A special acknowledgment goes to
Dr. Biwen Annie An and
Dr. Nicole Dopffel for organizing and preparing the proposal for this Research Topic.
Climate change is becoming one of the greatest challenges facing our society, particularly due to the continued use of fossil fuels. The steadily increasing demand for energy and the continuously growing world population will further intensify these challenges. The development of renewable energies is therefore of central importance. The 2020 EU Energy Roadmap aims to increase the share of renewable energies (gross energy consumption) to 55% by 2050.
Hydrogen (H
2) has the highest potential to become the primary renewable energy source. It is envisioned that by 2050 up to 24% of the total energy demand of Europe is to be ensured by H
2. However, a decisive disadvantage of the climate friendly alternatives is the massive containment demand, which needs to be highly secure, cost efficient and easily extractable.
Underground geological formations (UGF) represent a seemingly optimal alternative to meet the rapidly increasing storage demand. In this context, many studies are currently underway to determine the feasibility and risks of UGF. However, little or no consideration is being given to microbiology. Therefore, in this Research Topic we will focus on achieving a greater understanding of the impact microorganisms exert on UGF, with a particular emphasis on interdisciplinary studies.
As many subsurface microbial communities can use H
2 as an electron donor, production of seemingly undesirable metabolic byproducts, such as hydrogen sulfide, methane, and acids, are also to be expected. However, the rate of the H
2 conversion by the microorganisms, how their metabolic activities impact the UGF on a short-term and long-term scale, the extent of damages microorganisms exert on the infrastructure, or potential use of microorganisms to enhance UGF are just a few questions that require urgent research to assess the role of microorganisms in this new anthropogenic use of the subsurface environment. These and many questions can be addressed in this article collection. In particular, understanding microbial community changes and activity rates will help assess operational and environmental risks, develop mitigation strategies and provide new insights on life under extreme conditions (i.e., pressure, salinity).
In this Research Topic, the editorial team particularly welcomes Original Research, Hypothesis and Theory, Method, and Review manuscripts that deal with the latest advances in microbiology in formations that are planned or currently prepared for hydrogen storage, from both fundamental and practical points of view. The ultimate objective is to promote a deeper understanding into the sustainability of UGF and generate interdisciplinary research involving microbiologists, reservoir engineers, geologists, chemists, physicists.
The topics of interest include, but are not limited to:
• Microbial diversity in different underground hydrogen storage sites or formations currently being considered for hydrogen storage
• Mechanism and impact of microbial growth under high H
2 pressure
• Potential role of microorganisms in the short-term and long-term storage of hydrogen
• Potential influences of microorganisms on the hydrogen storage infrastructure systems, e.g., microbiologically influenced corrosion, biofilm growth
• Hydrogen-solid-microorganism interactions, including the influence of microbial growth on UGF geological parameters
• Mechanism and modelling of microbial impact on hydrogen storage
UGF relevant for this Research Topic include porous media, salt caverns, deep aquifers, hard rock caverns and depleted oil/gas reservoirs.