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Editorial on the Research Topic

Computational models of brain in cognitive function andmental disorder

The computationalmodels in neuroscience are to utilize themodern computational tools

to mimic brain behavior and to provide insight for the inner working of cognitive functions

including their abnormal states in mental disorder. These cognitive models work at different

levels of neuronal activities, from subcellular neuronal networks to full brain dynamics,

and neuronal activates across different spatial and temporal scales is interactional and often

ovelapping. It is vital for understanding and testing hypothesis in thesemodels to understand

how brain functions at normal cognitive processes as well as brain’s diseased states in mental

disorder patients.

The goal of this computational modeling Research Topic is to set a forum to enhance

communication for quantitative explorations of the inner working of the brain cognitive

dynamics, in both normal and pathological cognitive states. The authors study integrated

network models at a single level or multiple levels of the brain, develop models of specific

brain function or behavior, and simulate the models to mimic mechanisms of mental

disorder from theoretical and computational methods.

This Research Topic covers a full range of Research Topics including the analysis of

experimental data from cognitive neuroscience, cognitive disorder, mental disorder as well as

theoretical models in neurodynamics using tools from mathematics and physics, computer

science, etc.

This Research Topic included eight research papers and one review paper. In “Category

learning in a recurrent neural network with reinforcement learning” by Zhang et al., the

authors constructed a deep reinforcement neural learning model by combining a recurrent

neural network (RNN) with reinforcement learning. They illustrated the category learning

process and discussed how the machine learning process is represented in the neuron

network. In “Individual prediction of hemispheric similarity of functional connectivity during

normal aging” by Zhang, the author calculated the hemispheric functional connectivity

(HSFC) through Pearson correlation of brain signals, then the author further evaluated

the variability of individual recognition of HSFC during the aging process. In “Gender

differential item functioning analysis in measuring computational thinking disposition among

secondary school students” by Sovey et al., the research assessed gender’s effects on students’

ability in using computational thinking and the evaluate quantities include cognitive,

affective, and conative dispositions. In “Brain network changes in adult victims of violence”
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by Shymanskaya et al., the authors compared brain network

changes among two groups: self-identified victims of violence and

the control group of individuals who did not identify themselves

as victims. Four large-scale brain networks, the default mode

network, the salience network, the fronto-parietal network, and the

dorsal attention network were included in this study. In “Turing

instability mechanism of short-memory formation in multilayer

FitzHugh-Nagumo network” by Wang and Shen, a theoretical study

is presented. The authors analyzed pattern properties of a network

of neurons modeled by FitzHugh-Nagumo model, a relative simple

model of oscillatory neuronal activity. Particularly, the authors

studied neural activity patterns on a multilayer network where

the coupled neuronal system is random network. In “Dissociated

deficits of anticipated and experienced regret in at-risk suicidal

individuals” by Ai et al., the authors studied subclinical youth

with suicidal ideation and compared their quantitative behavior

with a control group of youth who do not have suicidal ideation.

They studied research subjects’ responses in regret anticipation

and experience during a value-based decision-making process. In

“Data-driven evolutionary gamemodels for the spread of fairness and

cooperation in heterogeneous networks” by Li et al., the authors built

evolutionary game models based on the experimental phenomena

and data. Through the research, they showed a joint effect of social

preference and network heterogeneity on promoting prosocial

behaviors. In “The distribution and heterogeneity of excitability

in focal epileptic network potentially contribute to the seizure

propagation”, by Fan et al., the authors used a connected network

of neuronal units that have focal nodes prominently as their

epilepsy model. Through computer simulation, they established a

timescale difference that separated epileptic network model from

non-seizure network. They concluded that factors affecting seizure

occurrence are the connectivity patterns of focal network nodes

and the network’s ability to modulate the distribution of network

excitability. Finally in a review paper “Understanding mental health

through computers: An introduction to computational psychiatry”,

by Martínez and Santamaría-García, the authors performed a

literature review for the field of computational psychiatry. They

indicated the computational models have been established as a new

tool in the study of mental disorders and problems. They suggested

modeling integration by models of different neuronal levels will

create computational phenotypes that are highly valued in clinical

study and neuroscience research. They articulated that modeling

study can be valuable in assisting physicians in precision psychiatry

and the field of computational psychiatry has a strong potential to

continue to grow as a new branch of computational neuroscience.
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Individual prediction of
hemispheric similarity of
functional connectivity during
normal aging
Yingteng Zhang*

Department of Mathematics, Taizhou University, Jiangsu Province, Taizhou, China

In the aging process of normal people, the functional activity pattern of brain

is in constant change, and the change of brain runs through the whole life

cycle, which plays a crucial role in the track of individual development. In

recent years, some studies had been carried out on the brain functional

activity pattern during individual aging process from different perspectives,

which provided an opportunity for the problem we want to study. In this

study, we used the resting-state functional magnetic resonance imaging (rs-

fMRI) data from Cambridge Center for Aging and Neuroscience (Cam-CAN)

database with large sample and long lifespan, and computed the functional

connectivity (FC) values for each individual. Based on these values, the

hemispheric similarity of functional connectivity (HSFC) obtained by Pearson

correlation was used as the starting point of this study. We evaluated the

ability of individual recognition of HSFC in the process of aging, as well as

the variation trend with aging process. The results showed that HSFC could

be used to identify individuals effectively, and it could reflect the change rule

in the process of aging. In addition, we observed a series of results at the

sub-module level and find that the recognition rate in the sub-module was

different from each other, as well as the trend with age. Finally, as a validation,

we repeated the main results by human brainnetome atlas (BNA) template and

without global signal regression, found that had a good robustness. This also

provides a new clue to hemispherical change patterns during normal aging.

KEYWORDS

hemispheric similarity of functional connectivity, functional MRI, normal aging,
individual recognition, global signal

Introduction

In recent years, a large number of studies (1–3) have used the combination of pattern
recognition and brain image data to distinguish healthy elderly people from Alzheimer’s
disease (AD) patients, and achieve good results. In addition to using structural MRI
(sMRI) data to explore cortical atrophy and white matter fiber tracts abnormalities in
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specific areas of AD, several studies (4, 5) have also used fMRI
data to explore differences in brain functional activity between
healthy elderly people and AD patients. The above researches
reflect the distribution pattern of brain structure and function
in people with abnormal aging (i.e., suffering from common
nervous system diseases such as AD). However, in the life cycle
of normal people, from youth, middle age to old age, the pattern
of brain functional activity is constantly changing. There is a lack
of relevant research on the change rule with the aging process,
which has always been the focus of attention in the field of
cognitive neuroscience.

To investigate the difference pattern of individual brain
functional activity during normal aging, some scholars (6–
8) study a series of metrics derived from fMRI, such as
regional homogeneity (ReHo), amplitude of low frequency
fluctuation (ALFF) and functional connectivity (FC). Most
of these indicators are studied at the whole brain level,
some specific regions of interest (ROI) or homologous brain
regions, and the correlation of activity patterns between the
left and right hemispheres is not clear. In recent years,
pattern recognition has been applied more and more widely in
neuroimaging and numerous individual recognition methods
are constantly innovating. For example, Finn et al. (9)
used the rs-fMRI and task fMRI (tfMRI) data of a large
sample from human Connectome Project (HCP) in 2015.
Their research demonstrated that functional connectivity, as a
kind of “fingerprinting,” could effectively identify individuals
from large samples, and that the sub-network with the
most significant difference among individuals could well
predict individual differences in fluid intelligence. In addition,
Kaufmann et al. (10) used this fingerprinting method in
2017 to show that delayed brain network development
during adolescence was associated with decreased mental
health. However, the effectiveness of this “fingerprinting”
approach in identifying individuals during normal aging
remains unclear.

Brain changes occur throughout the life cycle and play
a critical role in individual developmental trajectories for
cognition, social functioning, adaptability, personality and
mental health. Due to the great potential of neuroplasticity
and the continuous development of environmental sensitivity,
some scholars hypothesize that functional connectivity
shapes individual differences in individual maturation and
aging mechanisms. In recent years, several studies (11–
13) have made use of Cam-CAN database to study the
brain functional activity pattern of individual aging process
from different perspectives, which provide an opportunity
for our research.

Here, we proposed the metric of the left and right
hemispheric similarity of functional connectivity (HSFC)
to explore whether the hemispheric similarity had the
characteristics of individual differences in groups of different
ages and how it changed during aging. In particular, we used

the Cam-CAN dataset for a population aged 18–88 years and
constructed hemispheric functional connectivity networks for
rs-fMRI data of each individual. Then, the HSFC computed
by Pearson correlation was used as the starting point of this
study to evaluate the individual identification ability of HSFC
in the aging process and its correlation with age. In addition,
we observed a series of results of HSFC at the sub-module
level. Finally, as a validation, we repeated the main results
through another functional template and no global signal
regression (NGSR).

Materials and methods

Subjects

The Cam-CAN Stage 2 dataset1 (14) included 646 subjects
with T1 and rs-fMRI data (age range: 18∼88 years, 314
males) was used. All the subjects were native English speakers,
had normal or corrected vision and hearing, scored 25 or
above on the mini-mental state examination (MMSE), and
had no neurological disorders. It was worth noting that 4
subjects are excluded from this dataset due to incomplete
data collection. Thus, a total of 642 subjects entered the
preprocessing step. Ethical approval was approved by the
University of Cambridge’s Research Ethics Committee. All
subjects gave written informed consent.

All scans were performed using the standard 3T Tim
Trio (Siemens) with 32 channel coils. The rs-fMRI scans
were obtained using EPI sequences: whole brain coverage;
261 volumes, each volume contains 32 axial slices; layer
thickness 3.7 mm with an 20% inter-slice gap; TR = 1,970 ms;
TE = 30 ms; FOV = 192 × 192 mm2; flip angle = 78◦;
voxel size = 3 × 3 × 4.44 mm3. High resolution T1-
weighted structure images were obtained using MPRAGE
sequence, and the parameters were as follows: TR = 2,250 ms;
TE = 2.99 ms; TI = 900 ms; FOV = 256 × 240 × 192
mm3; flip angle = 9◦; voxel size = 1 mm; isotropy; generalized
automatic calibration partial parallel acquisition (GRAPPA)
acceleration factor = 2.

Data processing

Firstly, using the FUGUE tool of the FSL package to
accomplish the fieldmap correction.2 According to the phase
difference image and short TE amplitude images to get rad
images and then used the rad images of EPI image correction.
Then DPABI toolbox was used to preprocess the resultant rs-
fMRI images (15), including the following steps: À removed the

1 http://www.cam-can.org/

2 https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FUGUE
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first 10 time points; Á time layer correction; Â head movement
correction; Ã the diffeomorphic anatomical registrations
through exponentiated lie algebra (DARTEL) (16) segmentation
method dealt with sMRI scans and used it to normalize rs-fMRI
scans. Ä standardization; Å regression covariables (including
Friston’s 24 head movement parameters (17), global signal,
average signal of white matter and cerebrospinal fluid); Æ

bandpass filtering (0.01–0.1 Hz). It was worth noting that
there was some controversy over whether the global signal
should be regressed during rs-fMRI data preprocessing (18–
20). In 2009, there existed opposite recommendations about
whether GSR should be used in the processing of rs-fMRI
data (18, 19). Murphy et al. was the first to show that GSR
mathematically mandates the presence of anti-correlations (19).
Because anti-correlations following GSR could be an artifact
of the processing technique, Murphy et al. concluded that
GSR should not be used. However, Fox et al. found that
several characteristics of anti-correlated networks could not
be attributed to GSR. Because GSR enhanced the detection of
system-specific correlations and improved the correspondence
between resting-state correlations and anatomy, they concluded
that GSR can be beneficial (18). Therefore, we also calculated
NGSR in the step of regression covariate to explore the influence
of global signal on the results. In the preprocess, 14 subjects
with a head movement of more than 3 mm and 3◦ and 1
subject with segmentation failure were removed. A total of
627 subjects were included in the analysis. There were 166
subjects in the Young group (18∼39 years old), 197 subjects in
the Middle group (40∼59 years old), and 264 subjects in the
Old group (60∼88 years old). The information of subjects was
shown in Table 1. There was no significant difference in gender
(P = 0.871) and significant difference in age (P < 0.0001). The
statistical analysis of basic information was obtained through
SPSS22.0.

Constructing functional network

The construction process of functional network was shown
in Figure 1A. For Cam-CAN data, we used the atlas of intrinsic
connectivity of homotopic areas (AICHA) (21) to extract the
average time series of each ROI. The atlas divided the brain into
384 regions (192 regions in each hemisphere), containing 344
cortical regions and 40 subcortical regions. It had been used
in some studies to divide the brain for FC and brain network

analysis (22–24). For each subject, we obtained the mean time
series of 384 regions through the time series of all voxels in
each ROI. The FC between two brain regions was obtained
by calculating Pearson correlation coefficients of average time
series. Finally, each subject obtained a 384 × 384 symmetric
FC matrix. Each intra-hemisphere network was a 192 × 192
symmetric FC matrix and had been used Fisher-z transform to
make the statistical normalization.

In order to explore the contribution of different ROI to
individual recognition, we further subdivided the hemispheric
functional network into five sub-modules (i.e., heteromodal,
paralimbic, primary, unimodal and subcortical) based on
functional hierarchy (25). This functional hierarchy was based
on studies of anatomy, electrophysiology, behavior, injury,
and functional imaging in non-human primates and humans.
The heteromodal and unimodal areas were most closely
involved in perceptual elaboration and motor planning. The
paralimbic areas played a critical role in channeling emotion
and motivation to behaviorally relevant intrapsychic and
extrapersonal targets. The primary included primary sensory
cortex, primary motor cortex, primary visual cortex, primary
auditory cortex, primary somatosensory cortex and primary
gustatory cortex and these cortices mainly responsible for the
control of motor, visual processing, auditory processing and
other functions. The subcortical included insula, amygdala,
putamen and thalamus. Among them, the thalamus relays
communication among subcortical and cortical regions and
played a central role in the integration of sensory information.
The cortical distribution of the five sub-modules was shown in
Figure 1C. Many studies had used these sub-modules (26–28).

Individual identification steps for
hemispherical functional networks

The individual identification method used in this paper
was a reference to the work of Finn et al. (9). Finn et al.
used the rs-fMRI and tfMRI data from HCP database and this
research demonstrated that functional connectivity, as a kind
of “fingerprinting,” could effectively identify individuals from
large samples. The difference between the individual recognition
of Finn et al. and ours was that Finn et al. computed the
Pearson correlation between the functional connectivity of the
whole brain of an individual and the functional connectivity
of the whole brain of another scan, while we computed

TABLE 1 Subject demographics.

Young Middle Old P-value

Sample size 166 197 264

Gender (male/female) 79/87 95/102 132/132 0.871

Age (years) 30.56± 5.68 49.21± 5.67 72.71± 7.53 <0.0001

The ages are shown as mean± standard deviation (SD). Columns on the right display P-value by F-test for age and the gender computes P-value by chi-square test.
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FIGURE 1

The process flow chart. (A) Data preprocessing. After a series of preprocessing steps, a 384 × 384 symmetric resting state FC matrix is obtained,
and the left hemisphere and right hemisphere is 192 × 192 symmetric connection matrices, respectively. The Pearson correlation of left
hemisphere and right hemisphere of intra-subject is defined as the hemispheric similarity of functional connectivity (HSFC). (B) Schematic
diagram of individual identification; (C) the cortical distribution of the five sub-modules. LH, Left hemisphere; RH, Right hemisphere.

the Pearson correlation between the functional connectivity
of the left and right intra-hemispheres of an individual to
complete the recognition process. Figure 1B showed the process
of the LH recognizing the RH in individual. First, created

FIGURE 2

The variation trend of HSFC of hemisphere and each
sub-module (heteromodal, parallel, primary, unimodal,
subcortical) in the process of aging.

database matrices containing right hemisphere FC matrices
for all subjects. D = [Xi, i = 1, 2, · · · , N], Xi was a
192 × 192 FC matrix, Subscript i refered to the subject, N
represented the total number of subjects. In the identification
step, the similarities between the target matrix and all the
right hemisphere FC matrices in the dataset were calculated.
These similarities were defined as Pearson correlation between
the target matrix and each FC matrix in the dataset. When
the target matrix (LH) and a matrix (RH) in the dataset
obtained the maximum Pearson correlation value and their
ID was the same [ID = argmax ({r1, r2, · · · , rN})], it
meant correct identification. The upper part of the dataset
matrices in Figure 1B were the FC matrices of RH, that
was, the contralateral hemisphere was used as a test set to
identify individual. And the lower part of Figure 1B also
contained all FC matrices of LH except the target matrix,
namely using ipsilateral and contralateral hemisphere as a
test set to identify individual. Similarly, the steps of the
RH to recognize the LH were consistent with the above
process. In order to evaluate the validity and robustness
of this identification method in statistics, a non-parametric
permutation test was performed. In each recognition process,
we randomly shuffled the subjects’ hemispheres in the dataset,
and then used each target matrix to identify them in
turn, and compared the difference between the obtained
recognition rate and the initial recognition rate. This process
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was performed 1,000 times. In order to explore the contribution
of sub-modules to individual recognition, we carried out
individual recognition for each of the five sub-modules,
and the recognition steps were basically the same as the
hemispheric recognition process. In the following content, we
also defined the hemispheric similarity of each sub-module as
HSFC.

Age-related changes in hemispheric
similarity

A large number of studies (29–32) had shown that
aging could affect the FC between brain regions, not only
the connectivity within functional subnetworks, but also the
connectivity between different functional subnetworks. Aging
caused the brain networks of older people to become less
modular, as well as reduced local efficiency. In order to
investigate the variation trend of HSFC during aging, we
calculated Pearson correlation between subjects’ age and HSFC.
At the same time, the above operations were also performed on
five sub-modules.

Validation analysis

In this study, individual identification and the relationship
between HSFC and age were conducted based on AICHA
template. In order to explore the stability of the calculation
results for atlas, we used the human brainnetome atlas (BNA)3

for validation analysis (33). The BNA was based on a connective
architecture that allowed brain anatomy to be correlated with
psychological and cognitive functions and therefore was suitable
for functional brain network analysis. The atlas divided the
brain into 246 regions (123 for each hemisphere), comprising
210 cortical regions and 36 subcortical regions. It had been
used in some studies to divide the brain for FC and brain
network analysis (34–37). For each subject, referring to AICHA’s
FC matrix construction process, finally we got a 246 × 246
symmetric FC matrix. Each intra-hemisphere was 123 × 123
symmetric FC matrix. The above AICHA’s results were repeated
using the FC matrix obtained by the BNA. At the same time, we
compared the robustness of HSFC between different templates.

3 http://atlas.brainnetome.org/

FIGURE 3

The recognition rate results of hemisphere and each sub-module in different age groups. (A–C) Represents the recognition rate of young,
middle and old, respectively. From left to right in each sub graph, the recognition rate of hemisphere and five sub-modules are in turn. Notably,
Orange indicates that the RH recognizes the LH without Ipsilateral Hemisphere (RH→LH, WOIH). Brown indicates that the LH recognizes the RH
without ipsilateral hemisphere (LH→RH, WOIH). Light blue indicates that the RH recognizes the LH with ipsilateral hemisphere (RH→LH, WIH).
Dark blue indicates that the LH recognizes the RH with ipsilateral hemisphere (LH→RH, WIH). (D–F) Correspond to non-parametric
permutation test of (A–C), respectively.
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FIGURE 4

Pearson correlation between age and HSFC of hemisphere and five sub-modules. (A–F) Represent the hemisphere, heteromodal, paralimbic,
primary, unimodal, subcortical, respectively.

FIGURE 5

Pearson correlation of HSFC of hemisphere and five sub-modules between BNA and AICHA. (A–F) Represent the hemisphere, heteromodal,
paralimbic, primary, unimodal, subcortical, respectively.
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In addition, the above analysis was repeated with NGSR to
explore the effect of global signal on the results.

Results

Hemispheric similarity of functional
connectivity of hemispheres and
sub-modules in different age group

It could be seen from Figure 2 that with the increase of
age, except for subcortical, HSFC in other sub-modules and
hemispheric level showed a decreasing trend, and heteromodal
had the smallest decline. For different age group, the HSFC
of primary always maintained the maximum value, followed
by unimodal and heteromodal. In youth and middle age, the
HSFC of unimodal was higher than that of subcortical, while
in old age, the HSFC of subcortical was slightly higher than
that of unimodal. In addition, the HSFC of paralimbic was
slightly larger than that of subcortical in youth. With the aging
process, the HSFC of paralimbic continues to decline, and the
gap between paralimbic and subcortical was growing.

Individual recognition of hemispheric
similarity of functional connectivity

We first observed the individual recognition results without
ipsilateral hemisphere from Figure 3. It could be found that
the individual recognition results of different age groups were
roughly the same. Among them, the recognition ability of
hemispheric level was the best and that of subcortical was
the lowest. Heteromodal, paralimbic and unimodal had similar
recognition abilities, which were slightly higher than primary.
After adding the ipsilateral hemisphere for recognition, the

recognition ability of each sub-module decreased to varying
degrees, while the hemisphere level recognition had little effect.
In addition, for the difference of LH to recognize RH or RH
to recognize LH, there was little difference at the hemispheric
level, but there were partial differences in different sub-modules.
Given that the identification trials were not independent from
one another, we performed non-parametric permutation testing
to assess the statistical significance of these results. Across 1,000
iterations, the highest success rates achieved were 6/166 (Young
group), 6/197 (Midlle group),6/264 (Old group), neither of
which exceeded 4%. Thus the P-value associated with obtaining
at least correct identifications (the minimum rate we achieved)
was 0.

Age-related changes in hemispheric
similarity

As shown in Figure 4, except for the positive correlation
between HSFC and age in subcortical, the hemispheric and
other sub-modules reflected the negative correlation trend.
In addition, except that the correlation between HSFC and
age was not significant (r = –0.075, p = 0.06 > 0.05) in
heteromodal, HSFC of other sub-modules and hemispheric
showed a significant correlation with age to varying degrees.

Validation analysis of template and
processing method

The HSFC used in the previous main work was based on
AICHA template. In order to understand whether the HSFC
was specific to AICHA template, we recalculated HSFC using
BNA template, and then computed Pearson correlation on the
HSFC obtained from the two templates. As shown in Figure 5,

FIGURE 6

(A) The changes of HSFC with GSR obtained by BNA and (B) the changes of HSFC with NGSR obtained by AICHA in different age groups and
modules.
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the HSFC between templates showed a very significant positive
correlation (r = 0.88, p = 2.65 × 10−199) at the hemispheric
level. The degree of correlation varied for different sub-modules.
The correlation of subcortical was the lowest and the data points
fitting were not strong.

The mean value of HSFC obtained by BNA was shown in
Figure 6A. It seemed some differences when compared with the

HSFC obtained by AICHA (Figure 2). Except for hemisphere
and heteromodal, the mean value and change trend of other
modules were basically similar to the HSFC obtained by AICHA.
The HSFC with NGSR obtained by AICHA was shown in
Figure 6B and the HSFC distribution was different from that
obtained by GSR (Figure 2). Except for heteromodal, the mean
value of HSFC in other modules decreased with aging. In

FIGURE 7

The recognition rate results of hemisphere and each sub-module in different age groups for BNA template with GSR. (A–C) Represents the
recognition rate of young, middle and old, respectively. From left to right in each sub graph, the recognition rate of hemisphere and five
sub-modules are in turn. Notably, orange indicates that the RH recognizes the LH Without Ipsilateral Hemisphere (RH→LH, WOIH). Brown
indicates that the LH recognizes the RH Without Ipsilateral Hemisphere (LH→RH, WOIH). Light blue indicates that the RH recognizes the LH
With Ipsilateral Hemisphere (RH→LH, WIH). Dark blue indicates that the LH recognizes the RH With Ipsilateral Hemisphere (LH→RH, WIH).
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addition, the value of subcortical was higher than that of GSR
and was greater than that of heteromodal in different age groups,
while the HSFC of unimodal was higher than that of primary in
old age. However, the contrast of HSFC between hemisphere and
heteromodal in youth and middle age was opposite to that with
GSR.

In the validation part of recognition rate, first of all,
we observed the recognition rate results obtained from the
BNA template (Figure 7). The individual recognition rates of
paralimbic, primary and subcortical in the elderly were lower
than those in the youth and middle age. In the comparison of
the recognition rate of different templates, it was found that
the recognition rate of AICHA template was better than that
of BNA template, especially at the sub-module level. Next, after
comparing the recognition rate results of GSR (Figure 3) and

NGSR (Figure 8), we could find that the recognition rate of each
module was almost the same.

In the validation part of the correlation between HSFC
and age, similarly, we used the BNA template for validation
(Figure 9) and found that the distribution patterns between the
two templates were similar. The Pearson correlation between the
HSFC and age for heteromodal and unimodal had no significant
difference (heteromodal: r = –0.002, p = 0.96; unimodal: r = –
0.043, p = 0.28). The correlation coefficient obtained by primary
and paralimbic was larger than that of the corresponding sub-
module in AICHA template. In addition, the correlation value
between HSFC and age of primary and subcortical with NGSR
(Figure 10) was higher than that with GSR, and the other
modules were the opposite.

FIGURE 8

The recognition rate results of hemisphere and each sub-module in different age groups for AICHA template with NGSR. (A–C) Represents the
recognition rate of young, middle and old, respectively. From left to right in each sub graph, the recognition rate of hemisphere and five
sub-modules are in turn. Notably, orange indicates that the RH recognizes the LH Without Ipsilateral Hemisphere (RH→LH, WOIH). Brown
indicates that the LH recognizes the RH Without Ipsilateral Hemisphere (LH→RH, WOIH). Light blue indicates that the RH recognizes the LH
With Ipsilateral Hemisphere (RH→LH, WIH). Dark blue indicates that the LH recognizes the RH With Ipsilateral Hemisphere (LH→RH, WIH).
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FIGURE 9

Pearson correlation between age and HSFC of hemisphere and five sub-modules for BNA template with GSR. (A–F) Represent the hemisphere,
heteromodal, paralimbic, primary, unimodal, subcortical, respectively.

FIGURE 10

Pearson correlation between age and HSFC of hemisphere and five sub-modules for AICHA template with NGSR. (A–F) Represent the
hemisphere, heteromodal, paralimbic, primary, unimodal, subcortical, respectively.
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Discussion

In this study, the Cam-CAN datasets with a large age
span were used and the index named “hemispheric similarity
of functional connectivity (HSFC)” was proposed. This index
could effectively identify individuals and reflect the change trend
in the aging process. In addition, the results obtained in different
sub-modules were also different. The results were robust to
different templates and whether the global signal was regressed
or not. This proves that HSFC has unique advantages in aging
research, and also shows that HSFC has the characteristics of
individual differences.

The specificity of the cerebral hemisphere is a sign of
successful neural development (38). Previous studies (39–
41) extracted a series of indicators as features through the
specificity of hemispheric function or the asymmetry of
hemispheric structure and function, and obtained a high
accuracy in the diagnosis of diseases. On the contrary,
some studies (42, 43) found the conclusion of hemispheric
asymmetry through the processing and statistical analysis
of imaging data. The above studies indirectly revealed the
importance of the cerebral hemisphere, suggesting the starting
point of this study.

In the past, the application of pattern recognition in
imaging research was generally by extracting the features of
different levels of the brain and building a classifier for the
prediction of category variables or building a regressor for
the continuous variables of behavior scores. Next, using a
new test set to get the results on the classifier or regressor.
Different from the common pattern recognition methods, this
study based on the “fingerprint” method proposed by Finn
et al. (9) had achieved a very high accuracy at the hemispheric
level, which showed that each individual is unique. For sub-
modules, since the primary module mainly involves primary
cortical areas such as the central gyrus (25), the FC similarity
of homologous brain areas between hemispheres is also very
high and the degree of lateralization is small. Therefore, its
HSFC value was the highest among all modules (Figure 2).
Meanwhile the functional patterns of the primary module
in the LH and RH are very similar so that the individual
differences at the group level are not high, which led to a
low recognition rate (Figure 3). Subcortical module mainly
involves subcutaneous nuclei (25). The segmentation effect of
subcutaneous nuclei in image data preprocessing is poor, which
also indirectly affects the calculation of HSFC, resulting in
its generally low value. Therefore, the individual recognition
ability was not strong. For the difference of recognition rate
in sub-modules, we hypothesized that this might be due
to differences in functional connectivity similarities between
homologous brain regions of different modules, leading to
differences in the degree of lateralization, and thus affecting
HSFC. We believe that HSFC can better reflect the degree of
lateralization in different brain regions. The higher the value

of HSFC, the higher the similarity of functional connectivity of
homologous brain regions in this region, and the smaller the
degree of lateralization. The smaller the value of HSFC is, the
lower the similarity of functional connections of homologous
brain regions in this region, and the greater the degree of
lateralization. This can help us further explore differences in
the degree of lateralization in different regions of the brain.
In different age groups, the results of recognition rate were
basically the same, which also showed that the individual
differences of HSFC were stable in the aging process and had
good robustness.

In the previous study (13), it was found that the changes
of vascular components, head movements and the location of
functional areas would affect the relevant patterns of FC and
aging process, so a series of analysis and processing methods
were proposed. Another study (44) showed that the shrinkage
rate of various regions of the cerebral cortex during aging
was not the same. In this study, based on the relationship
between the HSFC and age, we found that HSFC decreased with
the aging process on the whole. The results showed that the
aging process led to the pattern disorder of many functional
subnetworks, which disrupted the symmetry of hemispheric
functional networks to some extent and further provided
valuable clues for the future study of the development pattern
of hemispheric functional networks in the aging process.

Through the study of the HSFC between different templates,
it showed that HSFC is not only specific to a fixed template,
but also could be extended to more functional templates.
When using BNA template or NGSR, the results obtained
were basically consistent with our main results (i.e., GSR with
AICHA template).

In the outlook of the follow-up work, first of all, the FC
network of this study was calculated by Pearson correlation.
Some studies (45, 46) proposed the processing strategy of
“distance correlation” and its research results were better than
Pearson correlation, which was worthy of our reference in the
future. Second, although this study used a wide range of aging
data, it was limited to rs-fMRI research. In the future, structural
MRI and task fMRI can be added for a more comprehensive
analysis or we can consider applying the HSFC-based method to
HCP datasets with different scans, so as to verify the recognition
stability of HSFC at different time points in the same individual.
Third, this study was aimed at a series of conclusions obtained
in the process of normal aging, and its application prospect
in Alzheimer’s disease and other nervous system and mental
diseases is not clear. Fourth, the continuous optimization of
preprocessing strategy and the realization of large sample data
are still big problems that have been committed to research in
the field of pattern recognition, which still need to be solved.

In this study, the HSFC was proposed for the first time
and it could effectively identify individuals and reflected the
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changes in the aging process. In particular, we found that there
are differences in the recognition rate among sub-modules and
there were also differences in the trend with age. Finally, as
a validation, we repeated the main results through another
functional template and NGSR, which had good robustness.
This also provides new clues for the pattern of changes between
hemispheres in the normal aging process.
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Category learning in a recurrent
neural network with
reinforcement learning

Ying Zhang, Xiaochuan Pan* and Yihong Wang

Institute for Cognitive Neurodynamics, East China University of Science and Technology, Shanghai,

China

It is known that humans and animals can learn and utilize category information

quickly and e�ciently to adapt to changing environments, and several brain

areas are involved in learning and encoding category information. However, it is

unclear that how the brain system learns and forms categorical representations

from the view of neural circuits. In order to investigate this issue from the

network level, we combine a recurrent neural network with reinforcement

learning to construct a deep reinforcement learning model to demonstrate

how the category is learned and represented in the network. The model

consists of a policy network and a value network. The policy network is

responsible for updating the policy to choose actions, while the value network

is responsible for evaluating the action to predict rewards. The agent learns

dynamically through the information interaction between the policy network

and the value network. This model was trained to learn six stimulus-stimulus

associative chains in a sequential paired-association task that was learned by

the monkey. The simulated results demonstrated that our model was able to

learn the stimulus-stimulus associative chains, and successfully reproduced

the similar behavior of the monkey performing the same task. Two types

of neurons were found in this model: one type primarily encoded identity

information about individual stimuli; the other type mainly encoded category

information of associated stimuli in one chain. The two types of activity-

patterns were also observed in the primate prefrontal cortex after the monkey

learned the same task. Furthermore, the ability of these two types of neurons to

encode stimulus or category information was enhanced during this model was

learning the task. Our results suggest that the neurons in the recurrent neural

network have the ability to form categorical representations through deep

reinforcement learning during learning stimulus-stimulus associations. It might

provide a new approach for understanding neuronal mechanisms underlying

how the prefrontal cortex learns and encodes category information.

KEYWORDS

category learning, stimulus-stimulus association, recurrent neural network,

reinforcement learning, reward
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Introduction

Category is a fundamental concept in cognitive

neuroscience. The literature has demonstrated that humans and

animals can use categorical information quickly and efficiently

to identify new objects, make inference and so on (1–3). For

example, we could classify an animal as a dog on the basis of its

physical characteristics, even the animal would be a new type of

dog that we did not know before. And we could infer its basic

properties that belong to the dog category commonly. There are

two types of category in the literature: perceptual category and

functional category. Objects sharing similar physical properties

could be classified into a group as a perceptual category (4). A

functional category indicates that its members that share no any

physical similarity have the similar function, such as associating

the same action or reward (5–7), etc. Many behavioral studies

suggest that animals could form a functional category of a group

of visual stimuli through training the matching-to-sample

task (8, 9). In this task, some arbitrarily selected visual images

(samples) are learned to associate with a common target image.

After learning, it is found that animals could treat these visual

images as equivalent stimuli, known as a functional category

(10, 11). It is an important research topic in the literature of

studying the category that how animals or the neuronal system

could learn, represent and utilize category information.

Various experimental data, including fMRI studies, lesion

studies, and neurophysiological studies, demonstrated that

rather than a single brain area, many brain areas are involved in

the categorical processing, such as the inferior temporal cortex,

the prefrontal cortex (PFC), and the basal ganglia (12, 13).

Different brain areas may have distinct contributions toward

processing category-related information. Neurons in the inferior

temporal cortex are more sensitive to perceptual features of

stimuli than categorical relations (14–16). Neurons in the PFC

can achieve the categorical distinction based on abstract rules

(17). PFC neurons have stronger category coding ability than

do inferior temporal cortex neurons in categorization tasks

(18, 19), and neurons show more similar responses to stimuli

belonging to the same category than to stimuli belonging to

different categories (20, 21). In addition, the execution of

actions in categorization decision-making tasks requires not

only the involvement of the premotor cortex but also relevant

functions of the basal ganglia to help the PFC complete the

adjustment of strategies. Thus, it has been reported that the

premotor cortex and the basal ganglia are also engaged in

category learning (22–25). Although it is known that many

brain areas perform different functional roles during category

learning, the mechanism underlying how these areas cooperate

to learn and encode the category is unclear. Therefore, we

try to construct a network model to further understand the

working mechanism of the neural system in a categorization

decision-making task. In particular, the PFC plays essential roles

in processing category information and we build the network

model to mimic functional roles of the PFC in the categorization

decision-making task.

Some theoretical models have been proposed to explain

how the category is learned in the neural system (26–28). But

most of models show categorical phenomena that are consistent

with some behavioral results, without showing neural activity

that encodes category information observed in the PFC or

other brain areas (29, 30). Hinaut and Dominey constructed

a neural network model of the PFC that demonstrated how

categorization of behavioral sequences can be achieved through

a recurrent system (31). Their model is a three-layer cortical

neural network that is sensitive to the sequence. As a result, a few

neurons in the three-layer model could identify each sequence

and a few other neurons produce an explicit representation

of the category to which sequences belong. However, this

neural network model is able to discriminate categories by

using supervised learning, which is not biologically plausible

for animals learning in the decision-making task. Experimental

studies have demonstrated that animals learn to perform specific

tasks based on the reward feedback for taking action (32), known

as reinforcement learning (RL).

A large number of studies have shown that a combination

of artificial neural networks with RL could make the network

model learn and storage items more efficiently and faster

(33, 34). In particular, the RL has been used to understand

neural mechanisms of association learning in the cerebral cortex

(35, 36). In the RL framework, the agent takes action by trial

and error, and then it can obtain rewards from the external

environment. Its purpose is to maximize the expected amount of

reward (37). Surprisingly, the recurrent neural network trained

with repeated RL can mimic the complex behavior of animals

observed in various decision-making tasks (38, 39). However, in

most of these studies, the recurrent network was trained to learn

stimulus-action associations or stimulus-reward associations in

the tasks with single decision-making. Few studies have reported

that the recurrent neural network with RL could be applied

in category learning. We are interested in whether this type

of model could learn the functional category for a group of

stimuli through stimulus-stimulus associations in the tasks with

multiple decision-makings.

In this study, we constructed a deep RLmodel that combines

a recurrent neural network with RL to investigate how the

category is learned in the network. On the one hand, this

network model uses the gated recurrent unit network structure

where neurons can regulate information transmission through

gating mechanisms. On the other hand, this network model

utilizes the actor-critic algorithm structure where neurons can

update weights and biases through the policy gradient RL

algorithm (40). Then, we investigate whether this model can

mimic the behavior of monkeys and their neural activities in the

PFC reported in a sequential paired-association task (41).
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FIGURE 1

Structures of the neural network model. The deep RL neural

network model, consisting of a policy network and a value

network. In the policy network, sparse connections are made

from the input layer to the information integration layer (IIL),

among neurons in the IIL. Full connections are made from the

IIL to the action output layer. In the value network, full

connections are made among neurons in the input layer, the IIL,

and the value output layer. In addition, in the IIL, red-red or

blue-blue indicates excitatory connections between neurons;

red-blue or blue-red indicates inhibitory connections between

neurons; and black indicates no connection between neurons.

In the sequential paired-association task, this model needs

to learn six stimulus-stimulus associative sequences in a similar

way to train the monkey to learn this task. It was found that the

model was able to successfully learn the six associative sequences

at the end of the training, reproducing the choice behavior of the

monkey observed in the task. Notably, we found two types of

neurons in this model: one type primarily encodes information

about individual stimuli; the other type mainly encodes category

information of associated stimuli in one chain. The ability of

these two types of neurons to encode information was enhanced

during the learning process of this model. Our results suggest

that the neurons in the recurrent neural network have the ability

to form categorical representations through deep RL during

learning stimulus-stimulus associations.

Methods

Neural network model

The deep RL network has been used to simulate stimulus-

response associations or stimulus-reward associations in

previous studies (38, 42). In this study, a new neural network

based on the framework of the deep RL is proposed. The deep

TABLE 1 Training parameters of the deep RL model.

Parameter Value Description

α 0.01 Learning rate

1t 20ms Time step

τ 100ms Time constant

Np_in 11 Number of neurons in the input layer (policy

network)

Nv_in 153 Number of neurons in the input layer (value

network)

Np 150 Number of neurons in the IIL (policy

network)

Nv 100 Number of neurons in the IIL (value

network)

Np_out 3 Number of neurons in the action output layer

(policy network)

Nv_out 1 Number of neurons in the value output layer

(value network)

p0 0.2 Connection probability (policy network)

p1 0.1 Connection probability (policy network)

p2 1 Connection probability (policy network)

δ2rec 0.01 Network noise

Ntrials 24 Number of trials for gradient update

T 121 Maximum time of per trial

RL neural network model is composed of two parts: the policy

network and the value network (Figure 1).

The policy network has three layers: the input layer, the

information integration layer (IIL), and the action output layer.

The number of neurons in the input layer is Np_in = 11,

and these neurons receive stimulus information from the

external environment; the number of neurons in the IIL is

Np = 150, and these neurons can receive stimulus information

from the input layer; the number of neurons in the action

output layer is Np_out = 3, and these neurons represent

three actions: fixation, left and right choices in this study.

The probability of connection from each neuron in the input

layer to neurons in the IIL is p0 = 0.2; the probability

of connection among neurons in the IIL is p1 = 0.1; the

probability of connection from each neuron in the IIL to

neurons in the action output layer is p2 = 1 (fully connected,

see Table 1).

The value network also has three layers. The number of

neurons in the input layer is Nv_in = 153, and these neurons

receive the firing rates of 150 neurons in the IIL and the action

of 3 neurons in the action output layer of the policy network; the

number of neurons in the IIL is Nv = 100, and these neurons

can learn information from the policy network; the number

of neurons in the value output layer is Nv_out = 1, and the

neuron generates a predictive reward for each action. Here, full
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connections are made among neurons in the input layer, the IIL

and the value output layer.

In this model, the policy network generates an action based

on current stimulus and task conditions, and this model takes

the action and receives an actual reward; the value network

integrates neuronal firing rates in the policy network to output

a predictive reward for the action. There is a reward prediction

error between the actual reward and the predictive reward for

the action, and the policy network adjusts the policy in time

according to the error signal to minimize it.

In both the policy network and value network, the IILs

have a recurrent connection structure with gated recurrent units

(a gated recurrent unit is considered as a neuron). The gated

recurrent unit includes an update gate and a reset gate, where

the update gate is used to control the retained historical state

information and receives new information about the candidate

state, and the reset gate is used to control the dependence on

historical state information for candidate information (43). In

this way, information forms a dependency between different

states of the transmission process. In this paper, the equations

of the continuous-time gated recurrent unit network for the

policy network are described in Equations (1)–(4), and the value

network has similar equations for its gated units.

φi (t) = σ





Np
∑

j=1

W
φ,ji
rec xj (t − 1)

+

Np_in
∑

k=1

W
φ,ki
in uk (t)+ b

φ
i (t)



 ,
(

i = 1, . . . ,Np
)

, (1)

ψi (t) = σ





Np
∑

j=1

W
ψ ,ji
rec xj (t − 1)

+

Np_in
∑

k=1

W
ψ ,ki
in uk (t)+ b

ψ
i (t)



 , (2)

hi (t) = (1− ηφi (t)) hi (t − 1)

+ ηφi (t)





Np
∑

j=1

W
ji
rec

(

ψj (t) xj (t − 1)
)

+

Np_in
∑

k=1

Wki
inuk (t)

+ bi (t)+

√

2η−1δ2recε

]

, (3)

xi (t) =
[

hi (t)
]+

. (4)

Here, we use the modified linear activation function [x]+ =

max (0, x) as the output function of each neuron. Because the

gated unit in GRU network is considered as the firing rate

neuron, the value of its output function is defined as the firing

rate of the neuron. The firing rate of each neuron in the IIL

is non-negative. In addition, σ (x) =
[

1+ exp (−x)
]−1

as the

output function of each gate [the update gate φi (t) or the reset

gate ψi (t) , (i = 1, . . . ,Np), (t = 1, . . . ,T)], ε is the Gaussian

white noise with a mean of 0 and variance of 1, and δ2rec is

used to control the size of this network noise. And uk (t) (k =

1, . . . ,Np_in) is the input information of the kth neuron from

the external environment at time t, xi (t) is the firing rate of the

ith neuron at time t. η = 1 t
τ , 1t is the time step, and τ is the

time constant (Table 1), which is used to control the information

dependency of gate recurrent units. W
φ,ji
rec and W

ψ ,ji
rec are the

connection weights from the jth neuron to the ith neuron in the

update gate and reset gate (44), respectively; W
φ,ki
in and W

ψ ,ki
in

are the connection weights from the kth input neuron to the ith

neuron in the update gate and reset gate, respectively; b
φ
i (t) and

b
ψ
i (t) are the bias of the update gate and reset gate, respectively.

In addition, W
ji
rec is the connection weight from the jth neuron

to the ith neuron in the IIL; Wki
in is the connection weight from

the kth neuron in the input layer to the ith neuron in the IIL;

bi (t) is the bias of the ith neuron in the IIL.

Specifically, xπi (t) is the firing rate of the ith neuron

in the IIL of the policy network under the policy of π .

Generally speaking, RL consists of five main elements: an

agent, an environment, actions, states, and rewards. The agent

first observes the external environment and receives the input

information ut (the Np_in dimensional vector), and then

according to the policy πθ (at|ut) chooses an action at (the

Np_out dimensional vector). Here, the action output layer

neurons generate an action based on the policy function:

zl (t) =

Np
∑

i=1

Wπ ,il
out x

π
i (t)

+ bπ ,lout (t) ,
(

l = 1, . . . ,Np_out

)

, (5)

πθ
(

at = l|ut
)

=
ezl(t)

∑Npout

l=1
ezl(t)

. (6)

Where Wπ ,il
out (l = 1, . . . ,Np_out ) is the connection weight

from the ith neuron in the IIL to the lth neuron in the action

output layer of the policy network, bπ ,lout (t) is the bias of the

lth neuron in the action output layer, zl (t) is the linear output

function of the lth neuron in the action output layer, and the

policy πθ (at|ut) is the softmax function. The agent chooses

an action based on the policy function through the random

sampling method. That is to say, when the agent has very limited

information about the external environment from observation,

it cannot completely rely on the information to make a correct

choice. However, the agent obtains a reward provided by the

environment in the occasional event of taking action. In this

case, an evaluation of the action by the value network can better

guide the policy network to implement the adjustment of the

policy. Here, the firing rate of the mth neuron in the IIL of the

value network is xvm (t) (m = 1, . . . ,Nv), and the neuron in the

value output layer generates a predictive reward for the action

based on the value function:

vϕ
(

xπt , at
)

=

Nv
∑

m=1

Wv,m
out x

v
m (t)+ bvout (t) . (7)
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Where the firing rate xπt (the Np dimensional vector) of

neurons in the IIL of the policy network and the action at (the

Np_out dimensional vector) of neurons in the action output layer

as the input information of the value network. Wv,m
out is the

connection weight from themth neuron in the IIL to the neuron

in the value output layer, bvout (t) is the bias of the neuron in the

value output layer, and vϕ is the linear output information of the

value output layer.

Policy gradient reinforcement learning

In this model, the connection weights (Win, W
φ
in, W

ψ
in ,

Wrec, W
φ
rec, W

ψ
rec, W

π
out , and Wv

out) and biases (b, bφ , bψ ,

bπout , and bvout) of neurons are updated by the policy gradient

RL algorithm during training (38). In this study, considering

that the environmental state for the agent is not completely

observable, we use a partially observable Markov decision

process model, which is more suitable for the agent to learn in

the state of limited information about the external environment.

The partially observable Markov decision process model is

discrete and finite (45). The continuous period is discretized

through time steps, and the agent needs to observe the external

environment and chooses an action at every time step. Setting

the time ranges from 0 to time t, I0 : t is the historical

information in the interaction process between the agent and

the environment, including the states, observations, and actions,

as follows:

I0 : t =
(

s0 : t+1, u1 : t , a0 : t
)

. (8)

After the agent chooses an action at at the time t, it obtains

a reward rt+1 at the next time t + 1. In detail, when t = 0,

the environment is in the current state s0 with the probability

κ (s0), and the agent chooses an action a0 according to the policy

πθ , where θ denotes the parameter, including the weights and

biases of the policy network. When t = 1, the environment

enters the new state s1 with the probability κ
(

s1|s0, a0
)

, and the

agent obtains a reward r1. Next, the agent observes the external

environment and receives the input u1, and chooses an action

a1 based on the new policy πθ (a1|u1) and obtains a reward r2.

Thus, a process of the interaction between the agent and the

environment is to keep repeating these steps until the end of each

trial. In general, from the beginning to the end of each trial, the

agent can rely on the policy πθ at time t to choose an action

at that eventually obtain the maximum expected value of the

reward R (θ ):

R (θ) = EI





T
∑

t=0

rt+1



 . (9)

Where the T is the end time of each trial (Table 1), and

the EI is the expected calculation on the basis of the history

I0 :T =
(

s0 :T+1, u1 :T , a0 :T
)

.

Our model utilizes the policy gradient method with an

actor-critic algorithm structure when updating parameters. This

approach uses the policy function and the value function for

learning. Briefly, the actor takes action by adjusting the policy,

which is the policy function; the critic evaluates each policy by

predicting the reward of this action, known as the value function.

In order to update parameters of the policy network (actor)

by the gradient descent method, an objective function is defined

as follows:

Ŵπ (θ) =
1

Ntrials

Ntrials
∑

n=1

−Rn (θ). (10)

Where the parameter θ includes the weights and biases of

the policy network. Notably, when training the network model,

we did not update parameters of the policy network in every

trial; instead updating those after the completion ofNtrials trials.

This method makes learning process of the policy network more

stable. In addition, we use the policy gradient algorithm to solve

∇θRn (θ ):

∇θRn (θ) =

T
∑

t=0

∇θ logπθ (at|ut) ϒ
(

xπt , at
)

, (11)

ϒ
(

xπt , at
)

=

T
∑

t=0

rt+1 − vϕ
(

xπt , at
)

. (12)

Here, theϒ
(

xπt , at
)

is a reward prediction error value of the

Temporal-Difference algorithm, which denotes the difference

between the estimated value of the value function and the actual

reward. This value can be used as an error signal to guide the

policy network to learn. At the time t, vϕ
(

xπt , at
)

is the linear

output function of the value network, and xπt is the firing rates

of neurons in the IIL of the policy network.

In order to update parameters of the value network (critic)

by the gradient descent method, an objective function is defined

as follows:

Ŵv (ϕ) =
1

Ntrials

Ntrials
∑

n=1

Mn (ϕ), (13)

Mn (ϕ) =
1

T + 1

T
∑

t=0

[

rt+1 − vϕ
(

xπt , at
)]2

. (14)

WhereMn (ϕ) is the mean square error, and the parameter ϕ

includes the weights and biases of the value network. In the value

network, the firing rates xπt of neurons in the IIL of the policy

network and the action at of neurons in the action output layer

as its input information at time t, and its output information is

a prediction value vϕ of the action. Here, we solve ∇ϕMn (ϕ)

by Backpropagation through the time algorithm (46). Finally,

our model can learn dynamically based on the interaction of

information between the policy network and the value network.
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FIGURE 2

The sequential paired-association task and its task events. (A) The example of the ABC sequence learned by the monkey. The two correct

stimulus-stimulus associative sequences are A1→ B1→ C1 and A2→ B2→ C2. (B) Timing of task events in a trial of the sequential

paired-association task. The network model needs to fixate on the fixation spot during the stimulus and delay periods. It obtains a positive

reward rt+1 = +1 for each correct choice during the two decision periods (Decision-1 and Decision-2). If this model makes a wrong choice in

the first decision period, it will obtain a negative reward rt+1 = −1 and the current trial is terminated. If this model makes a wrong choice in the

second decision period, it will not obtain a reward (rt+1 = 0) and the trial will end.

Sequential paired-association task

We used the deep RL model to learn the sequential paired-

association task that has been performed successfully by the

monkey (41). In this task, the monkey needed to learn two

stimulus-stimulus associative sequences (Figure 2A). Here, the

visual stimuli were six distinguishable pictures, which were

divided into two associative sequences (A1→B1→C1 and

A2→B2→C2). Figure 2B shows task events that are suitable for

this model to learn. The maximum time of each trial is 2,400ms

(Figure 2B). At the beginning of each trial, the agent is required

to fixate on the fixation spot for 600ms. After that, the first

stimulus A1 or A2 is presented for 400ms. Following the first

stimulus, there is a delay period of 500ms. The agent continues

fixating on the spot during the delay period. After the delay,

the second stimuli B1 and B2 are presented simultaneously on

the left and right positions. The left and right positions of the

two stimuli are random. At this time, the agent is required to

fixate on the spot for 200ms. After the second stimuli is offset,

the agent is given 100ms to make the first choice (selection

of B1 or B2 based on A1 or A2). If the first choice is wrong

and the current trial is terminated. If the first choice is correct,

the agent obtains a reward and the trial is to be continued.

After the first correct choice, the agent is required to fixate

on the spot for 300ms. Then the third stimuli C1 and C2 are

presented simultaneously, and the left and right positions of the

two stimuli are random. At this time, the agent is required to

fixate on the spot for 200ms. After the third stimuli is offset,

the agent is given 100ms to make the second choice (selection

of C1 or C2 based on B1 or B2). When the second choice is

correct, the agent obtains a reward again and the trial is to end.

The design of two associative sequences (A1-sequence and A2-

sequence) allows the network model to select the target stimuli

from the presentation of the target and distractor stimuli.

In the policy network, 11 neurons in the input layer denote

the fixation, stimulus A1, stimulus A2, left stimulus B1, right

stimulus B1, left stimulus B2, right stimulus B2, left stimulus

C1, right stimulus C1, left stimulus C2, and right stimulus

C2, respectively. In the sequential paired-association task, the

fixation is labeled as a value of 1, the stimulus A1 or A2 is labeled

as a value of 2, the stimulus B1 or B2 is labeled as a value of 3,

and the stimulus C1 or C2 is labeled as a value of 4. The agent

needs to take three actions (Nout = 3), and the three neurons

in the action output layer are fixation (at = F), left (at = L),

and right(at = R), respectively. We choose appropriate values

for the number of neurons in the two IILs (N = 150 in the

policy network and N = 100 in the value network) and their

connection probabilities (see Table 1) in order to enable the

model to learn the task successfully. We did not systemically

analyze how changes of these super-parameters affect the model

to learn the task. However, the combination of appropriate

values of these super-parameters is important for the model to

learn the task.

In general, the agent can choose left or right action only

during two decision periods; and it must keep fixation during the

stimulus period and the delay period. When the agent chooses a
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correct action in the first decision period, it obtains a positive

reward rt+1 = +1; when the agent chooses a wrong action in

the first decision period, it obtains a negative reward rt+1 = −1

and the trial is terminated. The agent obtains a positive reward

rt+1 = +1 for the correct action or a reward rt+1 = 0 for the

wrong action in the second decision period. If the agent does not

make a choice (left or right) during the second decision period,

it obtains a negative reward rt+1 = −1. During the stimulus

period or the delay period, the agent chooses the fixation action

to receive a reward rt+1 = 0; if the agent chooses a left or right

action, it obtains a negative reward rt+1 = −1 and the trial

is terminated.

The model is required to learn not only the ABC sequence

(A1→ B1→ C1 and A2→ B2→ C2), but also the

BCA sequence (B1→ C1→ A1 and B2→ C2→ A2)

and the CAB sequence (C1→ A1→ B1 and C2→ A2→

B2). The three sequences have similar task events in a trial.

We divided the six stimuli A1, A2, B1, B2, C1, and C2

into two groups, the A1-group (A1, B1, and C1) and the

A2-group (A2, B2, and C2). The stimuli in the A1-group

are associated each other in one chain and the stimuli in

the A2-group are associated each other in another chain.

When this model is trained, the three sequences (ABC, BCA,

and CAB) appear randomly in the learning process, and

the agent learns six stimulus-stimulus associative sequences

in parallel.

In this task, we set the time constant τ to 100ms, the

time step 1t to 20ms, and the number of trials Ntrials to

24, which denotes this network model updating parameters

after 24 trials are completed (labeled as one iteration).

In addition, when the network model completes 50 policy

iterations, we test the network model with 800 trials to

determine whether the policy is optimal. During the training

process, the network model goes through the learning stage

and testing stage alternately. The agent updates parameters

through policy iterations in the learning stage, and the agent

evaluates each policy without updating parameters in the

testing stage. When the correct rate of choice (the ratio of

correct trials to all trials) reaches 98% in the testing stage,

we consider that the agent has found the optimal policy,

which indicates that the network model can complete the

task successfully.

The sequential paired-association task does not require

the monkey to encode category information for the

associated stimuli. Behaviorally, just memorizing each

stimulus-stimulus association is sufficient for the monkey

to perform the task successfully. However, it was reported

that some prefrontal neurons encoded category information

for the associated stimuli after the monkey learned the

task (41, 47). We are interested in whether and how

the network model forms categorical representations for

associated stimuli during its learning of the sequential

paired-association task.

Category index and stimulus index

After this model learned stimulus-stimulus associations, we

further examined the activity of 150 neurons in the IIL of the

policy network. To characterize the response of each neuron,

we calculate the category index for each of them during the first

stimulus period (0–400ms from the first stimulus onset). First,

for each neuron, we calculate the absolute value of the firing

rate difference of every two stimuli from the A1-group, which

is denoted as FDA1. Similarly, we calculate the absolute value of

the firing rate difference of every two stimuli from the A2-group,

which is denoted by FDA2. Then, we calculate the mean firing

rate difference of stimuli within a category for each neuron,

which is denoted byWCD. The equations are as follows:

WCD =
FDA1 + FDA2

6
, (15)

FDA1 = |xA1 − xB1| + |xA1 − xC1| + |xB1 − xC1| , (16)

FDA2 = |xA2 − xB2| + |xA2 − xC2| + |xB2 − xC2| . (17)

Where || indicates the absolute value. xA1, xB1, and xC1

denote the firing rate of each neuron to stimuli in the A1-group

during the first stimulus period; xA2, xB2, and xC2 denote the

firing rate of each neuron to stimuli in the A2-group during the

first stimulus period. After that, we also calculate the absolute

value of the firing rate difference of each neuron between every

two stimuli across the two groups. Thus, the difference value

between two categories is denoted by BCD. The equations are

as follows:

BCD =
FD1 + FD2 + FD3

9
, (18)

FD1 = |xA1 − xA2| + |xA1 − xB2| + |xA1 − xC2| , (19)

FD2 = |xB1 − xA2| + |xB1 − xB2| + |xB1 − xC2| , (20)

FD3 = |xC1 − xA2| + |xC1 − xB2| + |xC1 − xC2| . (21)

Finally, we define the category index according toWCD and

BCD, which is denoted by CI, and it is given by:

CI =
BCD−WCD

BCD+WCD
. (22)

The range of CI is from−1 to 1. When the category index is

negative, the neuron shows larger response-differences to stimuli

within a category than to stimuli across the two categories.When

the category index is positive, the neuron shows larger response-

differences to stimuli across the two categories than to stimuli

within a category.

Bootstrap test is used to determine whether the category

index of each neuron is statistically significant from zero or

not. We shuffled its firing rates among the six stimuli (A1, B1,

C1, A2, B2, and C2) in the first stimulus period and calculated

the category index based on the shuffled data. This process

was repeated 500 times, generating a distribution of shuffled

category indexes. The original category index value was deemed
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significant if it fell within the top or bottom 2.5% of the shuffled

distribution (p< 0.05).

In addition, noting that some neurons show differential

activity to stimuli from a category, we define the stimulus index

for each neuron based on its firing rates to the three stimuli in

the same category during the first stimulus period (48), denoted

by SI, which is calculated as follows:

SI =
SIA1 + SIA2

2
, (23)

SIA1 =
x (A1)max − x (A1)min

x (A1)max + x (A1)min
, (24)

SIA2 =
x (A2)max − x (A2)min

x (A2)max + x (A2)min
. (25)

Where x (A1)max denotes the maximum firing rate of each

neuron to the three stimuli (A1, B1, and C1) in the A1-group

during the first stimulus period, and x (A1)min denotes the

minimum firing rate to the three stimuli. x (A2)max denotes

the maximum firing rate of each neuron to the three stimuli in

the A2-group during the first stimulus period, and x (A2)min

denotes the minimum firing rate to the three stimuli. The

SI reflects response-differences to stimuli within a category,

ignoring response-differences to stimuli across the categories.

The range of SI is from 0 to 1, SI = 0 indicates that the neuron

shows no differential activity to stimuli from a category, but it

may have differential activity to stimuli from different categories.

Results

Our model was performed using theano0.8.2 based on

Python2.7 software in Windows 10 system, and the model

was able to run successfully in learning the sequential paired-

association task.

Behavior performance of the network
model

The model was trained to learn the six stimulus-stimulus

associations in parallel. In each trial, one of the six associations

was inputted into the model. After 500 policy iterations, the

network model could achieve the correct rate (the ratio of

correct trials to all trials) of 98% in the two decision periods,

indicating that it learned the sequential paired-association task

(Figures 3A,B). It was worth noting that our network model

needed to make two choices in each trial. In the early learning

stage, the network model was trained to improve the correct

rate of the first choice, the correct rate of the second choice

was low. For example, the correct rate of the first choice and

second choice were about 1.8 and 0% at the 50th policy iteration,

respectively. When the network model increased gradually the

correct rate of the first choice, it started to increase the correct

rate of the second choice. At the 200th policy iteration, the

correct rate of the first choice was about 25.4% and the correct

rate of the second choice was about 12.6%. We found that

from the 200th policy iteration, the mean square error (MSE)

of reward prediction for the network model at the second choice

decreased gradually during the training process (Figure 3C). It

indicated that the predictive reward for the action estimated

by the value network was getting closer to the actual reward.

The result reflected that the network model could adjust the

policy and choose a correct action in time through the feedback

information provided by the error signal. The results suggested

that our model could learn that the sequential paired-association

task in different learning stages. Finally, this model was able

to get the maximum reward in each trial (Figure 3D). The

trained network model could reproduce the similar behavior

of the monkey in the sequential paired-association task (41). It

demonstrated that themodel was able to learn stimulus-stimulus

associative sequences.

Various activity-patterns of neurons

The output actions of this model demonstrated that it

was able to correctly choose a target stimulus on the basis

of the sample stimuli, indicating the model remembered

stimulus-stimulus relations. How did neurons encode stimulus

information and stimulus-stimulus relations to make a choice

in our model? To investigate this issue, we further analyzed

activity-patterns of neurons in the IIL of the policy network.

Interestingly, neurons could produce various types of activity-

patterns after our model learned the sequential paired-

association task. During the first stimulus period (from 0 to

400ms after the first stimulus onset), some neurons showed

different responses to stimuli in the A1-group and the A2-group.

For example, there are 19 neurons (19/150; 12.7%) produced

excitatory activity to stimuli in the A1-group, and less activity

to stimuli in the A2-group compared with the baseline activity

(−200 to 0ms from the first stimulus onset) (Figure 4A). Some

neurons produced excitatory activity to stimuli in the A2-group

and less activity to stimuli in the A1-group (Figure 4B), and the

number of this type of neurons is 27 (27/150; 18%). About 14%

(21/150) neurons produced excitatory activity to stimuli in the

both A1-group and A2-group compared to the baseline activity

(Figures 4C,E,F). In contrast, about 14.7% (22/150) neurons

produced inhibitory activity to stimuli in the both A1-group and

A2-group (Figure 4D). We also found that 16 neurons (16/150;

10.7%) showed no differential activity to stimuli in the both A1-

group and A2-group (Figure 4G). Finally, about one third of

neurons (45/150; 30%) kept silent during the whole trial (the

firing rate of neurons was zero) (Figure 4H).
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FIGURE 3

Behavior performance of the deep RL model. (A) Correct rate of the first decision period (the ratio of correct choice trials in the first decision

period to all trial) for each stimulus-stimulus associations. (B) Correct rate of the second decision period (the ratio of correct choice trials in both

decision periods to all trials) for each stimulus-stimulus associations. Here, the gray line denotes 98% of the target value. (C) The mean square

error (MSE) of reward prediction for the network model in the second decision period (see Equation 14). Mean square error between the actual

reward (based on the selected action in the policy network) and the predictive reward (estimated in the value network). (D) The reward obtained

by the network model per trial.

Stimulus-neurons and category-neurons

Neurons in the IIL showed various types of activity-patterns.

One important question is what kind of information these

neurons encode in the model. We found that some neurons

produced similar activity-patterns to the stimuli belonged

to the same group, and differential activity-patterns to the

stimuli belonged to different groups (see Figures 4A–D). The

activity-patterns of these neurons were similar to those of

PFC neurons observed in the sequential paired-association task

(41). Many studies have demonstrated that PFC neurons can

encode the category to which visual stimuli belong (49, 50). We

hypothesized that neurons in this model could encode category

information for each group of stimuli during stimulus-stimulus

association learning.

To demonstrate whether the neuron in our model was able

to represent categorical information, we calculated the category

index for each neuron in the first stimulus period. According

to the definition of category index (see Section Methods), we

calculated the category indexes of 105 neurons (excluding 45

no-response neurons shown in Figure 4H), and the range is

from −0.2 to 1 (Figure 5A). We noted that some neurons

had negative category indexes, indicating these neurons encode

less category information, whereas some neurons had positive

category indexes encoded more category information. In order

to determine whether the category index of individual neuron is

significantly different from zero, the bootstrap method was used

(see Section Methods). The results showed that 58 neurons in

this IIL had an insignificant category index (p > 0.05) and the

mean category index of these neurons was 0.243. We thought

that these neurons could not identify the category to which the

stimulus belongs, but encoded stimulus identity. These neurons

are referred to as stimulus-neurons. In addition, 47 neurons had

a significant category index (p < 0.05) and the mean category

index of these neurons was 0.731. These neurons primarily

encoded category information, denoted as category-neurons. It

suggested that there were individual neurons having the ability

to encode category information in our model.
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FIGURE 4

Various types of activity-patterns found in the IIL of the policy network after the model learned the task. Here, the black rectangle on the

horizontal axis denotes the first stimulus period (0–400ms from the first stimulus onset). During the first stimulus period, neurons show di�erent

(Continued)
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FIGURE 4 (Continued)

activity in response to stimulus A1, A2, B1, B2, C1, and C2. Neural activity is sorted by the six stimulus-stimulus associations. If the firing rate in

the first stimulus period increases compared to the baseline activity (a period of−200 ms-0 from the first stimulus onset), it indicates an

excitatory response. If the firing rate decreases, it indicates an inhibitory response. The averaged firing rate of one neuron indicates that its firing

rates are averaged across all trials. The same figure legends are used in (A–G). (A–D) show example activity of category-neurons (p < 0.05,

Bootstrap test), the category indexes of these neurons are 0.820, 0.872, 0.619, and 0.627, respectively. (E–G) show example activity of

stimulus-neurons (p > 0.05, Bootstrap test), the category indexes of these neurons are 0.393, −0.135, and 0.416, respectively. (H) An example

neuron showing no activity in the whole trial.

FIGURE 5

Classification of neurons and their population activity at two learning stages. (A) The distribution of category indexes. Here, blue bars indicate 58

neurons whose category indexes are not significant (p > 0.05, Bootstrap test), denoted as stimulus-neurons. And the range of category indexes

for these neurons is from −0.2 to 0.6. Red bars indicate 47 neurons whose category indexes are significant (p < 0.05, Bootstrap test), denoted as

category-neurons. And the range of category indexes for these neurons is from 0.5 to 1. (B,C) show population activity of stimulus-neurons (B)

and category-neurons (C) in the early stage of learning (at the 50th iteration), respectively. The activity of each neuron is sorted by its preferred

activity to the three paired stimuli (A1 vs. A2, B1 vs. B2, and C1 vs. C2) and then was averaged across neurons. (D,E) show population activity of

stimulus-neurons (D) and category-neurons (E) in the final stage of learning (at the 600th iteration). The averaged firing rates shown in (B,D) are

firing rates averaged across trials and across the stimulus-neurons. The averaged firing rates shown in (C,E) are firing rates averaged across trials

and across category-neurons.

Next, we created population histograms for stimulus- and

category-neurons at different learning stages, respectively. In

the sequential paired-association task, the stimulus-neurons and

the category-neurons produced different activity to stimuli. We

found that when this model was in the early learning stage (at

the 50th iteration) of the task, the neurons of both populations

could show activity differences between the preferred and non-

preferred stimuli during the first stimulus period and the

first delay period. However, from the second stimulus period,

these activity differences gradually disappeared for the both

types of neurons (Figures 5B,C). When this model was in the

final learning stage (at the 600th iteration) of the task, both

stimulus-neurons and category-neurons show stronger activity

to preferred stimuli than that to non-preferred stimuli in the

whole trial (Figures 5D,E). The results indicated that although

the information encoded by neurons would decay with time
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in the process of transmission, the neurons would gradually

enhance the storage capacity of information and form working

memory through learning.

In order to quantitatively measure activity-changes during

the learning process, we calculated the category index for

each stimulus- and category-neuron in each testing stage,

respectively. The mean category index of the stimulus-

neurons decreased gradually, and the mean category index

of the category-neurons increased gradually during the

learning process of the task (Figure 6A). It meant that

category-neurons enhanced the ability to encode category

information through learning; while stimulus-neurons did

not exhibit the characteristic of enhanced ability to encode

category information.

Second, we quantitatively characterize the ability of both

types of neurons to encode stimulus information during

the learning process. We computed the stimulus index for

each neuron to denote response-differences to within-category

stimuli (see Section Methods). The mean stimulus index of 58

stimulus-neurons increased gradually, and the mean stimulus

index of 47 category-neurons kept relatively stable during the

learning process of the task (Figure 6B). The result of the Mann-

Whitney U test showed that there was a significant difference

in the ability of two populations to discriminate within-category

stimuli in the final learning stage (p = 0.018). For stimulus-

neurons, although their ability for category coding decreased,

their ability for stimulus coding obviously increased.

It was obvious that the ability of these two types of neurons

to encode information was enhanced during the learning process

of this model, and their activity also changed in different task

periods. We further analyzed the characteristics of neurons

encoding information in different task periods. Interestingly, the

category-neurons show the strongest ability to encode category

information in the first stimulus period, and the ability decreased

after the first stimulus period. Even though, the mean category

index of category-neurons was higher than that of the stimulus-

neurons in each task period (Figure 6C). The stimulus-neurons

showed the strongest ability to encode stimulus information in

the first stimulus period, and this ability also decreased after

the first stimulus period. But in each task period, the mean

stimulus index of stimulus-neurons was higher than that of the

category-neurons (Figure 6D).

Although the stimulus-neurons and category-neurons may

play different roles in this model, we found that category-

neurons encoded not only category information but also

stimulus information (see Figure 5E, category-neurons could

discriminate the three preferred stimuli). One question is

whether the stimulus information found in the category-

neurons is directly influenced by external stimuli? It was

worth noting that in the policy network, sparse connections

were used between neurons in the input and IILs. And only

some neurons in the IIL directly received stimuli from the

input layer (these neurons are denoted as directly connected

neurons), while other neurons did not (those neurons that do

not receive direct projections from the input layer as indirectly

connected neurons). We analyzed the activity differences of the

two groups of directly and indirectly connected neurons. In

the first stimulus period, 54 (54/150; 36%) neurons in the IIL

were directly connected with neurons in the input layer. Within

them, 21 (21/54; 38.9%) neurons were identified as the category-

neurons. And their mean category index was 0.715 (Figure 7A).

In addition, 96 (96/150; 64%) neurons did not receive direct

connections from the input layer. Among these 96 neurons, 26

(26/96; 27.1%) of them were identified as the category-neurons.

And their mean category index was 0.745 (Figure 7B). The two

groups of category-neurons had similar distributions of category

indexes (see Figures 7A,B). Furthermore, we found that the

two groups of neurons showed different learning curves of the

category index (Figure 7C). The mean category index of directly

connected neurons increased quickly in the early learning stage

(at the 50th iteration) and changed slightly at later learning

stages (from the 300th iteration to the 600th iteration). The

mean category index of indirectly connected neurons increased

obviously at different learning stages (from the 50th iteration

to the 600th iteration). In the final learning stage (at the 600th

iteration), the two groups of neurons showed similar category

indexes (Mann-Whitney U test, p= 0.250).

We further calculated the stimulus indexes for the two

groups of directly connected neurons, and indirectly connected

neurons (Figure 7D). The mean stimulus index of directly

connected neurons was significantly higher than that of

indirectly connected neurons. The result of the Mann-Whitney

U test showed that external stimuli directly affected the

ability of category-neurons to discriminate between stimuli

(p= 0.002). It indicated that the ability of neurons to encode

category information during category learning was not directly

influenced by external stimuli; whereas the ability of neurons

to encode stimulus information was directly influenced by

external stimuli.

Weight analysis of neurons in the
network

It was found that the neurons in this model were capable

of stimulus coding and category coding. This model updated

weights during learning the sequential paired-association task.

In general, the synaptic plasticity of neurons is crucial in

constructing models (51, 52). This is because the information

is exchanged between neurons with the help of synaptic

connections, and the type of synapses (excitatory or inhibitory

synapses) and their values affect the activity of neurons (53). At

the computational level, excitatory synapses increase firing rates

of neurons, while inhibitory synapses diminish their firing rates.

So how does the interaction of excitatory and inhibitory synapses
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FIGURE 6

The category index and the stimulus index of category-neurons and stimulus-neurons. (A) The time course of the category index for

category-neurons (the red curve) and stimulus-neurons (the blue curve) during the network model learning the task. (B) The time course of the

stimulus index for category-neurons (the red curve) and stimulus-neurons (the blue curve) during the network learning the task. (C) The

category indexes for category-neurons (the red curve) and stimulus-neurons (the blue curve) in five di�erent task periods after the model

learned the task. (D) The stimulus indexes for category-neurons (the red curve) and stimulus-neurons (the blue curve) in five di�erent task

periods. The number “1,” “2,” “3,” “4,” and “5” in the horizontal coordinates indicate the first stimulus period, the first delay period, the second

stimulus period, the second delay period, and the third stimulus period, respectively.

affect the learning process of neurons? Therefore, we discussed

the connection weights of neurons.

In the policy network of this model, the neurons in the

input layer were sparsely connected to the neurons in the IIL

with the probability of 0.2. Most neurons in the IIL could

not directly receive the stimuli from the external environment.

Here, among neurons in the IIL were sparsely connected with

the probability of 0.1, and the neurons indirectly learned the

stimuli from the external environment through information

transmission. When this model was trained, we recorded the

connection weights of neurons in the IIL, where positive values

were excitatory weights and negative values were inhibitory

weights. The connection weights of these neurons were Gaussian

distribution (Figure 8A), and a balance mechanism was formed

between excitatory weights and inhibitory weights.

Next, we asked a question whether the weight change

between two connected neurons was correlated to the similarity

of their activity-patterns. We would expect that neurons

having more similar activity-patterns had stronger connection

weights to form connection structures in the IIL during the

learning process. To understand this problem, we selected

every pair of connected neurons, and calculated the Pearson

correlation coefficient of their activity-patterns in the first

stimulus period. In addition, we also calculated the weight

change (the difference between the weight at the end of

training and the initial weight). Figure 8B shows scatter plots

of the Pearson correlation coefficient and the weight change

for all pairs of neurons. There is no correlation between

them. Specifically, we used the same method to calculate

the Pearson correlation coefficient and the weight change for

the stimulus-neurons (Figure 8C) or for the category-neurons

only (Figure 8D). Even within the same type of neurons,

the similarity of their activity-patterns is not correlated with

their weight changes. Although category-neurons were able to

identify the category to which the stimuli belong, their activity-

patterns were not directly influenced by the weights. As we

know, the structure of recurrent neural networks is extremely

complex. The neurons are not only involved in updating
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FIGURE 7

Category index and stimulus index for two types of category-neurons: directly connected neurons and indirectly connected neurons. (A) The

distribution of category indexes of 21 category-neurons, which have direct connections from the input layer. The range of category index for

these neurons is from 0.5 to 0.9. (B) The distribution of category indexes of 26 category-neurons, which have no direct connections from the

input layer. The range of category index for these neurons is from 0.5 to 1. (C) The time course of category index for the directly connected

neurons (the aquamarine curve) and the indirectly connected neurons (the salmon curve), respectively. (D) The time course of the stimulus

index for the directly connected neurons (the aquamarine curve) and the indirectly connected neurons (the salmon curve), respectively.

weights during the learning process but also influenced by other

factors, such as the decay of information and the importance

of information, which meant that neurons produce similar

activity performance as the result of the synergistic effect of

multiple variables.

Neural activity related to action selection

Till now, we focused on analyzing neuronal activity in

the first stimulus period, and found that majority of neurons

encoded stimulus and category information. During the first
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FIGURE 8

Distributions of weights in the policy network and the correlation analysis between activity-patterns and weight changes. (A) Frequency

distribution histogram about the connection weights of neurons in the IIL of the policy network. The dark red bars denote excitatory weights,

which are positive, and the dark blue bars denote inhibitory weights, which are negative. Left panel: weights of among neurons in the recurrent

network; middle panel: weights of the update gates; right panel: weights of the reset gates. (B–D) show correlation analysis between the

activity-pattern similarity of each pair of neurons (Pearson correlation coe�cient) and their weight change. (B) All pairs of neurons that have

connection in the IIL. (C) Pairs of connected neurons are selected only from stimulus-neurons. (D) Pairs of connected neurons are selected only

from category-neurons.

stimulus period, the model had not to make a choice of action

(left or right), there was no choice-related activity in this period.

In the first decision period after the second stimuli offset, the

model had to make a left or right choice. How was the choice-

related information encoded in the IIL? In order to investigate

this issue, we aligned neural activity at the first stimuli onset

and sorted the activity into stimulus-position conditions (12

stimulus-position conditions, see Figure 9). We mainly found

three types of activity-patterns in the first decision period

(Figure 9). The first type of neurons showed no differential

activity in response to the left position and right position in the

first decision period, but showed differential activity to stimuli
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FIGURE 9

The activity of neurons related to action choices. Here, the two gray lines indicate the second stimulus period, after the second stimulus period,

the network model chooses an action (left or right) during the first decision period. The activity of each neuron is aligned on the first stimulus

onset, and is sorted with stimulus-position conditions. The same figure legends are used in (A–C). (A) An example neuron shows only

stimulus-related activity in the first stimulus and delay periods, no di�erential activity to actions (or positions). (B) An example of neuron shows

not only category-related activity in the first stimulus and delay periods, but also activity related stimulus-action combinations after the second

stimuli o�set. (C) An example of neurons shows only stimulus-action related activity after the second stimuli o�set, no stimulus-related activity

either in the first stimulus period or in the delay period. The averaged firing rate of one neuron indicates its firing rates that are averaged across

all trials.

in the first stimulus and delay periods (Figure 9A). This type

of neurons may encode only stimulus-related information, no

action-related activity. There were 21 neurons (21/150; 14%)

that were classified into this type of neurons in the IIL. The

second type of neurons could simultaneously encode stimulus-

related information in the first stimulus and delay periods

and stimulus-action combined information in the first decision

period (Figure 9B). This type of neurons encoded information

from pure stimulus-related information to stimulus-action

information at different task periods. The number of this type

of neurons was 75 (75/150; 50%) in the IIL. These neurons

may contribute to transfer stimulus information into action

information. The third type of neurons showed stimulus-

action combined information only, no difference in response

to the stimulus (Figure 9C). This neuron mainly discriminated

between left-right actions. There were only 7 neurons found

in the IIL. This type of neurons mainly contributed to action

selection in the model. In addition, one third of neurons

(47/150; 30.9%) showed no response during the whole trial

(see Figure 4H; the firing rate of neurons was zero). The IIL

neurons were able to encode stimulus information and position

information, which were passed to neurons in the action output

layer. The connection weights between neurons in the IIL

and action output layer were dynamically adjusted during the

training of this model. Finally, our model could learn the task.

Discussion

In this study, we demonstrated that the recurrent neural

network using RL could learn the six stimulus-stimulus

associative sequences. Through the trial-and-error method, the
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model first learned correct actions in the first choice and then

in the second choice, a similar learning method was observed

for the monkey in the same task. Various types of neural activity

were found in the IIL in the first stimulus period. Some neurons

encoded information of individual stimulus, and some neurons

encoded category information of a group of stimuli that were

associated together. These types of activity were also reported in

the primate PFC in the sequential paired-association task (41).

Actually, the stimulus-stimulus association task did not require

the monkey and the model to form a categorical representation.

However, some neurons in the PFC and in the IIL of the model

did encode category information for associated stimuli. The

categorical representation might help the monkey or the model

accelerating the learning process. For example, the categorical

representation of an associated stimuli enables them to easily

select the target stimulus from a same category of the sample

stimuli, without the requirement to memorize the specific target

stimulus that is associated with the sample. Some neurons in the

IIL also showed heterogenetic activity in different task periods

(see Figure 9B). This type of heterogenetic activity-pattern was

often observed in the PFC in different cognitive tasks (54). We

found that almost half of model-neurons encoded stimulus (or

category) information in the first stimulus and delay periods

and encoded stimulus-position combined information in the

decision periods. A few neurons encoded only stimulus-position

combined information after the second stimuli offset. We did

not find neurons that encoded pure position information (left or

right action). The model learned stimulus information and then

transferred it into stimulus-position combined information, and

neurons in the action output layer integrated stimulus-position

combined information to generate a correct action.

Many studies, including behavioral, neurophysiological,

and fMRI experiments, suggest that the brain system learns

categorical representations with a two-stage model of category

learning (10, 20, 55). In the first stage, the sensory systems

identify and represent stimulus information based on its

physical properties (56). In the second stage, the associative

brain areas encode meanings of a group of stimuli to form

categorical representations. In our model, two types of neurons

were found: stimulus-neurons and category-neurons. These

neurons encode different aspects of task information, implying

the model may learn category information with two different

representations. Category-neurons encoded not only category

information but also some stimulus information (see Figure 5E).

Although those indirectly and directly connected neurons had

the same level of category-indexes in the final learning stage,

the former learned category information was slower than the

latter (see Figure 7C). And the indirectly connected neurons

also had significantly smaller stimulus-indexes than the directly

connected neurons. These results indicate that inputs from the

input layer may affect neurons in the IIL to learn category

information. Further weight analysis suggested that stimulus-

neurons or category-neurons did not form cluster or hierarchical

structures in the IIL. The similarity of activity-patterns of a

pair of neurons did not correlate to their weight changes (see

Figure 8). In the current model, synaptic connections from the

input layer to the IIL and within the IIL were sparse and random.

A pre-determined connection structure in the IIL may help

the model to learn representing stimulus information, category

information and action information in a hierarchical manner.

The recurrent neural networks with the RL algorithm have

been widely used to simulate behavior and neural activity of

animals in cognitive tasks (57, 58). In this framework, our model

is trained with the RL in a way similar to that the animals

learn the cognitive task with trial and error. Model-neurons

in the recurrent network appear complex and heterogenetic

activity-patterns (see Figure 4). The RL algorithm plays a critical

role in our model. Notably, the RL algorithm has a rich

historical research background in machine learning (59–61).

It has been reported that some brain areas, such as the PFC,

the basal ganglia, and the dopamine system, implement RL

to interact with the environment. Biologically, the PFC is

critical in implementing strategies (62), and its neurons encode

information about actions by adjusting strategies (63, 64). In

addition, the PFC and the basal ganglia are interconnected to

form a recurrent structure (65, 66). Specifically, the PFC and

the striatum are closely linked (67). The dopamine is released

from VTA (68) and SNc to the striatum and then acts on the

PFC, and the information conveyed by dopamine is taken as the

prediction error of the reward (69, 70), then the PFC adjusts

the strategy based on the error signal from the striatum. Thus,

the PFC is regarded as the policy network and the striatum is

regarded as the value network (71).

It has been found that the brain areas, including the visual

cortex, PFC, parietal cortex, premotor cortex, and basal ganglia

are involved in the process of category learning (12, 21), in

which the PFC neurons are more capable of encoding category

information (72). Interestingly, in this model, we found that

some model-neurons could encode category information for

a group of stimuli that are associated each other in one

chain, consistent with the finding that some PFC neurons

encoded category information of those associated stimuli in the

sequential paired-association task (10). While we don’t know

how exactly the PFC or the neuronal system to learn and form

categorical representations for associated stimuli in the task, one

possible way suggested by our current model is that the PFC

and its related brain areas may implement deep RL to encode

category information during learning the task.

It is well known that PFC neurons encode not only stimulus

and category information but also reward information. For

example, in the sequential paired-association task with an

asymmetric reward schedule (47), PFC neurons showed strong

responses to the stimulus that was associated with a large

reward; when the reward amount was reversed for the same

stimulus (large reward became small reward), these neurons

responded slightly to the stimulus. This result demonstrated
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that the neural activity was affected by the amount of reward.

We tried to make this model to learn the sequential paired-

association task with an asymmetric reward schedule, but

the activity-pattern of neurons was not influenced by the

reward reversal. The possible reason is that we did not

take into account the reward amount as a model parameter

in this model. The reward amount is just considered as

an error signal to modify connection weights in the policy

network. Therefore, neurons in the IIL do not encode reward

or stimulus-reward information. Remarkably, environmental

stimuli as input information affect the neural activity in the

model. If model-neurons receive different reward amounts

as input information, their activity may reflect reward and

stimulus-reward combined information, and this model might

be able to complete the sequential paired-association task

with an asymmetric reward schedule. This issue should be

further investigated.

The simulated results in this study also demonstrate that

the network model is able to encode categorical information

efficiently. Hinaut and Dominey reported that some neurons

in a three-layer recurrent neural network with randomly-

initiated weights could encode the categorical structure of

a set of behavioral sequences without the requirement to

modify the weights (31). But the three-layer recurrent neural

network did not encode category information efficiently, the

percentage of such categorical neurons was very low (0.4%

of total neurons) (31). Our model shows efficient ability to

encode category information, almost one-third (47/150) of

neurons have category-selectivity. However, there are still some

limitations in the current model. For example, although it was

found that neurons need the capacity of working memory to

learn the sequential paired-association task, there was lack

of detailed description of the working mechanism by which

neurons store memory information. It is known that the brain

has extremely complex neuronal circuits that are involved in

category learning. Our model is a single-layer recurrent neural

network, which has a relatively simple network structure.

In the future, combination the long-short-term memory

network (73, 74) with the asynchronous actor-critic algorithm

(75, 76) should be included to construct models with multilayer

recurrent structures to simulate functions of category-related

neuronal circuits.

In summary, we use the framework of deep reinforcement

learning (the recurrent network + reinforcement learning)

to build the novel network model that is trained to learn

the sequential paired-association task. This task requires the

network model to make two sequential choices to learn

stimulus-stimulus associations in one trial. Our new findings

in this study are that the network model can perform the

task correctly after being trained with the trial-and-error

method, indicating that the model has the ability to learn

the complex structure of the task, not just to learn simple

stimulus-action or stimulus-reward associations as reported in

previous studies (38, 42). More importantly, we found stimulus-

neurons and category-neurons in the IIL of the policy network.

These two types of neurons represent different aspects of task

parameters, and their ability to encode category and stimulus

information was strengthened during the learning process.

The model neurons in the IIL show heterogenetic activity to

encode information of the stimulus, category, action and their

combinations. These responsive properties of neurons in the

IIL are similar to activity-patterns observed in the primate

PFC in the same task (41, 47), indicating the IIL could mimic

functions of the PFC in the categorization tasks. The simulation

results indicate that the recurrent neural network could learn

the categorical representation for a group of stimuli in the

matching-to-sample task (stimulus-stimulus associations) using

the RL algorithm, without additional requirements such as

the network structure, prior knowledge or specific categorical

rules. Our results might provide a new way for understanding

neuronal mechanisms underlying how the brain system learns

category information.
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Computational thinking refers to the cognitive processes underpinning

the application of computer science concepts and methodologies to the

methodical approach and creation of a solution to a problem. The study aims

to determine how students’ cognitive, affective, and conative dispositions in

using computational thinking are influenced by a gender. This study used a

survey research design with quantitative approach. Five hundred thirty-five

secondary school students were sampled using probability sampling with

the Computational Thinking Disposition Instrument (CTDI). WINSTEPS version

3.71.0 software was subsequently employed to assess the Gender Differential

item functioning (GDIF) including reliability and validity with descriptive

statistics were employed to assess students’ disposition toward practicing

computational thinking. In addition to providing implications for the theory,

the data give verifiable research that the CT disposition profile consists of

three constructs. In addition, the demonstrated CTDI has good GDIF features,

which may be employed to evaluate the efficacy of the application of CT in the

Malaysian curriculum by measuring the level of CT in terms of the disposition

profile of students.

KEYWORDS

computational thinking, disposition, Rasch model, gender differential item
functioning, secondary school, student

Introduction

Computational thinking (CT) is a vital skill in any field. A number of researchers
have proposed that CT serves as a stepping stone to more complex computational
endeavors like programming (1). In particular, CT aid elementary school kids in
conceptualizing computational reasoning. This is an ability that develops via repeated
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use (1). The educators viewed technology as a means to
broaden their pupils’ horizons and give them more agency
in their own learning (2). Recent discussions have centered
on the importance of introducing computer science to
students in lower grades (3–6). The enthusiasm for CT in
the classroom is understandable, but there are still many
challenges that must be overcome. As a result, there is a
growing expectation that teachers will be able to illustrate
computational thinking by applying it to real-world scenarios
that use computer technology.

Thus, an item is the fundamental unit of an instrument. The
creation of items must be consistent and fair for all participants.
DIF refers to a measurement instrument with multiple
functions. It is being administered to a group of respondents
with diverse demographic backgrounds but comparable
abilities. Hambleton and Jones (7) suggest that a DIF-detected
item’s functions in various subgroups are dissimilar.

Consequently, the DIF analysis procedure identifies items
that do not mirror similar functions when applied to a group
of capabilities with parallel capabilities. Osterlind (8) states
that item analysis entails observing items critically to reduce
measurement error. Consequently, DIF analysis determines
item validity (9). DIF endorsement in instrument construction
is indicative of an instrument with high reliability. Siti Rahayah
Ariffin (10), stated that DIF impacts the dependability of
instruments. For composite measures to be unidimensional and
the variable to be linear, the item scale values must be consistent
across individuals and groups. Three DIF endorsement methods
are Mantel-Haenszel (11, 12), Item Response Theory (13), and
Rasch Models (14).

We are currently working on the next iteration of CT
disposition instruments. Empirical evidence is essential for the
creation of new statistical tools. As a result, the gender gap is
one of the topics that has gained a lot of attention in academia,
especially in the field of computer science education. Since many
of the same ideas are used in both CT and computer science, a
number of recent studies have looked into the disparity between
the sexes in terms of CT proficiency.

From a neurological point of view, boys are a few
weeks behind girls and remain behind girls until late
adolescence (15). This developmental difference impacts their
early school learning experiences and has impact throughout
their education. Boys’ fine motor skills develop slower than
girls and they may have difficulty with handwriting tasks (16).
Their language and fine motor skills fully mature about six
years later than girls (17). However, the areas involved in
targeting and spatial memory mature some four years earlier
in boys than they do in girls (17). Although those differences
are significant, it is important to examine how that information
relates to developmental gender differences especially in CT.
Recent studies in Cognitive Neurodynamics field also discussed
several variables that cater interest such as decision-making (18),
and brain activity patterns and mental (19). Other than that, the

gender differences also reported in spirituality well-being (20)
and mental fatigue (21). All these factors open the door to relate
the Cognitive Neurodynamics with CT for developing better
students in local context.

Thus, the very design of the brain and the resulting
disparities in sensory perception and physical skills differ
considerably between the sexes. Understanding those variances
will assist instructors in providing a good and encouraging
environment for their pupils, as well as promoting CT through
teaching and learning.

Literature review

Computational thinking

In today’s digital age, CT must be grasped quickly. CT is a
kind of thinking that aligns with many 21st century abilities,
such as problem-solving, creativity, and critical thinking (22).
It derives from computer science and involves problem-solving,
system design, and understanding people’s behavior (5). CT
refers to the cognitive process of problem solving (23) as a set
of 21st century skills (24, 25) or the thought process involved
in formulating problems and expressing solutions (26) and
a set of problem-solving skills based on Computer Science
(27). This encouraged researchers to perform more in-depth
research on learning experiences and computational thinking
methods (28). Researchers couldn’t predict all difficulties before
implementation (29).

CT is used from early childhood to university (30–32).
The use of CT in formal education has taken numerous
forms, including integration in computer science courses and
embedding in math, science, and art (33, 34). (35) CT has
also reached classrooms through robotics (36) and unplugged
activities, such as board games or storybooks (37–39). While
much has been said about demystifying CT pedagogy, research
on evaluating CT skills and attitudes continues. To investigate
systematic issues, it is indeed necessary to improve the attitude
towards CT (40).

A review of the past five years (2016-2020) reveals that
little research has been conducted on student CT disposition
(41, 42). Correspondingly, attitudes affect CT as much as
skills (5). CT’s complexity inspires others to investigate further,
implying a deeper understanding of CT as a disposition (43,
44). In the digital age, self-directed problem-solving instruction
may no longer be adequate. This problem-solving method
does not account for the willingness to incorporate these
abilities. Thus, researchers propose that CT dispositions are
crucial motivators for identifying complex real-world issues
and developing effective solutions (45, 46). According to the
National Research Council (NRC), specific thinking skills are
associated with an innate desire to think and are constituents of
specific thinking dispositions (47). Thus, good thinkers possess
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the ability to think and the disposition to think (48). It appears
that a validated evaluation of CT dispositions is lacking.

Notwithstanding, there is a persistent desire in all fields
to distinguish between various conceptualizations of CT
measurement. Psychometric scales are one of the most often
employed instruments for evaluating computational thinking
(49–53). However, psychometric instruments are predicated
on the notion that an individual provides accurate and
comprehensive information (54). On the other hand, a western
instrument might not be suitable for Malaysia, given the
distinct cultural and geographic environments. As a result, an
instrument that has already been verified might not be reliable
in a different period, culture, or setting (55–57). Additionally,
it can be difficult to compare data from various cultures and
groups when studying attitudes (58).

Furthermore, it is a well-known fact that the issue of
gender inequality in CT is coming up more frequently. Every
student exhibits a different level of CT proficiency depending
on their location, gender, and academic standing, as is well
known (59). The CT of males and females is essentially the
same. Although earlier studies (60–62) found no differences
in CT skills between male and female students aged 15 to 18,
gender inequalities still exist (6, 60). CT skillset is frequently
correlated with mathematical reasoning, favoring male students
(59). Researchers explained the contradictory results, suggesting
that the task content might be to blame for the differences.
For some tasks, boys or girls may find them more interesting
(63). This implies that earlier research on gender issues has
produced conflicting findings, demonstrating the need for
additional study.

In Cognitive Neurodynamics aspect of human development,
one of the important aspects for behavioral, cognitive, and
neural sciences is related to decision-making (18). The
complexity of real-life decision-making has the potential to be
linked to one’s person CT abilities. When a person is able to
master CT well, then there is a possibility that their decision-
making abilities also increase. CT may relate to brain activity
patterns and mental. This point of discussion supports the
findings of previous studies that there is a systematic link
between brain activity patterns and spontaneously generated
internal mental states (19).

In the context of this study, a person’s gender in CT also
encourages in effecting spirituality well-being. (20) in his study
found the existence of a gender effect on spirituality and showed
that alpha and theta brain signals increased in male students at
the 30–35 age range; while this increase was slower at the 20-
29 age range. External factors such as decision-making, brain
activity patterns, internal mental, and spirituality also can be
linked to a person’s gender in CT differences. In addition, a
study by Sadeghian et al. (21) also discusses mental fatigue
based on gender. Their findings strengthen previous studies by
showing the existence of a significant difference between the
two groups of men and women for brain indicators with the

alpha-1 index in men was higher than women and the average
alpha-2 index in women was higher (both alpha indexes were
to measure mental fatigue). This means that this difference in
mental fatigue also has the potential to be linked to a person’s
CT ability according to gender.

However, most CT measurement methods focus on thinking
skills rather than dispositions. The architecture of the CT
disposition measurement model suggested in this paper is built
on cognitive, affective, and conative. In this perspective, the
study’s importance can be viewed differently. It’s important
for developing a measurement tool’s item pool and similar
questions. It also helps create content for the most common
components in modern literature. In many studies, limited
tools such as perception-attitude scales, multiple choice tests, or
just coding have been used to measure computational thinking
(49, 51, 52, 64–66). This study established the Computational
Thinking Disposition Instrument (CTDI) by considering several
aspects of computational thinking.

Computational thinking disposition

The development of CT dispositions necessitates long-term
involvement in computational techniques focused on the CT
process (67). CT’s psychological makeup remains a mystery
to this day (52). When it comes to the internal impulse to
act toward CT or respond in habitual but adaptive ways to
people, events, or circumstances, the disposition is the term
that describes it (68). While CT is most often regarded as a
problem-solving process that emphasizes one’s cognitive process
and thinking skills (69, 70), more attention should be paid to
the dispositions that students develop in CT education. CT
dispositions refer to people’s psychological status or attitudes
when they are engaged in CT development (71). CT dispositions
have recently been referred to as “confidence in dealing with
complexity, a persistent working with difficulties, an ability
to handle open-ended problems” (33, 72). Social psychologists
describe dispositional traits as having an “attitudinal tendency”
(73–75). Thoughtful dispositions, on the other hand, are often
described in the context of critical thinking as a “mental frame
or habit” (76). Furthermore, theorists argue that thinking is a
collection of dispositions rather than knowledge or skill and that
this is the case (77, 78).

Three psychological components comprise disposition:
cognitive, affective, and conative. These three components
of the mind are traditionally identified and studied by
psychology (79–81). Information is encoded, perceived, stored,
processed, and retrieved during cognition. A dispositional
cognitive function is an individual’s propensity to engage in
cognitive mental activities such as perception, recognition,
conception, judgment, and others. Affection is the emotional
interpretation of sensations, data, or knowledge. People, things,
and concepts are frequently associated with one’s positive
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or negative relationships, and the question “How do I feel
about this information or knowledge?” Self-actualization/self-
satisfaction determines whether or not students feel successful
after practicing CT in problem-solving exercises.

In contrast, conation refers to the relationship between
knowledge, emotion, and behavior, which is ideally positive
(rather than reactive or habitual) behavior (82, 83). Conative
mental functions are “that aspect of mental activity that tends
to develop into something else, such as the desire to act or a
deliberate effort.” Determination to an endeavor is a conative
mental capacity. In this investigation, these attitudes and
dispositions serve as theoretical entities. Different contexts and
requirements necessitate distinct mental dispositions, according
to the study’s findings.

Due to the paucity of research and development on
this topic, this study will make a substantial contribution
to the body of knowledge as a result of its focus on
computational thinking. Additionally, the tool gave an alternate
perspective for evaluating students’ success in the CT course.
In response, we aim to take a psychometric approach to these
challenges. On the other hand, the creation and development
of our Computational Thinking Disposition Instrument is
described, along with its descriptive statistics and dependability
based on its administration to more than 500 Malaysian
students. Consequently, the purpose of this work is to provide
a novel instrument for assessing CT and to demonstrate
the relationships between CT and other well-established
psychological dimensions.

Research question

The purpose of this paper is to answer the following research
question, which focuses on gender variations in attitudes
concerning CT. Following the discussion on computational
thinking disposition, a research question guides this paper:

1. To identify the existence of GDIF items in the
Computational Thinking Disposition Instrument.

Methodology

Sample

The study employed a quantitative cross-sectional survey
to collect and numerically analyze data to better comprehend
the events under investigation (84). A self-administered online
survey was used to collect the data, saving money, time, and
effort. So, the data are almost ready for statistical analysis (85).
The questionnaire survey was utilized since it is acceptable
for a high sample size with a broad geographical coverage
(86). This method also required respondents to check all
boxes before submitting their responses, thereby minimizing

TABLE 1 Demographic profile.

Demographic factor Frequency Percentage (%) Total

Gender

Male 247 46 535

Female 288 54

data gaps. This study was conducted with the participation
of 535 secondary school students with a background in
computer science. Using probability sampling, samples were
generated. Probability sampling employs a method of random
selection that permits the estimation of sampling error, hence
decreasing selection bias. Using a random sample, it is
possible to describe quantitatively the relationship between
the sample and the underlying population, giving the range
of values, called confidence intervals, in which the true
population parameter is likely to lie (87). Respondents were
required to have a background in computer science, be
willing to fill out questionnaires, and engage in online
activities. The research was performed in October of 2020.
Regarding ethical considerations, the student’s permission to
participate in this study was obtained prior to completing
the questionnaire. Participation was voluntary and strictly
anonymous. Table 1 displays the demographic profile of the
respondents.

Instrumentation

A Computational Thinking Disposition Instrument (CTDI)
measures students’ disposition in computational thinking. As
was previously noted, three components were used to design
the CTDI questionnaire. Sovey et al. (88) used factor analysis
to demonstrate the items and validity constructions for the
three constructs. EFA was the starting point of the investigation,
then Rasch. The CTDI includes three demographic questions
(gender, location, and prior knowledge) and 55 items in three
dimensions that measure computational thinking disposition
such as Cognitive (19 items), affective (17 items), and
conative (19 items). All items had a 4-point Likert scale from
strongly disagree (1) to strongly agree (4). Hence, there are
recommendations that odd-numbered response scales should
be avoided (89, 90). Dolnicar et al. (91) have explained that
odd five-point Likert scales affect response styles that are biased,
lack stability and take a long time to complete. The middle
point scale category encourages a disproportionate number of
responses (because the tendency to choose the middle scale is
high). In the context of the study, the firmness of the respondent
is considered an important basis in answering the items.
Therefore, Sumintono and Widhiarso (92) have suggested not to
provide a midpoint option. This argument is also supported by
Wang et al. (93) who recommend that the midpoint scale not be
used to obtain the views of Asian respondents. The scale is more
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appropriate compared to the conventional scoring method for
the use of the Rasch model in this study. Ten pupils in total were
then chosen for face validation. They were tasked with locating
and cataloguing any unclear word or terminology. Additionally,
they were permitted to share their thoughts on how to improve
the questionnaires’ quality in terms of font size and design so
that the research sample could understand them more quickly.
These 10 pupils were left out of the main study.

On the other hand, Rasch measurement model software
WINSTEPS 3.73 was used to determine the instrument’s validity
and reliability. Rasch analysis (94) uses assumptions and a
functional form to determine if a single latent trait drives
questionnaire item responses. The Rasch model shows the
assumed probability of participants’ scale response patterns,
which are added and tested against a probabilistic model (94,
95). The Rasch rating scale analysis model is used when a set
of items share a fixed response rating scale format (e.g., Likert
scale) and thresholds do not vary. Through its calibration of
item difficulties and person abilities, the WINSTEPS software
transformed raw ordinal data (Likert-type data), based on the
frequency of response which appeared as probability, to logit
(log odd unit) via the logarithm function, which assesses the
overall fit of the instrument as well as person fit (96, 97). Rasch
models are used in this study to determine gender. Bond and
Fox (98, 99) propose three DIF indicators for groups that have
been studied: (1) t value ± 2.0 (−2.0 ≤ t ≤ 2.0), (2) DIF
Contrast ± 0.5 (−0.5 ≤ DIF Contrast ≤ 0.5), and (3) p < 0.05.

Person reliability and item reliability

According to Table 2, the “real” Person Reliability index
(above 0.8) demonstrates that the consistency of individual
responses was satisfactory (97). This indicates that the scale
discriminates between individuals very well. This indicates that
the likelihood of individuals responding to items was likely
high. The same interpretation logic applies to Item Reliability
measurements exceeding 0.90, which are also categorized as
“very good” (100). High estimates of item reliability also indicate
that the items define the latent variable very well (97). The CTDI
may be considered a reliable instrument for various respondent
groups.

Cronbach Alpha

The Cronbach Alpha coefficient value, as calculated by
the Rasch Model, described the interaction between the 535
participants and the 55 items. According to Sumintono and
Widhiarso’s instrument quality criteria, a reliability score of
more than 0.90 (Table 3) is considered “very good” (2014). This
result indicates a high degree of interaction between the people
and the items. An instrument is highly reliable if it has good
psychometric internal consistency.

Person and item separation index

The person Separation index measures how well the CTDI
can distinguish between ’Person abilities.’ Item Separation index
shows easy and difficult items’ commonness (101). Wider is
better. Bond and Fox (97) report that the item separation
index is between 5.0 and 8.0, exceeding 2.0. Statistically, CTDI
items could be divided into 5 to 8 endorsement levels. For
respondents, a separation index above 2.0 is acceptable (102).
Table 3 shows each construct’s internal reliability. These criteria
endorse the CTDI as a reliable instrument for assessing students’
computational thinking disposition.

Results

Students’ disposition towards
computational thinking

Firstly, students’ disposition towards computational
thinking was analyzed. According to Table 4, among the three
dimensions of disposition for computational thinking, students
rated highest on affective, with a mean score of M = 2.76,
SD = 2.08. However, lowest on the cognitive aspect, with a mean
score of M = 2.48 and SD = 1.80. The results are summarized in
Table 5.

Differences between students’
demographic factors and
computational thinking disposition

GDIF analysis is performed to determine biased items in
the CTDI instrument. Table 3 shows the summary of GDIF
items in each construct of CTDI. With the critical t-value set at
2.0 and the confidence level at 95%, nine items were identified
as significant for GDIF, extending the analysis to identify the
extreme level of GDIF that could exist in the items. Using the
Rasch Model, we can predict which items are likely to exhibit
biases and eliminate the most significant DIF-exhibiting items
to improve test fairness. The negative t-value and GDIF size
indicate that male students answered the questions more easily
than female students. Four (44.4%) of the nine items indicating
the existence of GDIF were easier for males, while five (55.6%)
were easier for females. There is a sizeable proportion of items
that appeal to both genders. The disparities between the sexes
are minimal, and the business’s direction is nonsystematic across
all constructs. When the bias direction is not systematic, the
moderately biased items are not problematic. The study revealed
that item bias does not diminish the overall measurement
accuracy and predictive validity of a test (103). As there is no
benefit to removing these items, there should be a relatively high
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TABLE 2 Reliability index and separation index.

Respondent Item Cronbach Alpha

Reliability index Separation index Reliability index Separation index

Cognitive 0.88 2.67 0.97 5.65 0.92

Affective 0.87 2.57 0.98 6.86 0.93

Conative 0.88 2.77 0.99 8.70 0.94

proportion of items in both ability groups that exhibit moderate
DIF and have a low tendency to affect the instrument’s quality.

Table 4 shows the results of GDIF analysis on cognitive
items. Analysis revealed that only one of 19 items showed
significant GDIF, K52. Item K52 (“I know the importance of
citing reference sources for assignments undertaken”) is easier
to agree with by female students than male students. This item
with a significant GDIF of 0.38 logits has a t-value of more than
2 (t ≥ 2.0). Figure 1 shows the DIF plot using the DIF measure
on the analysis of cognitive construct by gender where 1 indicate
male students and 2 refers female students.

Table 6 shows the results of GDIF analysis on affective items.
Analysis revealed that only one of 17 items showed significant
GDIF, A1. Item A1 (“I do have a curiosity to explore new
knowledge”) is easier to agree with by female students than male
students. This item with a significant GDIF of 0.42 logits has a
t-value of more than 2 (t ≥ 2.0). Figure 2 shows the DIF plot
analysis of affective construct by gender (1 Male; 2 Female).

Table 7 shows the results of GDIF analysis on conative items.
Analysis revealed that seven of 19 items showed significant
GDIF, which are C3, C17, C22, C28, C31, C39, and C40. These
items with significant GDIF ranging from 0.45 to 0.54 logits
have a t-value of more than 2 (t ≥ 2.0). Figure 3 shows the
DIF plot DIF measure analysis of conative construct by gender.
Item C3 (“I am willing to tolerate current group members during
problem solving”) is easier to agree with by female students
than male students. Similarly, Item C17 (“I try to find the
cause when a solution doesn’t work”) is easier to agree with
by female students compared to male students. Additionally,
Item C22 (“I diligently deal with a problem even beyond the
allotted time”) is easier to agree with by female students than
male students. Conversely, Item C28 (“I am willing to take risks
to solve a problem”) is easier to agree with my male students
than with female students. In addition, Item C31 (“I can adapt

TABLE 3 Analysis of GDIF items.

Construct Number
of items

Items exhibit
GDIF

contrast

Direction of GDIF

Male Female

Cognitive 19 1 - 1

Affective 17 1 - 1

Conative 19 7 4 3

to the uncertainty of solving a problem”) is easier to agree
with male students than female students. Item C39 (“I have
the courage to accept challenges to solve complex problems”)
is easier to agree with male students than female students.
Item C40 (“I am confident that I understand the content of
Computational Thinking”) male students were more confident
in understanding the content of computational thinking.

Discussion

This advancement in science and technology has not had
the same effect on men as it has on women. Differential item
functioning (DIF) is present when two or more subgroups
perform differently on a test item despite being matched on a
measured construct. DIF analysis plays a crucial role in ensuring
the equity and fairness of educational assessments since DIF-
free instruments are regarded as equitable and fair for all
participants. Consequently, the DIF study is a crucial procedure
that aims to identify the item that does not demonstrate the same
function when administered to students with the same ability
but different backgrounds.

Nine out of the 55 items associated to gender in total do
not fall within the acceptable range, hence it is suggested that
they can be removed (99). The value was between 0.42 and 0.46,
according to the DIF contrast results in Tables 4, 6, 7, while
the t value was between 1.95 and 1.95 logits. The result is in
agreement with the logit value of +0.5 to 0.5 determined for the
DIF contrast for the Likert scale and the t value between 2 and
+2. (97, 104). Apart from that, since the probability was higher
than 0.05, these items did not include DIF (92). In general,
geographic location, gender, and academic achievement affect
a student’s skillset (59). Gender differences are also a notable
discussion in CT study (105). However, certain studies also
indicated that males and females have similar CT. Despite no
difference in CT between male and female 15-18-year-olds (61,
62), gender inequalities persist (6, 60).

Regarding the cognitive construct, K43 (I can change
my mind to try something new while solving a problem)
demonstrates that male students have superior cognitive abilities
compared to female students. Boys are stronger at deductive
and abstract reasoning, whereas girls are better at inductive
and concrete (15). Boys reason from the general to the specific.
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TABLE 4 GDIF analysis of cognitive construct.

Construct Item t-value Probability (Welch) GDIF size The direction of item
GDIF

Cognitive K3 0.00 1.0000 0.00 Free

K5 −0.89 0.3756 −0.15 Free

K6 0.88 0.3795 0.15 Free

K10 0.30 0.7679 0.05 Free

K21 −0.14 0.8872 −0.02 Free

K26 −1.11 0.2678 −0.20 Free

K29 0.29 0.7717 0.05 Free

K31 1.46 0.1460 0.26 Free

K32 0.00 1.0000 0.00 Free

K33 −0.47 0.6409 −0.09 Free

K34 0.72 0.4748 0.12 Free

K35 −1.35 0.1777 −0.23 Free

K37 −1.23 0.2189 −0.21 Free

K38 −0.96 0.3397 −0.16 Free

K43 1.78 0.0760 0.30 Free

K46 −0.79 0.4326 −0.13 Free

K49 0.72 0.4724 0.12 Free

K50 −1.29 0.1989 −0.22 Free

K52 2.19 0.0287 0.38 Female

The colored cells mean that the items colored were biased to gender. The values are not fulfilled the t-value (±2.00) and the probability (Welch) (>0.05).
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FIGURE 1

GDIF plot of cognitive items.

They employ concepts to solve problems. Male brains are 10-
15% larger and heavier than female brains, according to study.
Besides size, genders also differ in brain autonomy. Using brain
mapping, researchers found that men have six times more gray

TABLE 5 Descriptive statistics.

Mean Std. deviation

Cognitive 3.2410 0.4168

Affective 3.2903 0.4556

Conative 3.2771 0.4653

matter connected to intelligence than women, but women have
ten times more white matter. One study shows that gender-
related differences in brain areas connect with IQ (106). This
study and others show that males’ inferior parietal lobes are
larger. This lobe helps boys with spatial and mathematical
reasoning. The left side of the brain, which controls language
and verbal and written skills, develops sooner in girls, so they
perform better in those areas (107). These results concur with
Mouza et al. (108) ’s conclusion that male students have a
higher cognitive level of CT knowledge than female students.
In addition, other studies have found that female students have
limited computing knowledge and experience (109). According
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TABLE 6 GDIF analysis of affective construct.

Construct Item t-value Probability (Welch) GDIF size The direction of item
GDIF

Affective A1 2.24 0.0256 0.42 Female

A3 −1.95 0.0517 −0.33 Free

A4 1.74 0.0833 0.32 Free

A6 0.89 0.3751 0.17 Free

A7 0.00 1.000 0.00 Free

A9 −1.04 0.3001 −0.19 Free

A10 −0.30 0.7617 −0.06 Free

A11 0.31 0.7605 0.05 Free

A14 0.25 0.8026 0.04 Free

A18 0.13 0.8986 0.02 Free

A19 0.00 1.000 0.00 Free

A22 −1.37 0.1723 −0.23 Free

A26 0.85 0.3964 0.15 Free

A27 0.60 0.5475 0.11 Free

A31 −0.09 0.6270 −0.28 Free

A40 0.00 1.000 0.00 Free

A41 0.27 0.7842 0.05 Free

The colored cells mean that the items colored were biased to gender. The values are not fulfilled the t-value (±2.00) and the probability (Welch) (>0.05).
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FIGURE 2

GDIF plot of affective items.

to research, males are typically more interested in information
or knowledge than females (110). This may be due to the
influence of culture and stereotypical socialization processes
experienced by people beginning in childhood, as there are more
men than women in these sectors (61). Lack of early experience
and other obstacles contribute to girls’ underrepresentation in
this field (111).

Examining the affective construct, findings indicate that
male students are more interested in practicing CT than female
students for items A4 (I want to learn programming to apply
Computational Thinking) and A1 (I have a curiosity to explore
new knowledge). Similarly, Askar and Davenport (112) and
Ozyurt and Ozyurt (113) found that male students have a
greater sense of programming self-efficacy than female students.

In addition, other studies have shown that the lack of female
role models and differences in prior programming experience
influence women’s participation in computer science (114, 115).
In addition, CT aptitude appears to be frequently linked to
mathematical logic and favors male students (59). In addition, a
study conducted outside of Malaysia revealed that male students
were more familiar with technology and favored its use for
learning (116). Female students typically require more time than
male students to master CT (60). Atmatzidou and Demetriadis
(60) reported that girls in the high school robotics STEM
curriculum appeared to require more training time to attain
the same skill level as boys in certain CT-specific aspects, such
as decomposition.
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TABLE 7 GDIF analysis of conative construct.

Construct Item t-value Probability (Welch) GDIF size The direction of item
GDIF

Conative C1 1.95 0.0522 0.40 Free

C3 2.32 0.0205 0.46 Female

C6 0.52 0.6037 0.10 Free

C7 1.56 0.1200 0.29 Free

C8 1.70 0.0907 0.32 Free

C10 0.00 1.0000 0.00 Free

C17 2.52 0.0122 0.47 Female

C19 0.89 0.3734 0.16 Free

C21 0.87 0.3867 0.16 Free

C22 2.49 0.0130 0.45 Female

C28 −3.12 0.0019 −0.54 Male

C29 0.54 0.5899 0.09 Free

C31 −2.44 0.0150 −0.42 Male

C38 −0.90 0.3680 −0.16 Free

C39 −3.14 0.0018 −0.54 Male

C40 −2.27 0.0236 −0.38 Male

C42 −0.84 0.4020 −0.14 Free

C44 −0.70 0.4870 −0.12 Free

C45 −0.70 0.4836 −0.12 Free

The colored cells mean that the items colored were biased to gender. The values are not fulfilled the t-value (±2.00) and the probability (Welch) (>0.05).
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GDIF plot of conative items.

Moreover, in the conative construct, male students won
item C17 (I try to find the cause when a solution does
not work). According to neuroscience study (117–119),
females’ hippocampus develops faster and is larger than boys.
Sequencing, vocabulary, reading, and writing are affected. Boys
learn better through movement and visual experience because
their cerebral cortex is more defined for spatial relationships.
Girls favor collaborative activities where they exchange ideas
with others, while guys prefer rapid, individualistic, kinesthetic,
spatially-oriented, and manipulative-based activities (120). This
fits with what Geary et al. (121) found: that male and female
students have very different spatial and computational skills
because male students are better at arithmetic reasoning. It

is influenced by the fact that male students tend to be more
intellectual, abstract, and objective. As a result, male students
tend to understand issues through calculations, evaluate the
compatibility between computational tools and techniques and
challenges, and use computational strategies when solving
problems. Besides, the additional information in Cognitive
Neurodynamics context showed the existence of a gender
effect on spirituality which reported that alpha and theta
brain signals started increased in male according by age range
(20). Computational thinking is breaking down complicated
problems into steps that can be understood (called algorithms)
and finding patterns that can be used to solve other problems
(22). On the other hand, female students worked harder to
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find the first information. Still, female students tended to solve
problems step by step, making it hard for them to find patterns
or quick ways to solve problems. Women tend to be more
careful, organized, and thorough than men (122, 123). Overall,
the existing results proved that the existence of a significant
difference between the two groups of men and women for brain
indicators in the Cognitive Neurodynamics context.

Limitations and future directions

This study, like any other, has limitations. To begin with, this
research is only focused on computational thinking disposition
aspect. As a result, the CTDI instrument was built around
three main elements in disposition. Thus, the first limitation
is only Malaysian secondary school students were included in
the study. Context can affect cultural differences. Researchers
assert that context may explain the different results. Therefore,
it is best to conduct larger-scale research with samples across
Malaysia. This would increase the respondents’ and research’s
demographic diversity.

DIF benchmarking could include in secondary schools.
More research is needed to understand the differences
in DIF item performance between groups, especially since
computational thinking instruments are still being developed.
We based our work on CT literature from various domains. The
tool should apply to other fields. Replications in other countries
would boost relevance in diverse nations. This study’s construct
validity came from a homogenous population. The scale must
be validated with higher education, elementary, middle, and
private school students. Comparing studies across tests can also
improve psychometric assessment.

On the other hand, there are multiple areas for further
research that stem from this study. Accordingly, future research
should include different cultural groups to determine if the
phenomenon is universal. East Asians and Westerners have
different thinking patterns, according to Nisbett et al. (124).
Westerners strongly prefer positivity, while Easterners have
more varied preferences (125). This study will influence future
analyses and improve item psychometrics. Further research can
correlate personality traits. This instrument is DIF-analyzed
in psychometrics to ensure it has not biased towards one
measurement component as ethnic, socioeconomic status or age
groups may contribute to the DIF.

Conclusion

This study assessed the effects of gender differences on
disposition towards CT Using DIF analysis. Implementing
a curriculum design to integrate STEM education with
computational thinking to create an interdisciplinary approach
presented a number of obstacles. A well-organized measuring

instrument should be designed for long-term utilization. The
information on gender clustering tendencies in answering GDIF
items can help test developers create more fair achievement test
items for students of different genders. The important practical
implication is that the items selected from this study can be used
as an alternative for self-evaluation and peer evaluation session
for improvement purposes.

The findings of this study revealed a moderate level of CT
disposition, which suggests the importance of making students
aware of the evolution and rapid growth of CT discipline, and
the availability of technological resources. The DIF analysis
showed that there was a significant difference based on gender
towards students’ disposition for CT. Educators can use the data
to identify students’ strengths and weaknesses and plan more
meaningful lessons. Girls and boys alike can flourish in their
creative thinking if we teach them to focus on the process of CT
and problem solving.

We need to acknowledge the fact that boys’ and girls’
perspectives on CT differ in significant ways. Differences
in ability are not included in these categories. In order to
encourage excellence in both sexes, educators must take into
account the differences between males and females while
planning lessons and activities. The necessity of devising
engaging interventions and monitoring children’s attentional
and motivational elements during activities is illuminated
by these findings, which have implications for educational
practitioners and researchers. The study makes CT dispositions
visible to the education community as path-opening invitations
to explore CT and foster meaningful learning experiences.
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Introduction: Stressful experiences such as violence can affect mental health

severely. The effects are associated with changes in structural and functional brain

networks. The current study aimed to investigate brain network changes in four

large-scale brain networks, the default mode network, the salience network, the

fronto-parietal network, and the dorsal attention network in self-identified victims

of violence and controls who did not identify themselves as victims.

Materials and methods: The control group (n = 32) was matched to the victim

group (n = 32) by age, gender, and primary psychiatric disorder. Sparse inverse

covariance maps were derived from functional resting-state measurements and from

T1 weighted structural data for both groups.

Results: Our data underlined that mostly the salience network was affected in the

sample of self-identified victims. In self-identified victims with a current psychiatric

diagnosis, the dorsal attention network was mostly affected underlining the potential

role of psychopathological alterations on attention-related processes.

Conclusion: The results showed that individuals who identify themselves as victim

demonstrated significant differences in all considered networks, both within- and

between-network.

KEYWORDS

victims of violence, neuroimaging, structural covariance, functional connectivity, partial
correlation, sparse inverse covariance

1. Introduction

The link between victimization and poor mental health has been recognized in many studies
(1–3). Severe forms of victimization include physical and sexual violence. Additionally, different
forms of abuse such as threat, stalking, blackmailing are often experiences as severe harm to
an individual’s life (4, 5) including consequences such as depression, anxiety, suicidal ideation,
and panic attacks. The self-identification as a victim thereby does not necessarily agree with
external labeling (1) and the same event might be perceived very differently between individuals.
Importantly, even if not ensured by external sources, self-perceived victimization is stressful
and associated with negative consequences such as self-blame, loneliness, anxiety, and low self-
worth (6). Further studies suggest that executive functioning is reduced in individuals who
have experienced violence during early childhood or adolescence (7, 8). Given the severe and
often protracted effects of perceived victimization, it is important to determine how this can
lead to mental problems. In this respect, the brain plays an important role. However, while
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victimization represents a severe risk factor for mental disorders, only
little is known with respect to victimization as a trans-diagnostic risk
factor on the neural level.

Previous studies have investigated if the exposure to violence
can affect brain morphology and brain function. Such associations
between violence exposures and brain structural changes have been
investigated for gray (GM) and white matter (WM). In GM, changes
in volume (9–13), cortical thickness (CT) (12–16), surface area (12–
14, 16), and local gyrification (14) were observed in connection to
the experience of childhood neglect and abuse. Mostly GM and
CT reductions were observed in victims of violence [e.g., (11–
14)]. Nevertheless, increases were reported in female survivors of
intimate partner violence (10). Additionally, GM volume reductions
in the prefrontal cortex were reported (17), and these findings were
recently confirmed in a trans-diagnostic sample of adult participants
who reported childhood maltreatment. Another line of studies
investigated neural changes in association to combat-related trauma
(9, 18, 19). Interestingly these studies showed that combat exposure
related volume reductions were distinct from reductions related
to a PTSD and depression diagnosis (20, 21). In sum, structural
abnormalities were observed in both cortical and subcortical regions
in different samples in all tissues, although some findings (22) argue
against a strong association of WM changes and the experience of
violence. Furthermore, a recent study pointed to alterations in brain
organization (23) based on the covariance of GM volume between
selected areas in victims versus controls. Studies that explicitly focus
on the subjective self-identification as a victim including a broad
definition of violence in this field are lacking.

Changes in brain activity also have been associated with the
exposure to violence (24–28). The majority of fMRI studies in
different populations that had been exposed to violence showed
deviations in activation during cognitive or emotional tasks [for a
review see (29)], and functional connectivity alterations occurred
during emotion provoking tasks (26, 30, 31) and resting state fMRI
(32). Functional differences between survivors of intimate partner
violence (IPV) with a PTSD diagnosis and a non-traumatized group
were reported in the anterior insula, which is the hub of the
salience network (26). Furthermore, decreased connectivity among
the anterior insula, amygdala, and anterior cingulate cortex (ACC),
was reported for IPV related PTSD during a face-match task (31).
Moreover, painful stimulation led to an elevated activation of the
right middle insula and the right dorsolateral prefrontal cortex in IPV
survivors with PTSD (33). Potential PTSD specific influence may be
expected here, since a decrease in subjective pain intensity ratings
over time was accompanied by attenuation of activation within the
right anterior insula, which at the same time was associated with
avoidance symptoms of PTSD.

Previous results in survivors of violence were often specific to
a certain age group or a specific type of violence. Many studies
have focused on physical, sexual or emotional abuse experienced
during childhood (34), underlining the role of the hippocampus and
amygdala (17, 35–37). Furthermore, in populations that experienced
violence in early childhood, physical forms of violence seem to be
associated more strongly with changes in amygdala and anterior
cingulate cortex while emotional abuse may result in changes related
to reward and mood processing circuits (38). Other findings may
even suggest differences in the brain networks of individuals exposed
to emotion abuse versus neglect (39). While some studies have
successfully shown changes in brain activation for specific victimized
populations, brain changes have–to our knowledge–not been studied

in transdiagnostic samples of individuals who identified themselves
as victim including a broad definition of victimization.

The existing literature demonstrates the necessity to study
the relationship between brain modulations and subjective
victimization as a trans-diagnostic phenomenon, thereby enabling
the identification of neural changes independent of a mental health
diagnosis. Additionally, specific types of experienced violence have
mostly been investigated in specific groups, for example combat
related exposure in males and intimate partner violence in females.
To our knowledge, currently there is no study that included male
and female adults identifying themselves as victims independent
of the type of violence, or age of the individual. Furthermore, only
a few studies have so far investigated large-scale network changes
simultaneously on a structural and functional level. Specifically,
changes in the default mode network (DMN), the fronto-parietal
network (FPN), and the salience network (SN) as well as the
dorsal attention network (DAN) (40–42) have been proposed as
prominent characteristics of psychiatric disorders and as markers
of exposure to violence. Thus, studying changes in these networks
and their association with previous victimization may support
the identification of neural risk factors for mental health issues,
independent of a specific diagnosis.

The current study aimed to identify differences in structural
and functional covariance in the DMN, FPN, SN, and DAN in
two different groups: The first group (V) was characterized by self-
identification as victim of violence; the second group (NV) was
matched to the V group by age, gender and the primary psychiatric
diagnosis. Our study did not exclude participants based on the
psychiatric diagnosis and represented therefore a more realistic
clinical population, which enabled the investigation of structural and
functional brain network connectivity. To investigate structural and
functional organization differences, we focused on pre-determined
regions of interest (ROIs) in the DMN, FPN, SN, and DAN, and
analyzed group differences in between and within network covariance
patterns of both function and structure.

We expected to discover differences in structural and functional
organization of the four large-scale brain networks between V and
NV, independently of any psychiatric diagnosis. Similar changes in
covariance in SN and DMN were expected in the V group. We
assumed, that presence of a psychiatric diagnosis played an additional
important role in the difference between V and NV. Therefore, we
performed a diagnosis-specific explorative analysis. As a secondary
hypothesis, we assumed that the group of V with a present acute
psychiatric diagnosis (VD+) differed from the NV with a present
acute psychiatric diagnosis (NVD+), and a differing structural and
functional covariance pattern would be observed as compared to the
trans-diagnostic consideration. As a third hypothesis, we assumed,
that V and NV would differ in their psychopathology, which in
turn would correlate with the differences in the structural and
functional covariance.

2. Materials and methods

2.1. Sample

The sample included two groups of adults of which the first group
had subjectively experienced violence (V), while the matched control
group had not experienced violence before (NV). Inclusion criteria
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for both groups were: (i) age between 18 and 60 years, (ii) right-
handedness, (iii) MRI suitability, and (iv) absence of any neurological
diseases. Specific inclusion criterion for the V group was the prior
experience of at least one type of the following forms of violence.
The experience of violence was verified by a screening instrument
and a detailed qualitative interview which were developed within
the “Gender Violence” project (43, 44). The definition of violence
used applied to this screening instrument and the interview based
on the WHO standards (45) defining physical, emotional, and sexual
violence. Orienting to previous studies, and because it is a frequent
precursor or other forms of violence during intimate partnerships
(46), economic violence (financial abuse) was added as a further
category in the screening. Physical forms included all forms of body
attacks such as hitting, kicking, shaking, spitting; sexual forms include
all sexual acts without agreement such as coercion, sexual assault
or rape; emotional forms included permanent insults, humiliation,
bullying, stalking, threat; economic forms included robbery, passing
of salary, prohibition to fulfill basic needs. The NV group included
only individuals who negated any prior experience of violence at a
primary screening and did not identify themselves as victimized. The
V group was recruited from the participant pool of a large study in
which detailed semi-structured interviews about the experience of
violence were performed. Within this larger study, participants in
the V group were recruited on the one hand in cooperation with an
intervention center against domestic violence in Aachen, Germany
(“Frauen helfen Frauen e.V.”) who asked individuals with experiences
of violence if they would be willing to participate in the study.
Participation in the study was voluntary and completely independent
of any further consultation. On the other hand, we distributed flyers
describing different forms of violence, the study aims and contact
points for individuals seeking help in all departments in the university
hospital Aachen, including the emergency department and the
psychiatric department. Individuals who self-identified themselves
as victims of violence and wanted to participate could notify study
personal via phone or email. Flyers were also distributed at other
public places offering consultation or therapy to potential victimized
individuals such as ambulant therapists. For individuals that were in
addition to study participation or independent of study participation
seeking help and that were not supported otherwise a team of trained
experts and psychologists offered consultation as part of the project.
The fMRI study only included individuals that had undergone the
qualitative interview in the main arm of the study and a further
screening concerning MRI criteria if participants were interested in
taking part in the fMRI study. 33.3% of all recruited participants took
part in the fMRI study as well. The NV group was directly recruited
via flyers and at the university hospital RWTH Aachen, specifically
the Department of Psychiatry, Psychotherapy and Psychosomatics.
All participants gave their written informed consent to participate
in the study and received a compensatory payment of 85 Euros.
Included participants additionally underwent the Mini-International
Neuropsychiatric Interview [MINI; (47)], which allowed us to match
both groups for age, sex, and MINI diagnoses. Overall, the V group
included 49 subjects and the NV group 41 individuals of which
25 in the V group and 20 in the NV group had any kind of
psychiatric diagnosis.

2.2. Study protocol

The study protocol was approved by the internal Ethics
Committee of the RWTH Aachen University and thus

complied with the ethical principles stated in the Declaration
of Helsinki. The complete study procedure consisted of an
initial resting state fMRI scan, a social stress paradigm, an
emotion induction paradigm, a second resting state scan, an
anatomical scan, neuropsychological tests, and several self-report
questionnaires.

Besides the behavioral variables, the present investigation focused
on the anatomical scan and the first resting state scan. Imaging data
were acquired on a whole-body Siemens 3T Trio scanner (Siemens
AG; Erlangen, Germany) equipped with 12 channel head coil, located
at the RWTH Aachen University hospital in Germany, whereas some
subjects were measured after the scanner upgrade to Prisma. During
the resting state acquisition, participants were instructed to relax
and lie still with eyes opened, focusing a fixation cross presented
on a black screen. Afterward, all participants assured that they had
not fallen asleep.

In order to test if groups differed with regard to psychopathology
severity, stress coping and neuropsychological functioning, after
the MRI procedure, we quantified (i) the strength of depressive
symptoms through the Beck Depression Inventory [BDI; (48)],
(ii) state and trait anxiety scores through the State-Trait Anxiety
Inventory [STAI; (49)], and (iii) information on stress exposure
and stress symptoms through the Stress and Coping Inventory
[SCI; (50)]. In the V group, we also measured perceived distress
caused by violence experiences through the Impact of Event
Scale [IES; (51)]. Neuropsychological tests included the digit span
[ZNS, forward and backward; Hamburg Wechsler Intelligence
test (HAWIE-R); (52)], the verbal fluency test [VLT; (53)],
a measure for verbal intelligence [Mehrfach Wortschatztest
version B, MWT_B; (54)] and a test for shared attention and
executive functions/cognitive flexibility [Trail making test, TMT;
(55)]. From the introduced neuropsychological tests, descriptive
variables were derived: TMT comprised the difference between
the acquired TMT version A and version B; VLT_1 represented
the total fluency performance (i.e., phonemic fluency und
semantic fluency), while VLT_2 represented switching (i.e.,
phonemic switching und semantic switching), and HAWIE-
R (ZNS) represented the sum of the forward and backward
digit-span tests.

Several participants could not be included in our analyses due
to the following reasons: (i) missing anatomical (n = 4) or any
resting state scans (n = 7) due to technical problems, (ii) incomplete
coverage of the whole brain during structural scan (n = 10), (iii)
influence of alcohol (n = 1), (iv) sudden nausea (n = 1), and (v)
lack of credibility of statements due to several contradictions (n= 1).
Thus, the final sample consisted of 64 participants, comprising 32
participants who experienced violence, and 32 controls. The number
of V, who suffered from a current psychiatric diagnosis (VD+), was
25, and the number of V without a current diagnosis (VD−) was
7. The number of NV, who suffered from a current psychiatric
diagnosis (NVD+), was 20, and the number of NV without a diagnosis
(NVD−) was 12.

2.3. Voxel based morphometry

To investigate structural differences between both groups,
we acquired a T1-weighed image for each participant using
an MPRAGE sequence (TR = 2,300 ms, TE = 3.03 ms, flip
angle = 9◦, FOV = 256 × 256 mm2, 176 sagittal slices, voxel
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size = 1 × 1 × 1 mm3). Structural imaging data were preprocessed
using the Computational Anatomy toolbox (CAT 121). First, each
scan was manually reoriented to the intercommisural plane. After
correction for inhomogeneities in field intensity, affine and non-
linear normalization to MNI standard space was applied using the
DARTEL default template within a unified segmentation model (56).
Then, images were segmented into GM, WM, and cerebrospinal
fluid. Additionally, the GM volumes were scaled by the amount
of contraction applied during the preceding normalization. This
modulation with Jacobian determinants ensured that the total
volume of GM corresponded to that of the original images. Finally,
the modulated GM segments were smoothed using a Gaussian
kernel of 8 mm FHWM which was suggested to improve the
morphometric examination of smaller and larger brain regions (57,
58). A subsequent homogeneity check did not identify any outliers.
The ensuing voxel-based morphometry data were used to examine
covariance in GM volumes in the sample.

2.4. Functional resting state

To compare brain function between V and NV, 250
functional images for each participant were acquired using a
EPI sequence (TR = 1,600 ms, TE = 30 ms, flip angle = 67◦,
FOV = 192 × 192 mm2, matrix size = 64 × 64, 26 transversal slices,
voxel size = 3 × 3 × 4.2 mm3, acquisition order = interleaved
ascending). Functional imaging data were preprocessed using the
functional connectivity toolbox (CONN 18a2). Initially, the first
four scans of each participant were discarded to allow for magnetic
field saturation. Then, the individual resting state time series were
preprocessed according to the following steps: (i) realignment
and unwarping, (ii) slice-time correction, (iii) outlier detection
[97th percentiles using Artifact Detection Toolbox (ART)], (iv)
segmentation and spatial normalization to MNI standard space, and
(v) smoothing (Gaussian kernel of 8 mm FWHM). Subsequently,
the pre-processed time series were denoised to account for potential
confounding effects of (i) 6 motion parameters, (ii) their derivatives,
(iii) squares of the 6 motion parameters and their derivatives,
(iv) mean CSF and WM signal (v) outlier regressors from ART.
Additionally, quadratic detrending and despiking before regression
were applied. We did not use global signal regression. Furthermore,
the time-series were band-pass filtered to retain signals between
0.01 and 0.08 Hz. This frequency range likely represented neural
signal and was less susceptible to physiological noise (59, 60). The
resulting resting state time series were used to investigate functional
connectivity in the sample.

2.5. ROI definition

We were interested in how covariance within and between for
major networks differed between V and NV. For that aim, the
functional connectivity toolbox CONN was used (61). CONN’s
standard network atlas was based on an independent component
analysis of the functional resting state data of a large sample of healthy
adults (61, 62). Although variances in the brain structure are expected

1 www.neuro.uni-jena.de/cat

2 www.nitrc.org/projects/conn

in healthy controls and patient groups, applying the atlas information
based on healthy adults for the investigation of patient groups is
considered valid because previous studies have shown differences in
the DNM, SN, and FPN based on different whole brain nodes and
seeds [for a meta-analysis see Koch et al. (63)] suggesting robust
group differences in these networks despite of potential structural
differences. The atlas provides an established brain parcellation that
divided the DMN, SN, DAN, and FPN into 19 spatially distinct
network nodes, which were parts of the brain networks (Figure 1).
The DMN covered the medial prefrontal cortex (MPFC), the bilateral
lateral parietal cortex (LPCs), and the precuneus (PCUN). The SN
included the anterior cingulate cortex (ACC) as well as the bilateral
anterior insula (AIs), the rostral prefrontal cortex (RPFCs), and
the supramarginal gyrus (SMGs). The DAN consisted bilaterally
of frontal eye fields (FEFs) and the intraparietal sulci (IPSs). The
FPN comprised both the right and left lateral prefrontal cortex
(LPFCs) and the posterior parietal cortex (PPCs). The 19 investigated
network nodes served as ROIs and were used to extract structural
and functional brain information from individuals in the V and
NV groups. For each participant, brain data was averaged across
all voxels belonging to a particular ROI. This yielded individual
average GM volumes, average GM density and average functional
resting state time series for each ROI. The extracted GM volumes,
densities and time series were z-standardized individually. This
z-standardization mainly served two purposes in the following
analyses: (i) to ensure the comparability of ROIs, and (ii) to enable the
interpretation of covariance measures as correlation (= normalized
covariance). To avoid potential confounding effects in the brain
data, we accounted for sex, age, MINI diagnosis, antidepressants,
and the number of other psychotropic drugs. In the structural
analyses, we also accounted for total intracranial volume. Numerical
confounds were z-standardized, while scale confounds were dummy
encoded. Deconfounding on the group level was performed for time
series in CONN, while for GM volumes and densities it was done
with NiftiMapsMasker from nilearn package (64). The extracted
network information served as input for the estimation of structural
covariance and functional connectivity matrices in each group.

2.6. Sparse inverse covariance

To estimate covariance differences between the groups V/NV
and VD+/NVD+, partial correlations between the 19 nodes were
calculated on the group level. Group level partial correlations
(assuming the group of subjects underlies the same functional or
VBM structure) were calculated using sparse inverse covariance
estimation [covariance precision from GraphicalLassoCV, from
Python sklearn (64)]. By accounting for the influence of other brain
regions, partial correlations as compared to full correlations yield
direct, unbiased relationships between two ROIs (65, 66). Partial
correlations could be estimated by sparse inverse covariance (67–
69). An L1 penalty automatically set less important entries in the
connectivity matrix to zero which enabled a robust estimation also
in smaller samples (66, 69). The sparsity degree was internally chosen
via a 3-fold cross-validation that ascertained the generalizability of
the model to new data (70, 71). For calculations we used Python
3.7, primarily using the neuroimaging package nilearn (72) and the
machine learning package scikit-learn (64).

To investigate the differences in structural covariance between
V and NV, we estimated gray matter volumes (GMV), gray matter

Frontiers in Psychiatry 04 frontiersin.org56

https://doi.org/10.3389/fpsyt.2023.1040861
http://www.neuro.uni-jena.de/cat
http://www.nitrc.org/projects/conn
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org/


fpsyt-14-1040861 January 27, 2023 Time: 18:18 # 5

Shymanskaya et al. 10.3389/fpsyt.2023.1040861

FIGURE 1

Neuroanatomical visualization of four target networks, according to CONN’s standard atlas. The default mode network is shown in dark green and
consists of the medial prefrontal cortex (MPFC), the bilateral lateral parietal cortex (LPCs), and the precuneus (PCUN). The saliency network (purple)
includes the anterior cingulate cortex (ACC) as well as the bilateral anterior insula (AIs), rostral prefrontal cortex (RPFCs), and supramarginal gyrus (SMGs).
The dorsal attention network (turquoise) consists of frontal eye field (FEFs) and intraparietal sulcus (IPSs) bilaterally. The frontoparietal network (yellow)
comprises both the right and left lateral prefrontal cortex (LPFCs) and posterior parietal cortex (PPCs). Regions of interest are plotted on an MNI standard
brain in anterior, lateral, and posterior view using MRIcroGL (https://www.nitrc.org/projects/mricrogl/).

densities (GMD) and gray matter masses (GMM) of ROIs, and
performed independent t-tests, to see if there are significant group
differences between the values of GMD, GMV or GMM. Further,
we investigated partial correlations in the estimated GM parameters
between the 19 ROIs on group level separately in the V and
NV groups. For this purpose, we used sparse inverse covariance
estimation to determine the partial correlation between brain
volumes on group level and reported the differences in covariance
between V and NV. A single value in each subject for a given
GM volume in each ROI prohibited estimation of individual partial
correlation matrices.

Afterward, we performed similar calculations for functional data,
to investigate the differences in functional covariance between V and
NV. An independent t-test probed for significant differences between
the ROI time series of the V and NV groups. Again, sparse inverse
covariance was used to generate partial correlations between brain
volumes of each time series of resting state for each ROI. Analyses
were performed separately for the V and NV groups. Described
methods for GM variables and resting state are depicted in Figure 2.

The analysis steps described above for the determination of
covariance differences, as well as statistical tests for group differences
and brain-behavior associations, described in the following text, were
repeated for a separate subgroup of subjects of the V and NV group
with a current psychiatric diagnosis (D+). The subjects with a current
diagnosis and an experience of violence (VD+) were compared
to those with a current diagnosis but without an experience of
violence (NVD+). These complementary calculations were performed
to compare more homogeneous samples (see Tables 2, 3). Due to a
small number of participant without a psychiatric diagnosis, we did
not perform sub-analyses in these small V and NV groups.

2.7. Group differences in covariance

Based on partial correlation maps, we examined group differences
in covariance between ROIs. Negative values described a relative
decrease in covariance, or cross-talk, between regions in the V
group compared to the NV group. Complementarily, positive values
described a relative increase of covariance, or higher level of

cross-talk between the nodes. To inspect the observed structural
and functional covariance patterns differences between victims and
controls, we employed non-parametric test for mean differences (73,
74). To this end, we compared the data of V to the general distribution
simulated by randomly drawing 104 bootstrap samples of the NV,
with replacement. Thus, every bootstrapped subsample consisted of
41 subjects for the NV group, and 20 in the NV group had any
kind of psychiatric diagnosis. Structural and functional correlation
matrices of the victims were compared to the bootstrapped 99.999%
population intervals of the controls, which corresponds to testing for
significant differences at a corrected, two-sided alpha-level of 10−5.
The same analysis was performed for VD+ versus NVD+.

2.8. Summary of covariance differences
across imaging modalities

To determine the convergence of network-specific covariance
differences between the pairs of 171 nodes, we summed up the
findings by calculating the frequency of differences in covariance
between V and NV in every node across all imaging modalities.
This number thus represented the total number of group differences
in a network, to which these nodes belonged. The same was
done separately for the VD+ versus NVD+ comparison. Since four
networks were investigated, ten possible combinations for within-
and between-network covariance existed. Four of those described the
within-network covariance (DMN-DMN, SN-SN, DAN-DAN, and
FPN-FPN), and the rest described the between-network covariance
(DMN-SN, DMN-DAN, DMN-FPN, SN-DAN, SN-FPN, DAN-
FPN). Additionally, we aimed to investigate the importance of
differing covariance for a specific single node. To this end, the
frequency of each node being involved in a different covariance
comparing V versus NV and VD+ versus NVD+ was recorded.

2.9. Brain-behavior associations

Finally, significant structural and functional network aberrations
were probed for their association with specific behavioral and
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FIGURE 2

Methods applied to the whole cohort for (A): Variables derived from gray matter (GM) such as gray matter volumes (GMV), gray matter densities (GMD),
and gray matter masses (GMM) and (B): Time series of resting state fMRI. Sparse inverse covariance was estimated between the 19 nodes on the group
level. Further, the covariances were compared between V and NV. The differences in covariances were correlated with the questionnaires.

neuropsychological variables. We used canonical correlation analysis
(CCA) which investigated internal relationships between two sets
of variables by seeking maximal correlations between combinations
of variables in both sets (75, 76). Thus, the aim of the CCA was
to test if a significant amount of variance of structural/functional
network aberrations and behavioral/neuropsychological variables
across subjects could be explained by pairs of canonical variates
(modes of co-variation), and to discover the internal relationships
between the two sets (74). The latter was done by the calculation
of the correlations between each variable and the corresponding
canonical variates.

For functional data, we estimated covariance between the
nodes, which demonstrated significant differences between the
subject groups, for each participant on the individual level. For
functional data, we estimated covariance for each participant on the
individual level. Statistical significance of canonical correlations
was determined sequentially with a Wilks’ Lambda, using
F-approximation (77). All p-values were Bonferroni-corrected
to account for multiple comparisons and tested at a corrected alpha
level of 0.05.

3. Results

3.1. Group characteristics

Within the V group experience of violence differed regarding the
experiences type, length and age of exposure. In total, nine of 32
included participants in the V group experienced only emotional and

economic violence and only one participant reported to have been
exposed to economic violence as only form of violence. All other
participants had experienced physical or sexual violence including
multiple forms. Only 5 patients reported to have experienced physical
violence without any other form of violence and only one participant
reported to have been exposed to sexual violence only. Overall
22 participants reported to have been exposed to several forms
of violence, while 10 reported only one form of violence. The
estimated duration participants in the V group were exposed to
one or more types of violence repeatedly was 8.3 years with only
three individuals being exposed to violence (physical) only a single
time. While the estimated mean duration did not differ significantly
between individuals who had experienced physical or sexual violence
(among others) and those who did not [t(30) = 1.19, p = 1.22,
Table 1]. However, age of the first exposure was significantly lower
individuals who experiences physical or sexual violence compared to
those who did not [t(30) = 2.02, p = 0.035, Table 1]. Comparing
the mean scores of the IES subscales intrusion, avoidance and
hyperarousal of individuals who experienced (among others) physical
or sexual violence in contrast (23) to those who did not report
any of these forms (9) showed no significant differences in any
scale [intrusion: t(28) = 1.36, p = 0.092; avoidance: t(28) = 0.31,
p = 0.389; hyperarousal: t(28) = 0.58; p = 0.285]. Two participants
(experiencing physical forms of violence) did not want to answer the
IES, which is why the mean scores are reported only for a group of 30
participants.

As shown by non-significant group differences, we were
able to successfully match self-identified victims and the control
group in age, sex, and MINI diagnoses (Table 2). The groups
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TABLE 1 Mean and standard deviation of the subscales on the impact of
events scale, the estimated duration of exposure to violence and the age at
the first exposure to violence in the V group contrasting individuals who
had experiences physical or sexual forms of violence to those who
exclusively experienced other forms.

Physical or sexual
violence

No physical or
sexual violence

M SD M SD

Intrusion 18.33 9.096 13.33 9.552

Avoidance 20.95 9.870 19.78 8.700

Hyperarousal 16,15 10,520 13.78 9.615

Duration of exposure 3400.49 2996.61 2095.33 2124.99

Age at first exposure 11.83 9.62 24.33 17.54

did not significantly differ in any neuropsychological variable or
questionnaire.

Comparison of groups only including participants with a current
psychiatric diagnosis (VD+ and NVD+) were provided in Table 3.
The groups did not significantly differ in any neuropsychological
variable or questionnaire. Furthermore, no significant differences
were discovered neither between GMM, GMV or GMD nor between
the time series in ROIs of the V and NV groups and the VD+ and
NVD+ groups.

3.2. Structural covariance in brain
networks in all subjects, independent on
the psychiatric diagnosis

Based on the structural covariance matrix, and after performing
previously described bootstrapping to identify differences in
covariance between V and NV, we identified 9 out of 171 node pairs,
that demonstrated differences in GMM covariance between groups
at a corrected alpha level of 10−4 (Figure 3A). Significantly less
covariance between regions in V was observed in all significantly
different covariance measures. Within-network disturbances emerged
only in the SN and constituted 33% of all detected aberrations,
demonstrating less covariance and therefore lower homogeneity in
the structural organization of V as compared to NV. Between-
network-wise, FPN, DAN, SN, and DMN revealed aberrations
in half of their nodes. On the other hand, GMD (Figure 3C)
demonstrated 4 aberrant connections, all of which overlapped with
GMM covariance differences. These consistent aberrations were
observed in SN/DAN and SN/FPN. GMV (Figure 3E) demonstrated
5 aberrant connections, which showed reduced covariance in V, same
as in GMM. These aberrations were observed in GMM, and occurred
within SN, in SN/FPN, SN/DMN, and SN/DAN.

3.3. Functional covariance in brain
networks in all subjects, independent of
psychiatric diagnosis

The comparison of functional covariance matrices yielded 2 out
of 171 functional connections that significantly differed between
groups at a corrected alpha-level of 10−4 (Figure 4A). Significantly

TABLE 2 Sample characteristics for victims of violence (V) and non-victims
(NV): Binary variables (sex, MINI diagnosis, and antidepressants): Statistical
comparison of groups performed via chi-square test of independence;
Continuous variables: mean ± standard deviation, statistical comparison of
groups performed via independent two-sample t-test for normally
distributed features [STAI trait, TMT, VLT2, HAWIE-R (ZNS)] and Mann
Whitney U-test for non-parametric cases.

V group
(N = 32)

NV group
(N = 32)

Group
differences
(p-values)

Sex 20♀ and 12♂ 18♀ and 14♂ 1.00

Age 33.3± 10.1 32.5± 11.7 1.00

BDI 15.5± 11.2 8.9± 10.4 0.033

STAI trait 46.1± 12.5 35.5± 16.3 0.060

SCI stress exposure 64.0± 19.8 47.9± 22.3 0.035

MINI diagnosis 78.1% 62.5% 1.00

Antidepressants 38.0% 25.0% 1.00

Number of other psychotropic
drugs

0.2± 0.4 0.1± 0.4 0.588

Number of violence experiences 1.9± 0.9 —

Childhood violence 1.3± 0.5 —

TMT −20.4± 12.5 −14.1± 10.6 0.232

VLT1 35.2± 8.6 39.4± 6.5 0.076

VLT2 29.5± 6.2 33.3± 4.8 0.101

HAWIE-R (ZNS) 14.9± 3.8 15.3± 3.8 1.00

MWT_B 28.3± 6.0 30.9± 3.2 0.113

Normality distribution was tested using Shapiro Wilk test. The equality of variance was tested
with the Levene test. P-values were Bonferroni corrected at the significance level of 0.05.

higher covariance between regions in V was observed within the FPN
network. Between-network-wise, less covariance was observed in V in
FPN/DAN covariance.

We furthermore investigated differences in structural and
functional covariance between groups with a current MINI diagnosis
(VD+ and NVD+).

3.4. Structural covariance in brain
networks in subjects with a current
psychiatric diagnosis

We identified 13 out of 171 pairs of nodes (Figure 3B) that
differed significantly in GMM between VD+ and NVD+. Only
one node (DMN/DAN) showed a slight overexpression in VD+,
as compared to NVD+. Lower covariance between regions in
VD+ was observed in the remaining 12 connections. Within-
network disturbances emerged only in the SN. Between-network-
wise, the aberrations were observed in DMN, FPN and DAN
across all modalities. GMV (Figure 3D) demonstrated 10 aberrant
connections, which showed less covariance in VD+. Within-network
covariance aberrations were observed in SN, and in DAN. In contrast
to the whole sample GMV analysis (V/NV), group differences in
the VD+/NVD+ sample demonstrated a decrease in DAN covariance
with DMN and FPN. Furthermore, GMD demonstrated 9 aberrant
connections, with significant decrease in covariance in DAN/DMN
and DAN/FPN, and with within-network covariance aberrations in
SN (Figure 3F).
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TABLE 3 Sample characteristics for victims of violence (VD+) and
non-victims (NVD+) with a current diagnosis: Binary variables (sex, MINI
diagnosis, and antidepressants): Statistical comparison of groups
performed via chi-square test of independence; Continuous variables:
mean ± standard deviation, statistical comparison of groups performed via
independent two-sample t-test for normally distributed features [SCI stress
exposure, TMT, VLT2, HAWIE-R (ZNS)] and Mann Whitney U-test for
non-parametric cases (the rest).

VD+
group

(N = 25)

NVD+
group

(N = 20)

Group
differences
(p-values)

Sex 14♀ and 11♂ 12♀ and 8♂ 1.00

Age 33.2± 9.9 32.8± 12.0 1.00

BDI 17.3± 11.3 11.7± 10.9 1.00

STAI trait 47.0± 12.2 36.9± 18.9 0.263

SCI stress exposure 68.9± 18.8 53.3± 25.1 1.00

Antidepressants 36.0% 35.0% 1.00

Number of other psychotropic
drugs

0.2± 0.4 0.2± 0.5 1.00

Number of violence experiences 2.0± 1.0 —

Childhood violence 1.3± 0.5 —

TMT −21.6± 12.2 −12.5± 10.5 0.077

VLT1 33.6± 8.3 40.9± 7.2 0.022

VLT2 28.4± 6.2 33.5± 4.7 0.055

HAWIE-R (ZNS) 14.6± 3.9 14.7± 3.9 1.00

MWT_B 27.7± 6.5 30.7± 3.1 0.190

Normality distribution was tested using Shapiro Wilk test. The equality of variance was tested
with the Levene test. P-values were Bonferroni corrected at the significance level of 0.05.

3.5. Functional covariance in brain
networks in subjects with a current
psychiatric diagnosis

The comparison of functional covariance matrices yielded 4 out
of 171 functional connections, that significantly differed between
the VD+ and NVD+ groups at a corrected alpha-level of 10−4

(Figure 4B). Covariance in VD+ differed from NVD+ in the same
four nodes as in the V versus NV group, and in the three additional
nodes. In these nodes, SN/DMN and SN/FPN demonstrated higher,
and DAN/DMN lower covariance in VD+ as compared to NVD+. No
within-network differences were observed.

3.6. Across-modality covariance
differences

The summaries of structural and functional covariance
differences between the two V and NV groups across all modalities
were depicted in Figure 5A for V versus NV, and in Figure 5B for
VD+ versus NVD+. The histograms demonstrated that covariance
in VD+ was to a higher degree different from NVD+, than in the
analogous comparison of the V versus NV. Specifically, this meant
that the networks in VD+ were less covariant between each other,
than in NVD+. In particular, regarding the VD+ versus NVD+
comparison, the DAN was associated with the majority of within-
and between-network covariance differences (33% of all differences),
followed by the SN (28%). In contrast, the main sample (V versus

NV) showed mostly differences in the SN (49% of all differences),
followed by the FPN (26%). Upon characterizing the affected
network nodes on the individual level (Figure 6), we demonstrated
that the DMN and DAN nodes were affected to a lower degree in the
main sample than in the D + sample (10 versus 14% for DMN and 20
versus 27% for DAN). On the other hand, SN and FPN were affected
more in the full sample (40 versus 32% for SN and 30 versus 27% for
FPN).

3.7. Association with psychopathology

Finally, we examined if the observed group differences
in structural and functional covariance were related to
psychopathological symptoms (STAI trait, BDI, SCI stress exposure),
as well as to neuropsychological functions [VFT1 with one, and
VFT2 with two categories, TMT, MWT and HAWIE-R (ZNS)] using
CCA. In the full sample (V versus NV), the analysis revealed a single
highly significant CCA mode that related brain connectomes to
subject measures (r = 0.94, p = 0.008). We observed that 94% of
the variation in brain connectomes was explained by the variation
in questionnaires. Since only the first CCA mode was significant,
the first canonical variate for brain measures (CCX_1) was plotted
against the first canonical variate for the questionnaires (CCY_1) in
the scatter plot (Figure 7). These correlations between each variable
and the corresponding canonical variate were used to interpret the
first CCA mode, and the correlations with the correlation over r > 0.2
were provided in Table 4. The contributions of the variables to the
CCA modes were also demonstrated in Figure 7. All correlations
between the first canonical variable for brain, and the brain measures
were uniformly large, and were represented by all included measures
of DMN and SN. Among the psychopathological symptoms and
neuropsychology variables, STAI contributed to CCY_1 to the
highest proportion. Thus, CCY_1 can be considered as an anxiety
measure. Thus, due to the significance of the CCA decomposition,
CCX_1 and CCY_1 demonstrated high correlation, and uncovered
dependence between anxiety traits and a linear combination of
structural brain measures of SN and DMN. However, the CCX_1
and CCY_1 did not differ significantly between V and NV. Thus, the
latent variables did not reflect the victimization status.

In the D+ groups, the number of subjects was not sufficient
to estimate the modes of variance reliably for both RS and GM
brain measures. However, based on the previous analysis of the full
sample, we considered for the CCA analysis only GM brain measures.
The analysis revealed a single highly significant CCA mode that
related brain connectomes to subject measures (r = 0.99, p < 10−5).
Again, the first canonical variate for brain measures (CCX_1) was
plotted against the first canonical variate for the questionnaires
(CCY_1) in the scatter plot (Figure 8). The highest correlations
between each variable and the corresponding canonical variate were
provided in Table 5. The contributions of the variables to the CCA
modes were also demonstrated in Figure 8. The correlations between
the first canonical variable for brain, and the brain measures were
uniformly large, and were again represented by the measures of
DMN and SN. Therefore, the canonical variate CCX_1 could again
be considered as an overall measure across all brain measures. On
the other hand, TMT and ZNS contributed to CCY_1 to the highest
proportion. Thus, the dependence between TMT and ZNS, and a
linear combination of structural brain measures of SN and DMN, was
discovered.
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FIGURE 3

Group differences in structural covariance of gray matter masses (GMM) (A), gray matter densities (GMD) (C), and gray matter volumes (GMV) (E) within
and between four major brain networks for the full sample, and group differences in structural covariance of GMM (B), GMV (D), and GMD (F) within and
between four major brain networks for the subsample of subjects with a current psychiatric diagnosis. Squares indicate significant differences in partial
correlations between V and NV. Colors on the axes and of the nodes correlated with the networks: DMN–green, SN–purple, DAN–cyan, FPN–yellow.
Nodes with within-network differences were highlighted with black squares.

4. Discussion

The current study aimed to identify differences in structural
and functional covariance in the DNM, FPN, SN, and DAN in
a trans-diagnostic sample of individuals who identified themselves
as victims of violence. This sample was compared to individuals
who did not indicate any prior experience of violence but had a
similar history of mental disorders. To further limit the influence of
different psychopathologies on the differences in network covariance
in both groups, two comparisons were made: a comparison of victims
and non-victims in the whole sample (V versus NV), and in a
subsample with the present psychiatric diagnosis (D+ group: VD+
versus NVD+). Applying multiple comparisons correction, the only

differences between V and NV was discovered in BDI and SCI stress
exposure, both higher in V. On the other hand, the only difference
between VD+ versus NVD+ was discovered in VLT_1, which was
higher in NV. These differences may be linked to the exposure to
violence indirectly as the patients in this study who mostly had
experienced violence over a long time and with multiple incidents
may have had an increased severity of emotional and cognitive
symptoms compared to other patients who may not have had any
traumatic experiences.

While no differences between the V and NV group nor between
VD+ and NVD+ group were observed neither in GMM/GMV/GMD
nor in the time series in ROIs, the relative organization of the brain
seemed to be different between groups. Specifically, differences in
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FIGURE 4

Group differences in functional covariance of RS within and between four major brain networks for the full sample (A) and for the subsample of subjects
with a current psychiatric diagnosis (B). Squares indicate significant differences in partial correlations between victims and controls. Colors on the axes
and of the nodes correlated with the networks: DMN–green, SN–purple, DAN–cyan, FPN–yellow. Nodes with within-network differences were
highlighted with black squares.

FIGURE 5

(A) Number of all significant group differences in covariance between networks in the main sample. (B) Differences in covariance between networks in
D+ sample (subjects with a psychiatric diagnosis). Colors represent networks: DMN–green, SN–purple, DAN–cyan, FPN–yellow.

structural and functional covariance within and between the four
selected networks were discovered. Sparse inverse covariance of the
GM parameters and RS time series between the regions showed
both positive and negative partial covariance differences within and
between networks in both the full sample comparisons, and in the
D+ sample comparisons.

Differences in the covariance in all four investigated networks,
detected in V versus NV, may reflect organizational differences in
the brain of victimized individuals related to specific characteristics
of the group. However, we did not find any correlation between
observed neural differences and the self-reports. There may be
different explanations: on the one hand, self-reports may have not

reliably reflected well-being and psychopathological symptoms due
to the influence of self-perceptual abilities and social desirability.
On the other hand, differences in network organization may have
had heterogeneous sources or were related to further variables
not specifically assessed in this study. While single values of
psychopathological symptoms and neuropsychology did not differ in
comparisons of V versus NV and VD+ versus NVD+, CCA analysis
discovered significant CCA modes in both cases. This way, the
questionnaires of the full sample, mainly represented by anxiety,
related to the brain measures of DMN and SN. On the other hand,
neural measures of the DMN and SN in the D+ sample explained
the variability in shared attention and executive functions/cognitive
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FIGURE 6

Covariance differences across modalities in all subjects (full sample for V/NV comparison, and D+ sample for VD+/NVD+ comparison). Colors represent
networks: DMN–green, SN–purple, DAN–cyan, FPN–yellow. Shaded areas represented density functions of the histograms and highlighted differences
in frequency of node involvement.

flexibility as well as working memory, based on the uncovered single
significant CCA mode. Evidence was found for the relationship
between working memory and executive functioning, which might
point to the common executive attention construct (78). While no

TABLE 4 Correlation between canonical correlation analysis (CCA) variates
and variables in the full sample.

Brain measure variable Correlation with CCX_1

GMD DMN.LP (R) −0.21

GMD DMN.PCC −0.30

GMM SN.AInsula (L) −0.20

GMM SN.RPFC (L) −0.23

GMV DMN.LP (R) −0.20

GMV SN.AInsula (L) −0.21

Questionnaire variables Correlation with CCY_1

BDI −0.27

STAI trait −0.83

SCI stress exposure −0.39

HAWIE-R (ZNS) −0.28

VFT1 −0.25

VFT2 −0.29

direct evidence was found, the strongly affected covariance of the
DAN might underlie the observed CCA modality in the D+ sample.
Nevertheless, the latent variables did not reflect the victimization
status, since the CCX_1 and CCY_1 did not differ between VD+
and NVD+.

Structural and functional differences did not show a large overlap,
which may further support the heterogeneous sources of variance
in the self-identified victims and non-victims. In patients with
major depression that experienced childhood trauma disturbances in
functional brain networks similar to those investigated in our study
have been associated with trauma severity (79). Higher childhood
trauma severity moreover predicted symptoms of anxiety which
may show some similarity to the association of the anxiety related
component and covariance measures of gray matter in SN and DMN.
In addition to factors that directly relate to the exposure of and
severity to violence, cultural influences, personality, genetics, and for
the patients in both groups also access and success of mental health
treatment, may contribute to the reorganization of brain structure
and function. These different sources of variance may impact
structure and function differently thereby concealing or enhancing
organizational changes in structure or function. Our results underline
what has been summarized in a systematic review on subtypes
of violence and associated functional and structural alterations;
deviations occur in different brain regions not only depending on the
subtype of violence but also with regard to structure and function
activity and connectivity or integrity (39). The biological pathway
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FIGURE 7

Correlation of the first canonical correlation analysis (CCA) mode variables for the full sample (upper right), and contributions of the variables to the first
and second CCA dimensions.

the authors suggest may be one reason for such differences. Early-life
stress (exposure to violence) is expected to affect brain organization
which then may result in functional network changes either directly
or rather indirectly accompanying pathology. Instead of originally
affected stress-related brain regions, regions that are associated with
other cognitive processes affected by dysfunctional stress systems
may show functional disturbances in later life. Observing such a
mismatch of structural and functional covariance measures may
thus support the independence or asymmetry of structural and
functional network organization. The SN was affected in both the
full sample and the subjects with a current diagnosis (D+), with it
being the most affected network in the full sample. Structurally, in
the full sample and in the D+ sample, the SN demonstrated reduced
within- and between-network covariance. Functionally, however,
no differences relative to NV were observed in the full sample,
while in VD+ SN demonstrated increased covariance in SN/DMN
and SN/FPN. Thus, VD+ in our study demonstrated functional
hyperconnectivity of SN, which was not observed in victims if the
group also included healthy, potentially more resilient individuals. It
could be therefore hypothesized, that especially those victims with a
present diagnosis exhibited a functionally disturbed SN. Nevertheless,
the victimized group proved to suffer from structural aberrations
in the SN covariance. In healthy populations, the SN has been
recognized as necessary for the efficient regulation of activity in the
DMN. Thus, the failure of this regulation would lead to inefficient
cognitive control and weaker performance on cognitive control tasks
(80). Correspondingly, although in our sample patients in the V and
NV group were mostly not free of a psychiatric diagnosis, possibly
especially the victim group suffered from loss of control. Similarly, in

Bogliacino et al. (81), a reduction of cognitive control in victims of
urban violence and warfare was reported. Furthermore, differences
involving SN in the D+ sample were most frequent in DAN/SN,
while in the full sample this was the case for the FPN/SN covariance.
The latter network communication seems to be responsible for the
externally directed cognition (80). Finding altered communication
between FPN/SN in the whole V sample may thus underline that
these regions are affected independent of the severity or violence or
the mental health consequences.

Node connections of the DMN also demonstrated major
differences between V and NV in both structure and function.
The DMN in healthy subjects is responsible for a self-referential
introspective state (82). Structurally, both the full sample and the
D+ sample demonstrated reduced between-network covariance in
DMN/FPN. DMN/FPN connection was shown to be responsible
for introspective processes and executive function (83). Thus, the
reduced structural covariance between DMN and FPN might point to
possible decreased introspective processes, often observed in victims
elsewhere (83). While this would have to be confirmed in future
studies, such a deficit might be more pronounced in participants in
the VD+ group due to an active psychiatric diagnosis. Functionally,
the inverse interplay between psychopathology and large-scale brain
networks of the DMN/FPN has been demonstrated before (41) for
a number of psychiatric diagnoses. This might explain the observed
higher number of differences in DMN/FPN structural covariance as
compared to the full sample in our study. Functionally, however,
we could not support this finding. While no differences were
discovered in the full sample, VD+ demonstrated reduced covariance
in DMN/DAN (i.e., the connection DMN.PCC/DAN.IPS), and
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TABLE 5 Correlation between canonical correlation analysis (CCA) variates
and variables for the sample of subjects with a current
psychiatric diagnosis.

Brain measure variable Correlation with CCX_1

GMV DMN.LP (R) 0.42

GMV SN.AInsula (R) 0.43

GMD SN.AInsula (R) 0.39

GMM SN.AInsula (L) 0.41

GMM SN.SMG (L) 0.43

Questionnaire variables Correlation with CCY_1

BDI −0.36

MWT_B 0.26

TMT 0.68

HAWIE-R (ZNS) 0.71

VFT1 0.44

VFT2 0.57

increased covariance in DMN/SN. DMN/DAN covariance has been
related to perceptual attention in healthy populations (83), while in
anxiety and PTSD patients, functional covariance impairments were
observed in dorsolateral prefrontal cortex (84). While DMN/DAN
covariance seemed to be similar between V and NV, we cannot make
a definitive statement in this regard in the D+ sample due to opposite

covariance between different nodes. More research into the single
nodes is required at this point.

The DAN is engaged during externally directed attentional
tasks (85). In V and VD+, the DAN demonstrated reduced within-
and between-network covariance both in structure and function.
Additionally, to the DAN/SN and DAN/DMN differences in
covariance, described above, D+ sample demonstrated a higher
number of differences in structural covariance in DAN/FPN. FPN
regulates DAN in accordance with goals and task demands, and it is
involved in the regulation of perceptual attention (83). Recent data
showed negatively associated network connectivity between DAN
and FPN in subjects with depression, anxiety and suicidality (41).
Thus, based on our findings and in line with others, the higher
proportion of DAN/FPN covariance differences in D+ sample might
be a sign of the less efficient attention processes as compared to
the full sample.

In interpreting these findings, several limitations have to be
taken into account. First, only selected networks were investigated,
therefore differences in other networks cannot be excluded. These
networks were anatomically defined which may introduce a larger
bias than extracting data-driven time series as in other studies
(86). The victims were self-identified victims of violence, which is
a highly subjective measure, and it cannot be quantified, since no
correlation between aberrant network nodes and behavioral variables
were discovered. Nevertheless, it is important to investigate neural
alterations related to the subjective perception as this perception
may be strongly connected to mental health problems (6). Despite
of attempts to account for a large heterogeneity with regard to

FIGURE 8

Correlation of the first canonical correlation analysis (CCA) mode variables for the sample of subjects with a current psychiatric diagnosis (upper right),
and contributions of the variables to the first and second CCA dimensions.

Frontiers in Psychiatry 13 frontiersin.org65

https://doi.org/10.3389/fpsyt.2023.1040861
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org/


fpsyt-14-1040861 January 27, 2023 Time: 18:18 # 14

Shymanskaya et al. 10.3389/fpsyt.2023.1040861

psychopathology by matching both groups with regard to the primary
psychiatric diagnosis, the total sample was too small to test different
subgroups with specific disorders and subgroups without any mental
disorder. In addition, the heterogeneity of the type of violence
individuals were exposed to was large and the size of the sample did
not allow us to test in network changes may differ depending on
specific forms of violence such as (exclusively social) or non-social
forms of violence. As pointed out in a recent review (38) physical
and sexual violence in early childhood may seems to be associated
with higher risks of PTSD and personality disorders while emotional
violence more often associated with developing major depression.
Animal models of physical versus non-physical abuse even suggest
that brain circuit changes associated with abuse may differ. The
current results, referring to the in changes of brain connectivity across
all different types of violence may therefore conceal more specific
changes associated with physical or non-physical violence. Further
research in single nodes and in subgroups must be performed, while
the study sample is to be extended. Finally, the upgrade of the scanner
to Prisma while the study was carried may have introduced data
variance which can reduce the classification accuracy in the data as
shown in projects applying classifiers on fMRI data in multi-side
projects (87).

In a nutshell, differences in functional and structural covariance
between self-identified victims and people who never experienced
violence or did not identify themselves as victims were observed,
with a primary role of the SN. In the group with heightened
pathologies and various mental disorders, most differences between
victims and non-victims occurred in DAN. When the sample
was controlled for psychiatric disorders, less covariance differences
were observed, indicating that a major part of the network
variance may reflect differences in the pathological status of
two groups.
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Computational psychiatry recently established itself as a new tool in the study of

mental disorders and problems. Integration of different levels of analysis is creating

computational phenotypes with clinical and research values, and constructing a way

to arrive at precision psychiatry are part of this new branch. It conceptualizes the

brain as a computational organ that receives from the environment parameters to

respond to challenges through calculations and algorithms in continuous feedback

and feedforward loops with a permanent degree of uncertainty. Through this

conception, one can seize an understanding of the cerebral and mental processes

in the form of theories or hypotheses based on data. Using these approximations, a

better understanding of the disorder and its different determinant factors facilitates

the diagnostics and treatment by having an individual, ecologic, and holistic

approach. It is a tool that can be used to homologate and integrate multiple

sources of information given by several theoretical models. In conclusion, it helps

psychiatry achieve precision and reproducibility, which can help the mental health

field achieve significant advancement. This article is a narrative review of the basis of

the functioning of computational psychiatry with a critical analysis of its concepts.

KEYWORDS

computational psychiatry, computational phenotype, precision psychiatry, translational
psychiatry, computational modeling

Introduction

The brain has been conceptualized as a computer performing continuous calculations
about itself and its environment. Moreover, according to the theory of systems and Bayesian
approaches, the brain is conceived as a complex, non-linear computational device (1, 2). The
mentioned approaches could benefit a further comprehension of multiple levels of analyses that
subsume mental health and psychiatric diseases.

In the psychiatry field, various attempts have been made to understand mental health
and disease fundamentals. However, those intents have generated different explanations within
multiple theoretical models, which are often disconnected and lack of complex understanding
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of mental health and psychopathology integrating many levels and
systems. Thus, a point has been reached where a paradigm shift
is needed. Dimensional and transdiagnostic levels of understanding
are required to better comprehend. Some of the possible answers
have chosen the use of mathematical principles to reach a multilevel
analysis and generate hypotheses that can be validated. Such an
approach provides the possibility of achieving a unifying theory,
increasing accuracy, and reproducing what was found previously by
other authors. In this context, computational psychiatry is a tool for
precisely this purpose. It should be clarified that this probabilistic
view of the brain is open to controversies (3).

Psychiatry has always encountered multiple controversies during
its history. These, in turn, have generated multiple internal and
external crises that have questioned its validity as a science and its
management of mental illness (4–6). These criticisms have focused
primarily on the validity of their concepts and constructs (7), their
diagnostic capacity (8), the reliability between different observers,
and the lack of biomarkers to determine the diagnoses, treatments,
and prognosis of the condition (9, 10). Additionally, they have
focused on the variability of the course of different disorders, typically
heterogeneous in their presentation (11).

Psychiatry has used various approaches to overcome these
criticisms, such as nosological formulations. This strategy attempted
to elucidate their biological basis (12) by achieving greater reliability
in the diagnosis. Such systems have generated multiple syndromes
with significant heterogeneity in their course, clinical manifestations,
prognosis, and response to treatment but grouped under the same
diagnostic category (13). This has raised the possibility that they
also have a different neurobiological basis. It has also shown the
limits of these tools. However, a myriad of empirical data has
been obtained through such systems. Although, this data suffer
from poor integration of cellular, synaptic, neuronal circuitry, and
complex behavioral responses (14, 15). For example, there are strong
interactions between genes and environment at the genetic level,
but no clear paths to how these develop into a specific phenotype.
This also occurs in neuroimaging, where only indirect measurements
of the behavioral variables observed in clinical practice have been
achieved (15). In conclusion, a cohesive model capable of taking data
from different sources and giving adequate weight to each source of
information has yet to be reached.

Computational modeling of behavior was elaborated by
specializations of the neurosciences, which preceded computational
psychiatry. One of the first to do it was computational neuroscience.
It is responsible for studying the brain at a theoretical level,
determining the principles and mechanisms that guide the
development, organization, and process of information (16). This is
achieved using computational models (descriptions and explanations
of processes) that occur at different spatial and time scales and
with non-linear interactions. More specifically, computational
neuroscience makes hypotheses about the processes that operate in
the brain at different analysis levels and unites them to corroborate
them. The goal is to understand the functionality of complex
systems such as the brain, formulating quantitative hypotheses
(17). In this context, computational models give a practical tool to
address specific brain characteristics, such as its emerging functions.
Depending on the question type one wants to answer; one will opt for
a particular abstraction level to form a model. Here, the three levels
of analysis proposed by Marr and Poggio are relevant (18). These
are the computational level (the “why”), which is the most abstract
and deals with logical-mathematical reasoning; the algorithmic level
(the “what”), which evaluates the rules of the process; and, finally,

the level of implementation (the “how”) (19). For this author, brain
research was conceived as a problem of information processing (17).

Based on this, computational psychiatry has appeared as a
way to achieve this integration. Computational psychiatry uses
formal models of brain function to characterize the mechanisms of
different psychopathological manifestations by describing them in
computational or mathematical terms (20). This facilitates the study
and articulation of these data by incorporating knowledge from other
sciences such as cognitive science, computational neurosciences,
and “machine learning” (20–24), trying to translate knowledge
between different levels of analysis. This review aims to give a
comprehensive view of the foundations of computational psychiatry,
highlighting its interactions with different approaches like biophysics
and evolutionary psychiatry to arrive at precision psychiatry.

This field has become an essential tool for finding novel solutions,
encompassing both the context and the individual. In addition to
providing investigative and practical means to arrive at response to
specific needs in these contexts in a cost-effective way. Nevertheless,
it is necessary to understand its foundations and how it applies to
research and clinical purposes.

In this scoping review, we first describe the importance of
computation modeling in psychiatry to face limitations from a
system theory perspective. Then, we explain how computational
models are built, giving particular emphasis on their underlying
concepts. Moreover, we comprehensively explain the statistics
surrounding the computational models and their applications at
different levels of plausible explanations in psychiatric scenarios.
Finally, we reflect on model validation and the potential limitations
of computational psychiatry.

Methods

A narrative review of the literature was conducted, focusing
on computational psychiatry’s fundamental concepts and
applications. To this end, we searched PubMed, MEDLINE,
EMBASE, and EBSCOHost for both narrative and systematic
reviews of computational psychiatry using the terms “computational
psychiatry,” “biophysical psychiatry,” “computational modeling,”
“digital phenotyping,” “precision psychiatry,” and “computational
neuroscience.” After this search, essential studies were also reviewed
within the articles’ references. Articles written in English and Spanish
were selected. Articles based on their publication date were not
excluded. The last search was conducted on 30 December 2022.

Need for comprehensive models of
mental illness

A model is a heuristic way of understanding complex interactions
and their relationships by employing a simple rule (25). In the
case of mental health, modeling used have degenerated into a
diversity of disjointed data from various theories. Additionally,
modeling through the relation between brain activity and psychiatric
phenotypes has many pitfalls because they are focused and predict
complex profiles rather than unitary cognitive processes (7, 25).

Most explanatory models used in psychiatry and psychology
focus on narrative methods, with the problem of approaching human
behavior from only external behaviors or epiphenomena conducts
without ever finding a clear biological causal or mechanistic basis (7,
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25). This approach leads to difficulties in determining clear biological
and clinical processes (25) with implicit categorical errors (26). One
example is the measures based on self-reports with poorly defined
variables and poorly elucidated pathophysiological mechanisms (14).
On the other hand, by not knowing the mechanistic or robust
theoretical approaches to study mental disorders, some studies are
initiated to look for relationships with multiple variables in so-called
“fishing expeditions.” In turn, this can generate associations that do
not reflect the actual phenomenon (27).

Moreover, theoretical models have often been chosen for data-
driven approaches. However, this theoretical approach can exhibit
challenges when studying human behavior as they assume a priori
hierarchies assessing predictors of an outcome and can be restricted
to a partial understanding of a complex model (25). Finally, one can
obtain data replicated by others, assuming a certain degree of validity,
which could ultimately be wrong. In fact, replicability issues represent
one of the biggest current challenges in psychological studies (25).

Computational models applied in
neuroscience and psychiatry

Neuroscience and psychiatry lack methods for constructing,
assessing, and validating theoretical models, which should be more
extensive than describing relationships between different variables
(25). Against this issue, computational modeling of dynamic systems
becomes vital as it allows the generation of data-driven validations of
conceptual reference frameworks and biological measures, avoiding
issues due to spurious statistical associations and biases in building
models (25, 28).

Thus, computational models help simultaneously manage
massive information sources and articulate biological, psychological,
and contextual models for understanding human behavior. Different
approaches as machine learning, deep learning, and explanatory
modeling (13, 29), help to process information building in models
only determined by data avoiding theoretical and restriction biases.

An important method computational psychiatry uses is
differential equations, which express neurobiological systems’
functioning more closely. They represent changes as a function of
time codified by the interactions with other non-linear variables (25).
Consequently, they can join several equations that mathematically
specify relationships between symptoms, environmental factors,
and neurobiological substrates (28, 30, 31). This exemplifies the
possibility of reconciling different perspectives and empirical
data, providing cohesive, stratified models for understanding
complex phenomena.

A big group of mental disorders computational models
focuses on altered learning and decision-making processes as the
central components (15), highlighting the relevance of information
integration processing. These learning models have been used in
computational cognitive neuroscience, using tools like machine
learning to model a specific phenomenon. These cases are usually
divided into supervised, reinforcing, and unsupervised. Within these
models, it is assumed that the objective of learning is to form storages
of representations to be remembered and guide behavior, although
the mechanisms to perform it may differ according to the model
(29). In the case of supervised learning, specific feedback is received
after the experience.

In contrast, in reinforcement, this feedback is not explicit and
can be delayed and influenced by multiple factors. In addition, it can

be done in the form of punishments or reinforcements, which may
not be directly associated with the behavior. Finally, in unsupervised
learning, the subject is the one who must make sense of the experience
without any feedback.

Another use of the computational approach in psychiatry is
modeling a specific phenomenon. To achieve this, computational
models offer a tool to facilitate it via the generation of self-
generated models that synthesize data through the sampling of
inputs and achieve an approximation of specific outcomes, thus
integrating Bayesian probability (15, 32–34). Ultimately, they enable
us to make a probability distribution and hierarchization of the
best predictors of a neural, cognitive, or behavioral state among
massive interactions from different sources of variables (27). In
psychiatry, mentioned models would help us elucidate and better
understand psychopathological phenomena by relating them to
neuronal processes and their normal function (35).

This step can be performed at different levels of explanation, such
as at the molecular level, neural networks, cognitive processes, or
mental symptoms. Computational models now allow us to predict
symptoms and clinical presentation of neuropsychiatric disorders
by studying brain volume information and functional connectivity
networks via data-driven methods (machine learning procedures,
support vector machine methods, or deep learning approaches) (32–
34). Moreover, these approaches have been relevant for biophysical
psychiatry (14), where psychiatric phenomena of interest, such as
psychopathology, relate to alterations in the biophysical properties of,
for example, the membranes of neurons, as seen in other reviews (14).

Moreover, computational methods have helped to understand
the impact of different sources of information in neurodegenerative
disorders (36) or elucidating individual and contextual factors
determining complex behaviors such as violence (37).

Statistical foundations

Computational theories of the mind are based on probabilistic
perspectives. The brain processes are considered mimicking
computational functions of the system to infer the state of its
environment and decide which course of action to follow (35, 38).
The inputs will never be completely reliable, so there will always
be uncertainty that has to be considered when performing any
task. Therefore, Bayes’ theorem (the combination of the initial
expectation of the state of the environment and the probability
of the input determining a modified estimate of the state of the
environment) is used to describe these processes (15, 35). Describing
in such a way brain processes can be translated to computational
psychiatry approach. This contrasts with the statistical approach
used in psychiatry, which asks about the probability that the data
have resulted from the null hypothesis (25) and corresponds more
to discriminative models (35). By contrast, in the computational
psychiatry perspective it is possible to assess different layers of
biological, psychological, and social-contextual information and
use algorithmic approaches to assess multiple interactions between
layers, modeling data and testing those models with complex
validation processes of findings.

Different interactions can be found when computational
approaches are studied in neuroscience and psychiatry. First, some
computational models in neuroscience accept the metaphor of the
brain as a computer (20, 39). Mainly, the models who accept the
metaphor of the brain as a computer describe brain biological
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processes as part of a computer that primarily formulates predictions
on future states based on massive integration of past interoceptive
and exteroceptive information. In this perspective, the brain is an
entity that constantly builds and updates a model of reality through
sensory inputs named generative (40). The optimization of this
generative model must lead to the minimization of free energy
(the energy used by the brain) (2). Moreover, the brain tends to
formulate different predictions and minimize errors to curtail energy
expenditure, which can be done in two ways: either by adjusting the
cognitive scheme of the world or by changing the pattern of action
(15). The latter is essential since it can explain psychopathology,
including functional neurological symptoms (41).

Computational psychiatry is aligned with previously mentioned
notions, as it integrates different levels of information to formulate
appropriate models to describe and understand mechanistically
healthy and pathological behaviors. Moreover, computational
psychiatry performs predictions of potential states and biomarkers
and runs test and retest validations assuming complex heuristics
to predict psychiatric phenotypes (18, 35, 42). The goal is to
generate accurate and robust predictions with the minimization of
the workload to reach meaningful outcomes.

According to Breiman (43), two statistical models are used in
the mentioned approaches. The first is algorithmic or “data-driven”
models, aiming to predict results by having a specific group of data
(inputs) following complex statistical procedures leading to massive
interactions between variables. The second model is described as
“theory-based” modeling, where a pattern of outputs and initial data
is used to determine how the process is performed to generate this
data (35, 44).

Both types of statistical analysis proposed by Breiman share
statistical tools and can be associated with concepts from the learning
field through reinforcements. Thus, it offers different visualizations
as to how to conceptualize the computations or calculations made
by the brain (15). Also, it can give way to the use of methods like
machine learning in computational psychiatry (21). Learning is a
complex process since there is always uncertainty. A specific behavior
is selected according to the reinforcers and punishments values
during reinforcement learning to maximize a particular outcome. All
this is based on the prediction error measured utilizing the learning
rate. The impact of this error depends on its accuracy (inverse
uncertainty) (45).

There are two different ways in which experience is used to
estimate and predict future rewards and punishments. The first is a
model-based cognition, also called goal-directed, where experience is
compiled into a generative world model. This involves the inference
of future possibilities, generating an enormous computational cost.
This contrasts with model-free cognition, where no information
about the change suffered is stored but only encodes how much
reinforcement is obtained when the subject is in a state or
performs a specific action. In the latter, computational costs are
decreased, but at the cost that the system becomes slow and
inflexible, with no possibility of responding to changes in the
environment (46).

To abridge previous gaps, the predictive coding model is
important, where a unit at a specific hierarchical level sends messages
to one or more units of lower levels that predict its activity
(47, 48). The discrepancies generated between these predictions
and the actual input are then passed to higher levels of the
hierarchy as prediction errors. They are then reviewed to refine
the prediction (35). The uncertainty (inverse precision) of each

level determines the rate of learning at each level, determining the
size of adjustments that must be made to explain the data that
has been sensed. This approach is closer to the representation of
the nervous system, a dynamic and hierarchical system. However,
this hierarchical model has come into question with models such
as the heterarchical model (49, 50), where the components of
a system do not have a specific order. However, they can have
different connections depending on the function and the context that
is being analyzed.

Statistical models based on data could give important tools for
clinical practice. One is SpeechGraph, a computational tool that can
quantitatively assess a patient’s discourse structure through graph
theory (51, 52). This tool does not take the process of speech
formation (the syntax). However, it is possible to calculate the
attributes of the graph created from the discourse and, through
these, can differentiate a control from an affective and non-
affective psychosis (52–54). It can also determine the differences in
the development of the discourse longitudinally of children with
psychosis and controls (55) and in cases of dementia, these can be
correlated with other cognitive deficits (56). The importance of these
approaches has been taking force with Natural Language Processing
(NLP) associated with machine learning paradigms (57, 58). These
models can evaluate specific parts of a complex neurocognitive
process like language and then aid in comprehending the underlying
pathological mechanisms.

In the statistical models used in theory-based models, the
parameters are surrogate variables of neural computations
(processes). In this case, the parameters do adapt to neurological
or behavioral data. Therefore, this model can be used to elucidate
possible dysfunctions underlying multiple mental disorders (59),
such as the search for pathophysiological processes underlying
transdiagnostic alterations. This theory-based approach can also
account for neurocognitive approaches like the Bayesian active
inference model of discourse. The person speaks, and this person
monitors internal and external signals in the search for errors (60)
and explains the way social cognition alterations could disrupt
language emission or reception.

To this end, several conditions must first be secured. The first
thing is that the model must be able to predict multiple experimental
data. To determine this, the effects of the parameters on the model’s
predictions must be independent, and there must be sufficient data.
These conditions are mainly used to compare different models to
determine which fits best to a particular phenomenon. One of the
ways to do this is to simulate data in each model one has and
determine the ability of each model to generate the “real” data
of the variable being studied. Remember that the empirical and
predicted data will not coincide perfectly (59). Then, these parameters
may be used as computational markers of psychiatric illnesses.
These markers associate psychiatric dysfunctions with failures in
neuronal computations (predictive coding, divisive normalization,
and contextual modulation). With these markers, what one is
trying to do is (59): (i) Distinguish between diagnoses with similar
symptom profiles: spectrum problem or symptom overlap. (ii) To
characterize heterogeneity within diagnostic categories concerning
alterations in computational mechanisms. (iii) Predict relapses or
responses to treatments.

Although brain processes result in great complexity, they present
a hierarchical organization that allows them to be broken down
into more basic operations and easily understood. In the same way,
phenomena studied by psychiatrists can be simplified and organized
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in hierarchical models through factor analysis (61) or network
theory (62).

Levels of analysis

Overall, this data processing method seeks to integrate
neurological, psychological, and social reference frameworks.
Indeed, it searches for a way of making bridges between different
levels of this hierarchical organization of the brain, which has
to consider its surroundings as described by the concept of the
phantastic organ (21).

It is then possible to make models that describe the molecular
basis of the individual neuron, describing its electrical properties and
the generation of the action potential. This is done by employing
a set of equations that describe its properties (14). To achieve this
level of characterization, previous studies of significant impact on this
understanding are taken as the description of the signal propagation
by neurites (63) and others (64).

Also, within the first level of analysis, one can opt for the genomic
analysis and description of the studied phenomena. Genomic
approaches attempt to determine the biological relevance of genetic
variants and predict their influence on the phenotype (65). This
review shows that computational models lend themselves precisely
to validating and confirming biological relevance. Currently, the
discovery of possible risk variants using GWAS (66–71) is much
faster than their validation. Nonetheless, computational approaches
have been developed for the prioritization of disease-gene candidates
(72). This advancement has enabled researchers to elucidate co-
expression patterns through network analysis (73).

Before continuing, some clarifications must be made regarding
the conceptions of circuits at the neurosciences and the clinical
level. The term circuit in neuroscience refers to microcircuits where
biophysical processes modulate a response. Meanwhile, in clinical
neurosciences, these are dynamic systems defined by control systems
(25). This latter definition describes better the networks which are
studied in psychiatry.

However, to discover circuits associated with a specific
phenomenon, a hybrid approach must be used where the discovery
of a circuit is based on observing the dynamics of its outcomes.
This is then put into a differential equation that describes the
system’s mechanistic structure. With this, a differential equation
that describes the system’s response can be generated starting from
the inputs and outputs. This is called the “transfer function.” At
this time, machine learning can be used to discover plausible or
related biological circuits. These circuits can be added according
to their interactions generating complex systems (25). This kind of
approach enabled researchers to develop theories of the function and
associations of specific brain regions like the hippocampus (74) and,
with this information, able to put forward hypotheses of different
pathologies (75).

At the level of circuits, an attempt is made to elucidate the
intrinsic neural activity evoked through different brain systems.
These models incorporate the properties of neurons and synaptic
connectivity. However, they are limited by the strategies used to
acquire information from these networks, based on imaging studies.
So, these models describe the brain as a network of interconnected
nodes (76). To achieve this, there is a necessity to describe
the structural connectivity matrix together with an equation that

determines the neural dynamics of each node. Direct connections
and the background activity of the area will influence these. Many
of these aspects require biophysical knowledge at the molecular and
cellular levels to achieve a more accurate approach to empirical
neural dynamics. Furthermore, they could integrate with data and
knowledge taken from the connectomics fields. In doing so, these
approaches are helpful in investigating alterations in the brain
connections in specific diseases (77) or arrive at transdiagnostic
alterations (78).

As for the psychopathological level, examples are scarce.
However, computational psychiatry can also be used to reach
its understanding and even form practical applications based
on psychopathological alterations of the computational level of
information processing (79), such as salience processes. This opens
the possibility of evaluating neurocognitive domains to evaluate a
patient, which is currently underused for patients with psychiatric
ailments. Within this part of the diagnostic and therapeutic process
in psychiatry, various problems previously highlighted in terms of
the validity of the psychopathological evaluation and nosological
classification can be tackled (4–6, 80–84). Within this panorama,
psychopathology can be considered a complex system (85), where
alterations in its balance generate a search for homeostasis through an
orientation toward the environment and a manipulation of its parts,
reaching emerging qualities, which can be expressed as symptoms
during a mental examination. Because of this, computational
processes are privileged to achieve new perspectives that allow the
clinician or researcher to overcome these obstacles.

Moreover, there is a possibility of considering constructs that
may not be psychopathological but do contribute to suffering, such
as domestic or gender violence. Nonetheless, different models have
been proposed to tackle this problem, like the Hierarchical Taxonomy
of Psychopathology (HiTOP) (86) and the network theory (81). This
is how different diagnostic approaches using computational methods
have been proposed (71).

However, to achieve this, different levels of analysis contribute
differently to a specific phenomenon. Nonetheless, their integration
is difficult to achieve, as well as the identification of a level more
essential to the phenomenon studied. So, depending on the question
to be answered, specific methods must be used to address it.
Consequently, certain analysis levels will also be used preferentially.
The problem lies in recognizing which level permits having a
bigger and better picture of the studied event, weighing each
component differentially. In other words, according to the question
to investigate, certain elements of the phenomenon will be more
important (essential) than others (87). In such a way, certain levels
of analysis will carry more information within this question.

Finally, this must also be complemented with a longitudinal
perspective (88–91), in which importance is given to how these
processes will shape neurodevelopment (92, 93), where both normal
and abnormal trajectories of such development must be studied for
the possible determination of useful biomarkers or the understanding
of the interactions that are at play and that can be associated with
both normal and abnormal development. All this is associated with
perspectives promoted by the RDoC initiative.

Considering the above, there are three types of perspectives
to approach the description of dynamic systems, such as mental
processes (25):

1. “Bottom-up” biophysical approaches: begin in individual
neuronal functioning and are extrapolated to other levels of
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hierarchical organization, such as networks. In this case, the
equations represent the properties of neurons, synapses, or ion
channels. These observations can then be transferred to the
functioning of neural circuits. However, the subsequent step
between circuits and behaviors is much more complicated to
surpass. There is an underlying problem: the whole can be
greater than the sum of its parts. So, understanding the basic
processes does not always arrive at a corresponding process in
the higher levels of the hierarchy.

2. “Top-down” approaches, where one starts with an emerging
phenomenon and tries to infer the set of neural mechanisms on
which they are based. In this part, connectionist models used
in cognitive and psychiatric neuroscience become essential.
These models study neural systems that are involved in various
cognitive processes. They attempt to arrive at the functioning
of neural networks on a large scale and thus be able to achieve
behavioral predictions (12). Models incorporating more than
neurobiological systems are included in this part of modeling,
such as social interactions or cultural influences.

3. Theoretical-informative approaches, where structural strategies
are investigated where the brain can optimize the efficiency of
information propagation based on graphs or network theory
considerations.

Now, this complements modeling levels suggested by
computational neuroscience (35), described in the introduction.

Model’s validity

Validation requires integration of multiple sets of data involving
different biological, psychological, social, and contextual levels of
analysis. Computational modeling in psychiatry maximizes the
amount of information predicted using data-driven hypotheses and
testing processes a priori assumptions using a small pool of data (25).
Another advantage of computational psychiatry is the capacity to
generate, test, and validate available models or those generated in the
research process (25).

Modeling validation can be tested using statistical parameters,
including accuracy, sensitivity, specificity, and power measurements.
The accuracy of a model is critical to take into account as it
allows a certain degree of confidence in the results obtained. This is
determined by the degree of error between the prediction it makes
and the empirical data obtained. Meanwhile, the model’s power is
evaluated by the diversity of inputs (different perspectives) and the
time during which the predictions are valid (25).

Thinking of the brain as a machine that solves inferential
problems can be an excellent way to generate testable computational
hypotheses about psychiatric disorders (35) or even mental issues.
Moreover, this is especially important because each measurement
can have multiple explanations (multi-causality). The problem lies
in finding which description is the one that best fits the data taken
and enables a better prediction of future problems. For this step,
the researcher can determine the model parameters that maximize
the likelihood of the data given the model in a process known as
model fitting. This likelihood is then used to calculate a quality-of-
fit criterion (94). There will also be a degree of uncertainty, and there
will always be room to improve the models. Then, a balance must be
made between the complexity of the model and the model’s accuracy.

A highly complex model leads to greater difficulty in achieving
the understanding one wants to have of the phenomenon studied
(95). But mental processes are highly complex, and some complexity
of the model is inescapable. Alternatively, simple models can lead
to poor prediction, in other words, lower accuracy and thus low
usefulness. In addition to this, it must be considered that psychiatric
disorders are characterized by their heterogeneity, so there may be
several mechanisms at play in the same patient despite having the
same phenomenological or nosological representation, which must
be considered within the validation process (15).

As this computational modeling field grows, there is also the
need to be able to compare different models. One such way to do
so is using Occam’s law (94). Similarly, as the free energy principle
governs the brain, one could select a model according to its predictive
performance (its ability to predict observed data). Nonetheless, this
approach is not enough for selecting theories. In this scenario, the
model’s generative performance becomes a better way of selecting
the model by falsifying it (94). The latter requires the simulation of
candidate models in a denominated model recovery process. These
two selection models are complementary an allow researchers to
reach the most accurate modeling to explain a dataset (94).

Finally, the greater complexity and computing power put forward
another issue: reproducibility. For an article to be reproducible needs
that researchers share its data and coding, and in executing the code
with the data given, one arrives at the same results. The ability to
analyze more complex interactions between non-linear factors and
their dynamic interplay could bring the researcher closer to data
with a low signal-to-noise ratio, with a possibility of identifying
false associations (96). It is essential to point out that this is not
unique to computational approaches. However, it is partly facilitated
by multidimensional datasets which go through rapid, flexible, and
automated analysis (97, 98), as in Big data approaches. To tackle this
problem, sophisticated analyses are required. However, there is a lack
of infrastructure and knowledge to support this task.

Nonetheless, initiatives have taken place to tackle these
limitations, and various articles have been written to describe steps to
take to achieve the goal of more reproducible research, like improving
methodological knowledge and independent methodological support
with the encouragement of collaboration initiatives and open science
(97) and to develop a way of accountability (99). It is also important
to bear in mind the bias-variance trade-off (100). There is a conflict
between bias error and variance error which must be minimized while
constructing a computational model. A bias error generates when the
model is not capturing relevant associations, while a variance error
occurs when the model is overfitting.

Precision psychiatry

When talking about precision psychiatry, we seek to achieve
a computational phenotype. This means achieving a model that
best suits the empirical data of the subject or phenomenon.
This allows for generating inferences at the individual level about
the underlying computational mechanisms that govern what is
observed in the patient, thus overcoming the opposition between
the dimensional and categorical perspectives (12). This is of utmost
importance in ethnopsychiatry since it allows to the generation of
specific modeling of behavioral alterations, which can be outside
the nosological categories. Equally important, they acknowledge the
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impact of specific environments in a person’s life. In doing so, a
better understanding of the person and their contextis reached; and
one is capable of offering the best possible therapeutic approach
(individualized and person-centered).

However, the traditional form of research in psychiatry has
allowed predictions of the average functioning and mechanisms of
pathophysiology to be achieved in a defined group of patients, such
as that presented in nosological systems. Nevertheless, the problem
of proposing differential diagnoses arises. When a differential or
comorbid diagnosis is suggested, the clinician must determine from
the findings in the patient what is the specific pathophysiological
mechanism or of more significant predominance in the individual
(15), which is currently impossible. This would determine the
best therapeutic intervention for the patient and their prognosis
(101). This possibility of differentiation between diagnoses and
spectra within the same diagnosis has been made possible through
“generative embedding” (102), although only in research.

Another problem is to consider phenomena outside nosological
systems, which also have a high impact on society. A clear example
in the Colombian case is that of violence, from which multiple
phenomena and complex social processes have been generated that
have contributed to the mental health of a population (103). Still, they
should be given more importance in the research on mental health,
especially from the medical perspective (104).

Clinical applications

Transferring all the previously described concepts to the clinical
and practical field has been costly and time-consuming (105).
It is one of the most critical efforts to test the usefulness of
these approaches (87). This has multiple reasons, which could
be summarized as that mental health depends on normal brain
function and how it is related to modification and is influenced
by the individual’s context. It is a form of circular causality. These
models or tools must describe dynamic, hierarchical, and non-
linear systems. This means that it is challenging to have a clear
and concise understanding and comprehend these phenomena or
disorders. However, approaches are trying to address this problem
by creating a bridge between neuroscience and computational
psychiatry with cognitive neuroscience. It is essential to highlight that
computational psychiatry can be a valuable tool in searching for these
basic computations and how they modulate and emerge innovative
functions from an evolutionary perspective (38).

Currently, psychiatry is primarily based on nosology contingent
on classification systems such as the DSM or the ICD. However, this
approach can be complemented by a dimensional vision, where they
are added to the psychopathological manifestations and dimensions
given a value within a continuum in models like HiTOP (86).
However, this value can be non-linear or interact or correlate
with other dimensions by modifying the syndrome and making it
extremely difficult to quantify the weight of a specific factor.

A clear example is the determination of suicide risk (106, 107).
The risk factors are determined through previous studies, but the
quantification of these is carried out at the level of the clinician’s
judgment, and the scales have poor operational characteristics
(106–108). In addition, all this is done from population data
without considering the differential influence of these factors on
the individual. Machine learning has been used to predict suicide

attempts and deaths from clinical records (102). For this reason, a
way is required in to integrate dimensional and categorial visions,
which often escapes the possibility of the clinician within their daily
practice (44). The difficulties in diagnosing, prognosis, and treatment
of this type of patient are highlighted. To have a complete picture of
these applications, the reader can refer to the review made by Huys
et al. (44).

These first approaches are still only applicable to research, but
they give glimpses of the utilities of this tool. On the other hand, one
can have clear examples where the first steps have already been taken
to achieve a translation of this knowledge. Some of these examples are
available below.

Data-driven approaches

1. Diagnostic classification: In this aspect, elements of “machine
learning” can be used. With this, neuroimaging data can
be analyzed by distinguishing clusters of specific symptoms
with specific neurobiological substrates, as seen by Costafreda
et al. (109) or Mota et al. (54, 110). However, problems
such as determining comorbidity as completely different
disorders continue without the possibility that they have defined
diagnostic limits (111). Because of this, the usefulness of these
tools requires testing their properties in ambiguous cases, where
there are more significant difficulties in differentiating.

2. Prediction of clinical status: This type of application focuses on
identifying markers to determine the stage where a particular
patient is to describe prognostic or treatment features. This has
been used in early psychosis to predict social outcomes in a
high-clinical risk sample (112). In other examples, NLP can be
applied to clinical records like psychotherapy notes to enhance
prediction models for different clinically relevant outcomes like
suicide risk (113).

3. Prediction of treatment response: This aspect corresponds
to the need to improve the prognosis and the ability to
identify the best therapeutic alternative with an individualized
approach. In the specific case of depressive disorder, where
it is evident that only two-thirds of patients have a response
after multiple pharmacological attempts (114–116), identifying
the characteristics that could collaborate in the treatment
choice is required. It may be that the cases referred to as
resistant are not but require differential therapeutic responses.
However, it has been attempted to achieve different ways
to characterize and predict treatment responses, such as
quantitative electroencephalogram markers (qEEG) (117, 118)
which were validated by other studies (119). In addition,
methods based on neuroimaging results have also been used
(120), which be associated with computational approaches for
pattern classification. All these approaches have been shown in
their early experiences to improve responsiveness.

4. Choice of treatment: As mentioned in previous section, not
all patients respond in the same way to treatments, even if
they are first line. But as made explicit above, there are no
variables or individual characteristics of the patient to determine
it, even though multiple pharmacogenetic studies have been
done in some specific situations. At this point, numerous binary
classifications can be used simultaneously to achieve this task.
However, to be feasible, a specific group of paraclinical must be
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used (121, 122). It can be used, for example, in electroconvulsive
therapy, where simulations of electric fields can be integrated
with the current knowledge of neurocircuitry to individualized
electrode configurations (123, 124) and in the Deep Brain
Stimulation (DBS) field (125).

5. Clustering of clinically relevant data: In this approach,
unsupervised methods are used to cluster together
characteristics of the sample giving rise to dimensional factors
that can inform the patient’s clinical status. An advantage of
this approach is that it facilitates the interpretability of the
results (100). This approach has been used to identify brain
fingerprints in different disorders from neuroimaging data
(126, 127).

In these different applications, the researcher can take various
sources of information to give a more accurate picture of the
patient (128). This complementarity exemplifies the possibility of
the constructing of mechanism-driven knowledge from data-driven
approaches (100). These applications could then be articulated with
network theory to understand mental disorders revised elsewhere
(62, 129).

Theory-driven approaches

These are initially “fed” by multiple data found at various
levels of research, exploring the relationships between them.
At the level of psychopathology based on Bayesian theory, the
psychopathologic symptoms can be structured in three different
ways: solving an inappropriate problem correctly, solving a suitable
problem incorrectly, or solving a relevant problem correctly but
in the wrong context (130). Moreover, from this conception, an
analysis and a possible union of knowledge of brain structure and
functioning can be generated together with behavioral variables seen
in clinical practice.

1. The course of the disorder: In this section, Goldbeter’s article
can be an example (131). The author gives a model of mutual
inhibition between two processes (depression and mania) to
explain the cyclicity seen in the disorder. In this example,
the model does not contemplate neurobiological processes at
neurocircuits, synaptic, neuronal, or biophysical levels. Still,
it achieves a conceptualization of a phenomenon of extreme
importance, such as the cyclicity in bipolar disorder.

2. Predicting risk of recurrence: There are other examples where the
researcher could take a specific marker like effort and reward
tasks to determine the clinical status of a specific disorder. And
later, decide on the treatment according to the information this
marker gives the practitioner, like the risk of recurrence (132).

3. Neurocognitive functions: The models can be used to describe
the function of neurocognitive functions and domains, like
working memory (133). And it enables researchers to put
forward theories and models of pathological alterations of these
processes (75). These models can also be used directly in
conceptualizing a disorder like obsessive-compulsive disorder
(OCD) and linking it to neurodevelopmental processes (134).

4. Pathophysiological processes: This type of model can give
insightful perspectives that integrate different levels of analysis
giving rise to a comprehensive and integrative knowledge of the

disease processes. There are multiple examples across multiple
disorders like schizophrenia (135–137). This, in turn, could
give information about possible therapeutic targets. Researchers
could also create models for explaining and understanding
mechanisms associated with the therapeutic response, like
neuromodulation strategies such as ECT (138).

In addition, an integration of these two approaches can also
be achieved. This is because theoretical models must be fed from
previously collected data to construct a good model. But also,
a mechanistic model can generate available data for constructing
pragmatic tools that can be used in clinical practice. To show how
this applies to a specific pathology (schizophrenia), refer to the article
by Valton et al. (139). In Table 1, there is a list of the examples used
throughout this review with a description of the approach used and
implications and contributions for the field.

Finally, it is essential to highlight that these applications
go beyond the nosology provided by the DSM and allows the
visualization of phenomena that can impact the course and prognosis
of these disorders or the mental health of individuals in general. An
example of this is creativity, which can be understood as the ability
to create unique products such as artists (Creativity with a capital
C); or as a cognitive function that helps the individual adapt to his
environment and give answers to his environment (creativity with
c) (140). The latter, in turn, depends on divergent and convergent
thinking (141). In the review carried out by Mekern et al. (142), it
can be evidenced how the same phenomenon can be studied from
different levels and segmented into other processes even going so far
as to predict or determine how these processes would be affected by
specific alterations or disruptions. With the help of computational
modeling, it improves its understanding.

RDoC: Possible response to the
constraints of nosological systems

The nosological systems encountered in the clinical and
research practice delineate highly heterogeneous phenotypes that lack
reliability and validity, which has restrained advancements in the field
as the computational tools rely on the input one puts in them (82,
143). In this way, if one takes invalid or erroneous input to a model,
which can be valid, the data that results from this process is also
invalid and could deviate the researcher to a categorical error. The
necessity for a system of categorizing these problems and disorders
in a way that conceptualizes them as a mixture of interacting and
dimensionally varying processes is at the front and center of the
problem (87). This, in turn, could give us a way of representing these
problems in a more ecologically valid way.

Different approaches have been made by researchers in
order to arrive at solutions to these limitations. One of them
is RDoC. The Research Domain Criteria Project was initiated
by the NIH (National Institute of Health) to address the
different problems that research has encountered in mental health,
specifically mental health disorders (144–146). This project was
conceptualized as a research framework, so it has no applications
in clinical nosology, nor does it pretend to be a replacement
for it. Although, one of the potential impacts is to achieve
a classification system with a more significant neurobiological
basis without leaving a biological reductionist vision of these
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TABLE 1 Clinical applications of computational approaches.

Title References Study aim Data analyzed Computational
approach

Conclusions/Implications

First symptoms and
neurocognitive correlates of
behavioral variant frontotemporal
dementia.

Santamaría-García
et al. (32)

Analyze neurocognitive correlates of patients with
bvFTD who debuted with apathy or disinhibition.

Data from a group of patients and
controls involving
neuropsychological, clinical, and
neuroanatomical data.

Data-driven approach using
machine learning associated with
a multivariate analyzes.

This study gives an example of the possibility of
integrating different levels of analysis of data with a
longitudinal perspective. The latter is achieved by the
longitudinal approach to the study and the description
of correlations of first symptoms and their evolution.
This study assessed multiple levels of analyses by
implementing support vector machine approaches.

Robust automated computational
approach for classifying
frontotemporal
neurodegeneration:
multimodal/multicenter
neuroimaging.

Donnelly-Kehoe
et al. (33)

Determine if by using atrophy and resting-state
functional connectivity one could differentiate
between patients with bvFTD and controls.

Datasets from participants in
different regions of the world.

Automatic, cross-center,
multimodal data-driven
computational approach using
machine learning.

The multimodal approach explored in this study
enhances the system’s performance in a multicenter
protocol. This underscores the possibility of clinical
applications in real-world conditions. This study
implemented different machine learning models to
abridge different levels of neurocognitive and clinical
information in dementia.

At the heart of neurological
dimensionality: cross-nosological
and multimodal cardiac
interoceptive deficits.

Abrevaya et al.
(34)

Examine the impact of neural relative to
autonomic disturbances of cardiac interoception
across neurological conditions.

Data from 149 participants
divided between two pathological
groups (neurological and cardiac)
and controls.

Data-driven approach to evaluate
the relevance of the cardiac
interoceptive dimensions in the
discrimination of neurological
and cardiac pathologies.
A classification pipeline was used
with the input from behavioral
dimension and different levels of
analysis.

This study demonstrates the possibility of
computational models to integrate different systems
(cardiac and neurologic) to find relevant variables for
the discrimination of disorders. This study reached to
mentioned conclusions by implementing different
automatized analyses including support vector
machines and machine learning procedures.

Thought disorder measured as
random speech structure classifies
negative symptoms and
schizophrenia diagnosis 6 months
in advance.

Mota et al. (54) Determine if early markers of speech
disorganization during recent-onset psychosis
measured using SpeechGraph could correctly
classify the severity of negative symptoms as well
as the schizophrenia diagnosis.

Graph measures of different
memory reports.

Data-driven software to measure
graph attributes of connected
speech.

This study has a different approach to the use and
application of computational models. It takes a
software made through a data-driven approach to
arrive at quantitative measurements of formal thought
disorder. This could in turn help to delimitate better
these alterations to make a more precise diagnosis.
There are other applications of this software (53, 55, 56,
110, 155, 156).

A computational framework for
the prioritization of disease-gene
candidates.

Browne et al. (72) Evaluate the performance of a method for gene
prioritization applied to Alzheimer’s disease.

Gene Expression Omnibus
(GEO) database.

Model-based approach based on
network theory for the creation of
Protein–Protein Interaction
Networks (PPIN). Integration of
multiple datasets for the
construction of PPIN.

A framework that integrates diverse heterogeneous
data including gene expression and network
topological features to prioritize and analyze
disease-gene candidates applied to AD as a Case Study.
Demonstration that the integration of PPINs along
with disease datasets and contextual information is an
important tool in unraveling the molecular basis of
diseases.

(Continued)
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TABLE 1 (Continued)

Title References Study aim Data analyzed Computational
approach

Conclusions/Implications

Integrated co-expression network
analysis uncovers novel
tissue-specific genes in major
depressive disorder and bipolar
disorder.

Han et al. (73) Explore the expression specific characteristics of
different areas by systematic analysis of larger
samples of brain tissues and determine gene
expression patterns and tissue-specific expression
profiles between major depressive disorder and
bipolar disorder.

Transcriptomic datasets retrieved
from the Gene Expression
Omnibus (GEO).

Data-guided approach with a
weighted gene co-expression
network analysis to construct
gene co-expression networks for
large scale gene expression
profiling from various regions of
the brain.

Give insights in the tissue-specific functions of various
brain regions in the context of psychiatric disorders
(MDD and BD). It is a report on functional similarities
and specificities between tissues of two psychiatric
disorders.

Dissecting psychiatric spectrum
disorders by generative
embedding.

Brodersen et al.
(102)

Examine the feasibility of defining subgroups in
psychiatric spectrum disorders by generative
embedding.

Functional MRI dataset
performing a working memory
task.

Theory-driven approach through
the use of generative embedding.
The researchers used parameter
estimates from a dynamic causal
model (DCM) of a
visual-parietal-prefrontal
network to define a model-based
feature space for the subsequent
application of supervised and
unsupervised learning
techniques.

This is a proof-of-concept study to examine how
model-based clustering could be used to dissect
psychiatric spectrum diseases into physiologically
defined subgroups, giving foundation to possible
implications in the delivery of precision psychiatry. It
gives insight into the constraints of a model-guided
approach according to its assumptions.

Uncovering social-contextual and
individual mental health factors
associated with violence via
computational inference.

Santamaría-García
et al. (103)

Evaluate individual mental health and
sociocontextual determinant of violence
simultaneously and explore their association to
different domains of violence.

Data was taken from a sample of
26,349 ex-members of Colombian
illegal armed groups who entered
programs of transitional justice
for reincorporation into civilian
life. They responded to a
semi-structured interview
designed by the Agency for
Reintegration and Normalization.

Combination of theory- and
data-driven approaches of
examination and analysis of
historical records of ex-members
of illegal armed groups in
Colombia, using deep learning
and machine learning methods to
identify the most relevant factors
associated with domains of
violence.

This study investigates the interaction of contextual
and individual factors associated with violence in the
Colombian context with novel methodologies to take
into account historical assessments. Another important
aspect of this study is the usage of a combination of
theory- and data-driven approaches. This study is not
focused in a mental disorder, however it has been
weighed the importance of social and individual
mental health variables like violence.

Predicting suicide attempts and
suicide deaths following
outpatient visits using electronic
health records.

Simon et al. (157) Develop and validate models using electronic
health records to predict suicide attempt and
suicide death following an outpatient visit.

Health care records from seven
health systems of 2,960,929
patients.

Data-driven approach to develop
prediction models, which were
separated between mental health
specialty and primary care visits.

This study describes an analysis of a great amount of
data across different health care systems. Within the
supplementary material, there is a public repository
including specifications and code for defining predictor
and outcome variables alongside a data dictionary and
descriptive statistics for analytic data sets, which
impact the reproducibility of the study.

Speech structure links the neural
and socio-behavioural correlates
of psychotic disorders.

Palaniyappan et al.
(53)

Investigate the neural basis and the functional
relevance of the structural connectedness of speech
samples of subjects with schizophrenia and bipolar
disorder.

Clinical assessments of 34
patients with schizophrenia and
22 with bipolar disorder.

Data-driven software to measure
graph attributes of connected
speech.

This study exemplifies the possibility of establishing a
relationship between pathological phenomenology and
biological markers. This opens up the possibility of
integrating this tool with other computational
approaches to achieve a multilevel analysis.

(Continued)
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TABLE 1 (Continued)

Title References Study aim Data analyzed Computational
approach

Conclusions/Implications

Pattern of neural responses to
verbal fluency shows diagnostic
specificity for schizophrenia and
bipolar disorder.

Costafreda et al.
(109)

Through the usage of the verbal fluency task, the
researchers investigated the functional
neuroanatomy of executive function in
schizophrenia and bipolar disorder. The
hypothesis was that the pattern of regional brain
responses would correctly identify the diagnosis
for each participant at the individual level.

Patients with schizophrenia and
bipolar disorder in remission.
They were subjected to a clinical
assessment and were taken fMRI.

Data-guided approach with the
use of machine learning to
conduct a pattern classification
analysis.

The study highlights the possibility of being able to
integrate data from a neurocognitive task and reveal its
neurobiological basis to determine precisely diagnostic
differences between different clinical entities. It also
highlights that the difference between diagnosis comes
from degrees of functionality and the limitation of
discriminating between them.

Prediction models of functional
outcomes for individuals in the
clinical high-risk state for
psychosis or with recent-onset
depression: a multimodal,
multisite machine learning
analysis.

Koutsouleris et al.
(112)

Determine whether predictors associated with
social and role functioning can be identified in
patients in clinical high-risk states (CHR) for
psychosis or with recent-onset depression (ROD)
using clinical and imaging-based determinant with
machine learning analysis. Assess the geographic,
transdiagnostic and prognostic generalizability of
machine learning and compare it with human
prognostication. Explore sequential prognosis
encompassing clinical and combined machine
learning.

116 patients in CHR states and
120 patients with ROD.

Data-driven approach using
machine learning. Three models
of prediction were used (one with
clinical variables, one with
neuroimaging variables and one
integrating the other two).

This study not only explore the predictive model from
a data driven approach, but it was also geographically
validated. The researchers tested the transferability of
the model to other outcomes. It also takes into account
the reliability of the inputs which were feeding the
model. This study inquires about social factors that
drive the personal and socioeconomic burden of
psychotic and mood disorders integrating clinical and
brain structural data.

Natural language processing of
clinical mental health notes may
add predictive value to existing
suicide risk models.

Levis et al. (113) Determine if the use of natural language
processing (NLP) in psychotherapy note text can
provide additional accuracy over currently used
suicide prediction models (REACH VET).

Data from the Department of
Veterans Affairs (VA) of patients
newly diagnosed with PTSD
between 2004 and 2013.

Data-driven approach which uses
NLP to evaluate unstructured
electronic medical records of a
sample from de VHA PTSD
treatment population.

The method presented in this paper introduces to a
dynamic model that helps identify and monitor
predictor variables and how they change over time.
This gets closer to an ecologically valid tool to asses an
individual. This type of approaches on NLP have been
used in other pathologies like delirium (158),
Alzheimer’s disease (159, 160), schizophrenia and
others (161, 162).

A machine learning approach
using EEG data to predict
response to SSRI treatment for
major depressive disorder.

Khodayari-
Rostamabad et al.
(163)

Evaluate the performance of a machine learning
methodology based on the pre-treatment
electroencephalogram for prediction of response to
treatment with SSRI in patients with MDD.

Subjects with MDD derived from
a tertiary Mood Disorders Clinic.
They were all considered
treatment resistant.

Data-driven approach using
machine learning to select the
most discriminating features
from EEG. Then, these features
are fed into a classifier based on a
mixture factor analysis to give a
likelihood value.

This study exemplifies a possible approach to improve
treatment in a personalized manner in line with
precision psychiatry.

Cross-trial prediction of
treatment outcome in depression:
a machine learning approach.

Chekroud et al.
(119)

Develop an algorithm to assess whether patients
will achieve symptomatic remission from a
12-week course of citalopram.

Data was collected from a
STAR-D sample.

Data-driven approach using
machine learning to identify
which variables were most
predictive of treatment outcome.

This study determines the possibility of using
computational approaches to mine existing clinical
trial data to improve on accuracy of risk or treatment
response prediction. However, this model only predicts
response to specific drugs. There has to be a
contextualization of the applicability of the model.
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TABLE 1 (Continued)

Title References Study aim Data analyzed Computational
approach

Conclusions/Implications

Gyri-precise head model of
transcranial direct current
stimulation: improved spatial
focality using a ring electrode
versus conventional rectangular
pad.

Datta et al. (123) Compare the focality of conventional
rectangular-pad stimulation with ring electrode
configuration using a MRI-derived head model.

Models of two electrode
configurations.

Use of a head model to predict
relative spatial focality and the
influence of tissue
geometry/conductivity.

This study demonstrates a way of translate
computational models of variables associated with
treatments such as direct current stimulation to clinical
applications through the design and optimization of
treatment variables.

Effects of modifying the electrode
placement and pulse width on
cognitive side effects with
unilateral ECT: a pilot
randomized controlled study with
computational modelling.

Martin et al. (124) Determine if the frontoparietal placement of
electrodes improves retrograde memory outcomes
compared to temporoparietal placement.

Patients recruited from a single
hospital in Sydney.

Computational model (164) was
used in a subset of participants to
determine if higher levels of
stimulation in regions of interest
would be related to worse or
better cognitive outcomes.

This study gives an example of how data from
computational models could be integrated to results
from clinical investigations to individualize treatment
options such as DCS.

Patient-specific analysis of the
volume of tissue activated during
deep brain stimulation.

Butson et al. (125) Develop and test a methodology that would enable
prediction and visualization of the volume of
axonal tissue activated during DBS.

One patient with Parkinson’s
disease.

Patient-specific model of STN
DBS for PD and the VTAs. This
model was constructed from 3D
brain atlas that was warped to the
patient MRI using a non-linear
warping algorithm. The electrical
and biophysical models rely on
finite element models.

This model integrates anatomical, electrical, and
biophysical representation of DBS. It also integrates
simulation data with clinical data from subject. The
limitation of this model is the evaluation of only one
patient.

Functional connectome
fingerprinting: identifying
individuals using patterns of
brain connectivity.

Finn et al. (126) Determine if functional connectivity profiles can
act as an identifying fingerprint capable of
identifying an individual from a set of connectivity
profiles.

Data collected from the Human
Connectome Project.

Data-driven approach using a
group-wise spectral clustering
algorithm for the definition of
networks capable of being
compared to each other. This
correlation was made through the
use of whole-brain connectivity
matrix.

This study gives the foundation for novel test
inferences about functional brain organization can
relate to distinct behavioral phenotypes. The
discriminating power evidenced in this study is partly
the result of the relatively long period of time of
follow-up. This can be integrated in frameworks like
RDoC. It also gives the base for neuroimaging studies
which rely on single subjects, beyond population-level
studies.

Linked dimensions of
psychopathology and
connectivity in functional brain
networks.

Xia et al. (127) Identify brain-based dimensions of
psychopathology.

Datasets taken from the
Philadelphia
Neurodevelopmental Cohort
(PNC).

Data-driven approach based on
sparse canonical correlation
analysis.

This study uses network theory to construct patterns of
functional connectivity, which could be linked to
transdiagnostic dimensions of psychopathology. In this
study, these patterns displayed developmental and sex
differences. This in turn tackles the problems of
comorbidity and heterogeneity previously discussed in
this article.
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TABLE 1 (Continued)

Title References Study aim Data analyzed Computational
approach

Conclusions/Implications

Origin of cyclicity in bipolar
disorders: a computational
approach.

Goldbeter (131) Evaluate a model for bipolar disorders based on
mutual inhibition of two putative neural circuits
governing the affective syndromes.

Mathematical model based on
reciprocal inhibition.

Theory-driven approach of a
mathematical model to predict
the cyclicity of bipolar disorders.
This model is based on a
phenomenological model.

This article gives an example of translating a
phenomenological level to mathematical terms in order
to explain and predict a characteristic of a
phenomenon (cyclicity of bipolar disorders).

Computational mechanism of
effort and reward decisions in
patients with depression and their
association with relapse after
antidepressant discontinuation.

Berwian et al.
(132)

Establish whether the decision to invest effort for
rewards represents a persistent depression process
after remission.

Sample of patients in a Swiss and
German university setting.

Theory-driven approach where a
generative computational model
was used to represent the putative
computations of the behavioral
pattern.

This study explores a computational model for effortful
behavior applied in a sample of patients with
depression. This gives a straightforward manner to
assess this behavioral feature and find associations that
are important form a prognosis and treatment
perspective. Nonetheless, this study has limitations
from a replicability perspective.

Making working memory work: a
computational model of learning
in the prefrontal cortex and basal
ganglia.

O’reilly and Frank
(133)

Presentation of a computational model of working
memory based on the prefrontal cortex and basal
ganglia.

The 1-2-AX task. Theory-driven approach which
uses a reinforcement learning
mechanism.

This paper describes how a theory-driven model is
constructed from data previously acquired which is
integrated to elucidate a specific process.

Towards a computational
psychiatry of juvenile
obsessive-compulsive disorder.

Loosen and
Hauser (134)

Review computational, neuropsychological and
neural alterations in juvenile OCD. Link these
findings to adult OCD. Establish a
neurocomputational framework that illustrates the
development of symptoms in the context of
juvenile OCD.

Narrative review. Theory-driven approach based on
a narrative review of
computational,
neuropsychological and neural
alterations in juvenile OCD. The
framework proposed is based on a
meta-controller with different
rates of maturation of complex
systems.

This study describes a proposition of a theory-driven
model for the development of obsessive symptoms.
However, this model is only speculative and requires
further investigation to be validated. It highlights the
importance of the a priori knowledge to construct the
model and the dependance on inputs to determine the
strength of the model.

Adaptive current-flow models of
ECT: explaining individual static
impedance, dynamic impedance,
and brain current density.

Unal et al. (138) Examine the relations between the physical
properties of the ECT stimulus, patient head
anatomy, and patient-specific impedance to the
passage of current.

Clinical data from a trial series. Theory-driven approach. The
researchers develop an
individualize (MRI-derived) finite
element method (FEM) to model
transcranial electrical stimulation
with dynamical changes in tissue
conductivity.

This model gives the opportunity of studying
parameters that have been proposed as important
factors in the therapeutic response (165), but they are
difficult to study under a “normal” clinical study.
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FIGURE 1

Computational psychiatry aids the clinician and the researcher in integrating data from different sources of information, which could be taken from the
omics perspective. This integration is made possible by complementing the data modeling culture using the algorithmic modeling culture proposed by
Breiman (43). This permits the validation of models or data that can be measured by predictive accuracy. By taking these inputs and processing them
through a computational system (algorithm), one could present data-driven or theory-driven responses to clinical and research questions. This enables
us to bring forward an integrative and cohesive framework associated with others. The network theory can integrate the different units of analysis (scale
level) of a phenomenon or give a cohesive picture of the interaction between different domains. And in turn, this could give us a more precise phenotype
to arrive at a dimensional conception (HiTOP). These computational approaches to understanding psychiatry represent the brain’s functioning
[phantastic organ (20)]. In other words, using computational approaches to comprehend psychiatry mimics the normal functioning of the statistical
machine we call the brain.

disorders. It recognizes that mental disorders are multicausal,
mediated by biology (brain). In addition, the RDoC is structured
as a matrix with different units of analysis, which are grouped
into research domains. These domains are viewed longitudinally,
influenced by neurodevelopment and the context in which they
are imbued. Computational psychiatry, then, introduces itself
as a great tool in this type of initiative, aligning with its
principles, since it allows to appreciate of shared mechanisms
between cognitive alterations, psychopathological domains, and
disorders (59), achieving integration between the different levels of
analysis (units of analysis and domains). It does this by finding
objective, observable, and measurable characteristics organized into
taxonomies outside current nosology (25), achieving a more solid
basis for neurobiological research.

With this initiative, it has been possible to see that in most
mental disorders, there is an overlap between neural circuits in which
the processing of threats (amygdala, hippocampus, orbitofrontal
cortex, and ventromedial prefrontal cortex), rewards (amygdala,
ventral tegmental area, locus coeruleus, and nucleus accumbens) and
perception of stimuli (thalamus, sensory cortex, and inferior frontal
gyrus) are counted (25). This suggests that mental disorders may be
due to different modes of dysregulation of control processes. That is a

different dynamic system. These altered processes can occur from the
cellular and molecular level to the level of circuits. And this generates
a greater difficulty since the alterations will only vary qualitatively
but quantitatively. This, at a practical level, limits the possibility of
using only clinical judgment to determine these nuances. Again, the
problem with these ambiguous cases, which are the rule and not the
exception in psychiatry, is highlighted by the lack of persistence in
diagnosis given to a person over time and the problem of comorbidity
and heterogeneity (147).

However, it does present guidelines that can be a response to the
criticism previously mentioned of nosology and psychiatric research
based on it, as well as a bridge for using computational models to
the approach of multidimensional and hierarchical organization of
mental functions, the non-linear dynamic interaction between the
components of the system and its heterogeneity. Thus, computational
psychiatry aligns with one of the objectives of the RDoC, which
is to improve the accuracy of the phenotypes and their alignment
with highly plausible biological and cognitive models based on
experimental settings used in neuroscience research applied to
psychiatry (87).

Nonetheless, this is one of many models which have risen
to deal with the limitations and constraints previously described.
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The HiTOP is a data-driven, hierarchically based organization of
psychopathology (86). It conceptualizes psychopathology as a set
of dimensions organized into increasingly broad, transdiagnostic
spectra. This is made by using factor analysis between different
symptoms to generate a taxonomy of mental disorders. In these
scenarios, the computational models would aid in determining these
psychopathologic patterns using path analyses in clinical datasets.
Lastly, they would also be helpful in establishing psychopathologic
patterns taking into account their context (social influences and
contextual factors).

Another alternative is the network theory based on pattern
analysis, similar to computational psychiatry. To construct these
networks, one has to analyze a significant amount of data that can
capture cohesion, coherence, and patterns of synchrony (148). In this
sense, computational psychiatry dialogues with the network approach
both require massive data processing to formulate theoric models.

As previously discussed, HiTOP is another proposed model for
this endeavor. It was constructed through factor analysis and latent
class analysis to organize psychopathology according to the natural
covariance structure between symptoms, maladaptive behaviors,
and traits (61, 86). This model focuses on the psychopathological
level remaining agnostic to the underlying phenotypes encountered.
Moreover, it can be a tool to aid RDoC-informed research
by providing psychometrically valid data to reach more robust
psychiatric phenotypes (149), and in doing so, it can ameliorate the
computational models used in clinical and research fields.

General limitations

One of the limitations that must be considered in the explanatory
models is that the data previously collected empirically may contain
significant biases that prevent distinguishing between different
hypotheses of the mechanisms that generate psychiatric dysfunctions.
For this reason, it is of the utmost importance to recognize
parameters that allow discriminating between models (59). On the
other hand, for data-driven approaches, the clinical datasets from
which one can take the information are limited in data quality,
organization and accessibility, making it difficult to get the data for
the machine learning algorithms (100, 150).

Another limitation is inherent to mental disorders since they
usually present dysfunctions or deficits that are generalized, shared
by many disorders, and only differentiated at a quantitative level
(59), so a large enough sample must identify these differences. This
limitation can be overcome by the formation of consortiums like the
ones developed for genomics studies and others (151).

Still, another limitation is that, in most cases of mental disorders,
the brain regions or alterations underlying a particular dysfunction
have not been accurately determined. However, reverse-engineering
strategies can overcome this automatically, seeking to identify
physical and biological laws through data (25). However, this raises
another problem because these structures can be purely mathematical
entities that do not have a basis in biological structures.

In addition to this, neurobiological models describe data as
unreliable, meaning that the probability of error in the model
must be quantified (25). These errors are critical in these models,
where many interrelated variables spread that error to different
parts of the system. Typically, this type of error is controlled by
increasing the sample size; however, in this case, it would worsen the

problem because it could result in inaccurate models with statistical
significance (25). Moreover, brain processing is non-linear, having
complex interrelationships, amplifying, or decreasing the noise of
the inputs. This causes linear regressions to lose their significance.
In neurobiological responses, various processes like serial signaling
processes, thresholds, filters, saturation, feedback, etc. All of these are
non-linear and, therefore, more difficult to describe.

Also, using Bayes’ theorem to choose the best model will often
lead to models that do not describe the best generative model.
Therefore, one should always validate the model (35) and always keep
in mind the possibility of finding better models.

Conclusion

Computational psychiatry can be a tool for understanding mental
health. This involves a great effort, which requires the articulation
of multiple disciplines and different levels of analysis. Therefore
computational psychiatry could become a high point and central to
attempts such as RDoC or ROAMER (Roadmap for Mental Health
Research in Europe) (152) to achieve a better conception of both
mental disorders and mental health, with the articulation with other
models like HiTOP.

To achieve this, it is necessary to overcome previously evidenced
obstacles such as heterogeneity and comorbidity, together with the
acceptance and use of the complexity of these systems with non-linear
dynamics, making use of tools that allow us to understand it in a
way in both biological and psychological reductionist perspectives
are not given. In addition, the opportunity opens up to begin the
study, articulation, and integration with factors that modulate the
presentation and prognosis of mental disorders but that are left
to the context and have been covered only tangentially, as are
social processes such as violence, abuse or forced displacement. The
development of research capacity achieves a better assessment of the
needs for the care of the population, increasing knowledge about
the effectiveness of different interventions and creating a critical
mass that is essential for the development of the scientific debate on
various topics in mental health (153). In addition, this theoretical
framework model how the subject acquires and transforms their
internal cognitive processes to give rise to their behavioral responses,
which are observed in clinical practice (15).

However, to accomplish all these promises, several limitations
must be considered. The necessity for not only replicating the results
of different investigations arises with the need for reproducible
investigations to tackle the falsifiability problem. In this same
direction, with the growth of analytic power, the possibility of finding
associations that are not significant or valid also increases. So, the
validation of these models is yet another fundamental aspect that
must be tackled by researchers.

Finally, computational psychiatry would allow us to provide
better care for mental health problems in primary care. This considers
that the burden of patients increases with poor support for the
number of professionals in mental health. Then, the models given
by computational psychiatry would allow the specialist to have
better visualization and contextualization of each patient’s specific
case considering multiple factors that often cannot be given enough
weight due to restrictions. Also, data-based computational models
allow predictions or diagnostics, and these responses can be better
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adjusted to the context of each country and can be free or require
low investments.

The promises are manifold, but their success depends on
their applicability and the possibility of generating translational
knowledge (154), Figure 1 proposes a framework to arrive at this
result.
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Backgrounds: Decision-making deficits have been reported as trans-diagnostic 
characteristics of vulnerability to suicidal behaviors, independent of co-existing 
psychiatric disorders. Individuals with suicidal behaviors often regret their decision 
to attempt suicide and may have impairments in future-oriented processing. 
However, it is not clear how people with suicidal dispositions use future-
oriented cognition and past experience of regret to guide decision-making. Here, 
we examined the processes of regret anticipation and experience in subclinical 
youth with and without suicidal ideation during value-based decision-making.

Methods: In total, 80 young adults with suicidal ideation and 79 healthy controls 
completed a computational counterfactual thinking task and self-reported 
measures of suicidal behaviors, depression, anxiety, impulsivity, rumination, 
hopelessness, and childhood maltreatment.

Results: Individuals with suicidal ideation showed a reduced ability to anticipate 
regret compared to healthy controls. Specifically, suicidal ideators’ experience 
of regret/relief was significantly different from that of healthy controls upon 
obtained outcomes, while their disappointment/pleasure experience was not 
significantly different from healthy controls.

Conclusion: These findings suggest that young adults with suicidal ideation 
have difficulty predicting the consequences or the future value of their behavior. 
Individuals with suicidal ideation showed impairments in value comparison and flat 
affect to retrospective rewards, whereas individuals with high suicidality showed 
blunted affect to immediate rewards. Identifying the counterfactual decision-
making characteristics of at-risk suicidal individuals may help to elucidate 
measurable markers of suicidal vulnerability and identify future intervention 
targets.
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Introduction

Suicide is the second leading cause of death among adolescents 
(1), and nearly one-third of suicides occur among young people (2). 
Heterogeneous risk factors including early-life adversity, 
psychopathology, and stressful life events can increase suicide risk (3). 
Given the multifactorial nature of its etiology, which research has yet 
to fully elucidate, it is difficult to predict suicidal behavior. For 
example, although major depressive disorder and substance use have 
been reported as important risk factors for suicide (4), many patients 
with these conditions do not exhibit suicidal behavior. The assessment 
of suicide risk is largely dependent on individuals’ self-perception and 
willingness to report suicidal behaviors (5). Furthermore, adequate 
intervention for these psychopathologies may not prevent suicide per 
se. It has been proposed that suicidal behavior is an endophenotype 
that should be  studied and treated independently of specific 
psychiatric disorders (6, 7). Identifying specific risk factors for suicidal 
behaviors is the first step toward early detection and prevention in 
at-risk individuals (8).

Decision-making alterations have been found not only in patients 
with suicidal behaviors related to mood disorders (7, 9–14), but also 
in suicidal patients with PTSD (15) and schizophrenia [reviewed by 
(16)]. Moreover, psychiatric patients with suicidal behaviors have 
shown distinctive impairments during decision-making compared to 
patients without suicidal behaviors (7, 17). These findings suggest that 
altered decision-making may be a potential trans-diagnostic marker 
of suicide, independent of co-existing psychopathologies (8, 18). 
Although studies on decision-making in suicide have mostly focused 
on past experiences, assessing reactions to future events may 
be important for the early detection of suicide (19). Previous studies 
have shown that suicide attempters differ from non-attempters in 
future-oriented cognition, characterized by overestimating negative 
future events and forecasting less happiness for positive future events 
(19, 20). However, it is unclear how this future-oriented cognition 
affects present decision-making in suicidal individuals, or whether 
they are able to use prospective outcomes to guide action selection. 
Identifying the future-oriented decision-making in suicidal 
individuals without a diagnosis of psychiatric disorder will help to 
uncover the cognitive mechanism of suicide independent of diagnosis.

Suicidal individuals often regret their decision to engage in 
suicidal behavior (21), which involves counterfactual decision-making 
as well as a regret response. Counterfactual thinking refers to thoughts 
that compare possible outcomes of alternative choices in the past with 
the current situation, which often occurs in goal-directed decision-
making and coexists with the experience of regret (22). While people 
generally avoid regret by choosing the option with the least expected 
regret (23), it has been proposed that suicidal individuals are overly 
sensitive to self-blamed regret about past events, which may expose 
them to intense internal conflict and trigger suicidal behavior (24). 
However, it is unclear whether suicidal individuals have deficits in 
anticipating or experiencing regret for future events.

Elucidating the future-oriented decision-making and affective 
processing mechanisms in suicidal at-risk individuals is important for 
understanding the progression of suicidal behaviors and is the first 
step toward early detection. Therefore, the aim of our study was to 
investigate the regret processing in suicide by using a counterfactual 
thinking paradigm in suicidal at-risk youth without psychiatric 
disorders. This paradigm has been well-designed to observe 

value-based predictive behavior as well as emotional responses to 
counterfactual outcomes (25, 26). Given that suicidal behavior has 
been reported to be  associated with impairments in emotion 
processing (27), and that healthy individuals tend to be  regret-
avoidant (28), we predict that individuals with suicidal ideation will 
show altered emotional responses to outcomes compared to 
non-suicidal controls. We also predict that suicidal individuals would 
show impaired performance during counterfactual decision-making 
since the expected reward value has been found to be disrupted in 
previous studies of suicidal behavior (10, 29).

Methods and materials

Participants

Participants completed the Scale for Suicidal Ideation [SSI-19; 
(30)]. The SSI-19 is a 19-item scale designed to measure suicidal 
ideation or intent. Current suicidal ideation in the last 2 weeks and 
suicidal ideation at the worst point in life were assessed. For those with 
suicidal ideation, an explicit question on suicide attempts was asked 
to assess whether they had ever attempted suicide. Because of the high 
comorbidity between suicidality and psychiatric conditions such as 
depression and anxiety, participants were instructed to complete the 
Beck Depression Inventory-II [BDI-II; (31)] and Spielberger’s State–
Trait Anxiety Inventory (32). Participants with depressive states (BDI 
scores above 14) were excluded. The suicidal ideation and control 
groups were matched for level of state anxiety. Moreover, to control 
for the possible confounding effects of childhood maltreatment, 
rumination, hopelessness, and impulsivity (5), participants completed 
the Childhood Trauma Questionnaire (33), the Rumination 
Reconsidered scales (34), the Beck Hopelessness Scale (35), and the 
Barratt Impulsiveness Scale (36). Participants with a diagnosis or 
family history of mental disorders were excluded from our study. They 
were also screened with the exclusion criteria of alcohol or substance 
use and any history of neurological illness.

Task paradigm

The current counterfactual-thinking task was adapted from those 
of Baskin-Sommers et al. (37), Gillan et al. (38), and Camille et al. 
(26). Prior to the experiment, participants were instructed to 
maximize their score in order to receive more rewards. On each trial, 
participants were asked to choose one out of two wheels (Figure 1). 
The proportions of different colors (0.25, 0.5, or 0.75) represented the 
probability of getting the particular points. There were 16 possible 
outcomes for each option: −210, 210; −210, 70; −210, −70; −210, 
−210; −70, 210; −70, 70; −70, −70; −70, −210; 70, 210; 70, 70; 70, 
−210; 210, 210; 210, 70; 210, −70; 210, −210. To control for between-
subject differences in the presentation of trials, each participant 
received the same order of trials as the others and the probability of 
outcomes was not randomized.

To exacerbate the regret effect (26), participants had the 
opportunity to change their mind in 50% of the trials. Once the 
participant had chosen one of the two wheels, the unchosen wheel was 
darkened and the chosen wheel was highlighted. After the outcome 
was presented, a 9-point rating scale appeared on the screen asking 
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participants to rate how they felt about the outcome of the chosen 
option. The aim of this rating was to assess the emotional experience 
of counterfactual thinking in relation to achieving another outcome 
within the same wheel. Following this partial feedback, the outcome 
of the unchosen option was presented and participants were asked to 
rate their feelings on a second 9-point rating scale as complete 
feedback. This rating was designed to measure the emotion resulting 
from counterfactual thinking on what would have happened if the 
other option wheel had been chosen. After completing all 80 trials, the 
participant’s final score was presented on the screen. We  used 
Psychotoolbox-31 to present the stimuli and record the 
behavioral responses.

Data analysis

Emotion rating scores
For the first rating on partial feedback, we calculated the obtained 

outcome and the difference between the obtained and unobtained 
outcomes in the same wheel ({obtained outcome > unobtained 
outcome of the same wheel} was operationalized as chance 
counterfactual, indicating the differences between the obtained value 
and what the participant could have obtained within the chosen 
wheel). For the second rating on complete feedback, we calculated the 
obtained outcome and the difference between the obtained and 
unobtained outcomes in the other wheel ({obtained > unobtained 
outcome in the other option} was operationalized as agent 
counterfactual, indicating the differences between the obtained value 
and what the participant could have obtained if chosen the other 
wheel). After this, we  built linear mixed effect models with lme4 
package in R (version 3.6.2) for two rating outcomes with the groups 
(suicide, control), outcomes of each trail, and chance counterfactuals 
as fixed-effect predictors, group × chance counterfactual and group × 
obtained outcome as interaction terms, and participants as a random 
factor in rating model 1; with group, outcome of each trial, agent 
counterfactuals as fixed-effect predictors, participants as a random 
factor, and group × obtained outcome, group × agent counterfactuals 
as interaction terms in rating model 2.

Option-selection modeling
We modeled the counterfactual behaviors by estimating the 

following three factors guiding decision-making: expected value (EV), 
expected disappointment (ED), and expectation of regret/relief 
(regret/relief, R). Here, x1 and y1 represent two possible outcomes of 
option 1 and x1 > y1; x2 and y2 represent two possible outcomes of 
option 2, and x2 > y2; p and 1-p represent the possibilities of obtaining 
x1 and y1; q and 1-q represent the probability to get x2 and y2 in 
option 2.

With these parameters, we first calculated the maximal expected 
value with Eq. (1), where EV > 0 indicates a higher EV in option 1 than 
in option 2.

 

EV EV EV

q

o o= − = ∗ + −( ) ∗ 
− ∗ + −( ) ∗ 

1 2 1 1

2 2

1

1

p x p y
x q y

 
(1)

1 http://psychtoolbox.org/

We then calculated the expected disappointment (ED) of each 
trial with Eq. (2), where EDo1 and EDo2 represent the estimate of 
expected disappointment for option 1 and option 2, and EDo2 > EDo1 
indicates the participant should choose option 1 when trying to avoid 
future disappointment.

 
ED ED EDo o= − = −( ) −( ) − −( ) −( )2 1 2 2 1 11 1x y q x y p

 
(2)

Next, we calculated the difference between the possible highest 
and lowest outcomes of the two options as the index of expected 
regret/relief. This calculation was based on the assumption that the 
difference between the obtained outcome and the possible outcome if 
one chose differently would cause the participant’s regret or relief. The 
bigger the difference, the more intense the regret or relief. R > 0 
indicates lower regret/relief from option 1:

 
R = −( ) − −( )y x y x1 2 2 1  

(3)

The probability of choosing option 1 for each trial of each 
participant (t, trail number; i, participant number) was calculated as:

 
P O P O F ED ,R ,EVti ti ti ti ti1 21( ) = − ( ) = ( )  

(4)

F denotes the inverse logit function to estimate individual expected 
value, risk variance, and regret. The probability of choosing option 2 
was modeled in the same way. We used a linear mixed effect (LME) 
logistic regression model in R, with EV, ED, and R as continuous fixed-
effect factors, the group as a fixed-effect factor, the participant as a 

FIGURE 1

Task procedure. The proportion of two colors in one panel 
represents the probability of two outcomes. Participants were asked 
to make a choice and have a 50% opportunity to change their mind. 
Then, they were asked to rate how they feel after they make the 
choice (first rating) and after the presentation of the outcomes of the 
other panel (second rating).

90

https://doi.org/10.3389/fpsyt.2023.1121194
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
http://psychtoolbox.org/


Ai et al. 10.3389/fpsyt.2023.1121194

Frontiers in Psychiatry 04 frontiersin.org

random-effect factor, and choice as the binary outcome variable. 
Another LME logistic regression model was built to test the main 
effects and interactions among three estimated parameters and groups. 
Besides the full model, we built multiple models by reducing factors 
stepwise to check the factor contribution. Likelihood ratio tests were 
used to confirm statistical significance when comparing models with 
and without terms of interest. The results were regarded as significant 
at p < 0.05. The criteria to find the best model was the AIC (Akaike 
Information Criterion) value for each model (39).

To further clarify interactions of suicidal severity with three 
estimated parameters, we did a sensitivity analysis by building a model 
with SSI scores at the worst point and EV, ED, and R as continuous 
fix-effect factors, participant as a random-effect factor, and choice as 
the outcome variable.

To control for the possible effect of a depressive state, anxiety state 
and trait, impulsivity, hopelessness, rumination, and childhood 
maltreatment on the task, we set them as covariates. To check the 
collinearity of our task parameters, we tested correlations between the 
slopes of the task parameters and these covariates. Furthermore, to 
test the effect of change-of-mind, we  calculated the frequency of 
change and repeated the analysis on the rating from the complete 
feedback by including binary factor (change or not change) in the 
model as an interaction term.

Results

Sample characteristics

There were 202 participants who completed the questionnaires. 
To match the depressive and anxious levels, rumination, hopelessness, 
impulsivity, and experience of childhood trauma (CTQ) between the 
two groups, we excluded 36 healthy controls and 5 suicidal ideators 
with BDI scores above 14. In total, 80 participants who reported 
having suicidal ideation at their worst point in life (45 females, age 

19.96 ± 1.36) were grouped as individuals with a suicidal disposition 
(ISD). The mean suicidal ideation score was 14.24 (SD = 7.09). 
Furthermore, 16 participants had past suicidal attempts (8 females, 
age 20.56 ± 1.03). Suicidal attempters were different from suicidal 
ideators in suicidal intention scores (t = 5.53, p < 0.05). Finally, 79 
individuals without any suicidal disposition or psychiatric problems 
were grouped as controls (HC) (Demographics, Table 1).

Disappointment affect ratings

There was a significant main effect of the group on affective 
responses to partial feedback. Additionally, a main effect of the 
obtained outcome on affective responses to partial feedback was also 
found, with a low obtained outcome related to negative affect and a 
high obtained outcome related to positive affect in both groups 
(Figure 2A). We also found a main effect of chance counterfactual on 
affective responses to partial feedback, with a larger obtained 
outcome than counterfactual outcome associated with a more 
positive affect, and a lower obtained outcome than counterfactual 
outcome associated with a more negative affect (Figure 2B). There 
was no interaction between the group and obtained outcomes or 
interaction between the group and chance obtained outcomes to 
partial feedback (Table 2).

To examine the effect of suicidal severity on affect ratings to 
partial feedback, we did a sensitivity analysis by setting scores of 
Scales for Suicidal Ideation (SSI) as a continuous fix-effect predictor 
instead of the group with participants with suicidal dispositions. A 
significant main effect for the obtained outcome (Beta = 1.23 × 10−2, 
SE = 5.95 × 10−4, 95%CI = 1.11 × 10−2 to 0.0135, t = 20.71, p < 0.001) as 
well as a significant interaction between the obtained outcome and 
the scores for suicidal ideation (Beta = −1.15 × 10−4, SE = 3.71 × 10−5, 
95%CI = -1.88 × 10−4 to −4.26 × 10−5, t = −3.11, p = 0.002) were found 
(Figure 3A). A significant main effect for chance counterfactuals was 
also found (Beta = 2.049 × 10−2, SE = 3.254 × 10−4, 95%CI = 0.01 to 

TABLE 1 Demographics description of participants.

Group ISD HC t Chi-square P value

Sample size (N) 80 79 – – –

Age Mean (SD) 19.96 (1.36) 20.14 (1.52) −0.77 – 0.44

Sex (male/female) (N) 35/45 39/40 – 0.50 0.53

Scale for Suicide Ideation_worst Mean (SD) 14.24 (7.09) 2.37 (4.48) 12.61 – <0.05*

Scale for Suicide Ideation_current Mean (SD) 2.29 (3.84) 0.67 (1.80) 3.29 – 0.05*

Suicide attempts (yes/no) 16/64 0/0 – – -

BDI Mean (SD) 9.93 (7.08) 8.20 (6.32) 1.62 – 0.11

S-AI Mean (SD) 40.43 (10.12) 39.91 (9.35) 0.33 – 0.74

T-AI Mean (SD) 44.64 (9.29) 43.47 (8.34) 0.84 – 0.41

BIS Mean (SD) 59.83 (8.93) 60.00 (7.49) −0.13 – 0.89

BHS Mean (SD) 5.81 (3.04) 5.67 (3.64) 0.23 – 0.79

CTQ Mean (SD) 40.63 (11.44) 39.04 (11.11) 0.89 – 0.38

RRS Mean (SD) 47.60 (9.73) 45.75 (7.07) 1.38 – 0.17

ISD, individuals with suicidal dispositions; HC, healthy controls; BDI, Beck Depression Inventory; RRS, Rumination Reconsidered scales; S-AI, Spielberger’s State anxiety inventory; T-AI, 
Spielberger’s State anxiety inventory; BIS, Barratt impulsiveness scale; CTQ, Childhood Trauma Questionnaire. *p < 0.05.
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0.03, t = 6.30, p < 0.001). No main effect for suicidal scores was found 
(Beta = 1.076 × 10−2, SE = 8.36 × 10−3, 95%CI = -5.62 × 10−3 to 
2.71 × 10−2, t = 1.29, p = 0.20) nor interaction between chance 
counterfacutals and suicidal ideations (Beta = −3.84 × 10−6, 
SE = 2.03 × 10−5, 95%CI = −4.36 × 10−5 to 3.60 × 10−5, t = −0.19, 
p = 0.85; Figure 3B).

Overall, for partial feedback, the ISD group showed blunted 
emotions compared to HC participants (Figures 2A,B). Within the 
ISD group, we found that individuals with higher suicidal ideation 
scores (high-suicidality) had a more blunted affect to the obtained 
outcomes than individuals with lower suicidal ideations 
(low-suicidality; Figure 3A).

Regret affect ratings

We observed significant main effects of obtained outcome and agent 
counterfactual on affect rating to complete feedback across all groups 
(Figure 2C), with a low obtained outcome associated with a stronger 
negative affect and a high obtained outcome associated with a stronger 
positive affect. A larger obtained than unobtained outcome was 
associated with a stronger positive affect and a lesser obtained than 
unobtained outcome was associated with a stronger negative affect. 
There was also a significant interaction between the group and agent 
counterfactuals (Figure  2D). No effect of the group or interaction 
between the group and obtained outcome were observed (Table 2).

A B

C D

FIGURE 2

Plots of affective ratings on partial and complete feedback in the suicidal group and the healthy group. (A) The rate of disappointment/pleasure upon 
obtained outcome was not significantly different between groups. (B) The rate of disappointment/pleasure upon chance counterfactual outcome was 
not significantly different between the two groups. (C) The rate of regret/relief upon obtained outcome was not significantly different between groups. 
(D) The rate of regret/relief upon agent counterfactual outcome was significantly different between groups: the suicidal group showed blunted 
responses compared to the healthy group. ISD, individuals with suicidal dispositions; HC, healthy controls.

92

https://doi.org/10.3389/fpsyt.2023.1121194
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org


Ai et al. 10.3389/fpsyt.2023.1121194

Frontiers in Psychiatry 06 frontiersin.org

For the sensitivity analysis within the suicidal group, we set the 
model by adding SSI as a continuous fix-effect factor. Main effects of 
obtained outcome (Beta = 7.21 × 10−3, SE = 3.87 × 10−4, 
95%CI = 6.45 × 10−3 to 7.97 × 10−3, t = 18.65, p < 0.001) and agent 
counterfactual (Beta = 7.33 × 10−3, SE = 3.47 × 10−4, t = 21.12, p < 0.001) 
were found. A significant interaction between agent counterfactuals 
and SSI scores was also observed (Beta = −6.68 × 10−5, SE = 2.20 × 10−5, 
95%CI = -1.09 × 10−4 to −2.37 × 10−5, t = −3.04, p = 0.002; Figure 3D). 
No effect of SSI scores (Beta = 6.81 × 10−3, SE = 9.24 × 10−3, 
95%CI = -1.13 × 10−2 to 2.49 × 10−2, t = 0.74, p = 0.46) or interaction 
between SSI and obtained outcome (Beta = 8.66 × 10−6, SE = 2.44 × 10−5, 
95%CI = -3.88 × 10−3 to 5.69 × 10−5, t = 0.36, p = 0.72) were found 
(Figure 3C).

In summary, for complete feedback, the ISD group showed less 
pleasure than HC when the obtained outcome was larger than the 
unobtained outcome on the other wheel, and less regret when the 
obtained outcome was less than the unobtained outcome on the other 
wheel (Figure 2D). Within the ISD group, high-suicidality individuals 
showed a more blunted affect to agent counterfactuals than 
low-suicidality individuals (Figure 3D).

Decision-making

The Effects of the full choice model and the best choice model 
with computational parameters are summarized in Table  3. 
We observed a significant main effect of expected value (EV) and a 
significant main effect of avoidance of disappointment (ED). There 
was also a significant main effect of regret prediction (R), with 

participants choosing options to minimize future regret. Importantly, 
there was a significant interaction between the group and regret 
prediction. Specifically, the suicidal group showed a blunted sensitivity 
to future regret compared to healthy controls (Figure 4). There was no 
interaction between the group and the expected value or avoidance of 
disappointment parameters.

To examine the effect of suicide severity, we built another linear 
mixed-effect model with SSI scores as a continuous fixed factor within 
the ISD group. We  found a significant effect for EV (Beta = 0.03, 
SE = 0.01, z = 9.56, p < 0.001), ED (Beta = −4.39 × 10−3, SE = 8.38 × 10−4, 
z = −5.23, p < 0.001) and R (Beta = 0.01, SE = 5.07 × 10−4, z = 4.22, 
p < 0.001) in suicidal individuals. There was also a marginally 
significant interaction between SSI score and anticipation of future 
regret (R; Beta = −8.89 × 10−5, SE = 3.18 × 10−5, z = 2.80, p = 0.05), 
indicating that individuals with a high suicidal disposition are less 
sensitive to future regret than those with a low suicidal disposition.

In the correlation between task parameters and covariates, 
we observed a correlation between chance counterfactuals and 
impulsivity scores, further analysis with BIS as a covariate factor 
in the linear mixed effect model did not change the result of 
interaction between chance counterfactual and group 
(Beta = 6.02 × 10−5, SE = 1.14 × 10−5, 95%CI = -7.69 × 10−5 to 
−3.35 × 10−5, t = −2.14, p = 0.03). Although significant 
correlations can be  found within covariates or within task 
variables, no significant correlations were found between task 
parameters and other covariates (Table 4). Because the three task 
parameters, ED, EV, and R, were inter-correlated with each other, 
we  checked the variance inflation factors (VIF) in the LME 
model. The VIFs were all below the commonly suggested cut-off 

TABLE 2 Affect rating model with obtained and counterfactual outcome parameters.

Parameter Coefficient Standard error 95%CI t p

 Affect rating1 model with all subjects

Intercept 5.01 6.49 × 10−2 4.88 to 5.14 77.24 <0.05*

Obtained outcome 1.22 × 10−2 1.83 × 10−4 1.18 × 10−2 to 1.25 × 10−2 66.48 <0.05*

Chance counterfactuals 2.56 × 10−3 1.91 × 10−4 2.18 × 10−3 to 2.93 × 10−3 13.37 <0.05*

Group −1.91 × 10−1 9.16 × 10−2 −3.71 × 10−2 to 

−1.13 × 10−2

−2.09 0.04*

Obtained outcome:group −2.28 × 10−5 2.60 × 10−4 −5.33 × 10−4 to 

4.87 × 10−2

−0.09 0.93

Chance counterfactuals:group −1.70 × 10−4 2.71 × 10−4 −6.70 × 10−4 to 

−3.61 × 10−4

−0.63 0.53

 Affect rating2 model with all subjects

Intercept 5.07 6.45 × 10−2 5.07 to 5.32 80.57 <0.05*

Obtained outcome 7.03 × 10−3 1.70 × 10−3 6.70 × 10−3 to 7.36 × 10−3 41.44 <0.05*

Agent counterfactuals 6.98 × 10−3 1.52 × 10−4 6.68 × 10−3 to 7.36 × 10−3 45.86 <0.05*

Group −7.91 × 10−2 9.09 × 10−2 −2.57 × 10−1 to 

−9.90 × 10−2

−0.87 0.39

Obtained outcome:group 3.09 × 10−4 2.39 × 10−4 −1.60 × 10−4 to 

7.78 × 10−4

1.29 0.20

Agent counterfactuals:group −6.08 × 10−4 2.15 × 10−4 −1.03 × 10−3 to 

−1.88 × 10−4

−2.83 <0.05*

*p < 0.05.
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of 10 (VIF values were smaller when the variables were stratified), 
indicating that collinearity was not a problem in our model 
(EV:2.85, ED:4.17, R:4.18). The change-of-mind setting did not 
exacerbate emotional responses to the obtained outcomes 
(p = 0.54) or agent counterfactual (p = 0.27). Moreover, although 
participants had the opportunity to change their minds, very few 
of them did so, and even then quite infrequently (ISD group: 
mean = 1.87, SD = 2.73; HC group: mean = 1.94, SD = 2.28). No 
difference between the groups in the switching wheel rate was 
found (t = 0.16, p = 0.87).

Discussion

In the present study, we  examined the association of suicidal 
ideation with regret anticipation and counterfactual emotional 
experience in value-based decision-making using model-based 
mathematical computations. Our results revealed that young adults 
with suicidal ideation showed a blunted anticipation of potential 
future regret when making decisions. Whereas suicidal ideators and 
past suicidal attempters showed less avoidance of future regret, young 
adults with more suicidal dispositions showed blunted emotional 

A B

C D

FIGURE 3

Plots of correlations between levels of suicidal ideation and emotional responses. (A) A significant correlation was observed between levels of suicidal 
ideation and rate of disappointment/pleasure upon obtained outcome: individuals with a high level of suicidal ideation showed less affect than low-
suicidality individuals. (B) No correlation was found between levels of suicidal ideation and rate of disappointment/pleasure upon chance 
counterfactual outcome. (C) No correlation was found between levels of suicidal ideation and rate of regret/relief upon obtained outcome. (D) A 
significant correlation was found between levels of suicidal ideation and rate of regret/relief upon agent counterfactual outcome.
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responses to the immediate outcome, regardless of win or loss 
(Table  4). They were also less sensitive to regret and relief in 
retrospective comparisons compared to healthy individuals. These 
results were independent of the state of depression or anxiety, the 

experience of childhood trauma, ruminations, hopelessness, and 
impulsivity, which are common risk factors for suicidality and may 
influence decision-making. Taken together, these findings suggest that 
subclinical individuals with suicidal dispositions may have specific 

FIGURE 4

Plots on results of decision-making variables. EV, expected values; ED, expected disappointment; R, avoidance of regret. * indicating p < 0.05.

TABLE 3 Choice models with computational parameters.

Parameter Coefficient Standard Error 95%CI t p

(A) The best choice model with all subjects: choice ~ E + D + R + group:D + group:R + (1 | subject)

Intercept 5.16 × 10−1 5.80 × 10−3 0.50 to 0.53 88.93 <0.05*

EV 3.56 × 10−3 8.83 × 10−5 3.38 × 10−3 to 

3.72 × 10−3

40.25 <0.05*

ED −6.06 × 10−4 5.99 × 10−5 −7.23 × 10−4 to 

−4.88 × 10−4

−10.11 <0.05*

R 5.24 × 10−4 4.02 × 10−5 4.45 × 10−4 to 

6.03 × 10−4

13.02 <0.05*

ED:group −1.28 × 10−4 7.67 × 10−5 −2.78 × 10−4 to 

2.23 × 10−5

−1.67 0.10

R:group −1.19 × 10−4 5.12 × 10−5 −2.20 × 10−4 to 

−1.90 × 10−5

−2.33 0.02*

159 subjects, 12,720 observations

(B) Full choice model with all subjects: choice ~ E + D + R + group:E + group:D + group:R + (1 | subject)

Intercept 5.16 × 10−1 5.80 × 10−3 0.50 to 0.53 88.91 <0.05*

EV 3.51 × 10−3 1.25 × 10−4 3.26 × 10−3 to 

3.75 × 10−3

28.11 <0.05*

ED −5.95 × 10−4 6.33 × 10−5 −7.19 × 10−4 to 

−4.71 × 10−4

−9.40 <0.05*

R 5.33 × 10−4 4.34 × 10−5 4.48 × 10−4 to 

6.18 × 10−4

12.27 0.59

ED:group −1.50 × 10−4 8.68 × 10−5 −3.20 × 10−4 to 

2.22 × 10−5

−1.74 0.08

R:group −1.37 × 10−4 6.06 × 10−5 −2.56 × 10−4 to 

−1.80 × 10−5

−2.26 0.02*

159 subjects, 12,720 observations

EV, expected values; ED, expected disappointment; R, avoidance of regret. *p < 0.05.
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alterations in the use of forward prospective cognition in action-
outcome comparisons to guide goal-directed behaviors and blunted 
emotional responses to retrospective regret cues.

In healthy individuals, anticipated regret has been suggested to 
guide decisions that protect one from painful consequences (23). an 
early clinical study has reported that psychiatric patients with suicidal 
behaviors have difficulty predicting the consequences or the future 
value of their behaviors (40) and have then been shown to have 
deficits in future orientation (41, 42). It has been shown that patients 
with lesions in the vmPFC have impairments in predicting negative 
outcomes, learning from negative experiences (43), and avoiding 
future regret (44). Moreover, dysfunctional value representation in 
the vmPFC has been observed in suicidal individuals, as has 
disrupted vmPFC-frontoparietal connectivity in reinforcement 
learning (45). Taken together, these findings suggest that vmPFC 
dysfunction might be associated with deficits in regret anticipation 
in suicidal individuals, including less avoidance of future regret and 
less consideration of negative consequences, facilitating suicidal 
behaviors. Our findings in subclinical suicidal ideators confirm that 
this disrupted anticipation of future-oriented regret might 
be associated with the severity of suicidality and is independent of 
co-existing psychiatric disorders.

Individuals with suicidal ideations showed less pleasure in 
winning and less disappointment in losing, retrospectively, compared 
to healthy individuals. This may indicate altered value comparisons 
and amotivated responses to retrospective outcomes. Previous 
research has found that more than half of suicidal attempters regret 
their suicidal actions (21). More importantly, the presence of 
subsequent counterfactual thinking (i.e., wishing that they had died 
via the suicidal acts) is predictive of eventual suicide (46). Although 
suicidal ideators did not show reduced emotional responses to 
immediate outcomes, analysis within the ISD group indicated 
decreased responses to immediate outcomes in individuals with high 
suicidal severity. It has been shown that suicidal individuals tend to 
selectively neglect decision-relevant value information in reward 
learning (29). Impaired value comparison in suicidal individuals has 
also been found in gambling and reinforcement learning (9, 10, 47, 
48). Deficits in consummatory pleasure have been associated with 

suicide risk (49). Loss of interest and pleasure has been reported to 
be predictive of suicidal ideation independently of depression in both 
patients (50) and college students (51, 52). Extending previous 
findings, our findings of blunted experience of pleasure/relief with 
positive consequences as well as blunted experience of disappointment/
regret with negative consequences in suicidal youths suggest that 
suicidal disposition might be associated with loss of motivation and 
flat emotion. These amotivational abnormalities may contribute to an 
altered value comparison between suicidal behavior and its alterations 
during a crisis and may potentially increase the likelihood of 
suicidal behavior.

Suicidal youths did not show a disturbed expected value or 
altered avoidance of disappointment compared to healthy youths. 
This might be because we controlled for the level of hopelessness 
between groups, which is associated with value comparison and 
despair. However, it has been proposed that negative future 
expectations, lack of general motivation, and impaired attribution of 
meanings to personal experiences are key components of 
hopelessness, which is a strong predictor of suicidal behaviors (53). 
People with negative expectations about the future and loss of 
motivation have been reported to have dysfunctions in striatal 
dopamine pathways, which may affect suicidal ideation (54, 55). 
Moreover, recent studies have also reported that the absence of 
positive expectations about the future rather than the global construct 
of hopelessness, plays a key role in suicidality (56). Therefore, our 
findings on blunted disappointment in the face of poorer current 
outcomes, as well as an intact ability to avoid future disappointment 
may alternatively suggest that this dissociation plays a key role in 
suicidal disposition.

There are limitations to our study that need to be  taken into 
account in the interpretation of the results. First, given that our 
participants were recruited from university and that the subclinical 
suicidal group only shows lifetime suicidal behaviors, the 
generalization of our results needs to be cautious and our findings 
need to be replicated in samples of different ages and in psychiatric 
patients with suicidal dispositions. Second, although we have excluded 
participants with any diagnosis of mental disorders by an explicit 
question, a formal diagnosis will be preferred in a future study to 

TABLE 4 Correlations among task parameters and covariates.

Chance CF Agent CF ED EV R BDI RRS SAI TAI BIS CTQ

Chance CF 1 0.00* 0.79 0.25 0.33 0.99 0.34 0.69 0.77 0.01* 0.71

Agent CF 1 0.61 0.19 0.23 0.23 0.21 0.74 0.86 0.20 0.86

ED 1 0.00* 0.00* 0.27 0.40 0.82 0.51 0.86 0.21

EV 1 0.03* 0.88 0.57 0.33 0.77 0.12 0.47

R 1 0.43 0.42 0.65 0.75 0.42 0.57

BDI 1 0.00* 0.00* 0.00* 0.02* 0.35

RRS 1 0.00* 0.00* 0.11 0.18

SAI 1 0.00* 0.00* 0.02*

TAI 1 0.00* 0.00*

BIS 1 0.05*

CTQ 1

CF, counterfactuals; BDI, Beck Depression Inventory; RRS, Rumination Reconsidered scales; STAI, Spielberger’s State–Trait anxiety inventory; BIS, Barratt impulsiveness scale; CTQ, 
Childhood Trauma Questionnaire; EV, expected values; ED, expected disappointment; R, avoidance of regret. *p < 0.05.
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control for the undiagnostic risks. Finally, given that both the 
experience of regret and the prediction of regret might be associated 
with key areas such as the orbital-frontal cortex and ventromedial 
prefrontal cortex, future neuroimaging studies are needed to examine 
neural differences underlying regret processing in suicide.

To conclude, our results suggest that a flat experience and blunted 
regret prediction are important characteristics in subclinical young 
adults with lifetime suicidal ideations. These model-based distinctive 
abnormalities of disappointment experience, regret experience, and 
regret prediction may shed light on putative trans-diagnostic 
mechanisms in the early stages of suicidality and may be of help to 
identify measurable markers of suicidal vulnerability and future 
intervention targets.
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The distribution and heterogeneity 
of excitability in focal epileptic 
network potentially contribute to 
the seizure propagation
Denggui Fan 1, Hongyu Wu 1, Guoming Luan 2* and 
Qingyun Wang 3*
1 School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, China, 
2 Epilepsy Center, Sanbo Brain Hospital, Capital Medical University, Beijing, China, 3 Department of 
Dynamics and Control, Beihang University, Beijing, China

Introduction: Existing dynamical models can explain the transmigration 
mechanisms involved in seizures but are limited to a single modality. Combining 
models with networks can reproduce scaled epileptic dynamics. And the structure 
and coupling interactions of the network, as well as the heterogeneity of both the 
node and network activities, may influence the final state of the network model.

Methods: We built a fully connected network with focal nodes prominently 
interacting and established a timescale separated epileptic network model. 
The factors affecting epileptic network seizure were explored by varying the 
connectivity patterns of focal network nodes and modulating the distribution of 
network excitability.

Results: The whole brain network topology as the brain activity foundation 
affects the consistent delayed clustering seizure propagation. In addition, the 
network size and distribution heterogeneity of the focal excitatory nodes can 
influence seizure frequency. With the increasing of the network size and averaged 
excitability level of focal network, the seizure period decreases. In contrast, 
the larger heterogeneity of excitability for focal network nodes can lower the 
functional activity level (average degree) of focal network. There are also subtle 
effects of focal network topologies (connection patterns of excitatory nodes) that 
cannot be ignored along with non-focal nodes.

Discussion: Unraveling the role of excitatory factors in seizure onset and 
propagation can be used to understand the dynamic mechanisms and 
neuromodulation of epilepsy, with profound implications for the treatment of 
epilepsy and even for the understanding of the brain.

KEYWORDS

focal epilepsy, network excitability, heterogeneity, synchronous seizure propagation, 
small-world and free-scale network

1. Introduction

Epilepsy is one of the most common neurological disorders, affecting approximately 65–70 
million people worldwide (1). Seizures are usually caused by an imbalance of excitatory and 
inhibitory cortical neuronal cells (2, 3), and are clinically manifested by massive synchronized 
periodic discharges based on EEG (Electroencephalogram) (4, 5). Neuronal excitability is 
associated with a variety of factors, such as microbiota (6), proteases, and glial cells (7). These 
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physiological factors influence neuronal gene expression, 
morphological development, and the cellular activity (8). As factors 
that directly or indirectly affect the neuronal excitability expression, 
they are also associated with epileptic seizures (9). Based on the 
phenomenon of abnormal excitatory-inhibitory imbalances expressed 
in epilepsy, non-invasive epilepsy treatments often target on 
modulating the excitability. For example, antiepileptic drugs can 
reduce the excitability of neurons by acting on ion channels or 
indirectly acting on ion channels through neurotransmitter receptors 
(10), and Deep Brain Stimulation(DBS) can produce excitatory or 
inhibitory fields thus regulating the state imbalance of nerve cells. 
However, due to the complicated causes of epilepsy, some patients are 
resistant to the drugs (11), and still requires sufficient theory and 
practice to refine the stimulation targets and stimulation patterns. In 
addition, invasive surgical treatment not only requires a delicate 
preoperative evaluation but also carries the risk of postoperative 
paralysis, aphasia and even treatment ineffectiveness. Therefore, 
understanding the triggers of seizures and the mechanisms of 
neurophysiological rules governing the development of epileptic brain 
dynamics may provide theoretical support for epilepsy treatment and 
may even help us to further understand the brain.

The brain is a highly dynamic system, and human thoughts and 
memories as well as mechanical movements are controlled and 
operated by this central system of the brain (12). When any of the 
activity mechanisms within the brain become abnormal or disrupted, 
the corresponding brain disorders arise. The pyramidal cells of the 
neuronal cortex receive either excitatory or inhibitory synaptic 
potentials and generate extracellular currents (13), they will 
be detected by tools such as EEG or MEG when many continuously 
arranged neuronal cells discharge together. Epilepsy is caused by a 
large number of neuronal cells with hyper-synchronous discharges, 
and the apparently observable switching of electrical signal patterns 
during seizures has attracted extensive researchers’ attention. The 
brain is a nonlinear dynamical system, and increasingly mathematical 
dynamical models have been applied to study and explain the 
mechanisms of this state transitions (14, 15). For example, models 
such as Hodgkin-Huxley(HH) (16), Morris-Lecar(ML) (17) elaborate 
the association of action potential generation with sodium and 
potassium ions; these describe the behavior of individual neurons at 
the microscopic level. Models such as Neuron Mass Model (NMM). 
(18–20) are also included to describe the overall properties of a 
population of neurons at the macroscopic level, which can better 
reflect the physiological significance. Typically, a change in the stability 
of a model caused by a low-dimensional attractor bifurcation in some 
of the autonomous parameters in the model can induce a seizure-like 
state of activity. The typical high-frequency rapid discharges 
(70-120 Hz) that can be recorded at the onset of a seizure and equally 
accompanied by some low-frequency discharges ( β  rhythm and γ  
rhythm, 20–40 Hz) (21). In some cases, some of the parameters in the 
model can act as control roles for excitability controlling and can 
provide a rough depiction of the neural field information in a 
particular state of the brain, simulating abnormal brain firing. Mature 
model representations and studies have presented us with some of the 
mechanisms of brain activity, and therefore such models containing 
excitability information can be used to study the phenomenon of 
known epileptic hyperexcitability discharges. Besides, there is a 
separation of time scales during seizures (22), its recurrent nature also 
suggesting the existence of a larger time scale of epilepsy such as 

months, years, etc. This indicates that we cannot ignore the differences 
and associations between different time-scale variables during our 
modeling process.

Computational models of epilepsy have rapidly advanced and 
various dynamic mechanisms within the brain can be  revealed 
through computational models. Due to the diverse pathogenesis of 
epilepsy, different physiological regions result in similar clinical 
seizure symptoms (23). From these complex physiological 
mechanisms, common pathways of epilepsy expression can 
be  identified, and such common pathways involve large brain 
networks. Simplified dynamical models represent only a single 
modality, and from a dynamic perspective, structural networks 
characterizing the connectivity of neuronal circuits are often needed 
to reflect firing activity close to the real physiological mechanisms. 
Therefore, a combination of dynamical models and brain networks is 
required to represent the dynamic evolutionary processes more 
effectively at the whole brain level. It has been established that different 
network structures embedded in the model lead to different network 
states (24, 25), and the overall network structure inevitably affects the 
pattern of information flow traveling through the network. Brain 
network as a heterogeneous network, with this pattern also related to 
the properties of each node, which is supported by the interaction of 
network structure and node excitability distribution (26). The whole 
brain structural network seems to be considered in most studies where 
network factors are analyzed, and subnetworks or local networks are 
mostly considered for their functionality. It is not clear what role the 
connectivity patterns or nodal properties within their underlying 
epileptic networks play in triggering the widespread spread of seizures 
in focal epilepsy. Therefore, a qualitative analysis of our dynamical 
models in specific structures is necessary.

In this article, we use the model proposed by Jirsa (27), which is a 
timescale separated model that can separately simulate different types 
of epileptic-like seizure signals. We  simulated a fully connected 
network model consisting of 100 nodes, in which highly excitatory 
nodes are considered as “lesion points,” which convey excitatory 
information in the brain. Notably, the focal subnetworks of these focal 
points are connected to each other in a specific connection pattern 
with prominent connection strength and without disrupting the fully 
connected form of the original network. We analyzed the effects of 
these prominently connected focal nodes on the network model under 
different structures, different degrees of excitability, and different 
degrees of excitatory heterogeneity, hoping to provide theoretical 
support for the mechanism of focal epilepsy generation and focal to 
bilateral seizures.

2. Models and methods

2.1. Epileptor model

In this paper, we computationally explore the influence factors of 
seizure propagation of the focal epilepsy network based on the 
epilepsy oscillator model proposed by Jirsa (27). The model is given 
as follows:

 
x = y f x x z + I1 1 1 1 2 1� �,� �
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This model includes three groups of variables with different time 
scales. x x1 2,  are responsible for generating fast oscillations, related to 
the potential activity of the neuronal membrane, with the shortest 
time scale. y y1 2,  are responsible for generating SWE (sharp-wave 
events) and interictal spikes, with a slower time scale τ2  compared to 
the first group of variables, simulating the membrane potential. The 
variable z  has the largest time scale and represents the slowly varying 
permittivity variable responsible for guiding the entire system. During 
epileptic-like seizures, z  is associated with slowly changing processes 
outside the cell, such as ion levels, energy metabolism and oxygen 
content, etc. In this model, x x1 2+  can be  used to represent the 
electrographic signatures of a SLE (Seizure like events).

In addition to the interaction between the fast and slow nervous 
system in the model, it is also coupled through the permittivity variable 
z , as shown in Figure 1A (28). The dielectric coefficients are considered 

to be  correlated with excitability and control the onset state of the 
model. Figure 1B (28) gives a bifurcation diagram of the fast variable x1  
with regards to the variable z. When the dielectric coefficient goes from 
large to small through the SNIC (Saddle-node on invariant circle), the 
model transitions from the interictal to the ictal state. Conversely, when 
the dielectric coefficient goes from small to large through the HB 
(Homoclinic bifurcation), the model transitions from the ictal state to 
the interictal state. This bistable mechanism leads to the existence of an 
“epileptic element” x0  in the model that controls state switching, which 
can be used as the threshold to control the onset of the model (according 
to current model, xthreshold � �2 05. ). When x xthreshold0 <  the 

system stays at a stable fixed point and does not generate seizures, while 
when the x xthreshold0 > , the system will transit to the seizure phase. 
What is more, the excitability of one node depends on the distance 
between x0  and xthreshold . The healthy node may also be recruited to 
present a seizure state under external perturbations if the distance is too 
close (Figure 1C).

2.2. Whole brain network model

To investigate the seizure effects of focal epilepsy on a whole-brain 
scale, we modeled the brain as a network. Individual brain regions or 
clusters of neuronal cells can be taken as nodes, and the connections 
between them are mapped to become the edges of the network. In the 
dynamical model, each epileptic oscillator can be seen as part of a 
brain region, and nodal connections can be implemented by coupling 
in the model.

It has been indicated that fast coupling through synaptic or gap 
connections does not induce qualitative variations in slow time-scale 
behavior (29), thus the multi-timescale model of epilepsy with 
recurrent seizures needs to take into account the slow dielectric 
coefficients containing cellular parameters (30). This oscillator model 
is a phenomenological model presenting epilepsy-like activity and has 
less direct connection to the biophysiological mechanisms embedded 
in the real human brain. Starting from the phenomenology, the 
permittivity variable z  on the slow time scale is coupled with linear 
inhibition of the fast and slow subsystems and negative feedback 
coupling to SLE. In the case of multiple nodes discharging 
simultaneously, the discharge of node j can be  conveyed to the 
vicinity of node i  through axonal transmission, which perturbs the 
dynamical state of node i . The axonal connections that play the role 
of axonal transmission are represented in the form of structural 
connections. In a whole-brain network, all nodes can be coupled using 
a permittivity variable z  that represents a process external to the cell. 
Thus, a model of a whole-brain network formed by multiple epileptic 
oscillators is as follows:
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where Sij  represents the degree of connectivity between 
individual nodes, which can usually be represented by the structural 
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connectivity matrix of the brain. The model is simulated by fourth 
order Runge–Kutta, and all parameters in the model are shown in 
Table 1.

2.3. Network structure and excitatory 
heterogeneity of seizure nodes

In our work, to explore the seizure propagation of focal epilepsy, 
we have considered several factors that may influence the outcome of 
propagation. The first is the connectivity structure of the lesion nodes. 
Complex network theory provides a rich perspective and tool for 
brain network studies (31–33), and classical network models such as 
random networks often have their unique properties that can be used 
to depict rich brain network connections. Several classical complex 

network models including random networks, small-world networks, 
and scale-free networks are introduced into the network dynamics 
model in this paper. We built a special fully connected network. First, 
the strength of connections in this network is inversely proportional 
to the paths between nodes pairs, then the connections between 
groups of excitatory nodes (which can be considered as lesion nodes) 
were strengthened to form a specific network model structure 
individually. In a whole perspective, the network remains a fully 
connected network with the lesion nodes are prominently connected. 
This situation can be seen as a special network structure embedded in 
the original fully connected network, as shown in Figure 2, in which 
connection strength is of significant differences. In this way, we obtain 
a connectivity matrix Sij  of the fully connected network. Besides, the 
proportion of focal nodes is also taken into account. Different lesion 
proportion implies different scales of lesion networks, which is one of 
the influencing factors that we cannot ignore.

The topological connectivity and the scale of the network can 
be considered as the “physical properties” of a network, where each 
node is simulated by a dynamic model, and the variable z  in each 
model represents the degree of excitability of the node, controlled by 
x0 . The difference in excitability of each node in the network can 

be considered as the unique “intrinsic property” of each network. 
We  replace a set of excitatory nodes with x0  following normal 
distribution into the focal network:

 

x N x x

for i n i lesion node
i i thresh ld0

2
0

1 2
, ,~ , ,

, , , ,

�� ��, o� � �

� �� �  
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A B
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FIGURE 1

(A) Pattern diagram of the model. ,1 2x x  are the fast subsystems and ,1 2y y are the slow subsystems. In addition to their direct interaction, the two 
subsystems can also interact with each other indirectly through the extracellular environmental, i.e., the permittivity variable z . (B) The system is 
bistable when the permittivity variable z  lies between two bifurcation points and loses stability when the stable limit ring passes through the HB or the 
stable point passes through SNIC. The whole system varies periodically with time modified from Guo et al. (28). (C) Discharges of nodes with different 
excitability in the same network. When 0x xthreshold> , the model is in the seizure state and the oscillator will switch periodically between the seizure 
and interseizure periods (upper panel). When 0x xthreshold< , the oscillator in the non-ictal state switches between the onset and interictal states due 
to the perturbations such as network connection and noise, and there is often a time delay with the oscillator in the onset state (middle panel). Also, 
when 0x xthreshold< , the model is in the non-seizure state and the oscillator is stable for a long time without perturbations (lower panel).

TABLE 1 Model default parameter.

Parameter Value Meaning

1I 3.1 Current of fast subsystem

2I 0.45 Current of slow subsystem

oτ 2,857 Time scale of the permittivity variable

2τ 10 Time scale of the permittivity variable

γ 0.01 Time constant in function ( )g x
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The excitability and heterogeneity of nodes can be expressed as 
σ  and σ , respectively. The excitatory nodes should not be too 
close to the threshold and the heterogeneity should not be too large, 
otherwise some nodes may be  included in the 
non-epileptogenic zone.

3. Results

3.1. Whole brain network connectivity 
mechanisms underlying the consistent 
discharges

In the epileptor model, different permittivity coefficients, i.e., 
variable z , guides the system into different states. And the 
epileptogenic factor x0  included in z  can be  used as the main 
parameter to control the degree of excitability of the node. x0  located 
on the left and right sides of the xthreshold  causes the system to be in 
a non-oscillatory state and an oscillatory state, respectively, where the 
oscillatory state can be considered as the seizure state. In a system with 
individual node, the model is governed by a single excitability index 
x0 . In the network model, the interactions between nodes implies a 

diversity of node states. This multi-state is not only determined by the 
initial diverse excitability of the nodes, but the connectivity between 
nodes embedded in z  also influences the state of the nodes in some 
way. We set some of the nodes in the multi-node network as excitatory 
nodes and the rest as non-excitatory nodes. We found that when the 
node network is sparsely connected, due to the presence of excitatory 
nodes, part of non-excitatory nodes also exhibits state switching, but 
the overall excitatory synchronization of the network is weak 
(Figure 3A), but when the node network is fully connected, all the 
non-excitable nodes are also converted to a “delayed onset” oscillatory 
state in the network model due to the overlapping of node 
interactions,and most of the nodes have high excitatory 
synchronization (Figure  3B). However, without the existence of 
excitatory nodes, full connectivity between nodes cannot directly 
cause state switching in some nodes either (Figure 3C). We speculate 
that the primary condition controlling the dynamical behavior of 
brain regions or neuronal cells within the brain is their own 
physiological situation, but the information transfer and interaction 
relationship between individual units is also a part that cannot 
be ignored.

3.2. The effects of focal network size and 
excitability patterns on the epileptic seizure 
periods

Epileptic seizures formally exhibit large-scale periodic coherent 
discharges. In the results of model simulations, we can also observe 
periodic changes in the fast and slow subsystems and variable z  of 
excitatory nodes. The multiple time scales involved in epilepsy have 
been of wide interest, different time scales involve different 
physiological dynamic behaviors. For epilepsy which may persist with 
recurrent seizures over a long period of time, time plays an important 
role, with short periods implying frequent and continuous seizures, 
which pose a great challenge to the patient himself and to the treatment. 
Long periods may offer the possibility of interrupting the process of the 
disease. The electrophysiological mechanisms underlying the switch 
between ictal and interictal periods in such periodic discharges may 
conceal the triggering of seizures. In this work, to explore the factors 
that influence the period of epileptic discharges in a known dynamic 
background, we considered the network situation in a multi-node 
model and the excitability of the network nodes. We found that both 
the proportion of excitatory nodes and their epileptogenic factor x0  
influence the period of the synchronous oscillation of the nodes. 
Holding the remaining factors constant, the period of oscillation of the 
network is negatively correlated with both the averaged x0  (i.e., 
average excitability μ) and the proportion of excitatory nodes. When 
x0  is located in the excitatory region, the greater the distance from the 

threshold [Figures  4B,C (lower)], the greater the proportion of 
excitatory nodes [Figures 4A,C (middle)], the shorter the period, the 
more frequent the state switching of the nodes. And it is not affected 
by the heterogeneity of node excitability [Figure 4C (upper)]. This may 
imply that the excitability level of nodes plays an essential role in the 
network model, and either the change in excitability of a single node 
itself or the accumulation of multiple similarly excitable nodes will 
change the overall excitability of the network model, which will 
be reflected in the periodicity and frequency of seizures.

3.3. The secondary effect of focal network 
topology on its functional activity

In the field of brain network research, statistical relationships 
between signals are often used to build functional networks to 

A B

FIGURE 2

Diagram of network connection structure. (A) The strength of connections between nodes in a fully connected network is inversely proportional to the 
between-node path. The connection pattern between lesion nodes (orange) is topologically specific (small-world connection as an example). The 
strength of the connection between the lesion nodes was significantly greater than the remaining connections (B) The connectivity strength between 
lesion nodes is extremely prominent, much higher than that between non-lesion nodes, and this matrix can be used as the connectivity matrix Sij in 
the model.
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investigate the functional coherence of individual brain regions or 
nodes. As mentioned previously we constructed a fully connected 
network with lesion nodes specifically connected and strongly 
connected. After obtaining multiple sets of simulated signals for 
the same lesion node proportion of the network model, 
we calculated the Pearson correlation between the signals and used 
them as the edges of the network to construct a functional network 
of simulated signals. In this way, we observed the characteristics of 
the lesion nodes structurally and functionally. We preserved the 
top 27.5% of the functional connectivity strength to visualize the 
structure of the functional network. As shown in Figure 5, the 
average degree of lesion nodes in the functional network correlates 
with the heterogeneity in the excitability of the lesion nodes, 
regardless of the connectivity pattern. The functional network after 
sparing is preserved as strongly connected, with each connection 
representing a high correlation between signals. When σ  = 0, the 
lesion nodes are homogeneous, and the average degree of all lesion 
points is maintained around the lesion proportion. Larger σ  
represents a greater degree of heterogeneity in node excitability, 
while the potential average activity level (average degree) of the 
corresponding lesion cluster is negatively correlated with σ , and 
the connectivity of the lesion cluster becomes smaller as σ  
increases. However, structural changes in different connectivity 
patterns under the same type of network did not have a dramatic 
effect on this trend overall (Figure 5). This implies that excitability 
in the network remains the dominant factor influencing the state 
of the system. We noted subtle effects from changes in network 

structure, but they remained a secondary condition compared 
to excitability.

4. Discussion

Seizures involve abnormalities related to ion channels and 
synaptic function, and the brain excitation/inhibition circuits 
develop a dysfunction, which in turn leads to an imbalance of 
excitation and inhibition in the brain system, usually manifesting as 
hyperexcitability (34, 35). Some of the disorders caused by 
excitability-related elemental abnormalities are also accompanied by 
the generation of epilepsy (36, 37). The process of using DBS for 
drug-resistant epilepsy is to alter the activity of local field potentials 
and the excitability of brain networks by remote thalamic stimulation 
or direct cortical stimulation (38). It is thus clear that excitability is 
a never-ending subject in the field of epilepsy. However, epilepsy 
remains a challenge in modern medicine, with its complex temporal 
and spatial scales, and the seizure mechanisms involved have not 
been fully revealed. Existing ideas include recording a series of 
imaging data before and after a clinical seizure, which allows to 
analyze and predict the seizure and propagation of epilepsy, etc. 
(39–41). Data analysis is difficult to avoid the specificity brought by 
individual data, and models can fill the missing part of data analysis. 
There is a rich electrophysiological mechanism behind the 
operations of the brain, and some of these transitions can be well 
reproduced by existing dynamical models, and mature nonlinear 

A

B

C

FIGURE 3

Simulation results for the network model with different network connections and different excitations, the connection matrix is shown on the right. 
(A) Simulation results of the multi-node network model under the random network, where the excitatory nodes (red) can have state switching and a 
portion of the non-excitatory nodes remain in the stable state. (B) Simulation results of the multi-node model with fully connected network. Except for 
excitatory nodes (red), all non-excitatory nodes generate state switching, which is slightly delayed than excitatory nodes. (C) Simulation results of the 
model without excitatory nodes under fully connected network connections, all nodes do not have state switching.
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dynamical theories can be combined with models to explain some 
brain-like phenomena. A strong and distinct state switching 
mechanism exists in epilepsy and is accompanied by a certain 
periodicity. Combining excitatory factors with computational 

models to explore the mechanisms of seizures can provide theoretical 
support for our treatment and study of epilepsy.

In this article, we first analyze the nonlinear dynamical features 
in the model to explore the mechanisms of abnormal discharges. 

A B C

FIGURE 4

(A) Simulated time series of network model with different excitatory node proportions. In the same scale network, the larger the excitability proportion, 
the shorter the system oscillation period. (B) Simulated time series of network model with the same proportion and different excitability level μ. In the 
same scale network, the closer the distance between x0 and the threshold, the shorter the oscillation period of the system. (C) System oscillation 
period curve with respect to the excitability heterogeneity of network nodes, network size and the network excitability level, respectively.

A B

FIGURE 5

Curves of the relationship between the average degree of lesion node groups and excitatory heterogeneity in the functional network. (A) In the 
strongly connected network of lesion nodes, the higher the node heterogeneity, the smaller the average degree of nodes, and the regular connection 
(p = 0), small world connection (0 < p < 1) and random connection (p = 1) show the same law. (B) In the scale-free strong connection network of focal 
nodes (γ is the power-law exponent of scale-free network), the higher the node heterogeneity, the smaller the average degree of nodes, and the scale-
free network structure pattern has little influence.
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We  found that this abnormal discharge is controlled by a set of 
bifurcations, with seizures starting at the saddle-point bifurcation 
and ending at the homozygous bifurcation. The simple model 
generates abnormal discharges on the premise that to control the 
model lies within the excitatory region. We also found that excitability 
is the main factor affecting the model state in a mutually coupled 
network model. Non-excited nodes have a certain probability to 
produce a delayed discharge behavior over excited nodes in the case 
of node coupling overlapping. Such a delayed spontaneous discharge 
phenomenon helps us to understand the direction of information 
flow in epileptic networks. In addition to this, we control the distance 
of the parameters of node excitability and the proportion of excitable 
nodes in the network, which significantly affect the period of system 
discharge. This implies that changes in excitability in either degree or 
extensity affect the system state. The effects of altered system 
excitability are reflected in both microbiological and macroscopic 
computational models. Complex systems often contain multi-element 
interactions, and multi-element excitatory heterogeneity has been 
similarly shown to play with a role in the propagation of epilepsy 
when the overall excitability of the network system is constant (42). 
In our work, the lower the excitability heterogeneity, the stronger the 
association between clusters of excitatory nodes, which is reflected in 
the functional network of lesion nodes after model simulation. 
We suggest that excitability is in a primary position compared to 
other factors including network coupling and network structure, and 
that excitability can produce effects on the system in 
multiple dimensions.

In our whole-brain network, network coupling is not based on 
structural connectome, but rather a structural network with 
prominent lesion connections, which theoretically establishes a deeper 
understanding of the relationship between excitability and the system. 
The advantage of this is a clearer understanding of the coupling 
information, and the disadvantage is the lack of physiological 
information about the real situation of the brain. Currently, in the 
context of such fully connected networks, there is no good 
correspondence between simulated signals and known specific 
network structures for analysis, which is our later effort. It is expected 
that the dynamic flow of neural information in specific network 
structures can be revealed. During the model simulation, excitability 
shows its main role in controlling the state of the system. In the case 
of epilepsy, such results are inevitable. Therefore, there is a strong need 
to focus the perspective on potential influences beyond excitability to 
provide more diverse theoretical support for seizure mechanisms as 
well as modeling. In conclusion, this study analyzed how excitability 

parameters in the model affect the dynamic switching as well as the 
intrinsic properties of the network system in different perspectives by 
modeling the dynamics and parameter modulation of the epileptic 
network, reflecting the importance of excitability factors in the 
epileptic system.
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Introduction: The study of brain function has been favored by scientists, but the

mechanism of short-term memory formation has yet to be precise.

Research problem: Since the formation of short-term memories depends on

neuronal activity, we try to explain the mechanism from the neuron level in this

paper.

Research contents and methods: Due to the modular structures of the brain,

we analyze the pattern properties of the FitzHugh-Nagumo model (FHN) on a

multilayer network (coupled by a random network). The conditions of short-term

memory formation in the multilayer FHNmodel are obtained. Then the time delay

is introduced to more closely match patterns of brain activity. The properties of

periodic solutions are obtained by the central manifold theorem.

Conclusion: When the di�usion coe�cient, noise intensity np, and network

connection probability p reach a specific range, the brain forms a relatively vague

memory. It is found that network and time delay can induce complex cluster

dynamics. And the synchrony increases with the increase of p. That is, short-term

memory becomes clearer.

KEYWORDS

FHN model, short-term memory, multilayer network, Turing pattern, delay, Hopf

bifurcation, noise

1. Introduction

In 1952, Alan Hodgkin and Andrew Huxley developed the famous Hodgkin-Huxley

(HH) model based on nerve stimulation potential data of squid. Due to the high dimension

and computational complexity of theHHmodel, Richard FitzHugh and J.Nagumo simplified

the HHmodel and established the FHNmodel. In the actual nerve conduction process, there

is a certain time delay in signal transmission, which caused a lot of research on the FHN

model with time delay. Wang et al. studied bifurcation and synchronization (1), bifurcation

structure (2), Fold-Hopf bifurcation (3), periodic oscillation (4), and global Hopf bifurcation

(5) of coupled FHNmodel with time delay. Yu et al. (6) found that the noise level can change

the signal transmission performance in the FHN network, and the delay can cause multiple

stochastic resonances. Gan et al. (7) also found that appropriate delay can induce stochastic

resonances in FHN scale-free networks and devoted themselves to extending the range of

stochastic resonance on complex neural networks. Zeng et al. (8) found that, unlike noise, the

system undergoes a phase transition as the time delay increases. Bashkirtseva and Ryashko

analyzed the excitability of the FHNmodel using the stochastic sensitivity function technique

and proposed a new method for analyzing attractors (9). In addition, it is found that there

are very complex dynamic phenomena in the FHNmodel. Rajagopal et al. (10) studied chaos

and periodic bifurcation diagrams under different excitation currents and found that the

dynamic behavior of the nodes alters dramatically after the introduction of Gaussian noise.
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Iqbal et al. (11) studied robust adaptive synchronization of

a ring-coupled uncertain chaotic FHN model and proposed

a scheme to synchronize the coupled neurons under external

electrical stimulation. Feng et al. studied the influence of external

electromagnetic radiation on the FHN model. And they found

that periodic, quasi-periodic, and chaotic motions would occur

in different frequency intervals when the external electromagnetic

radiation was in the form of a cosine function (12).

In the same year, the HH model was proposed, Turing

discovered that a stable uniform state would become unstable

under certain conditions in a reaction-diffusion system, which

attracted a lot of attention and was introduced into various fields.

Liu et al. found that cross-diffusion could lead to Turing instability

of periodic solutions (13, 14). Lin et al. analyzed the conditions of

Turing-Hopf bifurcation and the spatiotemporal dynamics near the

bifurcation point in diffusion neural networks with time delay (15).

Mondal et al. studied the dynamical behaviors near the Turing-

Hopf bifurcation points of the neural model. And they found that

collective behaviors may be related to the generation of some brain

pathologies (16). Qu and Zhang studied the conditions required for

various bifurcations in the FHN diffusion system under Neumann

boundary conditions and extended them to coupled FHN model

(17). With the boom of complex networks in recent years, many

scholars have begun to study the Turing pattern under the network

(18–22). Ren et al. extended these studies to multilayer networks

(23, 24). Moreover, Tian et al. investigated pattern and Hopf

bifurcation caused by time delay in the Small-World network,

Barabasi-Albert free-scale network, and Watts-Strogatz network

(25, 26). These studies take the pattern problem to a new level.

Researchers are keen to study some characteristic behaviors of

the brain from the perspective of the network because the brain is a

complex network system with hierarchical and modular structures

(27). Neurons generate complex cluster dynamic behaviors through

synaptic coupling to form brain function. Neurons with similar

connection patterns usually have the same functional attributes

(28). Experiments have shown that neurons far apart can fire

simultaneously when the brain is stimulated and that this

phenomenon persists when neurons are in the resting state. One

of the brain’s basic functions is remembering information, which

can be a sensory stimulus or a text (29). The principle of memory

formation is very complex and is still being explored. A classic view

is that the realization of short-term memory in the brain depends

on fixed point attractors (30, 31). Memory storage is maintained

by the continuous activity of neurons, which persists even after the

memory stimulus has been removed (32, 33). Goldman showed

the fundamental mechanisms that generate sustained neuronal

activity in feedforward and recurrent networks (33). Neurons

release neurotransmitters that direct human activity when the

brain receives the information. However, due to the noise and

the existence of inhibitory neurons, information processing cannot

always be synchronized in time, which leads to a certain delay in

the recovery time of action potentials (34). And Yu et al. found that

the delay will affect the transmission performance of sub-threshold

signal and induce various chaotic resonances in coupled neural

networks (35).

The state of neurons can be represented by patterns. The

pattern no longer looks so smooth when the brain stores short-

term memory. There is synchrony in the activity of neurons.

In pattern dynamics, synchronization can be induced by Turing

instability. Scholars have built various mathematical models and

analyzed neurons using Turing dynamic theory to understand the

mechanism of memory formation. Zheng et al. studied the effect

of noise on the bistable state of the FHN model and explained

the biological mechanism of short-term memory by the pattern

dynamics theory (36). They also studied the conditions of Turing

pattern generation in the Hindmarsh-Rose (HR) model and found

that collected current and outgoing current greatly influenced

neuronal activity and used this to explain the mechanism of

short-term memory generation (37). Wang and Shi proposed

the time-delay memristive HR neuron model, found multiple

modes and coherence resonance, and speculated that it might

be related to the memory effect of neurons (38). We study the

FHN model under a multilayer network to get closer to the

actual brain structure. The biological mechanism of short-term

memory generation is explained by the pattern characteristics

of the model. The article is structured as follows. In the next

section, firstly, the stability of the equilibrium point in the

FHN model is analyzed. Then the sufficient conditions for the

Turing instability of the FHN model on the Cartesian product

network are found using the comparison principle. Finally, the

properties of periodic solutions in FHN multilayer networks

are studied using the center manifold theorem. Explaining the

mechanism of short-term memory by numerical simulation

in Section 3.

2. Description of the FHN model

We consider the general FHN model

du

dt
= c(u− u3/3− av+ I),

dv

dt
= c(bu− v+ d), (1)

Where u is membrane potential, which is a fast variable, and

v is recovery variable, which is a slow variable. I is the external

input current. a, b represent respectively the intensity of action

from v to u and from u to v. And the parameters c 6= 0, d

are constants. The equilibrium point of the system (Equation 1)

satisfies u3 + 3(ab − 1)u + 3(ad − I) = 0. Therefore, we have the

following conclusion.

Lemma 1 Let ̟ = −1+ı
√
3

2 and ̺ = 3
2 (ad − I), in which ı is

the imaginary unit. The influence of parameters on the number of

equilibrium of the system (Equation 1) is as follows.

(i) When ab− 1 = ad− I = 0, the equation has triple zero roots

and the trace of the system (1) at that point is constant 0.

(ii) When1 = ̺2+ (ab− 1)3 > 0, the equation has only one real

root
3

√

−̺ +
√
1+

3

√

−̺ −
√
1.

(iii) When 1 = 0, ab 6= 1 and ad 6= I, the equation has two real

roots −2 3
√
̺ and 3

√
̺, and the determinant at the second root

3
√
̺ of system (1) is always 0.

(iv) When 1 < 0, the equation has three unequal real

roots
3

√

−̺ +
√
1 +

3

√

−̺ −
√
1, ̟

3

√

−̺ +
√
1 +

̟ 2 3

√

−̺ −
√
1,̟ 2 3

√

−̺ +
√
1+̟

3

√

−̺ −
√
1.
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Let U∗ = (u∗, v∗) be the equilibrium point of the system (1).

By coordinate transformation ū = u(t)− u∗, v̄ = v(t)− v∗, we get

the following equivalent system. For convenience, u(t), v(t) are still

used to denote ū, v̄,

du

dt
= a11u+ a12v+ f (u),

dv

dt
= a21u+ a22v, (2)

where a11 = c(1 − u∗
2
), a12 = −ac, a21 = bc, a22 = −c, f (u) =

−u∗u2− u3

3 . The corresponding determinant10 = c2(u∗
2
+ab−1)

and the trace Tr0 = −cu∗
2
. By the Routh-Hurwitz criterion, the

equilibrium (0, 0) of the system (Equation 2) is stable if and only if

(H 1) holds,

cu∗
2
> 0 and u∗

2
+ ab− 1 > 0. (H 1)

2.1. FHN model on Cartesian product
network

Now we discuss the effect of the Cartesian product networks on

the stability of the equilibrium point (0, 0). Two networks R and E

with nr and ne nodes are given, respectively. (L
R) = AR − (kiδij)

R

((LE) = AE − (kiδij)
E) is the Laplacian matrix of the network R

(E). A is the adjacency matrix of the network. And ki denotes the

degree of the ith node. δij satisfies, δij = 1 when node i has an edge

with node j; δij = 0 when there is no edge. By using the Kronecker

product, we can get the Cartesian product network R�E (� stands

for multilayer network), which has nrne nodes. Then the Laplacian

matrix of R�E is denoted as

LR�E = LR ⊗ Ine + Inr ⊗ LE,

and the eigenvalues of R�E are of form

3R�E
αβ = 3R

α +3
E
β , α ∈ {1, · · ·, nr}, β ∈ {1, · · ·, ne}.

A general FHN model on Cartesian product network can be

expressed as

dure

dt
= a11ure + a12vre + f (ure)+ Luure,

dvre

dt
= a21ure + a22vre + Lvvre, (3)

Where r ∈ {1, · · ·, nr}, e ∈ {1, · · ·, ne}. The Laplacian operator

Lu is

Lu = DR
uL

R ⊗ Ine + DE
uInr ⊗ LE.

DR
u , D

R
v (DE

u , D
E
v ) are the diffusion coefficients of the network

R (E). Notice that (LR ⊗ Ine )(ure) = (LRuRr , u
E
e ) =

∑

r′ L
R
rr′ur′e, and

similarly, we can get Inr ⊗ LE. For Lvvre, we can get similar result.

Expanding ure and vre in Fourier space, we can obtain linearized

equation for equation (3),

dure

dt
= a11ure + a12vre + (DR

u3
R
α + DE

u3
E
β )ure,

dvre

dt
= a21ure + a22vre + (DR

v3
R
α + DE

v3
E
β )vre. (4)

Lemma 2 Comparison principles Consider the ODE

d2S
dt

+ P(t) dS
dt

+ Q(t)S = 0, (A 1)

and suppose that there exists some8(t) such that

Q(t) ≤ − 1
8

d28
dt

− 1
8

d8
dt
P(t), ∀t ∈ �. (A 2)

If (A 2) holds, then the fundamental solution S(t) of (A 1)

satisfies |S| ≥ 8(t) for all t ∈ �. In particular, S(t) has an

exponential growth rate on� if Q(t) < 0 for all t ∈ �.

The proof of the lemma is divided into two cases. Let’s discuss

it first at the boundary, and then prove it on the inside by using the

properties of the Riccati equation. The detailed proof can be seen in

Van Gorder (39).

Theorem 1 Assume that (H 1) holds.

10 +3
E
β (a22D

E
u + a11D

E
v )+3

R
α(a22D

R
u + a11D

R
v )

+ (3E
β )

2DE
uD

E
v +3

E
β3

R
α(D

E
uD

R
v + DR

uD
E
v )+ (3R

α)
2DR

uD
R
v < 0.

(H 2)

If (H 2) holds, then (0, 0) for the system (Equation 3) is linearly

unstable.

Proof We consider the Equation (4). Separating vre from the first

equation of Equation (4), we can obtain

vre =
ure′ − a11ure − (DR

u3
R
α + DE

u3
E
β )ure

a12
.

Putting it into the second equation of Equation (4), we can

obtain a second-order ODE about ure,

ure′′ − [Tr0 +3
E
β (D

E
u + DE

v )+3
R
α(D

R
u + DR

v )]ure′

+ [10 +3
E
β (a22D

E
u + a11D

E
v )+3

R
α(a22D

R
u + a11D

R
v )

+ (3E
β )

2DE
uD

E
v +3

E
β3

R
α(D

E
uD

R
v + DR

uD
E
v )

+ (3R
α)

2DR
uD

R
v ]ure = 0.

Similarly, we get a second-order ODE about vre.

According to Lemma 2, a sufficient condition (H 2) for Turing

instability caused by the Cartesian product network at (0, 0) is

obtained. Of course, networks do not always cause instability.

2.2. The Hopf bifurcation of FHN network
caused by delay

Suppose that (0, 0) in Equation (3) is stable, we next consider

the effect of time delay on (0, 0). Adding time delay to the FHN

network model (Equation 3), we have

dure

dt
= a11ure + a12vre(t − τ )+ f (ure)+ Luure,

dvre

dt
= a21ure + a22vre + Lvvre. (5)

The Jacobian matrix of each node becomes

Jre =

(

a11 + DR
u3

R
α + DE

u3
E
β 0

a21 a22 + DR
v3

R
α + DE

v3
E
β

)

+

(

0 a12
0 0

)

e−λreτ , J0 + J1e−λreτ .
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Then the transcendental equation of the system (Equation 5) at

(0, 0) is

λ2re + B1λre + B2 + B3e
−λreτ = 0,

where

B1 = −Tr0 − (DE
u + DE

v )3
E
β − (DR

u + DR
v )3

R
α ,

B2 = (DE
v3

E
β + DR

v3
R
α + a22)(D

E
u3

E
β + DR

u3
R
α + a11),

B3 = −a12a21.

Suppose ıω (ω > 0) be a root of the transcendental equation.

And substituting ıω into the above equation, we can obtain

−ω2 + B2 + B3cos(ωτ )+ ı
(

B1ω − B3sin(ωτ )
)

= 0.

Comparing the coefficients, we have

{

B3cos(ωτ ) = ω2 − B2,

B3sin(ωτ ) = B1ω,

then we obtain

ω4 + (B21 − 2B2)ω
2 + B22 − B23 = 0.

Let x = ω2, p = B21−2B2, q = B22−B23, then the equation becomes

x2 + px+ q = 0. (6)

Lemma 3 Assume that (0, 0) in Equation (3) is stable. If 4q < 0 ≤

p2 and p > 0, then the real parts of all roots of the transcendental

equation are less than 0 for τ ∈ [0, τ0) and
dReλre(τ0)

dτ
6= 0.

Proof The Equation (6) has only one positive root when 4q < 0 ≤

p2 and p > 0, denoted by x0. Hence, ıω0 = ı
√
x0 is a purely

imaginary root of the transcendental equation. Let

τ
j
0(3

R
α ,3

E
β ) =

1

ω0
arccos

ω2
0 − B2

B3
+ 2π j, j = 0, 1, 2, · · ·.

Define

τ0 = minj≥1 τ
j
0(3

R
α ,3

E
β ). (7)

Then again, τ0 is theminimum value of τ
j
0, so the real parts of all

roots of the transcendental equation are less than 0 for τ ∈ [0, τ0).

Next we prove the transversal condition. Let

λre(τ ) = η(τ )+ ıω(τ )

be the root of transcendental equation, then η(τ0) = 0, ω(τ0) = ω0.

By taking the derivative with respect to τ in the transcendental

equation, we can get

dλre(τ )

dτ
=

B3λree
−λreτ

2λre + B1 − B3τe−λreτ
.

Substituting ω0, τ0 into the above equation, we can obtain

dReλre(τ0)

dτ
=
ω2
0

2
(2ω2

0 + p),

where

2 = (−ω2
0τ0 + B2τ0 + B1)

2 + (B1ω0τ0 + 2ω0)
2.

So

dReλre(τ0)

dτ
6= 0.

According to the above analysis, the system (Equation 5) will

occur Hopf bifurcation at τ = τ0 when Lemma 3 holds. Next,

we discuss the properties of periodic solutions. The idea is: firstly,

the system is written in the form of abstract ODE by using the

infinitesimal generators theorem; then, A two-dimensional ODE

that is the restriction to its center manifold is obtained by using the

spectral decomposition theorem and the central manifold theorem

of infinite dimensional systems; finally, the Hassard method is

applied to determine the bifurcation attributes’ parameters. The

delay τ is taken as the control parameter, and let τ = τ0 + ò,

t = τς . For convenience, we’ll still use t to stand for ς . Setting

ℵ(t) = (ure(t), vre(t))
T be the solution of system (Equation 5) and

define ℵt(θ) = ℵ(t + θ), θ ∈ [−1, 0].

The system (Equation 5) is transformed into the following

functional equation,

ℵ̇t = AEòℵt + Fò(ℵt), (8)

where linear operator AEó :C([−1, 0],R2) , C → R
2,

AEóφ = (τ0 + ò)J0φ(0)+ (τ0 + ò)J1φ(−1);

nonlinear operator Fò :C → R
2,

Fò(φ) = (τ0 + ò)

(

−u∗φ1(0)
2 −

φ1(0)
3

3

0

)

,

where φ(θ) = (φ1(θ),φ2(θ))
T .

From Riesz representation theorem, there exists matrix η(θ , ò)

of bounded variation functions satisfying

AEóφ =

∫ 0

−1
φ(θ)dη(θ , ò), where φ ∈ C.

Let

η(θ , ò) = (τ0 + ò)J0δ(θ)+ (τ0 + ò)J1δ(θ + 1),

where δ(·) denotes Dirac function. According to the infinitesimal

generators theorem, the abstract differential equation can be

obtained from Equation (8)

ℵ̇t = Aòℵt + Rò(ℵt), (9)

where

Aòφ(θ) =

{

dφ(θ)
dθ

, θ ∈ [−1, 0),
∫ 0
−1 dση(ò, σ )φ(σ ), θ = 0;

Rò(φ(θ)) =

{

0, θ ∈ [−1, 0),

Fò(φ), θ = 0.
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FIGURE 1

Nullcline, phase portraits with di�erent initial value and time series when a = 1, b = 1, c = 2, d = 1, I = 0.7.

FIGURE 2

The range of Turing instability in the general di�usion system about

Du and Dv .

In the following, we will discuss ODE (Equation 9) by using

formal adjoint theorem, center manifold theorem and normal

form theory.

LetA∗
ò be the conjugate operator ofAò. According to the formal

adjoint theorem, there is

A∗
òψ(s) =

{

−
dψ(s)
ds

, s ∈ (0, 1],
∫ 0
−1 dη

T(σ , 0)ψ(−σ ), s = 0.

Define product

〈ψ(s),φ(θ)〉 = ψ̄T(0)φ(0)−

∫ 0

θ=−1

∫ θ

ξ=0
ψ̄T(ξ − θ)dη(θ)φ(ξ )dξ ,

which satisfies 〈ψ ,Aòφ〉 = 〈A∗
òψ ,φ〉 and η(θ) = η(θ , 0). From the

previous discussion, we can obtain that±ıω0τ0 are the eigenvalues

of A0, A
∗
0 .

Lemma 4 Let q(θ) = (1, q2)
Teıω0τ0θ be the eigenvector of A0

corresponding to ıω0τ0, and q∗(s) = κ(q∗1 , 1)
Teıω0τ0s be the

eigenvector of A∗
0 corresponding to−ıω0τ0. And let 〈q

∗(s), q(θ)〉 =

1, then we can choose

q2 =
a21

ıω0 − a22
, q∗1 =

−a21

ıω0 + a11
,

κ =
1

q∗1 + q̄2 + τ0a12q
∗
1 q̄2e

ıω0τ0
.

Proof From the hypothesis, we have

A0

(

1

q2

)

= ıω0τ0

(

1

q2

)

, A∗
0

(

q∗1
1

)

= −ıω0τ0

(

q∗1
1

)

.

Then

q2 =
a21

ıω0 − a22
, q∗1 =

−a21

ıω0 + a11
.

Next, we calculate the expression of κ . According to the bilinear

inner product formula, we have

〈

q∗(s), q(θ)
〉

= q̄∗
T
(0)q(0)−

∫ 0

−1

∫ θ

0
q̄∗

T
(ξ − θ)dη(θ)q(ξ )dξ

= κ̄(q̄∗1 , 1)(1, q2)
T

−

∫ 0

−1

∫ θ

0
κ̄(q̄∗1 , 1)e

−ıω0τ0(ξ−θ)dη(θ)(1, q2)
Teıω0τ0ξdξ

= κ̄
[

q̄∗1 + q2 − (q̄∗1 , 1)

∫ 0

−1
θeıω0τ0θdη(θ)(1, q2)

T
]

= κ̄
[

q̄∗1 + q2 + (q̄∗1 , 1)τ0J
1e−ıω0τ0 (1, q2)

T
]

= κ̄
[

q̄∗1 + q2 + τ0a12q̄
∗
1q2e

−ıω0τ0
]

.
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To make
〈

q∗(s), q(θ)
〉

= 1, we take

κ̄ =
1

q̄∗1 + q2 + τ0a12q̄
∗
1q2e

−ıω0τ0
.

The center manifold �0 of Equation (8) is locally invariant

when ò = 0. To achieve spectral decomposition, we build the local

coordinates z and z̄ on the center manifold �0. Let Ut = Ut(θ) be

the solution of the system (Equation 8) when ò = 0, then

z(t) = 〈q∗,Ut〉.

And let

W(t, θ) = Ut(θ)− z(t)q(θ)− z̄(t)q̄(θ). (10)

W(t, θ) = W(z, z̄, θ) on the center manifold �0, so W(z, z̄, θ) can

be expanded as

W(z, z̄, θ) = W20(θ)
z2

2 +W11(θ)zz̄ +W02(θ)
z̄2

2 + · · ·. (11)

W is real whenUt is real. Therefore, in this case, let’s just look at the

real solution. Obviously, there is

〈q∗,W〉 = 0.

Because of the existence of the center manifold, it is possible to

transform the functional differential equation (Equation 8) into

simple complex variable ODE on�. When ò = 0, there is

ż(t) = 〈q∗, U̇t〉

= ıω0τ0z(t)+ q̄∗
T
(0)F0

(

W(z, z̄, θ)+ zq(θ)+ z̄q̄(θ)
)

, ıω0τ0z(t)+ g(z, z̄)(t).

(12)

And since Fò(φ) is at least quadratic with respect to φ, we can write

g(z, z̄) = g20
z2

2 + g11zz̄ + g02
z̄2

2 + g21
z2 z̄
2 + · · ·. (13)

By combining Equations (10), (11), we can obtain

Ut(θ) = W(t, θ)+ z(t)q(θ)+ z̄(t)q̄(θ)

= (1, q2)
Teıω0τ0θ z + (1, q̄2)

Te−ıω0τ0θ z̄ +W20(θ)
z2

2

+W11(θ)zz̄ +W02(θ)
z̄2

2
+ · · ·.

Substituting the above equation into (13), it can be obtained

g(z, z̄) = q̄∗
T
(0)F0(Ut) = τ0κ̄(q̄

∗
1 , 1)

(

−u∗φ1(0)
2 −

φ1(0)
3

3

0

)

= −τ0κ̄ q̄
∗
1

[

u∗(z + z̄ +W
(1)
20 (0)

z2

2
+W

(1)
11 (0)zz̄ +W

(1)
02 (0)

z̄2

2
+ · · ·)2

+
1

3
(z + z̄ +W

(1)
20 (0)

z2

2
+W

(1)
11 (0)zz̄ +W

(1)
02 (0)

z̄2

2
+ · · ·)3

]

= −τ0κ̄ q̄
∗
1

[

u∗z̄2 + 2u∗zz̄ + u∗z2

+ (2u∗W
(1)
11 (0)+ u∗W

(1)
20 (0)+ 1)z2z̄ + · · ·

]

.

Obviously, there are

g02 = g11 = g20 = −2τ0κ̄ q̄
∗
1u

∗,

g21 = −2τ0κ̄ q̄
∗
1

(

2u∗W
(1)
11 (0)+ u∗W

(1)
20 (0)+ 1

)

. (14)

Observing the above equation, we can see that if we want to

calculate g21, we must first calculate W20(θ) and W11(θ). Next, we

determine the exact expression forW20(θ),W11(θ).

According to Equations (9), (10), and (12), we have

Ẇ = U̇t − żq− ˙̄zq̄

=

{

A0W − gq(θ)− ḡq̄(θ), −1 ≤ θ < 0

A0W − gq(θ)− ḡq̄(θ)+ F0, θ = 0

, A0W +M(z, z̄, θ),

(15)

where

M(z, z̄, θ) = M20(θ)
z2

2 +M11(θ)zz̄ +M02(θ)
z̄2

2 + · · ·. (16)

FIGURE 3

The relationship between 3R
α +3

E
β and y and the corresponding pattern when a = 1, b = 1, c = 2, d = 1, I = 0.7, Du = 0.01, Dv = 8, p = 0.01. The

red dots are the eigenvalues of the network Laplacian matrix.
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Combining Equations (11), (15), and (16), Ẇ can be expressed as

Ẇ = A0

[

W20(θ)
z2

2
+W11(θ)zz̄ +W02(θ)

z̄2

2
+ · · ·

]

+M20(θ)
z2

2
+M11(θ)zz̄ +M02(θ)

z̄2

2
+ · · ·

=
[

A0W20(θ)+M20(θ)
] z2

2
+
[

A0W11(θ)+M11(θ)
]

zz̄

+
[

A0W02(θ)+M02(θ)
] z̄2

2
+ · · ·.

(17)

On the other hand, combining Equations (11), (12), we know

that on the center manifold �0 near the origin, Ẇ can also be

expressed as

Ẇ = (W20z +W11z̄ + · · ·)
[

ıω0τ0z + g(z, z̄)
]

+ (W11z +W02z̄ + · · ·)
[

−ıω0τ0z̄ + ḡ(z, z̄)
]

= 2ıω0τ0(W20
z2

2
+W02

z̄2

2
+ · · ·).

(18)

Comparing the coefficients of z2 and zz̄ in Equations (17), (18), the

relationship betweenWij(θ) andMij(θ) can be obtained

(2ıω0τ0I− A0)W20(θ) = M20(θ), −A0W11(θ) = M11(θ).

(19)

Next, we will determine W11(θ) and W20(θ) according to the

relationship between g(z, z̄) andM(z, z̄, θ).

When −1 ≤ θ < 0, combining Equations (15), (16), it is

clear that

M20(θ) = −g20q(θ)− ḡ02q̄(θ),

M11(θ) = −g11q(θ)− ḡ11q̄(θ).
(20)

Combining Equations (19), (20) and the definition of Aò, we get

dW20
dθ

= 2ıω0τ0W20(θ)+ g20q(θ)+ ḡ02q̄(θ),
dW11
dθ

= g11q(θ)+ ḡ11q̄(θ).
(21)

FIGURE 4

The relationship between 3R
α +3

E
β and y when a = 1, b = 1, c = 2, d = 1, I = 0.7, Du = 0.01. (A) Dv = 9, p = 0.001. (B) Dv = 10, p = 0.006. (C)

Dv = 10, p = 0.01. (D) Dv = 10, p = 0.1.
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By substituting q(θ) = (1, q2)
Teıω0τ0θ into the above equation, it

can be obtained by the constant variation method

W20(θ) =
ıg20
ω0τ0

q(0)eıω0τ0θ +
ı ḡ02
3ω0τ0

q̄(0)e−ıω0τ0θ + ℓ1e
2ıω0τ0θ ,

W11(θ) = −
ıg11
ω0τ0

q(0)eıω0τ0θ +
ı ḡ11
ω0τ0

q̄(0)e−ıω0τ0θ + ℓ2,

(22)

Where ℓ1 = (ℓ11, ℓ
2
1)

T , ℓ2 = (ℓ12, ℓ
2
2)

T are two dimensional constant

vectors. Next, let’s figure out what the values of ℓ1 and ℓ2 are.

According to Equation (19) and the definition of A0, when

θ = 0, there is

∫ 0
−1 dη(θ)W20(θ) = 2ıω0τ0W20(0)−M20(0),
∫ 0
−1 dη(θ)W11(θ) = −M11(0).

(23)

When θ = 0, combining Equations (15), (16), it is clear that

M20(0) = −g20q(0)− ḡ02q̄(0)+ 2τ0

(

−u∗

0

)

,

M11(0) = −g11q(0)− ḡ11q̄(0)+ 2τ0

(

−u∗

0

)

.

(24)

Since q(0) is the eigenvector of A0 corresponding to ıω0τ0, we can

obtain

(

ıω0τ0I−

∫ 0

−1
eıω0τ0θdη(θ)

)

q(0) = 0,

(

−ıω0τ0I−

∫ 0

−1
e−ıω0τ0θdη(θ)

)

q̄(0) = 0. (25)

Substituting Equations (22), (24), and (25) into Equation (23), we

obtain

(

2ıω0τ0I−
∫ 0
−1 e

2ıω0τ0θdη(θ)
)

ℓ1 = 2τ0

(

−u∗

0

)

,

∫ 0
−1 dη(θ)ℓ2 = −2τ0

(

−u∗

0

)

.

(26)

When ò = 0, there are

(

2ıω0 − a11 − DR
u3

R
α − DE

u3
E
β

−a12e
−2ıω0τ0

−a21 2ıω0 − a22 − DR
v3

R
α − DE

v3
E
β

)

ℓ1

= 2

(

−u∗

0

)

,
(

−a11 − DR
u3

R
α − DE

u3
E
β

−a12

−a21 −a22 − DR
v3

R
α − DE

v3
E
β

)

ℓ2 = 2

(

−u∗

0

)

,

FIGURE 5

The corresponding Turing pattern in Figure 4. (A) Dv = 9, p = 0.001. (B) Dv = 10, p = 0.006. (C) Dv = 10, p = 0.01. (D) Dv = 10, p = 0.1.
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that is,

ℓ1 = −2

(

2ıω0 − a11 − DR
u3

R
α − DE

u3
E
β −a12e

−2ıω0τ0

−a21 2ıω0 − a22 − DR
v3

R
α − DE

v3
E
β

)−1

×

(

u∗

0

)

,

ℓ2 = −2

(

−a11 − DR
u3

R
α − DE

u3
E
β −a12

−a21 −a22 − DR
v3

R
α − DE

v3
E
β

)−1
(

u∗

0

)

.

Substituting ℓ1, ℓ2 into Equation (22), we can find W20

and W11. To date, g20, g21, g11 and g02 are now all

found, and the normal form Equation (12) that is the

restriction to its center manifold is obtained. The key

parameters µ2, T2 and Floquet exponent β2 that determine

the properties of periodic solutions can be calculated by

Hassard’s method,































c1(0) =
ı

2ω0τ0

(

g11g20 − 2|g11|
2 − 1

3 |g02|
2
)

+ 1
2 g21,

µ2 = −
Re
[

c1(0)
]

Re
[

λ′(τ0)
] ,

β2 = 2Re
[

c1(0)
]

,

T2 = −
Im
[

c1(0)
]

+µ2Im
[

λ′(τ0)
]

ω0
.

(27)

Theorem 2 Suppose that the conditions of Lemma 3 are

satisfied, then

(i) If µ2 > 0(< 0), the periodic solution is a supercritical

(subcritical) Hopf bifurcation.

(ii) If T2 > 0(< 0), the period of the periodic solution increases

(decreases) as τ moves away from τ0.

(iii) If β2 > 0(< 0), the periodic solutions restricted

on the center manifold are orbitally asymptotically

unstable (stable).

FIGURE 6

Pattern with a = 1, b = 1, c = 2, d = 1, I = 0.7, Du = 0.01, Dv = 9, p = 0.001. (A) np = O(10−7). (B) np = O(10−6). (C) np = O(10−4). (D)

np = O(10−3).
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3. Simulation

We perform simple simulations to verify the above theoretical

results in this section. The topological properties of neural networks

are very important to the dynamic behavior of neuronal clusters.

In both R and E, we pick random networks with connection

probability p and DR
u = DE

u = Du, D
R
v = DE

v = Dv. And setting the

parameters as a = 1, b = 1, c = 2, d = 1, I = 0.7, nr = ne = 20.

Neurons still return to the resting state after receiving different

stimuli (Figure 1).

In this case, condition (H 2) becomes

y = 10 + (a22Du + a11Dv)(3
R
α +3

E
β )+ DuDv(3

R
α +3

E
β )

2 < 0.

Hence, Turing instability occurs in the general diffusion system

when a22Du + a11Dv > 0 and (a22Du + a11Dv)
2 − 410DuDv >

0. And the critical value is Dv = 8.3923 when Du = 0.01

(Figure 2). Different dynamic behaviors [such as Hopf bifurcation

(40) and chaos (41)] and various spatiotemporal patterns [such

as irregular waves, target waves, traveling waves, and spiral waves

(42, 43)] will appear when the system is subjected to different

kinds and degrees of external stimulus. In the neural system,

these spatiotemporal patterns are closely related to brain learning,

memory, and information transmission. When the brain stores

memory, the continuous firing rate of individual neurons shows

a hierarchical change and the neurons show a strong temporal

dynamic pattern and heterogeneity (33). Many factors contribute

to the formation of short-term memory. Short-term memory

does not form when the external stimulus is not sufficiently

large (Figure 3). It is worth noting that neuronal activity is not

only affected by external stimuli but also closely related to the

interaction between nodes. The pattern remains flat when the

external stimulus is large enough and the correlation degree of

neurons is small. That is, short-term memory will not form

(Figures 4A, B, 5A, B). When p increased to 0.01, neurons in

the memory function areas fired, and the brain formed more

vague memories (Figures 4C, D, 5C, D). Zheng et al. (37)

found that neurons exhibit different pattern dynamics with the

change of network connection probability p in the study of the

HR model. This conclusion is also confirmed in the study of

multilayer networks. Under the same degree of stimulation, if

the number of neurons with the same functional attributes is

different, the state of the neural network varies greatly (Figures 4B–

D).

The physiological environment in which neurons work is

always full of noise. From the above analysis, we can see that when

Dv = 9, p = 0.001 is taken, the neurons are always in resting

state (Figure 5A). To investigate the robustness of noise to the

current results, we add Gaussian white noise to the multilayer FHN

networkmodel. The noise intensity np about u is used as the control

FIGURE 8

The relationship between τ0 and eigenvalues of R�E.

FIGURE 7

Du = Dv = 0. (A) Bifurcation diagram about τ . The bifurcation point is τ = 0.5227. (B) The time series diagram with τ = 0.6.
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FIGURE 9

Pattern with Du = 0.01, Dv = 8. (A) τ = 0.3, p = 0.01. (B) τ = 1, p = 0.01. (C) τ = 1, p = 0.1. (D) τ = 1, p = 0.3.

parameter. We find that the system is robust when np < O(10−5);

when np > O(10−5), the neurons are excited and the short-term

memory is vague (Figure 6).

In the neural system, synapses can regulate the release of

excitatory neurotransmitters of membrane potential or mediators

through delayed feedback, so the response and transmission of

signals will be delayed. Time delay affects the generation of

bifurcation and phase synchronization between neurons, which

affects the brain’s memory function (27). Next, we explore the effect

of time delay on neuronal activity. The transition of neurons from

resting state to firing state is always accompanied by bifurcation

behavior. Action potential exceeds the threshold when the time

delay is greater than τ0 = 0.5227, regardless of the influence of the

network (Figure 7). c1(0) = 0.021 − 0.2729ı , µ2 = −0.021, β2 =

0.042, T2 = 0.162 can be found in Equation (27). Namely, the

system generates subcritical Hopf bifurcation (similarly, we can get

the supercritical Hopf bifurcation). From Figure 8, the network will

affect the value of τ0. In the study of the delayed neural network

model, Zhao et al. (44) also found that the regulation of delay

time can effectively control the formation of the pattern. Under

the fixed network topology, the transmembrane current changes

the membrane potential of neurons to different degrees with the

increase of time delay. To more intuitively observe the collective

behavior of neurons, we sorted 400 neuron nodes. When the delay

time reaches 1, multiple neurons fire synchronously and participate

in memory simultaneously (Figures 9A, B). It is found that the

larger p is, the more obvious the synchronization phenomenon is

(Figures 9B–D). Namely, short-term memory is relatively clear.

4. Conclusion

The brain is the most important organ in the human body,

and its structure is very complex, so we have to simplify it when

modeling. In this paper, we use the FHNmodel, which is simple but

can describe the neuronal activity to explain the principle of short-

term memory generation. The brain is a functional network that

requiresmultiple neurons to work together for short-termmemory.

The brain regions responsible for specific tasks change their activity

when the brain is storing memory (45). And pattern formation

and selection can effectively detect collective behavior in excitable

neural networks (27). Firstly, we establish the FHN model on the

Cartesian product network and analyze the conditions of Turing

instability. In the simulation, we found that short-term memory
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does not form when the probability of external stimulation and

network connection is small. We test the robustness of the current

results with Gaussian white noise and find that the system is robust

when np < O(10−5). Short-term memory is formed when external

stimuli, network connection probability, and noise reach a certain

range. Because the pattern is not regular at this time, the short-

term memory is blurred. Then we study the effect of time delay on

short-term memory formation and find that short-term memory

is formed when the delay time exceeds τ0. Of course, neuronal

activity is not only related to external stimuli but the topology of the

network itself. When p and delay time reach a certain degree, the

cluster dynamic behavior appear, and the pattern shows periodic

phenomenon. At this time, the brain forms a relatively clear short-

term memory. These results provide a new way to explain the

principle of memory formation.
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Data-driven evolutionary game 
models for the spread of fairness 
and cooperation in heterogeneous 
networks
Jing-Yi Li 1,2,3, Wen-Hao Wu 1, Ze-Zheng Li 1, Wen-Xu Wang 1,4* and 
Boyu Zhang 5*
1 School of Systems Science, Beijing Normal University, Beijing, China, 2 CSSC Intelligent Innovation 
Research Institute, Beijing, China, 3 CSSC System Engineering Research Institute, Beijing, China, 
4 Chinese Institute for Brain Research, Beijing, China, 5 Laboratory of Mathematics and Complex Systems, 
Ministry of Education, School of Mathematical Sciences, Beijing Normal University, Beijing, China

Unique large-scale cooperation and fairness norms are essential to human society, 
but the emergence of prosocial behaviors is elusive. The fact that heterogeneous 
social networks prevail raised a hypothesis that heterogeneous networks facilitate 
fairness and cooperation. However, the hypothesis has not been validated 
experimentally, and little is known about the evolutionary psychological basis 
of cooperation and fairness in human networks. Fortunately, research about 
oxytocin, a neuropeptide, may provide novel ideas for confirming the hypothesis. 
Recent oxytocin-modulated network game experiments observed that intranasal 
administration of oxytocin to a few central individuals significantly increases 
global fairness and cooperation. Here, based on the experimental phenomena 
and data, we show a joint effect of social preference and network heterogeneity 
on promoting prosocial behaviors by building evolutionary game models. In the 
network ultimatum game and the prisoner’s dilemma game with punishment, 
inequality aversion can lead to the spread of costly punishment for selfish and 
unfair behaviors. This effect is initiated by oxytocin, then amplified via influential 
nodes, and finally promotes global cooperation and fairness. In contrast, in the 
network trust game, oxytocin increases trust and altruism, but these effects are 
confined locally. These results uncover general oxytocin-initiated mechanisms 
underpinning fairness and cooperation in human networks.

KEYWORDS

cooperation, fairness, inequality aversion, evolutionary game theory, social network

1. Introduction

Humans are self-organized to form a variety of social networks, upon which large-scale 
cooperative behaviors among genetically unrelated individuals persist (1–3). Human cooperation 
is crucial to the success of the human species and discriminates them from other species (4–6). 
To maintain cooperation, a preference for fairness in resource sharing is imperative and becomes 
a social norm (7–11). Despite significant progress in understanding the incentives of cooperation 
and fairness in spite of the temptation to be selfish, such as reciprocity and reputation (12–15), 
the emergence and evolution of cooperation and fairness in structured populations remain 
puzzling (16, 17).
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Many efforts have attempted to interpret the effect of social 
networks on cooperation and fairness, among which a promising 
hypothesis is enlightened by a discovery in the field of complex 
networks (18–22). Much empirical evidence demonstrates that a large 
number of social and economic networks are heterogeneous, 
consisting of a small fraction of densely connected central nodes and 
a majority of sparsely connected peripheral nodes (23–26). It is 
believed that network heterogeneity plays a key role in cooperation 
and fairness, and several microscopic mechanisms based on social 
learning and natural selection have been proposed to explain the 
network reciprocity on cooperation (27–31). However, previous 
behavior experiments attempting to verify the network reciprocity 
hypothesis show negative results, and the influence of heterogeneous 
networks on prosocial behaviors becomes a debate (32, 33). How 
cooperation and fairness norms are enforced by social networks 
remains an outstanding problem.

Recent studies on social and behavioral neuroscience have 
explored the relationship between human behavior and oxytocin, a 
hypothalamic neuropeptide that has been associated with trust, 
fairness expectations, and social value representation (34–37). In 
particular, a placebo-controlled pharmacological study combining 
oxytocin and heterogeneous networks has shown that intranasal 
administration of oxytocin to a few central individuals can enhance 
global cooperation and fairness, but cannot affect global trust (38). 
Consequently, we hypothesize that heterogeneous networks indeed 
play a role in cooperation and fairness, but the effect of network 
heterogeneity is not prominent unless it is in coordination with 
individual differences in social preferences. Specifically, the leading 
effect of those prosocial individuals can be amplified by occupying 
influential nodes and could further exert a global impact on the whole 
network. It has been shown that oxytocin as a biological basis of 
prosocial behaviors accounts for the individual difference in social 
preference (37, 39, 40). We  further hypothesize that individual 
differences are mainly differences in inequality aversion modulated by 
oxytocin and analyze the general mechanism underpinning fairness 
and cooperation in network environments initiated by oxytocin 
through a data-driven approach. Based on data from three network 
game experiments about fairness, cooperation, and trust (38), we build 
three evolutionary game dynamic models and reveal a remarkable 
joint effect of enhanced inequality aversion and network heterogeneity 
on global prosocial behaviors.

In the rest of this article, we first introduce the three base games 
and their network extensions adopted in the behavioral experiments 
(38): ultimatum game (UG) (41–43), two-stage prisoner’s dilemma 
game with punishment (tPDG) (44–46) (a costly punishment stage is 
introduced on the basis of the classic prisoner’s dilemma), and trust 
game (TG) (47–49). We then analyze strategy evolution in the three 
games on heterogeneous networks. Considering that individuals are 
bounded rational, we introduce (disadvantage) inequality aversion to 
the models (7). Specifically, inequality aversion means that people 
resist inequitable outcomes, and they are willing to give up some 
material payoffs to move in the direction of more equitable outcomes. 
We then construct utility matrices that incorporate both the material 
payoff and the influence of inequality aversion and analyze the 
evolution processes by replicator dynamic equations (50, 51). Based 
on the stability analysis of the dynamical systems and the real data of 
the experiments (38), the inequality aversion parameters are fitted. 
Our results show that in the UG and tPDG experiments, oxytocin can 

increase individual inequality aversion, thereby enhancing altruistic 
punishment, and this effect can be amplified and spread to the entire 
network through the network structure. In contrast, the trust 
enhanced by oxytocin fails to diffuse through the network structure 
to promote the level of prosociality in the TG network. In summary, 
our study can effectively explain the phenomenon in the behavioral 
experiments (38) and confirm that the leading effect caused by 
inequality aversion can be amplified by occupying influential nodes 
and further improve the level of cooperation and fairness of the 
whole network.

2. The ultimatum game on 
heterogeneous networks

2.1. Ultimatum game

The ultimatum game (UG) is a benchmark for studying fairness 
as a bounded rational behavior (7). Following Han et al. (25), we adopt 
a minimum acceptance offer (MAO) variant of UG that is simpler for 
playing on a network, but the essence of UG is not affected. In the 
networked UG, nine proposers and nine responders are placed at two 
kinds of nodes in a bipartite network, as shown in Figure 1A. Proposers 
have an identical neighborhood size with four responder neighbors. 
In contrast, there are two categories of responders, (i) three central 
responders with six proposer neighbors and (ii) six peripheral 
responders with three proposer neighbors. Every proposer connects 
to two central and two peripheral responders to ensure an unbiased 
influence from both categories. In each round, a proposer makes a 
single offer, resource p  for each of his/her responder neighbors; a 
responder claims a single minimum amount, resource q  that she/he 
can accept for all neighbors. Proposers and responders make decisions 
simultaneously, and every pair of connected subjects shares a fixed 
amount of resources. For each pair, if p q≥ , they make a deal and the 
proposer gets 1− p  and the responder acquires p . If p q< , both 
get nothing. To control the effect of profit inequality resulting from 
heterogeneous connections, the actual payoff of subjects in a round is 
the average over their pairs of games.

2.2. Utility matrix

We classify the behaviors of proposers to be  two categories: 
rational (R) with self-interest in payoffs or fairness (F) with fair 
sharing (52). To simplify our analyses, we assume the polarization of 
the two categories, i.e., rational proposers offer a small number of 
resources, s (with s < 0 5. ), to responders, and fair proposers offer 
50% of resources to responders. Akin to proposers, we  classify 
responders as cooperation (C, acquire any proposals not less than s) 
and defect (D, reject any proposals). In combination with the influence 
of disadvantage inequality aversion, we  can define the utility of 
subjects with respect to both payoffs and inequality aversion and 
construct a utility matrix. Specifically, we assume that the utility of 
responders resulting from inequality aversion is proportional to the 
payoff difference, and an internal parameter characterizes the diversity 
of subjects in responding to inequality (7). The network inhomogeneity 
accounts for two representative responders: responders occupying 
central nodes and those occupying peripheral nodes. Thus, we define 
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two utility matrices for the games between proposers and two types of 
responders (refer to Table 1), where 1 2− s  is the payoff difference 
between a rational proposer and a cooperative responder, α1  and α2  
are the internal parameters for central and peripheral responders, 
respectively, which measure the degree of aversion to unfairness.

Our purpose is to estimate the values of internal parameters 
α1  and α2  that characterize the influence of oxytocin on the 
perception of inequality. To accomplish this goal, we  employ 
replicator dynamics to model the evolution of subjects affected by 
their interactions. To enable analytical results, we  reduce the 
network system with multi-type players based on the mean-field 
approximation method introduced in Zhang et al. (53) and Pei 
et al. (54). The basic idea of this method is to approximate the local 
network structure around a player (i.e., the distribution of different 
types of players in his/her neighborhood) with the global network 
structure (which can be derived from the frequencies of different 
types of edges) and approximate his/her local strategy distributions 
with the global strategy distributions. We note that this method 

can be applied to arbitrary networks, but in this article, we only 
focus on specific networks in Li et al. (38). As shown in Figure 1B, 
the simplified system consists of three nodes, a proposer, a 
peripheral responder, and a central responder, representing three 
typical players in the network. The links in the original network are 
converted to the interaction weights in the reduced network. The 
principle of the approximation is as follows:

 • Because in the original network, each proposer connects to two 
central responders and two peripheral responders, in the reduced 
network the interaction weight from the central responder and 
the peripheral responder to the proposer is the same.

 • Due to the fact that the payoff of each subject from playing with 
his/her neighbors is normalized by his/her number of neighbors, 
in the reduced network the sum of incoming link weights 
should be one.

Based on the approximation principle stemming from local 
interaction patterns, we can reasonably obtain the reduced network 
system in Figure 1B.

2.3. Replicator dynamics

To analyze the evolutionarily stable strategies for different types 
of nodes, we formulate replicator dynamics of the reduced network 
system. We denote the probability of proposers using the R strategy 
by ρR , the probability of central responders using the C strategy by 
ρC

C , and the probability of peripheral responders using the C strategy 
by ρC

P , respectively. In combination with the utility matrices, we can 
calculate the expected payoffs of subjects with different roles and 
strategies as follows:

A B

FIGURE 1

Network structure and mean-field approximation of the ultimatum game. (A) The network structure of UG. UG network has three central responders 
each connected to six proposer neighbors; six peripheral responders, each connected to three proposers and nine proposers each connected to four 
responders. The payoff of each subject is normalized by his/her number of neighbors. (B) The mean-field approximation of the UG network. The 
simplified system consists of three (types of) nodes, a proposer, a peripheral responder, and a central responder, representing three typical players in 
the network. The afferent arrows represent interaction with the neighbors of nodes. The thickness of the arrow and the value on the arrow represents 
the link weight.

TABLE 1 Utility matrix between proposer and responder.

(a) Proposer vs. central 

responder

C D

R ( )1 , 1 21s s sα− − − 0,0

F 0.5,0.5 0,0

(b) Proposer vs. peripheral 

responder
C D

R ( )1 , 1 22s s sα− − − 0,0

F 0.5,0.5 0,0
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where E R( )  and E F( )  are the expected payoffs of proposers 
with R and F strategies, respectively, EC C( )  and EC D( )  are the 
expected payoffs of central responders with C and D strategies, 
respectively, and EP C( )  and EP D( )  are the expected payoffs of 
peripheral responders with C and D strategies, respectively.

Thus, the replicator dynamics for the three types of nodes in the 
reduced network can be formulated as follows:
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where E , EC , and EP  are the mean expected payoffs of 
proposers, central responders, and peripheral responders, respectively.

2.4. Stability analysis

The replicator dynamics do not have interior fixed points and have 
eight boundary fixed points ρ ρ ρR C

C
C
P

, ,( ) , namely, (0, 0, 0), (0, 0, 1), 
(0, 1, 0), (0, 1, 1), (1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1), where stable 
boundary fixed points correspond ESS of the game. We  then 
implement stability analysis for each of the boundary fixed points (see 
SI for details). In general, Eq. (2) can have multiple stable fixed points. 
Since R is a dominant strategy for both types of proposers, we are 
more interested in the stable point with ρ ρC

C
C
P

, ,( ) = ( )11 . In this case, 
the only possible stable point is (1, 1, 1), where at this point proposers 
are rational and responders are cooperative.

Finally, we estimate the values of α1 , α2 , and s  at (1, 1, 1) from 
the experimental data. From the stability condition, we have
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For convenience, let q1 1

11 2
=

+
α
α  and q2 2

21 2
=

+
α
α . Intuitively, 

q1  (or q2 ) represents the acceptance threshold of the central (or 

peripheral) responders adjacent to the proposer, where offers lower 
than the threshold will be  rejected due to inequality aversion. 
Thus, we have
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Eq. (4) implies that the values of the inequality aversion 
parameters α1  and α2  can be  estimated from the minimum 
acceptance offers q1  and q2 . Here, we  use data from the UG 
experiment in the study (38) to fit the parameters. The central nodes 
were given oxytocin or placebo in the experiment (the settings are the 
same in the following tPDG and TG experiments). The experimental 
group (administered oxytocin, OT) and the control group 
(administered placebo, PL) generated two sets of data, respectively. 
We use the mean minimum acceptance offers over 60 rounds of the 
central (or peripheral) responders adjacent to proposers to estimate 
q1  (or q2 ; see Table 2). The estimated values of α1  and α2  for OT 
and PL groups are shown in Table 3.

Not surprisingly, α1  of the OT group is greater than those of the 
PL group, which implies that oxytocin indeed promotes inequality 
aversion. Interestingly, α2  of the OT group is also higher. It indicates 
that oxytocin not only increases the inequality aversion of the central 
nodes but also spreads this influence to the entire network. 
Subsequently, we can predict the offer s  of proposers determined by 
α1  and α2  based on our model. Note that to guarantee a deal with 
responders, a rational proposer’s offer is confined by the condition 
s q q= { }max 1 2,  (25). The predicted values of s  for both OT and PL 
groups are shown in Figure 2.

The theoretical predictions are in good agreement with the 
experiment results, indicating that our model is effective. In particular, 
our model shows that the inequality aversion of the central responders 
and peripheral responders can be directly or indirectly increased by 
oxytocin. This is due to a subtle network effect, inequity aversion of 
central responders initiated by OT, self-interest of proposers induced 
by loss aversion, and conditional fairness of peripheral responders, 
which together constitute a mechanism underpinning the prosocial 
behaviors. Specifically, due to the endowment effect and loss aversion 
(55, 56), proposers use the best response strategy to maximize their 
payoffs and regard the offer to responders as a loss and often match 
the maximum q in their neighbors attempting to make all deals (25). 
The fact that responders refuse low offers because of inequity aversion 
resembles costly punishment to proposers. OT stimulates inequity 
aversion of central responders and imposes more punishment threats 
to unfair proposers. Despite the insignificant effect of OT exerting on 
only a small fraction of subjects, the local effect is amplified by central 

TABLE 2 Estimated values of 1q  and 2q  in OT and PL groups.

Central responder 
( 1q )

Peripheral 
responder( 2q )

OT 0.47 0.49

PL 0.43 0.47
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nodes with a larger number of connections. As a result, the central 
subjects become leaders in driving fairness behaviors via 
costly punishment.

Moreover, two complementary effects nudge network fairness. The 
first one is the complement among central nodes. Note that each 
proposer links to two central responders. Thus, only one of the central 
subjects who is qualified as a leader is sufficient to drive fairness of 
proposers who attempt to make all deals with their neighbors. The 
second complementary effect is ascribed to the conditional fairness of 
peripheral responders who increase their q insofar as their proposer 
neighbors increase their offers. In other words, the responders 
experience an inner conflict between advocating fairness and loss 
aversion, and the latter outweighs the former. The leaders help the 
responders overcome the obstacle of loss aversion and pursue fairness. 
Conditional fairness as compensation is important to sustain a high 
level of fairness during evolution in case of the fluctuation of the leader 
effect occasionally.

Taken together, OT initiates local costly sanctions on unfair 
behaviors by increasing the inequity aversion of subjects. The local 
effect is amplified by network heterogeneity and further assisted by 
conditional fairness and network complementary effects. Finally, the 
threat of punishment diffuses in the network and a high level of global 
fairness emerges. The mechanism underpinning network fairness 
enlightens us to explore network cooperation with costly punishment. 
We speculate that OT plays a similar role in costly punishment for 
selfish behaviors, and in combination with subtle network effects, 
cooperation could be  fostered. We  next analyze the behavioral 
evolution of the two-stage prisoner’s dilemma game (tPDG) on the 

heterogeneous network by building the model to validate 
our hypothesis.

3. The prisoner’s dilemma game with 
costly punishment on heterogeneous 
networks

3.1. Two-stage Prisoner’s dilemma game

In the network of tPDG, there are two categories of nodes, three 
central nodes and nine peripheral nodes (Figure 3A), where each 
central and peripheral node has eight and four neighbors, respectively. 
To balance the influence of both categories, each peripheral node 
connects two central and two peripheral nodes, and each central node 
connects two central and six peripheral nodes. There are two stages in 
each round. In stage I, subjects choose either cooperate (C) or defect 
(D), and play with their neighbors simultaneously. The payoffs 
between each pair of neighboring subjects are calculated according to 
the payoff matrix (Table 4), where T̂ > R̂ > P̂ > Ŝ . Similar to UG, the 
actual payoff of each subject is the average over all pairs of games in a 
round. In stage II, subjects can opt to costly punish their neighbors 
choosing D in stage I (57). The cost and punishment are normalized 
by the neighborhood size.

3.2. Utility matrix

To simplify our analyses and modeling processes, we merge the 
two steps and make an expanded payoff matrix associated with four 
strategies, i.e., cooperate and not punish (C+N), cooperate and punish 
(C+P), defect and not punish (D+N), and defect and punish (D+P) 
(46). The payoff matrix is shown in Table 5, where C



 is the cost of 
punishing neighbors with D strategy and F



 is the fine of punishment.
We speculate that few subjects will employ the D+P strategy. This 

strategy is not only strictly dominated by D+N but also cognitive 
dissonant in the sense that defectors punish other defectors. Thus, the 
payoff matrix can be  reduced to three dimensions. Similar to the 
scenario in the UG [note that an alternative explanation for rejection 
in UG is that the responder punishes proposers by paying s such that 
the proposer loses 1-s, see (46)], we assume that the motivation of 
punishment is inequality aversion, where the willingness to punish 
defectors is positively related to F C

 

−  (i.e., the efficiency of 
punishment). Meanwhile, cooperators who are defected may not 
choose to punish, especially central players tended to exhibit choosing 
to cooperate without punishing others’ defection in oxytocin (vs. 
placebo) network (38). We speculate that the underlying reason is a 
kind of altruism (i.e., maximum group benefit) and may be affected 
by oxytocin. We further assume that this effect is positively related to 
R P
 

− , (i.e., the benefit of mutual cooperation minus mutual 
defection). Regarding both inequality aversion and dilemma aversion, 
we  have the utility matrix (Table  6) for central subjects, where 

( )1 ˆ ˆβ −R P  is the increase of utility by avoiding mutual defections, β1  
is an internal parameter capturing the individual difference in 
dilemma aversion, ( )1 ˆˆα −F C  captures the willingness of punishment 
because of inequality aversion, and the internal parameter α1  
measures the degree of inequality aversion that could be affected by 
oxytocin. For peripheral subjects, we can write a similar utility matrix 

TABLE 3 Estimated values of α1 and α2 in OT and PL groups.

α Central responder 
( 1α )

Peripheral 
responder( 2α )

OT 8.73 19.61

PL 3.17 7.30

FIGURE 2

Experimental and predicted results of the proposers’ offer. The blue 
bar and the red bar represent the mean value (all rounds of data) of 
the proposers’ offer in the OT group and the PL group, respectively. 
Each error bar represents the standard deviation, and each yellow 
six-pointed star represents the theoretical value.
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(Table  6), where β2  and α2  represent the parameters of 
peripheral subjects.

Our aim is to estimate parameter values and reveal the effect of 
OT on the internal parameter α1 , α2 , β1 , and β2 . Analog to the 
case of network UG, we also use mean-field approximation to simplify 
our analyses. Because of the normalization of payoffs and punishment 

over neighbors of every subject, the original network can be reduced 
to a two-node graph with self-loops, as shown in Figure 3B.

In the original graph, a peripheral node connects to two other 
peripheral nodes and two central nodes, and a central node connects 
to six peripheral nodes and two other central nodes. Thus, the link 
weight of the self-loop of the peripheral node is 0.5, the same as the 
link weight from the central node to the peripheral node. The weight 
of the self-loop of the central node is 2 2 6 0 25/ .+( ) = , and and the 
link weight from the peripheral node to the central node is 6/
(2+6)=0.75.

3.3. Replicator dynamics

Next, we formulate replicator dynamics equations of the reduced 
network system. We denote the probabilities of central nodes using 
C+N, C+P, and D+N strategies by ρC N

C
+ , ρC P

C
+ , and ρD N

C
+ , 

respectively. Similarly, we denote the probabilities of peripheral nodes 
using C+N, C+P, and D+N strategies by ρC N

P
+ , ρC P

P
+ , and ρD N

P
+ , 

respectively. In combination with the utility matrices, we can calculate 
the expected payoffs of subjects with different roles and strategies, see 
SI for details. The replicator dynamics equations for the two nodes in 
the reduced network can be formulated as follows:
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(5)

A B

FIGURE 3

Network structure and mean-field approximation of the two-stage prisoner’s dilemma game. (A) There are three central players and nine peripheral 
players in the tPDG network. Each central player was connected to eight neighbors (two central and six peripheral players), and each peripheral player 
was connected to only four neighbors (two central and two peripheral players). (B) The mean-field approximation of the tPDG network. The simplified 
system consists of (types of) two nodes, a peripheral node and a central node, representing two typical players in the network. The afferent arrows 
represent interaction with the neighbors of nodes. The thickness of the arrow and the value on the arrow represents the link weight.

TABLE 4 Payoff matrix in the prisoner’s dilemma game.
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TABLE 5 Payoff matrix in the two-stage prisoner’s dilemma game.
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where EC C N+( )  and EC C P+( )  are the expected payoffs of 
the central node with C+N and C+P strategies, EP C N+( )  and 
EP C P+( )  are the expected payoffs of the peripheral node with C+N 

and C+P strategies, and EC  and EP  are the mean expected payoffs 
of the central node and peripheral node, respectively.

We then estimate the values of α1 , α2 , β1 , and β2  by the virtue 
of experimental results. Note that the replicator dynamics are 
complicated with a large number of terms. This precludes us from 
deriving complete stability analyses for Eq. (5). Alternatively, we take 
the mean proportions of strategies of the last 20 rounds in experiments 
as the equilibrium points of the replicator dynamics, such that the 
parameter values in the dynamics can be estimated. Specifically, the 
(stable) proportions of strategies in OT and PL groups are shown in 
Table  7 (38). Thus, by inserting the equilibrium points into the 
replicator dynamics, we can solve the values of α1 , α2 , β1 , and β2  
for OT and PL groups, as shown in Table 8.

3.4. Stability analysis

Finally, we implement stability analysis to test if the equilibrium 
points in the experiments are indeed stable under Eq. (5). 

We formulate the Jacob matrix and calculated its eigenvalue using the 
estimated parameter values. We see that the real part corresponding 
to each eigenvalue of the Jacobi matrices is non-positive (see 
Supplementary Table S1), which indicates that the equilibrium state 
in the experiments is stable and can be achieved in our model. Thus, 
our evolutionary model is valid to model the evolution of cooperative 
behaviors in the prisoner’s dilemma experiments with costly 
punishment (see Figure 4).

Our results indicate that oxytocin improves both the inequality 
aversion parameters α1  and α2  and the dilemma aversion parameters 
β1 , and β2 . Specifically, the costly punishment in stage II is 

analogous to rejecting unfair offers in UG, and OT triggers willingness 
to costly punishment by increasing inequity aversion of central 
subjects. The local punishment effect is amplified by central nodes and 
diffuses in the network by virtue of motivating conditional 
punishment of peripheral subjects. Actually, inspired by the sanction 
behaviors of central nodes, peripheral subjects’ willingness to costly 
punishment in OT groups is significantly higher than that in 
PL groups.

4. The trust game on heterogeneous 
networks

4.1. Trust game

Due to the intensively studied effect of OT on trust, one may 
wonder whether trust (and altruism) increased by OT plays a role in 
fairness and cooperation in combination with inequity aversion and 
whether OT increases the trust of the whole network. In order to 
answer the questions, we analyze the trust game (TG) on the same 
heterogeneous network as that of UG (Figure  5A). Central and 
peripheral nodes are occupied by investors, and trustees have the same 
neighborhood size with four investor neighbors. Investors can choose 

TABLE 6 Utility matrix in the two-stage prisoner’s dilemma game.
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TABLE 7 Stable proportions of strategies in OT and PL groups.

OT PL

Central 
node

Peripheral 
node

Central 
node

Peripheral 
node

C+N 0.18 0.30 0.09 0.15

C+P 0.10 0.09 0.06 0.05

D+N 0.72 0.61 0.85 0.80

127

https://doi.org/10.3389/fpsyt.2023.1131769
https://www.frontiersin.org/journals/psychiatry


Li et al. 10.3389/fpsyt.2023.1131769

Frontiers in Psychiatry 08 frontiersin.org

a certain proportion of the initial endowment as an investment. 
Trustees receive the investment increased by a certain multiple and 
decide how much to return to their investors. Therefore, both investors 
and trustees can obtain benefits through trust and reciprocity. 
However, trustees can exploit trust not to return any resources. In 
analogy with the settings in UG, the actual payoff of subjects in a 
round is the mean payoff over the number of their neighbors.

4.2. Utility matrix

In general, we  classify the behaviors of investors into two 
categories: invest (I) in trustees from the initial endowment or do not 
invest (NI). Analogously, we  classify trustees into two categories: 
return (R) a part of the investment to investors or do not return (NR). 
In addition, we take the altruistic preference of trustees into account 
to better model their behaviors and assume that the increase in the 
utility of trustees is proportional to the return. In the experiment, 
there are two categories of investors, those occupying central nodes 
and those occupying peripheral nodes. Thus, we define two utility 
matrices between a central investor and a trustee, and between a 
peripheral investor and a trustee, respectively.

The utility matrix of a central investor and a trustee is shown in 
Table  9, where T C  is the investment of a central investor with 
I strategy, r  is the proportion of the investment that a trustee return 
to a central investor, g  is the increase factor of investment ( g = 3  in 
TG), rgTC  is the return from a trustee, gT rC

1−( )  is the net gain 

of a trustee after returns gT rC , and the altruistic parameter λ  
( λ > 0 ) measures the willingness of return. In a similar manner, 
we define the utility matrix for a peripheral investor and a trustee 
(Table 9), where the superscript P denotes peripheral investors.

We aim to investigate the immediate effect of OT on investment 
T C  of central investors, and its possible indirect effect on investment 
T P  of peripheral investors, and the altruistic parameter λ  of a 
trustee. We  also use mean-field approximation to simplify our 
analyses. Because of the normalization of payoffs over neighbors of 
every subject, the original network can be reduced to a three-node 
graph, as shown in Figure 5B. The simplified system consists of a 
trustee, a peripheral investor, and a central investor. The links in the 
original network are converted to the interaction weights in the 
simplified graph, where the principle of the approximation is similar 
to the case of network UG. Based on the approximation principle 
stemming from local interaction patterns, we can obtain the simplified 
network system, as shown in Figure 5B.

4.3. Replicator dynamics

Next, we formulate replicator dynamics equations of the simplified 
network system. We denote the probability of trustees using the R 
strategy by ρR , the probability of central investors using the I strategy 
by ρI

C , and the probability of peripheral investors using the I strategy 
by ρIP , respectively. According to the utility matrices, we can calculate 
the expected payoffs of subjects with different roles and strategies 
as follows:
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(6)

where E R( )  and E NR( )  are the expected payoffs of trustees 
with R and NR strategies, EC I( )  and EC NI( )  are the expected 
payoffs of central investors with I and NI strategies, and EP I( )  and 
EP NI( )  are the expected payoffs of peripheral investors with I and 

NI strategies, respectively.
The three replicator dynamics equations for the three nodes in the 

simplified graph can be formulated as follows:
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(7)

where E , EC , and EP  are the mean expected payoffs of 
trustees, central investors, and peripheral investors, respectively.

TABLE 8 Estimated values of α1, α2, β1, and β2 in OT and PL groups.

OT PL

Central node 1α =3.13 1β =1.13 1α =3.04 1β =1.04

Peripheral node 2α =3.07 2β =1.07 2α =3.02 2β =1.02

FIGURE 4

Experimental and predicted results of the global cooperation rate in 
tPDG. The solid lines represent the time evolution of the global 
cooperation rate in the iterated tPDG experiments and shaded areas 
represent standard error. The blue (red) lines represent OT (PL) 
group. The dotted lines represent the global cooperation rate at the 
stable fixed point of the replicator equations.
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4.4. Stability analysis

There exist nine possible equilibrium points ρ ρ ρR I
C

I
P

, ,( )  in the 

replicator dynamics equations, i.e., (0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1), 

(1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1), 1
0 0

rg
, ,









 . We  implement a 

stability analysis for each of the equilibrium points. For λ <1 , Eq. (7) 
has only one stable equilibrium, (0, 0, 0), but this equilibrium cannot 
explain all the experimental results. For λ >1 , Eq. (7) can have four 
possible stable states: (0, 0, 0), (1, 0, 1), (1, 1, 0), and (1, 1, 1). According 
to stability conditions, these stable states can be classified into three 
categories ( g = 3 ) as follows:

 (i) For r = 0 , (0, 0, 0) is stable;
 (ii) For r = 1

g
, (1, 0, 1) and (1, 1, 0) are stable;

 (iii) For r > 1
g

, (1, 1, 1) is stable.

Subsequently, we  analyze the stable points of each group of 
experiments to classify these groups into three categories. There are 
nine groups in the OT experiments and 10 groups in the PL 
experiments. The stable point and the classification of each group can 
be found in Supplementary Tables S2, S3.

The classification and stable point of experimental results 
demonstrate that our model is valid to characterize the evolutionary 
features of the trust experiment. In particular, we can see that the 
behavior r of the trustee is not affected by the investment T of 
investors or the altruistic parameter λ , and only the relation 
between r  and g  influences the category of experimental 
behaviors. In other words, OT that directly affects T and λ  values 
plays a negligible role in the behavior of trustees, such that the 
dynamics of the experiment is not affected by OT as well. It is worth 
noting that OT, indeed, enhances the investment T C  of central 
investors administrated OT by comparing with those of peripheral 
investors without inhaling OT (38). The results indicate that the 
effect of OT on enhancing the trust of investors is confined locally 
and cannot spread to other peripheral investors, due to the fact that 
the neighboring trustees of the central investors show no response 
to the generosity of the investors and shield the effect of OT. This 
finding is consistent with a pioneering experiment of one pair of 
investor and trustee, in which OT only affect the generosity of 
investors but is useless to trustees (58).

Taken together, locally administrated OT has no effect on the 
trust game experiments. This is mainly ascribed by the awarding 
from investors trigger by OT, which is not strong enough to 
motivate significant higher return of trustees. In contrast, in the UG 
and PD with costly punishment, the punishment stemming from 
inequality aversion triggered by locally administrated OT is 
effective to promote fairness and cooperation. In brief, group 
fairness and cooperative behavior can result from inequity aversion 
rather than trust.

A B

FIGURE 5

Network structure and mean-field approximation of the trust game. (A) The network structure of TG. The network has three central investors each 
connecting to six trustees; six peripheral investors, each connecting to three trustees, and nine trustees each connecting to four investors. (B) The 
mean-field approximation of the TG network. The simplified system consists of three (types of) nodes, a trustee, a peripheral investor, and a central 
investor, representing three typical players in the network. The afferent arrows represent interaction with the neighbors of nodes. The thickness of the 
arrow and the value on the arrow represents the connection link weight.

TABLE 9 Utility matrix between trustee and investor.

(a) Trustee vs. central 

investor

R NR

I ( ) ( )1 , 1C C C CT rgT gT r T rgλ− + − + 1 ,C CT gT−

NI 1, 0 1, 0

(b) Trustee vs. 

peripheral investor
R NR

I ( ) ( )1 , 1P P P PT rgT gT r T rgλ− + − + 1 ,P PT gT−

NI 1, 0 1, 0
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5. Conclusion and discussion

Humans have a strong capacity to cooperate with genetically 
unrelated individuals. Yet because cooperation is exploitable by free-
riding, when and how large-scale cooperation emerges and spreads 
through human social networks remains puzzling from both 
evolutionary and societal perspectives.

The effect of the heterogeneous network on group cooperation 
has always been a hot issue in related fields. Considering oxytocin 
is believed to be a neuropeptide with positive effects on prosocial 
behavior (e.g., positive effects on trust), the recent research 
conducted oxytocin-modulated network game experiments, 
including: the ultimatum game, the two-stage prisoner’s dilemma 
game (with the costly punishment stage), and the trust game in 
heterogeneous networks, respectively, and found that the 
administration of oxytocin (vs. matching placebo) to central 
individuals can increase the level of cooperation and fairness in 
the whole network significantly. Here, in order to further explore 
the intrinsic mechanism of this experimental phenomenon, 
we analyzed the evolution process of three game experiments in 
heterogeneous networks by constructing evolutionary game 
dynamics, respectively.

Based on the experimental data, the parameter estimation on the 
analytical results of the evolutionary game models shows that oxytocin 
can significantly enhance the prosocial preferences of the central 
subjects in all three games. In the UG and tPDG models, the altruistic 
punishment caused by inequality aversion is amplified and diffused 
through the heterogeneous network structure, thereby promoting 
cooperation and fairness in the overall network.

However, no cascading effects of oxytocin-induced prosocial 
behavior were observed in repeated rounds of TG experiments that 
did not involve inequality aversion (38). Oxytocin can significantly 
increase the investment (trust level) of investors, which is equivalent 
to a reward for the trustee (the incentive effect of reward is far weaker 
than punishment). However, the investor may lack a mechanism for 
punishment, and the trustee is not threatened with punishment and 
thus will not increase his/her return. In our model, we find that the 
trustee’s return ratio r  is not affected by the investor’s investment T
, which can effectively explain the experimental results. Therefore, 
we can conclude that the rewarding effect of trust is not sufficient to 
generate prosocial utility and that the costly punishment caused by 
inequality aversion is more effective in promoting the level of fairness 
and cooperation in the social network. These results confirm our 
hypothesis and may also explain existing network-free findings on 
punishment and reward (46, 59).

Our study opens an avenue to uncover general oxytocin-initiated 
mechanisms underpinning fairness and cooperation in human society 
through building evolutionary game models. Our evolutionary game 
model is a network variant of the replicator dynamics. Replicator 
dynamics have been widely used to study the evolution of cooperation 
and fairness in social networks (17, 60–62). One implicit assumption 
of the replicator dynamics is that imitation only occurs among 
individuals of the same type. While in the game experiments (38), 
subjects were also informed of the choices and payoffs of other types 
of subjects. Thus, they may not make decisions based on local 
imitation. However, it is worth noting that the goal of our study is not 
to exactly reproduce individual behaviors in the game experiments, 
but rather to show that the results observed in the experiments can 

be  achieved and are evolutionarily stable in simple evolutionary 
game models.

In addition, our study provides an effective means to quantitively 
estimate the effect of oxytocin on inequality aversion and trust based 
on the experimental data. Thus, a possible direction for future research 
is to design experiments with different quantities of oxytocin, and 
we believe that our method can contribute to measuring how the 
quantity of oxytocin affects different social preferences. In short, our 
study and its future extension provide a new perspective for 
understanding the relationship between neuropeptides and 
prosocial behaviors.
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