Yaks are tough animals living in Tibet’s hypoxic stress environment. However, the metabolite composition of yak milk and its role in hypoxic stress tolerance remains largely unexplored. The similarities and differences between yak and human milk in hypoxic stress tolerance are also unclear. This study explored yak colostrum (YC) and yak mature milk (YMM) using GC–MS, and 354 metabolites were identified in yak milk. A comparative metabolomic analysis of yak and human milk metabolites showed that over 70% of metabolites were species-specific. Yak milk relies mainly on essential amino acids- arginine and essential branched-chain amino acids (BCAAs): L-isoleucine, L-leucine, and L-valine tolerate hypoxic stress. To slow hypoxic stress, human breast milk relies primarily on the neuroprotective effects of non-essential amino acids or derivates, such as citrulline, sarcosine, and creatine. In addition, metabolites related to hypoxic stress were significantly enriched in YC than in YMM. These results reveal the unique metabolite composition of yak and human milk and provide practical information for applying yak and human milk to hypoxic stress tolerance.
Introduction: Ochratoxin A (OTA) is a widely distributed mycotoxin. Nano-selenium (Nano-Se) is an emerging form of selenium known for its superior bioavailability, remarkable catalytic efficiency, and robust adsorbing capacity. Despite these characteristics, its impact on the microbial community and metabolomics in the cecum of chickens exposed to OTA has been infrequently investigated. This research examined the microbiota and metabolomic alterations linked to OTA in chickens, with or without Nano-Se present.
Methods: A cohort of 80 healthy chickens at the age of 1 day was randomly distributed into four groups of equal numbers, namely the Se cohort (1 mg/kg Nano-Se), the OTA cohort (50 μg/kg OTA), the OTA-Se cohort (50 μg/kg OTA + 1 mg/kg Nano-Se), and the control group. Each chicken group’s caecal microbiome and metabolome were characterized using 16S rRNA sequencing and Liquid chromatography coupled with mass spectrometry (LC–MS) analyses.
Results and discussion: Our results showed that the on day 21, the final body weight was significantly reduced in response to OTA treatments (p < 0.05), the average daily gain in the OTA group was found to be inferior to the other groups (p < 0.01). In addition, Nano-Se supplementation could reduce the jejunum and liver pathological injuries caused by OTA exposure. The 16S rRNA sequencing suggest that Nano-Se supplementation in OTA-exposed chickens mitigated gut microbiota imbalances by promoting beneficial microbiota and suppressing detrimental bacteria. Moreover, untargeted metabolomics revealed a significant difference in caecal metabolites by Nano-Se pretreatment. Collectively, the dataset outcomes highlighted that Nano-Se augmentation regulates intestinal microbiota and associated metabolite profiles, thus influencing critical metabolic pathways, and points to a possible food-additive product.
Introduction: Potential nutrient losses and mycotoxin accumulation caused by abnormal fermentation during transportation from cropland to dairy farms leads to the diseases incidence and threatens the health of dairy cows, then further causes financial losses. The aim of this study was to investigate the effects of different transportation times on the nutritional composition, mycotoxins, and microbial communities in whole-plant corn silage (WPCS).
Methods: Three groups were subjected to different transport times: DY, short (<200 min); ZY, medium time (300–500 min); and CY, long transport time (>600 min). WPCS were collected from the same field, and nutrient composition and microbial composition before and after transportation were analyzed.
Results and discussion: Our results showed that the temperature of WPCS was higher in the ZY and CY groups than in the DY group (P < 0.01). There were no significant differences in dry matter (DM), crude protein (CP), neutral detergent fiber (NDF), acid detergent fiber (ADF), ether extract (EE) and starch contents after different transportation times (P > 0.05), whereas the starch and water-soluble carbohydrates (WSC) contents in the CY group was significantly decreased after transport (P < 0.05). Similarly, the concentration of vomitoxin in the DY and CY groups declined markedly (P < 0.05) and the zearalenone content in the DY group also significantly decreased after transportation (P < 0.05). Regarding the analysis of microorganisms in WPCS, UniFrac-distance matrices and Shannon indices showed differences in the ZY group (P < 0.05), but fungal diversities were not influenced by the transport time (P > 0.05). In the ZY group, the relative abundance of Lactiplantibacillus decreased significantly after transportation (P > 0.05), but the relative abundances of unidentified_Chloroplast, Pantoea, Gluconobacter, unidentified Acetobacter and Acinetobacter increased markedly (P < 0.05). In addition, the relative abundances of Acetobacter and Gluconobacter in the CY group increased after transport (P < 0.05). Among fungal communities, a total of three, nine, and ten different fungal flora were observed in the DY, ZY, and CY groups, respectively, although no difference was found in fungal diversity. In conclusion, increased temperature, loss of starch, and mycotoxin variation were found with increased transport time. This might be the result of competition between bacteria and fungi, and novel technologies will need to be utilized for further exploration of the mechanism.
Frontiers in Veterinary Science
The Actions of Trace Element Metabolism and Epigenetics on Animal Health and Disease