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Objective: This study aims to investigate the clinical discrepancies and

the different predictors of anterior temporal lobectomy (ATL) in children

(<18 years at surgery) and adults (>18 years at surgery) with temporal lobe

epilepsy (TLE).

Materials and methods: A total of 262 patients (56 children and 206

adults) with TLE who underwent ATL were included in this study. The

clinical variables, including patients’ characteristics, preoperative evaluations,

pathology, surgical prognosis, and surgical predictors were assessed the

discrepancies between TLE children versus adults using univariate and

multivariate analyses. Kaplan-Meier survival analysis was used to calculate

the probability of seizure freedom and AEDs withdrawal after ATL, and the

difference between TLE children and adults was analyzed using the Log-

Rank test.

Results: There were significant differences including semiology, magnetic

resonance imaging (MRI) examinations, numbers of preoperative AEDs, and

pathologies between TLE children and adults (P < 0.05, Q < 0.05). The

MRI-detected epileptic focus was the only independent predictor of seizure

freedom (P = 0.002, Q = 0.036) in TLE children, and the concordance of MRI-

detected focus with video-electroencephalography (video-EEG)-detected

epileptic zone was the only variable associated with seizure freedom in TLE

adults (OR = 2.686, 95% CI = 1.014–7.115, P = 0.047). The TLE children

experienced a higher probability of AEDs withdrawal than adults after surgery

(P = 0.005).

Significance: There were remarkable differences in clinical manifestations,

MRI examinations, number of preoperative AEDs, and pathologies between
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TLE children versus adults. TLE children had a higher possibility of AEDs

withdrawal than adults after surgery. The favorable seizure outcome of ATL

depended on the early complete resection of MRI-detected epileptogenic

focus in TLE children, while the concordance of MRI-detected focus with

EEG-detected epileptogenic zone was the only predictor of favorable seizure

outcomes in TLE adults.

KEYWORDS

temporal lobe epilepsy, neurosurgery, neuropathology, magnetic resonance imaging,
seizure outcome

Introduction

Temporal lobe epilepsy (TLE) is considered as the most
common type of epilepsy that is refractory to antiepileptic drugs
(AEDs) (Engel et al., 2003). Anterior temporal lobectomy (ATL)
is a widely used surgical procedure with a seizure freedom
rate from 62 to 83% (Mathon et al., 2015). Various studies
have shown magnetic resonance imaging (MRI) – detected
epileptogenic focus, particularly the presence of mesial temporal
sclerosis, is a predictor of favorable outcomes in patients
undergoing surgical treatment for TLE (Antel et al., 2002;
McIntosh et al., 2004; Clusmann, 2008; Sun et al., 2015).
However, significant discrepancies in presurgical, surgical, and
postsurgical features between children and adults with TLE
(Spencer and Huh, 2008; Ryvlin et al., 2014; Baud et al., 2018;
Barba et al., 2021), and differences in the predictive role of
MRI in TLE children versus adults remain poorly reported
before (Barba et al., 2021). Furthermore, a large variation in
the proportion of patients within the different pathological
categories between children and adults has been reported before
(Blumcke et al., 2017). Therefore, the predictors of seizure
outcomes after ATL in children may not be appropriate for
adults, due to these differences in clinical manifestations and
pathology of TLE (Goldstein et al., 1996).

Few studies have described differences in clinical
manifestations and predictors for ATL between TLE children
and adults in single center (Lee et al., 2010; Baud et al., 2018;
Cloppenborg et al., 2019; Barba et al., 2021). Accordingly, this
study will answer the following questions: (1) What are the
discrepancies in etiologies and clinical manifestations between
TLE children and adults? (2) What are the differences in surgical
effects on TLE children and adults with prognosis and AEDs
withdrawal? (3) Does MRI have a different predictive role for
surgical outcomes in children and adults with TLE? This study
will highlight the differences in clinical manifestations, surgical
prognosis, and surgical predictors between TLE children versus
adults, and provide suitable surgical candidates for different
TLE populations.

Materials and methods

Patients selection

Data of patients with TLE who had undergone surgery
at Sanbo Brain Hospital, Capital Medical University from
January 2009 to December 2019 were retrospectively recorded.
Detailed data including demographic characteristics, clinical
examinations, and post-surgical pathologies that can influence
surgical outcomes were collected. This study was approved by
the Ethics Committee of Sanbo Brain Hospital, Capital Medical
University (SBNK-2017-15-01).

The exclusion criteria were as follows: (1) patients
with drug-resistant extratemporal epilepsy; (2) patients who
underwent extended ATL other than standard ATL (Spencer
et al., 1984); (3) patients who underwent lesionectomy for the
temporal lobe tumors; (4) patients who had a history of epilepsy
surgery; (5) patients who had incomplete pathological tissue;
(6) patients with the surgical pathology of encephalomalacia;
(7) patients who had a follow-up for less than 24 months after
surgery.

Preoperative evaluation

The preoperative variables were collected from the medical
records, which included sex, age at seizure onset, seizure
duration, semiology, age at surgery, age at surgery, AEDs,
history of febrile seizure (FS) (Menzler et al., 2011), MRI
examinations, video-EEG, magnetoencephalography (MEG),
[18F]-fluorodeoxyglucose positron emission tomography
(18FDG-PET), stereoelectroencephalography (SEEG), and
the side of surgery. Brain MRI of TLE patients was scanned
with a 1.5 or 3.0-T scanner for T1, T2, and T2 fluid-attenuated
inversion recovery (FLAIR) sequences. The standard 64-channel
long-term video EEG monitoring was used in patients for at least
24 h. The video EEG was sampled at the rate of 1,024 samples
and recorded in a double banana montage. The epileptogenic
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zone was defined according to the scalp or invasive EEG
results, and the MRI results classified as normal, hippocampal
sclerosis (HS), temporal lobe (TL) abnormalities (temporal
blurring, dysplasia, or atrophy), both HS and TL abnormalities,
and tumor. Accordingly, those patients with concordance or
discordance of MRI and video-EEG results were distinguished,
respectively. To accurately locate the epileptogenic zone,
the MEG [102 patients (26 children; 76 adults)] can help to
delineate the epileptogenic zone by localizing interictal epileptic
spikes, PET [144 patients (26 children; 118 adults)] that can
locate the hypometabolic regions, and SEEG [52 patients (6
children; 46 adults)] were also performed. After completion
of the presurgical evaluation by neurosurgeons, neurologists,
neuropsychologists, electrophysiologists, and neuroradiologists,
the surgical decision was made.

Surgical procedure

The purpose of ATL was to remove the epileptogenic
zone and epileptogenic focus, and there is no difference in
the surgical procedure between TLE children and adults.
The standard ATL procedure included the resection of 3.0–
3.5 cm from the anterolateral temporal lobe in the dominant
hemisphere or the 4.0–4.5 cm of the temporal lobe in the non-
dominant hemisphere. The resection of the mesial structure
included the resection of the amygdala and the anterior
3.0 cm of the hippocampus. There was no difference in the
resection of mesial structure between the dominant and non-
dominant hemispheres (Spencer et al., 1984). For the patients
with temporal lobe tumors, the ATL plus lesionectomy was
performed.

Surgical outcomes and complications

Patients were evaluated at 3 months postoperatively
and yearly thereafter. The 16-h scalp-EEG and MRI
were performed routinely. The surgical complications
including intracranial hemorrhage, intracranial infection,
and neurological dysfunction were recorded after surgery. The
timing of the first postoperative seizure onset (beyond the
first postoperative week for patients with acute postoperative
seizures) was considered the time of seizure recurrence. Seizure
outcomes were categorized according to the Engel classification
system (Engel Jr, 1993). Favorable seizure outcomes were
defined as Engel class I during the last 2 years of follow-up,
and unfavorable seizure outcomes were defined as Engel class
II–IV. For patients with seizure freedom of more than 2 years
(Braun and Schmidt, 2014), the protocol for AEDs reduction
was determined by the neurologist. The AEDs gradually tapered
one by one. Thereafter, if patients had auras, seizures, or
epileptiform abnormalities on scalp EEG results (Tang and

Xiao, 2017), the AEDs were continued at the minimum doses
without further tapering.

Statistical analysis

Continuous variables were described using
means ± standard deviations, and the categorical variables
were described using frequencies and percentages. The
difference between the adult and children’s subgroups was
based on a cut-off age of 18 years at the surgery (Blumcke
et al., 2017). Accordingly, the clinical variables, including
patients’ characteristics, preoperative evaluations, pathology,
and surgical prognosis were assessed the discrepancies between
TLE children and adults using Pearson’s chi-square or Student
t-test.

The cut-off variables were determined according to
Youden’s index in a receiver operating characteristic curve
analysis, and then variables were performed using Pearson’s
chi-square or Fisher’s exact test to evaluate the predictors of a
favorable outcome in TLE subgroups. The Benjamini-Hochberg
false discovery rate (FDR) control to correct the final models for
multiple comparisons. By default, this study used the first value
in the list of variables as a reference category, after verifying that
there were not too few cases in the chosen category. P-value and
the FDR Q-value thresholds were set for significance. Finally, the
variables showing a Q value < 0.05 in the univariate analysis
were then into a multivariable logistic regression model in a
backward manner for TLE adults and children, respectively.
The odd ratios (ORs) and 95% confidence intervals (CIs) were
calculated from the regression model.

Kaplan-Meier (KM) survival analysis was used to calculate
the probability of seizure freedom and AEDs withdrawal after
ATL, and the difference between TLE children and adults was
analyzed using the Log-Rank test. The relationship between
probable predictors and seizure freedom was also calculated by
KM survival analysis in TLE adults and children, respectively.
All analyses were performed using SPSS software (version
24.0, IBM, NY, USA), and a P value < 0.05 was considered
statistically significant.

Results

Differences in patients’ characteristics
between temporal lobe epilepsy
subgroups

Two hundred and sixty-two patients fulfilled the criteria and
were analyzed in this study (56 children, 206 adults, Figure 1).
The mean age at surgery was 11.39 ± 3.90 years in children
and 28.16 ± 7.85 years in adults (P < 0.001; Q < 0.001); the
mean age at seizure onset was 5.54 ± 4.37 years in children
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FIGURE 1

Outline of the study design and summary of outcomes. Favorable outcomes: patients with Engel class I during the last 2 years of follow-up;
unfavorable outcomes: patients with Engel class II–IV during the last 2 years of follow-up.

and 13.13 ± 9.78 years in adults (P < 0.001; Q < 0.001); the
mean duration of epilepsy was 6.04 ± 3.77 years in children and
14.86 ± 9.39 years in adults (P < 0.001; Q < 0.001). In addition,
the detailed comparison of semiology (Fisher et al., 2017), types
of AEDs, and history of FS between TLE children and adults
were described in Table 1.

Differences in preoperative evaluation
between temporal lobe epilepsy
subgroups

Magnetic resonance imaging examinations were obtained
in 56 children (2 were normal, 13 were HS, 13 were TL
abnormalities, 3 were both HS and TL abnormalities, and 25
were temporal tumors) and 206 adults (7 were normal, 130
were HS, 37 were TL abnormalities, 16 were both HS and
TL abnormalities, and 16 were temporal tumors; P < 0.001,
Q < 0.001). During the video-EEG monitoring, interictal
epileptic discharges (IEDs) were recorded in all patients with
31 (55.4%) children and 127 (61.7%) adults arising at unilateral
temporal lobe (P = 0.442). The ictal onset rhythms (IORs) were
detected in unilateral temporal lobe in 17 (30.4%) children and
80 (38.9%) adults (P = 0.470). The MEG spikes sources locating
at unilateral temporal lobe were observed in 9 (34.6%) children
and 44 (57.9%) adults (P = 0.045; Q = 0.100). The hypometabolic
regions of PET locating in the unilateral temporal lobe were

found in 19 (73.1%) children and 61 (51.7%) adults (P = 0.047;
Q = 0.095). SEEG implantation was performed in 6 (10.7%)
children and 46 (22.3%) adults (P = 0.085, Table 1).

Differences in surgical prognosis
between temporal lobe epilepsy
subgroups

The surgery on the left side was performed in 29 (51.8%)
children and 109 (52.9%) adults (P = 0.881). There were
no operative or perioperative deaths. Surgical complications
occurred in 7 (12.5%) children; 1 (1.8%) had intracranial
hemorrhage, 3 (5.4%) had intracranial infection, 1 (1.8%)
had transient hemiplegia, and 2 (3.6%) had transient aphasia.
Surgical complications were observed in 18 (8.7%) adults;
2 (0.9%) had intracranial heamorrhage, 1 (0.5%) had a
subarachnoid hemorrhage, 2 (0.9%) had an intracranial
infection, 4 (1.9%) had transient hemiplegia, and 9 (4.4%) had
transient aphasia. Quadrantanopia was not considered a surgical
complication in this study. There was no significant difference
of surgical complications between TLE children and adults
(P = 0.395, Table 1).

After a follow-up period of 2–5 years (mean
3.47 ± 1.91 years), 44 (78.6%) children achieved seizure
freedom, and 148 (71.8%) adults achieved seizure freedom after
ATL (P = 0.395, Table 1). For these seizure freedom patients,
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TABLE 1 The difference in demographic characteristics between temporal lobe epilepsy (TLE) children and adults.

Demographic characteristics Children Adults P-value Q-value

Sex (male) 33 (58.93%) 108 (52.43%) 0.451 0.501

Age at seizure onset 5.54 ± 4.37 13.13 ± 9.78 0.000* 0.000*

Duration of epilepsy 6.04 ± 3.77 14.86 ± 9.39 0.000* 0.000*

Auras 16 (28.57%) 110 (53.39%) 0.001* 0.003*

Impaired awareness 43 (76.79%) 142 (68.93%) 0.321 0.458

Automatisms 33 (58.93%) 145 (70.39%) 0.109 0.182

Secondary-GTCS 23 (41.07%) 129 (62.62%) 0.006* 0.017*

FS 7 (12.50%) 43 (20.87%) 0.183 0.282

Numbers of preop AEDs

Two types 39 (69.64%) 189 (91.75%) 0.001* 0.003*

Three types 17 (30.36%) 17 (8.25%)

MRI results

Normal 2 (3.57%) 7 (3.39%) 0.000* 0.000*

HS 13 (23.21%) 130 (63.11%)

Additional TL abnormalities 13 (23.21%) 37 (17.96%)

Both HS and additional TL abnormalities 3 (5.36%) 16 (7.77%)

Tumor 25 (44.64%) 16 (7.77%)

IEDs on unilateral temporal lobe 31 (55.36%) 127 (61.65%) 0.442 0.521

Ictal onset on unilateral temporal lobe 17 (30.36%) 80 (38.83%) 0.47 0.495

MEG on unilateral temporal lobe 9 (N = 26, 34.62%) 44 (N = 76, 57.89%) 0.045* 0.1

PET on unilateral temporal lobe 19 (N = 26, 73.08%) 61 (N = 118, 51.69%) 0.047* 0.095

SEEG implantation 6 (10.71%) 46 (22.33%) 0.085 0.155

Age at surgery 11.39 ± 3.90 28.16 ± 7.85 0.000* 0.000*

Surgery on the left side 29 (51.79%) 109 (52.91%) 0.881 0.881

Neuropathology

FCD type I 12 (21.42%) 48 (23.30%) 0.000* 0.000*

HS 4 (7.14%) 106 (51.46%)

FCD type IIIa 25 (44.64%) 32 (15.53%)

Tumors 15 (26.78%) 16 (7.77%)

Others 0 (0.00%) 4 (1.94%)

Surgical complications 7 (12.50%) 18 (8.70%) 0.395 0.504

Favorable outcomes 44 (78.57%) 148 (71.84%) 0.395 0.493

HS, hippocampal sclerosis; GTCS, generalized tonic–clonic seizure; FS, febrile seizure; ATL, anterior temporal lobectomy; MRI, magnetic resonance imaging; TL, temporal lobe;
IEDs, interictal epileptic discharges; AEDs, antiepileptic drugs; MEG, magnetoencephalography; PET, positron emission tomography; SEEG, stereo-electroencephalography; FCD, focal
cortical dysplasia.
*P < 0.05. Bold: TLE children experienced earlier age at seizure onset, shorter duration of epilepsy, fewer auras, and fewer secondary-GTCS than those in TLE adults. The TLE children
took more AEDs than those in TLE adults. More MRI-detected HS was observed in TLE adults, while more MRI-detected tumors were observed in TLE children. The TLE adults
experienced elder age at surgery than those in TLE children. More neuropathology of HS was observed in TLE adults, while more neuropathology of tumors was observed in TLE children.

AEDs had completely discontinued in 32 (72.7%) children and
73 (35.4%) adults. Two (6.3%) children and 8 (10.9%) adults
experienced seizure recurrence after AEDs withdrawal.

Differences in neuropathology
between temporal lobe epilepsy
subgroups

Surgical specimens were processed for histological
analysis. The HS was diagnosed in 4 (7.1%) children and

106 (51.5%) adults. Focal cortical dysplasia (FCD) type I
was diagnosed in 12 (21.4%) children (6 FCD type Ia, 6
FCD type Ib) and 48 (23.3%) adults (21 FCD type Ia, 27
FCD type Ib). Fifteen (26.8%) children were diagnosed
with temporal tumors (14 gangliogliomas WHO grade I, 1
dysembryoplastic neuroepithelial tumor WHO grade I), and 16
(7.8%) adults were diagnosed with tumors (9 gangliogliomas
WHO grade I, 5 dysembryoplastic neuroepithelial tumors
WHO grade I, and 2 astrocytomas WHO grade II).
Besides, 25 children (44.6%) and 32 adults (15.5%) were
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diagnosed with FCD type IIIa (P < 0.001; Q < 0.001,
Table 1).

Prognostic factors of seizure outcomes

In the univariate analysis of postoperative seizure
outcomes, the duration of epilepsy (≤7.5 years), secondary-
GTCS, MRI examinations, and neuropathology showed
a significant difference in TLE children (P < 0.05,
Table 2). However, the MRI examinations were the only
independent predictor of favorable seizure outcomes after

the FDR correction (Q = 0.036, Table 2). The TLE children
with MRI-detected tumor had a better prognosis after
ATL, while those with MRI-detected TL abnormalities
were suggested to experience a worse seizure outcome
(Figure 2).

After the FDR correction of univariate analysis in the TLE
adults, the following factors were associated with favorable
seizure outcomes: IEDs on the unilateral temporal lobe and
concordance of MRI with IEDs (Q < 0.05, Table 3). Therefore,
these two variables were recruited into the logistic regression
model. The regression analysis revealed that the concordance
of MRI with IEDs results was the only predictor of favorable

TABLE 2 Children’s demographic characteristics and their relationship with seizure outcomes.

Demographic characteristics Favorable outcome (N = 44) Unfavorable Outcome (N = 12) P-value Q-value

Number (%) Number (%)

Sex (male) 25 (56.82%) 8 (66.67%) 0.539 1.033

Age at seizure onset (≤7.5 years) 27 (61.36%) 9 (75.00%) 0.382 0.879

Duration of epilepsy (≤7.5 years) 33 (75.00%) 5 (41.67%) 0.028* 0.215

Age at ATL (≤14.5 years) 40 (90.91%) 9 (75.00%) 0.14 0.403

Monthly seizure frequency (ł10 times) 27 (61.36%) 7 (58.33) 0.849 0.849

Automatisms 11 (25.00%) 5 (41.67%) 0.257 0.657

Impaired awareness 36 (81.82%) 7 (58.33%) 0.088 0.337

Autism 29 (65.91%) 4 (33.33%) 0.054 0.248

Secondary-GTCS 15 (34.09%) 8 (66.67%) 0.042* 0.241

FS 6 (13.64%) 1 (8.33%) 0.622 0.953

Numbers of preop AEDs

Two types 31 (70.45%) 8 (66.67%) 0.801 0.921

Three types 13 (29.54%) 4 (33.33%)

MRI results

Normal 2 (4.54%) 0 (0.00%) 0.002* 0.046*

HS 9 (20.45%) 4 (33.33%)

Additional TL abnormalities 6 (13.63%) 7 (58.33%)

Both HS and additional TL abnormalities 3 (6.81%) 0 (0.00%)

Tumor 24 (54.54%) 1 (8.33%)

IEDs on unilateral temporal lobe 25 (56.82%) 6 (50.00%) 0.674 0.912

Ictal onset on unilateral temporal lobe 14 (31.82%) 3 (25.00%) 0.649 0.933

Concordance of MRI with IEDs 19 (43.18%) 4 (33.33%) 0.539 1.033

Concordance of MRI with ictal onset 11 (25.00%) 2 (16.67%) 0.544 0.962

MEG on unilateral temporal lobe 6 (N = 18, 33.33%) 3 (N = 8, 37.50%) 0.837 0.875

PET on unilateral temporal lobe 15 (N = 20, 75.00%) 4 (N = 6, 66.67%) 0.686 0.877

SEEG implantation 3 (6.82%) 3 (25.00%) 0.105 0.345

Surgery on the left side 22 (50.00%) 7 (58.33%) 0.609 1.005

Neuropathology

FCD type I 7 (15.91%) 5 (41.67%) 0.022* 0.253

HS 2 (4.54%) 2 (16.67%)

FCD type IIIa 11 (25%) 4 (33.33%)

Tumors 24 (54.54%) 1 (8.33%)

HS, hippocampal sclerosis; GTCS, generalized tonic–clonic seizure; FS, febrile seizure; ATL, anterior temporal lobectomy; MRI, magnetic resonance imaging; TL, temporal lobe;
IEDs, interictal epileptic discharges; AEDs, antiepileptic drugs; MEG, magnetoencephalography; PET, positron emission tomography; SEEG, stereo-electroencephalography; FCD, focal
cortical dysplasia.
*P < 0.05. Bold: The TLE children with MRI-detected tumors had a better prognosis after surgery than those with other MRI results.
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FIGURE 2

The differential role of magnetic resonance imaging (MRI) in predicting surgical outcomes between temporal lobe epilepsy (TLE) children versus
adults. The favorable seizure outcome of anterior temporal lobectomy (ATL) depended on the early complete resection of MRI-detected
epileptogenic focus in TLE children. The size of the image represented the contribution to the favorable outcomes after surgery. The
concordance of MRI with interictal epileptic discharges (IEDs) results was the only predictor of favorable seizure outcomes in TLE adults. The
scalp EEG were sampled at the rate of 1,024 samples, and the typically bandpass filtered for viewing between 1.6 and 100 Hz. The data was
recorded in a double banana montage, and the sensitivity was 200 µV/cm.

seizure outcomes in TLE adults (OR = 0.2.686, 95% CI = 1.014–
7.115, P = 0.047, Table 4).

Kaplan-Meier analysis of seizure-free
survival

The KM survival curves were made to evaluate the seizure-
free survival and AEDs withdrawal between children and
adults. The results revealed that there was no significant
difference in seizure-free survival between children and adults
(P = 0.353, Figure 3A). However, TLE adults experienced a
lower probability of AEDs withdrawal than children (P = 0.005,
Figure 3B). The KM estimates of the probability of cumulative
seizure-free survival in months were no significant difference
in those with or without prognostic factors in TLE subgroups
(P > 0.05, Figure 4).

Discussion

This study analyzed the significant differences in
clinical manifestations, pathologies, and prognoses of TLE
children versus adults, which promoted the understanding
of the discrepancies between TLE children and adults. In
addition, the predictive factor of MRI which affect the
short and long-term prognosis after ATL was important

for the appropriate selection and counselling in different
TLE populations.

Differences in clinical manifestations
and pathologies between temporal
lobe epilepsy children and adults

As the results showed in this study, the TLE adults
experienced more presence of auras, automatisms, and
secondary-GTCS than those TLE children. In addition,
the types of lesions in MR and pathology were significant
differences in the TLE subgroups. This study revealed that
HS was the most common pathology in the brain tissue of
epileptic adults, and the FCD was the most common pathology
among children, which was consistent with a previous study
(Blumcke et al., 2017). The distinct pathology and long-term
seizure duration promote the more complex epileptic network
in TLE adults, which could induce comprehensive semiology.
Therefore, TLE children and adults should be studied separately
to reduce the bias in the prognostic analysis (Barba et al., 2021).
A previous study found very similar clinical manifestations
and responses to surgical treatment in TLE children and
adults (Asadi-Pooya and Sperling, 2015). Conversely, the
other multicentre analysis demonstrated significant differences
in several presurgical, surgical, and postsurgical features
between adults and children (Barba et al., 2021). These
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TABLE 3 Adults’ demographic characteristics and their relationship with seizure outcomes.

Demographic characteristics Favorable outcome (N = 148) Unfavorable outcome (N = 58) P-value Q-value

Number (%) Number (%)

Sex (male) 75 (50.68%) 33 (56.89%) 0.421 0.509

Age at seizure onset (≤11.5 years) 72 (48.65%) 24 (41.38%) 0.347 0.532

Duration of epilepsy (≤25 years) 130 (87.84%) 47 (81.03%) 0.207 0.476

Age at ATL (≤22.5 years) 35 (23.65%) 12 (20.69%) 0.649 0.711

Monthly seizure frequency (≥10 times) 58 (39.19%) 26 (44.82%) 0.459 0.528

Auras 83 (56.08%) 27 (46.55%) 0.218 0.455

Secondary-GTCS 105 (70.96%) 37 (63.79%) 0.318 0.522

Automatisms 108 (72.97%) 37 (63.79%) 0.235 0.45

Secondary-GTCS 90 (60.81%) 39 (67.24%) 0.391 0.529

FS 35 (23.65%) 8 (13.79%) 0.117 0.336

Numbers of preop AEDs

Two types 136 (91.89%) 53 (91.38%) 0.904 0.945

Three types 12 (8.11%) 5 (8.62%)

MRI results

Normal 4 (2.70%) 3 (5.17%) 0.058 0.222

HS 102 (68.92%) 28 (48.28%)

Additional TL abnormalities 23 (15.54%) 14 (24.14%)

Both HS and additional TL abnormalities 8 (5.41%) 8 (13.79%)

Tumor 11 (7.43%) 5 (8.62%)

IEDs on unilateral temporal lobe 101 (68.24%) 26 (44.83%) 0.002* 0.023*

Ictal onset rhythms on unilateral temporal lobe 64 (43.24%) 16 (27.59%) 0.038* 0.291

Concordance of MRI with IEDs 87 (58.78%) 18 (31.03%) 0.001* 0.023*

Concordance of MRI with ictal onset 55 (37.16%) 11 (18.97%) 0.042* 0.242

MEG on unilateral temporal lobe 29 (N = 47, 61.70%) 15 (N = 29, 51.72%) 0.392 0.501

PET on unilateral temporal lobe 48 (N = 87, 55.17%) 13 (N = 31, 41.94%) 0.205 0.524

SEEG implantation 33 (22.29%) 13 (22.41%) 0.986 0.986

Surgery on the left side 75 (50.68%) 34 (58.62%) 0.304 0.537

Neuropathology

FCD type I 32 (21.62%) 16 (27.59%) 0.387 0.556

HS 76 (51.35%) 30 (51.72%)

FCD type IIIa 27 (18.24%) 5 (8.62%)

Tumors 11 (7.43%) 5 (8.62%)

Others 2 (1.35%) 2 (3.45%)

HS, hippocampal sclerosis; GTCS, generalized tonic–clonic seizure; FS, febrile seizure; ATL, anterior temporal lobectomy; MRI, magnetic resonance imaging; TL, temporal lobe;
IEDs, interictal epileptic discharges; AEDs, antiepileptic drugs; MEG, magnetoencephalography; PET, positron emission tomography; SEEG, stereo-electroencephalography; FCD, focal
cortical dysplasia.
*P < 0.05. Bold: The TLE adults with IEDs on the unilateral temporal lobe or concordance of MRI with IEDs experienced better surgical outcomes.

discrepancies might be explained by differences in inclusion
criteria.

Predictive role of magnetic resonance
imaging in the temporal lobe epilepsy
children

Anterior temporal lobectomy was the choice to provide
better access to the tumor or if the epileptogenic area was
much larger than the tumor itself in children (Cataltepe
et al., 2005). The completeness of tumor resection determined

seizure outcomes in children (Khajavi et al., 1999; Lopez-
Gonzalez et al., 2012), and several investigators had reported

TABLE 4 Predictors of seizure outcome in adults on
multivariate analysis.

Variables OR 95% CI P-value

IEDs on unilateral temporal lobe 1.241 0.481–3.2 0.655

Concordance of MRI with IEDs results 2.686 1.014–7.115 0.047*

IEDs, interictal epileptic discharges; MRI, magnetic resonance imaging; OR, odds ratio;
CI, confidence interval.
*P < 0.05. Bold: The regression analysis revealed that the concordance of MRI with IED
results was the only predictor of favorable seizure outcomes in TLE adults.

Frontiers in Neuroscience 08 frontiersin.org

12

https://doi.org/10.3389/fnins.2022.1037244
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-16-1037244 November 14, 2022 Time: 11:15 # 9

Xu et al. 10.3389/fnins.2022.1037244

FIGURE 3

Kaplan-Meier survival curves of children and adults with temporal lobe epilepsy (TLE). There was no significant difference in seizure recurrence
between TLE children and adults (A). The TLE adults experienced a lower probability of antiepileptic drugs (AEDs) withdrawal than TLE children
after surgery (B).

FIGURE 4

The Kaplan-Meier estimates of the probability of cumulative seizure-free survival in months were not a significant difference in those TLE
children with different pathologies (A), different MRI results (B), in those TLE adults with different MRI results (C), different pathologies (D), and
concordance of MRI with IEDs (E).

that seizure freedom was more than 80% of patients after
the completeness resection of the tumor (Boon et al., 1991;
Britton et al., 1994; Cataltepe et al., 2005). The relationship
between tumors and epileptogenic focus was still unclear
(Zhang et al., 2020). Furthermore, it was found that HS

in 56% of pediatric patients with temporal lobe tumors
(Drake et al., 1987), and it would be speculated that the
hippocampus was often epileptogenic because of abnormal
synaptic reorganization of the hippocampus induced by
seizures secondary to temporal tumors (Cataltepe et al., 2005).
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In this study, 96% of children with temporal tumor-related
epilepsy achieved a seizure-free outcome after ATL, which was
proposed that ATL could completely remove the suspicious
HS and potential FCD surrounding tumors in TLE children.
Conversely, the children with TL abnormalities on MRI
experienced worse seizure outcomes than those with tumors
on MRI. Therefore, the early complete resection was prompted
to improve surgical outcomes for children with temporal
tumor-related epilepsy. In contrast, the TLE children with
TL abnormalities on MRI should be considerable for ATL.
Other predictive factors in TLE children including age
at seizure onset, duration of epilepsy, and the presence
of secondary-GTCS (Cohen-Gadol et al., 2006; Elliott
et al., 2013; He et al., 2020; Barba et al., 2021) were not
statistically significant after FDR correction in this study. The
unified surgery and statistical methods would influence the
results.

Predictive role of concordance of
magnetic resonance with interictal
epileptic discharges in temporal lobe
epilepsy adult

The relationship between the predictive role of video-
EEG and MRI on seizure outcome was still debated.
Several studies detected a significant predictive contribution
of video-EEG, particularly in patients with HS or with
negative MRI examinations (Holmes et al., 2000; Schulz
et al., 2000; Sun et al., 2015). In contrast, other studies
demonstrated that the discrepancies between video-EEG
and MRI examinations indicated a poor surgical outcome
(Vinton et al., 2007; Bote et al., 2008). In the present
study, we highlighted the concordance of MRI-detected
focus with IEDs-detected epileptic zone, which played a
predictive role in the favorable seizure outcome. However,
this predictive role was neither in MRI nor video-EEG
findings alone in TLE adults, and this concordance was
also insignificant for the surgical outcome in TLE children.
Therefore, there was a more extensive epileptogenic zone in
TLE adults than in children. TLE children should undergo
the early complete resection of epileptogenic focus, while
TLE adults should undergo the resection of an area where the
epileptogenic focus was concordant with the epileptogenic
zone.

Differences in surgical prognosis
between temporal lobe epilepsy
children and adults

The results of this study revealed that the percentage of
achieving seizure freedom was higher in children than in

adults after ATL (78.57 vs. 71.84%), but the possibility of
seizure recurrence in patients was not significantly different
between children and adults at both 2-year and last follow-
up in Log-rank test. Besides, there was only a slight drop
in seizure freedom in TLE children overtimes (from 78.57
to 73.21%). Several studies revealed that the percentage of
children with seizure freedom remained unchanged at the
last follow-up (Miserocchi et al., 2013; Ormond et al., 2019).
Besides, the probability of AEDs withdrawal in TLE children
(72.72%) was higher than that in TLE adults (35.44%),
which was consistent with the previous study (Barba et al.,
2021). Previous studies supported a minimum seizure freedom
period of 2 years before considering AEDs withdrawal (Beghi
et al., 2013; Braun and Schmidt, 2014). Moreover, apart from
age > 30 years and longer disease duration, other factors
associated with a higher risk of seizure recurrence after
AEDs withdrawal were persistent auras, seizure relapse before
withdrawal, and postoperative EEG abnormalities (Shih and
Ochoa, 2009). Therefore, this study indicated the short duration
of epilepsy, complete resection of the epileptic lesion, and non-
epileptiform discharge on postoperative EEG in TLE children
could achieve a higher possibility of AEDs withdrawal and
a lower rate of seizure recurrence after AEDs than that in
TLE adults.

Limitations

There were some limitations to this study. First,
the consequences of this study were limited by its
retrospective nature and relatively short follow-up after
surgery of TLE patients. Second, the sample size of
TLE children was relatively small which could influence
the results. Finally, the neuropsychological analysis
was unavailable in the study because of incomplete
postoperative information.

Conclusion

There were remarkable differences in clinical
manifestations, MRI examinations, and pathologies
between TLE children versus adults. TLE children had
a higher possibility of AEDs withdrawal than adults
after surgery. The favorable seizure outcome of ATL
depended on the early complete resection of MRI-
detected epileptogenic focus in TLE children, while the
concordance of MRI-detected focus with IEDs-detected
epileptogenic zone was the predictor of favorable seizure
outcomes in TLE adults.
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This longitudinal study explored the changed patterns of structural

brain network after radiotherapy (RT) in patients with nasopharyngeal

carcinoma (NPC). Diffusion tensor imaging (DTI) data were gathered from

35 patients with NPC at four time points: before RT (baseline), 0∼3 (acute),

6 (early delayed), and 12 months (late-delayed) after RT. The graph theory

was used to characterize the dynamic topological properties after RT and

the significant changes were detected over time at the global, regional

and modular levels. Significantly altered regional metrics (nodal efficiency

and degree centrality) were distributed in the prefrontal, temporal, parietal,

frontal, and subcortical regions. The module, that exhibited a significantly

altered within-module connectivity, had a high overlap with the default

mode network (DMN). In addition, the global, regional and modular metrics

showed a tendency of progressive decrease at the acute and early delayed

stages, and a partial/full recovery at the late-delayed stage. This changed

pattern illustrated that the radiation-induced brain damage began at the

acute reaction stage and were aggravated at the early-delayed stage,

and then partially recovered at the late-delayed stage. Furthermore, the

spearman’s correlations between the abnormal nodal metrics and temporal

dose were calculated and high correlations were found at the temporal

(MTG.R and HES.L), subcortical (INS.R), prefrontal (ORBinf.L and ACG.L), and

parietal (IPL.R) indicating that these regions were more sensitive to dose and

should be mainly considered in radiotherapy treatment plan.

KEYWORDS

nasopharyngeal carcinoma, radiotherapy, radiation-induced brain injury, structural
network, diffusion tensor imaging
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Introduction

Nasopharyngeal carcinoma (NPC) is a malignant
tumor, and it is mostly found in Southern China and
Southeast Asia (Chan, 2010; Tabuchi et al., 2011).
Radiotherapy (RT) with or without adjuvant chemotherapy
is the primary treatment for patients with NPC. However,
the normal brain tissues surrounding the tumor are
inevitably irradiated during cranial irradiation, causing
brain abnormalities and cognitive decline. These abnormalities
may compromise the quality of life of patients with NPC.
Based on the pathophysiology of the side effects of RT, the
time following RT can be classified into acute reaction period
(days–weeks) (post-RT-AC), early-delayed period (1–6 months)
(post-RT-ED), and late-delayed period (> 6 months) (post-RT-
LD) (Lell, 2015). The RT-related brain changes are different
during different periods but how the RT-related brain damage
evolves over time is still unclear. Therefore, it is essential to
further explore the temporal brain changes after completing RT
which may facilitate clinical diagnosis and early intervention.

Recently, few cross-sectional or longitudinal studies have
demonstrated that normal-appearing brain tissues underwent
different changes at different post-RT periods in patients with
NPC using various magnetic resonance imaging (MRI) analysis
techniques (Lin et al., 2017, 2021; Guo et al., 2018; Lv et al.,
2019; Wu et al., 2020; Qiu et al., 2021). Specifically, our previous
longitudinal studies found that the volumes of the gray matter
(Guo et al., 2018) and white matter (WM) in bilateral temporal
subfields (Lin et al., 2021) and bilateral hippocampal subfields
(Lv et al., 2019) decreased over time after RT. In addition,
the cross-sectional or longitudinal studies on cortical brain
morphology revealed progressive RT-induced reduction in
cortical volume, cortical thickness, and cortical surface area,
mainly in the temporal, basal occipital, and basal frontal lobes
(Lin et al., 2017; Zhang et al., 2018). Aside brain morphological
alteration, the WM microstructure changed after RT in patients
with NPC (Wang et al., 2012; Xiong et al., 2013; Chen et al.,
2015, 2020; Duan et al., 2016; Leng et al., 2017, 2019; Ding et al.,
2018). Diffusion tensor imaging (DTI) is the only non-invasive
MRI technique to assess brain white matter microstructure
in vivo (Le Bihan et al., 2001). Most DTI studies adopted the
regions of interest (ROI)-based analysis strategy to detect the
microstructural changes in the temporal lobe of patients with
NPC (Wang et al., 2012; Xiong et al., 2013; Chen et al., 2015).
They found that diffusion metrics, such as FA and ADC in the
temporal lobe, exhibited dose-related dynamic alterations over
time after RT. Nevertheless, the ROI-based analysis is limited
to specific regions and cannot reflect whole-brain changes.
Recently, some studies investigated the changes in whole-brain
WM at different post-RT periods by voxel-based analysis (Duan
et al., 2016; Leng et al., 2017, 2019; Ding et al., 2018). They found
that RT-induced brain alterations were dynamic and extensive,
and were not limited to the temporal lobe.

However, the voxel-based analysis cannot reflect the
dynamic interaction of distinct brain regions. The graph theory
analysis models brain connectivity as a network to assess the
structural and functional brain organization (Sporns, 2011),
offering an opportunity to better understand how the brain
changes from a network perspective. The structural connectivity
(SC) network is usually considered to be the physical substrate
of the functional connectivity (FC) network. In patients with
NPC, functional and structural brain network topology change
after RT (Ma et al., 2016; Tian and Zhao, 2017; Qiu et al.,
2018; Leng et al., 2019; Chen et al., 2020). For structural
brain networks, a longitudinal DTI study reported that both
global and local efficiencies, as well as the nodal topology, were
altered in post-RT patients (Tian and Zhao, 2017). This study
only investigated the difference between pre-RT and post-RT,
but did not consider the different patterns of brain changes at
different post-RT periods. Subsequently, a cross-sectional DTI
study on three points (baseline, post-RT-ED, and post-RT-LD)
found that structural topological properties were altered in the
post-RT-ED but began recovering in the post-RT-LD (Chen
et al., 2020). Nevertheless, in this cross-sectional study, the data
with different post-RT durations were not from the same group
of patients with NPC; the cohort effect could compromise the
ability to detect the RT-induced brain alteration; the study did
not investigate the acute reaction period which exhibits different
side effect of RT when compared to the post-RT-ED and post-
RT-LD periods. Inclusion of three post-RT periods will facilitate
better understand the RT-related brain changed patterns over
time.

Therefore, this work will adopt a longitudinal study with
four time points (baseline, post-RT-AC, post-RT-ED, and post-
RT-LD) to investigate the dynamic changes in structural brain
network. Our cohort group included 35 patients with NPC, and
each patient was followed up with four repeated scans: prior
to RT, 0∼3, 6, and 12 months follow-up after the completion
of RT. The topological properties of the structural network at
the global, regional, and modular levels were calculated. Based
on the analysis of these topological properties, the dynamic
brain changes after RT and the relationship between these brain
alterations and radiation dose were assessed.

Materials and methods

Patients

Forty-three newly diagnosed treatment-naïve patients with
NPC (aged 18–60) were initially enrolled. The inclusion criteria
were as follows: right-handedness, no alcoholism or substance
dependence, no high blood pressure, no diabetes, no brain
tumors, no visible brain lesions, no history of cranial trauma,
no history of any psychiatric or neurological disease, no
current medications that may affect cognitive function, and
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no contraindications for MRI scanning. Among 43 enrolled
patients, eight patients with NPC were excluded because their
DTI images suffered severe geometric distortions and/or motion
artifacts, which could not be corrected by the post-processing
technique. Finally, 35 patients with NPC (21 males; aged 23–60
years; averaging 40.11 ± 8.88 years) were selected and analyzed
in this study. This study was approved by the Institutional
Review Board of the Sun Yat-sen University Cancer Center. All
participants provided written informed consent.

Treatment

All patients were treated with intensity-modulated
radiotherapy (IMRT) (n = 32) or tomotherapy (TOMO)
(n = 3), the details of which have been reported by previous
studies (Sun et al., 2013; Tang et al., 2015). The prescribed
regimen included a total dose of 68–70 Gy in 30–33 fractions
at 2.12–2.33 Gy/fraction to the planning target volume (PTV)
of the primary gross tumor volume (GTVnx), 60–70 Gy to the
PTV of GTV of involved lymph nodes (GTVnd), 60–64 Gy to
the PTV of the high-risk clinical target volume (CTV1), and
54–58 Gy to the PTV of the low-risk clinical target volume
(CTV2). All patients received one fraction daily over a period
of about 45 days, five consecutive days per week. Based on
the guidelines defined by the 7th edition of the AJCC staging
system for NPC, the patients with stage I to IIa disease received
no chemotherapy, those with stage IIb received concurrent
chemotherapy, and those with stages III to IVa–b received
concurrent chemotherapy with/without neoadjuvant/adjuvant
chemotherapy (Edge et al., 2010).

Follow-up procedure

To assess the dynamic alterations in structural brain
network topology after RT, we repeatedly performed MRI
scanning at the following stages for each patient: before
initiation of RT (baseline), 0∼3 months (post-RT-AC), 6 months
(post-RT-ED), and 12 months (post-RT-LD) after RT. Since the
MRI data at each stage were acquired from the same group (35
patients), a longitudinal comparison strategy was performed to
avoid potential bias due to cohort effect.

MRI acquisition

The MRI images were acquired on a GE Discovery MR 750
3.0T scanner (GE Medical Systems, WI, USA) at the Department
of Medical Imaging, Sun Yat-sen University Cancer Center.
The high-resolution T1-weighted volume data were acquired
using three-dimensional spoiled gradient-recalled sequence
with the following parameters: TR/TE = 8.2/3.2 ms, TI = 800 ms,

flip angle = 8◦, field of view = 256× 256× 180 mm3, acquisition
matrix = 256 × 256 × 180, voxel size = 1 × 1 × 1 mm3.
The DTI data were acquired using a twice-refocused spin-echo
diffusion-weighted (DW) echo-planar imaging sequence with
the following parameters: TR/TE = 10,000/63.8 ms, acquisition
matrix = 128 × 128, field of view = 256 × 256 mm2, in-plane
resolution = 2 × 2 mm2, slice thickness = 2 mm without inter-
slice gap, 75 axial slices covering the whole brain, one volume
with b = 0 s/mm2, 30 volumes with b = 1,000 s/mm2.

Data preprocessing and tractography

The data preprocessing included the following steps: (1)
denoising the DW images using Marchenko-Pastur PCA
(Veraart et al., 2016); (2) correcting the eddy current and head
motion-induced distortion with an affine transformation; (3)
skull stripping for the T1-weighted images and non-DW images
(b = 0 s/mm2) with FSL-Brain Extraction Tool (BET).

Whole-brain fiber reconstruction was performed for each
diffusion data in native space using probabilistic tracking.
Anatomically constrained tractography (Smith et al., 2012),
seeding from the interface between grey matter and white
matter, was used to achieve an anatomically plausible trajectory.
A total of 10 million (M) seeding streamlines were initially
generated and tracked. Finally, Spherical-deconvolution
Informed Filtering of Tractograms (SIFT) (Smith et al., 2013)
was performed to filter the streamlines from 10 to 1 M for
improving the quantitative nature of whole-brain streamline
reconstruction.

All these preprocessing steps and fiber tracking were
accomplished within MRtrix3,1 which is an open-source
software package and includes scripts that interface with
external packages, such as FSL2 (Jenkinson et al., 2012).

Structural network construction

Figure 1 shows the flow chart of structural network
construction, which is also accomplished within MRtrix3. First,
90 brain regions (nodes) were created for each participant
with the automated anatomical labeling (AAL) atlas (Tzourio-
Mazoyer et al., 2002). Particularly, for each participant, the
non-diffusion images (b = 0 s/mm2) were co-registered
to the corresponding T1-weighted images with an affine
transformation. Meanwhile, the T1-weighted images were non-
linearly transformed to the Montreal Neurological Institute
(MNI) space using the ICBM-152 brain template. Thereafter,
these two transformations were inversed and combined into
one transformation, which was applied to wrap the AAL from

1 https://www.mrtrix.org

2 https://fsl.fmrib.ox.ac.uk
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FIGURE 1

The flowchart of white matter structural network construction. (1) The non-diffusion image b0 was co-registered to the corresponding
T1-weighted image with an affine transformation Tb0→T1 for each participant. (2) The T1-weighted image was non-linearly transformed to the
Montreal Neurological Institute (MNI) space using the ICBM-152 brain template, resulting in a non-linear transformation TT1→MNI. (3) These two
transformations (Tb0→T1 and TT1→MNI) were inversed and combined into one transformation (TMNI→b0), which was applied to wrap the AAL from
the MNI space to the native diffusion space of each participant. Thereafter, 90 participant-specific brain regions were created. (4) A whole-brain
fiber reconstruction was performed for each subject in native space using the probabilistic tracking in conjunction with DTI. (5) Finally, the
90 × 90 symmetric connectivity matrix for each participant was constructed by calculating the mean FA values of streamlines that connect
each region pair.

MNI space to the native diffusion space of each participant.
Finally, the 90 × 90 symmetric connectivity matrix for each
participant was constructed by calculating the mean FA values
of streamlines that connect each node pair.

Structural network analyses

The global and regional network metrics, as well as the
modular metrics, were calculated to characterize the topological
properties of altered structural networks. All the following
network metrics were calculated using GRETNA.3

The global and regional network
metrics

The global metrics calculated in our study consisted of
global efficiency (Eglob), local efficiency (Eloc), cluster coefficient
(Cp), shortest path length (Lp), normalized cluster coefficient
(γ), normalized characteristic path length (λ), and small-
worldness (σ). For regional properties, the following two nodal

3 http://www.nitrc.org/projects/gretna/

metrics were considered: nodal efficiency (NE) and degree
centrality (DC). The definition and interpretation of these
network metrics can be referred to Rubinov and Sporns (2010).

To avoid both spurious connections and bias of a single
sparse threshold, the area under the curve (AUC) under sparsity,
ranging from 27 to 40% with an interval of 0.5% for each
global and regional measures, was calculated for the following
statistical analysis.

The modular metrics

With regards to the modularity analysis, the total number
of modules and the associated module membership of nodes
were optimized by maximizing modularity Q, the detailed
definition and interpretation of which can be referred to
Newman, 2006. Particularly, the Louvain algorithm in the
Brain Connectivity toolbox4 was used to optimize the Q-value
under varying sparsity, ranging from 0.05 to 0.3. Generally, a
Q-value > 0.3 indicated a strong modular structure (Fortunato
and Barthelemy, 2007; Hilger et al., 2017). Given that the

4 http://www.brain-connectivity-toolbox.net/
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number of modules and their membership varied across
different sparsity, sparsity was fixed at 0.1 (Q = 0.39) to obtain a
quite reasonable and consensus modularity partition, as shown
in Figure 2. Thereafter, to assess the modular segregation, the
within-module connectivity and between-module connectivity,
which are defined as the strengths of edges within a single
module and between a pair of modules, respectively, were
calculated.

Statistical analysis

The one-way repeated measures analysis of variance
(ANOVA) was used to compare four groups at the baseline,
and three follow-up stages (post-RT-AC, post-RT-ED, and post-
RT-LD) after RT for all of these metrics. All the measured
data satisfied the assumptions of normality and homogeneous
variance. The assumption of sphericity was violated for the
regional network metrics in several brain regions, where the
Greenhouse–Geisser method was used to correct the sphericity.
Thereafter, a post-hoc analysis (multiple comparisons) was
performed by using paired t-test to compare each pair
within the four groups. When the differences between the
paired observations did not follow a normal probability

distribution, Wilcoxon Signed-Rank test, which is a non-
parametric equivalent of the paired t-test, was used instead.
Finally, false discovery rate (FDR) correction was used for
multiple comparisons.

In addition, dose-response analysis was performed by
calculating the Spearman’s rank correlation coefficient (r-value)
of the association between the abnormal nodal metrics and the
radiation dose of ipsilateral temporal lobe.

Results

The global analysis

Figure 3 shows the global network measures of a cohort
of 35 patients at four stages, including the baseline, post-RT-
AC, post-RT-ED, and post-RT-LD. All four groups exhibited
small-world characteristics with λ ≈ 1, γ > 1, and σ > 1.
For the global metrics, only Eloc exhibited a significant
difference among four groups after FDR correction. Specifically,
Eloc significantly decreased at post-RT-ED and post-RT-LD,
compared to baseline. In addition, Eloc showed a recovering
tendency at post-RT-LD, although no significant difference
existed between post-RT-ED and post-RT-LD. Moreover, Eglob

FIGURE 2

The within-module and between-module connectivity strengths analysis of the four modules used. L, left hemisphere; R, right hemisphere; AC,
post-RT-AC; ED, post-RT-ED; LD, post-RT-LD; **p < 0.01.
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FIGURE 3

The post-hoc pairwise comparison results of the global network measures for four time stages (the baseline, post-RT-AC, post-RT-ED, and
post-RT-LD) after false discovery rate (FDR) correction. AC, post-RT-AC; ED, post-RT-ED; LD, post-RT-LD; **p < 0.01.

showed a tendency of progressive decrease at post-RT-AC and
post-RT-ED and a partial recovery at post-RT-LD. Similarly,
the small-world coefficient, sigma (σ), showed a tendency of
increase at post-RT-ED and a partial recovery at post-RT-LD.
The statistical results are shown in Table 1.

The regional analysis

Figure 4 shows the significantly altered regions for nodal
efficiency and degree centrality by repeated measures ANOVA
among four groups and by post-hoc pairwise comparison
between the baseline and three post-RT stages (post-RT-AC,
post-RT-ED, and post-RT-LD). The statistical results are shown
in Table 2, and the relevant information of 90 regions from the
AAL atlas together with corresponding abbreviations are listed
in Supplementary Table 1.

For nodal efficiency, 18 regions had significant differences
among the four groups. They were found in the prefrontal
(ORBinf.L, ORBsup.L, SFGdor.L, MFG.L, ACG.L&R), temporal
(HES.L, MTG.L&R, STG.R), parietal (IPL.R, SMG.R, SPG.L),
frontal (SMA.L, PreCG.L&R), and subcortical (INS.R,
THA.L) lobes. In these significantly altered nodes, only

ORBinf.L increased at post-RT-AC, when compared to the
baseline. Except for ORBinf.L, the nodal efficiency decreased
at the follow-up stages after RT. In most regions with
significantly decreased nodal efficiency after RT, the
significant difference between baseline and post-RT-ED
was larger than that between baseline and post-RT-AC and
between baseline and post-RT-LD. This finding implied
that the efficiency of parallel information transfer of the
node first decreased and then recovered to a certain extent
over time after RT.

The degree centrality exhibited significant difference among
the four stages in the prefrontal (ORBinf.L, SFGdor.L,
MFG.L, ACG.L), frontal (SMA.L, PreCG.R, DCG.L), temporal
(MTG.R), parietal (IPL.R), and subcortical (INS.R, THA.L)
lobes. For the ACG.L and INS.R, the degree centrality
showed a significant and sustained decrease at post-RT-
AC and post-RT-ED, and exhibited a full recovery at post-
RT-LD, when compared to baseline. For the MFG.L and
IPL.R, the degree centrality began to decrease at post-
RT-ED and exhibited a full recovery at post-RT-LD. The
PreCG.R, MTG.R, SMA.L, and SFGdor.L showed a significant
and sustained decrease within 1 year after RT without
recovering trend. In addition, the degree centrality showed
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TABLE 1 The statistical results of the global network measures for four time stages.

Global network measures Baseline
vs. AC

Baseline
vs. ED

Baseline vs. LD AC vs. ED AC vs. LD ED vs. LD Rep_ANOVA

Eglob uncorr_p 0.1255 0.0094** 0.1170 0.2801 0.9243 0.3180 0.0608

corr_p 0.2510 0.0564 0.3510 0.4202 0.9243 0.3815

Eloc uncorr_p 0.1165 0.0033** 0.0069** 0.0331* 0.3845 0.2379 0.0049**

corr_p 0.1748 0.0197* 0.0206* 0.0661 0.3845 0.2855

Cp uncorr_p 1 0.0918 0.2136 0.3200 0.2538 0.7941 0.3659

corr_p 1 0.5506 0.6408 0.4800 0.5077 0.9530

Lp uncorr_p 0.1083 0.0089** 0.1189 0.3641 0.9980 0.3383 0.0624

corr_p 0.3249 0.0532 0.2379 0.4369 0.9980 0.5074

γ uncorr_p 0.9922 0.0512 0.4978 0.0506 0.5376 0.3965 0.3075

corr_p 0.9922 0.1535 0.7467 0.3034 0.6451 0.7931

λ uncorr_p 0.2689 0.8708 0.4245 0.3451 0.5554 0.3566 0.6038

corr_p 1 0.8708 0.6367 1 0.6665 0.7131

σ uncorr_p 0.8880 0.0427* 0.5219 0.0291** 0.4935 0.3397 0.2363

corr_p 0.8880 0.1280 0.6263 0.1748 0.7402 0.6793

The statistical results with p-values of the global network measures of 35 patients for four groups (the baseline, post-RT-AC, post-RT-ED, and post-RT-LD). Eglob , global efficiency; Eloc ,
local efficiency; Cp, cluster coefficient; Lp, shortest path length; γ, normalized cluster coefficient; λ, normalized characteristic path length; σ, small-worldness; uncorr_p, uncorrected
p-value; corr_ p, corrected p-value with the false discovery rate (FDR) correction; Rep_ANOVA, one-way repeated measures analysis of variance; AC, post-RT-AC; ED, post-RT-ED; LD,
post-RT-LD; *p < 0.05; **p < 0.01.

FIGURE 4

The regions with significantly different nodal efficiency and degree centrality across four stages by repeated measures ANOVA and for post-hoc
pairwise comparisons between the baseline and three following post-RT stages (post-RT-AC, post-RT-ED, and post-RT-LD). The full names of
the AAL atlas regions with corresponding abbreviations are listed in Supplementary Table 1. L, left hemisphere; R, right hemisphere; AC,
post-RT-AC; ED, post-RT-ED; LD, post-RT-LD; Repeated ANOVA, one-way repeated measures analysis of variance.

a significant increase at post-RT-AC in the ORBinf.L and a
significant and sustained increase at post-RT-ED and post-RT-
LD in the DCG.L.

The modularity analysis

Four modules were identified according to the mean
network matrix of whole patients at baseline. The detailed

information of four modular networks are summarized in
Table 3. The modularity analysis results are shown in Figure 2.

For the within-module connectivity strengths, only module
2 showed a statistically significant difference among the four
stages. The module 2 comprises 21 regions, including the
prefrontal lobe, frontal lobe, and parts of the parietal lobe. It
has a high overlap with the default mode network (DMN),
and is related to the normal cognitive and emotional functions.
Specifically, the connectivity strength within module 2 at the
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TABLE 2 The statistical results of regional analysis for nodal efficiency and degree centrality.

Regions NE DC

Rep_ANOVA Baseline
vs. AC

Baseline
vs. ED

Baseline
vs. LD

Rep_ANOVA Baseline
vs. AC

Baseline
vs. ED

Baseline
vs. LD

ORBinf.L 0.0106* 0.0043** 0.2303 0.1277 0.0140* 0.0008** 0.2102 0.0788

SFGdor.L 0.0041** 0.0220* 0.0034** 0.0076** 0.0048** 0.0099** 0.0074** 0.0018**

MFG.L 0.0111* 0.0208* 0.0006** 0.1581 0.0416* 0.0827 0.0076** 0.6431

ACG.L 0.0040** 0.0323* 0.0008** 0.1971 0.0294* 0.0399* 0.0107* 0.5435

SMA.L 0.0041** 0.0160* 0.0008** 0.0010** 0.0043** 0.0056** 0.0031** 0.0017**

THA.L 0.0427* 0.5560 0.6878 0.0317* 0.0479* 0.0967 0.7270 0.1639

PreCG.R 0.0289* 0.0189* 0.0430* 0.0128* 0.0386* 0.0212* 0.0575 0.0055**

INS.R 0.0068** 0.0177* 0.0006** 0.0745 0.0093** 0.0120* 0.0031** 0.0924

MTG.R 0.0073** 0.1240 0.0088** 0.0114* 0.0299* 0.2303 0.0173* 0.0155*

IPL.R 0.0116* 0.0182* 0.0051** 0.8055 0.0129* 0.1522 0.0090** 0.2650

ORBsup.L 0.0450* 0.3321 0.0619 0.7183 − − − −

HES.L 0.0109* 0.0148* 0.0039** 0.0094** − − − −

MTG.L 0.0338* 0.0427* 0.0080** 0.0109* − − − −

SPG.L 0.0437* 0.0898 0.0637 0.6225 − − − −

PreCG.L 0.0289* 0.0579 0.0322* 0.0139* − − − −

ACG.R 0.0111* 0.0319* 0.0071** 0.0542 − − − −

STG.R 0.0326* 0.4946 0.1718 0.0333* − − − −

SMG.R 0.0279* 0.0172* 0.0082** 0.0692 − − − −

DCG.L − − − − 0.0265* 0.2945 0.0168* 0.0024**

The post-hoc comparison statistical results between the baseline and three post-RT time points (post-RT-AC, post-RT-ED, and post-RT-LD) for regions with significantly different nodal
efficiency and degree centrality across four time points. Eighteen regions with significant difference among four groups for the nodal efficiency and 11 regions for the degree centrality
were present. The values in the table are the corrected p-values with the false discovery rate (FDR) correction. The full names of the AAL atlas regions with corresponding abbreviations
are listed in Supplementary Table 1. NE, nodal efficiency; DC, degree centrality; Rep_ANOVA, one-way repeated measures analysis of variance; AC, post-RT-AC; ED, post-RT-ED; LD,
post-RT-LD; *p < 0.05; **p < 0.01.

post-RT-ED was significantly lower than those at baseline
and post-RT-AC. In addition, the within-module connectivity
strengths for each module showed a tendency of progressive
decrease at post-RT-AC and post-RT-ED and then exhibited a
recovering trend at the post-RT-LD, when compared to baseline,
but no significant difference was found.

For between-module connectivity strengths, no significant
differences were found for each pair of modules. However,
all the between-module connection strengths, except for that
between modules 1 and 3, showed a tendency of sustained
and progressive decrease at post-RT-AC and post-RT-ED
and then exhibited a recovering trend at post-RT-LD, when
compared to baseline.

Dose-correlation analysis

Figure 5 shows the correlations between the abnormal nodal
parameter metrics (NE and DC) and the radiation dose of
ipsilateral temporal lobe. The mean and/or maximum doses of
ipsilateral temporal lobe were correlated with the changed NE
and DC in several regions which were distributed in temporal,
subcortical, prefrontal and parietal. In brief, the changed NE and

DC were positively correlated with mean and/or maximum dose
at ACG.L, INS.R, HES.L, and IPL.R, and negatively correlated at
ORBinf.L and MTG.R. In addition, more brain regions exhibited
a significant dose correlation with NE and DC at late-delayed
period; more brain regions were correlated to the mean dose
than the maximum dose. The spearman’s correlations (r-values)
with significant differences (p-values) for the mean dose and
the maximum dose were shown in Supplementary Tables 2, 3,
respectively.

Discussion

To our knowledge, this study is the first longitudinal
cohort study to monitor the RT-induced alterations of brain
structural network in patients with NPC after RT. The DTI
probabilistic tractography and graph theoretical approach were
used to assess RT-related brain changes at the global, local, and
modular levels; the following findings were obtained: (1) Eloc
shows a significant difference among four stages. Both Eglob and
Eloc show a tendency of progressive decrease at post-RT-AC and
post-RT-ED and a partial recovery at post-RT-LD. (2) Except for
the ORRinf.L and DCG.L, all other regions exhibited significant
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TABLE 3 The detailed information on four modular networks.

Modules AAL atlas regions

Module 01 PreCG.R LING.R SMG.R

MFG.R SOG.R ANG.R

ORBmid.R MOG.R PUT.R

IFGoperc.R IOG.R STG.R

IFGtriang.R FFG.R TPOsup.R

ORBinf.R PoCG.R MTG.R

ROL.R SPG.R TPOmid.R

INS.R IPL.R ITG.R

Module 02 SFGdor.L OLF.L REC.R

SFGdor.R OLF.R ACG.L

ORBsup.R SFGmed.L ACG.R

MFG.L SFGmed.R DCG.L

IFGoperc.L ORBsupmed.L DCG.R

SMA.L ORBsupmed.R PCL.L

SMA.R REC.L PCL.R

Module 03 PCG.L CAL.L CAU.L

PCG.R CAL.R CAU.R

HIP.L CUN.L PAL.R

HIP.R CUN.R THA.L

PHG.L SOG.L THA.R

PHG.R PCUN.L PCUN.R

AMYG.R HES.L HES.R

Module 04 PreCG.L LING.L ANG.L

ORBsup.L MOG.L PUT.L

ORBmid.L IOG.L PAL.L

IFGtriang.L FFG.L STG.L

ORBinf.L PoCG.L TPOsup.L

ROL.L SPG.L MTG.L

INS.L IPL.L TPOmid.L

AMYG.L SMG.L ITG.L

The AAL atlas regions included in the four modular networks. The full names of the AAL
atlas regions with corresponding abbreviations are listed in Supplementary Table 1.

reductions in the nodal efficiency and degree centrality at post-
RT-AC and post-RT-ED, and most of these regions showed a
partial or full recovery at post-RT-LD. (3) The within-module
connectivity strength of modular 2 exhibited significant and
progressive decrease at post-RT-AC and post-RT-ED, compared
to baseline, and showed a partially recovering trend at post-RT-
LD. All the within- and between- module connectivity strengths,
except for that between modules 1 and 3, showed a tendency of
sustained and progressive decrease at post-RT-AC and post-RT-
ED. Thereafter, a recovering trend at post-RT-LD was exhibited.
All these findings imply that the brain injures begin at post-
RT-AC, are aggravated at post-RT-ED, and undergo brain
reorganization at the post-RT-LD. (4) The temporal irradiation
dose was significantly correlated to the altered nodal parameters
at the temporal (MTG.R and HES.L), subcortical (INS.R),
prefrontal (ORBinf.L and ACG.L) and parietal (IPL.R), which

suggests that these regions were more sensitive to dose and
should be paid more attention during RT treatment plans.

The global network analysis revealed that the
structural brain network possessed small-world properties
(λ ≈ 1, γ > 1, and σ > 1), at baseline and all three
follow-up stages (post-RT-AC, post-RT-ED, and post-RT-LD).
These results illustrate that the small-world networks are
relatively robust to the changes of brain white matter (He et al.,
2009; Colombo, 2013; Xu et al., 2017). For the presented global
measures, only Eloc had statistically significant difference among
the four groups. Eloc represents the efficiency of information
exchange within a local subnetwork or among adjacent regions
(Jiang et al., 2020). Reduced Eloc in a structural brain network
may arise from the RT-associated injures of the fiber tracks (e.g.,
demyelination and axonal damage) (Nazem-Zadeh et al., 2012;
Qiu et al., 2021). The results of significant decrease in Eloc at
post-RT-ED and post-RT-LD were compatible with findings of
prior fMRI studies reporting lower efficiency of information
transfer after RT (Ding et al., 2018; Leng et al., 2021). Notably
a significant decrease in Eloc firstly occurred 6 months after
RT in our structural network study, later than the significant
abnormalities in global properties of functional networks (<6
months) (Leng et al., 2021). These findings were plausible
because brain function might be more vulnerable or sensitive
to attack (Karim et al., 2017). In addition, both Eglob and Eloc

showed a tendency of progressive decrease at post-RT-AC and
post-RT-ED and partial recovery at post-RT-LD, although this
trend was not statistically significant. These inconspicuous
changes in trend of Eglob and Eloc may explain the inconsistent
and unstable results from previous studies. Some DTI studies
found a gradual and irreversible white matter damage (Nagesh
et al., 2008; Welzel et al., 2008; Ding et al., 2018), whereas other
groups found that the DTI metrics decreased in the early stage
but partially recovered later (Wang et al., 2012; Xiong et al.,
2013; Chen et al., 2015).

The significant alteration of the nodal parameters (nodal
efficiency and degree centrality) among the four stages was
mainly located in the temporal, frontal, prefrontal, parietal, and
subcortical regions. Most of these regions showed a progressive
decrease during 0–6 months post-RT and a partial or full
recovery 12 months post-RT. This result may indicate that
the structural brain reorganization mainly occurred in the
late-delay stage, which is generally consistent with findings
of previous studies (Wang et al., 2012; Xiong et al., 2013;
Duan et al., 2016; Chen et al., 2020). However, some regions,
including MTG.L&R, HES.L, PreCG.L&R, SFGdor.L, and
SMA.L, exhibited a sustained decrease without recovering
tendency within 1 year after RT, which may be due to two
reasons: vulnerability of these regions to radiation causing an
irreversible damage and the need of these regions for a longer
recovery time (>12 months), which cloud not be observed in
this 1-year longitudinal study after RT. The bilateral temporal
lobes, including MTG.L&R and HES.L, exhibited decreased
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FIGURE 5

The Spearman’s correlations between the abnormal nodal metrics (NE and DC) and the mean as well as maximum irradiation dose of ipsilateral
temporal lobe. The Spearman’s rank correlation coefficients (r-value) at the significance level of p < 0.05 were shown. The size of dots
indicated the strength of the correlations and the color of dots indicated the orientation of the correlations (Blue: positive correlation, Red:
negative correlation). NE, nodal efficiency; DC, degree centrality; AC, post-RT-AC; ED, post-RT-ED; LD, post-RT-LD.

nodal parameters without recovering tendency over the time
after RT. This observation was not surprising because the
temporal lobe is often inside the target volume and inevitably
receives high-dose radiation and may suffer from severe injury.
Late-delayed temporal injuries have been well documented as
irreversible, and sometimes presented as necrosis of temporal
lobes on routine medical imaging examinations (Mao et al.,
2014; Lv et al., 2019). Additionally, the nodal parameters showed
significant changes in the prefrontal, frontal, and parietal
regions, which were outside the irradiation field. Previous
TBSS analysis (Duan et al., 2016) revealed that the fractional
anisotropy values were significantly lower in the frontal, parietal,
and occipital WM after RT. A previous VBM study found a
reduced GM volume in the frontal and parietal cortices (Lv
et al., 2014). Altogether, the changes in nodal parameters in
the prefrontal, frontal, and parietal regions may arise from the
degeneration of associated white matter fibers or radiation-
induced disruption of the blood brain barrier (BBB) (van
Vulpen et al., 2002). Notably, the increased nodal parameters
in the ORBinf.L and DCG.L might act as a compensatory
mechanism that maintains normal cognitive function. The
subcortical regions, including the THA.L and INS.R, exhibited
a different changing pattern, when compared with baseline.
Specifically, the INS.R shows a “decrease-decrease-recover”
pattern after RT for both nodal efficiency and degree centrality,
whereas THA.L begins to decrease 12 months post-RT (post-
RT-LD) for nodal efficiency. The alteration of structural brain
network in the insular and thalamus is probable, given that both
regions are parts of the paralimbic system that are sensitive to
irradiation. In addition, these findings are consistent with those
of previous studies (Ding et al., 2018; Qiu et al., 2018; Yang
et al., 2019; Zhang et al., 2020; Nan et al., 2022), which reported

functional and/or morphological changes in the thalamus and
insula.

The dose-correlation analysis shows the nodal parameters
(NE and DC) had a positive correlation with temporal dose
at ACG.L, INS.R, HES.L, and IPL.R, which may be due to
the compensatory change in structural brain network that
interconnects these regions. Whereas the nodal parameters had
a negative correlation with temporal dose at ORBinf.L and
MTG.R, indicating that a higher dose reduces the information
transfer efficiency to these regions. In addition, through acute
reaction stage to late-delayed stage, the number of significant
dose-correlation brain regions increased. This finding suggests
that the dose effect on brain change is more notable at the late-
delayed stage. Furthermore, some brain regions were correlated
to the mean dose and/or maximum dose which illustrates
that both the mean dose and the maximum dose should be
considered for the protection of normal organs.

This study explored the changed patterns of structural
modularity over time after RT in patients with NPC. We found
that the connectivity strength within module 2 at the post-RT-
ED were significantly weaker than those at baseline and post-
RT-AC, indicating radiation-induced disruption of topological
organization of module 2. The module 2 mainly includes the
prefrontal lobe, frontal lobe, and parts of the parietal lobe. The
areas of module 2 and the DMN have a large overlap, and
the DMN is associated with normal cognition and emotion
(Alves et al., 2019). Moreover, the module 2 includes the
medial prefrontal lobe, whereas module 4 includes the left side
of the temporal lobe and parietal lobe. Several fiber bundles
run between the medial prefrontal lobe and temporal lobe,
which is highly related to memory processing (Vertes et al.,
2007). The decreased connectivity strengths within module 2
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and between modules 2 and 4 at the acute- and early delayed
stages may be due to the damage of axonal fiber tracts between
the medial prefrontal lobe and temporal lobe. These findings
support the psychological disorders, cognitive dysfunction, and
mood disorders commonly found in patients with NPC after RT
(Tang et al., 2012; Mo et al., 2014; Wu et al., 2014). In addition,
a “decrease-decrease-partially recovery” pattern was observed
for the connectivity strengths within each module and between
each pair of modules, although no significant alterations were
found except for connectivity strengths within module 2. These
observed results were roughly consistent with the findings on
nodal parameters, further implying that the brain undergoes
recovery and reorganization of structure to a certain extent at
the late-delayed stage.

Despite the merits of this longitudinal study, several
limitations were identified. First, the 1-year follow-up was
insufficient to monitor all the dynamic changes in structural
network properties after RT over time. A longer period, ranging
over several years, should be considered to understand whether
the injured structural network topology will eventually recover
to “baseline” with time. Second, this study included 35 patients
with NPC; this sample size was not large enough. A larger
cohort size of patients with NPC is needed to provide more
reliable statistical results and to accurately reveal the dynamic
changing pattern of structural brain network after RT. Third, the
relationship between the alterations in structural brain network
and cognitive decline were not explored because of incomplete
neurocognitive outcomes.

Conclusion

The follow-up data were used to track the dynamic
changes in structural brain network after RT in patients with
NPC. Our study found that the radiation-induced alterations
in topological properties mainly began at the acute reaction
stage, were aggravated at the early delayed stage, and then
partially recovered at the late-delayed stage. The dynamic
change patterns of topological properties facilitate to better
understand how the radiation-induced brain injuries evolves
over time and the early detection of radiation-induced changes
in normal-appearing brain tissue to improve patient survival.
In addition, a dose-correlation alteration was found in the
temporal (MTG.R and HES.L), subcortical (INS.R), prefrontal
(ORBinf.L and ACG.L), and parietal (IPL.R), indicating that
these regions were more sensitive to dose and should be mainly
considered in radiotherapy treatment plan.
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Introduction: Sciatica is a pain disorder often caused by the herniated

disk compressing the lumbosacral nerve roots. Neuroimaging studies have

identified functional abnormalities in patients with chronic sciatica (CS).

However, few studies have investigated the neural marker of CS using

brain structure and the classification value of multidimensional neuroimaging

features in CS patients is unclear.

Methods: Here, structural and resting-state functional magnetic resonance

imaging (fMRI) was acquired for 34 CS patients and 36 matched healthy

controls (HCs). We analyzed cortical surface area, cortical thickness,

amplitude of low-frequency fluctuation (ALFF), regional homogeneity (REHO),

between-regions functional connectivity (FC), and assessed the correlation

between neuroimaging measures and clinical scores. Finally, the multimodal

neuroimaging features were used to differentiate the CS patients and HC

individuals by support vector machine (SVM) algorithm.

Results: Compared to HC, CS patients had a larger cortical surface area

in the right banks of the superior temporal sulcus and rostral anterior

cingulate; higher ALFF value in the left inferior frontal gyrus; enhanced

FCs between somatomotor and ventral attention network. Three FCs values

were associated with clinical pain scores. Furthermore, the three multimodal

neuroimaging features with significant differences between groups and the

SVM algorithm could classify CS patients and HC with an accuracy of 90.00%.

Discussion: Together, our findings revealed extensive reorganization of local

functional properties, surface area, and network metrics in CS patients. The

success of patient identification highlights the potential of using artificial

intelligence and multimodal neuroimaging markers in chronic pain research.

KEYWORDS

brain networks, chronic pain, fMRI, chronic sciatica, support vector machines, ALFF,
cortical surface area
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Introduction

Sciatica is a pain disorder often caused by the herniated disk
compressing the lumbosacral nerve roots, usually presenting as
pain radiating from the low back down to the leg below the knee
(Porchet et al., 2002; Deyo and Mirza, 2016). About a quarter
of adults in the USA have experienced low back pain in the
past 3 months, and 30% of those accompanied sciatica (Jensen
et al., 2019). The global prevalence of sciatica varies from 1.2
to 43% (Konstantinou and Dunn, 2008; Finley et al., 2018),
reflecting its ununified diagnostic criteria and diverse clinical
manifestations. Pain caused by sciatica can easily progress to a
chronic stage which may be either continuous or recurrent, and
severely affects the quality of life and mental health (Foster and
Reddington, 2021). However, the pathophysiologic mechanisms
of chronic sciatica (CS) are not clear, which restricts the
development of therapeutic protocols.

Previous neuroimaging studies have shown greater regional
homogeneity (REHO) of the posterior cingulate (Liu et al., 2020)
and lower functional connectivity (FC) between the dorsolateral
prefrontal cortex (DLPFC) and anterior cingulate cortex (ACC)
(Li et al., 2012) in patients with CS compared with healthy
controls (HCs). However, these functional abnormalities may
not fully account for the pathophysiology of CS, because a large
number of studies have found both functional and structural
(e.g., cortical surface area) changes associated with chronic pain
(Seminowicz et al., 2011; Luchtmann et al., 2014; De Pauw
et al., 2019; Niddam et al., 2019). Besides, multiple studies
have suggested that communication between brain networks
is changed in chronic pain patients, and connections across
networks may reflect the presence of chronic pain (Kim et al.,
2013; Hemington et al., 2016).

Given these neuroimaging findings on chronic pain, we
speculated that patients with CS may also have abnormal
changes in structural properties or between-regions FC. In
addition, previous studies have applied machine learning
techniques to distinguish patients with post-herpetic neuralgia
(PHN) and HC using the amplitude of low-frequency
fluctuation (ALFF) values (Huang et al., 2020). However, few
studies have classified neuropathic pain patients from HC
by multimodal neuroimaging features. The multidimensional
neuroimaging features may serve as a bridge between clinical
observations and neural mechanisms that can increase the
understanding of CS as a complex and multifaceted pain-related
disease.

Therefore, this study aimed to investigate the underlying
neurobiological mechanisms of CS using surface-based
morphometry, local functional metric, and network FC analyses
in patients with CS using structural and functional magnetic
resonance imaging (fMRI) data. Besides, the relationships
between neuroimaging measures and clinical symptom scale
scores were examined. Furthermore, the diagnosability of the
neuroimaging properties was evaluated utilizing a support

vector machine (SVM) of machine learning techniques and
neuroimaging features with significant differences between CS
patients and HC.

Materials and methods

Participants

This study included 34 CS patients who meet the diagnostic
criteria of sciatica (Jensen et al., 2019) and 38 HC participants.
Patients were recruited in the Dongzhimen Hospital Affiliated
to Beijing University of Chinese Medicine from December
2020 to May 2021. The study recruited participants through
hospital outpatient, the WeChat official account (one of China’s
popular social media platforms) of Dongzhimen Hospital, and
brochures.

The key inclusion criteria of CS people were: (1) 35–
65 years old; (2) having unilateral radiating leg pain below
the knee for more than 3 months, accompanied by a positive
straight-leg raise test or corresponding neurological deficit
(paresthesia, muscle weakness, or reflex abnormalities) with
magnetic resonance imaging (MRI) or computed tomography
(CT) confirmed disk herniation, (3) leg pain intensity on the
visual analog scale (VAS) (0–100 mm) of 40 mm or higher
(Collins et al., 1997), (4) right-handed. The exclusion criteria
were: (1) sciatica induced by other diseases than lumbar disk
herniation, (2) having the severe spinal disease or severe
progressive neurological symptoms, (3) having cardiovascular,
liver, kidney, or hematopoietic system diseases, mental health
disorders, or other severe coexisting diseases, (4) pregnant
or lactating women or those planning to conceive during
the trial. Additionally, 38 pain-free age- and sex-matched
HCs were recruited from the same geographic area by public
advertisement. All HCs also met the above exclusion criteria.
In addition, HCs were asked whether had personal or family
histories of pain disorders or had experienced any significant
pain condition as the exclusion criteria.

This study has been approved by the Ethics Committee
of Dongzhimen Hospital Affiliated to Beijing University
of Chinese Medicine (No. 2020BZYLL0803), and it was
part of a study registered in Chinese Clinical Trial Registry
(ChiCTR2100044585). All participants provided written
informed consent according to the Declaration of Helsinki
after study procedures were explained to them thoroughly. We
collected MRI data from all participants.

Clinical parameters

After recruitment, the following clinical measurements were
evaluated by CS patients within the day before the MRI
scanning. VAS was performed to rate the extent of pain in the leg
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and low back. Oswestry Disability Index (ODI) (Fairbank and
Pynsent, 2000) was conducted to identify self-reported function
levels through examining perceived disability in 10 activities
of daily living. Sciatica Frequency and Bothersomeness Index
(SFBI) (Atlas et al., 1996) was used to assess the frequency
and bothersomeness of sciatica with scores ranging from 0 to
24, respectively. The 36-item Short-Form Health Survey (SF-
36) (Lam et al., 2005) was administered to assess the quality of
life in eight aspects, and the scores on the physical and mental
components of the SF-36 will be summarized.

Magnetic resonance imaging
acquisition

Magnetic resonance imaging images were obtained at
a Siemens 3.0 T MRI scanner (Skyra, Siemens, Erlangen,
Germany) using a standard head coil at the Department
of Radiology for Beijing Hospital of Traditional Chinese
Medicine Affiliated to Capital Medical University. The high-
resolution T1 structural MRI (sMRI) was acquired using
a gradient echo sequence with the following parameters:
repetition time (TR) = 2,530 ms, echo time (TE) = 2.98 ms,
flip angle (FA) = 7◦, inversion time = 1,100 ms, field of view
(FOV) = 240 mm × 240 mm, number of slices = 192,
voxel size = 1 mm × 1 mm × 1 mm, and in-plane
resolution = 256 × 256. And resting-state functional MRI
(rs-fMRI) was scanned using echo-planar imaging (EPI)
sequence with the following parameters: whole brain,
TR = 2,000 ms, TE = 30 ms, FOV = 224 mm × 224 mm,
FA = 90◦, slice thickness/gap = 3.5/0.6 mm, voxel
size = 3.5 mm × 3.5 mm × 3.5 mm, axial slices = 32, in-
plane resolution = 64× 64, and 240 volumes. The scan duration
was 5 min for the T1-weighted image and 8 min for EPI scans
for blood oxygen-level dependent (BOLD)-based functional
neuroimaging. We used comfortable foam pads to minimize
head motion and earplugs to reduce noise interference.
Before starting scanning, we instructed participants to keep
their eyes closed, stay awake, avoid engaging in any specific
thoughts and keep still.

Quality control of magnetic resonance
imaging data

Visually checking image quality by a neuroradiologist (QR)
to make sure there were no apparent structural abnormalities
or artifacts present, and the images with head movement greater
than 2 mm in any direction or head rotation greater than 1◦ were
excluded. Two HCs were excluded from the study on account
of excessive head motion (>2 mm in translation or >2.0◦

in rotation) during the rs-fMRI scanning. The two excluded
participants were female, their ages were 48 and 54 years. As

a result, 34 patients with CS and 36 HCs were included in
further statistical analyses. Furthermore, we also extracted the
mean framewise displacement (FD) (Van Dijk et al., 2012) for
each participant to measure the extent of head motion and
compared them between the two groups. The Mann–Whitney U
of non-parametric test result showed that there is no significant
difference in head motion among the three groups (z = 1.575,
p = 0.115).

Structural magnetic resonance
imaging data processing

First, the “recon-all” command with –all –qcache options
implemented in FreeSurfer (V6.0)1 was used to pre-process
T1-weighted images, the key steps including motion correction,
non-uniform intensity normalization, talairach transform
computation, skull removal, volumetric segmentation, cortical
surface reconstruction and so on. Mean cortical thickness and
surface area were calculated for each of the 68 cortical regions
of the Desikan-Killiany Atlas (34 per hemisphere). Cortical
thickness was estimated for each participant using the distance
from the white matter boundary to the corresponding pial
surface (Fischl and Dale, 2000). The cerebral surface area was
calculated by mesh generation and surface triangulation. Then
mean cortical thickness and surface area were extracted for each
cortical region.

Functional magnetic resonance
imaging data processing and network
analyses

The fMRI data were pre-processed using the software
MATLAB 2017 and the toolbox for Data Processing and
Analysis for Brain Imaging (DPABI) (version 6.1)2 (Yan et al.,
2016). For each participant’s image data, we discarded the first
10 volumes because of signal equilibrium, a total of 230 volumes
for each subject were processed with the slice timing, motion
correction, spatial smoothing (8-mm FWHM), and spatial
normalization to the Montreal Neurological Institute (MNI)
space. Then we re-sampled the data into 3 mm× 3 mm× 3 mm.
Finally, after removing the linear trend, we applied a 0.01–
0.08 Hz bandpass filter.

It should be noted that ALFF was calculated without
filtering during the pre-processing process, and REHO was not
smoothed during the pre-processing but smoothed after it was
calculated, to allow the data to be normalized, which would be
conducive to statistical analysis and indicator standardization.

1 http://surfer.nmr.mgh.harvard.edu/

2 http://rfmri.org/dpabi
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ALFF and REHO values were calculated using the DPBAI
toolbox. ALFF is used to detect the regional intensity of
spontaneous fluctuations in the BOLD signal, REHO calculates
the temporal homogeneity of the BOLD signal between a given
voxel with neighboring voxels. These measures were selected
to pinpoint the spontaneous neural activity of specific regions
and physiological states of the brain. The ALFF measures the
gross power of oscillations within a certain frequency range,
using the DPBAI software and regions of interest (ROIs) defined
by the Anatomical Automatic Labeling (AAL) ROI library. The
calculation procedure: (1) Fast Fourier Transform (FFT) was
used to convert all voxels from the time domain to the frequency
domain; (2) the ALFF of every voxel was calculated by averaging
the square root of the power spectrum across 0. REHO was
computed based on Kendall’s coefficient of concordance (KCC)
of the time series of the voxel with its nearest 26 neighboring
voxels. The REHO was computed for all brain voxels.

We used the software MATLAB 2017 and the DPABI
(version 6.1) to extract time courses of 160 ROIs in the
Dosenbach 160 atlas (Dosenbach et al., 2010). Each ROI
(i.e., node) was a 5 mm radius sphere centered on the
atlas coordinates, including 19 voxels in each. To derive
the connectivity matrix of the brain, we computed Pearson
correlation coefficients of BOLD signals between each pair of
142 ROIs (Glasser et al., 2016) (Dosenbach 160 atlas exclude 18
ROIs of the cerebellum), which were then Fisher transformed
to z-values. We grouped significant nodes according to a
well-defined seven-network atlas derived from 1,000 healthy
participants by Yeo et al. (2011): sensory-motor network (SMN),
ventral attention network (VAN), visual network (VN), dorsal
attention network (DAN), default mode network (DMN),
frontoparietal network (FPN), and subcortical network (SC).
Because the limbic network nodes from the Yeo atlas were not
covered by the Dosenbach 160 atlas, we defined subcortical ROIs
as the SC (Yang et al., 2021).

Statistical analyses

Demographic and clinical characteristics
analyses

Demographic data collected from either group includes age,
gender, educational level, and occupation. Participants were
asked to indicate the physical activity level of the work they
do most of the time, the nature of occupation was defined as
manual work and mental work. We used Statistical Package
for Social Sciences (SPSS) V21 software to conduct statistical
analyses. Before statistical analyses, we checked the normality
of each metric. Education in each group and age of the HC
group were non-normally distributed, we used Kolmogorov–
Smirnov non-parametric tests. As for categorical variables (i.e.,
gender and occupation), we used the Chi-Square test to evaluate
the differences between groups. The significance level was set at
p < 0.05.

Surface area and thickness analyses
The cortical surface area and cortical thickness of CS

patients and HC were extracted. Then, we used SPSS
V21 software to conduct statistical analyses. Two-sample
independent t-tests were used to compare the regional-wise
differences between the two groups if the measurements were
normally distributed [False discovery rate (FDR) correction,
p < 0.05], and if the data distribution is not normal, we
used non-parametric tests of Mann–Whitney U. Effect sizes are
depicted as Cohen’s d. The effect size was computed at https:
//www.psychometrica.de/effect_size.html.

Amplitude of low-frequency fluctuation and
regional homogeneity analyses

For ALFF and REHO maps, voxel-wise two-sample
independent t-tests were performed to compare the results
between the two groups, Gaussian Random Field theory (GRF)
correction, voxel-level p < 0.001, and cluster-level p < 0.05. We
extracted the values of ALFF and REHO results and calculated
effect sizes using Cohen’s d.

Network functional connectivity analyses
For FC analyses, we also used two-sample independent

t-tests with FDR corrected (p < 0.05) in DPABINet (See
text footnote 2, version 1.1). The figures were distributed in
DPABINet and BrainNet Viewer.3 Finally, we extracted the
values and showed them in the tables. Cohen’ s d was used as
the effect size measure.

Brain metrics and clinical variables correlation
analyses

We extracted metrics (ALFF, REHO, surface-based
morphometry, and FC) with significant group differences
and investigated their relationships with clinical variables.
VAS score for leg pain, VAS score for back pain, ODI score,
SF-36 for physical, SF-36 for mental, SFBI for frequency, and
SFBI for bothersomeness were investigated. For non-normally
distributed variables (VAS score for leg pain and SF-36 for
mental score), we used Spearman’s correlation analyses. For
the other normally distributed variables, Pearson correlation
was used to analyze the correlation. The above statistical
analyses were implemented using SPSS V21 (significance level
is p < 0.05).

Group classification with support vector
machine

After revealing the significant ALFF values, surface area,
and FCs in the CS group, we used these three kinds of
features to accurately differentiate the 34 CS individuals from
the 36 HCs. Features with different scales across different
modalities were normalized to a value between 0 and 1

3 http://www.nitrc.org/projects/bnv
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according to their maximum and minimum values. Then, the
discriminant analysis was performed by using the SVM with
a nested leave-one-out cross-validation (LOOCV) framework.
First, the C regularization parameter and the linear kernel
function were optimized by performing 5-fold cross-validation
on the n-1 (i.e., 69) training data. Once the optimal SVM
model was obtained, it was applied to classify the left-out
individual as CS or HC.

The performances of a classifier were quantified using
accuracy, sensitivity, specificity, and the area under the
receiver operating characteristic (ROC) curve (AUC).
Note that the specificity represented the proportion
of the HC individuals correctly predicted, while the
sensitivity represented the proportion of the CS individuals
correctly predicted. Specifically, accuracy is calculated as
(TP + TN)/(TP + TN + FN + FP), sensitivity is defined as
TP/(TP + FN) and specificity is defined as TN/(FP + TN),
where TN is the number of true negatives (HC individuals
correctly classified), TP is the number of true positives (CS
individuals correctly classified), FN is the number of false
negatives (CS individuals classified as HC individuals), and FP
is the number of false positives (HC individuals classified as CS
individuals). In addition, the AUC is an evaluation measure
based on the ROC curve, which illustrates the performance
of the classifier. The ROC curve is delineated by plotting

TABLE 1 Demographic and clinical characteristics of two groups.

Parameter CS (n = 34) HC (n = 36) Statistics P-value

Age (years) 54.29 (8.80) 58.50 (51, 62.75) Z = 0.861 0.449a

Gender (M/F) 14/20 12/24 X2 = 0.461 0.497b

Education
(years)

12.97 (3.49) 11.50 (2.77) Z = 0.909 0.381a

Occupation
(Men/Man)

11/23 19/17 X2 = 1.611 0.204b

Pain duration
(years)

8.00 (3.38, 17.75) N/A N/A N/A

VAS score for leg
pain

55 (50, 70) N/A N/A N/A

VAS score for
back pain

57.50 (14.72) N/A N/A N/A

ODI score 26.27 (11.33) N/A N/A N/A

SF-36 for
physical

35.32 (10.34) N/A N/A N/A

SF-36 for mental 57.31 (47.42, 62.71) N/A N/A N/A

SFBI for
frequency

12.85 (4.84) N/A N/A N/A

SFBI for
bothersomeness

11.88 (4.27) N/A N/A N/A

We used mean (standard deviation) if the measurements were normally distributed, and
median (Q1, Q3) if the measurements were not normally distributed. aNon-parametric
test, Kolmogorov–Smirnov. bChi-square test. CS, chronic sciatica; HC, healthy controls;
M/F, male/female; Men/Man, Mental work/Manual work; N/A, not applicable; VAS,
visual analog scale, 0–100 mm; ODI, Oswestry Disability Index; SF-36, the 36-item
Short-Form Health Survey; SFBI, Sciatica Frequency and Bothersomeness Index.

1-specificity and sensitivity at different thresholds, and the
thresholds of each ROC curve underwent stepwise variation
from 0 to 1 in each 0.1 interval. Last, the model’s performance
was evaluated by computation of the Matthews Correlation
Coefficient (MCC). The calculation formula (Ali et al., 2021) is
as follows:

MCC =
TP × TN − FP × FN

√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

Results

Demographic and clinical
characteristics

Thirty-four CS patients and 36 matched HCs completed the
entire study. Age and years of education were not normally
distributed, so the Kolmogorov–Smirnov test was used to test
for group differences. No significant group differences were
found in age (p = 0.449), gender (Chi-square test: p = 0.497),
years of education (p = 0.381), and occupation (Chi-square test:
p = 0.204) between the CS and HC groups (Table 1). And
the median pain duration of CS was 8 months, the median
pain score for the leg on the VAS was 55, and the mean VAS
score for back pain was 57.50 (14.72) in patients. Otherwise,
the mean SF-36 score for the physical duration of CS was 35.32
(10.34), and the median SF-36 score for mental was 57.31 in
CS patients.

Amplitude of low-frequency
fluctuation abnormality in chronic
sciatica patients

Compared with the HC group, patients with CS had higher
ALFF in the left inferior frontal gyrus (IFG) (t = 4.132,
ES = −1.238, CI [−1.750 to −0.727]; Figure 1A and Table 2).
However, the REHO analysis did not yield any significant results
at the whole brain level.

Abnormal surface area in chronic
sciatica patients

Compared with the HC group, patients with CS had the
larger surface area in the right banks of the superior temporal
sulcus (bankssts) (t = 3.666, ES = −0.877, CI [−1.367 to 0.386],
FDR corrected p = 0.016) and right rostral anterior cingulate
(rACC) (t = 3.417, ES = −0.817, CI [−1.305 to 0.329], FDR
corrected p = 0.018; Table 3 and Figure 1B). However, we did
not find a significant difference in cortical thickness between the
two groups.
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FIGURE 1

Group differences in local functional metric and surface morphology. (A) Patients with CS have significantly higher ALFF value in the left inferior
frontal gyrus. The red color reflects ALFF values greater in CS patients than in the HC group. Gaussian Random Field theory (GRF) correction
with voxel-level p < 0.001 and cluster-level p < 0.05. (B) Cortical surface area differences between CS patients and HC. T-values of two altered
brain regions in the surface area of the right hemisphere. Positive (red) values reflect cortical area larger in CS patients than in the HC group,
FDR corrected p < 0.05. CS, chronic sciatica; CS, chronic sciatica; HC, healthy controls; rh, right hemisphere; rACC, rostral anterior cingulate
cortex; bankssts, banks of superior temporal sulcus.

TABLE 2 Significant differences in ALFF between two groups.

Regions Peak MNI coordinates Voxels size t-value ES (95%CI)

X Y Z

ALFF

CS > HC Inferior frontal gyrus, L −36 6 27 85 4.132 −1.238 (−1.750,−0.727)

Regions were identified in Figure 1A. Peak coordinates (X, Y, Z) are displayed according to MNI standard space, and labels according to the AAL atlas. GRF corrected, voxel-level
p < 0.001, cluster-level p < 0.05. MNI, Montreal Neurological Institute; CS, chronic sciatica; HC, healthy controls; ALFF, the amplitude of low-frequency fluctuation; L, left; ES, effect
sizes, Cohen’s d; CI, confidence interval; the effect size was computed for groups with different sample size.

TABLE 3 Differences in surface area index between the two groups.

Region CS (n = 34) HC (n = 36) t-value ES (95%CI) P-value

CS > HC rh_bankssts 941.24 (150.03) 834.78 (86.14) 3.666 −0.877 (−1.367, 0.386) 0.016*

rh_rACC 662.29 (170.19) 542.17 (121.17) 3.417 −0.817 (−1.305, 0.329) 0.018*

We used mean (standard deviation) if the measurements were normally distributed. Two-sample t-test. *Survives false discovery rate (FDR) correction, p< 0.05. CS, chronic sciatica; HC,
healthy controls; rh, right hemisphere; rACC, rostral anterior cingulate cortex; bankssts, banks of superior temporal sulcus; ES, effect sizes, Cohen’s d; CI, confidence interval; the effect
size was computed for groups with different sample size.

Functional connectivity alterations in
chronic sciatica and its relationship
with clinical symptoms

For FC analysis, there were 15 connections between SMN
and VAN that exhibited higher connection strength in the CS
group than in the HC group, with a few connections among
other networks. In addition, there were 10 lower connections
among six networks (p < 0.05, FDR corrected, Table 4 and
Figures 2A,B). In addition, the FC between right vPFC and
left precentral gyrus had a negative correlation with the VAS
for leg pain score (Spearman rho = −0.349, p = 0.043, CI
[−0.621 to −0.002]), the FC between left basal ganglia and
left precentral gyrus had a negative correlation with the VAS
for leg pain score (Spearman rho = −0.393, p = 0.022, CI

[−0.651 to −0.052]), and the FC between mFC and left
precentral gyrus had a negative correlation with the VAS
for leg pain score (Spearman rho = −0.344, p = 0.047, CI
[−0.617 to 0.004]). The correlation results were shown in
Figure 2C.

Multimodal brain metrics discriminate
between chronic sciatica patients and
healthy control

In this study, ALFF, surface area, and FCs were utilized to
classify whether a sample belonged to the CS group (Table 5 and
Figure 3). For single-measurement analyses, the FCs exhibited
a higher accuracy rate (accuracy = 85.71%) and MCC of
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TABLE 4 The comparison of FCs between two groups.

Comparisons Significant FC Group t-value ES (95%CI) P-value

Region A Region B CS (n = 34) HC (n = 36)

Sciatica > HC vPFC Precentral 0.08 (0.18) 0.09 (0.06) 4.171 0.106 (−0.363, 0.575) <0.05*

Ant insula Precentral 0.13 (0.14) −0.11 (0.18) 4.047 −1.409 (−1.932,−0.885) <0.05*

Ant insula Precentral 0.07 (0.18) −0.05 (0.20) 4.356 −0.599 (−1.079,−0.120) <0.05*

Ant insula Precentral 0.08 (0.19) −0.12 (0.19) 4.848 −1.079 (−1.580,−0.577) <0.05*

dACC Precentral 0.12 (0.25) −0.13 (0.17) 5.062 −1.145 (−1.650,−0.639) <0.05*

dACC Parietal 0.08 (0.25) −0.17 (0.23) 4.530 −1.064 (−1.564,−0.563) <0.05*

Ant insula Precentral 0.16 (0.19) −0.18 (0.23) 4.258 −1.618 (−2.158,−1.078) <0.05*

Ant insula Precentral 0.13 (0.17) −0.04 (0.21) 5.014 −0.920 (−1.413,−0.427) <0.05*

Basal ganglia Precentral 0.17 (0.21) −0.08 (0.19) 3.913 −1.294 (−1.810,−0.779) <0.05*

Basal ganglia Precentral 0.16 (0.24) −0.04 (0.25) 4.869 −0.827 (−1.316,−0.339) <0.05*

Basal ganglia Parietal 0.12 (0.23) −0.11 (0.22) 4.538 −1.006 (−1.504,−0.509) <0.05*

mFC Precentral 0.12 (0.25) −0.13 (0.23) 5.142 −1.040 (−1.540,−0.541) <0.05*

mFC Precentral 0.18 (0.23) −0.15 (0.19) 3.981 −1.599 (−2.137,−1.061) <0.05*

vFC Precentral 0.17 (0.21) −0.03 (0.21) 4.094 −0.958 (−1.453,−0.463) <0.05*

vFC Precentral 0.26 (0.20) 0.0001 (0.14) 4.324 −1.511 (−2.042,−0.980) <0.05*

We used mean (standard deviation) if the measurements were normally distributed. CS, chronic sciatica; HC, health control; vPFC, ventral prefrontal cortex; ant insula, anterior insula;
dACC, dorsal anterior cingulate cortex; mFC, medial frontal cortex; vFC, ventral frontal cortex. *Survives false discovery rate (FDR) correction, p < 0.05. ES, effect sizes, Cohen’s d; CI,
confidence interval; the effect size was computed for groups with different sample size.

0.715 than the ALFF (accuracy = 70.00%, and MCC = 0.424)
and surface area (accuracy = 68.57%, MCC = 0.398).
Surface morphology achieved the lowest accuracy rate. The
classification accuracy improved after combining the significant
measurements of the three features, achieving an accuracy of
90.00%, an AUC of 0.96, and an MCC of 0.800.

Discussion

Combining a variety of analysis methods, we demonstrated
that CS patients had abnormal local neural activity, which was
also reflected in the greater ALFF values of the left IFG. At a
finer cortical scale, we could identify the significantly greater
cortical surface area in the regions cingulate and temporal. At
the resting-state functional network level, we found that CS
patients showed greater FCs mainly between the SMN and VAN,
especially the precentral gyrus and anterior insula. Finally, we
found that multimodal combined neuroimaging features were
more dominant in this disease classification performance.

Greater surface area of rostral anterior
cingulate and banks of the superior
temporal sulcus in right hemisphere

The ACC plays a vital role in the neuropathic pain effect in
animals (Gao et al., 2020). For instance, increased GABAergic
inhibitory control in the rACC could reduce ongoing pain and

pain aversiveness caused by sciatic nerve injury (Juarez-Salinas
et al., 2019). Using fMRI and electrophysiological recording,
a previous study observed plasticity changes in the cingulate
cortex in rats with neuropathic pain (Chao et al., 2018).
However, the underlying role of the ACC in CS patients is much
unclear. Our study showed a larger surface area in the rACC
in CS patients compared to HC, suggesting that the rACC may
be related to pain-induced negative emotion in CS patients.
In another neuropathic pain disease, trigeminal neuralgia
patients exhibited reduced ACC surface area compared with
HC (Mo et al., 2021). The controversy may stem from different
neuropathological processes. In the future, we will further
explore whether the enlarged surface area of ACC can be the
biomarker to distinguish CS patients from other neuropathic
pain disorders.

Furthermore, the superior temporal gyrus might be involved
in pain due to mismatches between pain expectation and
perception (Smallwood et al., 2013). Patients with chronic
traumatic neck pain showed a smaller cortical volume in the
right superior temporal gyrus compared to HC (De Pauw
et al., 2019). However, our study showed that CS patients
have a greater cortical surface area in the right superior
temporal gyrus, which may be due to the different etiologies and
neuropathological processes of diseases. A study reported that
patients with bipolar disorder showed a larger surface area of
left bankssts, which could help distinguish them from patients
with major depression, the overall accuracy was 74.3% (Fung
et al., 2015). The surface area of the right bankssts and rACC
in this study were also effective in distinguishing CS patients
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FIGURE 2

The altered FCs between networks and relationships with clinical symptoms. (A) The FCs significantly altered in the CS group compared with
the HC group, which were mainly focused on SMN and VAN (p < 0.05, FDR corrected). (B) 15 greater FCs were involved in the SMN and VAN.
The red color represents greater FCs; the blue color represents lower FCs. (C) The VAS for leg pain score had a negative correlation with the FC
of right vPFC and left precentral gyrus (Spearman, r = –0.349, p = 0.043, CI [–0.621 to –0.002]); the FC of left basal ganglia and left precentral
gyrus (Spearman, r = –0.393, p = 0.022, CI [–0.651 to –0.052]); and the FC of mFC and left precentral gyrus (Spearman, r = –0.344, p = 0.047,
CI [–0.617 to 0.004]). The blue color nodes belong to SMN, the light purple nodes belong to VAN, the red color represents greater FCs. CS,
chronic sciatica; HC, health control; vPFC, ventral prefrontal cortex; mFC, medial frontal cortex; SMN, somatomotor network; VAN, ventral
attention network; VN, visual network; DAN, dorsal attention network; DMN, default mode network; FPN, frontoparietal network; SC,
subcortical network; VAS, visual analog scale.

from HC, the accuracy was 66.99%. These results suggested that
disease-specific neuroanatomical features (e.g., cortical surface
area) may help establish reliable distinctions between different
populations (e.g., between different types of disease, between
patients with HC).

Frontal cortex showed greater
spontaneous neuronal activity and
functional connectivity’s

In our study, we found significantly greater ALFF in the
IFG in CS patients compared to HC. Consistent with previous

studies involving aspects of chronic pain (Buckalew et al., 2010;
Hashmi et al., 2013), we found the neural activity of the
frontal lobe was significantly greater in CS patients. IFG is the
important part of the prefrontal cortex (PFC), the brain region
commonly associated with cognitive and emotional processing
(Petrides, 2005; He et al., 2007). In CS patients, the abnormal
functional activity of the two brain regions may influence pain
perception through heightening emotional responses to pain
(Gracely et al., 2004).

Consistent with a previous study, medial PFC/rACC had
abnormally increased FCs with brain regions with the SMN
(postcentral gyrus) in cLBP patients, and the FCs could
discriminate cLBP patients from HCs with 91% accuracy
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TABLE 5 Results of the discrimination analyses derived from the SVM
between HC and CS.

Feature Accuracy
(%)

Sensitivity
(%)

Specificity
(%)

AUC
(%)

MCC

ALFF 70.00 67.65 83.33 79.66 0.424

Surface area 68.57 55.88 77.78 66.99 0.398

FCs 85.71 85.29 86.11 90.85 0.715

Combining
features

90.00 94.12 86.11 96.41 0.800

For single-measurement analyses, the FCs exhibited a higher accuracy rate (85.71%)
than the other two features. The surface morphology (surface area) achieved the lowest
accuracy rate of 68.57%. The classification accuracy improved after combining the
features of the three measurements, achieving an accuracy of up to 90.00%. CS, chronic
sciatica; HC, health control; ALFF, the amplitude of low-frequency fluctuation; FC,
functional connectivity, AUC, the area under the curve; MCC, Matthews Correlation
Coefficient; FC, functional connectivity; SVM, support vector machine.

FIGURE 3

Receiver operating characteristic (ROC) for CS and HC SVM
classification analyses. For single-measurement analyses, the
functional connectivity (FC) exhibited a higher AUC of 90.85%
than the other two measurements. The surface area achieved
the lowest AUC of 66.99%. Critically, the AUC improved after
combining all features of the three measurements, achieving an
AUC up to 96.41%. ALFF, the amplitude of low-frequency
fluctuation; FC, functional connectivity.

(Tu et al., 2020a). Our study found the greater FCs between the
vPFC, mFC, and the precentral gyrus (SMN), indicating that
communication between the frontal cortex and sensory-related
regions was altered in CS patients. In addition, the two FCs
were negatively correlated with the pain intensity of the leg,
suggesting that the feeling of pain caused by CS is the main
symptom and significantly reduces the patient’s quality of life.
However, DMN connectivities in the patients with cLBP and/or
pain in a lower vs. the HC showed reductions of this network
in the dorsolateral PFC, medial PFC, and ACC (Li et al., 2014).
It may be due to its small sample size (20 patients and 10 HCs)
and only focus on FCs within the DMN. Based on these results,
we speculated that the persistent chronic pain and associated
symptoms of CS were caused by abnormalities in frontal cortex.

The important functional
connectivity’s were mainly between
sensory-motor network and ventral
attention network regions

The SMN including the primary and secondary
sensorimotor cortex, which receives and processes sensory
information from the periphery, is thought to be the main brain
network responsible for pain perception (Mayer et al., 2015).
Abnormalities in the VAN were also widely seen in chronic pain
patients with persistent diminished attention or inattention
(Moriarty et al., 2011; Wen et al., 2012). The pathological
changes of basal ganglia (Borsook et al., 2010; Starr et al., 2011)
and neurological dysfunction of the anterior insular cortex
(Ferraro et al., 2022) in the VAN have also been reported to be
involved in pain processing leading to altered pain perception.
Patients with failed back surgery syndrome with chronic low
back pain have greater FC in the precentral gyrus and putamen
(extending to the insula) in the SMN compared to HC (Kolesar
et al., 2017). Consistent with previous studies, the FC between
SMN and VAN was higher in CS patients, especially between
the precentral gyrus and anterior insula, compared with HC. In
addition, patients with CLBP had greater gray matter volume
in the SMN regions and greater FC between the bilateral
sensorimotor cortex and sensory association cortex during pain
(Li et al., 2018). These studies may imply that enhanced cortical
activity in the SMN and VAN regions also underlies the clinical
pain status of CS patients. Furthermore, the precentral gyrus is
a sensorimotor area that receives information projected from
the basal ganglia, both of which play an important role in pain
processing (Liu et al., 2012). Compared to HC, complex regional
pain syndrome patients displayed greater resting connectivity
from the caudate to the primary motor cortex (Lee et al., 2022).
Our study found a greater FC between the basal ganglia and
the precentral gyrus in CS patients, indicating that pain may
increase the attention of CS patients to their pain sensation, and
the FC was negatively correlated with the VAS score of leg pain,
we speculate that engaging the conscious attention (Aminabadi
et al., 2022) of CS patients can reduce pain perception.

Our study also showed the abnormal FCs within FPN and
with the other networks, and previous studies have shown
positively associated with pain rating changes (Kong et al.,
2013). The frontoparietal region may play a dominant role in
the formation and transmission of sensations (Lobanov et al.,
2013), and RFPN is recognized as an important network that
associates with perception and pain (Smith et al., 2009). Neural
function activity in encephalic regions of FPN showed abnormal
changes (Cui et al., 2022), and a significantly lower FC of
RFPN was observed in MWoA patients (Li et al., 2015). In our
study, we found increased FCs between FPN and SMN, and
decreased FCs within FPN and with the other networks in CS
patients, suggesting that FPN also plays an important role in the
processing and regulation of CS pain.
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Multimodal metrics successfully
distinguish chronic sciatica patients
from healthy control

In recent years, SVM techniques combined with
neuroimaging metrics have been applied to differentiate
pain patients from HCs and to predict the outcome of
certain interventions (Bagarinao et al., 2014; Zeng et al.,
2019; Huang et al., 2020; Tu et al., 2020b; Gui et al., 2021;
Wei et al., 2022). The patients with neuropathic pain and
the HC were classified by the mean ALFF values of the
frontal gyrus and the precuneus using the linear SVM
classifier, and the classification accuracy was 86.36% between
the PHN patients and HC (Huang et al., 2020). A study
identified a neural marker with abnormal FC within the
SMN and FPN that could discriminate MwoA patients from
HC with a 91.4% accuracy rate (Tu et al., 2020b). Patients
with trigeminal neuralgia exhibited reductions in cortical
indices in the cingulate cortex, and these abnormal whole
brain-level morphological alterations successfully enable
automated trigeminal neuralgia diagnosis with high specificity
(trigeminal neuralgia: 95.35%; disease controls: 46.51%)
(Mo et al., 2021). Interestingly, these studies reported that
the classification performance of FCs between networks
was higher than the ALFF values and cortical indices
(structural features). Despite coming from various studies
about different chronic and neuropathic pain diseases, these
studies showed that ALFF values, inter-network FCs, and
structural measurements (e.g., cortical indices) can be used as
neurological features to distinguish chronic pain patients from
healthy people, respectively.

However, chronic pain could affect multiple brain systems
and cause extensive reorganization of brain structure and
function, and the results of these studies were often derived
from a few modalities, ignoring the combination of multiple
modalities, which may affect the performance of the machine
learning classifiers. In our study, SVM was applied to combined
MRI imaging features (ALFF, cortical surface area, FCs), which
distinguished CS patients from HC with higher accuracy of
90.00%. The finding implies that multimodal data analysis
gives better results and exhibits the best model’s performance
(MCC = 0.800) than unimodal analysis. The multimodal
analysis could combine the advantages of multiple imaging
techniques to improve both spatial and temporal resolution
and target disease neurobiomarkers with high specificity
and sensitivity and provide many new opportunities to
improve brain research. The identification of distinguishable
or predictive neuroimaging biomarkers is needed as it can
aid in diagnosis and prognosis, as well as be helpful in
clinical decision-making. To date, one of the few factors
that independently predict poor outcomes in sciatica is the
duration of leg pain (Konstantinou et al., 2018), the application

of multimodal neuroimaging biomarkers may help to assess
the disease severity of patients and progression, especially
during non-painful periods, assisting clinicians in early decision
making, and tailor treatment plans for patients. For instance,
they could be a useful diagnostic tool when patients are unable to
communicate or self-reports are otherwise unreliable. Moreover,
our findings may invite future studies with larger datasets to
investigate the relationship between multimodal neuroimaging
biomarkers and clinical measurements and develop therapeutic
biomarkers to evaluate or predict the response of potential new
treatments.

Study limitations

We acknowledge that our research has several limitations.
First, the present study was based on 34 CS patients and 36
HCs, it is necessary to expand the sample size to confirm the
results. Brain metrics and clinical variables correlation analysis
were conducted with two-sided significance levels (alpha = 0.05)
without corrections for multiple comparisons due to the small
sample size and the exploratory nature of the study. Second, the
study covered a range of ages from 35 to 65 years, restricting
the generalization of the present results to other populations.
Future studies with the younger or older age range are needed
to increase external validity. Third, it might be a lack of
a dataset of patients with other chronic pain disorders, we
could not verify the specificity of the multimodal markers.
Future studies with more datasets of pain-related disease will
help clarify which specific chronic pain diseases (e.g., knee
osteoarthritis, low back pain) are associated with functional
impairment in different brain domains. Fourth, perhaps even
more importantly, clinical measurements were evaluated at a
single time point (1 day before MRI scanning) which does
not necessarily reflect the long-term status of an individual,
other time-dependent variables on multiple time points may
provide more information on the chronic pain status. Fifth, the
results of the brain’s functional network are affected by different
parcelation strategies. Other brain atlases are needed to further
assess the reliability of the differentiation of CS individuals. Last,
we acknowledged that we only recruited sciatica patients with
diagnosed disk herniated disks, and it cannot distinguish if the
results are due to pain, or due to the specific nature of the
origins of the pain in the patient group, so our results should
not be exaggerated.

Conclusion

Our findings provide new insights into the pathophysiologic
mechanisms of CS and highlight the potential of multimodal
features as markers in the research of neural mechanisms
of chronic pain.
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Although recent evidence suggests that dysfunctional brain organization is

associated with internet gaming disorder (IGD), the neuroanatomical alterations

related to IGD remain unclear. In this diffusion tensor imaging (DTI) study, we

aimed to examine alterations in white matter (WM) structural connectomes and

their association with IGD characteristics in 47 young men with IGD and in 34

well-matched healthy controls. Two approaches [namely, network-based statistics

(NBS) and graph theoretical measures] were applied to assess differences in the

specific topological features of the networks and to identify the potential changes

in the topological properties, respectively. Furthermore, we explored the association

between the alterations and the severity of internet addiction. An NBS analysis

revealed widespread alterations of the cortico-limbic-striatal structural connectivity

networks in young people with IGD: (1) an increased subnet1 comprising the insula

and the regions responsible for visual, auditory, and sensorimotor functions and

(2) two decreased subnet2 and subnet3 comprising the insula, striatum, and limbic

regions. Additional correlation analysis showed a significant positive association

between the mean fractional anisotropy- (FA-) weighted connectivity strength of

subnet1 and internet addiction test (IAT) scores in the IGD group. The present study

extends our knowledge of the neuroanatomical correlates in IGD and highlights

the role of the cortico-limbic-striatal network in understanding the neurobiological

mechanisms underlying this disorder.

KEYWORDS

internet gaming disorder, cortico-limbic-striatal network, structural connectivity, DTI,
connectome
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Introduction

In China, internet-based behavioral impairments have been
considered a serious social problem, and the so-called treatment
programs have been the subject of debate for the last decade (Bax,
2015). In 2013, the American Psychiatric Association introduced
Internet gaming disorder (IGD) in the third part of the Diagnostic
and Statistical Manual of Mental Disorders, Fifth Edition (DSM-
5) as a candidate diagnosis with requirements for further study
(American Psychiatric Association [APA], 2013). Consequently, with
the collection of more research evidence (Yao et al., 2017), “gaming
disorder” was classified by the World Health Organization (WHO)
as a new condition and was officially included in the 11th edition of
the International Classification of Diseases (ICD-11) as an addictive
behavior disorder (Gaebel et al., 2020). ICD-11 characterized this
disorder as a persistent or recurring pattern of online or offline
gaming behavior. However, considering that online gaming users in
China have grown to approximately 540 million, or 57.4% of total
internet users, in the first half of 2020,1 enormous attention has been
paid to the phenomenon of clinical impairments or distress caused by
maladaptive internet gaming (Yao et al., 2021).

The so-called IGD means excessive or poorly controlled
preoccupations, urges, or behaviors regarding internet game
playing that result in personal, familial, social, or occupational
impairment for more than 12 months (American Psychiatric
Association [APA], 2013). Moreover, IGD is often accompanied by
depression and anxiety. Related research showed similarities in the
neuropsychological processes between IGD and addictive substances
(Grant et al., 2010). However, the pathological mechanisms
underlying IGD remained elusive. Neuroimaging approaches were
used to examine the underlying neurobiological mechanisms of IGD,
and previous studies reported that IGD was associated with system-
level alterations between the brain regions rather than functional
impairment of isolated regions (Song et al., 2020). With the advent
of connectomics, it is currently feasible to shift the view from an
isolated regional perspective toward a system-level perspective (i.e.,
a network perspective) based on the integration of various forms of
anatomical/functional data to assess the connectivity of networks in
brain diseases including IGD (Bullmore and Sporns, 2009; Weinstein
et al., 2017). A wide range of measures can be computed to assess the
topological properties of the underlying brain networks (Rubinov and
Sporns, 2010). To date, most studies addressing network alterations
in IGD focused on functional networks derived from resting-
state functional magnetic resonance imaging (rs-fMRI) (Lee et al.,
2020; Song et al., 2020; Weinstein and Lejoyeux, 2020; Yan et al.,
2021). These accumulated rs-fMRI studies on IGD demonstrated
impaired interactions of functional brain networks involving the
cortical-limbic-striatal circuitry that underlies reward processing,
executive function, cognitive control, motor and sensory functions,
and attention. Meanwhile, these studies provided novel evidence
of aberrant core networks involving the central executive network,
salience network, and default mode network (DMN) in this disorder
(Weinstein et al., 2017; Chun et al., 2020; Weinstein and Lejoyeux,
2020).

An important question is whether the functional alterations
observed across studies have a structural correlation. A study that
focused on the covariance gray matter (GM) structural networks
found higher GM volumes in DMN-related regions, which were

1 http://www.cnnic.net.cn/

associated with visuospatial attention and reward craving processing
with increased severity of addiction to IGD (Chen et al., 2021).
Using diffusion tensor imaging (DTI) data, previous studies reported
increased fractional anisotropy (FA) values in the fasciculus linking
reward circuitry, sensory, and motor control systems, which were
related to the severity of internet addiction (Dong et al., 2012, 2018).
Three studies established a white matter (WM) structural network
to analyze its network metrics (namely, network controllability, and
small-world topology) and reported that people with IGD had greater
modular brain controllability and the shortest path length, as well as
structural networks that shifted in the direction of random topology
(Zhai et al., 2017; Park et al., 2018; Lei et al., 2020). However, very few
studies examined alterations in the structural network in IGD using
the connectomics method. To the best of our knowledge, no study
has focused on WM structural network alterations in IGD using a
network-based statistics (NBS) approach. In addition, this method
can detect disrupted subnet patterns in whole brain networks.

The present study aime to identify differences in the WM
structural connectome. To achieve our purpose, we included a fairly
large sample of 47 young men with IGD and 34 well-matched male
head circumferences (HCs) and applied the two approaches (namely,
NBS and graph theoretical measures) to assess differences in the
specific topological features of the networks and to identify potential
changes in their topological properties. We hypothesized that the
alterations in young people with IGD were mainly involved in the
cortico-limbic-striatal network, which would likely be related to the
severity of internet addiction.

Materials and methods

Participants

Given the higher prevalence of internet addiction in men vs.
women in China (Li et al., 2013; Lau et al., 2017), only young
men from local universities and the surrounding community were
recruited via advertisements and word of mouth. Participants were
preselected through an online questionnaire and telephone screening.
In total, 47 young men who reported internet gaming as their
primary online activity and met at least five of the nine DSM-5
criteria for IGD (American Psychiatric Association [APA], 2013)
were screened. Subjects’ internet addictive behavior was assessed
with the Chinese version of Internet Addiction Test (IAT) (Young,
1998). All young people with IGD were satisfied when their IAT
score was more than the proposed cutoff score (i.e., ≥ 50) (Dong
et al., 2015, 2018). Participants who met less than three of the nine
criteria for IGD proposed by DSM-5 were preselected as having HC.
Of these, 34 young people were determined to be HCs based on
their IAT scores of less than 30. Additionally, participants’ current
levels of depression and anxiety were assessed using the 24-item
Hamilton Depression Scale (HAMD) and the 14-item Hamilton
Anxiety Scale (HAMA) (Hamilton, 1959, 1967). All participants
were right-handed as assessed with the Edinburgh Handedness
Inventory (Oldfield, 1971). A brief, structured clinical interview
tool, the Mini International Neuropsychiatric Interview, was used
to screen for other psychiatric disorders. The exclusion criteria for
selecting subjects were as follows: intracranial pathology, brain injury,
neurological disorders, psychiatric disorders (except IGD), substance
abuse, contraindications to MRI examinations, and excessive head
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TABLE 1 Demographic characteristics and clinical information of young
people with internet gaming disorder (IGD) and healthy controls (HC).

Items IGD (N = 47) HC (N = 34) P-value

Age (years) 20.60 ± 0.97 20.85 ± 1.79 0.41

14-HAMA 7.60 ± 5.10 3.81 ± 4.76N 0.01*

24-HAMD 8.98 ± 6.40 4.50 ± 6.51H 0.02*

Average gaming hours per week 23.26 ± 3.61 7.09 ± 3.33 <0.01*

IAT score 69.15 ± 8.11 21.62 ± 3.90 <0.01*

DMS-5 score 5.98 ± 1.01 1.76 ± 0.74 <0.01*

*Statistically significant.
NOnly 21 subjects measured HAMA.
HOnly 21 subjects measured HAMD.
Values are expressed as mean ± standard deviation.
IAT, internet addiction test; HAMA, Hamilton Anxiety Scale; HAMD, Hamilton Depression
Scale; IGD, internet gaming disorder; HCs, healthy controls.

motion. The demographic characteristics of young people with IGD
and HC are summarized in Table 1.

This study was approved by the Medical Ethics Committee of
the Wuxi Mental Health Center, Nanjing Medical University,
China. All subjects gave written informed consent before
participating in the study.

Imaging acquisitions and pre-processing

Magnetic resonance imaging scans were acquired with a 3.0-T
Magnetom Trio Tim (Siemens Medical System, Erlangen, Germany)
at the Department of Medical Imaging, The Affiliated Wuxi
People’s Hospital of Nanjing Medical University. All participants
obtained DTI data and high-resolution three-dimensional T1-
weighted images. Foam pads were used to reduce head motion
and noise from the scanner. T1-weighted images were acquired
using a 3D-MPRAGE sequence with the following parameters:
repetition time/echo time (TR/TE) = 2,300/2.98 ms, 160 sagittal
slices, thickness = 1.2 mm, flip angle = 9◦, matrix = 256 × 256,
field of view (FOV) = 256 mm × 256 mm, and acquisition
voxel size = 1 mm × 1 mm × 1.2 mm. DTI images were
obtained with the following parameters: diffusion was measured
along 64 non-collinear directions (b-value = 1,000 s/mm2), and one
additional image without diffusion weighting (i.e., b = 0 s/mm2),
TR/TE = 7,000 ms/92 ms, flip angle = 90◦, FOV = 256 mm × 256 mm,
matrix = 128 × 128, slice thickness/gap = 3/0 mm, and acquisition
voxel size = 2 mm × 2 mm × 3 mm.

Image preprocessing was performed using the diffusion toolbox
of the functional magnetic resonance imaging of the brain (FMRIB)
software library (FSL).2 Visual and quantitative quality control of
the DTI data was performed using a quality control tool in the FSL
software.3 Moreover, from the analyses, individuals with diffusion
images with apparent signal drops were checked, and images without
this type of diffusion were found. Finally, images from all gradient
directions were retained based on visual inspection of several patient
data sets with an in-house tool, indicating that gradients should
not be removed. Thus, all gradient directions were retained for the
analysis. Pre-processing steps included eddy current and motion

2 http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/

3 https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/eddyqc/UsersGuide

artifact correction, diffusion tensor estimation, and tractography.
Corrections for eddy current distortions and head motion were
performed by applying a rigid body transformation of each diffusion-
weighted image to the b0 image. The b-matrix of each sample was
then reoriented to provide a more accurate estimate of the tensor
orientations. The diffusion tensor matrix was calculated according to
the Stejskal and Tanner equation. Three eigenvalues and eigenvectors
were obtained by diagonalizing the tensor matrix and then FA maps
were computed. Each b0 image was registered in the Montreal
Neurological Institute (MNI) space via the corresponding T1 image
using Diffusionkit4 (Xie et al., 2016). The image registration of
Diffusionkit is implemented by NiftyReg, which is open-source
software for efficient registration of medical images and developed
primarily by the Centre for Medical Image Computing at University
College London. This transformation information was saved for later
use. The diffusion images remained in native space.

Three-dimensional tract reconstruction was implemented using
a diffusion toolkit.5 Whole brain tractography was obtained using
the Fiber Assignment by Continuous Tracking algorithm (Mori et al.,
1999), and propagation was terminated if a minimum angle threshold
of 50◦ was violated or a voxel with FA below 0.2 was encountered.

Construction of a structural network

Figure 1 depicts the construction pipeline of a structural brain
network. Specifically, the automated anatomical labeling (AAL) atlas6

(Tzourio-Mazoyer et al., 2002) with 90 regions (Supplementary
Table 1) was employed as a node. Using the inverse of the transform
information, the AAL atlas in the MNI space was registered into
each subject’s native space. Edges were defined as interregional fibers
between each pair of nodes and met the conditions: (1) at least two
double-ended fibers passed through pairwise nodes and (2) the length
of the passing fibers was greater than 10 mm. Here, the FA value
was treated as the weight of a network connection. Specifically, the
FA weight of each edge was calculated by averaging the FA values
of all the fibers that made up this edge, and the FA value of each
fiber was the mean of the FA values of all the voxels in this fiber
track. A group threshold was applied to balance the influence of false-
positive and false-negative reconstructions of fibers (de Reus and
van den Heuvel, 2013). Edges that were present in at least 60% of
all subjects were retained while others were zeroed. All subsequent
analyses were conducted on this group threshold network.

NBS analysis

Zalesky et al. (2010) proposed NBS, a non-parametric method,
to eliminate the multiple-comparison problems encountered when
conducting mass univariate significance tests. Statistical significance
was detected to find the subnetwork, which consisted of specific
subsets of nodes connected in the topological space. It is important
to emphasize that no individual disconnection can be declared
significant alone; only the disconnected subnetwork as a whole
can be declared significant. We first used NBS to conduct an

4 https://www.nitrc.org/projects/diffusionkit

5 http://www.trackvis.org

6 http://www.gin.cnrs.fr/en/tools/aal-aal2/
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FIGURE 1

A flowchart for the construction of structural brain networks. (A) The 90 nodes of the brain network obtained from the automated anatomical labeling
(AAL) atlas. (B) White matter (WM) fiber information prepared to check which pairs of nodes remain connected. (C) Region-based information extracted
from the abovementioned image data. All pairwise connections between the nodes are calculated to generate a connection matrix. (D,E) A list of
network analysis entries that are applied.

independent t-test analysis with age as a covariate. The general
calculation procedures were as follows: (1) a primary threshold (t-
value = 2.9, which was equal to setting p < 0.005 for the two-tailed
test) was applied to a t-test, which was calculated for each edge
to construct a set of suprathreshold connections. This identified all
possible components (or subnetworks) mutually connected in a WM
network at the primary threshold level. (2) The size of the actual
remaining subnetwork s was determined. To estimate the significance
of each subnetwork, the null distribution of the subnetwork size was
empirically derived using a non-parametric permutation approach
(5,000 permutations). For each permutation, all of the samples
were shuffled randomly among the groups, and the t-test statistic
was calculated independently for each edge. Afterward, the same
threshold was applied to retain edges above this threshold, and the
maximal subnetwork size was restored. (3) The corrected p-value was
determined by calculating the proportion of the 5,000 permutations
for which the maximum shuffled subnetwork was greater than s.
A p-value of < 0.05 (corrected) was considered significant.

Network measure analysis

For global network characteristics, we used the clustering
coefficient and global efficiency. For local network measures, we
computed three popular network metrics, namely, nodal degree,
local clustering coefficient, and nodal efficiency. Additionally,
betweenness centrality was used to define a hub node. Their formal
mathematical definitions and meanings have been described in detail
elsewhere (Rubinov and Sporns, 2010), and we also presented these
descriptions in the Supplementary material. These measures were
calculated on the WM network of each subject using the Brain
Connectivity Toolbox.7 Before making between-group comparisons,
the interaction between age and network metrics was regressed.
Between-group significances of network metrics were determined
using an independent two-sample t-test (two-tailed) with the
Bonferroni’s correction (p < 0.05/90).

7 http://www.nitrc.org/projects/bct/

Pearson’s correlation analysis

Pearson’s correlation analysis was used to examine the
relationship between network measures and clinical variables
(namely, IAT, average gaming hours per week, and DSM-5 score).
In addition, we also investigated the association between the mean
FA-weighted structural connectivity strength of each subnetwork
and the clinical variables.

Results

Differences in structural connectivity
patterns

Network-based statistical analysis identified three disconnected
structural subnetworks in the IGD group (Table 2 and Figure 2).
Compared with HCs, young people with IGD showed a significant
increase in connectivity strength in subnet1 with 16 edges and
involving the bilateral orbitofrontal regions and visual regions
(namely, the bilateral cuneus and fusiform gyrus, and the right
superior occipital gyrus), auditory regions (i.e., the right temporal
pole), and sensorimotor regions (namely, the bilateral post-
central gyrus and the right inferior temporal gyrus) (corrected
p < 0.0012). Furthermore, in young people with IGD, network
disconnections comprising two subnetworks had significantly fewer
connections. Subnet2 comprised 18 edges and was mainly within
and between the limbic (namely, the bilateral amygdala, and
the median cingulate) and the striatum (namely, the bilateral
caudate, the putamen, and the left pallidum), the bilateral
insula, and several areas responsible for visual/auditory and
sensorimotor functions (namely, the bilateral precentral gyrus, the
left post-central gyrus, the right superior parietal gyrus, the right
paracentral lobule, and the right inferior temporal gyrus) (corrected
p < 0.0006). Subnet3 included five edges, was centered with the
right parahippocampal gyrus and the pallidum, and connected the
regions of the right hemisphere including the post-central gyrus,
the angular gyrus, the lingual gyrus, and the middle temporal gyrus
(corrected p < 0.018).
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TABLE 2 Subnetwork with a significant between-group difference based on the network-based statistics (NBS) analysis.

Network edges T- value (P-value) Network edges T-value (P-value)

IGD increase, subnet1 IGD decrease, subnet2 (continue)

Cuneus_L – Occipital_Sup_R 3.04 (p < 0.005) Cingulum_Mid_R – Postcentral_R 3.00 (p < 0.005)

Cuneus_L – Fusiform_L 2.94 (p < 0.005) Cingulum_Mid_R – Parietal_Sup_R 2.97 (p < 0.005)

Occipital_Sup_R – Fusiform_R 3.35 (p < 0.005) Parietal_Sup_R – Paracentral_Lobule_R 3.11 (p < 0.005)

Frontal_Sup_Orb_L – Postcentral_L 3.51 (p < 0.005) Cingulum_Mid_L – Caudate_L 3.33 (p < 0.005)

Fusiform_L – Postcentral_L 3.37 (p < 0.005) Amygdala_L – Caudate_L 3.02 (p < 0.005)

Frontal_Inf_Orb_R – Postcentral_R 3.43 (p < 0.005) Insula_R – Caudate_R 2.94 (p < 0.005)

Fusiform_R – Putamen_R 2.98 (p < 0.005) Cingulum_Mid_R – Caudate_R 3.34 (p < 0.005)

Postcentral_L – Thalamus_L 3.54 (p < 0.005) Cingulum_Ant_L – Putamen_L 2.99 (p < 0.005)

Postcentral_R –Temporal_Sup_R 3.13 (p < 0.005) Cingulum_Ant_R – Putamen_R 3.00 (p < 0.005)

Putamen_R – TPOsup.R 3.03 (p < 0.005) Caudate_L – Putamen_R 2.99 (p < 0.005)

Rolandic_Oper_R – Temporal_Inf_R 3.30 (p < 0.005) Cingulum_Ant_L – Pallidum_L 2.99 (p < 0.005)

Insula_R – Temporal_Inf_R 3.62 (p < 0.005) Caudate_L – Pallidum_L 3.12 (p < 0.005)

Cuneus_R – Temporal_Inf_R 3.19 (p < 0.005) Caudate_R – Pallidum_L 3.51 (p < 0.005)

Occipital_Sup_R – Temporal_Inf_R 3.37 (p < 0.005) Caudate_R – Temporal_Inf_R 4.55 (p < 0.005)

Postcentral_R – Temporal_Inf_R 3.38 (p < 0.005) IGD decrease, subnet3

Temporal_Pole_Sup_R – Temporal_Inf_R 2.91 (p < 0.005) ParaHippocampal_R – Postcentral_L 2.98 (p < 0.005)

IGD decrease, subnet2 ParaHippocampal_R – Angular_R 2.92 (p < 0.005)

Precentral_R – Cingulum_Mid_R 3.61 (p < 0.005) Lingual_R – Pallidum_R 3.05 (p < 0.005)

Insula_L – Amygdala_L 3.62 (p < 0.005) Postcentral_L – Pallidum_R 3.37 (p < 0.005)

Insula_R – Amygdala_R 3.35 (p < 0.005) ParaHippocampal_R – Temporal_Mid_R 3.17 (p < 0.005)

Precentral_L – Postcentral_R 3.24 (p < 0.005)

FIGURE 2

The three subnetwork results from the network-based statistics (NBS) analysis in a coronal view.

Network measures

Significant group effects on network clustering (t-value = 2.79,
p = 0.0007) and global efficiency (t-value = 3.70, p = 0.0004) were
observed in the analyses between young people with IGD and HC.
The bilateral orbital frontal parts include two regions both left and
right orbital frontal regions. Analogously, the bilateral supplementary
motor areas are as the same, the left dorsolateral frontal part, and the
right medial frontal part), one temporal region (the right superior
temporal gyrus), one parietal region (the right paracentral lobule),
three cingulum regions (namely, the bilateral median, and the right
anterior cingulate), the right insula and subcortical nuclei (namely,

the right parahippocampal gyrus, and the left putamen) (Tables 3–5).
Specifically, compared with HC, young people with IGD displayed
a significantly higher nodal efficiency and nodal degree in the right
orbital part of the inferior frontal gyrus and left supplementary motor
area. Moreover, young people with IGD also showed a significant
increase in the local clustering coefficient in the right insula and a
higher nodal degree in the right superior temporal gyrus.

The hub detection result revealed the similarities in the hub
distribution of young people with IGD and HC (Figure 3). In hub
distribution, 8 nodes (namely, the bilateral precuneus, the bilateral
amygdala, the bilateral pallidum, and the bilateral Heschl gyrus) were
working as hubs with 100% probability in both groups.
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TABLE 3 Differences in local clustering coefficient between young people
with IGD and HC.

Metric Region IGD
(mean ± std)

NC
(mean ± std)

T-value
(P-value)

Ci Insula_R 0.012 ± 0.020 −0.017 ± 0.045 3.92 (1.89e-04)

Ci Cingulum_Ant_R 0.040 ± 0.080 −0.056 ± 0.134 4.03 (1.29 e-04)

Ci Paracentral_Lobule_R 0.025 ± 0.044 −0.034 ± 0.088 3.94 (1.73 e-04)

Ci , local clustering coefficiency.

TABLE 4 Differences in the nodal degree between young people with IGD
and HC.

Metric Region IGD
(mean ± std)

NC
(mean ± std)

T-value
(P-value)

Di Frontal_Inf_Orb_L 0.609 ± 1.067 −0.843 ± 2.457 3.61 (5.30e-04)

Di Frontal_Inf_Orb_R 0.633 ± 1.187 −0.875 ± 2.351 3.79 (2.97e-04)

Di Supp_Motor_Area_L 0.377 ± 0.731 −0.521 ± 1.223 4.12 (9.24e-05)

Di Cingulum_Mid_L 0.507 ± 1.153 −0.701 ± 1.769 3.72 (3.74e-04)

Di Cingulum_Mid_R 0.394 ± 0.886 −0.544 ± 1.295 3.87 (2.20e-04)

Di Temporal_Sup_R 0.301 ± 0.621 −0.416 ± 0.990 4.00 (1.40e-04)

Di , nodal degree.

TABLE 5 Differences in nodal efficiency between young people with IGD
and HC.

Metric Region IGD
(mean ± std)

NC
(mean ± std)

T-value
(P-value)

Ei Frontal_Sup_L 0.022 ± 0.047 −0.031 ± 0.075 3.88 (2.12e-04)

Ei Frontal_Inf_Orb_R 0.031 ± 0.054 −0.043 ± 0.124 3.68 (4.24e-04)

Ei Supp_Motor_Area_L 0.020 ± 0.047 −0.028 ± 0.063 4.00 (1.41e-04)

Ei Supp_Motor_Area_R 0.023 ± 0.056 −0.031 ± 0.072 3.78 (3.01e-04)

Ei Frontal_Sup_Medial_R 0.018 ± 0.041 −0.024 ± 0.061 3.72 (3.74e-04)

Ei Cingulum_Mid_L 0.028 ± 0.052 −0.039 ± 0.109 3.71 (3.90e-04)

Ei ParaHippocampal_R 0.026 ± 0.049 −0.037 ± 0.094 3.90 (2.01e-04)

Ei Paracentral_Lobule_L 0.032 ± 0.051 −0.045 ± 0.108 4.28 (5.22e-05)

Ei Putamen_L 0.018 ± 0.041 −0.025 ± 0.068 3.61 (5.32e-04)

Ei , nodal efficiency.

The correlation results

We also compared the mean FA values of the edges of each
subnetwork between the IGD and HC groups, and their comparison
results showed the existence of significant between-group differences
(Figure 4A). Because most of the patients with non-existing edges
were in the decreasing subnet2 and subnet3, we only did the
correlation analysis in the increasing subnet1. The mean FA-weighted
connectivity strength of subnet1 was positively related to IAT scores
(r = 0.39, p = 0.031) (Figure 4B). In addition, a positive correlation
was found between the DSM-5 scores and the degree of the right
superior temporal gyrus (r = 0.37, p = 0.033).

Discussion

Our findings indicated the following: (1) There were three
abnormal subnets between young people with IGD and HC. Subnet1
showed an increase in the mean FA-weighted connectivity strength

among the orbitofrontal area, the insula, and the visual, auditory,
and sensorimotor regions, while the other two subnets (namely,
subnet2, and subnet3) presented a decrease in the mean FA-
weighted structural connectivity strength within and between the
limbus, the striatum, and the insula. (2) Relative to HCs, young
people with IGD showed an increase in network clustering and
global efficiency. In addition, young people with IGD displayed
significantly higher local clustering coefficient, nodal degree, and
nodal efficiency in the orbital, dorsolateral, and medial frontal areas;
the right parahippocampal gyrus; the left putamen; the right insula;
the right superior temporal gyrus; the right paracentral lobule; and
the cingulum. (3) The correlation results indicated an enhancement
in the mean FA-weighted structural connectivity strength of subnet1
was positively related to the severity of IAT. Moreover, the right
superior temporal gyrus, one of the nodes in subnet1, showed that
its highest degree value was positively correlated with DSM-5 scores.
Figure 5 summarizes all these abovementioned results. Our results
suggest that abnormal connections occur in the cortico-striatal-
limbic circuitry that may be the result of excessive internet gaming.

Disorder-related distinctions of
subnetworks in WM networks

As the NBS results showed an increase in the mean FA-weighted
structural connectivity strength of subnet1, which included three
brain regions (namely, the right orbital part of the inferior frontal
gyrus, the right putamen, and the right insula) responsible for
reward activity through the sensorimotor (namely, the right post-
central gyrus, and the right inferior temporal gyrus) and visual
(namely, the right superior occipital gyrus, and the right fusiform
gyrus) areas to link together. The insula plays an important role
in maintaining homeostasis through the integration of internal and
external stimuli to guide behavior toward or away from the same
stimuli (Gogolla, 2017). Specifically, the insula is associated with
an increased tendency to engage in disgusting behaviors and an
impaired ability to recognize disgust in others (Woolley et al.,
2015). Accumulated evidence demonstrated the role of the insula
in addictive behavior and suggested its promise as a target for the
treatment of addiction (Ibrahim et al., 2019). The orbitofrontal area
is the key brain area in the representation of reward or non-reward
value, and is capable of controlling and correcting reward-related and
punishment-related behaviors (Ibrahim et al., 2019). The putamen is
involved in the processing of primary rewards and visual events in
a complex task, which may play an important role in reinforcement
learning through stimulus-reward association (Vicente et al., 2012).
A growing body of evidence suggested that IGD was associated with
alterations in brain regions responsible for reward processing and
sensorimotor function (Weinstein et al., 2017; Dong et al., 2018;
Weinstein and Lejoyeux, 2020). Our findings are in line with these
previous studies. Furthermore, in the IGD group, the right insula
showed an enhanced local clustering coefficient and was linked to the
right inferior temporal gyrus, which was a key component of subnet1.
An enhanced local clustering coefficient of the right insula suggested
that its short-distance connections were increased. In subnet1, the
right inferior temporal gyrus was a central node with a higher degree,
and its majority edges were linked to areas responsible for visual
and sensorimotor functions (namely, the right cuneus, the right
superior occipital gyrus, the right post-central gyrus, and the right
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FIGURE 3

Each group has its own hub distribution. It showed the hub with a probability of being a hub greater than 30%.

FIGURE 4

(A) Between-group comparison results of the mean fractional anisotropy- (FA–) weighted structural connectivity strength in each subnetwork between
young people with internet gaming disorder (IGD) and healthy controls (HC). (B) An illustration of the correlation result between the mean FA-weighted
structural connectivity strength of subnet1 and the IAT score in the IGD group.

temporal pole of the superior temporal gyrus). These results may
indicate that increased short connections of the right insula come
mainly from those regions associated with visual and sensorimotor
functions, which may cause the insula to enhance its response to
external stimuli. Thus, we speculate that the excessive use of the
internet for gaming strengthens the connections among those regions
responsible for visual, sensorimotor, and reward functions, which
may increase individuals’ feelings of game experience (i.e., subjective
pleasure) and may aggravate their addictive behaviors.

In addition, a decrease in the mean FA-weighted structural
connectivity strength of subnet2 and subnet3 was shown, and
most of these altered connections were located mainly within the
limbic areas (namely, the amygdala, the parahippocampal gyrus,
the anterior cingulate gyrus, and the median cingulate gyrus),
the striatum areas (namely, the caudate, the putamen, and the
pallidum), and the bilateral insula. The striatum is thought to
play an important role in the pathophysiology of IGD, and
prior studies identified a dopamine-driven striatal function as
a core candidate for promoting addictive behavior (Weinstein,
2010; Kuss and Griffiths, 2012; Tian et al., 2014; Weinstein

et al., 2017). Recently, related brain imaging studies implicated
the important role of the dysfunctional limbic system (especially
the amygdala, the parahippocampal gyrus, and the cingulate gyrus)
in the neuropathological mechanism of IGD (Weinstein, 2010;
Kuss and Griffiths, 2012; Tian et al., 2014; Weinstein et al., 2017).
The connections between the bilateral amygdala and the insula
constituted an important part of subnet2. Berret et al. (2019) applied
optogenetic approaches in the animal model and corroborated
that the insula routed aversive somatosensory information to
the amygdala and contributed to elaborate its negative valence,
thus suppressing an essential drive to learn about such harmful
information. The insula along with the amygdala is necessary for
the retrieval of threat memories. Furthermore, Baur et al. (2013)
analyzed resting-state functional and structural connectivity within
the amygdala-insula in healthy subjects and demonstrated that this
connectivity represented the index state and trait anxiety. Ko et al.
(2015) examined the amygdala-centered network in IGD on the basis
of rs-fMRI and found altered connectivity of the bilateral amygdala
and the insula in adults with IGD than in controls. Hence, these
decreased structural subnets, to a certain extent, may affect reward
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FIGURE 5

Summarizing the results of network analysis. It represented three subnetwork results (i.e., subnetworks 1–3) whose connections are marked with
different colors in the connectogram. If a nodal measure showed the existence of a significant between-group difference, the location of the outer ring
of the circle corresponding to this node was labeled as the nodal measure’s name (namely Di, Ei, and Ci). If the nodal measure’s name was colored with
red, it meant that the corresponding value increased. Hubs’ name was marked with orange color and with a larger font size in the ring. FRON, frontal
cortex; INS, insula; SUBCOR, subcortical region; CING, cingulum; PAR, parietal cortex; OCC, occipital cortex; TEM, temporal cortex; L, left hemisphere;
R, right hemisphere.

processing, emotion processing and regulation, and cognitive control.
Moreover, the involvement of the connectivity between the bilateral
amygdala and the insula in these subnets may give a potential cue
that young people with IGD underestimate the negative valence of
excessive play and neglect the harmfulness from such behavior.

Taken together, these findings provide tentative evidence
for enhanced structural connectivity among the insula, the
sensorimotor, visual, and reward-related regions, and decreased
structural connectivity in the insula, limbic, and striatal regions.
Among these, the insula holds quite an important position in these
findings, which suggest that, on the one hand, excessive play of
internet games intensifies sensory stimuli and improves subjective
pleasure and, on the other hand, individuals with IGD weaken their

awareness of the risk of indulging in internet games. All these results
may provide a potential explanation for why young people indulge
in playing internet games and highlight the role of the insula in the
pathological mechanism of IGD.

An increase in the mean FA-weighted
structural connectivity strength of subnet1
was related to the severity of internet
addiction

The result showed that the mean FA-weighted structural
connectivity strength of subnet1 was significantly positively related
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to the IAT score in young people with IGD. The IAT score can
reflect the severity of the gaming addiction. This result implies that
the higher the connectivity strength of subnet1, the more severe
the impairment in IGD. As mentioned above, subnet1 exhibited
an enhancement in the mean FA-weighted structural connectivity
strength in young people with IGD and was involved in the insula
and the frontal, visual, auditory, and sensorimotor regions. These
areas are responsible for receiving external sensory stimuli and
processing reward-related functions. Previous cross-sectional and
longitudinal studies demonstrated that training can induce changes
in WM structure. Bengtsson et al. (2005) found that the amount of
piano practice in childhood enhanced FA values within related motor
tracts. Scholz et al. (2009) designed a longitudinal study of individuals
learning a new visuomotor skill, juggling, and reported an increase
in the FA value of the intraparietal sulcus in the juggling group.
An individual with excessive gaming use over a long period of time
can induce experience-dependent changes in WM within regions
responsible for visual, auditory, and sensorimotor processing. For
example, Jeong et al. (2016) reported that men with IGD increased
FA values within several fasciculi such as the forceps minor, the right
corticospinal tract, the right inferior longitudinal fasciculus, and the
right inferior fronto-occipital fasciculus, and also found a positive
correlation of the FA values of these fasciculi with the duration
of illness in IGD. These fasciculi play an important role in visual,
auditory, motor, and working memory functions. Although WM
in men with IGD was measured using different analysis methods,
our findings showed three similarities (such as predominance in
the right hemisphere, an increased FA value, and an impact on the
WM bundles responsible for visual/auditory/sensorimotor function)
with these of Jeong et al. (2016). For example, (1) the subnet1 result
predominated within the right hemisphere; (2) subnet1 increased the
mean FA-weighted structural connectivity value; and (3) most nodes
in subnet1 were responsible for receiving the external stimuli. We
speculate that enhanced WM structural connectivity within subnet1
may arise secondary to long-term internet gaming addiction and
may affect the processing of visual/auditory/sensorimotor and reward
functions.

Limitations and conclusion

Several limitations of the present study should be noted.
First, the current study only recruited young men. Some previous
neuroimaging studies revealed gender-related differences in IGD
(Jeong et al., 2016), and men were more vulnerable to IGD than
women (Borgonovi, 2016). Some scholars urged considering the
importance of gender in understanding IGD (King and Potenza,
2020). Our study excluded the effect of gender on the findings.
However, these findings should be considered specific to young men
with IGD. Future studies need to verify these results in women and
in those with other occupations. In addition, we have not obtained
the HAMA and HAMD scores of all HC subjects, because of the lack
of willingness to tests by some of them. However, in the preliminary
HAMA/HAMD data, patients with IGD showed a significantly higher
score than those with HCs. Considering psychological variables,
depression and anxiety are more strongly associated with the
development of IGD. Higher depression and anxiety might be
representative indicators of the problems of individuals with IGD.
If all HC subjects without HAMA/HAMD scores were removed
and additional analyses were performed with HAMA/HAMD as a

covariate, it still would not be possible to explain which factors
(namely, HAMA/HAMD and a change in the number of HC subjects)
affect the results and how much influence these factors have on the
results, respectively. Due to this objective consideration, we had not
included both variables as covariates in our primary data analyses.
Further studies that explicitly recruit individuals with IGD and also
low levels of anxiety and depression are needed to disentangle the
effects of both variables on the structural connectivity networks.
Finally, a cross-sectional study can never confirm a causal role for
experience on the WM structure in brains, due to the possibility
that common genetic factors influence both the WM structure and
the propensity to train. A longitudinal study is needed to further
corroborate whether altered subnets are a consequence of excessive
use of internet games.

In conclusion, the present study is the first to assess WM
structural network alterations in IGD using an NBS approach
from a perspective of connectomics. We observed a widespread
alteration of cortico-limbic-striatal structural connectivity networks,
including an increased subnet1 (mainly involving the insula and
regions responsible for visual, auditory, and sensorimotor functions)
and decreased two subnet2 and subnet3 (mainly in the insula,
striatum, and limbic regions). Moreover, the mean FA-weighted
structural connectivity of subnet1 showed a significant positive
relationship with the severity of internet addiction. In particular, the
insula appeared in both increased and decreased subnets, playing
an important position in these findings, highlighting its role in
understanding the neurobiological mechanisms underlying IGD and
in developing effective treatment strategies for this disorder.
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Introduction: Resting-state brain network with physiological and pathological

basis has always been the ideal data for intelligent diagnosis of major depression

disease (MDD). Brain networks are divided into low-order networks and high-

order networks. Most of the studies only use a single-level network to classify

while ignoring that the brain works cooperatively with different levels of

networks. This study hopes to find out whether varying levels of networks will

provide complementary information in the process of intelligent diagnosis and

what impact will be made on the final classification results by combining the

characteristics of different networks.

Methods: Our data are from the REST-meta-MDD project. After the screening,

1,160 subjects from ten sites were included in this study (597 MDD and 563 normal

controls). For each subject, we constructed three different levels of networks

according to the brain atlas: the traditional low-order network based on Pearson’s

correlation (low-order functional connectivity, LOFC), the high-order network

based on topographical profile similarity (topographical information-based high-

order functional connectivity, tHOFC) and the associated network between them

(aHOFC). Two sample t-test is used for feature selection, and then features

from different sources are fused. Finally, the classifier is trained by a multi-layer

perceptron or support vector machine. The performance of the classifier was

evaluated using the leave-one-site cross-validation method.

Results: The classification ability of LOFC is the highest among the three

networks. The classification accuracy of the three networks combined is similar to

the LOFC network. These are seven features chosen in all networks. In the aHOFC

classification, six features were selected in each round but not seen in other

classifications. In the tHOFC classification, five features were selected in each

round but were unique. These new features have crucial pathological significance

and are essential supplements to LOFC.

Conclusion: A high-order network can provide auxiliary information for low-

order networks but cannot improve classification accuracy.

KEYWORDS

multi-layer brain function network, major depression disease (MDD), intelligent
diagnosis, the pathological basis, deep learning
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1. Introduction

In recent years, because neuroimaging can directly provide
in vivo brain function and structure information, more and more
people have begun to use machine learning technology to extract
imaging markers for intelligent diagnosis of major depression
disease (MDD) (Gao et al., 2018). However, most of the studies are
data-driven, and neither the data selection nor the interpretation
of the results pays attention to the histopathological basis of
MDD. Despite years of efforts, the pathological and physiological
mechanism of MDD itself is still unclear. Many autopsy studies
have shown that the density of global glial cells in emotion-related
brain regions is decreased in depressed patients (O’Leary and
Mechawar, 2021) [as shown in Figure 1: (Cotter et al., 2001)]. The
glial cells provide metabolic and regulatory support to neurons,
in which astrocytes are responsible for increasing the number of
mature and functional synapses (Pannasch et al., 2011). The neural
circuit pathways of the brain depend not only on neurons but
also on glial cells that significantly affect structural and functional
connections (Fields et al., 2015). The latest findings showed a strong
correlation between the brain’s microscopic neural circuits and the
macroscopic fMRI-based resting-state functional network (Kahali
et al., 2021). Therefore, we have reason to believe that the resting-
state functional network carrying pathological features is one of the
ideal data for the intelligent diagnosis of MDD.

As we all know, the human brain network is composed of
different subnets. The whole brain supports functional separation
and integration, presenting the so-called small-world attribute
(Bassett and Bullmore, 2006), and different hierarchical subnets
complete information collection and processing. The medium
and low-level systems are responsible for collecting information,
and the high-level systems are accountable for integrating and
abstracting information. The human brain can change the
collection and synthesis of information by adjusting the mental
state. For example, the level of attention can change perception,
information collection, and synthesis (Keller et al., 2019). Based
on this neuropsychological mechanism, someone has developed a
high-order functional connectivity (HOFC) network specially used
to provide high-level information in the brain network (Zhang
et al., 2016). A study showed that HOFC could improve the
differences between groups, better capture individual differences,
improve the modularity of the brain network, and provide
supplementary information for the traditional low-order functional
connectivity (LOFC) network. The results showed that multi-
layer features extracted from different levels of networks could
more accurately identify mild cognitive impairment (Zhang et al.,
2016), even early mild cognitive impairment (Zhang et al.,
2017). Therefore, we would like to know whether combining
the characteristics of different brain networks can provide more
abundant information and higher accuracy for the intelligent
diagnosis of MDD.

We use a multicenter, extensive sample data to test our
hypothesis in this study. First, we constructed three types of
networks: 1. LOFC; 2. topographical information-based high-order
functional connectivity [tHOFC (Zhang et al., 2016)] 3. associated
HOFC [aHOFC (Zhang et al., 2017)]. Then two samples t-test is
used to extract the features, and the multi-layer features are fused.
Finally, MDD is classified by using a multi-layer perceptron (MLP)

or support vector machine (SVM) training classifier. The whole
experimental flow is shown in Figure 2.

2. Materials and methods

2.1. Subjects

All data in this study are from the REST-meta-MDD project.
The brain imaging data of 1,300 depressed patients and 1,128
healthy controls through 25 research groups in 17 hospitals in
China were collected in this project (Yan et al., 2019). We further
screened the data to meet the needs of this study. For detailed
methods, please refer to our previous paper (Long et al., 2022). In
simple terms, it is to remove data whose repetition time is not 2.0;
Delete the data of subjects with time series of 0; Finally, each site’s
data is tested for gender and age matching, and the unmatched sites
are deleted. This means that the data of all sites in this study have
passed the age and gender matching test. In the end, data from 10
sites (1,160 subjects) were included in this study. Table 1 shows
the subject information. For more details, please refer to Yan et al.
(2019).

Three types of networks are constructed in this study: 1. LOFC,
2. tHOFC, 3. aHOFC. To make the results more universal, we
chose the most widely used anatomical automatic labeling (AAL)
(Tzourio-Mazoyer et al., 2002) as a brain atlas.

2.2. Data pre-processing

The data preprocessing was performed by DPARSF. Global
signal regression was performed on all data. The time series were
extracted according to the AAL brain atlas, and then the average
time series of each brain region was calculated. Please refer to the
literature for the detailed data preprocess (Yan et al., 2019).

2.3. Definition of brain network

All networks in this study were generated by the BrainNetClass
Toolkit (Zhou et al., 2020). To distinguish HOFC, we call Pearson-
based functional connectivity (FC) as LOFC, defined as follows:
the brain is divided into n regions of interest (ROI) according to
the brain atlas. The ith ROI can be expressed as a vector xi =
[x1i, x2i, . . . , xTi]′ ∈ RT (’indicates transposition), the whole brain
signal can be expressed by matrix X = [x1, x2, . . . , xN ] ∈ RT×N .
The network was expressed as a weighted graph W ∈ RN×N . Each
element in the matrix is a Pearson correlation (PC) between two
brain regions. The PC-derived function network is usually used as
a benchmark for comparison with other advanced methods. The
formula is as follows:

FCij =

∑T
t=1 (xi (t)− xi)(xj (t)− xj)√∑T

t=1 (xi (t)− xi)2
√∑T

t=1 (xj (t)− xj)2
(1)

tHOFC takes the FC between each ROI and all other ROIs as
the first-order feature and then calculates the PC between them
based on the first-order feature. The obtained coefficient is the
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FIGURE 1

Glial cells and neurons in layer 6 of the anterior cingulate cortex. C1–C3 were control subjects (male, 44 years old), and D1–D3 were patients with
major depression (female, 52 years old). Patients with major depression had fewer glial cells and smaller neurons (Nissl staining; bar, 12 µm).

FIGURE 2

Flow chart of the study.

HOFC based on the connection topology attribute. The formula is
as follows:

tHOFCij =

∑
k (wik − wi.)(wjk − wj.)√∑

k (wik − wi.)2
√∑

k (wjk − wj.)2
(2)

Among wi. = {wik|k ∈ N, k 6= i},i, j, k = 1, 2, . . . ,N, k 6= i, j.
Since LOFC is used as the first-order feature instead of the bold
time-series signal in the tHOFC calculation, the result is essentially
different from that of LOFC. Studies have shown that tHOFC can
provide supplementary information for conventional LOFC and
help reveal the differences between subjects with mild cognitive
impairment (MCI) and normal controls (Zhang et al., 2016, 2019).

Associated high-order functional connectivity is defined based
on the mutual relationship between the topological attributes of
tHOFC and LOFC, and the calculation method is similar to FC
and tHOFC (Eq. 3). It measures the functional correlation between
layers (the lower layer and the higher layer). It is a supplement
to the information contained in LOFC and tHOFC. Some studies
showed that combining these three networks can further improve
the diagnostic accuracy of MCI (Zhang et al., 2017). Theoretically,
unlike LOFC and tHOFC, the aHOFC matrix is not symmetric,
and the self-connection is not 1. However, we find that the upper
and lower triangles are highly related. Therefore, to simplify the
calculation, we change the aHOFC into a symmetric matrix by
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W← (W + W∧’) / 2 (Zhou et al., 2020).

aHOFCij =

∑
k (tHOFCik − tHOFCi.)(wjk − wj.)√∑

k (tHOFCik − tHOFCi.)2
√∑

k (wjk − wj.)2
(3)

2.4. Feature selection

As shown in the upper left corner of Figure 3, the brain
network constructed based on fMRI is a symmetric matrix
(size:116× 116). The upper triangle part is compressed into a one-
dimensional vector to form initial features (1 × 6670). Too many
indistinguishable features will adversely affect the classification
results and reduce the robustness of the model. This study used
a two-sample t-test to choose the features with discrimination.
For learning, the reduced dimension features are sent to the
classifier. For the multi-network joint classification, different
features produced from three networks are connected to form a
vector, the multi-layer feature (Long et al., 2012), and then put
into the classifier for training. To ensure the model’s generalization
performance, we adopt leave-one-site cross-validation (LOSCV).

2.5. Classifier

This study uses two types of mathematical models to construct
classifiers: deep learning and support vector machine. The first
is the linear support vector machine (SVM). SVM is the most
commonly used classification method and has achieved good
results on small data sets (Gao et al., 2018). The second is deep
learning models. As the classification tasks become more and more
complex and the amount of data increases, more complex deep
learning models are used for the intelligent diagnosis of MDD. MLP
is a typical deep learning model.

The MLP classifier is based on domain-adversarial training of
neural networks (DANN). The selected features are sent to the
MLP for learning. Changing the size of the convolution weight
matrix can achieve the implicit dimensionality reduction of the
data in the upper layer, and the generated data is used as the input
of the next layer.

The DANN model is implemented based on Pytorch and uses
the adam optimizer to train the network model. The learning rate is
0.001. The network is divided into three parts: feature extractor (the
first part), label predictor (the second part), and domain classifier
(the third part). The details are shown in Figure 3. They use
the adversarial relationship between the feature extractor and the
domain classifier to mix source and target domain samples in a
specific space. After the feature extractor, domain classifier, and
label predictor are all trained, the source domain and target domain
can be mixed and classified.

The second and third sub-networks are feedforward networks
with the same structure. They contain two fully connected

TABLE 1 Subject information.

Number 1,160 Number of sites 10

Male 434 Female 726

MDD 597 Normal controls 563

convolutional layers and transfer or update feature information
through batch normalization (BN), rectification linear unit (ReLU),
and Dropout (BN-ReLU-Dropout = 0.5). In parameter information
transmission, the number of hidden layer nodes in each layer is
0.5 times the number of hidden layer nodes in the previous layer.
Finally, the classification result is obtained through the sigmoid
function. The lower part has a particular process called a gradient
reversal layer (GRL) which multiplies the error transmitted to this
layer by a negative number -λ so that the training objectives of
the network before and after GRL will be opposite to achieve the
effect of confrontation. The error of the whole network is generated
by supervised source domain learning error (Ly) and unsupervised
target domain learning error (Ld), both of which are calculated by
binary cross entropy loss (BCELoss). Weighted BCEloss solves the
class imbalance problem with the super parameter Wc, where c is
the class index, defined as (Eqs 4–6):

L =
1

Nall

Nall∑
n=1

(

c∑
c=1

WcE(yn,c, y′n,c) (4)

Wc =
e1/Nc∑C
c=1 e1/Nc

(5)

E
(
yn,c, ŷn,c

)
= −

(
yn,clogŷn,c

)
+
(
1− yn,c

)
log

(
1− ŷn,c

)
(6)

where L is the weighted BCELoss, Nc is the sample numbers of class
c, Nsall, and C are the total numbers of samples and classes, and
E(Ync,Ŷnc) represents the BCELoss for the label truth Ync and the
predicted probability Ŷnc.

The random gradient descent optimizer uses the loss gradient
calculated by backpropagation to update the network parameters.
After many experiments, the GRL is placed between the feature
extraction network and the domain classification network. The
error transmitted to this layer is multiplied by a negative number-
λ. The network training objectives before and after GRL are
opposite to achieve the effect of confrontation.

3. Results

Although the three networks represent different meanings, a
single feature in each network is the FC between two brain regions
(HOFC or LOFC). There are seven features selected in each round
of the three networks (p < 0.01). In the aHOFC classification, 26
features were selected in each round, six of which were not seen
in other networks and were all related to the cerebellum. In the
tHOFC classification, 36 features were selected in each round, five
unique, with the highest number of FC between the cerebellum
and the temporal lobe. In general, the cerebellum appears most
frequently, which indicates that the cerebellum plays a crucial role
in the pathological changes of MDD. The changes in the cerebellum
and default mode network (DMN), occipital lobe, and frontal lobe
can also distinguish MDD from ordinary people. See Figure 4 and
Table 2 for more details.

In this experiment, two p-values were selected for feature
selection (p < 0.01 and p < 0.05). When p < 0.05, using
SVM as a classifier can achieve a classification accuracy of
60.25. The classification ability of different levels of networks
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FIGURE 3

The domain-adversarial training of neural networks.

FIGURE 4

Features selected for networks. The whole brain was divided into six subnets marked with different colors: (1) DMN; (2) attention network; (3) visual
network; (4) subcortical network; (5) cerebellum. The brain networks were visualized with the BrainNet Viewer (Xia et al., 2013); see Table 2 for
abbreviations of brain regions on the map.

TABLE 2 Features selected for networks.

Network Functional connectivity

ALL (ACG.L, FFG.R) (LING.L, STG.L)(LING.R, STG.L) (LING.L,
STG.R) (THA.R, CRBL7b.L) (CRBLCrus1.R, Vermis3)

aHOFC (PreCG.R, CRBL3.R) (SPG.R, CRBL9.R) (SOG.R, CRBL9.R)
(MTG.L, Vermis12) (CRBL9.L, Vermis6) (CRBLCrus2.L, Vermis10)

tHOFC (ACG.L, HES.L) (TPOmin.R, CRBL10.L) (HES.L, Vermis3)
(SOG.R, Vermis9) (TPOmin.R, Vermis9)

R, right; L, left; ACG, anterior cingulate and paracingulate gyrus; FFG, fusiform gyrus; LING,
lingual gyrus; STG, superior temporal gyrus; THA, thalamus; CRBLCrus1, cerebellum crus 1;
PreCG, precentral gyrus; CRBL3, cerebellum superior 3; SPG, superior parietal gyrus;
CRBL9, cerebellum inferior 9; SOG, superior occipital gyrus; MTG.L, middle temporal gyrus;
CRBLCrus2, cerebellum crus 2;HES, Heschl gyrus; TPOmin, temporal pole, middle temporal
gyrus; CRBL10, cerebellum inferior 10. ALL shows the features selected in each round of the
three networks; aHOFC showed the unique features chosen in each round of the aHOFC;
tHOFC showed the unique features selected in each round of the tHOFC.

is LOFC > HOFC (P < 0.05). The test results in Figure 5
show no statistical difference between the classification efficiency
of LOFC and the combined networks (P > 0.05), indicating

that the other two networks do not increase the classification
ability. The classification results are similar based on aHOFC and
tHOFC networks, but both are worse than multi-layer network
classification. The choice of classifier (SVM or DANN) does no
effect accuracy. During feature selection, p-value selection (0.01
or 0.05) has no effect on classification results. When the classifier
is SVM, and feature selection is p < 0.05, the classification effect
is better than that of DANN (p < 0.01). Epoch’s best results are
generally higher than the best test results, which suggests that we
still need to find the best time to stop searching for the optimal
solution during training. See Figure 5 and Table 3 for detailed
results.

4. Discussion

To the best of our knowledge, this is the first time to use
deep learning technology to realize MDD automatic classification
in combination with a multi-layer network (Rahaman et al., 2020;
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FIGURE 5

Classification accuracy comparison. aHOFC: all classification results based on aHOFC; tHOFC: all classification results based on tHOFC; LOFC: all
classification results based on LOFC; Combined: classification result of three network features fusion. DANN (p < 0.01): using DANN as a classifier,
the p-value of feature selection is 0.01; SVM (p < 0.05): using SVM as the classifier, the p-value of feature selection is 0.05. The inequalities represent
statistical differences between the two groups of data.

TABLE 3 Average Classification accuracy.

DANN (test) SVM DANN (best_test)

p < 0.01 p < 0.05 p < 0.01 p < 0.05 p < 0.01 p < 0.05

tHOFC 52.22± 3.77 53.64± 8.59 53.64± 4.47 55.44± 9.49 60.49± 6.91 60.12± 6.79

aHOFC 50.59± 4.68 52.89± 6.75 49.94± 5.09 52.33± 6.82 57.91± 5.77 60.53± 5.24

LOFC 55.66± 5.89 57.83± 5.28 59.00± 7.26 60.25± 5.86 63.86± 6.84 62.49± 7.74

Combined 54.02± 7.29 58.36± 3.27 59.14± 3.07 59.38± 5.28 60.62± 7.50 61.93± 7.95

DANN (test): classification result of domain-adversarial training of neural networks when the training accuracy is the highest. SVM, support vector machine; DANN (best_test), the highest
accuracy with each epoch using domain-adversarial training of neural networks; combined, connect the features selected by the three networks and then classify; Unit is the percentage (%).

Zhang et al., 2021; Chen et al., 2022). The results show that the
classification performance of low-order networks is higher than
that of high-order networks. The aHOFC and tHOFC can provide
new information for LOFC, but integration cannot improve
classification performance.

Studies have shown that tHOFC (Zhang et al., 2016) and
aHOFC (Zhang et al., 2017) are beneficial supplements to LOFC.
This study proves this again. For example, we found that the
cerebellar-cingulate gyrus is the most discriminative feature in the
aHOFC network, which may reflect the disorder of the cerebellar-
cortical-limbic circuit in MDD patients, leading to emotional
and cognitive impairment. This result is consistent with previous
studies (Lai and Wu, 2014). However, this FC does not appear in
the LOFC network, which indicates that HOFC can provide other
important information for LOFC.

We combine multiple networks at different levels for
classification, but the classification ability of integrated features is
similar to that of individual parts. It is possible that the simplicity
of the feature fusion method is the cause of this issue. Future
research needs to design more sophisticated ways to fuse features,
stimulating the advantages of multi-level network features and
improving classification performance. Previous studies have found
that the classification efficiency of HOFC is higher than that of

LOFC (Yan et al., 2019). However, these results did not appear in
this study. The following reasons may cause this: (1) The sample
size is different. This experiment is based on multicenter large
data samples and is tested separately on an independent test set.
Previous studies were based on small samples; and (2) Different
disease types. This study is to classify MDD, and prior studies have
classified Alzheimer’s disease (AD). Although they are both mental
diseases and may have some common pathological features, the
two conditions differ. The results of AD may not be generalized
to MDD. It also suggests that future research should develop more
robust and generalized network models to classify neuropsychiatric
diseases.

The classification accuracy of this study is low, and most of the
classification accuracy is below 60%. There are two main reasons
for this situation: (1) To ensure our conclusions’ robustness and the
classifier’s generalization, we use big data from 10 sites. Different
machine models, scanning parameters, and equipment status will
reduce the accuracy of multi-site data classification. Therefore, the
low accuracy is also reasonable. (2) Our cross-validation method
adopts LOSCV. We train the model by extracting data from
other research groups and classifying brand-new data. Although
this can ensure the classifier ‘s generalization, it reduces the
accuracy of the results.
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Another significant contribution of this study was selecting FCs
that genuinely represent the pathological changes of MDD. Our
results indicated that the FC changes between the cerebellum and
occipital lobe were the most distinguishing features. Studies have
shown that the MDD group demonstrated decreased cerebellar–
cerebral FC with the prefrontal lobe and DMN and increased FC
with visual recognition network (lingual gyrus, middle occipital
gyrus, and fusiform) (Guo et al., 2013). This enhancement has
been typically viewed as either a compensatory reallocation (Cabeza
et al., 2002; Grady et al., 2005) or dedifferentiation (Logan et al.,
2002) which the increased FC between the cerebellum and the
visual recognition network may compensate for the decrease in the
cerebellar–cerebral FC (Liu et al., 2012). Our results indicated that
the FC alteration was likely to be used to identify MDD.

This study has many limitations. First, we chose MLP as
the classifier. Since we use network data, the recently emerged
graph neural network is suitable for processing such data. Future
research should use more robust models for MDD classification.
Secondly, we only used fMRI data in this study. Clinical features
and gene information are also crucial for the classification of MDD.
Future research should integrate these data into the classification
framework to improve accuracy. Thirdly, there is no difference
between the classification results of SVM and MLP. This may be
because our sample size is not large compared with the database like
ImageNet. As the sample size gradually increases, DP will become
more and more competent for this classification in the future.

5. Conclusion

This study wants to know whether the integration of three
different levels of networks can improve the performance of MDD
intelligent diagnosis. Experimental results show that combining
different layers of networks cannot improve classification
accuracy, but higher-order networks can provide new features
for classification.
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Background: Non-motor symptoms are common in Parkinson’s disease (PD)

patients, decreasing quality of life and having no specific treatments. This research

investigates dynamic functional connectivity (FC) changes during PD duration and

its correlations with non-motor symptoms.

Methods: Twenty PD patients and 19 healthy controls (HC) from PPMI dataset

were collected and used in this study. Independent component analysis (ICA) was

performed to select significant components from the entire brain. Components

were grouped into seven resting-state intrinsic networks. Static and dynamic FC

changes during resting-state functional magnetic resonance imaging (fMRI) were

calculated based on selected components and resting state networks (RSN).

Results: Static FC analysis results showed that there was no difference between

PD-baseline (PD-BL) and HC group. Network averaged connection between

frontoparietal network and sensorimotor network (SMN) of PD-follow up (PD-

FU) was lower than PD-BL. Dynamic FC analysis results suggested four distinct

states, and each state’s temporal characteristics, such as fractional windows and

mean dwell time, were calculated. The state 2 of our study showed positive

coupling within and between SMN and visual network, while the state 3 showed

hypo-coupling through all RSN. The fractional windows and mean dwell time

of PD-FU state 2 (positive coupling state) were statistically lower than PD-BL.

Fractional windows and mean dwell time of PD-FU state 3 (hypo-coupling state)

were statistically higher than PD-BL. Outcome scales in Parkinson’s disease–

autonomic dysfunction scores of PD-FU positively correlated with mean dwell

time of state 3 of PD-FU.

Conclusion: Overall, our finding indicated that PD-FU patients spent more time

in hypo-coupling state than PD-BL. The increase of hypo-coupling state and

decrease of positive coupling state might correlate with the worsening of non-

motor symptoms in PD patients. Dynamic FC analysis of resting-state fMRI can

be used as monitoring tool for PD progression.
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Parkinson’s disease, dynamic functional connectivity, independent component analysis
(ICA), static functional connectivity, non-motor symptoms
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1. Introduction

There were 6.1 million Parkinson’s disease (PD) patients
worldwide in 2016 (GBD 2016 Neurology Collaborators, 2018).
PD progresses continuously over time, mainly affecting older
people (Poewe et al., 2017). Motor symptoms, such as tremors,
akinesia, and rigidity, are the main symptoms of PD, impacting a
patient’s ability to perform routine tasks and increasing the health
care burden (GBD 2016 Neurology Collaborators, 2018). The
occurrence of non-motor symptoms, such as cognitive impairment,
depression, autonomic dysfunction and sleep disorders, progresses
over time, resulting in deteriorating quality of life (Khoo et al.,
2013; Diederich et al., 2020; Bloem et al., 2021). Occurrence
of non-motor symptoms may earlier than motor symptoms,
even in prodromal stage. Non-motor symptoms of PD may be
used as early diagnosing biomarkers. Dopamine supplements and
dopamine transporter agonists are commonly used treatments
for PD that relieve motor symptoms. Treatments for PD non-
motor symptoms were similar to those used for the general
population (Armstrong and Okun, 2020; Vijiaratnam et al.,
2021).

There are many ways to explore PD mechanisms. Functional
magnetic resonance imaging (fMRI) is a non-invasive method
to reveal brain activity by detecting blood oxygen level-
dependent (BOLD) signals (Wu and Hallett, 2005; Smith et al.,
2013a,b; Barkhof et al., 2014). The functional connectivity
(FC) method measures correlations between time courses of
regions of interest (ROIs) using Pearson correlation analysis
(Shahhosseini and Miranda, 2022). FC analysis revealed that
intrinsic networks existed in the brain (Allen et al., 2014)
and was also used to explore the PD mechanism (Schindlbeck
and Eidelberg, 2018; Ryman and Poston, 2020). FC within the
motor network was correlated with the severity of PD motor
symptoms (Chung et al., 2020). FC between the left amygdala
and thalamus was increased in PD patients with depression
compared to PD patients without depression (Hu et al., 2015).
Anxiety severity of PD was positively correlated with their FC
between the amygdala and superior parietal lobule (Zhang et al.,
2019).

Unlike static FC analysis, dynamic FC analysis focuses on
FC variability over time (Calhoun et al., 2014). Dynamic FC
analysis was more sensitive and revealed more detailed information
than static FC analysis (Du et al., 2017). The sliding window
method is the most commonly used method for dynamic FC
analysis, and a 30–60 s window size is appropriate, according
to Allen et al. (2014). The FC matrix of each window can be
grouped into different clusters, also known as states. Changes
in temporal characteristics revealed PD mechanisms (Kim et al.,
2017), and PD subjects with rapid eye movement (REM) sleep
behavior disorder (RBD) spent more time in the state characterized
by weaker positive coupling between the visual and default
networks, and default and basal ganglia networks (Gan et al.,
2021). PD patients with dementia spend increased time in a
state with positive coupling within networks (Fiorenzato et al.,
2019), while PD patients with mild cognitive impairment showed
decreased connectivity between networks, especially between
the sensorimotor and cognitive control networks (Díez-Cirarda
et al., 2018). Compared with seed-based analysis, independent

component analysis (ICA) reduces noise signals (Calhoun et al.,
2001). Voxels in independent components were characterized by
similar time courses and spatial distributions (Esposito et al.,
2002).

Progressive dynamic FC changes during PD duration have
rarely been studied. Non-motor symptoms of PD may occur
before motor symptoms, and have potential to be early diagnosing
biomarker. Non-motor symptoms exist through whole disease
duration and become severer, which lead the potential to
be progression biomarker of PD (Tolosa et al., 2021). So,
it is important to explore the mechanisms of non-motor
symptoms. fMRI method focused on fluctuations in the blood
oxygen level dependent (BOLD) signal of different brain areas
(Lee et al., 2013). fMRI was widely used in neuroscience
studies (Smith et al., 2013a,b; Raimondo et al., 2021) and
provided insight into the mechanism and diagnosis of PD
(Tessitore et al., 2019; Wolters et al., 2019; De Micco et al.,
2021).

Static FC and dynamic functional signal changes reflected
brain activities. Correlations between functional changes in
the brain and non-motor dysfunctions remain unclear. We
hypothesize that the progression of non-motor symptoms may
be associated with static FC changes and temporal characteristic
dynamic FC changes. We utilized long term data of patients
from PPMI dataset to address above questions. Static and
dynamic FC between and within intrinsic networks were
analyzed to determine static and dynamic FC changes during
disease duration and correlations between FC changes and non-
motor dysfunctions.

2. Materials and methods

2.1. Participants

Data used in the preparation of this article were obtained
from the Parkinson’s Progression Markers Initiative (PPMI)
database,1 which is a multicenter international study. For
currently updated information on this study visit.2 All data
used in our study were downloaded before January 2021. For
detailed inclusion criteria of the PPMI dataset, please visit (see
text footnote 2).

A total of 101 PD patients scanned fMRI were recruited in
PPMI dataset. We selected patients with below inclusion criteria
to our study: (1) visited for at least 4 years; (2) scanned fMRI
at baseline (PD-BL) and followed-up (PD-FU); (3) older than
50 years old, as pathogenesis of late-onset PD and early onset
PD is different (Schrag and Schott, 2006; Fereshtehnejad and
Posteuma, 2017) and this study focused on late-onset PD. We
focused on the late-onset PD, because late-onset PD population
was larger than early onset PD patients. Late- and early onset
PD were separated in many studies (Rango et al., 2021; Sigirli
et al., 2021). The patients with low image quality or diagnosed
with other diseases, such as Alzheimer’s disease, multiple system

1 https://www.ppmi-info.org/access-data-specimens/download-data

2 www.ppmi-info.org
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atrophy, dementia with Lewy bodies, during visiting period
were excluded from this study. Imaging data and information
of Healthy control (HC) subjects were also downloaded from
PPMI dataset, who were scanned fMRI. In total, data of 20 PD
patients and 19 healthy control subjects were utilized in our
study.

2.2. Neuropsychological and clinical
assessments

The disease severity of PD patients was assessed using the
Movement Disorder Society Unified Parkinson Disease Rating
Scale (MDS-UPDRS) (Goetz et al., 2008), Part I of the UPDRS
was used to evaluate non-motor symptoms of PD, and parts
II and III evaluated motor symptoms. Total UPDRS was sum
of part I-IV. Hoehn and Yahr (H and Y) staging (Hoehn and
Yahr, 2001) were used to assess severity of PD. The UPDRS-III
and H and Y staging scores used in this study were assessed
at “ON” state, which was defined as the last dose of levodopa
or dopamine agonist were taken <6 h before assessment. The
“OFF” state meant the last dose of levodopa or dopamine agonist
were taken ≥6 h before assessment. The drug treatment dosage
was calculated as the levodopa-equivalent daily dose (LEDD)
(Tomlinson et al., 2010). Patients’ cognitive states were assessed
using the Montreal Cognitive Assessment (MoCA) scale, Benton
Judgment of Line Orientation Score (BJLOT), Letter Number
Sequencing Score (LNS), Semantic Fluency Total Score (SFT),
Symbol Digit Modalities Score (SDM), and Hopkins Verbal
Learning Test–Revised (HVLT) scales. The total SFT score
and subtest such as animal, fruit and vegetable scores were
calculated in this study. HVLT contains several aspects, such as
discrimination scores, immediate/recall scores, retention score,
false alarms, delayed recall and delayed recognition. The ability
of daily living (ADL) scale was used to evaluate life quality.
Depression and anxiety were assessed by the Geriatric Depression
Scale (GDS) score and State-Trait Anxiety Inventory (STAI). The
University of Pennsylvania Smell Identification Test (UPSIT) was
used to evaluate olfactory nerve dysfunction. Sleepiness quality
and rapid eye movement (REM) sleep were assessed by the
Epworth Sleepiness Scale (ESS) score and REM Sleep Behavior
Disorder Questionnaire score. Autonomic function was assessed
by the Scales for Outcomes in Parkinson’s Disease-Autonomic
dysfunction (SCOPA-AUT).

2.3. MRI acquisition

T1 MRI and rs-fMRI data were collected on Prisma fit 3-
tesla Siemens MR scanner (Siemens, Erlangen, Germany). All
participants were requested to remain calm and not think
during scanning. T1 MRI data were acquired with the following
parameters: repetition time (TR) = 2,300 ms, echo time = 3.0 ms,
flip angle = 9◦, matrix size = 176 × 240 × 170, and voxel
size = 1 mm × 1 mm × 1 mm. The rs-fMRI data, consisting
of 210 volumes per patient, were acquired with TR = 2.4 s, echo
time = 25 ms, flip angle = 80◦, matrix size = 68 × 66 × 40, and
voxel size = 3.3 mm × 3.3 mm × 3 mm.

2.4. MRI data processing

The preprocessing of the fMRI data was conducted using the
functional connectivity (CONN) toolbox (Whitfield-Gabrieli and
Nieto-Castanon, 2012),3 based on MATLAB (R2018a, MathWorks,
Inc., Natick, MA, USA). The first ten scans were removed to
maintain the stability of fMRI data. Thus, each participant provided
200 volumes for further analysis.

A slice-timing correction step was performed to correct the
image acquisition time between slices. The fMRI data were
realigned to the first volume to correct for head movement
and then co-registered to the T1 MRI data using an affine
transformation. The T1 MRI data were normalized to standard
Montreal Neurological Institute (MNI) space and segmented into
gray matter, white matter, and cerebrospinal fluid using the tissue
probability maps. A non-linear transformation was applied to the
functional data with the same parameters as the T1 MRI data. The
functional data were smoothed with a Gaussian kernel of 6 mm full
width half maximum, to reduce the noise signal.

2.5. ICA analysis

Independent component analysis (ICA) grouping was
performed to obtain specific data components using Group
ICA of the functional MRI Toolbox (GIFT v4.0 c).4 Voxel-level
variance normalization was performed on all data. The number
of independent components was estimated using a minimum
description length approach. Functional data were decomposed
using two data reduction steps (subject-specific and group-level
PCA). The Infomax method was used to calculate independent
components, and the ICASSO method implemented in GIFT was
used to maintain reliability.

ICASSO was run 100 times, and 80% similarity was selected.
Significant components from all independent components were
chosen according to the location of the peak coordinate and
time course characteristics (Allen et al., 2014; Kim et al., 2017).
The selected components were identified as seven resting state
networks (RSN): the default modal network (DMN), attention
network (ATT), basal ganglia network (BG), visual network (VIS),
sensorimotor network (SMN), auditory network (AUD), and
frontoparietal network (FP) (Yeo et al., 2011).

2.6. Static functional connectivity
analysis

The time courses of the selected components were extracted.
Correlations between every pair of selected components formed the
subject-specific static FC matrix. Static FC group comparisons were
calculated among HC, PD-BL, and PD-FU using the multivariate
analysis of covariance (MANCOVA) toolbox contained in GIFT
with a corrected false discovery rate (FDR). Post hoc analyses were
performed between HC and PD-BL and between PD-BL and PD-
FU.

3 https://web.conn-toolbox.org/

4 https://trendscenter.org/software/gift
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2.7. Dynamic functional connectivity
analysis

Dynamic FC analysis was conducted using the dynamic
functional network connectivity toolbox (dFNC) contained in the
GIFT toolbox. The time courses of selected components were linear
detrended and 3D-despiked. The time courses were also filtered
using a low-pass filter with a cutoff of 0.15 Hz, as recommended
in the GIFT manual.

A sliding window approach was used to analyze dynamic
functional connectivity changes. The sliding window method is
the most commonly used method for dynamic FC analysis, and a
30-60 s window size is appropriate, according to previous studies
(Allen et al., 2014; Kim et al., 2017). The sliding window size was
set to 22 TR (52.8 s) and the step was set to 1 TR (2.4 s), based
on previous research (Allen et al., 2014; Kim et al., 2017). As a
result, each participant had 178 windows across the entire scan.
Correlations between the time course of each selected component
pair in each window formed dynamic FC matrices. The K-means
clustering method was performed to sort all dynamic FC matrices
into different clusters, also known as states. A penalty on the L1
norm was imposed with 100 repetitions, and the elbow method was
used to decide the clustering number.

Temporal properties of the dynamic FC analysis, such as
fractional windows, mean dwell times, and numbers of transitions,
were calculated for further statistical analysis. The fractional
window is the proportion of time spent in each state, and the mean
dwell time is the average time spent by each participant in each
state. The number of transitions is calculated as the number of
times switching between states.

2.8. Statistical analysis

Group differences in general information between the HC and
PD groups, such as age, gender, years of education, and clinical
assessments, were calculated using the two-sample t-test and the
chi-square test. Differences in temporal properties among HC
and PD subgroups were calculated using two sample t-test or
rank sum test. Statistical differences of clinical assessments and
temporal properties between PD-BL and PD-FU were tested using
paired t-test or Wilcoxon signed rank test. Selecting t-test or non-
parametric test was depended on the result of normality test.
Correlations between temporal properties and clinical assessment
scores were analyzed using partial correlation analysis, which
controlled effect of age, sex, and education years. Above statistical
analysis was performed in SPSS Statistics 22.0 (IBM Corporation,
Armonk, NY, USA), and the threshold for statistical significance
was p < 0.05. Multiple comparisons of p-values were corrected
with FDR correction.

3. Results

3.1. Demographics

Twenty PD patients (13 male and 7 female) and 19 healthy
subjects (15 male and 4 female) met the inclusion and exclusion

criteria described in (Section “2.1. Participants”). There were no
significant differences in age and gender between the PD and HC
groups. The years of education of the PD group were statistically
shorter than those of the HC group. After years of follow-up,
the H and Y stage (ON state) of the PD group increased. The
LEDD of PD-FU was significantly higher than PD-BL. These results
indicated that the severity of PD increased after years of follow-
up. The UPDRS-I scores of PD-FU increased compared to PD-BL.
The HVLT-False alarms and SDM scores of PD-FU were smaller
than HC group. The SCOPA-AUT scores of PD-FU were bigger
than HC group. The UPSIT scores of PD-BL were smaller than
HC group. Above results indicated that the non-motor symptoms
of PD patients were worsen after years of follow-up. Other clinical
assessments, such as UPDRS-III (ON state), total UPDRS, MoCA,
BJLOT, ESS, GDS, SFT, and STAI scores, did not significantly
change between PD-BL and PD-FU. Details of these results are
shown in Table 1.

3.2. ICA components and RSN

The minimum description length approach estimated an
average of 47 components. Sixty independent components were
selected for greater accuracy. Twenty-nine components were
identified as meaningful according to the selection criteria
described in (Section “2.5. ICA analysis”), and the selected
components were grouped into seven resting-state intrinsic
networks. The selected components and networks are shown in
Figure 1.

3.3. Static FC analysis results

We performed two steps analysis to reveal static FC changes of
PD in different stages. Static FC differences between the HC and
PD-BL group were calculated with age, sex and education years
as covariates, using two sample t-test. The difference between HC
and PD-BL did not survive the FDR correction, which was used
for multiple p-value correction. Differences between PD-BL and
PD-FU were calculated using paired t-test, with FDR correction
method to correct p-values. Results showed that network averaged
connections between FP and SMN of PD-FU were lower than
PD-BL (p < 0.05, t = −3.64) (Figure 2).

3.4. Dynamic FC analysis

All dynamic FC matrices are clustered into four states
according to the elbow method. 19% of the matrices clustered into
state 1, characterizing positive coupling within the VIS network.
State 2 contained 22% of the matrices, which characterized positive
coupling within SMN, within VIS, between SMN and VIS, between
DMN and SMN, and between DMN and VIS. State 3 had 56%
of the matrices, showing hypo-coupling within and between all
networks. State 4 was the smallest, with only 3% of matrices
(Figure 3).

Temporal characteristics such as fractional windows, mean
dwell time and transition number of HC group and PD
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TABLE 1 Demographic information for the HC and PD subgroups.

BL-HC FU-BL FU-HC

PD-BL (n = 20) PD-Y3 (n = 20) HC (n = 19) P-value T/Z value P-value T value P-value T value

Age (years) 64.35 ± 7.96 67.35 ± 8.0 62.84 ± 10.5 0.62 0.51 − − − −

Gender (M: F) 13: 7 – 15: 4 0.33 0.94 − − − −

Education years 13.4 ± 3.2 – 16.84 ± 2.54 0.002 −3.16 − − − −

Disease duration
(months)

4.99 ± 4.82 – – − − − − − −

LEDD 215.65 ± 164.61 590.36 ± 229.67 – − − <0.001 5.98 − −

H and Y stage (ON) 1.37 ± 0.48 1.7 ± 0.47 – − − 0.03 2.18 − −

ADL 90 ± 6.88 89.25 ± 5.68 – – − 0.51 −0.66 – −

UPDRS-I 6.7 ± 5.17 8.15 ± 5.03 – − − 0.03 2.42 − −

UPDRS-II (ON) 6.4 ± 4.59 7.65 ± 4.73 – − − 0.46 0.74 − −

UPDRS-III (ON) 15.9 ± 9.83 18.1 ± 9.22 – − − 0.35 0.94 − −

Total UPDRS (ON) 29.26 ± 15.38 33.9 ± 15.15 – − − 0.23 1.25 − −

HVLT-immediate recall 26.05 ± 6.12 25.8 ± 5.91 25.89 ± 5.08 0.70 0.38 0.83 0.21 0.87 0.17

HVLT-delayed recall 9.1 ± 2.94 8.4 ± 3.42 8.21 ± 3.12 0.38 0.88 0.26 −1.13 0.91 0.11

HVLT-recognition 10.8 ± 2.73 11.2 ± 1.11 11.21 ± 1.03 0.68 0.42 0.85 −0.21 0.84 0.20

HVLT-false alarms 0.8 ± 0.95 0.6 ± 0.75 2.16 ± 2.17 0.06 −1.91 0.34 −1.10 0.02 −2.33

HVLT-discrimination 10 ± 2.92 10.6 ± 1.6 7.16 ± 5.52 0.11 1.58 0.76 −0.36 0.05 1.92

HVLT-retention 0.84 ± 0.2 0.8 ± 0.24 0.79 ± 0.23 0.55 0.60 0.38 −0.88 0.89 0.14

BJLOT 12.6 ± 1.93 13.3 ± 1.56 13.37 ± 1.8 0.14 −1.49 0.21 −1.27 0.73 −0.35

ESS 6.3 ± 4.35 6.95 ± 5.25 5.58 ± 3.31 0.84 0.2 0.36 0.92 0.59 0.54

GDS 1.9 ± 2.22 1.85 ± 2 0.95 ± 1.58 0.13 1.5 0.81 0.25 0.86 0.18

LNS 10.75 ± 1.97 10.15 ± 2.74 11.37 ± 2.29 0.47 −0.73 0.23 −1.2 0.14 −1.46

REM 3.45 ± 1.99 3.6 ± 2.21 2.76 ± 1.66 0.35 0.95 0.89 0.14 0.3 1.04

SCOPA-AUT 9.65 ± 6.77 10.5 ± 5.72 6.28 ± 3.84 0.09 1.7 0.34 0.95 0.012 2.51

SFT 50.35 ± 11.52 50.55 ± 10.77 48.16 ± 9.48 0.52 0.65 0.91 0.12 0.52 0.65

SFT-animal 23.25 ± 4.98 22.95 ± 6.03 20.89 ± 4.65 0.14 1.52 0.82 −0.23 0.39 1.06

SFT-fruit 13.8 ± 4.10 13.45 ± 3.86 14.11 ± 3.77 0.81 −0.24 0.67 −0.43 0.58 −0.55

SFT-vegetable 13.3 ± 4.66 14.15 ± 3.84 13.16 ± 3.88 0.92 0.1 0.3 1.07 0.38 0.88

STAI-state sub score 32.8 ± 8.76 31.75 ± 8.24 30.05 ± 8.19 0.34 0.96 0.65 −0.46 0.50 0.68

STAI-trait sub score 31.8 ± 8.48 31.3 ± 7.48 29.74 ± 8.93 0.38 0.89 0.92 −0.10 0.43 0.79

STAI total 64.6 ± 16.67 63.05 ± 14.7 59.79 ± 15.48 0.36 0.93 0.58 0.57 0.4 0.84

SDM 41.25 ± 9.44 38.2 ± 9.40 48.16 ± 10.12 0.03 −2.21 0.11 1.7 0.003 −3.19

MoCA 27.25 ± 2.34 27.4 ± 2.56 28.21 ± 1.13 0.3 −1.04 0.69 −0.4 0.61 −0.52

UPSIT 20.9 ± 8.79 – 33.58 ± 4.57 <0.001 −5.61 − − − −

LEDD, levodopa-equivalent daily dose; H and Y, hoehn and yahr staging; ADL, ability of daily living; UPDRS, Movement Disorder Society Unified Parkinson Disease Rating Scale; BJLOT,
Benton Judgment of Line Orientation Score; LNS, Letter Number Sequencing Score; REM, Rapid Eye Movement; SCOPA-AUT, Scales for Outcomes in Parkinson’s Disease-Autonomic
dysfunction; VLT, verbal learning test; SFT, Semantic Fluency Total Score; SDM, Symbol Digit Modalities Score; MoCA, Montreal Cognitive Assessment; GDS, geriatric depression scale score;
STAI, State-Trait Anxiety Inventory; ESS, epworth sleepiness scale score; UPSIT, University of Pennsylvania Smell Identification Test. P-values of multiple comparison were correction with
Bonferroni correction. The p-values which were smaller than 0.05 were written with bold.

subgroups were calculated. Age, sex, and education years may
affect cognitive function. The effect of age, sex and education
years were controlled when calculating difference between
HC and PD-BL group. Results showed that there was no
statistical difference between HC and PD-BL group of above
temporal characteristics. Changes between PD-BL and PD-FU
were performed sign rank test, because data wasn’t normality
distributed. The temporal properties analysis showed that the
fractional windows and mean dwell time of PD-FU at state 2 were

statistically lower than PD-BL. Fractional windows and mean dwell
time of PD-FU at state 3 were statistically higher than PD-BL
(Figure 4).

3.5. Correlation analysis

Correlations between clinical scale scores and measurements
of rs-fMRI were computed. Clinical scales included UPDRS-I,
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FIGURE 1

The 29 independent components and 7 networks identified by group ICA. Seven functional networks and 29 selected independent components are
shown: ATT, attention network; AUD, auditory network; BG, basal ganglia network; DMN, default modal network; FP, frontoparietal network; SMN,
sensorimotor network.

FIGURE 2

Averaged connection between FP and SMN network of PD-FU was
lower than PD-BL. The p-value of comparison corrected using FDR
correction (∗: p < 0.05; t = −3.64). PD, Parkinson’s disease; BL,
baseline; FU, follow-up; FP, frontal parietal network; SMN,
sensorimotor network.

UPDRS-II(ON), UPDRS-III(ON), SCOPA-AUT, and ADL. Rs-
fMRI measures included static FC of brain areas, fractional
window, mean dwell time and transition number. Age, sex and
education years may affect correlation result of abovementioned
score. The effect of age, sex, and education years were controlled
as variances, using partial correlation method. Results showed that
SCOPA-AUT scores positively correlated with the mean dwell time
of state 3 of PD-FU (Figure 5). There was no correlation between
clinical scores and temporal characteristics of PD-BL.

4. Discussion

The H and Y stages of the PD group increased after 3 years
of follow-up in this study, while UPDRS-III scores (ON) did
not change significantly after 3 years. As PD patients collected
from PPMI dataset in this study accepted treatment, motor
symptom changes were assessed by the UPDRS-III (ON). UPDRS-
I and SCOPA-AUT scores of the PD group increased, and the
SDM and ADL scores decreased after 3 years in our study.
These results indicated that PD severity increased over time. The
dopamine supplement treatment was collected as LEDD, which
significantly increased after follow-up. Non-motor symptoms,
such as autonomic dysfunction, progressed over time, even
after long-term treatment in the present study. The UPDRS-
III scores which were used to assess motor symptoms of PD,
didn’t significantly change. Our results indicate that dopamine
supplement treatment was not effective enough to relieve all non-
motor symptoms in this study.

Our result showed that network averaged connection between
FP and SMN of PD-FU was lower than PD-BL. FP is associated
with execution function. The decreased connection between FP to
SMN in PD-FU may be associated with worsen of motor symptoms.
While we didn’t find statistical correlation between decrease of
network connection and clinical assessment scores.

Results showed that PD-FU spent more time at state 3, which
characterized as hypo-coupling between networks. PD-FU spent
less time at state 2, which was characterized as positive coupling
between networks. These results indicated that coupling between
networks of PD-FU decreased and may converted to hypo-coupling
state. The loss of coupling may associate with the worsen of
PD. These results are consistent with those of Li et al. (2021),
which showed that the fractional windows and mean dwell time of
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FIGURE 3

Dynamic functional connectivity state results. The dynamic FC matrices were clustered into 4 states. Averaged across subjects-specific median
cluster of all participants were showed. Total occurrences for State 1-4 were 19, 22, 56, and 3%, respectively. ATT, attention network; AUD, auditory
network; BG, basal ganglia network; DMN, default modal network; FP, frontoparietal network; SMN, sensorimotor network.

states that characterized positive correlations between FP and SMN
decreased in PD compared to HC (Chen et al., 2021). In Li et al.’s
(2021) study, the mean dwell time of the above ON state increased
compared with the OFF state, indicating that dopamine depletion
affects functional connectivity stability between FP and SMN (Chen
et al., 2021).

Autonomic dysfunction was widespread in PD and occurred at
an earlier stage. Autonomic dysfunction, such as gastrointestinal
dysfunction in PD patients, was a risk factor for falling, with severe
consequences (Kwon et al., 2021). The SCOPA-AUT scale was used
in this study to assess autonomic dysfunctions. The autonomic
functions of PD patients at FU were impaired in our study. The
correlation results showed that the SCOPA-AUT scores of PD-
FU positively correlated with the mean dwell time of state 3.

Above results indicated that the increase of hypo-coupling state
correlated with autonomic dysfunction. Our results in line with
precious studies, which showed the correlation between functional
connectivity of RSN and autonomic dysfunctions (Ashraf-Ganjouei
et al., 2018; Dayan et al., 2018; Li et al., 2021; Nakano et al., 2021).

5. Limitations

There are some limitations to this work. Only 20 PD and 19 HC
patients were collected from PPMI in this study. PD patients were
only followed up for 3 years, which was much less than the entire
length of PD duration. A larger scale and longer visiting period for
the longitudinal study is needed in future studies. Most of the PD
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FIGURE 4

Results of temporal properties of dynamic functional state analysis. The median of fractional windows (A) and mean dwell time (B) of all subjects in
each state are shown using a Tukey box plot. ∗: p < 0.05. PD, Parkinson’s disease; BL, baseline; FU, follow-up; HC, healthy control.

FIGURE 5

Correlation between SCOPA-AUT scores of PD-FU and mean dwell
time of state 3. PD, Parkinson’s disease; SCOPA-AUT, Scales for
Outcomes in Parkinson’s Disease-Autonomic dysfunction.

patients in the recent study received treatment, and the UPDRS-III
scores of the OFF states were missing. PD patients did not undergo
MRI scans before accepting any treatment. We cannot entirely
remove the treatment effect. Although some studies revealed
that dopamine treatment rarely affected non-motor symptoms,
randomized controlled trials are needed in the future.

6. Conclusion

We found four distinct dynamic FC states in PD patients
according to dynamic functional correlations within and
between RSN. The state 2 of our study showed positive
coupling within and between SMN and visual network,
while the state 3 showed hypo-coupling through all RSN
networks. Our finding indicated that PD-FU patients spent
more time in hypo-coupling state (state 3) than PD-BL.
The increase of hypo-coupling state and decrease of positive
coupling state might correlate with the worsening of non-
motor symptoms in PD patients. The dynamic FC analysis

may be used as monitoring tool for non-motor symptoms and
disease progression.
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Background and aims: Diffusion magnetic resonance imaging (dMRI) studies

have revealed microstructural abnormalities in white matter resulting from sleep

deprivation (SD). This study aimed to adopt neurite orientation dispersion and

density imaging (NODDI) to investigate the effect of SD on gray matter (GM)

microstructural properties and its association to visuospatial memory (VSM).

Methods: Twenty-four healthy women underwent two sessions of dMRI scanning

and visuospatial ability assessment by Complex Figure Test (CFT), once during

rested wakefulness (RW) and once after 24 h of SD. We calculated NODDI

metrics, including intracellular volume fraction (ICVF), orientation dispersion

index (ODI), and isotropic volume fraction (ISO). Differences in NODDI-related

metrics between RW and SD were determined using a voxel-wise paired t-test.

We identified an association between NODDI metrics and CFT results using

Spearman’s correlation coefficient.

Results: Sleep deprivation worsened subjects’ performance in the delayed-CFT

trial. We observed no significant difference in ICVF and ODI between RW and

SD. After SD, subjects showed decreases in ISO, primarily in the prefrontal

cortex and temporal lobe, while exhibiting ISO increases in the anterior and

posterior cerebellar lobe and cerebellar vermis. Furthermore, ISO change in the

left superior, middle and inferior frontal gyrus was significantly correlated with

completion time change in delayed-CFT trial performance.

Conclusion: Our results suggested that SD hardly affected the density and

spatial organization of neurites in GM, but the extra-neurite water molecule

diffusion process was affected (perhaps resulting from neuroinflammation), which

contributed to VSM dysfunction.

KEYWORDS

sleep deprivation, neurite orientation dispersion and density imaging, gray matter,
isotropic volume fraction, visuospatial memory
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Introduction

Sleep is a complex physiological process that is essential in
humans for maintaining cognition (Colrain, 2011). Visuospatial
memory (VSM) is one of the crucial domains in cognition that
plays a basic role in daily life, which is required for orientation,
spatial localization, and using a navigation map (Perrochon et al.,
2014). Sleep deprivation (SD), even a single night thereof, can
have detrimental effects on VSM (Gosselin et al., 2017; Pasula
et al., 2018). Meanwhile, animal experiments have found that
SD is associated with alterations in brain structure. For example,
one study revealed that SD increases the breakdown of neuronal-
membrane phospholipids (Hinard et al., 2012). Another study
found that SD induces spine density changes in the hippocampus
and prefrontal cortex in rats (Acosta-Pena et al., 2015). However,
the neural mechanisms underlying VSM deficit after SD are not well
understood. Elucidating the neurobiological effects of SD on the
brain might help us grasp the significance of sleep in neuroscience.

Diffusion magnetic resonance imaging (dMRI) is a non-
invasive approach that measures the diffusion of water molecules
in tissue, providing information about the underlying brain
microstructure (Pierpaoli et al., 1996). In recent years, many
studies have used dMRI to investigate the effect of SD on brain
microstructure (Rocklage et al., 2009; Cui et al., 2015; Elvsashagen
et al., 2015; Zhu et al., 2017; Voldsbekk et al., 2021; Wang
et al., 2022). For instance, one diffusion tensor imaging (DTI)
study found that SD was associated with impaired white matter
(WM) integrity [as reflected by reduced fractional anisotropy
(FA)] of the bilateral frontotemporal and parieto-occipital tracts,
corpus callosum, thalamus, and brain stem (Elvsashagen et al.,
2015). In addition, several DTI studies have reported that WM
microstructural properties enable the prediction of cognitive
vulnerability to SD (Rocklage et al., 2009; Wang et al., 2022).
Moreover, the individual’s cognitive stability/resistance to SD is
associated with the integrity of the WM tract, which connects the
frontoparietal attention networks (Cui et al., 2015; Zhu et al., 2017).
Notably, several inherent drawbacks of DTI limit its utility in SD-
related studies. For example, DTI assumes that water diffusion is
Gaussian distribution, so it is not able to completely characterize
tissue microstructure (Steven et al., 2014). In addition, DTI extracts
information from dMRI data via “signal representations” approach,
which lacks specificity and remains an indirect characterization
of microstructure (Huang S. et al., 2022). Furthermore, due to its
assumption of a single tissue compartment, DTI cannot distinguish
microstructural properties between intra-cellular and extra-cellular
spaces (Beaulieu, 2002).

In recent years, several advanced multi-compartment diffusion
models have been proposed to overcome the limitations of DTI.
For instance, a recent dMRI study using spherical mean technique
(SMT), a multi-compartment model that estimates brain tissue
microstructure in the intra- and extra-axonal spaces, revealed
that the effect of SD on WM microstructure mainly involves

Abbreviations: CFT, complex figure test; DTI, diffusion tensor imaging;
GM, gray matter; ICVF, intracellular volume fraction; ISO, isotropic volume
fraction; MRI, magnetic resonance imaging; NODDI, neurite orientation
dispersion and density imaging; ODI, orientation dispersion index; RW,
rested wakefulness; SD, sleep deprivation; SMT, spherical mean technique;
WM, white matter.

the extra-axonal water molecule diffusion process (Voldsbekk
et al., 2021). Neurite orientation dispersion and density imaging
(NODDI) is another multi-compartment diffusion model that
parametrizes the dMRI signal as a function of biophysically
meaningful parameters [e.g., dendrite and axon density in gray
matter (GM) and WM, respectively] (Zhang et al., 2012; Kamiya
et al., 2020), which has been validated in the histology of
animal and human brain (Sepehrband et al., 2015). NODDI-
derived metrics provide detailed information on the brain’s tissue
microstructure. Specifically, intracellular volume fraction (ICVF)
quantifies the packing density of neurites (including dendrites and
axons); the orientation dispersion index (ODI) indicates the spatial
organization or geometric complexity of neurites; and isotropic
volume fraction (ISO) reflects extra-cellular isotropic diffusion
(Kraguljac et al., 2022). The primary advantage of NODDI is that
its metrics are more directly related to the brain’s microstructure
because it models the biophysical properties of the tissue (Kamiya
et al., 2020). NODDI has been used to explore brain microstructural
alterations in several physiological and pathological conditions,
such as brain development (Zhao et al., 2021), aging (Merluzzi
et al., 2016), Parkinsonism (Mitchell et al., 2019), and Wilson
disease (Song et al., 2018). Nevertheless, previous DTI and SMT
studies have focused solely on WM microstructural changes after
SD (Rocklage et al., 2009; Cui et al., 2015; Elvsashagen et al., 2015;
Zhu et al., 2017; Voldsbekk et al., 2021; Wang et al., 2022), and the
effect of SD on GM microstructure remains unclear.

In light of the above, in this study, we exploratorily adopted
NODDI to: (1) investigate whether GM microstructural alteration
occurred after 24 h of SD and (2) determine the association between
changes in GM diffusion metrics and VSM alterations after SD.

Materials and methods

Subjects

Twenty-four healthy women participated in this study, who
were all right-handed; the participants had an average age of
20 ± 0.81 years as well as an average of 13 ± 0.93 years
of education. Participants who met any one of the following
criteria were excluded: (1) a history of sleep disorder or any
other neuropsychiatric conditions; (2) the taking of psychotropic
medications; (3) chronic and severe medical illness such as heart
failure, malignancies, or chronic renal failure; (4) contraindications
to MRI scanning. The Ethical Committee of Fujian Medical
University Union Hospital (Fuzhou, China) approved this study,
and all subjects provided their informed written consent.

Experimental procedure

We followed the same experimental procedure as that described
in our previous study (Huang N. X. et al., 2022). The flowchart
of experimental procedure is shown in Figure 1. Each participant
made three visits to the laboratory: briefing, rested wakefulness
(RW), and SD sessions. The first visit was the briefing session, in
which we briefed subjects on the procedure and obtained their
signed informed consent. RW and SD sessions started after at least
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FIGURE 1

The flowchart of experimental procedure. MRI, magnetic resonance imaging; CFT, complex figure test.

2 weeks of habitual sleep. To minimize the possible residual effects
of SD on cognition (Van Dongen et al., 2003), the RW session
and the SD session were set 2–4 weeks apart, and their order was
counterbalanced across all participants.

For the RW session, we asked participants to stay awake from
8:00 a.m. to 12:00 p.m. (day 1) and to sleep from 0:00 a.m. to 8:00
a.m. (day 2). For the SD session, participants were asked to stay
awake from 8:00 a.m. (day 1) to 8:00 a.m. (day 2). Subjects stayed
in our laboratory for both these sessions, accompanied by two
research assistants to prevent them from falling back to sleep during
the awakening state. Participants were permitted to engage in non-
strenuous activities such as reading, talking, or internet surfing,
but strenuous activities and the intake of stimulating substances
were not allowed.

Visuospatial ability assessment

A trained staff member assessed subjects’ visuospatial ability
using the Complex Figure Test (CFT) (Shin et al., 2006). CFT
is a popular neuropsychological assessment tool for visuospatial
ability, including three subtests: CFT-copy, immediate-CFT, and
delayed-CFT trials. In the CFT-copy trial, subjects were presented
the complex figure and were asked to copy the entire figure onto a
blank sheet of paper; Following the CFT-copy trial, the immediate-
CFT trial was performed, in which subjects were asked to reproduce
the complex figure from memory; In the delayed-CFT trial that
was performed 25 min after the immediate-CFT trial, subjects
reproduced the complex figure once again (Shin et al., 2006). The
CFT-copy trial was used to evaluate visuospatial constructional
ability, while immediate-CFT and delayed-CFT trials were used to
evaluate VSM (Shin et al., 2006). The assessment was scheduled for
8:00–10:00 a.m. on day 2 for each of the RW and SD sessions.

MRI data acquisition

We acquired MRI data using a 3.0 Tesla Siemens Prisma
MRI scanner (Siemens, Erlangen, Germany). Diffusion-weighted
images were obtained using a multi-shell echo-planar imaging
sequence, which consisted of four b-values (0, 1,000, 2,000,
and 3,000 s/mm2) along 6, 30, 30, and 30 gradient directions,

respectively. Other image acquisition parameters were as follows:
repetition time (TR) = 4,200 ms; time to echo (TE) = 72 ms;
number of averages = 1; flip angle = 90◦; slice thickness = 2 mm;
field of view (FOV) = 216 mm × 216 mm; matrix = 108 × 108;
voxel size = 2 × 2 × 2 mm3; slice number = 72 (axial
slices without gaps); multiband factor = 2. T1-weighted (T1W)
structural images were acquired using a magnetization-prepared
rapid gradient-echo (MPRAGE) sequence with the following
parameters: TR = 1,610 ms; TE = 2.25 ms; flip angle = 8◦;
slice thickness = 1.0 mm; FOV = 224 mm × 224 mm;
matrix = 224 × 224; voxel size = 1 × 1 × 1 mm3; slice number = 176
(sagittal slices without gaps). MRI scanning was scheduled for
8:00–10:00 a.m. on day 2 for each of the RW and SD sessions.

MRI data pre-processing

We visually inspected the T1W and dMRI images of all
subjects to detect any signal dropouts or artifacts. Next, we pre-
processed the images via the well-established pipeline, described as
follows. For both T1W and dMRI data, the procedure began with
axial alignment, centering, Gibbs ringing removal based on Local
Subvoxel-Shifts (Kellner et al., 2016), and intensity inhomogeneity
correction via N4ITK (Tustison et al., 2010). For dMRI data, we
also included the following steps: (1) Marchenko–Pastur principal-
component analysis (MP-PCA) denoising (Veraart et al., 2016a,b)
to improve the signal-to-noise ratio (SNR) without reducing spatial
resolution; (2) FSL’s eddy_correct tool was used for eddy current
correction (Jenkinson et al., 2012); (3) brain mask generation using
a brain extraction tool (BET) (Jenkinson et al., 2012); and (4)
distortion correction via registration of individual T1W and dMRI
data (Wu et al., 2018). Then, the transformation was applied to each
diffusion-weighted volume, and the gradient vectors were rotated
using the rotation matrix estimated from the affine transformation.

NODDI-based microstructural modeling

To investigate advanced brain microstructural properties, we
fit our NODDI model (Zhang et al., 2012) to the multi-shell
(i.e., b = 1,000, 2,000, and 3,000 s/mm2) dMRI data using the
Accelerated Microstructure Imaging via Convex Optimization
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FIGURE 2

Brain regions with significant difference in ISO between RW and SD. “L” and “R” represent the left and right side of the brain, respectively. Red
indicates ISO reduction and blue indicates ISO increment after SD. ISO, isotropic volume fraction; RW, rested wakefulness; SD, sleep deprivation.

(AMICO) toolbox (Daducci et al., 2015). We also used the AMICO
toolbox to significantly speed up the time needed to fit the NODDI
model by reformulating the NODDI model as a linear system
without sacrificing accuracy. Using NODDI, we calculated ICVF,
ODI, and ISO.

Each individual’s T1W images were transformed from
anatomically corrected space to diffusion-corrected space via two-
step linear registration using the Functional Magnetic Resonance
Imaging of the Brain (FMRIB) Linear Image Registration Tool
(FLIRT) (Jenkinson et al., 2012). Advanced Normalization Tools
(ANTs)1 was used to linearly register each subject’s T1W images to
MNI atlas [International Consortium for Brain Mapping (ICBM)
2009b Nonlinear Asymmetric], and the transformation matrix that

1 https://stnava.github.io/ANTs

resulted was applied to warp each subject’s microstructural map to
the MNI space. To reduce the effect of fine-grained local variations
in anatomy between individuals, voxels within the mask region
were then convolved with the specified full-width half maximum
(FWHM, equaling voxel size × 2.3548 mm) Gaussian smoothing
kernel.

Statistical analysis

We determined differences in NODDI metrics between RW
and SD using a voxel-wise paired t-test, with statistical significance
set at corrected P < 0.05. The false discovery rate (FDR) was used
for multiple-comparison corrections. We identified the association
between NODDI metrics and VSM performance by calculating
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TABLE 1 Differences in isotropic volume fraction between the rested wakefulness and sleep deprivation.

Regions Voxels Brodmann
area

MNI coordinates Peak
T-value

x y z

Left superior, middle, and inferior frontal gyrus 1,262 10/11/47 −43 43 −17 8.60

Right middle and inferior temporal gyrus and
temporal pole

566 21/20/38 47 11 −41 6.07

Left medial frontal gyrus and rectus gyrus 475 11 7 53 −25 5.44

Right middle and inferior frontal gyrus 1,359 11/47 55 39 3 7.71

Left superior and middle temporal gyrus, temporal
pole, and anterior insula

613 22/21/38/13 −59 7 −33 6.82

Left superior temporal gyrus and temporal pole 119 38 −33 19 −45 6.49

Right temporal pole 116 22 51 5 1 5.07

Right posterior cerebellar lobe 187 45 −61 −53 7.39

Left posterior cerebellar lobe 199 −37 −41 −55 5.92

Bilateral anterior and posterior cerebellar lobe and
cerebellar vermis, and lingual gyrus

4,133 18 5 −71 −19 −7.86

MNI, Montreal Neurological Institute.

the Spearman correlation coefficient using Statistical Product
and Service Solutions (SPSS) software version 22.0 (IBM Corp.,
Armonk, NY, USA).

Results

Subjects took longer to complete the delayed-CFT trial after SD
than after RW (84.6 ± 37.2 vs. 67.4 ± 28.2 s; P = 0.022). In addition,
their scores in the delayed-CFT trial were lower after SD than after
RW (22.1 ± 6.9 vs. 24.3 ± 7.9; P = 0.034). RW and SD states did
not differ significantly in their CFT-copy (times: 136.6 ± 43.5 vs.
133.3 ± 45.1 s; P = 0.788; score: 35.2 ± 1.1 vs. 34.9 ± 1.8; P = 0.421)
or immediate-CFT (times: 108.4 ± 41.2 vs. 122.5 ± 48.8 s; P = 0.272;
score: 24.5 ± 8.6 vs. 22.9 ± 7.3; P = 0.170) trial results.

Voxel-wise analysis showed no significant difference in ICVF
and ODI between RW and SD. The distribution of brain regions
with altered ISO is shown in Figure 2 and Table 1. Compared
with after RW, after SD, subjects exhibited decreased ISO in the
left superior, middle and inferior frontal gyrus, left medial frontal
and rectus gyrus, left superior and middle temporal gyrus, temporal
pole, and anterior insula, right middle and inferior frontal gyrus,
right middle and inferior temporal gyrus and temporal pole, and
bilateral posterior cerebellar lobe; and increased ISO in the bilateral
anterior and posterior cerebellar lobe and cerebellar vermis, and
lingual gyrus.

The result of the correlation analysis is shown in Figure 3.
Between the RW and SD states, changes in mean ISO in the
left superior, middle and inferior frontal gyrus was negatively
correlated with changes in completion time in the delayed-CFT trial
(r = −0.518, P = 0.010).

Discussion

This study aimed to adopt NODDI to explore whether
microstructural alterations occurred in GM after SD and determine

whether NODDI measurements were associated with VSM. The
main findings were as follows. First, we observed no significant
changes in ICVF or ODI after SD, indicating that SD hardly
affected the density and spatial organization of neurites in GM.
Second, ISO decreases were observed in a series of cognition-
related brain regions (including the left superior, middle and
inferior frontal gyrus, left medial frontal and rectus gyrus, left
superior and middle temporal gyrus, temporal pole, and anterior
insula, right middle and inferior frontal gyrus, right middle and
inferior temporal gyrus and temporal pole) and bilateral posterior
cerebellar lobe; while we saw ISO increases in the bilateral anterior
and posterior cerebellar lobe and cerebellar vermis, and lingual
gyrus. Third, CFT results indicated that SD primarily induced
VSM dysfunction, which was in agreement with a previous study
(Gosselin et al., 2017). Fourth, after SD, ISO changes in the left
superior, middle and inferior frontal gyrus was associated with
VSM dysfunction.

Consistent with prior SMT research, which found that SD
showed no significant effect on myelin and axonal integrity in
WM (as reflected by a lack of differences in intra-neurite volume
fraction) (Voldsbekk et al., 2021), our current study revealed
that SD hardly affected the density and spatial organization of
neurites in GM. Meanwhile, a previous DTI study found that
SD alters the content of water molecules in WM, as reflected
by decreased mean diffusivity (Ding et al., 2012). A previous
SMT study also demonstrated that SD affects the extra-axonal
water molecule diffusion process, as shown by a decrease in
extra-neurite mean/radial diffusivity (Voldsbekk et al., 2021). In
line with these previous studies (Ding et al., 2012; Voldsbekk
et al., 2021), the effect of SD on ISO observed in the current
study indicated that SD affected the extra-neurite water molecule
diffusion process in GM. Given that ISO is suggested to be a
biomarker of neuroinflammation (Kraguljac et al., 2022) and that
SD leads to neuroinflammation (inducing astrocytic phagocytosis
and microglial activation) (Bellesi et al., 2017), the changes in ISO
observed in the current study could be attributed to SD-related
neuroinflammation processes.
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FIGURE 3

The correlation between ISO change in left superior, middle, and inferior frontal gyrus and completion time change in delayed-CFT trial. ISO,
isotropic volume fraction; CFT, complex figure test.

After SD, subjects showed ISO reductions in the prefrontal
cortex (including the superior, middle, and inferior frontal gyrus;
medial frontal gyrus; and rectus gyrus) and the temporal lobe
(including the superior, middle, and inferior temporal gyrus; and
temporal pole) and anterior insula. Consistently, as reported in
prior studies, SD also causes metabolic activity reduction and
functional-communication abnormalities in these brain regions
(Thomas et al., 2000; Li et al., 2021). The prefrontal cortex is
important for cognitive control, working memory, and behavioral
flexibility (Buchta et al., 2017); the temporal lobe is involved
in auditory cognition, visual processes, and memory (Jackson
et al., 2018). The anterior insula has reciprocal connections to
limbic regions (such as the anterior cingulate cortex, ventromedial
prefrontal cortex, amygdala, and the ventral striatum), which is
involved in the integration of autonomic and visceral information
into emotional, cognitive, and motivational functions (Namkung
et al., 2017). The decreases in ISO observed in the above-mentioned
areas might be one of the neural substrates responsible for SD-
related cognitive dysfunctions, such as cognitive control and
working memory (Killgore, 2010).

In addition, changes in NODDI metrics after SD in the
cerebellum were primarily dominated by ISO increases in the

bilateral anterior and posterior cerebellar lobe and cerebellar
vermis; and ISO increases were also observed in the bilateral lingual
gyrus. In agreement with our findings, a previous study found
that SD affects metabolic activity in these regions (Thomas et al.,
2000). The anterior cerebellar lobe forms functional circuits with
sensorimotor regions to support motor execution, and the posterior
cerebellar lobe forms functional circuits with association cortices
to support various functions from motor planning to working
memory (Stoodley and Schmahmann, 2018). Functionally, the
cerebellar vermis is concerned with axial motor control and the
modulation of affective behavior (Klein et al., 2016; Fujita et al.,
2020). The lingual gyrus is associated with basic visual processing
(Palejwala et al., 2020). It has been confirmed that several domains
including mood, working memory, motor performance, and visual
perception are particularly vulnerable to SD (Durmer and Dinges,
2005; Killgore, 2010), which might be explained by the ISO changes
in the cerebellum and lingual gyrus.

Several limitations of the current study should be noted. First
is the relatively small sample size; subsequent studies should
be performed with larger sample sizes to strengthen statistical
significance. Second, we enrolled only female participants to avoid
the effect of gender as a confounding factor (Dai et al., 2012) on
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the results. Third, in this study, we evaluated the effect of SD on
visuospatial ability only. SD has been verified to cause detrimental
effects across multiple cognitive domains, such as attention,
vigilance, perception, memory, and executive functions (Killgore,
2010). The association between NODDI metric alterations and
changes in multiple cognitive domains need to be examined in
future studies.

In conclusion, our results suggested that SD hardly affected
the density and spatial organization of neurites in GM, but it did
affect the extra-neurite water molecule diffusion process (perhaps
resulting from neuroinflammation), which contributed to VSM
dysfunction.
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Purpose: This study aimed to investigate potential biological mechanisms

underlying cognitive function alterations in Type 2 diabetes mellitus (T2DM)

patients by integrating cortical morphology with peripheral cytokine levels and

brain-derived neurotrophic factor (BDNF) levels, and to offer potential insights for

the early detection of T2DM-related cognitive impairment.

Methods: This study included 16 T2DM patients with a Montreal Cognitive

Assessment (MoCA) score of at least 26 points, as well as 16 healthy controls

with normal cognitive function. The participants also completed the digit span

test and digit symbol substitution test. Participants’ serum levels of Interleukin 4

(IL-4), IL-6, IL-10, tumor necrosis factor-alpha (TNF-α), interferon-gamma (IFN-

γ), and BDNF were also examined. Each subject underwent a high-resolution

3T structural brain MRI scan. Based on the aparc. a2009s atlas, we calculated

the cortical thickness, sulcus depth, gyrification index, and fractal dimension for

each participant using surface-based morphometry (SBM). Correlation analysis

between cognitive measures, serum levels of cytokines and BDNF, and SBM

indices were further performed.

Results: The levels of IL-4 and BDNF showed significant group differences. In

the T2DM group, the sulcus depth exhibited a significant decrease in the left

transverse frontopolar gyri and sulci, as well as in the right pole-occipital; the

fractal dimension showed a significant increase in the right posterior-dorsal part

of the cingulate gyrus; and the gyrification index significantly increased in the left

inferior part of the precentral sulcus and right triangular part of the inferior frontal

gyrus. Correlation analysis revealed a significant positive correlation between

IL-10 levels and the sulcus depth of left transverse frontopolar gyri and sulci;

a significant positive correlation between the sulcus depth of the right pole-

occipital and the digit span test-forward scores, and a significant negative

correlation between the gyrification index of the left inferior part of the precentral

sulcus and the digit span test-backward scores among T2DM participants.

Conclusion: T2DM patients without cognitive impairment displayed reductions

in IL 4 and BDNF levels, as well as significant alterations in their SBM indices,
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indicating that prior to the emergence of cognitive impairment, the SBM indices,

peripheral cytokines, and BDNF may have altered in T2DM patients. IL-10 may

lessen inflammation-related brain edema and preserve sulcus depth in T2DM

patients through its anti-inflammatory activity.

KEYWORDS

type 2 diabetes mellitus, magnetic resonance imaging, cytokines, brain-derived
neurotrophic factor, cognitive impairment, surface-based morphometry

1. Introduction

Type 2 diabetes mellitus (T2DM) is a disease caused by
insufficient or relatively insufficient insulin secretion, with elevated
blood glucose as the main manifestation. Currently, there are
nearly 500 million people with T2DM worldwide, and the global
incidence of T2DM is increasing year by year, which makes
T2DM one of the diseases that threaten human health worldwide
(Chatterjee et al., 2017; Sun et al., 2022). Among the many
complications of T2DM, cognitive impairment has attracted
increasing attention in recent years. Notably, individuals with
T2DM have a 1.5 times increased risk for Alzheimer’s disease
and other dementias (Biessels et al., 2006). Cognitive impairment
can impair T2DM patients’ self-management, resulting in poor
glycemic control or recurrent bouts of hypoglycemia, which can
lead to cardiovascular events or death (Feil et al., 2012; Punthakee
et al., 2012). Therefore, early diagnosis and early intervention of
cognitive impairment in T2DM are critical to improving patient
prognosis.

The development and application of magnetic resonance
imaging (MRI) technology enabled the detection of structural
alterations in the brain without invasion or radiation. A growing
number of studies have been carried out using MRI to investigate
the relationship between cognitive impairment and structural
alterations in the brain in T2DM. Surface-based morphometry
(SBM) is a cortical analysis approach that has recently gained
popularity among researchers due to its ability to calculate various
cerebral cortex indices and hence yield more cortical information
than voxel-based morphometry (VBM) (Ahn et al., 2011). SBM
has been applied to investigate cerebral cortical abnormalities
in neuropsychiatric disorders, such as Alzheimer’s disease (Nho
et al., 2012), schizophrenia (Palaniyappan and Liddle, 2012),
autism (Nordahl et al., 2007), etc. Several studies have recently
begun to explore alterations in SBM indices in T2DM patients
(Kang et al., 2022; Shao et al., 2022). In addition, it has also
been demonstrated that cytokines and brain-derived neurotrophic
factor (BDNF) levels may be associated with the development
of T2DM-related cognitive impairment (Zhen et al., 2013; Simo
et al., 2017; Sun et al., 2018). Despite recent achievements in
MRI analysis and molecular biology techniques, the underlying
mechanisms of T2DM related cognitive impairment are far from
well clarified. Moreover, to the best of our knowledge, there
is still lacking the combination of SBM indices and cytokines
levels to assess cognitive impairment in T2DM of the currently
available studies. We speculate that combining these approaches
to evaluate alterations in cortical structure as well as peripheral

blood cytokines and BDNF in T2DM patients who have not
yet exhibited cognitive impairment may give insights into the
underlying mechanisms and early detection of T2DM-related
cognitive impairment.

The purpose of this study was to investigate potential
biological mechanisms underlying cognitive function alterations in
T2DM patients by integrating cortical morphology with peripheral
cytokine levels and BDNF levels, and to offer potential insights for
the early detection of T2DM-related cognitive impairment.

2. Materials and methods

2.1. Participants

Patients with T2DM needed to meet the diagnostic criteria of
the American Diabetes Association (ADA), have been diagnosed
for more than 6 months, and had no previous diabetic crisis or
diabetic complications. All subjects should be right-handed, have
a MoCA score of at least 26, have at least 6 years of education,
and have no history of cardiovascular disease, tumor, autoimmune
system diseases, neurological diseases, psychiatric diseases, etc. In
addition, none of the subjects have experienced trauma, surgery,
infection, tobacco, alcohol, or drug use (except for regular use of
blood glucose control drugs in T2DM patients) within 4 weeks
before inclusion, and female subjects should not be pregnant or
lactating. After strict inclusion and exclusion criteria, a total of
16 T2DM patients without cognitive impairment and 16 healthy
controls were enrolled (ages between 29 and 65; recruitment period:
June 2020 to June 2021). Detailed demographic information can be
found in Table 1.

2.2. Cognitive tests

Prior to the acquisition of MRI images, each participant
underwent a series of cognitive function tests. Chinese version
of the Montréal Cognitive Assessment Scale-B (MoCA-B)
(Nasreddine et al., 2005) test was primarily used to determine
whether the subject with cognitive impairment, and only the
subjects with MoCA scores ≥ 26 can be included in this
study. Moreover, the digit span test (DST, including forward
and backward versions) (Leung et al., 2011) and digit symbol
substitution test (DSST) (Jaeger, 2018) were also used for a more
comprehensive understanding of cognitive function.
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TABLE 1 Demographics and clinical characteristics of the participants.

T2DM
(N = 16)

HC (N = 16) Statistics
(t/U)

P-value

Gender
(F/M)

5/11 8/8 0.473

Age (years) 45.625 ± 9.344 42.125 ± 10.436 0.999 0.326

Education
(years)

12.0 (9.0, 14.0) 12.0 (10.5, 16.0) 100.00 0.287

Systolic BP
(mmHg)

131.19 ± 18.16 126.94 ± 16.69 0.689 0.496

Diastolic BP
(mmHg)

83.86 ± 8.73 81.94 ± 8.31 0.643 0.525

BMI 24.32 ± 2.56 23.19 ± 2.77 1.196 0.241

MoCA 27.00 (26.00,
28.25)

29.00 (27.75,
30.00)

76.50 0.050

DST_F 8.50 (7.00, 9.00) 8.00 (8.00, 9.00) 117.50 0.697

DST_B 4.50 (4.00, 5.00) 5.00 (4.00, 6.00) 104.00 0.360

DSST 50.19 ± 10.60 51.56 ± 14.20 –0.310 0.758

IL-4
(pg/mL)

5.68 (5.01,5.68) 5.68 (5.68,10.34) 76.00 0.031*

IL-6
(pg/mL)

1.61 (1.42, 2.07) 1.42 (1.32, 1.67) 161.50 0.207

IL-10
(pg/mL)

1.29 ± 0.51 1.274 ± 0.87 0.072 0.943

TNF-α
(pg/mL)

2.54 ± 0.48 2.49 ± 0.42 0.309 0.760

IFN-γ
(pg/mL)

9.76 (9.76, 10.09) 9.76 (9.76,11.06) 110.00 0.473

BDNF
(pg/mL)

3026.69 ± 2031.81 5012.69 ± 2180.96 –2.664 0.012*

HbA1c (%) 8.13 ± 1.56 NA NA NA

FBG
(mmol/L)

8.26 (7.58, 9.07) NA NA NA

Data are presented as N, median (Q1, Q3), and mean ± SD. T2DM, type 2 diabetes
mellitus group; HC, healthy control group; F, female; M, male; Systolic BP, systolic
blood pressure; Diastolic BP, diastolic blood pressure; BMI, body mass index; MoCA,
Montreal cognitive assessment; DST_F, digit span test forward; DST_B, digit span test
backward; DSST, digit symbol substitution test; IL-4, interleukin 4; IL-6, interleukin 6; IL-10,
interleukin 10; TNF-α, tumor necrosis factor-alpha; IFN-γ, interferon-gamma; BDNF,
brain-derived neurotrophic factor; HbA1c, Hemoglobin A1c; FBG, fasting blood glucose.
Fisher’s exact test was used for the statistical difference of gender. Two sample t-test was used
for statistical group differences of age, systolic blood pressure, diastolic blood pressure, BMI,
DSST, IL-10, TNF-α and BDNF. Non-parametric Mann–Whitney U test was performed for
group comparison of the remaining variables. One asterisk (*) indicates the significant level
with P < 0.05.

2.3. Clinical measurements and
laboratory examinations

Each subject was measured for blood pressure, height, and
weight in addition to the usual clinical physical examination. Blood
pressure was used to exclude patients with moderate to severe
hypertension, and height and weight were used to calculate body
mass index (BMI) and to exclude obese patients. All subjects will
also have venous blood collected to measure serum levels of BDNF,
interleukin 4 (IL-4), interleukin 6 (IL-6), interleukin 10 (IL-10),
tumor necrosis factor-alpha (TNF-α), interferon-gamma (IFN-γ)

and, in addition, hemoglobin A1c (HbA1c) and fasting blood
glucose (FBG) in patients with T2DM to rule out hyperglycemic
crisis and to assess the diabetic condition. Clinical examination and
blood collection should be done in the morning on the day of the
MRI test on an empty stomach.

2.4. Imaging data acquisition

A 3.0 Tesla MAGNETOM Prisma MRI scanner (Siemens
Healthcare, Erlangen, Germany) equipped with a 64-channel
head-neck coil was used to collect the MRI data. The
parameters of 3D T1WI sequence as following: Field of View
(FOV) = 256 mm2

× 256 mm2, slice thickness = 1.0 mm, number
of slices = 192, voxel size = 1.0 mm3

× 1.0 mm3
× 1.0 mm3,

Repetition time (TR) = 2530 ms, Echo time (TE) = 2.98 ms,
integrated Parallel Acquisition Techniques (iPAT) = 2, flip
angle = 7◦, Echo spacing = 7.1 ms, Total acquisition time
(TA) = 5 min 58 s.

2.5. Data preprocessing and SBM indices
computation

Both T1-weighted imaging data preprocessing and SBM indices
computation were carried out using SPM 121 and computational
anatomy toolbox (CAT12) software2 based on Matlab 2021b
(The Mathworks Inc., Natick, MA, United States). Before data
preprocessing, all the images were reviewed by two radiologists to
confirm that there were no organic lesions in the brain, such as
hemorrhages, infarcts, malformations, etc.

The image pre-processing steps were as follows: First, convert
T1 imaging data from DICOM into NIfTI, then choose ICBM
space template as Affine Regularisation and medium strength of
SPM inhomogeneity correction for initial SPM 12 preprocessing,
and then use the center of the mass algorithm to set origin, APRG
approach for Skull- Stripping and optimized shooting method for
spatial registration at CAT 12 preprocessing.

The SBM indices calculating steps were as follows: First, extract
surface parameters, which contain sulcus depth, gyrification index,
and fractal dimension in addition to cortical thickness. Then
resample and smooth surface data with a 15 mm full-width half
max (FWHM) Gaussian kernel for cortical thickness, and 20 mm
FWHM Gaussian kernel for the other indices. Then extract surface
values based on the aparc_2009 atlas (Destrieux et al., 2010).

2.6. Statistical analysis

Two-sample t-test, Mann-Whitney U-test and Fisher’s exact
test were employed to assess differences between groups for
demographic information, clinical data, and laboratory data,
depending on the type of data and whether it corresponded to a
normal distribution. For the detection of inter-group differences

1 http://www.fil.ion.ucl.ac.uk/spm

2 http://www.neuro.uni-jena.de/cat/
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FIGURE 1

The flow chart of the study. T2DM, type 2 diabetes mellitus group; BDNF, brain-derived neurotrophic factor; SBM, surface-based morphometry.

in SBM indices, gender was added as a covariate, and SPM
software was used to perform factorial design, followed by two-
sample t-tests with Holm-Bonferroni correction. The relationships
between cognitive function scores, cytokines and SBM indices were
calculated using Spearman partial correlation analysis controlled
with gender. P < 0.05 was regarded as statistically significant.
Statistical analyses were carried out using JASP software3 and
R-Studio software.4 The flow of the study is shown in Figure 1.

3. Results

3.1. Demographics, clinical
characteristics, and laboratory results

There were no significant differences in terms of gender, age,
years of education, blood pressure and BMI between the two
groups. Regarding the cognitive function scores, we only recruited
T2DM patients without cognitive impairment. However, their
MoCA scores were lower than those of healthy controls, although
the difference was not statistically significant (P = 0.05). There were
no significant group differences in the scores of DST and DSST
between the two groups. Laboratory results of peripheral blood
showed a significant decrease in the levels of IL-4 and BDNF in the
T2DM group (P < 0.05). Other cytokines revealed no statistically
significant differences between groups. Detailed information for the
T2DM and HC groups is presented in Table 1.

3 https://jasp-stats.org/

4 https://www.rstudio.com/

3.2. Differential brain regions in the SBM
indices between groups

In the T2DM group, the sulcus depth exhibited a significant
decrease in the left transverse frontopolar gyri and sulci, as well as
in the right pole-occipital (P = 0.040 and 0.017, respectively, Holm-
Bonferroni corrected); the fractal dimension showed a significant
increase in the right posterior-dorsal part of the cingulate gyrus
(P = 0.007, Holm-Bonferroni corrected); and the gyrification

TABLE 2 Information of the differential brain regions in the SBM indices
between T2DM patients with normal cognitive function and healthy
controls.

SBM
index

Hemisphere Atlas regions t-value P-value

Sulcus depth Left Transverse
frontopolar gyri
and sulci

–2.755 0.040*

Sulcus depth Right Pole occipital –2.527 0.017*

Fractal
dimension

Right Posterior dorsal
part of the
cingulate gyrus

3.161 0.007**

Gyrification
index

Left Inferior part of the
precentral sulcus

3.808 0.034*

Gyrification
index

Right Triangular part of
the inferior frontal
gyrus

2.353 0.038*

Two sample t-test, Holm-Bonferroni corrected. T2DM, type 2 diabetes mellitus group; SBM,
surface-based morphometry. One asterisk (*) indicates the significant level with P < 0.05.
Two asterisks (**) indicates the significant level with P < 0.01.
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FIGURE 2

Differential brain regions in the SBM indices between T2DM patients with normal cognitive function and healthy controls. (A) Differential brain
regions with intergroup differences in sulcus depth. (B) Differential brain regions with intergroup differences in fractal dimension. (C) Differential
brain regions with intergroup differences in gyrification index. Two sample t-test, Holm-Bonferroni corrected. T2DM, type 2 diabetes mellitus group;
SBM, surface-based morphometry.

index indicated a significant increase in the left inferior part of
the precentral sulcus and right triangular part of the inferior
frontal gyrus (P = 0.034 and 0.038, respectively, Holm-Bonferroni
corrected). After adjustment for multiple comparisons, there was

no significant difference in cortical thickness between groups. The
information of the differential brain regions in the SBM indices is
shown in Table 2, and the locations of the differential brain regions
are shown in Figure 2.
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FIGURE 3

Correlation analysis of SBM indices, cytokine levels, and cognitive function scores in T2DM patients with normal cognitive function. (A) IL-10 levels
were positively associated with the sulcus depth of left transverse frontopolar gyri and sulci (Spearman correlation, R = 0.636, P = 0.011). (B) The
digit span test-forward scores were positively associated with the sulcus depth of the right pole-occipital (Spearman correlation, R = 0.762,
P < 0.001). (C) The digit span test-backward scores were negatively associated with the gyrification index of the left inferior part of the precentral
sulcus (Spearman correlation, R = –0.710, P = 0.003). T2DM, type 2 diabetes mellitus group; SBM, surface-based morphometry; IL-10, interleukin 10;
DST_F, digit span test-forward; DST_B, digit span test-backward.

3.3. Correlations between cognitive
function scores, cytokines and SBM
indices in the T2DM group

Spearman’s partial correlation analysis revealed a significant
positive correlation between IL-10 levels and the sulcus depth of
left transverse frontopolar gyri and sulci (R = 0.636, P = 0.011),
a significant positive correlation between the sulcus depth of the
right pole- occipital and the digit span test-forward (R = 0.762,
P < 0.001), and a significant negative correlation between the
gyrification index of the left inferior part of the precentral sulcus
and the digit span test-backward (R = –0.710, P = 0.003) among
T2DM participants (Figure 3).

4. Discussion

In this study, we examined the levels of peripheral blood
cytokines and BDNF in T2DM patients without cognitive
impairment, as well as healthy controls, and calculated indices
such as sulcal gyrus depth, fractal dimension, gyrification index
and thickness of the cerebral cortex utilizing the SBM approach.
We noticed that T2DM patients had significant alterations in
their cytokine levels, BDNF levels and SBM indices prior to the
development of cognitive impairment. Further correlation analysis
in T2DM patients revealed a non-negligible association between
cytokine levels, SBM indices, and cognitive function scores. It
is suggested that combining biological indices such as cytokines
and BDNF with magnetic resonance imaging analysis technology
can provide new insights into understanding the underlying
mechanism of T2DM-related cognitive impairment and further
explore biomarkers for its early diagnosis.

The cognitive decline induced by T2DM is an insidious
process with complex causes, and the specific mechanism has
not been clearly explained. Before mild cognitive impairment
(MCI), T2DM patients may experience subtle cognitive changes in

cognitive function, which is dubbed diabetes-associated cognitive
decrements (Biessels and Despa, 2018). Despite the fact that we
only recruited T2DM patients who were cognitively normal (none
of them had a MoCA score below 26), it’s possible that some of them
were undergoing a decline in cognitive function. Hence this period
is crucial for unraveling the pathological mechanisms of T2DM-
related cognitive impairment and developing therapeutic strategies
in advance of effective intervention.

Many neurodegenerative diseases, including Alzheimer’s
disease (AD), Parkinson’s disease, and mild cognitive impairment
(Nagatsu et al., 2000; Guerreiro et al., 2007; Brosseron et al., 2014),
are thought to be related to chronic neuroinflammation. Therefore,
cytokines, as small molecular proteins that play an important role
in the regulation of inflammation and immune system, have been
focused on research (Dinarello, 2007). Elevated levels of TNF-α
and IFN-γ have been found both in pathological brain specimens
of postmortem patients with AD and in relevant animal model
studies, so these two cytokines are considered to be neurotoxic
(Brosseron et al., 2014; Uddin et al., 2022). Although conflicting
results as to its association with cognitive function, IL-6 is generally
thought to be related to either acute or chronic inflammatory
pathophysiology of cognitive impairment (Brosseron et al.,
2014; Lyra e Silva et al., 2021). One research found that T2DM
patients with cognitive impairment had considerably greater
peripheral blood IL-6 levels than T2DM patients without cognitive
impairment (Anita et al., 2022), whereas another reported that
T2DM patients’ IL-6 levels were significantly lower than those of
healthy people (Yang et al., 2020). However, we did not observe
any appreciable inter-group variations in TNF-α,IFN-γ, or IL-6.
Our modest sample size, which will be enlarged for more analysis
in the future, could be responsible for this. IL-4 and IL-10 are
both anti-inflammatory cytokines that are commonly related to
neuroprotection. It has been demonstrated that improved cognitive
function is related to higher serum IL-4 and IL-10 concentrations
in diabetic rats (Wang et al., 2020). IL-10 levels have been
demonstrated to be considerably lower in T2DM patients than in
healthy participants (Bashir et al., 2022), while elevated IL-10 levels
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have also been identified in studies related to nerve fiber injury
(Magrinelli et al., 2015). BDNF is assumed to facilitate learning
and long-term memory for its supporting neuronal growth and
survival, boosting dendritic branching, and regulating synapses
(Gadani et al., 2012; Lu et al., 2014). Lower serum BDNF levels
have been linked to the severity of cognitive impairment (Shimada
et al., 2014; Siuda et al., 2017), and numerous investigations
have revealed that individuals with T2DM have considerably
lower BDNF levels than healthy subjects (Zhen et al., 2013, 2018;
Sun et al., 2018; Anita et al., 2022). We also find the levels of
BDNF in T2DM group were significantly decreased, which is
consistent with the conclusions of previous studies (Krabbe et al.,
2007; Zhen et al., 2013). Animal studies have shown that IL-4 is
associated with learning ability, memory formation, and cognitive
function (Derecki et al., 2010; Gadani et al., 2012; Kipnis et al.,
2012). Moreover, one research concluded that IL-4 can stimulate
microglia to generate BDNF (McCormick and Heller, 2015),
implying that IL-4 may directly act as a cytoprotective cytokine
of neurons. There are, however, limited clinical investigations
on the relationship between IL-4 and alterations in cognitive
function in T2DM patients. According to our research, serum IL-4
levels in T2DM patients are considerably lower than in healthy
participants. In conjunction with the BDNF changes mentioned
above, our findings indicate that IL-4 and BDNF may be involved
in the process of cognitive function alterations in T2DM patients.
Although there were no significant differences in IL-10 levels
across the groups, we did observe that in T2DM patients, serum
IL-10 levels were positively linked with the sulcus depth of left
transverse frontopolar gyri and sulci. Additionally, there was a
substantial positive correlation between DST and the sulcus depth
of the right pole-occipital. Therefore, we hypothesize that IL-10
is engaged in the anti-inflammatory process of T2DM patients,
alleviating edema induced by inflammation to maintain the depth
of the sulcus depth. This might be relevant to the maintenance of
normal cognitive function, but whether it involves compensatory
mechanisms needs to be explored and proved further.

The gyrification index and fractal dimension are commonly
utilized as key indices of cortical complexity, and aberrations
in these parameters may serve as biological markers for
neuropsychiatric disorders (King et al., 2010; Matsuda and Ohi,
2018), but the conclusions are controversial. Recently research
showed individuals with T2DM had higher gyrification index
than healthy participants (Crisóstomo et al., 2021), while another
study revealed that the gyrification index is lower in T2DM
patients with mild cognitive impairment (Shao et al., 2022). Some
experts suggest that the relationship between gyrification index and
cognitive function is changing dynamically during the progression
of neurodegenerative diseases, and also that alterations in various
brain areas are not synchronized (Lebed et al., 2012; Núñez
et al., 2020). Fractal dimension is a morphological variability
sensitive index used to evaluate brain structural complexity (Chen
et al., 2022). Decreased fractal dimension has been found in mild
cognitive impairment patients and AD patients (Ruiz de Miras
et al., 2017; Nicastro et al., 2020). On the alterations in fractal
dimension in T2DM patients, however, very few studies have
been conducted. We speculate that the fractal dimension, like
the gyrification index, undergoes dynamic changes during the
progression of cognitive function alterations in T2DM patients.

Inevitably, there are some limitations to our study. First off, our
sample size is somewhat limited because of the stringent inclusion
and exclusion criteria. Based on this research, we would continue
to increase the sample size in future investigations. Secondly, our
study was a cross-sectional study, we intend to conduct long-term
follow-up observations on the subjects in the future to capture the
key nodes of cognitive impairment in T2DM patients. Thirdly, due
to the complicated medication regimen for patients with T2DM, we
could not take the patients’ medication situation into consideration
in this study. How to evaluate the influence of medicine use in
future studies related to T2DM is a topic worth exploring.

5. Conclusion

T2DM patients without cognitive impairment displayed
reductions in IL 4 and BDNF levels, as well as significant
alterations in their SBM indices, indicating that prior to the
emergence of cognitive impairment, the SBM indices, peripheral
cytokines, and BDNF may have altered in T2DM patients. IL-
10 may lessen inflammation-related brain edema and preserve
sulcus depth in T2DM patients through its anti-inflammatory
activity. The combination of inflammatory biomarkers and MRI
may yield valuable perspectives on comprehending the mechanisms
of cognitive impairment in T2DM individuals. Further study with
expanded sample size and follow-up investigations should be
carried out to establish if cytokines, BDNF, and the SBM indices
are involved in the process of compensating for cognitive function
ahead of the onset of T2DM-related cognitive impairment.
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Objective: Epilepsy is considered as a neural network disorder. Seizure activity in

epilepsy may disturb brain networks and damage brain functions. We propose

using resting-state functional magnetic resonance imaging (rs-fMRI) data to

characterize connectivity patterns in drug-resistant epilepsy.

Methods: This study enrolled 47 participants, including 28 with drug-resistant

epilepsy and 19 healthy controls. Functional and effective connectivity was

employed to assess drug-resistant epilepsy patients within resting state networks.

The resting state functional connectivity (FC) analysis was performed to assess

connectivity between each patient and healthy controls within the default mode

network (DMN) and the dorsal attention network (DAN). In addition, dynamic

causal modeling was used to compute effective connectivity (EC). Finally, a

statistical analysis was performed to evaluate our findings.

Results: The FC analysis revealed significant connectivity changes in patients

giving 64.3% (18/28) and 78.6% (22/28) for DMN and DAN, respectively. Statistical

analysis of FC was significant between the medial prefrontal cortex, posterior

cingulate cortex, and bilateral inferior parietal cortex for DMN. For DAN, it was

significant between the left and the right intraparietal sulcus and the frontal eye

field. For the DMN, the patient group showed significant EC connectivity in the

right inferior parietal cortex and the medial prefrontal cortex for the DMN. There

was also bilateral connectivity between the medial prefrontal cortex and the

posterior cingulate cortex, as well as between the left and right inferior parietal

cortex. For DAN, patients showed significant connectivity in the right frontal

eye field and the right intraparietal sulcus. Bilateral connectivity was also found

between the left frontal eye field and the left intraparietal sulcus, as well as

between the right frontal eye field and the right intraparietal sulcus. The statistical

analysis of the EC revealed a significant result in the medial prefrontal cortex and
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the right intraparietal cortex for the DMN. The DAN was found significant in the

left frontal eye field, as well as the left and right intraparietal sulcus.

Conclusion: Our results provide preliminary evidence to support that the

combination of functional and effective connectivity analysis of rs-fMRI can aid

in diagnosing epilepsy in the DMN and DAN networks.

KEYWORDS

default mode network, dorsal attention network, resting-state functional magnetic
resonance, functional connectivity, effective connectivity, epilepsy

1. Introduction

Epilepsy is a common and serious neurological disorder
that affects around 50 million people worldwide (World Health
Organization [WHO], 2023). Drug-resistant epilepsy (DRE) also
known as refractory epilepsy is one of the most complex types
of epilepsy. DRE is a complicated and heterogeneous condition
in which seizures persist despite adequate trials of two or
more carefully chosen and used antiepileptic drugs (AEDs). The
term “adequate trial” refers to the use of AEDs at therapeutic
doses for a sufficient period of time. The International League
Against Epilepsy (ILAE) defines adequate trial failure as the
persistence of disabling seizures despite the use of two tolerated,
appropriately chosen and used AED schedules, either alone or
in combination (Scheffer et al., 2017). Around 20%–30% of
the epileptic population remains refractory to treatment and
is considered to have drug-resistant epilepsy (Dalic and Cook,
2016).

Diagnosis of DRE has remained challenging for neuroscientists
and researchers. This difficulty can be explained by a variety
of factors, including a lack of consensus definition, complex
seizure semiology, limited diagnostic tools, comorbidities, and
medication adherence issues (Jehi et al., 2022). For accurate
diagnosis and management, a multidisciplinary approach and
careful consideration of the patient’s individual circumstances
are required. Treatment options that can help mitigate these
challenges include optimizing AED therapy, surgical intervention,
non-surgical interventions, complementary and alternative
medicine, multidisciplinary care, and education and support.
Recent technological advancements have simplified the process
by providing numerous credible methods for analyzing and
diagnosing brain diseases.

The development of new technology in neuroimaging has
brought new insights into how brain disease can be diagnosed
and cured. Many technologies for observing brain function non-
invasively were developed and used to acquire brain signals. Among
them, functional magnetic resonance imaging (fMRI) is considered
one of the most prominent in the field (Glover, 2011). This
technology enabled the observation of regional brain activation
by detecting the amount of oxygen in blood in each part of the
brain. Here, we assume that the active region consumes more
oxygen for energy. Resting state and task-based are two main kinds
of fMRI utilized in the neuroimaging study. The main difference
between the two lies in the acquisition procedure. Task-based fMRI

is acquired when the subject performs specific tasks. In contrast, a
resting state is acquired when the subject rests (Logothetis, 2008).

Understanding the properties of the brain network may help
guide surgical intervention for better postoperative outcomes in
drug-resistant epilepsy. A variety of resting state networks, each
showing a definite spatial topography and putatively corresponding
to a specific brain function (Yun et al., 2022). One of them,
known as the default-mode network (DMN), is the most famous
and essential network for the resting condition, as it consistently
shows increased activity during rest than during active and passive
cognitive tasks (Yun et al., 2022). The DMN areas typically
comprise the posterior cingulate (PCC), medial prefrontal cortex
(MPFC), and inferior parietal cortex (IPC) (Raichle et al., 2015).
Same as DMN, the dorsal attention network (DAN) is another
crucial resting-state fMRI network known to be active when
performing specific tasks. However, DAN has also been proven
to be associated with mesial temporal epilepsy in a resting state
(Szczepanski et al., 2013). The DAN is centered on bilateral regions
of the frontal and parietal cortex, including the frontal eye field
(FEF) and the intraparietal sulcus (IPS).

Analyzing resting state fMRI (rs-fMRI) data remains
challenging for neuroscientists. Brain connectivity modeling
is a well-studied approach to illustrating brain function. One of the
popular fMRI methods for studying brain networks is functional
connectivity (rs-FC). Rs-FC measurements can detect coherent
spontaneous neuronal activities within a brain network (van
den Heuvel and Hulshoff Pol, 2010; Hlinka et al., 2011). This
method has been explored by many researchers and is based on the
temporal correlation between BOLD signals (Blood oxygenation
level dependency) in distant brain regions. Lee et al. (2014)
investigated changes in FC in brain networks for partial refractory
epilepsy. The analysis was based on rs-fMRI using intrinsic
connectivity contrast (ICC). Liu et al. (2021) also evaluated
functional connectivity patterns in epilepsy associated with focal
cortical dysplasia (FCD) to explore the underlying pathological
mechanism of this disorder. Rs-FC is probably a good analytical
approach to investigate rs-fMRI networks, but recent studies have
highlighted some weaknesses and limitations of this approach
(Buckner et al., 2013). These weaknesses could be covered by
other analytical approaches, such as effective connectivity (EC)
analysis. This method provides adequate details on directed causal
influences between different regions of interest and covers some of
the shortcomings observed during the FC analysis. Many studies
have supported this using a similar technique to perform brain
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network assessments and diagnose brain diseases. Using rs-fMRI,
Wei et al. (2016) performed an effective connectivity analysis to
examine idiopathic generalized epilepsy-related changes in major
neurocognitive brain networks. Jiang et al. (2018) also assessed
the functional and effective connectivity of the attention and
default mode networks of rs-fMRI. Although, the EC method
has many advantages and covers some limitations of FC analysis.
However, several questions remain unanswered, so relatively few
studies characterizing effective or directed connectivity analysis
of epileptic disease exist. From all these observations, concrete
actions must be taken to create a more efficient and precise method
to eliminate these shortcomings.

We propose to analyze functional and effective connectivity
based on rs-fMRI in this study. Our study aims to explore brain
activities within the DMN and DAN of candidates with DRE. We
hypothesize that studying functional and causal interactions within
the brain network could help characterize and localize the epileptic
zone. We also hypothesize that DRE candidates will have frequent
seizures as a result of impaired brain communication caused
by abnormal connectivity. Effective and functional connectivity
analysis will be performed to achieve our goal. The idea behind
such an approach is to effectively contribute to the diagnosis of
the epileptogenic zone and facilitate surgical operations by making
them more precise.

Our study is organized as follows. The functional connectivity
analysis will first be performed using the CONN toolbox to
analyze rs-fMRI candidates. It will consist of performing a seed-
based correlation analysis to assess the connectivity patterns
between each patient and the healthy controls for DMN and
DAN separately. Next, the effective connectivity analysis will be
performed using the DCM (Dynamic Causal Modeling) approach
and the statistical Bayesian modeling inference, including Bayesian
model selection and averaging. Finally, we evaluated our findings
through statistical analysis. A two-sample t-test was conducted to
differentiate connectivity within each network for the patients and
healthy groups. This original study assesses the applicability of
seed-based correlation and DCM analysis based on rs-fMRI data
to diagnose epileptic networks.

2. Materials and methods

2.1. Participants

The dataset in this study initially consisted of 71 subjects
(38 patients and 33 HCs). To increase the population size in
this study, the data was collected from three different sources
(2 samples of patients and a single sample of healthy controls).
The first sample consisted of 12 patients who underwent
presurgical evaluation from January 2018 to July 2019 at
Shengjing Hospital of China Medical University. The evaluation
involved a detailed clinical history and neurological examination,
complete neuropsychological evaluation, psychiatric assessment,
inter-ictal and ictal onset patterns in long-term scalp video-
electroencephalogram (video-EEG), magnetic resonance imaging
(MRI), and fMRI results. All 12 patients underwent surgical
resection for medically refractory epilepsy with histopathological
confirmation of FCD.

The others two samples were collected from an open-source
website.1 The second sample corresponding to the second group of
patients is provided by Thompson et al. (2020). Participants were
patients with medically drug-resistant who had elected to undergo
neurosurgical treatment for their epilepsy.

The third sample is from the healthy control candidates
collected by Gu et al. (2022). The subjects had no history of medical,
neurological, or psychiatric disease. None of the subjects was taking
medication at the time of testing.

The image quality of all subjects and datasets was checked
and controlled in a concise manner. The procedure and selection
criteria were given in Figure 1. Our current study included a
total of 47 subjects, including 28 patients and 19 healthy controls.
All patients were collected and evaluated in accordance with
standard principles. The evaluation included a detailed clinical
history, a neurological examination, a complete neuropsychological
assessment, a psychiatric assessment, and inter-ictal and ictal onset
patterns in a long-term scalp video-electroencephalogram (video-
EEG), MRI, and fMRI. They were all diagnosed with focal epilepsy,
and the presurgical evaluation test results for each patient are
shown in Table 1.

This study was approved by the ethics committee of Shengjing
Hospital of China Medical University and the informed consent
was signed by the participant or a legal guardian/next of kin (for
the participant under the age of 18).

2.2. Data acquisition

All rs-fMRI measurements were acquired and processed with
a specific epilepsy protocol as used in the clinical routine. For
sample 1, the MR images were acquired with a PET/MR scanner
(SIGNA PET/MR; GE Healthcare, Waukesha, WI, USA) using
a 16-channel head coil. The protocol included the following
sequences: Sag 3D T1BRAVO (T1w; TR = 8.5 ms, TE = 3.3 ms,
flip angle = 12◦, voxel size = 0.469 × 0.469 × 1,000 mm3,
FOV = 512 × 512). Resting-state BOLD images were acquired using
a SIGNA PET/MR (TR = 2,000 ms, TE = 35 ms, Flip angle = 90
degrees, 3.5 × 3.4 × 4.0 mm3 voxel size).

Sample 2 images were acquired as follows: T1-W structural
scans were obtained on a 3T GE Discovery 750w (BRAVO, 32 ch
head coil, TE = 3.376 ms, TR = 8.588 ms, Flip angle = 12 deg.,
1.0 × 1.0 × 0.8 mm voxel size). Resting-state BOLD-fMRI sessions
were obtained in a subset of subjects before implantation (4.8 min
per session, 32 ch head coil, TR = 2,260 ms, TE = 30 ms, Flip
angle = 80 degrees, 3.4 × 3.4 × 4.0 mm3 voxel size).

Sample 3 data were collected on a 3 Tesla Prisma Siemens Fit
scanner using a Siemens 20-channel receive-array coil. Anatomical
images were acquired using an MPRAGE sequence (TR: 2,300
milliseconds, TE: 2.28 milliseconds, 1 mm isotropic spatial
resolution, FOV: 256 millimeters, flip angle: 8 degrees, matrix
size: 256 × 256 × 192, acceleration factor: 2). Each scanning
section consisted of an anatomical session, two 10-min resting-
state sessions, and several 15-min sleep sessions. Blood oxygenation
level-dependent (BOLD) fMRI data were acquired using an EPI
sequence (TR: 2,100 milliseconds, TE: 25 milliseconds, slice

1 openneuro.org
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FIGURE 1

Criteria and the procedure for selecting subjects.

thickness: 4 mm, slices: 35, FOV: 240 mm, in-plane resolution:
3 mm × 3 mm).

2.3. Data processing

The functional connectivity analysis in this study uses
the CONN toolbox.2 CONN is a powerful and well-known
neuroimaging toolbox that helps process task-related and rs-
fMRI data (Whitfield-Gabrieli and Nieto-Castanon, 2012; Schurz
et al., 2014). For this study, we subdivided our method
into three main steps: data preprocessing, processing, and
statistical analysis (Figure 2). The classical CONN pre-processing
procedure was performed using the default configuration. It
included the realignment and unwarping of the functional
images, motion correction, slice-timing correction, and co-
registration with the structural data (target resolution for functional
images = 2 mm). Structural segmentation and normalization,

2 www.nitrc:projects/conn

functional normalization, ART-based (Artifact Detection Tools)
functional outlier detection and scrubbing, and functional
smoothing (full-width-at-half maximum [FWHM 8-mm Gaussian
kernel) were carried out in MNI-space. After pre-processing data,
the processing step will follow. The CONN default processing
was set as it implements the component-based noise correction
method (CompCor) strategy for physiological and other noise
source reduction, additional removal of movement, and temporal
covariates, temporal filtering, and windowing of the residual
blood oxygen level-dependent (BOLD) contrast signal. During the
processing step, resting-state signals will be extracted from the
gray matter, and the cortex will be divided into different regions
of interest (ROI). Additionally, the mean time series of each ROI
will be extracted as regressors, where other internal processing
conditions will be specified along with the regressors. After that,
individual connectivity maps will be created for each participant.
Eight nodes derived from the networks were selected as the atlases
or regions of interest. One can refer to Table 2 for the details
concerning the networks and coordinate information of their
nodes.
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2.4. Functional connectivity

The functional connectivity analysis includes the first-level and
second-level analyses (Figure 2). The whole analysis was based on
the seed-based connectivity (SBC) procedures defined in CONN
tool. In the first-level analysis, for each subject, every region in
DMN and DAN is used as a seed to conduct a seed-to-voxel
functional connectivity analysis, such as to compute the correlation
maps between the seed and voxels in the rest of the brain. DMN has
4 regions, including the posterior cingulate cortex (PCC), medial
prefrontal cortex (MPFC), and bilateral inferior parietal cortex
(LIPC and RIPC). DAN has four regions, including the frontal eye
field (FEF) and the intraparietal sulcus (IPS) at the left and right
hemispheres. Finally, a z-transformed connectivity map is obtained
for each region of each subject.

In the second-level analysis, we first set a contrast (a label of
“1” is given to a drug-resistant patient, and “0” is given to a healthy

TABLE 1 Seizure onset zones for patients determined through the
presurgical evaluation.

Patient Seizure onset zone

01 Left frontal

02 Left middle temporal

03 Left frontal

04 Left middle temporal

05 Left middle temporal

06 Left middle temporal

07 Left middle temporal

08 Left middle and lateral temporal

09 Right hippocampus and temporal lobe

10 Left temporal lobe

11 Left hippocampus and middle temporal

12 Right frontal

13 Left mesial temporal lobe

14 Right mesial temporal lobe

15 Right hippocampus

16 Left occipital lobe

17 Left frontal cystic mass

18 Left mesial temporal lobe

19 Left frontal encephalomalacia

20 Right mesial temporal lobe

21 Right anterior frontal lobe

22 Left mesial temporal lobe

23 Left mesial temporal lobe and frontal lobe

24 Left temporal pole

25 Right mesial temporal lobe

26 Right mesial temporal lobe and right frontal pole

27 Right mesial temporal lobe, Possible right frontal base

28 Left mesial temporal lobe

control) and highlight the functional connectivity for the group-
level analysis. For each region in DMN and DAN, a non-parametric
test was used to compare the z-transformed connectivity maps of
each drug-resistant patient and the healthy control group. This
means that the comparison will be performed 224 (28 patients by
8 regions) times. The obtained results were considered significant
at a threshold of voxel-wise p < 0.001 uncorrected and cluster-level
p < 0.05, false discovery rate (FDR) corrected for between-group
comparisons. If one or more significant clusters are found for each
patient, we consider significant connectivity changes.

Moreover, ROI-to-ROI connectivity analysis was performed to
estimate the functional connectivity values between each pair of
regions in DMN and DAN. The mean connectivity values of each
region within each network were extracted for the patient and
healthy control groups.

2.5. Effective connectivity

This study used the spectral dynamic causal modeling (DCM)
approach to determine causal connectivity. All DCM analysis was
performed with SPM12 according to the steps described in Sharaev
et al. (2016). Spectral DCM analysis uses a neuronally plausible
power-law model of the coupled dynamics of neuronal populations
to generate complex cross spectra among the measured responses.
Figure 1 shows the procedure included running general linear
modeling followed by time series extraction, after which the DCM
can be specified for each subject. The data used for the time series
extraction includes data fully preprocessed during CONN analyses.
After the GLM estimation, time series extraction was unsuccessful
for 6 subjects, and we finally had 22 subjects for our further
analysis.

The challenge of the effective connectivity analysis was to
assess the activities between different brain regions for two rs-fMRI
networks. To achieve this goal, neural modeling schemes must be
specified, and this will help in making inferences as it provides
details about the interactivities and the connectivity strength
between different regions (nodes) within a specific network

TABLE 2 Network nodes and their coordinates.

Network Node Coordinate
(x, y, z)

Default mode
network

Medial prefrontal cortex
(MPFC)

1, 55, −3

Left lateral inferior parietal
(LIPC)

−39, −77, 33

Right lateral inferior parietal
(RIPC)

47, −67, 29

Posterior cingulate cortex
(PCC)

1, −61, 38

Dorsal attention
network

Left frontal eye field (L-FEF) −27, −9, 64

Right frontal eye field
(R-FEF)

30, −6, 64

Intraparietal sulcus (L-IPS) −39, −43, 52

Intraparietal sulcus (R-IPS) 39, −42, 54
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FIGURE 2

The flowchart of the functional and effective connectivity study (FC: Functional connectivity, EC: Effective connectivity, and DCM: Dynamic causal
modeling).

FIGURE 3

The specified models of effective connectivity in the default mode network (DMN) and dorsal attention network (DAN).

(Friston et al., 2014; Bidhan and Mukesh, 2015). Therefore, six
models were constructed for each subject. Figure 3 shows three
models that were specified for the DMN and DAN. In addition,
fixed effects (FFX) Bayesian Model Selection (BMS) was conducted

to determine the best model that balances the data fitting and
model convolution (Rosa et al., 2010). Moreover, for the best model,
Bayesian Model Averaging (BMA) was conducted (Hinne et al.,
2020). The probability-weighted values obtained from the BMA
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FIGURE 4

The clusters with different functional connectivity connected to the regions [as the seed) in the DMN and DAN network [here are the results of one
patient (No. 02) as an example]. (A) Using PCC as the seed; (B) using MPFC as the seed; (C) using LIPC as the seed; (D) using RIPC as the seed;
(E) using L-FEF as the seed; (F) using R-FEF as the seed; (G) using L-IPS as the seed; and (H) using R-IPS as the seed.

TABLE 3 An example of functional connectivity between one patient (No. 02) and healthy controls.

Network Node (seed) Region with
clusters

Peak location (x, y, z) T-value The number of
voxels

DMN LIPC L-LOC −34 −78 36 7.96 681

RIPC R-LOC 48 −62 26 5.94 421

MPFC MedFC 0 58 −2 7.86 671

PCC Precu 6 −56 32 4.77 2,030

DAN L-FEF – – – – – –

R-FEF R-PreCG 28 −6 34 5.04 54

L-IPS L-SPL −34 −48 44 7.13 912

R-IPS R-SPL 34 −44 52 6.72 805

L, left; R, right; IPC, lateral parietal; MPFC, medial prefrontal cortex; IPC, inferior parietal cortex; PCC, posterior cingulate cortex; FEF, frontal eye field; IPS, intraparietal sulcus; LOC, lateral
occipital; MedFC, frontal medial cortex; Precu, precuneous cortex; FP, frontal pole; SPL, superior parietal lobule; PreCG, precentral gyrus.

parameters models were quantitively analyzed using a classical one-
sample t-test to examine the significance of the non-zero values.

2.6. Statistical analysis

After performing the functional and effective connectivity
analysis, a statistical test was performed to evaluate our study’s
results. All the statistical tests were performed using SPSS.

Once the average connectivity values among the pairs of
each region were estimated in DMN and the DAN, these values
were subjected to a two-sample t-test to verify the difference in
connectivity between the patient group and healthy controls.

3. Results

3.1. Resting-state functional connectivity

Selecting the DMN and DAN networks as regional seeds, the
functional connectivity analysis revealed drug-resistant epilepsy

showing abnormal clusters in patients. For DMN, significant
connectivity changes were observed in 64.3% (18/28) of patients.
In comparison, 78.6% (22/28) of connectivity changes were
observed for DAN.

Figure 4 and Table 3 illustrate an example of the observed
changes within the DMN and DAN for a single patient. The
abnormal locations included the lateral occipital, middle, and
superior temporal gyrus, medial frontal cortex, and superior
parietal lobule for DMN. Whereas, for DAN, these changes were
seen in the precentral gyrus, superior parietal lobule, inferior
temporal gyrus, inferior frontal gyrus, and temporal fusiform
cortex. Comparing the individual performance of each network,
the left lateral parietal lobule and posterior cingulate cortex nodes
had the highest number of patients with significant connectivity
changes, with 42.4% (13/28) for DMN. The best connectivity
performance for the DAN, on the other hand, was observed in
the left intraparietal sulcus node, yielding 53.6% (15/28). Table 4
contains additional information about the findings of individual
patient for both networks.

Furthermore, the statistical analysis between the connectivity
of patient and healthy control groups is shown in Figure 5. For
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TABLE 4 The region with different functional connectivity to the regional seeds in DMN and DAN networks (obtained by comparing the generated
functional connectivity mapping between each individual patient and the healthy control group).

Sub. DMN DAN

LIPC RIPC MPFC PCC L-FEF R-FEF L-IPS R-IPS

– – – – – – –

02 L-LOC R-LOC MedFC Precu – R-PreCG L-SPL R-SPL

03 L-Caudate L- tri IFG – R-MTG L-FP R-ITG PC R-STG

04 L-LOC R-LOC MedFC Precu – R-PreCG L-SPL R-SPL

05 L-LG L-LG – L-LG L-LG L-LG L-LG L-LG

06 L-LOC R-LOC MedFC Precu – R-PreCG L-SPL R-SPL

07 - R-LOC MedFC Precu – R-PreCG L-SPL R-SPL

08 – – – – – – – –

09 L-oper IFG L-AG R-SPL L-oper IFG – – L-ITG R-SPL

10 R-LOC L-LOC R-LOC L-LOC – MedFC – –

11 R-OP L-ITG R-OP L-OP L-TFusC L-TFusC L-MFG L-FG oper

12 L-LOC L-LOC MedFC Precu – R-PreCG R-SPL R-SPL

13 L-LOC – – – – – R-ITG L-LOC

14 – – – – – – – R-SPL

15 – – – – – – R-SPL –

16 – – – – R-MTG L-OP L-PostCG –

17 – R-Cereb – – L-FP – – –

18 – – – – – – L-SPL –

19 – – R-Cereb – R-Cereb – L-SPL –

20 – – – – – – – –

21 – – FP l – L-PreCG – – –

22 R-Cereb R-Cereb R-Cereb R-Cereb R-Cereb R-Cereb R-Cereb L-FP

23 – – R-Cereb – R-Cereb – – –

24 – – R-Cereb – R-SPL – – –

25 – – Brain-S Brain-S Brain-S Brain-S R-LOC Brain-S

26 R-Cereb R-Cereb R-Cereb R-Cereb R-Cereb R-Cereb R-Cereb R-Cereb

27 – – – – L-PreCG – – –

28 R-SPL – R-PreCG - R-Cereb L-MTG L-MTG L-MTG

(-), no findings; L, left; R, right; LP, lateral parietal; MPFC, medial prefrontal cortex; PCC, posterior cingulate cortex; FEF, frontal eye field; IPS, intraparietal sulcus; OP, occipital lobe; LOC,
lateral occipital; IFG, inferior frontal gyrus; MedFC, frontal medial cortex; Precu, precuneous cortex; FP, frontal pole; SPL, superior parietal lobule; PreCG, precentral gyrus; PostCG, post
cingulate gyrus; ITG, inferior temporal gyrus; MTG, middle frontal gyrus; Cereb, cerebellum; Brain-S, brain stem; LG, lingual gyrus; AG, angular gyrus; oper, operculum; TFusC, temporal
fusiform cortex.

the DMN, the two-sample t-test was significant between the medial
prefrontal cortex and posterior cingulate cortex (p = 0.001) and the
bilateral inferior parietal cortex (p = 0.0002 and 0.003). Significant
connectivity was also found between the posterior cingulate cortex
and the right inferior parietal cortex (p = 1.4e-07). For DAN,
the two-sample t-test was significant between the left and right
frontal eye fields (p = 1.2e-10). Additionally, significance was found
between the left and right intraparietal sulcus (p = 0.004).

3.2. Resting-state effective connectivity

Bayesian model selection (BMS) for the patient and healthy
control groups is shown in Figure 6. During BMS analysis, for the

DMN and DAN, the fully connected models were the best for 4 of
the 6 models specified for the patient and healthy control groups.
For both networks, models 1 and 2 were the best for patients and
healthy controls. At the group level, models 1 and 2 were the
best for both networks in 22 out of 22 patients (90.9%). A similar
scenario was observed for the healthy control group. Models 1 and
2 were the best for both networks in 17 out of 19 (89.5%) patients.
For both networks, model 3 was weaker for the patient and healthy
control groups. For the patient group, model 3 was better, with 3/22
(13.6%) and 4/22 (18.2%) for DMN and DAN, respectively. For the
healthy control group, model 3 was the best for 2 out of 19 subjects
(10.5%) for DMN and DAN.

The results of BMA and the t-test are shown in Tables 5A, B.
The one-sample t-test analysis found different significant
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FIGURE 5

The strength of functional connectivity (mean and standard deviation) in the patient and healthy control groups and their comparisons. (A) The
strength of FC for each group (patients and controls). (B) The p-value of FC comparisons between the patient and healthy control groups. *p < 0.05,
orange colors.

connections for each network and group. For DMN, the patient
group yielded significant connectivity from the right inferior
parietal cortex to the medial prefrontal cortex (EC = 0.02), bilateral
connectivity was found between the medial prefrontal cortex
and the posterior cingulate cortex (EC = 0.02), and bilateral
connectivity in the inferior parietal cortex (EC = 0.02). Healthy
controls did not show significant connectivity.

For DAN, the patient group yielded significant connectivity
from the right frontal eye field to the left intraparietal sulcus
(EC = 0.2) and from the right intraparietal sulcus to the left frontal
eye field (EC = 0.03). Bilateral connectivity was found between the
left frontal eye field and the left intraparietal sulcus (EC = 0.04,
EC = 0.2), as well as between the right frontal eye field and the right
intraparietal sulcus (EC = 0.13, EC = 0.03).

For the healthy control group, significant connectivity was
observed from the left frontal eye field to the left intraparietal sulcus
(EC = 0.15), from the right frontal eye field to the left intraparietal
sulcus (EC = 0.02), and from the left intraparietal sulcus to the
right frontal eye field (EC = 0.04). Non-trivial connections have
been considered, and self-connections in graphs have been ignored
for simplicity. In addition, only significant connections with a
connection strength greater than 0.1 Hz and a probability greater
than 0.95 were reported. The winning model that summarizes the

strength of interactions within the networks for each group is
shown in Figure 7.

Finally, the statistical analysis results of the effective
connectivity values between the patient and healthy control
groups are shown in Tables 5C, D. For the DMN, the two-sample
t-test was significant from the middle prefrontal cortex to the left
inferior parietal (p = 5.5E-05), and from the right inferior parietal
cortex (p = 7.93E-09).

For the DAN, the two-sample t-test was significant from the
left frontal eye field to the intraparietal sulcus (p = 1.30E-10), the
left intraparietal sulcus to the right frontal eye field (p = 3.50E-07),
and the right intraparietal sulcus to the left and left frontal eye fields
(p = 2.20E-14 and 7.70E-11, respectively).

4. Discussion

4.1. Significance and importance of this
study

Drug-resistant epilepsy remains one of the most severe cerebral
diseases, and its diagnosis remains very tedious. Resting-state
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FIGURE 6

The Bayesian model selection (BMS) at the single-group level. The columns represent the network (DAN and DMN), and each row represents the
study group (patients and healthy controls).

fMRI is an essential neuroimaging tool that has shown interesting
results in diagnosing brain diseases. The purpose of this study is
to investigate brain activities in rs-fMRI networks. The primary
experiment of this study provides new information in the study
of the connectivity of rs-fMRI networks of patients with drug-
resistant epilepsy. Functional and effective connectivity analysis
approaches were used to assess connectivity behaviors in the default
mode and the dorsal attention networks. Overall, the study provides
satisfactory results.

The FC analysis showed abnormal activities in 18 out of 28
patients for the DMN compared with the DAN, which showed
slightly higher performance showing activities in 22 out of 28
patients. This result supports that DMN and DAN are two crucial
rs-fMRI networks to be evaluated during the presurgical analysis of
candidates for refractory epilepsy (Blumenfeld et al., 2004; Hinne

et al., 2020). This assertion is confirmed by Widjaja et al. (2013),
who reported a decreased FC within the DMN in children with
medically refractory epilepsy. Zhou et al. (2020) also highlighted
the crucial role of the DAN network by investigating right temporal
lobe epilepsy candidates.

The DCM analysis performed well and showed connectivity for
the DMN and DAN networks. The BMA values and the one-sample
t-test analysis revealed significant connectivity within patient and
healthy control group networks. For DMN, the EC was significant
in the posterior cingulate cortex and medial prefrontal cortex for
patients, while none was significant for healthy controls. This result
suggests that the posterior cingulate and the middle prefrontal
cortex represent two regions with high sensitivity for drug-resistant
candidates. In their study, Cook et al. (2019) confirmed this
observation in which the effective connectivity of the DMN in
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patients with left temporal lobe epilepsy was assessed using the
spectral DCM approach. Their study revealed connections between
the posterior cingulate and medial prefrontal cortex (Cook et al.,
2019).

In addition, the patient group showed significant connectivity
from the right intraparietal sulcus and all other nodes for DAN.
Left and right bilateral connectivity was also observed in the
intraparietal sulcus. This result suggests that the right parietal
lobule is a sensitive region in the DAN. Zhou et al. (2020) examined
cognitive damage of the DAN in patients with right temporal
lobe epilepsy (rTLE) and found a significant difference in the
right superior parietal lobule (SPL) and right precuneus (PCU) in
patients with rTLE compared with healthy controls.

Furthermore, comparing the results of the DCM analysis of
the group of patients to that of healthy controls, a significant
difference in connectivity was also observed for the two networks.
More activities were observed in the patient group compared with
the control group. This hyper-activity observed within the group
of patients may result from the frequent appearance of seizures
in drug-resistant candidates. This last hypothesis (that abnormal
interactions may cause frequent seizures in candidates for drug-
resistant epilepsy) answers the objective of this study. Thus, the
study provides evidence that effective connectivity is a powerful
presurgical and post-surgical analysis technique. This analytical
approach was used by Jiang et al. (2018). In their study, the
Granger causality effective connectivity analysis approach was used
to study the attention networks and default mode network of
refractory participants. The specific disrupted networks appear to
be associated with the specific cognitive characteristics of drug-
resistant.

Finally, for the DMN, the statistical analysis of the FC showed
significant differences between the medial prefrontal cortex and the
posterior cingulate cortex and also between the posterior cingulate
cortex and the right inferior parietal cortex. It was significant
for DAN between the left and right frontal eye field and the
intraparietal sulcus.

Moreover, for the DMN, the statistical analysis of the EC
showed a significant difference from the right inferior parietal
cortex to the middle prefrontal and posterior cingulate cortex.
Additionally, the difference was observed from the posterior
cingulate cortex to the middle prefrontal cortex and the left inferior
parietal cortex. This result suggests that the brain networks of
the patient and control groups exhibit different characteristics.
Xiao et al. (2020) evaluated functional connectivity and topological
properties of brain networks and found that their alterations were
associated with neuropsychological disease.

4.2. Importance of resting state in
drug-resistant epilepsy analysis

Our study proposes to assess the functional and effective
connectivity of the default mode and the dorsal attention
networks, two networks known to present altered connectivity for
epilepsy patients. The vital role of rs-fMRI in assessing altered
brain connectivity for epilepsy patients has been investigated by
several researchers.

These assessments have demonstrated noticeable progress.
Boerwinkle et al. (2020) prospectively examined the influence
of rs-fMRI on the organization of pediatric epilepsy surgery.
Jiang et al. (2018) also assessed the functional and causal
connectivity of the attention networks and default mode
network using rs-fMRI and revealed that epileptic activity might
disrupt network interactions and further influence information
communication. Zhang et al. (2011) also investigated epilepsy
networks using resting-state fMRI, emphasized the importance
of local network topology when investigating mechanisms
underlying tumor-related epilepsy, and provided motivation
for further investigation of the epilepsy process at the network
level.

4.3. Functional and effective connectivity
performance comparison

Brain connectivity is defined as a pattern of interactions
between the different areas of the brain. Functional connectivity
focuses on the temporal correlation among the activity of
different brain areas, while effective connectivity relies on the
causal interactions among the activity of different brain areas.
The fundamental difference between functional and effective
connectivity is the temporal implication of the source of the
effect, and this study has investigated the importance of functional
and effectivity analysis for the presurgical analysis of drug-
resistant. We also tried to compare the best approach to be
used when trying to investigate rs-fMRI patients. However,
our evaluation revealed that both connectivity methods could
answer our needs at different levels. The descriptions above
answer this study’s goal, combining both methods to bring out
meaningful answers and facilitate surgical operations for drug-
resistant candidates.

Several researchers who used and compared both analyses
approaches confirmed this study’s assumption. Among them,
Saetia et al. (2020) studied the interpretability of the effective
connectivity model compared with the functional connectivity
model. Park et al. (2018) also evaluated the ensuing dynamic
effective connectivity in terms of the consistency of baseline
connectivity within DMN using the rs-fMRI. They speculated
that human brain networks at rest show dynamic functional
connectivity induced by effective dynamic connectivity, which
can be modeled efficiently using dynamic causal modeling and
hierarchical Bayesian inference. Mao et al. (2020) investigated
the functional connectivity and effective connectivity of the
habenula in 34 subjects with irritable bowel syndrome (IBS) and
34 healthy controls and assessed the feasibility of differentiating
IBS patients from healthy controls using a machine learning
method.

4.4. Limitations and challenges

Despite the promising results obtained during our study, some
challenges and limitations to this approach persist and must be
overcome. First, a seed-based analysis is known as a relatively
assumption-based approach. It requires the a priori selection of
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TABLE 5 The strength of effective connectivity (mean and standard deviation, in Hz) in the patient and healthy control groups and their comparisons.

(A)

Group Connection From MPFC From PCC From LIPC From RIPC

Patient To MPFC 0 0.02 ± 0.001 0 0.2 ± 0.003

To PCC 0.02 ± 0.001 0 0.07 ± 0.005 0.13 ± 0.002

To LIPC 0.19 ± 0.004 0 0 0.02 ± 0.001

To RIPC 0 0 0.02 ± 0.001 0

Healthy control To MPFC 0 0 0 0.11 ± 0.001

To PCC 0 0 0.07 ± 0.001 0.11 ± 0.001

To LIPC 0.22 ± 0.003 0 0 0

To RIPC 0 0 0 0

(B)

Group Connection From L-FEF From R-FEF From L-IPS From R-IPS

Patient To L-FEF 0 0 0.2 ± 0.003 0.03 ± 0.001

To R-FEF 0 0 0.01 ± 0.002 0.01 ± 0.001

To L-IPS 0.04 ± 0.002 0.2 ± 0.004 0 0

To R-IPS 0.13 ± 0.006 0.13 ± 0.003 0 0

Healthy control To L-FEF 0 0 0.017 ± 0.001 0.15 ± 0.001

To R-FEF 0 0 0.04 ± 0.003 0.13 ± 0.002

To L-IPS 0.15 ± 0.002 0.02 ± 0.0 –0 0

To R-IPS −0.002 ± 0.001 −0.003 ± 0.0 0 0

(C)

Connection From MPFC From PCC From LIPC From RIPC

To MPFC 0 0.7 0 0.6

To PCC 0.7 0 0 0.07

To LIPC 5.50E-05 0 0 0.05

To RIPC 0 0 0.7 0

(D)

Connection From L-FEF From R-FEF From L-IPS From R-IPS

To L-FEF 0 0 0.9 2.20E-14

To R-FEF 0 0 3.50E-07 7.70E-11

To L-IPS 1.30E-10 0.8 0 0

To R-IPS 0.7 0.8 0 0

(A) Default mode network; (B) dorsal attention network; (C) the p-value of comparison of EC between the patient and healthy control groups in DMN; (D) the p-value of comparison of EC
between the patient and healthy control groups in DAN.
(A) The bold font represents the parameters with significant non-zero values by a one-sample t-test (p < 0.05).
(B) The bold font represents the parameters with significant non-zero values by a one-sample t-test (p < 0.05).
(C) The bold font represents significant differences in a two-sample t-test (p < 0.05).
(D) The bold font represents significant differences in a two-sample t-test (p < 0.05).

a specific voxel, atlas, or network. However, the choice of seed
may biologically bias the connectivity findings toward specific,
smaller, or overlapping sub-systems rather than larger, distinct
networks (Cole et al., 2010). The combination of a data and
hypothesis-driven approach may provide a suitable answer to this
problem (McKeown, 2000; Caulo et al., 2011). Second, the data
size is crucial during analysis because a small sample size limits
the statistical power. The sample size in this study is relatively
small, which may impact the results (Grady et al., 2021). This
issue must be considered preliminary and needs to be replicated
in future studies with larger sample sizes and more detailed

scale tests. Third, the lack of post-operative outcomes information
in both patient samples makes comparison with our findings
impossible. Fourth, different acquisition procedures may have
an adverse effect on the interpretability of the result. The rs-
fMRI population used in this study was acquired using slightly
differential procedures. For the patients, sample 1 was obtained
with the eyes closed, while sample 2 was obtained with the eyes
open. For the healthy control group, a mixed eyes open-closed
acquisition was used. This obvious acquisition difference may
have an effect on each candidate’s brain activity in sensorimotor
and occipital regions (Wei et al., 2018). This limitation, however,
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FIGURE 7

The winning model at the group level. The number shows the connectivity parameters (Hz) of the winning model in the patients and healthy control
groups represented by the columns. The rows represent the network type. The solid lines represent connectivity values greater than 0.1 Hz, and their
thickness shows the size of the value. The dotted lines represent the connectivity values below 0.1 Hz. The orange represents the parameters with
significant non-zero values by a one-sample t-test (p < 0.05).

has not resulted in statistical evidence and only a small portion
of brain activity is affected (Agcaoglu et al., 2019). This claim
is supported by Patriat et al. (2013), who discovered that when
the acquisition procedure was changed, only the visual network
changed significantly.

Finally we also explored node-based connectivity analysis using
the DCM method in this study. The expressiveness or complexity
of the underlying neural model limits the interpretability of DCM.
This complexity is constrained by the nature of the data at
hand (Sadeghi et al., 2020). The strengths of the DCM approach
lie in the hemodynamic model that links neuronal population
firing to BOLD data, which creates potential mismatches. This
mismatch may result in incorrect edge strength estimates within
the DCM, potentially leading to the selection of wrong edge
configurations. Another limitation concerns the large number of
nodes used in the resting state analysis, leading to a considerable
number of parameters in the DCM, making estimation difficult.
Perhaps anatomical connectivity analysis can help reduce some
of the challenges.

5. Conclusion

Brain connectivity analysis has always been challenging for
researchers. This study characterized drug-resistant epilepsy by
assessing functional and effective connectivity within resting state
networks. The DMN and DAN networks were investigated at
a subject and group level. Our analysis provided evidence of

abnormal functional connectivity for the DMN and DAN. In
addition, dynamic causal modeling analysis has shown significant
effective connectivity within both networks. Finally, the statistical
analysis has demonstrated the connectivity differences within
the networks of both patients and healthy control groups.
Our findings provide preliminary evidence to support that
combining functional and effective connectivity analysis may
highly contribute to diagnosing altered brain networks in drug-
resistant candidates. The results of this research may offer
new insight into the neuropathophysiological mechanisms of
brain network dysfunction in drug-resistant epilepsy. In our
subsequent studies, we will examine connectivity patterns between
the DAN and DMN.
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Background: Crystallized intelligence (Gc) and fluid intelligence (Gf) are regarded

as distinct intelligence components that statistically correlate with each other.

However, the distinct neuroanatomical signatures of Gc and Gf in adults remain

contentious.

Methods: Machine learning cross-validated elastic net regression models were

performed on the Human Connectome Project Young Adult dataset (N = 1089)

to characterize the neuroanatomical patterns of structural magnetic resonance

imaging variables that are associated with Gc and Gf. The observed relationships

were further examined by linear mixed-effects models. Finally, intraclass

correlations were computed to examine the similarity of the neuroanatomical

correlates between Gc and Gf.

Results: The results revealed distinct multi-region neuroanatomical patterns

predicted Gc and Gf, respectively, which were robust in a held-out test set

(R2 = 2.40, 1.97%, respectively). The relationship of these regions with Gc and

Gf was further supported by the univariate linear mixed effects models. Besides

that, Gc and Gf displayed poor neuroanatomical similarity.

Conclusion: These findings provided evidence that distinct machine learning-

derived neuroanatomical patterns could predict Gc and Gf in healthy

adults, highlighting differential neuroanatomical signatures of different aspects

of intelligence.

KEYWORDS

crystallized intelligence, fluid intelligence, neuroanatomy, morphometry, machine
learning, elastic net regression
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1. Introduction

General intelligence is defined as a general capability to
understand complex ideas, adapt flexibly to the changing
environment, solve problems, and engage in critical reasoning
(Neisser et al., 1996; Gottfredson, 1997). Markers of neural
substrates in brain regions and genetic biomarkers have been
closely linked to intelligence (Posthuma et al., 2002; Genç
et al., 2018), prompting the use of neuroimaging techniques to
uncover the neural signature of intelligence. Furthermore, general
intelligence has been postulated to consist of two independent
components, crystallized intelligence (Gc) and fluid intelligence
(Gf) (Cattell, 1943). While Gc reflects our ability to acquire
skills through knowledge and experience and is related to verbal
ability and general knowledge (Deary et al., 2007; Yuan et al.,
2018), Gf refers to the capacity for problem-solving and logical
reasoning and is suggested as one of the most important features
associated with various cognitive abilities (Varriale et al., 2018).
Despite the evidence that Gc and Gf are regarded as distinct
intelligence components that statistically correlate with each other
(Cattell, 1943; Li et al., 2004), it remains contentious whether
there are distinct neuroanatomical signatures of Gc and Gf in
adults.

An increasing number of functional magnetic resonance
imaging (MRI) studies have found that Gf is linked with
multiple cortical regions, which is postulated by the Parieto-
Frontal Integration Theory (P-FIT) (Gray et al., 2003; Jung
and Haier, 2007; Cipolotti et al., 2022). Based on P-FIT, Gf is
linked to the executive network, which includes the dorsolateral
prefrontal cortex, inferior and superior parietal lobules, and
anterior cingulate gyrus (Jung and Haier, 2007). This explains the
goal-directed behavior that is expressed by individual differences
in Gf (Barbey et al., 2013; Barbey, 2018). Additionally, substantial
evidence from structural MRI (sMRI) studies found higher Gc
expression, which remained stable over time. The Gc level was
associated with greater gray matter volume (GMV) reduction,
and thinning of the cortex thickness (CT) (Yuan et al., 2018).
Moreover, individual differences in Gc may depend on declarative
knowledge stored in the temporal lobe and inferior prefrontal
cortex, leading to widespread cortical region differences across
individuals (Martin and Chao, 2001; McClelland and Rogers,
2003; Gainotti, 2006). Furthermore, Gf and Gc exhibit distinct
trajectories of development (McArdle et al., 2000). However, these
studies investigated the neural substrates of Gc and Gf using
different models of modalities. These studies had small sample sizes
for brain-intelligence associations using MRI (Marek et al., 2022),
which led to low sensitivity for true effects (i.e., type I error) and
increased risk for false positives (i.e., type II error) (Button et al.,
2013).

Recently, studies started adopting larger samples to characterize
the neuroanatomical correlates of Gc and Gf. One study used
a large cohort of adults from the Human Connectome Project
(HCP) and reported higher performance in Gf, which was
associated with cortical expansion in regions related to working
memory, attention, and visuospatial processing. In contrast, Gc
was associated with thinner CT and higher cortical surface
area (CSA) in language-related networks (N = 740) (Tadayon
et al., 2020). Another Adolescent Brain Cognitive Development

study (N = 10,652) conducted a double generalized linear model
to assess the independent association between the mean and
dispersion of CT/CSA and intelligence. It was found that higher
intelligence in preadolescents was associated with higher mean CT
in orbitofrontal and primary sensory cortices but with lower CT
in the dorsolateral and medial prefrontal cortex, particularly in
the rostral anterior cingulate (Zhao et al., 2022). However, these
two studies were conducted using mass univariate approaches
without cross-validation (CV), which might increase the risks of
overfitting. In contrast, machine learning approaches with CV
can assess and prevent overfitting more effectively than univariate
approaches, ultimately leading to more generalized findings. One
example of a machine learning approach is elastic net regression
(ENR), which is an ideal approach to analyzing a large number
of inter-correlated variables or predictors (Zou and Hastie, 2005;
Owens et al., 2022). One study tested numerous machine learning
algorithms for their effectiveness in the context of neuroimaging
data and found that ENR models with CV performed well over
a range of sample sizes as compared to other approaches (Jollans
et al., 2019).

Several recent machine learning studies with CV
comprehensively investigated predictive intelligence. Two
moderately large studies (N = 415 and 392, respectively) found
that distinct functional and structural connections contributed to
the prediction of individual Gc and Gf (Dhamala et al., 2021), and
the findings revealed neurobiological features of the functional
connectome of Gc and Gf across the sexes (Dhamala et al., 2022).
Additionally, another study (N = 308) reported that absolute
GMV enabled significant predictions of individual intelligence
scores (Hilger et al., 2020). However, these studies had several
limitations. Firstly, the samples were enrolled from datasets with
a relatively small sample size (less than 500). Secondly, these
studies only investigated functional and structural connections or
one neuroanatomical measure, GMV, and their relationship with
intelligence. However, cortical GMV comprises CT and cortical
surface area (CSA), which are known to be distinct morphological
features of the cortical architecture (Tadayon et al., 2020). Both CT
and CSA have distinct developmental trajectories and uncorrelated
genetic backgrounds (Storsve et al., 2014), suggesting that CSA
and CT should be considered separate morphometric features in
neurodevelopment (Panizzon et al., 2009; Xu et al., 2023b).

To address these limitations, the current study used a machine
learning approach to predict Gc and Gf from CSA, CT, and
GMV. Data were drawn from the HCP, which remains one of
the largest studies to date with contemporaneously collected Gc,
Gf, and sMRI data. This study conducted ENR models with
the CV approach, which is well suited to assess the overfitting
and generalization of findings (Xu et al., 2023a). This approach
simultaneously investigates all brain morphological variables as
predictors of a target. Hence, this approach elucidates the
neuroanatomical structures that are uniquely important to Gc and
Gf. As a secondary strategy, this study also used a traditional
univariate approach (linear mixed effects modeling) to confirm
the presence of a univariate relationship between Gc and Gf and
the neuroanatomical features contributing to the ENR models.
Furthermore, intraclass correlation analyses were performed to
examine the neuroanatomical pattern similarity of Gc and Gf. This
study aimed to investigate whether Gc and Gf could be effectively
predicted in an independent sample using a machine learning
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approach and uncover the distinct neuroanatomical patterns of Gc
and Gf in adults.

2. Materials and methods

2.1. Participants

In this study, the HCP release S1200 dataset was used.
Participants were recruited at Washington University in St. Louis
over 2 days between August 2012 and October 2015 (Van Essen
et al., 2012). The protocols were approved by each institution’s
research ethics board. All participants provided written informed
consent in accordance with the Declaration of Helsinki. All
participants were young adults between 22 and 35 years old.
The exclusion criteria were as follows: history of psychiatric
disorder, substance abuse, neurodevelopmental disorder or
damage, cardiovascular disease, severe health conditions (such as
diabetes, multiple sclerosis, cerebral palsy, premature birth), or
MRI contraindications (large tattoos, non-removable piercings,
metal devices in the body or claustrophobia, etc.). The complete
details of the inclusion and exclusion criteria and the informed
consent for participants can be found in references (Van Essen
et al., 2012, 2013). Some participants were excluded from further
analysis due to the following reasons: missing sMRI scans, missing
demographic data, and missing behavioral data. A total of 1,089
participants (90.75% of the initial sample size) were included in the
final analysis (Table 1).

2.2. Intelligence assessment

Cognitive ability was assessed by the NIH Toolbox Cognition
Battery with extensively validated neuropsychological tasks
(Mungas et al., 2014). Two composite scores (crystallized cognition
composite and fluid cognition composite) were derived from the
scores of participants when performing NIH Toolbox Cognitive
Battery tasks (Mungas et al., 2014). Gc was measured by Picture
Vocabulary and Oral Reading Recognition Tests, which assessed
language and verbal skills. Likewise, Gf was measured using the
Dimensional Change Card Sort, Flanker Inhibitory Control and
Attention Test, Picture Sequence Memory, List Sorting Working
Memory, and the Pattern Comparison Processing Speed Test,
which broadly assessed processing speed, memory, and executive
functioning (Figure 1A).

2.3. MRI data acquisition and
pre-processing

In the HCP dataset, T1-weighted structural images were
collected using a 32-channel head coin on a 3T Siemens Skyra
scanner (Siemens AG, Erlanger, Germany) with the following
scanning parameters: isotropic resolution = 0.7 mm3, field of
view = 224 mm × 240 mm, matrix size = 320 × 320, repetition
time = 2,400 ms, echo time = 2.14 ms, inversion time = 1,000 ms,
flip angle = 8◦, and 256 sagittal slices. Data were reconstructed

and pre-processed using a modified version of the FreeSurfer
pipeline (Fischl et al., 2004) in FreeSurfer Image Analysis Suite
version 5.31 (Fischl, 2012). For details of acquisition parameters,
reconstruction, and pre-processing of the HCP sMRI data, see
references (Van Essen et al., 2012; Glasser et al., 2013) and
supplementary materials. All structural images were reviewed by
a technician immediately after acquisition to ensure scans were
without any significant problems (i.e., artifacts and substantial
movement). For a detailed explanation of HCP quality control,
check reference (Marcus et al., 2013). The quantitative measures of
CT and CSA for cortical regions were defined by the Desikan atlas
(Desikan et al., 2006), while the GMV for subcortical regions from
the ASEG parcellation and intracranial volume (ICV) was derived
in FreeSurfer (Fischl, 2012).

2.4. Data analyses

ENR model analyses (Figure 1) were conducted in Python
using Scikit-Learn (Pedregosa et al., 2011) and the Brain
Predictability toolbox (Hahn et al., 2021). LME model analyses were
performed using R (Version 4.1.32) and RStudio (“Ghost Orchid”
Release; see text footnote 2), with the lme4 package (Version 1.1-28)
(Bates et al., 2015).

1 http://surfer.nmr.mgh.harvard.edu

2 https://www.r-project.org/

TABLE 1 Demographic characteristics of sample (N = 1089).

Metric M (SD) or percent

Age 28.83 (3.68)

Sex

Female 54.27%

Male 45.73%

Total family income

<$10,000 7.16%

10K−19,999 7.99%

20K−29,999 12.49%

30K−39,999 12.03%

40K−49,999 10.38%

50K−74,999 20.75%

75K−99,999 13.50%

≥ 1,00,000 15.70%

Education level

≤ 11 years 3.49%

12 years 13.77%

13 years 6.34%

14 years 12.40%

15 years 6.06%

16 years 42.15%

≥ 17 years 15.79%

M, mean; SD, standard deviation. These demographic variables were used as covariates in the
following model analyses.
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FIGURE 1

Schematic of elastic net regression (ENR) model analyses conducted. ENR models were built in which crystallized intelligence or fluid intelligence
was the target, respectively, (A) and the predictors were regional sMRI variables (i.e., the cortical thickness and cortical surface area of each cortical
region, gray matter volume of each subcortical region, and total intracranial volume) (B). A modified coefficient of determination (R2) was calculated
as the measure of prediction accuracy for each model. All ENR analyses were repeated 10 times to ensure stability of findings across different
train/test splits and results across repetitions were averaged (C).

FIGURE 2

Prediction accuracy (R2) for elastic net regression models to predict crystalized intelligence (Gc) and fluid intelligence (Gf), respectively. “Mean”
indicate the mean R2 of all models built in the training phase. “Held Out” indicates the all R2 of all models from the training phase being tested on
the held-out test set. Error bars stand for standard error of mean.
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FIGURE 3

Distinct neuroanatomical patterns were indexed by beta weights of different features including cortical surface area (CSA), and cortical thickness
(CT) of each cortical region, and gray matter volume (GMV) of each subcortical that predicted (A) crystalized intelligence (Gc) and (B) fluid
intelligence (Gf), respectively. Red-shaded brain regions or bars indicate positive beta weights, while blue-shaded brain regions or bars indicate
negative beta weights.

2.4.1. Elastic net regression model analyses
To remove the covariance (e.g., demographic variables,

including age, sex, total family income, and education level),
residual covariates were removed from a pool of variables,
comprising Gc and Gf. The ENR models were built with Gc or Gf
as the dependent variable. Hence, the predictors (i.e., independent
variables) of the model-building algorithm were regional sMRI
variables (i.e., the CT and CSA of each cortical region, the GMV
of each subcortical region, and total ICV; Figure 1B). The model
aimed to investigate neuroanatomical patterns that could predict
Gc and Gf.

A modified coefficient of determination (R2) was calculated as
a measure of accuracy for each model. All elastic net analyses were
repeated 10 times to validate findings across different train/test
splits, and the results across multiple repetitions were averaged
(Figure 1C).

Initially, 20% of the total participants were selected as the held-
out test set. For the remaining participants, a 5-fold CV was used
to build and test five separate elastic net regression models. In this
approach, the training data were split into five equal groups (i.e.,
“folds”). A model was then built using four of the 5-folds (i.e., the
training data) and tested on the 5-fold (i.e., the validation set) to
determine its accuracy. After five repetitions, with each fold serving
as the test set exactly once, the mean of the five models was used to
predict the held-out test set.

Within this 5-fold CV, hyperparameter tuning was performed
in the training set with a nested 3-fold CV. A random
hyperparameter search algorithm was used on 200 randomly
selected combinations of hyperparameters (Alibrahim and Ludwig,
2021). In the 3-fold CV, the training data were split into 3-folds in
each of the five model-building phases. Within each of the 3-folds,
200 randomly selected combinations of parameters were tested, and
the best combination was selected. The combination that yielded
the best accuracy from all the folds was used to build a model for
5-fold iteration in the outer loop.

2.4.2. Linear mixed effects model analyses
To better interpret elastic net regression analyses, a secondary

analysis was conducted to test the association of Gc and Gf with
each sMRI variable from the final elastic net regression model. The
linear mixed effects (LME) model analyzed each sMRI variable as
a fixed effect. Demographic variables (sex, age, education level, and
total family income) and ICV were fixed effects, and family ID was
used as a random effect. The Gc or Gf was the dependent variable.
The P < 0.05 after Bonferroni correction was used to indicate
significance. Regions included in ERN models were only considered
as neural correlates of Gc and Gf if they were also associated in the
same direction in the univariate analyses.

2.4.3. Intraclass correlation analyses
To examine the neuroanatomical distinctiveness of Gc and

Gf, absolute similarity coefficients (i.e., intraclass correlation
(ICC)) were calculated across the entire set of sMRI features.
The regression coefficients for each regional brain measure
from LME models and beta weights from ENR models served
as the elements of ICC analyses. The double-entry intraclass
correlations (McCrae, 2008), which accounted for absolute
similarities in magnitude and direction of the neuroanatomical
profiles of Gc and Gf, were used to quantify the degree of absolute
neuroanatomical similarity between Gc and Gf. These indices were
computed separately across CSA features, CT features, and GMV
features, and across all sMRI features again. The neuroanatomical
similarity between Gc and Gf was interpreted using cut-offs
based on “poor reliability/replicability” (ICC = 0.00−0.50),
“moderate reliability/replicability” (ICC = 0.50−0.75), “good
reliability/replicability” (ICC = 0.75−0.90), and “excellent
reliability/replicability” (ICC = 0.90−1.00) (Koo and Li, 2016).
Additionally, Pearson correlations were conducted in sMRI
features between Gc and Gf accordingly.
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3. Results

3.1. ENR models

The ENR model predicted Gc with R2 of 1.00% after a 5-
fold cross-validation. The R2 was 2.40% when predicting the
held-out test set across 10 repetitions of the ENR procedure
(Figure 2 and Supplementary Table 1). The pattern of regions
that contributed to the mode (beta weights ranging between
−0.3744 and 0.5356) included CSA and CT of the widespread
frontal, parietal, and temporal regions (e.g., rostral middle frontal
gyrus, medial orbitofrontal cortex, caudal middle frontal, posterior
cingulate cortex, and caudal anterior cingulate cortex), and GMV
of the subcortical regions, including the bilateral hippocampus and
left thalamus (Figure 3A). Brain regions with positive/negative
beta weights in the ENR model are reported in Supplementary
Table 2.

The ENR model predicted Gf with an R2 of 1.13% after a
5-fold cross-validation. The R2 was 1.97% when predicting the
held-out test set across 10 repetitions of the ENR procedure
(Figure 2 and Supplementary Table 1). The pattern of regions
that contributed to the mode (beta weights ranging between
−0.3866 and 0.4309) included CSA and CT of the widespread
frontal, parietal, and temporal regions (e.g., rostral middle frontal
gyrus, medial orbitofrontal cortex, caudal middle frontal, superior
and inferior parietal lobule, posterior cingulate cortex, and
caudal anterior cingulate cortex), and GMV of the subcortical
regions, including the bilateral nucleus accumbens and left
pallidum (Figure 3B). Brain regions with positive/negative beta
weights in the ENR model are reported in Supplementary
Table 3.

3.2. LME models

Linear mixed effects model analyses (Table 2) revealed the
association between Gc and the CSA of widespread cortical
regions (including bilateral rostral middle frontal gyrus, caudal
middle frontal, superior frontal gyrus, and parahippocampal
gyrus) and the GMV of subcortical regions (including the
bilateral hippocampus and left thalamus). However, Gf was
significantly associated with only CSA in limited cortical
regions (including bilateral the pericalcarine fissure). According
to the ENR model, the brain regions that were significant
in the LME model for both Gc and Gf are displayed in
Figure 4.

3.3. Neuroanatomical pattern similarity

intraclass correlation analyses of regression coefficients
indicated that all sMRI features had poor similarity with all ICC
below 0.50 between Gc and Gf (ICC = 0.1649−0.4761; Pearson’s
r = 0.2614−0.5184; Table 3). Similarly, beta weights of all sMRI
features reported poor similarity with all ICC below 0.40 between
Gc and Gf (ICC = 0.0817−0.3910; Pearson’s r = 0.0812−0.4851;
Table 3).

4. Discussion

This study aimed to provide a comprehensive examination
of distinct neuroanatomical patterns to predict Gc and Gf
in healthy adults using a cross-validated machine learning
approach. Results of this approach indicted that distinct
multi-region neuroanatomical patterns predicted Gc and
Gf, respectively, with robust prediction accuracy in a held-
out test set (R2 = 2.40% for Gc and R2 = 1.97% for Gf).
Univariate LME model analyses supported the results, where
the same brain regions identified in ENR models were
significantly associated with Gc and Gf. Additionally, ICC
findings exhibited poor neuroanatomical pattern similarity
between Gc and Gf, indicating distinct neuroanatomical
patterns to predict Gc and Gf. Taken together, these
findings provided evidence that machine learning-derived
distinct neuroanatomical patterns could predict Gc and Gf
in healthy adults.

Interestingly, the ENR model indicated that Gc was more
predictable than Gf from multi-region neuroanatomical patterns.
Previous research proposed that Gc and Gf exhibited distinct
developments and transformations across the lifespan (Cattell,
1967). While Gc is the ability to use previously learned
knowledge and life experience, which are thought to be
influenced by education and cultural factors, Gf is regarded
as the ability to solve new problems using logical reasoning
and adapt to unknown situations, which are thought to
be more dependent on biological processes (Heaton et al.,
2014). In this study, Gc reflected the scores of tasks such
as vocabulary and decoding, while Gf reflected the scores of
cognitive tasks including cognitive flexibility, working memory,
and information processing speed (Mungas et al., 2014). The
eloquent nature of the mapping between neuroanatomical
morphometry profile and language, including vocabulary and
reading as measured by Gc, may explain the higher variance
of the scores when compared to Gc, which relies on brain
functional networks for different cognitive functions. Another
possible explanation for the higher predictability of Gc relative
to Gf could be the impact of environment on neuroanatomical
morphometry (Maggioni et al., 2020). Additionally, Gc is
more stable throughout life and generally less susceptible to
factors that affect cognitive function (e.g., mood and stress)
(Riedel et al., 2002; O’Neill et al., 2020), resulting in the
higher predictability of Gc over Gf. Additionally, a previous
study found that cortical grey matter morphology provided
little information about Gf and was probably incapable of
predicting Gf (Oxtoby et al., 2019). This study validated this
claim, whereby a low CSA led to low Gf predictivity. In this
regard, Gf reflected higher cognitive functions, which were more
dependent on large-scale brain networks (Gray et al., 2003; Barbey,
2018).

Moreover, the feature of neuroanatomical morphometry most
linked to intelligence was CSA, which had more significant
associations with Gc and Gf than CT or subcortical GMV.
From the evolutionary perspective of the human cerebral cortex,
the brain region is theorized to be enlarged mainly by the
expansion of the surface area without a comparable increase in
its thickness (Rakic et al., 2009). This suggests that the frontal
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TABLE 2 Significant sMRI correlates of Gc and Gf in linear mixed effect models after Bonferroni correction.

Hemisphere Region B SE t PBonferroni R2

Gc

CSA

Right Middle temporal gyrus 0.0066 0.0011 6.2413 0.0000 0.0428

Left Rostral middle frontal gyrus 0.0033 0.0006 5.3011 0.0000 0.0342

Right Rostral middle frontal gyrus 0.0030 0.0006 5.0896 0.0001 0.0330

Left Lateral orbitofrontal cortex 0.0076 0.0016 4.8867 0.0002 0.0330

Left Middle temporal gyrus 0.0058 0.0011 5.0853 0.0001 0.0328

Right Precentral gyrus 0.0041 0.0009 4.7772 0.0003 0.0316

Left Inferior temporal gyrus 0.0046 0.0009 5.0032 0.0001 0.0310

Left Postcentral gyrus 0.0045 0.0009 4.8172 0.0003 0.0308

Right Superior temporal gyrus 0.0052 0.0011 4.6094 0.0007 0.0304

Right Postcentral gyrus 0.0043 0.0009 4.5031 0.0012 0.0284

Left Precentral gyrus 0.0038 0.0009 4.3840 0.0020 0.0283

Left Caudal middle frontal 0.0046 0.0010 4.4200 0.0017 0.0281

Right Insula 0.0070 0.0016 4.2863 0.0031 0.0278

Right Pars opercularis 0.0074 0.0017 4.4289 0.0017 0.0273

Right Superior frontal gyrus 0.0023 0.0006 4.0546 0.0084 0.0269

Left Superior temporal gyrus 0.0042 0.0011 4.0035 0.0104 0.0266

Left Precuneus 0.0039 0.0010 3.9497 0.0130 0.0261

Left Insula 0.0066 0.0016 4.0335 0.0092 0.0258

Left Superior frontal gyrus 0.0021 0.0005 3.8975 0.0161 0.0258

Right Fusiform gyrus 0.0040 0.0010 3.9316 0.0140 0.0252

Left Lateral occipital gyrus 0.0029 0.0008 3.8073 0.0232 0.0251

Left Rostral anterior cingulate 0.0106 0.0026 3.9977 0.0107 0.0249

Right Superior parietal lobule 0.0027 0.0007 3.7923 0.0246 0.0247

Left Supramarginal gyrus 0.0030 0.0008 3.7491 0.0292 0.0240

Right Posterior cingulate 0.0076 0.0020 3.8591 0.0189 0.0240

Right Parahippocampal gyrus 0.0151 0.0041 3.6537 0.0424 0.0235

Right Frontal pole 0.0332 0.0088 3.7840 0.0256 0.0233

Right Inferior temporal gyrus 0.0035 0.0010 3.6820 0.0380 0.0229

GMV

ICV 0.0000 0.0000 5.4403 0.0000 0.0380

Right Hippocampus 0.0044 0.0011 4.0211 0.0097 0.0265

Left Thalamus 0.0020 0.0005 3.9643 0.0123 0.0258

Left Hippocampus 0.0039 0.0010 4.0502 0.0086 0.0251

Gf

CSA

Left Pericalcarine fissure 0.0097 0.0023 4.3083 0.0028 0.0198

Right Precentral gyrus 0.0041 0.0011 3.8765 0.0175 0.0164

Right Lateral occipital gyrus 0.0035 0.0009 3.9168 0.0149 0.0159

Left Cuneus 0.0102 0.0027 3.8300 0.0212 0.0158

Right Pericalcarine fissure 0.0077 0.0021 3.6214 0.0479 0.0144

Gc, crystalized intelligence; Gf, fluid intelligence; sMRI, structural magnetic resonance imaging; B, unstandardized regression coefficient; SE, standard error; CT, cortical thickness; CSA: cortical
thickness; GMV, gray matter volume. FDR, false discovery rate; PBonferroni , P-value after Bonferroni correction; ICV, intracranial volume.
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TABLE 3 Neuroanatomical similarity between Gc and Gf in different sMRI features.

Neuroanatomical similarity Regression coefficients of LME models Beta weights of ENR models

r ICC r ICC

CSA features 0.4827 0.4761 0.0812 0.0817

CT features 0.5184 0.4579 0.3906 0.3910

GMV features 0.2614 0.1649 0.4851 0.2853

All sMRI features 0.4660 0.4388 0.2703 0.2712

Gc, crystalized intelligence; Gf, fluid intelligence; sMRI, structural magnetic resonance imaging. r represents Pearson’s r for the 156 sMRI features [68 indices of regional cortical surface area
(CSA) + 68 indices of regional cortical thickness (CT) + 20 indices of gray matter volume (GMV) separately] for Gc and Gf; ICC represent intraclass correlation (ICC) between these same
regions for Gc and Gf.

FIGURE 4

Brain map for cortical surface area (CSA) of cortical region and gray matter volume (GMV) of subcortical region identified as contributing to predict
crystalized intelligence (Gc) and (B) fluid intelligence (Gf), respectively, in elastic net regression (ENR) models and found to be significantly
associations in linear mixed effect (LME) models. Red indicates distinct brain regions identified in ENR and LME models for Gc; yellow indicates
distinct brain regions identified in ENR and LME models for Gf; blue indicted shared brain regions identified in ENR and LME models for both Gc
and Gf.

and parietal surface area are enlarged first, followed by increasing
thickness for young adults with higher intelligence. Evidence has
verified that CSA and CT possess distinct genetic bases and
developmental trajectories (Panizzon et al., 2009). Furthermore,
gene expression is inversely correlated with development (Vidal-
Pineiro et al., 2020). CSA and CT contribute to different aspects of
intelligence (Gc and Gf). This study revealed the poor similarity
between the neural correlates of Gc and Gf, evidenced by the
low ICC in both ENR and LME models. The poor similarity
between the neuroanatomical correlates of Gc and Gf supports
the concept of distinct neuroanatomical patterns, suggesting
that Gc and Gf may be “two sides of the same coin” (i.e.,
different aspects of intelligence have differential neuroanatomical
signatures).

This study had several noteworthy strengths. This is a study
for a machine learning-based approach to predict Gc and Gf using
multiple metrics of the brain (i.e., CT, CSA, and GMV). The brain
regions analyzed via the machine learning approach were largely
supported by a univariate LME model, which validated the distinct
brain regions to predict Gc and Gf. Additionally, the findings of
this study were largely consistent with previous univariate analyses

on the sMRI correlates of intelligence, highlighting the significance
of the neuroanatomical correlates of intelligence. Furthermore, Gc
and Gf were predicted by distinct neuroanatomical patterns with
poor pattern similarity, which exhibited different neural substrates
of distinct intelligence components in adults.

In retrospect, this study had several limitations. Firstly, the
study used a cross-sectional design, which would discredit claims
regarding the causality of the observed relationships. Future
longitudinal studies should be performed to address this issue (Xu
et al., 2018, 2019). Secondly, the current results are limited only
to sMRI data, which could be further validated by resting-state
functional MRI data or functional MRI data for related tasks (e.g.,
executive function) (Niu et al., 2020; Yang et al., 2020). Another
direction to be explored is to determine whether the predictive
model accuracy can be improved by an alternative machine
learning approach. There is work suggesting that convolutional
neural network modeling can outperform standard machine
learning algorithms (Abrol et al., 2021). While this approach
would require substantially more computational resources than
the current analysis, this may improve the accuracy of predictive
models.
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5. Conclusion

In summary, using a cross-validated elastic net regression
approach, this study indicated distinct neuroanatomical patterns
that predicted Gc and Gf with robust accuracy in healthy adults.
These findings verified the results of prior works to understand
the neuroanatomical foundations of intelligence and demonstrate
the utility of machine learning in this field of research. In
addition, the distinct structural neural correlates of Gc and Gf were
comprehensively studied and recognized for their involvement in
different individual cognitive functions.
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Introduction: Motor learning is a key component of stroke neurorehabilitation. 
High-definition transcranial direct current stimulation (HD-tDCS) was recently 
developed as a tDCS technique that increases the accuracy of current delivery 
to the brain using arrays of small electrodes. The purpose of this study was 
to investigate whether HD-tDCS alters learning-related cortical activation 
and functional connectivity in stroke patients using functional near-infrared 
spectroscopy (fNIRS).

Methods: Using a sham-controlled crossover study design, 16 chronic stroke 
patients were randomly assigned to one of two intervention conditions. Both groups 
performed the sequential finger tapping task (SFTT) on five consecutive days, either 
with (a) real HD-tDCS or (b) with sham HD-tDCS. HD-tDCS (1 mA for 20 min, 4 
× 1) was administered to C3 or C4 (according to lesion side). fNIRS signals were 
measured during the SFTT with the affected hand before (baseline) and after each 
intervention using fNIRS measurement system. Cortical activation and functional 
connectivity of NIRS signals were analyzed using a statistical parametric mapping 
open-source software package (NIRS-SPM), OptoNet II®.

Results: In the real HD-tDCS condition, oxyHb concentration increased 
significantly in the ipsilesional primary motor cortex (M1). Connectivity between 
the ipsilesional M1 and the premotor cortex (PM) was noticeably strengthened 
after real HD-tDCS compared with baseline. Motor performance also significantly 
improved, as shown in response time during the SFTT. In the sham HD-tDCS 
condition, functional connectivity between contralesional M1 and sensory cortex 
was enhanced compared with baseline. There was tendency toward improvement 
in SFTT response time, but without significance.

Discussion: The results of this study indicated that HD-tDCS could modulate 
learning-related cortical activity and functional connectivity within motor 
networks to enhance motor learning performance. HD-tDCS can be used as 
an additional tool for enhancing motor learning during hand rehabilitation for 
chronic stroke patients.
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1. Introduction

Stroke is a leading cause of disability, and many stroke patients live 
with lasting sensorimotor impairment (Anwer et al., 2022). Long-term 
disability in upper extremity motor function due to stroke can cause 
major challenges in performing activities of daily living (Langhorne 
et al., 2009), social participation (Sveen et al., 1999), and returning to 
work (Baldwin and Butler, 2006). Understanding the changes that 
occur in motor-related neurological mechanisms after stroke might 
facilitate the development of appropriate therapies that could enable 
better functional improvement.

Relearning specific motor skills required to complete daily tasks 
is a key component of stroke rehabilitation for upper extremity motor 
function. Learning a new motor skill requires the operation of several 
distinct motor learning processes that rely on different neuronal 
substrates (Spampinato and Celnik, 2021). On the cortical level, the 
prefrontal cortices and parietal lobes, which comprise the 
frontoparietal network, are engaged both in forming motor memory 
in the early learning phase and in delayed recall of learned motor skills 
(Doyon et  al., 2003; Lewis and Miall, 2003). The motor cortex, 
including the primary motor cortex (M1), premotor cortex (PM), and 
supplementary motor area (SMA), is strongly interconnected with the 
frontoparietal network at the cortical level (Dahms et al., 2020). Also, 
for appropriate motor output of learned skills to the descending motor 
system, motor cortices must interact with the striatum and other parts 
of the basal ganglia (BG) (Dahms et al., 2020). After stroke, activity-
dependent adaptations within the distributed neural networks can 
be induced by practicing skilled movements and changes in cortical 
representations (Kami et al., 1995; Karni et al., 1998), despite specific 
lesions. However, it is difficult to draw clear conclusions about the 
neural mechanisms used to recruit brain areas during motor learning 
because of the heterogeneity of stroke.

Transcranial direct current stimulation (tDCS) techniques have 
been used to alter neuronal activity and establish causal relationships 
between motor network components and behavioral outcomes to 
improve motor learning (Ammann et al., 2016) by controlling the 
polarity of induced electrical stimulation (Dissanayaka et al., 2017). 
Recently, high-definition tDCS (HD-tDCS) has been developed to 
increase the spatial precision of current delivery to a targeted cortical 
region using arrays of small electrodes (Villamar et al., 2013). A 4 × 1 
ring configuration is one common arrangement of HD-tDCS 
electrodes to concentrate peak stimulation in a target region (Lefebvre 
et  al., 2019). A previous brain modeling study that used high-
resolution magnetic resonance imaging (MRI) demonstrated that the 
area of cortex undergoing modulation using a 4 × 1 ring configuration 
for HD-tDCS is more highly focused than that with the bipolar 
montage used in conventional tDCS (Datta et al., 2009). As measured 
by behavioral and neurophysiological parameters, HD-tDCS has been 
shown to improve motor learning capacity (Iannone et al., 2022) and 
have long-lasting effects in enhancing motor cortex excitability (Kuo 
et al., 2013). Taken together, the results of previous research indicate 

a need to clarify the neuronal mechanisms that underlie the 
modulatory effects of HD-tDCS.

Neuroimaging techniques are used to expand understanding of 
neuronal mechanisms (Esmaeilpour et al., 2020). Functional near-
infrared spectroscopy (fNIRS) is a noninvasive optical imaging 
technique that can illustrate cortical activity by quantifying the 
concentrations of oxyhemoglobin (oxyHb) and deoxyhemoglobin 
(deoxyHb) using continuous-wave light (650–950 nm) emitted 
through the skull into the brain (Ferrari and Quaresima, 2012). Unlike 
conventional functional neuroimaging modalities, such as functional 
MRI (fMRI) and positron emission tomography (PET) (Leff et al., 
2011; Ferrari and Quaresima, 2012), fNIRS has a relatively high 
tolerance to motion artifacts as it continuously detects hemodynamic 
responses, even during motor tasks. Therefore, the use of fNIRS in 
clinical trials is expanding (Delorme et al., 2019; Lee S.-H. et al., 2020; 
Huo et al., 2021). A recent fNIRS study suggested that the resting-state 
functional connectivity of the dorsolateral prefrontal cortex increased 
after HD-tDCS in healthy subjects (Yaqub et al., 2018). An fNIRS 
study in stroke patients demonstrated that HD-tDCS could rebalance 
interhemispheric cortical activity and reduce the hemodynamic 
burden in the affected hemisphere during simple finger tapping tasks 
(Kim et al., 2022). Furthermore, the usefulness of an fNIRS study on 
the effect of focal HD-tDCS stimulation on upper limb motor function 
in stroke patients was proposed (Muller et  al., 2021). However, 
whether HD-tDCS modulates both cortical activation and functional 
connectivity during motor learning after stroke remains unclear.

The purpose of this study was to investigate the changes of 
cortical activation and functional connectivity during motor 
learning task with affected hand in stroke patients. We hypothesized 
the cortical activation and functional connectivity would show 
different patterns depending on application of HD-tDCS on 
ipsilesional M1 in stroke patients. In this study, we used fNIRS to 
investigate how HD-tDCS to ipsilesional motor areas of stroke 
patients affected cortical activation during motor learning with the 
affected hand compared with sham HD-tDCS. We also examined 
how HD-tDCS application induces changes in functional 
connectivity of ipsilesional and contralesional M1 during motor 
learning with the affected hand in stroke patients.

2. Methods

2.1. Participants

Potential participants were recruited from an outpatient stroke 
rehabilitation clinic at Samsung Medical Center in Seoul, Republic of 
Korea, from June 2021 to June 2022. Clinicians in rehabilitation 
medicine identified suitable participants who meet the inclusion and 
exclusion criteria for this study and obtained informed consent from 
those subjects. Twenty-one chronic stroke patients enrolled in this 
study. Among them, five patients withdrew consent before 
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intervention for personal reasons, thus, 16 patients (7 males and 9 
females, mean age 56.8 ± 13.0 years) completed the study protocol. The 
inclusion criteria were unilateral hemiparetic stroke (both ischemic 
and hemorrhagic), age between 19 and 80 years, chronic stroke 
symptoms for more than 6 months, lesions including BG, and the 
ability to move individual fingers. The exclusion criteria were a history 
of psychiatric disease, significant neurological disease other than 
stroke, metal implants, and contraindications to tDCS application 
(Russo et al., 2017). Written informed consent was provided by all 
patients before participation. The patient demographics are described 
in Table 1, and the lesion map is presented in Supplementary Figure 1. 
The lesions were manually drawn on T1-weighted structural MRI with 
lesion mapping software (MRIcro Software).1 The lesions were 
normalized to the standard Montreal Neurological Institute (MNI) 
space and overlaid on a template of the MNI space. For patients with 
lesions on the right side, the lesions were flipped to the left side to 
better visualize the distribution. The experimental procedures were 
approved by the Ethics Committee of Samsung Medical Center. This 
study was registered at ClinicalTrials.gov (NCT04903457).

2.2. Study design

Using a sham-controlled, double-blind, crossover study design, all 
participants completed 10 days of HD-tDCS intervention. Before the 
intervention, all participants underwent MRI to examine lesion 
location and volume. At the same visit, fNIRS measurements were 
conducted during 15 min of the sequential finger tapping task (SFTT) 

1 http://www.cabiatl.com/mricro/mricro/index.html

to assess the initial motor learning capacity of each participant. 
Referring to the experimental protocols of previous tDCS cross-over 
studies (Gãlvez et al., 2013; Hamoudi et al., 2018), each participant 
underwent treatment with 2 HD-tDCS conditions for 5 consecutive 
days (days 1 to 5), separated by a 4-week washout period, in random 
order of intervention: (a) condition 1: 20 min of real HD-tDCS 
stimulation (real HD-tDCS) over the affected motor area and (b) 
condition 2: sham stimulation that applied the current used in the 
actual stimulation only during the 30-s ramp-up and-down periods 
(sham HD-tDCS). If a patient was first allocated to condition 1, that 
patient underwent the condition 2 process after the 4-week washout 
window period. The order of these treatments was randomly allocated. 
To measure hemodynamic changes during a motor learning task, 
fNIRS was conducted during a 15-min of SFTT after HD-tDCS 
application on every intervention day. In addition, to examine motor 
performance, each participant’s accuracy and response time during 
the SFTT were measured along with fNIRS measurements. The study 
design is illustrated in Figure 1A.

2.3. High-definition tDCS

A battery-driven Starstim 8 tDCS system (Neuroelectrics®, 
Barcelona, Spain) was used in a 4 × 1 ring configuration of HD 
electrodes (surface: 3.14 cm2; current density, anode, 0.32 mA/cm2; 
each cathode, ~0.08 mA/cm2) to deliver a constant direct current to 
the affected hemisphere. The anode, which was the center electrode of 
the 4 × 1 ring montage of HD electrodes, was placed on the scalp 
overlying C3 or C4 (based on the 10–20 system) to cover the 
ipsilesional motor cortical area. The four cathodes surrounded the 
anode at a center-to-center distance of 3.5 cm. Thus, when a 
participant’s lesion was on the right side, the anode was placed on C4, 

TABLE 1 Demographic information of participants.

Subject 
number

Sex Age 
(years)

Onset 
duration 
(months)

Side of 
lesion

Location 
of lesion

Type of 
stroke

Allocated condition 
order

Handedness

1 M 58 64.7 Rt. BG, CR Infarction Condition 2—condition 1 Rt. handed

2 M 38 51.7 Lt. BG, CR Infarction Condition 1—condition 2 Rt. handed

3 F 69 8.7 Lt. BG, CR Infarction Condition 1—condition 2 Bi-handed

4 F 64 31.2 Lt. BG, CR Infarction Condition 1—condition 2 Rt. handed

5 F 54 15.6 Rt. BG, CR Infarction Condition 2—condition 1 Rt. handed

6 F 76 53.5 Rt. BG, CR Infarction Condition 2—condition 1 Rt. handed

7 M 48 67.9 Lt. BG Hemorrhage Condition 2—condition 1 Rt. handed

8 M 33 67.4 Lt. BG, CR Hemorrhage Condition 1—condition 2 Rt. handed

9 F 55 122.0 Lt. BG, CR Infarction Condition 2—condition 1 Rt. handed

10 F 71 175.5 Lt. BG, CR Hemorrhage Condition 1—condition 2 Rt. handed

11 M 58 73.2 Rt. BG, CR Infarction Condition 2—condition 1 Rt. handed

12 F 37 45.6 Lt. BG, CR, TH Hemorrhage Condition 2—condition 1 Rt. handed

13 F 65 130.8 Lt. BG, CR Hemorrhage Condition 2—condition 1 Rt. handed

14 F 62 197.0 Rt. BG, CR Infarction Condition 1—condition 2 Rt. handed

15 M 71 68.0 Rt. BG, CR Infarction Condition 1—condition 2 Rt. handed

16 M 50 38.4 Lt. BG, CR Hemorrhage condition 1 – condition 2 Rt. handed

M, male; F, female; Rt., right; Lt. left; BG, basal ganglia; CR, corona radiata; TH, thalamus.
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and the cathodes were placed on C2, C6, FC4, and CP4. When a 
participant’s lesion was on the left side, the anode was placed on C3, 
and the cathodes were placed on C1, C5, FC3, and CP3. A constant 
current of 1 mA was delivered for 20 min, with 30-s ramp-up 
and-down phases. In the sham procedure, stimulation was applied to 
the same area in the same electrode montage, but real stimulation was 
provided only during the ramp-up and-down periods to provide the 
same skin tingling sensation (Martïnez-Përez et al., 2020). First, a 
period of “ramping up” is administered, in which the stimulation 
reaches the maximum programmed current (e.g., 30 s to reach 1 mA). 
Ramping up is then followed by a short stimulatory period, in which 
the participant receives stimulation for a few seconds. Finally, 
“ramping down” involves the current gradually being switched off 
(Thair et al., 2017). HD-tDCS application is illustrated in Figure 1B.

2.4. Measurement of changes in 
hemodynamic response during the 
sequential finger tapping task

Changes in hemodynamic responses during the SFTT with the 
affected hand were measured in each patient on every intervention 
day. Using an fNIRS measurement system (NIRScout®; NIRx Medical 
Technologies, Berlin, Germany) on a multi-modal-compatible fNIRS 

platform, the hemodynamic response signals were obtained as optical 
changes collected in a continuous wave. The fNIRS system used two 
wavelengths, 760 and 850 nm, with a sampling rate of 10.25 Hz. With 
20 sources and detectors, the fNIRS topomap consisted of 67 channels, 
with 3 cm between each source and detector. The fNIRS topomap was 
designed to cover nearly the whole brain area, including the frontal, 
motor, parietal, temporal, and occipital cortices (Figure 1C). During 
fNIRS measurements, all patients performed the SFTT with the 
affected hand. NIRStar 15.2 software (NIRx Medical Technologies) 
was used for signal acquisition, recording the raw fNIRS data, and 
obtaining signal quality indicators for measurement channels 
following hardware calibration. Channels with poor signal quality 
were identified using the following criteria and excluded from further 
analysis. First, channels with gain larger than 7, showing inadequate 
light detection, were rejected. The gain is calculated by the NIRx 
device during a calibration procedure performed prior to each 
experiment. In the NIRx system, gain values less than 7 are defined as 
optical signals within the range of 0.09–1.4 V and at noise levels less 
than 2.5% (Shoushtarian et al., 2020). If the acquired signal quality was 
poor during calibration, the contact between the scalp and analogous 
optodes was adjusted until the overall signal quality was acceptable.

An SFTT protocol programmed using SuperLabPro® 2.0 software 
(Cedrus, Co., Phoenix, AZ, United States) was used with all participants 
(Figure 1C). During the SFTT with fNIRS measurement, each patient 

FIGURE 1

Study design. (A) Experimental paradigm. (B) Application of HD-tDCS. When a participant’s lesion was on the right side, the anode was placed on C4, 
and the cathodes were placed on C2, C6, FC4, and CP3. When a participant’s lesion was on the left side, the anode was placed on C3, and the 
cathodes were placed on C1, C5, FC3, and CP5. In the real HD-tDCS condition, a constant current was delivered at 1 mA for 20 min, with ramp-up and-
down phases of 30 s. In the sham HD-tDCS condition, current was ramped up from 0 to 1 mA during the first 30 s, then ramp-down to 0 mA during the 
next 30 s, and remain at 0 mA for the next 20 min. (C) fNIRS measurement during the SFTT and the fNIRS topomap. A star appeared on the black screen 
for 600 ms, and then an empty black screen appeared for 400 ms after the star disappeared. HD-tDCS, high-definition transcranial direct current 
stimulation; fNIRS, functional near-infrared spectroscopy; SFTT, sequential finger tapping task; Nz, nasion; Iz, inion; LPA, left pre-auricular; RPA, right 
pre-auricular.
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was seated 50 cm from a computer monitor, and the affected hand 
performing the task was held in a supported position. As a visual cue 
on the monitor, a star appeared at any one of five positions arranged in 
a horizontal line on the computer screen in front of the participant. The 
participant was instructed to use their affected fingers to press the 
button on a customized keyboard that corresponded to the stimulus 
presented on the screen as quickly and accurately as possible 
(thumb = 1, index finger = 2, middle finger = 3, ring finger = 4, little 
finger = 5). The star appeared for 600 ms, after which the screen went 
blank for 400 ms. Each sequence was composed of 9 digits, and the task 
block included 15 repetitions of that sequence. Information about the 
sequence order was not provided to the participant for this implicit 
motor learning task. Three pre-determined sequences with the same 
difficulty were randomly assigned to the baseline, real HD-tDCS, and 
sham HD-tDCS conditions.

2.5. Measurement of motor performance 
during the sequential finger tapping task

Accuracy and response time during the SFTT were used to 
measure changes in motor performance of the affected hand at every 
intervention session. To measure SFTT performance, each patient’s 
mean response time and number of correct responses (accuracy) (Kim 
et  al., 2006) were calculated with SuperLabPro® software. The 
response time was defined as the mean time required for the patient 
to press the correct key after appearance of the stimulus on the screen. 
The accuracy and response time were measured for 36 stimuli within 
each trial, with 15 trial blocks for each task. Also, we calculated the 
skill index (SI). Usually, when speed increases, accuracy decreases, 
and vice versa. The SI is used to compensate for the trade-off between 
speed and accuracy (Cuypers et  al., 2013). In other words, the SI 
considers both the accuracy and response time parameters during the 
task and was calculated using the following formula.

 
SI

Percentage of correct responses

Mean response time per
=

( )%

bblock msec( )

2.6. fNIRS data analysis

The fNIRS data for patients with a left-side lesion were flipped to 
the fNIRS channels on the opposite side, so that the lesion location for 
all subjects could be analyzed on the same side. The cortical activation 
map produced during the SFTT with the affected hand was analyzed 
using statistical parametric mapping (SPM) analysis with the Near-
Infrared Spectroscopy-Statistical Parametric Mapping open-source 
software package (NIRS-SPM)2 (Tak et  al., 2008) implemented in 
MATLAB® (MathWorks, Inc., Natick, MA, United States). To test for 
significant changes in oxyHb concentration during task blocks 
compared with rest blocks, a general linear model was used with a 
canonical hemodynamic response curve (Ye et al., 2009). Then, the 

2 http://bisp.kaist.ac.kr/NIRS-SPM

statistical contrast in reference to the base signal was tested, and 
cortical activity was presented as the t-value during experiment. In 
group analysis of all subjects, statistical analysis was performed based 
on the individual-level beta values to determine the activated 
channels. Then, the t-statistic maps computed for group analysis were 
plotted onto a conventional brain template aligned to the affected 
hemisphere, and regions with significant differences in oxyHb 
concentration were identified (p < 0.05, uncorrected) (Benjamini and 
Hochberg, 1995). Individual-level t-values for all 67 channels were 
extracted to statistically analyze the t-value for each channel. Then, the 
t-values of each channel were presented as individual regions of 
interest (ROIs) that were selected by fNIRS optode location decider 
(fOLD) channels (Zimeo Morais et al., 2018) in MATLAB®.

The analysis of functional connectivity between the bilateral M1 
and other cortical regions using fNIRS data was performed using 
OptoNet II® software (25 March 2021),3 which is a MATLAB-based 
application for functional cortical connectivity analysis of fNIRS 
signals (Lee et al., 2019; Lee G. et al., 2020). The functional connectivity 
between the bilateral M1 and other cortical regions was estimated by 
analyzing the phase-locking value (PLV) in OptoNet II®. The PLV can 
indicate synchrony between two recording sites in a precise frequency 
range and uses responses to repeated stimuli to search for latencies at 
which the phase difference between signals varies minimally across 
trials (phase-locking) (Lachaux et al., 1999). The intertrial variability 
of this phase difference was measured using the PLV; if the phase 
difference varied minimally across trials, the PLV was close to 1; 
otherwise, it was close to zero (Lachaux et al., 1999). After extracting 
the PLV from each of the 15 task blocks in each SFTT trial for each 
individual, the PLVs for each block were averaged. Because fNIRS 
channels for analyzing functional connectivity for cortical regions 
were determined by the fOLD channels (Zimeo Morais et al., 2018), 
they included the channels used to analyze t-values in SPM analysis 
as follows: medial pre-frontal (MPF), Ch. 1, 2, 3, 4; ipsilesional frontal 
area (FrIpsi), Ch. 10, 11, 12, 13, 29, 30; contralesional frontal area 
(FrContra), Ch. 6, 14, 15, 16, 18, 19; ipsilesional M1 (M1Ipsi), Ch. 34, 35, 
39; contralesional M1 (M1Contra), Ch. 23, 24, 59; SMA, Ch. 9, 25, 27; 
ipsilesional PM (PMIpsi), Ch. 31, 32, 33; contralesional PM (PMContra), 
Ch. 17, 21, 26; ipsilesional sensory cortex (SnIpsi), Ch. 40, 41, 44; 
contralesional sensory cortex (SnContra), Ch. 57, 60, 61; ipsilesional 
parietal lobe (PrIpsi), Ch. 48, 49; contralesional parietal lobe (PrContra), 
Ch. 54, 64; ipsilesional temporal lobe (TmIpsi), Ch. 36, 38; contralesional 
temporal lobe (TmContra), Ch. 20, 56; and occipital lobe (Occ), Ch. 55, 
66. The fNIRS signals were processed with normalization for each 
epoch to prevent signal distortion caused by differences between 
functional region groups in the number of fNIRS channels. The PLVs 
between the bilateral M1 and other ROIs were extracted to compare 
changes in functional connectivity at every measurement.

2.7. Statistical analysis

The data were analyzed using SPSS version 20 (SPSS, Inc., Chicago, 
IL, United States). To evaluate the normality of the distribution, the data 
were examined using the Kolmogorov–Smirnov test. The statistical 

3 https://sites.google.com/site/dsucore/free/optonet
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significance of changes in the t-values of channels 35 and 59 and the PLVs 
from the fNIRS measurements was determined through three stages of 
analysis. First, repeated measures analysis of variance (RM-ANOVA) was 
used to confirm the interaction between conditions (real HD-tDCS and 
sham HD-tDCS) and changes in the t-values and PLVs of the fNIRS 
measurement on the five intervention days. Second, the Friedman test 
was used to examine the effects of days within each condition at each 
measurement because the t-values and PLVs were found to have 
non-parametric distributions. Third, the t-values and PLVs obtained for 
each intervention were compared with the baseline values and evaluated 
using the Wilcoxon signed-rank test. For statistical analysis of the SFTT 
variables, three stages of analysis were performed. First, RM-ANOVA was 
used to test the interaction between conditions and blocks of the SFTT 
for each measurement. Second, the Friedman test or RM-ANOVA, 
depending on the normality distribution of data, was used to assess the 
effects of the blocks within each condition on each intervention day. 
Third, SFTT variables in each block were compared with the first block 
on every measurement day using the Wilcoxon signed rank test. For all 
analyses, the level of significance was set at p = 0.05.

3. Results

3.1. Cortical activity analysis during the 
sequential finger tapping task using 
NIRS-SPM

Figure 2A shows changes in the average cortical activation in 
terms of oxyHb during the SFTT with the affected hand from baseline 
to day 5 in each condition, as illustrated by the NIRS-SPM analysis. 
On day 5 in the real HD-tDCS condition, the oxyHb concentration 
during SFTT with the affected hand increased primarily around the 
ipsilesional motor cortices. The changes in t-values for channel 35 and 
59, which represent the ipsilesional and contralesional M1, 
respectively, are illustrated in Figure 2B. The t-value changes for those 
channels show no day × condition interaction. As the intervention 
progressed, the t-value of channel 35 increased from baseline to day 5 
with statistical significance (Friedman test, Χ

2
 = 16.828, df = 5, 

p = 0.005) in the real HD-tDCS condition. In the sham HD-tDCS 
condition, the t-value of channel 35 tended to increase as the 
intervention progressed, but the difference was not statistically 
significant. On days 4 and 5  in the real HD-tDCS condition, the 
increase in the t-value of channel 35 attained statistical significance 
compared to baseline (Wilcoxon signed-rank test, day 4, p = 0.034; day 
5, p = 0.020). The t-value of channel 59 tended to decrease from 
baseline to day 5 without statistical significance in both the real 
HD-tDCS and sham HD-tDCS conditions. A significant decrease in 
channel 59 occurred on day 5 and day 3 in the real HD-tDCS and 
sham HD-tDCS conditions, respectively (Wilcoxon signed rank test, 
real HD-tDCS, p = 0.026; sham HD-tDCS, p = 0.008). The changes in 
the t-values of the ROI channels are presented in Table 2.

3.2. Functional connectivity analysis during 
sequential finger tapping task

Figure 3 shows changes in mean PLV between M1Ipsi and the other 
ROIs during SFTT with the affected hand between baseline and the 
fifth day in each condition. The values above each ROI indicate the 

PLV between M1Ipsi and each ROI in Figure 3. The changes in PLV at 
each ROI showed no day × condition interaction for any ROI. At 
baseline, the PLV between M1Ipsi and SnIpsi indicated a relatively strong 
connection compared with connections between M1Ipsi and the other 
ROIs. From days 1 to 5, as the intervention progressed, the PLV 
between M1Ipsi and PMIpsi showed a tendency to increase compared 
with baseline in the real HD-tDCS condition, but the difference was 
not statistically significant. The PLV between M1Ipsi and SnIpsi tended 
to increase as the days progressed in the real HD-tDCS condition but 
without statistical significance. The PLV between M1Ipsi and PMIpsi 
increased from a baseline value of 0.70 ± 0.24 to 0.88 ± 0.08 
(mean ± standard deviation) on day 3, which was a statistically 
significant change (Wilcoxon signed rank test, p = 0.007). On day 5, 
the PLV difference between M1Ipsi and PMIpsi increased with statistical 
significance from baseline to 0.88 ± 0.08 (Wilcoxon signed-rank test, 
p =  0.017). The PLV between M1Ipsi and SnIpsi did not increase 
significantly in the real HD-tDCS condition compared with baseline 
on any day. In the sham HD-tDCS condition, the PLV between M1Ipsi 
and other ROIs maintained a level similar to that at baseline. On day 
5, relatively strong connections were shown between M1Ipsi and SnContra 
compared with baseline, but this was not statistically significant.

Changes in PLV at each ROI showed a day × condition interaction 
between M1Contra and FrIpsi was statistically significant (RM-ANOVA, 
F = 3.155, p = 0.015). The PLV between M1Contra and FrContra tended to 
decrease from baseline to day 5 in the real HD-tDCS condition. On 
the other hand, the PLV between M1Contra and FrContra increased 
significantly from baseline to day 5 in the sham HD-tDCS condition 
(Wilcoxon signed rank test, p = 0.039). The PLV between M1Contra and 
FrIpsi also tended to decrease without statistical significance from 
baseline to day 5 in the real HD-tDCS condition. However, the PLV 
between M1Contra and FrIpsi showed a tendency to increase in the sham 
HD-tDCS condition. The PLV between M1Contra and FrIpsi increased 
with significance on day 5 (Wilcoxon signed rank test, p = 0.020) in 
the sham HD-tDCS condition, and in the same condition, the PLV 
between M1Contra and SnContra increased significantly compared with 
baseline on days 3, 4, and 5 (Wilcoxon signed rank test, day 3, 
p = 0.011; day 4, p = 0.034; day 5, p = 0.023). Changes in the mean PLV 
between M1Contra and the other ROIs during SFTT with the affected 
hand from baseline to the fifth day in each condition are presented in 
Supplementary Figure 2.

3.3. Statistical analysis during the 
sequential finger tapping task

Figure 4 shows changes in accuracy and response time during every 
block from baseline to day 5 in each condition. RM-ANOVA failed to 
demonstrate a block × condition interaction in the accuracy changes on 
each day. At baseline, the accuracy of the SFTT increased with statistical 
significance from blocks 1 to 15 (RM-ANOVA, F = 2.507, p = 0.038) 
(Figure 4A). In the real HD-tDCS condition, the accuracy improved 
significantly by block on day 2 (Friedman test, Χ

2
= 29.766, df = 14, 

p = 0.008) and day 5 (Friedman test, Χ
2

= 29.239, df = 14, p = 0.010) 
(Figure 4A). In the sham HD-tDCS condition, the accuracy tended to 
increase on all days; it changed significantly on block days 1, 2, and 4 
(Friedman test, day 1: Χ

2
 = 29.143, df = 14, p = 0.010; day 2: Χ2 = 

24.789, df = 14, p = 0.037; day 4: § 2
 = 23.796, df = 14, p = 0.048) 

(Figure 4A). No significant differences in response time were found to 
have a block × condition interaction on any day. The response time in 
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the SFTT tended to decrease from blocks 1 to 15 without statistical 
significance at baseline (Figure 4B). In the real HD-tDCS condition, the 
response time differed significantly by block on day 3 (Friedman test, 
Χ2

 = 34.517, df = 14, p = 0.002), day 4 (Friedman test, Χ
2

 = 43.270, 
df = 14, p < 0.001), and day 5 (Friedman test, Χ

2
 = 27.757, df = 14, 

p = 0.015). In the sham HD-tDCS condition, no statistically significant 
differences were observed between blocks on any day.

The SI did not show statistically significant block × condition 
interactions on any day. At baseline, the SI increased significantly by block 
(Friedman test, Χ

2
= 31.033, df = 14, p = 0.005). In the real HD-tDCS 

condition, the SI changed significantly by block on all days (Friedman test, 
day 1: Χ

2
 = 39.487, df = 14, p < 0.001; day 2: Χ

2
= 47.534, df = 14, 

p < 0.001; day3: Χ
2

= 45.585, df = 14, p < 0.001; day 4: Χ
2

= 33.365, 
df = 14, p = 0.003; day 5: Χ

2
= 40.163, df = 14, p < 0.001). In the sham 

HD-tDCS condition, the SI changed significantly by block on day 1 
(Friedman test, Χ

2
= 35.677, df = 14, p = 0.001) and day 3 (RM-ANOVA, 

F = 3.009, p = 0.020). The SI changes in every block from baseline to day 5 
for each condition are described in Supplementary Figure 3.

4. Discussion

In this study, we investigated changes in cortical activation and 
functional connectivity during the SFTT after stroke treatment with 
HD-tDCS on the motor cortical area. We also examined changes in 
motor performance as reflected by the SFTT. Our main findings are 
that the HD-tDCS intervention could promote cortical activation of 
the ipsilesional motor area during SFTT with the affected hand. 
Furthermore, in the cortical network, the HD-tDCS intervention 
enhanced functional connectivity between M1Ipsi and PMIpsi. Without 
the application of HD-tDCS, functional connectivity between M1Contra 
and SnContra was promoted during motor learning after stroke. Also, 
the hemodynamic changes caused by the real HD-tDCS intervention 
were accompanied by improvement in motor performance and upper 
extremity function in chronic stroke patients compared with the sham 
HD-tDCS.

In normal motor learning, increases in cortical activation of the 
contralateral motor area during the early stage of motor learning and 

FIGURE 2

(A) Average cortical activation maps during the SFTT with the affected hand. SFTT, sequential finger tapping task. (B) T-value changes in the ipsilesional 
(channel 35) and contralesional (channel 59) M1 from baseline to day 5. Red and blue asterisks indicate statistical significance between baseline and 
each measurement day in the real HD-tDCS and sham HD-tDCS conditions, respectively (Wilcoxon signed rank test, p < 0.05).
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TABLE 2 Changes in t-values on cortical activation mapping through statistical parametric mapping at each intervention session.

Real HD-tDCS Sham HD-tDCS

Region of 
interest

Channel Baseline Day 1 Day 2 Day 3 Day 4 Day 5 Day 1 Day 2 Day 3 Day 4 Day 5

MPF
Ch. 4 3.121 (3.959) 3.126 (5.304)

3.158 

(4.484)
2.699*(4.029) 2.004 (4.195) 1.672*(3.594) 2.719 (2.601) 2.641 (3.831) 2.643 (3.646) 2.145*(3.799) 2.546*(3.813)

FrIpsi
Ch. 12 2.581 (2.532) 1.357*(2.326)

1.945 

(2.447)
2.148 (3.429) 1.961*(2.553) 1.704 (2.658) 2.233 (2.396) 2.234 (3.910) 3.073 (1.751) 1.634 (2.919) 3.165 (2.630)

FrContra
Ch. 15 3.041 (3.517) 1.671*(1.773)

1.447 

(2.532)
2.903 (4.609) 2.098 (2.945) 0.672*(1.985) 1.876*(3.425) 2.499*(2.257) 2.893 (3.827) 2.504 (1.419) 1.841 (2.849)

M1Ipsi
Ch. 35 2.512 (3.915) 2.354 (4.407)

2.882 

(4.678)
3.662 (2.990) 4.841*(4.092) 7.223*(5.944) 1.163 (2.191) 1.850 (6.350) 2.315 (1.629) 1.656 (2.489) 1.886 (4.358)

M1Contra
Ch. 59 3.535 (3.527) 2.358 (5.889)

2.863 

(2.279)
2.637 (4.802) 2.417 (3.296) 1.692*(3.320) 2.053 (3.534) 2.978 (4.052) 2.004**(2.791) 3.567 (4.156) 3.075 (5.753)

SMA
Ch. 27 2.321 (2.181) 2.461*(3.226)

1.697 

(3.093)
3.248 (4.146) 0.530 (3.948) 1.493 (5.023) 0.975 (3.441) 1.647 (2.601) −0.469 (4.862) 2.062 (4.559) 1.328 (4.650)

PMIpsi
Ch. 32 1.543 (3.345) 3.131 (3.172)

2.361 

(3.465)
3.375 (4.067) 2.911 (2.586) 2.813 (2.352) 1.804 (2.167) 1.461 (4.142) 2.166 (2.633) 1.092 (3.440) 0.915 (5.183)

PMContra
Ch. 26 4.062 (3.566) 4.232 (4.801)

3.396 

(3.223)
3.208 (5.522) 3.569 (4.354) 3.020 (3.563) 2.021*(3.062) 3.400 (4.046) 2.258 (2.796) 3.130 (3.479) 2.882 (6.079)

SnIpsi
Ch. 44 3.166 (3.354) 2.602 (4.356)

2.273 

(6.092)
2.877 (3.850) 0.713 (3.432) 1.785 (4.842) 0.597 (2.484) 1.470 (2.347) 1.190 (1.996) 1.196 (2.701) 1.354 (3.683)

SnContra
Ch. 60 4.011 (3.488) 3.329 (5.164)

3.822 

(3.172)
1.816 (5.338) 1.601*(3.423) 3.480 (3.407) 1.794*(2.608) 1.959 (4.117) 2.510*(2.160) 2.587*(3.712) 3.083*(3.856)

PrIpsi
Ch. 49 2.204 (3.050) 1.902 (5.931)

3.084 

(2.755)
0.842 (3.336) 1.485 (3.021) 3.485 (3.466) 1.714 (2.185) 1.522 (2.746) 3.091 (4.339) 0.525 (2.980) 2.262 (4.712)

PrContra
Ch. 54 1.135 (2.386) 1.638 (4.267)

3.044 

(4.554)
2.694 (4.367) 2.063 (4.323) 2.736 (2.608) 1.276 (2.930) 1.974 (4.650) 2.162 (3.349) 0.616 (6.269) 1.785 (4.218)

TmIpsi
Ch. 36 2.430 (3.173) 0.589 (1.841)

1.724 

(2.782)
0.427 (3.520) 1.650 (2.667) 2.405 (2.469) 0.719 (1.802) 1.475 (4.526) 1.479 (2.969) 1.667 (2.624) 1.824 (1.521)

TmContra
Ch. 20 3.871 (3.695) 2.461*(2.796)

2.123 

(4.231)
1.183*(3.624) 0.976*(4.095) 1.053*(5.082) 1.608*(2.968) 2.898 (3.806) 1.473*(1.427) 0.814*(2.141) 1.254 (2.935)

Occ
Ch. 66 1.975 (3.730) 2.590 (5.932)

2.424 

(5.399)
1.699 (2.466) 1.995 (2.398) 2.951 (3.189) 1.592 (3.006) 2.068 (3.271) 2.732 (5.168) 1.580 (3.086) 1.646 (5.631)

All data are expressed as median (interquartile range). MPF, medial prefrontal cortex; FrIpsi, ipsilesional frontal area; FrContra, contralesional frontal area; M1Ipsi, ipsilesional primary motor cortex; M1Contra, contralesional primary motor cortex; SMA, supplementary motor 
area; PMIpsi, ipsilesional premotor cortex; PMContra, contralesional premotor cortex; SnIpsi, ipsilesional sensory cortex; SnContra, contralesional sensory cortex; PrIpsi, ipsilesional parietal cortex; PrContra, contralesional parietal cortex; TmIpsi, ipsilesional temporal lobe; TmContra, 
contralesional temporal lobe; Occ, occipital lobe. *Significant change compared with baseline (Wilcoxon-signed rank test, p < 0.05). Bold values mean significant change compared with baseline.
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improvements in response time, rather than in accuracy, are thought 
to indicate successful motor learning (Park et al., 2010; Krakauer et al., 
2019). This study found increases in cortical activity in the ipsilesional 
motor area during SFTT with the affected hand after the real HD-tDCS 
intervention, which was accompanied by significant improvement in 
SFTT response time. The t-values for oxyHb in the channels 
representing the M1Ipsi during SFTT with the affected hand increased 
significantly by day in the real HD-tDCS condition. After the sham 
HD-tDCS intervention, SFTT performance did not reach the same 
level as with the real HD-tDCS intervention. In the normal process of 
motor learning, recruitment of M1 plays a key role through 
use-dependent mechanisms (Hardwick et  al., 2013). Therefore, 
modulating M1 by enhancing cortical activation in stroke patients has 
been suggested as a strategy for improving motor learning after stroke 
(Lefebvre et  al., 2013; Kang et  al., 2016). With the focal montage 
provided by the 4 × 1 configuration, HD-tDCS was shown to effectively 
improve motor skill learning in healthy subjects (Iannone et al., 2022). 
Also, application of HD-tDCS to the motor area has been shown to 
increase task-related cortical activation of the motor area (Muthalib 
et  al., 2014; Besson et  al., 2019). Our results of enhanced cortical 
activation after HD-tDCS application to ipsilesional M1 with motor 
learning training differ from those of a previous study. Prior results 
showed decreased cortical activation with HD-tDCS and a simple 
motor task in chronic stroke patients (Kim et al., 2022). This difference 
could be due to the motor task paradigm. First, the duration of the 
motor task at 1 of our sessions was longer than that of Kim et al. (2022). 
Second, our motor task paradigm contains repetitions of a sequence, 
unlike the simple motor task of the previous study. Multiple sessions of 
a sequence-specific motor learning task enhance response to repetition 
of experience-driven changes of M1, unlike a simple motor task (Karni 
et al., 1998). It is conceivable that the motor task paradigm plays a 
critical role in the effectiveness of HD-tDCS on task-related cortical 
activation in chronic stroke patients. Our cortical activation results 
imply that HD-tDCS could augment motor performance, especially in 

terms of response time, by increasing cortical activation of the motor 
area after stroke. In other words, they suggest that HD-tDCS could 
alter cortical activation and motor learning patterns after stroke to 
better reflect the normal pattern of early-stage motor learning.

The motor cortical areas M1, PM, and SMA act as a hub for 
forming networks with other cortical or subcortical regions engaged 
in motor learning (Dahms et  al., 2020). In the real HD-tDCS 
condition, the intensity of connection between M1Ipsi and PMIpsi 
increased and was accompanied by a decrease in connection with 
M1Contra and the frontal areas. With those hemodynamic changes, 
response time during the SFTT improved significantly. When 
reproducing motor sequences with precise timing, the PM plays a 
crucial role in temporal organization of movements by producing a 
rhythmic pattern of motor sequences and sending a projection to M1 
to produce motor sequence outputs with optimal timing (Halsband 
et al., 1993). Previous findings demonstrated that performance of 
automatic sequential finger movements involved greater activity of the 
PM to compensate for reduced connections between the PM and M1 
that result from degenerative changes in the brain (Wu and Hallett, 
2005). After stroke, contributions of the PM that support the role of 
M1 represent a tract-specific structure–function relationship for 
improving motor performance (Schulz et al., 2012). Participants in 
our study had lesions including the BG, which indicate impairment in 
generating significant output from learned sequences to the 
descending motor system. Thus, strengthened functional connectivity 
between M1Ipsi and PMIpsi after HD-tDCS indicate that PMIpsi plays an 
important role in supporting M1Ipsi in projecting the motor output of 
skilled movements by inducing timing-effective motor performance 
of a learned skill. We also found that functional connectivity between 
M1Contra and SnContra was strengthened when stroke patients repeated 
the motor learning task without the HD-tDCS intervention. It is 
widely recognized that implicit sensorimotor recalibration serves to 
minimize motor execution errors during performance of implicit 
motor learning (Krakauer et  al., 2019; Kim et  al., 2021). In our 

FIGURE 3

Changes in functional connectivity between the ipsilesional M1 and other ROIs during the SFTT with the affected hand. The letters in green circles 
indicate the names of the ROIs, and the colored lines represent functional connectivity between the ipsilesional M1 and each ROI. The numbers above 
each green circle are the mean PLV between the ipsilesional M1 and that ROI. The functional connectivity line is represented by a warmer color if the 
PLV was close to 1 and a cooler color if the PLV was close to 0, and only the high-value lines (threshold >0.2) are represented. The PLV between the 
ipsilesional M1 and PM increased on days 3 and 5 compared with baseline in the real HD-tDCS condition (Wilcoxon signed rank test, p < 0.05). MPF, 
medial prefrontal cortex; Fr, frontal area; M1, primary motor cortex; SMA, supplementary motor area; PM, premotor cortex; Sn, sensory cortex; Pr, 
parietal cortex; Tm, temporal lobe; Occ; occipital lobe.
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patients, we found an effort to recruit implicit sensorimotor adaptation 
and thereby reduce motor execution errors during an implicit motor 
learning task with the affected hand that took the form of a significant 
strong connection between M1Contra and SnContra, but not between M1Ipsi 
and SnIpsi. The enhanced functional connectivity between M1Contra and 
SnContra might indicate that the sensory-motor network was 
strengthened in the contralesional hemisphere because of the 
interhemispheric imbalance after stroke (Berenguer-Rocha et  al., 
2020). These findings support imaging evidence from a previous study 
indicating that application of inhibitory brain stimulation over the 
contralesional sensory and motor cortex could enhance motor 
learning in post-stroke patients (Meehan et al., 2011). In previous 
findings (Mary et  al., 2017), the lower resting-state connectivity 
between the sensorimotor cortex and other learning-related areas was 
related to a reduced need to perform error detection and correction 
in a healthy young subject. The results of the current study showed 
strengthened functional connectivity of M1Ipsi with PMIpsi, M1Contra, 

and SnContra, in chronic stroke patients with learning-related lesions. 
The differences in those findings imply that the strengthened 
functional connectivity in cortical levels induces motor learning by 
compensating for the role of learning-related lesions in chronic stroke 
patients, unlike the healthy population.

To the best of our knowledge, this is the first study to investigate 
the modulating effect of HD-tDCS on learning-related hemodynamic 
changes in chronic stroke patients with restricted subcortical lesions 
by analyzing changes in both cortical activation and functional 
connectivity at the whole brain level. Our findings provide evidence 
that HD-tDCS could improve motor performance during a motor 
learning task by increasing learning-related cortical activation in 
M1Ipsi and strengthening the learning-related connection between 
M1Ipsi and PMIpsi. Nonetheless, this study has several limitations. First, 
there is a potential lack of statistical power due to our small sample 
size; therefore, our results cannot be generalized to the entire stroke 
population. Second, lack of successive recordings during repeated 

FIGURE 4

Changes in the accuracy and response time of the SFTT. (A) Changes in accuracy at baseline and in the real HD-tDCS and sham HD-tDCS conditions. 
(B) Changes in the response time at baseline and in the real HD-tDCS and sham HD-tDCS conditions. Green asterisks indicate statistical significance 
between block 1 and block 15 at baseline (Friedman test, p < 0.05). Red asterisks indicate statistical significance between block 1 and block 15 in the real 
HD-tDCS condition on each day (Friedman test, p < 0.05). Blue asterisks indicate statistical significance from block 1 to block 15 in the sham HD-tDCS 
condition on each day (Friedman test, p < 0.05). Black asterisks indicate statistical significance between block 1 and each other block on each 
measurement day (Wilcoxon signed rank test, *p < 0.05, **p < 0.01). SFTT, sequential finger tapping task; HD-tDCS, high-definition transcranial direct 
current stimulation.
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administrations over several weeks prevented analysis of HD-tDCS 
after-effects. Future research with a larger sample size in the stroke 
population and long-term sustainability are needed to identify the 
clinically relevant effects of HD-tDCS for motor learning in stroke 
patients. Third, we could not measure the hemodynamic changes that 
occurred during application of HD-tDCS. To investigate the direct 
mechanisms underlying HD-tDCS, future studies need to measure 
hemodynamic changes during HD-tDCS. Fourth, the stroke lesions 
of participants were diverse; most of patients had concomitant lesion 
of the corona radiata well as the BG. Therefore, it was not possible to 
interpret the results in relation only with BG lesion. To affirm the 
learning-related hemodynamic changes associated with specific 
lesions, future studies need to concentrate on stroke patients with 
homogenous lesions.

5. Conclusion

This study has demonstrated that HD-tDCS induced increases in 
cortical activation at M1Ipsi and enhanced functional connectivity 
between M1Ipsi and PMIpsi in chronic stroke patients. Learning-related 
changes in cortical activation and functional connectivity caused by 
HD-tDCS correlated with improved motor performance, particularly 
motor learning task response time. The results of our study imply that 
HD-tDCS to M1Ipsi could allow efficient hemodynamic changes in 
motor network areas that promote successful motor learning among 
stroke patients.
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Mapping the time-varying 
functional brain networks in 
response to naturalistic movie 
stimuli
Limei Song 1†, Yudan Ren 1*†, Kexin Wang 1, Yuqing Hou 1, 
Jingsi Nie 2 and Xiaowei He 1

1 School of Information Science and Technology, Northwest University, Xi’an, China, 2 School of Foreign 
Studies, Xi’an Jiaotong University, Xi’an, China

One of human brain’s remarkable traits lies in its capacity to dynamically coordinate 
the activities of multiple brain regions or networks, adapting to an externally 
changing environment. Studying the dynamic functional brain networks (DFNs) 
and their role in perception, assessment, and action can significantly advance our 
comprehension of how the brain responds to patterns of sensory input. Movies 
provide a valuable tool for studying DFNs, as they offer a naturalistic paradigm 
that can evoke complex cognitive and emotional experiences through rich 
multimodal and dynamic stimuli. However, most previous research on DFNs have 
predominantly concentrated on the resting-state paradigm, investigating the 
topological structure of temporal dynamic brain networks generated via chosen 
templates. The dynamic spatial configurations of the functional networks elicited 
by naturalistic stimuli demand further exploration. In this study, we  employed 
an unsupervised dictionary learning and sparse coding method combing with 
a sliding window strategy to map and quantify the dynamic spatial patterns of 
functional brain networks (FBNs) present in naturalistic functional magnetic 
resonance imaging (NfMRI) data, and further evaluated whether the temporal 
dynamics of distinct FBNs are aligned to the sensory, cognitive, and affective 
processes involved in the subjective perception of the movie. The results revealed 
that movie viewing can evoke complex FBNs, and these FBNs were time-varying 
with the movie storylines and were correlated with the movie annotations and the 
subjective ratings of viewing experience. The reliability of DFNs was also validated 
by assessing the Intra-class coefficient (ICC) among two scanning sessions under 
the same naturalistic paradigm with a three-month interval. Our findings offer 
novel insight into comprehending the dynamic properties of FBNs in response 
to naturalistic stimuli, which could potentially deepen our understanding of the 
neural mechanisms underlying the brain’s dynamic changes during the processing 
of visual and auditory stimuli.
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1. Introduction

The study of functional brain networks (FBNs) can reveal the 
mechanisms and properties of brain functions, which is significant for 
elucidating the cognitive, sensory, and emotional functions of the 
brain (Rubinov and Sporns, 2010; Barrett and Satpute, 2013). The key 
characteristic of FBNs is their dynamic change across time for 
adapting to the continuously complex external environment 
(Hutchison et al., 2013; Calhoun et al., 2014; Ma et al., 2014; Lurie 
et al., 2020). Research on dynamic functional networks (DFNs) using 
functional magnetic resonance imaging (fMRI) have largely advanced 
our understanding of dynamic brain activity in responding to external 
sensory information (Tononi et  al., 1996; Park and Friston, 2013; 
Calhoun et al., 2014).

Current studies on dynamic FBNs mainly rely on the resting-state 
paradigm (Hutchison et al., 2013; Allen et al., 2014; Liegeois et al., 
2017; Savva et al., 2019). However, the resting-state is challenging to 
use when investigating specific cognitive processes due to its 
unrestrained nature and undesired behavioral disturbances, such as 
head movements and microsleep (Van Dijk et al., 2012; Buckner et al., 
2013; Tagliazucchi and Laufs, 2014). In addition, electrophysiological 
and neuroimaging studies suggest that neural responses under the 
resting-state paradigm show general reliability and reproducibility 
(Belitski et al., 2008; Wang et al., 2017).

Naturalistic paradigms have been found to be more reliable and 
effective than the resting-state paradigm in exploring FBNs by 
providing cognitive constraints and high reliability (Sonkusare et al., 
2019). These paradigms involve rich multimodal dynamic stimuli that 
reflect our everyday experience, resulting in more intricate patterns of 
functional brain activity and more diverse FBNs. Movies, as a typical 
representative of the passive viewing naturalistic paradigm, provide 
continuous audiovisual experiences that elicit stronger emotions than 
brief and isolated emotion-inducing events (Hasson et al., 2004; Meer 
et al., 2020; Saarimaki, 2021). Hence, using movies as stimuli in fMRI 
studies can better induce higher-order and complex FBNs related to 
cognition and emotion, thus leading to a more comprehensive 
understanding of DFNs and their relationship with cognition, 
sensation, and emotion.

However, most of the current research on DFNs focuses on the 
topology of time-varying connectivity, which limits the regions or 
nodes of the network to the selected template or the region of interest 
(ROI) (Hutchison et al., 2013; Calhoun et al., 2014). Less attention has 
been paid to the dynamic spatial patterns of the large-scale complex 
FBNs themselves induced by natural stimuli. To fully understand 
FBNs derived from fMRI data, it is necessary to investigate the spatio-
temporal dynamics of these FBNs (Ge et al., 2020). In addition, while 
recent studies have analyzed the test–retest reliability of dynamic 
functional connectivity constrained by selected brain parcellation 
under the naturalistic paradigm (Tian et al., 2021; Zhang et al., 2021), 
the reliability of large-scale dynamic spatial patterns of FBNs remains 
unclear. Therefore, further research is required to explore the dynamic 
spatial patterns of FBNs and their relationship with cognition and 
perception, as well as their reliability during naturalistic conditions.

Inspired by the effectiveness of dictionary learning and sparse 
coding (DLSC) method in detecting static and dynamic FBNs (Lv, 
2013; Ren et al., 2017a; Ge et al., 2020), we developed a data-driven 
method that combines group-wise DLSC approach with sliding 
window strategy, to identify and quantify the dynamic spatial patterns 

of time-varying FBNs from naturalistic fMRI data (NfMRI). Our 
method successfully identified several higher-order and complex 
FBNs, such as cerebellum-related networks, and revealed the 
significant correlations between movie annotations and detected 
DFNs. Additionally, we observed that specific individual DFNs were 
correlated with individuals’ subjective emotional perceptions to the 
movie. Furthermore, we validated the reliability of DFNs derived from 
two scanning sessions with 3 months intervals by evaluating their 
ICCs. In general, our study provides novel insights into the dynamic 
characteristics of FBNs under naturalistic stimuli.

2. Results

2.1. Group-wise static FBNs

We first identified seven consistent and representative group-wise 
static FBNs for both session A and session B via the DLSC approach. 
Figure 1 shows the representative FBNs of session A. These networks 
include either typically activated simple networks or complex 
networks. The simple networks involve the visual network (Figure 1A) 
and the auditory network (Figure 1B). The complex networks consist 
of multiple co-activated brain networks/regions, including auditory 
and cerebellar network (AC) (Figure  1C), the audiovisual and 
sensorimotor network (VAS) (Figure 1D), the partial default mode 
network (DMN), the salience and cerebellar network (pDSC) 
(Figure 1E), the DMN and cerebellar network (DC) (Figure 1F), and 
the dorsal attention network (DAN) (Figure 1G). Specifically, the AC 
network is primarily composed of auditory, cerebellar posterior crus 
1,2 and vermis (Figure 1C). The VAS network is composed of visual, 
auditory, and sensorimotor cortex (Figure  1D). The pDSC 
encompasses the posterior cingulate cortex, medial prefrontal cortex, 
angular gyrus, anterior insula, dorsal anterior cingulate cortex, 
cerebellar posterior crus1,2, cerebellums 9 and vermis. Notably, the 
pDSC network excludes the precuneus (Figure 1E). The DC network 
mainly consists posterior cingulate cortex, medial prefrontal cortex 
angular gyrus, precuneus, cerebellar posterior crus1, 2, cerebellums 9 
and vermis (Figure  1F). The DAN network includes intraparietal 
sulcus and the frontal eye fields (Figure 1G). A comparison between 
these identified FBNs and well-established resting-state templates or 
networks from previous studies conducted under natural stimulation 
is presented in Supplementary Figure S8.

The FBNs derived from session B showed a high degree of spatial 
consistency with those observed in session A 
(Supplementary Figure S1), as demonstrated by the relatively high 
overlap rate and Pearson correlation coefficient (PCC) values between 
the two sets of FBNs (Table 1). Specifically, the mean overlapping rate 
and the mean PCC of the seven FBNs were 0.44 ± 0.11 
[Mean ± standard deviation (SD)] and 0.82 ± 0.18 (Mean ± SD), 
respectively, suggesting the consistency and stability of the DLSC 
framework in detecting FBNs across two scanning sessions.

2.2. Dynamic spatial patterns of FBNs

We applied the sliding time window method with a window 
length of 60 repetition time (TR) units and step size of 1TR, resulting 
in 470 available windows. Correspondingly, 470 FBNs were obtained 

127

https://doi.org/10.3389/fnins.2023.1199150
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Song et al. 10.3389/fnins.2023.1199150

Frontiers in Neuroscience 03 frontiersin.org

by applying the DLSC method, which could reflect the dynamics of 
time-varying large-scale networks. To provide representative 
visualization of these FBNs, we selected and displayed the FBNs from 
the first window among every 50 windows. For example, the first brain 
activation map in Figure 2 represents the visual network obtained 
during the first window (1TR to 60TR), corresponding to a time 
period of 1 s to 132 s.

To quantitatively explore the dynamic spatial patterns of FBNs, 
we  assessed the dynamic temporal changes of the number of 
activated voxels (NAV) (Figure 2) and the intensity of activated 
voxels (IAV) (Figure 3) for the seven FBNs. Our results revealed 
that for each network, both NAV and IAV exhibited temporal 
variations, with relatively consistent trends between the two 
metrics. The IAV showed less variability compared to NAV due to 
the calculation method of averaging activation intensities of all 
voxels exceeding a predefined threshold, resulting in a relatively 
narrow range of variation in the overall activation strength of the 
whole network. The peaks of NAV and IAV curves corresponded to 

the FBNs that displayed more pronounced and widespread patterns 
of activation, whereas the troughs of these curves responded to 
FBNs with diminished or even absent activation patterns. These 
findings highlight that FBNs were dynamic and evolved temporally 
in response to the unfolding plot of the movie, which is also 
consistent with the underlying neural basis of complex perception 
and behavior (Calhoun et al., 2014). Additionally, the lower-order 
perceptual networks, including visual network, auditory network, 
and VAS network, exhibited relatively stable level of activation over 
time, whereas the higher-order networks, such as pDSC, DC, and 
DAN networks, showed greater fluctuations in activation curves. 
The AC network, specifically, comprising both lower-order network 
(i.e., auditory network) and higher-order networks (i.e., cerebellar 
network), also displayed substantial fluctuations in its activation 
curves (Figures  2, 3). These results suggest that different FBNs 
exhibit distinct temporal dynamics in response to external stimuli, 
which may reflect their respective roles in higher-level cognitive 
and attentional processes.

FIGURE 1

Group-wise static functional brain networks (FBNs) of session A, including (A) visual network, (B) auditory network, (C) auditory and cerebellar network 
(AC), (D) audiovisual and sensorimotor network (VAS), (E) partial default mode network (DMN), salience, and cerebellar network (pDSC), (F) DMN and 
cerebellar network (DC), (G) dorsal attention network (DAN).

TABLE 1 Overlapping rate and Pearson correlation coefficient (PCC) across two sessions for seven representative brain functional networks (FBNs).

Visual Auditory AC VAS pDSC DC DAN Mean ± SD

Overlap 0.34 0.58 0.5 0.52 0.27 0.5 0.39 0.44 ± 0.11

PCC 0.9 0.95 0.97 0.93 0.47 0.87 0.68 0.82 ± 0.18
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The results of session B were generally consistent with those of 
session A, as evidenced by the visual comparison of the results 
depicted in Supplementary Figures S2, S3. Moreover, the PCC values 
for both NAV and IAV curves across session A and session B were 
relatively high for most FBNs (Supplementary Table S1), suggesting 
that the identified dynamic spatial patterns of FBNs induced by the 
movie viewing are reproducible and consistent across two 
scanning sessions.

2.3. Correlation between DFNs and movie 
annotations

To investigate the relationship between DFNs and the unfolding 
of the movie, we assessed the spearman correlation between dynamic 
changes of NAV/IAV and movie annotations, which include language 
use, changepoints, the presence of positive valence of scenes 
(scenes_p), the presence of negative valence of scenes (scenes_n), the 
presence of faces with positive (face_p), and presence of faces with 
negative (face_n). The results showed that two DMN-related networks, 

i.e., the DC and pDSC networks, were significantly correlated with 
movie annotations. Specifically, both NVA and IVA metrics of the DC 
network showed statistically significant correlations with the 
appearance of positive facial expressions based on permutation-based 
testing (p < 0.05) (see Methods) (Tables 2, 3). Notably, the value of p 
for the IAV metric was less than 0.01 (Table  3). Additionally, the 
changes in INV of the pDSC network were significantly and positively 
correlated with the appearance of the changepoint in the movie scenes 
(permutation 5,000 times, p < 0.05) (Table 3).

2.4. Dynamic inter-subject correlation 
analyses

The neural response evoked by the naturalistic stimuli exhibit not 
only high consistency across individuals, but also inter-subject 
variability and uniqueness reflecting personal experiences and 
intrinsically-driven processes under natural viewing condition, which 
varies across different brain regions/networks (Golland et al., 2007; 
Ren et al., 2017b). Hence, to quantify these group consistency and 

FIGURE 2

Dynamic evolution of the number of activated voxels (NAV) of seven brain function networks (FBNs) (session A). The corresponding FBNs of the first 
window among every 50 windows are displayed at the bottom.
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individual variations in defined DFNs, we adopted their corresponding 
group-wise static FBNs as templates to calculate the dynamic inter-
subject correlation (ISC) (see Methods). Accordingly, the group-level 
dynamic ISC can represent the degree of temporal consistency across 
subjects in different FBNs (the thick blue line in Figure 4). The average 
values of group-level dynamic ISC during the entire period for seven 
FNBs (including visual, auditory, AC, VAS, pDSC, DC, and DAN 
networks) were 0.33 ± 0.12, 0.51 ± 0.13, 0.58 ± 0.12, 0.39 ± 0.12, 

0.25 ± 0.10, 0.31 ± 0.08, and 0.34 ± 0.08 (Mean ± SD), respectively. 
While relatively high ISC values were observed in networks 
encompassing lower-level perceptual regions, especially those related 
to auditory processing, such as auditory and AC networks, the higher-
order networks demonstrated lower ISC values that can indicate the 
occurrence of intrinsically-driven processes during individual movie 
viewing, including pDSC and DC networks, consistent with previous 
research (Ren et al., 2017b). Moreover, individual-level dynamic ISC 

FIGURE 3

Dynamic evolution of the intensity of activated voxels (IAV) of seven FBNs (session A). The corresponding FBNs of the first window among every 50 
windows are displayed at the bottom.

TABLE 2 The Spearman correlation between the changes in the number of active voxels (NAV) and movie annotations.

Visual Auditory AC VAS pDSC DC DAN

language −0.03 0.00 −0.09 −0.12 −0.17 −0.11 −0.14

changepoint −0.15 −0.10 −0.04 0.11 0.02 0.14 0.06

scenes_p 0.00 −0.11 0.07 0.03 −0.05 0.08 −0.11

scenes_n −0.10 0.01 −0.09 −0.19 −0.08 0.02 −0.12

face_p −0.07 −0.11 0.08 0.00 −0.02 0.16* −0.09

face_n −0.05 0.02 −0.08 −0.28 −0.07 −0.01 −0.20

Bold font indicates significant correlation (*p < 0.05). Permutation test with 5,000 iterations.
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also showed inter-subject variations especially in those higher-order 
networks under movie stimuli (colorful thin lines in Figure 4).

The dynamic ISC of session B were largely consistent with session 
A (Supplementary Figure S4). Quantitatively, the PCC values for seven 
FBNs across two sessions were relatively high (Table  4), with an 
average PCC value of 0.82 ± 0.18 (Mean ± SD), thereby reaffirming the 
consistency of DFNs identified by our DLSC framework across 
two sessions.

2.5. Correlations between movie ratings 
and individual differences in dynamic ISC 
of DFNs

In the preceding section, there was relatively lower consistency in 
individual neural responses observed in higher-order brain networks, 
such as the pDSC and DC networks. This variability may be indicative 
of individual differences and unique experiences during natural 
viewing conditions. To investigate this assumption further, that is, 
exploring the potential relationship between subjective movie viewing 
experiences and the dynamics of DFNs, we examined whether the 
individual dynamic ISCs were correlated with their personal ratings 
of the movie. We applied an inter-subject representational similarity 

analysis (IS-RSA) (see Methods) to explore whether participants with 
similar subjective ratings also exhibited similar dynamic neural 
response patterns. Specifically, we  employed a multidimensional 
scaling approach (MDS) (Carroll and Arabie, 1998) to characterize the 
answers to the post-movie questionnaire. Our result revealed that 
participants had varying experiences while watching the movie, with 
some reporting high engagement characterized by low boredom, high 
enjoyment, high emotion, and high audio quality, while others had 
low engagement (Figure 5A). The distances between movie ratings 
were measured by the Euclidean distance matrix of questionnaire 
answers across all individuals (Figure 5B). We computed Pearson 
distance to represent the inter-subject distances of dynamic ISC values 
for seven representative FBNs, respectively (Supplementary Figure S5). 
By evaluating the correlation between the movie rating distances and 
the inter-subject distances of the dynamic ISC, we found significant 
positive correlations (permutation 5,000 times, p < 0.05) in three 
cerebellum-related networks, that is, AC, pDSC, and DC networks. 
The distance matrices of dynamic ISC for these three networks are 
presented in Figure 5C, and their simple linear regressions are shown 
in Figure 5D. However, the other DFNs did not show statistically 
significant associations (p > 0.05) (Table 5). We did not repeat this 
experiment in session B as it involved a repeated viewing of the same 
movie, and the post-viewing questionnaire was not conducted.

TABLE 3 The Spearman correlation between the changes in the intensity of active voxels (IAV) and movie annotations.

Visual Auditory AC VAS pDSC DC DAN

language −0.14 0.03 −0.12 0.00 −0.17 −0.08 −0.08

changepoint −0.18 −0.14 0.02 0.01 0.15* 0.12 −0.01

scenes_p −0.18 −0.04 0.03 −0.10 0.04 0.13 −0.07

scenes_n −0.01 0.07 −0.08 −0.06 −0.15 −0.01 −0.07

face_p −0.06 −0.01 −0.02 −0.09 0.05 0.19** −0.07

face_n −0.12 0.04 −0.07 −0.19 −0.19 −0.06 −0.11

Bold font indicates significant correlation (*p < 0.05, **p < 0.01). Permutation test with 5,000 iterations.

FIGURE 4

Dynamic inter-subject correlation (ISC) (session A): group-wise and individual dynamic ISC. The thick blue line represents the group-wise dynamic ISC, 
and the thin colorful lines depict the dynamic ISC of 16 different individuals.
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2.6. Test–retest reliability of DFNs

It was assumed that similar sensory experiences would lead to the 
emergence of DFNs in a consistent and reliable manner. Therefore, 
we assessed the level of reliability of the DFNs that develop in response 
to the movie storyline across two sessions. Specifically, we  first 
calculated the scan-wise intra-group correlation coefficient (ICC) 
values for seven static FBNs. The results showed that the visual, AC, 

and VAS networks exhibited excellent reliability, the auditory and 
DAN networks possessed good reliability levels, and the pDSC and 
DC networks had moderate reliability, indicating that the networks 
associated with primary perceptual processes were relatively more 
reliable, while the higher-level networks showed less reliability, 
consistent with previous studies (Choe et al., 2017) (Figure 6B).

We further analyzed the reliability of the DFNs (see Methods). 
The reliability of the auditory, AC, VAS, and DC networks, triggered 

TABLE 4 The PCC of group-wise dynamic inter-subject correlation (ISC) across two sessions.

Visual Auditory AC VAS pDSC DC DAN Mean ± SD

PCC 0.89 0.63 0.87 0.79 0.76 0.86 0.83 0.81 ± 0.09

FIGURE 5

Correlation between the movie ratings and difference of individual dynamic ISC. (A) The inter-subject distances of the movie ratings were mapped 
onto a two-dimensional plane, with movie ratings shown in the inset and coded accordingly. The arrangement of movie ratings from left to right 
signifies participants’ engagement with the movie, as those who were more engaged reported higher levels of enjoyment, emotion, and audio quality 
and lower levels of boredom. The top-to-bottom scale reflects the participants’ ratings of evoked emotions. (B) Inter-subject distance matrix of the 
movie ratings. (C) Distance matrices of dynamic ISC for AC, pDSC, and DC networks. (D) The correlation between the movie rating distances and the 
inter-subject distances of dynamic ISC.
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by this touching movie, gradually increased during the mid to late 
period (about 300–390 window, corresponding to 600–1,000 s time 
period), and reached its peak in the near-end period. This is consistent 
with the narrative structure of the movie (Supplementary Table S2), 
wherein the plot also reaches its climax near the end (at around 17 min 
or 1,020 s) (Nguyen et  al., 2017). The findings suggest that as the 
storyline develops, individuals may experience greater behavioral 
constraints and engagements, leading to an increase in the test–retest 
reliability of brain activities.

3. Discussion

Brain is a complex and dynamic system, composed of different 
brain regions forming functional brain networks that perform 
different cognitive functions (Raichle, 2006; Allen et al., 2014; Monti 
et  al., 2014; Shine et  al., 2016). This study explored the dynamic 
functional brain networks (DFNs) involved in higher-order cognitive 
processes, sensory perception, and emotional responses to naturalistic 
stimuli. Utilizing the proposed method, the study revealed rich and 
complex higher-order FBNs, including cerebellum-related networks, 
which are challenging to detect by conventional resting-state 
paradigm. The spatial patterns of these FBNs were time-varying with 
the movie storylines, and were correlated with the movie annotations 
and the subjective experience of the participants.

Specifically, our findings showed that two cerebellum-related 
networks, the DC network, and the pDSC network, were significantly 

connected to movie annotations. The DC network, which involves the 
cerebellum, posterior cingulate cortex, and precuneus region, was 
significantly and positively correlated with the appearance of positive 
facial expression during movie viewing. This finding is consistent with 
previous studies, which have shown that the cerebellum and posterior 
cingulate cortex are involved in facial emotion recognition, and that 
the precuneus is activated during the appearance of happy faces 
(Pelletier-Baldelli et al., 2015). The pDSC network, including partial 
DMN, salience network, and cerebellum, showed a significant positive 
correlation with the appearance of changepoints in movie scenes. This 
finding is also in line with previous studies, which have demonstrated 
that the changepoints in movie scenes are related to bottom-up 
attention, and that the salience network (SN) provides effective control 
of DMN activity when external event stimuli require an attentional 
response (Kelly et al., 2008; Menon and Uddin, 2010; Jilka et al., 2014). 
In addition, the cerebellum also plays a part in bottom-up attention 
(Gottwald et al., 2003; Kellermann et al., 2012). Overall, our results 
add weight to the notion that cerebellum-related DFNs are involved 
in higher-order cognitive and emotional processes.

Furthermore, the dynamic ISC analyses demonstrate relatively 
low consistency in the neural responses of higher-order brain 
networks across individuals. This variability suggests individual 
differences and unique experiences during natural viewing conditions, 
as evidenced by the strong correlations between the subjective ratings 
of the movie and dynamic ISC distances of DC and pDSC networks 
revealed by IS-RSA analyses. Exceptionally, the AC network exhibited 
relatively high temporal consistency across subjects but also existed a 

TABLE 5 The Spearman correlation between movie rating distances and inter-subject distances of dynamic ISC for seven representative FBNs.

Visual Auditory AC VAS pDSC DC DAN

Correlation −0.02 0.07 0.15* 0.13 0.20* 0.17* 0.05

Bold font indicates significant correlation (*p < 0.05). Permutation test with 5,000 iterations.

FIGURE 6

Intra-group correlation coefficient (ICC) for seven representative FBNs. (A) Dynamic ICC. The red line represents the group-wise dynamic ICC. 
(B) Static ICC.
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significant correlation with individuals’ subjective movie ratings, 
where the high ISC values were probably caused by the involvement 
of large auditory regions in the AC network. This could also explain 
the relatively weaker correlation between the AC network and movie 
ratings in comparison to that of the DC and pDSC networks (Figure 5 
and Table 5). Intriguingly, all these three networks involve cerebellar 
posterior crus1,2 and vermis regions. Previous functional connectivity 
studies have confirmed that there are strong links between the 
posterior cerebellum and the temporal lobes, suggesting these regions 
share neural similarities and are involved in sensory integration and 
emotional processing (Yeo et al., 2011; Chan et al., 2019; Heleven et al., 
2019; Van Overwalle et  al., 2020b). In addition, several positron 
emission tomography (PET) studies suggest that the posterior 
cerebellum is involved in various emotional responses, such as fear, 
sadness, and happiness (Schwartz and Davidson, 1997; Turner et al., 
2007; Verger et al., 2020). Additionally, Nguyen et al. (2017) have 
shown that the crus1,2 areas in the posterior cerebellum exhibit peak 
activities during important moments embedded in the movie, and 
Van Overwalle et al. (2020a) have shown that the cerebellar posterior 
crus 2 is specialized for mentalizing appraisal processes. Our study 
extends these previous findings by demonstrating that the dynamic 
nature of cerebellum-related FBNs is significantly correlated with 
individual-specific emotional responses.

Finally, our results also demonstrated that the DFNs elicited by 
ecologically valid sensory experiences were reproducible and reliable. 
Seven representative FBNs identified by our method were consistent 
across two scanning sessions with relatively-long interval (Figure 2, 
Supplementary Figure S1, and Table 1), and the changes in NVA and 
IVA for DFNs also showed high PCC values across two sessions, 
suggesting substantial consistency (Figures  2, 3, 
Supplementary Figures S2, S3, and Table 2). These results indicate that 
DFNs are reproducible during repeated movie viewing, further 
demonstrating that the naturalistic paradigm provides reliable 
experimental conditions for measuring DFNs. Furthermore, our 
results suggest that DFNs show good test–retest reliability, and the 
development of the movie plot enhances the test–retest reliability of 
the auditory, AC, VAS, and DC networks. This may reflect an increase 
in cognitive engagement as the storyline progresses, where the positive 
influences of cognitive participation on reliability appear to exceed the 
negative effect of familiarity from potential repeated viewings (Wang 
et al., 2017).

Overall, our study of time-varying spatial patterns of FBNs in the 
context of naturalistic paradigm improves our understanding of 
human perception, emotion, and subjective cognition. The results 
highlight the reliable correlations between cerebellum-related DFNs 
and sensory, cognitive, emotional, and subjective senses, which could 
motivate further research on the neural mechanisms underlying 
ecologically valid sensory experiences. Thus, our study provides 
valuable insights into the dynamic nature of brain networks and their 
role in higher-order cognitive and emotional processes, with potential 
applications in both basic and clinical neuroscience.

4. Limitations and future directions

Linking neural activity to higher cognitive and emotional 
functions in a dynamic and complex natural environment remains 
a challenge. In this work, we selected a relatively long time window 

of 60TRs to capture the accumulation of higher-order complex 
emotions and to improve the reproducibility of the FBNs (Savva 
et al., 2019). However, the relatively slow temporal resolution of 
fMRI with a large window size hinders the assessment of the 
responses of the brain to the perception of transient movie features. 
In the future, we  expect to address this limitation by using 
electroencephalography (EEG) or magnetoencephalogram (MEG) 
with higher temporal resolution.

While the dataset used in this study is relatively small, all 
individuals watched a complete movie (20 min), which has been 
shown to strongly stimulate higher-order cognitions and emotions 
(Jaaskelainen et al., 2021). To increase the accuracy and reliability 
of our results, we performed a second acquisition after 3 months, 
despite the considerable expenses incurred for the acquisition of the 
complete movie. Nevertheless, we acknowledge that an abundance 
of subjects would further strengthen our findings, and we plan to 
apply our model to NfMRI datasets with a larger sample size in 
future studies.

5. Materials and methods

5.1. Experimental paradigm

The experiment consisted of two scanning sessions. Following a 
first session (session A) conducted 3 months earlier, participants 
underwent a second scanning session (session B) employing the same 
experimental paradigm. In each session, participants freely watched 
the 20-min short film “Butterfly Circus.” In addition, all participants 
completed a questionnaire immediately after session A.

The short film, “Butterfly Circus,” depicts a touching story of a 
limbless man who is encouraged by the showman of a renowned 
circus to discover his true potential. The narrative architecture of the 
film follows three distinctive drama acts that feature significant 
developments, complications, and turning points 
(Supplementary Table S2). Additionally, basic movie annotations were 
provided, including: the use of language, changepoints, the presence 
of positive valence of scenes, the presence of negative valence of 
scenes, the presence of faces with positive, and the presence of faces 
with negative (Supplementary Figure S6). Further details regarding 
the participants can be found in the Supplementary material (1.2).

5.2. Data acquisition and preprocessing

Sixteen right-handed (ages 27 ± 2.7) healthy participated in this 
study. FMRI images were acquired from a whole-body 3 T Siemens 
Trio MRI scanner with the following scanning parameters: repetition 
time (TR) 2,200 ms, echo time (TE) 30 ms, flip angle (FA) 79°, the field 
of view (FOV) 192 × 192 mm, pixel bandwidth 2,003 Hz, a 64 × 64 
acquisition matrix, 44 axial slices, and 3 × 3 × 3 mm 3 voxel resolution. 
Functional images were preprocessed using FMRI Expert Analysis 
Tool (FEAT) from FMRIB’s Software Library (https://fsl.fmrib.ox.ac.
uk/fsl/fslwiki), which involved motion correction, slice timing 
correction, spatial smoothing with 6-mm full width at half maximum 
Gaussian kernel, band pass filtering (0.0085 ± 0.15 Hz), linear 
registration to the standard Montreal Neurological Institute space 
(2 mm MNI152 standard template), and masking.
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5.3. Dynamic sparse representation

To discover and characterize DFNs, we proposed a computational 
framework comprised of two stages: (A) using group-wise dictionary 
learning and sparse coding (DLSC) to represent static FBNs 
(Figure  7A), (B) sliding-window method applying for the 
representation of dynamic spatial patterns of FBNs (Figure 7B).

In stage A, first, the whole-brain fMRI signals of each subject were 

extracted and stacked into a 2D matrix S Si i ∈( )×t n) , followed by 

spatial concatenation of the individual matrix Si  into a group-wise 
matrix 𝑺 (

t p nSi∈  × ×( )
)  (top panel in Figure 7A), where t represents 

the time length of fMRI signals, n refers to the number of the individual 
brain voxels, p stands for the number of subjects. Second, we applied 
the dictionary learning algorithm to the group-wise matrix 𝑺 to learn 
a meaningful group-wise dictionary 𝑫 ( t KD∈  × ) . This dictionary 
𝑫 consists of K atoms that can well represent the temporal features 
embedded in naturalistic fMRI data and are commonly shared by all 
the subjects (Ren et al., 2017a; Ge et al., 2020). Hence the group-wise 
dictionary 𝑫 can be used to sparsely represent individual fMRI signals 
Si, resulting in the individual spatial patterns α αi i ∈( )×K n  (K < <n) 
that exhibit correspondences across subjects (middle panel in 
Figure 7A). Notably, we used the online dictionary learning and sparse 
coding algorithm, which is an effective method for extracting 
instinctive information from the original signal and is suitable for 

group-level data operations (Ponce and Sapiro, 2010; Lv, 2013). Third, 
to obtain the group-wise static FBNs, we performed one-sample t-test 
on each element of individual loading coefficient matrix αi  (middle 
panel of Figure  7A). Specifically, for all the subjects together, 
we hypothesized that each element in the loading coefficient matrix αi  
is group-wisely null. To evaluate this assumption, we  conducted 
one-sample t-test on the corresponding element in the loading 
coefficient matrix αi  for different subjects, in order to test whether this 
hypothesis was accepted or rejected (Ren et al., 2017a). The resulting 
t-value was then transformed into a z-score, forming a group-wise 
loading coefficient matrix A composed of z-scores (Friston et al., 1994). 
Since each individual coefficient matrix αi  is sparse, the t-test result 
of the group-wise loading coefficient matrix A is also sparse. 
Afterwards, each row of matrix A can be mapped back to brain volume 
with z-scores, referred to as z-score maps. Consequently, the z-score 
map obtained from this analysis can depict spatially consistent 
activation across all subjects, thus representing the static group-wise 
FBNs (bottom panel of Figure 1A).

In stage B, in order to obtain a series of dynamic spatial patterns that 
evolve over time for each subject, we slid the same time window on the 
individual signal matrix Si and group-wise dictionary 𝑫 simultaneously. 
This approach not only allows us to establish correspondence of 
individual-level FBNs among individuals, but also generates the 
corresponding dynamic FBNs. Consequently, we obtained individual 
signal matrices 1 2, , , , ,i i ij iw… …S S S S , which represent the 

FIGURE 7

The overview of the proposed framework. (A) Using group-wise dictionary learning and sparse coding to represent static FBNs. (B) Sliding-window 
method applying for the representation of dynamic individual FBNs. p, the subject number; n, the number of voxels in the brain; K, the number of 
atoms in the dictionary; t, the time points; L, the length of each window; w, the total number of windows generated by the sliding-window method.
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individual’s signal for each window, as well as group-wise dictionaries 
1 2, , , , ,j w… …D D D D , which represent the group-wise dictionary for 

each window (top two panels in Figure 7B). The chosen window length, 
denoted as L (in our study, L = 60 TRs with a step size of 1 TR), resulted 
in a total of w = 470 windows. Consequently, the individual signal matrix 
Si and group-wise dictionary 𝑫 were divided into multistage signal 
matrices Sij and dictionaries D j  (j∈1, 2, …, w) (top two panels in 
Figure 7B). Next, based on Sij  and D j of each window, we leveraged 
sparse representation algorithms to extract a sequence of coefficient 
matrices ±ij to represent individual dynamic spatial patterns of FBNs 
(bottom panel in Figure 7B). The above experiments were performed on 
each subject in session A and session B.

To identify the matching FBNs across two sessions, we manually 
selected representative FBNs from session A and match them with 
responding FBNs in session B based on their highest Pearson 
Correlation Coefficient (PCC) values and the maximum number of 
overlapping voxels (overlapping rate) (Benesty et al., 2009; Lv et al., 
2015a). A detailed pipeline for selection of representative FBNs can 
be found in the Supplementary material (1.4). The PCC was defined 
as the correlation between the representative FBNs of session A and 
session B, and the overlapping rate of the FBNs in session A and 
session B was defined quantitatively as:

 
R X,Y

Y
( ) = ∩| |

| |

X Y

 
(1)

where 𝑿 is the representative FBN of session A, and Y refers to 
responding FBN of session B.

The DLSC algorithms rely on two key parameters: the number of 
dictionary atoms (K) and the sparsity penalty parameter (λ). However, 
there is no golden standard for determining the optimal values of these 
parameters. Based on previous studies that used DLSC algorithms for 
FBNs recognition, K was experimentally and empirically set to 400, 
and λ was set to a range of 0.1–0.5 (Lv et al., 2015b; Zhang et al., 2017; 
Ge et  al., 2018). Therefore, in this study, we  set K = 400, while 
systematically tested the setting of λ (0.1, 0.5). Through our 
experiments, we  found that the largest number of networks could 
be identified with manual inspection when utilizing the parameters 
K = 400 and λ = 0.5. Consequently, we chose this set of parameters.

The window size is a crucial parameter that can determine the 
tradeoff between time resolution and estimation results. Previous related 
studies have empirically converged to window size values between 30 and 
240 s (Hutchison et al., 2013; Preti et al., 2017). Additionally, Savva et al. 
(2019) suggested window size of at least 120 s to ensure the reproducibility 
of the result. Hence, we selected a window width of 60TRs (132 s).

5.4. Association between dynamic 
functional network and movie annotations

To quantify the dynamic changes of spatial patterns of FBNs, 
we  employed two methods including calculating the number of 
activated voxels (NAV) and the intensity of activated voxels (IAV) of 
each FBN across all windows, respectively. Specifically, NAV was 
derived by counting the number of all voxels exceeding the threshold 
value (z = 1.65), while IAV was obtained by averaging the intensities of 
all voxels above this threshold. The group-wise NAV/IAV was derived 
by computing the average value of the NAV/IAV across all individuals.

The sliding window method produced 470 DFNs with a window 
length of 60 TRs and a step size of 1. Correspondingly, the duration of 
the scan was 530 TRs, with each TR corresponding to an annotation, 
resulting in 530 movie annotations in total. To establish correspondence 
between the DFNs and movie annotations, we  selected the movie 
annotations occurring at the center point of each temporal window to 
correspond to each DFN based on previous studies (Simony et al., 
2016; Tzachor and Hoshen, 2022). Specifically, we  focused on a 
segment of movie annotations spanning from 31 to 500 TRs and 
examined their correlations with corresponding 470 dynamic FBNs.

The Spearman correlation coefficient between group-wise NAV/
IAV and annotation vectors was computed to explore the association 
between group-wise dynamic changes in spatial patterns of FBNs and 
movie annotations, which were constructed for Language, 
Changepoint, Positive Scenes, Negative Scenes Positive Faces, and 
Negative Faces. Movie annotations were converted to vectors of 0 and 
1 based on their onset and offset times (Supplementary Figure S6). To 
establish the statistical significance of the observed correlations, the 
correlation between the group-wise NAV/IAV and annotation vector 
was re-calculated 5,000 times by shuffling the vectors in each iteration. 
The observed correlation was compared with a null distribution of 
correlation generated by 5,000 permutations. If the observed 
correlation falls in the extreme tails of the distribution (i.e., the value 
of p is less than 0.05), we can conclude that there is a significant 
difference in group-wise NAV/IAV and movie annotation.

5.5. Dynamic inter-subject correlation

Inter-subject correlation (ISC) analysis measures the inter-subject 
consistency for temporal responses across participants (Hasson et al., 
2004; Di and Biswal, 2020). To evaluate the ISC of dynamic FBNs, we first 
used the group-wise static FBNs as masks to extract the time-series signals 
of the corresponding FBN for each participant. Next, we averaged all the 
time-series signals within FBN, resulting in the FBN-level time-series 
signals for each FBN. Subsequently, we also applied the sliding window 
strategy and calculated the ISC of the FBN-level time-series signals in 
each time window for each subject, where the time window size was set 
to the same value as that in the “Dynamic sparse representation” section 
(i.e., 60TRs). Consequently, we derived the dynamic ISC metric for each 
subject for each representative FBN. To calculate the dynamic group-wise 
ISC metric, we performed Fisher z-transformation on the ISC values of 
all subjects for each window and subsequently averaged the ISC value 
across all individuals for each window.

5.6. Movie rating representation

The study employed a post-movie questionnaire to collect 
participants’ subjective appraisals of the movie, which consisted of eight 
questions. However, the RSA analysis excluded four questions because 
there was insufficient variability among participants 
(Supplementary Data). The remaining four questions are more focused 
on evaluating the movie subjectively, that is, how participants rated their 
feeling during the first movie session, including boredom, enjoyment, 
feeling happy or sad, and audio quality. Regarding question 4, specifically, 
the audio quality does not vary while recording, and each participant said 
they all had a comparable understanding of the movie’s plot. The 
participants’ level of engagement may have influenced how they rated the 
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scale. All questions in the survey utilized a 1 to 5 rating scale. To represent 
participant differences in movie ratings, we employed a multidimensional 
scaling method to map responses to the questionnaire onto a 
two-dimensional representation.

5.7. The link between movie ratings and 
dynamic ISC

Inter-subject representational similarity analysis (IS-RSA) is a 
promising approach for examining the potential relationship between 
inter-subject variability in brain dynamics and individual differences 
in behavioral disposition (Kriegeskorte et al., 2008; Finn et al., 2020; 
Meer et  al., 2020). Thus, we  conducted the IS-RSA to assess the 
correlation between post-hoc behavioral movie ratings and dynamic 
ISC distances across all subjects.

We constructed inter-subject distance matrices to represent movie 
impressions and dynamic ISC. Specifically, inter-subject distances for 
movie impressions were calculated by measuring the Euclidean 
distance of questionnaire ratings between each possible pair of 
participants, resulting in 16 (number of participants) × 15 matrices. To 
examine the dynamics ISC distance, we  calculated the Pearson 
distance between the dynamics ISC matrices for every possible pair of 
participants, producing a dynamic ISC distance matrix of size 16 × 15.

To assess the strength of associations between the movie ratings 
and dynamic ISC, we calculated the Spearman correlation between the 
lower triangular parts of the above two distance matrices. To assess 
the statistical significance of the results, we performed permutation 
testing 5,000 times. For each iteration, we squeezed the two matrices, 
dynamics ISC distance and movie rating distance, into row vectors, 
and randomly selected a new starting point for each row vector. This 
procedure allowed us to generate a null distribution of correlations 
and determine whether the observed correlation was significant.

5.8. Test–retest reliability of DFNs

To assess the level of reliability of dynamic FBNs during the natural 
viewing conditions, we  calculated the test–retest reliability of the 
matching dynamic FBNs across two sessions. Specifically, we measured 
the intra-group correlation coefficient (ICC) for each window to 
determine the level of consistency in the FBNs across time (Shrout and 
Fleiss, 1979; McGraw and Wong, 1996). For comparison, we  also 
calculated the static test–retest reliability of FBNs by calculating ICC 
over the entire period. ICC can be defined by the following equation:

 
ICC

MS MS

MS d MS
=

−
+ −( )
p e

p e1  
(2)

Here, d refers to the number of observations, which in our study was 
equal to 2. MSp represents the mean square variation between subjects, 
while MSe represents the mean square variation within subjects. The 
test–retest reliability was divided into five levels: excellent (ICC > 0.8), 
good (ICC 0.6–0.79), moderate (ICC 0.4–0.59), fair (ICC 0.2–0.39), and 
poor (ICC < 0.2). The test–retest reliability was assessed at the scan-wise 
level, and the methodology for this process was carried out in accordance 
with the previous study (Guo et al., 2012; Wang et al., 2017).
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Abnormal brain activity in lumbar 
disc herniation patients with 
chronic pain is associated with 
their clinical symptoms
Cheng Tang 1†, Guangxin Guo 2,3†, Sitong Fang 1, Chongjie Yao 2, 
Bowen Zhu 1, Lingjun Kong 1, Xuanjin Pan 2, Xinrong Li 2, 
Weibin He 4, Zhiwei Wu 5,6 and Min Fang 1,5*
1 Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China, 2 School of 
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Introduction: Lumbar disc herniation, a chronic degenerative disease, is one of the 
major contributors to chronic low back pain and disability. Although many studies 
have been conducted in the past on brain function in chronic low back pain, most 
of these studies did not classify chronic low back pain (cLBP) patients according 
to their etiology. The lack of etiologic classification may lead to inconsistencies 
between findings, and the correlation between differences in brain activation and 
clinical symptoms in patients with cLBP was less studied in the past.

Methods: In this study, 36 lumbar disc herniation patients with chronic low back 
pain (LDHCP) and 36 healthy controls (HCs) were included to study brain activity 
abnormalities in LDHCP. Visual analogue scale (VAS), oswestry disability index 
(ODI), self-rating anxiety scale (SAS), self-rating depression scale (SDS) were used 
to assess clinical symptoms.

Results: The results showed that LDHCP patients exhibited abnormally increased 
and diminished activation of brain regions compared to HCs. Correlation analysis 
showed that the amplitude of low frequency fluctuations (ALFF) in the left middle 
frontal gyrus is negatively correlated with SAS and VAS, while the right superior 
temporal gyrus is positively correlated with SAS and VAS, the dorsolateral left 
superior frontal gyrus and the right middle frontal gyrus are negatively correlated 
with VAS and SAS, respectively.

Conclusion: LDHCP patients have brain regions with abnormally increased and 
abnormally decreased activation compared to healthy controls. Furthermore, 
some of the abnormally activated brain regions were correlated with clinical pain 
or emotional symptoms.

KEYWORDS

lumbar disc herniation, chronic low back pain, resting-state functional magnetic 
resonance, amplitude of low-frequency fluctuations, anxiety, prefrontal lobe
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Introduction

Chronic low back pain (cLBP), as a common clinical disease, is one 
of the leading causes of disability (Wang et al., 2022) and remains a 
major medical and social problem worldwide. The 2019 Global Burden 
of Disease Study pointed out that approximately 568.4 million people 
suffer from cLBP (Chen et al., 2022). One of the major factors causing 
chronic low back pain is lumbar disc herniation (LDH). As clinical 
neuropathic pain, LDH is mainly due to intervertebral disc injuries and 
degenerative changes with age. Rupture of the fibrous ring and 
protrusion of the nucleus pulposus tissue causes physical compression 
of the paravertebral nerve roots, which results in low back pain and 
dysfunction (Martin et al., 2002; Wang et al., 2021). On the other hand, 
the immune system will recognize the exposed nucleus pulposus and 
produce multiple proinflammatory factors, including interleukin-1, 
prostaglandin E2, 5-hydroxytryptamine, and tumor necrosis factor, to 
increase the sensitivity and extent of pain (Zhao et al., 2019). Studies 
have found that negative emotions, such as anxiety and depression, can 
exacerbate pain, with the increasing severity and duration of chronic 
pain (Sheng and Zhang, 2019; Li et al., 2021; Kao et al., 2022). A study 
on the chronic pain model of LDH also pointed out that LDH is often 
accompanied by depression, especially in females with severe pain and 
a longer course of the disease (Cai et al., 2019). As one of the main 
specificity factors of cLBP, LDH is frequently lack of compatibility 
between the severity of lumbar spine CT/MRI findings and clinical 
symptoms in clinical practice. For example, some patients have a large 
herniated nucleus pulposus but no significant clinical symptoms, while 
others have unbearable pain, weakness, and other clinical symptoms 
with only a bulging lumbar disc. We speculate that the emotional state 
of the patient regarding LDHCP may be an important factor in this 
phenomenon. Emotional experiences and psychological states can 
influence clinical pain symptoms through functional and structural 
changes in the central nervous system and should therefore also 
be taken into account in the diagnosis and treatment of LDH (Mu et al., 
2019; Price and Duman, 2020).

As scientific exploration of the brain continues to extend, more and 
more imaging techniques are making it possible to accurately assess 
pain and emotional interactions. The amplitude of low frequency 
fluctuation (ALFF), regional homogeneity, and functional connectivity 
are commonly used to assess pathological changes in functional 
magnetic resonance imaging (fMRI) studies. These neuroimaging 
methods can quantify and visualize higher central changes in cLBP 
(Weizman et al., 2018; Huang et al., 2020; Li et al., 2020). However, 
previous fMRI studies have mostly failed to classify cLBP specifically 
or nonspecifically according to etiology, which may make the findings 
somewhat controversial. For example, Zhang et al. reported that cLBP 
patients’ ALFF is increased in the post−/precentral gyrus, paracentral 
lobule (PCL)/supplementary motor area (SMA), and PCL/SMA ALFF 
reliably discriminated cLBP patients from HCs in an independent 
cohort (Zhang et al., 2019). Another team argued that cLBP patients 
had reduced ALFF in the right posterior cingulate cortex/precuneus 
cortex and left primary somatosensory cortex (S1), but elevated ALFF 
in the right medial prefrontal cortex, right middle temporal gyrus, 
bilateral inferior temporal gyrus, bilateral insula, and left cerebellum 
(Zhang et al., 2017). Thus, it is important to classify whether chronic 
low back pain is a specific etiology or not. It has been reported that 
cerebellar associated with injury perception and endogenous pain 
modulation, inhibitory cerebellar t-DCS would increase pain 
perception and reduced endogenous pain inhibition while excitatory 

cerebellar t-DCS increased endogenous pain inhibition (Stacheneder 
et al., 2022). Similarly, we can try to find the specific brain regions with 
altered brain function in LDHCP and conduct interventional 
longitudinal studies on the corresponding brain regions in subsequent 
studies. Studying its pain-causing brain function pathological features 
by fMRI analysis methods would help LDH clinical diagnosis and 
treatment, but regretfully there are few corresponding studies. Among 
fMRI analysis methods, ALFF can directly reflect the magnitude of 
baseline changes in the brain blood oxygen level-dependent effect 
(BOLD) signal and indirectly indicate the intensity of local neuronal 
spontaneous activity in the brain. ALFF is considered to be one of the 
most common methods for observing changes in brain function at rest 
and is widely used in brain function studies of pain-related diseases 
(Zang, 2016; Du et al., 2018; Pan et al., 2018; Ge et al., 2022). Therefore, 
we used a data-driven ALFF analysis to explore differences in brain 
activity between patients with lumbar disc herniation chronic low back 
pain (LDHCP) and healthy controls (HCs). The Visual Analog Scale 
(VAS), Oswestry Disability Index (ODI), Self-Rated Anxiety Scale 
(SAS), and Self-Rated Depression Scale (SDS) were used to assess 
clinical symptoms and explore their association with abnormal brain 
regions in LDHCP. We  hypothesized that LDHCP will result in 
abnormal brain activity and the abnormal brain activity in LDHCP 
would be related to their clinical symptoms.

Materials and methods

Subjects

36 LDHCP patients were recruited at Yueyang Hospital of 
Integrated Traditonal Chinese and Western Medicine, Shanghai 
University of Traditonal Chinese Medicine (Shanghai, China) from 
December 2021 to December 2022. The clinical trial was registered on 
November 24, 2021 at the China Clinical Trials Registry with 
registration number ChiCTR2100053542. 36 age-and sex-matched 
HCs were recruited from communities. All subjects underwent Mini-
mental State Examination (MMSE) test prior to enrollment to ensure 
the subjects were cognitively normal.

The inclusive criteria of LDHCP were as follows: (1) Age between 
18 and 65 years, right-handed; (2) CT or MRI shows herniated disc in 
the lumbar spine and suffering from low back pain for at least 
3 months or longer; (3) VAS score ≥ 30/100 points; (4) ODI 
score ≥ 20/100 points; and (5) not receiving pain therapy for at least 
1 month before our enrollment. The inclusive criteria of HCs were as 
follows: (1) aged between 20 and 65 years; (2) right-handed; (3) no 
LDH history and related symptoms; and (4) without negative emotions.

The exclusive criteria were used for both HC and LDHCP groups: 
(1) subjects with organic brain lesions or history of brain surgery; (2) 
subjects with contraindications to MRI; (3) pregnant or lactating 
subjects; (4) subjects with alcohol or drug dependence; (5) subjects 
with other serious co-morbidities; and (6) subjects with an MMSE 
score less of than 27 points (Folstein et al., 1975).

Clinical assessment

This study used VAS, ODI, SAS, SDS to assess LDHCP’s somatic 
pain, functional activity and related anxiety and depression status. 
VAS is reliable in assessing the severity of low back pain and in 
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predicting disability (Thong et al., 2018; Shafshak and Elnemr, 2021). 
VAS divides the pain level evenly on a straight line with 10 scales into 
two endpoints: no pain and extreme pain, corresponding to scores of 
0 and 10, respectively. ODI is a effective and validated scale for 
measuring disability in patients with low back pain and has high-
quality psychometric properties in terms of construct validity, test–
retest reliability and internal consistency (Chapman et  al., 2011; 
Sheahan et al., 2015; Arpinar et al., 2020). It consists of 10 scoring 
items, namely back pain and leg pain, personal care, lifting heavy 
objects, walking, sitting, standing, sleeping, sexual life, social life, and 
traveling. The patient’s performance in each item is scored on a scale 
of 6 degrees from mild to severe, corresponding to grades 0 to 5 
points. The SAS is very similar to the SDS and is a fairly simple clinical 
tool for analyzing patients’ subjective symptoms (Thurber et al., 2002; 
Dunstan and Scott, 2020). It is suitable for adults with symptoms of 
anxiety or depression and has a wide range of applications. SAS has 
high reliability estimates while SDS has good sensitivity and specificity 
(Knight et al., 1983; Turner and Romano, 1984). It is important to 
emphasize that SAS and SDS tests are performed within 1 h prior to 
each MRI to quantify the subject’s state of mind as much as possible.

Magnetic resonance imaging data 
acquisition

Magnetic resonance imaging was performed by a 3.0T SIEMENS 
MAGNETOM (Germany) with a 32 channel head coil at Yueyang 
Hospital of Integrated Traditional Chinese and Western Medicine 
Affiliated to Shanghai University of Traditional Chinese Medicine, 
China. All subjects wore cotton earplugs to reduce noise interference 
and their heads were fixed with a soft foam pad to reduce head 
movement bias. During the MRI scan, all subjects were asked to 
remain awake and relaxed, with no excessive head movements or 
mental activity allowed, otherwise the data collected would not 
be included in the study. The scanning parameters were set as follows: 
(1) functional MRI: 33 interleaved axial slices, matrix size = 64 × 64, 
field of view (FOV) = 220 mm × 220 mm, repetition time 
(TR) = 2,000 ms, echo time (TE) = 30 ms, flip angle = 90 degrees, slice 
thickness = 4 mm, gap = 0 (voxel size3.4 × 3.4 × 4.0), number of 
volumes = 240. (2) structural MRI: Sequence = SPGR, sagittal slices, 
slice number = 160, matrix size = 256 × 256, FOV = 256 × 256 mm, TR/
TE = 1900/2.93 ms, flip angle = 9 degrees, slice thickness = 1, gap = 0 
(voxel size = 1 × 1 × 1). After the scan, the subject was asked if he/she 
had fallen asleep during the scan and if he/she gave an accurate or 
vague answer, the subject’s MRI data was also excluded. All scans were 
performed by the same MRI physician who had been formally trained 
by Siemens.

Data preprocessing

RESTplus (Resting-state fMRI data analysis Toolkit),1 a brain 
imaging data processing and analysis software based on statistical 
parametric mapping (SPM12),2 was used for rs-fMRI data 

1 http://www.restfmri.net

2 http://www.fil.ion.ucl.ac.uk/spm

preprocessing. The procedure was as follows: (1) convert the original 
Dicom files to NIFTI format; (2) remove the first 10 time points to 
stabilize the longitudinal magnetization; (3) slice timing to eliminate 
differences in acquisition times between adjacent scan levels; (4) 
realign to calibrate the subject’s head position at different time points 
in the scan and remove data from patients with head motion >3 mm 
and rotation >3° in any direction; (5) normalizing to Montreal 
Neurological Institute (MNI) space by Diffeomorphic Anatomical 
Registration Through Exponentiated Lie Algebra (DARTEL) using T1 
image new segment; (6) smoothing of the functional image aligned to 
the MNI standard space using a 6-mm full width at half maximum 
(FWHM) kernel; (7) detrending to reduce thermal interference from 
the MR coil and noise generated by the subject’s personal factors (e.g., 
breathing, heartbeat, etc.); and (8) low-frequency filtering (Filter): 
0.01–0.08 Hz signal is selected to filter the image for calculation to 
eliminate interference from other high-frequency signals.

Amplitude of low-frequency fluctuations 
calculation

ALFF values were calculated using RESTplus (Resting-state fMRI 
data analysis Toolkit, see text footnote 1). The procedure for calculating 
the ALFF for each voxel in the brain is as follows: (1) pass the time 
series of each voxel through a 0.01–0.08 Hz band-pass filter after 
removing the linear drift; (2) obtain the power spectrum by performing 
a fast Fourier change on the filter results; (3) square the power spectrum; 
(4) calculate the average of the power spectrum within 0.01–0.08 Hz as 
the ALFF; and (5) divide the ALFF divided by the average ALFF of all 
voxels in the whole brain to obtain the normalized ALFF (mALFF).

Statistical analysis

SPSS 24 (IBM, United States) was used for the statistical analysis of 
demographic and clinical data in this study. For the count data, frequency 
distributions were described and statistical differences between groups 
were analyzed using the chi-square test; for the measurement data, the 
t-test was used if the data conformed to a normal distribution, and if not, 
the Mann–Whitney U test for independent samples was used. Statistical 
tests were all performed using a two-tailed test, α = 0.05, and differences 
were considered statistically significant if p < 0.05. Imaging data statistics 
were analyzed using SPM software. Voxel-by-voxel statistics were 
performed using a general linear model (GLM) with two-sample t-tests 
for subjects in both groups, with gender and age as covariates. Family-
wise error (FWE) was used to correct the results for multiple 
comparisons, with a voxel-level significance threshold of p < 0.001 and a 
cluster-level significance threshold of p < 0.05. If the continuous variables 
conform to normality, Pearson correlation coefficient will be used to 
assess whether there is a correlation between signal values of brain region 
activity and clinical symptom scores. If the continuous variables do not 
conform to normality, correlations between indicators are calculated 
using the Spearman correlation method. P < 0.05 is the threshold of 
statistical difference for correlation analysis.
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FIGURE 1

The two-sample t-test showing significant differences in mean-standardized amplitude of low-frequency fluctuations (mALFF) between LDHCP 
patients and HCs. The color bar indicates T-values. (A) Spatial location map of abnormally activated brain regions in LDHCP patients; (B) Layers section 
of abnormally activated brain regions in LDHCP patients.

Results

Demographic and clinical data

A total of 72 participants were selected for this study, 
including 36 (12 male/24 female) LDHCP patients and 36 (14 
male/22 female) HCs. Table 1 shows the demographic and clinical 
characteristics of the participants. As shown in Table 1, there were 
no significant differences in gender (p = 0.624), age (p = 0.456), 
weight (p = 0.061), occupation (p = 0.551), MMSE (p = 0.11) 
between LDHCP and HCs. Subjects in both groups 
were comparable.

Amplitude of low-frequency fluctuations 
analysis

In this study, there were differential brain areas with increased 
and decreased ALFF values in the LDHCP patients compared to the 
HC group (Figure 1A). Brain areas with increased ALFF were mainly 
located in Right inferior frontal gyrus, orbital part (Frontal_Inf_
Orb_R); Right superior temporal gyrus (Temporal_Sup_R); Right 
lenticular nucleus, putamen (Putamen_R); Right rolandic operculum 
(Rolandic_Oper_R); Right Inferior frontal gyrus, opercular part 
(Frontal_Inf_Oper_R); (Table  2 and Figure  1B The brain area 
pointed by the green arrow); brain areas with decreased ALFF were 
mainly located in Left Superior frontal gyrus (Frontal_Sup_L), Left 
middle frontal gyrus (Frontal_Mid_L), Right middle frontal gyrus 
(Frontal_Mid_R), Left Precuneus (Precuneus_L), Right 
Supplementary motor area (Supp_Motor_Area_R) (Table  2 and 
Figure 1B The brain area pointed by the yellow arrow).

Clinical symptoms correlation

In LDHCP patients’ clinical symptom scores, the VAS scores 
showed a significant Pearson correlation with the ODI scores and the 
SAS scores, respectively. The correlation coefficient between VAS and 
ODI is 0.47, p = 0.034 (Figure 2A) and between VAS and SAS scores is 
0.40, p = 0.014 (Figure 2B).

Clinical-magnetic resonance imaging 
correlations

In LDHCP patients, Right superior temporal gyrus (Temporal_
Sup_R) is positively correlated with VAS scores (R = 0.42, p = 0.009) 

TABLE 1 Demographic characteristics of the LDH and HC groups.

LDHCP HCs p

Gender 12/24 14/22 0.624a

Age 38.58 ± 1.93 38.17 ± 2.48 0.456b

Weight (KG) 61 (55, 70) 69 (59, 74) 0.061c

Occupation 8/28 6/30 0.551a

(Physically / Non-physically)

MMSE 27.02 ± 1.20 27.47 ± 0.99 0.11b

VAS 6 (5, 7) / NA

ODI 19 (14, 27) / NA

SAS 41.30 ± 0.92 / NA

SDS 41.19 ± 1.39 / NA

aχ2-test; bTwo sample t-test; cNon-parametric-tests. 
LDHCP, Lumbar disc herniation patients with chronic pain; HCs, health controls; MMSE, 
Mini-mental State Examination; VAS, Visual Analog Scale; ODI, Oswestry Disability Index 
Questionnaire; SAS, self-rating anxiety scale; SDS, Self-rating depression scale.
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(Figure  3A); Right superior temporal gyrus (Temporal_Sup_R) is 
positively correlated with SAS (R = 0.41, p = 0.012) (Figure 3B); Left 
Superior frontal gyrus (Frontal_Sup_L) is negatively correlated with 
VAS scores (R = −0.46, p = 0.004) (Figure 3C); Left middle frontal 
gyrus (Frontal_Mid_L) is negatively correlated with VAS scores 
(R = −0.35, p = 0.031) (Figure 3D); Left middle frontal gyrus (Frontal_
Mid_L) is negatively correlated with SAS scores (R = −0.41, p = 0.01) 
(Figure 3E); Right middle frontal gyrus (Frontal_Mid_R) is negatively 
correlated with SDS (R = −0.32, p = 0.05) (Figure 3F).

Discussion

This study is based on the 0.01–0.08 Hz classic frequency band in 
ALFF analysis to explore the brain regions where local neural activity 
changes in LDHCP patients compared with HC group and the 
possible links between these changes and clinical symptoms. In our 
study, we found that LDHCP patients have functional abnormalities 
in several brain regions in the resting state. Among them, the right 

superior temporal gyrus, the left dorsolateral superior frontal gyrus, 
and the left and right middle frontal gyrus were correlated with 
clinical pain or mood-related scores, respectively. Correlation analysis 
also found a significant correlation between VAS and ODI, but no 
correlation was found between brain regions and ODI. The absolute 
value of the correlation coefficient R ranged from 0.32 to 0.46, which 
was considered a low correlation in a mathematical sense. Several 
studies have pointed out that patients with chronic pain tend to have 
negative emotions. In turn, negative emotions such as anxiety, 
depression, fear and catastrophic beliefs contribute to the pain 
perception and disability of patients with chronic low back pain, 
affecting their life quality and functional status (Bletzer et al., 2017; Le 
Borgne et al., 2017; Serbic and Pincus, 2017; Koechlin et al., 2018). It 
is in accordance with our results of correlation between 
clinical symptoms.

In our study, the right superior temporal gyrus, left dorsolateral 
superior frontal gyrus, and left middle frontal gyrus of LDHCP 
patients are associated with VAS, while the right superior temporal 
gyrus and middle frontal gyrus are associated with anxiety or 

TABLE 2 Brain region with a significant difference in mALFF between two groups.

Brain regions Cluster size Peak MNI coordinates t-values P

AAL (voxels) x y z

LDHCP > HC

Frontal_Inf_Orb_R 124 36 30 −9 5.9883 <0.001

Temporal_Sup_R 53 66 −9 −9 5.2409 0.017

Putamen_R 86 27 −9 0 4.9789 0.001

Rolandic_Oper_R 41 51 −15 9 5.2708 0.049

Frontal_Inf_Oper_R 44 36 21 30 6.9224 0.038

LDHCP < HC

Frontal_Sup_L 114 −15 27 45 −5.3203 <0.001

Frontal_Mid_L 45 −36 27 30 −5.3483 0.034

Frontal_Mid_R 51 30 30 27 −8.4784 0.02

Precuneus_L 70 −9 −39 63 −4.8403 0.004

Supp_Motor_Area_R 56 9 3 63 −5.0943 0.013

Results were corrected for multiple comparisons using the Family Wise Error (FWE) with a cluster level significance threshold of P < 0.05. Frontal_Inf_Orb_R, Right inferior frontal gyrus, 
orbital part; Temporal_Sup_R, Right superior temporal gyrus; Putamen_R, Right lenticular nucleus; Rolandic_Oper_R, Right rolandic operculum; Frontal_Inf_Oper_R, Right Inferior frontal 
gyrus, opercular part; Frontal_Sup_L, Left Superior frontal gyrus; Frontal_Mid_L, Left middle frontal gyrus; Frontal_Mid_R, Right middle frontal gyrus; Precuneus_L, Left Precuneus; Supp_
Motor_Area_R, Right Supplementary motor area.

FIGURE 2

Correlation between clinical symptoms. (A) The correlation between VAS and ODI (R=0.47 P=0.034); (B) The correlation between VAS and SAS (R=0.40 
P=0.014).
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FIGURE 3

Correlation between mALFF values of abnormally activated brain regions and clinical symptoms in LDHCP patients. (A) Positive correlation between 
the mALFF values in the Temporal_Sup_R and the VAS scores; (B) Positive correlation between the mALFF values in the Temporal_Sup_R and the SAS 
scores; (C) Negative correlation between the mALFF values in the Frontal_Sup_L and the VAS scores; (D) Negative correlation between the mALFF 
values in the Frontal_Mid_L and the VAS scores; (E) Negative correlation between the mALFF values in the Frontal_Mid_L and the SAS scores; 
(F) Negative correlation between the mALFF values in the Frontal_Mid_R and the SDS scores.

depression. The frontal lobe, as an emotion regulation center, is related 
to attention, working memory and verbal behavior, and can receive 
rich emotional information, which is closely related to anxiety. Peng 
et  al. (2019) stated that patients with anxiety depression have 
significantly reduced gray matter volumes in the right inferior frontal 
gyrus and orbitofrontal gyrus compared to non-anxious depressed 
and healthy controls. Patients with generalized anxiety disorder have 
been reported a reduced network connectivity in the prefrontal lobes 
(Wang W. et al., 2016), while major depressive disorder with somatic 
symptoms also shows lower ReHo values in the right middle frontal 
gyrus compared to HC (Geng et  al., 2019). A meta-analysis of 
magnetic resonance spectra also proved that anxiety is associated with 
metabolic dysfunction in several brain regions, including the 
dorsolateral prefrontal and hippocampus (Delvecchio et al., 2017). 
These previous studies have explored the possibility that abnormal 
activation of frontal subregions may be  a potential target for the 
development of anxiety and depression from a variety of perspectives, 
including structural, local functional activity, whole brain network 
connectivity and alterations in metabolic transmitters. In addition to 
the frontal regions of the brain, the temporal lobe has also been linked 
to anxiety. The temporal lobe serves as an important node involved in 
the top-down process of anxiety emotion regulation in the frontal-
amygdala loop (Montag et al., 2013). A graph theory study based on 
the topological properties of brain networks also found that the 
clustering coefficients of the inferior temporal gyrus were significantly 
higher in patients with anxiety disorders than in non-anxiety 
disorders, suggesting that abnormalities in temporal lobe function are 
associated with the neural network mechanisms by which anxiety 
disorders occur (Fang et al., 2017).

It is well known that the various parts of our brain do not 
function independently of each other. Spatially distributed brain 

areas interact with each other through local information and 
connections within and between networks to perform different 
functions. The prefrontal cortex (PFC) abnormalities not only affect 
negative emotions, but also exhibit a complex association with pain. 
The PFC, as the higher center of nociceptive encoding, is able to 
integrate nociceptive sensory and emotional information to produce 
memory, cognition and evaluation of pain, relying on its connections 
with brain regions such as the hippocampus, periaqueductal gray 
matter of the midbrain, thalamus and amygdala (Wang et al., 2020). 
When dealing with stimuli from acute and chronic pain, the PFC 
undergoes changes in neurotransmitters, gene expression, glial cells 
and neuroinflammation, which cause changes in its structure, activity 
and connectivity (Davey et al., 2019). The gray matter volume of the 
mPFC extending to the ACC region was found to be significantly 
reduced in patients with CLBP (Yuan et al., 2017), and the functional 
connectivity of the mPFC/ACC with other regions in the DMN was 
reduced (James et al., 2001; Tu et al., 2019). The middle frontal gyrus, 
as a central region in the prefrontal cortex for processes related to 
cognitive control and emotion regulation, is more sensitive to pain 
perception and sensation. Wang J. J. et al. (2016) reported reduced 
ALFF values in the orbitofrontal cortex and right middle frontal 
gyrus bilaterally in migraine patients compared to HCs and were 
associated with depressive co-morbidity. In addition, dorsolateral 
prefrontal cortex (DLPFC), one of the main components of the 
central control network ECN, are not only involved in higher 
cognitive functions but also have important responsibilities in the 
nociceptive downstream inhibitory pathway, playing a facilitative or 
inhibitory role in pain (Beltran Serrano et al., 2019). Several studies 
have pointed out that cLBP patients have significantly reduced gray 
matter volume in the frontal middle gyrus or DLPFC, as well as 
reduced functional connectivity of the left lateral prefrontal lobes in 
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the disabled subgroup of cLBP patients compared to the non-disabled 
subgroup, suggesting that our pain chronicity may be  related to 
abnormalities in the downstream inhibitory function of the 
DLPFC. Pain not only is a physical phenomenon, but also an 
emotional experience. There are relatively few studies relating the 
temporal lobe to pain, but the temporal lobe is implicated in emotion 
regulation and memory processing and may be involved in pain-
related emotional processing and memory formation (Houde et al., 
2020). Peng suggested that somatic pain VAS scores in the Parkinson’s 
with pain group were associated with activation of the left middle 
temporal gyrus, a brain region associated with nociception, by a 
mechanism that may be due to a dopamine deficiency associated with 
mood disorders that enhances the propagation of injury signals and 
pain sensitivity (Peng, 2020).

Interestingly, in the correlation results of this study, we found a 
positive correlation between pain and anxiety, while the right superior 
temporal gyrus and the left middle frontal gyrus correlated with both 
clinical pain and anxiety scores. This suggests to us that abnormalities 
in the right superior temporal gyrus and left middle frontal gyrus may 
be  the main and mediating factor for the occurrence of pain and 
emotion interaction in LDHCP patients. Future analysis and 
validation of large sample brain imaging cohort studies could focus on 
these 2 brain regions as areas of interest. After a large sample or 
multicenter validation, an attempt could also be made to use changes 
in these two brain regions as an evaluation indicator for clinical 
interventions. By observing the changes in brain region activities 
before and after different interventions, the efficacy of different 
treatments for LDHCP may thus be  evaluated. Other brain areas 
differing in LDHCP patients compared to the HC group in this study, 
which did not show a correlation with clinical scale scores, also have 
an important influence in pain and emotional processing. Studies have 
shown that the DMN is one of the main networks affected by chronic 
pain (Jones et al., 2020), being modulated and reorganized by chronic 
pain. The precuneus, a functional center of the default mode network 
which modulates pain sensitivity and pain thresholds, is structurally 
and functionally altered in chronic pain (Zhang et al., 2014; Wang 
et al., 2019). The right inferior orbital frontal gyrus is anatomically 
connected to the limbic system and other prefrontal brain regions and 
is a superior integration center for emotional processing. Patients with 
depression showed reduced clustering coefficients in the inferior 
orbital frontal gyrus and reduced hemodynamic activation (Zhang 
et al., 2020; Feng et al., 2021).

However, some LDHCP studies have shown results different 
from our findings. Wen et al. found a completely different finding 
from ours, they point out that the LDHCP patients exhibited 
increased fALFF in right lingual gyri in the conventional band, and 
showed increased fALFF in left Cerebelum_Crus1 in the slow-4 
band (Wen et al., 2022). In addition to finding similar results to our 
study in the prefrontal cortex or temporal lobe, Zhou et al. (2018) 
also noted that LDHCP patients had abnormal activation in brain 
regions such as the insula, cingulate gyrus, posterior cerebellum, 
inferior parietal lobule, middle occipital gyrus, and postcentral 
gyrus. It is worth noting that patients recruited by Zhou et al. (2018) 
had pain in their legs in addition to cLBP. We  consider these 
controversial findings mainly for the following three reasons. First, 
different pain locations and differences in the distribution of 
subjects in terms of age, gender, and disease duration may be the 
main reasons for the different study results (von Leupoldt et al., 
2011; Zhao et al., 2013; Wink, 2019; Tsvetanov et al., 2021). Second, 

different brain imaging data acquisition machines, processing 
software, and preprocessing steps used by different study groups 
may make differences in the study results (Murphy et al., 2007; 
Ashburner, 2009; Goto et al., 2013; Qing et al., 2015; Shirer et al., 
2015; Hartwig et  al., 2017; Gargouri et  al., 2018). Third, the 
correction methods and thresholds set by different teams during the 
statistical analysis may make differences in the study results 
(Durnez et al., 2014; Fasiello et al., 2022; Noble et al., 2022). In the 
future, the academic community should endeavor to establish a 
uniform standard for the above mentioned points as soon as 
possible in order to eliminate these controversial conclusions. 
Overall, in this experiment, our findings point to a negative 
correlation between the left middle frontal gyrus ALFF and SAS and 
VAS in LDHCP patients, while the right superior temporal gyrus 
was positively correlated with SAS and VAS, and the left dorsolateral 
superior frontal gyrus and right middle frontal gyrus were 
negatively correlated with VAS and SAS, respectively, which is in 
accordance with the results of previous relevant studies. There are 
also limitations to our study. First, we did not differentiate further 
subgroups of lumbar disc herniation in terms of the degree and 
direction of herniation. Secondly, many patients were unable to 
provide the specific time of the first episode of LDHCP, so we did 
not collect LDHCP duration as a factor in this study. Third, the 
pain-focused position was not specifically limited in this study. 
These factors should be progressively modified in future studies, 
taking into account the actual clinical situation.

Conclusion

This study describes the regions of altered spontaneous neural 
activity in LDHCP patients compared to HCs. The right superior 
temporal gyrus, dorsolateral superior frontal gyrus and middle frontal 
gyrus may have important roles in regulating negative emotions and 
pain, providing new evidence to support the exploration of 
pathological mechanisms in LDHCP.
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Zhengzhou, Zhengzhou, China,, 7 Key Laboratory of Imaging Intelligence Research Medicine of Henan 
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Objectives: Initial precipitating injury (IPI) such as febrile convulsion and 
intracranial infection will increase the susceptibility to epilepsy. It is still unknown 
if the functional deficits differ between mesial temporal lobe epilepsy with IPI 
(mTLE-IPI) and without IPI (mTLE-NO).

Methods: We recruited 25 mTLE-IPI patients, 35 mTLE-NO patients and 33 
healthy controls (HC). Static regional homogeneity (sReHo) and dynamic 
regional homogeneity (dReHo) were then adopted to estimate the alterations of 
local neuronal activity. One-way analysis of variance was used to analyze the 
differences between the three groups in sReHo and dReHo. Then the results were 
utilized as masks for further between-group comparisons. Besides, correlation 
analyses were carried out to detect the potential relationships between abnormal 
regional homogeneity indicators and clinical characteristics.

Results: When compared with HC, the bilateral thalamus and the visual cortex 
in mTLE-IPI patients showed an increase in both sReHo and variability of dReHo. 
Besides, mTLE-IPI patients exhibited decreased sReHo in the right cerebellum 
crus1/crus2, inferior parietal lobule and temporal neocortex. mTLE-NO patients 
showed decreased sReHo and variability of dReHo in the bilateral temporal 
neocortex compared with HC. Increased sReHo and variability of dReHo were 
found in the bilateral visual cortex when mTLE-IPI patients was compared with 
mTLE-NO patients, as well as increased variability of dReHo in the left thalamus 
and decreased sReHo in the right dorsolateral prefrontal cortex. Additionally, 
we  discovered a negative correlation between the national hospital seizure 
severity scale testing score and sReHo in the right cerebellum crus1 in mTLE-IPI 
patients.

Conclusion: According to the aforementioned findings, both mTLE-IPI and 
mTLE-NO patients had significant anomalies in local neuronal activity, although 
the functional deficits were much severer in mTLE-IPI patients. The use of sReHo 
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and dReHo may provide a novel insight into the impact of the presence of IPI on 
the development of mTLE.

KEYWORDS

mesial temporal lobe epilepsy, initial precipitating injury, resting-state functional MRI, 
regional homogeneity, dynamic, cognitive impairment

Introduction

Mesial temporal lobe epilepsy (mTLE), characterized by transient 
aberrant electrical activity originating in the mesial temporal lobe 
structures (Morgan et al., 2020), is the most common focal drug-
resistant epilepsy (Li et al., 2022). The hippocampus is particularly 
vulnerable to an intracranial infection or febrile convulsion (what 
we refer to as the initial precipitating injury, or IPI) in childhood (Bien 
et al., 2007; Polat et al., 2010; Janz et al., 2018), and this vulnerability 
often leads to hippocampal sclerosis, which is the most common cause 
of mTLE.

Whether there is IPI may be  one of the factors leading to the 
alterations in brain’s structure or function of mTLE patients. It had 
been reported (Keller et al., 2002) that mTLE patients with a history of 
childhood febrile convulsions had smaller hippocampal and amygdala 
volumes in the ipsilateral side of the epileptic foci than those without 
such a history. Another study (Free et al., 1996) indicated that over half 
of the subjects with a history of encephalitis or meningitis experienced 
bilateral hippocampal volume loss. However, all of the current 
researches focused on alterations in brain structure, leaving the study 
of brain function in mTLE-IPI patients in the dark. Recently, a notion 
that there was a separation of cognitive problems and epileptogenesis 
was proposed (Patterson et al., 2014), which implied that certain kids 
with a history of febrile convulsions might have memory deficits that 
preceded the onset of mTLE. So it becomes sense to think that IPI has 
a high potential for promoting cognitive deterioration.

Resting-state functional magnetic resonance imaging (rs-fMRI) 
is a powerful tool for measuring the changes of blood oxygen level-
dependent (BOLD) signals spontaneously produced by brain (Song 
and Jiang, 2012). One of the most well-liked rs-fMRI analysis 
methods, static regional homogeneity (sReHo), is a voxel-based 
approach that reflects the consistency of neural activity in a given 
voxel with its adjacent voxels (Zang et al., 2004). Contrary to the 
functional connection (FC), which depicts the inter-nodal connection, 
sReHo assesses intra-nodal activity (Hu et al., 2017). An abnormal 
sReHo indicates poor synchronization of local neural activity. It is well 
known that the sReHo of numerous brain regions, such as 
sensorimotor cortex, frontoparietal cortex and DMN, has been 
demonstrated to be disrupted in mTLE (Zeng et al., 2013; Zhao et al., 
2020), which has a close relationship with the cognitive impairment 
of patients.

Considering the dynamic property of brain activity (Calhoun 
et al., 2014), recent investigations (Jiang et al., 2021; Liang et al., 2021) 
had explored the collaboration of brain regions by measuring the 
time-varying covariance of their neural signals during resting-state, 
among which dynamic regional homogeneity (dReHo) is a relatively 
common approach. An rs-fMRI study (Song et al., 2022) reported 
decreased variability of dReHo in the temporal lobe neocortex 

ipsilateral to epileptic foci in mTLE. Another study reported (Xue 
et al., 2022) that patients with major depressive disorder had decreased 
variability of dReHo in some brain regions associated with emotional 
and cognitive regulation, including the fusiform gyri, the right 
temporal pole and hippocampus. These suggest that plenty of diseases 
are accompanied by impaired regional temporal synchronization of 
spontaneous brain activity among certain voxels.

Based on the information presented above, regional homogeneity 
(ReHo) can be used to quantify activity coordination among voxels in 
a region. Since epilepsy is characterized by abnormal spontaneous 
brain activity, we predicted that the local neuronal activity of the 
epileptic foci and the brain regions affected by abnormal discharge 
transmission is impaired to some extent. From this point of view, the 
sReHo and dReHo were employed to characterize and compare the 
differences of neuronal activity among the three subgroups in this 
study. We hypothesized that (1) mTLE-IPI patients had more extensive 
alterations of sReHo or dReHo than mTLE-NO patients and (2) 
sReHo or dReHo in certain brain regions might be associated with 
some clinical characteristics of mTLE patients.

Materials and methods

Participants

BOLD-fMRI data were gathered in 60 unilateral mTLE cases (27 
left- and 33 right-side) in The First Affiliated Hospital of Zhengzhou 
University between April 2019 and July 2022. At the same time, 
we recruited 33 age- and sex-matched healthy controls (HC) from the 
local communities, who also underwent BOLD-fMRI scans.

The diagnosis of mTLE was based on clinical symptom, neurologic 
examination, electroencephalography (EEG) and MRI findings, and 
was confirmed by neurologists from the department of neurology, The 
First Affiliated Hospital of Zhengzhou University. Patients with mTLE 
who met the following criteria were included: (1) MRI revealed that 
there were no obvious structural abnormalities other than unilateral 
hippocampal sclerosis, (2) all right-handed, (3) mini-mental state 
examination score > 24, and (4) ≥14 years old. Exclusion criteria for 
patients were as follows: (1) patients with other brain structural 
abnormalities except for unilateral hippocampal sclerosis, other 
psychiatric disorders, severe systemic diseases or trauma, (2) left-
handed, and (3) had a long history of alcohol or drug abuse. According 
to whether there was intracranial infection or febrile convulsion in 
childhood, the patients were divided into two groups: mTLE with IPI 
(mTLE-IPI, n = 25) group and mTLE without IPI (mTLE-NO, n = 35) 
group. The mTLE-IPI group included 13 patients with a history of 
febrile convulsion and 12 patients with a history of intracranial 
infection (1 meningitis, 11 encephalitis).
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The inclusion criteria for HC were as follows: (1) routine 
conventional MRI findings were normal, (2) had not taken any 
psychotropic tablets, and (3) all right-handed. The exclusion criteria: 
people with any family history of epilepsy or other 
psychiatric disorders.

Basic demographic data, including gender and age, was collected 
from all participants. The mTLE patients’ seizure-related 
characteristics, such as epilepsy duration, seizure severity, and the 
number of concurrent antiseizure medications (ASMs) were noted. 
Seizure severity was determined by the national hospital seizure 
severity scale (NHS3) testing score.

This study was approved by the Research Ethics Committee at The 
First Affiliated Hospital of Zhengzhou University (No.2019-KY-232). 
According to the Declaration of Helsinki, all participants were fully 
informed of the purpose of this study and provided written 
informed consent.

MRI data acquisition

Resting-state fMRI data were acquired using a 3.0 T Magnetom 
Prisma MRI scanner (Siemens Healthcare, Erlangen, Germany), 
equipped with a 64-channel head coil. All participants were instructed 
to lie on their backs with their eyes closed, but to stay awake and to 
unconsciously relax. In order to reduce noise disturbance and 
minimize head motion, each participant was provided with a pair of 
sponge paddings. The scanning parameters were as follows: time of 
repetition (TR) =1,000 ms, time of echo (TE) = 30 ms, field of view 
(FOV) = 220 × 220 mm2, slice thickness = 2.2 mm, slice gap = 0.4 mm, 
flip angle = 70 °, voxel size = 2.0 × 2.0 × 2.2 mm3, slice number = 52, 
volumes = 400.

Resting-state fMRI preprocessing

Data Processing Assistant for Resting-State fMRI Analysis Toolkit 
(DPARSFA, V5.2) (Yan and Zang, 2010) was used to preprocess the 
rs-fMRI data. (1) Converting the DICOM images into the NIFTI 
format, (2) deleting the first 10 time points, (3) slice-timing, (4) 
realignment (participants with linear shifting distances more than 
2.5 mm or rotation angles more than 2.5° were excluded), (5) spatially 
normalizing the fMRI figures to the Montreal Neurological Institute 
(MNI) space and resampling to 3 × 3 × 3 mm3 resolution, (6) 
detrending, (7) regressing several spurious variances, including 24 
head motion parameters (Satterthwaite et al., 2012), cerebrospinal 
fluid signals, and white matter signals, (8)band-pass temporal filtering 
between 0.01–0.08 Hz, and (9) framewise displacement (FD) (Power 
et al., 2012)was calculated for each time point, and participants with 
mean FD exceeding 0.5 mm were excluded.

sReHo and dReHo analysis

Kendall’s coefficient of concordance (KCC) was utilized to 
calculate the sReHo and dReHo of a voxel’s time series and its 
adjacent voxels (Zang et al., 2004). In our study, the cluster size of 
KCC was set to be 27, which is adequate for covering all directions 

in 3D space and to optimize the trade-off between mitigation of 
partial volume effects and generation of Gaussian random fields 
(Jiang and Zuo, 2016). However, considering that the size of cluster 
to be measured might affect KCC value, we validated the results 
using additional two sorts of cluster size (7 and 19 voxels, 
respectively). For sReHo, the KCC value of a given voxel with those 
of its nearest neighbors was calculated through DPARSFA. Then, 
the sReHo map of each subject was obtained and transformed into 
standardized z-score. The dReHo analysis was performed using 
temporal dynamic analysis toolkits (Yan et al., 2017). A method 
based on sliding window was used to describe the temporal 
dynamic patterns. It is rather remarkable that the window length is 
a key parameter. According to prior studies, the minimum window 
length should exceed 1/fmin, where fmin denoted the minimum 
frequency of time courses (Leonardi and Van De Ville, 2015). 
Therefore, a window size of 100 TRs (100 s) and a window overlap 
of 60% (step size by 40 TRs, 40s) were selected (Wen et al., 2021). 
We also tested the results of other window sizes and overlaps, and 
the specific information is described in the validation analysis. The 
standard deviation of the dReHo was calculated to estimate 
temporal variability. Then, the time variability map of each subject 
was normalized into a z-score matrix. At last, spatial smoothing 
with a 6 mm full-width at half-maximum (FWHM) Gaussian kernel 
was performed for the sReHo and dReHo maps.

Statistical analysis

Demographic and clinical characteristics of participants were 
analyzed using IBM SPSS22.0 software. The differences in age, gender 
and mean FD among mTLE-IPI, mTLE-NO and HC were, respectively, 
analyzed with one-way analysis of variance (ANOVA), Chi-square test 
and Kruskal–Wallis test (p < 0.05). Difference in lateralization between 
mTLE-IPI and mTLE-NO was analyzed with Chi-square test (p < 0.05), 
while differences in epilepsy duration, NHS3 score and the number of 
ASMs were analyzed with Mann–Whitney U test, respectively, 
(p < 0.05).

Whole-brain voxel-wise comparisons of sReHo and dReHo 
among the three groups were employed by one-way ANOVA using 
SPM12 toolkit, with age, gender and mean FD as covariates. A 
gaussian random field (GRF) correction was conducted for the F-value 
map (voxel-wise p < 0.005 and cluster-level p < 0.05, cluster extent 
threshold k > 30). Then, a new mask (the brain regions where the F 
value changed significantly) was applied to perform the secondary 
analyses through two-sample t-test (GRF corrected, pvoxel <  0.005, 
pcluster < 0.05, k > 30) between mTLE-IPI and HC, mTLE-NO and HC, 
mTLE-IPI and mTLE-NO.

Correlation analysis

To identify whether the sReHo and dReHo abnormalities were 
associated with clinical characteristics, we  conducted Spearman 
correlation analyses of the sReHo and dReHo values extracted from 
brain clusters showing significant differences on F map with epilepsy 
duration, NHS3 score and the number of ASMs, respectively. p < 0.05 
was set for the statistically significant threshold.
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Validation analyses

First, the ReHo’s proposer (Zang et al., 2004) claimed that the size 
of cluster (7, 19, or 27 voxels) to be measured had a considerable effect 
on KCC; that is, the results may differ depending on this number. 
Although the generally accepted cluster size is 27 voxels, we also tested 
additional two sorts of cluster size (7 and 19 voxels, respectively) to 
investigate how they would affect the outcomes. Second, since the 
optimal window size and step size of the sliding window method have 
not yet been identified, different window sizes/step sizes (100/20 TRs 
and 80/30 TRs) were examined to verify the reproducibility of 
dReHo results.

Results

Demographic and clinical information

The demographic and clinical information of the three groups are 
summarized in Table 1. No significant differences were detected in 
terms of age, gender or mean FD among three groups. For the 
comparison between mTLE-IPI and mTLE-NO, there were no notable 
differences between the two groups in lateralization, epilepsy duration, 
NHS3 score or the number of ASMs.

Group differences in sReHo

The results revealed that mTLE-IPI and mTLE-NO had distinct 
patterns of sReHo alterations (Figure 1 and Table 2). Compared with 
HC, mTLE-IPI showed decreased sReHo in the right inferior temporal 
gyrus (ITG), middle temporal gyrus (MTG), cerebellum crus1/ crus2, 
inferior parietal lobule (IPL, including angular gyrus and 
supramarginal gyrus), while increased sReHo in the bilateral 
thalamus, lingual gyrus (LG), calcarine (CAL) and cuneus. mTLE-NO 
showed decreased sReHo in the bilateral MTG, left ITG and right 
superior temporal gyrus (STG). Compared with mTLE-NO, mTLE-IPI 
manifested decreased sReHo in the right dorsolateral prefrontal cortex 
(DLPFC), while increased sReHo in the bilateral CAL and right LG 
(Figure 2).

Group differences in dReHo

The three groups presented significantly different variability of 
dReHo (Figure  1 and Table  2). Compared with HC, mTLE-IPI 
showed increased variability of dReHo in the bilateral thalamus, left 
CAL and cuneus. mTLE-NO, on the other hand, showed decreased 
variability of dReHo in the bilateral MTG, ITG and right 
STG. Compared with mTLE-NO, mTLE-IPI manifested increased 
variability of dReHo in the bilateral CAL, LG, left cuneus and 
thalamus (Figure 3).

Correlation analysis

As shown in Figure 4, the NHS3 score was negatively correlated 
with sReHo in right cerebellum crus1  in mTLE-IPI patients 
(r = −0.543, p = 0.005). However, there was no discernible correlation 
between the abnormal variability of dReHo and epilepsy duration, 
NHS3 score or the number of ASMs.

Validation analyses

Two different cluster sizes (7 and 19 voxels, respectively) were 
investigated to find out how they might impact the results. The new 
results were mostly consistent with the results reported above. 
However, there were slight variances in the outcomes: (1) when 7 
and 19 voxels were selected, respectively, to calculate sReHo, the 
difference in sReHo between mTLE-IPI and mTLE-NO patients in 
the right cerebellar Crus1/Crus2 vanished, (2) when 7 voxels were 
selected, the right inferior parietal lobule and right temporal lobe 
of the mTLE-IPI lost their decreased sReHo as compared to HC, 
and (3) the right dorsolateral prefrontal cortex’s decreased sReHo 
and the left thalamus’s increased variability of dReHo of mTLE-IPI 
vanished when compared to mTLE-NO. For more information, 
please consult Supplementary Figures S1–S4. What’s more, different 
window sizes/step sizes (100/20 TRs and 80/30 TRs) were used to 
validate the variability of dReHo. The new results were basically 
consistent with the main results. Please see Supplementary Figures S5, 
S6 for details.

TABLE 1 Demographic and clinical information of participants.

Characteristics mTLE-IPI mTLE-NO HC Statistic p value

Age (year) 29.92 ± 8.05 29.54 ± 8.76 29.52 ± 8.68 F = 0.019 0.981

Gender (male/female) 14/11 14/21 15/18 χ2 = 1.541 0.469

Mean FD (mm) 0.07 (0.05) 0.05 (0.06) 0.05 (0.05) F = 2.038 0.361

Lateralization (left/right) 10/15 17/18 – χ2 = 0.433 0.511

Epilepsy duration (year) 11.00 (18.00) 8.00 (10.00) – Z = −0.661 0.509

NHS3 score 11.00 (7.00) 10.00 (7.00) – Z = −0.346 0.729

The number of ASMs 2.00 (1.00) 3.00 (1.00) – Z = −0.703 0.482

mTLE-IPI, mTLE patients with initial precipitating injury; mTLE-NO, mTLE without IPI; HC, healthy controls; FD, framewise displacement; NHS3, national hospital seizure severity scale; 
ASMs, antiseizure medications. Values are mean ± standard deviation; others are median (interquartile range).
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Discussion

Despite the fact that there have been numerous research on static 
and dynamic ReHo in the past, we found that the majority of them 
highlighted the differences between all patients and healthy controls, 
without detailed grouping of patients, such as with or without IPI, 
which may lead to inconsistent results. Therefore, we explored the 
changes in spontaneous neural activity in the three groups from the 
perspectives of sReHo and dReHo to investigate if IPI had an effect on 
cognitive impairment in mTLE patients. As results showed, the 
differences between the three groups were mainly located in the 
bilateral thalamus, occipital lobe and temporal lobe neocortex, and the 
activation brain regions of sReHo and dReHo were basically the same, 
suggesting that the dysfunction of these brain regions was reflected 
not only in the static state, but also in the dynamic state (Duma et al., 
2022, 2023). Besides, mTLE-IPI had decreased sReHo in right 
cerebellum, IPL and DLPFC compared with HC and mTLE-NO 
respectively, implying a complementarity between sReHo and dReHo.

The thalamus is a key relay station for communicating information 
between the cortex and subcortical structures, as well as a crucial 
extratemporal structure for regulating and propagating TLE 
epileptogenic discharges (Keller et al., 2014). It functions critically in 
mental activity, the arousal system of the brain, emotion and 
movement (Ward, 2013). A significant and expanding body of 
literature supports the functional and structural impairment of the 
thalamus in patients with mTLE (Barron et al., 2015; Chen et al., 2015; 
Gleichgerrcht et al., 2021). In a mouse model of temporal lobe epilepsy 
(Fei et  al., 2022), hippocampal subicular pyramidal neurons were 
demonstrated to project to the anterior nucleus of the thalamus. As 
we know, hippocampal neurons are easily damaged by IPI (Janz et al., 
2018). Due to the abnormal propagation of hippocampus discharges, 
we have reason to believe that not only were local neurons in the 
bilateral thalamus over-activated, but also the stability of neuronal 
activity was disrupted in mTLE-IPI patients. The abnormal 
spontaneous brain activity in the thalamus may be associated with 
attention deficiency, memory impairment and emotion change in 
mTLE-IPI patients. The dReHo variability of the left thalamus in 

mTLE-IPI patients was higher than that in mTLE-NO patients, 
suggesting that mTLE-IPI patients may have severer impairment of 
thalamic regional brain activity than mTLE-NO patients.

In contrast to HC and mTLE-NO patients, our investigation 
demonstrated that abnormal sReHo or dReHo took place in the 
bilateral visual cortex of mTLE-IPI patients. The visual network, which 
is located in occipital lobe and includes CAL, LG, cuneus and so on, 
is the key part of the brain for visual information integration and 
attention processing (Bezdek et al., 2015). A section of the primary 
visual cortex known as the CAL receives visual information directly 
from visual stimuli (Wang et  al., 2022). LG is involved in the 
processing of visual memory, especially in the processing of words. 
Integrating visual information is believed to be a crucial function of 
the cuneus (Yang et al., 2022). Numerous investigations (Pang et al., 
2021; Wills et  al., 2021) have revealed that mTLE patients have  
functionally impaired occipital cortex. In line with these studies, our 
results reflect that patients with mTLE-IPI may be more likely to have 
impaired visual networks compared with mTLE-NO and 
HC. Inflammatory mediators, which can be  produced by febrile 
convulsion as well as intracranial infection, will raise glutamatergic 
neurons’ excitability (Rana and Musto, 2018; Mosili et al., 2020). The 
high density of glutamate receptors in the occipital cortex may lead 
the neurons to be  in a more excited state and have a long-term 
influence on the neurons as the disease advances, resulting in unstable 
local neuronal activity in mTLE-IPI patients. The changed sReHo and 
dReHo in the bilateral visual cortex support the decline in patients’ 
visual memory, spatial attention and ability to recognize colors and 
letters (Song et al., 2022). We noted that there were subtle differences 
in the areas of spontaneous brain activity alterations in the visual 
cortex. One possible explanation is that the combination of static and 
dynamic ReHo is more sensitive in reflecting brain abnormalities.

Our findings also suggested that both sReHo and the variability 
of dReHo in the bilateral MTG, left ITG and right STG in mTLE-NO 
patients were lower than in HC. Besides, the sReHo in right MTG and 
ITG was decreased in mTLE-IPI patients. These abnormal ReHo 
changes could be  a result of the temporal neocortex’s abnormal 
neuroplasticity being influenced by frequent abnormal discharges 

FIGURE 1

(A) Significant alterations of sReHo among three groups; (B) Significant alterations of dReHo among three groups. sReHo, static regional homogeneity; 
dReHo, dynamic regional homogeneity; L, left; R, right.
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(Jiang et al., 2021). The MTG (Binder et al., 2009) and ITG (Ojemann 
et al., 2002) play various roles in memory, auditory processing and 
emotion, while the STG houses a part of the primary and association 
auditory cortices (Song et al., 2022). Although results varied slightly 
due to the methodological differences, we  could infer that mTLE 
patients (no matter with or without IPI) may be more prone to have 
functional deficits in social cognition, auditory processing and 
emotion management. We have to mention that a task state functional 
magnetic resonance imaging study (Trimmel et al., 2018) found that 
the right TIG was activated during picture naming in mTLE patients. 
Our findings, however, showed a reduction in sReHo in the right 
temporal neocortex. This inconsistency could be attributed to the fact 
that the patients in current study did not perform tasks such as picture 
naming during the scan.

The cerebellum not only plays an important role in the motor 
dysfunction of mTLE, but also participates in the impairment of 

cognitive function (Argyropoulos et al., 2020; Hao et al., 2022). The 
posterior cerebellum, such as crus 1/crus 2, corresponds to the 
prefrontal cortex (Wang et  al., 2021) and IPL (Zhou et  al., 2019) 
structurally and functionally, and participates in advanced cognitive 
function, especially executive control function. The abnormal sReHo 
detected in right cerebellum crus1/ crus2 and IPL may imply the 
disruption of neuronal activity in cerebellum-related neural circuits, 
supporting the higher-level cognitive and executive dysfunction in 
mTLE-IPI patients. Additionally, our results indicated that the NHS3 
score was negatively correlated with sReHo in right cerebellum 
crus1 in mTLE-IPI, suggesting that the lower the consistency of local 
neuronal activity in the right cerebellum crus1, the poorer the 
patient’s condition.

Interestingly, sReHo in the right DLPFC of mTLE-IPI patients was 
decreased when compared with mTLE-NO patients, whereas there 
was no significant difference when compared with HC. Therefore, 

TABLE 2 Brain regions with changed sReHo and dReHo among the three groups.

Indices Cluster Voxels Brain region Peak intensity MNI coordinate

sReHo 1 68 Cerebellum_Crus1 _R 13.230 30, −66, −39

Cerebellum_Crus2 _R 12.160 33, −67, −40

2 114 Temporal_Inf_L 16.302 −45, 6, −33

Temporal_Mid_L 6.981 −51, −4, −25

3 118 Temporal_Sup_R 17.006 45, −12, −12

Temporal_Inf_R 11.000 45, 8, −34

Temporal_Mid_R 9.151 48, 8, −29

4 326 Calcarine_R 13.083 3, −66, 12

Calcarine_L 10.160 −2, −67, 14

Lingual_R 9.773 1, −68, 9

Lingual_L 6.677 −12, −70, 4

Cuneus_L 9.644 −10, −72, 22

Cuneus_R 7.172 6, −75, 20

5 64 Thalamus_R 21.106 3, −16, 11

Thalamus_L 6.571 5, −6, 5

6 72 DLPFC_R 16.239 39, 57, 18

7 54 Angular_R 9.108 48, −43, 28

SupraMarginal_R 10.635 57, −39, 27

dReHo 1 233 Temporal_Pole_Mid_R 12.152 42, 9, −36

Temporal_Mid_R 7.267 47, 4, −28

Temporal_Inf_R 7.592 45, 1, −33

Temporal_Sup_R 7.821 45, −15,-9

2 151 Temporal_Mid_L 12.488 −57, 9, −27

Temporal_Inf_L 9.127 −46, 4, −34

3 311 Calcarine_L 13.210 −9, −69, 21

Calcarine_R 6.314 2, −70, 19

Cuneus_L 9.356 −9, −73, 27

Lingual_R 5.661 13, −65, −3

Lingual_L 5.756 −9, −70, −1

4 131 Thalamus_L 10.140 −5, −16, 7

GRF corrected, voxel-wise p < 0.005, cluster-level p < 0.05; sReHo, static regional homogeneity; dReHo, dynamic regional homogeneity; DLPFC, dorsolateral prefrontal cortex; L, left; R, right.
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we speculated that one of the two groups had a slight increase in 
sReHo of the right DPLFC, while the other had a tiny decrease. 
Increases or decreases in sReHo, particularly in the DPLFC, which is 
widely considered to be a vital cortical region involved in cognitive 
function (Qin et al., 2020), may cause neuronal activity to deviate 
from the normal range, which is detrimental to normal 
cognitive activity.

It is noteworthy that the number of brain regions with significant 
differences between the three groups changed slightly when we varied 
the cluster size, and the smaller the cluster size was the fewer distinct 
brain regions there were. This is consistent with the assertion (Zang 
et al., 2004) that “larger size of cluster yielded more differences.” So, 
we speculated smaller cluster size probably decreased the detection of 
spontaneous brain activity and hindered ReHo temporal variability. 
Recent years, several researchers (Shinn et al., 2023) have advocated 
using the parcellation method to determine the ReHo value of each 
parcellated brain region, such that at least one could have a region 
specific value of homogeneity. It is worth investigating which method 
can better characterize the constancy of local neural activity.

Limitations

There are several limitations in this study. To mention first, a 
larger sample size is needed to improve the credibility of our findings. 

The sample size in this study is relatively small. More individuals 
should be  included in follow-up studies. Secondly, for mTLE-IPI 
patients, we did not further subdivide them. There may be different 
patterns of intrinsic brain activities among mTLE patients caused by 
different IPI. Thus, more detailed grouping is required to deepen the 
understanding of neuropathological changes of different mTLE-IPI 
subtypes, which is of profound significance for guiding clinical 
treatment. Thirdly, the effect of ASMs cannot be ignored. ASMs may 
confound the results of this study since they can inhibit the 
epileptogenesis by preventing the excitatory transmission of neurons 
(Miziak et al., 2020), which may have a certain impact on regional 
brain activities. Although we compared the number of ASMs between 
the two groups, it may be far from enough. Finally, the current study 
is cross-sectional. In order to better explain the mechanism of IPI on 
mTLE and its ongoing effect, longitudinal research is necessary.

Conclusion

The current study found that there were different patterns of local 
neuronal activity alterations in mTLE-IPI and mTLE-NO, and the 
severity of abnormalities in mTLE-IPI patients was greater than that 
in mTLE-NO patients, especially in the bilateral thalamus and visual 
cortex. Besides, there were abnormal sReHo in the right temporal 
neocortex no matter in mTLE-IPI or mTLE-NO patients. Furthermore, 

FIGURE 2

Brain regions with significant alterations of sReHo between mTLE-IPI and HC (A), mTLE-NO and HC (B), mTLE-IPI and mTLE-NO (C). GRF corrected; 
voxel-wise p  <  0.005, cluster-level p  <  0.05. Warm colors indicate increased sReHo, while cold colors indicated decreased sReHo. sReHo, static regional 
homogeneity; mTLE-IPI, mTLE patients with initial precipitating injury; mTLE-NO, mTLE patients without initial precipitating injury; HC, healthy controls; 
GRF, Gaussian random field theory; L, left; R, right.
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our study also suggested that combining the static and dynamic 
indicators could build better models of brain function and 
dysfunction. In a word, these findings can help us comprehend how 
IPI affects the impaired brain activity of mTLE patients and can assist 
in carrying out timely intervention for patients with mTLE-IPI in 
order to control the progress of the disease effectively.
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FIGURE 3

Brain regions with significant alterations of variability of dReHo between mTLE-IPI and HC (A), mTLE-NO and HC (B), mTLE-IPI and mTLE-NO (C). GRF 
corrected; voxel-wise p  <  0.005, cluster-level p  <  0.05. Warm colors indicate increased variability of dReHo, while cold colors indicated decreased 
variability of dReHo. dReHo, dynamic regional homogeneity; mTLE-IPI, mTLE patients with initial precipitating injury; mTLE-NO, mTLE patients without 
initial precipitating injury; HC, healthy controls; GRF, Gaussian random field theory; L, left; R, right.

FIGURE 4

The correlation between the sReHo value of right cerebellum crus1 
and NHS3 score in patients with mTLE-IPI.
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The mechanisms underlying bimanual coordination have not yet been fully

elucidated. Here, we evaluated the clinical features of bimanual movement

impairment in a patient following surgery for a frontal lobe tumor. The patient

was an 80-year-old man who had undergone subtotal tumor resection for a

tumor in the right superior frontal gyrus. Histological examination of the resected

specimen led to the diagnosis of malignant lymphoma of the diffuse large

B-cell type, and the patient subsequently received high-dose methotrexate-

based chemotherapy. Postoperatively, the patient had difficulty with bimanual

movement, and on the 5th postoperative day we found that the impairment could

not be attributed to weakness. Temporal changes in the characteristics of manual

movements were analyzed. Bimanual diadochokinesis (opening/closing of the

hands, pronation/supination of the forearms, and sequential finger movements)

was more disturbed than unilateral movements; in-phase movements were

more severely impaired than anti-phase movements. Bimanual movement

performance was better when cued using an auditory metronome. On the 15th

postoperative day, movements improved. The present observations show that in

addition to the disturbance of anti-phase bimanual movements, resection of the

frontal lobe involving the supplementary motor area (SMA) and premotor cortex

(PMC) can cause transient impairment of in-phase bimanual diadochokinesis,

which can be more severe than the impairment of anti-phase movements. The

effect of auditory cueing on bimanual skills may be useful in the diagnosis of

anatomical localization of the superior frontal gyrus and functional localization

of the SMA and PMC and in rehabilitation of patients with brain tumors, as in the

case of degenerative movement disorders.

KEYWORDS

bimanual movement, frontal lobe, primary motor cortex, supplementary motor area,
premotor cortex, motor coordination
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GRAPHICAL ABSTRACT

1. Introduction

Bimanual coordination remains unclear in terms of its
underlying mechanisms. In addition to the primary motor cortex,
the supplementary motor area (SMA) and premotor cortex (PMC)
play significant roles in complex motor control. The SMA and PMC
reside in the posterior part of the superior frontal gyrus and in
the mesial and lateral portions of Brodmann area 6, respectively.
SMA syndrome is characterized by akinesia with preserved muscle
strength, which is more severe on the contralateral side of the SMA
lesion and usually recovers over several weeks (Laplane et al., 1977).
The disturbance of anti-phase bimanual alternating movements is
a residual symptom of SMA syndrome (Laplane et al., 1977).

Here, we report the case of a patient with a frontal lobe tumor
who showed a rare manifestation of more severe impairment of in-
phase than of anti-phase movements after surgery.

2. Case description

An 80-year-old right-handed man underwent subtotal
resection of a tumor in the right superior frontal gyrus
(Figures 1A-C). The tumor was histologically diagnosed as a
diffuse large B-cell type malignant lymphoma. and he subsequently
received high-dose, methotrexate-based chemotherapy. The tumor
did not involve the pre- and postcentral gyri. Diffusion tensor
imaging showed that corticospinal tract was intact (Figures 1D,
E). Thus, the primary sensorimotor cortex was preserved

(Figure 1F). Postoperatively, the patient had difficulty with
bimanual movement. At first, we considered that the difficulty
was caused by weakness and akinesia. However, on the 5th
postoperative day we found that the impairment could not be
attributed to weakness because his motor skills varied depending
upon the type of movement. Thus, we precisely evaluated his
movement in the recovery process. This study was conducted
according to the principles of the Declaration of Helsinki. The
Institutional Ethics Review Board waived approval of the study
design. Written informed consent was obtained from the patient
for publication of the case report and accompanying images.

3. Diagnostic assessment

Temporal changes in the characteristics and performance of
manual movements were analyzed by reviewing video recordings
(Supplementary Videos 1–13).

On the 5th postoperative day, the unilateral left-sided
movements were skillful (Supplementary Videos 1, 3, 5). In
contrast, when the patient was instructed to perform bilateral
movements of the hands and arms, such as raising the arms,
pronation and supination of the forearms, and opening and
closing of the hands, he could not move his left side properly
(Supplementary Videos 2, 4, and 6). When an instruction on in-
phase sequential finger movement was given by verbal commands
with gestures to bend his fingers from the thumb in order and
open his fingers bilaterally at the same time, a whole series of
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FIGURE 1

Brain magnetic resonance imaging before surgery. Gadolinium-enhanced T1-weighted sagittal (A), coronal (B), and axial (C) images show a right
frontal lesion with enhancement. (D,E) Diffusion tensor image showing the corticospinal tract. (F) Postoperative fluid-attenuated inversion recovery
axial image, showing small resected area with low-intensity rim surrounded by high-intensity white matter lesion.

movements at once, he bent and extended his fingers, one at a
time, alternating bilaterally with a chant to keep time (Figure 2 and
Supplementary Video 6). He was aware that he could not move
both sides simultaneously and substituted in-phase movements
with anti-phase or unilateral movements. The patient often chanted
aloud to keep time. Bimanual in-phase closing-opening movement
performance improved when cued by the sounds of a metronome
at 40 beats per minute (Supplementary Videos 7, 8).

As for the other parts of the body, bilateral leg movements
showed similar tendency; anti-phase movements were more skillful
than in-phase movements (Supplementary Videos 9, 10). There
was no language impairment.

The next day (the 6th postoperative day), his bimanual
movements improved compared to those on the day before;
however, every movement was performed by calling out. At the
beginning of the bilateral in-phase movement, the left hand was
delayed in facing the palm upward and making a fist, but afterward,
the opening/closing movements were smooth (Supplementary
Video 11). As for the anti-phase movements, initial closing of
the right hand and opening of the left hand were performed as
instructed; however, the patient was unable to perform bilateral
opposite movements simultaneously and made fists with both
hands. Instead of pronation/supination of both forearms, the
patient showed alternating unilateral movement. When instructed
to perform sequential movements of the bilateral fingers, he could
simultaneously flex the bilateral thumbs and index fingers; however,
flexion/extension of the other fingers was performed alternately
(Supplementary Video 12). Unilateral left-side movements were
skillful but the actual movement performed was opposite to his
call-out; e.g., he opened his palm while saying “fist.”

On the 15th postoperative day, in-phase bimanual movements,
namely, closing/opening and sequential finger movements
improved (Supplementary Video 13).

4. Discussion

To the best of our knowledge, this is the first report to
demonstrate disturbance of bimanual in-phase movement after
frontal lobe surgery. While functional localization of the SMA
and PMC is heterogenous among individuals (Fried et al., 1991;
Chung et al., 2005; Genon et al., 2018), the current observation
demonstrated that the resected area included the SMA and PMC
in the superior frontal gyrus. In addition, the resection interrupted
network among bilateral SMA, PMC, and primary motor cortices
(Figure 3). We found a novel symptom of SMA syndrome, which
also indicates an importance of disconnection of motor areas on
pathophysiology of SMA syndrome.

In general, anti-phase movements are more complex and
require greater activation of the SMA and PMC than in-phase
movements (Sadato et al., 1997). There is a phenomenon called
phase transition, which is usually observed as a change from anti-
phase to in-phase transition during bimanual coordination tasks
(Repp, 2005). However, in our patient, in-phase sequential bilateral
finger movement was more disturbed than anti-phase movement.
Transcranial magnetic stimulation of the primary motor cortex
disrupts bimanual in-phase tasks, whereas bimanual anti-phase
tasks remain unaffected (Chen et al., 2005). Furthermore, the
interhemispheric connectivity between the primary hand motor
regions as per functional magnetic resonance imaging decreases
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FIGURE 2

Impairment of in-phase movement. Despite an instruction for simultaneous movement, the patient extended his fingers alternatingly. (A) Fists.
Right-to-left extension of panels (B,C) small fingers, (D,E) ring fingers, (F,G) tall fingers, (H) index fingers, and (I,J) thumbs. See Supplementary
Video 6.

during uncoupled bilateral finger movements compared to that
during synchronous movements (Meister et al., 2010). Thus,
transient dysfunction and disconnection of the bilateral primary
motor cortices, in addition to lesions in the SMA and PMC, likely
contributed to the current findings.

In humans, the SMA plays a significant role in self-paced,
signal-triggered, and sequential finger movements (Mushiake
et al., 1991; Tanji, 1996; Tanji and Mushiake, 1996). Lesions
in the SMA impede the selection of appropriate movements;
however, external sensory cues can ameliorate task impairments
in monkeys (Mushiake et al., 1991; Tanji, 1996; Tanji and
Mushiake, 1996). The lateral PMC is activated by both externally
triggered and self-initiated tasks (Grefkes et al., 2008; Potgieser
et al., 2014). Thus, auditory cues and vocalizations helped initiate
and execute bimanual movements in our patient probably via
residual function of the PMC. External triggers can elicit rapid
movements (kinesia paradoxica) (Jankovic, 2008) and have been
utilized in rehabilitation mainly of gait disturbance in patients
with Parkinson’s disease (Arias and Cudeiro, 2008). The effect of
auditory cueing on bimanual coordination may be useful for the
diagnosis of anatomical localization of the superior frontal gyrus
and functional localization of the SMA and PMC of the lesion as
well as the resected areas and for rehabilitation of patients with
frontal lobe lesions or dysfunction.

Auditory cues were delivered at a tempo of 40 beats per
minutes, i.e., interstimulus interval of 1.5 s. The pace is based upon
the data that, when interstimulus interval range approximately
from 0.6 to 1.8 s, subjects can tap their fingers synchronous
to auditory stimuli integrating the timing and movements
(Mates et al., 1994; Repp, 2005). There are two distinct motor loops,
one is the cerebellum, thalamus/basal ganglia and ventral areas of
motor cortex (primary motor cortex, SMA and ventral PMC), and
the other is dorsal PMC and primary motor cortex (Middleton and
Strick, 2000; Figure 3). It is hypothesized that phase correction
of bimanual movement according to auditory stimuli in relatively
slow pace is associated with the latter loop via dorsal PMC, whereas
pace correction, especially rapid movement execution, is associated
with ventral motor loop (Repp, 2005).

Impairment of bimanual movement in our patient fulfils
operational definitions of apraxia; failure to produce the correct
movement in response to a verbal command, and failure to imitate
correctly a movement performed by the examiner (Leiguarda and
Marsden, 2000). The characteristics of fine finger movement deficits
can be categorized as a specific form of limb-kinetic apraxia
with preserved muscle strength or perception of various senses.
Importance of early diagnosis and treatment intervention of limb-
kinetic apraxia using rehabilitation is recently drawing attention in
poststroke patients (Jang and Byun, 2022).
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FIGURE 3

Proposed mechanisms of bimanual movement coordination. (A) 3D image of the patient, showing positional relationship among the tumor and
motor areas. (B) Motor loops. Cerebellum – thalamus/basal ganglia – ventral areas of supplementary motor cortex (SMA) (yellow), and dorsal
premotor cortex (PMC) – primary motor cortex (M1) associated with auditory stimuli (blue). (C) Schematic representations of relationship among
motor cortices. In anti-phase movement, close connection among bilateral SMA and M1 is important, which is relatively preserved in this patient
(upper row). In in-phase movement, connections between bilateral M1 and between SMA and PMC of each side are important, that are impaired in
this patient (middle row). Auditory que stimulates bilateral dorsal PMC and ameliorates in-phase movements (lower row).

Patient perspective

The present observations demonstrate that in addition to the
disturbance of anti-phase bimanual movements, resection of the
frontal lobe involving the SMA can cause transient impairment
of in-phase bimanual diadochokinesis, which can be more severe
than the impairment of anti-phase movements. The effect of
auditory cueing on bimanual skills may be useful in the diagnosis
of anatomical and functional localization of the lesion and in
rehabilitation of patients with brain tumors, as in the case of
degenerative movement disorders.
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SUPPLEMENTARY VIDEO 1

The 5th postoperative day. Instruction of unilateral left arm elevation was
given with gesture, and the movement was smooth.

SUPPLEMENTARY VIDEO 2

The 5th postoperative day. When he was instructed to raise his both arms
(’banzai’ in Japanese) with gesture, he raised his right arm only.

SUPPLEMENTARY VIDEO 3

The 5th postoperative day. Unilateral left forearm
pronation/spination was smooth.

SUPPLEMENTARY VIDEO 4

The 5th postoperative day. Despite instruction of bilateral in-phase
forearms pronation/spination but left movement delayed.

SUPPLEMENTARY VIDEO 5

The 5th postoperative day. Sequential movements of unilateral left
fingers were smooth.

SUPPLEMENTARY VIDEO 6

The 5th postoperative day. When an instruction on in-phase sequential
finger movement was given by verbal commands with gestures to bend his
fingers from the thumb in order and open his fingers bilaterally at the same
time, a whole series of movements at once, he bent and extended his
fingers, one at a time, alternating bilaterally with a chant to keep time. See
Figure 2.

SUPPLEMENTARY VIDEO 7

The 5th postoperative day. Bilateral in-phase closing/opening (fist/palm,
’gu/pa’ in Japanese) in his own pace was instructed. Left hand delayed at
5th turn and he performed anti-phase movement instead of
in-phase movement.

SUPPLEMENTARY VIDEO 8

The 5th postoperative day. The same movement as Supplementary Video 7
with metronome sound que at 40 beats per minute. Opening of 4th turn
delayed but he could catch up with the original rhythm.

SUPPLEMENTARY VIDEO 9

The 5th postoperative day. Anti-phase bilateral leg movement was smooth.

SUPPLEMENTARY VIDEO 10

The 5th postoperative day. He was instructed to raise bilateral legs at the
same time, but raised his right leg only.

SUPPLEMENTARY VIDEO 11

The 6th postoperative day. Bilateral in-phase closing/opening (fist/palm) in
his own pace was instructed. At the beginning of the bilateral in-phase
movement, the left hand was delayed in facing the palm upward and
making a fist, but afterward, the opening/closing movements were smooth.
Every movement was performed by calling out.

SUPPLEMENTARY VIDEO 12

The 6th postoperative day. When instructed to perform
sequential movements of the bilateral fingers, he could
simultaneously flex the bilateral thumbs and index fingers;
however, flexion/extension of the other fingers was performed alternately.

SUPPLEMENTARY VIDEO 13

The 15th postoperative day. In-phase bimanual sequential
movements improved.
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Background: Alzheimer’s disease (AD) and type 2 diabetes mellitus (T2DM) 
are aging related diseases with high incidence. Because of the correlation 
of incidence rate and some possible mechanisms of comorbidity, the two 
diseases have been studied in combination by many researchers, and even 
some scholars call AD type 3 diabetes. But the relationship between the two 
is still controversial.

Methods: This study used seed-based d mapping software to conduct a meta-
analysis of the whole brain resting state functional magnetic resonance imaging 
(rs-fMRI) study, exploring the differences in amplitude low-frequency fluctuation 
(ALFF) and cerebral blood flow (CBF) between patients (AD or T2DM) and healthy 
controls (HCs), and searching for neuroimaging evidence that can explain the 
relationship between the two diseases.

Results: The final study included 22 datasets of ALFF and 22 datasets of CBF. 
The results of T2DM group showed that ALFF increased in both cerebellum and 
left inferior temporal gyrus regions, but decreased in left middle occipital gyrus, 
right inferior occipital gyrus, and left anterior central gyrus regions. In the T2DM 
group, CBF increased in the right supplementary motor area, while decreased in 
the middle occipital gyrus and inferior parietal gyrus. The results of the AD group 
showed that the ALFF increased in the right cerebellum, right hippocampus, and 
right striatum, while decreased in the precuneus gyrus and right superior temporal 
gyrus. In the AD group, CBF in the anterior precuneus gyrus and inferior parietal 
gyrus decreased. Multimodal analysis within a disease showed that ALFF and CBF 
both decreased in the occipital lobe of the T2DM group and in the precuneus and 
parietal lobe of the AD group. In addition, there was a common decrease of CBF 
in the right middle occipital gyrus in both groups.

Conclusion: Based on neuroimaging evidence, we  believe that T2DM and AD 
are two diseases with their respective characteristics of central nervous activity 
and cerebral perfusion. The changes in CBF between the two diseases partially 
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overlap, which is consistent with their respective clinical characteristics and also 
indicates a close relationship between them.

Systematic review registration: PROSPERO [CRD42022370014].

KEYWORDS

functional neuroimaging, Alzheimer’s disease, type 2 diabetes mellitus, functional 
magnetic resonance imaging, coordinated-based meta-analysis

1 Introduction

Diabetes is a chronic metabolic disease characterized by 
hyperglycemia (Zheng et  al., 2018), and type 2 diabetes mellitus 
(T2DM) characterized by insulin dysfunction accounts for the 
majority (about 95%) (Bruno et al., 2005; Holman et al., 2015). It is 
estimated that the prevalence rate of diabetes will gradually increase 
from 6.3% in 2019 to 10.2% in 2030, when the population will reach 
578 million, becoming a serious global public health problem (Saeedi 
et al., 2019). The complications of diabetes include retinopathy, renal 
failure, heart disease, cerebrovascular disease (Kautzky-Willer et al., 
2016; Zheng et  al., 2018). In addition, the cognitive impairment 
caused by diabetes is also increasingly concerned. Research reports 
that about 25–36% of diabetes patients have cognitive impairment 
(Geijselaers et al., 2015), and progress to dementia more quickly than 
healthy people (Exalto et al., 2013; Biessels and Despa, 2018), among 
which the risk of Alzheimer’s disease (AD) increases by about 45–90% 
(Arvanitakis et al., 2004; Wang et al., 2012).

AD is a chronic neurodegenerative disease with hidden onset (Liu 
et al., 2019). It is the most common type of dementia, accounting for 
about 70% (Burns and Iliffe, 2009), and the incidence rate is increasing 
year by year (Alzheimer’s Association, 2021; Scheltens et al., 2021). 
The pathological feature of AD is hyperphosphorylated TAU protein 
deposition in the cells, and forms the neurofibrillary tangles when 
occurring in the nerve cells (Ballard et al., 2011; Scheltens et al., 2021). 
According to previous studies, T2DM and AD share many common 
characteristics, including being highly prevalent age-related diseases 
with a long prodromal period and being chronic complex diseases 
(Kubis-Kubiak et al., 2019; Diniz Pereira et al., 2021). In addition, 
T2DM and AD have many pathological mechanisms in common 
caused by insulin resistance (Janson et al., 2004), such as metabolic 
syndrome (Więckowska-Gacek et al., 2021), advanced glycation end 
products (AGEs) (Byun et  al., 2017), insulin signal transduction 
disorder (De Felice et  al., 2022), etc. Therefore, some researchers 
believe that AD is a late complication with the development of T2DM, 
which can even be called type 3 diabetes (de la Monte et al., 2018; 
Nguyen et al., 2020). However, another group of scholars believe that 
the two diseases are different, and T2DM is only a high-risk factor for 
AD (Moran et  al., 2015), which leads to faster disease progress 
(Chornenkyy et al., 2019). At present, the relationship between T2DM 
and AD is still unclear, especially the brain damage caused by the two 
diseases. However, central insulin resistance and signal transduction 
abnormalities caused by these two diseases are becoming the 
mainstream (Diehl et al., 2017; Kellar and Craft, 2020).

In clinical studies, researchers tried to use various methods such 
as electroencephalogram (EEG), positron emission tomography 
(PET), single photon emission computed tomography (SPECT) and 

magnetic resonance imaging (MRI) to clarify the process of brain 
changes in T2DM or AD (Bucerius et al., 2012; Chen and Zhong, 
2013; Brundel et al., 2014; Matsuda, 2016; Benwell et al., 2020). The 
resting-state functional MRI (rs-fMRI) has been increasingly used 
because of its non-invasive, efficient, high spatial resolution in 
detecting central nervous system. Amplitude low-frequency 
fluctuation (ALFF) and cerebral blood flow (CBF) are more widely 
used indicator derived from fMRI. ALFF is a measure of resting state 
blood oxygen level dependent (BOLD) signal changes, reflecting local 
neural activity (Zou et al., 2008), while CBF measured by arterial spin 
labeling (ASL) technique which can reflect cerebral perfusion 
(Williams et al., 1992). ALFF and CBF have always been regarded as 
two independent indicators, but studies have confirmed that CBF was 
involved in regulating the change of BOLD signal (Kannurpatti et al., 
2008; Tak et al., 2014), and they can reflect the intensity of local neural 
activity in direct and indirect ways (Kim and Lee, 2004; Yu-Feng et al., 
2007), respectively. Furthermore, these two indicators can 
be combined for analysis to represent the neurovascular coupling 
status of brain regions (Hu et al., 2019; Yu et al., 2019). Therefore, it is 
necessary to conduct research and analysis on these two indicators.

Since the application of fMRI technology, a lot of scientific 
achievements have been published on ALFF and CBF alteration in 
T2DM or AD. However, differences in sample size, demographic 
information, image acquisition techniques and analysis methods 
among different studies lead to heterogeneity of results. Meta-analysis 
has emerged to identify abnormal brain activity from a large number 
of studies. For example, a published meta-analysis in T2DM patients 
showed a decrease of ALFF in the parietal lobe, occipital lobe, and 
cingulate gyrus (Macpherson et al., 2017). The meta-analysis in AD 
patients showed a general decrease of CBF in whole brain, especially 
in the posterior cingulate gyrus and temporal parietal lobe (Zhang 
et al., 2021), while the meta-analysis in T2DM patients showed that 
CBF decreased in bilateral occipital lobe but increased in right 
prefrontal lobe and supplementary motor area (Liu et al., 2022). Due 
to differences of literature inclusion criteria and specific analysis 
methods, the level of evidence from the combined analysis of the 
above two indicators might decrease. In summary, it is essential to 
combine ALFF and CBF for further analysis by using neurovascular 
coupling coefficient, in order to explore the alteration of brain neural 
activity in T2DM and AD, and to analyze the similarities and 
differences of brain damage caused by the two diseases.

The aim of this study is, to perform a voxel-based meta-analysis 
of ALFF and CBF changes in patients with T2DM and AD, by taking 
advantage of the large number of whole-brain rs-fMRI studies 
published in recent years, and to explore whether there are similarities 
in brain alterations in the two diseases. This is not only helpful to 
understand the pathophysiology of T2DM and AD more accurately, 
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but also can provide evidence of brain damages from the perspective 
of imaging, which is helpful to reveal the pathogenesis and to find the 
promising biomarkers.

2 Methods

2.1 Protocol and guidance

The meta-analysis was conducted in accordance with the 
guidelines of the Preferred Reporting Items for Systematic Reviews 
and Meta-Analyses (PRISMA) and 10 simple rules for neuroimaging 
meta-analysis (Müller et al., 2018; Page et al., 2021). The protocol of 
this neuroimaging meta-analysis was registered on PROSPERO 
(CRD42022370014).1

2.2 Search strategy

We used a systematic search strategy to identify published relevant 
studies in databases including PubMed, Web of Science, from Jan 1, 
2007 to Sep 1, 2022. Divided the search process into two parts based 
on the type of indicator. The first part used keywords (“Diabetes 
Mellitus, Type 2” OR “Type 2 Diabetes” OR “Diabetes Mellitus, Type 
II” OR “NIDDM” OR “T2DM” OR “Alzheimer Disease” OR 
“Alzheimer*” OR “dement*” OR “AD”) AND (“amplitude of low 
frequency fluctuation” OR “ALFF” OR “low frequency fluctuation” OR 
“LFF” OR “amplitude of low frequency oscillation” OR “LFO”). The 
second part used keywords (“Diabetes Mellitus, Type 2” OR “Type 2 
Diabetes” OR “Diabetes Mellitus, Type II” OR “NIDDM” OR “T2DM” 
OR “Alzheimer Disease” OR “Alzheimer*” OR “dement*” OR “AD”) 
AND (“Cerebrovascular Circulation” OR “arterial spin labeling” OR 
“ASL” OR “Cerebral Blood Flow” OR “CBF”).

2.3 Study selection

After completing the search, duplicate studies were first excluded. 
When extracting information in the study by reading the full text, if 
there was important information that could not be found, such as 
coordinate values, non-online manuscripts, etc., we contacted the 
corresponding author by email. After information extraction, studies 
conforming to the research will be included in the following: (1) an 
article was published, rather than the abstract, lecture or letters; (2) 
assessed CBF or ALFF in whole brain analysis; (3) participants were 
classified into healthy controls (HCs) and T2DM and/or AD groups 
in cross-sectional and at the baseline of longitudinal studies; (4) the 
article clearly reported peak coordinates in stereotactic three-
dimensional coordinates (MNI or Talairach); (5) be able to extract the 
t value, z values or p values; and (6) subjects were adults (18–75 years 
old). Exclusion criteria will be: (1) the study participants were 
individuals diagnosed with dementia other than AD; (2) other 
neuropsychiatric disorders, macrovascular complications, 
craniocerebral trauma, and inflammatory lesions of the central 

1 https://www.crd.york.ac.uk/prospero/

nervous system; (3) no HCs; (4) not related to ALFF and CBF; (5) 
studies with ROI analysis; (6) research on minors; (7) secondary 
study; and (8) neuroimaging quality score<16 or JBI score<12.

2.4 Quality assessment

We referred to the previous high-quality literature and used the 
methodological assessment checklist which was specific for 
neuroimaging meta-analysis to evaluate the quality of the included 
study (Pan et  al., 2017; Supplementary Figure S1; 
Supplementary Tables S4, S5). In addition, only cross-sectional 
information was extracted after the study was included, so 
we  introduced the Joanna Briggs Institute (JBI) critical appraisal 
checklist of the cross-sectional study for secondary assessment (Ma 
et al., 2020; Supplementary Figure S2; Supplementary Table S6). The 
quality of the study was first independently evaluated by two reviewers 
(H.X and ZY.L, Radiologist), and the consistent evaluation results 
would be adopted. If there were differences in the evaluation results, 
the third reviewer (LF.Y, Deputy Chief Radiologist and Associate 
Professor) would evaluate and make final decision.

2.5 Voxel-wise meta-analysis of CBF and 
ALFF abnormalities

The meta-analyses of ALFF and CBF were performed in the “Gray 
Matter” templates of the anisotropic effect size-signed differential 
mapping (AES-SDM) (Radua and Mataix-Cols, 2009; Radua et al., 
2012; Radua and Mataix-Cols, 2012; Radua et al., 2014), which has 
been widely used in the meta-analysis of neuroimaging (Barona et al., 
2019; Li et al., 2022). The specific research process has been reported 
in detail in previous studies (Radua and Mataix-Cols, 2009; Ferreira 
and Busatto, 2010; Radua et al., 2012), so we summarized the methods 
as follows: First, extracting the effective coordinates of CBF or ALFF 
abnormalities (increased or decreased) between T2DM patients or AD 
patients and HCs in each data set and the size of their brain impacts, 
and using various heterotypic Gaussian kernels to reconstruct the 
statistical map on MNI coordinates. Then, the study combined the 
random effect model considering sample size, intra-study variability 
and between-study heterogeneity to generate a mean map. Finally, 
MRICRON2 software were used to visualize the data.

According to the research of software developers, we have adopted 
the recommended settings (FWHM = 20 mm, p = 0.005, peak height 
Z = 1, and cluster extent ≥20 voxels) in this study (Radua et al., 2012). 
When extracting data from research, if only z value or p value was 
provided, it can be analyzed by converting it to t value through https://
www.sdmproject.com/utilities/?show=Statistics. According to the 
software instruction, the following five standard steps will be followed 
when processing data: (1) Global analysis, (2) Pre-processing, (3) 
Mean analysis, (4) Threshold analysis, and (5) Extract peak 
coordinates and Bias Test.

Next, we  compared the covariant brain regions (increased or 
decreased) of ALFF and CBF in T2DM compared with HCs through 

2 https://www.nitrc.org/projects/bnv/
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quantitative meta-analysis of brain regions with differences among 
groups obtained from previous analysis, and used standard 
randomization test to determine statistical significance. The same 
analysis was performed for AD group. In this process, we  took 
demographic information with statistical differences as covariates. In 
addition, by combining the result graph of threshold element analysis, 
we studied the increase/decrease overlap of ALFF between T2DM and 
AD, and compared the voxel number and z value in the actual 
interaction area and visualized results. Similarly, we conducted the 
same analysis on covariant of CBF between T2DM and AD.

2.6 Heterogeneity, sensitivity and 
publication bias

Extract the MNI peak coordinates with statistical differences, and 
obtain the standard heterogeneity test I2. If I2 ≥ 50%, it means 
significant heterogeneity (Egger et al., 1997). Funnel plots were used 
to test whether there was publication bias. Asymmetric funnels or 
p < 0.05 were considered to have publication bias (Sterne et al., 2011). 
These analyses were performed using the SDM-PSI version 6.21.3 
Finally, jackknife sensitivity was used for sensitivity analysis of whole 
brain voxels. The specific method was to check the stability of results 
by repeating the same analysis process after excluding one data set 
each time (Radua et al., 2014). This procedure aimed to analyze the 
repeatability of the results. If a result was significant different in all or 
most (>50%) of the study combinations, we believed that the result 
was highly replicable (Radua and Mataix-Cols, 2009).

3 https://www.sdmproject.com/

2.7 Meta-regression analysis

In the study, the linear regression in AES-SDM was used for meta-
regression to explore the impact of demographic information and 
clinical variables such as years of education, course of disease, and 
clinical evaluation scale scores on the results. Regression analysis 
could exclude the regions outside the brain obtained from principal 
component analysis (Yao et al., 2021).

3 Results

3.1 Included studies

A total of 634 studies were obtained from the first part of the 
search. After preliminary removing the duplicates and reviewing 
the titles and abstracts, 44 studies were retained and considered 
potentially eligible for inclusion. Then, after a detailed reading of 
the full article text, another 22 studies were excluded. Finally, 22 
studies including 22 data sets met the criteria and were included to 
analyze the ALFF differences between T2DM and AD patients, 
including 11 studies on AD patients and 11 studies on T2DM 
patients (Figure 1). A total of 6,366 studies were obtained from the 
second part of the search. After preliminary removing the duplicates 
and reviewing the titles and abstracts, 86 studies were retained and 
considered potentially eligible for inclusion. Then, after a detailed 
reading of the full article text, another 65 studies were excluded. 
Finally, 21 studies including 21 data sets met the criteria and were 
included to analyze the CBF differences between T2DM and AD 
patients, including 13 studies on AD patients and 8 studies on 
T2DM patients. A total of 43 studies were included for this meta-
analysis (Figure 1).

FIGURE 1

Flowchart for identifying studies to be included in the meta-analysis.
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3.2 Sample characteristics

3.2.1 T2DM
In all of T2DM studies included in ALFF analysis, 302 patients 

with T2DM (171 males and 131 females, mean age = 56.00 years) and 
302 HCs (153 males and 149 females, mean age = 55.36 years) were 
included (Detailed demographic and clinical information is shown in 
Table  1, and radiological parameters are shown in 
Supplementary Tables S2, S3). There was no significant difference in 
gender (χ2 = 2.157, p = 0.14) and age (standardized mean difference 
[SMD] = 0.11; 95% confidence interval [CI] = [−0.05, 0.27], Z = 1.30, 
p = 0.19) distribution between the two groups. Among all included 
CBF related studies, 286 T2DM patients (150 males and 136 females) 
and 280 HCs (131 males and 149 females) were included. No 
significant difference was observed between patients with T2DM and 
HCs in gender (χ2 = 1.814, p = 0.18) and age (SMD = 0.91; CI = [−0.34, 
2.16], Z = 1.43, p = 0.15) distribution.

3.2.2 AD
In all of AD studies included in ALFF analysis, 390 patients with 

AD (160 males and 230 females, mean age = 69.23 years) and 492 HCs 
(183 males and 309 females, mean age = 68.93 years) were included 
(Detailed demographic and clinical information is shown in Table 2, 
and radiological parameters are shown in Supplementary Tables S2, S3). 
No significant difference were observed between the two groups in 
gender (χ2 = 1.343, p = 0.25), but there was significant difference in age 
distribution (SMD = 2.74; CI = [1.56, 3.92], Z = 4.56, p  <  0.00001). 
Among all included CBF related studies, 310 AD patients (121 males 
and 189 females) and 335 HCs (142 males and 193 females) were 
included. No significant difference were observed between AD 
patients and HCs in gender (χ2 = 0.751, p = 0.39), while there was 
significant difference in age (SMD = 1.73; CI = [0.90, 2.56], Z = 4.10, 
p < 0.0001).

3.3 ALFF meta-analysis

3.3.1 T2DM vs. HCs
The brain map derived from meta-analysis showed that compared 

to HCs, ALFF in the T2DM group increased in the cerebellum (CER) 
and left inferior temporal gyrus (ITG. L), while decreased in the left 
middle occipital gyrus (MOG. L), right inferior occipital gyrus 
(IOG. R), and left precentral gyrus (preCG. L) (Figure  2). These 
regions existed significant heterogeneity (I2 > 50%), so random effect 
model was selected for analysis. Except for preCG.L, there was no 
publication bias in other brain regions. The research of Zhou et al. 
(2014) led to publication bias in preCG.L. Jackknife sensitivity analysis 
showed that the above brain regions were highly repeatable and the 
results were reliable (Supplementary Table S7).

3.3.2 AD vs. HCs
The meta-analysis brain maps showed that compared to HC, 

ALFF in the AD group increased in CER. R, right striatum, and right 
hippocampus (HIP. R), while decreased in the precuneus gyrus 
(PCUN) and right superior temporal gyrus (STG. R) (Figure 2). These 
regions existed significant heterogeneity (I2 > 50%), so random effect 
model was selected for analysis. There was no publication bias in all 
brain regions. Jackknife sensitivity analysis showed that the above 

brain regions were highly repeatable and the results were reliable 
(Supplementary Table S8).

3.3.3 (T2DM vs. HCs) and (AD vs. HCs) combined 
analysis

The results of a joint two parts analysis showed that compared to 
HCs, T2DM and AD did not have brain regions where ALFF increased 
or decreased simultaneously.

3.4 CBF meta-analysis

3.4.1 T2DM vs. HCs
The meta-analysis brain maps showed that compared to HCs, the 

T2DM group had an increase of CBF in the right supplementary 
motor area (SMA. R), while a decrease of CBF in the middle occipital 
gyrus (MOG) and inferior parietal gyri (IPG) (Figure  2). These 
regions existed significant heterogeneity (I2 > 50%), so random effect 
model was selected for analysis. There was no publication bias in all 
brain regions. Jackknife sensitivity analysis indicated that the most 
reliable data had been obtained in the above brain regions 
(Supplementary Table S9).

3.4.2 AD vs. HCs
The brain maps showed that in CBF meta-analysis, compared to 

HC, the AD group’s CBF decreased in PCUN and IPG (Figure 2). 
These regions existed significant heterogeneity (I2 > 50%), so random 
effect model was selected for analysis. There was no publication bias 
in all brain regions. Jackknife sensitivity analysis indicated that the 
most reliable data had been obtained in the above brain regions 
(Supplementary Table S10).

3.4.3 (T2DM vs. HCs) and (AD vs. HCs) combined 
analysis

Compared with HCs, CBF of both T2DM patients and AD 
patients decreased in the MOG.R (peak MNI coordinate: 44, −74, 26, 
Z = −3.059, 56 voxels) (Figure 3). The subgroup analysis of T2DM and 
AD in this brain region showed significant heterogeneity (I2 > 50%), 
so a random effect model was used for analysis. In subgroup analysis, 
there was no publication bias in this brain region (Figure  4 and 
Table 3).

3.5 Multimodal meta-analysis results

For T2DM, there were two brain regions where CBF and ALFF 
decreased together, respectively in right occipital lobe (peak MNI 
coordinate: 24, −92, −8, Z = −2.487, 53 voxels) and left occipital lobe 
(peak MNI coordinate: −20, −88, 2, Z = −2.976, 564 voxels) (Figure 3). 
For AD group, there was a brain region where ALFF and CBF 
decreased together in bilateral precuneus and parietal lobes (peak 
MNI coordinate: 6, −64, 30, Z = −9.511, 1,692 voxels) (Figure 3). The 
subgroup analysis of ALFF and CBF in these brain regions showed 
significant heterogeneity (I2 > 50%), so a random effect model was 
used for analysis. In subgroup analysis, there were no publication bias 
in these brain regions (Figure 4 and Table 3).
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TABLE 1 Demographic, clinical and cognitive characteristics of T2DM patients and HCs included in the meta-analysis.

Study Indicator Subjects (male/
female)

Mean age (SD) Education years 
(SD)

Duration years 
(SD)

HbA1c (%) (SD) MMSE (SD) MOCA (SD)

T2DM HC T2DM HC T2DM HC T2DM HC T2DM HC T2DM HC

Xia et al. (Zheng et al., 2018) ALFF 28 (15/13) 29 (13/16) 58.7 (8.1) 57.7 (7.2) 9.9 (3.7) 11.0 (2.0) 9.8 (5.5) 7.9 (1.7) 5.6 (0.4) / / 23.2 (3.1) 24.1 (2.6)

Chen et al. (Bruno et al., 2005) ALFF 18 (8/10) 18 (7/11) 61.7 (7.6) 62.1 (11.0) / / 13.8 (7.9) 7.3 (1.1) / 26.1 (2.2) 26.6 (2.0) / /

Cui et al. (Holman et al., 2015) ALFF 29 (14/15) 27 (11/16) 58.3 (7.3) 57.8 (5.9) 10.4 (4.0) 10.2 (2.5) 9.3 (3.8) 7.9 (1.7) 5.6 (0.4) 28.3 (1.4) 29.0 (1.1) 23.6 (2.9) 27.3 (1.1)

Wang et al. (Saeedi et al., 2019) ALFF 26 (17/9) 26 (17/9) 54.7 (10.4) 54.9 (9.8) 11.2 (3.8) 10.7 (3.2) 7a 8.3 (1.4) / 27.8 (2.5) 28.3 (1.3) 24a 26.5a

Zhou et al. (Kautzky-Willer 
et al., 2016)

ALFF 14 (6/8) 17 (10/7) 63.5 (6.9) 63.8 (5.8) 10.6 (2.7) 11.7 (3.0) 6.5 (2.1) 7.8 (1.0) 5.4 (0.6) 25.1 (2.0) 28.6 (1.1) / /

Wang et al. (Geijselaers et al., 
2015)

ALFF 21 (10/11) 16 (7/9) 54.9 (9.9) 54.8 (5.7) / / 9.5 (5.0) 8.4 (1.7) 5.6 (0.9) 28.2 (1.1) 29.0 (0.7) 21.7 (0.7) 25.2 (1.9)

Yu et al. (Biessels and Despa, 
2018)

ALFF, CBF 33 (28/5) 33 (22/11) 53.5 (8.4) 51.0 (5.3) 12.8 (2.4) 12.9 (3.5) 7.1 (5.2) 8.1 (1.7) 5.6 (0.3) 28.9 (0.9) 28.5 (1.1) 26.5 (2.1) 26.8 (2.0)

Liu et al. (Exalto et al., 2013) ALFF 37 (24/13) 37 (17/20) 57.6 (7.1) 57.9 (5.7) 11.6 (3.9) 10.9 (2.3) 8.7 (5.5) 7.6 (1.5) 5.7 (0.4) 28.0 (1.5) 28.5 (1.2) 22.5 (2.7) 24.2 (2.7)

Shi et al. (Arvanitakis et al., 
2004)

ALFF 31 (16/15) 31 (16/15) 56.0 (4.6) 56.5 (4.3) / / / / / / / / /

Li et al. (Wang et al., 2012) ALFF 30 (15/15) 30 (15/15) 49.2 (5.5) 45.8 (6.4) 12 (6, 16)b 9 (6, 16)b / 8.7 (2.2) / / / 26.5 (26, 29)b
28.5 (26, 

30)b

Qi et al. (Liu et al., 2019) ALFF 35 (18/17) 38 (18/20) 54.2 (8.7) 53.5 (7.7) / / 9.9 (5.1) 7.5 (1.3) 5.6 (0.4) / / / /

Xia et al. (Burns and Iliffe, 
2009)

CBF 38 (17/21) 40 (21/19) 56.0 (6.1) 57.1 (7.6) 9.6 (3.0) 10.3 (1.9) 7.1 (3.5) 7.2 (1.1) 5.6 (0.3) 29.0 (0.9) 29.1 (1.0) / /

Jansen et al. (Alzheimer’s 
Association, 2021)

CBF 41 (23/18) 39 (22/17) 61.1 (9.6) 62.6 (6.6) / / 9.8 (6.7) 6.7 (0.4) 5.6 (0.4) 28.6 (1.4) 29.4 (0.8) / /

Cui et al. (Scheltens et al., 
2021)

CBF 40 (21/19) 41 (13/28) 60.5 (6.9) 57.9 (6.5) 10.0 (3.4) 10.3 (2.3) 8.9 (5.0) 7.7 (1.6) 5.6 (0.3) 28.3 (1.0) 28.6 (1.2) / /

Dai et al. (Ballard et al., 2011) CBF 41 (19/22) 32 (16/16) 65.5 (8.3) 67.3 (10.1) 15.4 (3.8) 16.1 (3.0) 9.9 (7.9) 7.3 (1.3) 5.7 (0.3) 28.6 (1.5) 28.9 (1.6) / /

Shen et al. (Diniz Pereira et al., 
2021)

CBF 36 (17/19) 36 (14/22) 57.6 (6.2) 56.2 (6.8) 9.1 (1.5) 9.8 (2.9) 5.4 (4.9) /
/ / / 25.7 (0.9) 26.0 (0.8)

Zhang et al. (Kubis-Kubiak 
et al., 2019)

CBF 26 (10/16) 26 (11/15) 51.9 (10.7) 48.2 (6.7) 10.3 (3.7) 11.6 (4.5) 9.2 (7.1) / / 26.9 (3.9) 27.7 (2.3) 23.5 (5.6) 25.0 (2.9)

Huang et al. (Janson et al., 
2004)

CBF 31 (15/16) 33 (12/21) 53.4 (9.1) 51.6 (9.8) / / / 7.3 (1.4) / / / / /

Data are presented as mean (SD), or range. T2DM, type 2 diabetes mellitus; HC, healthy control; SD, standard deviation; HbA1c, glycosylated hemoglobin A1c; MMSE, mini-mental state examination; MoCA, montreal cognitive assessment.
a Only the mean value of the data is given in the article.
b Mean (range).
/means no relevant information was provided in the study.
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TABLE 2 Demographic, clinical and cognitive characteristics of AD patients and HCs included in the meta-analysis.

Study Indicator Subjects (male/female) Mean age (SD) Education years 
(SD)

MMSE (SD) MOCA (SD) CDR scale

AD HC AD HC AD HC AD HC AD HC AD HC

Wang et al. (Więckowska-Gacek 

et al., 2021)
ALFF 16 (8/8) 22 (7/15) 69.6 (7.7) 66.6 (7.7) 10.1 (3.4) 10.0 (3.9) 18.5 (3.2) 28.6 (0.6) / / 1.0 (0.0) 0

Xi et al. (Byun et al., 2017) ALFF 20 (9/11) 20 (10/10) 68.8 (8.7) 64.7 (5.6) 12.1 (4.4) 12.2 (2.5) 20.6 (2.3) 28.2 (1.8) / / 1.0 (0.0) 0

Veldsman et al. (De Felice et al., 

2022)
ALFF 44 (22/22) 128 (40/88) 78.0 (8.7) 74.6 (6.1) 13.1 (4.8) 13.5 (8.9) / / / / / /

Zheng et al. (de la Monte et al., 2018) ALFF 14 (6/8) 14 (6/8) 66.9 (8.9) 66.7 (5.8) 8.7 (3.0) 11.8 (4.1) 16.3 (4.9) 28.1 (1.3) 13.3 (4.9) 27.4 (1.9) (1.0, 2.0)a 0

Li et al. (Nguyen et al., 2020) ALFF 16 (7/9) 69 (23/46) 74.7 (8.5) 74.8 (6.6) 16.4 (2.6) 16.4 (2.4) 20.8 (4.4) 29.1 (1.0) / / 1.0 (0.6) 0

Zeng et al. (Moran et al., 2015) ALFF 14 (9/5) 11 (0/11) 75.5 (4.1) 75.4 (8.2) 15.6 (2.9) 16.1 (6.4) 21.4 (3.7) 29.5 (1.0) / / / 0

Zheng et al. (Chornenkyy et al., 

2019)
ALFF, CBF 40 (18/22) 30 (15/15) 65.0 (10.0) 64.0 (8.0) 11.2 (3.2) 12.6 (4.6) 14.0 (6.0) 28.0 (2.0) 14.9 (3.2) 28.6 (0.7) (0.5, 2.0)a 0

Yang et al. (Kellar and Craft, 2020) ALFF 44 (15/29) 55 (22/33) 71.0 (10.0) 63.4 (8.0) 9.0 (5.9) 11.0 (5.0) 16.5 (6.4) 28.1 (2.1) 12.6 (5.3) 26.1 (3.2) (1.0, 2.0)a 0

Li et al. (Diehl et al., 2017) ALFF 111 (37/74) 73 (32/41) 68.3 (9.4) 66.3 (9.5) 7.9 (4.4) 8.3 (3.4) 17.2 (5.6) 28.8 (0.3) 13.4 (6.3) 27.2 (1.7) / 0

Chen et al. (Brundel et al., 2014) ALFF 31 (12/19) 50 (18/32) 69.9 (11.0) 64.5 (4.4) 8.2 (4.6) 10.5 (2.7) 12.0 (4.5) 27.2 (1.8) / / (1.0, 2.0)a 0

Zhan et al. (Chen and Zhong, 2013) ALFF 40 (17/23) 20 (10/10) 60.5 (7.4) 61.0 (7.3) 9.7 (4.8) 9.9 (4.9) 17.5 (5.5) 27.0 (4.0) / / /

Asllani et al. (Benwell et al., 2020) CBF 12 (7/5) 20 (8/12) 70.7 (8.7) 72.4 (6.5) 14.5 (3.8) 15.8 (2.3) 38.7 (11.1)b 53.5 (2.8)b / / 1.0 (0.0) 0

Dai et al. (Bucerius et al., 2012) CBF 37 (13/24) 41 (14/27) 83.6 (3.5) 82.1 (3.6) / / 85.1 (9.4)c 95.0 (4.5)c / / (1.0, 2.0)a 0

Yoshiura et al. (Matsuda, 2016) CBF 20 (10/10) 23 (11/12) 73.5 (9.6) 72.9 (6.7) / / 20.4 (4.3) 29.3 (0.9) / / / /

Chao et al. (Zou et al., 2008) CBF 13 (3/10) 35 (5/30) 77.1 (5.0) 76.0 (7.8) 16.7 (2.9) 16.5 (2.8) 27.5 (1.8) 28.5 (1.7) / / (0.5, 1)a 0

Dashjamts et al. (Williams et al., 

1992)
CBF 23 (9/14) 23 (11/12) 74.6 (8.9) 73.2 (6.9) / / 21.1 (4.4) 29.4 (0.9) / / / /

Alexopoulos et al. (Kannurpatti et al., 

2008)
CBF 19 (11/8) 24 (8/16) 72.0 (9.4) 67.1 (6.1) / / / / / /

/ /

Mak et al. (Tak et al., 2014) CBF 13 (3/10) 15 (1/14) 75.4 (6.8) 70.8 (6.0) / / 16.3 (4.6) 28.5 (2.0) / / / /

Kim et al. (Yu-Feng et al., 2007) CBF 25 (4/21) 25 (9/16) 70.9 (9.8) 68.4 (5.6) / / 17.2 (4.8) 27.3 (2.8) / / (0.5, 2.0)a 0

Ding et al. (Kim and Lee, 2004) CBF 24 (5/19) 21 (8/13) 74.6 (6.7) 69.6 (5.9) 11.6 (4.2) 12.1 (3.4) 16.0 (3.9) 29.4 (1.0) / / 2.1 (0.7) 0

Roquet et al. (Hu et al., 2019) CBF 25 (8/17) 21 (9/12) 73.6 (9.1) 64.8 (8.6) / / 19.5 (3.4) 28.9 (1.0) / / / /

Duan et al. (Yu et al., 2019) CBF 40 (12/28) 58 (27/31) 84.1 (3.5) 83.4 (3.7) 13.3 (2.9) 14.6 (2.8) 83.6 (10.0)c 95.0 (3.9)c / / / /

Soman et al. (Macpherson et al., 

2017)

CBF 19 (11/8) 21 (11/10) 66.7 (5.3) 64.6 (5.7) / / / / / / (0.5, 1.5)a 0

Data are presented as mean (SD), or range. AD, Alzheimer’s disease; HC, healthy control; SD, standard deviation; MMSE, mini-mental state examination; MoCA, montreal cognitive assessment; CDR, clinical dementia rating.
a The study did not give the mean value and variance, only the range.
b MMMS, Modified Mini-Mental Status Examination score.
c 3MSE, Modified Mini-Mental State Examination score.
/means no relevant information was provided in the study.
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3.6 Meta-regression

In the regression analysis, we excluded the abnormal brain regions 
outside the main results. Meta regression analysis showed that general 
demographic statistics (age and gender) had no significant impact on 
the main results in both T2DM and AD patients, even if there was a 
difference in the age of patients of AD. However, in T2DM patients, 
lower MMSE scores were associated with lower ALFF in the left 
frontal lobe (peak MNI coordinate: −30, −4, 56, Z = 6.432, 115 voxels) 
and lower CBF in the right parietal lobe (peak MNI coordinate: 38, 
−36, 44, Z = 4.045, 41 voxels).

4 Discussion

In this paper, we conducted a multimodal voxel based meta-
analysis of T2DM and AD, and obtained the following results: (1) 

In T2DM patients, ALFF in the CER and ITG.L as well as CBF in 
the SMA.R increased, while ALFF in the MOG.L, IOG.R, and 
preCG.L as well as CBF in the MOG and IPL decreased. (2) In AD 
patients, ALFF in the CER.R, right striatum and HIP.R increased, 
while ALFF in the PCUN and STG.R as well as CBF in the PCUN 
and IPG decreased. (3) During multimodal analysis of ALFF and 
CBF, it was found that in T2DM patients, there was a simultaneous 
decrease of neural activity and blood perfusion in the area of both 
occipital lobes, while in AD patients, there was a simultaneous 
decrease of neural activity and blood perfusion in the parietal 
lobe. Except for decreased CBF in MOG. R in both type of 
patients, there were no common changes in other brain regions 
between the two diseases. (4) Regression analysis showed that 
general demographic information had no impact on the main 
results of the meta-analysis, while the MMSE scores of T2DM had 
an impact on ALFF in the left frontal lobe and CBF in the right 
parietal lobe.

FIGURE 2

Differences between two groups in CBF and ALFF in meta-analysis results. Results of the meta-analysis (A) ALFF difference between T2DM and HCs. 
(B) CBF difference between T2DM and HCs. (C) ALFF difference between AD and HCs. (D) CBF difference between AD and HCs.
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The results of this meta-analysis showed that both ALFF and CBF 
of T2DM in occipital region were significantly reduced. As a key area 
of the visual cortex, the occipital lobe has decreased blood perfusion 
and neural activity, which was consistent with the view that visual 
spatial impairment was one of the main manifestations of T2DM 
(Cheung et al., 2010; Zeng et al., 2020). The preCG mainly manages 
the movement of skeletal muscles throughout the body (Li et  al., 
2015), which is called the motor area. Although the publication bias 

of this result leads to a decrease in the level of evidence, decreased 
motor and peripheral sensory abilities in T2DM patients with 
peripheral neuropathy may be due to a decrease in the neural impulses 
received by the preCG (Selvarajah et al., 2019), specifically manifested 
as a decrease in ALFF in T2DM. In addition, the CBF of T2DM 
reduced in IPG, which played an important role in the integration of 
human senses and the neural activity of determining the spatial 
position of objects, as well as in information processing in working 

FIGURE 3

Results of multimodal analysis within a disease and joint analysis between diseases. Results of the meta-analysis (A) both ALFF and CBF decreased in 
T2DM. (B) Both ALFF and CBF decreased in AD. (C) CBF reduction in both T2DM and AD.

FIGURE 4

Forest and funnel plots of peak MNI coordinates. Peak MNI coordinate regarding (A,B) both ALFF and CBF decreased in T2DM and subgroup results. 
(C) Both ALFF and CBF decreased in AD and subgroup results. (D) CBF reduction in both T2DM and AD and subgroup results.
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TABLE 3 Results of multimodal analysis within a disease and combined analysis between diseases.

Local maximum 
region

Peak MNI 
coordinate (x, y, z)

Peak intensity SDM Z 
value

Cluster (NO. 
of voxels)

Breakdown (No. 
of voxels)

Egger’s test 
(p value)

Heterogeneity (I2) Jackknife 
sensitivity

Both ALFF and CBF decreased in T2DM

Right occipital lobe 24, −92, −8 −2.4866
−1.560 (ALFF), 

−1.403 (CBF)
53 Right occipital lobe (53)

0.545 (ALFF) 0.614 

(CBF)
99% (ALFF) 98.4% (CBF) 10/11 (ALFF) 8/8 (CBF)

Left occipital lobe −20, −88, 2 −2.9759
−1.579 (ALFF), 

−1.544 (CBF)
564

Right middle occipital 

gyrus (247)

0.887 (ALFF) 0.833 

(CBF)
99.3% (ALFF) 99.6% (CBF) 10/11 (ALFF) 8/8 (CBF)

Right inferior occipital 

gyrus (74)

Right lingual gyrus (50)

Both ALFF and CBF decreased in AD

Precuneus and parietal 

lobe
6, −64, 30 −9.5112

−2.029 (ALFF), 

−4.686 (CBF)
1,692 Right precuneus (678)

0.339 (ALFF) 0.640 

(CBF)
99.7% (ALFF) 98.6% (CBF)

11/11 (ALFF) 13/13 

(CBF)

Left precuneus (504)

Left posterior cingulate 

gyrus (150)

Right median cingulate / 

paracingulate gyri (108)

Right posterior cingulate 

gyrus (103)

Both T2DM and AD decreased with CBF

Right occipital lobe 44, −74, 26 −3.0589
−1.551 (T2DM), 

−1.971 (AD)
56

Right middle occipital 

gyrus (48)

0.754 (T2DM) 

0.745 (AD)
98.4% (T2DM) 99.5% (AD) 8/8 (T2DM) 13/13 (AD)

T2DM, type 2 diabetes mellitus; AD, Alzheimer’s disease; ALFF, amplitude of low frequency fluctuation; CBF, cerebral blood flow.
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memory (Koenigs et al., 2009). Working memory is an important 
process in brain cognition, especially in higher order cognition 
(Baddeley, 2003), and cognitive impairment in T2DM patients may 
be related to it. The regression analysis results of T2DM on MMSE also 
support this viewpoint.

We found that the ALFF of T2DM increased in CER and 
ITG.L. The cerebellar hemisphere is closely related to motor learning 
and coordination (Stoodley and Schmahmann, 2009), and the 
temporal lobe is related to memory, language fluency, language 
processing and language production, which are important components 
of cognitive ability (McCrimmon et al., 2012). Many studies have 
confirmed that T2DM patients would cause cognitive decline 
(McCrimmon et al., 2012; Biessels and Despa, 2018). Among the 11 
T2DM studies we included in the analysis of ALFF, 6/11 were patients 
with MCI, 3/11 were patients with normal cognition, and 2/11 did not 
give cognitive assessment results. Therefore, we considered that the 
enhanced neural activity in these regions may play a role of 
compensation or supplement in T2DM patients, so that their cognitive 
performance can be  retained or delayed to a certain extent. In 
addition, the CBF of T2DM increased in the SMA.R, which played an 
important role in precise control of motion, especially in fine 
movements such as finger movements (Tanji and Shima, 1994). 
Sensory and motor dysfunction caused by peripheral neuropathy 
complications in T2DM patients may be associated with an increase 
in CBF in this region (Allen et al., 2016).

This study showed that ALFF and CBF of PCUN, parietal lobe and 
occipital lobe in AD patients existed a consistent decline. The PCUN 
and parietal lobe are both the main brain regions that constitute the 
default pattern network (Bathelt and Geurts, 2021; Yeshurun et al., 
2021), and are closely related to cognition (Smallwood et al., 2021). As 
a core brain region that affects visual spatial ability, the occipital lobe 
region also exhibits a covariate decrease in ALFF and CBF in AD 
patients, which may be related to perceptual impairments in visual 
and spatial abilities that are manifested early in AD patients (Mendez 
et al., 1990; Binetti et al., 1996; Zeng et al., 2020). In addition, studies 
have confirmed that normal visual ability had a significant impact on 
the development and persistence of cognitive ability. The parietal lobe 
and its adjacent occipital lobe are closely related to the temporal 
spatial structure function and graphic visual attention function 
(Sakkalou et al., 2021; Zhao et al., 2021). These changes in brain nerve 
activity and blood flow were closely related to the clinical 
manifestations of AD patients, such as acquired and persistent mental 
disorders, memory and cognitive dysfunction, speech and visual 
spatial skills disorders, and affected their social activities (Burns and 
Iliffe, 2009; Liu et al., 2019; Scheltens et al., 2021).

The results also showed that the ALFF of the CER.R, HIP.R and 
right striatum was higher in AD group than that in HCs, indicating 
that the neural activity in relevant brain regions was enhanced. The 
cerebellar hemisphere is closely related to motor learning (Stoodley 
and Schmahmann, 2009), HIP and striatum are important regions in 
the memory encoding pathway (Pennartz et al., 2011; Chersi and 
Burgess, 2015), and their anatomical relationship makes them more 
closely related. HIP and striatum can guide memory and behavior 
through cooperation or competition, and can regulate when other 
pathways in the brain are affected (Poldrack and Packard, 2003; 
Ghiglieri et al., 2011; Squire and Dede, 2015). The above brain regions 
are mainly related to learning and memory in cognitive activities. Due 
to the fact that memory impairment is the most significant clinical 

manifestation of AD patients (Burns and Iliffe, 2009), the above 
changes can be seen as a compensatory manifestation after memory 
related brain nerve activity damage.

After analyzing the brain regions with the same changes in T2DM 
patients and AD patients, the CBF of the two groups decreased 
uniformly only in the MOG.R region. As a key area of visual cortex, 
T2DM patients have visual space disorder and the occurrence of 
diabetes retinopathy also attributes to this change. The change of 
visual cortex in AD patients as a mediator, which further leaded to the 
impairment of advanced cognitive function, was also the focus 
of researchers.

After analyzing the neuroimaging evidence provided by the 
results of this study, we tend to believe that T2DM and AD are two 
diseases with their own characteristics of brain activity damage. The 
main damage area of T2DM was the bilateral occipital lobe, which 
mainly affects visual spatial function and other functions extended by 
visual function impairment. However, AD was mainly injured in 
bilateral PCUN and partial lobes, including posterior cingulate gyrus, 
PCUN, parietal lobe and part of occipital lobe, resulting in multi-
dimensional functional damage in language, memory, learning, vision, 
etc. Only a small proportion (56 voxels in total) of MOG.R belonged 
to a part of the visual cortex were found in these two diseases, which 
was consistent with the clinical characteristics of them, and also 
suggested that T2DM was a risk factor for AD.

The reason why AD is considered as type 3 diabetes in some studies 
is briefly discussed tentatively. The main reason is that T2DM and AD 
have a high epidemiological correlation (Arvanitakis et al., 2004; Wang 
et al., 2012). However, as a high-risk factor for cerebrovascular diseases, 
T2DM can increase the risk of cerebral infarction and cerebral 
hemorrhage, which has achieved clinical consensus (Kannel and McGee, 
1979). And as a complication of T2DM, cerebrovascular disease also has 
a higher incidence rate among T2DM patients (Gregg et al., 2016). Many 
clinical studies have shown that the occurrence of cerebrovascular events 
is significantly correlated with cognitive impairment and dementia 
(Vermeer et  al., 2007; Troncoso et  al., 2008; Rost et  al., 2022). This 
correlation may help explain the epidemiological correlation between 
T2DM and AD (Sutherland et al., 2017). Researchers believe that another 
main reason why AD should be called type 3 diabetes is that T2DM and 
AD have many common pathophysiological bases, such as central 
insulin resistance (Janson et al., 2004; De Felice et al., 2022), AGEs and 
metabolic syndrome (Byun et al., 2017; Więckowska-Gacek et al., 2021). 
Firstly, lipid metabolism is an important component of metabolic 
syndrome. There is metabolic syndrome caused by insulin resistance in 
T2DM (Zheng et al., 2018), and autopsy findings of lipid particles in the 
brain of AD patients have also led researchers to suspect that lipid 
metabolism is involved in the pathogenesis of AD (Foley, 2010). In 
subsequent studies, it was found that sulfatides, an important subtype of 
sphingolipids, may play an important role in the pathogenesis of 
AD. Sulfatides are an important part of the myelin sheath and 
oligodendrocytes (Takahashi and Suzuki, 2012), and their consumption 
in AD patients is as high as 93% (Han et al., 2002). This change is a 
specific change of AD, but the pathogenesis of AD is more complex and 
still under study (Han, 2010; Cheng et al., 2013), and there is no clear 
evidence to confirm its correlation with abnormal lipid metabolism in 
diabetes. Secondly, in the past, there have been many studies on 
hyperglycemia leading to tissue damage through the production of 
AGEs, altering cell activation functions, and resulting in cognitive 
impairment (Klein and Waxman, 2003; Brownlee, 2005; Byun et al., 
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2017), but most of them are based on basic experiments (Batkulwar et al., 
2018; Volpina et al., 2021). The impact of these findings on the human 
body is uncertain, and more evidence is needed to confirm whether this 
theory has a comorbidity pathway in T2DM and AD. Finally, there is 
increasing evidence that insulin resistance, especially central insulin 
resistance is related to the pathogenesis of AD (Janson et al., 2004; Neth 
and Craft, 2017; De Felice et al., 2022). Intranasal injection of insulin can 
alleviate memory deficits in some AD patients (Novak et al., 2014; Craft 
et al., 2017). However, the mechanism of insulin resistance on cognitive 
impairment in the brain is still unclear. The above results confirm that 
T2DM and AD are two closely related diseases, but it is still too early to 
call AD type 3 diabetes. In comparison, T2DM is a more appropriate 
high-risk factor for AD, and the relationship between the two diseases 
still needs further research.

5 Limitations

It should be noted that the following limitations still exist in this 
study. Firstly, all the literature was cross-sectional and lacked 
longitudinal tracking of disease progression. Secondly, this study 
conducted a meta-analysis based on the reported coordinates 
provided by the article or the corresponding author. Research results 
that do not provide coordinates are not included, which may cause 
bias. Thirdly, lack of sufficient data to correct the differences in data 
processing and the gray matter volume of subjects in the original study 
(Supplementary Tables S2, S3), which may potentially contribute to 
the high heterogeneity of our results. Fourthly, because most articles 
in the AD group did not provide the comorbidity of AD and T2DM, 
more detailed subgroup analysis cannot be performed. In the future, 
it is necessary to update the meta-analysis to eliminate the 
confounding factors of comorbidity and make the level of evidence 
higher. Fifthly, the population included in the study is mainly 
concentrated in the East Asian population, resulting in limited 
universality of the research results. Finally, it was hoped that in future 
studies, a larger sample of meta-analysis would be conducted, and 
attention will be paid to longitudinal studies from T2DM to T2DM 
with AD. Provide more core evidence for the occurrence and 
mechanism of comorbidity of the two diseases.

6 Conclusion

In summary, after analyzing the evidence provided by 
neuroimaging, T2DM and AD are two diseases with their own 
characteristics of brain neural activity and blood flow changes. Even 
if there is a small common area of reduced blood flow in both diseases, 
this is consistent with the clinical characteristics of both diseases and 
suggests a close relationship between the two diseases. This provided 
an idea for us to study the brain damage and the relationship between 
these two diseases in the future, and provided new insights for 
understanding the pathophysiology of brain changes in these two 
diseases and developing effective early intervention methods.
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and Learning Sciences, Beijing Normal University, Beijing, China

Background: There are currently five different kinds of transcranial magnetic 
stimulation (TMS) motor mapping algorithms available, from ordinary point-based 
algorithms to advanced field-based algorithms. However, there have been only a 
limited number of comparison studies conducted, and they have not yet examined 
all of the currently available algorithms. This deficiency impedes the judicious 
selection of algorithms for application in both clinical and basic neuroscience, and 
hinders the potential promotion of a potential superior algorithm. Considering the 
influence of algorithm complexity, further investigation is needed to examine the 
differences between fMRI peaks and TMS cortical hotspots that were identified 
previously.

Methods: Twelve healthy participants underwent TMS motor mapping and a 
finger-tapping task during fMRI. The motor cortex TMS mapping results were 
estimated by five algorithms, and fMRI activation results were obtained. For 
each algorithm, the prediction error was defined as the distance between the 
measured scalp hotspot and optimized coil position, which was determined by 
the maximum electric field strength in the estimated motor cortex. Additionally, 
the study identified the minimum number of stimuli required for stable mapping. 
Finally, the location difference between the TMS mapping cortical hotspot and 
the fMRI activation peak was analyzed.

Results: The projection yielded the lowest prediction error (5.27  ±  4.24  mm) 
among the point-based algorithms and the association algorithm yielded the 
lowest (6.66  ±  3.48  mm) among field-based estimation algorithms. The projection 
algorithm required fewer stimuli, possibly resulting from its suitability for the 
grid-based mapping data collection method. The TMS cortical hotspots from all 
algorithms consistently deviated from the fMRI activation peak (20.52  ±  8.46  mm 
for five algorithms).

Conclusion: The association algorithm might be  a superior choice for clinical 
applications and basic neuroscience research, due to its lower prediction error 
and higher estimation sensitivity in the deep cortical structure, especially for the 
sulcus. It also has potential applicability in various other TMS domains, including 
language area mapping and more. Otherwise, our results provide further evidence 
that TMS motor mapping intrinsically differs from fMRI motor mapping.
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1 Introduction

Transcranial magnetic stimulation (TMS) is a non-invasive focal 
brain stimulation technique widely used in brain mapping studies 
(Ilmoniemi et al., 1999; Siebner et al., 2009; Lefaucheur, 2019). When 
a single supra-threshold TMS pulse is applied to the motor cortex, a 
motor-evoked potential (MEP) may be recorded from the targeted 
muscle, such as the first dorsal interosseous muscle (FDI). TMS motor 
mapping, in which multiple MEPs typically recorded from 
predetermined stimulation sites on a grid are used to non-invasively 
probe motor cortex representation, is one of the most important 
applications of TMS (Wilson et al., 1993; Sondergaard et al., 2021). 
TMS has several advantages over other noninvasive approaches to 
motor cortex mapping such as functional magnetic resonance imaging 
(fMRI). Compared to fMRI, TMS motor mapping is in closer 
agreement with direct cortical stimulation (DCS) mapping, which is 
regarded as the current gold standard for delineating the motor cortex 
(Krieg et al., 2012; Coburger et al., 2013; Mangraviti et al., 2013). 
Moreover, TMS requires less patient cooperation such as performing 
motor tasks, which is difficult for patients with paresis or plegia or 
children with autism or developmental delay (Narayana et al., 2015, 
2021; Braden et al., 2022). Such advantages have made TMS motor 
cortex mapping promising in clinical applications, such as pre-surgical 
planning (Takahashi et al., 2013; Lefaucheur and Picht, 2016), risk 
stratification (Rosenstock et  al., 2017), motor rehabilitation 
(Lüdemann-Podubecká and Nowak, 2016) and basic research such as 
developmental plasticity (Narayana et  al., 2015; Grab et  al., 2018; 
Babwani et al., 2021).

Given a set of recorded MEPs as well as the corresponding 
stimulating sites on the scalp, there are various algorithms, with 
increasing complexity, for the prediction of the location and spread of 
the motor cortex. The most traditional and simplest one is called the 
projection algorithm, which assumes that the effect of a TMS pulse at 
a scalp site can be reduced to a single point projected onto the cortex 
(Ruohonen and Karhu, 2010; Julkunen, 2014; Kraus and Gharabaghi, 
2015). Simple geometric models cannot characterize the effect of TMS 
on the cortex well. Therefore, several approaches have been introduced 
that numerically simulate the electric field induced by TMS, taking 
into account the coil orientation and the complex geometry of the 
individual brain (Thielscher et al., 2011; Laakso et al., 2014; Reijonen 
et al., 2020). Analogous to the projection algorithm, the projection 
point was substituted by the peak point of the induced electric field on 
the cortex (called max-EF algorithm here) (Ruohonen and Karhu, 
2010; Sollmann et al., 2016; Novikov et al., 2018). But it’s still geared 
to point-based algorithms, rather than field-based algorithms that 
utilize complete information from the electric field distribution. Opitz 
et al. hypothesized that when a recorded MEP was large, the induced 
electric field should be concentrated near the target region and vice 
versa. Based on this assumption, they used each MEP to weight the 
corresponding electric field and used the weighted average electric 
field to estimate the motor cortex (called EF-COG algorithm here) 

(Opitz et al., 2013). Other studies pointed out that, in the targeted 
motor cortex, there should be a strong association between the MEP 
and the corresponding electric field strength. Thus, they evaluated the 
degree of association in each cortical patch to estimate the motor 
cortex (called the association algorithm here) (Thielscher and 
Kammer, 2002; Matthäus et al., 2008; Laakso et al., 2018; Weise et al., 
2020; Kataja et al., 2021; Numssen et al., 2021; Weise et al., 2023). 
Moreover, some algorithms borrowed from the idea of 
electroencephalography source localization and performed a 
minimum norm estimation (called MNE algorithm here) to estimate 
the extent of the motor cortex (Bohning et al., 2001; Pitkänen et al., 
2017; Reijonen et al., 2022).

With the emergence of new estimation algorithms for motor 
mapping, the comparison of different approaches is becoming a 
growing concern. For example, Seynaeve et al. compared the motor 
map from the projection, max-EF, and EF-COG algorithm with the 
DCS mapping result as a standard (Seynaeve et al., 2019). However, it 
is difficult in practice to obtain DCS data, and the mapping accuracy 
of DCS mapping is limited by finite discrete sampling (Seynaeve et al., 
2019). Fortunately, it has been found that the electric field modeled 
numerically in the target brain area is a great predictor of the 
neurophysiological or behavioral response induced by transcranial 
brain stimulation (Argyelan et al., 2019; Jamil et al., 2020; Fridgeirsson 
et al., 2021; Mosayebi-Samani et al., 2021). Several studies have been 
concerned with the potential of optimizing coil position according to 
the electric field simulation (Weise et al., 2020; Gomez et al., 2021), 
and Reijonen et al. took the difference between electric-field-based 
optimized coil position and measured scalp hotspot coil position as 
the performance index for the MNE algorithm based on realistic and 
spherical head models (Reijonen et al., 2022). This suggests that the 
distance between the optimized coil position and measured scalp 
hotspot coil positions could serve as a viable and practical performance 
metric for comparing different estimation algorithms.

The number of data points (stimuli) fed into an estimating 
algorithm is closely related to the stability of the motor map and the 
acquisition time of mapping data. There is a trade-off between motor 
map stability and acquisition time. The more stimuli, the greater the 
stability, but the longer the acquisition time, which leads to practical 
difficulties (Sinitsyn et al., 2019; Sollmann et al., 2021; Sondergaard 
et al., 2021). Thus, the minimum number of stimuli required to deliver 
a stable mapping result is another valuable performance index in the 
comparison of various estimation algorithms. Pitkänen et al. inferred 
that the MNE algorithm might need fewer stimuli because of the 
higher resolution capacity of its mapping, compared with the 
projection algorithm (Pitkänen et al., 2017). However, no study has 
investigated the number of stimuli required for currently available 
algorithms simultaneously, and thus there is no evidence showing 
which algorithm requires the least number of stimuli.

The results of previous studies have suggested that the cortical 
hotspot location from TMS mapping based on the projection 
algorithm was inconsistent with the peak location of fMRI motor task 
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activation, and the TMS cortical hotspot was always located more 
anterior (Herwig et al., 2002; Lotze et al., 2003; Diekhoff et al., 2011). 
This has been ascribed to neurophysiological differences, i.e., neurons 
activated by TMS and those detected by fMRI differed (Herwig et al., 
2002; Wang et al., 2020). However, advanced field-based estimation 
algorithms have the potential to improve the estimation performance 
of motor mapping (Seynaeve et al., 2019). Thus, it is important to 
revisit the incongruency in cortical hotspot locations estimated by 
TMS and fMRI for advanced algorithms.

Given the above, this study aims to simultaneously compare the 
aforementioned five estimation algorithms on one set of TMS 
mapping data. We mainly conducted two experiments to compare 
them: first, we compared the distance between the measured scalp 
hotspot and optimized coil position according to the mapping results 
from all algorithms; second, we probed the relationship between the 
number of stimuli and estimation stability to determine the minimum 
number of stimuli required to deliver a stable mapping result for each 
algorithm. We also investigated whether inconsistencies between TMS 
and fMRI cortical hotspot locations still exist when considering the 
induced electric-field distribution in the estimation process.

2 Method

2.1 TMS data acquisition

TMS mapping data were obtained from our previous study (Jiang 
et  al., 2020). Twelve healthy right-handed participants (7 males, 
22 ± 2.7 yr) were recruited. None of them had any contraindications to 
TMS or any history of neurological or psychiatric diseases. All 
participants provided written informed consent before the experiment. 
The protocol was approved by the ethics committee of the State Key 
Laboratory of Cognitive Neuroscience and Learning at Beijing 
Normal University. TMS motor mapping was conducted using a 
Magstim rapid2 (Magstim Ltd., Dyfed, United Kingdom) with a D70 
Air Film figure-of-eight coil. We designed a 6 × 7 stimulation grid that 
covered the motor-related area in the left hemisphere, according to the 
motor-related functional transcranial brain atlas (Jiang et al., 2020). 
The grid spacing was 3 continuous proportional coordinate (CPC) 
units, which are normalized scalp coordinates with inter-individual 
comparability (Xiao et al., 2018), and the group average Euclidean 
distance of a unit was around 1 cm (see Supplementary Figure S1A). 
1 cm2 stimulation grid is widely adopted (57/75 studies) (Sondergaard 
et al., 2021), making the comparison results suitable for the majority 
of scenarios of motor mapping. The coil was placed tangentially to the 
scalp with the coil handle pointing backward and laterally at 45° away 
from the midline, which is the optimal orientation to induce MEP 
(Balslev et al., 2007; Reijonen et al., 2020). The resting motor threshold 
(RMT) was defined as the lowest intensity eliciting a minimum peak-
to-peak amplitude of 50 μV in at least 5 of 10 TMS pulses (Rossini 
et al., 2015). The stimulation intensity for mapping was set to 120% 
RMT, resulting in more reliable MEP responses (Ngomo et al., 2012). 
The best coil position for evoking the largest MEPs in the first dorsal 
interosseous (FDI) muscle, the resting motor threshold (RMT) was 
found and recorded.

For reliable measurement of MEP, we delivered 6 TMS pulses per 
site in the grid with interstimulus intervals of over 5 s (Cavaleri et al., 

2017; Nazarova and Asmolova, 2021; Sondergaard et  al., 2021). 
During stimulation, the subjects were asked to maintain complete 
muscle relaxation. Peak-to-peak amplitudes were recorded from the 
subjects’ FDI muscle in the right upper limb with bipolar surface 
electrodes using a Brainsight EMG Isolation Unit and Amplifier Pod 
(Rogue Research Inc., Canada). The measurement of the RMT and 
input–output (I/O) curve demonstrated that the FDI muscle was more 
reliable than the abuctor pollicis brevies muscle (Malcolm et al., 2006), 
both of which are commonly used muscles in TMS 
motor measurement.

2.2 Estimation algorithms for motor 
mapping

Head modeling and electric field simulation were realized in the 
SimNIBS v3.2 open-source pipeline (Thielscher et  al., 2015) 
(supplement). The recorded MEPs and stimulation positions (or 
electric fields) were used to estimate the motor cortex via each 
algorithm. Since the entire cortical surface consisted of over two 
hundred thousand triangles leading to a large amount of useless 
computation, before estimation, an estimation scope was determined 
by projecting the stimulation grid onto the cortical surface and 
expanding it by 0.5 cm (see Supplementary Figure S1B).

Figure 1 shows the estimating schemes of five algorithms. Two 
point-based algorithms initially identify the cortical sites most 
likely to be influenced at each point within the stimulation grid. 
Then they undertake the interpolation on the cortical surface 
using MEP values corresponding to each cortical site, thereby 
generating a continuous estimated motor map. In the projection 
algorithm (Figure 1A), the cortical site most likely to be influenced 
is determined using the Möller–Trumbore intersection algorithm, 
which identifies the cortical site nearest to the normal of the TMS 
coil surface (Möller and Trumbore, 1997). In the max-EF 
algorithm, the cortical site is identified as the location with the 
highest electric field strength at the 99.9th percentile. The 
selection of the 99.9th rather than 100th is intended to mitigate 
the boundary effects of the electric field (Saturnino et al., 2019). 
To enable interpolation on the 3D cortical surface (Julkunen, 
2014), we  initiated the process by mapping the pre-identified 
cortical sites onto the 2D plane parallel to the gyrus (van de Ruit 
et  al., 2015; Jonker et  al., 2019). Subsequently, we  conducted 
interpolation of the MEP values through the implementation of a 
cubic spline algorithm. The interpolated values were then 
projected from the 2D plane to the 3D cortical surface using the 
Nearest-neighbor interpolation algorithm.

Opitz et al. referenced the TMS COG position from traditional 
TMS motor mapping, which calculates a MEP “Center of Gravity,” 
signifying a scalp position where a large MEP is reliably produced 
(Sondergaard et al., 2021). They introduced the concept of the 
electric field “Center of Gravity” (Opitz et al., 2013), portrayed as 
a probability map of the motor cortex. In the EF-COG algorithm 
(Figure 1B), this concept is realized by conducting a weighted sum 
of the electric field strength associated with MEPs. The 
fundamental concept underlying the association algorithm is 
predicated on the identification of the motor area as the cortical 
region characterized by a robust correlation between the 
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surrounding electric field strength and the corresponding MEP 
values. We calculated the Kendall’s rank coefficient between the 
electric field strength and MEPs referred to as Matthäus et  al. 
(2008). The resultant coefficient serves as a representation of the 
estimated motor map (Figure 1C). The MNE algorithm is rooted 
in source localization methodologies commonly employed in 
electroencephalography (Bohning et  al., 2001; Pitkänen et  al., 
2017; Reijonen et al., 2022). It established a computational model 
to delineate how MEPs are determined by the distributions of 
electric field strength under each stimulation. In this model, the 
distribution of electric field strength is the independent variable, 
the MEP value is the dependent variable, and the unknowns 
represent the probability of a cortical patch belonging to the 
motor area. This model is undetermined due to having fewer 
dependent variables than unknowns. To address this, Wiener 
regularization is applied to resolve the problem, resulting in an 
estimated motor map (Pitkänen et al., 2017).

2.3 Similarity of estimation results

The similarities and differences among mapping results from all 
five estimation algorithms were investigated in several spatial scales: 
the entire estimated motor map, map maxima (cortical hotspot), and 
center-of-gravity (COG). The Pearson correlation coefficient (r) was 
computed as the map level similarity between each pair of algorithms’ 
maps. The Euclidean distance between each pair of cortical hotspots 
was computed as the cortical hotspot similarity index. The Euclidean 
distance between each pair of COGs was computed as the COG 
similarity index. The non-parametric Wilcoxon signed-rank test was 
used to check that there exists a statistically significant difference 
between pairs of cortical hotspots or COGs. Account for the folded 
structure of the cortex, we  also adopted the geodesic distance to 
measure the difference of cortical hotspot location estimated by five 
algorithms. The geodesic distance of two cortical hotspots was 
calculated with tvb-gdist 2.1.0.

FIGURE 1

TMS motor cortex estimation scheme of five algorithms. It shows each algorithm’s logic and mathematical description of part algorithms. 
(A) Projection algorithm and max-EF algorithm. (B) EF-COG algorithm. (C) Association algorithm. (D) MNE algorithm. In the mathematical description, 
Xj represents the probability that the jth cortical patch belongs to the motor cortex; Eij represents the electric field strength of the jth cortical patch in 
the ith stimulation; MEPj represents the MEP value recorded in the ith stimulation; MEPtotal represents the sum of all recorded MEP.
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2.4 Distance between measured scalp 
hotspot and optimized coil position

The scalp hotspot is the scalp position where TMS induces 
maximum MEP response during the motor mapping experiment. The 
optimized coil position within a mapping algorithm is delineated as 
the theoretical scalp position capable of inducing the maximum MEP 
response corresponding to the motor cortex, as estimated by the 
algorithm. To assess the estimation accuracy of each algorithm, 
we need to calculate the distance between the optimized coil position 

and the scalp hotspot position. The shorter distance might mean a 
more accurate estimation algorithm. The distance is regarded as the 
prediction error here. Before optimization, we densified the predefined 
grid to shorten the grid spacing (Figure 2). We fixed the stimulation 
orientation in the experiment, so we did not consider the influence of 
orientation when optimization. Then we  did an electric field 
simulation on each densified grid point, and determined the optimized 
coil position by the maximum electric field strength in the estimated 
motor cortex. The prediction error data was non-parametric (Shapiro–
Wilk normality test), thus differences between algorithms were tested 

FIGURE 2

The comparison of the prediction error of five algorithms. (A) It shows a densified grid exampled on subject 2. The black dot represents the stimulation 
grid predefined before the experiment, and the orange dot represents the added grid points in the simulation. A zoom-in sub-graph in the left-bottom 
shows the block distance between any two grid points represented by the gradient color; (B) Exampled as subject 4, it shows the distribution of hand 
area estimated by five algorithms, and the dark red area represents the remaining hand location at the threshold of 0.8; (C) Violin plots show the 
prediction error of five algorithms at the threshold of 0.8. For each algorithm, the prediction error of each subject is represented by the blue dot. The 
white dot represents the group-average prediction error. Asterisks indicate a significant difference between the prediction error of the algorithm 
plotted and that of another algorithm (represented by different colors). *p  <  0.05, **p  <  0.01, ***p  <  0.001.
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using Kruskal–Wallis’s test for independent data. All data met the 
sphericity assumption, assessed with Mauchly’s test. A false-discovery-
rate correction was used for multiple comparisons. For all statistical 
analyses, a p-value of <0.05 was considered significant.

The threshold for outlining the motor cortex is crucial when 
optimization. However, it is unclear and there is no consensus on how 
to select the outlining threshold, and whether a uniform threshold 
should be  selected for all algorithms. Thus, we  normalized the 
estimation value to reasonably set the same outlining threshold, and 
explore the difference in estimation accuracy under various thresholds 
(0.5–0.9). We selected 0.8 as the recommended threshold because the 
group average area of the motor cortex estimated by the projection 
algorithm is close to 270 mm2 proposed by previous studies (Pitkänen 
et al., 2017; Nazarova et al., 2021) (see Supplementary Figure S3).

2.5 Relationship between the number of 
stimuli and estimation stability

To identify the minimum number of stimuli (Nmin) needed for 
stable mapping results, we investigated the relationship between a 
number of stimuli (MEP from 1 stimulus = average MEPs from 6 
pulses) and stability for each algorithm. We subsampled the original 
stimulation data (mean MEPs >50 μV, as standard in TMS) to estimate 
the motor map for a smaller number of stimuli. For each given 
number of stimuli, the subsampling process was randomly conducted 
1,000 times (Efron, 1979). Stability was defined as the average Pearson 
correlation coefficient between the 1,000 maps obtained from 
subsampling (sub-sample map) and the map obtained from the 
original data (original map).

The Nmin for each algorithm was defined as the minimum number 
of stimuli needed to reach a highly stable level when the Person 
correlation coefficient between maps from sub-sample data and the 
original data reached 0.9. We conducted statistical analysis in the same 
method as the comparison of prediction error. In addition, considering 
correlation analysis might be biased in favor of algorithms that yield 
a more diffuse map (e.g., the EF-COG algorithm), we also calculated 
the Nmin at which the distance between the peak region (top 5% within 
the search scope) in the sub-sample maps and the original map is 
reduced to less than 3 mm.

2.6 Comparing the motor mapping of TMS 
and fMRI

Each subject’s fMRI data, based on gradient-echo echo planar 
imaging (EPI) sequences were also acquired on 332 Siemens Trio 3 T 
MRI Scanner (32 axial slices; repetition time (TR) = 2000; echo time 
(TE) = 28 ms; flip angle (FA) = 90°; field of view (FOV) = 102 × 102 mm; 
51 × 51 matrix size with a resolution of 2 × 2 mm2) during a finger 
tapping task. To mitigate the differences between TMS and fMRI 
mapping arising from the movement of different muscles, volunteers 
performed right index finger tapping to activate the FDI muscle at a 
fixed frequency. In studies comparing the fMRI and TMS, a hand 
movement task lasting 20–40 s, alternating with rest, was commonly 
employed, with the majority using 6 blocks (3/5 studies, see 
Supplementary Table S1). In our study, the task consisted of seven rest 
blocks of 24 s each, featuring a fixation point, alternating with six task 

blocks of 24 s each. To ensure the stability of the volunteers, we added 
a rest block at the beginning of the task.

To acquire images with a higher spatial and temporal resolution, 
the above fMRI scanning only covered the upper part of the cerebrum 
containing the motor cortex, from the anterior and posterior 
commissure to the vertex, so an additional whole EPI volume was 
acquired for co-registration (96 axial slices; TR/TE/
FA = 6000/28 ms/90°; FOV = 102 × 102 mm; 51 × 51 matrix size with a 
resolution of 2 × 2 mm2). The analysis of fMRI data is described in 
the supplement.

The identification of the TMS cortical hotspot has traditionally 
been defined based on the projection algorithm and can be generalized 
to other algorithms to find the cortical location with the map maxima. 
The fMRI activation peak was determined as the point with the 
highest z-statistic in the estimation scope. The cortical sites were 
transformed into the Montreal Neurological Institute (MNI) space 
using the non-linear deformation field, which was obtained by 
segmenting and spatially normalizing the T1 image using Statistical 
Parametric Mapping 12. Then, we calculated the Euclidean distance 
between each algorithm cortical hotspot and the fMRI peak for each 
subject. We  further calculated the divergence in X, Y, and Z 
coordinates (in the MNI coordinate system) to investigate the 
directional bias of the TMS cortical hotspot. Similarly, we  also 
investigated the COGs to examine the spatial mismatch between TMS 
mapping and fMRI activation. The non-parametric Wilcoxon signed-
rank test was used to check if there exists a statistically significant 
difference between each algorithm’s results and fMRI activation results.

3 Results

3.1 Estimated motor maps

The results from the five algorithms were normalized and shown 
for each subject (N = 12) in Figure 3. The projection and max-EF 
algorithms yielded more concentrated motor maps than the others. 
Interestingly, the estimation sensitivity varies among the five 
algorithms in the sulcus. Interpolating solely on a 2D plane, the 
point-based algorithms are incapable of estimating values in the 
sulcus. Of the field-based algorithms, the association algorithm 
identified half of the subjects’ estimated cortical hotspots in deep 
structures, while the others were located on the gyrus. In the bottom 
panel of Figure 3, the estimation results around the omega region 
(e.g., subject 4) are presented, which serves as the anatomical 
landmark for the hand area (Yousry et  al., 1997). To facilitate a 
comparison of the estimation results from the five algorithms, 
we filled in the 0 values in the sulcus of the point-based algorithm’s 
estimation results (Figure  3, top panel). We  quantitatively 
investigated the pattern similarity between the estimated maps and 
the distance between cortical hotspots or COGs (Figure 4) from the 
five algorithms. Two pairs of algorithms yielded maps with a strong 
similarity: EF-COG and MNE (r = 0.98 ± 0.02, mean ± SD); 
projection and max-EF (r = 0.75 ± 0.09). The grid spacing of the 
predefined grid is 1CPC (3.36 ± 0.14 mm, Figure 4A). The pairwise 
correlation was statistically significant in 12 subjects (p < 0.001). The 
cortical hotspot did not significantly differ between EF-COG and 
MNE algorithms (p = 0.125), and the distance was 2.74 ± 6.65 mm 
(Figure  4B). It showed homogenous results when substituting 
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cortical hotspots’ geodesic distance (see Supplementary Figure S2). 
The remaining pairwise cortical hotspots differed significantly 
(p < 0.001) with the mean distance all over 12 mm. The shortest 
distance of COGs was between EF-COG and MNE (0.94 ± 0.74 mm, 
p < 0.001) (Figure 4C).

3.2 Comparison of prediction error

Prediction error was significantly different among the five 
algorithms (df = 4, F = 7.269, p < 0.001), and Figure 2C shows pair-
wise comparison results. At the threshold of 0.8, projection and 
association algorithms have significantly lower prediction errors than 
the other three algorithms (projection = 5.27 ± 4.24 mm, 
association = 6.66 ± 3.48 mm, max-EF = 11.28 ± 5.09 mm, EF-COG =  
13.66 ± 6.98 mm, MNE = 11.73 ± 6.75 mm), and the two of them have 

no significant difference (p = 0.386). Supplementary Figure S4 shows 
the monotonously decreasing prediction error for the projection and 
association algorithms, but monotonously increasing for the other 
three algorithms with the increasing of the cutting threshold. In the 
range of 0.75 to 0.9, the projection and association algorithms keep a 
significantly lower prediction error than others.

3.3 Comparison of the minimum number 
of required stimuli

To determine the Nmin required to produce a stable map, 
we probed the relationship between the number of stimuli and the 
estimation stability of each algorithm. Figure  5A shows example 
curves from one typical subject (subject 4). With the increase in the 
number of stimuli, the stability of all five algorithms increased 

FIGURE 3

Estimated motor maps from five algorithms. The left panel shows motor maps of subjects 1–6, and the right panel shows subjects 7–12. The bottom 
panel displays the estimation results of five algorithms around the omega region, as illustrated by subject 4. White circles mark the cortical hotspots, 
and white dotted lines mark the central sulcus. The color bar represents the normalized estimation value, with red indicating a higher probability of 
inclusion in the motor cortex and blue indicating a lower probability.
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monotonously. The ranking of Nmin of the five algorithms was: 
EF-COG < MNE < projection < max-EF = association. EF-COG 
algorithm required only 3 stimuli to estimate stably 
(stability = 0.969 ± 0.327), and max-EF and association required 15 
stimuli (max-EF stability = 0.901 ± 0.055, association 
stability = 0.903 ± 0.061). Nmin was significantly different among the 
five algorithms (df = 4, F = 187.362, p < 0.001), and Figure 5B shows 
pair-wise comparison results. Group-level analysis revealed that the 
EF-COG algorithm required the least Nmin (3 ± 0), which was 
significantly less than each of the other four algorithms (p < 0.001). 
Max-EF and association algorithm required the most Nmin (max-EF 
14.75 ± 1.76; association 14.00 ± 1.81), and no significant difference 
was found between them (p = 0.685). The group average and SD of 
Nmin were 6.17 ± 1.11 for MNE, and 11.67 ± 1.50 for projection, which 
both were significantly different from the other four algorithms. In the 
investigation of the Nmin for stable peak region, the EF-COG algorithm 
still had the smallest Nmin (see Supplementary Figure S5).

3.4 Comparison of TMS and fMRI motor 
mapping

Subjects 2 and 12 were not included because they had no significant 
fMRI activation. The remaining subjects’ activation peaks were all 
located in the central sulcus, but most of the TMS cortical hotspots were 
located in the precentral gyrus (Figure  6A). The fMRI peak site 
significantly differed from all cortical hotspot sites estimated by the five 
algorithms (distanceprojection  = 16.07 ± 8.41 mm, distancemax-EF  =  
21.13 ± 7.70 mm, distanceEF-COG  = 23.59 ± 9.17 mm, distanceassociation  =  
20.28 ± 7.77 mm, distanceMNE = 21.52 ± 9.00 mm, p = 0.002) (Figure 6B). 
In the Y-axis direction, TMS cortical hotspots were located significantly 
more anterior to the fMRI peak for projection, max-EF, EF-COG, and 
MNE algorithms (projection p = 0.02; max-EF p = 0.002; EF-COG 
p = 0.004; MNE p = 0.004), but not significantly for association algorithm 
(p = 0.492) (Figure 6C). In the Z-axis direction, TMS cortical hotspots 
were located significantly more superior to the fMRI peak for projection, 
EF-COG, and MNE algorithms (p = 0.027). In the X-axis direction, no 
statistically significant differences between the TMS cortical hotspot and 
fMRI peak were found. Similar results were found for COG (see 
Supplementary Figure S6).

4 Discussion

4.1 The estimated motor maps of five 
algorithms

Based on our results (Figure  3), the distribution was more 
centralized for the projection and max-EF algorithms, which is 
consistent with previous studies (Pitkänen et al., 2017; Seynaeve et al., 
2019). One possible explanation for this is that the projection and 
max-EF algorithms work based on points and do not consider the 
spread of neuronal activity induced by TMS, while the other three 
field-based algorithms work based on the electric field distributions. 
Notably, approximately half of the subjects’ cortical hotspots estimated 
from the association algorithm were located in the deeper cortex. It is 
possibly attributed to the association algorithm’s higher sensitivity to 
electric field strength compared to the MNE and EF-COG algorithms. 
The point-based algorithm is unable to depict the probability 
distribution of the motor cortex in the sulcus due to the lack of a 
reliable and physiologically valid interpolation method for the 3D 
cortex. We  adopted a common and demonstrated repeatable  2-D 
spline interpolation method (Wilson et al., 1993; Borghetti et al., 2008; 
Julkunen, 2014; Jonker et al., 2019). Although the MNE algorithm had 
a much higher computational complexity, its results were highly 
similar to those of the EF-COG algorithm (Figure 4). The reason for 
this is not clear, but it may be  due to the application of Wiener 
regularization to reduce the effect of MEP variability (Numminen 
et al., 1995; Pitkänen et al., 2017). Therefore, besides improving the 
accuracy of the hypothesized forward model, the performance of the 
MNE algorithm may also be enhanced by selecting an appropriate 
regularization method.

4.2 Comparison of estimation effectiveness 
and efficiency among five algorithms

We compared the effectiveness and efficiency of five different 
estimation algorithms mainly through two experiments. In the first 
experiment, we evaluated the prediction error of scalp hotspots for 
each algorithm as a measure of its estimation effectiveness. The 
projection and association algorithms produced the lowest prediction 

FIGURE 4

Similarity of motor maps from different algorithms. The similarity in terms of (A) pattern similarity of the motor map in terms of correlation coefficient r, 
(B) the Euclidean distance between cortical hotspots, and (C) the Euclidean distance between COGs. White numbers and shading color indicate the 
group’s average value.
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(5.27 mm, 6.66 mm) in the point-based and field-based estimation 
algorithms, respectively. Under the lower outlining threshold, such 
as 0.5, the prediction error might depend on the search scope range 
restricted before estimation. It could lead to similar evaluations for 
all algorithms because the remaining hand area occupies over half of 
the search scope. With an increasing threshold, the prediction error 
becomes more dependent on the estimation accuracy rather than the 
search scope range. Our results indicate that the projection and 
association algorithms consistently performed better than other 
algorithms in terms of lower prediction errors over the threshold 
range of 0.6 to 0.9, with a statistically significant difference observed 
in the range of 0.75 to 0.9 (see Supplementary Figure S4). The area in 
the chosen range was regarded as the hotspot extent, which outlines 

the area where the highest MEPs occur (Reijonen et  al., 2020). 
Considering that prediction error is influenced by errors in scalp 
hotspot measurement and the selection of the electric field 
component (Bungert et al., 2017), we have provided two supplements. 
Firstly, we have interpolated measured MEPs on the densified grid 
and determined the maximum site to replace the measured scalp 
hotspot position. This resulted in the projection and association 
algorithms still performing the best (p < 0.01  in the pair-wise 
comparison). Secondly, when optimizing the coil position, 
we substituted the electric field strength with components of the field 
that are normal and tangent to the local cortex orientation, 
respectively. Both algorithms produced the lowest prediction error 
when using the tangent component (p < 0.01) and produced a 

FIGURE 5

The comparison of a minimum number of required stimuli. (A) It shows the relationship between the number of stimuli and the stability of five 
algorithms. Examples are given for subject 4. Color numbers show the Nmin of the five algorithms, the number of stimuli required for stability >  =  0.9 
(shade region); and (B) Violin plots show the distribution of the Nmin of the five algorithms. For each algorithm, the Nmin of each subject is represented 
by the blue dot. The white dot represents the group-average Nmin of each algorithm. Asterisks indicate significant differences between the Nmin of the 
algorithm plotted and that of another algorithm (represented by different colors). *p <  0.05, **p <  0.01, ***p <  0.001.
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significantly lower prediction error than the EF-COG algorithm 
when using the normal component (p < 0.05). These results reliably 
suggest that the projection and association algorithms are 
more effective.

Several studies have shown that both the projection and EF-COG 
algorithms perform well in motor mapping when taking DCS 
mapping results as the standard (Coburger et al., 2011, 2013; Opitz 

et al., 2014; Seynaeve et al., 2019). Seynaeve et al. suggested that the 
projection and EF-COG algorithms both estimate the motor cortex 
with high accuracy (85 and 78% respectively) and that the EF-COG 
algorithm is better at capturing the entire motor cortex representation 
than the projection algorithm (Seynaeve et al., 2019). In our study, the 
projection and association algorithms demonstrated lower prediction 
errors than others. The association algorithm can outline the entire 

FIGURE 6

Divergence between TMS cortical hotspots and fMRI peaks. (A) Cortical hotspots were estimated by five algorithms and fMRI peaks (black spheres) in 
individual MRI spaces. (B) Euclidean distance between the cortical hotspots and fMRI activation peaks. (C) The left panel shows group-mean cortical 
hotspots and fMRI peaks. The right panel shows a divergence between TMS cortical hotspots and fMRI peaks separately in three axes (red, Y-axis; blue, 
Z-axis; yellow, X-axis). All box plots show median (black solid line), mean (black dashed line), interquartile range (box top and bottom), and 10th and 
90th percentiles (error bars). *p  <  0.05, **p  <  0.01.
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distribution of the motor cortex without neglecting its deep structures, 
such as the gyrus lip and sulcus (Figure 3).

Although the projection algorithm is unable to estimate in the 
sulcus, it still had a similarly better prediction error compared to 
the association algorithm. This might be  related to modeling 
research suggesting that the primary target of TMS is the crown 
top and lip regions of cortical gyri (Bungert et al., 2017; Siebner 
et al., 2022), which can be estimated by the projection algorithm. 
The part findings of our research are supported by Seynaeve et al., 
who suggested that the projection algorithm exhibited higher 
estimation accuracy than the EF-COG algorithm standardized as 
DCS mapping (Seynaeve et al., 2019). The prediction error of the 
MNE algorithm in our research is 11.73 mm, whereas it was 
7.0 mm in the previous research that used the same method to 
evaluate the effectiveness of the MNE algorithm (Reijonen et al., 
2022). The lower prediction error observed in our research may 
be  attributed to the absence of the I/O curve in the MNE 
algorithm replication.

We aimed to explore the minimum number of stimuli required 
for stable mapping with each algorithm in the second experiment 
of the simulation. In addition to providing a complete depiction of 
the distribution of the motor cortex in three-dimensional space, the 
collection of multiple TMS stimuli is utilized to mitigate the effects 
of MEP variability (Cavaleri et al., 2017; Sinitsyn et al., 2019). In 
this study, we employed the classic method of collecting TMS data, 
which involves an even stimulation grid (Sondergaard et al., 2021). 
It means that the number of stimuli refers to the number of 
stimulation grid points that contain six TMS pulses. It mitigates the 
effects of MEP variability by repeatedly sampling MEPs at the same 
site and obtaining a more stable MEP measurement (Cavaleri et al., 
2017; Therrien-Blanchet et  al., 2022). With the development of 
neuronavigation and electric field modeling, several studies have 
proposed that the collection of a single TMS pulse can be directly 
used for motor mapping (van de Ruit et al., 2015; Numssen et al., 
2021; Sondergaard et  al., 2021). It mitigates the effects of MEP 
variability by capturing more spatial information and obtaining a 
more stable distribution of the motor cortex. With the TMS data 
collection method described above, Ruit et  al. found that the 
projection algorithm required at least 80 TMS pulses when using 
the pseudorandom walk method (van de Ruit et  al., 2015), and 
Numssen et al. found that the association algorithm required at 
least 180 TMS pulses (Numssen et al., 2021). In our study, we also 
observed the same phenomenon that the association algorithms 
may require more TMS stimuli than the projection algorithm 
(Figure 5B, see Supplementary Figure S5B). Interestingly, we found 
that the EF-COG algorithm consistently performed best, and the 
MNE algorithm came next, with estimation results mostly showing 
similarities (Figure  5, see Supplementary Figure S5). The lower 
performance of the MNE algorithm might be due to the aggravation 
of the ill-posed problem by decreasing the number of stimuli 
(Kabanikhin, 2008). Despite working based on points rather than 
the distribution of the electric field, the max-EF algorithm required 
a significantly larger Nmin than the projection algorithm (p < 0.001). 
The instability of the max-EF algorithm may be the reason for its 
larger Nmin requirement, as shown in Supplementary Figure S7. The 
figure illustrates that even if two stimuli induce MEP with a large 
discrepancy, their maximum electric field cortical sites are very 
close to each other.

4.3 Towards application of clinical and 
basic neuroscience

TMS motor mapping holds promise in various clinical 
applications, including pre-surgical planning (Takahashi et al., 2013; 
Lefaucheur and Picht, 2016), risk stratification (Rosenstock et  al., 
2017), motor rehabilitation (Lüdemann-Podubecká and Nowak, 
2016), as well as basic research such as developmental plasticity 
(Narayana et al., 2015; Grab et al., 2018; Babwani et al., 2021). The 
fundamental requirement for a superior mapping algorithm is its 
ability to accurately delineate the location of the motor cortex. 
Numerous studies have indicated that the caudal band of the hand 
area resides in the depth of the central sulcus, and the rostral part is 
located in the more superficial sulcal wall (Geyer et al., 1996, 2000; 
Siebner et al., 2022). In this context, the association algorithm stands 
out as it can capture the entire information of the motor cortex, unlike 
the projection algorithm, which may miss certain portions (Julkunen, 
2014). This suggests that the association algorithm could offer more 
accurate estimation results, potentially enhancing the security of 
pre-surgical planning for tumor surgery and providing more detailed 
knowledge of the motor cortex in research. Consequently, we propose 
that the association algorithm might be a preferable choice for clinical 
applications and basic neuroscience research.

TMS serves as a non-invasive technology commonly for causal 
structure–function mapping through its ability to provide supra-
threshold stimulation (Siddiqi et al., 2022). While the objectivity and 
quantifiability of MEP draw more attention to motor mapping, TMS 
can extend to mapping cognitive functions beyond motor domains. 
TMS language mapping is equally significant as a procedure before 
tumor surgery and is typically conducted using the traditional point-
based algorithm (Picht et  al., 2013; Babajani-Feremi et  al., 2016; 
Lehtinen et  al., 2018). In our study, the association algorithm 
demonstrated lower prediction error and higher estimation sensitivity 
in the deep cortical structure. This improvement suggests potential 
enhancement in the accuracy of TMS language mapping and its 
applicability to more complex functional mapping. Notably, the 
association algorithm is utilized in the depression treatment to map 
the efficacy area of TMS, pending further confirmation regarding the 
selection of the electric field component (Zhang et  al., 2022). 
Therefore, the association algorithm also exhibits great potential in 
mapping the efficacy area in the TMS treatment for psychiatry.

4.4 Motor mapping divergence between 
TMS and fMRI

In this study, the group average distance between the location of 
the cortical hotspot estimated by the projection algorithm and the 
fMRI activation peak was 16 mm which approached the mean distance 
reported in previous studies (around 7 to 14 mm) (Herwig et al., 2002; 
Lotze et al., 2003; Diekhoff et al., 2011). To exclude the possibility that 
the divergence was caused by the simple projection algorithm itself, 
we  used four other electric-field-based estimation algorithms to 
re-estimate the cortical hotspot location. The results showed that the 
divergence in cortical hotspot location (20.52 ± 8.46 mm for five 
algorithms), as well as in COG (12.21 ± 2.73 mm), remains regardless 
of the estimation algorithm used (Figure  6, see 
Supplementary Figure S5). All of the results support the hypothesis 
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that TMS motor mapping differs from fMRI motor task 
activation mapping.

To further understand the reasons for this divergence, we analyzed 
the divergence in terms of distance in the 3 axes in MNI space. The 
notable finding from this analysis is that divergence mainly occurs in 
the Y axes. The cortical hotspot estimated by projection, max-EF, 
EF-COG, and MNE algorithms was found to be always significantly 
more anterior than the fMRI peak, which is consistent with previous 
studies (Herwig et al., 2002; Lotze et al., 2003; Diekhoff et al., 2011). 
One possible explanation is that neurons activated by TMS are 
different from those detected by fMRI (Herwig et al., 2002; Wang 
et al., 2020). TMS mapping reveals the causal relationship between 
finger movement and activation of neurons, whereas fMRI mapping 
simply shows a correlation between the two. Thus the TMS mapping 
finds neurons that directly cause finger movement and they are mainly 
in the primary motor cortex (PMC) in the precentral gyrus (Säisänen 
et al., 2010; Holmes et al., 2019). fMRI mapping detects activation of 
neurons that are related to voluntary finger movement not only in 
PMC in the precentral gyrus but also in other regions, such as the 
somatosensory cortex in the postcentral gyrus (Mima et al., 1999; 
Ehrsson et  al., 2003; Akhlaghi et  al., 2012). Another possible 
explanation is that the brain shift might also result in slightly anterior 
TMS cortical hotspots. The brain shift results from different conditions 
during the sMRI when the subject is lying and the TMS session when 
the subject is sitting. However, we cannot confirm the existence of 
divergence along the Y-axis yet, as the cortical hotspots estimated by 
association were not significantly more anterior than the fMRI 
activation peak (p = 0.492). The discrepancy with the association 
algorithm could be  due to its higher estimation accuracy or the 
insufficient number of participants in our study.

In conclusion, both previous and our own suggest that the 
deviation between the TMS mapping cortical hotspot and the fMRI 
activation peak may arise from differences in the neurons activated by 
TMS compared to those detected by fMRI. Wang et al. also noted that 
this deviation was linked to distinct brain circuits in non-voluntary 
and voluntary finger movements (Wang et al., 2020). This deviation 
suggests the necessity of choosing an appropriate mapping technology 
based on research objectives. For instance, in the treatment of 
movement disorder, selecting the fMRI activation peak as the TMS 
target might be preferable. Considering the deviation between TMS 
and fMRI mapping, as well as the similarity between TMS and DCS 
mapping (Coburger et  al., 2013; Mangraviti et  al., 2013), fMRI 
mapping could be significantly supplemented by pre-surgical planning 
to avoid excising the area responsible for voluntary rather than 
non-voluntary movement.

4.5 Limitations and future work

There are several limitations to this study, which will guide our 
future work. Several enhanced association algorithms have been 
proposed (Weise et al., 2020; Kataja et al., 2021; Numssen et al., 2021; 
Weise et al., 2023), with the latest protocol and code for one of them 
publicly available (Weise et  al., 2023). This protocol incorporates 
additional parameters of the mapping procedure, including I/O curves 
and coil orientations. This underscores the superiority of algorithms 
utilizing the electric field modeling, given that the projection 

algorithm cannot capture the influence of orientations, despite 
orientation being a crucial parameter in TMS. In our study, 
we  examined five estimation algorithms using a classical motor 
mapping procedure without regard to the coil orientation. While this 
facilitated the result of comparisons suitable for the majority of motor 
mapping scenarios, further investigations employing new motor 
mapping procedures are needed to demonstrate the superiority of the 
association algorithm. It was observed that the association algorithm 
exhibited lower mapping efficiency than the projection algorithm and 
converged slowly in the second experiment. Further investigation is 
warranted in the new procedure because the association algorithm 
might require a more diverse set of TMS pulses to achieve a more 
reliable mapping.

Although more and more studies strive to demonstrate the 
physiological significance of the numerical electric field (Argyelan 
et al., 2019; Jamil et al., 2020; Fridgeirsson et al., 2021; Mosayebi-
Samani et al., 2021), the prediction error might not be determined 
solely by the estimation accuracy of the mapping algorithm. Therefore, 
in our future work, using the DCS mapping result as the gold standard 
(Coburger et al., 2011, 2013; Opitz et al., 2014; Seynaeve et al., 2019) 
is needed for validating the higher estimation accuracy of the 
association algorithm. Besides the number of stimuli, the reliability of 
each estimation algorithm is also affected by the combination of 
stimulation site and orientation. Therefore, future research should 
explore the optimization of stimulation patterns to enhance the 
performance of the estimation.

5 Conclusion

In this study, we  used the same set of experimental data to 
compare five TMS motor mapping estimation algorithms mainly in 
two experiments. In the first experiment, we found that the projection 
algorithm performed best among the point-based algorithms, while 
the association algorithms performed best among the field algorithms. 
However, the projection algorithm might miss part of the hand area 
because it cannot estimate it accurately in the sulcus, and even might 
not be in the gyrus lip. In the second experiment, we observed that the 
projection algorithm required fewer stimuli compared to the 
association algorithms when collecting TMS mapping data using the 
typical grid-based method. Generally, we suggest that the association 
algorithm may be a preferable choice for clinical applications and 
basic neuroscience research, even across various TMS mapping 
domains, including language area mapping and mapping the areas 
effective in depression treatment, among others. Finally, we found that 
even when using advanced estimation algorithms, the location of all 
cortical hotspots estimated by the five algorithms still deviated from 
the activation peak obtained from fMRI, without showing a consistent 
orientation preference.
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Glossary

TMS Transcranial magnetic stimulation

MEP Motor-evoked potential

FDI First dorsal interosseous muscle

fMRI functional magnetic resonance imaging

DCS Direct cortical stimulation

CPC Continuous proportional coordinate

RMT Resting motor threshold

I/O curve Input–output curve

COG Center-of-gravity

MNE Minimum norm estimation

Nmin the minimum number of stimuli needed for stable mapping results

TR Repetition time

TE Echo time

FA Flip angle

FOV Field of view

EPI Echo planar imaging

MNI Montreal Neurological Institute space
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