Tabar and Halici, 2016;

Tang et al., 2017; Lun et al., 2020). EEGNet is a neural decoder

based on convolutional neural networks, which was proposed

by Lawhern et al. (2018) for the classification of EEG signals

showing good performance. Some research has made efforts to

improve its performance by combining it with other models,

achieving success (Riyad et al., 2020; Wang L. et al., 2020).

The work by Tseng et al. (2019) showed that in some cases,

neural decoders based on recurrent neural networks of the long-

short termmemory (LSTM) type, surpassed traditional decoding

methods, such as Kalman filter, wiener filter, and extended

Kalman filter.

Besides the relative success in using DL as a decoder in

BMI systems, some works are reporting less favorable results,

for example, the work of Tseng et al. (2019) employed a LSTM

decoder using data from implanted electrodes in three macaques

controlling a prosthesis. The results were superior to traditional

filter methods for some macaques in some trials but there has

not been an overall improvement. These mixed results are due

to the large number of hyperparameters that must be evaluated

in DL systems, compared to filter methods.

In this work, two neural decoders were implemented.

The first neural decoder is based on LSTM, where the

characteristics of frequency, time, and space of the signals are

extracted separately, through the combination of wavelet packet

decomposition (WPD) and common spatial pattern (CSP). This

step of pre-processing was chosen based on results presented in

the literature (Yang et al., 2012; Feng et al., 2019). The second

decoder was called EEGNet-LSTM and combines the features of

both models, extracting the characteristics simultaneously with

the classification.That decoder is similar to the best decoder

implemented by Wang L. et al. (2020), however with differences

in the architecture and selection of hyperparameters of the

decoder and strategies for data pre-processing.

In both decoders, we exhaustively employed grid search for

hyperparameters optimizations, as we believe that is an essential

step, to use DL techniques in neural decoding successfully. We

detailed all these steps and this may be useful for works that will

test DL in BMI in the future.

The neural decoders have been tested with data set 2a from

BCI Competition IV (Brunner et al., 2008), which has two

motor imaging sessions for four classes (left hand, right hand,

both feet, and tongue). To evaluate the performance of the

decoders we used two metrics: accuracy and kappa value. We

compared the results of the two implemented decoders with

each other, as well as with the results obtained by decoders

implemented in other works. We found that our deep learning

decoders were 23% and 5% better than the best decoder in the

competition. We also tested the LSTM-EEG decoder with data

from Physiobank EEG Motor Movement/Imagery dataset from

PhysioNet, considering two classes of motor imagery (left wrist

and right wrist). The EEGNet-LSTM achieved an accuracy of

0.85. The original EEGNet, which was tested by other researchers

with the same dataset, showed an accuracy of 0.82.

2. Materials and methods

2.1. Long short-term memory

The recurrent neural networks long short-term memory

(LSTM) can process long data sequences while avoiding

gradient vanishing problems (Hochreiter and Schmidhuber,

1997). LSTM networks have a memory cell, called cell state,

which is long-term memory, capable of storing information for

a long period. Besides, LSTM memory cells have three kinds of

gates that control the flow of information, namely: forget gate,

input gate and output gate (Du et al., 2021). The update of the

memory cell, at each time step, is determined by the following

equations (Jiao et al., 2020):

ft = σ (wf · [ht−1, xt]+ bf ) (1)

The Equation (1) is the forget gate ft , which indicates the

information that will be forgotten in the state of the cell. The

wf symbolizes the forget gate weights, ht−1 is the cell’s previous

output, xt is the network input, bf is the bias associated with

forget gate.

it = σ (wi · [ht−1, xt]+ bi) (2)

C̃t = σ (wc · [ht−1, xt]+ bc) (3)

The input gate it is defined by Equation (2), which

determines the cell state values that will be updated. The wi

symbolizes the weights and bi represents the bias associated

with the input gate. In Equation (3), C̃t is calculated, generating

a vector of candidate values for the state of the cell. These

values are calculated using the hyperbolic tangent as activation

function. The weights and bias of the cell itself are wc and bc,

respectively.

Ct = wi ∗ Ct−1 + it + C̃t (4)
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TABLE 1 EEGNet architecture based on convolutional block, the

output from previous bloc neural networks.

Block Layer Filters Size Activation Mode

1 Input

Reshape

Conv2D F1 (1, LK) Linear Same

BatchNorm

DepthwiseConv2D D * F1 (C, 1) Linear Valid

BatchNorm

Activation ELU

AveragePool2D (1, 4)

Dropout

2 SeparableConv2D F2 (1, 16) Linear Same

BatchNorm

Activation ELU

AveragePool2D (1, 8)

Dropout

Flatten

Classifier Dense N * (F2 * T // 32) Softmax

In Equation (4), the result of the previous equations is used

to update the state of the cell, where Ct is the current state of the

cell.

ot = σ (wo · [ht−1, xt]+ bo) (5)

ht = ot ∗ tanh(Ct) (6)

Equation (5) is the output gate ot , which decides the values

of the current state of the cell that will be considered in the

cell’s output. The gate weights are represented by wo and the

bias is bo. The calculation of the output of cell ht is shown in

Equation (6).

2.2. EEGNet

EEGNet is a deep learning model based on convolutional

neural networks proposed by Lawhern et al. (2018) to be used

in classification of EEG signals in BCI systems. This model uses

deep and separable convolutions, performing the extraction of

signal features and classification at same time.

Table 1 shows the model’s architecture, where C denotes the

number of channels, T represents the number of points in time,

F1 is the number of time filters,D is the number of spatial filters,

F2 represents the number of point filters, N is the number of

classes and, LK is the kernel size of the first layer, also called the

temporal convolution length.

The model has two main blocks and a classification block.

In the first block, Conv2D is a convolutional neural network.

DepthwiseConv2D is a deep convolution used to learn spatial

filters from the temporal convolution performed in the previous

layer. The AveragePool2D layers are used in both blocks

to reduce the signal-sampling rate. Batch normalization was

proposed by Ioffe and Szegedy (2015) to normalize the data

for a given layer, in EEGNet it is performed by BatchNorm

applied to both blocks. Dropout is the dropout rate and was

used in the model to reduce overfitting. In the second block,

SeparableConv2D represents separable convolutions, which

combine spatial filters in temporal bands. This layer performs

a spatial convolution in each input channel and applies a specific

convolution to mix the output Chollet (2017). Flatten was used

to transform the output of the convolutional layers into a

single vector.

In the classification block, the output from previous

blocks is transformed by softmax function to perform the

multiclass classification.

2.3. Wavelet packet decomposition

Wavelets are mathematical functions used to represent data

or other functions, at different scales of time and frequency

Jiang and Adeli (2004). The Wavelet Packet Decomposition

(WPD) is a type of wavelet transform that decomposes a given

signal into low-frequency components (approaches) and high-

frequency components (details) Faust et al. (2013). Since WPD

presents features in both time and frequency domains, this

method is useful for parameters extraction from EEG signals,

which are non-stationary and have characteristics of multi-scale

and randomness Yang et al. (2016). According to Li and Zhou

(2016), WPD can be defined recursively as:











d0,0(t) = x(t),

di,2j−1(t) =
√
2
∑

k h(k)di−1,j(2t − k),

di,2j(t) =
√
2
∑

k g(k)di−1,j(2t − k).

(7)

In Equation (7), x(t) is the original signal, h(k) is the high-

pass filter, g(k) is the low-pass filter, and d(i, j) are the coefficients

ofWPD at the i− th level for the j− th node (Li and Zhou, 2016).

2.4. Common spatial patterns

Common Spatial Patterns (CSP) is a spatial filtering

technique widely used for the extraction of EEG features in

non-invasive Brain-Computer Interface (BCI) systems (Song

and Yoon, 2015). This technique finds spatial filters that

will maximize the variance of signals from one class while

minimizing the variance from another class, resulting in ideal

discriminative features (Cheng et al., 2017). The equations

of CSP are presented according to Wang et al. (2005) and
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Huang et al. (2010):

RH =
XHXH

T

trace(XHXH T)
RF =

XFXF
T

trace(XFXF T)
(8)

In Equation (8), assuming that the problem has two classes,

RH and RF represent the normalized spatial co-variance of

each class, XH , and XF are matrices of the EEG signals of the

respective classes, XT is the transposed from matrix X and,

trace(A) is the sum of the diagonal elements of matrix A.

R = RH + RF = U0DU0
T (9)

In Equation (9), the composite spatial co-variance R is

calculated. RH and RF are the average normalized covariance,

calculated using the average of the co-variance matrices of

examples in each class. U0 is the eigenvector matrix and D is

the diagonal eigenvalue matrix of R.

P = D−1/2U0
T (10)

In Equation (10), the bleaching matrix P is calculated, which

equalizes the variance in the space defined by U0.

SH = PRHP
T SF = PRFP

T (11)

SH = UDHU
T SF = UDFU

T I = DH + DF (12)

In Equation (11), the bleaching transformation is applied to

RH and RF , obtaining matrices SH and SF , which share the same

eigenvectors. The identity matrix I is presented in Equation

(12). The eigenvectors that have higher eigenvalues for SH have

smaller eigenvalues for SF , that is, these quantities are inversely

proportional, differentiating the classes.

W = UTP (13)

Equation (13) calculates the projection matrix W, which

allows obtaining non-correlated components of the EEG signals.

Z = WX (14)

In Equation (14), Z are the components of the signal X,

aggregating common and class-specific components.

2.5. Description of the datasets

2.5.1. BCI competition IV

This paper used data set 2a from the BCI Competition

IV (Brunner et al., 2008), which were registered and made

publicly available by Graz University of Technology, located in

Austria.

FIGURE 1

Features extraction steps for the LSTM decoder.

Nine subjects participated in the experiment, which

consisted of two motor imaging sessions, held on different

days. The objective of the experiment was to imagine four

movements, namely, the movement of the left hand, right

hand, both feet and, tongue. In each session, 288 attempts at

motor imagery have been recorded, with 72 attempts for each

movement. It is worth mentioning that each sample of motor

imagery has 7.5 s, a time that includes the initial preparation,

the realization of motor imagery, and a pause. During the

experiment, 22 EEG channels and 3 electro-oculography (EOG)

channels were recorded, with sampling rate of 250 Hz. The

EEG and EOG electrodes can be consulted in Brunner et al.

(2008).

The signals were filtered using a bandpass filter

between 0.5 and 100 Hz. In addition, a notch filter

was applied at 50 Hz to suppress the noise from the

electrical network.

The EOG signals were not recorded correctly for the

fourth subject. Therefore, this subject was not considered in

this research.

2.5.2. Physiobank EEG motor
movement/imagery dataset

To verify the replicability of the best neural decoder

developed in this paper, we used the Physiobank EEG Motor

Movement/Imagery dataset, freely available from PhysioNet

(Goldberger et al., 2000).

One hundred and nine subjects participated in the

experiment, which consisted in different tasks of movement

execution and motor imagery. However, this paper

focuses only on the task of imagining the opening and

closing of the left or right wrist, that is, two classes of

motor imagery.

During the experiment, a target was displayed on the left

or right side of the screen and the subject imagined opening

and closing the corresponding fist, until this target disappeared.

Over three sessions, subjects performed a total of 45 trials,

imagining one of the movements for 4 s. During the execution

of the experiment, the brain signals of the subjects were recorded

through 64 EEG channels using the international 10–10 system

and the BCI2000 toolkit (Schalk et al., 2004), with a sampling

rate of 160 Hz.
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2.6. Implementation of the LSTM decoder

The extraction of features is an important step in the

classification of EEG signals (Amin et al., 2017). Some works

have used the combination of WPD and CSP to extract

features and have achieved better results compared to the

use of CSP only (Yang et al., 2012; Feng et al., 2019).

In this research, we use a combination of WPD and CSP

to extract important resources for the LSTM-based neural

decoder. Initially, the preprocessed EEG signals are used as

input to the four-level WPD, obtaining the coefficients of the

wavelet transform. Then, the extraction of features from these

coefficients was performed through the CSP. This process is

shown in Figure 1.

For the implementation of the neural decoders, the python

programming language (Python, 2020) and the keras library

(Keras, 2020) were used. For the implementation of the

LSTM-based decoder, an input layer was initially added to

the model, allowing the input of features obtained through

WPD and CSP. Inspired by the model that obtained the best

performance in the work by Tseng et al. (2019), two LSTM

layers were included in the model. After each LSTM layer,

batch normalization was applied to normalize the outputs,

and the dropout to avoid overfitting the model. Finally, a

dense layer was inserted with the number of units equal

to the number of classes in the data set used, and a

softmax activation function was added, allowing multiclass

FIGURE 2

Architecture of the LSTM neural decoder.

classification. The architecture of the LSTM decoder is shown

in Figure 2.

2.7. Implementation of the EEGNet-LSTM
decoder

For the implementation of the model proposed here, the

two main blocks of the EEGNet model were used, as specified

by Lawhern et al. (2018). Then, a layer was used to reshape

the output of the last block of the EEGNet model and connect

its output to the 2 LSTM layers. After each LSTM layer, batch

normalization and dropout were used. A dense layer with the

number of units equal to the number of classes and a softmax

activation function for multiclass classification. The architecture

of the EEGNet-LSTM decoder is shown in Figure 3.

2.8. Data pre-processing

2.8.1. Data preprocessing from BCI
competition IV dataset 2a

As the preprocessing step is very important for the good

performance of neural decoders, we tested four different

bandpass filters. The first one was a bandpass filter between 0.5

and 100 Hz, the second was between 8 and 13 Hz (mu rhythm),

the third was between 15 and 30 Hz (beta rhythm), and the

fourth was between 8 and 30 Hz (mu and beta rhythms). The

frequency ranges referring to mu and beta rhythms were defined

according to Bear et al. (2020).

The labels of the four classes of motor imagery (left hand,

right hand, both feet and tongue) were coded using one-hot

encoding, respectively, in four-dimensional vectors: {[1, 0, 0, 0],

[0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]}.

Then, only 4 s of each sample were selected. Among the 7.5

s of each sample, only signals registered between 2 and 6 s were

considered, during which time a suggestion of motor imagery

was presented on the screen and was performed by the subject.

Finally, the data was normalized between –1 and 1.

FIGURE 3

Architecture of the EEGNet-LSTM neural decoder.
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TABLE 2 Common hyperparameters of both models.

Hyperparameter Values

Optimizer Adam, RMSprop, SGD

Learning rate 0.0001, 0.001, 0.01

Batch size 32, 64, 128

Regularization of L2 0.1, 0.2, 0.3

Dropout 0.1, 0.2, 0.3

Epochs 100, 200, 300, 400, 500, 1,000

2.8.2. Data preprocessing from the Physiobank
EEG Motor Movement/Imagery dataset from
PhysioNet

The same bandpass filters applied in the BCI Competition

IV dataset 2a were applied to Physiobank data. AsWang X. et al.

(2020) did not report the application of any filter, we also tested

the use of raw signals, without any filtering. Additionally, we also

tested a bandpass filter between 0.5 and 45 Hz.

Each motor imagery attempt has a duration of 4 s. However,

we select only the first 3 s, as suggested by Wang X. et al. (2020).

Thus, for each motor imagery attempt we have 480 samples for

each of the 64 EEG channels.

Next, we separate the training and test data according to

Wang X. et al. (2020). Data from subjects 1 (S001) to 84 (S084)

were used as a training set. Subjects 85 (S085) to 109 (S109) were

used as a test set.

In their paper, Wang X. et al. (2020) mentioned the removal

of four subjects, but did not specify which ones. Thus, we

removed subjects 88 (S088), 92 (S092), 100 (S100) and 104

(S104) because they were damaged, according to Varsehi and

Firoozabadi (2021) and Fan et al. (2021).

The labels of the two classes of motor imagery (left wrist and

right wrist) were coded using one-hot coding. Finally, we scaled

brain signals between –1 and 1.

2.9. Hyperparameter optimization

2.9.1. Hyperparameter optimization of LSTM
and EEGNet-LSTM decoders for BCI
Competition IV dataset 2a

The hyperparameter optimization was performed using the

data from first subject of the data set. Then, we freeze the

parameters and used them to train the models for the other

subjects.

The data set has two sessions, one used for training and

the other for testing. For each configuration test, accuracy and

value of the kappa coefficient (Cohen, 1960) were recorded, so

that the best configuration was identified. Table 2 presents the

common hyperparameters between the LSTM based decoder

and the EEGNet plus LSTM decoder.

TABLE 3 Hyperparameters specific to the LSTM decoder.

Hyperparameter Values

Neurons layer one 32, 64, 128, 256

Neurons layer two 32, 64, 128, 256

TABLE 4 Hyperparameters specific to the EEGNet decoder.

Hyperparameter Values

LK 16, 32, 64, 128

F1 4, 6, 8, 16

F2 4, 6, 8, 16

D 1, 2, 4, 6

2.9.2. Adjusting hyperparameters of the LSTM
decoder

Initially, the LSTM-based decoder was trained with 32

neurons in each layer, with different configurations shown

in Table 2. The best configuration was maintained based

on the highest accuracy and kappa value, and the decoder

was tested with different amounts of neurons, according to

Table 3.

Based on these tests, it was possible to identify an ideal

configuration for the decoder and this configuration was used

for the other subjects.

2.9.3. Adjusting hyperparameters of the
EEGNet-LSTM decoder

The EEGNet-LSTM decoder has been trained with LK = 64,

F1 = 8, D = 2 and F2 = 16, which are standard for EEGNet.

In the LSTM layers, the same number of neurons obtained

through tests with the LSTM-based decoder was maintained.

Then, all configurations in Table 2 were tested, obtaining the best

configuration for the model. Soon after, the hyperparameters

of Table 4 were tested to identify the best configuration of the

specific hyperparameters of EEGNet.

2.9.4. Hyperparameter optimization of the
EEGNet-LSTM decoder for the Physiobank EEG
motor movement/imagery dataset

To adjust the EEGNet-LSTM decoder hyperparameters for

the Physiobank EEG Moviment/Imagery dataset, we performed

the same steps performed for the previous dataset. The only

difference is that for this dataset, we used a 30% of the data

from the training set to use as a test during hyperparamer

search, instead of using the first subject as we did with

BCI data.
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3. Results

3.1. Best hyperparameters for the
implemented decoders

3.1.1. Best hyperparameters for decoders LSTM
and EEGNet-LSTM using BCI Competition IV
dataset 2a

After automatically making all possible combinations of the

hyperparameters, the best settings for the two neural decoders

were obtained. Table 5 presents the configurations (common

between the two decoders) that provided the best results.

Regarding the specific hyperparameters of the LSTM-based

neural decoder, it presented better results with 32 neurons in

each layer. For the EEGNet-LSTM neural decoder, the specific

EEGNet configurations that generated the best results were F1 =

16, D = 6, F2 = 16 and FK = 16.

Regarding the filtering configuration, the best results were

obtained through the standard filtering of the data set, that

is, between 0.5 and 100 Hz. The best filtering and the best

hyperparameters were used to decode the signals of all subjects.

3.1.2. Best hyperparameters for the
EEGNet-LSTM decoder using the physiobank
EEG motor movement/imagery dataset from
PhysioNet

Table 6 presents the large search result, which

returned the best combination of hyperparameters for the

EEGNet-LSTM decoder, when using the Physiobank EEG

Movement/Imagery dataset.

The best results were achieved after applying a bandpass

filter between 0.5 and 45 Hz. This filtering and the best

hyperparameters were used to train the EEGNet-LSTM and

decode the data from the test dataset.

3.2. Comparison between the
implemented decoders using BCI
competition IV dataset 2a

Using the best configurations, the neural decoders were

trained with the data from one session and tested with the

data from another session, making it possible to evaluate

their performance, in the classification of four classes of

motor imagery.

Figure 4 shows the comparison graph between the accuracy

of each subject, obtained through the two neural decoders

implemented: LSTM and EEGNet-LSTM. The second decoder

obtained a better result for all subjects, except subject 3, in

which the two decoders presented equal accuracy. The average

accuracy for the EEGNet-LSTM neural decoder was 0.86 and for

the LSTM decoder, it was 0.72. Therefore, the average accuracy

TABLE 5 Best selected hyperparameters for the decoders considering

the data set 2a from BCI Competition IV.

Hyperparameter LSTM EEGNet-LSTM

Optimizer Adam Adam

Learning rate 0.0001 0.001

Batch size 64 32

Regularization of L2 0.2 0.2

Dropout 0.2 0.2

Epochs 200 400

TABLE 6 Best selected hyperparameters for the EEGNet-LSTM

decoder considering the data set Physiobank EEG Motion/Imagery

from PhysioNet.

Hyperparameter EEGNet-LSTM

F1 16

D 4

F2 16

FK 16

Optimizer Adam

Learning rate 0.01

Batch size 128

Regularization of L2 0.2

Dropout 0.2

Epochs 200

of the EEGNet-LSTM neural decoder was about 14% higher

than the average accuracy of the LSTM decoder. A Wilcoxon t-

test showed a significant difference between the accuracy of the

neural decoders (Z = 2.366, p = 0.018).

Figure 5 shows the comparison bar plot between the kappa

values obtained for each subject and the average value for each

decoder. The LSTM decoder presented the average kappa value

equal to 0.63 and the decoder that combines EEGNet and LSTM

resulted in an average kappa value equal to 0.81. According to

the interpretation suggested by Landis and Koch (1977), the

first decoder presented a strong agreement, and the second, an

almost perfect agreement. The average kappa value obtained

using the EEGNet-LSTM neural decoder was approximately

18% higher than the average kappa value achieved by the LSTM

decoder. A Wilcoxon t-test indicated a significant difference

between the kappa values of the two decoders (Z = 2.371, p =

0.018).

3.3. Comparison with other results
published in the literature that made use
of the BCI competition IV dataset 2a

Table 7 presents a comparison between the kappa values

obtained through the decoders implemented in the present
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FIGURE 4

Comparison of the accuracy obtained through the decoders.

work and the kappa values achieved by decoders developed in

other works.

Based on the average kappa value, the EEGNet-LSTM neural

decoder was about 23% higher than the method proposed

by Ang et al. (2012), first place in the BCI Competition IV,

which used the filter bank common spatial pattern (FBCSP)

for the extraction of characteristics and the naive bayesian

Parzen window (NBPW) for the classification. AWilcoxon t-test

indicated a significant difference between the two decoders (Z =

2.524, p = 0.012). The EEGNet-LSTM decoder provided a result

approximately 14% higher than the Incep-EEGNet developed by

Riyad et al. (2020). There was a statistically significant difference

(Z = 2.028, p = 0.043). This decoder was about 17% higher

than the decoder entitled series compact convolutional recurrent

neural network (SCCRNN), proposed by Wang L. et al. (2020).

The test indicated a significant difference (Z = 2.527, p = 0.012).

The average kappa value was also approximately 17% above the

filter bank spatial filtering and temporal-spatial convolutional

neural network (FBSF-TSCNN), presented by Chen et al. (2020).

There was a statistically significant difference (Z = 2.527, p =

0.018).

The LSTM-based decoder achieved a result about 5%

higher than the result obtained using the Ang et al. (2012)

method. However, there was no significant difference (Z =

1.540, p = 0.123). The LSTM neural decoder presented a result

approximately 4% lower than the result obtained through the

Riyad et al. (2020) method. However, there was no significant

difference (Z = 0.981, p = 0.326). The LSTMdecoder gave a result

about 2% below the result of Wang L. et al. (2020). However,

there was no significant difference (Z = 0.141, p = 0.888). This

decoder obtained a result approximately 1% lower than the

result achieved by the Chen et al. (2020) method. However, there

was no statistically significant difference (Z = 0.314, p = 0.753).

3.4. EEGNet-LSTM decoder performance
with Physiobank EEG Motor
movement/imagery dataset

Considering the two classes of motor imagery (left wrist

and right wrist) from the Physiobank EEG Motion/Imagery

dataset from PhysioNet, the EEGNet-LSTM decoder presented

an accuracy of 0.85 in the test set. Using the same dataset, Wang

X. et al. (2020) tested EEGNet and achieved an accuracy of

0.82. Using Filter Bank Common Spatial Pattern (FBCSP) and

Support Vector Machine (SVM), Handiru and Prasad (2016)

achieved approximately 0.64 accuracy.

4. Discussion

This work aimed to develop accurate neural decoders.

The EEGNet-LSTM and LSTM decoders achieved, respectively,

accuracies equal to 0.86 and 0.72. The high hit rate suggests

that the decoders developed have great potential for future

applications in EEG-based BMI systems.

In this work, a combination ofWPD andCSPwas performed

to extract the characteristics of the signals, for the LSTM-based
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FIGURE 5

Comparison of the kappa values obtained through the decoders.

TABLE 7 Comparison with the kappa values achieved by other studies.

Methods Subjects Mean Standard deviation p value (Wilcoxon)

1 2 3 5 6 7 8 9 EEGNet-LSTM LSTM

EEGNet-LSTM (Proposed method) 0.85 0.69 0.84 0.87 0.60 0.89 0.92 0.79 0.81 0.109 - 0.018

LSTM (Proposed method) 0.70 0.54 0.84 0.45 0.43 0.69 0.86 0.54 0.63 0.167 0.018 -

FBCSP e NBPW (Ang et al., 2012) 0.68 0.42 0.75 0.40 0.27 0.77 0.75 0.61 0.58 0.192 0.012 0.123

Incep-EEGNet (Riyad et al., 2020) 0.71 0.37 0.87 0.48 0.47 0.88 0.76 0.79 0.67 0.198 0.043 0.326

SCCRNN (Wang L. et al., 2020) 0.77 0.38 0.75 0.54 0.47 0.76 0.78 0.70 0.64 0.157 0.012 0.888

FBSF-TSCNN (Chen et al., 2020) 0.81 0.47 0.84 0.32 0.43 0.77 0.76 0.74 0.64 0.202 0.018 0.753

decoder. According to Yang et al. (2012), this combination

provides better results compared to the use of CSP only, due to

the time and frequency characteristics of the WPD. Using WPD,

the signals were represented in different scales of frequency

and time, and the spatial characteristics were extracted through

the CSP.

LSTM-type networks can store information for long periods

in their memory (Tseng et al., 2019). Therefore, these networks

allowed the retention of information of imagined movements

and, provided good performance in the decoding of the signals.

The decoder surpassed the best result of BCI competition IV, but

the results were slightly lower than the results obtained by other

researchers, who used decoders that made use of convolutional

neural networks (Chen et al., 2020; Riyad et al., 2020; Wang L.

et al., 2020).

Although the average kappa value was slightly worse

compared to decoders that used convolutional neural networks,

for some specific subjects the LSTM decoder provided greater

or equal results. The average kappa value provided by the LSTM

decoder was approximately 2% lower than the decoders ofWang

L. et al. (2020) and Chen et al. (2020). Therefore, the percentage

difference was very small.

The other decoder implemented in this paper, called

EEGNet-LSTM, combined the features of the two models,

aiming to obtain a better performance. Wang L. et al. (2020)

developed some neural decoders and the best was SCCRNN,

similar to the decoder implemented here, since both combine

EEGNet with two LSTM layers. The frequency and spatial

characteristics can be extracted by CNN, and the temporal

characteristics can be extracted by the LSTM layers.
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However, unlike the network model implemented in this

paper, Wang L. et al. (2020) used a fully connected layer

before the first LSTM layer. In the EEGNet-LSTM decoder,

implemented in the present paper, only the two main EEGNet

blocks were used and the characteristics extracted through these

blocks were passed directly to the LSTM layers. After each LSTM

layer, batch normalization and dropout layers were also added

to avoid overfitting the model. The use of these layers was not

mentioned by Wang L. et al. (2020).

In addition, after testing different frequency ranges of

the signals, bandwidth filtering between 0.5 and 100 Hz was

considered, which generated the best results. In the research

by [3], a bandpass filter between 4 and 35 Hz was applied. In

the present work, the labels of the imagined movements were

encoded in binary vectors, using the one-hot encoding method,

being another difference that can influence the results. Other

works used in the comparison also did not mention the use of

this technique.

The EEGNet-LSTM decoder implemented in this research,

surpassed the results of current decoders (Chen et al., 2020;

Riyad et al., 2020), including the best decoder proposed by

Wang L. et al. (2020), which has an architecture similar to the

decoder implemented in this work. The additional layers, the

exhaustive selection of hyperparameters, the strategies used in

the pre-processing of the signals, and the fact of passing the

characteristics extracted by the EEGNet blocks, directly to the

LSTM layers, is what must be behind the better performance.

The combination of WPD and CSP allows the extraction

of time-frequency and space features. However, using these

methods, the extraction of characteristics and, the classification

through LSTM decoder, are steps performed separately.

According to Wang L. et al. (2020), performing the feature

extraction and classification, separately, may not provide ideal

results, and it is recommended to perform the extraction

and classification stage together, since the extraction of

characteristics can be adjusted automatically, based on the

classification. The EEGNet-LSTM decoder performs the

extraction of characteristics and, the classification, together,

providing better results in comparison to the decoder based on

LSTM, with the extraction of resources through WPD and CSP.

Wang X. et al. (2020) demonstrated that there is a reduction

in performance metrics of the model, as the number of motor

imagery classes increases. We noticed that the EEGNet-LSTM

presents a similar result to the original EEGNet in a simpler

problem, involving two classes of motor imagery from the

Physiobank EEG Motor Movement/Imagery dataset. However,

we noticed that in a more complex problem, involving the

four classes of motor imagery from the BCI Competition IV

dataset 2a, the EEGNet-LSTM presented significantly higher

results than the Incep-EEGNet, an improved version of the

EEGNet. Therefore, additional LSTM layers increase the hit

rate, especially in more complex problems. The EEGNet-LSTM

presented satisfactory results for two different datasets, one

simpler and the other more complex. Considering that brain-

machine interface systems can be used to control multiple

actuators coupled to prostheses, orthoses and exoskeletons, the

model presented is useful, as it maintains a high success rate in a

more difficult problem.

5. Conclusion

Through this work, it was possible to observe better

results, when feature extraction and classification are performed

together. It was noted that the selection of hyperparameters

and the pre-processing of the data are essential for the good

performance of the decoders. It was also possible to notice

that when combined with other models, LSTM-type networks

have the potential to improve results, mainly due to their

temporal capacity. The EEGNet-LSTM neural decoder showed

satisfactory results for two different datasets, proving the

potential for replicability and ability to maintain a high rate of

success in simpler problems (two classes of motor imagery) and

more complex (four classes of motor imagery). Given the good

results compared to competing neural decoders, the EEGNet-

LSTM decoder implemented in this research can be a good

alternative for accurate decoding of EEG signals in BMI systems.

Therefore, it can serve as a starting point for the development of

future works.
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Introduction: Traumatic brain injury (TBI) is a major public health concern in

children. Children with TBI have elevated risk in developing attention deficits.

Existing studies have found that structural and functional alterations in multiple

brain regions were linked to TBI-related attention deficits in children. Most

of these existing studies have utilized conventional parametric models for

group comparisons, which have limited capacity in dealing with large-scale

and high dimensional neuroimaging measures that have unknown nonlinear

relationships. Nevertheless, none of these existing findings have been successfully

implemented to clinical practice for guiding diagnoses and interventions of TBI-

related attention problems. Machine learning techniques, especially deep learning

techniques, are able to handle the multi-dimensional and nonlinear information

to generate more robust predictions. Therefore, the current research proposed to

construct a deep learning model, semi-supervised autoencoder, to investigate the

topological alterations in both structural and functional brain networks in children

with TBI and their predictive power for post-TBI attention deficits.

Methods: Functional magnetic resonance imaging data during sustained

attention processing task and diffusion tensor imaging data from 110 subjects (55

children with TBI and 55 group-matched controls) were used to construct the

functional and structural brain networks, respectively. A total of 60 topological

properties were selected as brain features for building the model.

Results: The model was able to differentiate children with TBI and controls

with an average accuracy of 82.86%. Functional and structural nodal topological

properties associated with left frontal, inferior temporal, postcentral, and medial

occipitotemporal regions served as the most important brain features for accurate

classification of the two subject groups. Post hoc regression-based machine

learning analyses in the whole study sample showed that among these most
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important neuroimaging features, those associated with left postcentral area,

superior frontal region, and medial occipitotemporal regions had significant value

for predicting the elevated inattentive and hyperactive/impulsive symptoms.

Discussion: Findings of this study suggested that deep learning techniques

may have the potential to help identifying robust neurobiological markers

for post-TBI attention deficits; and the left superior frontal, postcentral, and

medial occipitotemporal regions may serve as reliable targets for diagnosis and

interventions of TBI-related attention problems in children.

KEYWORDS

pediatric, traumatic brain injury, attention deficits, diffusion tensor imaging, functional
magnetic resonance imaging, graph theory, autoencoder, semi-supervised deep learning
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1. Introduction

Traumatic brain injury (TBI) is a major public health
concern. For children in the United State, TBI-related emergency
department visits exceeded 600,000 every year (Dewan et al.,
2016). Children with TBI have elevated risks in developing
neurocognitive impairments and behavioral abnormalities (Konigs
et al., 2015; Polinder et al., 2015; Lumba-Brown et al., 2018).
Significant attention deficits are among the most common cognitive
consequences that can be observed in more than 35% of children
two years post-TBI (Max et al., 2005). The attention problems
in children post-TBI can persist into late adolescence and have
been linked to the development of severe psychopathology and
impairments in overall functioning (Le Fur et al., 2019; Narad
et al., 2019). Without having established neurobiological signatures,
treatments and interventions of TBI-related attention deficits
in children have been based on subjective observations from
clinicians and have resulted in suboptimal efficacy (Backeljauw and
Kurowski, 2014; Kurowski et al., 2019; LeBlond et al., 2019).

In the past two decades, a number of clinical and neuroimaging
studies have tried to investigate the neuroanatomical and functional
substrates associated with TBI-related attention problems in
children. Several diffusion tensor imaging (DTI) studies reported
that the white matter integrity in corpus collosum, superior
longitudinal fasciculus, and inferior fronto-occipital fasciculus
were linked with impaired attention function in children with
chronic TBI (Wozniak et al., 2007; Kurowski et al., 2009;
Dennis et al., 2015; Konigs et al., 2018). Task-based functional
magnetic resonance imaging (fMRI) studies have also reported
functional alterations in frontal, parietal, and occipital regions
during inhibition and sustained attention process (Kramer et al.,
2008; Tlustos et al., 2011, 2015; Strazzer et al., 2015).

Known as a foundation of neuroscience, human brain regions
do not work in an isolated manner. The existing voxel- and region-
of-interest (ROI)-based studies have limitations in addressing how,
in the systems-level, certain brain regions are vulnerable to TBI
and contribute to related cognitive and behavioral consequences.
The graph theoretical technique (GTT)-based approaches have
been increasingly implemented in human brain imaging data to
construct structural and/or functional brain networks in a systems-
level, and to characterize the network integration, segregation,

centrality, and small-worldness in both the global and regional
(sub-network) scales (Bullmore and Sporns, 2009). Studies have
reported that children with TBI demonstrated a less integrated
structural or functional brain network compared to healthy
controls (Caeyenberghs et al., 2012; Konigs et al., 2017; Yuan
et al., 2017; Botchway et al., 2022; Ware et al., 2022). Our
recent GTT-based studies in both DTI and task-based fMRI data
reported that, compared to group-matched typically developing
children (TDC), children with diagnosed TBI-related attention
deficits (TBI-A) had significant regional topological alterations
associated with frontal, parietal, and temporal lobes in both
structural and functional networks, with the altered regional
topological properties associated with parietal and temporal
regions significantly linking to elevated inattentive symptoms
in children with TBI-A (Cao et al., 2021a,b). These existing
studies suggest that TBI-related attention deficits in children have
close relationships with systems-level functional and structural
abnormalities associated with multiple brain regions. However,
all these studies have adopted conventional parametric models
(such as t-test, analysis of variance, etc.) for group comparisons,
which have very limited capacities to deal with the large-scale and
nonlinearly related neuroimaging measures.

Compared to conventional parametrical models, machine
learning techniques have the capacity in learning the joint
effects of measures in high dimensional space and have the
sensitivity in detecting subtle information that have high
discriminative/predictive power (Nielsen et al., 2020). When aided
with feature selection methods and cross-validation methods,
machine learning techniques can deliver efficient and robust
classifications between different groups. A few existing studies in
children with TBI have applied machine learning techniques. By
constructing classification model using support vector machine
(SVM) and edge density image, one study was able to differentiate
14 children with TBI and 10 controls with an area under the
receiver-operating-characteristic-curve (AUC) of 0.94 (Raji et al.,
2020). Another study built an SVM-based classification model
using structural MRI data and DTI data from 29 student athletes
(aged from 15 to 20 years) and 27 controls and achieved an AUC of
0.84 (Tamez-Pena et al., 2021). A longitudinal study reported that
when combining resting-state MRI data and structural MRI data in
99 children with TBI at 4 weeks after the injury, SVM algorithm
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was able to predict the recovery of post-concussion symptoms at
8 weeks with an AUC of 0.86 (Iyer et al., 2019). However, the
majority of these machine learning studies in children with TBI
applied supervised models that only focused on discriminating
labels of the two diagnostic groups, and none of these studies have
intended to detect the neurobiological features associated with the
most common TBI-related cognitive deficits.

In this study, we propose to utilize a deep learning technique,
semi-supervised autoencoder, to identify the robust functional
and structural brain signatures of TBI-related attention deficits
in children. Deep learning techniques were highly effective in
generating feature representations by learning the deep linear or
nonlinear relationships within a high dimensional space of the
study measures (LeCun et al., 2015). Based on results of previous
study from our and other teams (Wozniak et al., 2007; Kramer
et al., 2008; Kurowski et al., 2009; Tlustos et al., 2011; Dennis
et al., 2015; Strazzer et al., 2015; Tlustos et al., 2015; Konigs
et al., 2018; Cao et al., 2021a,b), we hypothesize that topological
anomalies associated with frontal, parietal, and temporal regions in
the functional and structural brain networks not only play the most
important role in characterizing children with TBI when compared
to controls, but also most significantly contribute to TBI-related
attention deficits in the affected children.

2. Materials and methods

2.1. Participants

A total of 110 children, including 55 children with TBI and
55 group-matched controls, were initially involved in this study.
The TBI subjects were recruited from the New Jersey Pediatric
Neuroscience Institute, Saint Peter’s University Hospital, and local
communities in New Jersey. Controls were solicited from the local
communities by advertisement in public places. The study received
institutional review board approval at the New Jersey Institute of
Technology and Saint Peter’s University Hospital. Prior the study,
all the participants and their parents or guardians provided written
informed assent and consent, respectively.

The inclusion criteria for the TBI group were: (1) has
history of at least one clinical diagnosed mild or moderate non-
penetrating TBI (Teasdale and Jennett, 1974); (2) has no overt
focal brain damages or hemorrhages during all the TBI incidences;
(3) the first TBI incidence was at least 6 months prior to the
study date; (4) has no significant inattention or hyperactive
problems before the injury. The control group included children
with no history of diagnosed TBI or no history of diagnosed
attention deficit/hyperactivity disorder (ADHD). Conners 3rd

Edition-Parent Short form (Conners 3-PS) were assessed during
the study visit to characterize the inattention problems and
hyperactivity/impulsivity problems in both groups (Conners,
2008).

To further improve the homogeneity of the study sample,
the general inclusion criteria for both groups included (1) only
right-handed, to remove handedness-related potential effects on
brain structures, which the handedness were evaluated using the
Edinburgh Handedness Inventory (Oldfield, 1971); (2) full scale
IQ ≥ 80, which were estimated by the Wechsler Abbreviated

Scale of Intelligence II (WASI-II) (Wechsler, 2011); (3) has no
current or previous diagnosis of Autism spectrum disorders,
pervasive development disorder, psychosis, major mood disorders
(except dysthymia not under treatment), post-traumatic stress
disorder, obsessive compulsive disorder, conduct disorder, anxiety
(except simple phobias), or substance use disorders, based on
Diagnostic and Statistical Manual of Mental Disorders 5 (DSM-5)
(Association, 2013) and supplemented by the Kiddie Schedule for
Affective Disorders and Schizophrenia for School-Age Children-
Present and Lifetime Version (K-SADS-PL) (Kaufman et al.,
2000); (4) has no learning disabilities, neurological disorders,
or any types of diagnosed chronic medical illnesses, from the
medical history. None of the subjects involved in this study
had any treatments with long-acting stimulants or non-stimulant
psycho-tropic medications within the past month nor any
contraindications for MRI scanning, such as claustrophobia, tooth
braces, or other metal implants.

After initial processing of the neuroimaging data from each
subject, three subjects from the TBI group and two subjects from
the control group were excluded due to low imaging quality or
excessive motions in either DTI data or functional MRI data.
Therefore, a total of 52 children with TBI and 53 controls
were included in the group-level analyses. All the demographic
information was shown in Table 1.

2.2. Neuroimaging data acquisition
protocol

For each subject, a DTI scan, a task-based functional MRI scan,
and a high-resolution T1-weighed MRI scan were collected using
a 3-Tesla Siemens TRIO (Siemens Medical Systems, Germany)
scanner at Rutgers University Brain Imaging Center. The DTI data
were acquired using a single-shot echo planar sequence, with the
following parameters: voxel size = 2.0 mm × 2.0 mm × 2.5 mm,

TABLE 1 Demographic and clinical characteristics in the study sample.

Controls
Mean (SD)

TBI
Mean (SD)

t or
χ2-value

P-
value

N 55 55

Male/female 30/25 33/22 0.334 (χ2) 0.563

Socio-economic
status

16.47 (2.13) 15.70 (2.09) 1.450 0.151

Full scale IQ 113.00 (11.23) 110.97 (13.72) 1.402 0.165

Age 13.06 (2.03) 13.63 (2.28) −1.370 0.174

Ethnicity/race 4.259 (χ2) 0.119

Caucasian 30 36

Hispanic 8 11

Others 17 8

Conners 3rd edition-parent short form (T-score)

Inattention 46.15 (6.02) 64.73 (13.49) −9.145 < 0.001

Hyperactivity/
impulsivity

48.38 (5.42) 58.44 (14.43) −4.747 < 0.001

TBI, children with traumatic brain injury; SD, standard deviation; N, number of subjects; M,
males; F, females.
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repetition time (TR) = 7,700 ms, echo time (TE) = 103 ms,
field of view (FOV) = 250 mm × 250 mm, 30 diffusion-
sensitizing gradient directions with b-value = 700 s/mm2, and one
image with b-value = 0 s/mm2. The fMRI data were acquired
using a whole brain gradient echo-planar sequence, with the
following parameters: voxel size = 1.5 mm × 1.5 mm × 2.0 mm,
TR = 1,000 ms, TE = 28.8 ms, and FOV = 208 mm. A high-
resolution T1-weighted structural image was also collected with
a sagittal multi-echo magnetization-prepared rapid acquisition
gradient echo sequence with the following parameters: voxel
size = 1 mm3 isotropic, TR = 1,900 ms, TE = 2.52 ms, flip angle = 9◦,
FOV = 250 mm × 250 mm, and 176 sagittal slices. The T1-
weighted image were used for fMRI co-registration and creation
of individualized brain region masks in DTI-based structural brain
network construction.

2.3. Visual sustained attention task for
fMRI

In the current study, the fMRI data for each subject were
collected during an enhanced continuous performance task, the
visual sustained attention task (VAST), which was designed to
achieve optimal power in maintaining sustained attention and
to assess related functional brain pathways in children (Li et al.,
2012; Cao et al., 2021a). The VAST is a block-designed task which
included five task stimulations block that interleaved with five
resting blocks. The total duration is 5 min with each block last 30 s.
During task blocks, subjects were asked to remember a sequence
of three numbers and responds when the stimulus sequences
match the target. To ensure full understanding of the instructions,
practical trials of the task were provided to each subject before the
scan session.

2.4. Individual level structural MRI and
DTI data processing and structural brain
feature generation

Each individual’s structural MRI data was visually checked
for artifacts and excessive motions. Then the preprocessing
steps, including registration into Talairach space, skull-stripping,
and intensity normalization, were performed using Freesurfer
v6.0.0 (Fischl, 2012). The preprocessed structural MRI data were
parcellated using Desikan atlas and were used for node generation
in constructing the structural brain network.

To construct the structural network, the DTI data were
preprocessed using the Diffusion Toolbox from FMRIB Software
Library v6.0 (FSL) (Woolrich et al., 2001). The preprocessing steps
included head-motions correction, non-brain voxels removal, and
intensities normalization. The head motions and eddy-current
distortion were then corrected with affine transformation and
predictions estimated by a Gaussian Process (Andersson and
Sotiropoulos, 2016). Heavy head movement is a critical issue that
can significantly affect the quality of imaging data and cause
inaccurate results of tractography. In this study, the cutoffs of heavy
head movements were defined as data with> 2 mm translational
displacement, > 5◦ rotational displacement, or > 0.2 mm mean

volume-by-volume displacement. Three subjects from TBI group
and one subject from control group were excluded due to heavy
head motion. Then, the probabilistic tractography parameters
of each voxel were estimated with a two-fiber model in each
individual’s native space. For each subject, a total of 78 ROIs were
selected as the nodes for structural brain network, including 34
cortical regions and 5 subcortical regions per hemisphere. The
mask for each ROI was generated based on the parcellation in the
preprocessed structural MRI data and transformed into the native
diffusion space. Probabilistic tractography were used to estimate
the connecting fibers between each pair of the seed masks. Five
thousand streamlines per voxel were then initiated from each seed
mask, with 0.5 step distance. A fiber was terminated when (1)
it reached other seed masks; (2) it exceeded 2,000 step limits;
(3) it looped back to the same streamline; or (4) its curvature
exceeded 80. The streamlines between seed masks were averaged
in both directions to determine the structural connectivity between
network nodes. Due to the connection density bias, the white
matter bundle with higher anisotropy usually generate significantly
higher streamline counts in the probabilistic tractography process
(Jones, 2010; Zhang et al., 2022). Therefore, in this study, the weight
of a non-zero edge was evaluated by log-transformed streamline
count and normalized by dividing the maximum edge weight in
the same network to increase the discriminability of low edge
weights (Ashourvan et al., 2019; Hansen et al., 2022). Then for each
subject, a 78× 78 symmetric connectivity matrix was generated for
construction of the weighted structural brain network.

After the weighted structural brain network was constructed
for each subject, the network topological properties were calculated
[technical details for computations were provided in our previous
publications (Cao et al., 2021b)]. The nodal-level topological
properties for weighted network, including the nodal strength,
nodal global efficiency, nodal local efficiency, clustering coefficient,
and betweenness centrality, were calculated for each node in the
structural brain networks to serve as structural brain features. All
structural network topological properties were calculated using the
Brain Connectivity Toolbox (Rubinov and Sporns, 2010). A total
of 390 structural brain features were generated for building the
semi-supervised autoencoder.

2.5. Individual level fMRI data processing
and functional brain feature generation

The preprocessing of the fMRI data was carried out using FEAT
Toolbox from FSL v6.0 (Woolrich et al., 2001). For fMRI data, the
same cutoffs of heavy head motions that used in DTI preprocessing
were applied, with which two subjects from TBI group (overlapped
with excluded subjects in DTI preprocessing) and one subject from
control group were excluded. After motion correction and slice
timing correction, the fMRI data of each subject was co-registered
to standard Montreal Neurological Institute (MNI) space using
high-resolution structural MRI. The hemodynamic response to the
task-related condition was modeled using the general linear model
with 24 motion parameters. The activated voxels were identified
by cluster-based thresholding on the Z statistic map with Z > 2.3
and p < 0.05. To construct the functional brain network for each
subject, the network nodes were generated by defining a spherical
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region with a radius of 5 mm at the local maximum of any clusters
that have more than 100 activated voxels. A total of 59 ROIs
were generated based on the automatic anatomical labeling atlas
(Tzourio-Mazoyer et al., 2002). The connectivity of a ROI-pair was
represented by the Pearson’s correlation coefficient of the blood-
oxygen-level-dependent (BOLD) signal in each of the two ROIs.
The connectivity matrix was then binarized using the network
cost range that satisfied small-network property to construct the
binarized functional brain network (Achard and Bullmore, 2007).

The nodal-level topological properties for binarized network,
including the nodal degree, nodal global efficiency, nodal local
efficiency, clustering coefficient, and betweenness centrality, were
calculated for each node in the functional brain networks
[technical details for computations were provided in our previous
publications (Cao et al., 2021a)]. The individual-level analysis
was performed using pipeline tool GAT-FD (Cao et al., 2022),
where all network topological properties were calculated by calling
functions from the Brain Connectivity Toolbox (Rubinov and
Sporns, 2010). A total of 295 nodal topological properties were
calculated from the functional brain networks to serve as the
functional brain features of each subject for building the semi-
supervised autoencoder.

2.6. Modeling of semi-supervised
autoencoder

To increase training robustness and reduce overfitting risk,
combination of three approaches, including two-sample t-test,
mutual information-based method (Ross, 2014), and Lasso-based
method (Muthukrishnan and Rohini, 2016), were utilized for
feature reduction. At the end, a total of 60 top features from the 685
source brain features derived from structural and functional brain
networks were selected for training in the model. Before passing
to the autoencoder model, all these features were normalized to a
range of 0 to 1 using min-max normalization.

The semi-supervised autoencoder consisted of three major
components, the encoder, the decoder, and the classifier, as shown
in Figure 1. The encoder and decoder were part of a regular
autoencoder model, which learns a compressed representation of
the original brain features by optimizing the reconstructed brain
features in an unsupervised manner (Hinton and Salakhutdinov,
2006). The encoder transformed inputs from original feature space
into a latent space by compressing the information in the inputs.
The encoder in the proposed model contained one input layer
with a size of 60, one hidden layer of 40 neurons, and one output
layer of 20 neurons. Then the autoencoder-generated features, i.e.,
AE-features, in the latent space were passed into the decoder to
reconstruct the original input. The decoder included an input
layer with a size of 20, a hidden layer of 40 neurons, and one
output layer of 60 neurons. An additional classifier was included
in the proposed autoencoder to work as a constrain in the learning
of the compressed AE-features in the latent space. The classifier
took 20 AE-features in the latent space to predict the group label
for each sample. The classifier included a hidden layer with 20
neurons and an output layer of 1 neuron. Sigmoid function was
used as the activation function for all the artificial neurons in the
semi-supervised autoencoder neural network.

Two different loss functions were used compensate the different
training speeds of the regression task (the decoder) and the
classification task (the classifier). Mean squared error (MSE) was
selected as the loss function of the reconstruction process, which
was calculated using the following formula,

MSE =
1
n

n∑
i = 1

1
f

f∑
j = 1

(
x′ij − xij

)2
,

where n is the number of subjects in the training data, f is the
number of brain features, x′ij is the reconstructed value for feature j
of subject i, and xijis original value for feature j of subject i. Binary
cross-entropy were selected as the loss function of the classification
process, which was calculated using the following formula,

Hbinary = −
1
n

n∑
i = 1

[
y log p+

(
1− y

)
log

(
1− p

)]
,

where Hbinary is binary cross-entropy, n is the number of subjects
in the training data, y is the binary indicator of the class label, and
p is probability of y is 1.

In order to force the model to learn the latent AE-features for
reconstruction earlier than for classification, loss of the decoder
model was assigned with a higher weight than the loss of the
classifier model. The loss function of the full model was calculated
using the following formula,

Lfull−model = 0.7 × MSE+ 0.3 × Hbinary,

where the weight of the decoder loss is 0.7 and the weight of the
classifier loss is 0.3.

2.7. Model training and evaluation

Training of the model was performed using python v3.8.0
and Tensorflow v2.10 (Abadi et al., 2016). Adam optimizer was
used for the back-propagation process (Kingma and Ba, 2014). To
increase the robustness of the model, a five-fold cross validation
were employed in the training process. For details, the data were
split into five stratified folds such that each fold consisted of
balanced 20% of the entire data. For each iteration, four-folds were
dedicated for training data and the remaining one for validation.
To avoid potential leakage effect in the training process, the feature
selection algorithms only used training data in each cross validation
(Pereira et al., 2009). To further minimize the risk of overfitting
in the training process, a gaussian noise with a mean of zero and
standard deviation of 0.02 was randomly induced to 20% of the
input features, before feeding into the encoder model. The training
process stops when the accuracy of the training data exceeds 95%
or reach a total of 1,000 epochs.

The performance of the reconstruction process of the semi-
supervised autoencoder model were measured using the MSE of the
validation data and averaged for all the five cross validations. The
classification performance was measured in terms of classification
accuracy and AUC in the validation data, which also averaged for
all five cross validations.

In comparison, a conventional machine learning model was
also constructed using the same training and validation procedure.
The model used principal component analysis (PCA) for feature
reduction and SVM for classification.
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FIGURE 1

Overall structure of the semi-supervised autoencoder. (A) The encoder model, which transform the inputs from original brain feature space into a
latent space. (B) The decoder model, which reconstruct the input by transforming the encoded features. (C) The classifier model, which predict if a
subject is in the TBI group or in the control group based on the encoded features. AE-Features: autoencoder-generated features.

2.8. Feature importance score
calculation

To identify the most important brain features for successful
classification process, a permutation-based method was used to
calculate the importance score of each input feature (Breiman,
2001). A feature’s importance was determined by the amount of
error caused by shuffling the feature’s value over all the samples
(Fisher et al., 2019). For the classification process, the feature
importance for a feature was characterized by the binary cross-
entropy, which was calculated using the following formula,

FIclass =
1
m

m∑
k = 1

(
Hbinary −H′binary

)2
,

where m is the number of random shuffling, Hbinary is the cross-
entropy of the original input, and H′binary is the cross-entropy
of the shuffled input. The importance score for features in the
current study was calculated by shuffling for 1,000 times. Features
with importance score that two standard deviation higher than the
mean importance score of all features were identified as important
features (Sun et al., 2020).

2.9. Modeling of brain-behavior
relationships

Regression-based machine learning, a support vector
regression (SVR) model, was first constructed to study the
relations between the most important brain features for successful
group discriminations and the severity measures of inattentive
and hyperactive/impulsive symptoms (T-scores derived from
Conners 3-PS) in the whole study sample. To minimize overfitting,
five-fold cross validation were used for training and validation.
The R2 and MSE were used to evaluate the performance of the SVR

model. Permutation importance score were used to evaluate the
importance of the brain features.

To further validate the robustness of the relationships between
the identified important brain features and clinical measures, a
partial least squares structural equation modeling (PLS-SEM) was
conducted (Hair et al., 2011). The rationale of the PLS-SEM was
to test whether the important brain features for classification were
associated with any AE-features, and whether those AE-features
were associated with the clinical measures, while accounting for the
effects of age, sex, handedness, SES, and IQ. The PLS-SEM analysis
was carried out using R 4.1.3 and SEMinR 2.3.2 (Hair et al., 2021).
First, Pearson’s correlation between the AE-features in the latent
space and T-scores of the inattentive and hyperactive/impulsive
subscales from Conners 3-PS were performed within the whole
study sample. The correlation analyses were controlled for potential
multiple comparisons (for 20 features in the latent space), by
using the Bonferroni correction with a threshold of significance
at corrected α 0.05. The AE-features in the latent space that
showed significant correlation with the clinical scores were selected
as the intermediate variables in the PLS-SEM. Bootstrap with 5,000
random samples were performed to determine the significant levels
of the path coefficients in the PLS-SEM analysis (Henseler and
Chin, 2010).

3. Results

3.1. Demographic and clinical/behavioral
measures

There were no significant between-group differences in any
demographic measures in our sample. Among the subjects in TBI
group, 14 subjects had no significant inattentive or hyperactive
problems, 27 had significant inattentive problems, 2 had significant
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FIGURE 2

Comparisons between the normalized features and reconstructed features by the semi-supervised autoencoder model. The normalized input data
was shown on the left, the reconstructed data was shown in the middle, and the squared error was shown on the right. The vertical axis represented
the subjects in each cross-validation set, and the horizontal axis represented the features. CV, cross-validation; MSE, mean squared error.

hyperactive/impulsive problems, and 12 had significant problems
in both inattention and hyperactivity/impulsivity. In the TBI
group, the range between first TBI incidence and MRI scan
was from 6 to 90 months (7 years 6 months), with average of
33.8 ± 24.2 months. The results showed that children with TBI
had significantly more inattentive (t = −9.145, p < 0.001) and
hyperactive/impulsive (t =−4.747, p< 0.001) symptoms measured
using the T-scores in Conners 3-PS, when compared to controls.
No significant correlations were observed between the time after
injury and inattention or hyperactivity/impulsivity T-scores. The
demographic and clinical information was shown in Table 1.

3.2. Performance of the semi-supervised
autoencoder

The semi-supervised autoencoder model was able to
differentiate children with TBI and controls with a classification
accuracy of 82.86% ± 07.97% and an AUC of 0.860 ± 0.061. At
the same time, the model was able to reconstruct the original brain
features with an MSE of 0.035 ± 0.005, as shown in Figure 2.
In comparison, the PCA+SVM model was able to achieve a
classification accuracy of 78.09% ± 11.47% with an AUC of
0.825± 0.114.

3.3. Most important brain features for
classification

Network topological properties associated with left inferior
and superior frontal, postcentral, inferior temporal and medial
occipitotemporal regions were identified as the most important
brain features for successful discrimination between children with

TABLE 2 Importance score of the most important brain features in
accurately differentiating children with TBI and controls.

Region Topological
property

Network Importance
score

Left inferior temporal
gyrus

Nodal clustering
coefficient

Functional 0.0430

Left superior frontal gyrus Betweenness
centrality

Structural 0.0421

Left inferior frontal gyrus Nodal local efficiency Structural 0.0339

Left medial
occipitotemporal gyrus

Nodal clustering
coefficient

Functional 0.0338

Left postcentral gyrus Nodal local efficiency Functional 0.0308

Left frontal pole Nodal clustering
coefficient

Structural 0.0277

TBI and controls. Specifically, the functional nodal clustering
coefficient of left inferior temporal gyrus and left medial
occipitotemporal gyrus, the functional nodal local efficiency of
left postcentral gyrus, the structural nodal local efficiency of left
inferior frontal gyrus, the structural nodal clustering coefficient of
left frontal pole, and the structural betweenness centrality of left
superior frontal gyrus had significantly higher importance scores
than other selected brain features (Table 2).

3.4. Regression model performance and
brain-behavior relationships

The SVR model using the top 6 most important brain
features was able to explain 9.44% of the variance (R2 of
9.44% ± 4.02%) in the inattentive symptom T-score in the study
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FIGURE 3

The original T-scores of the inattentive and hyperactive/impulsive subscales vs. the predicted T-scores using regression model. The predicted values
were scaled back to the normal T-score range. The R2 and MSE were reported as mean ± standard deviation. Different cross-validation sets were
represented with different colors. (A) Original inattention T-score vs. Predicted inattention T-score. (B) Original hyperactivity/impulsivity T-score vs.
Predicted hyperactivity/impulsivity T-score. MSE, mean squared error.

sample (Figure 3A). And the predicted inattentive symptom
T-score yielded an MSE of 0.057 ± 0.015. The functional nodal
clustering coefficient of left medial occipitotemporal gyrus and
the functional nodal local efficiency of left postcentral gyrus
showed the highest predictive values, with feature importance
scores of 0.132 and 0.104, respectively. For the SVR model in
predicting hyperactive/impulsive symptom T-score, the R2 was
7.25% ± 2.69% and the MSE was 0.039 ± 0.009 (Figure 3B). The
most important brain features for predicting hyperactive/impulsive
symptoms were the structural betweenness centrality of left
superior frontal gyrus, with an importance score of 0.114,
and the functional nodal clustering coefficient of left medial
occipitotemporal gyrus, with an importance score of 0.050
(Table 3).

In the PLM-SEM analysis, AE-feature 17 showed significant
direct effect on the inattentive symptoms T-score, and both
AE-features 4 and 17 showed significant direct effects on the
hyperactive/impulsive symptoms T-score in the whole study
sample. Important brain features in left inferior temporal, medial
occipitotemporal, postcentral, and superior frontal regions showed
significant direct effects on AE-features 4 and 17. The detailed
results of the PLM-SEM analysis were shown in Figure 4.

4. Discussion

To our best knowledge, this is the first study in the field
applying deep learning approach in multimodal neuroimaging data
to identify the neural signatures associated with post-TBI attention
deficits in children. By constructing a semi-supervised autoencoder
in task-based fMRI and DTI data from 110 children, this study
has identified 6 most predictive brain features, involving functional

and structural network topological properties associated with left
frontal, parietal, temporal, and occipital lobes. Regression-based
machine learning analysis in our study sample further showed
that, among these most important brain features, those associated
with left postcentral area showed significant predictive value for
inattentive symptoms; those associated with left superior frontal
gyrus showed significant predictive value for hyperactive/impulsive
symptoms; while those associated with left medial occipitotemporal
gyrus showed significant predictive value for both inattentive and
hyperactive/impulsive symptoms.

In the current study, our semi-supervised autoencoder model
has well-behaved in terms of effectiveness and robustness
in successful discrimination between children with TBI and
controls, with satisfactory accuracy and AUC. The reconstructed
features also showed minimal error, measured using MSE,
when compared to the input features. Compared to the
conventional PCA+SVM model, our semi-supervised autoencoder
model achieved higher classification accuracy and AUC. The
reconstruction process preserved the distinctive information while
reducing the feature dimensionality for the classification process
(Hinton and Salakhutdinov, 2006; Kamal and Bae, 2022). In
addition, the added gaussian noise to input features during the
training process of the semi-supervised autoencoder model further
improve the generalization performance of the constructed deep
neural network model (Audhkhasi et al., 2016; Noh et al., 2017).
Therefore, relative to those reported in the majority of existing
conventional model-based studies, our identified brain substrates
for childhood TBI and its related attention deficits are more reliable
and have more significant value in guiding tailored diagnoses and
interventions in affected children.

Our study observed the important roles of the structural
topological alterations of left inferior frontal gyrus, left superior
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frontal gyrus, and left frontal pole in differentiating children with
TBI and controls. In addition, the betweenness centrality (which
represent the capacity of serving as a bridging node) of left
superior frontal gyrus showed significant value for successfully
predicting severity of the hyperactive/impulsive symptoms in the
whole study sample. Those regions were part of the prefrontal
cortex, which is an essential component in the top-down control
pathway that facilitate the selective attention, inhibition, and
sensory modulation (Buschman and Miller, 2007; Rossi et al.,
2009; Katsuki and Constantinidis, 2014). Structural MRI and DTI
studies have consistently reported decreased gray matter volume,
reduced cortical thickness, and disrupted white matter integrity
in left prefrontal area in children with TBI (Wilde et al., 2012a;
Mayer et al., 2015; Dennis et al., 2016). Our previous investigation
also reported significant structural topological alterations in left
inferior frontal gyrus in children with TBI-A (Cao et al., 2021b).
Linking with these existing findings, our findings of altered
structural connectivity within left prefrontal cortex and between
left prefrontal and other brain regions may be related to the axonal
damages caused TBI; and the persisted structural alterations in the
left prefrontal area in children with chronic TBI might disrupt the
attention processing pathways and contribute to the emergence of
hyperactive/impulsive symptoms.

Meanwhile, the functional nodal local efficiency (which
represent regional integration in the whole network) in the left
postcentral gyrus were identified as one of the most important
brain features for accurate group classification as well as one of the
most valuable brain features in predicting severity of inattentive
symptoms in the whole study sample. The postcentral gyrus is
responsible for transferring tactile information during the spatial
attention, which is a key region in the attention top-down and
bottom-up pathways (Macaluso et al., 2000; Buschman and Miller,
2007; Katsuki and Constantinidis, 2014). Existing task-based fMRI
studies have reported functional alterations of postcentral gyrus
in children with TBI during inhibitory control (Tlustos et al.,
2015) and sustained attention (Cao et al., 2021b). Our functional
network study also reported that the increased nodal local efficiency

TABLE 3 Importance score of the most important brain features in the
regression-based machine learning model for predicting inattentive and
hyperactive/impulsive symptom T-scores in the whole study sample.

Region Topological
property

Network Importance
score

Importance scores for predicting inattentive T-score

Left medial
occipitotemporal gyrus

Nodal clustering
coefficient

Functional 0.132

Left postcentral gyrus Nodal local efficiency Functional 0.104

Left inferior temporal
gyrus

Nodal clustering
coefficient

Functional 0.061

Left superior frontal gyrus Betweenness
centrality

Structural 0.014

Left frontal pole Nodal clustering
coefficient

Structural 0.013

Left inferior frontal gyrus Nodal local efficiency Structural 0.011

Importance scores for predicting hyperactive/impulsive T-score

Left superior frontal gyrus Betweenness
centrality

Structural 0.114

Left medial
occipitotemporal gyrus

Nodal clustering
coefficient

Functional 0.050

Left inferior frontal gyrus Nodal local efficiency Structural 0.021

Left inferior temporal
gyrus

Nodal clustering
coefficient

Functional 0.017

Left postcentral gyrus Nodal local efficiency Functional 0.016

Left frontal pole Nodal clustering
coefficient

Structural −0.007

in left postcentral gyrus was significantly correlated with reduced
inattentive symptoms in children with TBI-A (Cao et al., 2021b).
Together with existing evidence, this study further validated that
functional alterations associated with left postcentral gyrus are
highly vulnerable that may disrupt normal attention processing and
contribute to the onset of attention deficits in children with TBI.

FIGURE 4

Results of partial least square structural equation modeling analysis. The paths with significant direct effects were shown in black solid line. The
paths without significant effects were shown in gray dashed line. The numbers next to the significant paths were standardized path coefficient. The
p-values were calculated by applying bootstrapping with 5,000 random samples. AE-Features: autoencoder-generated features; NCC, nodal
clustering coefficient; NLE, nodal local efficiency; BC, betweenness centrality; SES, socioeconomic status, was calculated using the average
education years of the parents.
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Intriguingly, our study also found that the functional nodal
clustering coefficient (which represent the regional connectivity) in
left medial occipitotemporal gyrus was an important brain feature
in differentiating TBI and control, as well as a significant predictor
for both inattentive and hyperactive/impulsive symptoms. The
occipitotemporal gyrus has been associated with visual information
processing, especially letter process (Mechelli et al., 2003; Vinckier
et al., 2007), and was also found to play important role in visual
imagery and internally directed cognition (Benedek et al., 2016;
Ceh et al., 2021). Structural MRI studies have reported reductions
in gray matter volume of the medial occipitotemporal gyrus in
children with TBI, and the reduction can persist years after the
injury (Wilde et al., 2012b; Dennis et al., 2016). However, no
existing studies have reported functional alterations in medial
occipitotemporal gyrus in children with TBI. One of the reasons
might be that the conventional parametric models lack the
sensitivity in detecting the subtle functional alterations in medial
occipitotemporal gyrus.

There are some limitations associates with the current study.
First, although we have a total of 110 subjects involved in the
study, this sample size is still relatively modest in the deep
learning field. Such sample size still has potential risk for having
overfitted model and limited generalizability. To minimize such
risk, we utilized multiple feature selection methods, applied cross-
validation, and implemented an additional gaussian noise layer
during the training process. Future research with an even larger
sample size is expected to further validate the findings of this
study. Second, streamline count-based structural brain network
can be biased using probabilistic tractography (Zhang et al., 2022).
To reduce potential effects, estimation of streamline count was
performed in the native diffusion space using individualized brain
parcellations and edge weights were normalized in the individual-
level analysis. Other graph theory techniques on structural brain
network, like fiber density-based (Smith et al., 2015), connectivity
probability-based (Cao et al., 2013), and microstructural measure-
based (Girard et al., 2017), can be explored to validate the
significance of the current findings. Third, the sex factor associated
with post-TBI attention deficits was not investigated in this study.
Recent clinical studies with large sample size (> 500) reported that
girls with TBI had significantly higher risk in developing attention
problems than boys (Keenan et al., 2018; Wade et al., 2020). We did
not investigate sex-specific neural markers, considering the sample
size limitation mentioned above. To partially remove the potential
confounding effects, sex was added in our post hoc analysis and
showed no significant associations with inattentive or hyperactive
symptoms. Future studies with much larger samples are required to
thoroughly investigate the sex-specific neural markers of post-TBI
attention deficits in children.

In summary, the current study has constructed a semi-
supervised autoencoder to effectively and robustly discriminate
children with TBI and controls while preserve the intrinsic
neuroimaging characteristics in the reconstruction of brain
features. All the predominant brain features in differentiating
children with TBI and controls were in the left hemisphere,
including the functional and structural topological alterations
involving left frontal regions, postcentral regions, and temporal
regions. More importantly, the highly discriminative brain features
in left frontal regions, parietal regions, and medial occipitotemporal
regions demonstrated significant value for predicting elevated

inattentive and/or hyperactive/impulsive symptoms in children
post-TBI. The findings of this study suggest that deep learning
techniques may have the potential to help identifying robust
neurobiological markers for post-TBI attention deficits; and the left
superior frontal, postcentral, and medial occipitotemporal regions
may serve as reliable targets for the diagnosis and interventions of
TBI-related attention problems in children.
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Objective: Epilepsy is the second most common brain neurological disease after

stroke, which has the characteristics of sudden and recurrence. Seizure prediction

is seriously important for improving the quality of patients’ lives.

Methods: From the perspective of multiple dimensions including time-frequency,

entropy and brain network, this paper proposed a novel approach by constructing

the optimal spatiotemporal feature set to predict seizures. Based on strong

independence and large information capabilities, the two-dimensional feature

screening algorithm is performed to eliminate unnecessary redundant features.

In order to verify the effectiveness of the optimal feature set, support vector

machine (SVM) was used to classify the preictal and interictal states on both the

Kaggle intracranial EEG and CHB-MIT scalp EEG dataset.

Results: This model achieved an average accuracy of 98.01%, AUC of 0.96,

F-Score of 98.3% and FPR of 0.0383/h on the Kaggle dataset; On the CHB-MIT

dataset, the average accuracy, AUC, F-score and FPR were 95.93%, 0.92, 94.97%

and 0.0473/h, respectively. Further ablation experiments have confirmed that the

temporal and spatial features fusion has better performance than the individual

temporal or spatial features.

Conclusion: Compared to the state-of-the-art methods, our approach

outperforms most of these existing techniques. The results show that our

approach can effectively extract the spatiotemporal information of epileptic EEG

signals to predict epileptic seizures with high performance.

KEYWORDS

epilepsy, spatiotemporal features, fuzzy entropy, power spectral density, brain network,
EEG
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1. Introduction

Epilepsy is a neurological disease of brain activity, caused by
excessive and synchronous electrical discharges. As the second
most common disease after stroke, epilepsy affects approximately
70 million people worldwide, which is nearly 1% of the global
population, and approximately 80% in developing countries
according to the World Health Organization. The sudden and
recurring seizures are catastrophic for patients, easily resulting
in loss of consciousness, injury and even death by accidents
(Lenkov et al., 2013; Zhong et al., 2022c). Therefore, reliable
seizure prediction is prime important, as it can greatly improve
the quality of patients lives. Electroencephalogram (EEG) which
reflects the discharges of neurons, provides plenty of valuable
information about brain activities. Due to the advantages of
cheap price and high temporal resolution, EEG becomes one
of the most useful tools in the diagnosis and prediction
of epilepsy (Freestone et al., 2017; Jia et al., 2022; Peng
et al., 2022). Contrasting to the obvious difference in the ictal
states, EEG signals in the preictal states are similar to the
interictal states, which leads to a great challenge in how to
accurately forecast epileptic seizures. Therefore, the essence of
epilepsy prediction is to identify preictal EEG signals, that is,
to accurately distinguish between preictal and interictal states
(Chu et al., 2017).

Over the past few decades, with the development of machine
learning and deep learning, seizure prediction based on EEG
recordings has attracted extensive attention. Nejedly et al. (2019)
proposed an automatic seizure prediction approach using CNN
with an average sensitivity of only 79%. Usman et al. (2021)
extracted handcrafted and automatic features, which were then
fed into an ensemble classifier of SVM, CNN, and LSTM, and
finally achieved a high accuracy of 95.5%. Chen et al. (2021)
put forward an online seizure prediction method with an average
sensitivity of 84%. Successive variational mode decomposition
and transformers deep learning network has been proposed and
achieved an average sensitivity of 0.86 and FPR of 0.18/h on
iEEG signals (Wu et al., 2022). Although the good performance
of deep learning approach in seizure prediction, its lack of
interpretability has limited its clinical application. Therefore, this
paper still focuses on machine learning that requires handcrafted
features. The prediction performance using machine learning
mainly depends on whether the EEG features are effectively
extracted and screened.

Entropy, as a good non-linear feature for the complexity
evaluation of EEG signals, has been widely proposed for seizure
prediction in previous studies (Xiang et al., 2015; Song and
Zhang, 2016; Zhang et al., 2018). Zhang et al. (2018) put forward
the fuzzy distribution entropy to automatically detect seizure.
Sample entropy-based features and extreme learning machine to
distinguish interictal and preictal iEEG signals with a sensitivity
of 86.75% and a specificity of 83.80% (Song and Zhang, 2016).
Some methods are focused on time-frequency features such as
power spectral density (PSD) (Zhong et al., 2022b), empirical
mode decomposition (EMD) (Cho et al., 2016), and wavelet
transform (Faust et al., 2015; Sharma et al., 2015). A dual
self-attention residual network proposed by Yang et al. (2021)

has extracted the spectrograms by using a short-time Fourier
transform and achieved an accuracy of 92.07% on 13 patients
in the CHB-MIT dataset. Another important feature during the
process of epileptic seizures is synchronization, which can quantify
the degree of mutual coupling among brain regions. Previous
studies have reported that EEG synchronization can be employed
to predict seizures (Ibrahim and Majzoub, 2017; Zhang et al.,
2021). Some researchers combined the spatiotemporal features
to construct the multi-dimensional feature set. Zhong et al.
(2022a) proposed a novel method based on both entropy and
synchronization of iEEG signals, and achieved an accuracy of
82.95% on the Kaggle dataset. However, the frequency domain has
not been considered.

Although spatial synchronization, entropy, or time-frequency
features could be utilized to predict seizures, most of these methods
only consider a certain aspect of EEG signals characteristics.
Even some methods with multiple features have been resulting
in unsatisfactory performance due to not implementing proper
screening algorithms. Most of those current methods can
only achieve good results in a specific dataset. On the one
hand, the reason is that EEG signals in different datasets
lack unified labels. On the other hand, the types of epilepsy
are diverse, and the dynamics of epilepsy vary greatly among
different patients. Therefore, the typical EEG features of some
patients may not be suitable for others. Seizures can be seen
as the accumulation of abnormal fluctuations over time, and
then spread across brain regions through spatial synchronicity,
and are also affected by waveforms in different frequency
bands. To solve these problems mentioned above, this paper
extracts comprehensive multi-dimensional features including
non-linearity, time-frequency and spatial domains from the
perspective of spatiotemporal information. In order to select
the optimal feature set, a feature screening algorithm that
takes into account independence and information capabilities
is designed. And then the optimal feature set was as the
input to the SVM for training and testing. Our approach
achieved good prediction performances on both scalp and
intracranial EEG signals.

2. Materials and methods

2.1. Dataset description

In this study, the proposed model is tested on two public
EEG datasets, the CHB-MIT scalp EEG dataset1 and the Kaggle
competition iEEG dataset.2 These two public EEG datasets included
long-term EEG signals and multiple seizures have been recorded
for each subject.

CHB-MIT dataset consists of continuous scalp EEG recordings
of 23 epileptic patients from Boston Children’s Hospital over many
days. Multi-channel EEG signals were recorded with a sampling
rate of 256 Hz using the international 10−20 system. In this

1 https://physionet.org/content/chbmit/

2 https://www.kaggle.com/c/seizure-detection/data
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paper, the preictal state was defined as a 30 min signal before
the seizure onset; and the interictal state was determined as at
least 4 h far away from any seizure. The upcoming seizure is
excluded with an interval of less than half an hour between two
adjacent seizures to ensure the preictal states with the length of
30 min. Patients with at least three recorded preictal and interictal
states were screened. The reason is that less than three preictal or
interictal states would lead to an overfitting problem. A total of
14 patients are available for considering all these definitions and
constraints.Table 1 summarizes the details of these 14 patients used
in our experiments.

The Kaggle competition dataset consists of intracranial EEG
signals recorded from five dogs with naturally occurring epilepsy
using an ambulatory monitoring system. The iEEG recordings were
collected from 16 electrodes with a sampling rate of 400 Hz. Preictal
states were determined as 1 h before seizure onset and 1 h interictal
iEEG signals were restricted to be at least 1 week before or after
seizure in this dataset. All canines had experienced at least four
seizures, and a total of 44 seizures were recorded in this experiment.
The detailed information is shown in Table 2.

2.2. Methodology

The flow chart of the algorithm for seizure prediction using
the spatiotemporal information with the optimal features strategy
is shown in Figure 1, and the detailed steps are as below:

2.2.1. Pre-processing
The amplitude of scalp EEG signals is weak, making it

easily disturbed by the external environment, such as electrode
contact, power frequency interference, etc. In addition, various
physiological activities inside the human body also produce
artifacts, such as electrooculogram (EOG) artifacts caused by eye
movement and blinking, electromyogram (EMG) artifacts caused
by muscle shaking, and electrocardiogram (ECG) artifacts caused
by heart beating. These artifacts often affect and interfere with
the experimental results. In comparison, intracranial EEG signals
are less susceptible to interference, and their signals are relatively
clean and less affected by the environment. Therefore, different pre-
processing procedures are applied to intracranial and scalp EEG
signals, as described below:

The pre-processing of intracranial EEG signals is relatively
simple to avoid removing valuable information. Baseline drift was
removed by subtracting the mean value of the iEEG signal from
each data point (Wu et al., 2009). Then a simple fourth-order
Butterworth bandpass filter with a range of 0.5∼70 Hz was used
to filter the iEEG signal. For scalp EEG, in addition to the above-
mentioned pre-processing steps, the following measures were taken
to remove interference: a 50 Hz notch filter was used to remove
the power-line interference and independent component analysis
(ICA) has been developed to effectively remove artifacts in EEG
signals (Du et al., 2016). Artifacts such as eye movement, eye
blink, and muscle artifacts were removed by using ICA in the
EEGLAB toolbox (Delorme and Makeig, 2004) with the guidelines
(Urigüen and Garcia-Zapirain, 2015). Artifacts that cannot be
removed through signal processing, such as severe crying or intense
head movement, are excluded directly from the experimental data.

The results after pre-processing are shown in Figure 2. The EEG
signals become smoother, and the burr, interference as well as EOG
artifacts are effectively removed from the raw EEG signals.

The long-term continuous EEG recordings need to be
segmented. The duration of the segment is commonly performed
from 5 to 30 s. In our method, a 5 s non-overlapping moving
window was used to divide the clean EEG signals into 5 s epochs.
EEG analysis and feature extraction were performed with the
software package MATLAB R2016b (The MathWorks, Inc., Natick,
MA, United States) and its EEGlab and statistics toolbox.

2.2.2. Features extraction
Accurate extraction of the EEG features that can distinguish

between preictal and interictal states is the key to improving
the prediction accuracy. This paper analyses epileptic EEG
signals from multiple dimensions such as non-linear, time-
frequency and brain networks with the purpose of deeply
mining the signals’ spatiotemporal features. The temporal features
include the non-linear feature fuzzy entropy and the spectral
features; and the spatial features are jointly constructed from
the statistical parameters and the synchronization of the brain
network. The principle of these spatiotemporal features is as
follows:

2.2.2.1. Fuzzy entropy

Entropy originally measures the degree of chaos in a
thermodynamic system, and it can also describe the probability of
the occurrence of new events in a time-series signal. Fuzzy entropy
(FuzzyEn) was proposed by Chen et al. (2007) to measure the
complexity of time series, which is then used as a non-linear feature
to evaluate the complexity of EEG. FuzzyEn can be obtained by the
following steps:

For a time series of N points U = {u(i), i = 1, . . . ,N},
m-dimensional vectors X(i) are formed as:

X (i) = [u (i) , u (i + 1) , · · · , u (i + m− 1)]− u0 (i) , (1)

i = 1, 2, · · · ,N −m + 1

where u0(i) =
1
m
∑m−1

j = 0 u(ij) and m indicates the
embedding dimension.

The distance matrix dm
ij between vectors X(i) and X(j) is

constructed as:

dm
ij = d[X(i),X(j)] = max

p = 1,2,··· ,m

{
|u(i + p− 1)

− u0(i)| − |u(j + p− 1)− u0(j)|
}

(2)

where k indicates the sequence number of elements of the
reconstructed vector.

The similarity degree Am
ij can be calculated through the fuzzy

function A(x):

A(x) =

 1, x = 0

exp
[
−ln(2)

(
x
y

)2
]
, x > 0

(3)

Am
ij = exp

[
−ln(2) · (dm

ij /r)2
]
, j = 1, 2,N −m + 1 (4)

and j 6= i
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TABLE 1 Summary of the 14 patients in the CHB-MIT dataset.

Patients Gender Age No. of seizures Total record time (h) No. of electrodes

chb01 Female 11 7 40.55 23

chb03 Female 14 7 28 23

chb05 Female 7 5 39 23

chb06 Female 1.5 9 66.7 23

chb07 Female 14.5 3 68.1 23

chb08 Male 3.5 5 20 23

chb09 Female 10 4 67.8 23

chb10 Male 3 7 50 23

chb14 Female 9 8 26 23

chb15 Male 16 20 40 31

chb18 Female 18 6 36 22

chb20 Female 6 8 29 28

chb21 Female 13 4 33 28

chb23 Female 6 7 28 28

TABLE 2 Information for the canines in the Kaggle competition dataset.

Dogs No. of seizures Interictal states
(10 min)

Preictal states (10 min) No. of electrodes

Dog1 4 480 24 16

Dog2 7 500 42 16

Dog3 12 1440 72 16

Dog4 16 804 97 16

Dog5 5 450 30 15

FIGURE 1

The flow chart of the algorithm.
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FIGURE 2

The clean electroencephalogram (EEG) signals after pre-processing.

Define the function8m(r) as:

Cm
i (r) =

1
N −m

N−m + 1∑
j = 1,j6= i

Am
ij (5)

8m (r) =
1

N −m + 1

N−m + 1∑
i = 1

Cm
i (r) (6)

Similarly,8m+1(r)can be calculated by the above process. For a
finite set, FuzzyEn can be estimated by

FuzzyEn (m, r,N) = lnφm (r)− lnφm + 1 (r) (7)

This paper set the dimension m = 2 and the tolerancer = 0.2×
std
(
standard deviation

)
.

2.2.2.2. Power spectral density (PSD)

Welch method was used to calculate the PSD of EEG signals
with the advantages of fast calculation speed and multiple windows
for selection (Zhang and Parhi, 2016). In accordance with Welch’s
periodogram method, the PSD of the EEG segment in each
frequency band was estimated by the following steps (Welch, 1967):

First, the EEG signal xN(n), n = {0, 1, ,N − 1} is divided into
L segments. Each segment has M points and the PSD for the ith
segment is obtained as:

Pi (w) =
1
U

∣∣∣∣∣
M−1∑
n = 0

xNi (n) d2 (n) e−jwn

∣∣∣∣∣
2

, i = 1, 2,M − 1 (8)

where U = 1
M
∑M−1

n=0 d2
2(n) and d2(n) is the window function.

Then, the PSD of the xN(n) can be expressed as:

P (w) =
1
L

L∑
i = 1

Pi (w) (9)

Mathematically, the PSD in the ith frequency band (delta, theta,
alpha, beta, and gamma) is calculated as (Zhang and Parhi, 2016):

Pi = log
∑

ω∈ bandi

P (ω),
{

i = delta, theta, alpha, beta, gamma.
}

(10)

where delta (0∼4 Hz), theta(4∼8 Hz), alpha(8∼14 Hz),
beta(14∼30 Hz) and gamma (>30 Hz). Therefore, Rhythm
Power Spectral Density (RPSD) can be calculated according to
formula (10). Spectral power ratio (SPR) represents the difference
between the PSDs in two different bands in the same time window.
SPR of the spectral power in band k over that in band l can be
computed as:

Pk−l = Pk − Pl (11)

where Pk represents the PSD in band k; Pl represents the PSD in
the band l.

For a single-channel EEG signal, all possible combinations
of five frequency bands lead to a total number of 10 SPR and
5 RPSD features. SPR and RPSD features have been confirmed
to be good features for seizure detection (Bandarabadi et al.,
2014) and prediction (Parhi and Zhang, 2013). Compared to the
RPSD features, certain SPR features are stronger indicators of an
upcoming seizure (Zhang and Parhi, 2016).

2.2.2.3. Spatial features based on brain networks

PLV, as an independent of amplitude, is suitable to measure the
phase synchronization of EEG signals, which can be computed as
follow (Lachaux et al., 1999):

PLV(t, f ) =
1
N

∣∣∣∣∣
N∑

n = 1

exp
(
j
{
1φ

(
t, f
)})∣∣∣∣∣ (12)

where18(t, f ) is the instantaneous phase difference between a pair
of EEG channels at time t and frequency f. Taking channels 1 and 2
for example,18(t, f ) is calculated as:

18
(
t, f
)
= 8ch1

(
t, f
)
−8ch2

(
t, f
)

(13)

where 8ch1(t, f ) and 8ch2(t, f ) are the instantaneous phases of the
EEG signals in channel 1 and channel 2, respectively. Instantaneous
phase φ(t) is obtained by the Hilbert transform (Ihlen, 2009). The
value of PLV ranges from 0 to 1. The larger the PLV value, the
stronger the synchronization of the signal, and vice versa.

From the perspective of graph theory, the complex phase-
synchronized brain network established by PLV belongs to the
undirected connection graph, which contains rich topological
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FIGURE 3

Majority voting diagram.

A B

FIGURE 4

Comparison of the fuzzy entropy between the preictal and interictal states. (A) Is the fuzzy entropy for dogs in the Kaggle dataset and (B) is for
patients in the CHB-MIT dataset.

statistical features. In addition to the synchronization, 6 statistical
features including small-world attributes (Humphries et al., 2006),
global efficiency, degree, clustering coefficient, characteristics path
length and eigenvector centrality (Rubinov and Sporns, 2010) have
been chosen as the spatial features.

2.2.3. Optimal spatiotemporal feature set
selection

In summary, for each electrode, 23 spatiotemporal features,
which include 1 FuzzyEn, 5 RPSD, 10 SPRs, and 7 topological
statistical features are extracted every 5 s. As more and more
features have been extracted for multi-channel long-term EEG
signals, there are a large number of irrelevant redundant features in
the spatiotemporal features. This greatly reduces the performance
of the classifier, causing the curse of dimensionality. Therefore,
the feature selection algorithm is essential. The critical strategy
is to select the most important EEG features that can best
express the characteristics of preictal states, thereby removing the
redundant features to reduce the dimension of features. This paper
proposed a two-dimensional feature selection algorithm based
on independence and information capability in order to form
the optimal epilepsy spatiotemporal feature set. The stronger the
independence of the features (lower the correlation between the
features) contained in the feature set, the less redundancy of the
features is guaranteed. The larger the information content of the

feature set, the more comprehensive and effective features can
be obtained to measure the epileptic EEG signals. Therefore, the
spatiotemporal feature set selection algorithm should satisfy strong
independence and large information.

Pearson correlation coefficient (Barakchian et al., 2020) has
been used to calculate the correlation between features. The

FIGURE 5

Comparison of power spectral density (PSD) between preictal and
interictal states for five canines in the Kaggle dataset.
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FIGURE 6

Comparison of PSD between preictal and interictal states for 14
patients in the CHB-MIT dataset.

independence of the ith feature indican be evaluated as:

ri,k =

∑n
j = 1

(
fji − fi

) (
fjk − fk

)
√∑n

j = 1 (fji − fi)2(fjk − fk)2
(14)

i, k = 1, 2, · · · ,m(i 6= k); j = 1, 2, · · · , n.

indi =

m∑
k = 1

(1−
∣∣ri,k

∣∣) (15)

where ri,k represent Pearson correlation coefficient between two
features i and k with n samples; fji and fjk represent the value of
the features i and k at the jth sample, fiand fk represent the means
of fji and fjk, respectively. m is the number of all features and n is
the total number of samples.

In terms of the features’ information capacity, this paper
used the variance entropy product to measure the amount of
information (Daoud and Bayoumi, 2019). Variance is used to
evaluate the fluctuation of features, and entropy can measure the
complexity of features. First, calculate the variance and information
entropy of the ith feature. The variance σ2 (Xi) and the entropy
H (Xi) were defined by formulas (17) and (18), respectively. Then,
multiply the variance and entropy to measure the information of
features (formula 19). Finally, the features are selected with the
highest variance entropy product.

σ2 (Xi) =
1
N

N∑
j = 1

(
xi
(
j
)
− µi

)2 (16)

(Xi) = −

N∑
j = 1

p
(
xi
(
j
))

log2p
(
xi
(
j
))

(17)

inf i = ó (Xi) ·H (Xi) (18)

where Xi, µi and N are the ith feature, the mean of the ith
feature, and the total number of features, respectively. p

(
xi(j)

)
is

the probability mass function of the ith feature.

In the two-dimensional space with independence as the abscissa
and information amount as the ordinate, the features with high
independence and a large amount of information are screened out.
Scorei is defined to represent the independence and information of
the ith feature as:

Scorei = inf i·indi (19)

Then features with high Scores are selected to form the optimal
spatiotemporal feature set.

2.2.4. Classification and post-processing
SVM, as a common classifier in EEG signals, is used for

training and classification. The kernel function selected for SVM
in this paper is the default parameter radial basis function:
K(x, xi) = exp(−ã|x−xi|

2). In order to improve the recognition
performance of the algorithm, post-processing is to reprocess the
classification results of EEG signals in continuous time windows.
Specifically, a majority vote is performed on the output results
within a 1 min time window and the majority voting diagram is
shown in Figure 3.

2.3. Evaluation metrics

In order to verify whether the epileptic EEG spatiotemporal
feature set constructed by the algorithm proposed in this paper
can distinguish between the preictal and interictal states, four
indicators including accuracy rate (ACC), the area under the
receiver operating characteristic curve (AUC), F-score, and false
positive rate (FPR) were introduced to evaluate the performance.
The evaluation measures are defined as follows (Moridani et al.,
2019):

ACC =
TN + TP

TN + FP + TP + FN
× 100% (20)

F − score =
2TP

2TP + FP + FN
× 100% (21)

FPR =
FP

FP + TN
× 100% (22)

where TP, TN, FP, and FN refer to true positive, true negative, false
positive and false negative, respectively.

3. Results and discussion

3.1. Spatiotemporal feature analysis

3.1.1. Fuzzy entropy
Figure 4 shows the comparison of the fuzzy entropy between

the preictal states and the interictal states. The change of fuzzy
entropy for each sample is inconsistent. For Dog2, Dog3, and Dog4,
the fuzzy entropy in the preictal state was significantly greater than
that of the interictal state, making it relatively easy to distinguish
between the preictal and the interictal states. However, fuzzy
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A B

FIGURE 7

Comparison of the RPSD and DRPSD in Dog4. (A) Is the RPSD and (B) is the SPR. Note that the abscissa label of panel (B) represents the difference
values obtained by subtracting two different RPSDs. Specifically, TD, theta minus delta; AD, alpha minus delta; BD, beta minus delta; GD, gamma
minus delta; AT, alpha minus theta; BT, beta minus theta; GT, gamma minus theta; BA, beta minus alpha; GA, gamma minus alpha; GB, gamma minus
beta.

A

B

FIGURE 8

Comparison of the spatial features based on brain network between the interictal and preictal states. Patient number chb06 has been taking as an
example. (A) Brain network in the interictal state and (B) is in the preictal state.

entropy of Dog1 and Dog5 are basically overlapped in these two
states, making it difficult to distinguish between these two states.
For epileptic patients in the CHB-MIT dataset, except patients
chb01, chb14, and chb20, the fuzzy entropy in the preictal states
is greater than that of the interictal states. The experimental results
show that the fuzzy entropy of the epileptic EEG in most of the
patients is significantly larger than the interictal states, indicating

that the brain activity has changed before the seizure. And the
higher complexity of EEG occurs in the preictal states, indicating
the upcoming seizure. The experimental results also show that
the fuzzy entropy of epileptic EEG signals has large individual
differences. Some samples have good classification effect, while
others are not sensitive, making it not suitable for each subject.
Therefore, although fuzzy entropy can be regarded as an important
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feature to predict epileptic seizures, it is not suitable as a single
feature of epileptic EEG for seizure prediction.

3.1.2. PSD
Figure 5 shows the comparison of PSD between the preictal

and interictal iEEG signals for five canines. The results indicate
that the PSDs in the interictal states were higher than that in the
preictal states. And there are more outliers in both the preictal and
interictal states for Dog4. The individual differences exist in the
PSD of epileptic EEG signals. As shown from Figure 5, there is
some overlap in the overall trend between the interictal states and
the preictal states for each subject. Figure 6 compares the PSD of
preictal and interictal scalp EEG of 14 patients in the CHB-MIT
database. Most of these patients had significant differences in PSD
between the preictal and interictal states. Especially for patients
chb01, chb03, chb07, chb08, and chb09, the PSD of their EEG
signals could be available for distinguishing between preictal and
interictal states. However, for an individual patient (such as patient
chb21), it is almost impossible to classify the preictal and interictal
states using PSD due to the overlapping of PSD in these two states.
Therefore, only using PSD as a feature to classify the interictal and
the preictal EEG signals is inappropriate and cannot achieve good
prediction accuracy.

In order to further analyze the PSD variation of each rhythm,
this paper calculated the RPSD and SPR of each subject. Taking
Dog4 as an example, the results are shown in Figure 7. Except
for theta rhythm, RPSD is higher in the interictal states than in
the preictal states. RPSD of beta and gamma rhythms have more
outliers in the preictal states. Meanwhile, the RPSD of theta has
no significant differences between the preictal and the interictal
states while the SPR associated with theta rhythm was significantly
different. For BT (beta-theta) and AT (alpha-theta), the SPTs in the
interictal states are greater than those in the preictal states, and
more outliers appear in preictal states. These results suggest that BT
and AT may be good features to distinguish between interictal and
preictal states. However, some other SPRs, such as GA (gamma-
alpha) and GB (gamma-beta), are difficult to distinguish these
two states. For each subject, some specific features may be more
suitable. Therefore, RPSD and SPR are combined to further screen
the optimal features set.

3.1.3. Spatial features based on brain networks
PLV which is a good measure of phase synchronization was

used to construct brain networks in this paper. CHB-MIT scalp
EEG dataset has electrode position information, which makes the
display of the constructed brain network more convenient and
intuitive. Therefore, taking a patient in this dataset as an example
to compare the spatial features between the preictal and interictal
states, and the results are shown in Figure 8. The results showed
that the synchronization between the electrodes in the preictal
states was higher than that in the interictal states, indicating
that the abnormal EEG signals had begun to spread and affect
more brain regions before the seizure onset. Spatial coupling and
connectivity can also be observed from the brain network topology
drawn from the adjacency matrix. Topological connectivity has
been altered in the preictal states with significant enhancement and
been covered with most areas of the brain. The results show that the
statistical characteristics of network topology can effectively extract

epilepsy information before seizures and can be further applied to
seizure prediction.

3.2. Comparing the optimal
spatiotemporal features selection
algorithms

An ablation study is carried out to verify the feature
selection algorithm on both the Kaggle competition and CHB-
MIT datasets. Four feature selection schemes, namely without
features selection, independence-based, information-based, and the
feature score proposed in this paper, are compared. The results
are shown in Table 3, the accuracy rate without feature selection
is the lowest, followed by independent-based or information-
based feature selection with an accuracy rate below 80%. The
feature score algorithm composed of the independence and the
information achieved the highest accuracy, reaching 98.01% on
the Kaggle competition dataset and 95.93% on the CHB-MIT
dataset. The experimental results illustrate that our proposed
feature selection algorithm can effectively extract the optimal
spatiotemporal features and accurately distinguish between the
preictal and interictal states.

3.3. Prediction performance verification

3.3.1. Performance evaluation of seizure
prediction based on the Kaggle dataset

Table 4 shows the performances of preictal and interictal iEEG
signal classification for five epileptic dogs on the Kaggle dataset.
Our method achieved an average ACC of up to 98.01%, an average
AUC of 0.96 and an average F-score is 98.30% with an FPR of
only 3.83%. Dog4 has the highest prediction accuracy, reaching
100%. The reason may be that, on the one hand, our proposed
spatiotemporal features can better express the epileptic information
about impending seizures for Dog4; on the other hand, Dog4 has
the largest amount of preictal iEEG data (16 seizures), making
more data available for training and testing, which improves the
performance of the classifier. Compared to other canines, the
accuracy of Dog5 is relatively low, especially the FPR is up to 11%.
The reason may be the small sample size (only 5 seizures occurred).
Alternatively, it is also possible that Dog5 has a damaged electrode
that has been removed in the pre-processing, which may lead to
a loss of spatial information. Overall, the optimal spatiotemporal
features proposed in this paper can well distinguish the preictal and
interictal states.

To explore the impact of features on epilepsy prediction, an
ablation study is conduct to compare our proposed method with
two other methods that use either temporal features or spatial
features alone. As shown in Table 5, only temporal features are
used as the input to the classifier with average accuracy, AUC,
F-score, and FPR of 87.7, 0.84, 87.91, and 4.42%, respectively. Using
only brain network-based spatial features to distinguish between
interictal and preictal states, the results yielded an average accuracy
of 81.75%, an average AUC of 0.73, an F-score of 80.91%, and an
FPR of 19.64%. It is evident that our proposed method which fuses
spatial and temporal features greatly improves the performance of
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TABLE 3 Comparison of four feature selection schemes.

Dataset ACC (%)

Without features
selection

Independence-based Information-based Feature score

Kaggle competition 69.86± 27.19 78.07± 8.27 75.84± 4.06 98.01± 2.60

CHB-MIT 66.14± 18.11 73.57± 3.57 79.96± 2.75 95.93± 5.74

TABLE 4 Performance evaluation of our proposed method on the Kaggle dataset.

Subjects ACC (%) AUC F-score (%) FPR (%)

Dog1 99.65± 0.69 0.99± 0.01 99.66± 0.69 0.70± 1.39

Dog2 96.28± 9.68 0.93± 0.19 97.03± 7.70 7.43± 19.35

Dog3 99.77± 0.60 0.99± 0.01 99.76± 0.61 0.13± 0.44

Dog4 100.00± 0.00 1.00± 0.00 100± 0.00 0.00± 0.00

Dog5 94.34± 7.93 0.89± 0.16 95.04± 6.77 11.04± 15.94

Total 98.01± 2.60 0.96± 0.05 98.30± 2.19 3.83± 5.05

TABLE 5 Comparing the proposed spatiotemporal features method for seizure prediction to the temporal or spatial features method on the Kaggle
dataset.

Features ACC (%) AUC F-score (%) FPR (%)

Spatial features Brain networks 81.75± 8.72 0.73± 0.12 80.91± 10.89 19.64± 15.01

Temporal features FuzzyEn+ PSD 87.7± 4.17 0.84± 0.08 87.91± 5.12 4.42± 5.09

Our method FuzzyEn+ PSD+ Brain networks 98.01± 2.60 0.96± 0.05 98.30± 2.19 3.83± 5.05

TABLE 6 Performance evaluation of our proposed method on the CHB-MIT dataset.

Patients ACC (%) AUC F-score (%) FPR (%)

chb01 99.95± 0.11 0.99± 0.01 99.95± 0.11 0.05± 0.11

chb03 97.36± 1.41 0.96± 0.01 98.32± 1.36 0.15± 0.33

chb05 99.36± 0.48 0.99± 0.01 99.36± 0.48 0.39± 0.87

chb06 99.65± 0.61 0.99± 0.01 99.65± 0.60 0.28± 0.58

chb07 85.19± 14.50 0.80± 0.29 74.14± 12.51 22.22± 38.49

chb08 85.28± 20.01 0.71± 0.40 87.77± 13.51 19.50± 43.60

chb09 88.33± 21.51 0.77± 0.43 79.76± 38.67 1.18± 2.36

chb10 99.72± 0.38 0.99± 0.01 99.71± 0.38 0.56± 0.77

chb14 91.09± 19.35 0.82± 0.38 93.74± 13.00 17.82± 38.69

chb15 99.12± 0.49 0.98± 0.01 99.16± 0.78 0.94± 1.25

chb18 99.48± 0.86 0.98± 0.02 99.49± 0.84 0.90± 1.81

chb20 99.17± 0.69 0.98± 0.01 99.16± 0.71 0.22± 0.49

chb21 98.57± 1.15 0.98± 0.01 98.68± 1.01 1.78± 1.45

chb23 99.72± 0.28 0.99± 0.01 99.73± 0.27 0.22± 0.50

Average 95.93± 5.74 0.92± 0.10 94.97± 8.40 4.73± 8.25

TABLE 7 Comparing the proposed spatiotemporal features method for seizure prediction with only temporal or spatial features on the CHB-MIT
dataset.

Features ACC (%) AUC F-score (%) FPR (%)

Temporal features FuzzyEn+ PSD 86.40± 4.78 0.81± 0.05 84.49± 5.78 7.01± 6.45

Spatial features Brain networks 82.19± 4.79 0.77± 0.10 82.66± 4.93 11.17± 8.74

Our method FuzzyEn+ PSD+ Brain networks 95.93± 5.74 0.92± 0.10 94.97± 8.40 4.73± 8.25
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TABLE 8 The comparison results between the proposed method and other existing state-of-the-art techniques.

References Features Classifier Dataset ACC (%) AUC F-Score (%) FPR (/h)

Usman et al., 2021 CNN, Statistical and spectral
moments

Ensemble of SVM, CNN and
LSTM

Kaggle 95.53 − SPE:95.81SEN:94.20 −

CHI-MIT 96.05 − SPE:96.28SEN:95.65 −

Hussein et al., 2021 Continuous wavelet
transform

SDCN Kaggle − 0.928 SPE: 85.6SEN:88.45 −

CHB-MIT 98.82 0.97 SPE:98.90SEN:98.75 0.06

Xu et al., 2020 CNN CNN Kaggle − 0.981 SEN:93.5 0.063

CHB-MIT − 0.988 SEN:98.8 0.074

Truong et al., 2018 Spectrogram CNN Kaggle − − SEN:75 0.25

CHB-MIT − − SEN:81.4 0.06

This manuscript FuzzyEn+ PSD+ Brain
networks

SVM Kaggle 98.01 0.96 98.3 0.038

CHB-MIT 95.93 0.92 94.97 0.047

seizure prediction. Therefore, it is necessary to consider both spatial
and temporal features when analyzing epileptic EEG signals.

3.3.2. Performance evaluation of seizure
prediction based on the CHB-MIT dataset

Table 6 shows that our approach has also achieved a good
prediction performance on the CHB-MIT scalp EEG signals. The
results obtained an average accuracy, AUC, F-score and FPR of
95.93%, 0.92, 94.97%, and 0.0473/h, respectively. The prediction
accuracy of most patients exceeds 99% such as chb01, chb05,
chb06, chb10, chb15, chb18, chb20, and chb23. However, not all
patients have good prediction accuracy such as chb07, chb08, and
chb14, which have an accuracy of less than 90%. The reason
may be that these patients had relatively few training samples
(3−5 seizures). Among them, the chb07 with only three seizures
had the lowest accuracy of 85.12%. And FPR may be another
reason for this unsatisfactory classification effect of chb07 and
chb08. For these two patients, the FPR shows that it is easy
to misjudge the interictal states as preictal states. Overall, our
proposed approach was validated for predicting epileptic seizures,
indicating that the optimal spatiotemporal feature set is effective.
It was also found that the prediction performance varies greatly
between different patients.

Table 7 shows that the average accuracy, AUC, F-score and
FPR of using temporal features are 86.4, 0.81, 84.49, and 7.01%,
respectively. While using the spatial features related to the brain
network, the average accuracy, AUC, F-score and FPR are 82.19,
0.77, 82.66, and 11.17%, respectively. These results are consistent
with that on the Kaggle dataset, indicating that the optimal
set generated by fusing spatiotemporal features can significantly
improve the prediction performance of epileptic seizures.

3.3.3. Comparison with existing state-of-the-art
methods

Table 8 provides the comparison results on seizure prediction
performance between our method and other existing state-of-the-
art methods using the same datasets (American epilepsy society-
Kaggle iEEG dataset and the CHB-MIT scalp EEG dataset). Syed
(Usman et al., 2021) performed a deep learning approach that

extracts both the handcrafted and the automated features as
the input to an ensemble classifier of SVM, CNN, and LSTM,
resulting in an accuracy of 95.53 and 96.05% on Kaggle and CHB-
MIT datasets, respectively. A semi-dilated convolutional network
(SDCN) was proposed by Hussein et al. (2021) which EEG signals
were converted into a mage-like format by continuous wavelet
transforms. The results finally achieved the AUC of 0.928 on
the Kaggle dataset and a high accuracy of 98.82% on the CHB-
MIT dataset. Xu et al. (2020) developed an end-to-end deep
learning method with a higher AUC of 0.981 and 0.988 on the
Kaggle dataset and CHB-MIT dataset, respectively. Truong et al.
(2018) proposed a convolutional neural network extracting time
and frequency domain information by using short-time Fourier
transform (STFT), which has only obtained an average sensitivity
of 75% and FPR of 0.21/h on the Kaggle dataset and the average
sensitivity of 81.4% on CHB-MIT dataset.

Compared to the other existing state-of-the-art methods, our
proposed approach achieves better FPR on both of these two
datasets, illustrating that the probability of our error warning in
predicting seizures is the lowest. Meanwhile, our method also
obtains better performance than other methods on the Kaggle
database. For the CHB-MIT dataset, the accuracy of our model is
slightly lower than that of Hussein et al. (2021) and Usman et al.
(2021), but the complex features and three classifiers combination
required in the method proposed by Usman has caused high
complexity and the sensitivity; and Hussein’s paper only achieved
the accuracy of 88.45% on iEEG dataset. Furthermore, both of these
two methods are not provided the indicator FPR. In summary,
compared with the existing advanced techniques, our method still
has certain advantages in seizure prediction on both intracranial
and scalp EEG signals.

4. Conclusion

In this paper, epileptic spatiotemporal information is deeply
mined from comprehensive multiple dimensions of time-
frequency, non-linearity and brain network. A novel prediction
model is proposed by using spatiotemporal information with
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optimal features strategy for seizures early warning. The optimal
spatiotemporal features set was formed by screening the high
independence and rich information of the extracted features. This
feature set has been input into SVM for training and recognition.
On the Kaggle intracranial EEG dataset, this model achieved an
average accuracy of 98.01%, AUC of 0.96, F-Score of 98.3% and
FPR of 0.0383/h, respectively; and On the CHB-MIT scalp EEG
dataset, the average accuracy, AUC, F score and FPR were 95.93%,
0.92, 94.97%, and 0.0473/h, respectively. An ablation study was
performed to compare our model with two other methods using
only temporal features or spatial features. The results show that
our method achieves more effective performance. Compared to
other existing state-of-the-art approaches on the same datasets, this
present method has certain advantages in prediction performance.
It is further confirmed that our spatiotemporal information can
effectively identify the preictal states, which is helpful to the early
warning of seizures for the clinical epileptic patients.
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Sciences, Chongqing University of Posts and Telecommunications, Chongqing, China, 3 School of Civil 
Engineering, Guangdong Communication Polytechnic, Guangzhou, China

Introduction: Medical image segmentation is an important tool for doctors to 
accurately analyze the volume of brain tissue and lesions, which is important for 
the correct diagnosis of brain diseases. However, manual image segmentation 
methods are time-consuming, subjective and lack of repeatability, it needs to 
develop automatic and reliable methods for image segmentation.

Methods: Magnetic Resonance Imaging (MRI), a non-invasive imaging technique, 
is commonly used to detect, characterize and quantify tissues and lesions in the 
brain. Partial volume effect, gray scale in homogeneity, and lesions presents a 
great challenge for automatic medical image segmentation methods. So, the 
paper is dedicated to address the impact of partial volume effect and multiple 
sclerosis lesions on the segmentation accuracy in MRI. The objective function 
of the improved model and the post-processing method of lesion filling are 
researched based on the fuzzy clustering space and energy model.

Results: In particular, an energy-minimized segmentation algorithm is proposed. 
Through experimental verification, the AR-FCM algorithm can better overcome 
the problem of low segmentation accuracy of the RFCM algorithm for tissue 
boundary voxels and improve the segmentation accuracy of this algorithm. 
Meanwhile, a multi-channel input energy-minimization segmentation method 
with lesion filling and anatomical mapping is further proposed.

Discussion: The feasibility of the lesion filling strategy using post-processing can be 
confirmed and the segmentation accuracy is increased by comparison experiments.

KEYWORDS

image segmentation, MRI, anatomical atlas, lesions filling, energy

1. Introduction

In recent years, brain diseases are becoming more and more dangerous to human health, and 
their prevention and treatment are gradually becoming the most important concerns in the 
medical field. The number of patients with brain diseases such as cerebral thrombosis, cerebral 
infarction and multiple sclerosis accounts for 30% of the total number of human diseases (Feigin 
et al., 2021). Multiple sclerosis (MS) is one of the chronic autoimmune diseases of the central 
nervous system. It is characterized by the demyelination of axons in the cerebral cortex and other 
gray matter (GM) and white matter (WM) regions, forming focal inflammatory lesions 
accompanied by the production of symptoms such as pain, impaired mobility, and poor vision 
(Lassmann, 2018). According to research, the incidence of this disease has been increasing 
worldwide, and the number of patients with multiple sclerosis currently exceeds more than 2 
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million cases (Browne et al., 2014). In research and clinical practice, 
magnetic resonance imaging (MRI) is often used as the most important 
tool for the diagnosis of MS because of its high sensitivity, good imaging 
quality, and low radiation output, which can well detect MS plaques and 
quantify the number and volume of lesions (Filippi et al., 2016). In 
general, MRI sequences are divided into different categories, including 
T1-weighted, T2-weighted, proton density (PD), and fluid attenuation 
inversion recovery (FLAIR). MS lesions usually appear as areas of low 
signal intensity (low signal to normal white matter) on T1-weighted 
images and focal areas of high signal intensity (high signal) on 
T2-weighted images, reflecting tissue water content. Except for 
cerebrospinal fluid (CSF) suppression, FLAIR images have similar 
features to T2-w images (Poser et al., 1983). The identification of the 
number and volume of MS lesions is a critical process in diagnosis, and 
for the presence of white matter lesions, they are usually depicted 
manually by specialists in hospitals (Wang et  al., 2019). However, 
manual segmentation of MS lesions is very time consuming and there 
is a large variation in the depiction of different experts (Gva et al., 2020), 
in contrast, automated segmentation of MS lesions can save time and 
reduce the dependence on the observer. However, the presence of 
grayscale unevenness and noise in MRI, among others (Bajracharya and 
Rawal, 2015), make accurate segmentation a challenge.

Image segmentation is a common method for extracting tissues 
such as white matter, gray matter, and CSF from MRI images for 
quantitative brain tissue analysis (Dora et al., 2017). Over that last 
decades, many researchers focus on medical image segmentation, 
which has led to the rapid development of medical image techniques. 
Brain tissue segmentation methods can be broadly classified into five 
categories: manual segmentation, region-based segmentation 
methods, threshold-based segmentation methods, clustering-based 
segmentation methods, and methods with feature extraction and 
classification (Jiang et  al., 2022). In brain tissue segmentation, 
clustering methods are statistical techniques based on pixels or voxels 
and are usually processed for T1-weighted MR images. Among the 
clustering algorithms based on minimization objective functions, the 
most theoretically sound and most applied clustering method is the 
Fuzzy C-Means (FCM) algorithm. The FCM algorithm was proposed 
by Dunn et al. Although it has better segmentation performance than 
hard clustering methods, it has poor noise immunity and does not 
segment noisy MR images well (Tian et  al., 2021). To reduce the 
sensitivity of the FCM algorithm to noise, Pham proposed a new 
objective function for adding spatial context to the fuzzy c-mean 
algorithm (Pham, 2001). Its objective function includes a penalty term, 
which is similar to the Markov random field prior, and is consistent 
with the desired behavior of the affiliation function determined by the 
values of the fuzzy factor parameters thus improving it compared to 
the FCM algorithm, but is more sensitive to the boundaries of the 
organization (Dobson and Giovannoni, 2019). However, these classical 
segmentation methods also face some challenges when dealing with 
images in the presence of lesions, as the intensity of the lesion portion 
is usually similar to that of normal tissue (Zhao et al., 2018).

In order to handle brain MRI that contain both grayscale 
unevenness, noise, and MS focal regions, this paper presents 
anatomical mapping based on the RFCM algorithm, as well as a focal 
filling strategy using post-processing, which is applied to segment 
normal brain tissue on brain MRI images suffering from MS. It is 
demonstrated that the improved RFCM algorithm strategy improves 
the accuracy of brain MRI image segmentation.

2. Methods

2.1. Atlas Robust Fuzzy C-mean algorithm

The fuzzy clustering space model is an earlier method that uses 
penalty terms to achieve smoothing of images without being too 
sensitive to noise, but the model is less effective for segmentation of 
tissue boundary parts, which is due to the volume effect that can exist 
in magnetic resonance images, and the volume effect causes the 
boundaries of brain structures in images to become discontinuous and 
unclear (Wang et  al., 2018). To address this problem, an energy 
minimization algorithm based on anatomical mapping is proposed in 
this paper. The model links fuzzy clustering and statistical probability 
probability mapping by constructing a constraint term in the objective 
function of the fuzzy clustering space model, called the AR-FCM 
algorithm (Atlas Robust FCM, AR-FCM). This model inherits the 
advantages of the fuzzy clustering space model, uses statistical 
probability mapping to constrain the segmentation of brain tissue, and 
uses morphological mapping to redistribute voxels at tissue boundaries 
after segmentation to reduce the effect of partial volume effects. The 
flow of the method is shown in Figure 1 below.

2.2. S-Lesion Filling algorithm

From an image processing perspective, MS lesions can affect tissue 
segmentation, causing GM and WM to be classified in the wrong 
category. MS lesions may affect the estimation of segmentation 
parameters, leading to changes in tissue boundaries (Ma et al., 2010; 
Prados et  al., 2016), which can affect subsequent morphological 
studies, including atrophy measurements, tissue volume 
measurements, etc. Therefore, lesion filling is needed to reduce the 
negative impact that MS lesions may have on image analysis in order 
to improve tissue segmentation accuracy (Tian et al., 2022). Briefly, 
the lesion filling process uses WM image intensities to synthetically 
estimate filled WM lesions.

S-Lesion Filling (SLF) algorithm is a combined global and local 
method for filling WM lesions (Valverde et al., 2014; Makropoulos 
et al., 2018). The filling process of the lesions was performed by taking 
each axial slice that constituted the 3D image and calculating the mean 
and standard deviation of the NAWM tissue signal intensity. The 
calculated mean and standard deviation values are used to generate a 
normal distribution with a mean value equal to the calculated NAWM 
mean intensity and a standard deviation equal to half of the calculated 
NAWM standard deviation. The standard deviation was always fixed 
to half of the WM mean, independent of the data set used, and this 
value was chosen empirically to balance the accuracy of the method 
for 1.5 and 3 T images. The lesion voxel intensities of the current image 
slice were then replaced by random values of the generated 
distribution. The process is repeated until all image slices are 
completed. The flow of the algorithm is shown in Figure 2.

2.3. Lesion Filling and Atlas RFCM 
algorithm

Pathophysiological studies have shown that conventional 
magnetic resonance imaging has limited sensitivity to small 
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structural changes, both in lesions and normal gray and white 
matter (Fan et al., 2016; Weiskopf et al., 2021). This suggests that 
quantitative volumetric analysis of brain tissue and lesions directly 
from MRI images is not feasible and therefore requires extraction 
of brain structures such as cerebrospinal fluid, white matter, gray 
matter, and lesions using image segmentation techniques prior to 
quantitative analysis (Wang et al., 2014). Multiple sclerosis lesions 
are an autoimmune neurodegenerative disease whose main feature 
is the presence of white matter lesions (WM Lesion, WML), which 
are damaged white matter tissues associated with increased CSF 
levels. Some classical segmentation methods also face some 
challenges when dealing with images with lesions, because the 
intensity of the lesion part is often similar to that of normal tissue 
and the AR-FCM algorithm proposed in this paper does not 
segment the brain tissue with lesions well. In general, MS lesions in 

FLAIR sequences are less severe than CSF, exhibit high signal 
abnormalities in GM, and can be identified based on contrast (Pohl 
et al., 2007; Fransen et al., 2020). Based on this feature, lesion areas 
can be  processed using focal filling prior to segmentation, 
effectively reducing misclassification of CSF and white matter 
tissue. According to this strategy, an energy minimization 
algorithm based on lesion filling and anatomical mapping, namely 
the LFA-FCM algorithm (Lesion Filling and Atlas RFCM), is 
proposed in this paper. The method requires input T1-w images 
and FLAIR images, screening out focal regions on FLAIR images 
using the segmentation lesion method, and then using lesion filling 
to fill in and replace abnormal values in T1-w images to construct 
healthy brain MRI images, and finally completing the segmentation 
using the AR-FCM method. The flow of the method is shown in 
Figure 3.

FIGURE 1

Flowchart of energy minimization algorithm based on anatomical mapping.

FIGURE 2

Flow chart of lesion filling.
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2.4. Evaluation indicators

Three commonly used evaluation metrics are selected to measure 
the segmentation results of this method and other methods, namely 
Dice similarity coefficient (DSC), Volumetric similarity (VS), and 
Hausdorff distance (HD). These three metrics are chosen because the 
Dice coefficient is sensitive to the internal organization of the 
segmentation, while the Hausdorff distance is sensitive to the 
boundaries of the segmentation, and the volumetric similarity shows 
the overall segmentation effect.

The Dice similarity coefficient is an ensemble similarity measure 
function that is widely used to calculate the similarity of two samples 
and takes values in the range of [0,1]. In image processing, the Dice 
coefficient is mainly used to measure the accuracy of segmentation 
within a tissue. The Dice similarity coefficient is calculated by both the 
gold standard image (GT) and the computational segmentation mask 
(SEG) as follows:

 
DSC

SEG GT
SEG GT

=
∩
∪

2

 
(1)

The closer the Dice similarity coefficient is to 100 indicates that 
the segmentation results are closer to those of the expert manual 
segmentation. To make the results more accurate, the DSC value is 
multiplied by 100 in this paper.

Hausdorff distance is a measure describing the degree of similarity 
between two sets of points, and it is a defined form of distance between 
two sets of points. It is mainly used in image segmentation to measure 
the segmentation accuracy of the boundary. It is calculated by the 
distance (95th percentile) between the segmentation points in the gold 

standard image and the segmentation points in the segmentation 
mask as follows:

 
HD p p

p SEG p GTc c

= − ′
∈ ∈′
max min

 
(2)

The closer the Hausdorff distance is, the better the segmentation 
is indicated.

The volume similarity is also calculated by both the gold standard 
image and the computed segmentation mask, and the more the value 
converges to 100, the better the segmentation effect:

 
VS GT SEG

GT SEG
= −

−
+

1
 

(3)

3. Results

In this paper, two sets of experiments were conducted, and the 
first set of experiments was selected to compare the AR-FCM 
algorithm with the RFCM algorithm, and the segmentation categories 
were set to three categories: CSF, gray matter and white matter, and 
the parameter settings of the two methods are shown in Table 1 below. 
The second group of experiments is to use RFCM algorithm, AR-FCM 
algorithm and LFA-FCM algorithm for brain tissue segmentation 
respectively, and the parameter settings of the three methods are 
shown in Table 2 below. The parameters of the AR-FCM algorithm as 
well as the LFA-FCM algorithm were required to be consistent in the 
experiment, which was to verify whether the strategy of increasing 

FIGURE 3

Flow chart of energy minimization algorithm based on lesion filling and anatomical mapping.
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lesion filling could improve the accuracy of tissue segmentation with 
the same parameters. Two experiments were done on the MICCAI 
2018 MRI brain segmentation challenge data set, and the hardware 
platform and software used for the experiments are shown in Table 3.

In Figure 4A, shows the original image, and Figure 4B,C show the 
results of AR-FCM and RFCM algorithm segmentation. Comparing 
the gold standard image and the result image obtained by the two 
algorithms, observing the part of the image (c) circled by green circles, 
we can see that many gray matter parts of the RFCM algorithm are 
divided into white matter, which leads to too low accuracy of gray 
matter segmentation and too high accuracy of white matter 
segmentation. On the contrary, the gray matter around CSF was 
preserved because AR-FCM used morphological maps to re-divide 
part of the volume of tissue after tissue segmentation. The second 
column from left to right is the result of segmentation of cerebrospinal 
fluid, gray matter and white matter for RFCM, and the third column 
from left to right is the result of segmentation of cerebrospinal fluid, 
gray matter and white matter for AR-FCM. The comparison between 
the second and third columns above shows that RFCM is less effective 
than AR-FCM in segmenting gray and white matter. Moreover, 
AR-FCM is better for the tissue segmentation between the boundaries 
and retains more details, which is achieved by using morphological 
mapping to re-divide some of the volume regions. The method in this 
paper improves the segmentation accuracy of the RFCM algorithm 
and requires only fewer iterations than the RFCM algorithm. However, 
the part circled in red in image (b) is incorrectly segmented as gray 
matter tissue, which is the presence of focal tissue in the data set used. 
It can be seen that the AR-FCM algorithm also does not segment the 
brain tissue with the presence of lesions better.

In addition, other examples in the data set are processed in this 
paper using the AR-FCM algorithm. Figure 5 shows the results of 
applying the energy-minimization segmentation algorithm based on 
anatomical mapping to other examples in the data set. The first and 
third rows are the T1-w images of the subject, and the second and 

fourth rows are the results of segmentation using the AR-FCM 
algorithm. The black part is CSF, the light gray part is gray matter, and 
the white part is white matter. Comparing the T1-w images with the 
segmented result images, it can be seen that the segmented parts of 
the brain tissue are more consistent with the structures shown in the 
T1 images. In addition, this method is stable and fully automated, 
which can yield satisfactory results in practical applications.

Table 4 shows the mean DSC, VS and HD values obtained by the 
RFCM algorithm for each subject, and Figure 6 show the results of the 
data visualization in the table, respectively. By comparing the average 
DSC, VS, and HD values obtained by the two clustering algorithms, 
AR-FCM and RFCM, the overall data shows that the average, as well 
as the values obtained by the AR-FCM algorithm are higher than 
those of the RFCM algorithm, which indicates that the overall 
performance of the AR-FCM algorithm is better than that of the 
RFCM algorithm. The red box plots in Figure 6A, through image (c), 
represent the AR-FCM segmentation results, and the gray box plots 
represent the RFCM segmentation results. It is found that both 
algorithms have higher segmentation accuracy for white matter 
compared to other tissues, while the AR-FCM algorithm has higher 
average DSC values for CSF, gray matter, and white matter, which 
indicates that the AR-FCM algorithm is more accurate for segmenting 
voxels within brain tissue, which is related to the statistical probability 
mapping as a constraint. The results in Figure  7 show that the 
AR-FCM algorithm segmented all three tissues to obtain higher 
Hausdorff distance values than the RFCM algorithm, and the 
AR-FCM algorithm segmented each tissue to obtain a minimum HD 
value greater than the RFCM algorithm obtained a maximum HD 
value. It indicates that the AR-FCM algorithm is more accurate for 
segmentation of boundaries, and verifies the feasibility of the strategy 
of post-processing and re-dividing some volume regions using 
morphological spectrograms in this paper. In terms of VS scores, the 
difference between the AR-FCM algorithm and the RFCM algorithm 
for CSF and GM tissue segmentation is not significant, but the 
AR-FCM algorithm has improved the average VS score for WM. In 
conclusion, AR-FCM is better than RFCM for segmentation of brain 
tissues in MRI images.

The results of the second group experiments with RFCM, 
AR-FCM and LFA-FCM are shown in Figure 8A. shows the gold 
standard image provided in the dataset,  Figure 8B–D show the brain 
tissue segmented using RFCM, AR-FCM, and LFA-FCM, respectively. 
Comparing image (a) with image (b), the regions circled in green 
belong to gray matter tissue in the gt image, while the RFCM 
algorithm classifies all these regions as white matter, which will result 
in large volume measurements of white matter tissue and small 
volume measurements of gray matter tissue. Observe image (c) and 
image (d), the regions circled in red in (c), which belong to white 
matter tissue in the gt image, and the AR-FCM algorithm incorrectly 
divides these regions into gray matter tissue. Image (d) shows the 
result of improved segmentation by the AR-FCM algorithm using 
lesion filling. It can clearly be seen that the incorrectly segmented gray 
matter tissue in image (c) is correctly segmented into normal white 
matter tissue after processing using focal filling, which indicates that 
the segmentation accuracy of white matter tissue with gray matter 
tissue can be improved using the post-processing focal filling strategy.

Figure 7 shows the segmentation results of other examples in the 
LFA-FCM algorithm segmentation dataset. The first and third rows are 
the T1-w images of the subjects, and the second and fourth rows are 

TABLE 1 RFCM and AR-FCM parameter setting table.

Methods q γ w β n thr

RFCM 2 - - 1 500 0.001

AR-FCM 2 0.025 1 - 200 0.001

TABLE 2 Parameter settings for RFCM, AR-FCM and LFA-FCM methods.

Methods q γ w β n thr

RFCM 2 – – 1 500 0.001

AR-FCM 2 0.025 1 – 200 0.001

LFAR-FCM 2 0.025 1 – 200 0.001

TABLE 3 Table of experimental software and hardware parameters.

Category Parameters

Operating system Windows 10

CPU Intel(R) Core(TM) i5-9400F CPU 2.90GHz

RAM 16GB

Simulation software Matlab 2019b
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the results of segmentation using the LFA-FCM algorithm. The black 
part is the CSF, the light gray part is the gray matter, and the white part 
is the white matter. From the above figure, it can be seen that the 
method segmented the brain tissue better, and it is almost consistent 
with the brain tissue structure demonstrated by the T1-w images.

The results of segmentation by the three methods were quantitatively 
analyzed. The results of the three methods to obtain the three index 
scores are shown in Table  5, and Figure  9 show the results of data 
visualization in the table, respectively. By the results shown,  Figure 9A, 
LFA-FCM obtained the highest DSC scores, especially the DSC values 
of segmented white matter tissue and gray matter tissue, and the worst 
results obtained in all seven sets of images processed were better than the 
best performance obtained by the other two methods. This is directly 
related to the operation of adding white matter filling before 

segmentation, indicating that lesion filling can effectively reduce the 
effect of T1-w multiple sclerosis lesions with low signal intensity on 
automatic brain tissue segmentation, thus improving the segmentation 
accuracy of the segmentation algorithm for white and gray matter 
tissues. As seen in Figure 9B,  the LFA-FCM algorithm is an overall 
improvement in the accurate measurement of the volume of each part of 
the brain tissue. Figure (c), shows the average HD values obtained by the 
three algorithms, and although the average Hausdorff distance calculated 
by RFCM is closer, the overall result is still worse than the performance 
of the other two methods. In particular, the CSF tissue is far better than 
on the other two methods. In Figure 9C,  the difference between the 
average Hausdorff distance calculated by the two methods, AR-FCM and 
LFA-FCM, is not significant, indicating that the white matter filling 
algorithm is not effective in improving the border tissue segmentation.

FIGURE 4

Segmentation results of AR-FCM and RFCM algorithms. (A) gt image, (B) AR-FCM, (C) RFCM, (D) cerebrospinal fluid, (E) gray matter, (F) white matter, 
(G) cerebrospinal fluid, (H) gray matter, and (I) white matter.

92

https://doi.org/10.3389/fnins.2023.1175451
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Wang et al. 10.3389/fnins.2023.1175451

Frontiers in Neuroscience 07 frontiersin.org

4. Discussions

An anatomical atlas-based energy minimization algorithm (Atlas 
Robust FCM) is firstly proposed for problems such as offset fields and 
lesions in brain image segmentation. In the objective function of a 

fuzzy clustering space model, the constraints are constructed to link 
the fuzzy clustering and the statistical probability graph. Statistical 
probability mapping is used as a constraint to limit the over-
segmentation of brain tissue. After the brain tissue is segmented, the 
voxels of the volume part are redistributed using morphological 

FIGURE 5

Results of other examples of AR-FCM algorithm segmentation. (A) Subject 1, (B) subject 2, (C) subject 3, (D) subject 1 segmentation result, (E) subject 2 
segmentation result, (F) subject 3 segmentation result, (G) subject 4, (H) subject 5, (I) subject 6, (J) subject 4 segmentation result, (K) subject 5 
segmentation result, and (L) subject 6 segmentation result.

TABLE 4 Average DSC, VS and HD values for AR-FCM and RFCM.

Models Indicators CSF GM WM

RFCM DSC 76.33 ± 2.94 76.86 ± 1.78 80.67 ± 1.51

VS 89.95 ± 4.36 90.22 ± 3.87 90.46 ± 3.23

HD 4.06 ± 0.53 3.59 ± 0.27 3.23 ± 0.36

AR-FCM DSC 77.32 ± 2.09 78.21 ± 1.01 82.98 ± 1.56

VS 91.41 ± 3.07 91.34 ± 2.06 92.83 ± 4.11

HD 3.03 ± 0.23 3.05 ± 0.12 2.81 ± 0.42
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FIGURE 7

Results of other examples of LF-ARFCM algorithm segmentation. (A) Subject 1, (B) subject 2, (C) subject 3, (D) subject 1 segmentation result, (E) subject 
2 segmentation result, (F) subject 3 segmentation result, (G) subject 4, (H) subject 5, (I) subject 6, (J) subject 4 segmentation result, (K) subject 5 
segmentation result, and (L) subject 6 segmentation result.

A B C

FIGURE 6

Indicator data visualization results. (A) Average DSC values of AR-FCM and RFCM, (B) average VS values of AR-FCM and RFCM, and (C) average HD 
values of AR-FCM and RFCM.
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mapping, which resolves the unclear and discontinuous boundary of 
the target structure. It will lead to the problem that the model of 
fuzzy clustering space is not accurate when organize the boundary 
region of classification. The AR-FCM clustering algorithm is verified 
by comparison experiments to overcome the problem of low 
accuracy of RFCM clustering algorithm for boundary tissue 
segmentation and improve the segmentation accuracy of 
RFCM algorithm.

An energy minimization algorithm (Lesion Filling and Atlas 
FCM) based on lesion filling and anatomical mapping was proposed 
for brain tissues with lesions that were not well segmented by the 
AR-FCM algorithm. Based on the feature that MS lesions in FLAIR 
sequences are lighter than CSF and exhibit high signal abnormalities 
in GM, lesion regions are filtered out on FLAIR images using the 
lesion segmentation method (SLF). The T1-w images were coarsely 
segmented using a clustered segmentation algorithm, and only the 

FIGURE 8

RFCM, AR-FCM, and LFA-FCM segmentation results. (A) gt, (B) RFCM, (C) AR-FCM, and (D) LFA-FCM.

TABLE 5 Average DSC, VS and HD values for RFCM, AR-FCM and LFA-FCM.

Models Indicators CSF GM WM

RFCM DSC 76.33 ± 2.94 76.86 ± 1.78 80.67 ± 1.51

VS 89.95 ± 4.36 90.22 ± 3.87 90.46 ± 3.23

HD 4.06 ± 0.53 3.59 ± 0.27 3.23 ± 0.36

AR-FCM DSC 77.32 ± 2.09 78.21 ± 1.01 82.98 ± 1.56

VS 91.41 ± 3.07 91.34 ± 2.06 92.83 ± 4.11

HD 3.03 ± 0.23 3.05 ± 0.12 2.81 ± 0.42

LFA-FCM DSC 80.32 ± 2.53 81.73 ± 1.72 86.77 ± 1.46

VS 92.88 ± 2.36 94.17 ± 3.08 94.11 ± 3.13

HD 2.81 ± 0.21 3.01 ± 0.12 2.33 ± 0.43

A B C

FIGURE 9

Indicator data visualization results. (A) Average DSC values of RFCM, AR-FCM and LFA-FCM, (B) average VS values of RFCM, AR-FCM and LFA-FCM, and 
(C) average HD values of RFCM, AR-FCM and LFA-FCM.
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tissue with possible lesions was processed. Among the structures 
coarsely segmented out of T1-w, the part related to GM was selected 
and filtering conditions were set to filter out the overlapping region 
that met the conditions in the coarsely segmented brain tissue and the 
focal region. For this region, the abnormal values in the T1-w image 
are filled and replaced by using the lesion filling, and a healthy T1-w 
image is constructed, and finally the AR-FCM algorithm is used again 
to complete the segmentation. The average DSC, HD and VS scores of 
LFA-FCM are found to be higher than those of AR-FCM through 
comparison experiments, which indicates that the strategy of using 
post-processing lesion filling is indeed feasible and the segmentation 
accuracy is indeed improved.

Innovative improvements are made to solve the problems of partial 
volume effect, gray scale inhomogeneity, and sensitivity of the fuzzy 
clustering space model to tissue boundaries in magnetic resonance 
images. The specific improvements are based on the fuzzy clustering 
space model, using statistical probability mapping as a constraint term in 
the energy function to limit the over-segmentation of brain tissue, and 
after segmentation, using morphological mapping to reassign voxels 
between tissue boundaries; the energy minimum segmentation 
algorithm segments MRI brain images in the presence of white matter 
lesions, which may misjudge the focal regions and lead to the assessment 
of brain white matter volume inadequate. The specific improvement 
method uses the focal segmentation method to estimate the focal region 
on FLAIR images, screens out the lesioned tissue, and replaces the 
abnormal values by filling them using the focal filling method.

5. Conclusion

In this paper, the MRI brain image segmentation algorithm makes 
an intensive study, mainly considering the effects of offset field, cranial 
bone, volume effect and lesion on the segmentation results. A large 
number of MRI images are segmented and compared with existing 
related algorithms in terms of the effectiveness and accuracy of 
segmentation results. Experiments have verified that the algorithm 
proposed reduces the effects of partial volume effects and lesions; 
achieves accurate and efficient brain image segmentation by 
MRI. Therefore, it can better diagnose the brain disease, manage the 
patients effectively in the early stage and reduce the possibility of the 
brain disease worsening.
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Study on characteristic of epileptic 
multi-electroencephalograph 
base on Hilbert-Huang transform 
and brain network dynamics
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Maosheng Wang 1 and Jiqian Zhang 1*
1 School of Physics and Electronic Information, Anhui Normal University, Wuhu, China, 2 Research Center 
of Health Big Data Mining and Applications, School of Medicine Information, Wan Nan Medical College, 
Wuhu, China

Lots of studies have been carried out on characteristic of epileptic 
Electroencephalograph (EEG). However, traditional EEG characteristic research 
methods lack exploration of spatial information. To study the characteristics 
of epileptic EEG signals from the perspective of the whole brain，this paper 
proposed combination methods of multi-channel characteristics from time-
frequency and spatial domains. This paper was from two aspects: Firstly, signals 
were converted into 2D Hilbert Spectrum (HS) images which reflected the time-
frequency characteristics by Hilbert-Huang Transform (HHT). These images were 
identified by Convolutional Neural Network (CNN) model whose sensitivity was 
99.8%, accuracy was 98.7%, specificity was 97.4%, F1-score was 98.7%, and AUC-
ROC was 99.9%. Secondly, the multi-channel signals were converted into brain 
networks which reflected the spatial characteristics by Symbolic Transfer Entropy 
(STE) among different channels EEG. And the results show that there are different 
network properties between ictal and interictal phase and the signals during the 
ictal enter the synchronization state more quickly, which was verified by Kuramoto 
model. To summarize, our results show that there was different characteristics 
among channels for the ictal and interictal phase, which can provide effective 
physical non-invasive indicators for the identification and prediction of epileptic 
seizures.

KEYWORDS

Hilbert-Huang transform, CNN, symbolic transfer entropy, brain network, Kuramoto 
model

1. Introduction

Epilepsy is a neurological disease caused by sudden abnormal hyper-synchronization 
discharge behavior of neurons in the brain, causing involuntary behavior and seizures. 
Electroencephalogram (EEG) signals could be used to monitor the electrical activity in the 
brain. They record the electrical wave changes during brain activity and are the overall reflection 
of the electrophysiological activities of brain nerve cells on the scalp surface. EEG contains 
abundant brain information and is one of the means of clinical diagnosis of brain diseases (Proix 
et al., 2018).

Diagnosis of epilepsy by EEG requires a well-trained clinician or neurophysiologist, 
however, detecting through artificial intelligence has the potential to improve the quality of 
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medical care by shortening diagnosis time, reducing manual errors, 
and relieving physician fatigue. Many analyzing and processing 
techniques of signals have been proposed for studying EEG signals 
(Shoeibi et  al., 2021). The time-frequency analysis methods have 
attracted the attention of many scholars. Hilbert Huang Transform 
(HHT) are commonly used to process non-stationary signals (Wu and 
Huang, 2009; Supriya et al., 2020). Empirical Mode Decomposition 
(EMD) (Tsai et al., 2016) is the key step of HHT. HHT is employed to 
assess the time-frequency characteristics in some references 
(Hopfengärtner et al., 2014; Biju et al., 2017). Hopfengärtner et al. 
(2014) obtained adaptive energy thresholding in the sub band.

In addition, the applications of Convolutional Neural Network 
(CNN) toward the detection of epileptic seizures have been 
implemented. Acharya et al. (2018) found that a 13-layer deep CNN 
showed an accuracy of 88.67% by using the database of the University 
of Bonn. The EEG image study based on CNN showed that the true 
positive rate was 74.0% between seizures and non-seizures EEG 
activities (Emami et al., 2019). Especially, the research taking time-
frequency analysis as the features and combining with CNN is also 
increasing. The highest classification accuracy of 82.85 and 88.30% 
was achieved using transfer learning and extract image features 
approach, respectively, (Raghu et  al., 2020). Ansari et  al. (2019) 
achieved the seizure detection rate of 77.0% by using deep CNN with 
26 neonates. San-Segundo et al. (2019) used EMD and CNN to classify 
focal and non-focal signals, which achieved an accuracy of 98.9%.

The above researches are based on the time-frequency domain of 
multi-channel EEG. Furthermore, multi-channel EEG connectivity in 
spatial domain is represented by brain networks. With the 
development of medical imaging technology, more and more evidence 
shows that some brain diseases, such as epilepsy, Alzheimer’s disease, 
depression and schizophrenia, have abnormal brain function 
connections (Bansal et al., 2019). Therefore, researchers’ exploration 
of the brain has gradually shifted from structural analysis to the 
functional connections among brain regions. In addition to 
quantifying and modeling observations in laboratory animals, 
researchers can perform whole-region simulations of the human brain 
based on noninvasive imaging data (Lynn and Bassett, 2019). The 
scalp EEG is more convenient to collect and the cost is lower than 
other types of data (Lu et al., 2021), so a brain network is built by using 
scalp EEG in this paper. Transfer entropy (TE) is an information-
theoretic measure method originally introduced by Schreiber (2000) 
to evaluate effective connectivity and it is often used to estimate 
“information flow” in the brain and analyze EEG signals. The rules 
defining nodes and edges in association networks are not the same for 
different medical data. For example, the number of EEG channels, 
such as 23 channels, 64 channels, 128 channels, etc., determines the 
number and distribution of network nodes. The calculation methods 
of the correlation among signals, such as mutual information, TE, 
phase lock value, Granger causality, Pearson correlation, etc., 
determine the edge weight of the network. TE is often used to measure 
the strength of functional connection of neurons (Schreiber, 2000). In 
this paper, symbolic transfer entropy(STE) based on symbolic 
dynamics is selected because it is insensitive to signal noise and does 
not require high parameter coordination (Li et al., 2020).

To research the properties of brain networks, the researchers use 
the topological properties which include global efficiency, cluster 
coefficient, average path length, etc. (Wang et al., 2014; Shimono and 
Beggs, 2015). Besides, the others reveal the dynamic mechanisms of 

brain network to explain large-scale neural behavior emerging from 
individual neurons (Lv et al., 2021). Kuramoto model is often used to 
describe the large-scale neural activity. Majhi et al. (2018) summarized 
that recent research had shown that the coexistence of coherent and 
incoherent states, known as chimera states or simply chimeras, is 
particularly important and characteristic for neuronal systems.

It is clear from the literature that no successful combined studies 
(in terms of characteristic of epileptic multi-EEG) have been proposed 
for the multi-channel scalp EEG. Therefore, to explore the 
characteristics of epileptic EEG signals from the perspective of whole 
brain were studied by using multi-channel scalp EEG in this paper. 
Our research work was carried out from the following: firstly, the 1D 
signals were converted into HS images stack, then, the concatenated 
images were fed into CNN. Secondly, the 23 channels signals were 
converted into brain networks by STE among different channels 
EEG. Thirdly, the networks properties and synchronous behavior by 
brain network analysis toolbox and Kuramoto model in which the 
coupling matrix was the above networks were observed. The results 
show that compared to the previous approach, these methods achieve 
comparable identification results, besides, our research method can 
provide effective physical markers for epileptic seizures.

2. Methodology

2.1. Hilbert-Huang transform

HHT can reflect the energy information of multi-channel EEG in 
time-frequency domain. HHT is a method composed of EMD and 
Hilbert Transform (HT). The signal is adaptively decomposed into 
different IMFs by EMD, and then each IMF is transformed by 
HT. EMD is a decomposition method to generate IMFs by repeatedly 
averaging the envelope of maximum and minimum values (Huang 
et al., 1998). It can be decomposed directly without prior analysis and 
research for an unknown signal. This method automatically divides 
the signal according to some fixed modes and levels without manual 
setting and intervention. The original signal can be  obtained by 
EMD decomposition.

The analytic signal of a single frequency component signal can 
be obtained through HT, assuming that the analytic signal z t( ) is:

 
z t c t jy t a t e j t( ) = ( ) + ( ) = ( ) ( )θ

 (1)

a t c t y t( ) = ( ) + ( )2 2  represents instantaneous amplitude. 

θ t
y t
c t

( ) = ( )
( )

arctan  represents instan-taneous phase. ω
θ

t
d t
dt

( ) = ( )
 

represents instantaneous frequency. The signal can be expressed as:

 
x t a t e j t dt( ) = ( ) ∫ ( )ω

 (2)

If a t( ) 2 is used as the instantaneous energy, the instantaneous 
energy distribution of the signal can be drawn on the time-frequency 
plane, and this distribution spectrum is Hilbert Spectrum (HS) which 
is marked as H tω,( ) . The 1D original signal is refined into different 
components and expanded into the 2D image by HHT. The scale of 
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data will be  expanded from the dimensions of time, phase and 
frequency domain. According to its frequency, amplitude and 
physiological characteristics, the EEG signal with conventional bands 
includes α(8 ~ 13 Hz), β(14 ~ 30 Hz), θ(4 ~ 7 Hz), δ(0.5 ~ 3 Hz).

HS can reflect the energy distribution of different frequency 
bands. The HS presents the amplitude, instantaneous frequency and 
time of the original wave simultaneously. In wave dynamics, the 
squared amplitude is frequently used to represent the energy density 
of the original wave, hence, the HS represents the Hilbert energy of 
the original wave. Hilbert Marginal Spectrum(HMS) is the integral of 
HS in time. From the perspective of integration, all amplitudes in time 
are added up for any first order frequency to reflect the amplitude 
accumulation of each frequency in all times and reflect the relationship 
between the frequency and amplitude of the signal. The HMS offers a 
measure of total energy contribution from each frequency value and 
corresponds to energy density at frequency f. The HMS represents the 
cumulated energy of the EEG over the entire data span in a 
probabilistic sense (Fu et al., 2015).

2.2. Symbolic transfer entropy

TE is a parameter that measures the degree of correlation between 
two time sequences. Because TE is based on the transition probability 
and is asymmetric, it mixes directional and dynamic information. TE 
is defined as follows (Staniek and Lehnertz, 2008).

 

TE p i i j
p i i j

p i i
J I n n

k
n
l n n

k
n
l

n n
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in, jn represent the state of sequence I and J at time n respectively, 
in
k( ) refers to a string of length k , i in k n− +1, , ，similarly, jn

l( ) refers 
to a string of length l , j jn l n− +1, , . The TE of J to I is information 
flow transferred from J to I, which can be  used as an indicator 
of causality.

The above-mentioned TE is more sensitive to noise, so STE which 
has the advantage of being insensitive to noise and is more suitable for 
non-stationary continuous time series is employed (Staniek and 
Lehnertz, 2009). Providing symbolic sequence of signal I nS  and J nS , 
the STE can be calculated as:
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2.3. Brain networks and Kuramoto model

Because TE is directional, the brain network constructed is a 
positive and negative coupling network. Based on these studies, we use 
STE to build a brain functional network. The network is a weighted 
directed network with the characteristics of time, structure 
and direction.

The nodes correspond to different channels and the edge weight 
is the value of STE. The brain network is treated as a coarse-grained 
representation of neuron cluster network, which is used as the 
coupling matrix of the coupled dynamic equation to find out the 
synchronous behavior of the neuron cluster. To facilitate the 
simulation of the synchronous behavior of these networks, the 
Kuramoto model is used as a simplified neural mass model to provide 
the basis for testing the synchronization of the neural oscillation 
(Rodrigues et al., 2016; Ma and Tang, 2017). The Kuramoto model is 
as follows:

 

d
dt

K
N

Gi
i ij j i

j

Nθ
ω θ θ= + −( )

=
∑ sin

1  
(5)

Where θi  and θ j  are the phase of the i-th and j-th oscillator, ωi  
is intrinsic frequency, and K is the coupling constant, Gij is coupling 
matrix which represents an N × N matrix with N = 23, the reason is 
that the EEG signals in the dataset in this paper have 23 channels.

2.4. Electroencephalograph signals dataset 
and processing

CHB-MIT dataset is the EEG signals from Children’s Hospital of 
Boston (CHB) included in the Massachusetts Institute of Technology 
(MIT) EEG database. The EEG data with the sampling frequency of 
256 Hz are taken from the open dataset collected by a team of 
investigators from CHB-MIT1 (Shoeb, 2009). This dataset contains 
scalp EEG records of 22 epileptic patients (5 males, 3 to 22 years old, 
17 females, 1.5 to 19 years old). These EEG signals are recorded for 1 h 
using the international 10–20 EEG electrode position and naming 
system. Most EEG signals files contain 23 channels in this dataset. In 
each file containing the data of the seizure that has occurred, the 
dataset of the beginning and end of 182 seizures are annotated. 
We divided the one-hour EEG signals into multiple segments of 10 s, 
and separated the inter stages from the interictal stage state. Figure 1 
shows the flow chart of the preprocessing method, which includes 
EEG signal preprocessing, feature extraction, and classification of 
interictal and ictal states to detect seizures. The ictal signals contain 
many types of abnormal waveforms and their amplitude and 
frequency have changed greatly.

It is well known that the above CHB-MIT dataset is scalp EEG 
dataset, which contains a lot of noise and artifacts, including blink 
artifact, eye movement artifact, myoelectricity interference, 
electrocardio interference, power frequency interference, amplifier 
saturation, pulse interference, etc. It is necessary to clean up these 
interference signals before studying the EEG signals. Thus, after 
comparing and analyzing various EEG processing tools, a new tool 
based on Python-MNE library, namely MNELAB is selected 
(Gramfort et al., 2013). The Python-MNE library is one of the python 
libraries designed to deal with EEG specifically. The preprocessing 
method in this paper is to use the MNELAB tools for commonly 

1 https://www.physionet.org/content/chbmit/1.0.0/
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denoising in EEG signals by using frequency limiting and fast 
Independent Component Analysis (ICA) (Antony et al., 2022).

After preprocessing and screening, and reference to previous 
literature(Acharya et al., 2018; Emami et al., 2019), we finally extracted 
2,500 s interictal EEG and 2,500 s ictal EEG from the dataset. Then, a 
total of 5,000 s EEG signals with 23 channels were split into segments 
of 10s each and then converted them into HS images stack. Therefore, 
500 EEG segments were generated, which contained 250 interictal and 
250 ictal EEG segments.

3. Results and discussion

To study the characteristics of epileptic EEG signals from the 
perspective of the whole brain，this paper proposed an approach of 
multi-channel characteristics from time-frequency and spatial 
domains. Thus in this paper, the experimental scheme was carried out 
in the following three steps shown in Figure 1.

(i) The original EEG signals were preprocessed according to the 
following steps: Firstly, the background noise and artifact in original 
signal were removed. Denoised signals were split into segments of 10s 
each (Figure 1A). Secondly, the processed signals were converted into 
HS images, then, in a 23 channels EEG signal segment, HS images 

stack was concatenated into a single spectrogram. Thirdly, the 
concatenated images were used as the input layer of CNN classifier to 
identify the ictal EEG (Figure 1B). (ii) The brain function network was 
constructed by using the processed EEG signals, information transfer 
among different channels was investigated by using the network, and 
the network properties were calculated(Figure 1C). (iii) According to 
the mean field theory, the whole neural networks could be coarse-
grained into network of brain regions. The Kuramoto model was used 
to study the synchronous behavior of these networks.

3.1. Seizure identification by HS and CNN

The HS reflects the instantaneous frequency and amplitude and 
the energy distribution characteristics of the signals in time-
frequency domain, while the HMS represents the energy 
contribution from each frequency value. Some studies have reported 
that analyzing EEG signals in the frequency domain could be used 
effectively for subsequent pattern recognition tasks. Inspired by 
these results, the recorded EEG time series signal into HS images 
which reflected the Time-frequency characteristics were 
transformed in our paper. To observe the EEG time-frequency 
characteristic, HS and HMS images of three segments of single 

FIGURE 1

Experimental roadmap. (A) pre-processing of EEG. (B) analysis in time-frequency domain. (C) analysis in spatial domain.
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channel signals were selected and plotted as shown in Figure 2. In 
addition, we selected signals in other time periods for processing for 
many times, and similar phenomenon occurred.

One can see from Figures  2A–C are HS images, its abscissa, 
ordinate represent time, frequency, respectively. To facilitate 
observation, we intercepted the effective frequency range of 0-40 Hz. 
By comparing Figures 2A–C, we found that the energy distribution 
of HS image in interictal phase was more dispersed and smaller 
energy value than that in ictal phase. At the same time, the HMS 
images corresponding to the above three signals were depicted in 
Figures 2D–F, in which the abscissa and the ordinate described the 
frequency and the energy amplitude, respectively. The HMS offers a 
measure of total HE contribution from each frequency value. The 
area below the HMS curves in Figures 2D–F represents the total 
HE over the entire frequency span. It can be observed from HMS that 
the energy of interictal EEG is contained mostly in δ band, while the 
δ band in the ictal EEG accounts for a small proportion of 
total energy.

To further study the feasibility of HS in automatic seizure 
identification, we converted the EEG signal segments into HS images 
and concatenated the images into an image stack (Figure 1B). The 

CNN classifier was used for automatic identification of the above 
concatenated images.

 (1) To obtain more information of the same time segment of EEG, 
1D signals were converted into 2D concatenated images.

 (2) To overcome the imbalance issue of CNN, the same duration 
of interictal and ictal EEG signals were extracted, and interictal 
EEG signals from the large number of interictal phases were 
extracted randomly.

 (3) To identify epileptic EEG signals accurately, two consecutive 
sets of convolutional/pooling layers were used. Convolutional 
layer could extract edges, shapes and textures of a spectrogram. 
The activation function of convolutional layers was ReLU. The 
convolution filter size was 3 × 3 and the number of 
convolutional units was 32 and 64, respectively. We adopted the 
maxpooling layer, set the pooling size to 2 × 2, and used Adam 
as the optimizer which solved the problem of large swing range 
in optimization and can speed up the convergence of function. 
Two layers of pooling layer and one layer of dropout layer were 
designed, which was to reduce the model complexity while 
retaining key information, prevented overfitting of the model 

FIGURE 2

HS and HMS of ictal and interictal EEG. (A) HS of interictal EEG. (B,C) HS of ictal EEG. (D) HMS of interictal EEG. (E,F) HMS of ictal EEG.
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and improved the generalization ability of the model. The 
cross-validation was leave-one-out cross validation(LOOCV). 
80% data were selected for the training set, and the rest data 
were used for the test one.

 (4) To verify generalizability of the model, external EEG signals of 
other subjects (except the 10 subjects) in CHB-MIT dataset 
were used to test.

Sensitivity, accuracy, AUC (area value under ROC curve), F1_
score and specificity were calculated to evaluate the performance of 
the classifier, as shown in Table 1. The identification effect of 96.5% 
was also achieved for the external images. We  summarized the 
references of EEG detection and classification of epilepsy using time-
frequency spectral analysis or machine learning. Our results and the 
comparative classification result are listed in Table 1.

From Table 1 one notice that some recent research methods could 
achieve a certain degree of classification effect. However, our proposed 
scheme using multi-channel scalp EEG automatic recognition could 
obtain better classification effect. Compared with the exiting studies, 
it was found that our model achieves comparable identification effect. 
It showed that it was feasible to identify seizures from the perspective 
of whole brain.

3.2. Building brain networks

The above method can expand the energy distribution of epileptic 
EEG signals and identify epileptic signals more accurately in time-
frequency domain. However, in spatial domain, because the brain 
network constructed by 23 channels EEG can more truly reflect the 
information transmission and functional activities among the brain 
regions, it is also very important to further analyze the causality and 
connectivity among different parts of the brain. Next, EEG signals are 
used for further research the synchronous behavior of the brain networks.

We calculated the STE values among each signal segment, and 
built a brain function network of 23 nodes with STE as the edge 

weight. Then, using this method, a weighted adjacent network with 
500 multi-channel signal segments in batch was built. The 
representative diagrams of network and adjacency matrix are shown 
in Figure 3. We set the threshold by traversal and found the appropriate 
threshold, and set the threshold of STE to 0.02 after verification in the 
subsequent experiment. For clearer image display, we set the threshold 
of STE to 0.08. Only edges larger than the threshold value could 
be drawn.

Figures  3A,C show brain functional networks of ictal and 
interictal phases. The different colors of the network connection edges 
represent the relative intensity of the STE, the network nodes 
correspond to the channels, and the arrows indicate the directions of 
“information flow.” Therefore, this brain network is a weighted 
network with direction, which may provide some useful clues for the 
localization of epileptic focus. Figures 3B,D show adjacency matrices 
of ictal and interictal phases. The vertical and horizontal coordinates 
of the adjacency matrix heat map represent the number of the network 
node, and the color bar describes the value of the STE. We can see 
from this figure, under the same threshold conditions, the network has 
more connectors during ictal phase than during interictal phase in 
most cases.

3.3. Network analysis

To verify the feasibility and effectiveness of our methods, the 
following two schemes were adopted: one was to use network 
analysis toolbox, the other one was Kuramoto phase oscillator 
model. As the first test method, the analysis toolbox called 
GRETNA2 (Wang et al., 2015) which was a graph theoretical network 
analysis toolbox for imaging connectomics was adopted. Network 
properties of the 500 networks constructed above was calculated. 

2 http://www.itrc.org/projects/gretna/

TABLE 1 Seizure identification results and comparison table of classification results (Sen, Sensitivity; Acc, Accuracy; Spe, Specificity).

Authors Methods EEG data source Performance (%)

Acharya et al. (2018) 13-layer deep CNN structure Bonn Acc: 88.4

Mandhouj et al. (2021) Using STFT Spectrogram with deep CNN Bonn Acc: 98.22

Yuan et al. (2019) Spectrogram with STFT using multi-view deep learning framework CHB-MIT
Acc: 94.3

AUC: 95.7

Tsiouris et al. (2018a) Discrete wavelet transform (DWT) + LSTM CHB-MIT
Sen: 99.84

Spe: 99.86

Fergus et al. (2015) Power spectral density (PSD) + KNN CHB-MIT Sen: 95.1

Tsiouris et al. (2018b) Spectral analysis, STFT+SSM CHB-MIT Sen: 88

Rashed-Al-Mahfuz et al. (2021) VGG16+ frequency components CHB-MIT Acc: 99.2

Our paper Spectrogram with HHT of multi-channel EEG using CNN CHB-MIT

Sen: 99.8

Spe: 97.4

Acc:98.7

AUC:99.9

F1_score:98.7
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Some network properties parameters, such as mean shortest path, 
clustering coefficient, efficiency and synchronization were used to 
distinguish the ictal and the interictal phases. The results are shown 
in Figure 4.

One can see from Figure 4A that, the mean shortest path in 
ictal phase is greater than that in interictal phase. Clustering 
coefficient in the ictal phase is lower than that in the interictal 
phase(Figure  4B). Efficiency of ictal networks is lower than 
efficiency of interictal networks (Figure 4C), which represents the 

work efficiency of the brain decline during the seizure. Clinical 
studies show that patients with intractable epilepsy often have 
cognitive impairment, including memory loss, language, 
expression problems, and intellectual decline. According to the 
graph theory, the brain efficiency of patients with refractory 
epilepsy is lower, suggesting that the efficiency of long-distance 
information transmission and the ability to integrate information 
of patients with refractory epilepsy are reduced within a certain 
range. Therefore, mean shortest path in ictal stage is higher. 
Clustering coefficient is lower in ictal stage due to shorter path 
length can promote clustering of network node. The efficiency in 
ictal stages is lower due to the impact on brain function during 
the seizures. These clinical conclusions are consistent with the 
experimental results.

As can be seen in Figure 4D, synchronization in ictal phase 
is greater than that in interictal phase, which represent the 
cerebral cortex during ictal phase is more susceptible to 
abnormal synchronous discharges. Next, the synchronization of 
the brain network is further verified. We  performed some 
statistical analysis to determine the difference of parameters of 
network properties between ictal signal and interictal signal. 
This was confirmed by the lack of concordance between 
statistical analysis and main part of the paper. Therefore, 
we proposed not mentioning these analyzes.

The second verification method is to use Kuramoto phase 
oscillator model. As a simplified neural quality model, this model can 
be used to describe the average field of large-scale neural activities, so 
as to further verify the synchronization of multi-channel EEG brain 
network and explain the large-scale neuroelectrical behavior of a 
single neuron. In the network, STE was used as the weight of edges, 
the greater the STE, the stronger the information transfer intensity 

FIGURE 3

Brain networks and adjacency matrices of ictal and interictal phases. (A) The network in ictal stage. (B) Adjacency matrix of ictal network. (C) The 
network in interictal stage. (D) Adjacency matrix of interictal network.

FIGURE 4

Network properties. (A) Mean shortest path of ictal and interictal 
networks. (B) Clustering coefficient of ictal and interictal networks. 
(C) Efficiency of ictal and interictal networks. (D) Synchronization of 
ictal and interictal networks.
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between the two channels and the closer the connection between the 
two nodes.

In order to observe the attractor synchronous behavior in the 
process of time evolution better, networks of ictal and interictal phases 
with similar coordination coefficients are selected. In the model, the 
internal frequencies of 23 coupling oscillators are evenly distributed 
in the interval [0,1], the coupling strength K = 3.5. The results are 
shown in Figure 5.

Figure 5 shows the evolution result of the 23 oscillators over time. 
At the beginning, the phases of these oscillators are different and 
randomly distributed in different positions on a ring of the network, 
as shown in the first column of the figure. As time goes on, the 
oscillators begin to gather in one direction, and when t = 150, the 
oscillators have contracted and converged to a certain extent (as 
shown in the middle column). When the time evolution reaches 
t = 1,000, the oscillators further shrink and converge to form an 
attractor structure, as shown in the right column in the figure. This 
indicates that the signals during the ictal enter the synchronization 
state more quickly. These network properties can provide reference for 
exploring the non-invasive identification marks and dynamic 
mechanisms of epilepsy.

4. Conclusion

In the paper, we explored the characteristics of EEG signals in 
ictal and interictal phases in time-frequency and spatial domain. HS 
reflect time-frequency characteristics of multi-EEG in time frequency 
domain, and achieve good identification results. The sensitivity is 
99.8%, accuracy is 98.7%, specificity is 97.4%, F1-score is 98.7%, and 
AUC-ROC is 99.9%. Brain function networks which reflect spatial 
characteristics of multi-EEG present different characteristics between 

ictal and interictal phase, which is verified by network properties and 
Kuramoto model. Experiments indicates that the network properties 
are different between interical stages and ictal stages, and the signals 
during the ictal enter the synchronization state more quickly. This 
part of work can also be improved from the following two aspects: 
(1) Due to the less number of scalp EEG channels in this data set, the 
function network could not describe the details of EEG signals. (2) 
Some networks did not support the experimental results with 
Kuramoto model. The next step is to further research the relationship 
between network hierarchy and remote synchronization or relay 
synchronization, which requires the construction of more complex 
brain networks, such as EEG with more channels, MEG, and fMRI 
networks as well.
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Body area network (BAN) is a body-centered network of wireless wearable devices.

As the basic technology of telemedicine service, BAN has aroused an immense

interest in academia and the industry and provides a new technical method to

solve the problems that exist in the field of medicine. However, guaranteeing

full proof security of BAN during practical applications has become a technical

issue that hinders the further development of BAN technology. In this article,

we propose a data encryption method based on electroencephalogram (EEG)

characteristic values and linear feedback shift register (LFSR) to solve the problem

of data security in BAN. First, the characteristics of human EEG signals were

extracted based on the wavelet packet transform method and as the MD5

input data to ensure its randomness. Then, an LFSR stream key generator was

adopted. The 128-bit initial key obtained through the message-digest algorithm

5 (MD5) was used to generate the stream key for BAN data encryption. Finally,

the e�ectiveness of the proposed security scheme was verified by various

experimental evaluations. The experimental results showed that the correlation

coe�cient of data before and after encryption was very low, and it was di�cult

for the attacker to obtain the statistical features of the plaintext. Therefore, the

EEG-based security scheme proposed in this article presents the advantages of

high randomness and low computational complexity for BAN systems.

KEYWORDS

body areanetwork, electroencephalogram, data security,wavelet packet transform, linear

feedback shift register

1. Introduction

Body area network (BAN) is an important means to solve problems, such as

insufficient medical resources, rising treatment costs, and poor medical conditions,

which are caused by the growing population in the world (Hassan et al., 2017; Abidi

et al., 2020; Liu et al., 2021). As an emerging technology, BAN has aroused an

immense interest in academia and industry since its inception. In 2012, the Institute

of Electrical and Electronics Engineers (IEEE) published an official standard, IEEE

802.15.6: Wireless Body Area Networks (Standard, 2012). As shown in Figure 1, the

said standard defines a human-centered wireless communication network as consisting

of sensor nodes and related devices placed on or inside the human body (Pandey

et al., 2019). Due to the particularity of BAN, the network transmits users’ privacy

information, and consequently, any unauthorized access or illegal data tampering will

cause major problems to users; therefore, BAN has set high requirements for security

(Shen et al., 2018; Hajar et al., 2021). However, the BAN system is limited in resources
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FIGURE 1

Body area network (BAN) system and its applications.

and is sensitive to the energy consumption of sensor nodes;

therefore, most of the existing network security schemes are not

applicable (Shi et al., 2012; Qadri et al., 2020). Therefore, designing

a security solution with low power consumption and high-intensity

security that meets the requirements of a BAN system to realize

that data security has become a major challenge in the field of BAN

research (Narwal and Mohapatra, 2021).

Researchers have proposed a variety of ways to improve

the safety of BAN data. The first way for data encryption is

the conventional symmetric encryption scheme. The advanced

encryption standard (AES)-based encryption method for BAN data

has been proposed in the study of Gangadari and Rafi Ahamed

(2016). The second-order reversible one-dimensional cellular

automata are used to replace the lookup tables in the AES algorithm

to generate an S-box for the nonlinear substitution of data.

The experimental results have shown that this scheme includes

better security features than the conventional AES algorithm.

However, generating the encryption key requires adequate amounts

computation, and the BAN system uses more energy due to

data encryption. Therefore, the conventional symmetric encryption

scheme is not suitable for a BAN system (Bai et al., 2019; Wang

et al., 2020). The second way for data encryption is based on the

physiological sign information in a BAN system. Different from

common sensor nodes, the sensor nodes in BAN collect human

physiological sign parameters. These parameters will present

different characteristics according to different individuals. Even for

the same individual, the information on physiological signs is time-

varying. Therefore, these parameters collected from the human

body can be used for data security in a BAN system (Al-Janabi et al.,

2017). Compared with traditional data encryption schemes, these

key generation methods can effectively reduce energy consumption

in the process of encryption (Liu et al., 2013; Mainanwal et al.,

2015). In their study Wang et al. (2011) proposed a method to

extract characteristic values of electrocardiogram (ECG) signals

based on the implicit Markov model, and the encryption key

for BAN data was generated by combining the hash function.

This scheme does not require key distribution and strict time

synchronization. Fast Fourier Transform (FFT) is performed on an

ECG signal and photoplethysmogram (PPG) signal, respectively,

as described in the study by Venkatasubramanian et al. (2008)

and by Ramli et al. (2013), and the generated characteristic values

and fuzzy algorithm are used to construct a security mechanism

for BAN. In his study, Moosavi (2021) puts forward two different

key generation methods based on the PPG signal to improve the

security of BAN. The first method is realized using the Galois linear

feedback shift register (LFSR) and a continuous interbeat interval

(IBI) of the PPG signal. The second method is realized using the

IBI as the seed generator for the AES algorithm. Compared with

the existingmethods that only rely on the IBI sequence, this method

provides better random performance. In the study by Faragó et al.

(2019), a time-domain technique based on the cross-correlation

has been proposed to evaluate the characteristics of ECG, PPG,

or electromyography (EMG) signals for the identification and

authentication in BAN systems. This method can complete the

security authentication of nodes without increasing the calculation

amount of BAN nodes. In this article, we propose a security

scheme based on the recognition of EEG characteristics and the

LFSR method for BAN. The random EEG signal characteristics

containing individual differences were calculated as the input data

for MD5 to solve the security problem of the key. The simple

structure of the LFSR was used to generate a random stream key,

which improves the data encryption strength of a BAN system.
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The remainder of this article is organized as follows: Section

2 puts forward the EEG signal and the characteristic value

extraction method. Section 3 presents the initial key generation

method based on MD5. Section 4 provides the generation

method of keys based on the LFSR. Section 5 presents the

experimental results of the encryption data and provides the

analysis. Finally, the conclusion of the security scheme is given in

Section 6.

2. EEG signal acquisition and
characteristic value extraction method

2.1. EEG signal acquisition

Electroencephalogram (EEG) is a method for recording the

effect of electrical activity on the nerve cells in the brain

to reflect the brain activity in a human being. The human

brain is made up of tens of thousands of neurons, and the

EEG signals are the electrical signals that are generated by

the activity between these neurons (Lotte et al., 2018). The

single-lead EEG has poor determinacy and strong randomness,

thus the nonlinear research is limited to some extent and the

recognition results are poor. While the multi-lead EEG contains

more information concerning the human brain, it can better

re?ect the overall information on brain activity (Galderisi et al.,

1996).

It is difficult to accurately characterize the electrical activity

of the human brain because the EEG is characterized by a

strong background noise, a weak signal amplitude, a strong non-

stationarity, and randomness. The concept of frequency was first

used to describe the electrical activity in the brain in 1929.

The frequency of electrical activity in the human brain varies

between 0.5Hz and 30Hz. At present, it is generally accepted

that the range of EEG frequency variations is divided into four

frequency bands, which are: (1) δ wave: frequency is 0.5–4Hz and

the amplitude is 20–200 µV. (2) θ wave: frequency is 4–7Hz and

the amplitude is 20–150 µV. (3) α wave: frequency is 8–13Hz

and the amplitude is 20∼100µV. (4) βwave: frequency is 13–30Hz

and the amplitude is 5–20 µV.

In this study, the EEG experimental dataset SEED-IV was

used for experimental testing. In SEED-IV, 15 volunteers between

20 and 24 years of age were involved in the experiment, and

72 movie clips were selected as a library of four emotions

(happiness, sadness, fear, and neutral). Each volunteer was required

to undergo three sessions with an interval of one week or

more, and each session contained 24 trials. Each trial usually

lasted ∼3min and is divided into three parts: 5 s hint of start,

approximately 2min movie clip, and 45 s emotion assessment. In

the dataset, EEG signals were extracted from each volunteer at

different times during the same scene and the same stimulus.

As shown in Figure 2, the multi-channel original EEG signals

were extracted by the 62-channel ESI NeuroScan system with the

sampling frequency of 200Hz. The other irrelevant bands were

filtered with filters ranging from 0.5Hz to 75Hz to remove noise.

Then, the time-domain and frequency-domain characteristics of

EEG signals were obtained, and the EEG signals were expressed

effectively (Zhang et al., 2013; Meng et al., 2014; Yang et al.,

2014).

2.2. Extraction method of EEG
characteristics

Electroencephalogram is a time-varying and non-stationary

signal. Since the EEG signal was discovered, the usual method

of analysis is to calculate the power spectrum of the EEG

signal by Fourier transform; however, the Fourier transform

is based on the premise of a stationary random process.

However, the EEG signals detected in practical applications

cannot satisfy the hypothesis of stationarity, such as the EEG

signals in sleep, seizure, or other states; therefore only by

combining time and frequency processing can better results

be obtained.

The wavelet transform is equivalent to a digital microscope,

including the functions of magnification, narrowing, and panning.

The function of a wavelet transform is similar to that of

a set of band-pass filters with an equal bandwidth and

a variable center frequency. Compared with the traditional

Fourier transform, the wavelet transform is a local transform

of space/time and frequency, which can effectively extract

information from signals, and carry out a multi-scale detailed

analysis of functions or signals through operational functions such

as scaling and shift, with good time-frequency characteristics.

The wavelet transform can provide a frequency-varying “time-

frequency” window, which automatically narrows when high-

frequency information is detected, allowing for a fine analysis

of the signal at higher frequencies. When a low-frequency

signal is detected, the “time-frequency” window is automatically

widened to allow for conducting a profile analysis of the

signal at a lower frequency. The time-frequency characteristics

of the wavelet transform are very suitable for analyzing the

transient characteristics and time-varying characteristics of non-

stationary signals.

The wavelet packet decomposition, also known as optimal

subband tree structuring, is the further optimization of the wavelet

transform. The concept behind wavelet packet decomposition

is to use the analysis tree to represent the wavelet packet,

that is, to analyze the details of the input signal using the

wavelet transform with several iterations. The idea behind the

main algorithm of wavelet packet decomposition is that, on

the basis of the wavelet transform, in each level of signal

decomposition, in addition to the further decomposition of

the low-frequency subband, further decomposition of the the

high-frequency subband also takes place. Finally, by minimizing

the cost function, the optimal signal decomposition path is

calculated, and the original signal is decomposed according to

the decomposition path. Compared with the traditional wavelet

analysis, the wavelet packet analysis can adaptively select the best

basis function according to the characteristics of the analyzed

signal after the multi-level division of the frequency band so as

to make it match the signal and improve the analysis ability of

the signal (Yin et al., 2008). In the wavelet packet analysis, ϕ (t)
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FIGURE 2

A 62-channel ESI NeuroScan system with the sampling frequency of 200Hz.

represents the scale function and ψ (t) represents the wavelet

function, therefore:

ψ0 (t) = ϕ (t) (1)

ψ1 (t) = ψ (t) (2)

ψ2m (t) =

+∞
∑

k=−∞

hkψm

(

2t − k
)

(3)

ψ2m+1 (t) =

+∞
∑

k=−∞

gkψm

(

2t − k
)

, (4)

where hk is the low-pass filter and gk is the high-pass filter.

Function {ψn} is the wavelet packet of the scale function ϕ (t).

In this article, the wavelet packet transform theory was

used to process EEG signals, and the characteristics of different

EEG frequency bands (α wave, β wave, δ wave, and θ wave)

were calculated. Through a multi-resolution decomposition of

the wavelet packet, the optimal wavelet packet tree was selected

to reconstruct the specified EEG frequency bands. In this

article, a discrete Meyer wavelet was used to decompose EEG

signals. The Fourier transform of the Meyer wavelet scale

function is:

ϕ (t)



























(2π)
1
2

(2π)−
1
2 cos

[

π
2 ν
(

3
2π |t| − 1

)]

0

|t| < 2π
3

2π
3 ≤ |t| ≤ 4π

3

else

(5)

ν (t) =

{

0

1

t ≤ 0

t ≥ 1
(6)

ν (t)+ ν (1− t) = 1 (7)

The EEG signal was decomposed into eight layers, and the

minimum frequency resolution can be estimated by formula (8).

fmin =
fs

2 · 28
= 0.3906Hz, (8)
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where fs is the sampling frequency of the EEG signal and the

value of fs is 200 Hz.

The more the layers of wavelet packet decomposition,

the higher the frequency resolution. The wavelet packet

decomposition satisfies four kinds of EEG frequency band

filtering requirements.

3. Initial key generation method

After performing the extraction method of EEG characteristics,

MD5 and LFSR were used to generate keys for data encryption,

as shown in Figure 3. The message-digest (MD) algorithm is a

widely used password hash function, which has the following

characteristics: first, the length of the output sequence calculated

by the MD algorithm is fixed, regardless of the length of the input

message. Second, the message digest appears randomly. In fact,

different input data in the MD algorithm will result in different

output sequences after calculation. Third, as the MD algorithm is

a one-way function, it can only calculate the summary sequence

from the input data bit can neither recover any input data from

the output sequence nor find any information related to the input

data from the output sequence. The MD5 algorithm generates a

128-bit (16-byte) hash sequence based on the input data. It can be

used to verify the integrity and consistency of data transmission.

The MD5 algorithm was announced in 1992 to replace the MD4

algorithm. MD5 treats the entire file as one large text message and

generates a unique MD5 message digest through an irreversible

string conversion algorithm. If anyone makes any changes to a file,

its MD5 value will change.

The principle of the MD5 algorithm is that the input data

was grouped into 512 bits. Each group was then divided into

sixteen 32-bit subgroups, and the grouped data were processed

through a series of calculations. Finally, the 128-bit hash output

sequence is composed of four groups of 32-bit sequences in

sequence. Figure 4 shows the process of the MD5 algorithm.

Each operation was performed by the 128-bit result value of the

previous round and the current 512-bit value. The MD5 process is

as follows:

(1) In theMD5 algorithm, the input data need to be padded by bits

first, and the bit number of the data modulo 512 is required to

be 448. Even if the bit number of the input data modulo 512

yields exactly 448, it must be padded by bits. The first bit of the

padding bits is 1 and the rest is 0.

(2) The MD5 algorithm uses four 32-bit registers, A, B, C, and D,

to store intermediate variables and the final result. Registers A,

B, C, and D are assigned initial values at the beginning of the

MD5 calculation.

(3) MD5 algorithm defines four nonlinear functions, F, G, H, and

I, to process the input data after grouping. Four different

functions, F, G, H, and I, are used to process each 512-bit

dataset. Each round takes the data in the updated register, A,

B, C, and D, and the current 512-bit dataset as input and gets

the new register values of A, B, C, and D after calculation.

(4) The final values of A, B, C, and D are spliced together in

the order from low-bit data to high-bit data to form the

output data.

4. Stream key generation based in LFSR

Taking some sequences existing in the shift register as the input

of the linear feedback function, after making certain calculations

in the function, the output results were filled to the leftmost end

of the shift register so that such a shift register would have a

continuous output. This shift register is called the linear feedback

shift register (LFSR). In fact, the feedback function in the LFSR

only performs an XOR on certain bits in the shift register and

populates the result to the leftmost end of the shift register, as

shown in Figure 5. The data of each bit in the LFSR may or

may not participate in the XOR, and the bits that participate

in the XOR are called taps. An n-order LFSR can only traverse

2n-1 states at most, that is to say, the maximum period of an

LFSR is 2n-1. The sequence generated by an LFSR with a period

of 2n-1 is called the m sequence, and the m sequence has a

higher encryption strength among the LFSR of the same level.

The cipher text is calculated by the pseudorandom sequence XOR

the plaintext.

The expression of the 128-order m sequence used for key

generation is shown in formula (9).

f (N) = N127 + N126 + 1 (9)

5. Experimental results and analysis

To verify the designed data security scheme based on EEG

characteristics and LFSR, MATLAB software is used to simulate

the encryption of image data. Using image data for verification

of the designed data security scheme is important because

the BAN system contains a large number of images such as

electromyography images, endoscopic images, and medical images.

Furthermore, image data are more intuitive for verification. In

this article, the image Airplane and a medical endoscopic image

were used to verify the encryption effect of the proposed data

security scheme. Figure 6 shows the original images and the

encrypted images.

Gray distribution refers to the distribution of gray value of

gray images, which reflects the most basic statistical characteristics

of an image and is generally represented by a gray histogram.

The gray value distribution of the original image is usually

uneven; therefore, there is a certain probability to crack the image

data by calculating the statistical features. Figure 7 presents the

gray histogram results of the image Airplane and the medical

endoscopic image. As shown in Figure 7A, the left gray histogram

is the gray value distribution of the original image, and it is

relatively concentrated. However, after the encryption is completed,

the result of the distribution of the images becomes more

uniform, as shown in the right gray histogram of Figure 7A.

Similar to Figures 7A, B yields the same result after encryption.

Therefore, through the security scheme proposed in this article,

the gray value distribution of the images is scrambled and became

more uniform.

The two-dimensional correlation of images is used to verify the

correlation degree of the original image data and the encrypted one,
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FIGURE 3

Flowchart of the key for BAN data security.

FIGURE 4

Flowchart of MD5 processing.

and K is the correlation coefficient. The calculation method of K is

given as follows:

K =

M
∑

a=1

N
∑

b=1

(Oab − O)(Eab − E)/

√

√

√

√

(

M
∑

a=1

N
∑

b=1

(Oab − O)
2

)(

M
∑

a=1

N
∑

b=1

(Eab − E)
2

)

(10)

where Oab and Eab, respectively, represent the gray values of

the image Airplane and the medical endoscopic image at the point

(a, b) before and after the encryption.

After the designed method in this article was used to

encrypt the image Airplane and the medical endoscopic image,

the two-dimensional correlation coefficients K1 =1.38×10−8

and K1 =3.24×10−9 of the two images before and after

encryption were calculated by formula (9). It can be observed

that the two-dimensional correlation coefficient approaches 0,
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FIGURE 5

Linear feedback shift register (LFSR)-based encryption process.

FIGURE 6

Original and encrypted images. (A) Airplane. (B) Medical endoscopic image.

indicating that the correlation of images before and after

encryption is very low. This method can effectively encrypt

image data.

To verify the correlation of adjacent pixels in the images,

we select the adjacent pixel pairs in the original image

and the encrypted one, and R is the correlation coefficient.
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FIGURE 7

Gray histogram of the original and encrypted images. (A) Airplane. (B) Medical endoscopic image.

The calculation method of R is shown in formula (14).

Furthermore, the correlation coefficients in the vertical,

horizontal, and diagonal directions of the images are

calculated, respectively,

E (x) =

N
∑

i=1

xi/N (11)

D (x) =

N
∑

i=1

[xi − E (x)]/N (12)

cov
(

x, y
)

=

N
∑

i=1

[xi − E (x)]
[

yi − E
(

y
)]

/N (13)

R =
cov

(

x, y
)

√

D (x)D
(

y
)

(14)

,

where xi and yi are the gray values of the ith adjacent pixel pairs,

E(x) and E(y) are the averages of the image data, D(x) and D(y) are

the variances, which measure the deviation between the image data

and its average and N is the adjacent pair number of the image.

The calculated results of the correlation coefficient between the

original image and the encrypted image are shown in Table 1. It is

worth noting that, after data encryption of the image Airplane and

the medical endoscopic image, the correlation of adjacent pixels

in the three directions is effectively reduced, and it is difficult for

the attacker to obtain the statistical features of the plaintext, thus

improving the security of the system.

6. Conclusion

To meet the requirements of low power consumption and

high-intensity security in a BAN system, this article proposes a

data security scheme that is based on EEG characteristic values

and LFSR construction. To be specific, the characteristics of EEG

signals are mined by the wavelet packet transform, and α, β, δ,

and θ waves are constructed to effectively characterize the features

of EEG signals, which are input into the MD5 system through
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TABLE 1 The correlation coe�cient of the images in three directions.

Image name R Vertical direction Horizontal direction Diagonal direction

Airplane Original 0.8834 0.9251 0.9118

Encrypted 0.6247 0.2763 0.5570

Medical endoscopic image Original 0.9251 0.9472 0.9346

Encrypted 0.5896 0.3107 0.5713

normalization, and the initial key is calculated. Then, a 128-order

m sequence is used to generate a stream key to encrypt privacy

data in BAN. Finally, a variety of evaluation results prove that the

proposed security scheme has enough ability to ensure data security

in BAN. The BAN security scheme in this article only considers

the method of data encryption; however, it does not consider the

scheme of node authentication, which has certain limitations. In the

future study, this project will invest more research in the following

aspects. According to the relatively simple hardware structure of

LFSR (m sequence), the advantages of the proposed method are

further verified. Based on the characteristics of the BAN system,

other types of feature extraction and calculation methods, such as

ECG, PPG, and gait, will be studied to determine whether they are

suitable for data security. There are still some important security

problems in BAN that need to be solved. Therefore, the solutions

for authentication with low power consumption and high reliability

in BAN systems will be investigated by us.
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