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Editorial on the Research Topic
Measuring resting cerebral perfusion using magnetic resonance
imaging (MRI)

Cerebral perfusion

Cerebral perfusion metrics such as cerebral blood flow (CBF) provide an important
assessment of cerebrovascular health and the hemodynamic consequences of
cerebrovascular disease and ischemic events. For example, the detection of collateral
blood circulation, which is widely recognised as a crucial protective mechanism that
can significantly influence clinical outcomes following ischemic events such as stroke.
Moreover, understanding cerebral blood flow distribution patterns can aid in surgical
planning for interventional procedures, and assessment of their effectiveness. These
considerations underscore the necessity for developing MRI-based techniques to
measure perfusion metrics together with their associated post-processing methods. An
advantage of MRI is the ability to deliver volumetric, temporally resolved information to
which classical methods such as transcranial doppler are insensitive as Fico et al. explain.
They demonstrated this aspect, showing that 4D flowMRI was more sensitive to age-related
differences in cerebrovascular reactivity when comparing with analogous velocity-based
measurements made using TCD. This was despite good agreement between middle cerebral
artery velocity measurements as measured using each technique.

The reproducibility of MRI measurements is an important consideration when
examining longitudinal changes in perfusion metrics, as Madsen et al. remind us. They
examined the longitudinal reproducibility of a selection of metabolic (lactate and N-acetyl-
aspartate (NAA) concentrations) and hemodynamic (cerebral blood flow, cerebral
metabolic rate of oxygen consumption and global arterio-venous oxygen saturation
difference) MR parameters. With the exception of lactate, MR parameters showed good
within-day reproducibility, which declined between 7 days and several week measurements.
Understanding physiological variability is crucial for optimizing study designs and
establishing the sample sizes required to adequately power large-scale studies.
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Novel methods of measuring
cerebral perfusion

Dynamic susceptibility contrast (DSC) in MRI is a widely
used method for perfusion imaging. Current clinical DSC-MRI
involves the injection and tracking of a gadolinium (Gd) based
contrast agent. However, there are safety concerns associated
with Gd (Runge, 2000), as it has been shown to accumulate in the
body (Kanda et al., 2014; Gulani et al., 2017) and our drinking
water (Rogowska et al., 2018). Gd use is also limited in the sense
that measurements are not repeatable within the same scan
session since the injection can only be performed once. A
novel alternative to Gd contrast is to establish an endogenous
contrast bolus consisting of deoxyhemoglobin (dOHb), which is
also paramagnetic. This can be done by means of a transient
desaturation of arterial hemoglobin using a transient hypoxic
respiratory challenge. Such an approach leads to a similar
susceptibility change as Gd but is produced non-invasively.
The dOHb bolus can be tracked using the same gradient-echo
sequences, and as Stumpo et al. demonstrated the resulting
images are in good agreement with those obtained using
conventional DSC methods.

The nature of the dOHb stimulus has also provided the
opportunity to apply existing analysis methods developed for
hypercapnic respiratory challenges to calculate voxel-wise
perfusion metrics. One such method is transfer function analysis,
and Sayin et al. showed that it can also be applied to transient
hypoxia-induced changes in dOHb to provide perfusion
information. The use of dOHb as a novel non-invasive contrast
agent is clearly promising.

Interestingly, the search for non-invasive techniques has
encouraged several studies that derive perfusion-like metrics
using CO2 as a stimulus. Vu et al. implemented sinusoidal
CO2 challenges for concurrent assessment of relative cerebral
blood flow and cerebral vascular reactivity (CVR) while
Fitzgerald et al. exploit the sharp signal changes associated
with CO2-induced vasodilation to derive blood transit times in
grey matter tissue.

However, there is an important caveat pertaining to the use of a
vascular stimulus such as CO2 for obtaining perfusion metrics.
Increasing CO2 with its associated CBF increase alters the
‘baseline perfusion’ state. To counteract this aspect, multi-delay
arterial spin labellingmethods are appealing. Pinto et al. showed that
by accounting for macrovascular signal components and dispersion
effects, more accurate quantification of CBF could be achieved.
Similarly, Shah et al. used imputation modelling to correct
measurement errors for improved CBF assessment using phase
contrast MR in large cerebral vessels.

In addition to advanced modelling methods, clever acquisition
strategies to maximize spatial resolution as were employed by
Kashyap et al. These approaches will help advance ASL towards
greater clinical adoption; particularly multi PLD variants. Indeed,
Krishnamurthy et al. already showcase applications for
understanding stroke etiology using ASL, while Jellema et al.
highlight applications for perfusion (and complimentary) intra-
operative acquisition strategies in the even the most sensitive
paediatric brain tumour patients.

Measuring blood oxygenation by MRI

Finally, we must emphasize that perfusion is only one aspect of
cerebral regulation, and it is closely linked brain metabolic processes
which are essential for maintaining homeostasis. As suggested by Le
et al., characterizing the interplay between blood oxygen delivery and
tissue consumption can pave the way for novel biomarkers of
microvascular disease. The work of Williams et al. also helps to
better interpret functional MRI studies that often rely on the Blood
Oxygenation Level Dependent (BOLD) signal contrast that originates
from changes in perfusion mediated by the cerebrovascular reactivity
response coupled with changes in oxygen consumption.
Understanding these relationships will be key to using advanced
physiological MRI towards routine clinical practice.

Conclusion

In summary, the collection of papers in this Research Topic
highlight the importance of cerebral perfusion metrics in assessing
cerebrovascular health. They demonstrate that there aremany ways of
making such measurements. Some require invasive techniques, such
as the intravenous injection of the paramagnetic contrast agent
Gadolinium, and others are non-invasive, such as utilizing changes
in dOHb produced by controlling respired gases. They also show that
improving measurement techniques and data analysis methodologies
offer ways of improving the determination of resting perfusion
metrics. We, the editors of this CVR Research Topic, hope that
readers will benefit from the collection of articles presented. We
believe that MRI perfusion metrics will become ever more useful in
the assessment of cerebrovascular disease in clinical practice.
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Sinusoidal CO2 respiratory
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and cerebrovascular reactivity MRI
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Koen P. A. Baas5, Soyoung Choi2,3,4, Aart J. Nederveen5 and
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United States, 4Signal and Image Processing Institute, University of Southern California, Los Angeles, CA,
United States, 5Department of Radiology and Nuclear Medicine, Amsterdam UMC, Location AMC,
Amsterdam, Netherlands

Introduction: Deoxygenation-based dynamic susceptibility contrast (dDSC) has
previously leveraged respiratory challenges to modulate blood oxygen content as
an endogenous source of contrast alternative to gadolinium injection in perfusion-
weightedMRI. This work proposed the use of sinusoidal modulation of end-tidal CO2

pressures (SineCO2), which has previously been used to measure cerebrovascular
reactivity, to induce susceptibility-weighted gradient-echo signal loss to measure
brain perfusion.

Methods: SineCO2was performed in 10 healthy volunteers (age 37 ± 11, 60% female),
and tracer kinetics model was applied in the frequency domain to calculate cerebral
blood flow, cerebral blood volume, mean transit time, and temporal delay. These
perfusion estimates were compared against reference techniques, including
gadolinium-based DSC, arterial spin labeling, and phase contrast.

Results: Our results showed regional agreement between SineCO2 and the clinical
comparators. SineCO2 was able to generate robust CVR maps in conjunction to
baseline perfusion estimates.

Discussion: Overall, this work demonstrated feasibility of using sinusoidal CO2

respiratory paradigm to simultaneously acquire both cerebral perfusion and
cerebrovascular reactivity maps in one imaging sequence.

KEYWORDS

brain perfusion, respiratory challenges, cerebrovascular reactivity (CVR), carbon dioxide
challenge, deoxygenation, dynamic susceptibility contrast (DSC)

1 Introduction

Perfusion magnetic resonance imaging (MRI) is a popular imaging technique for assessing
hemodynamic impairments in a variety of central nervous system abnormalities such as
intracranial tumors and acute strokes (Jahng et al., 2014). There are multiple different MRI
techniques to measure cerebral perfusion, including phase contrast (PC), arterial spin labeling
(ASL), and dynamic susceptibility contrast (DSC).

Particularly, DSC MRI is a perfusion technique that is frequently performed in clinical
routines, requiring intravenous injection of a contrast agent (gadolinium chelate) and dynamic
imaging to capture the passage of the contrast bolus through the vasculature (Østergaard, 2005).
Based on the susceptibility-induced signal loss caused by the paramagnetic contrast, tracer
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kinetics models are applied to calculate multiple perfusion parameters.
Despite its popular usage and clinical utility, DSC suffers from its
reliance on exogenous gadolinium contrasts, which pose increased
risks of anaphylaxis, nephrogenic systemic fibrosis, (Schlaudecker and
Bernheisel, 2009) and gadolinium deposition in different tissues
(Strickler and Clark, 2021).

To address this drawback, recent works have proposed contrast-
free deoxygenation-based DSC (dDSC) which take advantage of
endogenous paramagnetic deoxyhemoglobin to induce
susceptibility-weighted MRI signal losses, similar to the effects of
gadolinium (MacDonald et al., 2018; Poublanc et al., 2021; Vu et al.,
2021). This dDSC technique delivers boluses of deoxygenated
hemoglobin through transient exposure to low-oxygen (hypoxia) or
high-oxygen (hyperoxia) gas inhalation (Meier and Zierler, 1954;
Østergaard et al., 1996; Østergaard, 2005) and has demonstrated
feasibility in healthy volunteers as well as chronic anemia subjects
who had elevated blood flow and shortened transit time (Vu et al.,
2021).

One of the obstacles to perfusion quantification in both
gadolinium-based and deoxygenation-based DSC is the
determination of cerebral blood flow (CBF), which requires a
deconvolution between the signals in the blood and in the tissue.
Traditionally, this deconvolution is performed using a singular value
decomposition (SVD) approach in the time domain (Østergaard et al.,
1996). In this work, we propose to replace the transient contrast bolus
with a sinusoidal gas challenge and compute perfusion at the

fundamental sinusoidal frequency in the Fourier domain, thereby
simplifying the SVD deconvolution process. We also propose to raise
and lower the concentration of deoxygenated hemoglobin through
modulations of end-tidal CO2 level (Figure 1A), rather than
manipulating the inspired oxygen concentration. The sinusoidal
end-tidal CO2 fluctuations (SineCO2), and corresponding changes
in oxygen delivery, trigger reciprocal changes in the gradient-echo
MRI signals that can be converted into CBF estimates. In order to
assess the feasibility of this new perfusion technique, we evaluated
SineCO2 on 10 healthy volunteers in comparison with perfusion
measurements from standard gadolinium-based DSC, ASL, and
PC MRI.

2 Materials and methods

2.1 Study protocol

The Committee on Clinical Investigation at Children’s Hospital
Los Angeles approved the protocol; written informed consent was
obtained from all subjects (CCI#20-00050). This study was performed
in accordance with the Declaration of Helsinki.

A total of 10 healthy volunteers participated in this study during
the months of April and May of 2021. Exclusion criteria included
pregnancy, hypertension, diabetes, stroke or other known neurologic
insult, seizures, known developmental delay or learning disability, at

FIGURE 1
Respiratory challenge patterns for SineCO2 (A) End-tidal carbon dioxide (EtCO2), (B) end-tidal oxygen (EtO2), (C) percent signal change in the time
domain and (D) in the frequency domain. Grey shading reflects 95% confidence interval. Dotted line represents the targeted sequence, and solid line is the
average time series measured in the cohort.
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least one ‘yes’ answer to the 6-question Choyke survey (Choyke et al.,
1998), and measured glomerular filtration rate (GFR) lower than
60 mL/min/1.73 mm2 (Østergaard, 2005). Imaging, vital signs (heart
rate, blood pressure, temperature, and oxygen saturation), and blood
samples (for complete blood count) were collected for each subject on
the same study visit date.

2.2 Respiratory challenges

Respiratory challenges were performed by prospectively targeting
end-tidal O2 (EtO2) and end-tidal CO2 (EtCO2) partial pressures using
a specialized computer-controlled gas blender (RespirAct, Thornhill
Research, Toronto, Canada) (Slessarev et al., 2007). This device
measures the subject’s baseline EtO2 and EtCO2 during the initial
preparation phase and delivers specific concentrations of oxygen and
carbon-dioxide during the challenge phase to accurately target EtO2

and EtCO2 values. Fingertip pulse oximetry SpO2 (Nonin, Plymouth,
MN) was recorded continuously during gas challenges. SineCO2

challenge was performed, in which EtO2 was clamped at subject-
specific baseline and EtCO2 was modulated in a sine wave between
35 and 45 mmHg with a period of 60 s (Blockley et al., 2011). This
period was fourfold longer than the brain’s characteristic rise-time in
response to CO2 (Duffin et al., 2015) and has previously been used in
published CVR protocols (Blockley et al., 2011).

2.3 MRI experiment

2.3.1 Structural MRI
All MRI was acquired on a 3T Philips Achieva (Philips Medical

Systems, Best, Netherlands) with a 32-channel head-coil. Pre-contrast
anatomical 3D T1 was acquired with the following parameters: TR =
8 ms, TE = 3.7 ms, flip angle = 8°, and resolution = 1 mm isotropic.
Total scan time was 5:18 for T1 sequence.

Pre-processing steps on structural T1-weighted images consist
of brain extraction, tissue classification into grey matter (GM),
white matter (WM) and segmentation using the BrainSuite
Anatomical Pipeline (brainsuite.org, v.21a). Tissue segmentation
into 312 regions-of-interest (ROI) was performed using the
USCBrain anatomical atlas (Joshi et al., 2022), whose labels were
modified to include subdelineations of deep WM tissue (manually
drawn WM structures) and the cerebellum [transferred from the
probabilistic atlas of the human cerebellum (Diedrichsen et al.,
2009)]. All cortical ROIs were separately labeled into GM and gyral
WM regions. Subsequently, these labels were transferred to each
subject’s structural imaging space.

2.3.2 Arterial spin labeling (ASL)
Time-encoded pseudo-continuous ASL was acquired with the

following parameters: TE = 16 ms, TR = 5,040 ms, Hadamard-8
matrix with seven blocks of 2,000, 800, 500, 300, 250, 200, and
150 ms, post-label delay (PLD) = 100 ms, SENSE = 2.5,
resolution = 3 mm × 3 mm × 6 mm, FOV = 240 mm × 240 mm ×
114 mm, two FOCI background suppression pulses, 2D single-shot
EPI readout, and 12 signal averages. M0 images were acquired by
switching off labeling and background suppression and keeping the
same imaging parameters, except for TR = 2,500 ms. Scan time was 8:
44 for ASL sequence and 18 s for M0 sequence.

Perfusion quantification was performed using FSL BASIL toolbox
(FSL, Oxford, United Kingdom). Additional details on acquisition and
processing of the time-encoded ASL sequence have been previously
published (Afzali-Hashemi et al., 2021). Briefly, all perfusion weighted
images were motion-corrected to the first dynamic using SPM12
(Wellcome Trust Center for Neuroimaging, London,
United Kingdom). The individual acquisitions were subsequently
subtracted according to a Hadamard-8 matrix to obtain perfusion
weight images having PLD values of 100, 250, 450, 700, 1,000, 1,500,
and 2,300 ms. The individual PLD images experienced different
numbers of background suppression pulses and were divided by a
correction factor of (0.95)N, where N was the number of pulses. The
signal variation across PLD was denoised using a spatiotemporal
generalized variation model as described by (Spann et al., 2017).
The denoised perfusion weighted images were processed using the
BASIL toolbox which uses Bayesian inference to fit arterial transit
time, arterial blood volume and CBF voxelwise using an extended
kinetic model (Chappell et al., 2010). Blood T1 was derived from the
subject’s measured hematocrit (Lu et al., 2004). Subject-specific
labeling efficiency was derived from the flow-weighted velocity
measured from the phase contrast images (Aslan et al., 2010). The
final maps were smoothed using a Gaussian lowpass filter with full-
width half maximum value of 3.5 mm.

Subsequently, perfusion maps were registered to dDSC native
space for comparison.

2.3.3 Phase contrast (PC)
Single-slice PC images were acquired above the carotid

bifurcation: TR = 17 ms, TE = 10 ms, flip angle = 10°, resolution =
0.6 mm × 0.6 mm, FOV = 220 mm × 220 mm, slice thickness = 5 mm,
and velocity encoding gradient of 80 cm/s. The scan was ungated and
used 10 averages to compensate for pulsatility. Scan time was 1:06 for
the phase contrast acquisition. Details on calculation of total CBF from
four feeding arteries were published in previous works. (Coloigner
et al., 2020;Wymer et al., 2020). Briefly, vessel edges were derived from
the complex-difference images using Canny edge detection from
MATLAB (MathWorks, Natick, MA). Subsequent vessel areas were
mapped to the phase-difference (velocity) images and total brain blood
flow was calculated as follows:

∑4

i�1∑N

j�1V j( ) (1)

where V is the velocity map (after appropriate scaling for geometry
and velocity encoding), the inner summation is across the N voxels in
the vessel and the outer summation is across the four feeding vessels.
The total CBF was then normalized to brain weight by calculating the
total brain volume from the 3D T1w image (BrainSuite, brainsuite.org,
v.21a) and assuming a brain density of 1.05 g/mL.

2.3.4 Gadolinium-based DSC
Traditional gadolinium DSC was acquired using a dual-echo

gradient-echo blood-oxygen level dependent (BOLD) MRI
sequence with the following parameters: TR = 1.5 s, TE = 8/35 ms,
flip angle = 30°, FOV = 190 mm × 190 mm × 100 mm, resolution =
2.5 mm× 2.5 mm × 5 mm, 160 dynamics, SENSE = 2, and no multi-
band acceleration. The FOV was aligned with the previous dDSC
acquisition at the time of scanning. Scan time was 4:05.

Gadovist at 0.1 mmol/kg was injected at a rate of 4 cc per second
using a 20 or 22 gauge IV. Due to the lack of a power injector at our
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research facility, gadolinium contrast was injected manually by a
physician. Contrast bolus was followed by 20 mL of saline flush via
a three-way stopcock.

Gadolinium-based DSC BOLD images were preprocessed using
the spatial functional processing pipeline similar to dDSC
preprocessing, as detailed below. Perfusion values for CBF, cerebral
blood volume (CBV), and mean transit time (MTT) were calculated
based on published pipelines for gadolinium DSC (Stokes et al., 2021).
Final rigid registration of perfusion images to deoxygenation DSC
native space was performed for regional comparison.

2.3.5 Deoxygenation-based DSC MRI
Dynamic gradient-echo BOLD MRI was acquired for the SineCO2

challenge with the following parameters: TR = 1.5 s, TE = 35/90 ms,
flip angle = 52°, FOV = 190 mm × 190 mm × 100 mm, resolution =
2.5 mm isotropic, SENSE = 1, multi-band SENSE = 4, phase-encoding
direction = AP, fat-shift direction = P, and 220 dynamics. One
dynamic of reverse-gradient BOLD was acquired with the opposite
fat-shift direction = A along the phase encoding direction. Scan time
was 5:05 for the BOLD sequence and 9 s for the reverse-
gradient BOLD.

To correct for EPI-induced distortion, BOLD images were pre-
processed with field map calculated from opposite phase encoding
directions. Motion correction with Analysis of Functional
NeuroImages (AFNI, USA) and slice timing correction with
FMRIB Software Library (FSL, Oxford, United Kingdom) were
performed in that order. Registration of BOLD to T1 space was
performed in BrainSuite. Finally, BOLD images were smoothed
using a 4 mm × 4 mm × 4 mm Gaussian kernel.

All subsequent dDSC processing was performed in MATLAB
(MathWorks, Natick, MA). Signal contribution from pial veins was
suppressed by eliminating voxels with higher signal amplitude than
the 98th percentile (Bhogal et al., 2022). Whole brain (WB), GM, and
WM perfusion values was computed by averaging voxels within brain
and tissue-specific masks in each subject’s functional native space.

2.4 Data analysis for deoxygenation-
based DSC

2.4.1 Gradient-echo ΔR2
*

Perfusion measures were calculated for both the single-echo data
at 35 ms and dual-echo data at TEs of 35 and 90 ms. Single echo ΔR2

*

was calculated using the following relationship:

ΔR2
* t( ) � − 1

TE
ln

S t( )
S0

( ) (2)

where S(t) is the tissue signal and S0 is the average value across S(t).
Dual echo ΔR2

* was calculated for two echoes, TE1 = 35 ms and
TE2 = 90 ms:

ΔR2
* � 1

TE2 − TE1
ln

STE1 t( )
S0,TE1

( ) − ln
STE2 t( )
S0,TE2

( )[ ] (3)

2.4.2 Venous output function (VOF)
Venules have the largest BOLD fluctuation in response to CO2

stimuli because the blood volume is close to 100%, instead of <10% for
brain tissue. The great cerebral veins not only have the largest signal

intensity changes, but they have the longest delay relative to the global
BOLD signal. Individual VOFs were obtained automatically by
choosing 20 voxels with the highest integrated, rectified signal
intensity (Carroll et al., 2003) and delay greater than the 98th
percentile (Bhogal et al., 2022). To convert ΔR2

* to concentration-
time curve C(t) in both blood and tissue voxels, this manuscript
assumed a linear relationship ΔR2

*(t) � rY × C(t), with coefficients
rY tissue � rY blood � 1.

2.4.3 Time delay (TD)
Since the signal at each voxel was a sinusoid, whose phase could be

estimated, TD was computed as the phase delay of tissue:

TD � ϕtissue − ϕvenous

2πfc
(4)

where fc is the fundamental frequency of the sinusoidal stimulus and
ϕ is the phase of the sine wave (Blockley et al., 2011) calculated from
the Fourier transform of the BOLD signal with respect to time. The
venous phase ϕvenous was estimated by forming a histogram of phase
delays across all voxels within the brain for each subject and selecting
the 98th percentile, thus removing observer bias to obtain more
consistent phase estimates (Bhogal et al., 2022).

2.4.4 Cerebral blood flow (CBF)
For traditional DSC, CBF is usually calculated by deconvolution

with singular value decomposition (SVD) between the tissue signal
and the blood VOF signal: (Østergaard et al., 1996):

Ctissue t( ) � Cblood t( ) ⊗ CBF × R t( )( ) (5)
For SineCO2, CBF was calculated in the frequency domain based

on the magnitude spectra of Fourier-transformed tracer kinetics
model (Eq. 4):

Ctissue f( )∣∣∣∣ ∣∣∣∣ � Cblood f( )∣∣∣∣ ∣∣∣∣ × CBF × R f( )∣∣∣∣ ∣∣∣∣ (6)

The residue function R(t) was modeled using a decaying
exponential function, R(t) � e−t/τ with time constant τ (Østergaard,
2005). For a first-order system at low frequencies its time constant can
be approximated as the phase delay (Thompson, 2014), τ � TD
calculated from Eq. 4 The magnitude spectrum of the residue
function was |R(f)| � 1










(1/τ)2+(2πf)2
√ . CBF was the only unknown in

Eq. 6 and was estimated using least-squares fitting for the magnitude
spectra at each voxel.

2.4.5 Cerebral blood volume (CBV)

CBV was calculated as CBV � κ
ρ

∫ |Ctissue(t)dt|
∫ |Cblood(t)dt|

, where ρ is the brain

density 1.05 g/mL, κ is the hematocrit correction factor, and the limits
of integration represent the start and stop of the BOLD signal
response. In respiratory-based DSC, since the deoxygenation
contrast is confined within red blood cells instead of plasma, κ �
1/0.69 is used to account for the difference between capillaries’ and
large blood vessels’ hematocrits (Tudorica et al., 2002; Schulman et al.,
2022).

2.4.6 Mean transit time (MTT)
MTT was computed using central volume theorem as the ratio

between CBV and CBF (Stewart, 1893):

MTT � CBV

CBF
(7)
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2.4.7 Cerebrovascular reactivity (CVR)
To generate the CVR maps, temporal alignment and least squares

fitting were applied between the single-echo BOLD at TE of 35 ms and
EtCO2 signals on a voxel-by-voxel basis, with the slope term as CVR
calculation (Liu et al., 2019a). Maps of voxel-wise ratio between CBF
and CVR for individual subjects were generated for regional
comparison between the two parameters.

2.5 Statistical analysis

Statistical analysis was performed in R statistical package (R Core
Team, Vienna, Austria). Amplitude, phase, and period of sinusoidal
signals were computed by fitting the BOLD signals (either single-echo
at TE of 35 ms or dual-echo at TEs of 35 and 90 ms) to sine waves
while minimizing least-squares errors. Temporal SNR of the
sinusoidal BOLD signal was calculated as the ratio between the
peak-to-peak amplitude and the standard deviation of the BOLD
fluctuations after removing the fundamental sine wave.

Perfusion measurements were checked for normality with Shapiro-
Wilk test. To compare global perfusions between SineCO2 and DSC, ASL,
or PC reference, paired t-test was performed. Reproducibility was assessed
from two iterations of two-cycle sinusoid for SineCO2. Test-retest and
intersubject coefficient-of-variation were reported.

Within each subject, agreement between pairs of methods was
assessed using correlation and limits of agreement analyses. Pearson
correlation coefficient r was calculated from the linear fit between
perfusion values from 312 ROI for pairs of perfusion techniques. 95%
limits of agreement were calculated as �d± 1.96 × sd, where �d is the
mean difference and sd is the standard deviation of the differences
between two methods in the ROI set. All limits of agreement were
normalized by the average of the two methods and reported as
percentages (Bland and Altman, 1999; Giavarina, 2015).

3 Results

3.1 Respiratory challenges

All 10 subjects successfully completed the SineCO2 respiratory
challenge, but one subject was excluded from the group analysis
because of gas leakage from the mask caused by facial hair, and
one subject was excluded since the timing of the gas challenge and the
BOLD imaging was incorrectly aligned at the time of the experiment.

None of the subjects reported discomfort during SineCO2 respiratory
challenge. Baseline tidal volumes and respiration rates were 772 ± 292 mL
and 17.2 ± 3.3 breaths/min and did not change significantly during CO2

modulations (p = 0.27 and p = 0.82, respectively). Initial EtCO2 and EtO2

recordings were 41.0 ± 3.5 mmHg and 110.4 ± 7.0 mmHg in the cohort.
During SineCO2, continuous measurements of EtCO2 demonstrated
sinusoidal amplitudes of 4.6 ± 0.8 mmHg (Figure 1A), whereas EtO2

was kept level at baseline (Figure 1B). SpO2 remained level at 98.4% ±
0.9% during the challenge.

Under CO2-induced vasodilation and vasoconstriction, single-echo
gradient-echo MRI signal at TE of 35 ms varied in a sinusoidal pattern
with peak-to-peak amplitude of 1.20% ± 0.44% (ΔR2* = 0.34 ± 0.13 s−1)
relative to baseline (Figure 1C), higher in the GM (1.52% ± 0.57%, ΔR2* =
0.43 ± 0.16 s−1) compared toWM (0.58% ± 0.26%, ΔR2* = 0.17 ± 0.07 s−1,
p<0.01). Temporal SNR was 1.36 ± 0.52 in the whole brain, 1.72 ± 0.66 in

GM, and 0.92 ± 0.38 in WM. In the Fourier domain, global signals
demonstrated a peak at 0.17 Hz, corresponding to a sine wave period of
60 s (Figure 1D).

3.2 Perfusion measurements

3.2.1 Single-echo SineCO2

Perfusion parameters for the whole brain, GM, and WM are
displayed in Table 1; individual CBF, CBV, TD, and MTT maps by
single-echo SineCO2 at TE of 35 ms are shown in Figure 2. Similar
spatial distribution is observed in CBF and CBV maps (Figure 2), with
GM-WM ratio of 2.1 ± 0.1 for CBV and 1.9 ± 0.1 for CBF. Both TD
and MTT maps showed shorter venous delay in deep WM compared
to GM (p = 0.02 and p<0.01, respectively), but distribution is
heterogeneous between subjects (Figure 2).

3.2.1.1 CBF
To evaluate quantitative perfusion by SineCO2, mean CBF values are

shown in Table 1 in comparison with gadolinium-based DSC, ASL, and
PC. In thewhole brain, SineCO2CBF trended lower compared toASL (p=
0.08) but was significantly lower than PC (p = 0.01) and higher than DSC
(p = 0.04). In terms of reproducibility, there was no significant difference
between two repetitions (p = 0.47) with a test-retest coefficient of variation
of 21%. The intersubject coefficient of variation was 19%, slightly higher
compared to DSC (18%), ASL (16%), and PC (13%).

Within-subject correlations and Bland-Altman analyses are shown
for a representative subject in Figure 3, and individual analyses are in
Supplementary Figures S1, S2, demonstrating similar correlation and
width of the limits of agreement between SineCO2 and reference
techniques compared to agreement amongst DSC and ASL references.

3.2.1.2 CBV
SineCO2 was not different from CBV by DSC (p = 0.36), and

regional correlation was high across ROIs and similar to agreement
observed in CBF (Supplementary Figure S3). Intersubject coefficient of
variation was 11%, and test-retest coefficient of variation was 20%,
demonstrating no significant difference between the two repetitions
(p = 0.18).

3.2.1.3 TD
TD values by SineCO2 were significantly longer compared to DSC

(p < 0.01). Opposite trends were observed between the two techniques,
with prolonged TD inWM in DSC but shortenedWMdelay relative to
venous signal in SineCO2 challenge. Compared to CBF and CBV
measurements, TD maps were noisier (Figure 2C), with a test-retest
coefficient of variation of 25% and intersubject coefficient of variation
of 35%.

3.2.1.4 MTT
Shorter MTT values were observed in SineCO2 compared to DSC

(p = 0.01), and grey matter showed longer transit time than white
matter (p < 0.01). No correlation was observed with DSC MTT (not
shown). Test-retest and intersubject coefficients of variation were 17%
and 23%, respectively.

3.2.2 Dual-echo SineCO2

Compared to the globalΔR2* 0.34 ± 0.13 s−1 obtained at the first TE =
35 ms, dual-echo ΔR2* at TEs of 35 and 90 ms was 0.22 ± 0.08 s−1 (p <
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0.01). Temporal SNR was lower in the dual-echo signal (tSNR = 0.82 ±
0.32, p = 0.03). Individual CBF, CBV, TD, andMTTmaps using the dual-
echo approach (Supplementary Figure S4) show a similar spatial
distribution compared to single-echo perfusion maps (Figure 2).
However, dual-echo maps are noisier and yield a higher bias in CBF
compared to DSC and ASL (data not shown).

3.3 Cerebrovascular reactivity

Individual CVR maps are shown in Figure 4. Mean CVR was
0.24% ± 0.06%/mmHg in the cohort, significantly higher in the GM
(0.28% ± 0.07%/mmHg) compared to the WM (0.13% ± 0.03%/
mmHg, p<0.01). Spatial patterns of CVR maps are similar to CBF
and CBV maps generated from the SineCO2 technique. Ratio maps
between CBF and CVR (Supplementary Figure S5) demonstrated
areas of negative CVR in the deep white matter areas as well as
disproportionally higher ratio in the white matter compared to GM.

4 Discussion

In this work, we employed a technique previously used to measure
CVR with a CO2 respiratory challenge to modulate cerebral saturation
and BOLD signal in a sinusoidal pattern (Blockley et al., 2011), after
which tracer kinetics equations were applied in the frequency domain
to compute perfusion parameters. SineCO2 CBF, and CBV values were
within acceptable range of literature (Grandin et al., 2005), but MTT
was larger than expected (Ibaraki et al., 2007). Single-echo acquisition
yielded better temporal SNR and better image quality compared to
dual-echo approach. CBF estimates were compared with three
reference techniques, gadolinium-based DSC, ASL, and PC, and
demonstrated no bias with ASL and PC but overestimation
compared to DSC. The limits of agreement were large between
SineCO2 with ASL, and DSC but were comparable to agreement
amongst the reference techniques and previously reported
agreement between DSC and PET (Grandin et al., 2005). Despite
the systematic biases, perfusion maps showed regional agreement

TABLE 1 Regional perfusion estimates by SineCO2 and three reference standards ASL, DSC, and PC in the whole brain (WB), grey matter (GM), and white matter (WM).

CBF (mL/100 g/min) CBV (mL/100 g) TD (seconds) MTT (seconds)

SineCO2 WB 38.8 ± 7.5 (0.19) 3.1 ± 0.4 (0.11) 6.4 ± 2.2 (0.35) 4.5 ± 1.0 (0.23)

GM 47.9 ± 9.2 (0.19) 3.9 ± 0.5 (0.12) 6.6 ± 2.2 (0.33) 4.8 ± 1.0 (0.20)

WM 25.3 ± 5.7 (0.22) 1.7 ± 0.2 (0.11) 6.3 ± 2.2 (0.36) 4.1 ± 1.0 (0.25)

DSC WB 29.6 ± 5.4 (0.18) 2.9 ± 0.3 (0.10) 2.4 ± 0.2 (0.10) 6.4 ± 1.0 (0.16)

GM 35.6 ± 6.2 (0.17) 3.4 ± 0.3 (0.10) 2.1 ± 0.2 (0.11) 6.3 ± 0.9 (0.14)

WM 20.3 ± 4.2 (0.21) 2.0 ± 0.2 (0.12) 2.6 ± 0.2 (0.08) 6.6 ± 1.3 (0.20)

ASL WB 48.0 ± 7.8 (0.16) NA NA 1.13 ± 0.08 (0.7)

GM 60.5 ± 10.8 (0.18) NA NA 1.07 ± 0.09 (0.08)

WM 32.3 ± 8.0 (0.25) NA NA 1.22 ± 0.09 (0.07)

PC WB 65.9 ± 8.3 (0.13) NA NA NA

FIGURE 2
SineCO2 CBF, CBV, TD, and MTT maps for individual subjects.
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between the techniques, indicating that SineCO2 has the potential to
differentiate diseased and normal-appearing tissue in cerebral
pathologies such as ischemic strokes or brain tumors.

The use of CO2 vasoactive stimulus represents a divergence from
previous deoxygenation-based DSC studies, which utilize hypoxia or
hyperoxia respiratory challenges to directly deliver boluses of
deoxygenated hemoglobin (MacDonald et al., 2018; Poublanc et al.,
2021; Vu et al., 2021). Capnic challenges raise and lower cerebral
saturation through vasodilation and vasoconstriction within the
capillary beds, so the sinusoidal modulations are not present on the
arterial side but instead only in vessels undergoing oxygen exchange and
large veins. Therefore, this source of contrast results in an anti-causal
system where the VOF is used in lieu of an AIF. Conceptually, this is
analogous to playing a cine-angiogram in reverse. Even though the anti-
causality is not compatible with traditional tracer kinetics model (Meier
and Zierler, 1954; Østergaard, 2005), computation of CBF in the

frequency domain ignores the phase in favor of the magnitude, which
is independent of the relative delay between tissue and VOF signals. CBV
estimates in typical DSC experiments are corrected with the area-under-
curve of a VOF signal, which is usually less vulnerable to partial volume
effects compared to AIF (Knutsson et al., 2010); therefore, CBVmeasures
are also independent of the use of VOF. On the other hand, TD is
calculated as the delay between the phase of the tissue signal and venous
phase for SineCO2 instead of arterial phase in DSC; therefore, TD maps
demonstrated opposite trends between the two techniques.

The SineCO2 approach has some interesting properties. Overall,
since the endogenous contrast is generated by oxygen exchange, it
cannot detect actual or effective shunt flow, potentially
underestimating true perfusion. The contrast change results from a
cascaded transport system, in which the CO2 stimulus passes through
an initial cerebrovascular response transfer function followed by a
secondary residue function that governs the propagation of

FIGURE 3
Regional agreement between respiratory challenge SineCO2 and reference standards DSC and ASL in a representation subject. Correlation and Bland-
Altman limits of agreement analyses using 312 regions-of-interest between (A–B) SineCO2 and DSC and (C–D) SineCO2, and ASL (E) CBF maps in
representative subject by three techniques.
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deoxyhemoglobin. The complexity of this higher-order system is
simplified by the capability to extract a VOF signal, which relates
to the signal only through the residue transfer function. The indirect
mode of contrast generation also requires some cerebrovascular
reactivity to generate a signal suitable for CBF estimation, hence it
is not surprising that CVR, CBF, and CBVmaps resemble one another.
In brain regions where resting flow is preserved but CVR is abnormal,
signal-to-noise of the CBF and CBV estimates will be poor.

CO2 modulations also have complex cerebrovascular and peripheral
hemodynamic effects, including changes in respiratory rates, tidal
volumes, heart rates, blood pressures, and perfusion values,
proportionally to the extent and duration of CO2 inhalation. The
upward swing of the CO2 sinusoid is a hypercapnic stimulus which
results in increase in CBF (Kety and Schmidt, 1948), whereas the trough of
the sinusoid represents a hypocapnic stimulus with a decrease in flow.
Assuming ±5 mmHg fluctuations in EtCO2 remain within the
autoregulatory range (Battisti-Charbonney et al., 2011), 1 mmHg
change in EtCO2 typically induces 1–2 mL/100 g/min change in CBF
(Kety and Schmidt, 1948; Brian, 1998). Therefore, CBF in the tracer
kinetic model can be written as a function of time
CBF(t) � CBF0[1 + CVR(EtCO2(t) − 40mmHg)], where CBF0 is
the baseline cerebral blood flow at EtCO2 of 40 mmHg. With a typical
grey matter CVR of 0.2%/mmHg, and a peak-to-peak amplitude of
5 mmHg, the oscillating contribution is only around 1%. Furthermore,
since the oscillations are centered about the most linear portion of the
CBF–EtCO2 curve (Battisti-Charbonney et al., 2011), this work assumes
that the value measured is the average perfusion and is comparable to
baseline blood flow. However, this assumption requires validation with a
dynamic acquisition of ASL or PC with high enough temporal resolution
to quantify fluctuations in CBF in response to CO2 respiratory challenge.

Additionally, the vasoactive effects of CO2 challenge can
potentially explain the divergence in regional agreement between
SineCO2 and ASL. During sustained hyperemia, cortical GM
regions are prioritized compared to deep WM (Chai et al., 2019).
This steal phenomenon occurs in which blood flow preferentially
increases in GM at the expense of WM (Poublanc et al., 2013), causing
higher sinusoid amplitudes in GM and thus overestimation of CBF in
cortical regions. On the other hand, since flow changes are lower

within WM, CBF measurements are not as high in WM in SineCO2

compared to baseline measurements by ASL.
Other limitations include the study design of administering the

sinusoidal stimulus about a fixed EtCO2 value of 40 mmHg regardless
of the subject’s initial EtCO2 levels; in subjects of high baseline CO2 partial
pressure, this paradigm induced hypocapnia and hyperventilation
response that lengthened transit time (Ito et al., 2003) and potentially
explained the heterogeneous distribution in several TD maps (Angleys
et al., 2015). Clamping the average end-tidal CO2 to 40 mmHg may also
introduce a small “step” response in the BOLD signal for individuals
whose resting end-tidal CO2 is far from 40mmHg. However, limiting our
analysis to a single frequency minimized error contributions from this
effect. Despite targeting a single fundamental frequency fc, in practice only
a perfect sinusoid can be accomplished on positive cycles. The shape of the
negative cycle depends on the subject’s hyperpneic response from the
previous positive cycle, thus introducing a small non-linearity and
frequencies outside the target range. Lastly, since the signal is venous-
weighted, SpO2 values could not be used to convert ΔR2

* to arterial
saturation in concentration-time curves; therefore, the values presented
here are only considered semi-quantitative. However, since relative
perfusion is frequently used in clinical routines, semi-quantitative
measurements may still offer insight into diseased tissue relative to
contralateral normal-appearing tissue.

Despite the shortcomings, the most significant advantage to
SineCO2 perfusion imaging is that sinusoidal CO2 respiratory
challenge is a robust mechanism to measure CVR (Blockley et al.,
2011). Previous works have demonstrated that 32% of the variation in
GM CVR is explained by variation in baseline CBF (Afzali-Hashemi
et al., 2021), so these two parameters are tightly coupled together and
are known to vary with changes in EtCO2 (Hou et al., 2020). However,
measurement of CVR can still yield additional information, as
illustrated by the existence of negative CVR values in deep WM
unseen on CBF maps. Divergence in CBF and CVR as shown in
the ratio maps typically happens in areas of low flow and long delay, in
which CBF can increase in response to CO2 but requires sufficient time
to reach the hypercapnic ceiling and can potentially be classified as
negative CVR (Poublanc et al., 2015). In this current technique,
SineCO2 CBF measurements are calculated purely from the

FIGURE 4
SineCO2 CVR maps in individual subjects.
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magnitude spectrum and are independent of phase delay, but CVR
estimates computed from traditional general linear model approach
are influenced by vascular delay (Poublanc et al., 2015; Liu et al.,
2019b). Therefore, SineCO2 capability to acquire both perfusion and
reactivity simultaneously in one imaging sequence is of high interest in
cerebrovascular diseases and gives it an edge over other conventional
perfusion MRI techniques.

Most of SineCO2 potential diagnostic power lies in perfusion imaging
of strokes or gliomas, especially inmore vulnerable populations in whom
gadolinium injection is undesirable, such as renal-impaired or pediatric
patients. However, the fundamental difference between gadolinium
contrast and deoxyhemoglobin contrast may allow them to play
complementary roles in perfusion imaging for these pathologies. For
ischemic strokes in which the penumbra is under low oxygen delivery,
CO2-induced modulations in CBF can lead to reperfusion of the
damaged regions (Brambrink and Orfanakis, 2010), which can yield a
completely different perfusion distribution compared to gadolinium
DSC. In brain tumors, gadolinium-based contrast extravasation
through the disrupted blood-brain barrier can result in altered CBV
measurements (Ho et al., 2016); on the other hand, deoxygenation-based
contrast remains purely intravascular. Therefore, CBV measured using
gadolinium-based DSC within gliomas might differ compared to
SineCO2 CBV. These potential divergences in the two techniques
require additional work to evaluate the diagnostic role of SineCO2 in
different cerebrovascular pathologies.

In conclusion, this validation study established feasibility of using
SineCO2 to measure perfusion and demonstrated agreement between
SineCO2 against three reference perfusion techniques, DSC, ASL, and
PC. Despite the systematic bias, in clinical routines, neuroradiologists
typically rely on relative perfusion differences between diseased and
normal-appearing tissue rather than absolute perfusion, so SineCO2

relative perfusion maps may still be useful clinically independent of
VOF selection. Additionally, SineCO2 also represents an easy approach
to generate CBF maps independent of confounding parameters in
SVD deconvolution and minimize MRI time by simultaneous
acquisition of perfusion and reactivity in one imaging sequence.
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Blood arrival time and blood transit time are useful metrics in characterizing
hemodynamic behaviors in the brain. Functional magnetic resonance imaging in
combination with a hypercapnic challenge has been proposed as a non-invasive
imaging tool to determine blood arrival time and replace dynamic susceptibility
contrast (DSC)magnetic resonance imaging, a current gold-standard imaging tool
with the downsides of invasiveness and limited repeatability. Using a hypercapnic
challenge, blood arrival times can be computed by cross-correlating the
administered CO2 signal with the fMRI signal, which increases during elevated
CO2 due to vasodilation. However, whole-brain transit times derived from this
method can be significantly longer than the known cerebral transit time for
healthy subjects (nearing 20 s vs. the expected 5–6 s). To address this
unrealistic measurement, we here propose a novel carpet plot-based method
to compute improved blood transit times derived from hypercapnic blood oxygen
level dependent fMRI, demonstrating that the method reduces estimated blood
transit times to an average of 5.32 s. We also investigate the use of hypercapnic
fMRI with cross-correlation to compute the venous blood arrival times in healthy
subjects and compare the computed delaymapswith DSC-MRI time to peakmaps
using the structural similarity index measure (SSIM). The strongest delay
differences between the two methods, indicated by low structural similarity
index measure, were found in areas of deep white matter and the
periventricular region. SSIM measures throughout the remainder of the brain
reflected a similar arrival sequence derived from the two methods despite the
exaggerated spread of voxel delays computed using CO2 fMRI.
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1 Introduction

Measurements related to blood arrival time throughout the
brain represent important hemodynamic metrics in several
contexts. Arrival time measurements are useful in characterizing
cerebral hemodynamic behavior in patients; examples include the
demonstration of prolonged blood arrival time in patients with
multiple sclerosis (Paling et al., 2014), internal carotid artery
occlusion (Bokkers et al., 2008), Moyamoya (Donahue et al.,
2016), and stroke (Chalela et al., 2000; Macintosh et al., 2010).
Additionally, computation of accurate blood arrival times is a key
step in computing cerebral vascular reactivity (Niftrik et al., 2017;
Yao et al., 2021) and is an important factor to consider when
analyzing collateral perfusion (Zaharchuk et al., 2011). Further,
blood transit time (the time taken for blood to pass through a
region or whole of the brain) can be derived from arrival time
measurements. Transit time can serve as a benchmark for evaluating
the quality of region-specific (or voxel-wise) arrival time
measurements, as the metric can be easily compared with known
whole-brain blood transit times. Thus, the development of reliable,
safe, and repeatable techniques for measuring cerebral blood arrival
times and the associated cerebral blood transit times is important for
the continued development of our understanding of blood dynamics
in the brain.

Dynamic susceptibility contrast (DSC) imaging is frequently
used to study magnetic resonance imaging (MRI) brain perfusion by
imaging the first pass of an intravenously injected gadolinium-based
contrast agent through the brain (Lentschig et al., 1998). DSC-MRI
is a reliable reference standard for blood flow-related measurements,
including transit time. However, it is a an invasive imaging
technique and the side-effects of gadolinium-based agents
remaining in the human body are still debatable (Essig et al.,
2013), highlighting the need for a safer and more convenient
alternative. Several different alternative methods for measurement
of hemodynamic metrics, based on blood oxygen level dependent
(BOLD) MRI, have been proposed (Aso et al., 2020; Bhogal et al.,
2022; Sayin et al., 2022). Recently, an increasing number of studies
have used elevated CO2 levels as a regressor to estimate the CO2/
blood arrival time via BOLD MRI (Blockley et al., 2011; Thomas
et al., 2013a; Duffin et al., 2015; Donahue et al., 2016). It is known
that CO2 is a vasodilator, meaning that elevated CO2 arriving to a
region of the brain can cause an increase in regional blood flow and
volume, resulting in increased BOLD signals. Thus, blood flow can
be observed by tracking the passage of the CO2 throughout the brain.
BOLD-CO2 MRI offers advantages over DSC-MRI as a blood-
tracking method, since CO2-MRI is a non-invasive technique and
there are no adverse side-effects of inhaling elevated CO2 within a
suitable range.

For CO2-MRI, a voxel’s estimated CO2/blood arrival time is
commonly represented by the time delay corresponding to
maximum cross-correlation coefficient (MCCC) between the
voxel’s BOLD signal and the partial pressure of end-tidal CO2

concentration (PETCO2) measurement (Blockley et al., 2011;
Poublanc et al., 2013; Niftrik et al., 2017). However, this delay
time often overestimates the true CO2 arrival time, leading to
overestimation in whole-brain blood transit time assessment.
This overestimation is a result of the brain’s varying
hemodynamic response to CO2, as different brain regions differ

in the time taken for local tissues to respond the arrival of the
increased CO2, leading to various shapes of the BOLD signal
waveform deformations from the PETCO2 measurement (Duffin
et al., 2015; Golestani et al., 2015; Poublanc et al., 2015; Prokopiou
et al., 2019). Hence the cross-correlation time delay from the
deformed BOLD signal does not purely reflect the signal onset
(i.e., CO2 arrival time), but is also influenced by the CO2

hemodynamic response of the brain region. Simulations from a
previous study showed that performing cross-correlation of the
measured CO2 with various shapes of the BOLD signal waveform
with a shared breakpoint (representing the same moment of CO2

arrivals) from the baseline can obtain different delay time values
when the true delay should be equivalent (Yao et al., 2021).
Depending on the extent of the distortion of the BOLD
waveform from the CO2 measurement, one can obtain a delay
time offset as large as 20 s (Yao et al., 2021). One study of
25 healthy subjects reported that the estimated arterial CO2

arrival times derived from the maximum cross-correlation
method can have an average span of 20.1 s across the whole
brain, with a span of 15.9 s for gray matter (GM) and 25.5 s for
white matter (WM) (Niftrik et al., 2017), which is inconsistent with
the fact that the whole-brain blood transit time is approximately
5–6 s on average (Hoffmann et al., 2000).

Thus, it is important to evaluate the effects of these signal
deformations on the accuracy of the CO2-derived delay maps.
This evaluation can be discussed through two different
perspectives: first, the accuracy of the specific voxel-wise CO2-
derived delay time values can be evaluated. Second, ordering of
the voxels throughout the brain based on CO2-derived delay time
values suggests a sequence of voxels corresponding to the arrival
paths of the CO2 “bolus”. This sequence of voxels can also be
evaluated for accuracy separately from evaluation of the delay values
themselves. The use of a carpet plot to analyze CO2-MRI data holds
potential to assist with better understanding this issue of widely
spread CO2-derived delay times computed via the MCCC method.

A carpet plot is a 2-dimensional voxel vs. time matrix showing
BOLD signal intensities, which was initially used withinMRI-related
studies for assessing quality of MRI signals (especially for the
detection of motion artifacts) (Power, 2017). We previously made
use of carpet plots for calculating the time taken for blood to pass
through the brain (i.e., transit time) by ordering voxels according to
delays (based on the low frequency oscillation signal delay time
relative to the global averaged signal) computed using resting-state
functional MRI (rs-fMRI) signals (Fitzgerald et al., 2021). The
derived blood transit time from reconstructed resting-state carpet
plots was shown to be comparable with that from DSC-MRI carpet
plots. The same methodology can be applied to CO2-MRI data to
create CO2-based carpet plots, in which observable signal patterns
could prove useful in assessing the impact of distorted BOLD signals
(caused by variations in reactivity to CO2 throughout the brain) on
the assigned venous blood/CO2 arrival times, as well as in
computing brain blood transit times using CO2-MRI data.

In this follow-up study, we apply this novel methodology to
construct sorted carpet plots from CO2-challenge BOLD fMRI data.
The purpose of this study is twofold: first, we use observed patterns
in these carpet plots to group voxels based on their assigned CO2-
derived delay times and demonstrate improved estimates of the
blood transit time (through the majority of the brain) which are
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closer to the expected transit time values than those implied by the
wide distribution of delay times computed from the cross-
correlation method. Second, we aim to provide an analysis of the
similarity between voxel-wise delay maps derived from CO2-MRI
and from DSC-MRI. To this end, we use the carpet plot voxel
groupings to examine how the delay times computed from the two
methods compare using the “structure” element of the structural
similarity index measure (SSIM) (Zhou et al., 2004). In addition, we
examine patterns in the BOLD signal of voxels within these groups
to move towards an understanding of how varying reactivity affects
the sequential ordering of assigned CO2 delay times throughout the
brain.

We acknowledge that conditions of brain perfusion differ
between DSC-MRI and CO2-MRI; here we simply aim to
investigate whether similar perfusion information (i.e., blood
transit time) can be derived from CO2-MRI by utilizing our
novel carpet plot methodology to tease out the confounding
effects induced by the CO2 challenge. Such analysis helps to
evaluate the possibility of using CO2-MRI as an alternative to
DSC-MRI in the measurement of the blood transit time.

2 Materials and methods

2.1 Data acquisition

The Institutional Review Boards (IRB) of the institutions at
which datasets were collected (McLean Hospital for DSC-MRI,
Purdue University for CO2 challenge MRI) approved all
experimental protocols used in this study. All experiments
followed the ethical principles of the Belmont Report, and all
subjects provided written informed consent. DSC-MRI data from
eight healthy subjects (1F, 7M, mean ± s.d., 33 ± 12 years) were
acquired using a Siemens TIM Trio 3T scanner (Siemens Medical
Solutions, Malvern, PA) with 32-channel phased array head matrix
coil. A gadolinium contrast agent was given by intravenous injection
for the DSC-MRI scans (TR/TE = 1510/21 m, voxel size = 1.8 × 1.8 ×
3.5 mm3, duration = 180 s). Detailed acquisition information for
DSC-MRI can be found in a previous publication by Tong et al.
(2017).

CO2 challenge data was collected from a separate set of eleven
subjects (5F, 6M, age ±s.d., 22.7 ± 4.4 years; three female subjects
were excluded due to dropouts and/or poor quality of data) using a
3T GE Discovery MR750 MR scanner. Two out of the eight
remaining participants (Subjects 1 and 2, scanned during the
protocol testing phase before parameters were adjusted for the
remaining subjects) underwent fMRI scanning with the following
parameters: (TR/TE = 800/30 ms, voxel size = 3.75 × 3.75 × 2.5 mm3,
duration = 600 s). The remaining participants (Subjects 3–8) were
scanned with the following parameters: (TR/TE = 1000/30 ms, voxel
size = 3 × 3 × 3 mm3, duration = 600 s). The elevated CO2 challenge
was controlled by a programmable computer-based gas delivery
system (RespirAct, Thornhill Research Inc., Toronto, Canada)
(Fisher, 2016). Each subject was fitted with a plastic face mask
(covering the nose and the mouth) connected with a breathing
circuit before entering the MRI scanner room. The breathing
protocol consisted of 2 minutes of the “baseline” CO2 level
(i.e., the resting CO2 level), followed by 2 minutes of elevated

(10 mmHg higher than baseline) CO2, 2 minutes of baseline CO2,
2 minutes of elevated CO2, and two final minutes of baseline CO2.
The system controlled and recorded the end-tidal partial pressure of
CO2 (PETCO2) time series.

2.2 Data preprocessing

Data were preprocessed using the FMRIB Software Library (FSL,
Oxford University, United Kingdom, v5.0 for DSC-MRI data,
v6.0 for the CO2-MRI data, https://fsl.fmrib.ox.ac.uk/fsl/fslwiki)
(Jenkinson et al., 2012). Preprocessing included motion
correction, slice-time correction, brain extraction, and spatial
smoothing (3 mm for DSC-MRI scans, 5 mm for CO2-MRI scan).

2.3 Constructing DSC delay maps

Gadolinium bolus delay maps were created for each DSC-MRI
subject, where delay values represent the time-of-arrival of the
gadolinium bolus in each brain voxel (see Figure 1). This voxel-
specific delay is represented by the time to peak (TTP), which is
computed as the time between initial injection until the maximum
dip of the DSC signal loss. TTP was chosen over T0 (interval
between injection and its first detection) because the peak can be
easily and more accurately identified than the detection of the first
arrival. TTP was calculated by the program Perfx using a gamma
function fitting with temporal interpolation (developed by Chris
Rorden, www.mccauslandcenter.sc.edu/CRNL/tools/pwi). After
interpolation, the temporal resolution of DSC-MRI data for TTP
was 0.0001 s.

2.4 Constructing CO2 delay maps

CO2 delay maps were computed using MATLAB (version
R2017b or later, www.mathworks.com/). The brain-masked fMRI
data was then arranged into a 2D matrix, where each row contains
the measured BOLD time series for a voxel. Each voxel time series
was detrended (MATLAB detrend) and normalized by dividing by
the standard deviation of the time series. The global average time
series was computed, detrended and normalized in the same way.
For each voxel, the time series was oversampled by a factor of 10
(MATLAB interpft) to improve the temporal resolution. For the CO2

delay map calculation, the time series was filtered using a fourth-
order Butterworth bandpass filter with bandwidth 0.001–0.02 Hz to
extract the very low frequency oscillations associated with CO2-
dependent fluctuations in the BOLD signal. The filtered time series
was then compared with the global average time series (also
oversampled by the same factor and filtered into the same
frequency band) via cross-correlation, and the shifting-index
which produced the maximum absolute correlation value
between the two signals was recorded as the “delay” value for
that voxel. We note that the use of the maximum absolute
correlation allowed some voxel delays to be associated with a
negative correlation, which is discussed in more detail in the
Discussion section. Full-brain CO2 delay maps for each subject
were computed using this method. These delay maps were then
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registered to a standard template space (Fonov et al., 2009),
temporally aligned by subtracting the mean delay values, and
averaged to produce a subject-averaged CO2 delay map.

2.5 Constructing CO2 carpet plots

The rows of the fMRI data matrix (where rows are voxels and
columns are time points) were reordered based on descending delay
values (see Figure 1; longest delay voxels at top of image, shortest
delay values at bottom of image), creating a sorted carpet plot. Visual
inspection of this carpet plots demonstrates that most voxel time
series in the center of the image form a linear edge, while a portion of
voxel time series at the top and bottom of the image (representing
voxels with comparatively high or low delays, respectively) do not
follow this linear edge trend. This observation is relevant because it
has been shown that carpet plots constructed from DSC-MRI data

yield a near-linear blood-arrival edge covering nearly all voxels
(above 95%) in the brain with reasonable associated transit times
(Fitzgerald et al., 2021). Using DSC-MRI as a reference standard,
this suggests that isolating voxels in the CO2 carpet plot which follow
this linear trend may be useful in computing better estimates of the
blood transit time. To this end, each carpet plot was divided into
three vertical sections. These sections were created by defining the
middle section such that it contained all voxels with delays inside a
20-s window centered at the median delay time (see window edges
defined by blue lines in Figures 1, 2). The width of this window was
chosen based on empirical results with visual confirmation, which
suggested that such a window size served as a conservative but
reliable method that could be applied consistently across all subjects
to isolate those voxels which followed the linear edge trend. A brief
further discussion of this window, the effect of varying its width, and
testing of a subject-specific adaptive window width is presented in
the Supplementary Section S1.

FIGURE 1
Methods for creating DSC delay maps, CO2 delay maps and carpet plots. DSC delay maps were created by computing the voxel-wise time to peak
(TTP) metric, representing the delay until peak signal decrease was obtained, which corresponds to the arrival of the gadolinium bolus in a given voxel.
CO2 delay maps were computed by performing voxel-wise cross-correlation between individual voxel time series and the global averaged time series
and selecting the delay value which resulted in maximum absolute correlation. Voxels were then sorted in descending order according to the
computed delay values, and the 2D carpet plot image was created by displaying the time series of all brain voxels in this sorted order (top representing
largest delay, bottom representing smallest delay).
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2.6 Carpet plot analysis

A slope detection program, introduced and discussed in our
previous study (Fitzgerald et al., 2021), was used to detect and fit a
linear line to the first CO2-arrival edge present in the middle section
of the CO2 carpet plot, illustrated as a red line in Figure 1. Details
regarding this slope detection program can be found in the previous
publication (Fitzgerald et al., 2021); to summarize, the program
estimates the linear edge present by fitting a linear trend line to a set
of data points, where the data points represent the horizontal (time)
point of maximum increase (i.e., maximum derivative). As such, the
detected linear edge reflects the time of maximum CO2-induced
BOLD signal increase. One adjustment to the described program
was made: voxel time series within the sorted carpet plot were first
frequency filtered (0.001–0.02 Hz) in order to capture the signal
variation resulting from CO2 arrival while removing the variation
resulting from low frequency oscillations (0.01–0.1 Hz) present in
rs-fMRI data. After computation, a nearly vertical edge that is tilted
slightly to the right can be observed due to the flow over time of the
CO2-arrival-based BOLD signal rise throughout the brain. The
horizontal (time) duration of this estimated edge line was
recorded as the transit time (i.e., time taken for CO2 bolus to

traverse all voxels present in the cropped carpet plot). Only
transit times for the first carpet plot edge, corresponding to the
first CO2 bolus given, is reported here. This choice was made in
order to avoid unknown complications arising from any residual
effects of the first CO2 bolus which might affect blood flow behavior
during the second CO2 bolus (see Supplementary Figure S2 for
transit times of the second edge).

As discussed in the introduction, it has been shown that CO2-
derived delay times computed via the cross-correlation method can
be skewed by varying responses of the brain to the CO2 bolus arrival,
with a primary issue being that the overall spread of delay times
throughout all voxels can extend far beyond the expected time it
takes for blood to flow through the whole brain (around 5–6 s)
(Hoffmann et al., 2000). To further investigate this issue, we examine
whether the shape of the voxel BOLD time series was associated with
that voxel’s assigned cross-correlation delay time (and thus the
voxel’s vertical location in the carpet plot). Voxel time series from
the top, middle, and bottom portions of the carpet plot were
averaged using two methods: first using the original, unfiltered
voxel time series, and second where each individual time series
was detrended, divided by the time series standard deviation, and
frequency filtered (0.001–0.02 Hz). Finally, we more closely observe

FIGURE 2
Carpet plots and transit times for each CO2 subject. Blue lines indicate boundaries for image cropping before edge detection. Red lines indicate the
computed edge associated with the arrival of the CO2 bolus.
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the time series of voxels in the middle of the carpet plot by dividing it
into four stacked subsections, each section representing voxels
grouped into 5-s windows based on their assigned delay time
(recall that the characterization of the middle section is based on
voxels which are assigned delay times within a 20-s window; see
Figure 3 for visualization). These four subsections will be referred to
as middle subsections A through D (from lowest to highest delay
grouping). Voxel time series within each middle subsection were
averaged (see example displayed in Figure 3) after normalization

and frequency filtering. To compare the relative signal to noise ratio
between carpet plot sections, roughly reflected in the magnitude of
CO2-induced signal increase, the standard deviations of the bottom,
middle, and top averaged time series (without filtering and
normalization—see Figure 3D) were computed and compared
using a Wilcoxon signed rank test with Bonferroni correction for
multiple comparisons.

For the averaged time series of the top, middle, and bottom
carpet plot regions, as well as that of each middle subsection, the

FIGURE 3
Sample averaged time series computed during carpet plot analysis. (A)Display of example sorted carpet plot, where the red line represents the edge
computed during edge detection applied to the cropped carpet plot. Solid blue lines indicate the boundary of regions removed before edge detection,
and divide the carpet plot into the “top”, “middle”, and “bottom” regions, as labeled. Dotted blue lines indicate boundaries for four subsections, (A–D), of
the middle region; these subsections are defined by grouping voxels with assigned delay times falling within four 5-s windows (a division, into four
groups, of the 20-s span of delays assigned to voxels in the middle section). (B) Display of the averaged time series of voxels in each middle subsection
after normalization (detrending and dividing by standard deviation) of each individual voxel time series. Circles mark estimates of the time series
breakpoints. (C) Plot of change in estimated breakpoint between middle subsection averaged time series. Plotted times indicate change relative to the
estimated breakpoint of subsection A. (D) Display of the averaged time series of voxels from the top, middle, and bottom sections of the carpet plot
without normalization of the time series. (E)Display of the averaged time series of voxels from the top,middle, and bottom sections of the carpet plot after
normalization (detrending and dividing by standard deviation) of each time series. Circles mark estimates of the time series breakpoints. (F) Plot of change
in estimated breakpoint between bottom, middle, and top carpet plot averaged time series. Plotted times indicate change relative to the estimated
breakpoint of the bottom section.
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breakpoint (i.e. time point when the time series signal begins to
increase, or break from the baseline level, in correspondence with
the arrival of the CO2 bolus) was estimated following a procedure
similar to that proposed by Niftrik et al. (2017). First, an estimate of
the breakpoint of the whole-brain averaged time series was
computed based on the start time of the measured PETCO2 signal
increase (see Supplementary Section S3 for details). Then, for a given
averaged time series from a carpet plot section, the baseline signal
level was computed as the average signal intensity during 1 minute
before the estimated whole-brain breakpoint. The peak signal
intensity (i.e. the signal intensity during the second minute of the
first bolus of elevated CO2) was estimated as the average signal
intensity of the 1-min time span beginning 1 minute after the
estimated whole-brain breakpoint. The breakpoint of the given
time series was then computed as the time index when the time
series first increased by 10% of the difference between the baseline
and peak signal levels. The 10% breakpoint threshold was
demonstrated by Niftrik et al. (2017) and is necessary to ensure
that the computed time point reflects CO2-induced BOLD signal
increase (as opposed to natural signal fluctuations). Breakpoint
estimates are illustrated in Figure 3.

To investigate whether the top, middle, and bottom carpet plot
regions were associated with particular brain regions, masks were
created which specified which voxels commonly fell within each
carpet plot section. These masks were computed by creating subject-
specific section masks, registering these masks to the same
standardized ICBM MNI-152 space (Kötter et al., 2001;
Mazziotta et al., 2001), and keeping voxels which appeared in at
least half of all subjects within the standardized space. In addition,
subject-specific masks of voxels which showed little CO2-induced
signal change (marked by absolute MCCC below 0.3) were created
and registered to the standardized space to analyze common

locations of such voxels. The carpet plot locations (top, middle,
or bottom section) of such voxels were also noted.

2.7 Similarity comparison using structural
similarity index (SSIM)

We employed the structural similarity index measure (SSIM)
to compare the similarity between the subject-averaged DSC-
TTP map and the subject-averaged CO2-MRI delay map
(Figure 4C). Unlike other common similarity metrics which
only provide a single value indicating the similarity as a global
assessment (such as the Pearson correlation), the SSIM provides
spatial similarity information by calculating local statistics (Zhou
et al., 2004). The two subject-averaged DSC and CO2 delay maps
were demeaned and masked such that only voxels that existed in
both delay maps were included. For 3D images, the SSIM
algorithm utilizes a cubic window with a Gaussian weighting
function to compute local image metrics during the computation,
meaning that the program cannot compute an SSIM value for
voxels near the brain edge if background voxels do not contain
some value. To resolve this issue, which would cause the loss of a
large number of edge voxels during the SSIM computation, we
assigned the average delay value (i.e., zero) to all voxels
containing no delay value (due to either being background
voxels or the DSC-TTP program not returning a valid TTP
delay, especially in ventricle regions). Note that while this
choice can introduce bias to the structural similarity metric,
the number of empty voxels inside the brain is very small and
the choice to fill empty or edge voxels with the averaged delay
value should minimize any introduced bias. The SSIM
comparison was then conducted using the MATLAB

FIGURE 4
(A) Histograms of delay maps computed from DSC-MRI and CO2-challenge fMRI. (B) Sample slices of subject-averaged DSC-MRI and CO2-fMRI
delay maps. (C) SSIM map displaying local (per-voxel) structural similarity s values comparing subject-averaged DSC bolus arrival delay map with the
subject-averaged original CO2 arrival delay map. The structural similarity metric s can be interpreted similarly to Pearson’s correlation coefficient; values
range from −1 to 1, where high positive values indicate higher structural similarity, lower negative values indicate inverted structural similarity, and
values near zero represent little similarity.
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command ssim. After the SSIM computation, those voxels filled
with average delay (zero) previously were masked out.

The SSIM program computes a voxel-wise similarity map, where
the resulting voxel-specific index value is computed using data from
a specified cubic window surrounding the voxel. The SSIM
algorithm incorporates three computed measurements:
luminance, contrast, and structure. For the purposes of this
study, only the “structure” element of the SSIM was used (see
Discussion for more details regarding this choice). The structure
element s of two compared cubic windows x and y is computed as:

s x, y( ) � σxy + c
σxσy + c

(1)

The parameters of Eq. 1 are computed as:

μx � ∑N
i�1
wixi (2)

σx � ∑N
i�1
wi xi − μx( )2⎛⎝ ⎞⎠

1/2

(3)

σxy � ∑N
i�1
wi xi − μx( ) yi − μy( ) (4)

where c is a stabilizing constant and wi represents the weight
assigned to the voxel according to the Gaussian weighting
function (Zhou et al., 2004). The structure element is similar to a
local estimate of Pearson’s correlation coefficient between the two
windows with the added adjustment of the Gaussian weighting
function. For the remainder of this paper, references to “structural
similarity” will refer to this structure element of the SSIM. The
default window size and weighting settings were used, resulting in a
window size of 11 × 11 × 11 voxels and standard deviation of the
Gaussian weighting function as 1.5. This program returns a
structural similarity voxel map with index values ranging
from −1 to 1. Negative values indicate inverted structure between
the two images surrounding a specific voxel (Zhou et al., 2004). A
higher magnitude value indicates higher similarity between two
images in the region within the filter window surrounding the voxel.
A global average structural similarity value was computed by
averaging the resulting values over all brain voxels.

FIGURE 5
Comparison of SSIM values in gray matter (GM, top) and white matter (WM, bottom) shown in (A). SSIM maps compare the subject-averaged DSC
bolus arrival delay map with the subject-averaged CO2 arrival delay map. Voxels with SSIM values greater than 0.5 are shown in (B).
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Structural similarity values were averaged over GM regions and
over WM regions, with these regions illustrated in Figure 5. In
addition, structural similarity values were averaged over the
previously detailed carpet plot section masks, which isolate the
voxels which commonly belong to the top, middle, and bottom
carpet plot regions. A comparison of the top and bottom carpet plot
region masks with the computed structural similarity map is shown
in Figure 6.

2.8 Statistical analysis

To evaluate the association between computed breakpoints and
the carpet plot section from which the time series was derived,
Wilcoxon signed rank tests with Bonferroni correction for multiple
comparisons were performed comparing breakpoints from adjacent
carpet plot sections. Wilcoxon rank sum tests (with Bonferroni
correction when applicable) were applied to evaluate the differences

FIGURE 6
Locations of voxels located in top and bottom carpet plot regions and correspondence with structural similarity map. (A) Colored voxels indicate
locations corresponding to voxels which were located in the top and bottom regions of CO2 carpet plots in at least half of all subjects. Blue voxels
correspond to those cropped from the top of the carpet plot (with extra long CO2-derived delay times), while red voxels correspond to those cropped
from the bottom of the carpet plot (with extra short CO2-derived delay times). (B) The same cropped carpet plot voxels from (A) are overlaid on the
structural similarity value map comparing the subject-averaged DSC-TTP delay map with the subject-averaged CO2-arrival delay map.
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in SSIM values in the three sections (top, middle, and bottom) of a
carpet plot and in the GM and WM regions.

3 Results

3.1 Transit times derived from CO2 carpet
plots

Carpet plots for all subjects are displayed in Figure 2. CO2 bolus
transit times were computed as the horizontal distance, measuring
time, of the sloped carpet plot edge (displayed in red). The detected
CO2-arrival edges had transit times of 5.32±1.04 s (mean±s.d.).
Dividing lines between the top, middle, and bottom carpet plot
regions are shown in Figure 2 in blue. On average, the middle carpet
plot section contained 77.8±5.4% of all voxels.

3.2 Carpet plot analysis results

Figure 3 displays sample results of the carpet plot analysis for
one subject. Figure 3A illustrates the breakdown of the carpet plot
into three regions—“top”, “middle”, and “bottom”—and illustrates
the breakdown of the middle region into four smaller
subgroups—middle subsections A, B, C, and D. We note that
within the middle region, subsections B and C contain far more
voxels than subsections A and D, since subgroups are groups of
voxels with assigned delay times within a 5-s window. The
distribution of delay times is primarily bell-shaped, meaning
there are more voxels with assigned delay times close to the
mean of the distribution. Figures 3B, D, E display the averaged
time series of voxels for each grouping illustrated in (a) for the given
sample subject. Figures displaying the same information in Figures
3B, D, E for all other subjects can be found in the Supplementary
Figures S3–S5; the results derived from other subjects followed
similar trends to those shown here.

Figures 3C, F illustrate the relationships between estimated
breakpoints within the four middle subsections (C) and within
the top, middle, and bottom carpet plot regions (F). These
breakpoints represent an estimation of the true blood arrival time
point for the voxel grouping, in contrast to the skewed arrival delay
time assigned via cross-correlation. Analysis of these breakpoints
provides an evaluation of whether voxels assigned a later venous
blood arrival time via cross-correlation truly have a later arrival time
as estimated via the breakpoint. This analysis was conducted on
averaged subsections of voxels because computation of voxel-wise
breakpoints resulted in unsatisfactory quality in the breakpoint
estimates, likely due to noisiness in individual voxel time series
(this is further discussed in the Discussion). The breakpoints of the
middle subsections (from subsection A to D, i.e., from lower to
higher delay times) are non-decreasing and demonstrate a positive
association between the assigned delay time for the grouping and the
breakpoint of the grouping’s averaged time series. A statistically
significant (Wilcoxon signed rank test, p < 0.025) difference is found
when comparing the bottom breakpoints with the middle
breakpoints, as well as the middle breakpoints with top
breakpoints. A statistically significant difference (Wilcoxon signed
rank test, p < 0.016) was found in comparing middle subsections C

vs. D. For the raw averaged time series, illustrated in Figure 3D, the
average standard deviation (computed as a simple metric to
compare the relative signal-to-noise ratios between carpet plot
sections) of the middle averaged time series signal across subjects
was 154.3 (a.u.), which is significantly higher (Wilcoxon signed rank
test, p < 0.025) than both the averaged standard deviations of
41.6 and 46.7 for the top and bottom averaged time series,
respectively. Similar differences in CO2-induced signal strength
are seen in the normalized and filtered averaged time series
shown in Figure 3E.

The percentage (mean ± s.d.) of voxels within the top, middle,
and bottom carpet plot regions reflecting low (below 0.3) absolute
MCCC were found to be 8.97% ± 4.25%, 0.85% ± 0.53%, and
13.15% ± 5.21%, respectively. Subject-specific masks of the brain
locations of such voxels were created and analyzed, but the resulting
masks contained very few, sporadic voxel locations which reflected
little similarity between subjects; thus no further details on these
results are given.

3.3 Structural similarity map with SSIM and
regional comparison of SSIM

The subject-averaged delay maps computed from DSC-data and
CO2 challenge data are displayed in Figure 4B, with histograms
displayed in Figure 4A. In addition, Figure 4C shows the similarity
map (voxel-wise s as defined previously) acquired from comparing
the averaged DSC-TTP map with the averaged BOLD-CO2 MRI
delay map via the SSIM structure element. For the DSC-CO2 delay
map comparison, the whole-brain average structural similarity value
�s is 0.28.

Figure 5A shows the SSIM value similarity maps for the DSC-
CO2 delay maps comparison broken down into GM and WM
regions. The average SSIM values for each map and region are
also displayed above each image. The GM andWM regions produce
similar averaged SSIM values (0.29 for GM and 0.34 for WM;
medians statistically different based on Wilcoxon rank sum test,
p < 0.05). 30% of the voxels in the DSC-CO2 similarity map were
found to have relatively high (greater than 0.5) SSIM values and are
displayed in Figure 5B. The percentage of relatively high SSIM values
in GM and WM is 29% and 40%, respectively. Rough analysis of the
presence of different tissue types in the three carpet plot sections
suggested that the top carpet plot regions consisted of mostly WM,
the bottom carpet plot regions contain a large number of voxels
classified as neither GM or WM, and the middle carpet plot regions
contain a roughly equal amount of GM and WM (see
Supplementary Table S2 for further details).

Figure 6A displays the location of the top and bottom carpet plot
region masks, which represent areas of the brain that were assigned
to either the top or bottom carpet plot regions in at least half of
subjects. These same voxel masks are overlaid in Figure 6B with the
structural similarity map comparing the subject-averaged CO2 delay
map with the subject-averaged DSC delay map. The average
structural similarity s within the top, middle, and bottom carpet
plot regions were 0.36±0.41, 0.32±0.32, and −0.21±0.41,
respectively. Significantly different distributions in s values were
found between all three carpet plot regions (Wilcoxon rank sum test,
p < 0.01 for all three comparisons).
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4 Discussion

In this study, we use carpet plots and related analyses to assess
the issue of widely spread venous blood arrival delay values assigned
via the cross-correlation method applied to CO2-fMRI. Results
(Figure 4A) indicated, as expected, that the venous blood arrival
time values computed using CO2-challenge fMRI produce a wider
range of delay values than those derived fromDSC-MRI. Carpet plot
analysis yielded an average estimated blood transit time of 5.32 s.
The analysis of averaged time series from different groups of voxels,
identified in part using the carpet plot, illustrated patterns in the
shape of voxel time series based on a voxel’s assigned delay time,
which we will further discuss in this section.

4.1 Review of known inaccuracies in the
cross-correlation method

We first wish to clearly state the inaccuracy associated with
computing venous blood arrival times from CO2-challenge fMRI
data using the method of maximum cross-correlation of each voxel
time series with some version of the inhaled CO2 signal. It has been
previously demonstrated that the maximum cross-correlation
method can yield a blood-arrival delay span of 20.1 s across the
whole brain (Niftrik et al., 2017), which is inconsistent with the fact
that the cerebral blood transit time is approximately 5–6 s
(Hoffmann et al., 2000). To further illustrate this error stemming
from cross-correlation, we cross-correlated the CO2 measurement
with three BOLD signals with different shapes while sharing the
same breakpoint (see Figure 7). These three BOLD signals (in red,
green, and blue) simulate voxels having the same arrival time of the
elevated CO2 (the same breakpoint), but with different response
times to the elevated CO2, and were computed by convolving the
true PETCO2 measurement with three different hemodynamic
response functions from Yao et al. (2021). Depending on the
extent of the distortion of the BOLD waveform from the CO2

measurement, a delay time offset could be as high as 19 s. This
delay time offset is not due to the real CO2 arrival offset but the
brain’s CO2 response behavior. Therefore, the delay time calculated
for the CO2-fMRI by the cross-correlation method can be skewed by
this CO2 response behavior, raising the question of whether arrival
times computed via cross-correlation truly reflect the venous blood
arrival time or are purely dominated by the CO2 response behavior
of the voxel. We address a part of this issue by demonstrating that
analyzing CO2-fMRI data using carpet plots can lead to improved
estimates of the cerebral blood transit time. We also use voxel
groupings suggested by inspection of the carpet plots to better
understand the relationship between signal shape and assigned
delay time.

4.2 Transit times

The slope detection method introduced in our previous study
(Fitzgerald et al., 2021) was applied to the middle sections of carpet
plots to compute blood transit time through the associated brain
voxels, yielding an average estimate of 5.32 s. This observation of a
linear pattern in the middle region is important because we observe
this linear pattern in nearly the entire carpet plot (over 95% of
voxels) for carpet plots derived fromDSC-MRI; such carpet plots are
illustrated in our previous paper (Fitzgerald et al., 2021);
Supplementary Figure S6. The definition of the middle carpet
plot section is such that it contains voxels with delays within a
20-s window, meaning that the cross-correlation method alone
would suggest a 20-s blood transit time through this region of
voxels. An average of 5.32 s represents an improved transit time
estimate that moves much closer to the expected 5–6 s. We note that
the middle carpet plot sections contained, on average, about 78% of
voxels in the brain, meaning that about 22% of voxels were not
directly represented by this estimated transit time. This implies that
these estimated transit times could be underestimates, primarily if
the voxels located in the top and bottom sections truly do experience

FIGURE 7
Illustration of errors stemming from cross-correlation method of delay times. (A) An example end-tidal CO2 time series is shown in black, with three
example voxel time series shown in red, blue, and green. These voxel time series are created by convolution of the black end-tidal CO2 time series with
three different hemodynamic response functions representative of different areas of the brain, as used in Yao et al. (2021). The common break point for all
signals is illustrated by the dashed vertical line. (B) The voxel time series are shifted according to the maximum cross-correlation method, which
aligns the signals such that maximum correlation with the end-tidal CO2 time series is achieved. The same end-tidal CO2 breakpoint as in (A) is shown by
the dashed vertical line. The red arrow highlights that the voxel time series now display breakpoints occurring before the end-tidal CO2 increase, which is
not possible. The red, blue, and green voxel time series were shifted to the left by 7, 16, and 19 s, respectively, which represent unrealistically high delay
values.
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blood arrival after (for top voxels) or before (for bottom voxels)
those in the middle section. As will be discussed, our analysis
suggests that voxels within the top of the carpet plot, though
they do have assigned delays that are likely skewed too long, are
likely to be roughly correctly assigned sequentially, strengthening
the likelihood that these transit times are underestimates of the
whole-brain blood flow. However, increasing the estimated transit
times by 22% (proportionally to the number of voxels not
represented by the middle region) would result in an average
transit time of 6.44 s, which is still much improved compared to
the 20-s spread implied by the cross-correlation method alone. In
addition, the middle carpet plot sections appear to be composed of
roughly equal numbers of both GM andWM voxels, suggesting that
the computed transit time does not reflect blood passage only
through GM portions of the brain.

Other studies have presented similar methodologies for
computing whole-brain blood transit times based on BOLD
MRI signals, yielding similar results. Aso et al. (2020) computed
voxel-wise lag (i.e., delay) maps based on cross-correlation of
resting state voxel BOLD time series with an extracted seed
time series intended to represent the center of the vascular tree.
This was followed by computation of global transit time as the sum
of estimates of the arterial transit time (computed as the average of
voxels with positive lag times relative to center) and the venous
transit time (computed as the average of voxels with negative lag
times relative to center), with the majority of global transit time
estimates falling into the range of 4–6 s (Aso et al., 2020).
Additionally, Bhogal et al. (2022) implemented a carpet method
for computing global transit times using controlled hypoxia as a
source of BOLD contrast, yielding an average global transit time of
4.5 s. Similar investigation of using hypoxia to induce BOLD
contrast has been explored in (Sayin et al., 2022). These
alternative approaches demonstrate the feasibility of BOLD
signal-based methods for computing global transit time which
do not rely on induced hypercapnia.

4.3 Analysis of signal behavior in carpet plot
regions

Figure 3 illustrates several behaviors and traits of the voxel
time series within different sections of the carpet plots. First,
Figures 3D, E demonstrate that the averaged time series derived
from the middle of the carpet plot tends to have a more profound
signal-to-noise ratio than that of the top and bottom carpet plot
regions, which implies that voxels within the middle carpet plot
region tend to experience a greater degree of signal change due to
the arrival of the CO2 bolus. Observing this difference in induced
signal change after normalizing (detrended and divided by
standard deviation) voxel time series, as in Figure 3E,
demonstrates that a higher percentage of voxels within the top
and bottom carpet plot regions likely display little to no CO2-
induced signal change (causing the averaged CO2 signal strength
to be weaker). One possible reason could rely on the intrinsic
hemodynamic responses in some brain regions which tend to
have reduced BOLD response to the same CO2 stimulus,
measured by reduced cerebrovascular reactivity (Bhogal et al.,
2015; Niftrik et al., 2017). A more detailed discussion regarding

the main location of top and bottom carpet plot regions and the
effect on the signal behavior can be found in the next section.

In addition, it can be observed that the averaged time series from
the top carpet plot section displays a notably different signal shape
than that of the middle section, in that the CO2-induced signal rise
and fall is much sharper in the middle section. To help quantify this
difference in signal shape, we estimated two additional metrics from
the signals: the time index when the increasing CO2 signal reached
90% of the difference between baseline and peak signal intensity
(called “peak point” here), and the slope of the signal in between the
estimated breakpoint and peak point. Details regarding the
computation of these metrics and the associated results are listed
in Supplementary Figure S7. This analysis showed that voxels in the
top of the carpet plot, thus having been assigned very long delay
times, do tend to have signal shapes which reflect slower rise and fall
times. This is exactly the signal behavior which is demonstrated in
Figure 7 to lead to excessively long delay times in the cross-
correlation method. Similarly, this trend of higher delay times
associated with slower responses to the CO2 bolus can be seen in
the middle carpet plot subsections illustrated in Figure 3B. Peak
points and slopes for these averaged time series were also computed
and demonstrated that longer delay times were associated with lower
slopes and longer peak points (see Supplementary Figure S8).

These results demonstrate that, as is suggested by the discussion
of Figure 7, the delay time assigned via cross-correlation in CO2-
fMRI is largely associated with the shape of the voxel time series,
which is dependent not only upon the true arrival time of the CO2

bolus, but also upon how quickly and how strongly a given brain
region responds to the arrival of this CO2 bolus. It has been found
that various brain regions respond to the CO2 stimuli differently
(slow vs. rapid response) (Golestani et al., 2015; Poublanc et al.,
2015; Fisher et al., 2017; Prokopiou et al., 2019), resulting in a variety
of shapes of the BOLD waveform, which increases the difficulty of
obtaining accurate delay times. The rise in signal intensity is not a
result of detecting CO2 directly, but rather is the result of increased
blood flow caused by vasodilation due to the increased CO2

presence. This raises an important question: does a delayed/
weaker reactivity to the arrival of CO2 necessarily correspond to
an actual delay in the CO2 arrival? To address this question, we
computed estimates of the breakpoints of averaged time series from
each carpet plot section, as displayed in Figures 3C, F. Estimating
these breakpoints, as described in Niftrik et al. (2017), could serve as
a better estimate of the time point of CO2 arrival, given the known
shortcomings of the cross-correlation method. Results indicated that
on the averaged time signals, breakpoints do increase as the assigned
delay values corresponding to the given carpet plot section increase.
We note that the average change in breakpoint time between the
averaged time series for middle subsections A and D was 3.75 s.
Given that these four subsections were broken up according to 5-s
delay windows, the cross-correlation method alone would suggest a
range of delays in the realm of 15 s between the midpoints of
subsections A and D. Thus the breakpoint computations show a
tighter estimation of the change in venous blood arrival time, though
it must be highlighted that this tighter estimation only comes
through breakpoint computation on averaged BOLD time series
over many voxels as opposed to individual voxel breakpoint
estimates (discussed later in the Discussion). These observations
provide a first point of support for the notion that the sequence of
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delay values is somewhat reliable despite the heavy influence of
signal shape on the computed delay time. To further assess this
question, we turn to analyzing the structural similarity between the
subject-averaged CO2 and DSC delay maps.

4.4 DSC-MRI and CO2-MRI delay maps
comparison

The structural similarity metric s is computed somewhat like a
weighted correlation coefficient between data within the two
compared windows centered around a given voxel. It can provide
a rough intuition for whether the structure, or sequence of assigned
delay values, is similar between the two windows. In observing the
structural similarity map results, we first observe the regions with
relatively high structural similarity values (s greater than 0.5), as
illustrated in Figure 5B. 30% of all brain voxels yielded s values
greater than 0.5. Those voxels are mainly clustered in the temporal
lobe, parietal lobe, occipital lobe, and WM. We note that regions of
WM contained higher structural similarity values, on average, than
areas of GM (Figure 5A). It is important to note, however, that since
the structural similarity values s are computed using information
within an 11 × 11 × 11 voxel Gaussian-weighted window around the
central voxel, meaning that each s value reflects the similarity within
a window around the voxel, possibly from multiple tissue types.

4.4.1 Top of carpet plot
One of the primary issues of the maximum cross-correlation

method applied to CO2-MRI is the resulting wide spread of CO2-
derived delay values. To better understand this spread, we analyzed
which voxel locations corresponded to those cropped from the top of
CO2 carpet plots (indicating extra long CO2-derived delay values)
and voxel locations which corresponded to those cropped from the
bottom of CO2 carpet plots (indicating extra short CO2-derived
delay times). These voxel locations are displayed in Figure 6.
Observation of these voxel locations reveals that voxels with extra
long CO2-derived delay times were primarily located in areas of deep
WM in the brain. This also explains the observation that these voxels
have lower signal-to-noise ratio compared with those in the middle
carpet plot portion. This pattern of longer delays and lower signal-
to-noise ratio in areas of deep WM is consistent with the results
observed in the DSC-MRI data and in previous papers (Thomas
et al., 2013b; Bhogal et al., 2015; Poublanc et al., 2015; Bhogal, 2021;
Poublanc et al., 2021). Further, the observed BOLD signal pattern in
each voxel is impacted by both the arrival of CO2 to the voxel and the
blood vessel dilation which occurs due to CO2 being a vasodilator.
Some studies (Bhogal et al., 2015; Niftrik et al., 2017) suggest that
cerebrovascular reactivity, a measure of the magnitude of the
response of brain regions to the effects of CO2 arrival, tends to
be lower in regions of deep WM, which could suggest that the extra
long CO2-derived delays observed in these regions in CO2 delay
maps could also be influenced by low cerebrovascular reactivity in
those areas. Additionally, results from Bhogal (2021) confirmed that
reactivity in WM is notably different than that of GM and showed
that the response of WM is also influenced by venous draining
topology. Despite these sources of potential confounding of the
assigned delay time within these voxels, analysis of the structural
similarity map within the brain region mask associated with the top

of the carpet plots (see Figure 6B) revealed that these voxels had
equal, possible higher, structural similarity compared with those
from the middle of the carpet plots. This suggests that these voxels
with very long CO2-derived delays have similar reliability in their
ordering with those from the middle of the carpet plot (whose delay
times are expected to be more reliable) in terms of structural
similarity to the DSC delay map.

4.4.2 Bottom of carpet plot
Voxels which were removed from the bottom of the carpet plot

were primarily located in regions near the boundary between WM
and the lateral ventricles, particularly toward the posterior side of
the brain. These voxels correspond to locations where the computed
delay value was more than 10 s earlier than the average CO2-derived
delay time across the brain, which likely cannot reflect true arrival of
the CO2 given that the increased arterial CO2 would not likely occur
so early in these specific voxels. We also note that these voxels at the
bottom of the carpet plot were more likely to have BOLD time series
which were negatively correlated with the global average time series.
Analysis of the correlation values obtained during the cross-
correlation delay computations revealed that voxels with negative
correlations appeared in the bottom, middle, and top carpet plot
regions at rates of 35%, 2%, and 21% on average, respectively.

Such observations (namely, of negatively correlated BOLD
signals near the edge of the ventricles and with signal changes
earlier than most voxels across the brain) align with previous studies
(Bianciardi et al., 2011; Thomas et al., 2013a; Bright et al., 2014)
which suggest that negative BOLD signal correlations are
predominantly due to blood volume change instead of cerebral
blood flow (CBF) increase. This volume change is due to dilation of
ventricular vessels accompanied by shrinkage of cerebrospinal fluid
(CSF) space, resulting in signal decrease which could overpower any
BOLD signal increase. This hypothesis also explains the very short
CO2-derived delays calculated for voxels with negatively correlated
BOLD signals since CSF shrinkage could occur prior to the arrival of
the CO2. Alternatively, another mechanism which could cause
negatively correlated BOLD signals is the cerebral “steal effect”,
in which multiple CBF changes (both increased and decreased CBF
response in regions in and surrounding the voxel) simultaneously
occur in response to the arrival of the CO2, meaning that regions
with reduced CBF are compromised due to the increased CBF in
other regions (Brawley, 1968; Poublanc et al., 2013; Sobczyk et al.,
2014). Finally, one might hypothesize that the Bohr effect (Riggs,
1988), under which increased concentration of CO2 in the blood
causes a decreased oxygen binding affinity in hemoglobin (thus
increasing concentrations of deoxyhemoglobin), could theoretically
cause a BOLD signal decrease in response to elevated blood CO2.
However, the magnitude of any such signal changes due to the Bohr
effect is expected to be very small. This claim is supported by the fact
that an increase of 10 mmHg from baseline in end-tidal CO2 should
only cause a very small shift in the oxyhemoglobin dissociation
curve for normal blood partial pressure of O2 (PO2) (Levitzky, 2013),
where normal arterial PO2 typically falls within the range of
75–100 mmHg (Ortiz-Prado et al., 2019). Further investigation is
still needed to definitively explain this phenomenon of certain voxels
displaying decreased BOLD signal in response to the CO2 bolus. As
demonstrated in Figure 6B, the voxels with very short CO2-derived
delay values corresponded with areas of the SSIM value map which
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were particularly low, indicating that these unrealistically low delay
times are likely one of the main factors which differentiates the CO2

delay maps from the DSC delay maps.
As an added evaluation of the similarity between CO2 and DSC

delay maps, CO2 carpet plot were reconstructed by sorting voxels
according to the averaged DSC delay map (after registration to the
subject’s native space) and transit times were recomputed. Details on
these results are shared in the Supplementary Material, along with
the resorted carpet plots in Supplementary Figure S9. We note that
this method of sorting carpet plots resulted in varying transit time
values and did appear to significantly reduce the visual clarity of the
three carpet plot sections that are apparent when sorting via the
subject-specific CO2 delay maps. This result suggests a lack of
similarity between DSC and CO2-derived delay map sequence
should be noted. The difference between these two delay map
sequence could be partially explained by the different underlying
mechanisms of DSC and CO2 MRI, as DSC-MRI tracks the passage
of the paramagnetic gadolinium-based contrast agent, inducing a
local signal loss while not affecting the vascular tone or cerebral
blood flow, whereas CO2 stimulus induces various complicated
hemodynamic reactions, resulting in changes in the BOLD signal
waveform. However, it must also be acknowledged that this transit
time computation method (via slope detection on carpet plots) is
highly dependent upon precise sorting of the carpet plot voxels for
each subject. Since this experiment sorted individual subject carpet
plots based on an averaged delay map derived from a separate cohort
of subjects, such inter-subject differences may likely account for a
significant portion of the differences in carpet plot sorting.
Confirmation of the similarity of carpet plots and transit times
derived from CO2 versus DSC delay maps would be best evaluated
on a cohort where both DSC and CO2 MRI can be conducted on the
same subjects.

4.5 Alternative methods and reasoning for
chosen methodology

We wish to note two alternative methods for computing venous
blood arrival times from CO2-MRI data and explain the observed
shortcomings with these methods. First, the improved transit times
derived from carpet plots suggest the possibility that the voxel-wise
data points used to estimate the transit time edge may represent
accurate CO2 arrival times. The carpet plot edge detection method,
after applying an image smoothing filter, examines each image row
(voxel time series) and identifies the time point of maximum point-
to-point increase (signal derivative). These time points from all
voxel time series in the carpet plot are then used to estimate the
observed edge via linear regression. In one alternative method, these
maximum signal derivative time points were computed as the voxel-
wise venous blood delay times. When a subject-averaged delay map
using this method was compared with the DSC-MRI delay map via
SSIM comparison, the resulting brain-wise SSIM value was 0.20,
indicating lower similarity than the cross-correlation delay map
SSIM value of 0.28. Visual inspection of this delay map showed that
it appeared “noisier”, or less smooth, than the delay map derived
from cross-correlation.

Additionally, the discussion of Figure 3 would suggest that direct
computation of the voxel time series “breakpoint”, or the starting

point of the rise of the BOLD signal associated with arrival of the
CO2 bolus, would yield a more accurate delay time than that of the
cross-correlation method. This second alternative method was
discussed and implemented in a study by Niftrik et al. (2017).
However, implementation of this method on the data set
discussed in this study failed to overcome the issue of delay-value
distributions spanning a time window greater than the expected
5–6 s. One hypothesis for why these alternatives fail to out-perform
the cross-correlation method is that these methods rely on direct
observation of one specific portion of the voxel time series. These
methods are thus very sensitive to noisiness in the voxel BOLD
signal. In comparison, the cross-correlation method utilized
information from the entire voxel time series, which contains
two instances of rising and falling signal, which is helpful in
overcoming noisiness of the signal (see Supplementary Section
S8; Supplementary Figures S10–S12 for more details on
alternative results).

We also wish to note the reasoning used in decisions regarding
the use of the structure element of the SSIM for CO2-MRI vs. DSC-
MRI comparisons. The traditional SSIM metric is computed as the
multiplication of three terms: structure, luminance, and contrast
(Zhou et al., 2004). The structure term, as described in this paper,
reflects the degree of scaled covariance of the data within the two
compared windows. The luminance term measures the similarity
between the means of the two windows, while the contrast term
measures the similarity in the variance between the two windows.
For the purposes of this study, multiplying each of these terms as is
done in the traditional metric made it difficult to interpret precisely
what caused a low SSIM value, so we elected to analyze the structure,
luminance, and contrast terms individually. It was found that the
structure element was useful in that it was easily interpreted (due to
similarity to Pearson’s correlation coefficient—see Eq. (1)), relatively
insensitive to delay map normalization, and provided useful
information reflecting regional similarity between the two delay
maps. In contrast, the luminance and contrast elements were found
to add relatively little additional information, with interpretation
highly sensitive to data normalization methods (the choice of which
is not trivial). Thus we chose to use the structure element as the main
comparison metric for this study (see Supplementary Figure S13 for
more details regarding this choice).

Another commonly used similarity metric, normalized mutual
information (NMI), was also tested to evaluate the similarity
between two delay maps. The NMI metric yields similarity values
ranging from 0 to 1. The comparison of the spatial similarity maps
derived from both metrics are shown in Supplementary Figures S14,
S15. A very similar pattern of the similarity maps from both
methods was observed in majority of the regions. However, the
SSIM allows for highlighting inverted structure between the two
maps through negative similarity values, while the NMI metric does
not. This capability is the main reason the SSIM approach was
chosen over the NMI approach.

4.6 Limitations and future directions

One limitation of this study is the limited number of subjects in
the DSC-MRI (DSC scans on healthy subjects are rarely conducted
due to the injection of the Gd contrast) and BOLD-CO2 MRI
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datasets, leading to a high variety of delay maps across subjects. Also,
subjects in the CO2-MRI dataset and the DSC-MRI dataset are from
different cohorts and not gender-matched, contributing to the
inconsistency between delay maps derived from these two
methodologies. These factors may lead to underestimation of the
similarity between the averaged DSC-TTP map and the averaged
BOLD-CO2 MRI delay map. Furthermore, in the CO2 arrival delay
adjustment methodology, a linear fitting was assumed in the edge-
detection algorithm, which might not work properly in diseased
patients (e.g., Moyamoya, stroke). Non-linear fitting could be
considered for such subjects. Additionally, the brain operates under
different conditions during DSC-MRI and BOLD-CO2MRI. DSC-MRI
tracks the passage of the paramagnetic gadolinium-based contrast
agent, which induces a local signal loss while not affecting the
vascular tone or cerebral blood flow or volume. However, in BOLD-
CO2 MRI, the CO2 stimulus induces various complicated
hemodynamic reactions, which plays an important role in the
BOLD signal changes. Analysis of averaged time series delays as
divided by the carpet plot confirmed that the shape of voxel time
series, characterized by the response of the voxel to the CO2 bolus
arrival, are largely associated with the delay times assigned via cross
correlation in CO2 challenge fMRI. An alternative strategy could be
inducing hyperoxia (Moreton et al., 2016; Pinto et al., 2020) or hypoxia
(Poublanc et al., 2021; Sayin et al., 2022) during BOLD imaging as an
alternative gas stimulus to track blood flow with the benefit of less
vascular reactivity changes during imaging.

A useful extension of this study would include an analysis of
whether the carpet plot-based transit time computation method can
be useful for quantifying blood transit times throughout localized
subsections of the brain. Additionally, it may be possible to extend
this methodology to use the fitted carpet plot edge line to estimate
improved voxel-wise blood arrival delay times. To support such an
extension, more work would need to be conducted to conclude
whether the rank (i.e., ordering) of voxels in the carpet plot is truly
accurate when computed based on the cross-correlation method.

5 Conclusion

In this study, we proposed a novel carpet plot-based method to
reduce the estimated cerebral transit times derived from hypercapnia
fMRI in healthy subjects and spatially compare the resulting delaymaps
with theDSC-MRI TTPmaps.We demonstrated that, at least at a broad
level, the sequence of voxels implied by the assigned CO2 delay values is
still similar to, though not a perfect representation of, that derived from
DSC-MRI. The tilted edge in the middle CO2 carpet plot regions
mimics that observed in DSC-MRI carpet plots. Voxels in the top
portion (extra long delays) were located in deepWMwhile those in the
bottom portion were located in the periventricular region. The
structural similarity (with DSC delays) of voxels associated with the
top andmiddle carpet plot regions was shown to be positive and similar
between the top andmiddle regions. Voxels falling within the bottom of
the carpet plot were shown to have delay values that are unrealistically
early and, on average, have poor (negative) structural similarity with the
same voxels assigned delays via DSC-MRI. However, delay values of
voxels in the top portion were largely affected by the hemodynamic
response under CO2 challenge. Further research should focus on
inducing alternative gas challenge to eliminate the vessel response, as

well as collecting both DSC-MRI and gas challenge MRI data from the
same cohort of subjects.
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Cerebral blood flow (CBF) supports brain metabolism. Diseases impair CBF, and
pharmacological agents modulate CBF. Many techniques measure CBF, but phase
contrast (PC) MR imaging through the four arteries supplying the brain is rapid and
robust. However, technician error, patient motion, or tortuous vessels degrade
quality of the measurements of the internal carotid (ICA) or vertebral (VA) arteries.
We hypothesized that total CBF could be imputed from measurements in subsets of
these 4 feeding vessels without excessive penalties in accuracy. We analyzed PC MR
imaging from 129 patients, artificially excluded 1 or more vessels to simulate
degraded imaging quality, and developed models of imputation for the missing
data. Our models performed well when at least one ICA was measured, and resulted
in R2 values of 0.998–0.990, normalized root mean squared error values of
0.044–0.105, and intra-class correlation coefficient of 0.982–0.935. Thus, these
models were comparable or superior to the test-retest variability in CBFmeasured by
PCMR imaging. Our imputationmodels allow retrospective correction for corrupted
blood vessel measurements when measuring CBF and guide prospective CBF
acquisitions.

KEYWORDS

magnetic resonance imaging (MRI), cerebral blood flow (CBF), phase contrast (PC), internal
carotid artery (ICA), vertebral artery

Introduction

The brain requires a significant fraction of the metabolic support of the body, and it lacks
the capacity to buffer disruptions in blood supply. Thus, adequate cerebral blood flow (CBF) is
vital to brain health (Lassen, 1959) and CBF measurements span many areas of brain research.
CBF varies markedly with brain development throughout infancy, childhood, and senescence.
(Oshima et al., 2002; Liu et al., 2019; Paniukov et al., 2020). Altered CBF is associated with
cardiovascular risk, (Jennings et al., 2013; King et al., 2018), small vessel disease, (Yu et al.,
2020), Alzheimer’s dementia, (Leijenaar et al., 2017), white matter lesions, (Hanaoka et al.,
2016), anemia, (Borzage et al., 2016), stroke risk in sickle cell disease, (Vernooij et al., 2008;
Prohovnik et al., 2009), and higher risk of non-cardiovascular mortality in the elderly. (Sabayan
et al., 2013). CBF is a predictive biomarker for patients with severe depression, (Leaver et al.,
2019), and CBF is modulated by pharmacological agents including substances of abuse, (Chen
et al., 2016), alcohol, (Christie et al., 2008), and anesthetics. (Oshima et al., 2002).

The gold standard for CBF measurements are Kety-Schmidt tracer methods for whole
brain measurements and Positron Emitting Tomography (PET) for spatially resolved
measurements. However, both are invasive, making them poor candidates for
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neurovascular screening or research applications. A non-invasive
alternative CBF measurement is arterial spin labeling (ASL)
magnetic resonance imaging (MRI), which uses magnetically
labeled water protons in the blood as endogenous tracers to
estimate brain perfusion. However, quantitation of ASL is
limited by the measurement or assumption of multiple
parameters, including blood-brain partition coefficient, T1 of
blood, T1 of brain tissue, labeling efficiency, and arterial transit
time. (Alsop et al., 2010). Estimates of each of these key parameters
are provided in the literature, however experimental methods
demonstrate variability for each: the blood-brain partition
coefficient varies with age, underlying pathology and brain
region; (Thalman et al., 2019) T1 of blood varies with red cell
characteristics and hematocrit; (Lu et al., 2004) labeling efficiency is
a confounding variable that depends on the blood velocity and
labelling schema; (Robertson et al., 2017) and arterial transit time
varies with the health, age (MacIntosh et al., 2015; Dai et al., 2017)
and brain region. (Thomas et al., 2006). The reproducibility of ASL
is moderate (ICC 0.74–0.78); (Yang et al., 2019) and ASL
acquisitions are lengthy, with typical scan times of 5–7 min. As a
result, ASL is excellent at determining relative brain perfusion in
specific regions, but less suitable for measuring absolute blood flow.

Alternatively, phase contrast (PC) MRI of the internal carotid
(ICA) or vertebral (VA) arteries provides rapid and robust
quantification of global CBF (ml/min). The measurement yielded
by PC MRI can be normalized to brain volume from brain mass
estimates derived from anatomic imaging to estimate global brain
perfusion in ml/100 g/min. PC MRI is reproduceable between users
(ICC 0.97–0.99) and has a low coefficient of variation (4%–9%) for
serial measurements. (Koerte et al., 2013; Liu et al., 2014; Sakhare
et al., 2019). If phasic variation is unimportant, then accurate CBF
can be collected without cardiac gating thereby greatly accelerating
the acquisition. Most importantly, PC-MRI does not require
modeling or parameter estimation, making it robust across
pathological states.

One barrier to deploying PCMRI in clinical practice is the need to
minimize contributions from partial-voluming or off-axis flow. The
MR operator prevents these issues by carefully localizing the imaging
plane orthonormal to the vessel being measured. The four head vessels
are not parallel, thus optimal measurement of one of vessel
compromises measurements from the others. To overcome this
problem, the MR operator can use four PC MR images at the cost
of a four-fold increase in time. However, manual optimization of each
image remains dependent on operator skill. Automated methods for
analyzing the anatomy of patients and planning ideal locations of four
PC MR imaging slices have been proposed, but not implemented by
MR scanner vendors. (Liu et al., 2014). Alternatively, placing a “best-
guess” single PC MR imaging slice to measure CBF is
methodologically simple and fast, but is inherently suboptimal and
occasionally results in one or more vessels being too oblique for
acceptable quantitation.

We postulated that flows in each vessel were sufficiently correlated
with one another so that imputation could compensate for
measurements corrupted by motion or obliquity, provided that one
or more vessels remain measurable. To test this hypothesis, we
calculated the internal correlations among the head vessels,
developed a table of mathematical models to impute the flow from
corrupted arterial flow measurements, and assessed the resulting error
introduced by our imputations.

Materials and methods

Patient demographics

This study is a secondary analysis of existing data, which was
originally approved by the Children’s Hospital Los Angeles
Committee on Clinical Investigations (CCI 11–00083). Informed
consent was obtained from N = 129 patients recruited between
2012 and 2017. This cohort included patients with sickle cell
disease (N = 55), healthy control patients (N = 42), and patients
suffering from various hemoglobinopathies (N = 32). These patients
were 23.5 ± 9.7 years (range 9–61 years) old (59M, 70F). Their
hematocrits were 32.9% ± 7.2% and 33% (N = 42) were on chronic
transfusion. (Borzage et al., 2016).

Image acquisition

The imaging methods are reported elsewhere in detail and
summarized here. (Borzage et al., 2016). We obtained all images
with a 3T Philips Achieva and eight-element head coil. A magnetic
resonance angiogram localized the vessels in the neck, and a PC MR
imaging plane was placed approximately 1 cm above the carotid
bifurcation. The angiogram was collected in the axial plane with
inline reformatting into sagittal and coronal planes to facilitate
orthogonal placement of the PC imaging plane. Image parameters
for the PC MR examination were as follows: repetition time, 12.3 ms;
echo time, 7.5 ms; field of view, 260 mm; thickness, 5 mm; signal
averages, 10; acquisition matrix, 204 × 201; reconstruction matrix,
448 × 448; bandwidth, 244 Hz/pixel; and velocity encoding gradient,
200 cm/s. For this retrospective data analysis, we retained only one PC
MR image per patient. Figure 1 demonstrates the coronal angiogram
showing the carotid and vertebral arteries together with the magnitude
and phase images.

Image processing

We performed all phase-contrast image analysis using MATLAB
(The MathWorks, Natick, MA). We thresholded the complex
difference image to identify moving voxels (defined as greater than
the mean plus two standard deviations of stationary voxels sampled
from a non-vascular region). We fit the phase differences of stationary
voxels using a two-dimensional second-order polynomial to remove
the background phase. We identified vessel boundaries using a Canny
edge-detector of the complex difference image, dilating the edge by a
single voxel, and excluding any stationary voxels. We calculated the
blood flow in each artery by summing the blood velocities (cm/s)
within the vessel multiplied by the voxel area (cm2). When the
automatic edge detection failed (<5% of the time), the carotid or
vertebral artery boundaries were identified manually by an MR
researcher (JCW) with 22 years of experience analyzing PC MR
images.

Modeling cerebral blood flow

We identified all 16 possible scenarios wherein combinations of
two, one, or zero ICAs or VAs might be able to be analyzed from an
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image (Table 1). We synthesized each of these 16 scenarios from each
PC MR image to simulate the effects of a sub-optimal image which
failed to assess the four vessels to be analyzed. We applied a standard
least-squares model to model the total cerebral blood flow (CBF) as a
function of the vessels able to be analyzed. In scenarios where two
ICAs or two VAs were analyzed, we simplified and reduced the
degrees of freedom in the models by calculating the total anterior
(sum of ICAs) or posterior (sum of VAs) flow. We evaluated the
quality of each model using root mean squared error, intra-class
correlation coefficients (ICC), R2 statistic. The ICC (Lassen, 1959;
Liu et al., 2019) is a two-way random, single measures absolute
agreement between model 0 (gold standard) and models 1-8,
calculated using MATLAB. We also performed Bland-Altman
analyses of all imputed models compared to total CBF. We
calculated the biases as the mean difference between model 0 and
each other model, and the 95% limits of agreement as twice the

standard deviation of the differences of individual measurements
between model 0 and each other model.

Results

We report the total cerebral blood flow (933.7 ± 297.9), anterior
circulation (sum of ICAs, 652.6 ± 209.2), and posterior circulation
(sum of VAs, 281.0 ± 106.2). We also report the flow in the individual
arteries: left ICA (328.1 ± 110.5), right ICA (324.9 ± 105.7), left VA
(145.9 ± 76.8), and right VA (134.9 ± 53.1), all values are reported in
units of ml/min as mean ± standard deviation. (Figure 1, Left). We also
report the ratio of flow in individual arteries versus total cerebral blood
flow, which are: left ICA (0.352 ± 0.039), right ICA (0.348 ± 0.039), left
VA (0.154 ± 0.049), and right VA (0.147 ± 0.044), all values are
unitless, and reported as mean ± standard deviation. (Figure 1, Right).

FIGURE 1
Left panel: Coronal Angiogram showing the carotid and vertebral arteries. The solid-colored portion of the vessels are above the bifurcation of the
common carotid arteries, and below the level of the basilar artery. The green horizontal plane shows the location of the phase contrast slice. Center panel: a
magnitude image; and right panel: a phase image, both acquired at the level indicated in the left panel.

TABLE 1 Models for computing cerebral blood flow.

Number of
usable vessels

Model Cerebral blood flow equation RMSE Normalized RMSE R-Squared ICC(2,1)

ICAs VAs

2

2 0 CBF = Anterior + Posterior 00.00 0.000 1.000 1.000

1 1 CBF = 1.226 × Anterior + 0.933 × VA 41.00 0.044 0.998 0.982

0 2 CBF = 1.426 × Anterior 69.89 0.075 0.995 0.973

1

2 3 CBF = 1.866 × ICA + 1.145 × Posterior 57.19 0.061 0.997 0.983

1 4 CBF = 2.419 × ICA + 0.983 × VA 78.75 0.084 0.994 0.948

0 5 CBF = 2.841 × ICA 98.20 0.105 0.990 0.935

0

2 6 CBF = 3.219 × Posterior 159.46 0.171 0.974 0.877

1 7 CBF = 5.816 × VA 323.45 0.346 0.885 0.662

0 8 CBF = 933.656 297.88 0.319 NA 0.000

Models for computing cerebral blood flow when vessels are missing. The models are independent of the lateral location of the vessel(s) that are imputed thereby allowing us to omit models for the

combinations of different left versus right vessels (See Figure 3, Results). Models 1-7 are computed with an intercept of zero; model eight is the mean CBF in this study. The models followed the

anticipated pattern whereinmissing ICAs versusVAs contributed more error (e.g. model 3 versus 1). Abbreviations: cerebral blood flow (CBF), internal carotid artery (ICA), vertebral artery (VA), root

mean square error (RMSE), intra-class correlation coefficient (ICC). An online calculator for these models is provided: https://brainflow.science/impute-cbf.
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We evaluated all four ratios (left ICA-CBF, right ICA-CBF, left
VA-CBF, right VA-CBF) with an ANOVA, and tested all six pairwise
comparisons with Tukey-Kramer HSD. Only two pairs of ratios were
not different: the left ICA-CBF versus right ICA-CBF ratios (p =
0.549), and the left VA-CBF versus right VA-CBF ratios (p = 0.549).
Thus, we simplified from 16models to eight using symmetry of the left
and right CBF ratios. All other pairs of ratios were different (p <
0.0001).

We created eight statistical models of CBF using standard least
squares simple linear regression. We computed the performance
statistics for the models, including R2value, root mean square error
(RMSE), normalized RMSE and ICC to evaluate the performance
and the reliability of the models (Table 1). These models are
numbered from the case with all arteries present (model 0), in
ascending order of increasing expected error to the model with
the most error because there are no arteries present (model 8). As
anticipated from model 1 to model 8, the error in imputation
(RMSE) increased and the R2 decreased. All these models were
statistically significant (p < 0.0001), except when there were no
usable blood vessels (model 8).

We performed Bland-Altman analyses of models 1-
8 compared to total CBF (model 0), demonstrated in Figure 2.
Models 1-3 and 5 are all statistically unbiased (p > 0.05), models
4 and 6 had small biases (1.71% and 3.33%, respectively). Models
1-4 had narrow limits of agreement, with standard deviations of
5.43%–8.78%. Models 5-6 and had wider limits of agreement, with
standard deviations of 12.31%–15.12%. Model 7, which was
derived from a measurement in one VA, and it performed

exceptionally poorly (Bias −9.57%, standard deviation 28.53%).
Thus, model 7 had similar performance to model 8 (Bias −9.57%
standard deviation 33.69%) wherein flow is assumed equal to the
population mean.

Discussion

Our models were suitable to impute CBF for all scenarios wherein
at least one ICA was usable (Model 1–5). We do not recommend
attempting to impute CBF without any ICA measurements (models
6–8) because of their poor performance. We included models 6 and
7 because they were valid correlates of total cerebral blood flow, and
model 8 (mean CBF) for completeness. We recommend the reader
interpret our model performances in context of the accuracy and
precision needed for each specific use case for measuring CBF. In any
situation in which these models are used they add error versus the ideal
situation wherein all four vessels are perfectly measured in one PCMR
image. Thus, if any of the models are used, the error they introduce
should be considered and the modeled results should be held with
appropriate uncertainty.

The best comparisons of our model performance would be
versus the performance of other CBF imputation models that use
PC MR data. However, because our motivation for these models
was the lack of any extant model we cannot ascertain how our
models perform versus other approaches. As an imperfect
alternative, we provide the reader with examples of alternative
studies of CBF correlations using different measurement and

FIGURE 2
Bland-Altman analysis of total CBF quantified by PC in four vessels (model 0) versus various models of one or more missing vessels. Blue line
demonstrates bias, dashed blue line demonstrates insignificant (p > 0.05) bias, and red dash lines demonstrate 95% confidence intervals. These results suggest
that it is important to successfully capture at least one ICA or both VAs to impute CBF measurements.
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validation approaches as context for our model performance. The
correlation of arterial spin labeling versus 15O positron emission
tomography (R2 0.47 total CBF and R2 0.48 voxelwise blood flow);
(Heijtel et al., 2014) and the intraclass correlation of test-retest
measurements with PC MR with no repositioning of slice or
patient (ICC 0.79). (Sakhare et al., 2019). provide context to
judge our imputation performance versus other methods and
errors commonly encountered by those who measure CBF.

Imputation error increased more when an ICAwas corrupted than
a VA. This was anticipated because the ICA makes a greater
contribution to CBF than a VA. Thus, a single PC MR slice
placement that optimizes the measurement of the two ICAs may
be preferable to a single PC MR slice placement that attempts to
optimize both the ICAs and VAs. The ability to accurately estimate
total CBF based only on carotid measurements (one or both) is
perhaps not surprising based on prior work using transcranial
Doppler. While losing one carotid compromised CBF accuracy,
knowledge of the posterior flow adequately compensated for this
loss, reflecting the strong conservation of flow balance between the
anterior and posterior circulations.

We suggest that in time-limited scanning scenarios, that the
following PC MR localization be used. (A1) Acquire a low
resolution, highly accelerated MR angiography scout image with
sagittal and coronal maximum intensity projection (MIP) images;
this can typically be performed in approximately 30 s (A2) Use the
sagittal MRA image to optimize the anterior-posterior pitch of the
PC MR plane for the ICAs. (A3) Use the coronal image to optimize
the left-right roll of the PC MR plane for the ICAs, (A4) ensure the
PC MR slice is above the external carotid artery bifurcation, and
(A5) below the junction of the VAs into the basilar artery.
Alternatively, if there is not adequate time to acquire the MR
angiography image, it is also quite possible to use the ubiquitous
initial anatomical survey image; (B1) place the PC MR imaging
plane at the level of the C2 cervical vertebra, and (B2) angle it to be
perpendicular to the spinal cord. Either approach will intersect all
the great vessels of the neck and therefore create the images suitable
for our imputation models.

Limitations

Our models are only exploiting image-based information, however
we know that CBF is associated with hematocrit, sex and age. (Borzage
et al., 2016; Bush et al., 2016). Thus, excluding this data limits our
modeling but it also allows our approach to be suitable for scenarios in
which this information is either never collected, or removed to
anonymize the datasets. We assumed fixed ratios between vessel flow
and total CBF. This assumption is implicit on the understanding that the
flow would be proportional to the volume of tissue perfused by these
vessels, and that those tissues would be present in a fixed volumetric
ratio. However, the ratio of these structures may change in development
or senescence which limits our model application to the developing
brain and provides an opportunity for further development. (Bethlehem
et al., 2021). Ourmodel assumed the PCMR slice contains the ICAs and
VAs, however with an exceptionally poor localization the image might
include the common carotid arteries or basilar artery. If these are
incorrectly identified as ICA or VA arteries, then it would cause
overestimation of the total CBF. One opportunity for future research
is developing models to impute cerebral blood flow from images of
common carotid or basilar arteries. Our results demonstrate flow in the
two ICAs and two VAs are statistically equivalent. However, we did not
include patients with systemic or cerebrovascular disease, nor patients
with profound variance in the anatomy of their arteries (e.g. patients
who actually lack an ICA or VA), thus our data demonstrating lateral
symmetry might not generalize to populations with vascular disease.
However, patients with known vascular disease or profoundly abnormal
vessels may benefit from the more time-insensitive option of ASL MR.
In contrast the PC MR approach is suitable for large studies and
population-based screening. Moreover, our observed inter-vessel
relationships could potentially be useful in recognizing deranged
blood flow distribution in conditions such as steno-occlusive disease.

We did not explore other approaches to acquisition or analysis of
the PC MR image data. Our secondary analysis was unable to change
the prior approach to acquisition and exploring image processing
approaches is beyond the scope of this project. Moreover, our
imputation results are based on vascular physiology, not imaging

FIGURE 3
Left panel: measurements of flow in units ofml perminute. From left to right the figures shows total, anterior circulation, left internal carotid, right internal
carotid, posterior circulation, left vertebral, right vertebra. Right panel: ratios of flow in individual arteries versus total cerebral blood flow. From left to right the
figure shows left internal carotid, right internal carotid, left vertebral, right vertebra. The figures demonstrate visually (1) the range of total cerebral blood flow,
(2) the contribution from individual arteries is predominantly from the anterior circulation, that flow through (3) carotid and (4) vertebral arteries are
symmetric on the left and right sides.
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technology. Thus, our results remain valid even with improved PCMR
data acquisitions or image analyses. Our dimensionless approach
means that even if our imaging methods are biased compared to
approaches taken by others, they can use our imputation models. If
our image acquisition methods have higher variance compared to
approaches by others, our modeling error will be conservative and
overestimate the variance compared to those their improved methods.

Conclusion

Phase contrast MR is an efficient and effective way to assess total
cerebral blood flow. Our results indicate that using our imputation
models based on at least one ICA flow measurement provides lower
variance in results than ASL, and higher intraclass correlation than test-
retest PCMR. Therefore, our methods are an important set of equations
describing vascular physiology. Our equations enable a new approach
for dealing with real-world data and make it easier to use PC MR to
obtain measurements of CBF in large numbers of patients or volunteers.
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Introduction: In the pediatric brain tumor surgery setting, intraoperative MRI
(ioMRI) provides “real-time” imaging, allowing for evaluation of the extent of
resection and detection of complications. The use of advanced MRI sequences
could potentially provide additional physiological information that may aid in the
preservation of healthy brain regions. This review aims to determine the added
value of advanced imaging in ioMRI for pediatric brain tumor surgery compared to
conventional imaging.

Methods: Our systematic literature search identified relevant articles on PubMed
using keywords associated with pediatrics, ioMRI, and brain tumors. The literature
search was extended using the snowball technique to gather more information on
advancedMRI techniques, their technical background, their use in adult ioMRI, and
their use in routine pediatric brain tumor care.

Results: The available literature was sparse and demonstrated that advanced
sequences were used to reconstruct fibers to prevent damage to important
structures, provide information on relative cerebral blood flow or abnormal
metabolites, or to indicate the onset of hemorrhage or ischemic infarcts. The
explorative literature search revealed developments within each advanced MRI
field, such as multi-shell diffusion MRI, arterial spin labeling, and amide-proton
transfer-weighted imaging, that have been studied in adult ioMRI but have not yet
been applied in pediatrics. These techniques could have the potential to provide
more accurate fiber tractography, information on intraoperative cerebral
perfusion, and to match gadolinium-based T1w images without using a
contrast agent.

Conclusion: The potential added value of advanced MRI in the intraoperative
setting for pediatric brain tumors is to prevent damage to important structures, to
provide additional physiological or metabolic information, or to indicate the onset
of postoperative changes. Current developments within various advanced ioMRI
sequences are promising with regard to providing in-depth tissue information.

KEYWORDS

intraoperative MRI, advanced MRI, surgical anatomy, postoperative changes, pediatric
brain tumor patients
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1 Introduction

Pediatric brain tumor surgery aims for a complete resection of
tumor tissue while avoiding damage to healthy functional brain
regions. The extent of resection (EOR) is a key indicator of the
child’s prognosis after surgery (Lindner et al., 2017; Tejada et al.,
2018). An increased EOR could improve progression-free and
overall survival (Marongiu et al., 2016; Costabile et al., 2019; Li
et al., 2021) and reduce the risk of early reoperation (Shah et al.,
2012; Sunderland et al., 2021).

The implementation of intraoperative magnetic resonance
imaging (ioMRI) aims to sustain these goals by enabling “real-
time” images of the brain, allowing for intraoperative evaluation of
the extent of resection (EOR) (Marongiu et al., 2016). In 38% of
pediatric ioMRI-guided surgical cases, the ioMRI was followed by
additional resection leading to a substantial increase in EOR (Karsy
et al., 2019; Giussani et al., 2022).

IoMRImay also contribute to alleviate a second challenge during
surgery; avoiding damage to healthy functional brain regions and
preserving the quality of life (Sunderland et al., 2021). Particularly,
ioMRI can pinpoint intraoperative complications such as
intracranial hemorrhage or tissue ischemia (Marongiu et al.,
2016). IoMRI also gives a “real-time” update on the actual
anatomy that may be affected by per-operative brain shift. All in
all, ioMRI imaging may be used to update the neuronavigation that
supports the neurosurgeon to achieve more radical tumor resections
while avoiding neurological damage in surrounding brain tissue
(Choudhri et al., 2015; Metwali et al., 2020; Sunderland et al., 2021).

Generally, ioMRI sites incorporate multiparametric imaging
optimized for surgical aims. Conventionally used sequences in
the pediatric ioMRI context are variations of 2D or 3D T1-and
T2-weighted (T1w and T2w) images to visualize residual tumor
tissue and to guide continuation of the neurosurgical resection
(Abernethy et al., 2012; Choudhri et al., 2014; Millward et al.,
2015; Giordano et al., 2017; Low et al., 2018; Tejada et al., 2018;
Karsy et al., 2019).

Advanced MRI sequences, on the other hand, could potentially
provide additional information on physiological aspects of the brain.
For example, these sequences could assess the functional integrity of
white matter tracts and blood perfusion or metabolic status of the
brain tissue (Abernethy et al., 2012; Sanvito et al., 2021; Petr et al.,
2022).

Potentially this might contribute to peroperative awareness and
support prevention of damage to healthy functional brain regions.

In this manuscript, we systematically review the literature,
aiming to answer the following question: “what is the added
value of advanced imaging in ioMRI for pediatric brain tumor
surgery, as compared to conventional imaging?”

2 Methods

We conducted a Pubmed search of the literature on advanced
MRI in the pediatric ioMRI setting, based on the following search
terms: (pediatr* OR paediatr* OR child*) AND (ioMRI OR iMRI OR
iopMRI OR “intraoperative MRI” OR “intra-operative MRI”) AND
(tumor* OR tumour* OR glioma*). Papers were screened on title
and abstract, and relevant articles were read in full text.

Articles were included based on the following criteria:

- Case series, cohorts, or trials including pediatric patients
(age <19 years) undergoing ioMRI for brain (tumor) surgery.

- The reported MRI sequences were intraoperatively acquired.
- The added value of advanced MRI sequences was reported.

Literature reviews, book chapters, articles on epilepsy, in vitro
studies, articles not written in English, or with no focus on surgery;
articles on low-field MRI (<1.5 Tesla), no focus on ioMRI or no
pediatric patients (age, <19 years) were excluded.

Conventional MRI sequences were defined as T1w, T2w, or
fluid-attenuated inversion recovery (FLAIR) sequences (with or
without gadolinium contrast) that can provide structural
information about the brain (Lequin and Hendrikse, 2017).
Advanced MRI sequences were defined as sequences that could
also provide information on physiology and functionality, including
metabolism, brain tumor cellularity, and hemodynamics (Lequin
and Hendrikse, 2017; Petr et al., 2022).

The following MRI sequences were considered as advanced MRI
sequences: arterial spin labelling (ASL), amide-proton transfer-
weighted imaging (APTw), dynamic contrast-enhanced (DCE),
dynamic susceptibility contrast (DSC), diffusion kurtosis imaging
(DKI), intravoxel incoherent motion (IVIM), multicomponent-
driven equilibrium single pulse observation of T1 and T2
(mcDESPOT), magnetic resonance spectroscopy (MRS), myelin
water imaging (MWI), neurite orientation and dispersion density
imaging (NODDI), quantitative magnetization transfer (qMT),
quantitative susceptibility mapping (QSM), relaxometry, vascular,
extracellular and restricted diffusion for cytometry in tumors
(VERDICT) (Petr et al., 2022); diffusion-weighted imaging
(DWI), diffusion tensor imaging (DTI), chemical shift imaging
(CSI), susceptibility-weighted imaging (SWI), and functional MRI
(Lequin and Hendrikse, 2017).

From each included study, the following data were extracted:
study center, magnetic field strength (Tesla), number of brain tumor
patients included, histopathological diagnosis, advanced MRI
sequences used, and their added value as reported in the study.

As this search yielded limited information, we extended our
search beyond the initial research question, using the snowball
technique, to gain more information on the technical background
of each advanced MRI technique, their use in ioMRI in adults, and
their use in routine pediatric brain tumor care.

3 Results

3.1 Systematic literature review

The literature search on PubMed yielded 128 articles, of which ten
met our inclusion criteria (Figure 1; Table 1) (Abernethy et al., 2012;
Yousaf et al., 2012; Avula et al., 2013; Ren et al., 2013; Giordano et al.,
2017; Tejada et al., 2018; Saint-Martin et al., 2019; Low et al., 2020; Avula
et al., 2021; Sunderland et al., 2021). Most of these studies were cohort
studies, twowere case series (Abernethy et al., 2012; Ren et al., 2013), one
included a review of experience (Abernethy et al., 2012), and one
included a comparison of their results to existing literature (Low
et al., 2020). A total of 604 ioMRI brain tumor patients were
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described in the included literature. All studies that resulted from our
PubMed search were performed on either a 1.5 or 3 Tesla MRI scanner.
These studies aimed to report the initial ioMRI experience, to evaluate
early repeat resection (Avula et al., 2013), to detect ischemic infarcts on
diffusion ioMRI (Saint-Martin et al., 2019), or to evaluate ioMRI scans as
post-operative scans (Avula et al., 2021). The included studies described
a heterogeneous group of histopathological brain tumors with advanced
MRI (Table 1). Just one study focused specifically on advanced ioMRI
(Saint-Martin et al., 2019) but did not perform any post-processing for
further data analysis. Eight studies were evaluated as having a low risk of
bias as they included consecutive patients of all histopathological brain
tumors though five of these studies reported advanced imaging only in
selective patients (Abernethy et al., 2012; Yousaf et al., 2012; Avula et al.,
2013; Tejada et al., 2018; Low et al., 2020), introducing an increased bias
risk. Two studies had a higher risk of bias as they selected based on tumor
type; subendymal giant cell astrocytoma (Ren et al., 2013) or thalamic
tumor patients (Sunderland et al., 2021).

The ten articles that reported the use of advanced ioMRI
sequences for pediatric brain tumor surgery focused on diffusion
MRI (DWI and DTI), perfusion MRI (DSC), and metabolic MRI
(MRS and CSI). Diffusion MRI was used in 288 patients, covered by
seven studies (Ren et al., 2013; Giordano et al., 2017; Tejada et al.,
2018; Saint-Martin et al., 2019; Low et al., 2020; Avula et al., 2021;
Sunderland et al., 2021). Three other studies that covered diffusion
MRI did not specify the number of patients. Most authors used DWI
to detect diffusion restriction that can indicate hemorrhage or
ischemic infarcts and DTI for reconstructing fibers

(i.e., corticospinal tract and arcuate fasciculus) to avoid damage to
important structures. DTI was also used to generate B0 and apparent
diffusion coefficient (ADC)maps to visualize ischemic infarcts (Saint-
Martin et al., 2019). PerfusionMRI was used in 22 patients, covered by
one study (Tejada et al., 2018). Three other studies also used perfusion
MRI for selective patients but did not specify their numbers. Authors
used DSC for early resection control and additional physiological
information on relative cerebral blood flow. Metabolic MRI was used
in 11 patients, covered by one study (Tejada et al., 2018). Two other
studies that reported use of MRS did not specify the number of
selected patients. MRS and CSI were used to evaluate the presence of
abnormal high concentration of metabolites (i.e., choline) that could
either represent edema or tumor invasion.

In conclusion, the sparse literature demonstrated that advanced
sequences in ioMRI for pediatric brain tumor surgery was used to
reconstruct fibers to prevent damage to important structures, provide
information on relative cerebral blood flow or abnormal metabolites, or
to indicate the onset of hemorrhage or ischemic infarcts.

3.2 Explorative literature review

The explorative literature search was confined to the same
advanced MRI fields: diffusion-, perfusion-, and metabolic MRI.
It focused on the technical background of the sequences, their use in
the ioMRI setting for adult brain tumor surgery, and their use in
routine pediatric brain tumor care.

FIGURE 1
Study flowchart.
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TABLE 1 Study designs and parameters of included studies.

Study Included
pediatric
ioMRI brain
tumor
patients [total]

Study
design

Study aim Brain tumor types
described with advanced
MRI (histopathology or
location)

Advanced
MRI
sequence

Added value

Abernethy et al. (2012) Not mentioned Review of
experience and
case series

Report of initial
ioMRI
experience

Not mentioned DTI Reconstruction of fibers
to avoid damage to
important structures.

Alder Hey Children’s
Hospital, Liverpool,
United Kingdom

DSC Early resection control
and information on
relative cerebral
blood flow.

Yousaf et al. (2012) 73 [73] Cohort Report of initial
ioMRI
experience

Deep-seated tumors (DTI),
pathology not provided

DTI Reconstruction of fibers
to avoid damage to
important structures.

Alder Hey Children’s
Hospital, Liverpool,
United Kingdom

DSC Early resection control
and information on
relative cerebral
blood flow.

MRS Evaluation of presence of
abnormal metabolites.

Avula et al. (2013) 36 [72] Cohort Evaluation of
early repeat
resection

Atypical teratoid rhabdoid
tumor (MRS)

DWI Detect diffusion
restriction that can
indicate hemorrhage or
ischemic infarcts.

Alder Hey Children’s
Hospital, Liverpool,
United Kingdom

DSC Information on relative
cerebral blood flow.

MRS Evaluation of presence of
abnormal metabolites.

Ren et al. (2013) 7 [7] Case series Report of initial
ioMRI
experience in
SEGA patients

SEGA DTI Reconstruction of
corticospinal tract and
arcuate fasciculus to
avoid damage to
important structures.

PLA General Hospital,
Beijing, China

Giordano et al. (2017) 75 [75] Cohort Report of ioMRI
experience

Craniopharyngioma, Rathke’s cleft
cyst, pituitary macroadenoma,
pilocytic astrocytoma, diffuse
astrocytoma, glioblastoma,
oligodendroglioma, angiocentric
glioma, SEGA, anaplastic
astrocytoma, ependymoma,
cortical dysplasia, ganglioglioma,
hamartoma, germinoma, PNET.

DTI Reconstruction of fibers
to avoid damage to
important structures.

International
Neuroscience
Institute–Hannover,
Hannover, Germany

Tejada et al. (2018) 223 [223] Cohort Report of ioMRI
experience

High-grade glioma (DTI, CSI),
midline glioma, and multifocal
embryonal tumor (DWI).

DWI Detect diffusion
restriction that can
indicate hemorrhage or
ischemic infarcts.

DTI Reconstruction of fibers
to avoid damage to
important structures.

Alder Hey Children’s
Hospital, Liverpool,
United Kingdom

DSC Information on relative
cerebral blood flow.

MRS and CSI Evaluation of presence of
abnormal metabolites
that could either
represent edema or
tumor invasion.

(Continued on following page)
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3.3 Diffusion MRI

3.3.1 Technical background of diffusion MRI
Diffusion MRI (dMRI) is based on the diffusion of water

molecules and provides information on the microstructural tissue
organization. In dMRI, multiple diffusion-weighted images are
acquired in multiple spatial directions.

Diffusion tensor imaging (DTI) leverages dMRI data
acquired at a single diffusion weighting (b-value) that is
therefore called single-shell acquisition (Table 2). It is the
conventional dMRI quantification method in clinical practice.
The acquisition of dMRI data with multiple b-values, called

multi-shell, has recently become feasible within clinically
acceptable acquisition times. Multi-shell dMRI allows for more
advanced quantification models like diffusion kurtosis
imaging (DKI).

DMRI metrics such as the apparent diffusion coefficient (ADC)
and fractional anisotropy (FA) can be used to disentangle tissue
components (e.g., cellular mass versus edema or other cavities) that
can be useful for clinical decision-making (Lequin and Hendrikse,
2017). DKI has been shown to be more sensitive to microstructural
changes than DTI (Mohammadi et al., 2015; Yeh et al., 2021).
Moreover, multi-shell dMRI data allowed models that could capture
the presence of multiple water components (Rydhög et al., 2017),

TABLE 1 (Continued) Study designs and parameters of included studies.

Study Included
pediatric
ioMRI brain
tumor
patients [total]

Study
design

Study aim Brain tumor types
described with advanced
MRI (histopathology or
location)

Advanced
MRI
sequence

Added value

Saint-Martin et al. (2019) 115 [115] Cohort Detection of
ischemic infarct
on diffusion
ioMRI

Medulloblastoma, pilocytic
astrocytoma, glioblastoma,
anaplastic ependymoma,
craniopharyngioma, epidermoid
cyst, anaplastic ganglioglioma,
desmoplastic infantile
ganglioglioma, and hypothalamic
hamartoma.

DTI Generate B0 and ADC
maps to visualize
ischemic infarcts.

The Montreal Children’s
Hospital, Montreal,
Canada

Low et al. (2020) 35 [43] Cohort and
comparison to
literature

Report of ioMRI
experience

Not mentioned DTI Reconstruction of
corticospinal tract to
avoid damage to
important structures.

KK Women’s and
Children’s Hospital,
Singapore, Singapore

Avula et al. (2021) 20 [20] Cohort Evaluation of
ioMRI scan as
post-operative
scan

Medulloblastoma, pilocytic
astrocytoma, fibrillary
astrocytoma, ganglioglioma,
craniopharyngioma, high-grade
glioma, pleomorphic
xanthoastrocytoma, pilomyxoid
astrocytoma, SEGA, and pituitary
adenoma.

DWI and DTI Detect diffusion
restriction that can
indicate hemorrhage or
ischemic infarcts.

Alder Hey Children’s
Hospital, Liverpool,
United Kingdom

Sunderland et al. (2021) 20 [30] Cohort Report of ioMRI
experience in
thalamic tumor
patients

Thalamic tumors DTI Reconstruction of fibers
to avoid damage to
important structures.

Alder Hey Children’s
Hospital, Liverpool,
United Kingdom

IoMRI = intraoperative MRI; DTI = diffusion tensor imaging; DSC = dynamic susceptibility contrast; MRS = magnetic spectroscopy resonance; SEGA = subependymal giant cell astrocytoma;

PNET = primitive neuroectodermal tumor.

TABLE 2 Difference between single- and multi-shell diffusion MRI acquisition for brain tumor imaging.

Single-shell diffusion MRI Multi-shell diffusion MRI

Typical quantification
methods

DTI DKI

Typical b-values Single, around b = 1000 s/mm2. Multiple, between b = 1,000 and b = 3,000 s/mm2. For example, b = 1,000, 2000,
3,000 s/mm2.

Fiber tractography model Depending on the number of gradient directions:
• <28, DTI. Unable to resolve crossing fibers.
• ≥28, spherical deconvolution. Can (partly) resolve
crossing fibers*

Advanced methods applicable if at least 28 gradient directions (45+ recommended) are
collected for the largest b-value. Can resolve crossing- and kissing fibers, and account for
partial volume effects (e.g., fluids).

DTI = diffusion tensor imaging; DKI = diffusion kurtosis imaging; b-value = Diffusion weighting.

*Guo et al. (2020).
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such as free water (e.g., edema) (Pasternak et al., 2009) or perfusion
(e.g., intra-voxel incoherent motion) (De Luca et al., 2017). In
addition to microstructural properties, dMRI data can be used to
reconstruct the trajectory of brain white matter pathways
(Figure 2A) (Jeurissen et al., 2019). When such fiber tractography
models are based on multi-shell dMRI, they could typically account
for crossing fibers and properties of different tissue types in the brain
(e.g., white matter versus grey matter versus free fluid). Multi-shell
data could be used to generate a more detailed and anatomically
accurate fiber tractography than single-shell dMRI (Table 4) (Poretti
et al., 2012; Mohammadi et al., 2015; Guo et al., 2020; Yeh et al.,
2021). Moreover, it might be able to map the border of major white

matter tracts and displaced fiber tracts more reliably (Nimsky, 2014;
De Luca et al., 2020). Disadvantages of multi-shell dMRI are lower
signal-to-noise ratio (SNR), which is often resolved with a lower
spatial resolution or longer acquisition time, and technically
demanding post-processing to increase image quality
(Mohammadi et al., 2015). Both single- and multi-shell dMRI are
sensitive to eddy currents and susceptibility artifacts between air and
tissue (Table 3). These artifacts are increased in the intraoperative
setting due to the open skull (Mohammadi et al., 2015; Lindner et al.,
2022). However, this might be worse in multi-shell diffusion MRI
acquisition due to the higher gradient amplitudes (Mohammadi
et al., 2015).

FIGURE 2
Neurosurgical cases demonstrating the added value of advanced MRI. (A) Preoperative images of a 10-year-old girl with a diffuse midline glioma
(H3K27 mt) originating from the left posterior thalamus and mesencephalon and expanding into the atrium of the left ventricle. Left: the transverse T1-
weighted contrast-enhanced image shows enhancement of the tumor (yellow outline). Center: the coronal fractional anisotropy color-coded map
(single-shell diffusionMRI, 16 directions) shows left-right asymmetry demonstrating the displacement of fibers caused by the tumor (yellow outline).
Thewhite circles depict the arcuate fasciculus, and the red ovals depict the corticospinal tracts. Solid lines depict the unaffected side, and the dashed lines
show the affected side. Right: reconstruction of the corticospinal tract 1), arcuate fasciculus 2), tumor 3), and optic radiation 4). A parietal surgical
approach posterior to the arcuate fasciculus and superior to the optic radiation 5) was chosen for tumormass reduction and histopathological diagnosis.
(B) Preoperative images of a 17-year-old girl with neurofibromatosis type 1 and a space-occupying lesion in the fourth ventricle. Left: the sagittal T1-
weighted contrast-enhanced images. The differential diagnosis was pilocytic astrocytoma or high-grade glioma. Center: transverse T1-weighted
contrast-enhanced image. Right: the hyperperfusion (white arrow) of the unquantified arterial spin labeling imagemakes diagnosing a high-grade glioma
more probable. Histopathological examination revealed a high-grade glioma with pilocytic features. (C) Preoperative images of a 17-year-old boy with a
pilocytic astrocytoma. Left: sagittal T1-weighted contrast-enhanced image. Center: transverse T1-weighted contrast-enhanced image. Right: amide-
proton transfer-weighted (APTw) image. Note the hyperintense region (white arrow) that matches the contrast enhancement on T1-weighted contrast-
enhanced image. The red outer rim (yellow arrow) of the APTw image is likely caused by susceptibility-weighted air-tissue artifacts. Ethical approval from
the local medical ethics committee was obtained for this study.
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3.3.2 Use of diffusion MRI in adult ioMRI setting
In the adult ioMRI setting, dMRI was used for fiber tracking of

white matter fibers in eloquent brain areas (Zhang et al., 2022). Due
to the brain shift after craniotomy, such fiber reconstructions had to
be adjusted intraoperatively (Zhang et al., 2022). Single-shell dMRI,
which is suitable for DTI, has been used more often in clinical
practice than multi-shell dMRI due to its reliance on simpler data
acquisition and reconstruction models (Mohammadi et al., 2015).
Previous research on intraoperative single-shell dMRI reported its
use in the estimation of brain shift (Metwali et al., 2020). It was also
an integral part of an ioMRI protocol which was able to increase
EOR from 44% to 88.5% in an adult glioblastoma population
(Marongiu et al., 2016). Studies comparing EOR in groups of
patients using ioMRI protocols with and without diffusion MRI
are not currently available and would be helpful to determine its
specific added value. Hypothetically, multi-shell dMRI might even
further improve these findings (Nimsky, 2014). The feasibility of
multi-shell dMRI fiber tractography was reported by Leote et al.
(2018) for the pre-surgical planning of adult brain tumor surgery.

3.3.3 Use of diffusion MRI in pediatric routine brain
tumor care

DMRI metrics, such as the ADC and FA, were used in routine
pediatric clinical practice to grade tumor tissue and differentiate it from
healthy brain tissue (Table 4) (Ouadih et al., 2022). ADCwas associated
with cellularity in previous studies, which was correlated with
extracellular diffusion (Villanueva-Meyer et al., 2017; She et al.,
2021). Reduced diffusivity (low ADC) compared to surrounding
tissues could point toward high cellular tumor tissue
(i.e., medulloblastoma) with little extracellular water and ischemia.
Conversely, high diffusivity (high ADC) could indicate increased
extracellular water, vasogenic edema, or necrotic tissue (Avula et al.,

2014). FA values were also used to grade brain tumor tissue in children,
where low FA has been associated with high-grade glioma (Poretti et al.,
2012). Furthermore, DKImetrics were consideredmore promising than
conventional dMRI metrics in tumor grading and prediction of the
expression of Ki-67, a histopathological cell proliferation biomarker
(Jiang et al., 2015; Sanvito et al., 2021).

3.4 Perfusion MRI

3.4.1 Technical background of contrast-based
perfusion MRI

Brain tumor perfusion characteristics can be investigated with
gadolinium contrast-based perfusion MRI sequences. Examples of
such imagingmethods are dynamic susceptibility contrast- (DSC) and
dynamic contrast-enhanced (DCE) imaging (Lequin and Hendrikse,
2017). Gadolinium contrast is the cornerstone of MRI tumor
diagnostics, but its disadvantages should be considered carefully.
First, gadolinium could cause the accumulation of toxic side
products, especially in renal failure patients, increasing the chance
of developing nephrogenic systemic fibrosis (Sadowski et al., 2007).
Second, gadolinium is a blood-pool contrast agent whose
enhancement assumes an intact blood-brain barrier. However,
surgical manipulation violates this assumption in the intraoperative
setting. This could lead to misinterpretation of gadolinium contrast
enhancement (Abernethy et al., 2012). Third, gadolinium could cause
a delay in sequence repetition if readministered within 24 h. However,
on the day of the surgical procedure, MR scan sessions are often
repeated (e.g., intra- and post-operative MRI or multiple ioMRI
sessions) (Millward et al., 2015; Keil et al., 2018). Fourth,
gadolinium may pose an environmental threat (Trapasso et al.,
2021). Taking these disadvantages of gadolinium contrast-based

TABLE 3 Technical considerations and details of each advanced MRI sequence.

Sequence Estimated average scan time* Desired
resolution§

Sequence-specific artifacts and considerations

Single-shell
dMRI

3 min (in case of DTI, whole-brain, about
20 directions)†

Isotropic, <2.5 mm Susceptible to air-tissue artifacts and eddy currents; Susceptible to artifacts
caused by free diffusion in tissue (e.g., edema).

Multi-shell dMRI 8 min (in case of a minimum protocol for DKI,
whole-brain, about 42 directions)‡

Isotropic, <2.5 mm Susceptible to air-tissue artifacts and eddy currents; Higher b-value
acquisition results in a lower SNR that needs to be compensated by
averaging or reducing the echo time; Longer acquisition time.

ASL 4 min 30 s (whole-brain) 3 × 3 × 7 mm Susceptible to air-tissue artifacts and blood flow artifacts caused by
pulsation of large blood vessels; Thick slices (7 mm) required to reach
desired SNR levels in the clinical setting; Difficult to position ASL labeling
box perpendicular to vessels in the neck when the patient has a twisted neck
in the surgical position.

MRS (single-
voxel)||

4 min 28 s 20 × 20 × 20 mm Susceptible to air-tissue artifacts; Long acquisition time and low spatial
resolution.

APTw imaging 4 min (half-brain) 0.9 × 0.9 × 6 mm Susceptible to air-tissue artifacts causing a B0 offset of the saturation pulse¶,
thereby less specific for APTw signal; Thick slices (6 mm) required to reach
desired SNR level in the clinical setting.

DMRI = diffusion MRI; DTI = diffusion tensor imaging; DKI = diffusion kurtosis imaging; SNR = signal-to-noise ratio; ASL = arterial spin labelling; MRS = magnetic resonance spectroscopy;

APTw = Amide proton transfer-weighted.

*Estimated scan time when making use of accelerated imaging techniques on a 3 Tesla strength while using two single-loop receiving coils.
†Whole brain is a field of view of 240 × 240 × 160 mm.
‡The acquisition of multi-shell dMRI with single-loop receiving coils cannot be accelerated with the multi-band technique as it is only available for a conventional multi-channel head coil.
§Reconstructed voxel size.
||Semi-LASER spectroscopy with an echo time of 35 ms.
¶Zhou et al. (2019).
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sequences into account, we shall focus on non-invasive alternatives for
this explorative literature search on perfusion MRI.

3.4.2 Technical background of non-invasive
perfusion MRI

Arterial spin labelling (ASL) is a perfusion MRI sequence that
can quantify absolute CBF based on endogenous blood water
(Keil et al., 2018). The ASL signal is based on subtracting two
consecutive images (Lindner et al., 2022). The first image labels
inflowing arterial blood at the cervical level that is magnetically
inverted with a radiofrequency pulse (Alsaedi et al., 2018; Keil
et al., 2018). This image is acquired after an appropriate delay
time, called the post-labeling delay, which depends on the speed
of blood flow and thus the health of the vascular tree (Carsin-Vu
et al., 2018; Keil et al., 2018). The second image is the control
image that covers the same downstream cerebral region of
interest but without magnetically inverting the blood in the
cervical arteries (Alsaedi et al., 2018). The ASL difference
image visualizes the perfusion signal from the arteries into
neighboring brain tissue (Alsaedi et al., 2018). This difference
image can then generate a map that represents the quantified CBF
in mL/100 g brain tissue/min (Keil et al., 2018).

ASL has the advantage that it is not susceptible to blood-brain
barrier leakage artifacts usually observed for gadolinium (Lindner
et al., 2017; Keil et al., 2018). Another important advantage is that it
can be easily repeated without any cost, except for adding the
scanning duration. Lastly, the ability of ASL to quantify absolute
CBF (Keil et al., 2018) is useful for assessment of cerebral vitality in
surgical and eloquent areas. Disadvantages of ASL are the relatively
low SNR (Table 3) and limited sensitivity in low CBF regions such as
white matter (Petr et al., 2022). However, the low SNR of the ASL
signal is less prominent in children (Yeom et al., 2013). The problem
of limited sensitivity in the white matter could be overcome by
integrating ASL and dMRI in a multiparametric model to generate a
comprehensive clinical overview.

3.4.3 Use of non-invasive perfusion MRI in adult
ioMRI setting

Intraoperative ASL could be used for iatrogenic changes in CBF
and to depict residual tumor tissue in adults (Table 4) (Lindner et al.,
2017). Lindner et al. (2017) reported the feasibility of intraoperative
residual tumor detection using ASL when compared to gadolinium-
contrast based T1w images (T1w-Gd) in adults with glioblastoma.
They argued that ASL could make a more definite judgment of
residual tumor tissue than conventional ioMRI sequences (Lindner
et al., 2017). However, only a small number of patients were included
in this study (n = 8). Another use of intraoperative ASL could be
mapping functional areas that should not be damaged during
surgery to avoid postsurgical deficits (Lindner et al., 2022). This
research also focused on an adult glioblastoma population. It
showed that intraoperative ASL could reliably map functional
areas and residual brain tumor after post-processing special data.
However, their analysis method also revealed false-positive artifacts
on the resection rim that should be carefully considered.

3.4.4Use of non-invasive perfusionMRI in pediatric
routine brain tumor care

Several studies have indicated that ASL could be a reliable
method to evaluate perfusion patterns of brain tumors in
pediatric populations (Yeom et al., 2013; Morana et al., 2017).
ASL-based CBF maps have been used routinely to grade tumor
tissue in children due to its correlation with tumor vascular density
(Yeom et al., 2013; Dangouloff-Ros et al., 2016; Keil et al., 2018). In
such a way, hyperperfusion on ASL images could indicate the high
malignity of tumor tissue, because of increased tumor tissue activity
and blood flow supply (Figure 2B) (Yeom et al., 2013; Dangouloff-
Ros et al., 2016; Keil et al., 2018). To illustrate this, Yeom et al. (2013)
presented a case diagnosed with mixed anaplastic astrocytoma-
glioblastoma that showed elevated CBF values in tumor tissue
compared to non-tumoral grey matter. On the other hand, low-
grade gliomas, such as dysembryoplastic neuroepithelial tumors,

TABLE 4 Clinical implications of advanced ioMRI in pediatrics.

Imaging
technique

Promises Pitfalls

Single-shell dMRI Conventional quantification method in clinical practice; DTI metrics (e.g.,
MD and FA) are reliable to grade tumor tissue.

Data is likely not optimal for fiber tractography in presence of edema and/
or fluid cavities.

Multi-shell dMRI Sensitive to additional effects than single-shell dMRI (e.g., diffusion
restrictions due to membranes). Suitable for state-of-the-art fiber
tractography methods to resolve crossing- and kissing fibers and account
for partial volume effects; DKI metrics can be used to grade tumor tissue
and predict Ki-67 expression; Detect residual diffusion restriction effects
and residual tumor tissue.

Not commonly used in clinical practice; Initially requires more expert
knowledge to set-up. Lack of user-friendly tools to leverage its full
potential.

ASL Detect residual tumor tissue; Differentiate from non-tumorous
gadolinium enhancement in resection cavity; Mapping of functional areas.

Artifacts in the control image can propagate in ASL difference image (e.g.,
false-positive hyperperfusion).

MRS (single-voxel) Metabolic evaluation of tumor tissue; Metabolite pattern recognition
could be assisted by automated processing.

Low specificity of tumor type.

APTw imaging Replace gadolinium-based anatomical sequences to detect residual tumor;
Can generate a quantified image; APTw signal could be associated with
increased protein levels.

Not commonly used in clinical practice; Potentially low detection
sensitivity to low-grade gliomas which are more prominent in pediatrics.

dMRI = diffusion MRI; DTI = diffusion tensor imaging; DKI = diffusion kurtosis imaging; MD = mean diffusivity; FA = fractional anisotropy; ASL = arterial spin labeling; MRS = magnetic

resonance spectroscopy; APTw = amide-proton transfer-weighted.
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showed low ASL-based CBF within the tumor region (Yeom et al.,
2013; Lequin and Hendrikse, 2017).

Some limitations of ASL in pediatric routine brain tumor care
should be considered. First, various ASL perfusion patterns existed for
both high- and low-grade gliomas depending on vascular characteristics
(e.g., vessel density and capillary exchange rate). Second, ASL
hypoperfusion in children could also be caused by edema or scar
tissue (Keil et al., 2018). Due to this heterogeneity of measurements in
different tumor types, ASL images should be considered in combination
with high-resolution anatomical images for a more definite judgement.
Third, the effect of anesthesia on regional CBF should also be
considered, as general anesthesia usually induces vasodilation
(Carsin-Vu et al., 2018; Keil et al., 2018).

3.5 Metabolic MRI

3.5.1 Technical background in metabolic MRI
Proton magnetic resonance spectroscopy (MRS) is a non-

invasive metabolic MRI technique that can detect metabolites in
the tissues (Wilson et al., 2019). For example, MRS could detect the
neurotransmitters glutamate, glutamine, GABA, and other
metabolites such as N-acetyl aspartate, choline, creatine, and
myo-inositol. Alterations in metabolite levels could give insight
into the pathophysiological condition of tissue (Petr et al., 2022).
A limitation of MRS is that on clinical field strengths (3 Tesla), the
sensitivity is relatively low as usually, the scan time in the clinic is
limited (Table 3) (Wilson et al., 2019). Therefore large voxel sizes of
8 mL are commonly used for MRS in clinical practice (Wilson et al.,
2019). This could be problematic in the intraoperative setting where
whole-brain images are preferred to evaluate spatial heterogeneity.
In that setting, the acquisition time for whole-brain chemical shift-
imaging (CSI) (or even a single slice) becomes a practical limitation.
Currently, fast whole brain CSI methods are not implemented as
vendor products for use in intraoperative setting.

Another metabolic MRI modality is chemical exchange
saturation transfer (CEST). CEST is an MRI modality that
exploits the abundance of exchangeable protons of a certain
metabolite, and its chemical exchange with water protons, to
image the relative concentration of a certain metabolite (Wu
et al., 2016). In CEST, protons of the metabolite of interest are
saturated by a prolonged saturation RF pre-pulse; during this pre-
pulse, water exchanges unsaturated protons with saturated protons
from the metabolites of interest, resulting in a reduction of the water
signal, which can be imaged over the whole volume. This has the
advantage of an easier interpretation in clinical practice compared to
single-voxel MRS (Wu et al., 2016). Amide-proton transfer-
weighted (APTw) imaging is a form of CEST imaging sensitive
to chemical exchange of protons in water, mobile proteins, and
peptides. This form of CEST has been mainly used for brain tumors
(Wu et al., 2016; Suh et al., 2019).

3.5.2 Use of metabolic MRI in adult ioMRI setting
In the intraoperative setting, metabolic MRI could be used to

provide biochemical information about relative metabolite
concentrations of potential residual tumor tissue (Pamir et al.,
2010; Yousaf et al., 2012). Pamir et al. (2010) reported that the
combination of MRS with DWI effectively differentiated

peritumoral changes from a residual tumor in adult low-grade
glioma. APTw imaging has not yet been described in the
intraoperative setting. However, APTw imaging has been
reported to guide stereotactic biopsy in adults with newly
diagnosed gliomas (Jiang et al., 2017). Jiang et al. (2017) showed
that the APTw signal was sensitive and specific for differentiating
between adult low- and high-grade gliomas.

Hypothetically, intraoperative APTw imaging might be an
alternative to a T1w-Gd sequence (Figure 2C). Yu et al. (2019)
reported that lesions identified on the APTw images mimicked
those on the T1w-Gd images of adult meningioma patients. To add
to this argument, APTw images could provide improved diagnostic
specificity compared to T1w-Gd images in high-grade glioma patients
(Zhou et al., 2013). APTw imaging accurately differentiated between
glioblastoma and solitary brain metastases in adults (Yu et al., 2017).
Also, Zhou et al. (2019) showed that APTw images added new
information to the standard T1w-Gd image in an oligodendroglioma
case. A disadvantage of intraoperative APTw images could be that
surgery-induced blood components could produce hyperintensity
artifacts on APTw images (Zhou et al., 2019; Zhang et al., 2021).
Moreover, whether the thicker slices used for APTw images in the clinic
still add valuable information in the surgical setting is questionable.
Lastly, the open skull during surgery could increase magnetic field (B0)
inhomogeneities due to the sensitivity of the APTw signal to air-tissue
interfaces which decreases accuracy of the APTw signal (Zhou et al.,
2019). To solve this issue, attention should be paid to remove all air
bubbles in the brain and B0 shimming to avoid these susceptibility
artifacts during intraoperative APTw image acquisition (Table 3). An
alternative could be to focus B0 shimming and CEST acquisition on a
specific region of interest instead of imaging the whole brain. Taking
technical and logistical limitations into account, intraoperative APTw
imaging seems to be the most useful in the case of high-grade glioma
patients (Chalil and Ramaswamy, 2016; Zhang et al., 2021).

3.5.3 Use of metabolic MRI in pediatric routine
brain tumor care

MRS has been used in clinical practice to support diagnosing and
differentiating brain tumor subtypes in children (Faghihi et al., 2017). In
such a way, spectroscopic patterns can be distinctive for tumor subtypes
(Vicente et al., 2013). Aggressive features of a tumor could be indicated
by an elevated choline-to-N-acetyl aspartate ratio or the presence of
lactate (Choudhri et al., 2015). The recognition of these patterns could
be assisted by automated processing in pediatrics (Vicente et al., 2013).
Due to regional metabolic variations, MRS alone did not suffice to
define all regional components of tumors (Lequin and Hendrikse,
2017). MRS should be combined with other standardized MRI
methods for a more definitive diagnosis. For example, based on the
metabolic profile alone, a pilocytic astrocytoma could be misdiagnosed
as amore aggressive variant due to a higher choline peak than a creatine
peak and an elevated lipid peak (Table 4) (Lequin andHendrikse, 2017).

APTw imaging could also be used in pediatric brain tumor care
to grade and identify the proliferative activity of tumor tissue (Zhang
et al., 2021). The increased protein levels in tumor tissue could be
indicated by increased APTw values that might be positively
correlated with Ki-67 expression levels (Table 4) (Wu et al.,
2016; Suh et al., 2019). Therefore, high-grade gliomas could be
indicated by a higher APTw signal than low-grade gliomas, although
these results were more heterogeneous in the pediatric population
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(Suh et al., 2019; Zhang et al., 2021). Besides, APTw imaging was
said to differentiate between brain tumor tissue and edema (Wen
et al., 2010). Zhang et al. (2020) presented a pediatric case where the
edema showed a similarly low APTw signal as the healthy
surrounding tissue. However, a comparison of the APTw signal
between tumor tissue and edema was missing. Due to the scarce
existing literature in the pediatric population, further research is
essential to reliably incorporate APTw imaging in clinical practice
(Suh et al., 2019).

4 Discussion

This study is a retrospective study of the literature on the added
value of advanced MRI in the intraoperative setting of pediatric brain
tumors compared to conventional MR imaging. Our systematic
literature search revealed that the fields of diffusion-, perfusion-, and
metabolic MRI have been reported for selective cases during surgery.
The available literature was sparse and demonstrated that advanced
sequences were used to prevent damage to reconstruct fibers to prevent
damage to important structures, provide information on relative
cerebral blood flow or abnormal metabolites, or to indicate the
onset of hemorrhage or ischemic infarcts.

Our explorative literature search revealed developments
within each advanced MRI field that have been studied in the
adult ioMRI population but have not yet been applied in
pediatrics. First, multi-shell dMRI could offer “real-time” fiber
tractography that was said to be more anatomically accurate than
models based on single-shell data. Second, ASL could give
information on intraoperative cerebral perfusion and could
indicate residual tumor tissue intraoperatively without a
contrast agent. Third, APTw imaging and ASL could
potentially match T1w-Gd images. Despite these promising
advances, the technical and practical limitations of each of
these advanced MRI sequences should be carefully considered
before implementing them in standard pediatric ioMRI protocols.

4.1 Future perspectives

Advanced MR images acquired during surgery could gain
insight into the effect of mechanical manipulation of a child’s
brain. Data from these sequences could be useful for research
into biomarkers predicting surgery-induced early effects of
intraoperative complications (Choudhri et al., 2015; Metwali
et al., 2020). For example, in research on surgery-induced
cerebellar mutism syndrome (CMS), intraoperative dMRI and
ASL imaging might help find biomarkers that could be used for
treatment development and prevention strategies (Ahmadian et al.,
2021). In such a way, CMS-related diffusion abnormalities that have
been seen in the proximal efferent cerebellar pathways (Avula et al.,
2014; Keil et al., 2018; Avula, 2020), could be detected earlier on by
means of multi-shell fiber tractography that is more anatomically
accurate. Also, the onset of supratentorial cortical hypoperfusion
related to CMS could be detected earlier on intraoperative ASL
perfusion maps (Ahmadian et al., 2021). Hypoperfusion in this
region was previously found to result from cortico-cerebellar
diaschisis (Keil et al., 2018).

Another example is the prediction of early postoperative seizures
after supratentorial brain tumor surgery with intraoperative ASL and
APTw imaging. These seizures have been associated with hemorrhage in
the resection cavity (Chassoux and Landre, 2017; Samudra et al., 2019;
Ersoy et al., 2020). As the onset of seizures in children has been associated
with cortical hyperperfusion (Oishi et al., 2012; Keil et al., 2018),
intraoperative perfusion imaging with ASL might be an early
predictor for seizures and even lead to intraoperative monitoring and
prevention (Palaniswamy et al., 2019). APTw images could have a similar
effect due to the association of seizures with a reduced pH that could be
picked up by a reduced APTw signal (Magnotta et al., 2012; Jin et al.,
2017).However, this seizure-induced change in pH changewas said to be
smaller than the precision of the pH measurement derived from APTw
data (Jin et al., 2017). Nevertheless, intraoperative APTw images could
have the unique potential to gain more insight into the physiologic
processes of postoperative seizures in young children.

Reports focusing on the added value of intraoperative use of
advanced MRI, particularly metabolic MRI, in the pediatric brain
tumor population are scarce to date. The existing literature was
often of a descriptive nature, and randomized controlled trials are
lacking. Whilst we could learn from proof of concept reports that use
advanced ioMRI in the adult population (Lindner et al., 2017), a specific
investigation into the pediatric population is required to understand this
unique situation better. Further, the majority of the included studies of
our systematic literature search originated from the same clinical center
(Abernethy et al., 2012; Yousaf et al., 2012; Avula et al., 2013; 2021;
Tejada et al., 2018; Sunderland et al., 2021). Their findings could
therefore potentially represent overlapping patient data.

To study the effect of surgery on a child’s brain, a
multiparametric approach, including diffusion, perfusion, and
metabolic ioMRI could be useful. Especially with the opportunity
of tissue pathological validation on the spot. Recent developments
regarding in vivo microscopy and high-speed histopathological
diagnostics (Hollon et al., 2020) may facilitate immediate
validation of these advanced ioMRI sequences in the near future.

Further development of accelerated imaging techniques could also
be explored to reduce the acquisition time or to improve image quality.
Particularly image acceleration techniques that could be used with the
limited number of single-loop receiving coils that are currently available
in the intraoperative setting. Alternatively, recent hardware development
of thinner, more flexible, or multi-channel coils could improve image
quality and reduce the transition time to and from the ioMRI suite.

The application of advanced ioMRI could be potentially valuable in
providing new relevant information of the brain in the peroperative
setting. The implementation might be challenging and involves close
collaboration between neurosurgeons, neuroradiologists, and physicists.
Collaboration among professionals from different ioMRI centres will
contribute and support progress in this field.

5 Conclusion

The potential added value of advancedMRI in the intraoperative
setting for pediatric brain tumors is to prevent damage to important
structures, to provide additional physiological or metabolic
information, or to indicate the onset of postoperative changes.
Current developments within various advanced ioMRI sequences
are promising with regard to providing in-depth tissue information.
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Transfer function analysis assesses
resting cerebral perfusion metrics
using hypoxia-induced
deoxyhemoglobin as a contrast
agent
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David J. Mikulis3, Joseph A. Fisher1,2,4 and James Duffin1,2
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Introduction: Use of contrast in determining hemodynamic measures requires
the deconvolution of an arterial input function (AIF) selected over a voxel in the
middle cerebral artery to calculate voxel wise perfusion metrics. Transfer function
analysis (TFA) offers an alternative analytic approach that does not require
identifying an AIF. We hypothesised that TFA metrics Gain, Lag, and their ratio,
Gain/Lag, correspond to conventional AIF resting perfusion metrics relative
cerebral blood volume (rCBV), mean transit time (MTT) and relative cerebral
blood flow (rCBF), respectively.

Methods: 24 healthy participants (17 M) and 1 patient with steno-occlusive disease
were recruited. We used non-invasive transient hypoxia-induced
deoxyhemoglobin as an MRI contrast. TFA and conventional AIF analyses were
used to calculate averages of whole brain and smaller regions of interest.

Results: Maps of these average metrics had colour scales adjusted to enhance
contrast and identify areas of high congruence. Regional graymatter/whitematter
(GM/WM) ratios for MTT and Lag, rCBF and Gain/Lag, and rCBV and Gain were
compared. The GM/WM ratios were greater for TFA metrics compared to those
from AIF analysis indicating an improved regional discrimination.

Discussion: Resting perfusionmeasures generated by The BOLD analysis resulting
from a transient hypoxia induced variations in deoxyhemoglobin analyzed by TFA
are congruent with those analyzed by conventional AIF analysis.

KEYWORDS

transfer function analysis, transient hypoxia, MRI, BOLD = blood oxygen level dependent,
contrast agents, brain, perfusion imaging

1 Introduction

Cerebral blood flow is distributed via a complex network of vessels with flow resistances
that vary depending on anatomy, vascular health, and tissue metabolism. This distribution of
blood flow can be mapped using blood oxygenation level dependent (BOLD) magnetic
resonance imaging (MRI) to trace a bolus of contrast agent. The BOLD signal is sensitive to
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distortions in the static magnetic field caused by paramagnetic
contrast agents such as gadolinium (Ogawa et al., 1990). The
value of resting perfusion metrics obtained from the passage of a
contrast agent during BOLD imaging, including mean transit time
(MTT), relative cerebral blood volume (rCBV) and relative cerebral
blood flow (rCBF), is that they can indicate regions of slowed and
insufficient resting blood supply (Donahue et al., 2017). The
dynamic susceptibility contrast (DSC) agent of choice used for
perfusion imaging clinically is a gadolinium-based contrast agent
(GBCA), injected intravenously to generate a bolus that is required
to be imaged over a large artery on its first pass through the brain.
Tissue BOLD signals can be analysed during passage of the GBCA
bolus through the brain using the first pass arterial signal changes
(arterial input function or AIF) deconvolved with tissue signal
changes to obtain tissue perfusion metrics.

Transient hypoxia-induced deoxyhemoglobin (THx-dOHb) can
be used as an endogenous paramagnetic contrast agent for DSC
imaging. In 2021 Poublanc et al. reported the use of THx-dOHb as a
non-invasive dynamic susceptibility contrast agent (Poublanc et al.,
2021; Vu et al., 2021; Sayin et al., 2022a). Comparisons of resting
perfusion metrics calculated from THx-dOHb were very similar to
those obtained from a clinical standard, GBCA (Sayin et al., 2022a).
However, a significant issue with DSC perfusion mapping is that the
BOLD signal in proximity to arteries has both linear and non-linear
behaviour depending on where the signal is measured. The
intravascular signal exhibits a quadratic relationship with the
concentrating of the paramagnetic contrast agent (Spees et al.,
2001; Zhao et al., 2007) at 3 Tesla (Uludag et al., 2009), whereas
the signal in tissue adjacent to the vessel is linear with contrast
concentration. The nature of the AIF used for perfusion analysis is
therefore dependent on location of the voxels used to measure the
AIF. An AIF independent method for acquiring DSC perfusion
metrics would therefore be welcomed.

1.1 Transfer function analysis

Here we introduce a frequency domain analysis technique,
transfer function analysis (TFA). This technique has been used to
measure dynamic pressure autoregulation of the cerebral
vasculature (Blaber et al., 1997; Zhang et al., 1998; Tzeng et al.,
2012), as well as the cerebrovascular response to changes in CO2

(Duffin et al., 2015). It offers a means of characterizing the BOLD
response to [dOHb] with not only an estimate of the magnitude of
the response (Gain), but also the phase, or time Lag (Blockley et al.,
2011) and coherence, the linear time invariance of the BOLD to SO2

relationship. Briefly, the aligned BOLD response and SO2 data are
divided into five 50% overlapping segments (Welch algorithm
(Welch, 1967)). In each segment the relation between the BOLD
response signal and the contrast signal (SO2) is analyzed in the
frequency domain by resolving the two signals into their Fourier
series of component sine waves (Figures 1A, B). The frequency
response function, defined as the average cross-spectrum of the
response signal divided by the average autospectrum of the stimulus
signal, yields Gain and Phase measures, averaged for all segments.
Coherence is calculated from averages of the cross- and auto-spectra
as the average cross-spectrum squared divided by the product of the
stimulus and response autospectra. Gain, Phase and Coherence

measures are taken from the frequency spectrum at a single
reference frequency (Figures 1A, B). As Figure 1C illustrates,
Gain describes the amplitude ratio relating the BOLD response
to the contrast signal and phase or time Lag the time relationship.

Previously, TFA was used to describe the dynamics of the BOLD
response to changes in a vasoactive agent such as CO2 (Duffin et al.,
2015; Sayin et al., 2022b). In this case the phase difference between
stimulus and response arises from two factors: a blood arrival time
delay and a vascular response time. Differences in time delay between
regions were assumed to be less than the 1.5 s sampling period (TR) so
that TFA phase primarily reflects the speed of the vascular response
(Duffin et al., 2015). By contrast, the phase difference between [dOHb]
changes and the resulting BOLD signal is assumed to arise from both
the time of passage of blood through a voxel and the arrival time delay.
If the time of arrival delay is minimised, the phase difference expressed
in time units is a measure related to mean transit time (MTT). We
further hypothesised that if the Gain can be assumed to reflect the
strength of the signal in a voxel, which is proportional to the volume of
blood in a voxel, then Gain is a measure of relative cerebral volume
(rCBV). In this case the ratio of Gain/Lag (CBV/MTT) is a measure of
relative cerebral blood flow (rCBF), analogous to the central volume
theorem (Ostergaard, 2005).

1.2 Observations

We describe the utility of transfer function analysis of the BOLD
response to a series of two transient hypoxic exposures to produce
corresponding changes in [dOHb] at rest. Voxel-wise maps of Gain,
Lag and Gain/Lag were assembled by averaging these TFA metrics
calculated and compared with maps of rCBV, MTT and rCBF
respectively obtained from a deconvolution-based method using
an AIF as described by Poublanc et al. (2021). Average
supratentorial whole brain and posterior/anterior circulation TFA
perfusion metrics were also compared to the corresponding
conventional AIF analysis. In addition, we made spatial
comparisons of the maps in a healthy participant and a patient
with vascular insufficiency as shown in the magnetic resonance
angiography (MRA) in Figure 8.

2 Materials and methods

2.1 Participant and ethics approval

This study conformed to the standards set by the latest revision of
the Declaration of Helsinki and was approved by the Research Ethics
Board of the University Health Network (UHN) and Health Canada.
All participants provided written and informed consent to partake in
this study. We recruited 24 healthy participants (7 Female) ranging
from 21 to 82 (mean (SD) 38.6 ± 17.9 years, median age 30 years
(Table 1) by word of mouth. The healthy participants consisted of non-
smokers, not taking any medication and no known history of
neurological or cardiovascular disease. In addition, a 66-year-old
female participant with known cerebral vascular disease was
recruited. The patient has bilateral moyamoya disease with a right
MCA occlusion and distal left ICA occlusion with a previous patent left
EC-IC bypass.
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2.2 The contrast agent: Transient hypoxia-
induced dOHb protocol

Changes in [dOHb] were achieved by controlling PETCO2 and
PETO2 using sequential delivery of specific inspired gases with a
computer-controlled gas blender (RespirAct™; Thornhill Medical
Inc, Toronto, Canada) running a prospective targeting algorithm
(Slessarev et al., 2007). The principles of operation of the
RespirAct™ have been described elsewhere (Fisher et al., 2016).
Participants breathed through a facemask sealed to the face with skin
tape (Tegaderm, 3M, Saint Paul, MN, United States) to exclude all
but system-supplied gas. The dOHb changes resulting from the
programmed PETO2 stimulus pattern of 4-min and 20 s duration is
shown in Figure 2. The pattern consisted of a 60 s normoxic baseline
at PETO2 of 95 mmHg, a hypoxic step of PETO2 to 40 mmHg for 60 s,
a return to normoxia for 20 s, a second hypoxic step for 60 s,
followed by a return to normoxia for 60 s. After the completion
of the PETO2 sequence, the participant returns to free breathing of
room air. With this targeting approach, the end tidal values have
been shown to be equal, within measurement error, to their
respective arterial partial pressures (Ito et al., 2008; Fierstra et al.,
2011).

2.3 MRI Scanning Protocol

A 3-Tesla scanner (HDx Signa platform, GE healthcare,
Milwaukee, WI, USA) with an 8-channel head coil was used in
these experiments. The protocol consisted of a high-resolution T1-
weighted scan followed by one BOLD sequence scan. The high-
resolution T1-weighted scan was acquired using a 3D spoiled
gradient echo sequence with the following parameters:
TI = 450 ms, TR 7.88 ms, TE = 3 ms, flip angle = 12°, voxel
size = 0.859 × 0.859 × 1 mm, matrix size = 256 × 256, 146 slices,
field of view = 24 × 24 cm, no interslice gap. The BOLD scan was
acquired during normocapnic PETO2 manipulation using a T2*-
weighted gradient echoplanar imaging sequence with the following
parameters: TR = 1,500 ms, TE = 30 ms, flip angle = 73°, 29 slices
voxel size = 3 mm isotropic voxels and matrix size = 64 × 64.

2.4 Data Analysis

The acquired BOLD images were volume registered, slice-time
corrected and co-registered to the anatomical images using AFNI
software (National Institutes of Health, Bethesda, Maryland) (Cox,
1996). Arterial oxygen saturation (SaO2) and [dOHb] were
calculated from PETO2 and the oxyhemoglobin dissociation curve
(Balaban et al., 2013) assuming a fixed [Hb] of 130 g/L and a pH of
7.4. Two methods of analysis were employed. First, a conventional
analysis using an AIF chosen over the middle cerebral artery and a
deconvolution-based model was used to calculate voxel-wise maps
of rCBV and MTT. The rCBF was calculated as CBV/MTT and
scaled by 25. This is described in greater detail elsewhere (Poublanc
et al., 2021).

FIGURE 1
TFA provides the Gain, phase or time Lag, and Coherence measures for all frequencies in a single voxel in the white matter (A) and a single voxel in
the grey matter (B). The line at a frequency of 0.035 Hz was chosen as the single frequency representative measurement of Gain, Lag and Coherence
used to characterise the BOLD response in a voxel. Diagram (C) illustrates a single frequency. Gain is output amplitude/input amplitude and phase is the
difference in the timing of the sine waves. As illustrated, the output is positive and lags the input; consequently, phase is negative. The time lag (s) is
period*phase lag (r/2π).

TABLE 1 Healthy participant characteristics.

Age range years All Female Male

18 to 35 13 6 7

36 to 60 9 1 8

61 to 85 2 0 2
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Second, a voxel-wise TFA of the BOLD data was analyzed using
a custom program (LabVIEW, National Instruments, Texas). First,
a zero-phase filter was applied to the BOLD vs. time data for all
voxels to smooth the time course and reduce signal variations due
to noise. The zero-phase filter applies an infinite impulse response
recursive filter to the input signal such that the filtered signal has
no phase distortion. Careful temporal alignment of the SO2 and
BOLD data is required for the measurement of both Lag and Gain/
Lag ratio. Lag is affected by both the contrast transit time and its
time of arrival. Lag was minimised by using the whole brain
population histogram as a guide, adjusting the alignment of
SO2 and the whole brain mean BOLD to zero the minimum
Lag. TFA calculated Gain, phase Lag, and Coherence as well as
the Gain/Lag ratio for each voxel at the chosen frequency of
0.035 Hz. With this frequency the period is 28.57 s and phase
Lag can be converted to time Lag (s) as period*phase lag (r/2π).
SaO2 was taken as the measure of the contrast agent and used as
the AIF.

Maps of the perfusion metrics obtained from each analysis were
transformed into Montreal Neurological Institute (MNI) space and
overlayed onto their respective anatomical images. Analytical
processing software, SPM8 (Wellcome Department of Imaging
Neuroscience, Institute of Neurology, University College, London,
UK), was used to segment the anatomical images (T1 weighted) into
grey matter (GM) and white matter (WM). The vascular regions of
interest (middle cerebral artery (MCA), posterior cerebral artery (PCA)
and anterior cerebral artery (ACA)) were previously delineatedmanually
on an anatomical MNI template. For this analysis, the supratentorial
cortical grey matter MCA and ACA were combined as the anterior
circulation mask and the supratentorial cortical grey matter PCA was
used as the posterior circulation mask, as shown in Figure 3.

Average resting perfusion metrics using both TFA and
conventional AIF analysis were calculated for specific regions for
each participant in GM and WM and their ratios (GM/WM) using
previously created vascular territory masks. To avoid susceptibility
artifacts where the MRI signal is noisy, the slices ranging from mid

FIGURE 2
An example of the hypoxia-induced changes in [dOHb] (%) and the resulting whole brain average BOLD (%) signal response in a representative
healthy control participant. [dOHb] was calculated from end tidal PO2 using the Hill equation describing the normal oxyhemoglobin in-vivo O2

dissociation curve (Balaban et al., 2013).

FIGURE 3
The axial, sagittal and coronal view of the manually delineated grey matter in the anterior and posterior circulation.

Frontiers in Physiology frontiersin.org04

Sayin et al. 10.3389/fphys.2023.1167857

56

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2023.1167857


to the top of the brain (slices 40–60) were selected to calculate
perfusion metrics. Comparisons between the conventional AIF
analysis and TFA for perfusion metrics were not possible for
relative values (expressed in arbitrary units) and were therefore
limited to only TFA lag vs. MTT (expressed in seconds). To assess
the spatial discrimination of the two analyses, the regional GM/WM
ratios were compared. The results from the grouped 24 healthy
participants were compiled together to determine normative ranges
for TFA (Gain, Lag, Coherence and Gain/Lag ratio), and for
conventional AIF analysis (rCBV, MTT and rCBF). This was
performed for each metric and analysis by calculating a voxel-by-
voxel mean and standard deviation from the co-registered maps in
standard space (Sobczyk et al., 2015; Sobczyk et al., 2021).

2.5 Statistical analysis

Comparisons were made using a two-way analysis of variance
(ANOVA) with factors tissue region and type of analysis using a
commercial statistical package (SigmaPlot, Systat Software, San Jose,

California, USA). Both a Normality Test (Shapiro-Wilk) and Equal
Variance Tests were part of the ANOVA, and correction for multiple
comparisons were applied by an all pairwise multiple comparison
procedure (Bonferroni method). The GM/WM ratios for MTT,
rCBF and rCBV were compared between the types of analysis
using one-way ANOVA. Significant difference in these tests was
taken as p < 0.05.

3 Results

3.1 Group comparisons

None of the subjects expressed distress during hypoxia and
none terminated the procedure. Figure 4 presents the distribution
of the data using boxplots. Figure 5 displays axial slices of the TFA
and the conventional AIF analysis perfusion metrics for the
grouped healthy participants. Note that colour scales minimum
and maximum values were scaled to obtain the maximum colour
contrast.

FIGURE 4
Boxplots showing the distribution of the perfusion metrics in the gray and white matter for the conventional AIF analysis (in green) and TFA (in red).
The statistical summary comparing the two analysis techniques is found in Tables 2, 3.

Frontiers in Physiology frontiersin.org05

Sayin et al. 10.3389/fphys.2023.1167857

57

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2023.1167857


3.2 Statistical results

Table 2 summarises the comparison of TFA, and conventional
AIF analysis metrics expressed as mean (SD) values for all the
healthy participants. The Gain/rCBV and Gain/Lag/rCBF is relative
and expressed in arbitrary units. Hence to be able to compare spatial
discrimination between analysis methods, the GM/WM ratios were
calculated. Table 3 summarises the comparison of GM/WM ratios
between TFA, and conventional AIF analysis metrics expressed as
mean (SD) values. The p values in Table 1 are from the two-way
ANOVA with factors type of analysis and region. An All Pairwise
Multiple Comparison Procedure (Bonferroni t-test) was used. The p
values in Table 3 are from one-way ANOVA.

3.3 Examples of a healthy participant and
patient

Figures 6, 8 display example perfusion metrics maps of a healthy
individual and a selected patient. Figures 7, 9 display the histogram

distribution of the perfusion metrics of a healthy individual and a
selected patient.

4 Discussion

4.1 Main findings

We hypothesised that TFA metrics of Gain, Lag, and their ratio,
Gain/Lag, correspond to conventional AIF resting perfusion metrics
such as rCBV, MTT and rCBF, respectively. The main finding of this
study is that TFA of the BOLD signal response to hypoxia induced
dOHb provides perfusion metrics that are equivalent to those obtained
with a conventional deconvolution-based analysis using an AIF. The
grouped healthy participantmaps of perfusionmetrics for both types of
analyses displayed high degree of similarity in relative magnitude and
distribution of the perfusion metrics. The ranges of Lag and MTT
values were similar with statistically significant but small differences
only found in the whole brainWM. Ratios of GM/WM for each resting
perfusionmetric, calculated to assess their regional contrast, found Lag,

FIGURE 5
Representative axial slices of the grouped healthy participant group TFA metrics (Gain/Lag, Gain, Lag, and Coherence) and AIF metrics (rCBF, rCBV
and MTT).
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Gain/Lag and Gain were significantly higher than MTT, rCBF and
rCBV respectively, suggesting that TFA metrics provided a higher
regional contrast.

We comparedmaps from a healthy individual to that of a patient
with cerebrovascular pathology in order to determine whether TFA
can identify cerebrovascular pathology seen with conventional AIF

TABLE 2 A summary of the mean (SD) TFA lag vs. AIF MTT metrics for grouped healthy participants.

Conventional AIF analysis TFA p-value lag vs. MTT

rCBF rCBV MTT Gain/Lag (“rCBF”) Gain (“rCBV”) Lag (“MTT”)

GM 57.53 (18.33) 5.26 (1.65) 2.46 (1.11) 72.78 (32.08) 4.70 (1.50) 2.09 (0.94) 0.231

WM 22.30 (9.45) 2.60 (0.71) 3.74 (1.07) 21.80 (9.07) 1.96 (0.54) 2.86 (1.17) 0.006*

Anterior Circulation GM 59.0 (18.44) 5.23 (1.62) 2.36 (1.09) 74.80 (33.48) 4.67 (1.45) 2.03 (0.95) 0.284

Posterior Circulation GM 52.57 (19.09) 5.35 (1.75) 2.84 (1.24) 63.82 (27.52) 4.71 (1.63) 2.30 (0.90) 0.077

p values are from a 2-way ANOVA with asterisks (*) emphasising significant differences (p < 0.05).

TABLE 3 Whole brain supratentorial cortical GM/WM ratios for all metrics from both analyses.

Region MTT Lag p-value

GM/WM 0.65 (0.17) 0.74 (0.13) 0.016*

rCBF Gain/Lag p-value

2.72 (0.65) 3.36 (0.70) 0.002*

rCBV Gain p-value

2.02 (0.27) 2.38 (0.32) <0.001*

p values are from one-way ANOVAs with asterisks (*) marking significant differences (p < 0.05).

FIGURE 6
Axial slices of perfusion metrics for the conventional AIF and TFA analyses for a representative healthy control. Scales for rCBF, Gain/Lag, rCBV, and
Gain are arbitrary units, and seconds for MTT and Lag.
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analysis. The comparison of perfusion values generated from
conventional AIF analysis and TFA in the healthy individual
show high congruence. Perhaps more importantly, there is also
high spatial similarity between the two perfusion methods in
magnitude and spatial distribution in the patient with right MCA
occlusion and distal left ICA occlusion. This finding also suggests
that TFA, like the AIF conventional analysis, can identify areas of
reduced cerebrovascular health at rest.

Altogether these observations indicate that analysis of the
BOLD response to THx-dOHb by TFA can provide an
alternative to the conventional AIF analysis.

4.2 Detailed comparisons

Perfusion metrics rCBV and rCBF from the conventional AIF
analysis and their TFA counterparts Gain, and Gain/Lag ratio are in
arbitrary units so that direct numerical comparisons are not possible
between analyses, or with published values of these metrics.
Nevertheless, the grouped healthy participant maps for these
metrics are spatially very similar to each other, and to other
published maps of rCBV and rCBF, with regional differences that
are in general agreement with the control group average maps
presented by others (Grandin et al., 2005; Ibaraki et al., 2007;
Newbould et al., 2007; Watabe et al., 2014; Asaduddin et al.,
2019). Furthermore, the values in GM and WM fall within the
range of those from computerized tomography studies (Chen et al.,
2019).

Both MTT and Lag in grouped healthy participant maps
depicted regional variations of about 0–5 s with whole brain
means (SD) of 3.74 (1.07) and 2.86 (1.17) s in WM and 2.46
(1.11) and 2.09 (0.94) s in GM for MTT and Lag, respectively.
These values are comparable to those found for DSCMRI of 3.0 (0.6)
s in GM and 4.3 (0.7) s in WM by (Helenius et al., 2003), as well as
those found using positron emission tomography and DSC MRI
(Ibaraki et al., 2007; Wirestam et al., 2010). A range of 0–10 s were
found using carpet plots to analyze transit times from low frequency
oscillations in resting state fMRI (Fitzgerald et al., 2021) and from
hypoxia-induced dOHb (Bhogal et al., 2022). The MTT and Lag
metrics are also within the range of MTT metrics calculated
previously using hypoxia-induced changes in [dOHb] as a
susceptibility contrast agent; between 0 and 12 s (Vu et al., 2021)
and between 0 and 8 s (Poublanc et al., 2021; Sayin et al., 2022a).

The maps of resting perfusion metrics and their corresponding
histograms presented in Figures 6–9 provide two comparisons, one
between a healthy control and a patient with cerebrovascular
pathology, and the other between the two analysis methods TFA
and conventional AIF analysis. Comparing the maps between the
two methods demonstrate the apparent spatial similarity, with
regional variations that match each other despite the different
analytic approaches. The main differences between analyses with
respect to the regional distributions of the metrics are discernible in
the histograms, whose widths display the full variability of the
metrics. As noted in Table 3 comparing the GM/WM ratios, the
TFA discrimination between GM and WM is higher than the
conventional AIF analysis.

We also note the very apparent differences between the
perfusion maps of the healthy participant and that of the patient.

These differences are also reflected in the histograms of the
distribution of each metric. The maps of the patient example for
both analyses indicate signs of the known left sided pathology with
areas of increased MTT/Lag, increased rCBV/Gain and decreased
rCBF/Gain/Lag ratio. We suggest that both analyses provide the
clinically useful information.

FIGURE 7
Histogram of whole brain averages for the conventional analysis
(in orange) and TFA metrics (in blue) for a representative healthy
control. Scales for rCBF, Gain/Lag, rCBV, and Gain are arbitrary units,
and seconds for MTT and Lag.
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4.3 Limitations

The voxel-wise application of TFA uses the changes in SO2

calculated from PETO2 measured at the lungs as the input signal and
the measured BOLD changes in a voxel as the output signal. The
voxel-wise TFA therefore assumes that the SO2 signal arrives at the
voxel where BOLD is measured with the same changes as in
pulmonary venous blood. Any dispersion is limited to passage
through the left atrium and left ventricle, with the latter
dispersion depending on the left ventricular ejection fraction.

One consideration in this study is the exposure of subjects to
hypoxia. While SO2 and [dOHb] can be quickly returned to normal
by increasing inspired oxygen to 100%, the speed of reduction of SO2

and [dOHb] by changing inspired PO2 is limited by minute
ventilation, functional residual capacity, and oxygen
consumption. The rate of washout of O2 from the functional
residual capacity is limited by the lowest inspired oxygen
concentration, which in the RespirAct™ is 4%, the functional
residual capacity of the lungs, and minute ventilation. The two
hypoxic exposures in the sequence were therefore extended to 60 s as
the time to attaining PO2 of 40 mmHg is about 15–20 s, leaving at
least 30 s of hypoxia baseline. Re-establishment of normoxia is
usually evoked within one breath. This provides a step change in
dOHb and can also act as a safety feature. An important caution is
not to induce hypoxia in patients who are already hypoxic due to
congenital heart disease, sickle cell disease, severe chronic
obstructive and restrictive pulmonary disease, presence of lung
atelectasis, pneumonia, asthma, and pulmonary shunting
associated with COVID-19.

As Table 1 notes, the healthy participant group was small and
varied in age and sex, so that the results cannot be differentiated by
age or sex. Indeed, our purpose in recruiting was to sample a wide
variety of individuals to gain a general sense of the range of perfusion
metrics and their regional variation.

It is assumed that the brief hypoxic exposures do not cause any
change in cerebral blood flow. This assumption is based partly on the
observation that the vasculature does not begin to respond to
hypoxia at resting PETCO2 until PETO2 is below 50 mmHg
(Mardimae et al., 2012), and partly on the consideration that the
vascular response time constant is too long (80 s) for the brief
hypoxia to affect the flow (Poulin et al., 1996). We note that the
conversion of PETO2 to SO2 assumed a fixed [Hb] of 130 g/L and a
pH = 7.4 and suggest that if actual measures are available,
adjustments to the calculation of perfusion metrics be applied for
each individual.

5 Conclusion

In this study THx-dOHb was used to produce a rapid variation
in [dOHb], which induced sufficient BOLD signal changes to enable
the calculation of resting perfusion metrics using TFA. We
hypothesised that perfusion metrics derived from TFA analysis
would be congruent with those derived from standard DSC
processing using deconvolution of the AIF with the tissue
response function such that TFA Gain would be analogous to
rCBV, TFA Lag to MTT and the ratio Gain/Lag to rCBF. The
truth of this hypothesis was first verified by showing high

FIGURE 8
Axial slices of perfusion metrics for the conventional AIF analysis and TFA for a patient example with bilateral moyamoya disease with a right MCA
occlusion and distal left ICA occlusion with a previous patent left EC-IC bypass. Note the decreased rCBF and Gain/Lag, the increased rCBV and Gain, and
the prolonged MTT and Lag in all analyses reflect the vascular pathology of the patient. Scales for rCBF, Gain/Lag, rCBV and Gain are arbitrary units,
seconds for MTT and Lag.
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congruence between perfusion maps generated by both analytical
methods in a healthy group of participants. A second confirmation
was obtained by showing that TFA was able to discriminate between
healthy and diseased tissue in a patient with a right MCA occlusion
and distal left ICA occlusion with a previous patent left EC-IC

bypass in a manner that was also highly consistent with the
conventional analysis. We conclude that TFA of the BOLD
changes resulting from THx-dOHb can be used to provide an
alternative analysis method of determining resting perfusion
metrics in individuals, which eliminates the requirement of an
AIF selection and complex deconvolution calculations based on
an assumed kinetic model. Furthermore, TFA has the potential to be
applied to perfusion analysis for DSC imaging using GBCAs.
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MTT and Lag. Colour scales are adjusted to assist comparisons.
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fMRI task response and
cerebrovascular reactivity across
the cerebral cortex
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BOLD sensitivity to baseline perfusion and blood volume is a well-acknowledged
fMRI confound. Vascular correction techniques based on cerebrovascular
reactivity (CVR) might reduce variance due to baseline cerebral blood volume,
however this is predicated on an invariant linear relationship between CVR and
BOLD signal magnitude. Cognitive paradigms have relatively low signal, high
variance and involve spatially heterogenous cortical regions; it is therefore
unclear whether the BOLD response magnitude to complex paradigms can be
predicted by CVR. The feasibility of predicting BOLD signal magnitude from CVR
was explored in the present work across two experiments using different CVR
approaches. The first utilized a large database containing breath-hold BOLD
responses and 3 different cognitive tasks. The second experiment, in an
independent sample, calculated CVR using the delivery of a fixed
concentration of carbon dioxide and a different cognitive task. An atlas-based
regression approach was implemented for both experiments to evaluate the
shared variance between task-invoked BOLD responses and CVR across the
cerebral cortex. Both experiments found significant relationships between CVR
and task-based BOLD magnitude, with activation in the right cuneus (R2 = 0.64)
and paracentral gyrus (R2 = 0.71), and the left pars opercularis (R2 = 0.67), superior
frontal gyrus (R2 = 0.62) and inferior parietal cortex (R2 = 0.63) strongly predicted
by CVR. The parietal regions bilaterally were highly consistent, with linear
regressions significant in these regions for all four tasks. Group analyses
showed that CVR correction increased BOLD sensitivity. Overall, this work
suggests that BOLD signal response magnitudes to cognitive tasks are
predicted by CVR across different regions of the cerebral cortex, providing
support for the use of correction based on baseline vascular physiology.

KEYWORDS

BOLD, cerebrovascular reactivity, hypercapnia, functional magnet resonance imaging
(fMRI), cerebral blood blow, vascular physiology, attention, cognition

OPEN ACCESS

EDITED BY

James Duffin,
University of Toronto, Canada

REVIEWED BY

Alex Bhogal,
Utrecht University, Netherlands
Ruiliang Bai,
Zhejiang University, China

*CORRESPONDENCE

Rebecca J. Williams,
rebecca.williams@cdu.edu.au

RECEIVED 16 February 2023
ACCEPTED 24 April 2023
PUBLISHED 09 May 2023

CITATION

Williams RJ, Specht JL, Mazerolle EL,
Lebel RM, MacDonald ME and Pike GB
(2023), Correspondence between BOLD
fMRI task response and cerebrovascular
reactivity across the cerebral cortex.
Front. Physiol. 14:1167148.
doi: 10.3389/fphys.2023.1167148

COPYRIGHT

© 2023 Williams, Specht, Mazerolle,
Lebel, MacDonald and Pike. This is an
open-access article distributed under the
terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Physiology frontiersin.org01

TYPE Original Research
PUBLISHED 09 May 2023
DOI 10.3389/fphys.2023.1167148

64

https://www.frontiersin.org/articles/10.3389/fphys.2023.1167148/full
https://www.frontiersin.org/articles/10.3389/fphys.2023.1167148/full
https://www.frontiersin.org/articles/10.3389/fphys.2023.1167148/full
https://www.frontiersin.org/articles/10.3389/fphys.2023.1167148/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fphys.2023.1167148&domain=pdf&date_stamp=2023-05-09
mailto:rebecca.williams@cdu.edu.au
mailto:rebecca.williams@cdu.edu.au
https://doi.org/10.3389/fphys.2023.1167148
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/journals/physiology#editorial-board
https://www.frontiersin.org/journals/physiology#editorial-board
https://doi.org/10.3389/fphys.2023.1167148


1 Introduction

Functional MRI (fMRI) based on blood oxygen level-dependent
(BOLD) contrast is widely used in neuroscience research and
represents a composite signal arising from changes in total
intravoxel deoxyhemoglobin (Kim and Ogawa, 2012). Transient
reductions in deoxyhemoglobin due to changes in cerebral blood
flow, blood volume and cerebral metabolic of oxygen give rise to
BOLD signal changes capitalized by both task-based and resting-
state fMRI to probe neural networks (Hoge et al., 1999; Pike, 2012).
These dynamic changes are highly dependent on basal physiology,
with resting perfusion, blood volume and venous oxygenation
having strong modulatory effects on the BOLD signal (Stefanovic
et al., 2006; Liu et al., 2013a; Chu et al., 2018). The negative
consequences of this includes increased inter-subject variation
and the problematic interpretation of BOLD fMRI signal changes
in situations where independent basal perfusion changes occur, such
as in aging (Chen et al., 2011; Chen, 2019; MacDonald et al., 2020;
Juttukonda et al., 2021) and cerebrovascular disease (Blicher et al.,
2012; MacDonald et al., 2016; Williams et al., 2017; Mazerolle et al.,
2018). Scaling techniques have been proposed to address BOLD
signal magnitude differences due to basal physiology (Biswal et al.,
2007; Kannurpatti and Biswal, 2008; Tsvetanov et al., 2015; Kazan
et al., 2016; Tsvetanov et al., 2021b). Hypercapnic normalization is a
scaling technique where measurements of cerebrovascular reactivity
(CVR) are implemented to reduce fMRI activation map dependence
on baseline cerebral blood volume (Bandettini and Wong, 1997;
Cohen et al., 2004; Liau and Liu, 2009). CVR refers to the ability of
blood vessels to dynamically regulate cerebral blood flow and is often
measured with MRI in the assessment of vascular health (Pillai and
Mikulis, 2015; Chen, 2018). While CVR is traditionally defined as
the change in flow due to vasoactive stimulus (Fisher and Mikulis,
2021), BOLD contrast is often used as a surrogate measure of
cerebral blood flow with the assumption of the vasoactive
stimulus being isometabolic (Chen and Pike, 2010).

There are different vasoactive stimuli that can be applied to
measure CVR, the two most common being acetazolamide and
carbon dioxide (CO2). Breath-hold induced hypercapnia and the
delivery of air mixtures with increased concentrations of CO2 are the
most commonly used approaches in MRI research studies.
Participants holding their breath for short (10–30 s) epochs is a
relatively easy and reliable technique for inducing mild hypercapnia
(Bright and Murphy, 2013; Pinto et al., 2020). Breath-hold based
measures of CVR have also shown good correspondence with those
obtained with respiratory manipulation via the delivery of gas
mixtures containing elevated concentrations of CO2 (Tancredi
and Hoge, 2013). This latter approach involves both the delivery
of gases and the precise recording of end-tidal gases and has been
shown to have good test-retest reliability in non-patient groups (Liu
et al., 2021).

Blood flow modulations underpinning BOLD responses to
neural activity are caused by neurovascular coupling, where
changes in regional flow reflect modulations in neural activity
and metabolic demand (Hosford and Gourine, 2019). This is
independent from the mechanisms related to acidosis that
regulate cerebral blood flow increases under hypercapnic
conditions (Battisti-Charbonney et al., 2011; Duffin et al., 2021).
Despite these different pathways leading to hyperemia,

contributions from mutual physiology such as baseline cerebral
blood volume suggests that CVR may be a BOLD signal
modulator. This is critical for the implementation of hypercapnic
normalization, which is predicated on a linear relationship between
CVR and neural activity-induced BOLD signal changes. There is
some evidence supporting this relationship. For instance, when
investigating how different baseline measures of vascular
physiology modulate task-induced BOLD signals, Liu et al.
showed a correspondence between BOLD signal magnitude to a
visual scene-categorization task and CVR in four different regions-
of-interest (ROIs) including the early visual areas, medial temporal
lobe, and bilateral inferior frontal gyrus (Liu et al., 2013a). Another
study characterised the relationship between breath-hold BOLD and
task-BOLD signal changes in younger and older adults (Kannurpatti
et al., 2014). The tasks included a motor and a cognitive task
associated with executive control function. When evaluating the
relationship between task and breath-hold BOLD responses in
significantly activated voxels, the authors found a linear
relationship for the younger group only (Kannurpatti et al.,
2014). Addressing discrepancies in CVR and task-based BOLD
responses between younger and older adults was the aim of
research by Liu et al. (2013b). In this study, hypercapnic
normalization was implemented where CVR maps were
calculated on a per-subject basis to normalize BOLD activation
maps to a memory task in older and younger adults. Age-related
decreases in BOLD signal were found primarily in the posterior
visual cortex and temporal lobe; however, these decreases were no
longer observed following normalization. This study suggested that
vascular-driven age-related differences in BOLD activation to a
memory task can be addressed using hypercapnic normalization.

These findings highlight that one of the potential benefits of
adding CVR to a task-based fMRI experiment is to correct age-
related differences in BOLD responses due to baseline vasculature.
This benefit would extend to all populations in group fMRI studies
by reducing inter-subject variability attributable to baseline
vasculature. Hypercapnic normalization has been shown to
reduce variability using breath-hold CVR in young adults
(Thomason et al., 2007), and it can be concluded from the
literature, summarized above, that activation magnitude can be
predicted by CVR for a small number of tasks in some regions of
cortex. This suggests that CVR can be incorporated into a linear
model to account for variance and reduce error. An important
consideration however is that these conclusions are based on a small
number of studies that are limited in both sample sizes and the tasks
evaluated. An under-explored question is whether vascular
correction is applicable for all fMRI paradigms and brain regions.
Cortical regions subserving higher-order cognitive processes show
more inter-subject variability than primary sensory cortices in both
structure (Sydnor et al., 2021) and function (Mueller et al., 2013).
Spatial disparity has also been observed in blood flow and metabolic
coupling (Chiarelli et al., 2007), underscoring the importance of
characterizing the relationship between vascular physiology and
neural-activity mediated BOLD signal on a regional level.
Relative to sensory tasks targeting the unimodality regions such
as the primary visual or motor cortices, cognitive fMRI tasks have
lower sensitivity due to the use of multiple experimental conditions
and cognitive subtraction (Logothetis, 2008). It has been suggested
that cognitive paradigms are dominated by neural response
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variability, and vascular correction might therefore be ineffective
(Kannurpatti et al., 2010). Further work investigating the utility of
vascular correction for cognitive paradigms is warranted.
Furthermore, all studies to date have implemented only one type
of CVR technique; whether the hypercapnic approach affects the
relationship between CVR and task-related BOLD signal remains
undetermined.

The aim of the present research was to thoroughly investigate
the relationship between CVR and BOLD responses to cognitive
tasks implicating different neural networks. Two experimental
studies were implemented to meet this aim, each utilizing
different approaches to measure CVR using hypercapnia: breath-
hold and gas inhalation. It was hypothesized that neural-activity
mediated BOLD responses would be linearly related to CVR across
the cerebral cortex for both hypercapnic approaches. The first
experiment involved the analysis of an open-source dataset
containing breath-hold and task-based BOLD fMRI data from
the UCLA Consortium for Neuropsychiatric Phenomics (CNP)
LA5c Study (Poldrack et al., 2016). In this first experiment, the
linear relationship between CVR, inferred using breath-hold BOLD
responses, and task-based BOLD responses across different
cognitive networks was measured. Group analyses were
performed to determine if vascular scaling using breath-hold
BOLD responses reduces variability in large datasets. The second
experiment attempted to determine if the results from the first
experiment generalize to gas-inhalation CVR. This was achieved by
characterizing the relationship between CVR and BOLD activation
to an attention task in an independent sample with CO2-
administered hypercapnia.

2 Methods and materials

2.1 Experiment 1: Breath-hold CVR

2.1.1 Participants
For study 1, all data were obtained from the OpenfMRI database

(Bilder et al., 2020). Data were downloaded from https://openneuro.
org/datasets/ds000030/versions/1.0.0. Full details regarding
participant recruitment, inclusion and exclusion criteria are
provided in the study protocol paper (Poldrack et al., 2016). All
participants gave written informed consent, and the study was
approved by the Institutional Review Board at UCLA. The
complete dataset contains images from healthy control subjects,
and those diagnosed with schizophrenia, bipolar disorder, and
attention deficit/hyperactivity disorder. Only the data from
control subjects were utilised in this work. All control
participants with task-based fMRI including the 3 paradigms
utilized in the present study (detailed in task descriptions below)
and T1-weighted structural data were included in the present
analysis, resulting in a total of 114 participants (mean age = 31.
46 ± 8.78 years, range = 21–50 years, 54 F).

2.1.2 Imaging acquisition
All MRI data for Study 1 were acquired on one of two

3 T Siemens Trio scanners. Subjects completed two separate
scanning sessions in a counterbalanced order. The structural and
fMRI data used in the present analysis were acquired in different

sessions. An MPRAGE was acquired in the sagittal orientation (TR/
TE/TI = 1900/2.26/1,100 ms, FOV = 250 mm, matrix = 256 × 256,
flip angle = 7°, slice thickness = 1 mm, 176 slices). The fMRI data
(cognitive tasks and breath-hold) were acquired using T2*-weighted
echo planar imaging with TR/TE = 2000/30 ms, flip angle = 90°,
FOV = 192 mm, matrix = 64 × 64, slice thickness = 4 mm, 34 slices.

2.1.3 Task descriptions
Study participants completed a battery of cognitive paradigms

during the fMRI scans, including three event-related cognitive tasks
and one breath-holding task. While more than three cognitive tasks
were available, not every participant completed the full battery. The
following three cognitive tasks were specifically chosen for this
analysis because they were completed by the most participants,
resulting in the final sample size of 114. A detailed description of the
tasks is given in (Poldrack et al., 2016).

The first of the three cognitive tasks, the Spatial Capacity Task
(SCAP), targeted spatial working memory (Glahn et al., 2003),
where stimuli included pseudo-randomly displayed yellow circles
(1, 3, 5 or 7) around a central fixation cross, presented for 2 s per
trial. After a short delay (1.5, 3 or 4.5 s), a single green circle
appeared. The participant was required to indicate whether the
green circle was in the same position as one of the yellow target
circles. A total of 48 trials were presented. The manipulated variables
were number of target circles, with 4 levels (1, 3, 5, 7) and delay in
seconds (1.5, 3 or 4.5).

The second task was the stop-signal task, a measure of response
inhibition (Logan et al., 1984). The participants were instructed to
press a button as quickly as possible in response to a presented ‘go’
stimulus (arrows pointing to the left or to the right). In 25% of trials,
the arrow stimulus was presented with an auditory tone (presented
through headphones for 250 ms), which indicated a ‘stop’ signal.
Participants were instructed to withhold all button presses for trials
with the ‘stop’ signal. There was a total of 128 trials, of which 32 were
stop trials. Trials were 1,000 ms in duration and interspersed with a
jittered baseline period consisting of a fixation cross.

The third cognitive task was a task-switching paradigm (Miyake
et al., 2004). For each trial, one of four stimuli including a red triangle,
red circle, green triangle, or green circle was presented. Participants
made a button-press response as quickly as possible in response to the
stimulus to indicate the color (red or green) or shape (triangle or circle).
A cue presented directly prior to the onset of the stimulus instructed the
participant to respond to either the color or the shape of the stimulus.
This cue was either the full word (‘Color’ or ‘Shape’), or the first letter
(‘C’ or ‘S’). A total of 96 trials were presented, with 33% of all trials
involving a switch of instructions compared to prior trials.

To measure CVR, a breath-hold task was performed.
Participants held their breath for periods of 13.5 s, interspersed
with 16.5 s of regular breathing. A visual cue was presented to
prepare and pace the breath-holding challenge. There were 5 epochs
of breath-holding across a total of 2.5 min. A respiratory belt was
worn by participants during the breath-hold task, although these
data was not analyzed in this analysis.

2.1.4 fMRI preprocessing
A schematic summarizing the pre-processing pipeline for

experiment 1 is shown in Figure 1. All fMRI data underwent
slice timing correction and motion correction using SPM12
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(https://www.fil.ion.ucl.ac.uk/spm/). To ensure precise registration
between breath-hold and cognitive tasks, for each subject all fMRIs
were aligned using affine registration with Advanced Normalization
Tools (Avants et al., 2011; Avants et al., 2014). Affine registration
between each subject’s fMRIs and structural T1 MPRAGE, and

normalisation of the T1 image to the MNI template, was
performed using Unified Segmentation in SPM12 (Ashburner
and Friston, 2005). Deformation fields from the T1 image
segmentation were used to normalize the fMRIs to the MNI
template. No spatial smoothing was performed.

FIGURE 1
Schematic diagram summarizing the pre-processing and first-level analysis pipeline for experiment 1 (left) and experiment 2 (right).
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2.1.5 fMRI first-level analyses
The fMRI data corresponding to the three tasks were

individually entered into first-level general linear models.
Modelling of the SCAP task included separate regressors for all
4 levels of load (1, 3, 5, 7) at each delay time (1.5, 3, 5 s) resulting in
12 task-related regressors. The contrast of interest was load 5
(averaged over all delays) relative to baseline, as this load has
been implemented previously to interrogate working memory
within capacity limits (Todd and Marois, 2004; Montojo et al.,
2014). The model for the stop-signal task included 4 task-related
regressors: successful go, failed go, successful stop, and failed
stop. The contrast of interest was successful stop. The model for
the task-switching task included individual regressors for the 4 types
of cue (‘SHAPE’, ‘S’, ‘COLOR’, ‘C’) and whether each cue was a
switch or a no-switch trial, resulting in a total of 8 task-related
regressors. The contrast of interest was the effect of the switch trials
averaged over all cues. For all 3 cognitive paradigms, the task-related
regressors were modelled using delta functions corresponding to the
onset times of the trials, convolved with the canonical hemodynamic
response function. Only correct responses were included in the task-
related regressors, with incorrect responses modelled as separate
regressors of no interest. Each model also included six motion
parameters to account for variability due to head motion.

The BOLD responses to the breath-hold epochs were modelled
using a ramp function convolved with a respiratory response function
(Birn et al., 2008). A ramp function was used instead of a typical
boxcar approach tomodel the accumulation of CO2 over the course of
the breath-hold epoch. The respiratory response function was
established by Birn et al. (2008) to accurately model hypercapnia-
induced BOLD responses to breath-hold. Similar to prior work
modelling the hemodynamic response function (Handwerker et al.,
2004; Williams et al., 2014; Williams et al., 2016), the respiratory
version is modelled by the difference between two gamma functions
but characterised by a longer, larger post-stimulus under-shoot. Both
response functions can both be observed in Figure 1. For a small
subset of participants (15/114, or 13%), the respiratory response
function was not a good fit and resulted in too few significant
voxels available for the ROI analysis. Rather than exclude these
participants from further analysis, the hemodynamic response
function convolved with the ramp function was implemented
instead as this was a better fit for their breath-hold data. To
account for possible delays in BOLD responses to breath-hold
induced hypercapnia, different general linear models were created
for each participant with staggered onset times. The onset times
increased in increments of 1 TR (2 s), up to a maximum of 12 s. The
model with the most significant voxels for each individual subject was
utilized for further analyses. The contrast of interest used in further
analyses was the effect of the breath-hold epochs greater than baseline.

2.1.6 ROI analysis
Structural ROIs were obtained on a per-subject basis using each

participant’s T1-weighted image and cortical reconstruction with the
recon-all function in FreeSurfer image analysis suite (Dale et al.,
1999; Fischl et al., 1999; Fischl et al., 2004). This included automatic
labelling of all cortical regions based on the Desikan-Killiany Atlas
(Desikan et al., 2006). This atlas parcellates each of the cerebral
hemispheres into 34 distinct regions based on gyral anatomy,
resulting in 68 anatomical ROIs per subject.

To perform the ROI analysis, BOLD voxel-wise percent signal
change (PSC) values for each of the cognitive and breath-hold tasks
were extracted from each anatomical ROI on a per-subject basis. The
following procedure was performed on individual activation maps
from the first-level analysis. First, PSCmaps were calculated for each
task using the contrast images corresponding to the contrast of
interest (outlined in the ‘fMRI first-level analyses’ section above) and
the baseline images. The PSC maps were thresholded so that only
significant (p < 0.001 uncorrected for multiple comparisons) voxels
were included in the ROI analyses.

Once the thresholded PSC maps were calculated for all 4 fMRI
tasks (3 cognitive tasks and breath-hold), each of the anatomical
ROIs were binarized and transformed into fMRI space. The voxel
values of the thresholded PSC maps were then extracted for each
anatomical ROI. For each of the 3 cognitive tasks, only voxels with
both significant task activation and a significant BOLD response to
the breath-hold task were included. The voxels values were then
averaged for each ROI, resulting in 6 averaged ROI PSC values for
each participant: one for each of the 3 cognitive tasks, and its
corresponding breath-hold. Any individuals with breath-hold
ROI values that were considered outliers for the ROI were
removed from the analysis in order to minimize effects from
large vessels. Outliers were determined as values greater than
3 mean absolute deviations. If fewer than 10 participants
demonstrated significant activation within an ROI, that ROI was
removed from the analysis. Prior research showing that a sample size
of 8 is sufficient for regression models with little variance, while a
minimum of 25 is required for models with high variance (Jenkins
and Quintana-Ascencio, 2020). For the present research it was
anticipated that variance would differ between ROIs, and
choosing too high a threshold in terms of number of subjects
with significant activation might eliminate important results.

For each cognitive task, linear regression analyses were run for
each ROI PSC, with the breath-hold PSC as the predictor variable.
This resulted in a possible 204 regressions (68 ROIs x 3 cognitive
tasks), although not all participants showed significant activation in
all ROIs and therefore a subset was excluded. The final number of
regression analyses performed across all 3 tasks was 109. Outliers
were removed prior to regression analyses, with outliers defined as
data points greater than 3 standard deviations from the group mean.
All linear regression analyses were run in MATLAB. Due to inflated
probability of making a Type I error due to the number of linear
regressions performed, False Discovery Rate (FDR) correction (p <
0.05) was implemented.

2.1.7 Group-level analyses
The aim of the group-level analyses was to determine whether

correcting for CVR by including breath-hold covariates into the
general linear model reduced variance and increased sensitivity. The
inclusion of covariates has shown to be a robust method to correct
for CVR (Liau and Liu, 2009), and can be achieved either at the
voxel-wise or the ROI level. Both voxel and ROI methods were
explored here. For the voxel-wise approach, the breath-hold contrast
image for each subject was entered into the model as a covariate.
This was achieved using the extended version (Yang et al., 2011) of
the Biological Parametric Mapping toolbox (Casanova et al., 2007),
an SPM toolbox which allows for image covariates by implementing
a separate general linear model for each voxel. CVR uncorrected
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analyses for the voxel-wise method were standard group-level one-
sample t-test performed in SPM12 for each task separately. All
t-maps output were thresholded at p < 0.05 cluster-corrected for
multiple comparisons using AFNI functions 3dFWHMx and
3dClustSim. For the ROI method, regions were chosen from the
significant ROIs from the linear regression analyses (outlined in
section 2.1.6). The averaged breath-hold value for each ROI was
entered for each individual subject into the model as a covariate, and
the statistical search limited to the ROI using binary masks. The
CVR uncorrected analyses for the ROI method were identical except
no covariate was included into the model. This was achieved using
standard second-level analyses in SPM12.

2.2 Experiment 2: Gas inhalation CVR

2.2.1 Participants
For the second study, 17 participants completed a single scan

session consisting of a cognitive fMRI scan, a hypercapnic fMRI scan
with delivered CO2 gas mixtures (see task and CO2 paradigm
descriptions below), and a structural scan. All participants
reported no history of neurologic or respiratory disease. Data
from 2 participants were removed due to excessive head motion
and incomplete CO2 scan. The final analysis presented here
consisted of 15 participants (mean age = 38.5 ± 13.5 years, age
range = 22–58 years, 8 F, all right-handed). This study was approved
by the University of Calgary Conjoint Health Research Ethics Board
and all participants provided written informed consent.

2.2.2 Imaging acquisition
All images for study 2 were acquired on a 3 T GE MRI scanner

(Discovery MR750) with a 32-channel head coil fromNovaMedical.
The fMRI acquisition consisted of T2*-weighted echo planar images
with multiband (MB) acceleration (MB factor = 3), TR/TE = 1800/
30 ms, flip angle = 70°, FOV = 256 mm, slice thickness = 2 mm,
63 slices, ARC factor = 2. There were 5 runs of fMRI (4 task, 1 CO2)
acquired in total. A B0 field map was acquired for each fMRI run
using a multi-echo fast spoiled gradient recalled echo sequence with
TR = 500 ms, TE1-4 = 2.3/4.5/6.6/8.7 ms, flip angle = 30°, matched to
the fMRI sequence. A sagittal 3D T1-weighted BRAVO structural
image was acquired with TR/TE/TI = 6.7/2.9/650 ms, flip angle =
10°, matrix = 256 × 256, 1 mm3 isotropic voxels, 192 slices, ASSET
factor = 2.

2.2.3 Task description
The attention network task-revised (ANT-R) was the cognitive

paradigm implemented in study 2 (Fan et al., 2005; Fan et al., 2009;
Fan et al., 2012; Xuan et al., 2016). Attention is the cognitive domain
that guides detection and prioritization of relevant features, and is
comprised of 3 distinct networks: alerting, orienting and executive
control (Petersen and Posner, 2012; Mackie et al., 2013). The ANT-R
is the most recent version (at the time of testing) of a widely
implemented behavioural paradigm that independently assesses
the three attention networks and with fMRI, delineates the
regions associated with each network (Fan et al., 2009; Xuan
et al., 2016; Markett et al., 2022). The alerting network,
responsible for anticipation and arousal, is associated with
numerous widespread cortical regions including the anterior

cingulate cortex, inferior occipital, precentral gyrus and parietal
lobule, mid temporal and fusiform gyri, and superior frontal regions
(Xuan et al., 2016). The orienting network is responsible for shifting
focus to the prioritized stimuli, and has anatomical associations with
the parietal lobule, frontal eye fields, the superior colliculi and
thalamus. The executive control network identifies relevant
information amongst competing, irrelevant stimuli, and is
associated with the frontal regions including the anterior
cingulate and lateral prefrontal cortex (Fan et al., 2009). The
ANT-R was implemented because of these well-known
anatomical correlates widely dispersed across the cerebral cortex.

The ANT-R is described in detail in (Fan et al., 2009) and (Xuan
et al., 2016). The task is a cued flanker paradigm, where a central
fixation cross and two rectangles to the left and right of the cross
remain on the screen throughout the entirety of the task. For each
trial, a row of 5 arrows is briefly presented (500 ms) in one of the two
rectangles. The participants’ task is to indicate as rapidly as possible
whether the centre (third) target arrow is pointing to the left or to the
right. This is achieved with a button press of their dominant hand
using either the index or middle finger. The centre arrow was either
congruent with the other 4 arrows (pointing the same direction) or
incongruent. Prior to the onset of the target arrows, a transient visual
cue appeared in most trials (60 out of 72 trials, or 83.3%). The cue
was a short (100 ms duration) brightening of the rectangle. There
were 4 types of cue conditions: no cue, double cue (where both
rectangles brightened), valid spatial cue (rectangle that was going to
contain the target arrows brightened) and invalid spatial cue
(rectangle that did not contain the target arrows brightened). The
time delay between the cue and arrow targets was randomly assigned
per trial as either 0, 400 or 800 ms. The baseline period between trials
(the inter-stimulus interval) was pseudo-randomised and between
2,000 and 12,000 ms. There was a total of 72 trials per run, and with a
total of 260 volumes collected per run, with each run lasting 7 min
and 48 s. A total of 4 ANT-R runs were acquired per participant.

2.2.4 CO2 challenge
An MR-compatible breathing circuit was used to achieve mild

hypercapnia during the fMRI scan. The apparatus consisted of a
non-rebreathing facemask with unidirectional valves for separate
gas delivery and sampling of end-tidal gases (Tancredi et al., 2014;
MacDonald et al., 2018). Outside the scanner, an automatic gas
delivery system consisting of a Digital Flo-Box and Mass Flow
Controllers (Sierra Instruments, Monterey, CA) and BIOPAC
sampling equipment (BIOPAC Systems Inc., Goleta, CA)
controlled gas delivery and sampling. BIOPAC modules
CO2100C and O2100C continually sampled CO2 and O2

throughout the duration of the scan (sampling rate = 100 mL/
min). The hypercapnia paradigm consisted of 2 min of delivered
gas mixture with increased CO2 (gas mixture of 5% CO2 and 95%
medical air) interspersed with 2 min of medical air, resulting in a
total scan time of 6 min.

2.2.5 fMRI preprocessing
The schematic summarizing the data analysis pipeline for

experiment 2 is shown in Figure 1. All fMRIs underwent
distortion correction using the B0 field maps and FieldMap
Toolbox in SPM (Jezzard and Balaban, 1995; Jenkinson, 2003).
Motion correction was performed in SPM12 (https://www.fil.ion.
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ucl.ac.uk/spm/). All within-subject fMRI runs (4 x ANT-R and 1 x
CO2) were aligned using affine registration with Advanced
Normalization Tools (ANTs) (Avants et al., 2011; Avants et al.,
2014). Affine registration between each subject’s fMRIs and
structural T1, and normalisation of the T1 image to the MNI
template, was performed using Unified Segmentation in SPM12

FIGURE 2
ROIs included in the regression analyses for the SCAP (A), stop-
signal (B) and task-switch (C) tasks are shown in cyan-magenta. ROIs
where the task did not result in significant activation in at least
10 participants are not coloured. Images in coronal, sagittal and
axial planes are shown in neurological orientation with MNI
coordinates. The color bar indicates p-values from the regressions;
regions in magenta did not show a significant linear relationship
between breath-hold (BH) BOLD PSC and task PSC. The scatter plots
in (A) demonstrate the PSC (breath-hold and SCAP) from the left and

(Continued )

FIGURE 2 (Continued)
right insula to the SCAP task. The regression for the left insula
(shown inmagenta in the coronal plane) was non-significant, while the
right insula (shown in cyan in the coronal plane) was significant. The
scatter plots in (B) show an example of a significant (left lateral
occipital cortex) and non-significant (right lateral occipital cortex) ROI
for the stop-signal task. The scatter plots in (C) also show the left and
right lateral occipital cortex, but to the task-switch paradigm. For this
task, the regression for the left lateral occipital cortex was non-
significant, while the right was significant. For all scatter plots, each
data point represents one subject’s averaged PSC from that ROI.

TABLE 1 Regions-of-interest (ROI) with most significant (top 10) and non-
significant (all) linear relationships between SCAP PSC and breath-hold PSC. P
and R2 values from the linear regression analyses shown.

ROI p-value R2 n

Top 10 significant ROIs

R precuneus 1.1 × 10−8 0.39 68

L superior temporal gyrus 5.3 × 10−8 0.57 38

R supramarginal gyrus 3.1 × 10−7 0.29 78

R inferior temporal gyrus 2.1 × 10−6 0.39 48

R inferior parietal cortex 3.2 × 10−6 0.23 85

R pars triangularis 7.9 × 10−6 0.48 33

L caudal middle frontal gyrus 1.3 × 10−5 0.30 54

L paracentral lobule 2.1 × 10−5 0.59 23

L supramarginal gyrus 4.7 × 10−5 0.17 90

L postcental gyrus 7.0 × 10−5 0.17 87

Non-significant ROIs

L insula 0.84 0.001 39

L bank of the superior temporal sulcus 0.65 0.01 18

L pericalcarine cortex 0.32 0.05 23

R pericalcarine cortex 0.21 0.17 11

L caudal anterior cingulate 0.19 0.09 21

R bank of the superior temporal sulcus 0.11 0.20 14

L pars triangularis 0.09 0.13 23

L lateral orbitofrontal cortex 0.06 0.19 19

R lateral orbitofrontal cortex 0.05 0.12 32

R superior temporal gyrus 0.05 0.21 19

R2 = coefficient of determination, n = number of participants.

R = right hemisphere, L = left hemisphere.
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(Ashburner and Friston, 2005). Deformation fields from the T1

image segmentation were applied to the fMRIs, which were
normalised to the MNI template. Minimal spatial smoothing
(4 mm full-width at half-maximum) was performed to improve
signal to noise ratio. Smoothing was performed here but not in
experiment 1 because of the differences in spatial resolution.

2.2.6 fMRI first-level analyses
The general linear model for the ANT-R task included

16 task-related regressors, corresponding to cue condition (no
cue, double cue, valid, invalid), the direction of the centre target
arrow relative to the surrounding arrows (congruent,
incongruent) and the target location (left rectangle, right
rectangle). Only correct trials were modelled in these tasks
regressors; incorrect trials were modelled separately as
regressors of no interest. Six motion parameters were also
included as regressors. Weighted linear contrasts calculated
from the estimated beta images corresponded to the three
attention networks. However, due to having the most robust
and spatially extensive cortical activation, the alerting network
was the contrast of interest for the present study. The alerting
network was defined as the contrast of double cue relative to
baseline, similar to prior work (Xuan et al., 2016).

First-level analysis of the hypercapnia paradigm modelled
the BOLD signal change to increased CO2 using end tidal
partial-pressure of CO2 from the CO2 module breathing
traces. On a per-subject basis, the end tidal CO2 was
extracted from the breathing trace and interpolated to match
the temporal resolution of the fMRI time-series. The mean
BOLD time-course was extracted from each subjects’ grey
matter mask and cross-correlated with the end tidal CO2

trace. For the cross-correlations, the end tidal CO2 time-
course was systematically shifted by 1 TR (1.8 s) until the
maximum correlation between the mean grey matter BOLD
time-course and end tidal CO2 was found. The end tidal CO2

with maximal BOLD correlation was entered into the general
linear model as the regressor of interest. The six motion
parameters were entered into the model as regressors of no
interest.

2.2.7 ROI analyses
The procedure for ROI definition was consistent with

experiment 1. PSC maps were calculated from the alerting
contrast and CO2 challenge using only these significant voxels.
CVR maps were obtained by dividing the CO2 PSC maps by the
maximum change in end tidal CO2 (mm Hg) during the CO2

challenge. ROI-averaged CVR values were input to the linear
regression analyses, with ROI values greater than 3 mean
absolute deviations removed from the analysis.The same
procedure as study 1 was implemented for the linear regressions,
where only ROIs with significant activation in at least 10 participants
were considered.

2.2.8 Group-level analyses
The aim and methods of the group-level analyses outlined in

experiment 1 (section 2.1.7) were identical to experiment 2. The
group analyses for experiment 2 were run with both voxel-wise CVR

correction using the Biological Parametric Mapping toolbox, and at the
ROI level using SPM only. All analyses used alerting contrast images.

3 Results

3.1 Experiment 1: Breath-hold CVR

3.1.1 fMRI first-level analyses
The SCAP task produced robust bilateral activation across the

insula and frontal and parietal lobes. The successful inhibition
contrast from the stop-signal task significantly activated the
superior temporal gyrus bilaterally, left insula, medial cingulate
cortex, and right middle frontal gyrus. The task-switch paradigm
resulted in significant activation in the left posterior-medial frontal
gyrus, left inferior parietal lobule, bilateral calcarine gyrus, and left
postcentral gyrus, insula, and lingual gyrus.

3.1.2 ROI analyses
The anatomical ROIs ranged in mean volume from 1,016 (±284)

mm3 for the left frontal pole to 30,102 (±2,639) mm3 for the left
superior frontal gyrus. All 68 of the anatomical ROIs and their
volumes are available in Supplementary Table S1.

The first cognitive task, the SCAP paradigm, had 51 ROIs with
significant BOLD responses (to both SCAP and breath-hold) in
10 or more participants. The majority of these ROIs showed a
significant linear relationship between SCAP activation and BOLD
PSC to breath-hold, with 41 (80.1%) ROIs in total showing
significant regression results (after FDR-correction for number of
ROIs). ROIs and their corresponding original (prior to FDR-
correction) p-values are displayed in Figure 2A; Table 1 outlines
the top 10 ROIs with the strongest linear relationship between SCAP
activation and breath-hold, as defined by p-values. The 10 ROIs that
did not result in a significant regression are also outlined in Table 1.
As shown in Table 1, these non-significant ROIs typically had a
smaller sample size (i.e., fewer participants with significant
activation in that ROI), as indicated by the ‘n’ column. There
were exceptions however; one being the left insula. This ROI did
not demonstrate a linear relationship between SCAP activation and
breath-hold response but had similar activation and a larger n than
the right insula, which did show a significant linear relationship (p =
0.0008, R2 = 0.29, n = 36). The mean percent signal changes were
similar between the two insula ROIs (right insula M = 1.79 and
2.24%, left insula M = 1.73 and 2.27% for SCAP and breath-hold
respectively). Scatter plots for the left and right insula are shown in
Figure 2A. All ROIs evaluated for the SCAP are given in the
Supplementary Table S2.

The second cognitive task, the stop-signal paradigm had 34 ROIs
with adequate BOLD responses (>10 participants) for linear
regression analyses. Out of these 34 ROIs, 25 (73.5%) showed a
significant linear relationship between stop-signal BOLD activation
and breath-hold response. These ROIs and their original p-values
from the regression analyses are shown in Figure 2B. The scatter
plots in this figure show an example significant and non-significant
ROI. Table 2 outlines the top 10 ROIs with the strongest linear
relationship, and the 9 ROIs that were non-significant. All evaluated
ROIs are shown in the Supplementary Table S3.
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The third cognitive task, the task-switch paradigm showed a
total of 24 ROIs with adequate BOLD responses (in 10 or more
participants) for linear regression analyses. Out of these, 11 ROIs
(45.8%) were significant. These ROIs and their original p-values
from the regression analyses are shown in Figure 2C; Table 3
demonstrates the top 10 ROIs with the strongest linear
relationship, and all 13 ROIs that were non-significant. Similar to
the previous two paradigms, the ROIs that did not show significant
relationships between task-switch activation and breath-hold BOLD
responses tended to demonstrate smaller n sizes. The exception was
the left lateral occipital cortex, which was non-significant but had a
larger n than the right lateral occipital cortex. The right, conversely,
was highly significant. The mean PSC was similar between the two
lateral occipital cortices (right M = 1.84 and 1.91%, and left M =
1.54 and 2.27% for task-switch and breath-hold respectively). The
scatter plots comparing the left and right lateral occipital cortex are
shown in Figure 2C. The linear regression results for all evaluated
ROIs are given in the Supplementary Table S4.

The regions that showed a significant linear relationship
between task and breath-hold BOLD responses for all

3 cognitive tasks were the left inferior parietal cortex,
precentral gyrus, superior frontal gyrus, and supramarginal
gyrus; and the right precuneus. These ROIs are displayed in
the Supplementary Figure S1. The ROIs with adequate responses
(significant activation to at least one task and breath-hold
in >10 participants) but failed to show significant regressions
in any of the 3 tasks were the left bank of the superior temporal
sulcus, left caudal anterior cingulate cortex, left insula, and left
pars triangularis; the pericalcarine cortex bilaterally, and the
lateral orbitofrontal cortex bilaterally.

3.1.3 Group-level analyses
Activation maps in Figure 3 show the group activation to the

SCAP, stop-signal and task-switch paradigms both with and without
CVR correction using the voxel-wise image covariate approach.

TABLE 2 Regions-of-interest (ROI) with most significant (top 10) and non-
significant (all) linear relationships between stop-signal PSC and breath-hold
PSC. P and R2 values from the linear regression analyses shown.

ROI p-value R2 n

Top 10 significant ROIs

R inferior parietal cortex 8.6 × 10−9 0.58 41

R superior temporal gyrus 1.8 × 10−7 0.38 60

R supramarginal gyrus 8.0 × 10−7 0.36 58

L supramarginal gyrus 1.6 × 10−6 0.42 45

L inferior parietal cortex 2.1 × 10−6 0.63 25

L superior parietal cortex 8.9 × 10−6 0.54 28

L lateral occipital cortex 1.6 × 10−5 0.48 31

R superior frontal gyrus 2.2 × 10−5 0.47 31

R middle temporal gyrus 3.4 × 10−5 0.36 41

R rostral middle frontal gyrus 6.0 × 10−5 0.38 37

Non-significant ROIs

R lateral occipital cortex 0.91 0.0005 26

R inferior temporal gyrus 0.78 0.0006 14

R postcentral gyrus 0.58 0.02 15

L pars opercularis 0.48 0.07 10

R insula 0.15 0.12 18

L bank of the superior temporal sulcus 0.13 0.15 17

L insula 0.08 0.23 14

R pars triangularis 0.07 0.33 11

R lateral orbitofrontal cortex 0.04 0.36 12

R2 = coefficient of determination, n = number of participants.

R = right hemisphere, L = left hemisphere.

TABLE 3 Regions-of-interest (ROI) with most significant (top 10) and non-
significant (all) linear relationships between task-switch PSC and breath-hold
PSC. P and R2 values from the linear regression analyses shown.

ROI p-value R2 n

Top 10 significant ROIs

L superior frontal gyrus 1.8 × 10−4 0.62 17

L superior parietal cortex 0.0006 0.31 34

L pars opercularis 0.001 0.67 12

R lingual gyrus 0.002 0.31 28

R precuneus 0.002 0.45 18

L inferior parietal cortex 0.004 0.31 24

R lateral occipital cortex 0.005 0.53 13

L lingual gyrus 0.005 0.22 34

L precentral gyrus 0.01 0.23 28

L precuneus 0.01 0.34 18

Non-significant ROIs

R pericalcarine 0.94 0.0006 11

R rostral middle frontal gyrus 0.85 0.003 16

L lateral occipital cortex 0.77 0.004 23

R superior frontal gyrus 0.44 0.08 10

L caudal middle frontal gyrus 0.39 0.06 15

L postcentral gyrus 0.30 0.06 19

R inferior parietal cortex 0.21 0.11 17

L fusiform 0.14 0.13 18

R precentral gyrus 0.09 0.22 14

L rostral middle frontal gyrus 0.08 0.13 24

R superior parietal cortex 0.06 0.17 22

L pericalcarine 0.05 0.21 19

R supramarginal gyrus 0.04 0.37 12

R2 = coefficient of determination, n = number of participants.

R = right hemisphere, L = left hemisphere.

Frontiers in Physiology frontiersin.org09

Williams et al. 10.3389/fphys.2023.1167148

72

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2023.1167148


Figures 3A, C, E show maps that have been corrected for CVR by
including breath-hold as an image covariate in the Biological
Parametric Mapping toolbox, and Figures 3B, D, F demonstrate
the standard analyses without correction (i.e., no image covariate).

For all 3 tasks, the corrected group-level analyses showed a greater
number of significant voxels than their uncorrected counterparts.
The corrected activation maps also had higher peak voxel t-values
for SCAP, stop-signal and task-switch (t = 18.65, 13.69 and
15.00 respectively) compared to the uncorrected maps (t = 12.63,
7.84, 8.50). The ROI approach was also applied to correct for CVR,
however there were no differences between CVR corrected and
uncorrected activation maps for this method.

3.2 Gas inhalation CVR

3.2.1 CO2 challenge
At baseline when participants were exposed to medical air only,

the mean end tidal CO2 was 35.38 (±4.1) mmHg (elevation of testing
location was 1,100 m). During the 2-min hypercapnia period when
participants were exposed to 5% CO2, the mean maximum end tidal
CO2 was 45.19 (±3.59) mmHg. The mean change in end tidal CO2

between baseline and hypercapnia was 9.81 (±3.06) mmHg.

3.2.2 fMRI analyses
The alerting contrast produced robust activation across the

cerebral cortex with peak activation in the left inferior parietal
lobule, right inferior frontal gyrus, left fusiform gyrus, left
posterior medial-frontal gyrus, right inferior occipital gyrus, right
superior parietal lobule, and right middle frontal gyrus. The CO2

challenge produced increased BOLD responses across the cerebral
cortex, particularly from the large sinuses. An example CVR map is
shown in Figure 4A, and the group activation map to the alerting
contrast is shown in Figure 4B.

3.2.3 ROI analyses
The mean volumes of the anatomical ROIs ranged from 820

(±255) mm3 for the right transverse temporal cortex to 25,196
(±4,472) mm3 for the left superior frontal gyrus. All 68 of the
anatomical ROIs and their mean volumes are displayed in
Supplementary Table S1.

A total of 50 ROIs had significant activation in 10 or more
participants and were entered into linear regression analyses. Out
of these 50 ROIs, 5 showed an uncorrected (p < 0.05, before FDR-
correction for multiple comparisons) significant linear
relationship between alerting activation and CVR: right
paracentral gyrus (p = 0.0003, R2 = 0.71, n = 13), right cuneus
(p = 0.001, R2 = 0.64, n = 13), right pericalcarine (p = 0.004, R2 =
0.51, n = 14), left paracentral lobule (p = 0.02, R2 = 0.42, n = 12),
and right inferior parietal cortex (p = 0.04, R2 = 0.28, n = 15). The
first two (right paracentral gyrus and cuneus) were the only ROIs
to survive FDR correction for multiple comparisons. These five
ROIs are shown in Figure 5, along with their respective scatter
plots. The linear regression results from all evaluated ROIs can be
found in the Supplementary Table S5.

R2 values from all ROIs, from both studies (breath-hold and gas-
induced hypercapnia) are displayed in a polar plot in Figure 6. This
plot indicates that when activated by a task, most ROIs showed at
least a moderate linear relationship between task-induced signal
magnitude and CVR. Low correspondence between ROI activation
and CVR (indicated by small R2 on Figure 6) typically reflects lack of
activation by the task.

FIGURE 3
Group activation maps for the SCAP (A, B), stop-signal (C, D) and
task-switch (E, F) paradigms for experiment 1. The upper rows of each
task (A, C, E) show the activation maps which were corrected for CVR
by including the breath-hold contrast images as covariates. The
lower row for each task (B, D, F) are the standard, uncorrected for CVR,
group activation maps. All images cluster-corrected for multiple
comparisons (p < 0.05). The colour bar indicates t-values.
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3.2.4 Group-level analyses
The first approach to CVR correction using voxel-wise general

linear models and the Biological Parametric Mapping toolbox was
not optimal for experiment 2, as it resulted in less activation than the
uncorrected (i.e., standard one-sample t-test) group analysis. The
second ROI approach to CVR correction implemented only the five
significant ROIs from the linear regression analyses (right
paracentral gyrus, right cuneus, right pericalcarine, left
paracentral lobule, right inferior parietal cortex). This ROI
approach resulted in small increases in the number of significant
voxels (at p < 0.001 uncorrected for multiple comparisons) for the
vascular corrected compared to the uncorrected analyses. The
largest differences were observed in the right inferior parietal
cortex (+27 voxels for vascular corrected vs. uncorrected) and
right cuneus (+24 voxels for vascular corrected vs. uncorrected).
There were increases in the peak t-values for most of the vascular
corrected ROIs compared to the uncorrected ROIs (right cuneus: t =
8.94 and 6.36; right pericalcarine: t = 8.78 and 7.03; left paracentral

lobule: t = 6.26 and 6.49; right inferior parietal cortex: t = 9.33 and
7.25 for vascular corrected and uncorrected respectively). The right
paracentral gyrus is unreported as there were no suprathreshold
voxels for both vascular corrected and uncorrected analyses.
Activation maps from the vascular corrected and uncorrected
ROI analyses are shown in Figures 4C, D respectively.

4 Discussion

This research aimed to evaluate whether basal vascular
physiology, assessed using CVR, can predict task-induced BOLD
responses across multiple cognitive tasks activating different cortical
regions. The hypothesis that linear relationships between CVR and
task-based BOLD responses would be observed across all brain
regions evaluated was largely supported. Evidence for this can be
found in the polar plot in Figure 6, showing that the majority of
regions investigated showed at least a moderate (R2 > 0.20)

FIGURE 4
An example CVR map of a single subject is shown in (A). Whole-brain average group maps for the alerting contrast of the ANT-R shown in (B). The
ROI analyses of the alerting contrast shown in (C) and (D) included explicit masks comprised of the five significant ROIs from the linear regression analyses
for experiment 2. For the vascular corrected ROI analysis in (C), themeanCVR values for each ROIwere entered into themodel as covariates. The vascular
uncorrected ROI analysis shown in (D) included the explicit masks only with no covariates. The group maps in (B, C, D) were thresholded at p <
0.001 uncorrected for multiple comparisons. The upper colour bar indicates %BOLD/mmHg for the CVR map in (A). The lower colour bar indicates
t-values for (B, C, D).
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relationship between BOLD activation magnitude and CVR to at
least one task. These findings highlight that the relationship between
neural activity-mediated BOLD signal and vascular physiology is
mostly preserved across the cerebral cortex, to different cognitive
tasks and with different CVR approaches.

For experiment 1, task activation was predicted by breath-
hold BOLD responses for the majority of evaluated ROIs,
although some exceptions were found. Most of these
exceptions could be explained by smaller sample size, as fewer
participants demonstrated significant task and/or breath-hold
BOLD responses compared to ROIs that were significant. This
relationship between variance explained by breath-hold
responses and sample size can be appreciated from the
information presented in Tables 1–3 where both R2 and ‘n’ are
reported for significant and non-significant ROIs. There were two
exceptions found, however. For the SCAP task, a paradigm of

spatial memory, the insula showed strong BOLD responses
bilaterally, however, only activation from the right insula
showed a linear relationship with CVR. Likewise, for the task-
switch paradigm, the lateral occipital cortex showed strong
bilateral BOLD responses but only the right hemisphere
showed a significant linear relationship with CVR. These two
non-significant ROIs (left insula and lateral occipital cortex)
cannot be fully explained by small sample size, as they had
more participants with significant activation than their
contralateral counterpart. Differences in mean PSC between
these ROIs is another potential explanation but does not
appear relevant here as these were also highly consistent
between hemispheres. Moreover, the left insula failed to show
a significant linear relationship with CVR across all paradigms;
this includes the SCAP, the stop-signal task with a sample size of
14 participants, and the ANT-R with 12 participants. Similarly,

FIGURE 5
Right (upper) and superior (lower) views of the significant ROIs (in cyan) from the alerting contrast of the ANT-R task. Reduced opacity images on the
right highlight medial aspects. Scatter plots show the linear relationship between alerting PSC (y-axis) and CVR (x-axis) for each ROI. The (*) next to right
cuneus and right paracentral gyrus indicate that these two ROIs were significant following FDR-correction for multiple comparisons. A = anterior, P =
posterior.
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the right insula was activated by the stop-signal (n = 18) and
ANT-R (n = 13) tasks but was non-significant in the ROI
analyses. Bilaterally the insula was not activated by the task-
switch paradigm and was not included in the linear regression
analyses for this task. One possible explanation is that left insula
activation to the SCAP task and its relationship with breath-hold
BOLD responses varied across participants of different ages.
Further analyses were therefore run, separating the youngest
age group (participants aged in their 20’s at time from testing)
from the oldest age group (people aged 40–50 years at time of
testing). The scatter plot shown in the Supplementary Figure S2,
shows a difference between these two groups which may explain
the non-significant finding. Supplementary Figure S2 shows a
negative (albeit non-significant) relationship between task-based
activation and breath-hold BOLD responses for the older group,
while the younger group showed a significant positive
relationship. The present study lacks the sample size to fully
investigate this age effect observed in the left insula, however it is
hoped that these preliminary data provide impetus for future
research.

Unlike the insula, the lateral occipital cortex showed a more
task-dependent relationship with CVR. For this region, the left
hemisphere regression (with breath-hold as the predictor
variable) was significant in the stop-signal task (n = 31) but the
right was not (n = 26). This was the opposite for the task-switch
paradigm, where the left was non-significant (n = 23) and the right
significant (n = 13). For the SCAP, both the right (n = 44) and the left

(n = 53) lateral occipital cortices were significant. Both left and right
lateral occipital cortices were non-significant in the ANT-R (n =
15 for both). Unlike the insula, this appears to be a region that has
strong correspondence with vascular physiology. However, task-
related variability in how each task recruited this region, and the
strength with which each participant individually recruited this
region, was observed.

The regions that showed significant linear regressions across all
three cognitive paradigms in experiment 1 were mainly left-
lateralized and showed parietal lobe dominance. Out of the
5 ROIs that were consistently significant across the three tasks,
only one was outside the parietal region: the left superior frontal
gyrus. This left-lateralized consistency may reflect strong BOLD
responses within this region due to the common task requirement, a
motor response (button press) with their dominant hand. However,
the bilateral parietal lobes were dominant in experiment 2. For the
five ROIs significant at p < 0.05 (uncorrected for multiple
comparisons) in this gas-inhalation study, three were in the
parietal lobe (two right hemisphere). There was a button-press
response required by the dominant hand for the ANT-R task,
and all participants in this study were right-handed. Motor
responses might explain some of the left parietal dominance (for
example, the left paracentral ROI in the ANT-R task), however
further consideration is required as the inferior parietal cortex (IPC)
is spatially discrete from the motor cortex. The IPC was the only
region to be significantly related to CVR across all four tasks, in the
two separate experiments, with the left IPC in study 1 and the right

FIGURE 6
Polar plot displaying the R2 values for all ROIs from all linear regression analyses, across both experiments. Each ROI shows its corresponding R2

value for the left and right hemisphere separately. The R2 values for the SCAP are shown in blue, stop-signal in red, task-switch in black and ANT-R in
green. The open-coloured markers (‘o’) indicate that the ROI was not significant after FDR correction for multiple corrections, while the closed markers
were significant. The concentric circles indicate the R2 value, with values increasing with radius to a maximum of R2 = 0.80.
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IPC in experiment 2. Regions such as the parietal cortex where
activation was strongly and consistently predicted by CVR might be
particularly prone to confounding task-related BOLD signal changes
due to CVR, such as those observed in aging.

Brain aging leads to cerebrovascular changes, with vascular
stiffening and endothelial dysfunction compromising a vessel’s
ability to respond to CO2 (Abdelkarim et al., 2019). CVR decline
with advancing age has been reported (Bhogal et al., 2016; McKetton
et al., 2018; Peng et al., 2018). Changes in neural activity-mediated
BOLD signal also change with age (West et al., 2019), and
disentangling the neural and non-neural contributions is vital for
the appropriate interpretation of BOLD fMRI (Tsvetanov et al.,
2021b). Addressing age-related vascular physiology differences is an
area where vascular correction such as hypercapnic normalization
should be considered essential. In these applications however, it is
important to consider partial voluming and the increased
contribution of cerebrospinal fluid. This might be a particularly
important consideration in studies of aging where cortical atrophy
occurs, increasing the likelihood of voxel cerebrospinal fluid
contributions. In these instances, factors to prevent partial
voluming such as increased spatial resolution should be
considered. However, there are other applications outside of
aging that would benefit from correction of baseline physiology.
For example, acute sleep deprivation in healthy subjects has shown
to increase regional cerebral blood flow (Elvsåshagen et al., 2019).
Evidence for CVR changes due to acute sleep deprivation is lacking,
however chronic sleep deprivation in subjects with obstructive sleep
apnea has shown to be associated with increases in CVR (Ryan et al.,
2018). Differences in habitual sleep patterns are a likely source of
BOLD inter-subject variability, and the variability due to vascular
changes might be addressed with vascular correction. Similarly,
caffeine is a known vasoconstrictor that affects fMRI activation
(Mulderink et al., 2002; Laurienti et al., 2003; Griffeth et al., 2011;
Specht et al., 2019), however research addressing whether vascular
correction can address vascular changes is lacking and highly
warranted (Williams et al., 2021a). It is possible that medication
can also affect BOLD signal, although this is medication-dependent
and only certain medications have, to date, been evaluated in various
patient groups (Goozee et al., 2016; Delfin et al., 2020; Williams
et al., 2021b). Nonetheless, vascular correction in studies comparing
medication-taking versus medically naive groups would improve
interpretation of BOLD signal changes by separating variability due
to vascular and non-vascular factors. Vascular correction might also
improve the accuracy of BOLD fMRI magnitudes to scale with
neural activity, such as experimental designs with increasing
cognitive load or sensory load (for example, visual studies with
partial to full visual field stimulation). This is because the vascular
corrected activation map might have reduced dependence on larger
blood vessels, thereby improving the accuracy of the map to reflect
neural activity. Further research on this is required.

An important area of research that might benefit from vascular
correction includes comparisons of patient and healthy control
groups where cerebrovascular changes due to disease processes in
the patient group produce confounding results. This has been
highlighted in patients with Moyamoya disease where significant
arterial stenosis changes the distribution of cerebral blood flow
during activation and hypercapnia (Mazerolle et al., 2018; Hauser
et al., 2019). One consideration is whether patients with CVR

impairment will demonstrate a linear response to CO2. There is
evidence supporting a sigmoidal rather than linear relationship
between CVR response and end-tidal partial pressure of CO2. In
a study of healthy participants, Bhogal et al. (2014) showed that the
linearity between BOLD percent signal change and end-tidal CO2

did not hold at high CO2 stimulation (Bhogal et al., 2014). Patients
with impaired vascular reactivity due to vessel pre-dilation may
demonstrate a shift in the sigmoidal response such that BOLD
responses are diminished at weaker levels of CO2 stimulation. With
hypercapnic normalization, it’s assumed that a pre-dilated vessel
would show a corresponding diminished BOLD activation to a task.
It has been shown that task-based BOLD activation is reduced when
baseline vasodilatory potential is reduced due to increased baseline
end-tidal CO2 (van Niftrik et al., 2018), suggesting that hypercapnic
normalization would be ideally implemented in participants with
impaired vascular reactivity.

When discussing fMRI vascular correction using hypercapnia-
based approaches such as CVR, it is critical to address the
assumption of iso-metabolism. When CVR studies are
performed, it is assumed that metabolism remains consistent
across hypercapnic and normocapnic epochs, however recent
research findings have challenged this. Deckers et al. (2022)
reported a mean decrease of 13.4% in cerebral metabolic rate of
oxygen during inhalation of 5% CO2 in air (Deckers et al., 2022).
This is a concern for calibrated fMRI studies that aim to calculate
cerebral metabolic rate of oxygen (Blockley et al., 2015), and it
should also be a consideration for CVR studies using BOLD. The
BOLD amplitude will be overestimated in the context of reduced
deoxyhemoglobin concentrations, thereby overestimating the
calculated CVR. Alternative approaches for acquiring CVR maps
for vascular correctionmight include the use of arterial spin labelling
rather than BOLD, and altering the gas mixtures to induce a slight
hypoxic component (Peng et al., 2017). There is emerging research
suggesting that CVR can be calculated from gas-free methods such
as resting-state BOLD, which is also a possibility for future research
using vascular correction (Wise et al., 2004; Kannurpatti and Biswal,
2008; Kannurpatti et al., 2012; Tsvetanov et al., 2015; Golestani et al.,
2016a; Golestani et al., 2016b; Kazan et al., 2016; Wang et al., 2016;
Jahanian et al., 2017; Liu et al., 2017; Pinto et al., 2020; Tsvetanov
et al., 2021a; Stickland et al., 2021; Addeh et al., 2023). Other
alternatives to the breath-hold and fixed concentration CO2

hypercapnic stimuli that were utilised in the current study are
targeted gas systems, where an end-tidal CO2 value above
baseline is targeted. This approach may provide further benefit to
hypercapnic normalization as it reduces the variability associated
with arterial CO2 concentrations, which may then reduce inter-
subject variation in CVR maps (Slessarev et al., 2007).

The group analyses in experiment 1 showed that vascular
correction at the group level, performed by including the individual
breath-hold contrast images as voxel-wise covariates, increased
sensitivity to BOLD signal change as indicated by both the number
of significant voxels and the peak t-values. The ROI approach to
vascular correction had no effect on the activation maps from
experiment 1, but in experiment 2 this approach resulted in minor
improvements for the CVR corrected maps through increases in
t-values. Linear regression analyses from experiment 2 revealed only
five ROIs that predicted BOLD activation from CVR, which might
explain why the whole-brain voxel-wise covariate approach that
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benefitted experiment 1 did not benefit group analyses in experiment 2.
This raises the question of whether vascular correction applied in a
voxel-wise manner only benefits larger sample sizes, as experiment
1 had a much larger sample size than experiment 2. Sample size is one
contributing factor, but others should also be considered when
determining whether vascular correction is worthwhile. Groups with
substantial inter-subject variability due to vascular physiology would
benefit more from vascular correction than highly homogenous groups,
even when sample sizes are small. In first-level modelling, precision in
the estimate of the effect of interest is another pertinent factor, and this
will depend on within-subject variability. This, in turn, is highly
dependent on the task implemented and the number of runs,
conditions, and if a cognitive task-the number of correct responses
and subject variability due to attention and habituation (Chen et al.,
2012). The hardware (e.g., scanner field strength and head coil) and
software (e.g., use of simultaneous multi-slice, parallel imaging) might
also vary the effect estimate when comparing across datasets and sites.

The small sample size for experiment 2 (n= 15) is a limitation of the
present study, and the relatively smaller number of significant ROIs
(5 out of 50 at P < 0.05, and 2 out of 50 after FDR-correction) compared
to experiment 1 may have reflected this. Another limitation to the
present study is that the voxel selection process for the linear regression
analysesmeant that only robustly activated brain regions were included.
This could inflate R2 values due to decreased inter-subject variability, a
result of choosing only voxels above a set threshold. The alternative
would be to include all voxels regardless of whether they were activated
by a task; however, this alternative was considered less optimal as
investigating whether task magnitudes could be predicted by CVR
require a hemodynamic response.

In summary, the present study showed that CVR is mostly
predictive of cognitive task-based fMRI activation across the cerebral
cortex. The parietal regions were consistently related to CVR across all
tasks and CVR approaches, suggesting that BOLD activations in these
areas scale with baseline vascular physiology and might be prone to
BOLD signal variability due to vascular changes. Most regions that were
strongly activated by a task also showed a significant relationship with
CVR; although, the left insula was one activated region that did not
show this relationship. For the left insula, non-vascular factors such as
neural variability might better explain inter-subject variability. The
group analyses showed that including vascular covariates increased
statistical significance of activation maps. Overall, these results provide
support for the close relationship between CVR and BOLD response
magnitude to complex fMRI paradigms. This suggests that vascular
correction techniques such as hypercapnic normalization should be
considered for all fMRI paradigms to disentangle vascular and non-
vascular variability in BOLD signal magnitude.

Data availability statement

The raw data supporting the conclusion of this article will be
made available by the authors, without undue reservation.

Ethics statement

The studies involving human participants were reviewed and
approved by University of Calgary Conjoint Health Research Ethics
Board. The patients/participants provided their written informed
consent to participate in this study.

Author contributions

RW: research idea conception, study design, data collection and
analysis, results interpretation and wrote the manuscript. JS: study
design, data collection and analysis, results interpretation. EM: study
design, results interpretation. RL: data collection and analysis. MM:
data analysis, results interpretation. GP: research idea conception,
study design, data collection and analysis, results interpretation. All
authors reviewed and edited the manuscript.

Funding

EM is funded by the Natural Science and Engineering Research
Council (NSERC) and the StFX University Council for Research.
MM holds an NSERC Discovery Grant (RGPIN-2022-03552). GP
would like to acknowledge financial support from the Canadian
Institutes for Health Research (CIHR FDN-143290), the Natural
Science and Engineering Research Council (NSERC RGPIN-2017-
03880), and the Campus Alberta Innovation Program (CAIP).

Conflict of interest

RL was employed by GE Healthcare.
The remaining authors declare that the research was conducted

in the absence of any commercial or financial relationships that
could be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors and
do not necessarily represent those of their affiliated organizations, or
those of the publisher, the editors and the reviewers. Any product that
may be evaluated in this article, or claim that may be made by its
manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fphys.2023.1167148/
full#supplementary-material

References

Abdelkarim, D., Zhao, Y., Turner, M. P., Sivakolundu, D. K., Lu, H., and Rypma, B.
(2019). A neural-vascular complex of age-related changes in the human brain:

Anatomy, physiology, and implications for neurocognitive aging. Neurosci. Biobehav
Rev. 107, 927–944. doi:10.1016/j.neubiorev.2019.09.005

Frontiers in Physiology frontiersin.org15

Williams et al. 10.3389/fphys.2023.1167148

78

https://www.frontiersin.org/articles/10.3389/fphys.2023.1167148/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fphys.2023.1167148/full#supplementary-material
https://doi.org/10.1016/j.neubiorev.2019.09.005
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2023.1167148


Addeh, A., Vega, F., Medi, P. R., Williams, R. J., Pike, G. B., and Macdonald, M. E.
(2023). Direct machine learning reconstruction of respiratory variation waveforms from
resting state fMRI data in a pediatric population. Neuroimage 269, 119904. doi:10.1016/
j.neuroimage.2023.119904

Ashburner, J., and Friston, K. J. (2005). Unified segmentation. NeuroImage 26,
839–851. doi:10.1016/j.neuroimage.2005.02.018

Avants, B. B., Tustison, N. J., Song, G., Cook, P. A., Klein, A., and Gee, J. C. (2011). A
reproducible evaluation of ANTs similarity metric performance in brain image
registration. Neuroimage 54, 2033–2044. doi:10.1016/j.neuroimage.2010.09.025

Avants, B. B., Tustison, N. J., Stauffer, M., Song, G., Wu, B., and Gee, J. C. (2014). The
Insight ToolKit image registration framework. Front. Neuroinform 8, 44. doi:10.3389/
fninf.2014.00044

Bandettini, P. A., and Wong, E. C. (1997). A hypercapnia-based normalization
method for improved spatial localization of human brain activation with fMRI.
NMR Biomed. 10, 197–203. doi:10.1002/(sici)1099-1492(199706/08)10:4/5<197::aid-
nbm466>3.0.co;2-s
Battisti-Charbonney, A., Fisher, J., and Duffin, J. (2011). The cerebrovascular

response to carbon dioxide in humans. J. Physiol. 589, 3039–3048. doi:10.1113/
jphysiol.2011.206052

Bhogal, A. A., De Vis, J. B., Siero, J. C. W., Petersen, E. T., Luijten, P. R., Hendrikse, J.,
et al. (2016). The BOLD cerebrovascular reactivity response to progressive hypercapnia
in young and elderly. Neuroimage 139, 94–102. doi:10.1016/j.neuroimage.2016.06.010

Bhogal, A. A., Siero, J. C., Fisher, J. A., Froeling, M., Luijten, P., Philippens, M., et al.
(2014). Investigating the non-linearity of the BOLD cerebrovascular reactivity response
to targeted hypo/hypercapnia at 7T. Neuroimage 98, 296–305. doi:10.1016/j.
neuroimage.2014.05.006

Bilder, R., Poldrack, R., Cannon, T., London, E., Freimer, N., Congdon, E., et al.
(2020). UCLA Consortium for neuropsychatric Phenomics LA5c study. OpenNeuro.
doi:10.18112/openneuro.ds000030.v1.0.0

Birn, R. M., Smith, M. A., Jones, T. B., and Bandettini, P. A. (2008). The respiration
response function: The temporal dynamics of fMRI signal fluctuations related to
changes in respiration. Neuroimage 40, 644–654. doi:10.1016/j.neuroimage.2007.11.059

Biswal, B. B., Kannurpatti, S. S., and Rypma, B. (2007). Hemodynamic scaling of
fMRI-BOLD signal: Validation of low-frequency spectral amplitude as a scalability
factor. Magn. Reson Imaging 25, 1358–1369. doi:10.1016/j.mri.2007.03.022

Blicher, J. U., Stagg, C. J., O’Shea, J., Østergaard, L., Macintosh, B. J., Johansen-Berg,
H., et al. (2012). Visualization of altered neurovascular coupling in chronic stroke
patients using multimodal functional MRI. J. Cereb. Blood Flow. Metab. 32, 2044–2054.
doi:10.1038/jcbfm.2012.105

Blockley, N. P., Griffeth, V. E., Stone, A. J., Hare, H. V., and Bulte, D. P. (2015).
Sources of systematic error in calibrated BOLD based mapping of baseline oxygen
extraction fraction. Neuroimage 122, 105–113. doi:10.1016/j.neuroimage.2015.07.059

Bright, M. G., and Murphy, K. (2013). Reliable quantification of BOLD fMRI
cerebrovascular reactivity despite poor breath-hold performance. Neuroimage 83,
559–568. doi:10.1016/j.neuroimage.2013.07.007

Casanova, R., Srikanth, R., Baer, A., Laurienti, P. J., Burdette, J. H., Hayasaka, S., et al.
(2007). Biological parametric mapping: A statistical toolbox for multimodality brain
image analysis. Neuroimage 34, 137–143. doi:10.1016/j.neuroimage.2006.09.011

Chen, G., Saad, Z. S., Nath, A. R., Beauchamp, M. S., and Cox, R. W. (2012). FMRI
group analysis combining effect estimates and their variances. Neuroimage 60, 747–765.
doi:10.1016/j.neuroimage.2011.12.060

Chen, J. J. (2018). Cerebrovascular-reactivity mapping using MRI: Considerations for
alzheimer’s disease. Front. Aging Neurosci. 10, 170. doi:10.3389/fnagi.2018.00170

Chen, J. J. (2019). Functional MRI of brain physiology in aging and neurodegenerative
diseases. Neuroimage 187, 209–225. doi:10.1016/j.neuroimage.2018.05.050

Chen, J. J., and Pike, G. B. (2010). Global cerebral oxidative metabolism during
hypercapnia and hypocapnia in humans: Implications for BOLD fMRI. J. Cereb. blood
flow metabolism 30, 1094–1099. doi:10.1038/jcbfm.2010.42

Chen, J. J., Rosas, H. D., and Salat, D. H. (2011). Age-associated reductions in cerebral
blood flow are independent from regional atrophy. NeuroImage 55, 468–478. doi:10.
1016/j.neuroimage.2010.12.032

Chiarelli, P. A., Bulte, D. P., Gallichan, D., Piechnik, S. K., Wise, R., and Jezzard, P.
(2007). Flow-metabolism coupling in human visual, motor, and supplementary motor
areas assessed by magnetic resonance imaging. Magn. Reson Med. 57, 538–547. doi:10.
1002/mrm.21171

Chu, P. P. W., Golestani, A. M., Kwinta, J. B., Khatamian, Y. B., and Chen, J. J. (2018).
Characterizing the modulation of resting-state fMRI metrics by baseline physiology.
Neuroimage 173, 72–87. doi:10.1016/j.neuroimage.2018.02.004

Cohen, E. R., Rostrup, E., Sidaros, K., Lund, T. E., Paulson, O. B., Ugurbil, K., et al.
(2004). Hypercapnic normalization of BOLD fMRI: Comparison across field strengths
and pulse sequences. Neuroimage 23, 613–624. doi:10.1016/j.neuroimage.2004.06.021

Dale, A. M., Fischl, B., and Sereno, M. I. (1999). Cortical surface-based analysis. I.
Segmentation and surface reconstruction. Neuroimage 9, 179–194. doi:10.1006/nimg.
1998.0395

Deckers, P. T., Bhogal, A. A., Dijsselhof, M. B., Faraco, C. C., Liu, P., Lu, H., et al.
(2022). Hemodynamic and metabolic changes during hypercapnia with normoxia and
hyperoxia using pCASL and TRUSTMRI in healthy adults. J. Cereb. Blood Flow. Metab.
42, 861–875. doi:10.1177/0271678X211064572

Delfin, C., Reckless, G. E., Bolstad, I., Groote, I., Andreassen, O. A., and Jensen, J.
(2020). Exploring the effects of an acute dose of antipsychotic medication on
motivation-mediated BOLD activity using fMRI and a perceptual decision-making
task. Neuroscience 440, 146–159. doi:10.1016/j.neuroscience.2020.05.035

Desikan, R. S., Ségonne, F., Fischl, B., Quinn, B. T., Dickerson, B. C., Blacker, D., et al.
(2006). An automated labeling system for subdividing the human cerebral cortex on
MRI scans into gyral based regions of interest. Neuroimage 31, 968–980. doi:10.1016/j.
neuroimage.2006.01.021

Duffin, J., Mikulis, D. J., and Fisher, J. A. (2021). Control of cerebral blood flow by
blood gases. Front. Physiol. 12, 640075. doi:10.3389/fphys.2021.640075

Elvsåshagen, T., Mutsaerts, H. J., Zak, N., Norbom, L. B., Quraishi, S. H., Pedersen, P.,
et al. (2019). Cerebral blood flow changes after a day of wake, sleep, and sleep
deprivation. Neuroimage 186, 497–509. doi:10.1016/j.neuroimage.2018.11.032

Fan, J., Bernardi, S., Van Dam, N. T., Anagnostou, E., Gu, X., Martin, L., et al. (2012).
Functional deficits of the attentional networks in autism. Brain Behav. 2, 647–660.
doi:10.1002/brb3.90

Fan, J., Gu, X., Guise, K. G., Liu, X., Fossella, J., Wang, H., et al. (2009). Testing the
behavioral interaction and integration of attentional networks. Brain cognition 70,
209–220. doi:10.1016/j.bandc.2009.02.002

Fan, J., Mccandliss, B. D., Fossella, J., Flombaum, J. I., and Posner, M. I. (2005). The
activation of attentional networks. NeuroImage 26, 471–479. doi:10.1016/j.neuroimage.
2005.02.004

Fischl, B., Sereno, M. I., and Dale, A. M. (1999). Cortical surface-based analysis. II:
Inflation, flattening, and a surface-based coordinate system. Neuroimage 9, 195–207.
doi:10.1006/nimg.1998.0396

Fischl, B., Van Der Kouwe, A., Destrieux, C., Halgren, E., Ségonne, F., Salat, D. H.,
et al. (2004). Automatically parcellating the human cerebral cortex. Cereb. Cortex 14,
11–22. doi:10.1093/cercor/bhg087

Fisher, J. A., and Mikulis, D. J. (2021). Cerebrovascular reactivity: Purpose,
optimizing methods, and limitations to interpretation - a personal 20-year
odyssey of (Re)searching. Front. Physiol. 12, 629651. doi:10.3389/fphys.2021.
629651

Glahn, D. C., Therman, S., Manninen, M., Huttunen,M., Kaprio, J., Lönnqvist, J., et al.
(2003). Spatial working memory as an endophenotype for schizophrenia. Biol.
Psychiatry 53, 624–626. doi:10.1016/s0006-3223(02)01641-4

Golestani, A. M., Kwinta, J. B., Strother, S. C., Khatamian, Y. B., and Chen, J. J.
(2016a). The association between cerebrovascular reactivity and resting-state fMRI
functional connectivity in healthy adults: The influence of basal carbon dioxide.
Neuroimage 132, 301–313. doi:10.1016/j.neuroimage.2016.02.051

Golestani, A. M., Wei, L. L., and Chen, J. J. (2016b). Quantitative mapping of
cerebrovascular reactivity using resting-state BOLD fMRI: Validation in healthy adults.
Neuroimage 138, 147–163. doi:10.1016/j.neuroimage.2016.05.025

Goozee, R., Reinders, A. A. T. S., Handley, R., Marques, T., Taylor, H., O’Daly, O.,
et al. (2016). Effects of aripiprazole and haloperidol on neural activation during the
n-back in healthy individuals: A functional MRI study. Schizophr. Res. 173, 174–181.
doi:10.1016/j.schres.2015.02.023

Griffeth, V. E., Perthen, J. E., and Buxton, R. B. (2011). Prospects for quantitative
fMRI: Investigating the effects of caffeine on baseline oxygen metabolism and the
response to a visual stimulus in humans. Neuroimage 57, 809–816. doi:10.1016/j.
neuroimage.2011.04.064

Handwerker, D. A., Ollinger, J. M., and D’Esposito, M. (2004). Variation of BOLD
hemodynamic responses across subjects and brain regions and their effects on statistical
analyses. NeuroImage 21, 1639–1651. doi:10.1016/j.neuroimage.2003.11.029

Hauser, T. K., Seeger, A., Bender, B., Klose, U., Thurow, J., Ernemann, U., et al. (2019).
Hypercapnic BOLDMRI compared to H2

15O PET/CT for the hemodynamic evaluation
of patients with Moyamoya disease. Neuroimage Clin. 22, 101713. doi:10.1016/j.nicl.
2019.101713

Hoge, R. D., Atkinson, J., Gill, B., Crelier, G. R., Marrett, S., and Pike, G. B. (1999).
Investigation of BOLD signal dependence on cerebral blood flow and oxygen
consumption: The deoxyhemoglobin dilution model. Magnetic Reson. Med. 42,
849–863. doi:10.1002/(sici)1522-2594(199911)42:5<849::aid-mrm4>3.0.co;2-z
Hosford, P. S., and Gourine, A. V. (2019). What is the key mediator of the

neurovascular coupling response? Neurosci. Biobehav Rev. 96, 174–181. doi:10.1016/
j.neubiorev.2018.11.011

Jahanian, H., Christen, T., Moseley, M. E., Pajewski, N. M., Wright, C. B., Tamura, M.
K., et al. (2017). Measuring vascular reactivity with resting-state blood oxygenation
level-dependent (BOLD) signal fluctuations: A potential alternative to the breath-
holding challenge? J. Cereb. Blood Flow. Metab. 37, 2526–2538. doi:10.1177/
0271678X16670921

Jenkins, D. G., and Quintana-Ascencio, P. F. (2020). A solution to minimum sample
size for regressions. PLoS One 15, e0229345. doi:10.1371/journal.pone.0229345

Frontiers in Physiology frontiersin.org16

Williams et al. 10.3389/fphys.2023.1167148

79

https://doi.org/10.1016/j.neuroimage.2023.119904
https://doi.org/10.1016/j.neuroimage.2023.119904
https://doi.org/10.1016/j.neuroimage.2005.02.018
https://doi.org/10.1016/j.neuroimage.2010.09.025
https://doi.org/10.3389/fninf.2014.00044
https://doi.org/10.3389/fninf.2014.00044
https://doi.org/10.1002/(sici)1099-1492(199706/08)10:4/5<197::aid-nbm466>3.0.co;2-s
https://doi.org/10.1002/(sici)1099-1492(199706/08)10:4/5<197::aid-nbm466>3.0.co;2-s
https://doi.org/10.1113/jphysiol.2011.206052
https://doi.org/10.1113/jphysiol.2011.206052
https://doi.org/10.1016/j.neuroimage.2016.06.010
https://doi.org/10.1016/j.neuroimage.2014.05.006
https://doi.org/10.1016/j.neuroimage.2014.05.006
https://doi.org/10.18112/openneuro.ds000030.v1.0.0
https://doi.org/10.1016/j.neuroimage.2007.11.059
https://doi.org/10.1016/j.mri.2007.03.022
https://doi.org/10.1038/jcbfm.2012.105
https://doi.org/10.1016/j.neuroimage.2015.07.059
https://doi.org/10.1016/j.neuroimage.2013.07.007
https://doi.org/10.1016/j.neuroimage.2006.09.011
https://doi.org/10.1016/j.neuroimage.2011.12.060
https://doi.org/10.3389/fnagi.2018.00170
https://doi.org/10.1016/j.neuroimage.2018.05.050
https://doi.org/10.1038/jcbfm.2010.42
https://doi.org/10.1016/j.neuroimage.2010.12.032
https://doi.org/10.1016/j.neuroimage.2010.12.032
https://doi.org/10.1002/mrm.21171
https://doi.org/10.1002/mrm.21171
https://doi.org/10.1016/j.neuroimage.2018.02.004
https://doi.org/10.1016/j.neuroimage.2004.06.021
https://doi.org/10.1006/nimg.1998.0395
https://doi.org/10.1006/nimg.1998.0395
https://doi.org/10.1177/0271678X211064572
https://doi.org/10.1016/j.neuroscience.2020.05.035
https://doi.org/10.1016/j.neuroimage.2006.01.021
https://doi.org/10.1016/j.neuroimage.2006.01.021
https://doi.org/10.3389/fphys.2021.640075
https://doi.org/10.1016/j.neuroimage.2018.11.032
https://doi.org/10.1002/brb3.90
https://doi.org/10.1016/j.bandc.2009.02.002
https://doi.org/10.1016/j.neuroimage.2005.02.004
https://doi.org/10.1016/j.neuroimage.2005.02.004
https://doi.org/10.1006/nimg.1998.0396
https://doi.org/10.1093/cercor/bhg087
https://doi.org/10.3389/fphys.2021.629651
https://doi.org/10.3389/fphys.2021.629651
https://doi.org/10.1016/s0006-3223(02)01641-4
https://doi.org/10.1016/j.neuroimage.2016.02.051
https://doi.org/10.1016/j.neuroimage.2016.05.025
https://doi.org/10.1016/j.schres.2015.02.023
https://doi.org/10.1016/j.neuroimage.2011.04.064
https://doi.org/10.1016/j.neuroimage.2011.04.064
https://doi.org/10.1016/j.neuroimage.2003.11.029
https://doi.org/10.1016/j.nicl.2019.101713
https://doi.org/10.1016/j.nicl.2019.101713
https://doi.org/10.1002/(sici)1522-2594(199911)42:5<849::aid-mrm4>3.0.co;2-z
https://doi.org/10.1016/j.neubiorev.2018.11.011
https://doi.org/10.1016/j.neubiorev.2018.11.011
https://doi.org/10.1177/0271678X16670921
https://doi.org/10.1177/0271678X16670921
https://doi.org/10.1371/journal.pone.0229345
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2023.1167148


Jenkinson, M. (2003). Fast, automated, N-dimensional phase-unwrapping algorithm.
Magn. Reson Med. 49, 193–197. doi:10.1002/mrm.10354

Jezzard, P., and Balaban, R. S. (1995). Correction for geometric distortion in echo
planar images from B0 field variations.Magn. Reson Med. 34, 65–73. doi:10.1002/mrm.
1910340111

Juttukonda, M. R., Li, B., Almaktoum, R., Stephens, K. A., Yochim, K. M., Yacoub, E.,
et al. (2021). Characterizing cerebral hemodynamics across the adult lifespan with
arterial spin labeling MRI data from the Human Connectome Project-Aging.
Neuroimage 230, 117807. doi:10.1016/j.neuroimage.2021.117807

Kannurpatti, S. S., and Biswal, B. B. (2008). Detection and scaling of task-induced
fMRI-BOLD response using resting state fluctuations. Neuroimage 40, 1567–1574.
doi:10.1016/j.neuroimage.2007.09.040

Kannurpatti, S. S., Motes, M. A., Biswal, B. B., and Rypma, B. (2014). Assessment of
unconstrained cerebrovascular reactivity marker for large age-range FMRI studies. PLoS
One 9, e88751. doi:10.1371/journal.pone.0088751

Kannurpatti, S. S., Motes, M. A., Rypma, B., and Biswal, B. B. (2010). Neural and
vascular variability and the fMRI-BOLD response in normal aging. Magn. Reson
Imaging 28, 466–476. doi:10.1016/j.mri.2009.12.007

Kannurpatti, S. S., Rypma, B., and Biswal, B. B. (2012). Prediction of task-related
BOLD fMRI with amplitude signatures of resting-state fMRI. Front. Syst. Neurosci. 6, 7.
doi:10.3389/fnsys.2012.00007

Kazan, S. M., Mohammadi, S., Callaghan, M. F., Flandin, G., Huber, L., Leech, R.,
et al. (2016). Vascular autorescaling of fMRI (VasA fMRI) improves sensitivity of
population studies: A pilot study. Neuroimage 124, 794–805. doi:10.1016/j.
neuroimage.2015.09.033

Kim, S. G., and Ogawa, S. (2012). Biophysical and physiological origins of blood
oxygenation level-dependent fMRI signals. J. Cereb. blood flow metabolism 32,
1188–1206. doi:10.1038/jcbfm.2012.23

Laurienti, P. J., Field, A. S., Burdette, J. H., Maldjian, J. A., Yen, Y. F., and Moody, D.
M. (2003). Relationship between caffeine-induced changes in resting cerebral perfusion
and blood oxygenation level-dependent signal. AJNR Am. J. Neuroradiol. 24,
1607–1611.

Liau, J., and Liu, T. T. (2009). Inter-subject variability in hypercapnic normalization of
the BOLD fMRI response. Neuroimage 45, 420–430. doi:10.1016/j.neuroimage.2008.
11.032

Liu, P., Hebrank, A. C., Rodrigue, K. M., Kennedy, K. M., Park, D. C., and Lu, H.
(2013a). A comparison of physiologic modulators of fMRI signals. Hum. Brain Mapp.
34, 2078–2088. doi:10.1002/hbm.22053

Liu, P., Hebrank, A. C., Rodrigue, K. M., Kennedy, K. M., Section, J., Park, D. C., et al.
(2013b). Age-related differences in memory-encoding fMRI responses after accounting
for decline in vascular reactivity. NeuroImage 78, 415–425. doi:10.1016/j.neuroimage.
2013.04.053

Liu, P., Jiang, D., Albert, M., Bauer, C. E., Caprihan, A., Gold, B. T., et al. (2021).
Multi-vendor and multisite evaluation of cerebrovascular reactivity mapping using
hypercapnia challenge. Neuroimage 245, 118754. doi:10.1016/j.neuroimage.2021.
118754

Liu, P., Li, Y., Pinho, M., Park, D. C., Welch, B. G., and Lu, H. (2017). Cerebrovascular
reactivity mapping without gas challenges. Neuroimage 146, 320–326. doi:10.1016/j.
neuroimage.2016.11.054

Logan, G. D., Cowan, W. B., and Davis, K. A. (1984). On the ability to inhibit simple
and choice reaction time responses: A model and a method. J. Exp. Psychol. Hum.
Percept. Perform. 10, 276–291. doi:10.1037//0096-1523.10.2.276

Logothetis, N. K. (2008). What we can do and what we cannot do with fMRI. Nature
453, 869–878. doi:10.1038/nature06976

Macdonald, M. E., Berman, A. J. L., Mazerolle, E. L., Williams, R. J., and Pike, G. B.
(2018). Modeling hyperoxia-induced BOLD signal dynamics to estimate cerebral blood
flow, volume and mean transit time. Neuroimage 178, 461–474. doi:10.1016/j.
neuroimage.2018.05.066

Macdonald, M. E., Dolati, P., Mitha, A. P., Wong, J. H., and Frayne, R. (2016). Flow
and pressure measurements in aneurysms and arteriovenous malformations with phase
contrast MR imaging. Magn. Reson Imaging 34, 1322–1328. doi:10.1016/j.mri.2016.
07.007

Macdonald, M. E., Williams, R. J., Rajashekar, D., Stafford, R. B., Hanganu, A., Sun,
H., et al. (2020). Age related differences in cerebral blood flow and cortical thickness
with an application to age prediction. Neurobiol. Aging 95, 131–142. doi:10.1016/j.
neurobiolaging.2020.06.019

Mackie, M. A., Van Dam, N. T., and Fan, J. (2013). Cognitive control and attentional
functions. Brain Cogn. 82, 301–312. doi:10.1016/j.bandc.2013.05.004

Markett, S., Nothdurfter, D., Focsa, A., Reuter, M., and Jawinski, P. (2022). Attention
networks and the intrinsic network structure of the human brain.Hum. BrainMapp. 43,
1431–1448. doi:10.1002/hbm.25734

Mazerolle, E. L., Ma, Y., Sinclair, D., and Pike, G. B. (2018). Impact of abnormal
cerebrovascular reactivity on BOLD fMRI: A preliminary investigation of moyamoya
disease. Clin. Physiol. Funct. Imaging 38, 87–92. doi:10.1111/cpf.12387

Mcketton, L., Sobczyk, O., Duffin, J., Poublanc, J., Sam, K., Crawley, A., et al. (2018).
The aging brain and cerebrovascular reactivity. Neuroimage 181, 132–141. doi:10.1016/
j.neuroimage.2018.07.007

Miyake, A., Emerson, M. J., Padilla, F., and Ahn, J. C. (2004). Inner speech as a
retrieval aid for task goals: The effects of cue type and articulatory suppression in the
random task cuing paradigm. Acta Psychol. (Amst) 115, 123–142. doi:10.1016/j.actpsy.
2003.12.004

Montojo, C. A., Ibrahim, A., Karlsgodt, K. H., Chow, C., Hilton, A. E., Jonas, R. K.,
et al. (2014). Disrupted working memory circuitry and psychotic symptoms in
22q11.2 deletion syndrome. Neuroimage Clin. 4, 392–402. doi:10.1016/j.nicl.2014.
01.010

Mueller, S., Wang, D., Fox, M. D., Yeo, B. T., Sepulcre, J., Sabuncu, M. R., et al. (2013).
Individual variability in functional connectivity architecture of the human brain.
Neuron 77, 586–595. doi:10.1016/j.neuron.2012.12.028

Mulderink, T. A., Gitelman, D. R., Mesulam, M. M., and Parrish, T. B. (2002). On the
use of caffeine as a contrast booster for BOLD fMRI studies. Neuroimage 15, 37–44.
doi:10.1006/nimg.2001.0973

Peng, S. L., Chen, X., Li, Y., Rodrigue, K. M., Park, D. C., and Lu, H. (2018). Age-
related changes in cerebrovascular reactivity and their relationship to cognition: A four-
year longitudinal study. Neuroimage 174, 257–262. doi:10.1016/j.neuroimage.2018.
03.033

Peng, S. L., Ravi, H., Sheng, M., Thomas, B. P., and Lu, H. (2017). Searching for a truly
"iso-metabolic" gas challenge in physiological MRI. J. Cereb. Blood Flow. Metab. 37,
715–725. doi:10.1177/0271678X16638103

Petersen, S. E., and Posner, M. I. (2012). The attention system of the human brain:
20 years after. Annu. Rev. Neurosci. 35, 73–89. doi:10.1146/annurev-neuro-062111-
150525

Pike, G. B. (2012). Quantitative functional MRI: Concepts, issues and future
challenges. NeuroImage 62, 1234–1240. doi:10.1016/j.neuroimage.2011.10.046

Pillai, J. J., and Mikulis, D. J. (2015). Cerebrovascular reactivity mapping: An evolving
standard for clinical functional imaging. AJNR Am. J. Neuroradiol. 36, 7–13. doi:10.
3174/ajnr.A3941

Pinto, J., Bright, M. G., Bulte, D. P., and Figueiredo, P. (2020). Cerebrovascular
reactivity mapping without gas challenges: A methodological guide. Front. Physiol. 11,
608475. doi:10.3389/fphys.2020.608475

Poldrack, R. A., Congdon, E., Triplett, W., Gorgolewski, K. J., Karlsgodt, K. H.,
Mumford, J. A., et al. (2016). A phenome-wide examination of neural and cognitive
function. Sci. Data 3, 160110. doi:10.1038/sdata.2016.110

Ryan, C. M., Battisti-Charbonney, A., Sobczyk, O., Mikulis, D. J., Duffin, J., Fisher,
J. A., et al. (2018). Evaluation of cerebrovascular reactivity in subjects with and without
obstructive sleep apnea. J. Stroke Cerebrovasc. Dis. 27, 162–168. doi:10.1016/j.
jstrokecerebrovasdis.2017.08.015

Slessarev, M., Han, J., Mardimae, A., Prisman, E., Preiss, D., Volgyesi, G., et al. (2007).
Prospective targeting and control of end-tidal CO2 and O2 concentrations. J. Physiol.
581, 1207–1219. doi:10.1113/jphysiol.2007.129395

Specht, J. L., Williams, R. J., Mazerolle, E. L., and Pike, G. B. (2019). “Hypercapnic
normalization to correct for caffeine-induced changes in task-based BOLD fMRI
responses,” in 27th International Society for Magnetic Resonance in Medicine
Annual Meeting, Montreal, Canada, 11-16 May 2019.

Stefanovic, B., Warnking, J. M., Rylander, K. M., and Pike, G. B. (2006). The effect of
global cerebral vasodilation on focal activation hemodynamics. NeuroImage 30,
726–734. doi:10.1016/j.neuroimage.2005.10.038

Stickland, R. C., Zvolanek, K. M., Moia, S., Ayyagari, A., Caballero-Gaudes, C., and
Bright, M. G. (2021). A practical modification to a resting state fMRI protocol for
improved characterization of cerebrovascular function. Neuroimage 239, 118306.
doi:10.1016/j.neuroimage.2021.118306

Sydnor, V. J., Larsen, B., Bassett, D. S., Alexander-Bloch, A., Fair, D. A., Liston, C., et al.
(2021). Neurodevelopment of the association cortices: Patterns, mechanisms, and
implications for psychopathology.Neuron 109, 2820–2846. doi:10.1016/j.neuron.2021.06.016

Tancredi, F. B., and Hoge, R. D. (2013). Comparison of cerebral vascular reactivity
measures obtained using breath-holding and CO2 inhalation. J. Cereb. Blood Flow.
Metab. 33, 1066–1074. doi:10.1038/jcbfm.2013.48

Tancredi, F. B., Lajoie, I., and Hoge, R. D. (2014). A simple breathing circuit allowing
precise control of inspiratory gases for experimental respiratory manipulations. BMC
Res. Notes 7, 235. doi:10.1186/1756-0500-7-235

Thomason, M. E., Foland, L. C., and Glover, G. H. (2007). Calibration of BOLD fMRI
using breath holding reduces group variance during a cognitive task.Hum. Brain Mapp.
28, 59–68. doi:10.1002/hbm.20241

Todd, J. J., and Marois, R. (2004). Capacity limit of visual short-term memory in
human posterior parietal cortex. Nature 428, 751–754. doi:10.1038/nature02466

Tsvetanov, K. A., Henson, R. N. A., Jones, P. S., Mutsaerts, H., Fuhrmann, D., Tyler, L.
K., et al. (2021a). The effects of age on resting-state BOLD signal variability is explained
by cardiovascular and cerebrovascular factors. Psychophysiology 58, e13714. doi:10.
1111/psyp.13714

Frontiers in Physiology frontiersin.org17

Williams et al. 10.3389/fphys.2023.1167148

80

https://doi.org/10.1002/mrm.10354
https://doi.org/10.1002/mrm.1910340111
https://doi.org/10.1002/mrm.1910340111
https://doi.org/10.1016/j.neuroimage.2021.117807
https://doi.org/10.1016/j.neuroimage.2007.09.040
https://doi.org/10.1371/journal.pone.0088751
https://doi.org/10.1016/j.mri.2009.12.007
https://doi.org/10.3389/fnsys.2012.00007
https://doi.org/10.1016/j.neuroimage.2015.09.033
https://doi.org/10.1016/j.neuroimage.2015.09.033
https://doi.org/10.1038/jcbfm.2012.23
https://doi.org/10.1016/j.neuroimage.2008.11.032
https://doi.org/10.1016/j.neuroimage.2008.11.032
https://doi.org/10.1002/hbm.22053
https://doi.org/10.1016/j.neuroimage.2013.04.053
https://doi.org/10.1016/j.neuroimage.2013.04.053
https://doi.org/10.1016/j.neuroimage.2021.118754
https://doi.org/10.1016/j.neuroimage.2021.118754
https://doi.org/10.1016/j.neuroimage.2016.11.054
https://doi.org/10.1016/j.neuroimage.2016.11.054
https://doi.org/10.1037//0096-1523.10.2.276
https://doi.org/10.1038/nature06976
https://doi.org/10.1016/j.neuroimage.2018.05.066
https://doi.org/10.1016/j.neuroimage.2018.05.066
https://doi.org/10.1016/j.mri.2016.07.007
https://doi.org/10.1016/j.mri.2016.07.007
https://doi.org/10.1016/j.neurobiolaging.2020.06.019
https://doi.org/10.1016/j.neurobiolaging.2020.06.019
https://doi.org/10.1016/j.bandc.2013.05.004
https://doi.org/10.1002/hbm.25734
https://doi.org/10.1111/cpf.12387
https://doi.org/10.1016/j.neuroimage.2018.07.007
https://doi.org/10.1016/j.neuroimage.2018.07.007
https://doi.org/10.1016/j.actpsy.2003.12.004
https://doi.org/10.1016/j.actpsy.2003.12.004
https://doi.org/10.1016/j.nicl.2014.01.010
https://doi.org/10.1016/j.nicl.2014.01.010
https://doi.org/10.1016/j.neuron.2012.12.028
https://doi.org/10.1006/nimg.2001.0973
https://doi.org/10.1016/j.neuroimage.2018.03.033
https://doi.org/10.1016/j.neuroimage.2018.03.033
https://doi.org/10.1177/0271678X16638103
https://doi.org/10.1146/annurev-neuro-062111-150525
https://doi.org/10.1146/annurev-neuro-062111-150525
https://doi.org/10.1016/j.neuroimage.2011.10.046
https://doi.org/10.3174/ajnr.A3941
https://doi.org/10.3174/ajnr.A3941
https://doi.org/10.3389/fphys.2020.608475
https://doi.org/10.1038/sdata.2016.110
https://doi.org/10.1016/j.jstrokecerebrovasdis.2017.08.015
https://doi.org/10.1016/j.jstrokecerebrovasdis.2017.08.015
https://doi.org/10.1113/jphysiol.2007.129395
https://doi.org/10.1016/j.neuroimage.2005.10.038
https://doi.org/10.1016/j.neuroimage.2021.118306
https://doi.org/10.1016/j.neuron.2021.06.016
https://doi.org/10.1038/jcbfm.2013.48
https://doi.org/10.1186/1756-0500-7-235
https://doi.org/10.1002/hbm.20241
https://doi.org/10.1038/nature02466
https://doi.org/10.1111/psyp.13714
https://doi.org/10.1111/psyp.13714
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2023.1167148


Tsvetanov, K. A., Henson, R. N. A., and Rowe, J. B. (2021b). Separating vascular and
neuronal effects of age on fMRI BOLD signals. Philos. Trans. R. Soc. Lond B Biol. Sci.
376, 20190631. doi:10.1098/rstb.2019.0631

Tsvetanov, K. A., Henson, R. N., Tyler, L. K., Davis, S. W., Shafto, M. A., Taylor, J. R.,
et al. (2015). The effect of ageing on fMRI: Correction for the confounding effects of
vascular reactivity evaluated by joint fMRI and MEG in 335 adults. Hum. Brain Mapp.
36, 2248–2269. doi:10.1002/hbm.22768

Van Niftrik, C. H. B., Piccirelli, M., Bozinov, O., Maldaner, N., Strittmatter, C.,
Pangalu, A., et al. (2018). Impact of baseline CO2 on Blood-Oxygenation-Level-
Dependent MRI measurements of cerebrovascular reactivity and task-evoked signal
activation. Magn. Reson Imaging 49, 123–130. doi:10.1016/j.mri.2018.02.002

Wang, P., Hou, P., Kesler, S., Colen, R., Kumar, A., Prabhu, S., et al. (2016). SU-G-
IeP1-11: Resting-State fluctuation of BOLD signal amplitude for mapping
cerebrovascular reactivity in presurgical functional MRI. Med. Phys. 43, 3646–3647.
doi:10.1118/1.4956971

West, K. L., Zuppichini, M. D., Turner, M. P., Sivakolundu, D. K., Zhao, Y.,
Abdelkarim, D., et al. (2019). BOLD hemodynamic response function changes
significantly with healthy aging. Neuroimage 188, 198–207. doi:10.1016/j.
neuroimage.2018.12.012

Williams, R. J., Brown, E. C., Clark, D. L., Pike, G. B., and Ramasubbu, R. (2021b).
Early post-treatment blood oxygenation level-dependent responses to emotion
processing associated with clinical response to pharmacological treatment in major
depressive disorder. Brain Behav. 11, e2287. doi:10.1002/brb3.2287

Williams, R. J., Goodyear, B. G., Peca, S., Mccreary, C. R., Frayne, R., Smith, E. E., et al.
(2017). Identification of neurovascular changes associated with cerebral amyloid
angiopathy from subject-specific hemodynamic response functions. J. Cereb. Blood
Flow. Metab. 37, 3433–3445. doi:10.1177/0271678X17691056

Williams, R. J., Mcmahon, K. L., Hocking, J., and Reutens, D. C. (2014). Comparison
of block and event-related experimental designs in diffusion-weighted functional MRI.
J. magnetic Reson. imaging JMRI 40, 367–375. doi:10.1002/jmri.24353

Williams, R. J., Reutens, D. C., and Hocking, J. (2016). Influence of BOLD
contributions to diffusion fMRI activation of the visual cortex. Front. Neurosci. 10,
279. doi:10.3389/fnins.2016.00279

Williams, R., Macdonald, M., Mazerolle, E., and Pike, G. (2021a). The relationship
between cognition and cerebrovascular reactivity: Implications for task-based fMRI.
Front. Phys. 9. doi:10.3389/fphy.2021.645249

Wise, R. G., Ide, K., Poulin, M. J., and Tracey, I. (2004). Resting fluctuations in arterial
carbon dioxide induce significant low frequency variations in BOLD signal.Neuroimage
21, 1652–1664. doi:10.1016/j.neuroimage.2003.11.025

Xuan, B., Mackie, M. A., Spagna, A., Wu, T., Tian, Y., Hof, P. R., et al. (2016). The
activation of interactive attentional networks. NeuroImage 129, 308–319. doi:10.1016/j.
neuroimage.2016.01.017

Yang, X., Beason-Held, L., Resnick, S. M., and Landman, B. A. (2011). Biological
parametric mapping with robust and non-parametric statistics. Neuroimage 57,
423–430. doi:10.1016/j.neuroimage.2011.04.046

Frontiers in Physiology frontiersin.org18

Williams et al. 10.3389/fphys.2023.1167148

81

https://doi.org/10.1098/rstb.2019.0631
https://doi.org/10.1002/hbm.22768
https://doi.org/10.1016/j.mri.2018.02.002
https://doi.org/10.1118/1.4956971
https://doi.org/10.1016/j.neuroimage.2018.12.012
https://doi.org/10.1016/j.neuroimage.2018.12.012
https://doi.org/10.1002/brb3.2287
https://doi.org/10.1177/0271678X17691056
https://doi.org/10.1002/jmri.24353
https://doi.org/10.3389/fnins.2016.00279
https://doi.org/10.3389/fphy.2021.645249
https://doi.org/10.1016/j.neuroimage.2003.11.025
https://doi.org/10.1016/j.neuroimage.2016.01.017
https://doi.org/10.1016/j.neuroimage.2016.01.017
https://doi.org/10.1016/j.neuroimage.2011.04.046
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2023.1167148


Cerebral hemodynamics
comparison using transcranial
doppler ultrasound and 4D
flow MRI

BrandonG. Fico1, Kathleen B.Miller1, Leonardo A. Rivera-Rivera2,3,
Adam T. Corkery1, Andrew G. Pearson1, Nicole A. Loggie1,
Anna J. Howery1, Howard A. Rowley2,4, Kevin M. Johnson2,3,
Sterling C. Johnson2,5, Oliver Wieben3 and Jill N. Barnes1*
1Department of Kinesiology, Bruno Balke Biodynamics Laboratory, University of Wisconsin-Madison,
Madison, WI, United States, 2Wisconsin Alzheimer’s Disease Research Center, School of Medicine and
Public Health, University of Wisconsin-Madison, Madison, WI, United States, 3Department of Medical
Physics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI,
United States, 4Department of Radiology, School of Medicine and Public Health, University of Wisconsin-
Madison, Madison, WI, United States, 5Geriatric Research Education and Clinical Center, William S.
Middleton Memorial Veteran’s Hospital, Madison, WI, United States

Introduction: Age-related changes in cerebral hemodynamics are controversial
and discrepancies may be due to experimental techniques. As such, the purpose
of this study was to compare cerebral hemodynamics measurements of the
middle cerebral artery (MCA) between transcranial Doppler ultrasound (TCD)
and four-dimensional flow MRI (4D flow MRI).

Methods: Twenty young (25 ± 3 years) and 19 older (62 ± 6 years) participants
underwent two randomized study visits to evaluate hemodynamics at baseline
(normocapnia) and in response to stepped hypercapnia (4% CO2, and 6% CO2) using
TCD and 4D flow MRI. Cerebral hemodynamic measures included MCA velocity, MCA
flow, cerebral pulsatility index (PI) and cerebrovascular reactivity to hypercapnia. MCA
flow was only assessed using 4D flow MRI.

Results: MCA velocity between the TCD and 4D flow MRI methods was positively
correlated across the normocapnia and hypercapnia conditions (r = 0.262; p =
0.004). Additionally, cerebral PI was significantly correlated between TCD and 4D
flow MRI across the conditions (r = 0.236; p = 0.010). However, there was no
significant association between MCA velocity using TCD and MCA flow using 4D
flow MRI across the conditions (r = 0.079; p = 0.397). When age-associated
differences in cerebrovascular reactivity using conductance were compared
using both methodologies, cerebrovascular reactivity was greater in young
adults compared to older adults when using 4D flow MRI (2.11 ± 1.68mL/min/
mmHg/mmHg vs. 0.78 ± 1.68mL/min/mmHg/mmHg; p= 0.019), but notwith TCD
(0.88 ± 1.01 cm/s/mmHg/mmHg vs. 0.68 ± 0.94 cm/s/mmHg/mmHg; p = 0.513).

Conclusion: Our results demonstrated good agreement between the methods at
measuring MCA velocity during normocapnia and in response to hypercapnia, but MCA
velocity and MCA flow were not related. In addition, measurements using 4D flow MRI
revealed effects of aging on cerebral hemodynamics that were not apparent using TCD.
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Introduction

Cerebral hemodynamics are important biomarkers of brain
health (Kleiser and Widder, 1992) and have been shown to be
impaired with advancing age. These hemodynamic impairments
include a reduction in cerebral blood flow (CBF), even in individuals
free of cardiovascular disease (Wu et al., 2016; Alwatban et al., 2021).
Another measure of cerebral hemodynamics, cerebral pulsatility, is
elevated with advancing age (Alwatban et al., 2021; Fico et al., 2022).
When the cerebral vasculature is challenged using elevations in CO2

(i.e., hypercapnia), cerebrovascular reactivity is lower in healthy
older adults compared to young adults (Barnes et al., 2012; Leoni
et al., 2017; Yew et al., 2022). Importantly, these cerebral
hemodynamic alterations with age (including lower CBF and
elevated cerebral pulsatility) and impaired cerebrovascular
reactivity to hypercapnia are associated with Alzheimer’s disease
and vascular-related dementias (Richiardi et al., 2015; Rivera-Rivera
et al., 2016; Leeuwis et al., 2017; Wolters et al., 2017).

A commonly used method to assess cerebral hemodynamics is
transcranial Doppler ultrasound (TCD), which transmits ultrasound
waves from the Doppler probe and detects reflected waves from red
blood cells passing through the vessel of interest. TCD ultrasound
provides rapid, noninvasive measures of cerebral artery blood
velocity with excellent temporal resolution and can be utilized by
researchers in a variety of settings (Purkayastha and Sorond, 2013).
TCD has been used to demonstrate age-related reductions in middle
cerebral artery blood velocity and elevations in pulsatility index with
advancing age (Alwatban et al., 2021).

Studies using TCD have demonstrated age-related differences
in cerebrovascular reactivity based on cerebral artery blood
velocity (Bakker et al., 2004; Barnes et al., 2012; Flück et al.,
2014). These findings are contrary to studies that show no
difference with age (Murrell et al., 2013; Miller et al., 2018),
higher values in older adults (Galvin et al., 2010), or sex specific
differences (Kastrup et al., 1998). Moreover, when participants
are evaluated with multiple methods, such as TCD and magnetic
resonance imaging (MRI), these age-related comparisons are
inconsistent (Burley et al., 2021a). The discrepancy between
reports in age differences in cerebral hemodynamics and
cerebrovascular reactivity may be dependent on the sensitivity
of the techniques used. A well-known limitation of TCD is the
ability to measure blood velocity only, and not blood flow volume
rate, because imaging of the arterial diameter or cross-sectional
area is not possible. Additionally, the TCDmeasurement of blood
velocity is sensitive to the angle of insonation with error
increasing at greater angles (Purkayastha and Sorond, 2013).
Thus, if TCD is used to obtain blood velocity, as a surrogate for
blood flow, this may result in inconsistent results (Hoiland and
Ainslie, 2016b; Brothers and Zhang, 2016).

There are several MRI or neuroimaging methods used to
quantify cerebral hemodynamics and cerebrovascular reactivity
(Williams et al., 2021). Specifically, blood oxygen level dependent
(BOLD) MRI measures the relative levels of oxyhemoglobin and
deoxyhemoglobin, which is an indirect measure of CBF and

represents activity at the capillary level (Ogawa et al., 1990).
Other MRI techniques such as arterial spin labelling (ASL)
measures microvascular perfusion (Alsop et al., 2015) and phase
contrast angiography (PCA) measures blood flow through the large
cerebral vessels such as the middle cerebral artery (MCA). More
recently, four-dimensional flow MRI (4D flow MRI or 3D time-
resolved PCA) has been used to measure blood velocity in all three
spatial dimensions throughout the duration of the cardiac cycle
allowing for a direct calculation of blood flow (Markl et al., 2012;
Schrauben et al., 2015). However, 4D flowMRI is sensitive to partial
volume effects especially when a region of interest is oversized (Tang
et al., 1993). Interestingly, MRI based analyses of age-related
differences in cerebral hemodynamics and cerebrovascular
reactivity also have inconsistent findings (Burley et al., 2021a;
Burley et al., 2021b). For example, Burley et al. (2021a) showed
that older adults had higher cerebrovascular reactivity to
hypercapnia using TCD, but lower cerebrovascular reactivity
using BOLD, compared with young adults, further emphasizing
the importance of the measurement used to quantify CBF. The
discrepancy in findings is likely due to fundamental differences in
the MRI methodology and what is quantified. As such, the
agreement between the various measurement techniques for
cerebral hemodynamics and cerebrovascular reactivity is
necessary to be able to compare studies. The commonly used
TCD technique may provide various age-related results based on
the hypercapnia protocol used (Al-Khazraji et al., 2021) due to its
inherent limitation of only capturing blood velocity. Therefore, a
more direct method (4D flow MRI) of assessing cerebral blood flow
in response hypercapnia may provide further insight into age-
related differences.

To our knowledge, no study has directly compared 4D flow
MRI with TCD technique to investigate cerebral hemodynamics
and cerebrovascular reactivity to hypercapnia in young and older
healthy adults. Therefore, the purpose of this study was to
compare cerebral hemodynamics of the MCA between TCD
and 4D flow MRI in young and older adults at rest and in
response to hypercapnia. We hypothesized that the MCA
velocity measured using TCD and 4D flow MRI would be
correlated and demonstrate good agreement between the two
methods. In contrast, we hypothesized that there would be
disagreement between the methods when we compared MCA
blood velocity using TCD with MCA blood flow volume rate
using 4D flow MRI. We also hypothesized that age-associated
differences in cerebral hemodynamics and cerebrovascular
reactivity would be detected using 4D flow MRI, but not TCD.

Materials and methods

Participants

Twenty young (between 18 and 35 years) and nineteen older
(between 50 and 68 years) physically active healthy adults
participated in the study. Participants were excluded from the
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study if they had a body mass index (BMI) > 30 kg/m2, and if they
1) were current smokers; 2) were diagnosed with hypertension
based on the latest guidelines (Whelton et al., 2018) or taking
blood pressure medications; 3) presented with a history or
evidence of hepatic or renal disease, hematological disease,
peripheral vascular disease, stroke, neurovascular disease,
cardiovascular disease, diabetes; or 4) had contraindications
for a MRI scan (as determined by a health history
questionnaire and MRI screening form). All scans were
reviewed by a neuroradiologist (HAR) for incidental findings.
Of note, data from the participants in this study were also
included in our previous publication (Miller et al., 2019). All
study procedures were approved by the Institutional Review
Board of the University of Wisconsin–Madison and were
performed according to the Declaration of Helsinki, including
obtaining written informed consent from each participant. This
study was registered under ClinicalTrials.gov #NCT02840851.

Experimental procedures

All procedures were completed at the Bruno Balke
Biodynamics Laboratory and the Wisconsin Institutes for
Medical Research at the University of Wisconsin–Madison.
The study consisted of a screen day visit and two
experimental study days. The two experimental study days,
with an average of 8 days apart, were randomized and utilized
identical protocols for cerebral hemodynamics testing. For each
participant, the randomized study days were scheduled for the
same time of day to limit the effects of diurnal variation.
Premenopausal women were studied in the early follicular
phase of their menstrual cycle (or the low-hormone phase of
oral contraceptive use) to minimize the influence of ovarian
hormone status. Due to the potential influence of diet and
exercise on cerebrovascular function, participants were asked
to record 3 days of normal dietary intake and exercise prior to
their first study day and asked to repeat these prior to their
second study day. Prior to the study days, participants were asked
to fast for 4 h, to abstain from non-steroidal anti-inflammatory
drugs (NSAIDs) for 5 days, avoid nicotine for 2 h, and to abstain
from caffeine, exercise, and alcohol for 24 h prior to the visits.
Additionally, participants did not take any over the counter
medications, vitamins or supplements on the days of the study
visits. All tests were conducted in controlled ambient
temperature between 20°C and 22°C.

Screen day visit

Upon arrival to the Bruno Balke Biodynamics Laboratory,
height and weight were measured using a standard scale (Seca
no. 769, Vogel & Halke, Hamburg, Germany). BMI was
calculated as kg/m2. Physical activity was determined using a
weekly exercise log and physical activity questionnaire (Amireault
and Godin, 2015). After 10 min of supine rest, mean arterial
pressure (MAP) was taken in triplicate with a non-invasive
brachial blood pressure cuff (Datex Ohmeda, GE Healthcare,
Fairfield, CT, United States). Participants then had a

familiarization session that included TCD set-up with probe
location being noted.

Experimental study day: TCD

We utilized a 2 MHz TCD probe (Spencer Technologies,
Redmond, WA, United States) to measure left MCAv (Bishop
et al., 1986; Poulin and Robbins, 1996). The 2 MHz probe was
placed over the temporal bone above the zygomatic arch between the
frontal process and front of the ear with the participants lying
supine. The probe was secured using a headband to ensure optimal
insonation position and angle throughout the study hypercapnia
protocol (Barnes et al., 2012).

Experimental study day: MRI

Cranial MRI scans were performed at the Wisconsin
Institutes for Medical Research using a 3T clinical MRI
system (MR750, GE Healthcare, Waukesha, WI,
United States) and a 32-channel head coil (Nova Medical
Head Coil, Nova Medical, Wilmington, MA, United States)
with a gradient strength of 50 mT/m, and a gradient slew rate
of 200 mT/m/ms. Left and right middle cerebral artery
hemodynamics were assessed using 4D flow Phase Contrast
MRI using a 3D radially undersampled sequence that
included volumetric, time-resolved PC MRI data with three-
directional velocity encoding (PC-VIPR) (Gu et al., 2005;
Johnson et al., 2008). Comparisons between TCD and 4D
flow MRI utilized the left MCA since TCD measured left
MCAv, unless otherwise noted. The imaging parameters were
as follows: velocity encoding (Venc) = 80 cm/s, field of view =
220 mm, acquired isotropic spatial resolution = 0.7 mm ×
0.7 mm × 0.7 mm, repetition time (TR) = 7.4 ms, echo time
(TE) = 2.7 ms, flip angle = 10°, bandwidth = 83.3 kHz,
14,000 projection angles and scan time ~7 min. Time-
resolved velocity and magnitude data were reconstructed
offline by retrospectively gating into 20 cardiac phases using
temporal interpolation (Jing et al., 2006; Miller et al., 2019).

Cerebrovascular reactivity to hypercapnia

Hypercapnia trials were performed as previously described in
detail using a steady-state, open-circuit technique (Berkenbosch
et al., 1989; Miller et al., 2019). Briefly, for both experimental
study day visits (study day TCD and study day MRI) participants
were in the supine position and fitted with a mask covering their
nose and mouth containing a one-way valve to prevent re-
breathing (Hans Rudolph Inc., Shawnee, KS, United States).
After baseline (using medical grade normocapnic gas),
stepwise elevations of 4% and 6% inspired CO2, 21% oxygen,
and balanced nitrogen were administered. Between stepwise
elevations in CO2, 2 min were allowed to reach steady state
ETCO2 prior to collecting cerebral hemodynamics. ETCO2 was
elevated and maintained constant for approximately 9 min at
each level of inspired CO2.
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Data analysis

Data from the TCD were collected at 250 Hz and analyzed
off-line using signal processing software (WinDaq, DATAQ
Instruments, Akron, OH, United States). Cerebral
hemodynamics included MCAv and pulsatility index. When
using TCD, pulsatility index was calculated as (maximum
velocity–minimum velocity)/mean velocity. Beat-by-beat
hemodynamic measurements were averaged over 1 min of
steady state during normocapnic gas, 4% inspired CO2, and
6% inspired CO2. To account for changes in perfusion
pressure that may affect MCAv, cerebrovascular reactivity was
calculated as the linear relationship between cerebrovascular
conductance index (CVCi) calculated as MCAv/MAP and
changes in ETCO2 during hypercapnia (cm/s/mmHg/mmHg).

The 4D flow MRI scans were also evaluated offline. The scans
underwent background phase offset correction, eddy current
correction (Schrauben et al., 2015) and automatic phase
unwrapping to minimize potential for velocity aliasing (Loecher
et al., 2016). Vessel segmentation of the left and right MCA was
performed in MATLAB using an in-house tool as previously
described for semi-automated cerebrovascular hemodynamic
analysis (Schrauben et al., 2015). The MCA was measured at the
M1 segment. Measurements included MCAv, blood flow volume
rate, and vessel cross sectional area. Hemodynamic measurements
were averaged during steady state at normocapnic gas, 4% inspired
CO2, and 6% inspired CO2. When using 4D flow MRI, pulsatility
index was calculated as (maximum flow–minimum flow)/mean
flow. To account for changes in perfusion pressure that may
affect flow, cerebrovascular reactivity was calculated as the linear
relationship between cerebrovascular conductance (CVC) calculated
as [(blood flow/MAP) x 100] and changes in ETCO2 during
hypercapnia (mL/min/mmHg/mmHg).

Statistical analyses

Data analyses were performed using the Statistical Package for the
Social Sciences version 28 (SPSS, IBM Corp., Armonk, NY,
United States). Statistical differences in participant characteristics
were evaluated by the Student’s t-tests for unpaired data.
Cerebrovascular measurements between young and older adults
across conditions were evaluated using two-way (group x condition)
analysis of variance. The Greenhouse-Geisser correction of degrees of
freedom was used when sphericity assumptions were violated.
Significant effects were further analyzed with Bonferroni post hoc
comparisons. Cerebrovascular reactivity statistical differences
between TCD vs. 4D flow MRI were evaluated by the Student’s
t-tests for paired data and age-related comparisons were evaluated
by the Student’s t-tests for unpaired data. Associations of interest were
analyzed by Pearson correlational analyses and intraclass correlation
coefficients were used to determine reproducibility. The intraclass
correlation coefficients differs from the Pearson correlations by
taking into account differences in the means of the measures being
considered (the data are centered and scaled using a pooled mean and
standard deviation). The differences between TCD and 4D flow MRI
may be minimal at baseline, but the differences may expand at higher
levels of CO2, due to vessel responses. Using intraclass correlation

coefficients we evaluated whether the changes in response to a
vasodilatory stimulus agreed between the two methods, at each
condition. The statistical procedure proposed by Bland and Altman
was used to compare the 2 different methods of TCD vs. 4D flow MRI
(Bland and Altman, 1986). Statistical significance was set α priori at
p < 0.05.

Results

Participant characteristics

Participant characteristics are presented in Table 1. There were
no group differences between the young and older adults for height,
weight, BMI, resting heart rate, metabolic equivalent minutes per
week, systolic blood pressure, and MAP. However, the older adults
had elevated diastolic blood pressure compared with the young
adults.

MCAv comparisons using TCD vs. 4D
flow MRI

Wefirst comparedMCAvobtained usingTCDwithMCAvobtained
using 4D flowMRI in the left MCA. There was a significant difference in
MCAv between the two imaging methods, with higher MCAv being
observed with TCD compared with 4D flow MRI across all conditions
(all p < 0.001; Table 2). Additionally, the percent change in MCAv from
normocapnia to 6% CO2 was significantly different between TCD and
4D flow MRI (p < 0.001; Table 2). Despite these differences, there was a
significant intra class correlation coefficient (r= 0.329, p= 0.016) between
the two methods for MCAv, highlighting repeatability. Moreover,
although biased, this agreement between MCAv measurements was
consistent with the results of the Bland–Altman plot (Figure 1B), and
MCAv between the methods was significantly correlated (r = 0.262; p =
0.004) (Figure 1A).

MCAv andMCA flowcomparisons using TCD
vs. 4D flow MRI

We compared MCAv obtained using TCD with MCA flow
obtained using 4D flow MRI. The percent change in MCAv from
normocapnia to 6% CO2 using TCD vs. the percent change in MCA
flow using 4D flow MRI was similar (p = 0.327; Table 2). There was
no correlation between the left MCAv using TCD and left MCA flow
using 4D flow MRI (r = 0.079; p = 0.397; Figure 1C); however, the
Bland-Altman plot suggested moderate agreement (Figure 1D).

Pulsatility index comparisons using TCD vs.
4D flow MRI

When directly comparing pulsatility index using TCD (calculated
from velocity) vs. pulsatility index using 4D flow MRI (calculated
from flow), there were significant differences between the methods at
normocapnia (p < 0.001), and during hypercapnia at 4% CO2 (p <
0.001) and 6% CO2 (p < 0.001; Table 2). However, the percent change
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in pulsatility index from normocapnia to 6%CO2 was similar between
TCD and 4D flow MRI (p = 0.141; Table 2). Additionally, there was a
significant intra class correlation coefficient (r = 0.345, p = 0.012)
between the two methods for pulsatility index measurements,
highlighting repeatability. Moreover, there was a significant
positive correlation between the pulsatility index measurements
using TCD vs. 4D flow MRI (r = 0.236; p = 0.010; Figure 1E), but
with weak agreement based on the results of the Bland–Altman plot
(Figure 1F).

Cerebrovascular reactivity comparisons
using TCD vs. 4D flow MRI

Cerebrovascular reactivity values between the two methods were
not correlated (r = 0.104; p = 0.528). Using TCD, there were no age-
related differences in cerebrovascular reactivity between young and
older adults (0.88 ± 1.01 cm/s/mmHg2 vs. 0.68 ± 0.94 cm/s/mmHg2,
respectively; p = 0.513; Figure 2A). In contrast, using 4D flow MRI,
cerebrovascular reactivity was higher in young adults compared with

TABLE 1 Characteristics of participants.

Variable Young adults N = 20 Older adults N = 19 p-value

Males/Females (n) 10/10 10/9

Age (years) 25 ± 3 62 ± 6 < 0.001

Height (cm) 173 ± 8 172 ± 9 0.678

Weight (kg) 71 ± 10 70 ± 15 0.841

Body Mass Index (kg/m2) 23 ± 2 23 ± 3 0.900

Heart rate at rest (beats per minute) 53 ± 8 55 ± 7 0.488

MET minutes per week 3,259 ± 1839 3,973 ± 2,383 0.300

Systolic blood pressure (mmHg) 120 ± 11 122 ± 11 0.707

Diastolic blood pressure (mmHg) 69 ± 6 74 ± 8 0.026

Mean arterial pressure (mmHg) 86 ± 7 90 ± 9 0.120

Data are presented as mean ± standard deviation. MET, metabolic equivalent.

Statistical significance was set α priori at p < 0.05 with significant p-values indicated in bold.

TABLE 2 Cerebral hemodynamics during normocapnia and hypercapnia.

Variable TCD N = 39 4D flow MRI N = 39 p-value

MCAv (cm/s)

Normocapnia 53 ± 12 31 ± 7 < 0.001

4% CO2 60 ± 14 32 ± 6 < 0.001

6% CO2 64 ± 15 33 ± 7 < 0.001

MCAv (%Δ)

Normocapnia to 6% CO2 16 ± 10 6 ± 10 < 0.001

MCAv (%Δ) vs. MCA Flow (%Δ)

Normocapnia to 6% CO2 16 ± 10 13 ± 10 0.327

Pulsatility Index (a.u.)

Normocapnia 0.78 ± 0.13 1.07 ± 0.21 < 0.001

4% CO2 0.73 ± 0.09 1.03 ± 0.17 < 0.001

6% CO2 0.71 ± 0.09 1.00 ± 0.17 < 0.001

Pulsatility Index (%Δ)

Normocapnia to 6% CO2 −9 ± 9 −5 ± 12 0.141

Data are presented as mean ± standard deviation. MCA, middle cerebral artery; MCAv, middle cerebral artery velocity.

Statistical significance was set α priori at p < 0.05 with significant p-values indicated in bold.
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older adults (2.11 ± 1.68 mL/min/mmHg/mmHg vs. 0.78 ± 1.68 mL/
min/mmHg/mmHg, respectively; p = 0.019; Figure 2B).

Age group comparisons in hemodynamics
using TCD vs. 4D flow MRI

Comparisons between young and older adults revealed age
group differences in MCA blood flow volume rate (using 4D
flow MRI) at each condition (p < 0.001; Figure 3B). Specifically,

young adults had higher blood flow volume rate at normocapnia (p =
0.016), 4% CO2 (p = 0.008), and 6%CO2 (p = 0.004) as demonstrated
in Table 3. There was no difference between young and older adults
in MCAv (using TCD) at normocapnia (p = 0.069), 4% CO2 (p =
0.116) and 6% CO2 (p = 0.080) as demonstrated in Table 3, although
there is a significant overall age group effect (p = 0.003; Figure 3A).
These results highlight that cerebral blood flow measured using 4D
flow MRI is more sensitive to age group differences than blood
velocity measured using TCD at each condition. Importantly, this is
independent of MCA diameter, as there were no differences between

FIGURE 1
Pearson correlation between MCAv with TCD and 4D flow MRI (A), Bland-Altman plot evaluating agreement between MCAv with TCD and 4D flow
MRI (B), Pearson correlation between MCAv with TCD and blood flow volume rate with 4D flow MRI (C), Bland-Altman plot evaluating agreement
between MCAv with TCD and blood flow volume rate with 4D flow MRI (D), Pearson correlation between pulsatility index with TCD and 4D flow MRI (E),
and Bland-Altman plot evaluating agreement pulsatility index with TCD and 4D flowMRI (F) during normocapnia, 4% CO2, and 6% CO2 including all
participants (N = 39).
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FIGURE 2
Differences in cerebrovascular reactivity (CVR) between young (N = 20) and older adults (N = 19) evaluated using TCD (A) and 4D flow MRI CVR (B).
Comparisons were made using Student’s t-tests for unpaired data. Data are presented using box and whiskers plots with the boxes indicating where 50%
of the data are found, horizontal lines are themedians, and whiskers identify theminimum andmaximum values. Themean difference is presented on the
far right of each panel with the error bars showing the standard deviation.

FIGURE 3
Differences in MCAv (A), blood flow volume rate (B), pulsatility index using TCD (C) and pulsatility index using 4D flow MRI (D) between young (N =
20) and older adults (N = 19) across all conditions. Age group differences were evaluated using two-way (age group x condition) analysis of variance. Error
bars show the standard deviation across the group, * denotes a significant difference (p < 0.05) using pairwise comparisons between age groups at each
condition.
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the young and older adults MCA diameters at normocapnia, 4%
CO2 and 6% CO2 as demonstrated in Table 3. Additionally, during
normocapnia the difference in CVCi (using TCD) between young
and older adults did not reach the threshold of significance (Table 3),
while CVC (using 4D flowMRI) is higher in young adults compared
to older adults (Table 3).

Pulsatility index age group comparisons
using TCD vs. 4D flow MRI

There were no differences in cerebral pulsatility index (using
TCD) between the young and older adults during normocapnia
(Table 3). Similarly, cerebral pulsatility index measured using 4D

flow MRI was not different between young and older adults during
normocapnia (Table 3). There was an interaction effect showing that
young adults had a steeper decline in cerebral pulsatility index
(measured using TCD) during hypercapnia, compared with the
older adults (p = 0.011; Figure 3C). Using 4D flow MRI, there
was only a condition effect with a similar decrease with hypercapnia
between the young and older adults (p = 0.021; Figure 3D).

Discussion

This is the first study to compare cerebral hemodynamics
between TCD and 4D flow MRI in healthy adults during
normocapnic and hypercapnic conditions. Our results indicate

TABLE 3 Age comparisons of cerebral hemodynamics during normocapnia and hypercapnia.

Variable Young adults N = 20 Older adults N = 19 p-value

MCAv with TCD (cm/s)

Normocapnia 57 ± 11 50 ± 12 0.069

4% CO2 63 ± 14 56 ± 14 0.116

6% CO2 68 ± 14 59 ± 15 0.080

Flow with 4D flow MRI (mL/min)

Normocapnia 129 ± 31 105 ± 28 0.016

4% CO2 137 ± 31 112 ± 27 0.008

6% CO2 152 ± 39 121 ± 28 0.004

MCA diameter with 4D flow MRI (mm)

Normocapnia 2.96 ± 0.14 2.97 ± 0.26 0.886

4% CO2 2.95 ± 0.15 2.98 ± 0.27 0.720

6% CO2 3.00 ± 0.17 2.99 ± 0.29 0.891

CVCi with TCD (cm/s/mmHg)

Normocapnia 68 ± 15 59 ± 17 0.085

CVC using 4D flow MRI (mL/min/mmHg)

Normocapnia 139 ± 35 105 ± 28 0.001

Pulsatility Index with TCD (a.u.)

Normocapnia 0.80 ± 0.14 0.76 ± 0.12 0.249

4% CO2 0.73 ± 0.09 0.73 ± 0.10 0.983

6% CO2 0.69 ± 0.09 0.72 ± 0.10 0.449

Pulsatility Index with 4D flow MRI (a.u.)

Normocapnia 1.01 ± 0.19 1.13 ± 0.21 0.061

4% CO2 0.94 ± 0.15 1.12 ± 0.15 0.001

6% CO2 0.93 ± 0.16 1.07 ± 0.16 0.008

Data are presented as mean ± standard deviation. CVC, cerebral vascular conductance; CVCi, cerebral vascular conductance index; MCA, middle cerebral artery; MCAv, middle cerebral artery

velocity. Statistical significance was set α priori at p < 0.05 with significant p-values indicated in bold.
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good agreement between the methods for MCAv measured by TCD
and MCAv measured by 4D flow MRI. Yet, there was no significant
correlation between MCAv measured by TCD and MCA flow
measured by 4D flow MRI or cerebrovascular reactivity measured
between the two methods. When examining the effect of age, 4D
flow MRI was more sensitive to age-related differences in cerebral
hemodynamics in response to hypercapnia compared with TCD.
Thus, 4D flow MRI may be a useful tool to investigate the impact of
age on cerebral hemodynamics.

Our findings that MCAv are in agreement between methods is
consistent with recent work demonstrating TCD and 4D flow MRI
correlated well for MCAv at normocapnia (Ha et al., 2021). We have
further expanded this by comparing MCAv between TCD and 4D
flow MRI methods during normocapnia and in response to
hypercapnia where cerebral blood flow increases. We
demonstrated that MCAv increases with hypercapnia using both
TCD and 4D flow MRI; however, the increase in MCAv was greater
using TCD when compared to 4D flow MRI. Interestingly, we
observed a trend for MCA dilation in response to hypercapnia,
which may contribute to the linear bias seen with increasing MCAv
between TCD and 4D flow MRI. In other words, we are
demonstrating increasing variance between the two methods in
response to hypercapnia. It should be noted that there is
variability in the literature between the TCD and 4D flow MRI
values for MCAv. For example, previous work has demonstrated
approximately 30% lower mean velocities with 4D flow MRI
compared to TCD (Chang et al., 2011). These differences are
likely due to limited insonation angle correction and lack of
verification of the same region of interest of vessel segment
selected with TCD (Tsuchiya et al., 1991; Hoksbergen et al.,
1999). In this context, 4D flow MRI uses velocity encoding
multi-directionally inside a 3D volume across time, within a
specific vessel segment of interest, allowing for a more averaged
MCAv measurement compared to TCD (Markl et al., 2012; Meckel
et al., 2013). We speculate that MCAv using TCD is higher than the
values reported using 4D flow MRI because the sample volume
(region of interest) with TCD is narrower and captures the velocity
in the middle of the vessel where the velocity is the highest due to
laminar flow. While 4D flow MRI captures and averages the MCAv
throughout the entire vessel (average velocity across the voxels
included in the region of interest), this lowers the average MCAv
compared with TCD. In addition, TCD is highly operator dependent
and could limit reproducibility (Baumgartner et al., 1994), while 4D
flow MRI has been demonstrated to have good test-retest reliability,
multicenter reproducibility, and interobserver agreement (Wen
et al., 2019).

The benefit of using 4D flow MRI is that assessments of blood
flow volume rate (rather than only blood velocity) can be made
because of the cross-sectional area data (Markl et al., 2012). In
addition, 4D flow MRI allows for simultaneous segmentation of
multiple cerebral vessels (Markl et al., 2012; Rivera-Rivera et al.,
2016; Miller et al., 2019). In the present study, we were interested in
comparing cerebrovascular hemodynamics using blood flow volume
rate with 4D flowMRI vs. blood velocity with TCD. Importantly, we
observed similar increases in blood flow volume rate and blood
velocity in response to hypercapnia. We also observed moderate
agreement between blood flow volume rate using 4D flow MRI and
blood velocity using TCD. Taken together, our results indicate

MCAv can be used as an indicator for blood flow responses to
hypercapnia in healthy young and older adults.

In the present study, we were interested in comparing changes in
cerebral pulsatility in response to hypercapnia with both imaging
modalities.We observed similar decreases in cerebral pulsatility with
TCD and 4D flow MRI. We also evaluated age-related differences
between the methods. For example, cerebral pulsatility index
decreased similarly in response to hypercapnia in the young and
older participants with 4D flow MRI, yet we reported a steeper
decrease in young adults compared with older adults when using
TCD. Our results are in agreement with previous research
demonstrating cerebral pulsatility decreases in response to mild
hypercapnia using 4.5% CO2 (DuBose et al., 2022). Importantly, we
demonstrated TCD provided agreement and similar age-related
results for MCAv when compared with the more advanced
measurement technique of 4D flow MRI.

Previous work has demonstrated variability in age-related
findings of cerebrovascular reactivity, particularly when
comparing young and older adults (Peng et al., 2018; Miller
et al., 2019). When investigating age-related differences using two
methods TCD vs. MRI (BOLD; PCA), Burley et al. (2021a) reported
higher cerebrovascular reactivity using TCD in older adults
compared to younger adults, but the opposite results when using
BOLD MRI, with younger adults having greater cerebrovascular
reactivity than the older adults. Our results showed age-related
differences in cerebrovascular reactivity between young and older
adults, when using 4D flow MRI, but not with TCD. One possible
reason for these differences is based on methods because TCD relies
on the assumption that the MCA diameter does not change during
hypercapnia. Based on this assumption, MCAv would be a
reasonable surrogate for MCA flow; however, this assumption is
still debated (Hoiland and Ainslie, 2016a; Brothers and Zhang,
2016). Although the present study did not show a correlation
between MCAv and MCA flow in response to hypercapnia, it is
possible that age may influence MCA cross-sectional area (Miller
et al., 2019), and explain why the results regarding age differences
were linked to the specific methodology. The discrepancies in the
previous research may be explained by potential MCA cross
sectional area changes (Verbree et al., 2014), with evidence that
percent change increases in MCA cross-sectional area with
hypercapnia are attenuated in older adults compared to young
adults (Coverdale et al., 2017; Miller et al., 2019). Because of the
user-dependent nature of TCD, it is possible that the lack of age-
related differences in cerebrovascular reactivity in this study
was related to sample size. In order to detect significant age
differences in cerebrovascular reactivity using TCD, a greater
sample size may be necessary.

Cerebral hemodynamics and cerebrovascular reactivity are
emerging biomarkers for a range of conditions, including
Alzheimer’s disease (Roher et al., 2012; Rivera-Rivera et al., 2017;
Sur et al., 2020). Because there is currently no “gold standard” for
cerebral hemodynamic measurements, the purpose of this project was
to compare two common methods to assess cerebral hemodynamics.
4D flow MRI is a newer method of assessing vessel-specific flow
parameters compared with TCD and offers many benefits including
the ability to measure cerebral hemodynamics in multiple vessels
simultaneously. There are other benefits to TCD compared with
MRI, including 1) portability; 2) that it is comparatively cost-
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effective; and 3) TCD can be less invasive/intrusive than MRI
procedures (Ghorbani et al., 2010). In the present study TCD was
able to distinguish a greater decrease in cerebral pulsatility in the young
adults compared to older adults. In addition, TCD has excellent
temporal resolution for rapid physiological responses, which are not
yet available withMRI. Additionally, TCD has clinical applications such
as diagnosing cerebral vasospasm, guiding transfusion therapy, and
providing preoperative evaluation for patients with cerebrovascular
disease (Kincaid, 2008). Our findings may help future studies in
determining the methodology that provides the best approach for
the intended research question.

This study is not without limitations. For example, it was not
possible to capture TCD and 4D flow MRI hemodynamics on the
same day. Therefore, some variability between the measurements
would be expected due to individual variation in hemodynamics
(Rickards and Tzeng, 2014; Ismaili et al., 2018). A strength of the
study is we attempted to minimize day-to-day variability by
replicating the same procedures for each visit within a relatively
short time frame with strict diet and exercise routines being
duplicated. Specifically, we had participants record 3 days of
normal dietary intake and exercise prior to their first study day
and asked them to repeat these prior to their second study day. As
mentioned, an inherent limitation when comparing TCD vs. 4D
flow MRI is TCD relies on the assumption that blood velocity is a
surrogate for blood flow and may not be ideal in experimental set-
ups that elicit MCA dilation. Another limitation is that the
instrumentation between visits was not identical due to
constraints with MRI compatibility. Additionally, we did not
examine relationships between TCD or 4D flow MRI with
BOLD-based cerebrovascular reactivity measurements, which are
commonly used. The goal of this project was to investigate MCA
vessel-specific velocity and flow responses, but future studies could
compare 4D flow MRI with BOLD-based cerebrovascular reactivity
assessments. A final limitation is that the older adults included in
this study were healthy and met or exceeded published physical
activity guidelines, which may limit the translation of this study to
the general population who are sedentary, may have vascular risk
factors or established disease.

In conclusion, our study demonstrated good agreement between
the two imaging methods for MCAv. There was no correlation
between MCAv measured by TCD and MCA flow measured by 4D
flow MRI or cerebrovascular reactivity measured between the two
methods. When performing age-related comparisons, 4D flow MRI
was more sensitive to age-related differences between young and
older adults. Due to these capabilities when using 4D flow MRI, we
were able to demonstrate lower blood flow volume rate and CVC in
older adults when compared to younger adults, which was not
possible with TCD. Additionally, 4D flow MRI provides clinical
utility such as characterizing changes in cerebrovascular
hemodynamics with Alzheimer’s disease (Rivera-Rivera et al.,
2016; Berman et al., 2017; Rivera-Rivera et al., 2017). Future
studies could compare cerebral hemodynamics and
cerebrovascular reactivity between 4D flow MRI and other MRI
techniques (e.g., BOLD, ASL) to help determine the appropriate
methodology for the proposed research questions.
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Modelling spatiotemporal
dynamics of cerebral blood flow
using multiple-timepoint arterial
spin labelling MRI
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1Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford,
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Introduction:Cerebral blood flow (CBF) is an important physiological parameter that
can be quantified non-invasively using arterial spin labelling (ASL) imaging. Although
most ASL studies are based on single-timepoint strategies, multi-timepoint
approaches (multiple-PLD) in combination with appropriate model fitting
strategies may be beneficial not only to improve CBF quantification but also to
retrieve other physiological information of interest.

Methods: In this work, we tested several kinetic models for the fitting of multiple-
PLD pCASL data in a group of 10 healthy subjects. In particular, we extended the
standard kinetic model by incorporating dispersion effects and the macrovascular
contribution and assessed their individual and combined effect on CBF
quantification. These assessments were performed using two pseudo-
continuous ASL (pCASL) datasets acquired in the same subjects but during two
conditions mimicking different CBF dynamics: normocapnia and hypercapnia
(achieved through a CO2 stimulus).

Results: All kinetic models quantified and highlighted the different CBF
spatiotemporal dynamics between the two conditions. Hypercapnia led to an
increase in CBF whilst decreasing arterial transit time (ATT) and arterial blood
volume (aBV). When comparing the different kinetic models, the incorporation of
dispersion effects yielded a significant decrease in CBF (~10–22%) and ATT
(~17–26%), whilst aBV (~44–74%) increased, and this was observed in both
conditions. The extended model that includes dispersion effects and the
macrovascular component has been shown to provide the best fit to both
datasets.

Conclusion: Our results support the use of extended models that include the
macrovascular component and dispersion effects when modelling multiple-PLD
pCASL data.

KEYWORDS

arterial spin labelling, cerebral blood flow, functional MRI, kinetic modelling, cerebral
haemodynamic
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1 Introduction

Imaging studies quantifying cerebral blood flow (CBF) have
been increasingly applied in an effort to characterize brain health
and baseline CBF has been known to be an important physiological
parameter that is commonly altered at earlier stages of several
pathological conditions, including Alzheimer’s disease, stroke and
small vessel disease (Alsop et al., 2015; Haller et al., 2016; De Vis
et al., 2018; Lindner et al., 2023). CBF can be quantified non-
invasively using the arterial spin labelling (ASL) MRI contrast,
with most studies using single timepoint approaches (Alsop et al.,
2015). However, in specific pathologies, as well as under certain
physiological states where CBF dynamics are altered, single
timepoint acquisition schemes and their assumptions might be
invalid, ultimately compromising CBF quantification. One of
those conditions is when acquiring data during a hypercapnia
challenge, which is the case when evaluating cerebrovascular
reactivity (CVR). CVR is the intrinsic mechanism of cerebral
blood vessels of adjusting their calibre in response to a vasoactive
stimulus. CVR has been shown to also be impaired in several
pathologies, possibly providing additional or complementary
information to baseline CBF (Catchlove et al., 2018; Chen, 2018).
The most common way to evaluate CVR is by increasing arterial
blood partial pressure of carbon dioxide (PaCO2) (Moreton et al.,
2016; Pinto et al., 2021) and imaging the concomitant CBF changes
using an appropriate modality such as ASL. In this case, CVR can be
quantified as the change in CBF in response to a change in PaCO2

(Mandell et al., 2008; Sobczyk et al., 2015).
However, an increase in PaCO2 concentration is also expected to

alter blood flow dynamics, with an increase in blood flow velocity and
shortening of transit times (Donahue et al., 2016). This can potentially
make approaches and assumptions commonly used for baseline CBF
quantification inaccurate under these conditions (e.g., fixed transit time,
unchanged bolus shape). This issue can be partially overcome by using
an ASL multiple time-point acquisition strategy (multiple-PLD) and
fitting this signal using an appropriate physiological model. This
approach allows estimation of CBF as well as other related features,
such as the time it takes for the labelled blood to flow from the labelling
region to the vascular or tissue compartment of the imaging regions
(arterial transit time, ATT) (Donahue et al., 2016; Zhao et al., 2021), or
the volume of blood signal arising from larger arteries that is destined
for more distal tissues (arterial blood volume, aBV) (Chappell et al.,
2010). Additionally, most ASL studies assume that the shape of the
labelled blood bolus remains unaltered during the transit time of the
label through the vasculature. However, due to effects collectively
known as dispersion and including different laminar flow profiles,
vessel architecture, or diffusion of the labelled water, the bolus shape is
in fact altered throughout the vascular tree (Wu et al., 2007; Gallichan
and Jezzard, 2008; Kazan et al., 2009; Chappell et al., 2013). By
correcting for this effect, as some dispersed spins might not have
arrived at their final destination, CBF estimation can be improved while
potentially also refining the separation between the aBV and tissue
components (if these aremodelled separately). The impact ofmodelling
dispersion and aBV effects in ASL has been recently investigated during
normocapnia (van der Plas et al., 2022), however, given the change in
blood velocity and CBF temporal features that occurs during
hypercapnia or in pathologies that alter CBF dynamics, the impact
of these modelling strategies might be different. In this work, we test

several modelling strategies that include dispersion and/or
macrovascular contribution and assess their effect on the
quantification of CBF spatiotemporal dynamics during two different
physiological states, normocapnia and hypercapnia.

2 Materials and methods

2.1 Data acquisition

A group of 10 healthy subjects (5 M, 20.4 ± 0.8 years old) was
studied on a 3 T Siemens Prisma Scanner with a 32 channel receive
only head coil (Blockley et al., 2016). All participants provided
written, informed consent in order to take part in the study and
ethical approval was obtained from the Central University Research
Ethics Committee (CUREC) at Oxford University.

Functional MR scanning included a multiple-PLD
pseudocontinuous ASL (pCASL) sequence (Okell et al., 2013)
with a 2D multi-slice GE-EPI readout, background suppression,
and the following parameters: spatial resolution = 3.5 × 3.5 × 5 mm3,
TR/TE = 4,100/14 ms, bolus duration = 1400 ms, 6 PLDs (250, 500,
750, 1,000, 1,250, and 1,500 ms), 8 averages for each PLD, number of
slices = 24, time per slice = 46 ms and total acquisition time of 6 min
and 40 s. Background suppression was achieved with a pre-
saturation module (WET) and optimally timed global hyperbolic
secant inversion pulses. AnM0 calibration image with no labelling or
background suppression was also collected. A field map was
acquired using a 2D Fast Low Angle Shot (FLASH) method with
the following parameters: TR 378 ms, TE1/TE2 4.92 ms/7.38 ms,
FOV of 220 mm × 220 mm, matrix 64 × 64, slices 24, slice thickness
4.5 mm, slice gap 0.45 mm, flip angle 45°. A T1-weighted structural
image was also acquired for each subject using a 3D Magnetisation
Prepared Rapid Acquisition Gradient Echo (MPRAGE) pulse
sequence with the following parameters: TR 1.9 s, TE 3.74 ms,
FOV 174 mm × 192 mm × 192 mm, matrix 116 × 128 × 128, flip
angle 8°, inversion time (TI) 904 ms.

The gas challenge was delivered by a computer controlled gas
blender (RespirAct™ Gen 3, Thornhill Research Inc., Toronto,
Canada) that implements a prospective algorithm for the
targeting and maintenance of end-tidal CO2 partial pressure
(PETCO2) and end-tidal O2 partial pressure (PETO2)
concentrations (Slessarev et al., 2007). The gas protocol
(Figure 1A) was personalised to each subject’s PETCO2 and
PETO2 baseline values. Modulations in PETCO2 were targeted
relative to baseline, whilst maintaining PETO2 constant
(Figure 1B). Other details on the gas challenge setup can be
found in (Blockley et al., 2017). The pCASL gas protocol
consisted of a baseline period of normocapnia followed by a
period of hypercapnia (PETCO2 step change of +10 mmHg).
Both periods lasted 6 min and 40 s (Figure 1A).

2.2 Data analysis

Offline data processing was performed using FSL 6.0.3 [FMRIB
Software Library (Jenkinson et al., 2012)], Matlab R2019b
(Mathworks, Natick, MA, United States), and the IBM SPSS
statistics tool (v.27).
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Structural images were tissue segmented using FAST (Zhang
et al., 2001), to produce grey matter (GM), white matter and
cerebrospinal fluid partial volume estimate (PVE) maps. The GM
PVE maps were further thresholded at 0.3, creating restrictive GM
masks whilst maintaining a significant number of voxels within
regions of interest (Figure 1C). Co-registration from functional to
structural space was performed using a linear registration tool,
FLIRT (BBR) (Jenkinson et al., 2002), and from structural to
standard (MNI) space was done using FLIRT and a non-linear
registration (FNIRT) tool (Andersson et al., 2007). These registrations
were also used to transform four regions of the MNI structural atlas
(frontal, parietal, temporal and occipital lobes, Figure 1C) (Mazziotta
et al., 2001) and the segmented structural images to functional space.
Individual arterial masks were also considered, and these were obtained
by thresholding the arterial masks that resulted from model fitting
(more details below).

The multiple-PLD pCASL datasets underwent standard pre-
processing using FSL. Steps included extraction of first volume (M0),
removing non-brain structures using BET (Smith, 2002), motion
correction using MCFLIRT (Jenkinson et al., 2002), and distortion
correction using a field-map strategy (FUGUE). Pairwise
subtraction of label and control images was then performed in
order to generate perfusion-weighted images (ΔM).

Model fitting of the multiple-PLD pCASL data for parameter
quantification was performed by applying a Bayesian approach with
the default parameter prior information (BASIL, http://fsl.fmrib.ox.
ac.uk/fsl/fslwiki/BASIL). Bayesian modelling strategies have been
shown to provide robust and reliable results for ASL data
quantification, by using prior knowledge based on physically
realistic ranges of the parameters (Chappell et al., 2009). In
particular, in this work we have modelled our ASL data using a
standard kinetic model (Buxton et al., 1998), and incorporating
other physiological contributions, creating extended models
(Chappell et al., 2009). In particular, we have explored the

impact of modelling the intravascular blood water that is
destined to perfuse more distant tissues (also known as
macrovascular or arterial component, aBV) using the model
proposed by (Chappell et al., 2010) (aBV with an automatic
relevancy determination prior and ATT prior with mean set at
1 and precision set at 1). Additionally, we also tested for the impact
of modelling dispersion effects, using a gamma distribution shaped
kernel as proposed by (Chappell et al., 2013), with parameters: time
to peak (p) and sharpness (s) [parameters reparametrized and
subject to a Gaussian prior with means described by log (s) =
2 and log (s*p) = −0.3 and precision set at 1]. All models are
implemented in BASIL. A combination of different modelling
strategies was used to assess the impact of these on parameter
estimation when using different conditions (normocapnia and
hypercapnia) (Table 1). Four different models were tested: 1)
with arterial component but without dispersion effects
(MartMnodisp), 2) with the arterial component and dispersion
effects (MartMdisp), 3) without arterial component and dispersion
effects (MnoartMnodisp), and 4) without arterial component but with
dispersion effects (MnoartMdisp).

The resulting CBF and aBV maps were calibrated using
a voxelwise approach within BASIL, assuming a labelling
efficiency of 0.85 (Pinto et al., 2020). CVR was computed as CBF

FIGURE 1
(A) Schematic of the stimulus paradigm; (B) PETCO2 trace of one illustrative subject. ASL data acquisition was performed only during the plateau
periods; (C)Orthogonal representations, for one illustrative subject, overlaid on the structural image: (left) thresholded GMmask in yellow; (middle) four
regions of interest (ROIs—frontal, parietal, occipital, and temporal lobes); (right) arterial mask in light blue.

TABLE 1 The four different extended models including dispersion and/or
macrovascular contributions.

Model Options

Dispersion

Yes No

Macrovascular Component Yes MartMdisp MartMnodisp

No MnoartMdisp MnoartMnodisp
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change due to hypercapnia normalized by the corresponding change
in PETCO2.

Average parameter values were computed for the following
regions intersected with the total GM mask: frontal, parietal,
temporal, and occipital (Figure 1C, middle). A total GM mask
was also considered (Figure 1C, left), as well as an arterial mask
obtained by thresholding the corresponding arterial blood
volume maps results from the model that includes dispersion
and the arterial component, MartMdisp (visually optimised
threshold of aBV > 0.7, Figures 1, 4). The Bayesian approach
used in this study also allows for model comparisons to be
performed through the estimation of the free energy (FE)
(Chappell et al., 2009). FE approximates the Bayesian evidence
for a model, and thus combines the accuracy of a model’s fit to the
data with a penalty for the number of free parameters in the
model. The closer FE is to zero the better the model is at
explaining the data.

To evaluate differences between average parameters across
regions, models, and conditions, a repeated-measures 3-way
Analysis of Variance (rm-3-way-ANOVA, p < 0.05, Greenhouse-
Geisser correction for sphericity), with factors: condition, region,
and model, was applied. Post-hoc analysis was done using simple
effects tests and pairwise comparisons with Bonferroni correction
for multiple comparisons.

3 Results

Table 2 summarizes the main demographic descriptors of each
subject as well as the corresponding ΔPETCO2 values acquired
during the multiple-PLD pCASL acquisitions. The inhalation of a
gas mixture with higher content of CO2 (hypercapnia) significantly
altered individual PETCO2 values with an average increase of
approximately 8 mmHg (p < 0.001).

Figure 2A shows illustrative images of the ASL difference
normalized by the corresponding M0 image, ΔM/M0, across time
(τ + PLDs) for the two conditions (normocapnia and hypercapnia).

The corresponding kinetic curves for a representative voxel
highlighted in Figure 2A can be seen in Figure 2B.

Figure 3 shows two illustrative ΔM maps. Several voxels were
selected and their corresponding four model fittings for each one of
the conditions can be seen. This figure further highlights the
different dynamics between conditions and the impact of the
different modelling strategies.

Figure 4 displays the CBF, ATT, and aBV maps averaged across
subjects, obtained using the four different modelling strategies, and
during the two conditions, as well as the corresponding differences
in CBF (CVR), ATT (ΔATT) and aBV (ΔaBV) across conditions
maps. Representations of illustrative individual CBF, ATT, and aBV
maps can be found in the Supplementary Material.

Several differences can be observed across the parameter maps.
For instance, when comparing the conditions regardless of the
model used, hypercapnia yielded maps showing higher CBF,
shorter ATT in most regions, and less-defined areas of
thresholded aBV (aBV with lower values).

The tested models also led to differences across the
haemodynamic parameter maps. Specifically, for CBF maps,
brighter areas localised around the major arteries can be seen in
models that do not account for the macrovascular component or
dispersion effects. Models that account for dispersion effects also
tend to yield lower CBF values across the brain, and the model that
includes both the macrovascular component and dispersion effects
produced more homogeneous CBF maps in both conditions, and in
the CVR maps (CBF difference maps). The CVR maps also show
high and unrealistic values in some regions including brain edges
andWM regions, but this might be due to low SNR resulting in poor
fitting (Figure 3), that is amplified when computing CVR due to the
normalization step. These erroneous high CVR regions appear to be
less frequent when including the arterial and dispersion components
into the model.

Regarding ATT, the occipital and superior areas tend to display
higher values in all models/conditions tested in comparison with
other brain regions. When using models that include dispersion
effects, the corresponding ATT maps show higher contrast between

TABLE 2 Demographic data and PETCO2 values for each subject. Bottom row corresponds to the mean and standard deviation (mean ± SD) across subjects. M
stands for male and F for female.

Subject Age Sex PETCO2 normocapnia PETCO2 hypercapnia ΔPETCO2

1 21 M 38.0 ± 0.5 46.2 ± 0.4 8.2

2 21 M 37.8 ± 0.8 44.2 ± 0.4 6.4

3 21 M 42.1 ± 0.8 50.5 ± 0.4 8.4

4 19 M 42.6 ± 0.8 49.8 ± 0.3 7.2

5 20 F 39.3 ± 1.2 47.7 ± 0.5 8.4

6 21 F 33.0 ± 2.8 41.6 ± 0.9 8.6

7 21 F 38.7 ± 0.6 47.3 ± 0.3 8.7

8 21 M 39.9 ± 0.8 47.7 ± 0.3 7.8

9 19 F 38.4 ± 0.9 45.5 ± 1.2 7.1

10 20 F 38.2 ± 0.7 45.5 ± 2.0 7.3

mean ± SD 20.4 ± 0.8 5 F/5 M 38.8 ± 2.6 46.6 ± 2.6 7.8 ± 0.8
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FIGURE 3
Illustrative ΔM maps (two different axial slices, normocapnia, signal intensity in arbitrary units). Four different voxels were selected (green) and the
corresponding voxelwise model fittings are displayed in different colours for each condition.

FIGURE 2
(A) Illustrative magnetization difference images (control-label, ΔM) normalized by corresponding calibration image (M0), of a representative subject
and brain slice, throughout the different τ + PLDs. (B) Kinetic curves of a representative voxel (highlighted in Figure 2A), for the two gas challenges. The
curves have been demeaned for clarity and better visualization.
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specific regions such as GM/WM as well as cortical/sub-cortical
areas (e.g., lower ATT in the putamen and globus pallidus). The
differences between conditions, displayed by the ΔATT, are higher
when using the dispersion models. ΔATT is also higher during
hypercapnia (positive values), in some specific frontal areas.

Including dispersion in the modelling also leads to higher aBV
areas, in particular, in lateral regions further downstream. The
differences between conditions are higher if including dispersion
effects into the model.

Figure 5 shows the results of the regional analysis for CBF, ATT,
aBV, and FE for each model and condition and the corresponding
regional change in CBF (CVR), ΔATT and ΔaBV values between
conditions for each model. Statistically significant main effects in
CBF were observed for all factors tested (condition, model, and
regions), as well as for the interactions between these (all p ≤ 0.01).
Post-hoc comparisons of CBF across models yielded significant
differences (p < 0.05), except for the inclusion of an arterial
component in models that do not account for dispersion
(MnoartMnodisp and MartMnodisp; blue bar plots) in specific
regions/conditions (GM changes across the different models in
relation to MnoartMnodisp: ~0.6–22%). Significant main effects in
ATT measures were also observed for all factors tested and pairwise
interactions (p < 0.05). Pairwise comparisons of ATT across models
and conditions yielded significant differences (p < 0.05) except for
MnoartMnodisp and MartMnodisp (blue bar plots) and for MnoartMdisp

and MartMdisp (red/orange bar plots) in specific regions/conditions
(GM changes across the different models in relation to
MnoartMnodisp: ~0.6–19%). For average aBV, significant main
effects were obtained for condition and model and their
interaction (p < 0.01). Pairwise comparisons between the two

models were all significant in both conditions (in relation to
MartMnodisp ~ 74 and 44% for normocapnia and hypercapnia,
respectively). Statistically significant main effects were observed
in FE for all factors/interactions (p < 0.05), except for factor
condition (p = 0.077). Regardless of the condition and region
tested, significant differences were obtained when comparing
models except for MnoartMnodisp and MnoartMdisp. The model
including dispersion and macrovascular components
consistently yields FE values closer to zero across models,
i.e., better model fit.

Focusing on differences between conditions, there was a
significant main effect for the factor model (p < 0.01), but not
for factors region/interaction. While CBF changes (CVR) were
significantly higher with the model that includes dispersion and
the arterial component in specific areas including GM, for ATT the
highest changes were obtained whenmodelling only dispersion, thus
there seems to be an interaction between these two modelling
options that depends on the parameter estimated.

4 Discussion

In this work, we analysed pCASL data during two conditions
(normocapnia and hypercapnia) and using different kinetic models.
Our results highlight the different CBF spatiotemporal dynamics
across conditions: hypercapnia led to a significant increase in CBF and
ATT, whilst aBV decreased significantly. Moreover, parameter
quantification was also significantly affected by model selection.
Incorporation of dispersion effects yielded a significant decrease in
CBF and ATT and aBV increased in both conditions. Overall, the

FIGURE 4
(A) Orthogonal representations of group average of the CBF, ATT, and aBV maps for the two conditions (normocapnia and hypercapnia) obtained
using different modelling strategies (MNI space). (B) CVR, and difference ATT (ΔATT) and aBV (ΔaBV) maps (difference between hypercapnia and
normocapnia). aBV and ΔaBV maps were only obtained when using strategies where the macrovascular component was modelled (Mart).
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extended model that includes dispersion effects and the macrovascular
component provides the best fit to both datasets (in terms of FE).

4.1 Data acquisition and gas challenge

Hypercapnia was attained through a respiratory challenge that
increased the CO2 content of arterial blood by applying a prospective
end-tidal targeting andmaintenancemethod using a computer-controlled
gas blender. This approach has been shown to be a robust and reliable way
to prospectively induce changes in the arterial blood CO2 content, whilst
targeting andmaintaining stable O2 levels (Fierstra et al., 2013). Although
the target value of an increase of 10mmHg to each subject’s baseline
PETCO2 was not attained, all subjects completed the gas challenge and
experienced a similar PETCO2 change within a standard deviation of
0.8 mmHg (Table 2). The two conditions yielded statistically significantly
different PETCO2 average values (p < 0.01) (Table 2).

4.2 Impact of different conditions on CBF
dynamics quantification

Although literature on the effect of hypercapnia using multiple-
PLD ASL is still limited, our results are in agreement with other

reports that confirm a change in CBF dynamics with an increase in
amplitude and a faster response due to hypercapnia (Donahue et al.,
2016). These different dynamics can be perceived even before model
fitting, as illustrated by the ΔM/M0 maps and curves of the two
conditions (Figure 2), and during model fitting (Figure 3).

Our quantitative changes of CBF (~33%) and ATT (~15%) are
slightly higher than the ones previously reported, although these
differences might be partially explained by the different stimuli and
processing analyses used. Donahue et al. reported reductions in ATT
in the order of 4.6%–7.7% and a CBF increase of 8.2%–27.8% when
using a pCASL sequence with a fixed-inspired challenge (inspired
fraction of 5%) (Donahue et al., 2016), while Ho and others observed
a GM CBF increase of around 21% and an ATT decrease in the GM
of approximately 5% when using an ASL-QUASAR strategy in
combination with an increase in PETCO2 content by a third of
the subject’s baseline (~14 mmHg) (Ho et al., 2011).

The spatiotemporal patterns in the dynamics during
hypercapnia are also in line with previous reports (MacIntosh
et al., 2010; Donahue et al., 2014). While the impact of
hypercapnia on CBF appears to be statistically significant across
the brain, for ATT, hypercapnia appears to mainly affect posterior
and lateral regions, without statistically significant changes in frontal
regions. Other ASL studies have also indicated prolonged ATT in
border zone regions between the major cerebral artery territories

FIGURE 5
Regional analysis of: (A) CBF, ATT, and aBV with the different modelling strategies and conditions. (B) Percentage change of CBF, ATT and aBV
normocapnia vs. hypercapnia. CVR corresponds to CBF change normalized against the change in the individual PETCO2 level (%/mmHg). (C) Regional FE
for each of the different modelling strategies and conditions Statistically significant results (p < 0.05) are highlighted with *.
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(Petersen et al., 2010), highlighting the dependence of these areas on
the individual vascular architecture and geometry (Wong et al.,
1997).

The arterial component during hypercapnia also seems to be
lower and less defined than during normocapnia. This can be
explained by the increased flow velocity in arteries resulting in
the tagged blood arriving earlier in combination with the non-
optimal ASL sampling scheme in terms of PLDs during hypercapnia.
Ho et al. also investigated the impact of hypercapnia on the arterial
component, observing dissociations in the dynamics between large
vessels and GM. In particular, there were significant changes in the
aBV of the larger arteries (~11%) and this difference was
approximately half of the CBF increase (Ho et al., 2011).

4.3 Impact of model strategies on CBF
dynamics quantification during different
conditions

To our knowledge, this is the first study to assess the individual
and combined impact of modelling dispersion and macrovascular
components in multiple-PLD ASL haemodynamic parameter
quantification during hypercapnia. Our results highlight the
influence of modelling strategies on parameter quantification,
even when not taking different conditions into account, which is
in line with previous reports. In particular, the inclusion of
dispersion into the model yielded lower CBF, ATT, and higher
aBV, while more arterial signal was fitted, particularly in arteries
further downstream. This can be seen visually in the parameter maps
of Figure 4, where including dispersion led to less variable CBFmaps
in both conditions, while correcting for macrovascular areas. In fact,
there seems to be an interaction between these two modelling
aspects, with no significant difference in parameter quantification
when introducing a macrovascular component in most regions/
conditions if dispersion is not included. If dispersion is already
included, adding the macrovascular component leads to significant
differences in parameter quantification, with an overall decrease in
CBF and an increase in ATT, likely due to better tissue and arterial
signal separation. This is confirmed by the signal changes when
comparing the two conditions, as CBF changes between conditions
(CVR) are higher when including the arterial component, while for
ATT are higher without including this component.

The impact of including dispersion also appears to be region
dependent. For instance, the contrast between WM in relation to
cortical GM seems to be higher when introducing dispersion into the
model which is in line with the expectation that the impact of dispersion
modelling will be more pronounced deeper into the vascular tree, hence,
introducing this component might improve modelling and ATT
quantification across WM (Figure 4). Subcortical GM areas also tend
to display a different profile ratio in relation to cortical GM when
including dispersion, where ATT values in subcortical areas are lower
than in cortical areas.

Similarly, the impact ofmodelling strategies in parameter changes due
to hypercapnia are also model and region dependent. For example, while
the CBF changes when using MnoartMdisp or MartMdisp in the frontal area
are not significantly different, for other areas such as temporal or occipital
regions, these two models yield significant differences. These regional
differences and model/parameter dependencies might be due to the

distinctive dynamics of blood coming from different main feeding
arteries and their interaction with model fitting. Including both the
dispersion and the macrovascular component seems to incorporate/
alleviate some of these vascular differences.

The arterial component is also better distinguished when adding
dispersion into the model, particularly in regions further
downstream, which is in line with the assumption of a higher
impact of dispersion modelling in deeper areas within the
vascular tree. This effect seems to be higher during normocapnia,
as the increase in blood velocity due to hypercapnia possibly makes
the multi-PLD sampling scheme not optimised for this condition, as
the earliest PLD might be too long to accurately detect the
macrovascular contribution.

Moreover, our FE values also support the application of the model
that includes dispersion and the macrovascular component, since this
combination yielded the FE values closest to zero across models and
conditions (i.e., better fit to the data). Although, the CVR maps
obtained seem to be similar across the models tested, the model that
includes both dispersion and the macrovascular component appears
to create maps with lower variability, also yielding significantly higher
regional values of CVR when compared with the other models.

Most of these parameter quantification differences due to
modelling strategies are in line with previous reports on
normocapnia (Zhang et al., 2021; van der Plas et al., 2022). A
recent study comparing different ASL sequence optimization
strategies in normocapnia, showed that sequences optimized for
both ATT and CBF estimation are sensitive to macrovascular
signal and that including dispersion effects and the macrovascular
component leads to significant decreases in CBF and ATT estimation
errors (Zhang et al., 2021).

As seen in other ASL studies, our CVR maps also do not display
the clear GM/WM contrast commonly seen in BOLD CVR maps.
Some studies argue that the tissue difference in BOLD CVR maps
might be the result of the complex interaction between several
physiological parameters, and the lack of differences in ASL
might be reasonable as both baseline CBF and CBF induced
changes by hypercapnia might be lower inWM (Taneja et al., 2019).

4.4 Limitations and future work

Although differences between parameters across conditions and
models were observed and quantified, a major limitation of this work
is the lack of a gold standard measure to compare our results with. In the
future, a comparison with other methodologies such as PET imaging
should be performed (Zhao et al., 2021). Additionally, although
hypercapnic stimuli are commonly used for CVR mapping, some
pathological conditions might mimic the spatiotemporal changes in
CBF dynamics seen with hypercapnia (for example, if the basal
vascular tone is altered or arterial blood velocities are reduced (Bright
et al., 2011)). Another major limitation of this work is the small sample
size (n = 10). Additionally, some of the analysis options used in this work
were dependent on the ASL acquisition parameters/strategies. Given the
faster flow in large arteries and the earlier arrival times of labelled blood
during hypercapnia, it might be important to investigate the impact of
optimising the ASL sampling scheme when acquiring data during this
condition (Woods et al., 2019). Regarding the macrovascular signal,
alternative strategies can be used to remove this component during
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acquisition, such as including the use of flow crusher gradients. However,
this approach has been discouraged (Alsop et al., 2015) and by removing
this component, important clinical information might be overlooked.
Another aspect thatwarrants further investigation is the large variability in
anatomical features across and within individuals (different vascular
architecture and territories) and its impact on ASL modelling,
particularly in dispersion effects. Including a combination of functional
and structural information might be beneficial to better model the ASL
signal by taking these vascular differences into account (Li et al., 2018).
Conflicting results have been reported when comparing the impact of
blood flow velocity on ASL imaging (Aslan et al., 2010; Heijtel et al., 2014;
Dolui et al., 2016). Although these differences can impact CVR results,
these will not affect our conclusions regarding the impact of the different
model strategies within each conditions, as the effect of the different
labelling efficiencies will be the same across the models tested.

Importantly, our observations regarding the impact of the different
models on parameter quantification can also have implications when
evaluating CBF in pathologies. In several conditions, including steno-
occlusive diseases, brain tumors or arteriovenous malformations
(Amemiya et al., 2022; Hirschler et al., 2023), the dynamics of blood
vessels and flow are known to be altered and these will likely depend on
the degree of disease severity and underlying etiology. In those cases, using
multi-PLD ASL strategies in combination with modelling strategies that
take into account these differences, including models with dispersion and
macrovascular component, might be beneficial for a more accurate
estimation of CBF parameters. Further work on ASL modelling
strategies should focus on translating/validating these findings in
clinical applications.

5 Conclusion

This work highlights the significance of acquiring ASL data
using a multiple-PLD approach to allow a larger flexibility in ASL
parameter estimation, and the critical aspect of making anatomically
and physiologically valid assumptions when modelling ASL data.
Here we recommend the use of extended models that include the
macrovascular component and dispersion effects when modelling
multiple-PLD pCASL data. This is of particular importance when
imaging abnormal states such as increased or decreased global CBF
as induced by respiratory challenges or vasoactive substances, or in
subjects with pathologies that may impact their cerebral perfusion.
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Introduction: Response to post-stroke aphasia language rehabilitation is difficult
to anticipate, mainly because few predictors can help identify optimal,
individualized treatment options. Imaging techniques, such as Voxel-based
Lesion Symptom Mapping have been useful in linking specific brain areas to
language behavior; however, further development is required to optimize the use
of structural and physiological information in guiding individualized treatment for
persons with aphasia (PWA). In this study, we will determine if cerebral blood flow
(CBF) mapped in patients with chronic strokes can be further used to understand
stroke-related factors and behavior.

Methods:We collected perfusionMRI data using pseudo-Continuous Arterial Spin
Labeling (pCASL) using a single post-labeling delay of 2,200 ms in 14 chronic PWA,
along with high-resolution structural MRI to compute maps of tissue damage
using Tissue Integrity Gradation via T2w T1w Ratio (TIGR). To quantify the CBF in
chronic stroke lesions, we tested at what point spatial smoothing should be
applied in the ASL analysis pipeline. We then related CBF to tissue damage,
time since stroke, age, sex, and their respective cross-terms to further
understand the variability in lesion CBF. Finally, we assessed the feasibility of
computing multivariate brain-behavior maps using CBF and compared them to
brain-behavior maps extracted with TIGR MRI.

Results: We found that the CBF in chronic stroke lesions is significantly reduced
compared to its homologue grey and white matter regions. However, a reliable
CBF signal (although smaller than expected) was detected to reveal a negative
relationship between CBF and increasing tissue damage. Further, the relationship
between the lesion CBF and age, sex, time since stroke, and tissue damage and
cross-terms suggested an aging-by-disease interaction. This relationship was
strongest when smoothing was applied in the template space. Finally, we show
that whole-brain CBF relates to domain-general visuospatial functioning in PWA.
The CBF-based brain-behavior maps provide unique and complementary
information to structural (lesion-based) brain-behavior maps.

Discussion: Therefore, CBF can be detected in chronic stroke lesions using a
standard pCASL MRI acquisition and is informative at the whole-brain level in
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identifying stroke rehabilitation targets in PWAs due to its relationship with
demographic factors, stroke-related factors, and behavior.

KEYWORDS

chronic stroke lesion, cerebral blood flow, TIGR MRI, brain-behavior maps, stroke
rehabilitation targets

Introduction

The most common cause of acquired language impairment (also
known as aphasia) is stroke. Aphasia presents in up to 40% of people
who experience acute strokes and persists in approximately 61% of
individuals after 1 year (Pedersen et al., 2004). Unfortunately,
response to post-stroke aphasia rehabilitation is variable, and
identifying the best treatment options for a specific patient has
been difficult. Researchers are increasingly using structural and
functional imaging to inform and augment treatment
development, which heralds improved language outcomes
(Meinzer et al., 2011; Crosson et al., 2017; Crosson et al., 2019).
However, using imaging data to inform clinical decisions is still in its
infancy. A review of imaging studies in aphasia reveals that a diverse
range of lesion locations and subsequent brain physiology changes
hamper efforts to select appropriate interventions to optimize
treatment outcomes (Charidimou et al., 2014). However, there is
evidence that mapping each patient’s unique brain anatomy
(structural imaging) and physiology (cerebral blood flow
imaging) to their language deficits (Fridriksson, 2010) could
result in more individualized intervention.

Several imaging methodologies can provide associations
between lesion location and language behavior, including Voxel-
based Lesion Symptom Mapping (VLSM), which has been popular
in stroke research since Bates et al. (2003) introduced the method in
2003. The technique acquires detailed images of the patient’s brain
using high-resolution T1-weighted (T1w) anatomical Magnetic
Resonance Imaging (MRI) scans. An experienced neuroimager
then can manually demarcate the lesion. The area of the lesion is
transformed into a subject-specific binary mask and entered into a
t-test analysis to define which lesion location corresponds to specific
language deficits. VLSM is an elegant algorithm that defines
structure-behavior associations and implicitly takes advantage of
the heterogeneity of language behavior and lesion location. Using
functional and structural imaging to study persons with aphasia
(PWA) facilitates linking a specific brain area to specific language
behaviors and deficits. VLSM (Bates et al., 2003), is a simple yet
elegant method used to define structure-behavior associations.
However, the technique has several limitations in that it depends
on binary “all-or-nothing” lesion masks to define areas of structural
compromise and does not offer a comprehensive picture of brain
health.

In 2005, Tyler et al. (2005) advanced VLSM by discarding the
binary lesion masking step by correlating the continuous T1w image
signal intensity with continuous language measures. According to
Tyler et al. (2005), judging whether cortical tissue is intact or
damaged with an “all-or-none distinction fails to capture a much
larger range of potentially informative gradations in the degree of
structural damage.” This is a reasonable assessment, as the damage
from stroke is not limited to the Cerebral Spinal Fluid (CSF) filled

cavitation, and includes regions of gliosis and Wallerian
degeneration, all with varying impact on behavior. It was
demonstrated that T1w image signal intensity has high
correlations with word processing abilities using a lexical decision
task. Though the small number of subjects (n = 19) could have led to
issues with statistical power (Kimberg et al., 2007), this study
established the feasibility and utility of correlating the MRI signal
intensity with language behavior. Despite this important step
forward, the methodology of using the T1w signal has some
limitations in the MRI signal normalization process, as it is
dependent on highly variable anatomical attributes across stroke
survivors. To address the methodological issues from Tyler et al.
(2005), we developed Tissue Integrity Gradation via T2w T1w Ratio
(TIGR) MRI (Krishnamurthy et al., 2021) by using a ratio of T2w
and T1w signals and by normalizing the signals using bounds
determined by the grey matter and cerebrospinal fluid signal
intensities of intact regions. Therefore, regardless of atrophy,
headsize, or coil loading characteristics, the normalization
procedure in TIGR is comparable across all participants within a
cohort and does not require a control sample of intact brains to
perform the analysis.

Although the predominant line of thinking by clinicians and
scientists alike is that everything within the stroke lesion is necrotic,
we have evidence that this may not be the case. Using Tissue
Integrity Gradation via T2w T1w Ratio (TIGR) MRI, we can
objectively identify the necrotic cavitation and surrounding
pericavitational regions within the lesion (Krishnamurthy et al.,
2021). The pericavitational regions are defined as “damaged tissue
within the lesion surrounding the core cavitation that may still
contain living cell bodies” and have been observed in animal and
in vitro models (Clarkson et al., 2010; Anderson et al., 2014; Burda
and Sofroniew, 2014; Adams and Gallo, 2018; Joy and Carmichael,
2021). The pericavitational regions can be engaged using task fMRI,
are functionally connected at rest to the remaining brain network
and demonstrate evidence of residual blood flow to the lesion
(Krishnamurthy et al., 2021). One downside to using only
structural imaging to assess brain-behavior relationships is that
language is processed in a network of brain regions that must
work in concert, and language deficits can arise from
disconnected or disrupted regions far away from the lesion.
These disconnected regions can be identified by their changes in
physiology (Metter et al., 1989). Therefore, to advance the field of
stroke and aphasia rehabilitation, it is imperative to expand the
current imaging models to not only relate anatomy to behavior but
integrate both anatomy and physiology into behavior. To further
understand the tissue health of chronic stroke lesions, we expand
upon our previous findings and improve upon the detection of
cerebral blood flow in chronic stroke lesions in PWA.

Cerebral blood flow (CBF) can be quantified non-invasively
using a neuroimaging technology called pseudo-Continuous Arterial
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Spin Labeling (pCASL) which is a sub-class of arterial spin labeling
(ASL) MRI methods available. Generally, the ASL experiment collects
one set of images that contain signals from both tissue and blood
compartments (the “control” image) and one set of images that contain
signals from tissue and magnetically labeled blood to reduce the
contribution of the blood signal (the “label” image). The difference
between control and label images removes the tissue signal to reveal an
image of pure blood signal (the “perfusion” image). To convert the
perfusion image to physiological units (the “CBF” image), the
perfusion image is further divided by a separately acquired proton
density (M0) calibration image and modeled with sequence-specific
factors such as post-labeling delay and physiological factors such as
arterial blood T1. The consensus paper provides a comprehensive
description of the technology (Alsop et al., 2015). Often these
computations are achieved in native space–or the space in which
the image was acquired–but most comparative studies require all
participant CBF images to be normalized to template space. One
current issue in the ASL MRI field is the standardization of processing
steps to obtain absoluteCBFmaps (Pinto et al., 2020). For example, it is
unclear whether some post-processing steps such as spatial smoothing
should be applied in native or template space, if at all. Spatial
smoothing is a process of spatially weighting the signal intensity
from neighboring voxels to decrease the impact of instrumentation
noise. There is a clear need for consistent post-processing options with
a complete description of all post-processing steps, including spatial
smoothing, to achieve absolute CBF quantification (Pinto et al., 2020).
Steps such as spatial smoothing have an even greater impact when
quantifying CBF in chronic stroke lesions due to the rapid transitions
in microstructural damage (Burda and Sofroniew, 2014) and the
impact on brain metabolism and corresponding CBF.

The objective of this project is to advance the ability of ASL MRI
to reliably detect the CBF within the lesion and facilitate

characterizing how lesion CBF relates to clinical factors relevant to
aphasia. To accomplish this objective, we will optimize at what stage
spatial smoothing should be applied in the ASL analysis pipeline. We
hypothesize that the blood flow in chronic stroke lesions will reduce
with increasing tissue damage. We also hypothesize that both stroke-
and demographic-related factors will relate to lesion CBF. Finally, in
an exploratory analysis, we will generate brain-behavior relationships
between CBF and verbal learning or visuospatial learning and
compare them to structural lesion-based brain-behavior maps.

Materials and methods

General procedures

Imaging and behavioral data from 14 English-speaking PWA
(Table 1; age range 24–81 years old) who were >6 months post-left-
hemisphere ischemic stroke (range of time since stroke
9–121 months) were analyzed for this study. Participants with a
history of mental health disorders or other neurological disorders
were excluded. Participants with hemorrhagic strokes were excluded
due to the limitations of quantifying tissue damage in the presence of
hemosiderin. Western Aphasia Battery Aphasia Quotient (WAB AQ)
(range 27.4–80.6). The participants were asked to undergo an MRI
session and a language assessment session which included the
administration of the Western Aphasia Battery-Revised (WAB-R)
(Kertesz, 2007), the Hopkins Verbal Learning Test-Revised (HVLT-
R) (Benedict et al., 1998), and the Brief Visual Memory Test-Revised
(BVMT-R) (Benedict et al., 1996). This study used raw scores from the
HVLT-R and BVMT-R total recall, delayed recall, and recognition hits
to compute brain-behavior relationships with CBF. This study was
carried out in accordance with the recommendations of the joint

TABLE 1 Participant demographic, aphasia, and lesion characteristics.

Sub Age at
scan

Sex Months since
stroke

WAB-
AQ

Aphasia type Lesion
volume (mL)

Cavitation
volume (mL)

%
Cavitation

S01 51 M 24 59 Anomic 97,078 35,999 37.1

S02 59 M 38 65.9 Anomic 84,630 20,796 24.6

S03 50 M 85 75.3 Anomic 133,145 52,620 39.5

S04 71 F 24 67.1 Transcortical
Motor

126,144 13,215 10.5

S05 61 M 121 74.5 Anomic 137,945 53,874 39.1

S06 24 F 23 55.3 Broca’s 133,655 38,924 29.1

S07 35 M 9 27.4 Broca’s 126,164 6,537 5.2

S08 47 M 44 75.6 Anomic 105,421 42,877 40.7

S09 43 F 49 80.6 Anomic 64,703 21,073 32.6

S10 81 F 60 74.1 Conduction 114,099 31,687 27.8

S11 73 M 55 79.6 Anomic 124,145 64,475 51.9

S12 45 M 14 78.6 Anomic 148,123 14,366 9.7

S13 50 M 70 59.4 Conduction 95,516 28,115 29.4

S14 60 M 9 52.4 Wernicke’s 132,319 44,429 33.6
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review committee at Emory University and Atlanta Veterans Affairs
Medical Center. All participants gave written informed consent in
accordance with the Declaration of Helsinki.

MRI acquisition

MRI scans were acquired on a 3T Siemens Prisma (Erlangen,
Germany) using the body coil for radio frequency (RF) transmission
and a 32-channel phased-array head coil for RF receiving. Two types
of anatomical MRI scans were acquired on each subject: 1) a T1-
weighted high-resolution anatomical image (T1-MPRAGE, TR =
2,530 ms, TE = 2.96 ms, TI = 1,100 ms, FA = 7°, isotropic
resolution = 1 × 1 × 1 mm (Crosson et al., 2017), acquisition
bandwidth = 130 Hz), and 2) a T2-weighted high-resolution
anatomical image (T2-SPACE, TR = 3200 ms, TE = 285 ms,
FA = 120°, isotropic resolution = 1 × 1 × 1 mm (Crosson et al.,
2017), acquisition bandwidth = 700 Hz).

Pseudo–Continuous Arterial Spin Labeling (pCASL) MRI was
collected to measure regional whole-brain cerebral blood flow (CBF)
maps (2D ascending gradient echo EPI acquisition, 35 slices, slice
thickness = 4 mm, 10% gap, matrix = 74 × 74, FoV = 220 × 220 mm2,
in-plane resolution = 3 × 3 mm2, GRAPPA = 2, no Partial Fourier,
acquisition bandwidth = 2,505 Hz, TR = 5,060 ms, TE = 13 ms, slice
acquisition time = 37.5 ms, PLD = 2,200 ms, labeling duration =
1,500 ms, label offset = 90 mm). The pCASL method acquires
interleaved control and label images, the subtraction of which
yields a pure-blood signal that is directly proportional to CBF and
can be mapped on a voxel-wise basis to obtain whole-brain regional
blood flow information. An additional M0 scan was acquired with the
same brain coverage as the pCASL scan, except for a longer repetition
time (TR = 10 s) to allow for fully relaxed magnetization to remove
proton density effects during CBF quantification.

Estimation of tissue damage using TIGR
maps

The workflow of calculating the Tissue Integrity Gradation via
T2-weighted T1-weighted Ratio (TIGR) maps has been described
previously (Krishnamurthy et al., 2021). Briefly, the user input
includes a T1w and T2w image, as well as a binary lesion mask in
native space. The T1w and T2w images are denoised (Coupe et al.,
2008; Wiest-Daessle et al., 2008) and coregistered together via
FreeSurfer’s boundary-based registration (Greve and Fischl, 2009).
The values in each voxel of the T2w images are divided by the value of
the corresponding voxel in the aligned T1w image (T2w/T1w). Each
type of image (T1w and T2w) encodes unique signal information of
the underlying tissue morphology. Taking the T2w/T1w ratio
combines both types of information into one image to highlight
the gradient of tissue damage within the lesion. To scale the T2w/T1w
signals to a subject-specific value that can be compared across the
entire cohort, the signal intensity is bounded by GM (lower bound:0.1;
from the contra-lesional anterior grey matter ribbon eroded by one
voxel) and CSF (upper bound:1.0; from the contra-lesional anterior
lateral ventricle eroded by one voxel) and classified into nine “bins”
between 0.1 (“least damaged”) and 1.0 (“most damaged”) to maintain
comparability with binary lesion maps characterized by 0’s and 1’s

that are often used in the field. Only the voxels within the user-defined
lesion mask are classified into the tissue gradient “bins,” creating the
final TIGR map used in group analysis. We further define all lesioned
areas with a TIGR score of 1.0 as necrotic cavitation and all other
regions (0.1–0.9) as surrounding pericavitational regions. To compare
TIGR maps and CBF maps across PWA and generate brain-behavior
relationships, the T2w/T1w ratio maps are spatially normalized to
MNI template space using a “chimera” spatial normalization
[described in the Supplementary Section of Krishnamurthy et al.
(2021)]. The overlap of all participant’s lesions in the MNI template
space is accomplished using afni’s 3dOverlap. The average of all
participant’s TIGR scores in the MNI template space is accomplished
using afni’s 3dmerge.

Three analysis pipelines to compute CBF

The analysis of pCASL data is accomplished with in-house scripts
using a combination of afni (version 22.2.10) and FSL (version 6.0.1)
commands. The “no blur” pipeline uses the following analysis steps: 1)
bulk-head motion correction is computed with afni’s 3dAllineate
using 6 degrees of freedom. 2) The motion parameters are used to
censor pairs of label and control images that contain motion
of >0.7 mm and >5 degrees of rotation. A minimum of 32 pairs
(out of a maximum of 40 pairs) were used for every participant’s
dataset. 3) The label and control images were subtracted in native
space to obtain the difference signal (=control-label) using afni’s
3dcalc and then averaged before conversion to physiological units.
4) To obtain CBF in physiological units, the difference signal
(=control-label) and M0 image are combined with a single-
compartment model to obtain units of mL/100 g/min (Buxton
et al., 1998; Alsop et al., 2015). 5) The CBF map was then
transformed into MNI space by registering to T1w space using
FreeSurfer’s bbregister and subsequently applying the chimera
warp into MNI space (FSL’s applywarp). All CBF results reported
here are in 1 × 1 × 1 mm3 MNI space, which also conforms to the
voxel size in the TIGR MRI map of tissue damage.

The “blur 4 in MNI” analysis pipeline uses the output of the “no
blur” pipeline and applies spatial smoothing (or blurring) within the
brain using a 4 mm full-width-half-maximum (FWHM) Gaussian
kernel (afni’s 3dmerge) to increase the signal-to-noise ratio (SNR).
The “blur 4 in native” analysis pipeline introduces a 4 mm FWHM
Gaussian kernel smoothing before the subtraction of control and
label images in native space to increase the SNR before subtraction.
The same transformations into T1w and MNI space computed for
the “no blur” images were then applied to the “blur 4 in native”
images to maintain comparability across all datasets. The general
difference between the three analysis pipelines is depicted in Figure 1
with group average output images.

Comparison between ASL analysis pipelines

To assess the impact of each of the ASL analysis pipelines on the
non-lesioned CBF values inMNI space, we extracted a 15 mm radius
sphere in the anterior cingulate cortex [ACC,MNI coordinates x = 0,
y = 44 (anterior), z = 18 (superior)]. We ensured that the ACC
15 mm region of interest (ROI) did not overlap with any individual
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participant’s lesion. We then applied the grey matter (GM) and
white matter (WM) segmentations computed on each participant’s
T1w image using FSL’s fast algorithm (Zhang et al., 2001) to extract
ACC GM and WM CBF values. The average CBF under each
participant’s individual GM and WM CBF maps were extracted
with afni’s 3dmaskave. A separate 15 mm spherical ROI outside of
the brain and head was used to extract the standard deviation of the
noise in the air. The following metrics were computed to assess the
quality of the quantified CBF from each pipeline:

Signal-to-Noise Ratio (SNR)

SNR � μtissue
σair

(1)

Coefficient of Variation (CoV)

CoV � σtissue
μtissue

(2)

Grey matter to White matter Contrast-to-Noise Ratio (CNR)

CNR � μGM − μWM

σair
(3)

Where σ represents the standard deviation of the CBF within the
ROI and μ represents the average CBF within the ROI.

Relationship between TIGR-quantified
tissue damage and CBF

We previously related perilesional regions (TIGR score =
0 within 10 mm of the lesion), low damage lesion regions (TIGR

score 0.1–0.3), medium damage lesion regions (TIGR score 0.4–0.7),
and high damage lesion regions (TIGR score 0.8–1.0) to decrease in
cerebral blood flow in six participants (Krishnamurthy et al., 2021).
We now expand upon this finding by leveraging the interpolated 1 ×
1 × 1 mm3 CBF image to directly relate with the 1 × 1 × 1 mm3 TIGR
map in 14 participants, allowing us to use the computed TIGR score
rather than averaging over a range of TIGR scores. An ROI for each
TIGR score was generated (0.1, 0.2, 0.3, . . . , 1.0) which is unique to
each subject based on their lesion location, TIGR map profile, and
ROI size. For each participant, an average CBF value was computed
for each ROI.

To assess the relationship between CBF and tissue damage
within the lesion, a linear regression was performed in JMP
Pro16 (Cary, NC) for each participant. The fit of the linear
model is reported with R2 and F-statistic, with the corresponding
p-value. To account for multiple tests being performed, significance
was assessed using the Bonferroni corrected p-value of 0.01 divided
by N = 14 participants.

Further, given that both demographic and stroke-specific factors
may govern the amount of blood flow to the lesion, we completed an
ANOVA in JMP Pro16 to test if factors (tissue damage) along with
(time since stroke), (sex), (age), and cross terms (tissue damage*time
since stroke), (tissue damage*sex), (tissue damage*age), (time since
stroke*sex), (time since stroke*age), and (sex*age) explain CBF
within the lesion. The results of the model are reported with
F-statistic and subsequent t-tests are performed to determine
which terms had a significant effect. We also tested a separate
model that included WAB-AQ, as the aphasia quotient can be
used in the clinical setting.

FIGURE 1
Three analysis pipelines to compute CBF were tested. The spatial smoothing in the “blur 4 in native” pipeline occurs in the native space, prior to the
subtraction of control and label images. The spatial smoothing in the “blur 4 in MNI” pipeline occurs in the MNI space, and the “no blur” pipeline does not
have spatial smoothing applied to the images. The resulting CBF map is always in MNI space. Average CBF maps from 14 participants (all left hemisphere
lesions) for each analysis pipeline are shown as a reference.
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Multivariate brain-behavior relationships

We recently established that whole-brain task-fMRI data can be
used to quantify brain-behavior maps in PWA (Song et al., 2023).
Based on these promising results, we built upon this multi-variate

framework by using whole-brain CBF maps. We assessed the
feasibility of quantifying brain-behavior relationships between
whole-brain CBF maps and either HVLT-R or BVMT-R
behavioral measures using LESYMAP’s sparse canonical
correlation analysis (sccan) (Pustina et al., 2018) thresholded at

FIGURE 2
(A) The T1w, TIGR MRI, and CBF map from each individual participant, showing the heterogeneity of lesion location, tissue damage, and CBF maps.
(B) The maximum lesion overlap and the maximum average TIGR scores are in adjacent, but only partially overlapping, areas. Note: Left is left in the
images.
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p < 0.05. Because LESYMAP’s sccan models all voxels
simultaneously, no multiple comparison corrections are
necessary. To determine if whole-brain CBF maps can capture
brain-behavior results above and beyond structural imaging
modalities, we show results for TIGR maps and CBF maps, all in
MNI template space to facilitate group statistics and comparison
across methodologies. To account for the effects of lesion on the CBF
values, we covaried two lesion-derived metrics from each voxel only
if the relationship was significant: 1) lesion volume and 2) cavitation
volume. There were no other covariates such as age entered into the
modeling of the brain-behavior relationship. Due to the whole-brain
nature of CBF data, a whole-brain mask was generated by
overlapping binarized anatomical brain masks from each
participant (afni 3dOverlap) and thresholded at a minimum of
N = 10 participants represented in each voxel (afni 3dcalc). The
k-fold cross-validation for sccan was set to 7 and the output results
were clustered at 1,000 contiguous voxels.

Results

General results

PWA characteristics are shown in Table 1. All 14 participants
were ensured to have good-quality T1w, T2w, and pCASL images via
careful image pre-processing and quality control. The lesion location
was heterogeneous across the MCA territory and the CBF visually
decreased in their respective lesioned areas (Figure 2A). The false-
color TIGR map ranges from blue (0.1, least damaged) to red (1.0,
most damaged) and estimates the degree of tissue damage in the
lesioned area (Figure 2A). Of the 14 participants, the maximum
number of lesions that overlapped in any given region was 9 but did
not overlap with the maximally damaged regions as quantified by
TIGR (Figure 2B). The red portion of the colorbar in Figure 2B
represents the highest 80% of the maximum overlap or average
tissue damage. The lesion overlap is greater in white matter regions,
whereas the greatest average tissue damage is in gray matter regions
(Figure 2B).

Comparison of ASL analysis pipelines in
intact brain regions and the whole lesion

The average ACC GM CBF was 46.7 ± 7.7 mL/100 g/min for
blur-4-in-native, 47.7 ± 8.0 mL/100/min for blur-4-in-MNI, and
51.2 ± 8.5 mL/100 g/min for no-blur ASL analysis pipelines. The
average ACC WM CBF was 36.2 ± 7.4 mL/100 g/min for blur-4-in-
native, 33.9 ± 7.7 mL/100 g/min for blur-4-in-MNI, and 30.5 ±
8.5 mL/100 g/min for no-blur ASL analysis pipelines. An ANOVA
testing the effect of ASL analysis pipeline and tissue type on average
CBF values was significant [F (3,80) = 23.66, p < 0.0001], but
indicated that only the tissue type had a significant effect on
average CBF values (F = 70.87, p < 0.0001), while the ASL
analysis pipeline did not have a significant effect on average CBF
values (F = 0.06, p = 0.95). There is, however, a small effect of the
ASL analysis pipeline on GM-WM CNR [F (2,39) = 4.64, p = 0.02],
indicating that the no-blur ASL analysis pipeline provided a greater
CNR (2.8 ± 1.3) than the blur-4-in-MNI (CNR = 2.1 ± 1.2) and the

blur-4-in-native (CNR = 1.5 ± 0.9). This translates to the increased
pairwise t-statistic in GM and WM (Figure 3A), where blur-4-in-
native has pairwise GM-WM difference with t (13) = 7.8 (p <
0.0001), blur-4—in-MNI has a pairwise GM-WM difference with t
(13) = 9.3 (p < 0.0001), and no-blur has the greatest pairwise GM-
WM difference with t (13) = 10.4 (p < 0.0001). A significant decline
with age in ACC GM CBF was detected (t = −2.2, p = 0.04), but not
in ACC WM CBF (t = 0.5, p = 0.60).

The lesion CBF is significantly lower than the homologue WM
CBF (t = 11.2–12.8, p < 0.0001), which is remarkably lower than the
homologue GM CBF (t = 5.6–6.1, p < 0.0001), regardless of ASL
analysis pipeline (Figure 3B). The CoV of the CBF in the lesion area
is greater than in GM or WM, suggesting that more transitions in
CBF are captured within the entire lesion ROI compared to other
tissue types. Because not all lesioned tissue is equal, and some
regions may have more or less blood flow due to the degree of
tissue damage, it supports our expectation that a relationship
between tissue damage and CBF may be detectable.

Assessing the relationship between lesion
CBF and tissue damage

To assess the impact of tissue damage on blood flow, we plotted
the average lesion CBF against the TIGR score for each participant.
Most participants tend to have a higher CBF in less damaged tissue
and a lower CBF in more damaged tissue (Figure 4). To assess if the
relationship between CBF and TIGR is significant, linear regression
was applied to each participant’s dataset for each analysis pipeline.
As seen in Table 2, 6 out of 14 participants had a Bonferroni-
corrected significant relationship between CBF and TIGR. Further,
an additional 5 participants had non-Bonferroni corrected
significant relationships between CBF and TIGR. Only one
participant (S13) did not indicate any relationship between CBF
and TIGR score. Further, 12 out of 14 participants showed the
expected negative relationship between CBF and TIGR as indicated
by the column “sign of the slope” in Table 2. One participant showed
a significant positive relationship between CBF and TIGR. It is also
evident in Figure 4 that there is a lot of variability in the lesion CBF
that is not explained by tissue damage. For example, there is
variability in the CBF of the least damaged regions (TIGR = 0.1),
which ranges from 11–36 mL/100 g/min. Therefore, in the next
section, we introduce a model with more explanatory factors to
further describe the CBF within the lesion.

Modeling the effect of tissue damage, time
since stroke, age, and sex on blood flow to
the lesion

The CBF within the lesion was modeled with a group-level
ANOVA to further account for the variability by introducing
stroke-related factors tissue damage (from TIGR) and time
since stroke, and demographic-related factors age and sex, as
well as their cross terms. The CBF output from each of the
three ASL-analysis pipelines was modeled in separate ANOVAs
and the factor outputs are summarized in Table 3. The significant
factors include tissue damage, time since stroke, sex, age, and
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cross-terms age-by-sex and time since stroke-by-age. These factors
were significant, regardless of the analysis pipeline, but the best fit
of the lesion CBF was provided by the blur-4-in-MNI ASL-analysis
pipeline (F = 55.62, p < 0.0001). Although the no-blur pipeline
provided the greatest GM-WM contrast in intact brain regions
(Figure 3), the resulting ANOVA for the no-blur CBF provided the

lowest fit as indicated by the F-statistic (Table 3). Because WAB-
AQ is also a clinical (stroke-related) factor, we tested the addition
of WAB-AQ to the model but found that no terms with WAB-AQ
remained significantly related to lesion CBF. Therefore, we only
consider the model without WAB-AQ factors.

As indicated by Figure 5, more regional tissue damage within the
stroke lesion is related to a lower CBF within that region (defined by
the TIGR maps). Further, if more time has elapsed since the stroke,
the lesion CBF is also lower. The model also suggests that the lesion
CBF is higher in older participants compared to younger, which is
opposite to the intact ACC GM CBF. The model also identified that
Females tend to have a greater lesion CBF compared to Males.
Finally, there was an interaction between the two demographic
factors age-by-sex, but more interestingly, the model also
indicated a significant interaction between stroke and
demographic-related factors age-by-time since stroke. Because the
blur-4-in-MNI CBF output resulted in the best fit of stroke and
demographic-related factors, this CBF value is further graduated to
determine if brain-behavior relationships could be identified with
CBF maps.

Multivariate brain-behavior relationships

If a voxel’s CBF value across the group was significantly related
to either lesion or cavitation volume, the relationship was covaried
out to reduce any confounds in the identified brain-behavior
relationships. No significant relationships between lesion volume
or cavitation volume were identified with TIGR maps and therefore
not regressed out.

Significant multivariate brain-behavior relationships (thresholded at
p < 0.05) were found for BVMT total recall and BVMT recognition for

FIGURE 3
The quantified CBF from each ASL analysis pipeline. (A) The anterior cingulate cortex (ACC) GM andWM CBF. The number represents the t-statistic
of a paired t-test between tissue types. (B) Top row: The CBF of the lesion and its homologue GM and WM. The number represents the t-statistic of a
paired t-test between regions. Bottom row: The CoV of the CBF across the same tissue regions for each analysis pipeline.

FIGURE 4
Each participant’s lesion CBF at each TIGR score. Each line
represents the average CBF computed from all three ASL analysis
pipelines. The error envelope is constructed using the maximum and
minimum CBF computed from all three pipelines.
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both cavitation and lesion-corrected CBF data (Figure 6). TIGR maps
resulted in significant brain-behavior relationships with BVMT total
recall. The cavitation-corrected CBF maps show fewer brain-behavior
areas than the lesion-corrected CBF brain-behavior maps, although the
two input data tend to agree on the areas where both are significant. The
results in Figure 6 show that CBF-derived brain-behavior maps for
BVMT–total recall are distinct from the brain-behavior maps for
BVMT–recognition, suggesting that whole-brain CBF maps can
generate behavior-specific information. Further, the TIGR

relationship with BVMT total recall shows one overlapping and one
unique area compared to the CBF relationships with BVMT total recall,
suggesting the structural and functional modalities are complementary.
The BVMT total recall maps include the anterior thalamus and
retrosplenial cortex, both of which are associated with spatial-
memory-related behavior (Vann et al., 2009). Conversely, the
BVMT–recognition shows areas of the default mode network and
the right executive function network, which are involved in decision-
making (Sridharan et al., 2008). Finally, the HVLT behavior did not

TABLE 2 The statistics describing the linear relationship between CBF and TIGR for each subject (Sub) and each analysis method: blur-4-in-native, blur-4-in-MNI,
and no-blur. The * in the p-value column indicates significance at a Bonferroni corrected p = 0.01. The sign of the slope column indicates if the relationship is
negative (−) or positive (+). The bolded numbers correspond to the values with a * (significance at a Bonferroni corrected p = 0.01).

Sub Blur 4 in native Blur 4 in MNI No blur Sign of the slope

R2 F (1,8) p-value R2 F (1,8) p-value R2 F (1,8) p-value

S01 0.84 43.34 0.0002* 0.82 37.70 0.0003* 0.78 28.67 0.0007* -

S02 0.86 48.30 0.0001* 0.88 56.39 <0.0001* 0.90 73.98 <0.0001* -

S03 0.45 6.52 0.03 0.46 8.82 0.03 0.29 3.34 0.10 -

S04 0.35 4.27 0.07 0.36 4.57 0.07 0.25 2.65 0.14 -

S05 0.50 7.99 0.02 0.48 7.27 0.03 0.46 6.73 0.03 -

S06 0.82 36.22 0.0003* 0.81 33.69 0.0004* 0.75 24.05 0.001 -

S07 0.23 2.40 0.16 0.18 1.75 0.22 0.17 1.67 0.23 -

S08 0.85 45.44 0.0001* 0.81 34.52 0.0004* 0.82 37.45 0.0003* -

S09 0.62 13.29 0.007 0.64 14.36 0.005 0.63 13.56 0.006 -

S10 0.71 19.63 0.002 0.66 15.70 0.004 0.57 10.44 0.01 +

S11 0.44 6.27 0.04 0.34 4.05 0.08 0.24 2.59 0.15 -

S12 0.94 127.32 <0.0001* 0.92 90.70 <0.0001* 0.86 50.82 <0.0001* -

S13 0.02 0.16 0.70 0.01 0.07 0.80 0.01 0.07 0.80

S14 0.87 55.28 <0.0001* 0.90 75.63 <0.0001* 0.77 26.65 0.0009 -

TABLE 3 The ANOVA model output for each ASL analysis pipeline. The numbers indicate a t-statistic, except the bottom row, which is an F-statistic. The red box
indicates that blur-4-in-MNI produces the CBF values that are best described by the model. Note: For each model factor, **** indicates p < 0.0001, *** indicates p <
0.001, ** indicates p < 0.01, * indicates p < 0.05, and N/S is not significant. The bolded numbers indicate the greatest t or F statistic in that row (if significant).

Model factor Blur 4 in native Blur 4 in MNI No blur

sex 11.83**** 11.19**** 9.96****

age at scan 9.40**** 10.47**** 9.25****

age at scan × time since stroke 8.37**** 8.91**** 8.12****

age at scan × sex 6.80**** 6.34**** 5.74****

tissue damage (TIGR) −4.72**** −5.16**** −5.04****

time since stroke −4.11**** −3.95*** −3.25**

tissue damage × sex 2.32* 2.03* 1.93N/S

tissue damage × age at scan 1.55N/S 1.59N/S 1.44N/S

tissue damage × time since stroke −0.96N/S −0.96N/S −0.84N/S

time since stroke × sex −0.34N/S −0.07N/S 0.25N/S

F(10,129) = 54.90**** 55.62**** 45.36****
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result in significant brain-behavior maps using LESYMAP’s sccan
multivariate analysis for either TIGR or CBF imaging inputs.

Discussion

The results of this study demonstrate that CBF is detectable in
chronic stroke lesions, suggesting that the pericavitational regions may
be viable and can be engaged and targeted during aphasia and stroke
rehabilitation. We recommend that at least in chronic stroke datasets,
spatial smoothing should be applied in the MNI template space during

the CBF analysis to increase the grey matter and white matter contrast
while maintaining sensitivity to changes in tissue damage. We showed
for the first time that the CBF in chronic stroke lesions decreases with
increasing tissue damage as quantified by TIGR MRI. Further, we
showed that demographic and stroke-related factors also influence the
lesion blood flow, suggesting that individualization of stroke
intervention strategies is a priority to achieve optimal treatment
outcomes. Finally, using an advanced multivariate approach, for the
first time, we demonstrated that whole brain CBF in PWA is related to
visual-spatial learning and memory and can serve as complementary
information to lesion-based brain-behavior maps.

FIGURE 5
The leverage plots for the ANOVA model output. The lesion CBF is significantly associated with stroke-related factors of tissue damage and time
since stroke, and demographic-related factors of age and sex.

FIGURE 6
Multivariate brain-behavior maps using TIGRMRI and either cavitation-corrected or lesion-corrected cerebral blood flow (CBF) for BVMT total recall
and BVMT recognition. The gold indicates either mean TIGR (cavitation corrected) or lesion overlap (lesion corrected). The red and blue indicate regions
of significant multivariate brain-behavior relationships.
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Comparison of ASL analysis pipelines

Measuring cerebral blood flow within chronic stroke lesions is
challenging because of the small ASL signal and additional
reductions caused by tissue damage. However, we have shown
that standard pCASL MRI can effectively measure CBF within
these lesions. We improved the detection sensitivity of changes in
CBF in rapidly transitioning tissue damage by optimizing the step in
which spatial smoothing is applied within the ASL analysis pipeline.
Our approach increases the sensitivity to differences in tissue types,
including grey matter and white matter, as well as quantifying tissue
damage using the TIGR score. It is well accepted that GM has a
higher CBF than WM and previous studies have determined that
pCASL MRI can reliably detect WM perfusion (van Osch et al.,
2009). Therefore, we first assessed the effects of spatial smoothing on
the non-lesioned ACC and determined that the GM-WM
differences are detectable regardless if smoothing is applied in
native space, MNI template space, or not at all. However, there
was an increase in tissue contrast, when smoothing was applied in
MNI template space compared to native space, but the highest GM-
WM CNR was found if no smoothing was applied. Given these
results, we thought that no smoothing would provide the best
snapshot of lesion CBF, however, when modeling the CBF with
demographic and stroke-related factors (Table 3), it became
apparent that spatial smoothing in MNI template space was the
most appropriate.

As is well known from the functional and physiological MRI
literature, spatial smoothing provides stability to the regional MR
signal, generally benefitting the ASL perfusion signal (Wang et al.,
2005; Fazlollahi et al., 2015) andminimizing the anatomic variability
in group-level analyses (Scouten et al., 2006; Mikl et al., 2008).
However, there are also some negative outcomes of spatial
smoothing such as reductions in tissue CNR (Molloy et al.,
2014), loss in precision of cluster extent (Hagler et al., 2006), and
increased Type-1 errors in the estimation of group-level significant
maps (Vul et al., 2009). While we observed the expected decrease in
the tissue CNR, such a limitation should be evaluated within the
context of study goals. For clinical neuroradiological evaluation of
CBF maps at the individual level, perhaps tissue CNR becomes more
important. Instead, for group-level investigational research studies,
we show that the improved relationship between stroke and
demographic-related factors outweighs the reduced CNR.
Although the tissue damage transitions in the TIGR images can
be as rapid as 1–2 mm, possibly limited by the resolution of the T1w
and T2w images, blurring the CBF maps still improved the overall
relationship with tissue damage and other factors. It will be of
interest to repeat this study at the higher field strength of 7T, where
submillimeter resolution ASL data can be collected (Zuo et al., 2013)
and the SNR is 3-fold compared to 3T (Shao et al., 2021). Perhaps
due to these inherent signal improvements, smaller transitions in the
stroke lesion CBF signal can be detected at 7T. However, technical
limitations for implementing ASL at 7T such as specific absorption
rate (SAR) limits and the ability to achieve reasonably strong
labeling at a reasonably large labeling-plane offset may preclude a
widespread adaptation of TIGR and ASL data collection in stroke
participants and will likely serve as a validation of the present
findings. Instead, translating the current approach to wide-bore
research and clinical systems with lower gradient amplitudes may

help the translation of the approach into the clinic, particularly for
post-stroke individualization of rehabilitation approaches. Finally,
the impact of spatial smoothing and smoothing kernel size in MNI
space and its effect on the extent of detected cluster size and Type-1
errors is important but was not the focus of the current study. Future
work should consider advancing the stroke ASL analysis pipelines to
investigate these questions using larger datasets.

Another challenge to CBF quantification is the estimation of
tissue proton density (M0) to calibrate the perfusion signal. We used
a separately acquired M0 image to calibrate the perfusion data on a
voxel-by-voxel basis, rather than using the whole brain difference
signal or intact region as the calibration reference signal, as has
previously been used to reduce inter-subject variability (Aslan and
Lu, 2010). We hypothesize that the M0 voxel-by-voxel
normalization may be the most appropriate for stroke brains
because a whole-brain average will be influenced by lesion size
and location, possibly introducing more inter-subject variability,
and the intact control region may be affected by changes in blood
flow distal to the lesion (i.e., diaschisis), further introducing more
inter-subject variability. Future work should compare and contrast
the different CBF normalization techniques.

The relationship between lesion CBF and
tissue damage

We assessed the relationship between lesion CBF and tissue
damage using linear regression. A significantly decreasing CBF
with increasing tissue damage was detected in 6 out of
14 participants at a Bonferroni corrected p = 0.01 and in an
additional five participants at a non-Bonferroni corrected value
(Table 2) suggesting that this relationship will be detectable in
most chronic ischemic stroke lesions. In one participant, who is
characterized as a 50-year-old Male, 70 months post-stroke,
with Conduction aphasia, no relationship between CBF and
tissue damage was found; however, this was also the participant
with the lowest CBF value at a TIGR score of 0.1 (least tissue
damage). Therefore, the detectability of further tissue-damage-
related CBF decreases may be minimal for this participant.
Further, the CBF for this participant does decrease between
TIGR scores 0.1 and 0.6, but then rises again to peak at TIGR
score 0.9 and then falls to a minimum in the cavitation (TIGR
score 1.0). Indeed, the rise of CBF at a mid-level TIGR score is
observed in approximately half of the participants (Figure 4),
indicating that there may be a tissue-type transition. We
speculate that perhaps the lower TIGR scores of 0.1–0.5 (less
damage) are mapped to white matter, while TIGR scores of
0.6–0.9 (more damage) are mapped to grey matter. This would
explain the “jump” in CBF mid-way through the tissue damage
scores because GM always has higher CBF than WM but is now
confounded by the amount of damage impacting the tissue. This
does not mean that GM is necessarily always more damaged
than white matter, but may perhaps stem from the inherent
differences in tissue properties (cell type and morphology, tissue
T1 and T2, etc.) that are a latent confound to TIGR tissue
damage classification. The cavitation (TIGR score 1.0) is
mapped indiscriminately to either tissue type. It is worth
noting that the ratio of T1w to T2w anatomical images is
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known, rightly or wrongly, in other contexts as the “myelin
map” (Glasser and Van Essen, 2011; Boaventura et al., 2022) due
to its strong association with myelin content in the non-lesioned
brain. The ratio of T1 to T2 in myelin maps or T2 to T1 in TIGR
maps is a representation of microstructure differences across
brain regions–which, in a healthy brain can grossly be attributed
to regional differences in myelination. In stroke lesions, or most
neurological diseases, it is not so simple because the
microstructural changes are so vast and varied that the
change in the ratio cannot be attributed to a single cell type.
Empirical data to further investigate these observations does not
yet exist, and will likely rely on models to determine the
previous individual sulcal and gyral patterns of the lesioned
tissue. These models may also take into account atrophy and
pressure-related changes in sulcal patterns. All other
participants showed a significant reduction in CBF with
increasing tissue damage, as hypothesized, except for one,
which may be due to the pCASL MRI sequence, which is
discussed later in the Limitations section.

Lesion CBF relates to stroke and
demographic factors

The model output showed that CBF within the lesion was
significantly described by demographic factors “age” and “sex”
and stroke-related factors “time since stroke” and “tissue
damage.” CBF is a complex measure of vascular and metabolic
supply to the tissue (Drake and Iadecola, 2007), and incorporating
all of these factors in the model allows for an improved
understanding of clinically-relevant factors that are important for
diagnosis and treatment planning (Table 3; Figure 5).

It is well accepted that CBF reduces with age in healthy
participants (Mokhber et al., 2021), which we also detected in the
intact ACC GM ROI establishing the validity of our analysis
pipeline. However, the model result showing that lesion CBF is
more preserved in older individuals compared to younger
individuals is somewhat counterintuitive (Figure 5). It may be
that the global aging-related decline in brain connections results
in a reduced impact on blood flow to the lesion, or may have an
impact on post-stroke vascular dynamics. While it is encouraging
that our results reflect these exciting findings, empirical evidence of
such a relationship does not yet exist and more sophisticated multi-
modal work is needed to characterize the lesion physiology and
microstructure in humans.

The model also showed that Females have more preserved blood
flow to the lesion than Males, but this finding conforms to the bulk
of the literature on healthy aging, where cortical CBF in Females is
greater than in Males, at least at an age less than 65 (Aanerud et al.,
2017). The significant age-by-sex interaction term further indicates
that the lesion CBFmay be sensitive toMale-Female CBF differences
that change with age. However, the small sample size of Females
(N = 4, age 24–81) compared to Males (N = 10, age 35–73) strongly
indicates that this finding needs to be replicated with a much larger
cohort with a wide range in age and balanced representation of
Males to Females.

The stroke-related factor “time-since-stroke” showed that lesion
CBF declines as more time passes since the stroke. This may indicate

that metabolic and vascular declines are perhaps still occurring in
the chronic stages of stroke in the lesioned area, plausibly due to the
loss of neural cells due to lack of blood supply. This is an interesting
finding, as subcortical structures downstream from the lesion do not
change their volume in the chronic stages (Krishnamurthy et al.,
2020), indicating that these are subtle metabolic and vascular
processes that may occur locally and closer to the lesion.
Furthermore, the significant age-by-time since stroke interaction
further indicates that the rate of decline in CBF after stroke may
depend on the age at which the stroke occurred. This is one of the
first pieces of evidence that aging-by-disease interactions can be
quantified to help in individualized patient treatment planning.

The data indicated that lesion CBF decreases significantly with
increasing tissue damage (Table 2; Figure 4). This result was
reinforced in the model that accounted for both stroke and
demographic-related factors (Table 3; Figure 5). Therefore, if
TIGR MRI indicates that a region of the chronic stroke lesion is
pericavitational, it is likely that the damaged-but-intact tissue is
viable and can be reengaged with targeted rehabilitation.

Brain-behavior relationships

When examining the relationship between the brain and
behavior, researchers have relied on lesion information for over
200 years (Baldo et al., 2022). Although powerful and highly
informative, this approach limits the search for relationships to
only the areas where lesions occur. In PWA, that usually means only
the left hemisphere middle cerebral artery (MCA) territory is
inspected for brain-behavior relationships. Instead, using whole-
brain cerebral blood flow maps with CBF that is detectable in the
lesioned areas allows the entire brain now to become available when
assessing functional and physiological brain-behavior relationships.
First, we will examine the lesion-level brain-behavior relationships
and then extend the results into the CBF-based brain-behavior
relationships.

We previously showed that brain-behavior maps extracted with
TIGR show similar brain-behavior maps compared to binary lesions
(Krishnamurthy et al., 2021), but may have more statistical power
due to the continuous nature of TIGR compared to the binary “all-
or-none” nature of lesions maps. Therefore, given the small sample
size of N = 14 participants, we chose to evaluate lesion-based brain-
behavior maps using TIGR as the input. The BVMT total recall
related significantly to two regions of the group-level TIGR maps: 1)
a left frontal region encompassing primary sensory-motor, dorsal
pre-motor, and dorsal lateral prefrontal cortices, as well as the
posterior insula, and 2) a left parietal region encompassing
supramarginal gyrus and angular gyrus. The frontal region is
positively related to tissue damage, which indicates that damage
to these regions predicts better visuospatial function. This result is
counterintuitive because damage to any brain region will likely result
in some level of worse behavioral outcome. However, it may be that
damage to the frontal regions indicates a lower probability of
damage to the parietal regions, which instead shows a negative
relationship between tissue damage and BVMT total recall. In PWA,
the left inferior parietal lobule (IPL) is often associated with language
processes, but in the case of the visuospatial learning captured by the
BVMT total recall, it may be that this finding suggests that
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visuospatial learning is processed in both the right and left parietal
cortices because functions such as new learning are not clearly
localized (Goodglass et al., 1979). The clues to this can be gathered
from the CBF-derived brain-behavior maps.

The CBF-derived brain behavior maps show multiple distinct
areas, both within the lesion and distal to the lesion. The CBF-
derived brain-behavior region overlaps with the TIGR-based frontal
region, while the TIGR-based parietal brain-behavior region does
not overlap with the CBF-derived region. Therefore, the left parietal
involvement identified with only the TIGR information may
represent complementary information. It is not clear why the
CBF-related regions do not overlap with all TIGR-related regions,
especially since the TIGR ad CBF scores are linearly related.
However, other regions outside of the lesion are highlighted
when using CBF: specifically the right IPL. Therefore, the L-IPL
from TIGR and R-IPL from CBF together point to both
hemispheres’ involvement in BVMT total recall, showing that
visuospatial learning is related to the baseline blood flow to the
right parietal areas (as traditionally implicated in visuospatial
tasks) as well as the left parietal areas. The BVMT recognition
task, which recalls which shapes were encountered, has more right
lateralization in the CBF brain-behavior maps. This interpretation
would have been difficult when assessing lesion-derived brain-
behavior maps in the absence of the CBF-derived maps because the
additional network information is missing when confined to only
the lesion overlap areas. We recommend that the brain-behavior
mapping field go beyond lesion-based maps and start
incorporating whole-brain functional and physiological maps as
inputs. Both types of maps may agree on some regions but seem to
also provide unique and complementary information that together
helps improve our understanding of the brain and determine
targets of intervention.

We did not identify significant brain-behavior relationships with
verbal learning as measured with the HVLT-R, although the reasons
for this are not clear as the behavior was well distributed between
low and high values, and the lesion locations were also distributed
across the MCA territory. Perhaps the CBF maps did not show a
relationship to HVLT-R because verbal learning is more confined to
the left hemisphere compared to visuospatial learning. However,
TIGR MRI also did not relate to HVLT-R which was disappointing
as verbal learning in PWA is a predictor of rehabilitation success
(Dignam et al., 2017), and identifying the hubs of the brain network
involved in verbal learning may have been informative for treatment
planning.

In this report, we also assessed the effects of covarying the lesion
volume versus the cavitation volume from the CBF maps before
computing the brain-behavior maps. Both cavitation volume and
lesion volume had areas of significant correlation with CBF, and
both cavitation-corrected and lesion-corrected CBF resulted in
significant brain-behavior maps with similar regions (Figure 6).
Based on the number of significant regions captured by each
modality, we recommend that the field continue to correct by
lesion volume, not by cavitation volume. The cavitation-corrected
CBF, at least at this small sample size, seems to lose some statistical
sensitivity relating to behavior (both subcortical and frontal regions
are missing when correcting by cavitation size). Although the
cavitation represents the part of the lesion that is fully damaged,
it may be that the distal blood flow is more impacted by the size of

the lesion, regardless of how much potentially viable tissue is still
present in the lesion.

Finally, all brain-behavior results using CBF show a negative
relationship, indicating that greater blood flow to those brain
regions predicts a worse behavioral outcome. Such a result,
though counterintuitive, is not beyond the realm of possibility.
A theoretical, yet empirically elusive, construct in the stroke
literature is the concept of diaschisis (Carrera and Tononi,
2014)—defined as “neurophysiological changes that occur
distant to a focal brain lesion.” It may be that loss of input and
output to a region distal to the lesion may cause an increase in
blood flow due to a reduction in inhibitory tone (Blicher et al.,
2015), which together (i.e., GABA and CBF) influence cognitive
decline (Krishnamurthy V. et al., 2022; Krishnamurthy L. C. et al.,
2022). Therefore, an increased CBF distal to the lesion may
indicate a failure of the network and lead to worse behavioral
outcomes.

Limitations

This study is the first of its kind to assess the CBF in chronic
stroke lesions and relate to the underlying tissue damage of the
lesion. While the study has many novel discoveries, there are a
few limitations that also need to be highlighted. First, the study
sample size of N = 14 chronic stroke participants is small and
therefore should be viewed strictly as a proof-of-principle.
Particularly the model output and the brain-behavior
relationships require further testing with larger cohorts, as
these statistical tests usually require dozens of participants to
identify significant relationships (Sperber et al., 2019).
However, advanced multivariate approaches (such as
Lesymap’s sccan) are tailored to produce meaningful results
from small sample datasets. It may be that the input of a whole-
brain CBF map to the multivariate brain-behavior analysis
allowed the model to converge because the entire network is
represented in the data input, rather than a subset often defined
by a lesion overlap mask.

Another limitation of this study is the MRI sequence
parameters used to collect perfusion-weighted images. Our
pCASL MRI sequence used a 2D EPI acquisition without
background suppression and a single post-labeling delay. The
current recommendations of the field (Alsop et al., 2015) are to
use a 3D acquisition to remove the difference in blood arrival
between slices and to apply background suppression to improve
the computation of the difference signal by reducing the
overlying tissue signal. We chose not to use background
suppression because we are interested in quantifying the CBF
of the lesion, but the T1 of lesioned tissue is not known and
requires an additional MRI scan to quantify. Therefore,
background suppression in ASL sequences must still be
optimized for the chronic stroke brain, but will likely improve
the relationship between lesion CBF and tissue damage
quantified using TIGR. The lesion CBF of S10 likely suffered
from an inadequate subtraction and caused the relationship
between CBF and tissue damage to be positive, when all other
participants had the expected negative relationship. Further, the
intact WM CBF was consistently quantified at ~30 mL/100 g/min
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in this cohort, which is higher than the literature WM CBF of
~20 mL/100 g/min (Mokhber et al., 2021), possibly due to an
incomplete tissue subtraction. The other limitation of the pCASL
MRI sequence used in this study is the single post-labeling delay
of 2,200 ms, which is relatively long, but will not provide
additional information about blood arriving at a later time
due to collateral flow (Lou et al., 2019). It may be ideal to
collect two or more PLDs (perhaps up to 2,800 ms) to
improve upon the CBF quantification after stroke or use the
more advanced MR ASL fingerprinting (Su et al., 2017) to
quantify multiple physiological parameters such as CBF and
bolus arrival time using a single acquisition. Collecting MRS
ASL fingerprinting data could also rule out arterial transit time
artifacts that may occur in and around the lesion, which may be
responsible for the “jump” in CBF midway through the tissue
damage scores. The increased information from MR ASL
fingerprinting within chronic stroke lesions could help
improve the modeling of demographic and stroke-related
factors, as well as brain-behavior relationships.

The removal of physiological noise from the perfusion-weighted
signal was also not undertaken. We did not collect either cardiac or
respiratory information during the pCASL MRI acquisition, as such
data was not readily available using our setup. It has been shown that
removing both cardiac and respiratory fluctuations during the ASL
analysis can help improve the stability of the signals and remove
spurious regional variations (Hassanpour et al., 2018). It may be that
the slight negative CBF of highly damaged (i.e., cavitated) regions in
some participants may be a result of physiological pulsatility causing
a greater label signal compared to the control signal. Another means
of removing physiological noise in ASL images is to use ICA-
denoising approaches (Carone et al., 2019), but optimization and
development of ICA denoising on stroke ASL data was beyond the
scope of this report.

Conclusion

In summary, we presented for the first time that CBF can be
detected in chronic stroke lesions, demonstrating that this
signal relates to tissue damage, with adequate fidelity to
model with stroke and demographic-related factors and to
relate to behavior.
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Reproducibility of cerebral blood
flow, oxygen metabolism, and
lactate and N-acetyl-aspartate
concentrations measured using
magnetic resonance imaging and
spectroscopy
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In humans, resting cerebral perfusion, oxygen consumption and energy
metabolism demonstrate large intersubject variation regardless of
methodology. Whether a similar large variation is also present longitudinally in
individual subjects is much less studied, but knowing the time variance in
reproducibility is important when designing and interpreting longitudinal
follow-up studies examining brain physiology. Therefore, we examined the
reproducibility of cerebral blood flow (CBF), global cerebral metabolic rate of
oxygen (CMRO2), global arteriovenous oxygen saturation difference (A-V.O2), and
cerebral lactate and N-acetyl-aspartate (NAA) concentrations measured using
magnetic resonance imaging (MRI) and spectroscopy (MRS) techniques through
repeated measurements at 6 h, 24 h, 7 days and several weeks after initial baseline
measurements in young healthy adults (N = 26, 13 females, age range
18–35 years). Using this setup, we calculated the correlation, limit of
agreement (LoA) and within-subject coefficient of variation (CoVWS) between
baseline values and the subsequent repeated measurements to examine the
longitudinal variation in individual cerebral physiology. CBF and CMRO2

correlated significantly between baseline and all subsequent measurements.
The strength of the correlations (R2) and reproducibility metrics (LoA and
CoVWS) demonstrated the best reproducibility for the within-day
measurements and generally declined with longer time between
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measurements. Cerebral lactate and NAA concentrations also correlated
significantly for all measurements, except between baseline and the 7-day
measurement for lactate. Similar to CBF and CMRO2, lactate and NAA
demonstrated the best reproducibility for within-day repeated measurements.
The gradual decline in reproducibility over time should be considered when
designing and interpreting studies on brain physiology, for example, in the
evaluation of treatment efficacy.

KEYWORDS

cerebral blood flow, cerebral metabolic rate of oxygen, cerebral lactate, phase contrast
mapping, arterial spin labelling, reproducibility, N-acetyl-aspartate

1 Introduction

Measurements of cerebral blood flow (CBF), oxygen
consumption and energy metabolism are of considerable interest
when studying brain physiology and pathophysiology. Numerous
research studies have examined the effects of disease or certain
interventions on cerebral physiology (Powers et al., 1985; Liddle
et al., 1992; Oshima et al., 2003; Peng et al., 2014; Snyder et al., 2015;
Wolters et al., 2017; Younis et al., 2021; Vestergaard et al., 2022).
However, cerebral physiology, both CBF and energy metabolism,
demonstrates very large intersubject variability, which makes it
difficult to observe small effects of intervention or disease.
Multiple factors modulate CBF both acutely and over longer time
periods (Kety and Schmidt, 1948; Lassen, 1959; Iida et al., 2004;
Coles et al., 2006; Henriksen et al., 2013); for example, changes in
arterial carbon dioxide or oxygen tension as well as oxygen
saturation affect CBF (Paulson et al., 1990; Vestergaard et al.,
2016; Vestergaard and Larsson, 2019). The cerebral metabolic
rate of oxygen (CMRO2) has similarly a large intersubject
variability but demonstrates smaller acute fluctuations than CBF
(Iida et al., 2004; Coles et al., 2006; Peng et al., 2014; Vestergaard
et al., 2020) A key role of the regulation of CBF is to maintain
CMRO2 at constant levels.

Studies have examined intersubject variation in cerebral
physiology, but normal longitudinal intrasubject variation is
much less examined and has mainly focused only on CBF.
However, longitudinal studies on cerebral physiology, for
example, in terms of disease progression or intervention, require
knowledge of normal longitudinal intrasubject variation for correct
scaling of the project and interpretation of the results. Studies have
examined the reproducibility of CBF using various techniques, but
typically only two measurements were acquired, often with only a
short time between scans (hours or a few days).

In the present study, we aimed to measure intrasubject variation
in cerebral physiology by performing multiple repeated
measurements in the same subjects with 6 h, 1 day, 7 days and
several weeks between examinations. We used MRI techniques to
acquire brain physiological parameters. Due to the noninvasiveness
of MRI, it is possible to obtain multiple repeated measurements with
only minor considerations related to patient safety. For example,
exposure to radiation is not a concern, as would be the case if using
positron emission tomography (PET) imaging. MRI techniques
were therefore chosen as the most suitable examination method.
Global average CBF and CMRO2 were acquired using phase contrast
mapping (PCM) and susceptibility-based oximetry (SBO)MRI. CBF

maps were obtained using the arterial spin labelling (ASL) MRI
technique.

In addition to CBF and CMRO2, we also measured the
concentrations of cerebral lactate and N-acetyl-aspartate (NAA)
by magnetic resonance spectroscopy (MRS). In the healthy brain,
most of the glucose for energy production is fully oxidized, resulting
in an oxygen-to-glucose ratio close to 6. However, in the young
healthy brain, approximately 10% of glucose goes through oxygen-
free glycolysis with lactate as the end-product (Goyal et al., 2014;
Hyder et al., 2016). By measuring the cerebral lactate concentration,
we can examine the consistency of this glycolytic activity over time.
NAA is predominantly synthesized in neurons and is primarily a
marker of neuronal density. The NAA concentration is lower in
patients with dementia and is reduced after stroke where it correlates
with neuron loss. However, NAA is also affected by neuronal
metabolic activity. For example, during disease activity in
multiple sclerosis and after traumatic brain injury, the NAA
concentration is reduced. Yet, this reduction is reversed during
recovery. This suggests that NAA concentration is also affected by
metabolic integrity, in addition to neuronal density. (Bitsch et al.,
1999; Moffett et al., 2007). In healthy subjects, as examined in the
current study, the NAA concentration is expected to be stable,
however knowing the normal variation is important to correctly use
NAA as a marker of neuronal function.

Overall, we examined intrasubject longitudinal variation in CBF,
CMRO2, arteriovenous oxygen saturation difference (A-V.O2),
cerebral lactate concentration, and cerebral NAA concentration
in healthy humans through repeated MRI scan sessions. By
measuring all these parameters, we obtained a comprehensive
examination of longitudinal intrasubject variation in several
markers of cerebral physiology.

2 Materials and methods

2.1 Subjects

Two groups of young healthy subjects participated in the study.
All participants were healthy, right-handed, non-smokers, with a
body mass index of 18–30 kg/m2 and normal physical and
neurological examinations. Female participants were non-
pregnant. The participants were instructed to have no intake or
use of caffeine, alcohol, medication or other substances known to
influence the parameters measured in the study prior to study
participation. Detailed description regarding the inclusion criteria
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of the participants are provided in Madsen et al. (2020). In the first
group (Group A), ten young healthy subjects (5 females) with a
mean age of 25.4 years (range 18–35 years) were included and
examined in four MRI sessions with repeated measurements
acquired at 6 h, 1 day, and 7 days after an initial baseline
measurement. All participants adhered to the same schedule,
aligning the weekdays and timing of all scans and measurements.
All participants were fasting 2 h for clear liquids and 6 h for all other
intake before baseline scans. Between baseline and the second scan
on the same day, the participants were served a light meal and drinks
adhering to protocol (e.g., no caffeine, alcohol or medication). Next,
we examined a second group (Group B), which included sixteen
young healthy subjects (8 females) with a mean age of 23.9 years
(range 18–32 years) who were examined twice with 28–49 days
(mean 31.9 days) between examinations. Thus, we investigated
short-term repeatability (up to 7 days) in Group A and
repeatability after several weeks in Group B. Group B was
included as a follow-up analysis due to the highly stable
correlations observed in Group A, and we wanted to examine
whether correlations were maintained after several weeks. All
participants in Group B also adhered to a strict schedule,
aligning the weekdays and timing of all scans and measurements,
and following the same fasting regime for all scans used in this study.
The participants from Group B were part of a study on the effect of
general anaesthesia on brain structure and physiology; none of these
subjects underwent anaesthesia during the present study (Madsen
et al., 2020). Data from Group A was acquired in 2019, and data
from Group B was acquired subsequently, in 2019–2021.

In all sessions, we measured global CBF and CMRO2 twice (run
1 and run 2) at the beginning and end of the session to determine
within-session reproducibility of these measurements. The
remaining parameters were measured once in each session. The
study setup is depicted in Figure 1.

Participants were recruited through advertisement on a
Danish recruitment website (www.forsøgsperson.dk).
Exclusion criteria were known neurological diseases and
contraindications for MRI, such as metal implants and recent
operations or pregnancy. The study was approved by the
scientific ethical committee of the Capital Region of Denmark
(H-18020364 and H-18028925) and was carried out according to
the Declaration of Helsinki.

2.2 Magnetic resonance imaging

All scans were acquired on a 3 T Philips (Philips Medical
Systems, Best, Netherlands) Achieva dStream (software release
5.4.1) equipped with a 32-channel phased-array receive head coil.
The scanner was subjected to ongoing maintenance from the
manufacture (Philips Healthcare); and we performed quality
control and monitored the scanner and coil performance every
week. There were no major software updates or hardware changes
during data collection for this study.

The heart rate, arterial oxygen saturation and end tidal CO2

partial pressure (PetCO2) were measured continuously
throughout the MRI scans using a Veris Monitor system

FIGURE 1
Outline of the MRI sessions and acquisition of cerebral physiology parameters allowing for examination of reproducibility. Group A underwent MRI
scans four times, with 6 h, 1 day and 7 days between reacquisitions after an initial baseline measurement. Group B underwent MRI scans two times, with
the second scan 28–49 days after the initial baseline scan. In each session, structural brain images were acquired using a T1-weighted high-resolution
anatomical MRI sequence (T1w). Cerebral blood flow (CBF) was measured using phase contrast mapping (PCM) and arterial spin labelling (ASL) MRI
techniques. Susceptibility-based oximetry (SBO) was used to measure the venous oxygen saturation of the blood leaving the brain, from which the
cerebral metabolic rate of oxygen (CMRO2) was calculated. Cerebral NAA and lactate concentrations were measured using magnetic resonance
spectroscopy (MRS).
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(MEDRAD, Pittsburgh, Pennsylvania, USA). The blood pressure was
measured with regular intervals during the examinations. The average
values of these measurements throughout the scans are presented in
Table 1. A venous blood sample was drawn before each scan session and
analysed for haemoglobin (Hgb) concentration using a blood gas
analyser XN 9000 (Sysmex, Kobe, Japan).

2.2.1 Structural images
Structural brain images were acquired using a sagittal three-

dimensional T1-weighted high-resolution Magnetization Prepared
Rapid Gradient Echo (MPRAGE) scan (echo time (TE) = 2.8 ms,
repetition time (TR) = 6.9 ms, inversion time (TI) = 900 ms; flip
angle = 9°, 137 slices, field-of-view (FOV) = 262 × 280 × 150 mm3;
voxel size = 1.1 × 1.1 × 1.1 mm3). Bias field correction and
segmentation of the brain into grey matter, white matter and
cerebrospinal fluid (CSF) was carried out using FAST (FSL
5.0.11, FMRIB, Oxford, UK) (Jenkinson et al., 2012) to estimate
brain volume. The anatomical images were additionally used for
structural normalisation for the ASL analysis.

2.2.2 Arterial spin labelling (ASL)
Cerebral blood flow maps were acquired using arterial spin

labelling (ASL). A dual-echo two-dimensional echo planar imaging
pseudo-continuous arterial spin labelling (pCASL) sequence scan
with 2 background suppression pulses was used (16 transverse slices
(6 mm thick); TE1/TE2 = 12.56/31.66 ms; TR = 4550 ms (for one

image); flip angle = 90°; FOV = 240 × 240 mm2; matrix size = 88 × 88
(acquired), 128 × 128 (reconstructed); labelling duration = 1800 ms;
postlabelling delay = 1800 ms with an additional slice acquisition
time of 32 ms; background suppression (BS) pulses = BS1/BS2: 1813/
3135 ms; 60 dynamics, 30 label/control pairs). A calibration scan
was acquired with the same imaging parameters using a 16-phase
look-locker readout after saturation (saturation delay (TD) = 50 ms;
TR = 520 ms; slice timing difference = 32 ms; flip angle = 30°;
2 dynamics). R1 (relaxation rate R1 = 1/T1) was fitted from the
saturation recovery signal using Eq. 1 by in-house developed
MATLAB (version 9.10.0 (R2021a), The MathWorks Inc, Natick,
Massachusetts, United States) programs utilizing a nonlinear least
squares Levenberg‒Marquardt method.

S t( ) � S0 sin α( )
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 1 − e−TD·R1( ) cos α( )e−TR·R1( )n−1

+ 1 − e−TR·R1( ) 1 − cos α( )e−TR·R1( )n−1
1 − cos α( )e−TR·R1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (1)

TD is the time since saturation, corrected for individual slice
timing; TR is the time interval between two consecutive alpha
pulses; and n is the index of the alpha pulses, which for this
sequence took the values n = [1:16]. The R1 value was used to

TABLE 1 Summary of the acquired parameters from each MRI session. The means ± standard deviations are noted. Abbreviations: A-V.O2, arteriovenous oxygen
saturation difference; CBF, cerebral blood flow; CMRO2, cerebral metabolic rate of oxygen; NAA, N-acetyl-aspartate.

Group A Group B

Baseline 6 hours 1 day 7 days Baseline 28–49 days

Phase Contrast Mapping

CBF (Whole brain mean) [ml/100 g/min] 57.5 ± 8.3 58.4 ± 8.6 55.3 ± 6.3 56.9 ± 7.0 62.5 ± 7.8 62.8 ± 7.2

Arterial Spin Labelling

CBF (Grey matter mean) [ml/100 g/min] 59.2 ± 13.4 57.7 ± 13.1 56.3 ± 9.1 63.3 ± 11.8 67.7 ± 10.7 68.1 ± 8.9

Susceptibility-Based Oximetry

A-V.O2 [%] 28.7 ± 5.2 29.3 ± 5.5 27.1 ± 6.1 29.6 ± 5.8 29.4 ± 6.3 29.3 ± 3.8

CMRO2 [μmol/100 g/min] 143.2 ± 32.6 145.9 ± 30.6 128.7 ± 32.0 148.4 ± 38.6 156.4 ± 36.2 156.4 ± 24.7

MR Spectroscopy

Lactate—precuneus [mmol/l] 0.51 ± 0.12 0.49 ± 0.11 0.50 ± 0.14 0.49 ± 0.10 0.50 ± 8.5 0.52 ± 12.3

Lactate—occipital lobe [mmol/l] 0.51 ± 0.12 0.49 ± 0.11 0.48 ± 0.11 0.52 ± 0.10

NAA—precuneus [mmol/l] 10.1 ± 2.0 9.7 ± 1.5 9.7 ± 1.5 10.1 ± 1.5 9.4 ± 2.1 9.3 ± 2.1

NAA—occipital lobe [mmol/l] 8.2 ± 2.4 8.2 ± 2.6 7.7 ± 2.1 8.2 ± 2.5

Cardiovascular parameters

Haemoglobin concentration [mmol/l] 9.1 ± 1.2 9.0 ± 1.1 9.0 ± 1.2 9.1 ± 1.2 8.7 ± 0.9 8.6 ± 0.9

Arterial saturation [%] 97.5 ± 1.6 97.0 ± +0.7 97.7 ± 1.0 97.2 ± 1.4 97.9 ± 1.2 97.9 ± 0.7

Mean arterial blood pressure [mmHg] 88.3 ± 3.6 90.3 ± 3.7 88.6 ± 7.5 86.7 ± 5.7 92.1 ± 8.4 86.2 ± 6.6

End-tidal CO2 partial pressure [kPa] 4.7 ± 1.2 5.1 ± 0.5 4.9 ± 0.5 4.9 ± 0.5 4.8 ± 0.7 4.7 ± 0.8

Heart rate [bpm] 59.8 ± 5.4 62.8 ± 5.8 61.4 ± 5.9 63.8 ± 5.6 64.0 ± 9.7 59.8 ± 10.0
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calculate M0 from the initial six pCASL control measurements
using Eq. 2.

M0

�
1
6∑6

j�1Mctr,j

1 − e−R1 TD−BS2( )( ) + − 1 − e−R1 BS2−BS1( )( ) + 1 − e−R1BS1( )e−R1 BS2−BS1( )( )e−R1 TD−BS2( )[ ]
(2)

BS1/BS2 are the timing of the background suppression pulses
and Mctr is the control part of the ASL data pairs. TD is the read-out
time after saturation, corrected for slice timing differences.

TD � 3.6s + slicedt · i, where i � 0, 1,/15

The perfusion weighted maps were converted to quantitative
CBF maps using the voxel-wise M0 signal from Eq. 2 in the BASIL
tool (FSL) (Chappell et al., 2009) with additional correction of tissue
T1-and R2*-decay. T1 of blood was corrected for each subject’s
session-specific haemoglobin concentration using the arterial
equation from Lu et al. (Lu et al., 2004). Grey matter mean CBF
values were extracted from the grey matter segmentations of the
structural images resliced into ASL space using the oxford_asl (part
of FSL) tool with the default threshold parameter of 0.8.

2.2.3 Phase contrast mapping
Global mean CBF was acquired using the PCM technique by

measuring the blood flow supplying the brain through the carotid
and basilary arteries (Bakker et al., 1995; Vestergaard et al., 2017).
Velocity maps were acquired by a velocity-encoding turbo field echo
sequence (1 slice, FOV = 240 × 240 mm2; voxel size = 0.75 × 0.75 ×
8 mm3; TE/TR = 7.33/27.63 ms; flip angle = 10°; velocity encoding =
100 cm/s, without cardiac gating; 10 dynamics). The sequence was
recorded twice to obtain optimal perpendicular slice positions on
both internal carotid arteries (first scan) and the basilar artery
(second scan). Each feeding artery was manually delineated using
in-house developed MATLAB scripts. The blood flow to the brain
was then calculated as the mean blood velocity times the cross-
sectional area of the delineated cerebral arteries. The resulting flow
was normalised to brain weight to obtain values in ml/100 g/min.
Brain weight was estimated from the segmentation of the structural
MRI image, including grey matter and white matter but excluding
CSF and assuming a brain density of 1.05 g/ml (Torack et al., 1976).

2.2.4 Susceptibility-based oximetry (SBO)
Cerebral arteriovenous oxygen saturation differences (A-V.O2) and

CMRO2 were acquired using susceptibility-based oximetry (SBO) MRI
(Jain et al., 2010). Using the SBO technique, the oxygen saturation of the
venous blood (SvO2) leaving the brain in the sagittal sinus can be
measured. The technique utilizes the magnetic properties of
deoxyhaemoglobin in venous blood changes the intravascular
magnetic susceptibility, which can be measured by MRI phase
images. Susceptibility-weighted phase maps were acquired using a
dual-echo gradient-echo sequence (1 slice, FOV = 220 × 190 mm2;
voxel size = 0.69 × 0.69 × 8mm3; TR = 23.1 ms; TE1/TE2 = 8.16/
17.83 ms; flip angle = 30°; SENSE factor = 2; 10 dynamics, velocity
encoding = 100 cm/s). The imaging plane was placed orthogonal to the
sagittal sinus. By manual delineation of the sagittal sinus and the
surrounding tissue, SvO2 was calculated. An in-depth description of
the postprocessing has been previously published (Vestergaard and
Larsson, 2019). A-V.O2 was calculated by subtracting SvO2 from

arterial saturation (SaO2) measured using pulse oximetry. CMRO2

was then calculated using the Fick principle (Eq. 3). Haemoglobin
(Hgb) concentrations were measured from venous blood sampling.

CMRO2 � Hgb · CBF · A − V.O2 (3)

From this sequence, we simultaneously also acquired phase
information from which we could calculate the blood flow in the
sagittal sinus by a similar approach as that used for calculating the
flow in the feeding cerebral arteries by manual delineation of the
sagittal sinus.

2.2.5 Magnetic resonance spectroscopy (MRS)
Cerebral NAA and lactate concentrations were measured using a

single-voxel water-suppressed point-resolved 1H-spectroscopy (PRESS)
sequence (TE/TR = 288/2000ms; voxel size = 30 × 35 × 30mm3;
176 averages, 1,024 complex data points). Precuneus is a part of the
default mode network and relatively metabolic stable, whereas the
occipital cortex is a region which possibly could demonstrate more
metabolic variation. These two regions could therefore possibly
demonstrate different reproducibilities. For Group A, two
measurements were acquired, one in the precuneus and a second in
the occipital lobe. ForGroupB, onlymeasurements in the precuneuswere
acquired due to the similar concentrations in the precuneus and occipital
lobe observed in Group A.

Postprocessing and quantification of the spectra were
performed using LCModel (LCModel, Version 6.3-1F,
Toronto, Canada). The water peak acquired in the spectrum
was used as reference to the measured metabolites. The water
concentration in the spectroscopy voxel was estimated from the
content of grey matter, white matter, and CSF within the voxel
using the tissue segmentations from the structural images
(Quadrelli et al., 2016). NAA and lactate concentrations were
corrected for T2 decay using literature values (T2,H2O = 95 ms;
T2,NAA = 247 ms; T2,Lac = 240 ms) (Wansapura et al., 1999;
Träber et al., 2004).

2.3 Statistics

All values are reported as means ± standard deviations. p-values
less than 0.05 were considered significant. Reproducibility between
the baseline measurement and subsequent repeated measurements
was assessed by linear regression models and Bland‒Altman
analysis. R2 values from the regression models and limit of
agreement (LoA) metrics and within-subject coefficient of
variation (CoVws) from Bland‒Altman analysis were used to
assess the reproducibility of the measurements. LoA was
calculated as 1.96 times the mean standard deviation of the
pairwise differences between baseline and each subsequent
measurement.

2.4 Data availability

The parameters derived from the MRI-images and supporting
data are available upon reasonable request. The MRI images are not
publicly available due to privacy restrictions.
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2.5 Code availability

Software used for calculating CBF by the PCM technique is
available at https://github.com/MarkVestergaard/PCMCalculator/.
Software used to calculate SvO2 from the SBO technique is available
at https://github.com/MarkVestergaard/SBOCalculator/.

3 Results

For one subject in Group A, ASL analysis at the baseline
measurement failed and this subject was removed from the
further analysis of ASL reproducibility. Furthermore, the ASL
analysis failed in one subject at the 6-h measurement and two
subjects at the 7-day measurement in Group A. The failure to
analyse these ASL measurements was due to technical issues with
the calibration scan. For the other parameters, all data were
satisfactorily acquired.

The average values of the acquired metrics in each MRI session
are provided in Table 1. A summary of R2 values from the linear
regression, LoA from Bland‒Altman analysis and CoVws for all

parameters and correlations are summarized in Table 2. There were
no significant differences in baseline values between group A and B.

The correlations and Bland‒Altman analysis for global CBF,
CMRO2 and A-V.O2 are demonstrated in Figure 2. The correlations
for CBF, CMRO2 and A-V.O2 were significant for all comparisons.
Correlations and reproducibilities were best for within-day
measurements for all parameters (LoA = 6.3 ml/100 g/min;
CoVws = 5.6% for CBF and LoA = 45.6 μmol/100 g/min,
CoVws = 16.2% for CMRO2) and gradually declined for longer
time periods between measurements. The within-session
reproducibility of CBF and CMRO2 (Figure 2) demonstrated
good reproducibility with low LoA (8.1 ml/100 g/min and
23.8 μmol/100 g/min) and highly significant correlations (R2 =
0.84 and 0.89). However, CBF also demonstrated a significant
bias towards lower values for the second measurement in the
session compared to the first measurement (first measurement =
57.5 ± 8.3 ml/100 g/min; second measurement = 54.4 ± 7.2 ml/
100 g/min, p = 0.0003).

Global CBF values across all sessions were significantly
correlated with both haemoglobin concentration (p < 10–4) and
A-V.O2 (p = 0.006) (Supplementary Figure S1). Reproducibility of

TABLE 2 Summary of R2, limit of agreement (LoA) and within-subject coefficient of variation (CoVws) for the correlations between baseline and the subsequent
measurements. Limit of agreement is defined as 1.96 standard deviations from Bland–Altman analysis. Abbreviations: A-V.O2, arteriovenous oxygen saturation
difference; CBF, cerebral blood flow; CMRO2, cerebral metabolic rate of oxygen; NAA, N-acetyl-aspartate.

Group A Group B

1 hour (within-scan
session)

6 hours 1 day 7 days 28–49 days

N = 40 N = 10 N = 10 N = 10 N = 16

R2 LoA CoVws
[%]

R2 LoA CoVws
[%]

R2 LoA CoVws
[%]

R2 LoA CoVws
[%]

R2 LoA CoVws
[%]

Phase Contrast
Mapping

CBF (Whole brain
mean) [ml/100 g/min]

0.84 8.1 7.4 0.86 6.3 5.6 0.71 8.9 8.1 0.57 10.6 9.5 0.31 13.8 11.2

Arterial Spin Labelling

CBF (Grey matter
mean) [ml/100 g/min]

0.85 10.7 9.3 0.71 14.6 12.8 0.69 16.7 13.9 0.31 18.3 13.1

Susceptibility-Based
Oximetry

A-V.O2 [%] 0.87 4.0 7.0 0.57 7.7 13.7 0.47 9.12 16.7 0.26 10.7 18.6 0.29 12.4 19.1

CMRO2 [μmol/
100 g/min]

0.89 23.8 8.8 0.55 45.6 16.2 0.43 52.74 20.0 0.56 49.9 17.5 0.29 60.9 19.8

MR Spectroscopy

Lactate—precuneus
[mmol/l]

0.79 0.11 11.0 0.45 0.21 20.9 0.10 0.25 25.9 0.50 0.17 17.0

Lactate—occipital lobe
[mmol/l]

0.51 0.17 17.4 0.41 0.19 19.4 0.32 0.21 20.4

NAA—precuneus
[mmol/l]

0.87 1.78 11.0 0.39 3.87 19.2 0.45 3.89 24.3 0.75 2.08 11.2

NAA—occipital lobe
[mmol/l]

0.81 1.83 9.5 0.87 1.57 8.1 0.77 1.94 9.8
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the venous blood flow leaving the brain in the sagittal sinus is
presented in Supplementary Figure S2A–C. The blood flow in the
sagittal sinus demonstrated similar reproducibility to CBF, including
a bias towards lower values at the second compared to the first
measurement during the baseline session. There was also a
significant correlation between CBF and blood flow in the sagittal
sinus (Supplementary Figure S2D).

The mean regional CBF maps from the ASL acquisition and
the correlation between the grey matter mean CBF from each
session are shown in Figure 3. No significant difference was
observed between each session. The voxel-wise LoA maps also
did not demonstrate any regional differences in reproducibility
for measurements up to 7 days apart. For measurements taken
28–49 days apart, the LoA was generally higher in the cortex than
in the rest of the brain. Grey matter mean CBF values from the
ASL measurement demonstrated the best reproducibility for
within-day measurements and worse reproducibility for the

remaining sessions, similar to global CBF values obtained by
the PCM method.

Measurements of brain size and changes in haemoglobin
concentration will affect the calculation of CBF and CMRO2, and
we therefore examined the reproducibility of these measurements as
well (Supplementary Figure S3). Both estimation of brain size and
haemoglobin concentration demonstrated very high reproducibility
and therefore only minorly affected the longitudinal variant in CBF
and CMRO2 observed in this study. CBF was higher in women
across all measurements as also demonstrated in multiple previous
studies (Rodriguez et al., 1988; Esposito et al., 1996). There were no
sex differences for the remaining parameters.

The correlations and Bland‒Altman analysis of lactate and NAA
concentrations are shown in Figure 4. All comparisons
demonstrated significant correlations between baseline and
subsequent measurements, except for lactate measurements after
7 days, which were only near significant for the measurement in the

FIGURE 2
Correlation and reproducibility between baseline measurements and the subsequent acquisitions of global cerebral blood flow (CBF), cerebral
metabolic rate of oxygen (CMRO2) and arteriovenous oxygen saturation difference (A-V.O2). (A) The within-session correlation was calculated from the
duplicate measurements of CBF, A-V.O2 and CMRO2 that were acquired in each MRI session. The correlations between baseline and values from each
subsequent MRI from Group A are shown in (B). The correlations between baseline and values remeasured 28–49 days after the initial examination
in Group B are shown in (C). A general pattern of weaker correlation with increasing time between sessions is noted. Limits of agreement (LoAs) in the
Bland–Altman analysis were calculated as 1.96 standard deviations of the pairwise subtracted values. Sex was not part of the regression model but is
highlighted for visual interpretation. The regression slopes (β), R2 coefficients, p-values and LoAs are noted in each panel.
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occipital lobe (p = 0.09) and nonsignificant for the measurement in
the precuneus (p = 0.40). The reproducibility was best for the within-
day measurements for both lactate and NAA and similarly worse for
the longer time periods between measurements. The quality
parameters for the MRS data were signal-to-noise (SNR) =
38.8 ± 4.4, full width at half maximum (FWHM) = 0.05 ± 0.01,
Cramer-Rao lower bounds (CRLB) for lactate = 25.9 ± 10.8%, CRLB
for NAA = 2.9 ± 1.1% for the measurements in the occipital lobe and
SNR = 42.5 ± 2.7, FWMH = 0.04 ± 0.01, CRLB for lactate = 20.2 ±
3.9% and CRLB for NAA = 2.1 ± 0.4% for the measurements in
precuneus.

4 Discussion

We observed that repeated measurements of CBF, A-V.O2,
CMRO2, lactate and NAA correlated and demonstrated good
reproducibility, including up to several weeks between
measurements. For CBF and CMRO2, the reproducibility was
best for within-day measurements and gradually declined for
longer times between measurements. The reproducibility of

lactate and NAA in the occipital lobe was similarly best for
within-day measurements and gradually declined for the repeated
measurements after 1 and 7 days. For lactate and NAA in the
precuneus, the reproducibility was again best for within-day
measurements and was equally worse for the remaining repeated
measurements.

The variation in repeated measurements is caused by both
measurement errors from the equipment and physiological
changes. Modifications to the MRI scanner could influence the
performance and affect the measurement error. Alterations to the
MRI scanner, such as updating the scanner software or replacing the
MRI coils, might also modify the reproducibility. However, there
were no suchmodifications on theMRI scanner in the current study,
and we do not anticipate the scanner to have significantly
deteriorated during the project duration. Overall, we believe that
the measurement error of the MRI scanner was similar in all MRI
sessions, and we do not expect that any systematic changes occurred.
Consequently, we think that the gradual decline in reproducibility
we noticed with longer spans between measurements is due to
physiological variation. The decreased reproducibility is therefore
expected to be similar when using modalities other than MRI scans.

FIGURE 3
CBF maps acquired using arterial spin labelling and correlations of grey matter mean values between baseline and subsequent measurements.
Average CBF maps of all subjects in Group A for each session in MNI-152 standard space are shown in (A). Maps demonstrating voxel-wise limits of
agreement (LoAs) between the baseline and subsequent measurements in Group A are shown in (B). Average CBFmaps from all subjects in Group B at the
two MRI sessions are shown in (C). Maps demonstrating voxel-wise LoAs between the baseline measurement and subsequent measurements
28–49 days after the initial examination of Group B are shown in (D). Correlations and Bland‒Altman analysis between the grey matter mean CBF values
from the ASL measurement at baseline and subsequent sessions are shown in (E) for Group A and in (F) for Group B. The regression slopes (β), R2

coefficients, p-values, and limits of agreement (LoAs) are noted in each panel.
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4.1 CBF

The techniques we used to measure CBF are noninvasive and
widely available on MRI scanners, making them ideal for studies
requiring multiple repeated measurements. Both PCM and ASL are
therefore extensively used in research on brain physiology. We
found CBF values similar to previously reported values using the
same methods.

Cerebral perfusion is dynamically regulated to ensure sufficient
delivery of nutrients, most notably oxygen, to the brain. Numerous
factors affect CBF, for example, changes in blood gas tension, such as
oxygen and CO2; haemoglobin concentration; and hormonal
variations (Kety and Schmidt, 1948; Henriksen et al., 2013;
Vestergaard and Larsson, 2019). Intake of certain compounds,
such as caffeine or nicotine, will also affect CBF (Zubieta et al.,
2005; Krause et al., 2006). Therefore, it is to be expected that CBF
will also vary within subjects and knowing the reproducibility over
different time periods is important when studying CBF. Generally,
we observed better reproducibility for shorter periods between
examinations, with the lowest LoA and best correlation for the
within-session measurements. However, we also observed a small

but significant bias towards lower CBF at the second measurement
in the within-session examination, also resulting in a relatively high
CoVws. There were approximately 60 min between these two
measurements. Interestingly, this lower CBF did not reflect
changes in CMRO2, suggesting that the effect on CBF from lying
in the scanner is not due to changes in cerebral energy metabolism
but rather an effect directly on CBF. An effect on CBF from lying for
a prolonged time in an MRI scanner should therefore be considered
when designing experiments on brain physiology with interventions
in the scanner. Prior studies on the reproducibility of CBF have often
included just two repeated examinations; therefore, the time variant
effects could not be investigated. However, studies on within-day or
within-session repeated measurements have generally shown good
reproducibility, and studies using longer periods between
examinations have similarly shown poorer reproducibility (Fan
et al., 2016). A previous study on the reproducibility of CBF
measurement by PCM demonstrated slightly worse
reproducibility for within-session and within-day examinations
compared to our study and similar reproducibility for between-
day examinations (Spilt et al., 2002). Another study using 7 weeks
between measurements and the ASL technique for the measurement

FIGURE 4
Correlation and reproducibility between baseline measurements and the subsequent acquisitions of cerebral lactate and N-acetyl-aspartate (NAA)
concentrations. Lactate and NAA concentrations were measured in the occipital lobe (A) and precuneus (C). Correlations and Bland‒Altman analysis of
the lactate and NAA concentrations in the occipital lobe between baseline and the subsequent acquisitions fromGroup A are shown in (B) and those from
Group B in (E). Correlations and Bland‒Altman analysis of the lactate and NAA concentrations in the precuneus between baseline and the
subsequent acquisitions from Group A are shown in (D) and those from Group B in (E). The regression slopes (β), R2 coefficients, p-values from the
regressions and limits of agreement (LoAs) from Bland‒Altman analysis are noted in each panel.
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of CBF found reproducibility for whole-brain values similar to our
data (Hermes et al., 2007). A study using PET imaging with oxygen-
15-labelled water [15O-H2O] as the radiotracer and a study using
ASL MRI found slightly worse within-session reproducibility
compared to our study (Coles et al., 2006; Gevers et al., 2009). A
study comparing CBF values obtained from ASL MRI against values
acquired by 15O-H2O PET found similar reproducibilities for
measurements with 25–45 days apart compared to our
reproducibility for measurements with 28–49 days apart but
poorer within-session reproducibility (Heijtel et al., 2014). A
study using the dynamic contrast-enhanced (DCE) MRI
technique found similar reproducibility for the measurement of
grey and white matter separately 1 week apart compared to our
whole-brain measurement (Cramer et al., 2023). Overall, the results
from our study suggest that the differences in reproducibility
observed in different studies are likely, at least partly, a result of
the various lengths of time between examinations used in the
studies.

Most studies on CBF reproducibility examine homogenous
groups of healthy young adults, as was the case for this study.
For example, the subjects examined had similar ages, were non-
smokers and did not have any diseases or take medicine that could
affect vascular function. Investigations of less homogenous groups
could likely demonstrate poorer reproducibility.

4.2 CMRO2

For CMRO2, we observed values similar to those acquired using
invasive PET imaging (Bremmer et al., 2011; Kudomi et al., 2013) or
blood sampling from jugular vein catheters (Ainslie et al., 2014). The
SBO technique used to measure venous oxygen saturation in the
sagittal sinus for calculation of CMRO2 has been validated against
blood samples acquired by catheter from the jugular vein during
MRI scanning (Miao et al., 2019). Reproducibility of CMRO2 has
been far less studied than CBF, likely due to the technical difficulties
in acquisition compared to CBF. A study using T2-Relaxation-
Under-Spin-Tagging (TRUST) MRI for the measurement of
venous oxygen saturation and PCM for CBF found
reproducibility for within-session repeated measurements
comparable to our study but better between-day (1–14 days)
reproducibility (Liu et al., 2013). A study using calibrated BOLD
imaging and a complicated calibration scheme involving inhalation
of hypercapnic and hyperoxic air to quantify CMRO2 observed a
slightly worse between day reproducibility of grey matter CMRO2

compared to our whole brain CMRO2 (Lajoie et al., 2016). The
method relies on many parameters which are either fitted or derived
from literature values and inaccuracies in these parameters could be
the cause for the slightly poorer reproducibility.

Studies using PET imaging and inhalation of oxygen-15 as a
radiotracer for CMRO2 measurements have demonstrated very high
reproducibility for within-session repeated measurements (Coles
et al., 2006). Another PET study examining CMRO2 using
inhalation of oxygen-15 with an interval of 3 to 54 days between
measurements found significantly better reproducibility than our
results with 7 days or several weeks between measurements
(Bremmer et al., 2011). Overall, this suggests that the PET
technique for CMRO2 measurements has better reproducibility

than using combined PCM and SBO, as in this study. However,
using PET and oxygen-15 is also significantly more cumbersome,
time-consuming, and invasive than MRI techniques. Generally,
studies on the reproducibility of CMRO2 are few, and more
studies using different techniques and with different timespans
between examinations should be performed in the future.

4.3 Lactate and NAA

We observed relatively stable and reproducible concentrations
for both lactate and NAA in both the occipital lobe and precuneus.
Generally, we observed similar trends in correlations and
reproducibility for lactate and CMRO2, both related to energy
metabolism, suggesting that the variation in lactate and CMRO2

could be due to fluctuations in overall energy metabolism.
Studies on the reproducibility of MRS, similar to those on CBF

and CMRO2, have often compared only two repeated examinations,
and time variant effects were not considered. Furthermore, the
various placements of the MRS voxels, the exact technique used,
and the patient groups studied make it difficult to compare results.

It has been shown that NAA can be affected by brain diseases
which impairs the brain metabolism, such as dementia or multiple
sclerosis, however it would be expected that in healthy subjects the
NAA concentration is relatively stable over time (Moffett et al.,
2007). One study has demonstrated a very high intersession
reproducibility of NAA with a voxel primarily located in white
matter (Brooks et al., 1999). Another study using spectroscopic
imaging with repeated measurements between a few days and
several months apart found reasonable reproducibility of the
NAA/creatine ratio in grey matter (Tedeschi et al., 1996). Studies
using a 7 T MRI scanner found a reproducibility for NAA of 5.3% in
the anterior cingulate cortex with 2-3 months between visits, which
is better than the reproducibility we observed in the precuneus
(Wijtenburg et al., 2019). The higher field strength of the MRI
scanner in that study compared to ours could be a reason for the
better reproducibility. Studies on lactate reproducibility are very
limited; however, one study examined the reproducibility of lactate
in the posterior cingulate using 7 T MRI with 1 week between
measurements and found similar values to our measurement of
lactate in the precuneus with 1 week between measurements
(Terpstra et al., 2016).

4.4 Strengths and limitations

The main strength of the study is that we measured multiple
parameters in the same subjects and acquired data from multiple
repeated measurements at distinct time points after the initial
baseline measurement. This enables us to examine time variant
changes in reproducibility.

A limitation is that we only examined young healthy subjects. In
cohorts of older individuals or subjects with certain diseases, the
reproducibility might be lower than in young subjects. This should
be considered when applying the results in projects conducting research
on other subject groups. It should also be noted that all parameters in
this study are measured on the same scanner with optimised MRI
sequence parameters set for our purposes. Thus, this does not guarantee
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a direct translation to different scanners or sequence parameters, e.g.,
single echo pCASL instead of dual echo pCASL.

Another limitation is that we do not have a sufficient number of
participants to examine which and to what extend the systemic factors
explain the variation of the cerebral physiology. Systemic factors, such
as SaO2 or arterial CO2 partial pressure, are known to impact CBF and
changes in these parameters could account for some of the alterations in
cerebral physiology over time.We observed, on average, stable values of
SaO2, PetCO2, heart rate and blood pressure between the MRI sessions
and a relatively narrow span of values across participants, suggesting
limited effect from changes of these parameters. Nevertheless,
individual natural fluctuations of systemic factors could likely still
explain some of the variation in the cerebral physiology. Larger
studies are needed to quantify the contributions arising from
fluctuations in the various systemic factors on the cerebral physiology.

4.5 Conclusion

Overall, the results from the present study demonstrate
satisfactorily good reproducibility of cerebral physiology
measurements using non-invasive MRI techniques. We observed the
best reproducibility for short timespans between the examinations and,
generally, a gradual worsening of the reproducibility for longer times
between measurements. Reproducibility in the context of evaluating an
intervention or disease evolution should therefore be estimated based
on the time scale of the study.
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Cortical oxygen extraction
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Introduction: We aimed to demonstrate non-invasive measurements of regional
oxygen extraction fraction (OEF) fromquantitative BOLDMRImodeling at baseline
and after pharmacological vasodilation. We hypothesized that OEF decreases in
response to vasodilation with acetazolamide (ACZ) in healthy conditions,
reflecting compensation in regions with increased cerebral blood flow (CBF),
while cerebral metabolic rate of oxygen (CMRO2) remained unchanged. We also
aimed to assess the relationship between OEF and perfusion in the default mode
network (DMN) regions that have shown associations with vascular risk factors and
cerebrovascular reactivity in different neurological conditions.

Material and methods: Eight healthy subjects (47 ± 13 years, 6 female) were
scanned on a 3 T scanner with a 32-channel head coil before and after
administration of 15 mg/kg ACZ as a pharmacological vasodilator. The MR
imaging acquisition protocols included: 1) A Gradient Echo Slice Excitation
Profile Imaging Asymmetric Spin Echo scan to quantify OEF, deoxygenated
blood volume, and reversible transverse relaxation rate (R2

’) and 2) a multi-post
labeling delay arterial spin labeling scan to measure CBF. To assess changes in
each parameter due to vasodilation, two-way t-tests were performed for all pairs
(baseline versus vasodilation) in the DMN brain regions with Bonferroni correction
for multiple comparisons. The relationships between CBF versus OEF and CBF
versus R2’ were analyzed and compared across DMN regions using linear, mixed-
effect models.

Results: During vasodilation, CBF significantly increased in the medial frontal cortex
(P � 0.004), posterior cingulate gyrus (pCG) (P � 0.004), precuneus cortex (PCun)
(P � 0.004), and occipital pole (P � 0.001). Concurrently, a significant decrease in
OEF was observed only in the pCG (8.8%, P � 0.003) and PCun (8.7%,P � 0.001).
CMRO2 showed a trend of increased values after vasodilation, but these differences
were not significant after correction formultiple comparisons. Although R2’ showed a
slightly decreasing trend, no statistically significant changeswere found in any regions
in response to ACZ. The CBF response to ACZ exhibited a stronger negative
correlation with OEF (β � −0.104 ± 0.027; t � −3.852,P <0.001), than with R2’

(β � −0.016 ± 0.006; t � −2.692,P � 0.008).

Conclusion: Quantitative BOLD modeling can reliably measure OEF across
multiple physiological conditions and captures vascular changes with higher

OPEN ACCESS

EDITED BY

Alex Bhogal,
Utrecht University, Netherlands

REVIEWED BY

Dengrong Jiang,
Johns Hopkins University, United States
Avery Berman,
Carleton University, Canada

*CORRESPONDENCE

Linh N. N. Le,
lnnle@ucdavis.edu

RECEIVED 31 May 2023
ACCEPTED 25 September 2023
PUBLISHED 06 October 2023

CITATION

Le LNN, Wheeler GJ, Holy EN,
Donnay CA, Blockley NP, Yee AH, Ng KL
and Fan AP (2023), Cortical oxygen
extraction fraction using quantitative
BOLD MRI and cerebral blood flow
during vasodilation.
Front. Physiol. 14:1231793.
doi: 10.3389/fphys.2023.1231793

COPYRIGHT

© 2023 Le, Wheeler, Holy, Donnay,
Blockley, Yee, Ng and Fan. This is an
open-access article distributed under the
terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Physiology frontiersin.org01

TYPE Original Research
PUBLISHED 06 October 2023
DOI 10.3389/fphys.2023.1231793

133

https://www.frontiersin.org/articles/10.3389/fphys.2023.1231793/full
https://www.frontiersin.org/articles/10.3389/fphys.2023.1231793/full
https://www.frontiersin.org/articles/10.3389/fphys.2023.1231793/full
https://www.frontiersin.org/articles/10.3389/fphys.2023.1231793/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fphys.2023.1231793&domain=pdf&date_stamp=2023-10-06
mailto:lnnle@ucdavis.edu
mailto:lnnle@ucdavis.edu
https://doi.org/10.3389/fphys.2023.1231793
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/journals/physiology#editorial-board
https://www.frontiersin.org/journals/physiology#editorial-board
https://doi.org/10.3389/fphys.2023.1231793


sensitivity than R2’ values. The inverse correlation between OEF and CBF across
regions in DMN, suggests that these two measurements, in response to ACZ
vasodilation, are reliable indicators of tissue health in this healthy cohort.

KEYWORDS

Oxygen extraction fraction (OEF), cerebral blood flow (CBF), vasodilation, arterial spin
labeling (ASL) MRI, quantitative BOLD (qBOLD), magnetic resonance imaging (MRI)

1 Introduction

The brain has a high metabolic demand for oxygen compared to
other organs since the human brain comprises just 2% of the total
body mass but consumes 20% of available oxygen for normal
function (Rolfe and Brown, 1997), so regulation of cerebral blood
flow (CBF) and oxygen delivery is critically important. Oxygen
extraction fraction (OEF) is a key hemodynamic parameter to
measure the brain’s energy metabolism and is altered in aging
and disease processes, including cerebrovascular disorders
(Watchmaker et al., 2018; Fan et al., 2022; Liu et al., 2023),
neurodegeneration (Jiang et al., 2020; Robb et al., 2022), and
neuroinflammation (Cleland et al., 2021). In some pathological
mechanisms, OEF is reduced concurrently with hypoperfusion
due to decreased neural activity and lower oxygen metabolic
demand (Ishii et al., 1996; Brown and Thore, 2011); while in
other distinct mechanisms, OEF is elevated in areas of
hypoperfusion, indicating physiological compensation in tissue
that is at ischemic risk (Gupta et al., 2014; Fan et al., 2020; Lin
et al., 2022). Therefore, it is important to measure OEF in tandem
with CBF to understand overall oxygen consumption and brain
tissue health.

In addition to resting state, imaging brain hemodynamics in
varying physiological conditions, such as those created by controlled
vasoactive stimuli, adds valuable information about cerebrovascular
reactivity (CVR) and brain vascular health. These cerebrovascular
“stress tests” monitor the CVR, or the brain’s hemodynamic
response to hypercapnic gas paradigms or to pharmacological
vasodilation, e.g., with acetazolamide (ACZ) (Handwerker et al.,
2007). CVR measurements reveal unique pathophysiological
changes in intracranial stenosis (Lattanzi et al., 2018) and in
aging that correlate with cognitive status (Silvestrini et al., 2006;
Kim et al., 2021). During these vasoactive challenges, brain
hemodynamics are typically monitored with the blood-
oxygenation-level-dependent (BOLD) MRI signal due to its fast
acquisition and ease of use; however, BOLD signal changes reflect
multiple neuronal and vascular contributions and cannot be
interpreted in the context of a specific hemodynamic parameter.
Other investigations have used arterial spin labeling (ASL) MRI to
directly assess the perfusion reactivity deficits in steno-occlusive
disease and validate the BOLD response in the same patients
(Mandell et al., 2008; Smeeing et al., 2016), highlighting ASL as a
robust biomarker to quantify CBF in different physiological states
and disease. Acetazolamide has been commonly used to assess the
vasodilatory capacity of circulation because ACZ is more easily
administered through intravenous or oral means than carbon
dioxide, which requires a gas delivery system. In patients with
major cerebral arterial occlusive diseases, ACZ also identified
reduced reactivity in the hemisphere with the occlusive lesion

even in patients who appeared to have preserved CO2 reactivity
(Kazumata et al., 1996). However, few studies have directly assessed
OEF changes during vasoactive stimuli, largely because of a lack of
non-invasive imaging approaches. [15O]-PET scans have measured
CBF changes in response to ACZ vasodilation in patients with
cerebrovascular stenoses and showed a non-linear association
between this perfusion reactivity and baseline OEF PET for
various ischemic disease stages (Imaizumi et al., 2004; Nemoto
et al., 2004; Yamauchi et al., 2004; Hokari et al., 2008).
Unfortunately, these OEF PET measures are not easily available
in different physiological states due to the complexity of the
experiments and the need to administer multiple short-lived
radiotracers for each condition. MRI-based OEF measures have
recently been tested with ACZ administration and showed expected
global OEF reductions after vasodilation using multiple T2

relaxation-based measures (Baas et al., 2022). Venous blood
oxygenation (Yv), which can be derived from venous blood T2

relaxation values in the sagittal sinus, combined with global
cerebral metabolic rate of oxygen, has shown poorer oxygen
utilization in patients with sickle cell disease compared to
controls after vasodilation (Václavů et al., 2020), albeit with some
bias between various T2-based MRI methods. Decreased OEF after
ACZ vasodilation has also been demonstrated using 3-dimensional
quantitative susceptibility mapping MRI (Buch et al., 2017).
However, these values were averaged from larger, resolvable
internal cerebral veins, thus limiting regional information on
OEF response across the brain.

As an alternative to global OEF measurements using T2

relaxation-based approach, quantitative blood-oxygenation-level-
dependent (qBOLD) is a non-invasive MRI approach that models
the temporal signal due to reversible transverse relaxation rate (R2’)
to non-invasively extract OEF and deoxygenated blood volume
(DBV) (Yablonskiy and Haacke, 1994). This method allows for
voxelwise estimation of tissue OEF from asymmetric spin echo
(ASE) scans, which can be useful in identifying areas of the brain
that may be at risk for ischemia in stroke (Stone et al., 2019) or sickle
cell disease (Guilliams et al., 2018; Wang et al., 2021). These clinical
studies used qBOLD to identify regional, individualized
pathophysiology in different ischemic tissue types (core, infarct
growth, and contralateral tissue) in acute stroke. On the other
hand, in patients with sickle cell anemia, abnormal OEF
elevations were observed specifically in the deep white matter,
consistent with microstructural damage, that were reduced post-
blood transfusion. Additionally, OEF activation has been reported to
decrease in brain areas relating to motor task execution (Yin et al.,
2018), especially under hypoxic conditions (Yin et al., 2021). In
aging, studies have identified CVR reductions in brain regions that
overlap with the default mode network (DMN), which is related to
underlying vascular risk factors and suggests CVR in the DMN-CVR
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to be an important marker for brain health (Haight et al., 2015).
Additional investigation of the reliability of qBOLDMRI in sensitive
brain areas, including the DMN, across physiological states is thus
critical to advance regional OEF as an informative biomarker in
cerebrovascular disease and aging.

This study aimed to demonstrate a quantitative BOLDmodeling
MRI method for measuring OEF values in healthy participants
during a physiological perturbation with ACZ. Previous studies
have shown that OEF decreases in response to an increase in
CBF from various vasodilating challenges, while CMRO2 remains
unaffected using different techniques (Kety and Schmidt, 1948;
Vorstrup et al., 1984; Václavů et al., 2020; Vestergaard et al.,
2023). We aimed to demonstrate this method by showing that
OEF measured with qBOLD MRI is directly related to regional
alterations in CBF. A secondary aim was to compare regional OEF
with R2’ values in detecting an alteration with vasodilation and their
correlation with perfusion. Furthermore, we focused on assessing
the OEF relationship to perfusion in the DMN due to its functional
associations with vascular risk factors (Tchistiakova et al., 2015) and
cerebrovascular reactivity in cognitive impairment (Richiardi et al.,
2015) to identify which DMN regions show themost significant OEF
effect with vasodilation.

2 Materials and methods

2.1 Study population

Eight healthy subjects (47 ± 13 years, 6 female) were recruited
and gave written informed consent to participate in the study.
Participants must be at least 18 years old to participate in this
study. Exclusion criteria included pregnancy, anemia, history of
renal disease, hypertension, diabetes, stroke, or other known
neurological diseases. Subjects with peripheral vasculopathy or
Raynaud’s disease that precludes IV administration and a history
of allergy to sulfa drugs were excluded. In addition, participants that
could not receive MRI due to the inability to lie motionless in the
scanner, pacemakers, aneurysm clips, neurostimulators, artificial
heart valves, metal objects in eyes, ear implants, and
claustrophobia were excluded. This study was performed with
approval from the Institutional Review Board at the University of
California, Davis.

2.2 Vasodilatory stimulus

After baseline MRI scanning, all participants were given a slow
administration dosage of 15 mg/kg ACZ as a pharmacological
vasodilator over 2 min. After at least 15 min of uptake time to
capture the full effect of pharmacological vasodilation, the
participant received repeated scans in the post-ACZ state.

2.3 MRI acquisition

Each participant underwent scanning on a 3-T MRI scanner
(Siemens MAGNETOM Tim Trio, Erlangen, Germany) with a 32-
channel phase array head coil. T1-weighted anatomic images were

acquired using a multi-echo magnetization-prepared rapid gradient
echo (MEMPRAGE) sequence before vasodilation. These sagittal
scans were acquired with repetition time (TR) = 2530 ms; echo times
(TE) = 1.64, 3.5, 5.36, and 7.22 ms; inversion time (TI) = 1,200 ms;
spatial resolution = 1.0 mm3 × 1.0 mm3 × 1.0 mm3; in-plane
matrix = 256 × 256; 176 slices with thickness = 1.0 mm; flip
angle = 7.0°; and acquisition time of 6 min and 2 s.

For OEF measurements, the Gradient Echo Slice Excitation
Profile Imaging (GESEPI) ASE images were acquired with an
echo planar imaging (EPI) readout with specialized z-shim
gradients mitigating through-slice inhomogeneities (Blockley and
Stone, 2016). Scan parameters included TR = 3,000 ms; TE = 56 ms;
slice thickness = 1.25 mm; resolution = 2.3 mm3 × 2.3 mm3 ×
1.25 mm3; flip angle = 90°; bandwidth = 2,004 Hz/Pixel; matrix
size = 96 × 96 with 80 slices; field of view (FOV) = 224 mm with
7 values of the spin echo displacement time (τ) from 16 to 40 ms in
the step of 4 ms. A total of 20 slabs were acquired, and each slab was
constructed by averaging four 1.25-mm slices to correct for
macroscopic field gradients with 100% partition oversampling
(total 8 k-space partitions). The total acquisition time of the
main ASE sequence was 2 min and 54 s to cover the whole brain
with 80 slices. A separate spin-echo ASE scan (τ = 0) was collected
with the same scan parameters as described, with an acquisition time
of 24 s.

To generate quantitative CBF maps, we performed multi
post-labeling-delay (PLD) 3D pseudo-continuous ASL (pcASL)
MRI. The parameters were five different PLDs (0.9 s, 1.2 s, 1.4 s,
1.8 s, and 2.1 s) and effective labeling durations = 2 s; TR/TE =
4,700 ms/14 ms; slice thickness = 4 mm; spatial resolution =
3.4 mm3 × 3.4 mm3 × 4.0 mm3; FOV = 220 mm (Li et al.,
2015). Multi-band EPI readout was used with slice-
acceleration factor of 6, FOV shift factor of 3, and EPI factor
of 64. Including calibration scans with similar imaging
parameters but no labeling to estimate longitudinal
magnetization (M0), the total acquisition time was
approximately 6 min. The ASE and pcASL scans were acquired
twice—once at baseline and once after vasodilation.

2.4 Image analysis

2.4.1 Image preprocessing
Prior to qBOLD modeling, ASE data were preprocessed first

with motion correction of all echoes to the spin echo volume using
MCFLIRT (Jenkinson et al., 2002). Next, the spin echo image was
brain extracted using BET (Smith, 2002) to create a binary mask of
the brain tissue, which was applied to all ASE R2’-weighted images.
ASE data were finally smoothed with a Gaussian kernel (σ = 4 mm)
in FSL (Jenkinson et al., 2012) to reduce the effect of noisy voxels.
The empirical tradeoff between spatial resolution and noise
reduction is shown in Supplementary Figure S4.

For pcASL data, images from all five PLDs were merged and
underwent the same preprocessing steps as the ASE data. First,
motion correction was applied with reference to the first pcASL
image, followed by smoothing with a Gaussian kernel of
1.5 mm. Then, the M0 image was brain extracted using BET
to create the binary mask of the brain tissue, which was used for
registration.
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2.4.2 OEF quantification
2.4.2.1 Two-compartment model theory for quantitative
BOLD

Quantitative measurements of the BOLD signal were used to
non-invasively map hemodynamic parameters relating to brain
metabolism and function. The quantitative BOLD (qBOLD)
model (Yablonskiy and Haacke, 1994) measures oxygen
extraction fraction from the measured reversible transverse
relaxation rate, R2’ (where R2’ = R2*–R2). A complete qBOLD
model with R2’-weighted measurements can be achieved using
asymmetric spin echoes (An and Lin, 2003), such as the GESEPI-
ASE pulse sequence described above. qBOLD modeling was
performed with two compartments (tissue and blood), as this
approach provides reliable estimates of OEF with a full range of
echoes for fitting, including those before the spin echo (Cherukara
et al., 2019).

The objective of qBOLD modeling is to separate OEF and DBV
effects from the ASE signal and generate a brainmap of OEF. The (1)
tissue signal, (Yablonskiy and Haacke, 1994), St is:

St τ( ) � S0 exp −Rt
2 × TE( ) × exp − 3

10
DBV δω × τ( )( )2

τ| |<Tc

S0 exp −Rt
2 × TE( ) × exp DBV–DBV × δω × τ( )( ) τ| |>Tc

⎧⎪⎪⎨⎪⎪⎩
(1)

where δω is the characteristic frequency (with R2
′ � DBV × δω), tc is

the characteristic time, and Rt
2 is the irreversible transverse

relaxation rate of bulk tissue. The R2’-weighted signal has
different behavior in two different regimes of the parameter τ
(Eq. 1). The boundary between these regimes is considered to be
at Tc = 1.76tc (Cherukara et al., 2019). The characteristic time tc was
defined as tc � 1

δω (Lee et al., 2018). The time variable τ corresponds
to the spin echo displacement values of the ASE acquisition. The (2)
blood signal, Sb, (Sukstanskii and Yablonskiy, 2001; Yablonskiy
et al., 2013) is:

Sb τ( ) � exp −Rb
2 × TE + i

δω × τ

2
( ) C η( ) − iS η( )

η( ) (2)

where C(η) and S(η) are Fresnel function, and η � (3δω|τ|π )2. Rb
2 is the

transverse relaxation rate of blood and is described as a function of
the fractional hematocrit (Hct) and OEF of the intravascular
compartment (Simon et al., 2016):

Rb
2 � 16.4Hct + 4.5( ) + 165.2Hct + 55.7( ) × OEF2 (3)

The total signal calculated from a voxel in this two-compartment
tissue model is the sum of the signal from each compartment:

STotal τ( ) � S0 DBV × Sb τ( ) + 1 − DBV( ) × St τ( )( ) (4)
After fitting the two-compartment tissue qBOLDmodel, R2’ and

DBVwere estimated. Then, OEF was determined by the relationship
between R2’ and DBV with known constants:

OEF � 3 × R2
′

4π × γB0 ×Δχ0 × Hct × DBV
(5)

where Hct is the patient’s fractional hematocrit, Δχ0 is the magnetic
susceptibility difference between oxygenated and deoxygenated red
blood cells, B0 is the magnetic field, γ is proton gyromagnetic ratio.

R2’-weighting was acquired by shifting the spin echo refocusing
pulse for 7 values of the spin echo displacement time, τ, in the step
of 4 ms from 16 ms to 40 ms. The spin echo (τ = 0 ms) was collected
in separate scan. Hct was assumed at 0.40 (Nicoll et al., 2012).
Other physiological parameters were also set as constant values as
follows: Δχ0 � 0.264 × 10−6 (Spees et al., 2001); Rt

2 � 11.5s−1 (He
and Yablonskiy, 2007). Rt

2 � 11.5s−1. Additionally, acquisition
parameter values used for the model were B0 = 3T, TE � 56ms,
and TR � 3s.

2.4.2.2 Bayesian inference for mapping OEF with qBOLD
Fitting the acquired ASE signals to the two-compartment tissue

model allows us to separate OEF (our parameter of interest) and
DBV per voxel. To fit our ASE signal data, we used a Bayesian
framework that estimates R2’ and DBV, which have shown to be
more separable parameters with a suitable posterior distribution for
the estimation (Cherukara et al., 2019). Given the total signal STotal

in Eq. 4, the Bayesian approach will find the optimal pair of (DBV
and R2’) using a variational Bayesian (VB) inference scheme
implemented in FAST ASL and BOLD Bayesian Estimation
Routine (FABBER) toolkit (Woolrich et al., 2006; Chappell et al.,
2009; Groves et al., 2009) in FSL (version 6.0.5, Oxford,
United Kingdom), as illustrated in Figure 1A. VB inference was
performed with fixed prior mean values, μ0, and standard deviations,
σ0 The mean values for R2’ and DBV for healthy subjects were 2.6 s−1

and 3.6%, respectively (Stone and Blockley, 2017). The optimal prior
standard deviation was chosen as σ0(R2

′) � 10
3
2 s−1 and σ0(DBV) �

10
1
2 % based on numerical simulations (Le et al., 2023). After

implementing Bayesian estimation to map DBV and R2’ in each
participant, OEF was calculated voxelwise based on the proportion
between DBV and R2’ with known constants from Eq. 5. All qBOLD
model analyses were done in native space.

2.4.3 The relationship between OEF and CMRO2

The relationship between CMRO2 (μmol/100 g/min) and OEF
(%) (Kety and Schmidt, 1948) can be expressed as

CMRO2 � CBF × OEF × Hb[ ]a (6)
Where CBF is the cerebral blood flow (mL/100 g/min), and

[Hb]a is the oxygenated hemoglobin concentration in the arteriole
(8.272 μmol/mL) This is calculated from [Hb]a � [Hb]t × Ya,
where [Hb]t (8.441 μmol/mL) is the hemoglobin concentration
in the tissue blood with assumption of hematocrit of Hct = 0.40
(Zhang et al., 2018). Ya is the arterial oxygenation, which is assumed
to be 0.98.

2.4.4 Perfusion measurements
The complete procedure to measure cerebral blood flow is

shown in Figure 1B. We used the Bayesian Inference for Arterial
Spin Labeling MRI (BASIL) toolkit (Chappell et al., 2009)
implemented in FSL (version 6.0.5, Oxford, United Kingdom) for
analyzing ASL data and quantifying perfusion maps. This approach
allows fitting a two-compartment model to separate macrovascular
and tissue information in ASL signal to quantify CBF maps (Groves
et al., 2009; Chappell et al., 2010).

The two-compartment model assumed that the walls of arterial
vessels do not allow any substance to pass through them, and that
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blood in the arteries moves through the voxel immediately. The total
signal from any voxel is the sum of both tissue and intravascular
components. CBF maps underwent a voxelwise calibration method
using the measured M0 maps (Pinto et al., 2020). Fix label duration
was applied, and initial parameter values were assumed as following:
initial arterial transit time (ATT) = 1.3 s; T1 values for tissue (T1t) =
1.3 s (based on 3 T field strength); T1 values for blood (T1b) = 1.65 s;
brain/blood partition coefficient (λ) = 0.9 mL/g; and labeling
efficiency (α) = 0.85 (Alsop et al., 2015). Analyses to compute
CBF maps were done in native ASL space.

2.4.5 Image registration
To assess the regional relationship between hemodynamic

parameters, especially OEF and perfusion across subjects, all
quantitative maps were registered to Montreal Neurological
Institute (MNI) space (Collins et al., 1999; Fonov et al., 2009;
Fonov et al., 2011). For hemodynamics parameter maps,
including OEF, DBV, and R2’, the spin echo image from the
ASE scans was linearly co-registered, with FMRIB’s Linear Image
Registration Tool (FLIRT) (Jenkinson and Smith, 2001;
Jenkinson et al., 2002; Greve and Fischl, 2009), to subject-
specific T1-structural space and then non-linearly co-
registered, with FMRIB’s Non-linear Image Registration Tool
(FNIRT) (Andersson et al., 2010), to MNI space. All parameter
maps were then warped to MNI space with combined
transformation parameters from those two registrations. To
register CBF maps to MNI space, we first performed linear
registration (FLIRT) of proton density (M0) images to T1

images; then, all CBF maps were transformed into MNI space
using non-linear co-registration as described above.

2.5 Data analysis

2.5.1 Mean ROI calculation
Before assessing parameters of interest (CBF, OEF, and R2’)

across brain regions and calculating the average for each ROI, we
excluded voxels with unphysiological extreme values. Voxels with
OEF values greater than 100%, and with estimated R2’ greater than
20 s−1 were excluded from analysis. The thresholds were set
consistently to prior relevant studies (Stone and Blockley, 2017;
Cherukara et al., 2019). For group average parameter maps across all
participants, we calculated the mean only for MNI voxels having at
least 50% of the population (i.e., at least 4 subjects) within
physiological values. Intermediate processing steps, including
subject masks in MNI space, are shown in Supplementary
Material, Supplementary Figure S1 (for OEF), Supplementary
Figure S2 (for DBV), and Supplementary Figure S3 (for R2’).

In MNI space, the Harvard-Oxford cortical atlas (Frazier et al.,
2005; Desikan et al., 2006; Makris et al., 2006; Goldstein et al., 2007)
was used to delineate nine brain regions of interest (ROIs) within the
DMN. Regions within the DMN included the posterior cingulate
gyrus (pCG), precuneus (PCun), anterior cingulate gyrus (aCG),
angular gyrus (AG), supramarginal gyrus (SG) (including in inferior
parietal lobe), and medial frontal gyrus (MFG) (Broyd et al., 2009).
As a reference for comparison for this study, we chose other cortical

FIGURE 1
Overview of procedures for parameter quantification. (A) Oxygen extraction fraction (OEF) quantification using GASE scans was achieved through
fitting with two-tissue compartment qBOLD model in FABBER (Woolrich et al., 2006; Chappell et al., 2009; Groves et al., 2009). (B) Cerebral blood flow
(CBF) quantification using pseudo-continuous ASL (pcASL) scans fitted with two-tissue compartment model in BASIL (Chappell et al., 2009; Chappell
et al., 2010). This pipeline was repeated before and after acetazolamide injection.
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brain regions, including the occipital pole (OP), inferior temporal
gyrus (ITG), and middle temporal gyrus (MTG), to represent non-
DMN regions.

2.5.2 Statistical analysis
All statistical analyses were performed using MATLAB R2021a

(MathWorks, Natick, MA, 2016). Differences between before and

after vasodilation were assessed using a pairwise two-way t-test with
Bonferroni correction for nine ROIs. A p-value of less than 0.006
(where α � 0.05

number of comparisons) was considered statistically
significant for this analysis.

To evaluate the relationship of OEF and CBF across regions
during vasodilation, a linear mixed-effects model was conducted
using OEF as the dependent variable and CBF as the independent
variable, with subject and region as random effects. We also
investigated the correlation of R2’ and CBF across regions during
vasodilation, using a separate linear mixed-effects model with R2’ as
the dependent variable and CBF as the independent variable. For
both models, subjects and regions were used as random effects to
adjust for inherent physiological variations across individuals and
regions. Each mixed model was fit separately using the MATLAB
software package “fitlme” (Pinheiro and Bates, 1996). A p-value of
less than 0.05 was considered statistically significant.

3 Results

All eight healthy participants received MRI scans consisting of
the GESEPI-ASE sequence for quantitative BOLD modeling to
estimate hemodynamic parameters, including R2’, DBV, and OEF
(our parameter of interest). After excluding unphysiological voxels,
group average maps of each parameter before and after vasodilation
are shown in Figure 2. Excluded voxels were primarily located in
frontal brain areas prone to air-tissue bulk magnetic susceptibility
effects. The percentage of voxels removed due to thresholding in the
two conditions is shown in Supplementary Table S1 (Pre-ACZ:
DBV = 0.21%, R2’ = 2.05%, OEF = 13.1%; Post-ACZ: DBV = 0.16%,
R2’ = 1.84%, OEF = 10.93%. We focused on parameters that are
sensitive to brain oxygenation (OEF and R2’) and perfusion; the
corresponding DBV maps are shown in Figure 2.

Compared to the baseline condition, increased CBF and
decreased OEF were observed across multiple areas in the brain
at the group average level (Figures 2A, B). We also observed a
decreasing trend in R2’ (Figure 2C) and an increasing trend in DBV
(Figure 2D) during vasodilation. Mean parameter values, including
CBF, OEF, R2’, DBV and CMRO2 for all subjects across selected
regions for each condition are presented in Table 1. Additionally, the
distribution of changes in OEF, R2’, DBV and CBF in response to
ACZ for each selected region were plotted in Figure 3.

Paired two-way t-test with Bonferroni correction showed
statistically significant differences in CBF and OEF estimates in
selected regions during vasodilation (i.e., Pre-ACZ versus Post-
ACZ), as presented in Table 1. With the injection of ACZ, CBF
increased across all chosen regions before correction for multiple
comparisons. After correction, elevated CBF remained significant in
MFG (P � 0.004), pCG (P � 0.004), PCun (P � 0.004), and OP
(P � 0.001) regions. In parallel, a significant reduction in OEF from
qBOLD was observed only in pCG (P � 0.003) and PCun
(P � 0.001) after correction, with a trend of decreased OEF also
in the angular gyrus. In addition, a slight trend of DBV increase
during vasodilation was observed only in pCG (P � 0.045) before
correction. For R2’, there was a small reduction trend during
vasodilation; however, we found no region showing statistically
significant change with ACZ (Table 1). Additionally, while there
was a trend of increased CMRO2 after vasodilation in several brain

FIGURE 2
The group average of (A) cerebral blood flow (CBF) maps (in mL/
100 g/min), (B) oxygen extraction fraction (OEF) maps (in %), (C)
transverse relaxation rate (R2

’) (in s−1) and (D) deoxygenated blood
volume (DBV) across all eight healthy subjects before (Pre-ACZ)
and after (Post-ACZ) vasodilation with the corresponding absolute
difference maps between two conditions for each parameter (ΔCBF,
ΔOEF, ΔR2

’, and ΔDBV). All maps were registered to Montreal
Neurological Institute (MNI) space.
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areas, especially the MFG and MTG, CMRO2 showed no significant
change in all regions after correction for multiple comparisons
(Table 1).

The CBF response to ACZ showed a significant negative linear
relationship to OEF value at baseline and after vasodilation using a
mixed-linear effects model with subject clustering
(β � −0.104 ± 0.027; t � −3.852, P< 0.001) (Figure 4A; Table 2).
We further investigated the relationship between CBF and R2’

using the same mixed-effects model. The CBF response to ACZ
was also correlated with R2’ (β � −0.016 ± 0.006;
t � −2.692, P � 0.008) (Figure 4B; Table 2).

4 Discussion

The purpose of this study was to demonstrate qBOLD modeling
of ASE scans in healthy volunteers to detect regional OEF decreases
in key ROIs of the DMN during concomitant perfusion increase
with ACZ vasodilation. The main findings were as follows: 1) Across
baseline and vasodilation states, OEF was inversely related to
quantitative perfusion as expected, indicating a compensation to
maintain oxygen metabolism and reliability of the local OEF
measures. 2) Similar changes with ACZ observed using R2’

relaxation estimates from the same ASE acquisitions, which
highlights the utility of qBOLD compartment modeling to non-

invasively measure specific OEF imaging markers. 3) OEF reduction
was observed in critical DMN regions, including the precuneus and
posterior cingulate gyrus.

4.1 Baseline OEF and change with
acetazolamide in healthy participants

The observed mean baseline OEF across selected brain
regions of 35.1% is consistent with the physiological range of
previous PET and MRI studies (Yamaguchi et al., 1986; Leenders
et al., 1990; Cho et al., 2021; Jiang et al., 2023). We observed an
OEF reduction of 6.2%–8.7% (absolute oxygenation) in
significant DMN regions, which was smaller in magnitude
than the 15.6% absolute OEF decrease in the sagittal sinus
from past ACZ studies on healthy controls (Václavů et al.,
2020). This discrepancy could be due to methodological
differences, as previous studies focused on global OEF values
and used a distinct contrast mechanism and calibration with T2-
prepared inversion recovery sequences (Václavů et al., 2020; Baas
et al., 2022). The qBOLD method adopted here may also have
lower sensitivity to OEF changes due to noise contributions in the
model fitting in vivo. Of note, the T2-based study also reported a
larger magnitude of perfusion increase (69.3% increase) using
pcASL with ACZ than our study (average 43.4% increase across

TABLE 1 Average cerebral blood flow (CBF) (in mL/100 g/min), oxygen extraction fraction (OEF) (in %), transverse relaxation rate (R2’) (in s−1), deoxygenated blood
volume (DBV) (in %) and cerebral metabolic rate of oxygen (CMRO2) (in μmol/100 g/min) before (Pre) and after (Post) vasodilation across all healthy subjects
(mean ± std) in different regions of interest (ROIs): angular gyrus (AG), medial frontal gyrus (MFG), anterior cingulate gyrus (aCG), posterior cingulate gyrus (pCG),
precuneus (PCun), occipital pole (OP), supramarginal gyrus (SG), middle temporal gyrus (MTG), and inferior temporal gyrus (ITG). All tests were performed using a
two-sided paired t-test with Bonferroni correction. (*p < 0.05, significant raw p-value; **p < 0.006, significant p-value after correction).

AG MFG aCG pCG PCun SG OP MTG ITG

CBF (mL/100 g/min) Pre-ACZ 60.7 ± 15.6 43.2 ± 10.6 68.6 ± 14.5 76.3 ± 14.8 61.6 ± 11.1 54.9 ± 14.1 40.0 ± 9.7 54.5 ± 13.7 40.2 ± 10.7

Post-
ACZ

81.8 ± 22.4 74.8 ± 23.2 93.3 ± 21.3 104.4 ± 17.8 87.6 ± 18.1 76.4 ± 22.2 58.4 ± 8.8 76.1 ± 20.7 57.6 ± 13.5

P-val 0.046* 0.004** 0.017* 0.004** 0.004** 0.037* 0.001** 0.027* 0.018*

OEF (%) Pre-ACZ 44.4 ± 4.1 32.4 ± 10.9 35.9 ± 4.7 34.5 ± 4.8 39.6 ± 4.2 43.2 ± 5.2 30.7 ± 8.3 25.9 ± 3.0 29.3 ± 3.1

Post-
ACZ

38.2 ± 3.8 30.3 ± 11.6 30.7 ± 6.5 25.7 ± 4.7 30.9 ± 4.1 39.1 ± 2.5 27.2 ± 7.2 25.1 ± 3.0 27.1 ± 2.3

P-val 0.008* 0.717 0.085 0.003** 0.001** 0.070 0.381 0.609 0.134

R2
’ (s−1) Pre-ACZ 4.8 ± 1.0 9.1 ± 2.6 3.8 ± 0.4 3.7 ± 0.3 4.0 ± 0.7 5.1 ± 0.5 7.1 ± 1.6 7.8 ± 1.0 11.1 ± 1.2

Post-
ACZ

4.3 ± 0.8 9.0 ± 2.1 3.9 ± 0.7 3.7 ± 0.5 3.6 ± 0.7 4.7 ± 0.6 6.5 ± 0.7 7.1 ± 0.8 10.4 ± 1.9

P-val 0.270 0.900 0.856 0.816 0.233 0.199 0.348 0.154 0.404

DBV (%) Pre-ACZ 3.1 ± 0.7 11.0 ± 6.1 3.2 ± 0.4 3.4 ± 0.8 3.2 ± 0.7 3.1 ± 0.9 7.8 ± 2.2 11.5 ± 2.8 17.6 ± 3.1

Post-
ACZ

3.5 ± 0.7 12.2 ± 6.0 4.3 ± 1.4 4.5 ± 1.3 3.7 ± 0.7 3.4 ± 0.9 8.2 ± 2.1 10.7 ± 2.5 16.1 ± 3.6

P-val 0.270 0.694 0.067 0.045* 0.114 0.496 0.721 0.550 0.425

CMRO2 (μmol/
100 g/min)

Pre-ACZ 223.0 ± 58.2 117.1 ± 47.7 206.3 ± 57.1 216.9 ± 51.8 201.7 ± 43.8 194.9 ± 51.3 103.2 ± 38.9 115.6 ± 28.8 100.3 ±
28.1

Post-
ACZ

260.8 ± 80.1 173.5 ± 40.6 238.4 ± 82.3 221.5 ± 51.1 223.1 ± 54.0 246.7 ± 70.6 130.4 ± 35.8 154.9 ± 33.5 130.3 ±
35.8

P-val 0.298 0.023* 0.379 0.859 0.399 0.116 0.168 0.025* 0.083
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regions). Therefore, direct comparison of the OEF imaging
approaches in the same participants and improvement to
sensitivity of our qBOLD approach is warranted in future work.

4.2 Correlation between hemodynamic
parameters and perfusion

Although R2’ has been used as a surrogate marker for brain OEF
in previous studies (Ni et al., 2015), including identification of
putative oxygenation changes in cerebrovascular disease (Ni
et al., 2017; Kaczmarz et al., 2021), this work suggests that
qBOLD compartmental modeling outperforms R2’ measures in
detecting physiological OEF changes in healthy volunteers. While
significant OEF reductions were measured in the pCG and PCun
with qBOLD, none of the ROIs showed a significant R2

’ change with

ACZ. Additionally, the expected inverse relationship between OEF
and CBF across baseline and vasodilatory states was stronger using
qBOLD than between R2’ and CBF. One rationale could be that R2’ is
proportional to both OEF and DBV, such that OEF reductions
concurrently with potential DBV elevations during vasodilation lead
to overall smaller changes in R2’ values. Because qBOLD
compartment modeling uses multiple asymmetric echoes to
disentangle contributions from OEF and DBV, the resulting
regional OEF measures are likely to be more sensitive than R2’,
as observed in our results. In addition to the Bayesian fitting for R2’,
a supplementary analysis of the monoexponential fits based on
streamline qBOLD (Stone and Blockley, 2017) was also
performed. Our more complex modeling approach may produce
R2’ measures that are noisier compared to monoexponential fits for
the relaxation parameter (Supplementary Figure S5), which may
contribute to lack of sensitivity of R2’ to changes during vasodilation.
Besides, in whole group level analysis with monoexponential fits,
there was a slight decrease for R2’ in pCG (P � 0.028) and OP (P �
0.039) before correction (Supplementary Table S2). However, in this
analysis, we chose to compare OEF and R2’ values that were both
derived from Bayesian fitting for consistency. R2’ measures are also
susceptible to contributions from orientation effects of the blood
vessels (Kaczmarz et al., 2021) and artifacts from non-heme
susceptibility sources (iron, myelin). These contributions will also
manifest differently on OEF values from qBOLD modeling, which
requires further evaluation with related multi-parametric qBOLD
approaches that acquire separate R2 and R2* maps measures to
assess oxygenation (Gersing et al., 2015). Such multi-parametric
qBOLD have been used to identify reduced baseline oxygen
metabolism in the affected middle cerebral artery territory with
moderate ischemia and may provide an alternative to ASE
acquisitions (Bouvier et al., 2015).

A good validation for our qBOLD method to measure OEF is to
test the hypothesis that CMRO2 is unchanged during vasodilation,
i.e., that OEF decreases are commensurate with the increase in CBF
during acetazolamide. From this study, we found no significant
CMRO2 change after Bonferroni correction in all selected regions,
which is consistent with our hypothesis and reflects reliability of the
qBOLD method. However, we observed a slight increasing trend in
CMRO2, which may reflect residual underestimation bias in OEF
values (i.e., underestimating the OEF decrease) and limited
sensitivity of the qBOLD model to OEF. While CBF significantly
increased in all selected regions, OEF only showed a significant
decrease in pCG and PCun (Table 1). Therefore, there was an overall
trend of increased CMRO2 in several regions, even though we
observed the expected compensation of OEF and CBF during
vasodilation. Future work will enhance the accuracy and
sensitivity of qBOLD modeling with refined physiological prior
information and improved fitting routines that are more robust
to noise contributions.

4.3 Effects of vasodilation in cerebral regions

This study imaged the regional effects of vasodilation on OEF
across the entire cerebral cortex, focusing on DMN (Figures 2, 3).
We found that most DMN regions showed increased CBF during
vasodilation, and decreased OEF was observed in pCG and PCun. In

FIGURE 3
Absolute changes in (A) cerebral blood flow (CBF) in mL/100 g/
min, (B) oxygen extraction fraction (OEF) in %, (C) transverse relaxation
rate (R2

’) in s−1, and (D) deoxygenated blood volume (DBV) in % in
response to acetazolamide (ACZ) in different regions of interest
(ROIs): angular gyrus (AG), medial frontal gyrus (MFG), anterior
cingulate gyrus (aCG), posterior cingulate gyrus (pCG), precuneus
(Pcun), occipital pole (OP), supramarginal gyrus (SG), middle temporal
gyrus (MTG), and inferior temporal gyrus (ITG). All tests were
performed using pairwise two-way t-tests between pre- and post-
vasodilation with Bonferroni correction. (*p < 0.05, significant raw
p-value; **p < 0.006, significant p-value after correction).
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contrast, the non-DMN regions did not show a significant response
in any hemodynamic parameters. One potential implication of this
finding is that DMN regions show a strong sensitivity to vasodilation
in those regions, which is consistent with well-established
mechanisms of vasodilation with ACZ (Kleinschmidt et al., 1995;
Wang et al., 2015). In addition, BOLD fMRI studies during
hypercapnia have identified co-fluctuations in brain
hemodynamics that spatially resemble the DMN but are
responsive to vasoactive (not neuronal) stimuli (Bright et al.,
2020). Such “vascular networks” may have unique OEF
properties at baseline and in vasodilated conditions, and methods
such as the qBOLD approach can characterize such physiological
mechanisms of brain functional network emergence. These
capabilities will enable important future studies to assess the link
between oxygen metabolism in other brain networks and their
disorders. Outside of the DMN, the medial temporal lobe (MTL)
has been known as a key early region that is affected by many brain
diseases (Clifford R. Jack et al., 1997; Tam et al., 2005; Burton et al.,
2009). OEF can serve as a functional biomarker due to its sensitivity
in the early stages of brain diseases and aging, as neural activity is
tightly linked to the brain’s oxygen consumption (Watts et al., 2018).
At baseline, average OEF values in the medial temporal lobe were
measured to be 25.9% ± 3.0% (Table 1), consistent with prior MRI
studies’measurement of OEF in vessels supplying the MTL of 23.9%
using T2-relaxation-under-phase-contrast approach (Jiang et al.,
2023). Even though there was a decreasing trend, we observed no
significant change in MTL OEF during vasodilation (P � 0.609).
This observation contrasts with Jiang et al., who observed increased

MTL OEF after vasoactive challenge with caffeine ingestion.
Caffeine is a common vasoconstrictor, which is known to reduce
CBF and increase OEF to maintain the same amount of total oxygen
consumption (Xu et al., 2015). Both ACZ and caffeine are vasoactive
stimuli with minimal neuroactive effects, although they are in
opposite directions. For the MTL, Jiang et al. observed a 9.1%
OEF increase due to caffeine, while our study observed an
average of 12.7% OEF decrease across regions due to ACZ
vasodilation. More studies are needed to characterize the
accuracy of qBOLD to detect changes in MTL OEF with
physiological changes or aging and may require additional
corrections for signal loss or distortion due to susceptibility
effects in some MTL subregions (Olman et al., 2009).

4.4 Limitations

To perform qBOLDmodeling, we have used an ASE sequence to
directly estimate R2’ with consistent R2-weighting across echoes (An
and Lin, 2003). One main limitation of the qBOLDmodel is that the
separation of DBV and OEF effects in the qBOLD model depends
mainly on the subtle change in decay patterns. Therefore, it requires
high signal-to-noise-ratio (SNR) to accurately estimate OEF from
the ASE signals (An and Lin, 2000). Due to challenging low SNR
from our sequence, OEF values estimated from qBOLD model still
had unreasonable physiological values in particular voxels that we
had to remove. To address this noise limitation, a benefit to fitting
this multi-compartment with the Bayesian framework is the ability

FIGURE 4
(A) The correlation between oxygen extraction fraction OEF (%) and cerebral blood flow (CBF); (B) the relationship between R2

’ (s−1) and CBF across
all healthy subjects in nine ROIs (red: before vasodilation (Pre-ACZ); blue: after vasodilation (Post-ACZ). The solid black line represents the fitted line from
mixed-effect models. Linearmixed-effect models with adjustment for subject clustering and region were performed separately for OEF and R2

’. p < 0.05*
Mixed-effects model: OEF~CBF + (1|Region) + (1|Subject).

TABLE 2 Linearmixed-effectsmodels betweenOEF, R2’, and CBF in the whole group (N = 8) across 9 ROIs. In bothmodels, subjects and regions were used as random
effects. *p < 0.05 β: standardized beta coefficient; SE: standardized error; OEF: oxygen extraction fraction; R2’: transverse relaxation rate; CBF: cerebral blood flow.

Dependent variables Independent variables β ± SE t-statistics p-value

OEF CBF −0.104 ± 0.027 −3.852 <0.001*

R2
’ CBF −0.016 ± 0.006 −2.692 0.008*
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to include prior knowledge to improve parameter estimates. In this
study, prior mean values and standard deviations were taken from
previous studies (Stone and Blockley, 2017; Cherukara et al., 2019;
Le et al., 2023). Moreover, it has been suggested that prior means do
not significantly affect the parameter estimation (Cherukara et al.,
2019). However, the prior standard deviations were optimized based
on a broader range of R2’-weighted images (24 R2’-images in
Cherukara et al., 2019, and 14 in Le et al., 2023) than acquired
in this MRI protocol. For this data, we also investigated the effect of
prior standard deviations to the parameter estimation by comparing
between the chosen prior standard deviations
(σ(DBV) � 10

3
2 %; σ(R2

′) � 10
1
2 s−1) with a broader one

(σ(DBV) � 10
5
2 %; σ(R2

′) � 10
5
2s−1). We found that the broader

standard deviation, which places less weight on prior
information, resulted in more unphysiological values compared
to our chosen value as shown in Supplementary Table S1.
Further optimization for prior information will be assessed to
maintain a robust estimation of OEF.

Hctwas assumed as 0.40 based on the literature value for general
circulation (Nicoll et al., 2012), which is consistent with average
hematocrit in healthy subjects from other studies (Brown et al., 1962;
Jeong et al., 2021). On the other hand, prior relevant studies have
used a lowerHct of 0.34 (He and Yablonskiy, 2007) because of lower
Hct in small vessels. Because Hct influences quantification
specifically of the intravascular compartment, for our two-
compartment model, changing Hct has a non-linear effect on the
parameter estimates. For instance, using a Hct of 0.34 (i.e., a 15%
lower value of Hct) and without spatial regularization, Cherakura
et al. observed the same mean DBV values but a 3% higher mean
OEF values compared to analysis with Hct of 0.40. However, it is
unclear how much the Hct varies throughout the brain, which may
propagate to additional regional differences of OEF estimates from
the qBOLD signal. Finally, this study adopted a Bayesian framework
that aims for the maximal free energy of the approximate posterior
to better estimate the data (Chappell et al., 2009). This approach was
chosen to ensure that applying additional smoothing (Gaussian
smoothing with kernel of 4 mm) did not affect the fitting. Because
the qBOLD-OEF measurement requires more complex models, it is
more sensitive to the presence of noise compared to CBF
quantification from ASL. Therefore, we applied a larger kernel of
smoothing (i.e., 4 mm) for OEF, which is consistent to previous
studies (Cho et al., 2021; Uchida et al., 2022). This kernel was
empirically chosen after comparing multiple kernel sizes on our data
to reduce unstructured noise and heterogeneity in the OEFmaps but
has the drawback of decreasing the spatial resolution of regional
OEF measures. The relatively small sample size of our study is also a
limitation and should be expanded in future studies to include larger
cohorts with various ages and cerebrovascular conditions.

5 Conclusion

We demonstrated that regional OEF measurements from qBOLD
are reliable across multiple physiological conditions and evaluated OEF
through correlation with ASL perfusion in response to ACZ vasodilation
as reliable indicators of tissue health in healthy cohort. This study
enhances our understanding of the relationship between OEF and
CBF with regional alterations in brain vasculature and has

implications for the future use of oxygenation MRI to study vascular
alterations in cognitive impairment and cerebrovascular diseases.
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Cerebral blood flow (CBF) is a critical physiological parameter of brain health,
and it can be non-invasively measured with arterial spin labeling (ASL) MRI. In
this study, we evaluated and optimized whole-brain, high-resolution ASL as an
alternative to the low-resolution ASL employed in the routine assessment of
CBF in both healthy participants and patients. Two high-resolution protocols
(i.e., pCASL and FAIR-Q2TIPS (PASL) with 2 mm isotropic voxels) were compared
to a default clinical pCASL protocol (3.4×3.4×4 mm3), all of whom had
an acquisition time of ≈ 5 min. We assessed the impact of high-resolution
acquisition on reducing partial voluming and improving sensitivity to the
perfusion signal, and evaluated the effectiveness of z-deblurring on the ASL
data. We compared the quality of whole-brain ASL acquired using three available
head coils with differing number of receive channels (i.e., 20, 32, and 64ch). We
found that using higher coil counts (32 and 64ch coils as compared to 20ch)
offers improved signal-to-noise ratio (SNR) and acceleration capabilities that
are beneficial for ASL imaging at 3 Tesla (3 T). The inherent reduction in partial
voluming effects with higher resolution acquisitions improves the resolving
power of perfusion without impacting the sensitivity. In conclusion, our results
suggest that high-resolution ASL (2 to 2.5 mm isotropic voxels) has the potential
to become a new standard for perfusion imaging at 3 T and increase its adoption
into clinical research and cognitive neuroscience applications.

KEYWORDS

arterial spin labeling, brain perfusion, high spatial resolution, 3 Tesla, RF coil,
neuroimaging frontiers

1 Introduction

Arterial spin labeling (ASL) is a non-invasive neuroimaging technique that uses
magnetically labeled arterial blood water as an endogenous tracer to measure cerebral blood
flow (CBF) (Detre et al., 1992; Williams et al., 1992). ASL provides a safe and repeatable
method for assessing brain state and functionwithout any risk of toxicity or allergic reactions
from exogenous contrast agents. ASL can also be utilized to assess the quantitative CBF in
units ofmL/100 g/min at an individual voxel level (Williams et al., 1992; Buxton et al., 1998).

In recent years, technological advances in MRI scanner hardware and software, and new
cutting-edge analysis methods have positively impacted the range of ASL applications and
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resulted in a notable increase in the number of publications
(Detre et al., 2012; Iutaka et al., 2023; Lindner et al., 2023).
Another factor for its increasing popularity in clinical research
is the community effort to standardize acquisition methods,
data structures, and analyses (Alsop et al., 2015; Clement et al.,
2022; Hernandez-Garcia et al., 2022). However, widely adopted
standards (e.g., described in the ASL “white paper” (Alsop et al.,
2015)) prescribe spatial resolutions of 3–4 mm in-plane and
4–8 mm slice thickness for ASL scans that are maximally
5–6 min long (typical length of clinical research/standard-of-
care MRI protocols) but may not be optimal anymore with
current hardware and MRI sequences. Although these protocols
may suffice for macroscopic effects (such as pattern of large
regions of hypo-perfusion), they are insufficient to detect subtle
abnormalities that may represent early stage of neurological diseases
or small lesions (Mora Álvarez et al., 2019). Therefore, ASL at
higher spatial resolution (< 3 mm nominal, isotropic) is highly
desirable.

Another reason for going to high spatial resolutions is to
reduce partial volume (PV) effects, which occur when the voxel
signal contains fractional contributions from more than one
tissue type, for example, gray matter (GM), white matter (WM),
and cerebrospinal fluid (CSF). This can introduce inaccuracies
in perfusion quantification of the tissue of interest, resulting in
either or both underestimation and over-estimation, depending on
the PV fractions in the voxels. For instance, Asllani et al. (2008)
showed that a voxel mixture of 80:20% gray:white matter (this
ratio would be inclusive after the threshold, in most cases) would
result in a 24% perfusion underestimation. Another example is
the study by Donahue et al. (2006), investigating the impact of a
higher resolutionASLprotocol compared to low-resolution positron
emission tomography (PET) scans, and they demonstrated that
uncorrected CBF PET images might underestimate the gray matter
(GM) CBF by 20%. In fact, in 2006, Donahue et al. actually
envisioned the future of ASL imaging at 3 Tesla (3 T) to be
spatial resolutions of 2.5 mm in-plane or higher. Seventeen years
later, 3 T ASL imaging is still routinely carried out with voxel
sizes > 3 mm, and the voxels are almost never isotropic, which
can lead to underestimation of lesions and even misdiagnosis
in the direction of the lowest spatial resolution. Although there
have been methods and algorithms developed that can provide
a means to post hoc correct for PV effects (Kirk et al., 2020a;
Kirk et al., 2020b; Chappell et al., 2021), they usually cannot recreate
lost information, and therefore, the most straight-forward and
preferred approach is to just acquire the data at higher spatial
resolutions.

This is notwithstanding high-resolution ASL studies carried
out at field strengths higher (4.7 T, 7 T) than those typically used
in the clinic (1.5 T, 3 T). For example, Mora Álvarez et al. (2019)
demonstrated the feasibility of a high-resolution continuous ASL
(CASL) at 4.7 T within a clinical time frame of 6 min. The study
also observed reduced PV averaging at 1.5× 1.5× 3 mm3 resolution.
Another interesting example is the study published by Zuo et al.
(2013) where they employed Turbo-FLASH (fast low angle shot)
ASL, both pseudo-continuous ASL (pCASL) and pulsed ASL (PASL)
at 7 T showing the feasibility of achieving an in-plane resolution
of 0.85× 1.7 mm2. At 7 T, recent functional MRI (fMRI) studies
also showed the feasibility of using perfusion-weighted contrast

with ASL at sub-millimeter spatial resolutions of 0.9 mm isotropic
(Kashyap et al., 2021) and 0.7 mm isotropic (Ivanov et al., 2018;
Kashyap et al., 2022) using a 3D-EPI (Poser et al., 2010) readoutwith
a FAIR (Kim, 1995)QUIPSS II (Wong et al., 1997;Wong et al., 1998)
labeling scheme.

Although there is evidence of the transformative potential
that ultra-high-field scanners can have for clinical research
and cognitive neuroscience applications, they are limited in
availability compared to the ubiquity of 3 T scanners. Therefore,
a translation of high-resolution ASL to widely available 3 T
clinical platforms is urgently needed to catalyze clinical
research as well as further advance the standards of care. This
requires systematic optimization attuned to easily accessible
workflows, which is currently not explored in the existing ASL
literature.

The current study addresses these aforementioned challenges
and gaps in the literature by first developing, testing, and evaluating
high-resolution ASL protocols at 3 T in clinically feasible times,
and then it compares them to a vendor default protocol that
is typically used in routine clinical scanning. To this end, we
developed optimized 2 mm isotropic pCASL and PASL protocols
that balance the trade-off between signal-to-noise ratio (SNR)
and acquisition time (TA) to be feasible for clinical application
(TA ≈ 5 min). Furthermore, we also evaluated the impact of
the choice of standard head coils on 3 T perfusion imaging. We
systematically evaluated our protocols and the clinical default
protocolwith all three commercially available head coils (20-channel
head and neck coil, 32-channel head coil only, and 64-channel
head and neck coil) to ascertain the optimal hardware for high-
resolution acquisitions. In addition, we quantify and demonstrate
the reduction in partial voluming enabled by the high-resolution
acquisitions. Finally, the lengthening of the readout with 3D-GRASE
is recognized to result in through-plane (z-axis) blurring, resulting
in loss of spatial resolution (Tan et al., 2011; Paschoal et al., 2021).
We also assess the impact of advanced post-processing methods
such as z-deblurring to improve spatial fidelity of the acquired
data.

2 Materials and methods

2.1 Participants

Eight healthy volunteers (four female and four male volunteers,
mean age = 29 ± 4 years) participated in the study and provided
written informed consent prior to scanning. All participants
were screened healthy individuals, non-smokers, not taking any
medications, and with no history of neurological or neurovascular
conditions. All procedures in this study conformed to the standards
set by the Declaration of Helsinki and was approved by the
Research Ethics Board of University Health Network according to
the guidelines of Health Canada.

2.2 Data acquisition

Datawere acquired on a SiemensMAGNETOMPrisma 3 TMRI
scanner (Siemens Healthineers, Erlangen, Germany) at the Slaight
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Family Centre for Advanced MRI (Toronto Western Hospital,
Toronto ON, Canada); the scanner has a maximum gradient
strength of 80 mT/m and a slew rate of 200 T/m/s, and runs on
the XA30A IDEA software platform. We used three commercial
MRI coils, namely, a 20ch head and neck coil, a 32ch head
coil only, and a 64ch head and neck coil for receiving, and
the transmission was carried out by the body coil. Participants
were positioned by taking the eye centers as a reference for the
magnet isocentering to minimize B0 offsets for the labeling in
the neck. All data of participants were acquired in the same
scan session. The participants were brought out of the scanner,
coils were exchanged, and the participants were repositioned
to the magnet’s isocenter. The sequential order of coils was
pseudo-randomized between participants to avoid any systematic
biases.

2.2.1 Anatomical imaging
Structural scans were acquired with the 32ch head coil. Whole-

brain anatomical data were acquired using a 3D multi-echo
magnetization-prepared rapid gradient echo (3D-MEMPRAGE)
sequence (van der Kouwe et al., 2008) that uses volumetric EPI
navigators combined with selective data reacquisition (Tisdall et al.,
2012) to produce (prospectively) motion-corrected T1w images
(Tisdall et al., 2016) that were used in the study. The 3D-
MEMPRAGE data were acquired at 0.8 mm isotropic resolution (TI
= 1000 ms, TEs1−4 = 1.81, 3.6, 5.39, 7.18 ms, TR = 2500 ms, α = 8°,
208 sagittal slices, matrix = 320× 320, GRAPPA = 2, Ref. lines =
32, partial Fourierslice = 6/8, echo spacing = 11.2 ms, bandwidth =
740 Hz/px, turbo factor = 168, total acquisition time ≈ 8 min). The
four echoes were combined (using root mean squares, RMS) into
a high-fidelity T1-weighted image following the scanner’s on-line
reconstruction. Quantitative T1 mapping was carried out using a 3D
magnetization-prepared 2 rapid gradient echoes (3D-MP2RAGE)
sequence (Marques et al. 2010). The MP2RAGE T1 maps were only
used to facilitate perfusion quantification and thus were acquired
at a 1.2 mm isotropic resolution (TIs1−2 = 700, 2500 ms, α1−2 =
4°, 5°, TE = 4.04 ms, TR = 3200 ms, 144 axial slices, matrix =
192× 192, GRAPPA = 2, Ref. lines = 32, partial Fourierphase = 6/8,
echo spacing = 9.08 ms, bandwidth = 150 Hz/px, turbo factor =
144, total acquisition time ≈ 4 min). T1 maps were calculated in-line
using the Siemens MapIt package (Siemens Healthineers, Erlangen,
Germany).

2.2.2 Perfusion imaging
All ASL protocols were developed using the Siemens Advanced

3D-ASL work-in-progress (WIP) sequence (courtesy of Siemens
Healthineers, Erlangen, Germany) available for the XA30A baseline
platform. The ASL data were acquired with a segmented 3D-
GRASE readout for improved SNR (Fernández-Seara et al., 2008;
Feinberg et al., 2009; Vidorreta et al., 2014). Three ASL protocols
were acquired per coil in each participant: 1) the clinical default
protocol (3.4× 3.4× 4 mm3, “Clinical” in Table 1), 2) a high-
resolution (or hires) pCASL protocol (2 mm isotropic, ‘Hires’ in
Table 1), and 3) a hires PASL protocol employing a FAIR-Q2TIPS
(Luh et al., 1999) labeling scheme (2 mm isotropic, “PASL Hires”
in Table 1). For clinical and hires ASL variants, two steady-state
magnetization (M0) calibration images were acquired without any
labeling, but with matched readout and TR increased to 20 s, one

of M0 had the opposite phase encoding for distortion correction.
The new hires protocols developed in this study were acquired in
approximately the same total time as the spatially anisotropic clinical
ASL scan (≈ 5 min).

2.3 Data processing

2.3.1 Anatomical imaging
The RMS-combined, motion-corrected, T1-weighted 3D-

MEMPRAGE was processed using FreeSurfer v 7.3.2 (Dale et al.,
1999; Fischl et al., 1999; Fischl et al., 2002) (https://surfer.nmr.mgh.
harvard.edu/) using a brain mask that was generated using mri_
synthstrip (Hoopes et al., 2022) and was provided as an additional
input to the recon-all pipeline.

2.3.2 Perfusion imaging
The first volume of the ASL timeseries was discarded as

separate M0 scans had been acquired for quantification. The pre-
processing steps were carried out using FSL (Smith et al., 2004)
included motion and distortion correction, where all control and
label volumes were independently realigned to the first volume
of the ASL scan. The separately acquired M0 scans were rigidly
registered to the first volume of the ASL scan, and then distortion
correction was performed using FSL’s topup (Andersson et al., 2003)
with the two M0 images. The perfusion timeseries was calculated
using sinc-subtraction as implemented in FSL’s perfusion_subtract.
The M0 images, perfusion-weighted data, and the MP2RAGE
T1 maps (co-registered to M0) were used as input to oxasl
(Chappell et al., 2009) (https://github.com/physimals/oxasl) for
voxelwise perfusion quantification. M0 images were co-registered
to the anatomical image using FreeSurfer’s bbregister (Greve and
Fischl, 2009) to obtain CBF maps in both native and structural
space. No adaptive spatial smoothing (Groves et al., 2009) or partial
volume correction (Chappell et al., 2011) was applied. Next, all
anatomical scans were carefully registered to the 1 mm isotropic
MNI non-linear 2009c asymmetric template space (Fonov et al.,
2009; 2011) using the ANTs SyN algorithm (Avants et al., 2014;
2011) (https://github.com/ANTsX/ANTs). Native space maps from
oxasl were resampled in a single step to the MNI space using
antsApplyTransforms. The stability of the perfusion signal over
time (temporal SNR, tSNR) was calculated dividing the temporal
mean by the temporal standard deviation of the perfusion-weighted
data (also referred to as perfusion tSNR). The SNR (consequently,
tSNR) of a voxel is expected to scale proportionally with its
volume, and this condition makes it challenging to compare
datasets of highly different spatial resolutions. Therefore, to better
appreciate the tSNR relative to a dataset’s spatial resolution,
the perfusion tSNR map from the hires scan was scaled by
the ratio of the voxel volumes of clinical to hires datasets
(46.24 mm3/8 mm3 = 5.78).

2.3.3 Partial volume analysis
In order to visualize the impact of the higher spatial

resolution acquisition, participant-wise T1-weighted images were
resampled to the nominal spatial resolution of the clinical protocol
(3.4× 3.4× 4.0 mm3) or the hires protocol (2.0 mm isotropic). The
resampled T1-weighted images were segmented using FSL’s fsl_anat
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TABLE 1 Sequence parameters for the three ASL protocols in the present study.

Parameter Clinical Hires PASL hires

Labeling pCASL pCASL FAIR-Q2TIPS

TR/TEeff 4720/20.40 ms 4000/16.80 ms 4000/16.80 ms

Tag control pairs 12 12 12

BS Gray–White strong Gray–White Gray–White

Bolus (TI1)/PLD (TI2)  1800/1800 ms 1600/1800 ms 700/1800 ms

FOV 220 × 220 192 × 192 192 × 192

Matrix 64 × 64 96 × 96 96 × 96

Slice oversampling 20% 22.5% 22.5%

Acceleration GRAPPA 2 2D-CAIPI 3 2D-CAIPI 3

Slices 30 66 66

Partial Fourier Off 6/8 yz 6/8 yz

Bandwidth 2442 Hz/px 1930 Hz/px 1930 Hz/px

Echo spacing1 0.49 ms 0.68 ms 0.68 ms

EPI factor 31 23 23

Segments (kz) 3 3 3

Turbo factor2 12 20 20

Echo-train length3 245 ms 336 ms 336 ms

Acquisition time 05:09 min 05:11 min 05:11 min

Although the study focuses on the two pCASL protocols, the PASL protocol is included here for completeness.
TR, repetition time; TE, echo time; FA, flip angle; BS, background suppression (gray–white = 2, gray–white strong = 4 non-selective pulses); PLD, post-labeling delay; TI, inversion time (for
PASL); FOV, field-of-view.
1 echo spacing, time between echoes in the 2D readout;
2 turbo factor, number of echoes acquired after excitation;
3 echo-train length≈TE×turbo factor.

(Zhang et al., 2001) to obtain PV estimates. The cortical gray matter
segmentation from FreeSurfer was morphologically dilated by one
voxel and resampled to the two resolutions, and this resampled,
dilated cortical mask was used as the ROI for the PV analyses.
To this end, we used a histogram-based analysis to first sort the
voxels into different PV fraction bins. Then, to compare the two
different acquisition resolutions, the number of voxels in each
histogram bin was scaled by their voxel volumes of 46.24 mm3

and 8 mm3, respectively, for the clinical and hires protocols, giving
us the volume of PV voxels in each bin. This normalization enabled
a direct comparison of the PV. A difference between the hires and
clinical histograms (after rescaling) was computed for all values
above a PV fraction threshold of 0.5 for each of the three tissue
classes, namely, GM, WM, and CSF.

2.3.4 Deblurring analysis
In an additional analysis, ASL data acquired from the

32ch coil were pre-processed using oxasl_deblur (https://github.

com/physimals/oxasl_deblur). We evaluated two different methods
for deblurring the data, namely, fast Fourier transform division
(FFT) and Lucy–Richardson deconvolution (Lucy) as implemented
in oxasl_deblur, with three different kernel options (direct
estimation, Lorentzian, and Lorentzian with a Weiner filter).
Smoothness of the deblurred data was estimated using AFNI’s
(Cox, 1996; Cox and Hyde, 1997) 3dFWHMx (Cox et al., 2017)
function.

3 Results

3.1 Comparison of clinical and hires ASL
data

Figure 1 shows the group average absolute CBF (in units of
mL/100 g/min) maps from clinical and hires pCASL protocols
presented in three orthogonal views (middle panel) for the three
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FIGURE 1
Mosaic of orthogonal views of the group average (n = 8) CBF (in mL/100 g/min) for data acquired using the three respective head coils (drawing on the
left). In the middle column, the maps obtained from the clinical and hires pCASL acquisitions are displayed in the top and bottom rows, respectively.
(Right) Violin plots of the CBF distribution across all participants’ data (n = 8) for the two acquisitions. The annotation represents the mean ± standard
deviation of the distribution.

head coils used to acquire the data (drawing in left panel). The panel
on the right shows the distribution of the CBF values in GM across
the participants’ data as a violin plot with the CBF values represented
on the y-axis for the two protocols. The figure annotation represents
the mean ± standard deviation of the distribution. A comparison
of the group average perfusion weighting and relative CBF (rCBF,
in arbitrary units) for the two protocols and three head coils is
shown in Supplementary Figure S1. It is important to note that
the rCBF calculated using oxasl is the perfusion-weighted image
(PWI) following kinetic model inversion (i.e., one step before M0
calibration to physiological units of mL/100 g/min) and is not
relative to the whole brain mean or normal white matter (Chappell
et al., 2023). For the clinical and hires protocols, we observe that
the mean CBF values are very similar for all three coils. The
CBF values obtained from the clinical protocols are ≈ 17% greater
than those obtained from the hires data, and both measures are
in the acceptable range for healthy volunteers (Alsop et al. 2015).
Summary statistics for all the different perfusion metrics calculated
from the data are tabulated in Supplementary Tables S2–S6.

3.2 Analysis of the partial voluming

One of the primary advantages of acquiring higher spatial
resolution data is the reduction of the partial voluming of the
signal of interest. As shown in Figure 2, the differences in voxel
volumes (hires−clinical) are plotted at each partial volume fraction
bin ranging from0.5 to 1.0 (50% to “pure” single-tissue composition)
for three tissue classes, that is, GM (a), WM (b), and CSF (c), using a
dilated GM ROI. Data from each participant are shown as a colored
dot, with the mean across participants plotted as a black dashed
line. In Figure 2A, we observe that on average, above a PV fraction
of 0.6 (60% GM), there is a net positive change in the volume
of GM and remains positive for all higher PV fractions. In other
words, even within the dilated GM ROI, there is a larger volume
(total ≈ 6713 mm3) of “pure” GM in hires than in the clinical data;
therefore, partial voluming is reduced. This finding is corroborated
by the spatial maps of PV, as illustrated in the right panels with
the PV map of hires and clinical shown on top and bottom rows,
respectively. A similar pattern is observed in Figures 2B, C that
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FIGURE 2
Histogram difference plot for all bins ≥0.5 threshold of PV fraction for (A) GM, (B) WM, and (C) CSF tissue classes of the hires and clinical acquisitions.
Value from each participant is represented as a color-coded circle, and the group average is plotted as a black dotted line. A single-participant PV
estimate map is shown in the right panel for the clinical and hires spatial scales, spatially illustrating the findings of the histogram analysis. It is to be
noted that sub-07 is excluded from this analysis as fsl_anat could not be completed.

quantifies the PV in WM and CSF, respectively. In other words,
within the dilated GM ROI used to extract these results, there is
a significantly larger volume of “pure” WM (total ≈ 16,938 mm3)
and “pure” CSF (total ≈ 15,422 mm3). As GM is bound on either
side with WM and CSF, we can infer that the greater the number
of “pure” non-GM voxels, the lower the amount of voxels which are
PV with GM, and this finding is corroborated by the spatial maps of
PV.

3.3 Deblurring analysis of 3D-GRASE ASL

Table 2 shows that the effective spatial resolution of both the
clinical and hires datasets is different from what is indicated in
the protocol, also referred to as the nominal spatial resolution
(in this study, 3.4× 3.4× 4.0 mm3 and 2.0 mm isotropic,
respectively). Systematic evaluation of five parameter combinations
in oxasl_deblur (Supplementary Table S2) shows that all five

combinations result in an improvement in a reduction in the
full width at half maximum (FWHM). We found that using the
FFT method with direct kernel estimation yields the smallest
effective FWHM (clinical: 6.38 ± 0.33 mm vs. hires: 2.38 ± 0.13 mm,
Supplementary Table S2). Table 2 shows FWHM estimated from
AFNI’s 3dFWHMx for x, y, and z axes as well as the effective
FWHM (ACF). We observe that irrespective of the acquisition
resolution, the smoothness ismaximal along the z-axis (clinical: 8.73
± 0.65 mm, hires: 4.01 ± 0.31 mm), and this is the axis along which
oxasl_deblur is most effective, reducing the smoothness estimate
to 5.22 ± 0.49 mm and 1.41 ± 0.12 mm for clinical and hires data,
respectively. The change in the estimated FWHM along z after
deblurring (ΔFWHMclinical/ΔFWHMhires) is 1.35 times larger for
the hires dataset than that for the clinical data. Figure 3 shows the
group average CBF maps for the clinical and hires datasets before
(“orig”) and after (“deblurred”) deblurring, and the distribution of
CBF values across all participants’ data is also shown as a violin
plot.
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TABLE 2 FWHM (inmm) estimated using AFNI’s 3dFWHMx for the clinical and hires 3D-GRASE datasets deblurred using the FFTmethod and direct kernel
estimation as implemented in oxasl_deblur.

FWHM Clinical Clinical deblurred Hires Hires deblurred

x 5.51 ± 0.27 5.49 ± 0.76 3.08 ± 0.18 2.65 ± 0.21

y 6.24 ± 0.20 5.91 ± 0.55 2.85 ± 0.17 2.42 ± 0.22

z 8.73 ± 0.65 5.22 ± 0.49 4.01 ± 0.31 1.41 ± 0.12

ACF 10.08 ± 0.67 7.24 ± 0.58 4.83 ± 0.36 2.69 ± 0.12

A comparison of FWHM for different deblurring methods can be found in Supplementary Table S2.
Numerical values presented are mean ± std. dev across participants.

FIGURE 3
(Top) Orthogonal views of the group average CBF maps (in mL/100 g/min) (n = 8) obtained using the 32-channel head coil, before and after deblurring
using the FFT method and direct kernel estimation as implemented in oxasl_deblur. (Bottom) Violin plots of the CBF distribution across all participants’
data (n = 8) for the two acquisitions before and after deblurring. The annotation represents the mean ± standard deviation of the distribution.

3.4 Impact of head coil choice for imaging
perfusion

Figure 1 demonstrates that robust CBF maps can be acquired
independently of the coil choice. However, the spatial distribution
of the CBF maps from the hires protocol shows a preference for
32 and 64ch. Figure 4 (top and middle rows) illustrates the impact
of perfusion tSNR across the three coils. In the case of the clinical
protocol, the increasing coil count has ≈ 2–2.5% gain in perfusion
tSNR, whereas the hires protocol has ≈ 34–42% gain in perfusion
tSNR with increasing coil count (Supplementary Table S5). The
perfusion tSNR maps of the hires data, rescaled by the ratio of voxel
volume (Figure 4, bottom row), illustrate the improvement of tSNR
with 32 and 64 coils over 20ch. In addition, Supplementary Table S4
shows that the inter-quartile range (IQR) of the perfusion weighting

increases with increasing coil count (20/32/64 ch: for clinical,
312.50/334.30/338.79 a. u., and for hires, 386.34/423.67/440.03 a.
u.) for both protocols. The IQR of perfusion weighting between
the three coils behaves similarly with the hires PASL protocol
(20/32/64 ch: 396.12/447.66/454.97 a. u., Supplementary Table S9).
Therefore, it is the SNR benefits afforded by higher coil count rather
than the quality or type of labeling used that is responsible of the
improvement in the higher IQR of perfusion values.

4 Discussion

In this study, we demonstrate that it is feasible to measure
perfusion robustly and repeatably using ASL at a high spatial
resolution of 2 mm isotropic within clinically feasible times of
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FIGURE 4
Orthogonal views of the group average perfusion tSNR maps (n = 8) where the pCASL clinical and hires maps are presented in the top and middle
rows, respectively. The bottom row shows the hires tSNR data (middle row) but with rescaled values.

≈ 5 min. In this study, we used the updated version of the
vendor provided 3D-GRASE ASL sequence (Siemens Advanced
3D-ASL WIP), and no custom sequence developments were
carried out to enable widespread usage without the necessity to
developing custom MR sequences or image reconstruction, despite
the continuous progress being made on the development of ASL
methods (Hernandez-Garcia et al., 2022). Therefore, we expect the
sequence parameter choices made in this study can be selected in
the 3D-GRASE ASL sequence available from the vendor on most
modern scanners.We show that the increased spatial resolution does
result in a reduction of partial voluming compared to the default
clinical protocol. We show that through-plane blurring is a problem
for 3D-GRASEASL independent of the protocol being used.We find
z-deblurring to be more effective on the hires than the clinical data.
Finally, the choice of head coil for imaging perfusion with ASL at 3 T
does play an important role with 32 and 64 ch being particularly well
suited. Consistent with the results of deblurring, the hires datasets
benefit most from perfusion tSNR improvements with higher coil
counts.

4.1 Impact of spatial resolution on ASL
imaging

We show that increasing the spatial resolution of ASL 5.78×,
the clinical resolution does not have a detrimental effect on
the measuring perfusion (Figure 1) and takes the same duration
as a clinical scan (≈ 5 min). The mean perfusion-weighting
values in the high-resolution data were found to be similar to
the clinical data (e.g., 32 channel: 608.55 ± 256.24 vs. 605.91
± 313.30 a. u.) (Supplementary Table S4). Importantly, however,
the hires perfusion-weighted images exhibited approximately 27%
greater IQR (32ch: clinical 334.3 vs. 423.67 a. u.) than the

clinical data. As the IQR is a measure of spread around the
mean, this measure is indicative of the dynamic range of
perfusion in the data. Being capable of resolving a wider range of
perfusion values is critical to detect subtle abnormalities and early
detection of neurological diseases (Clement et al., 2018), therefore
emphasizing the importance of high spatial resolution imaging
(Mora Álvarez et al., 2019) in clinical research and cognitive
neuroscience applications.

Acquiring data at a higher spatial resolution supports the
observed improvement in dynamic range and concurrently reduces
PV effects.The cortical GM is bound on either side byWM and CSF,
and PV occurs when a GM voxel contains fractional distributions
from these adjacent tissue classes that influence cortical perfusion
measures. Figure 2 shows that hires ASL data consistently yield a
greater volume of “pure” tissue voxels than the clinical data (GM:
≈ 6713 mm3, WM: ≈ 16,938 mm3, CSF: ≈ 15,422 mm3) (It is to be
noted that these PV fractions were derived from a dilated, cortical
GM ROI, that is, the ROI does not consist of the large ventricles or
the majority of WM in the brain). The increased number of “pure”
WM and CSF voxels indicates that the hires data can enable a more
effective separation of non-GM signal contributors to the perfusion
signal of interest.

Partial volume correction was not performed at any stage of
processing of the datasets (Chappell et al., 2011; Chappell et al.,
2021). In the absence of PV correction of the lower resolution
clinical protocol data, the lower CBF in WM partial voluming
with GM would result in a reduction of the average CBF in GM.
However, PV of GM with CSF (or rather vessels in CSF) can have
the opposite effect, resulting in higher than expected CBF values
in GM, which is likely the case here. It is also important to note
the default clinical protocol was not subject to any optimization in
the present work. Although seemingly contrary to expectations, for
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parameter sets similar to the default clinical protocol, the CBF values
in our data are consistent with those of studies that use a similar
sequence (Vidorreta et al., 2014). Other reasons could be the fact
that high-resolution acquisitions inherently reduce partial voluming
effects and, therefore, can be more sensitive to the CBF variability
within GM. Maps including that of the perfusion weighting and
rCBF are shown in Supplementary Figures S1 (clinical vs. hires)
and Supplementary Figure S2 (pCASL vs. PASL). We found that
the hires PASL results are in good agreement with the hires
pCASL (Supplementary Figure S2). Consistent with the previous
work (Wu et al., 2007; Chen et al., 2011), the pCASL labeling scheme
exhibits approximately 22%–26% higher perfusion tSNR than FAIR-
Q2TIPS for the hires acquisitions in our study.

4.2 Impact of deblurring on 3D-GRASE ASL
data

Because high spatial resolution is required, the total echo-train
length (TE × TF) can exceed 300 ms (≫ π×T2

* of tissue), resulting
in increased blurring (Qin, 2012; Liang et al., 2014; Zhao et al.,
2018), that occurs maximally in the slice direction (through-plane
or z-axis). Thus, requiring post-processing correction or making
compromises would render whole-brain acquisitions infeasible. We
find that the application of z-deblurring has a demonstrable effect
on the improvement of the spatial fidelity (or reducing the estimated
FWHM) of the ASL data, as shown in Table 2. It is interesting to note
that FWHM along z for the deblurred clinical data (5.22 ± 0.49 mm)
is still larger than the non-deblurred hires data (4.01 ± 0.31 mm).
This has an important implication in clinical settings where
advanced image post-processing is often unavailable. Importantly,
the hires ASL protocols enable researchers and clinicians to
resolve perfusion changes with a higher spatial fidelity (without
requiring advanced image processing) than the post hoc deblurred
clinical datasets. Furthermore, post-processing deblurring methods
have their limitations and they cannot synthesize resolution from
information lost in acquisition. Although lengthening the echo-
train is an important concern, our findings (Table 2) indicate that
deblurring methods are more effective for high-resolution ASL
imaging.

4.3 Impact of coil choice on ASL imaging

We demonstrate that robust rCBF maps can be acquired
independently of the coil choice (Figure 1); however, higher coil
counts (32 and 64ch) offer substantial gains in perfusion tSNR than
the 20ch coil (Figure 4). We find that increasing coil count results in
≈ 2–2.5% gain in perfusion tSNR for the clinical protocol compared
to ≈ 34–42% gain for the hires protocol (Supplementary Table S5).
One reason for this difference could be that data acquired with
clinical protocol in Figure 1 are relatively insensitive to the choice
of coil due to its low spatial resolution (i.e., low thermal noise)
and acceleration (i.e., no g-factor penalty) requirements. On the
other hand, the hires protocols accelerate higher and have increased
thermal noise than the clinical protocol, owing to the smaller voxel
sizes, and therefore benefit from the increased number of coils
(Figure 4).

Interestingly, Figure 4 shows that reducing the voxel size (i.e.,
higher spatial resolution) actually results in a gain in perfusion SNR
(clinical vs. hires (scaled)), which may seem counterintuitive from
the standpoint of conventional fMRI where the SNR of the BOLD
signal decreases with increasing resolution. However, this is due to
the different signal origins of the BOLD and perfusion contrasts. By
reducing PV with veins and macro-vasculature, we are reducing the
signal contributors of the BOLD signal, whereas these same signal
components are sources of noise in perfusion imaging, as they have
very low perfusion signals. In addition, reducing WM contribution
of voxels dominated by GM improves the fidelity of GM perfusion
values and reduced influence of physical noise stemming from
WM. Therefore, reducing PV increases our sensitivity to the cortical
microvasculature signal and reduces noise and signal contribution
from WM and CSF. In other words, higher spatial resolution not
only decreases image SNR in both BOLD and perfusion methods
due to reduction in the number of protons (i.e., voxel volume) but
also reduces noise sources in perfusion imaging stemming fromCSF,
veins, and WM.

4.4 Limitations

Although we demonstrate clear benefits of high-resolution
ASL imaging for clinical research and cognitive neuroscience
applications (group studies), the present study is limited in its
ability to comment on a potential impact in daily clinical practice
(single subject, diagnostic). Nevertheless, we believe future studies
investigating the impact of ASL sequence parameters in routine
clinical practice should use a modestly higher isotropic resolution
(e.g., 2.5 mm) to enable better visualization of localized differences
in perfusion. Here, we also opted for modest acceleration schemes
(Table 1) as the protocols were to be compared on all three
available head coils and the 20ch coil would be the lowest common
denominator. The availability of the 3D-GRASE readout with
2D-CAIPIRINHA undersampling enabled us to achieve higher
isotropic spatial resolution for perfusion imaging (Vidorreta et al.,
2014; Ivanov et al., 2017; Boland et al., 2018). For a future non-
comparison type of study, this protocol optimization can be pushed
further to take advantage of the higher coil count and achieve
higher acceleration. A systematic exploration of different CAIPI
acceleration schemes or trajectories, impact of reduced g-factor
noise amplification on image quality, is, unfortunately, beyond the
scope of the present work.

4.5 Concluding remarks

Taking together, this study demonstrates the feasibility and
benefits of imaging perfusion using high-resolution isotropic ASL
for clinical research and cognitive neuroscience applications at
3 T. We have shown that increasing the spatial resolution does
not compromise the accuracy and quality of the perfusion maps,
and allows for a wider dynamic range of perfusion values. We
have shown that high-resolution data can more effectively separate
out the non-GM signal contributors (reduce PV effects), which
improves the sensitivity to cortical microvasculature and tissue in
GM. In addition, post-processing methods such as z-deblurring are
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important considerations for whole-brain perfusion imaging using
3D-GRASE ASL to improve the spatial fidelity of the data. High-
resolution acquisitions take advantage of the higher coil counts
and offer substantial gains in perfusion tSNR with 32 and 64ch
coils. Echoing what Donahue and colleagues envisioned in 2006,
we strongly believe that high-resolution ASL (2–2.5 mm isotropic)
can be a new standard for perfusion imaging using ASL at 3 T
and be adopted into clinical and cognitive neuroscience research
workflows.
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Background: Transient hypoxia-induced deoxyhemoglobin (dOHb) has recently
been shown to represent a comparable contrast to gadolinium-based contrast
agents for generating resting perfusion measures in healthy subjects. Here, we
investigate the feasibility of translating this non-invasive approach to patients with
brain tumors.

Methods: A computer-controlled gas blender was used to induce transient
precise isocapnic lung hypoxia and thereby transient arterial dOHb during
echo-planar-imaging acquisition in a cohort of patients with different types of
brain tumors (n = 9). We calculated relative cerebral blood volume (rCBV),
cerebral blood flow (rCBF), and mean transit time (MTT) using a standard
model-based analysis. The transient hypoxia induced-dOHb MRI perfusion
maps were compared to available clinical DSC-MRI.

Results: Transient hypoxia induced-dOHb based maps of resting perfusion
displayed perfusion patterns consistent with underlying tumor histology and
showed high spatial coherence to gadolinium-based DSC MR perfusion maps.

Conclusion: Non-invasive transient hypoxia induced-dOHb was well-tolerated
in patients with different types of brain tumors, and the generated rCBV, rCBF and
MTT maps appear in good agreement with perfusion maps generated with
gadolinium-based DSC MR perfusion.
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Introduction

Magnetic resonance imaging (MRI) perfusion plays an important
role in the diagnostic work-up and ongoing surveillance of patients with
brain tumors. Dynamic susceptibility contrast (DSC) perfusion MRI
traces the passage of a bolus of contrast through the cerebral
vasculature. Most commonly, the systemic injection of gadolinium-
based contrast agents (GBCA) is used to acquire resting perfusion
measures, such as cerebral blood volume (CBV), cerebral blood flow
(CBF) and mean transit time (MTT). This can either be obtained in an
absolute fashion, with the use of an arterial input function (AIF), or
more commonly relatively to healthy tissue (e.g., contralateral white
matter) (Boxerman et al., 2020). DSC perfusion imaging exploits the
volume diffusion theory, whereby the injected bolus of contrast agent
causes a transient signal drop on spin echo and gradient echo planar
imaging and this can be used to infer time dependent changes in tissue
concentration of contrast agent, which is relatable to tissue perfusion
(Calamante, 2013).Within this theorem, the paramagnetic properties of
deoxyhemoglobin (dOHb) have recently been explored as an
endogenous contrast agent (Poublanc et al., 2021; Vu et al., 2021).
In fact, a bolus of dOHb acts as susceptibility contrast, generating
similar rCBV, rCBF, MTT perfusion maps to those obtained with
GBCA in healthy subjects and in patients with cerebrovascular steno-
occlusive disease (Poublanc et al., 2021; Vu et al., 2021; Sayin et al., 2022;
Sayin et al., 2023a). This is obtained, as previously demonstrated, by
means of a gas blender with a sequential gas delivery breathing circuit to
implement rapid “bolus-like” changes in the partial pressure of oxygen
of the arterial blood (Slessarev et al., 2007; Poublanc et al., 2021; Sayin
et al., 2022). The viability of this technique presents potential advantages
such as avoidance of an exogenous gadolinium-based contrast agent,
with its connected drawbacks, in a patient population requiring serial
longitudinal imaging follow-up. For this reason, after promising reports
in healthy subjects and in patients with cerebrovascular steno-occlusive
disease, in the present study we sought to investigate the feasibility of
using transient hypoxia-induced dOHb as a contrast agent for perfusion
imaging in a patient cohort with different types of brain tumors.

Methods

The study was approved by the ethics board of the Canton of
Zurich, Switzerland (research protocol KEK-ZH-No.2020-02314)
and all participants provided informed consent prior to inclusion
into the study. For this feasibility study, in the period fromMarch to
October 2022, subjects admitted at the Department of Neurosurgery
of the University Hospital Zurich, Switzerland, with a newly
diagnosed brain tumor planned for surgical resection,
irrespectively of suspected tumor histology, were prospectively
included to undergo a transient hypoxia induced-dOHb imaging
study with a standardized breathing protocol before the
intervention. At inclusion, the patients were also offered a follow-
up scan. Exclusion criteria were as follows: presence of known severe
cardiopulmonary disease, i.e., (severe heart insufficiency, pulmonary
diffusion impairment disease, severe COPD or severe asthma),
standard MRI contraindications including allergy to GBCA,
pregnancy, glaucoma, metallic tattoo dyes, severe renal
insufficiency and metallic prosthesis, age < 18 years, inability or
refusal to sign informed consent.

MRI protocol

Patients were scanned on a 3 T Skyra VE11 (Siemens, Erlangen,
Germany) scanner with a 32-channel head coil. An axial 2D T2*-
weighted gradient echoplanar sequence (50 slices with interleaved
acquisition) planned on the ACPC line plus 20° anticlockwise on a
sagittal image was used to acquire the BOLD data, with voxel size 2.5 ×
2.5 × 2.5 mm3, repetition time (TR)/TE 1800/30 m, flip angle 80°,
bandwidth 2168 Hz/Px, field of view (FOV) 220 × 220 mm2. During
the echo-planar imaging (EPI) sequence acquisition, 160 volumes were
acquired corresponding to a duration of circa 5 minutes. Acquisition
parameters of T1-CE, FLAIR, T2 as per standard brain tumor protocol
have been described in previously published article (Stumpo et al., 2021).
For a subgroup of patients, clinical-diagnostic work-up required
execution of a gadolinium (Dotarem) enhanced DSC-MRI GRE-EPI,
FOV 100 × 100mm2, resolution 128 × 128, TR/TE 2040/36, FA 90°.

Respiratory protocol

A custom-built computer controlled gas blender (RepirAct™
Gen 4, Thornhill Medical, Toronto, Canada) was used to precisely
control partial pressure of end-tidal O2 (PETO2) and CO2 (PETCO2)
with the prospective gas targeting algorithm based on (Slessarev
et al., 2007). BOLD signal changes were induced by a rapid double
hypoxic stimulus as previously proposed by and Sayin et al.
(Poublanc et al., 2021; Sayin et al., 2022; Sayin et al., 2023a) The
programmed PETO2 stimulus pattern was 4-min and 20 s long and
consisted of a 60 s baseline PETO2 of 95 mmHg (normoxia), a step
decrease in PETO2 to 40 mmHg (hypoxia) for 60 s, a return to
normoxia for 20–40 s, a second step decrease in PETO2 to 40 mmHg
for 60 s, followed by a return to normoxia for 40-60 s (see
also Figure 1).

Processing of BOLD and T1-
weighted volumes

The acquired transient hypoxia induced-dOHb images were first
slice-time corrected and volume re-registered for motion correction
within the time-series. Next the BOLD images were realigned to
their respective axial anatomical T1-weighted images using Analysis
of Functional Neuroimaging (AFNI) software Version
22.0.04‘Hadrian’. (National Institutes of Health, Bethesda,
Maryland) (Cox, 1996; Cox and Hyde, 1997). Using Statistical
Parameter Mapping (SPM 12, Wellcome Trust Centre for
Neuroimaging, Institute of Neurology, University College
London; http://www.fil.ion.ucl.ac.uk/spm), automated
segmentation of the T1-weighted image yielded grey and white
matter, cerebrospinal fluid, skull and skin probability maps. T2,
FLAIR, and T1-CE volumes were co-registered and resliced to the
high-resolution T1 image acquired in the same session as the BOLD.

Calculation of resting perfusion maps

For quality control, we calculated the goodness of fit (Rsquared)
of the percentage BOLD signal change and the PETO2 time series was
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regressed using a linear least square fitting to the BOLD time series
on a voxel-per-voxel basis.

Perfusion measures using transient hypoxia induced-dOHb
were calculated with a conventional analysis using an arterial
input function (AIF) chosen over the middle cerebral artery
and a deconvolution-based model as previously described by
(Poublanc et al., 2021). First, an AIF was chosen over a voxel in
the middle cerebral artery. The signal was smoothed voxel-wise
using an adaptive mean filtering of width 7 mm. The tracer
kinetics relationship was applied in the signal domain and
rCBV and MTT metrics were determined using a least
square fitting procedure, with MTT bound between 1 and
8 s. The model uses a mono-exponential residue function.
Using the central volume theorem, rCBF was then calculated

as rCBF = rCBV/MTT (Østergaard, 2005) and scaled by
30 arbitrary units (a.u.).

Automatic segmentation and region-of-
interest (ROI) determination

Region of interest masks (contrast enhancement, necrosis
and edema) were automatically segmented using Oncohabitats
Software (Juan-Albarracín et al., 2018) for glioblastomas
and manually segmented for the other tumor types.
Automatically segmented tumor region-of-interest were
visually inspected for accuracy and required no subsequent
manual correction.

FIGURE 1
Right panel (A). The percentage mean BOLD signal change in the combined grey and white matter mask plus the combined whole lesion including
contrast-enhancement, necrosis and edema is shown in one patient during the hypoxic respiratory protocol. After 60 s at 95 mmHg PETO2 two hypoxic
stimuli at 40 mmHg PETO2 lasting 60 s each with 20–40 s return to normoxia in between could be induced with optimal results (blue line). The
corresponding percentage BOLD signal change during gas manipulation is shown (dark red line). Left Panel (B) shows the relative linear fit plot.

TABLE 1 Study population.

Identifier Age Sex Tumor Side Location Tumor
volume (mL)

Edema
volume (mL)

Gad-
DSC

1 77 M Lung adenocarcinoma
metastasis

L Frontal 11.1 10.7 No

2 58 M Glioblastoma L Frontobasal 41.3 25.9 Yes

3 59 M Astrocytoma PXA G3 R Mediobasal 64.0 49.1 No

4a 60 F Glioblastoma L Multifocal (precuneus,
cuneus)

17.9 10.2 Yes

4b - - - - - - - Yes

5 51 F Oligodendroglioma G3 R Frontobasal 82.6 50.1 No

6 57 M Glioblastoma L Superior temporal gyrus 18.6 12.8 No

7 29 F Astrocytoma G2 R Middle temporal gyrus Yes

8 41 M Meningioma L Falx 42.7 41.9 No

9 72 M Glioblastoma L Temporopolar 63.2 47.0 Yes

Abbreviations. F, female; G, grade; Gad, gadolinium; L, left; M, male; mL, milliliter; PXA, pleomorphic xanthoastrocytoma; R, right; DSC, dynamic susceptibility contrast.
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TABLE 2 Transient hypoxia induced-dOHb perfusion measures in Gray Matter, White Matter, Contrast-Enhancement, Flipped Contrast-Enhancement, Edema, Flipped Edema of included patients.

GM WM CE Flipped CE Edema Flipped edema

MTT CBV CBF MTT CBV CBF MTT CBV CBF MTT CBV CBF MTT CBV CBF MTT CBV CBF

Identifier

1 2.7 2.0 45.6 3.2 1.8 35.0 3.6 2.4 67.3 5.4 1.0 15.7 5.9 1.6 24.0 6.9 1.3 13.5

2 3.7 4.4 59.8 3.9 4.3 59.2 3.8 5.2 71.2 3.8 3.2 55.1 2.6 4.0 69.9 3.6 3.7 74.0

4a 4.2 5.2 61.6 4.9 4.1 46.8 4.8 7.8 94.1 6.5 4.3 42.2 4.7 4.6 46.6 5.4 4.3 42.5

5 3.8 4.3 55.5 4.4 3.0 39.3 5.0 12.7 122.6 5.2 6.4 63.7 4.8 9.0 93.3 5.1 10.5 108.4

6 5.6 1.7 16.3 6.2 1.3 14.1 5.2 4.9 49.2 5.9 3.5 29.8 5.7 1.7 14.8 5.9 1.8 17.3

7* 3.1 2.6 46.2 3.9 2.0 34.4 - - - - - - - - - - - -

8 1.9 2.2 95.2 2.0 2.0 83.1 1.6 4.5 210.2 2.3 1.6 61.9 1.4 2.6 132.9 1.3 1.4 74.4

9 2.7 1.1 30.2 2.9 1.0 29.2 3.4 1.4 34.6 3.8 0.9 23.3 2.6 1.1 32.6 2.9 1.0 32.1

Mean
(SD)

3.5 (1.1) 2.9 (1.4) 51.3 (21.9) 3.9 (1.2) 2.4 (1.2) 42.6 (19.6) 4.0 (1.2) 5.3 (3.6) 90.7 (56.7) 4.6 (1.3) 2.7 (1.9) 39.5 (20.0) 3.7 (1.5) 3.6 (2.5) 63.8 (35.5) 4.1 (4.1) 3.5 (3.1) 57.3 (29.2)

Min-Max 1.9–3.8 1.1–5.2 16.3–95.2 2.0–6.2 1.0–4.3 14.1–83.1 1.6–5.2 1.4–12.7 34.6–210.2 2.3–6.5 0.9–6.4 15.7–63.7 1.4–5.9 1.1–4.6 14.8–93.3 1.3–6.9 1.0–10.5 13.5–108.4

Abbreviations. CBF, cerebral blood flow; CBV, cerebral blood volume; Max, maximum; Min, minimum; MTT, mean transit time; SD, standard deviation.
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Calculation of perfusion measures in ROIs

MRI volumes were analyzed using MATLAB 2019 (The
MathWorks, Inc., Natick, United States). rCBV, rCBF and MTT
values were calculated in the grey and white matter after masking
out the whole tumor (including edema) and for each of the
aforementioned tumor ROIs. Two additional ROI were defined:
tumor, i.e., contrast-enhancement + necrosis and whole lesion,
including surrounding edema; and the corresponding volumes in
the contralateral hemisphere identified using proprietary Matlab
programme. Perfusion metrics were overlayed onto their respective
anatomical images using SPM software and qualitatively compared
to the co-registered T1CE and FLAIR to identify perfusion patterns
in tumor ROIs (contrast enhancement, edema, necrosis).

DSC-MRI analysis

In a subgroup of patients, a DSC-MRI was acquired during clinical
workup for diagnostic purposes. The acquired sequences were analyzed
(including leakage correction) using Olea Software version 3.0 to
calculate rCBV, rCBF, MTT maps. The perfusion maps were

exported, co-registered and resliced to the high-resolution
T1 anatomical images and qualitatively compared with the resting
perfusion measures obtained with transient hypoxia induced-dOHb.
Average rCBV, rCBF and MTT were calculated in the same above-
mentioned ROI and contralateral flipped masks and compared with
transient hypoxia induced-dOHb estimated values.

Results

Study population

Eleven patients provided informed consent for participation in
the study. Of these, nine patients completed the imaging protocol
and were included in the final study population, reasons of dropout
of the two excluded patients being in one patient interruption of
study due to dyspnea during the respiratory protocol, in the other
discomfort and claustrophobia during MRI acquisition. One patient
underwent the imaging protocol twice, the second being after tumor
resection. Mean age was 56 (SD 13.8; 3 female subjects). The baseline
characteristics are provided in Table 1.

The study population included patients with different types of brain
tumors: 1 metastasis, 1 meningioma, 1 astrocytoma WHO grade 2,
1 pleomorphic xanthoastrocytomaWHO grade 3, 1 oligodendroglioma
WHO grade 3, 4 glioblastomas (1 patient was also scanned post-
operatively). The histopathological diagnosis was based on the
2021 WHO classification (Louis et al., 2021). Patient 3 was excluded
from the following analysis due to excessively noisy BOLD signal,
caused by suboptimal stimulus during the examination. Four of the
included patients received during diagnostic work-up a standard
gadolinium perfusion MRI, with one of them receiving it at another
center before referral.

An illustrative BOLD signal change and linear fit plot is shown
in Figure 1 and is reported for each patient in
Supplementary Figure S1.

Resting transient hypoxia induced-dOHb
resting perfusion measures

Transient hypoxia induced-dOHb resting perfusion measures in
the abovementioned regions-of-interest were calculated for each
patient as previously reported (Poublanc et al., 2021). The relative
measurements are reported in Table 2.

Qualitative visual analysis

Figure 2 shows an illustrative case, i.e., patient 2, 58 y. o.
male with a left frontobasal glioblastoma. The perfusion maps
show high CBV, CBF in the contrast-enhanced lesion regions,
while these metrics are very low in the central necrotic area with
high agreement with the morphological high-resolution
sequences. MTT is mostly increased in peritumoral
edematous tissue. Figure 3 displays perfusion patterns in
different tumor types. Qualitative image analysis shows
perfusion to be higher in grey matter than in white matter
and increased CBV and CBF were observed in contrast-

FIGURE 2
Illustrative perfusion maps obtained with the transient hypoxia
induced-dOHb protocol during BOLD-MRI acquisition in a patient
with left frontal glioblastoma. High perfusion, as represented by
increased CBV and CBF, can be observed in correspondence of
the contrast-enhancing lesion (white arrows), while decreased rCBV
and rCBF can be observed in the central necrotic area (white asterisks)
as well as the in the FLAIR hyperintensity typical of perilesional edema.
Note that only a partial correspondence of increased perfusion is
observed at the posterolateral margin of the contrast-enhancing
lesion. High MTT values can be observed mostly in the perilesional
edema (white arrows in the MTT maps).
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enhancing lesion of metastases (Figure 3A), oligodendroglioma
WHO grade 3 (Figure 3B), glioblastoma (Figure 3C) and
meningioma (Figure 3E) with respect to healthy tissue. On
the contrary, lower CBV and CBF were observed in the
astrocytoma WHO grade 2 (Figure 3D). MTT was shown to
be higher in areas of edema identified by T2 FLAIR (Figures 3A,
B) as well as in the astrocytoma WHO grade 2 dense cellular
tissue (Figure 3D).

Comparison of transient hypoxia induced-
dOHb BOLD and DSC-MRI

In the three patients who underwent a pre-operative DSC-
MRI in our institution, this was compared with the transient
hypoxia induced-dOHb perfusion maps for visual qualitative
examination and rCBV, rCBF and MTT were calculated in
each of the two techniques. The transient hypoxia induced-

dOHb BOLD perfusion and corresponding gadolinium DSC-
MRI are shown for three patients (2 glioblastomas and
1 astrocytoma WHO grade 2) in Figure 4. The values of
rCBV, rCBF, MTT obtained by gadolinium-based DSC-MRI
and analyzed with Olea-Software were compared to the
transient hypoxia induced-dOHb estimated values in grey
matter, white matter, identified tumor ROIs and flipped masks
(Figure 5). In particular, the plots show congruent measurements
in the different ROIs and contralateral flipped masks between the
two techniques with similar trends.

Based on the availability of 2 transient hypoxia induced-
dOHb perfusion scans for patient 4, a multifocal glioblastoma
with lesions in left cuneus and precuneus, follow-up imaging
from pre-to post-operative is shown and compared with
gadolinium DSC (Figure 6). Transient hypoxia induced-dOHb
BOLD perfusion maps display good spatial agreement with
gadolinium-based DSC perfusion also in the longitudinal
follow-up of a glioblastoma patient.

FIGURE 3
Transient hypoxia induced-dOHb MRI perfusion patterns in some common brain tumors. T1-CE, T2-FLAIR, rCBV, rCBF and MTT transient hypoxia
induced-dOHb MRI perfusion maps and H&E sections are displayed for each tumor type included. (A). Patient with a left frontal lung adenocarcinoma
metastasis. Around the contrast-enhancing lesion, displaying high CBV and CBF (white arrow) can be appreciated an extensive perilesional edema (FLAIR
hyperintensity, low CBV and CBF, high MTT - black asterisk). (B). Patient with frontobasal oligodendroglioma grade 3, displaying strongly increased
CBV and CBF (white arrows) as well as moderately increased MTT (black asterisk). (C). Patient with left superior temporal gyrus glioblastoma. The
contrast-enhancing lesion (high CBV and CBF, white arrows) surrounding a central necrotic area can be appreciated. The MTT map shows spot-like
increased values, particularly evident in the posterior circulation (black asterisk) which we speculate could be attributed to noisier signal/suboptimal
stimulus, (D). Patient with right middle temporal gyrus astrocytoma grade 2. The lesion does not show contrast uptake, is hyperintense in FLAIR sequence
and displays lower perfusion than healthy parenchyma (low CBV and CBF shown by white arrow) as well as strongly increased mean transit time (black
asterisk). (E). Patient with a left-sided falx meningioma. FLAIR sequence shows hyperintense edema around the contrast-enhancing lesion (note
increased CBV and CBF as pointed by white arrows). The MTT map shows no increased mean transit time in the lesion (red asterisk).
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Discussion

Summary of study findings

Our preliminary study shows good feasibility of transient
controlled hemoglobin desaturation by means of a standardized
hypoxic stimulus to obtain resting perfusion parameters in a
population of patients with brain tumor. At the single patient
level, we found the calculated transient hypoxia induced-dOHb
perfusion maps to be in good agreement with intrinsic tumor
characteristics that would be expected in a GBCA perfusion,
i.e., increased CBV and CBF in highly perfused tumors such as
brain metastasis, glioblastomas, oligodendroglioma and
meningioma compared to healthy tissue; decreased CBV, CBF in
astrocytoma grade 2 as well as increasedMTT in edematous or dense
cellular tissue. For the subgroup of patients for whom a DSC-MRI
was available, the relative ROI-level patterns estimated using
transient hypoxia induced-dOHb well reflect the measurement
obtained in standard gadolinium perfusion. Moreover, the
longitudinal assessment in one patient shows good qualitative
agreement with the relative DSC-MRI. The investigated
technique, which exploits the BOLD-related drop in MRI signal
induced by a bolus of paramagnetic deoxyhemoglobin as a possible
alternative for gadolinium contrast, has been recently introduced in
seminal publications by (Vu et al., 2021; Poublanc et al., 2021; Sayin

et al., 2022) in healthy subjects as well as in patients with steno-
occlusive cerebrovascular disease (Sayin et al., 2023a).

Perfusion MRI in brain tumor
assessment–“status quo”

Perfusion assessment is clinically relevant in brain tumor
diagnosis and follow-up, as increased perfusion correlates with
tumor’s aggressiveness and can be used in the differential
diagnosis of cerebral lesions as well as to distinguish post-
treatment changes from tumor recurrence/progression
(Guida et al., 2022; Stumpo et al., 2022). However, in a
proportion of brain tumors the blood brain barrier is either
disrupted or dysfunctional (e.g., glioblastomas, metastasis)
(Arvanitis et al., 2020; Guan et al., 2021), making contrast
leakage in the extravascular extracellular space a significant
confounder to reliable and reproducible measurements
(Shiroishi et al., 2015; Leu et al., 2017; Boxerman et al.,
2020). For this reason, GBCA perfusion techniques require
appropriate correction and rely most commonly on a
loading dose of contrast agent administered prior to the
acquisition to minimize T1 changes during first pass, and/or
on mathematic correction algorithms (Leu et al., 2017;
Boxerman et al., 2020).

FIGURE 4
Comparison of transient hypoxia induced-dOHb perfusion maps with DSC-Gad MRI perfusion maps in three illustrative patients with diffuse
cerebral glioma. T1-CE, T2-FLAIR, rCBV, rCBF and MTT obtained with transient hypoxia induced-dOHb and standard gadoliniumMRI perfusion maps are
displayed for three patients with cerebral diffuse glioma. (A). Patient 2, left frontobasal glioblastoma. (B). Patient 7, right middle temporal gyrus
astrocytoma G2. (C). Patient 9, left temporopolar glioblastoma. Arrowheads pointing at relevant tumor areas to facilitate comparison between
transient hypoxia induced-dOHb and gadolinium perfusion. Note: There is excellent congruence between Gd and d-OHb maps except for patient B,
where tumor MTT values are much higher in the transient hypoxia induced-dOHb perfusion maps as compared to the gadolinium perfusion (asterisk).
The reason for this is uncertain but the finding could point to higher sensitivity of the dOHb method to MTT abnormalities.
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Transient hypoxia induced-dOHb for
perfusion assessment: differences from
gadolinium perfusion–technical aspects,
model and potential

Previous literature has focused onBOLD-contrast for functionalMRI
and task-based pre-surgical mapping (as neural activation induces
changes in regional blood flow) (Glover, 2011; Zacà et al., 2014), or
resting-state fMRI for functional architecture inference (Lee et al., 2013;
Stoecklein et al., 2020), as well as characterization of cerebrovascular
reactivity during vasodilatory stimulus (Fierstra et al., 2013; Fierstra et al.,
2016; Fierstra et al., 2018; Fisher et al., 2018; Muscas et al., 2020; Sebök
et al., 2020; Sebök et al., 2021). Only recently has the possibility to induce a
reproducible and standardized transient bolus of deoxygenated blood
(while controlling for competing PCO2 effects) - in combination with the
high temporal resolution of EPI sequence - become focus of attention in
the setting of perfusion quantification (Poublanc et al., 2021; Vu et al.,
2021; Sayin et al., 2022; Sebök et al., 2023a). BOLD imaging contrast is
well suited for this technique as it derives from the different physical
properties of hemoglobin in its saturated and desaturated state which
result in a diamagnetic versus a paramagnetic signal response, respectively
(Buxton, 2013; Gauthier and Fan, 2019). Perfusion patterns observed in
our study are in agreement to what is reported in the literature for
different tumor histologies (Tamrazi et al., 2016; Guida et al., 2022;

Stumpo et al., 2022) and display, even if with some spatial differences,
remarkably good qualitative agreement with DSC-MRI. To which extent
the spatial as well as quantitative differences observed are determined by
intrinsic tumor characteristics exhibiting differential response to a
contrast medium versus an endogenous deoxyhemoglobin bolus
remains to be further investigated in future studies. Nevertheless,
development and validation of the transient hypoxia induced-dOHb
technique for perfusion measurement in patients with brain tumors
would present several benefits with respect to gadolinium contrast. We
expect that endogenous deoxyhemoglobin, as opposed toGBCA, remains
completely intravascular even in cases of BBB leakage. As such it could be
even more sensitive to certain vascular properties of some tumors with
respect to gadolinium, despite caution need to be taken due to the
described magnetic distortion generated by deoxyhemoglobin also in the
extravascular space. (Buxton, 2013). The potential advantages of this
technique include avoidance of an exogenous contrast agent with its
connected drawbacks, i.e., potential of allergic reactions (Gracia Bara et al.,
2022), known accumulation of gadolinium in the brain (Gulani et al.,
2017), difficult handling in nephropathic patients due to concerns of
nephrotoxicity (Weinreb et al., 2021) and a higher repeatability of the scan
during treatment follow-up. These benefits are also shared from arterial
spin labeling (ASL) MRI, which in recent years has been extensively
investigated in the setting of cerebral perfusion assessment and also in
patients with brain tumor. Despite promising results, this technique

FIGURE 5
Comparison of transient hypoxia induced-dOHb perfusion and DSC-MRI measurements in selected region-of-interest in 3 patients with brain
tumor. The measurements of rCBV, rCBF and MTT in grey and white matter, selected tumor ROI and contralateral flipped masks are shown for patients
2 (A), 7 (B) and 9 (C) for both transient hypoxia induced-dOHb and DSC-MRI. Note that for Patient 7, i.e., middle temporal gyrus astrocytoma grade 2, only
four ROIs are shown as in this tumor type no contrast-enhancement, necrosis or perilesional edema could be identified consistent with the
radiological presentation of this tumor entity. Legend. (A). GreyMatter, (B). WhiteMatter, (C). Whole Lesion (Contrast-Enhancement +Necrosis + Edema),
(D). Tumor Lesion (Contrast-Enhancement + Necrosis), (E). Contrast-Enhancement, (F). Necrosis, (G). Edema, (H). Contralateral Whole Lesion, (I).
Contralateral Tumor, (J). Contralateral Contrast-Enhancement, (K), Contralateral Necrosis, (M). Contralateral Edema.
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lagged somewhat behind in the clinical implementation. (Cebeci et al.,
2014; Alsop et al., 2015; Haller et al., 2016; Alsaedi et al., 2018).

On the other hand, possible drawbacks include susceptibility
artifacts that limit the study of tumors with hemorrhagic component
(e.g., melanoma metastasis), reduced contrast to noise ratio and higher
predisposition to movement artifacts. Optimization of pre-processing
steps (smoothening, etc.) should be also pursued to find the optimal
trade-off between decreasing noise and maintaining a fair spatial
specificity useful in brain tumor assessment. In order to characterize
the relative effect of such confounders, as well as differences and
similarities between traditional DSC-MRI versus transient hypoxia
induced-dOHb, future validation studies should ideally adopt the
same acquisition parameters.

Further, blood desaturation for investigation of brain tumor
vascularity could exploit analysis technique different than bolus
tracking method such as carpet plot analysis (Bhogal et al., 2022) or
transfer function analysis (Sayin et al., 2023b), with these having already
provided encouraging results in healthy subjects. Moving away from

resting perfusion assessment, other approaches may be employed to
investigate intrinsic tissue features by dissecting specific BOLD signal
changes characteristics during gas control. A preliminary study
demonstrated the feasibility of such technique, with a small cohort of
glioblastoma patients exhibiting unique tissue response patterns during
hypoxic, hyperoxic and hypercapnic stimuli (Stumpo et al., 2021). For this
reason, a longitudinal cohort study after optimization of the hypoxic
stimulus is currently ongoing. The potential to better characterize tumoral
tissue and peritumoral tissue infiltration with such approach relies not
only on the observedmagnitude of signal change during evoked stimulus,
but also the complementary information derived from a refined analysis
including other parameters such as goodness-of-fit, contrast-to-noise ratio
and temporal lag. In fact, these variables allow further categorization of
dynamic functional tissue characteristics that may not be appreciated in
static conditions by traditional perfusion analysis. Moreover, advanced
data-driven analysis methods such as time-series clustering could also be
exploited to identify subgroups of voxels based on stimulus-evoked
hemodynamic patterns to correlate with physiological versus

FIGURE 6
Comparison of transient hypoxia induced-dOHb andDSC-GadMRI perfusionmaps in a glioblastoma patient before resection (A) and during follow-
up at 3 (B) and 6 months (C). Baseline and follow-up comparison of transient hypoxia induced-dOHb and gadoliniumDSC-MRI perfusionmaps in patient
with multifocal glioblastoma with lesions in left cuneus and precuneus. Pre-operative T1-CE, FLAIR and transient hypoxia induced-dOHb perfusion as
well as corresponding gadolinium DSC-MRI maps (A) as well as 3 months (B) and 6 months follow-up MRI (C), only DSC-MRI available). The patient
was referred to our center after receiving an MRI on prescription from the general practitioner following persistent parietal headaches episodes, vertigo,
visual disturbances, memory loss and speech difficulties. The first MRI showed, as depicted in Figure 5, a contrast-enhancing lesion surrounding a central
necrotic area in the left precuneus with extensive perilesional edema as well as a smaller contrast-enhancing lesion in the left cuneus. Consistently with
known higher perfusion in glioblastomas, both DSC-MRI and transient hypoxia induced-dOHb showed higher rCBV and rCBF in tumor tissue. Gross total
resection of the two lesions was performed. Histological analysis confirmed the diagnosis of glioblastoma. As a consequence, after surgery the patient
received concomitant radiochemoterapy with temozolomide followed by maintenance chemotherapy as per standard of care (Stupp Protocol). MGMT
promoter methylation analysis revealed an unmethylated promoter. At 3 months follow-up, both DSC and transient hypoxia induced-dOHb MRI were
repeated. Figure 5 (upper panel) shows the resection cavity with normal perfusion at its margins. The same follow-up MRI showed however an area of
contrast enhancement surrounded by FLAIR hyperintensity caudally to the resected tumor. This lesion did not display neither in DSC- nor transient
hypoxia induced-dOHb MRI increased perfusion, with the two techniques showing perfusion maps with good qualitative agreement. (Figure 5, lower
panel). Another MRI performed at 6 months showed a regression of contrast enhancement and edema. This clinical case shows how transient hypoxia
induced-dOHb preliminarily achieved good agreement with gadoliniumDSC perfusion also in the follow-up of a glioblastoma patient, warranting further
longitudinal validation in the follow-up of treated glioma patients as well as in treated brain metastases.
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pathological vasculature and underlying histological and functional
properties of the tissue studied (Baudelet and Gallez, 2003).

Limitations

Our study has several limitations. Despite visual analysis of the
calculated maps show high similarity with expected perfusion
patterns in different tumors, its qualitative nature as well as the
small sample size prevents us from drawingmore robust conclusions
on the underlying quantitative data. Moreover, at the present stage,
while not requiring the injection of a contrast agent, this technique
has other drawbacks including longer post-processing times as
compared with the clinically available software for DSC-MRI
perfusion analysis, higher costs related to gas and masks
procurement and, lastly, potential reduced tolerance to the mask
and to the hypoxic stimulus may also lead to higher dropout rate in
poorly cooperative patients. The time required for the acquisition of
the EPI sequence is not significantly longer than the one used in
clinical setting for the DSC perfusion. Of note, extensive literature in
DSC-gadolinium perfusion MRI described thoroughly confounders
of absolute perfusion quantification in brain tumors due to a variety
of factors (e.g., flip angle, echo time, temporal resolution, baseline
and post-bolus data points, post-processing techniques and leakage
correction, etc.) (Boxerman et al., 2020). In this context, the results
of our preliminary qualitative analysis warrant future both intra-
and inter-subject repeatability assessment. Only 4 patients included
in our study received a gadolinium-contrast DSC-MRI to compare
transient hypoxia induced-dOHb perfusion and with different
acquisition parameters, with one of them receiving it at an
external institution. Regardless, qualitative analysis in these
4 patients suggests high concordance of gadolinium perfusion
and deoxyhemoglobin-based perfusion with inter-ROI relative
measurement showing similar patterns between the two
techniques. A validation study in a larger patient population with
defined tumor subgroups is currently underway to validate the
quantitative measurements obtained by deoxyhemoglobin
perfusion against a clinical DSC-MRI gadolinium perfusion.

Conclusion

In this feasibility study, transient andprecise hemoglobin desaturation
by controlled hypoxic gasmodulation is feasible and repeatable in patients
with brain tumor. The induced signal change allows for resting brain
tissue perfusionmeasurements, which qualitatively are in good agreement
with gadolinium-based perfusion in the study cohort. Based on
promising preliminary data, deoxyhemoglobin-based perfusion
warrants further quantitative validation against gadolinium in a larger,
heterogenous cohort of patients with brain tumor.
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