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Editorial on the Research Topic

Double-edged swords: important factors connecting metabolic disorders
and cancer development - frombasic research to translational applications,
volume II
Building upon the previous two series of articles (Double-edged Swords: Genetic

Factors That Influence the Pathogenesis of Both Metabolic Disease and Cancer; Double-

Edged Swords: Important Factors Connecting Metabolic Disorders and Cancer

Development - From Basic Research to Translational Applications) discussing the

intersections between metabolic dysfunction and cancer development, this research topic

highlights new challenges and opportunities with our expanded knowledge.

Drug resistance is a significant issue in cancer therapy (1). Tirendi et al. reviewed the

recent literature between 1988 and 2022 regarding therapeutic strategies and challenges of

colorectal cancer (CRC) in “Colorectal cancer and therapy response: a focus on the main

mechanisms involved”. The authors discussed mechanisms contributing to CRC resistance,

including metabolic reprogramming in cancer stem cells. To overcome CRC resistance,

metabolic adaptors such as metformin and nanoparticle-based systems have been

developed to improve treatment efficacy and delivery, respectively.

In “Co-administration of MDR1 and BCRP or EGFR/PI3K inhibitors overcomes

lenvatinib resistance in hepatocellular carcinoma”, Sun et al. described novel strategies to

overcome resistance of hepatocellular carcinoma (HCC) to lenvatinib, a tyrosine kinase

inhibitor used in patients with unresectable HCC. Following the development of lenvatinib

resistance (LR), multidrug resistance protein 1 (MDR1) and breast cancer resistance

protein (BCRP) transporters were upregulated, and the epidermal growth factor receptor
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(EGFR) and PI3K/AKT pathways were activated. As the result,

combining lenvatinib with MDR1/BCRP dual inhibitor elacridar or

EGFR inhibitor gefitinib proved to be effective strategies to

overcome LR.

To develop novel treatments against HCC, new opportunities

have been presented by our expanded understanding of the

interaction between immunity and metabolism. Tu et al.

described in “Hepatic macrophage mediated immune response in

liver steatosis driven carcinogenesis” how liver macrophages

produce inflammatory mediators to cause lipid dysfunction,

steatosis and ultimately liver cancer. Treatments targeting this

pathway, such as AMPK activators or dietary interventions, may

be beneficial when integrated in HCC therapy.

Connections between metabolic syndrome and thyroid cancer

(TC) have been described (2). In “Do metabolic factors increase the

risk of thyroid cancer? a Mendelian randomization study”, Liang and

Sun provided additional contexts by using Mendelian Randomization

(MR) to analyze genome-wide association studies (GWAS) dataset.

Their analysis revealed a protection role for high-density lipoprotein

(HDL) on TC, suggesting that strategies targeting HDL regulations

could have therapeutic values. Other metabolites can also be linked to

TC. In “Alterations in the amino acid profile in patients with papillary

thyroid carcinoma with and without Hashimoto’s thyroiditis”,

Hellmann et al. used high-performance liquid chromatography-triple

stage quadrupole-mass spectrometry (HPLC-TSQ-MS) to profile

amino acids (AA) in the serum of patients with papillary thyroid

carcinoma (PTC) with or without Hashimoto’s thyroiditis (HT).

Despite sharing similar AA profiles compared with healthy controls,

serum of PTC patients with HT (PTC1) can be distinguished from

those without HT (PTC0) by lysine and alanine profiles, suggesting

diagnostic values of AA in TC.

Some metabolites, such as 2-Hydroxyglutarate (2HG), also possess

pro-tumorigenic functions (3). In “Renal oncometabolite L-2-

hydroxyglutarate imposes a block in kidney tubulogenesis: Evidence

for an epigenetic basis for the L-2HG-induced impairment of

differentiation”, Taub et al. showed that knockdown of L-2HG

dehydrogenase (L2HGDH) in Renal Proximal Tubule (RPT) cells

resulted in increased 2HG level and reduced tubulogenesis by RPT

cells. This result was accompanied with reduced expression of cell

differentiation factors and altered methylation status of chromatin. It

suggests that 2HG functions as an oncometabolite by suppressing

normal differentiation.

Our understanding about the role of glucose metabolism in

human diseases have spanned from diabetes to cancer (4). In “The

“sweet” path to cancer: focus on cellular glucose metabolism”,

Iacobini et al. reviewed the current literature contextualizing the

role of aerobic glycolysis, or Warburg effect, in cancer,

inflammation, and diabetes. They highlighted two important

factors, the hypoxia-inducible factor-1a (HIF-1a) and M2

isoform of pyruvate kinase (PKM2), in promoting glucose

metabolic rewiring to shape the immune and endocrine

environments during disease progression.

Both HIF-1a and PKM2 are metabolic enzymes critical for

functions in normal and cancerous cells. Mahé et al. did a deep dive,

in “Genetics of enzymatic dysfunctions in metabolic disorders and

cancer”, into our current knowledge about how genetic alterations
Frontiers in Endocrinology 026
in metabolic enzymes contribute to human diseases. They explored

a variety of functional pathways, including the urea cycle, glycogen

storage, lysosome storage, fatty acid oxidation, and mitochondrial

respiration among others, that can be hijacked by dysregulation of

metabolic enzymes to promote the development of metabolic

disorders and cancers.

In “Is MG53 a potential therapeutic target for cancer?”, Du et al.

discussed the roles MG53 plays as a target in cancer therapy. As a

member of the tripartite-motif (TRIM) protein family with glucose-

regulating functions, MG53 has been shown to play beneficial roles

in cancer treatment. Restoring or elevating MG53 levels could

enhance efficacy of chemo- and immuno-therapy while limiting

associated tissue injuries. MG53’s role in metabolic regulation,

however, has also been implicated in insulin resistance and cancer

cachexia, leading to detrimental effects during cancer treatment.

Drug repurposing represents a promising strategy to discover

novel therapies for cancer (5). In “The magic bullet: Niclosamide”,

Jiang et al. reviewed the potential of niclosamide, an FDA-approved

drug for tapeworm treatment, in cancer therapy considering its

recently discovered ability to modify the global epigenetic landscape

through metabolic reprogramming (6). With its distinctive effects

on epigenetic regulation, metabolic programming, and other

oncogenic and tumor suppressive mechanisms, such as Wnt/b-
catenin, NF-kB, p53, and AMPK pathways, niclosamide is a

promising candidate for combination therapies.

Racial disparity plays a significant role in disease progression

and therapy (7). In “Population-enriched innate immune variants

may identify candidate gene targets at the intersection of cancer and

cardio-metabolic disease”, Yeyeodu et al. discussed the roles innate

immunity and inflammation play in differential susceptibilities to

metabolic disorder and cancer among racial populations. Genetic

inheritances and adaptions, in response to geographically defined

environmental stresses, shape the innate immune profiles in

different ethnic groups. It offers important insights in

development of precision therapies.

With the variety of topics covered, our discussion and learning

about links between metabolic functions and cancer continue, from

basic science to translational applications.
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Renal oncometabolite L-2-
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block in kidney tubulogenesis:
Evidence for an epigenetic basis
for the L-2HG-induced
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2-Hydroxyglutarate (2HG) overproducing tumors arise in a number of tissues,

including the kidney. The tumorigenesis resulting from overproduced 2HG has

been attributed to the ability of 2HG alter gene expression by inhibiting a-
ketoglutarate (aKG)-dependent dioxygenases, including Ten-eleven-

Translocation (TET) enzymes. Genes that regulate cellular differentiation are

reportedly repressed, blocking differentiation of mesenchymal cells into

myocytes, and adipocytes. In this report, the expression of the enzyme

responsible for L2HG degradation, L-2HG dehydrogenase (L2HGDH), is

knocked down, using lentiviral shRNA, as well as siRNA, in primary cultures of

normal Renal Proximal Tubule (RPT) cells. The knockdown (KD) results in

increased L-2HG levels, decreased demethylation of 5mC in genomic DNA,

and increased methylation of H3 Histones. Consequences include reduced

tubulogenesis by RPT cells in matrigel, and reduced expression of molecular

markers of differentiation, including membrane transporters as well as HNF1a
and HNF1b, which regulate their transcription. These results are consistent with

the hypothesis that oncometabolite 2HG blocks RPT differentiation by altering

the methylation status of chromatin in a manner that impedes the

transcriptional events required for normal differentiation. Presumably, similar

alterations are responsible for promoting the expansion of renal cancer stem-

cells, increasing their propensity for malignant transformation.

KEYWORDS

L-2-Hydroxyglutarate, proximal tubule, matrigel (MA), differentiation, renal
cell carcinoma
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1 Introduction

Specific cancer cells including gliomas, secondary

glioblastomas, and acute myeloid leukemia (AML) overproduce

D-2-Hydroxyglutarate (D-2HG) due to point mutations in cytosolic

Isocitrate Dehydrogenase 1 (IDH1) (1). Renal carcinomas similarly

have been observed to overproduce 2HG; however, the L isoform is

overproduced in these tumors, presumably due to reduced

expression of L-2HG dehydrogenase, which normally oxidizes L-

2HG to aKetoglutarate (aKG) (2). While a number of mechanisms

have been proposed, the most validated mechanisms by which 2HG

accelerates oncogenesis are epigenetic. 2HG potently inhibits aKG-
dependent dioxygenases by preventing aKG binding (3). Included

amongst the aKG-dependent dioxygenases which are affected are

the Ten-Eleven Translocation (TET) enzymes, which demethylate

5-methylcytosine (5mC) residues in genomic DNA (1), as well as

the Jumonji C (JmjC) domain-containing histone demethylases

(JMDHs). The consequence of TET inhibition is hypermethylation

of DNA, while the consequence of JMDH inhibition is

hypermethylation of histones. Ultimately, the increased DNA and

histone methylation changes gene expression. Of particular interest

in these regards is that these changes in gene expression have been

observed to block cellular differentiation into adipocytes and muscle

cells (4, 5). These observations have been made with cells that

overproduce D-2HG due to IDH1mutations (1). However, the

question has not been addressed as to whether L2HG-producing

cells have a similar block in differentiation. This question is of

particular importance with regard to clear cell renal carcinomas

(CCRCCs), given that the studies of Shelar et al. (2) indicate that

L2HG contributes to the development of these tumors.

Here we examine the hypothesis that elevated 2HG affects the

differentiation of normal renal cells, altering their ability to undergo

tubulogenesis. Of particular interest in these regards are renal

proximal tubule (RPT) cells, the cells of origin of ccRCCs (6). In

our previous studies, we observed that normal RPT cells, which

have just been removed from the animal, form monolayer cultures

that exhibit differentiated functions when cultured on plastic in

defined medium (7). However, when RPT cells are cultured in a

reconstituted basement membrane, matrigel, tubulogenesis occurs

in response to either EGF or TGFa (8). Furthermore, the newly

formed tubules possess the capacity for transepithelial transport (9),

similar to developing nephrons (8, 10). Included amongst the initial

events which occur during kidney development is the induction of

the metanephric mesenchyme by WNT signals, followed by the

induction of transporters specific to the RPT (11, 12). Notably, these

developmental events are dependent upon DNA and histone

methylation (13–16). For this reason, we have examined whether

a) renal proximal tubulogenesis, and the expression of

developmentally regulated transporter genes is altered by 2HG,

and b) whether 2HG-mediated alterations can be attributed to

changes in DNA and histone methylation.
Frontiers in Endocrinology 02
9

2 Materials and methods

2.1 Materials

Dulbecco’s Modified Eagle’s Medium (DMEM), Ham’s F12

Medium (F12), growth factor depleted matrigel, soybean trypsin

inhibitor, 0.05% EDTA/0.53 mM trypsin in phosphate-buffered

saline (PBS), EGF, lipofectamine, siRNA, RNA-4PCR kits,

TURBO DNase I, Superscript Vilo kits, DNA oligos, and

tissue culture plasticware were from Thermo Fisher (Waltham,

MA). TransIT-LT1 transfection reagent was from Mirus

Biotechnology Co. (Madison, WI). Tissue culture plate inserts,

24 wells, with PET membranes, 8.0 µm, were from VWR

(Radnor, PA). Monarch Genomic DNA Purification Kits were

obtained from New England BioLabs (Ipswich, MA). Hybond-

N+ membranes were from GE Healthcare Biosciences (Chicago,

IL). Nitrocellulose membranes were from Bio-Rad Laboratories

(Hercules, CA). The Sirius Western Bright detection kit was

from Advansta, San Jose, CA. The 5-hydroxy methyl cytosine (5-

hmC) rabbit polyclonal antibody was from Active Motif

(Carlsbad, CA), and the rabbit polyclonal antibodies against

di- and tri-methylated histones (included in Histone Sampler

Kits 9783 and 9847) were from Cellular Signaling Technologies,

Danver, MA. The rabbit anti-NPT2a antibody was from alpha

Diagnostics International (San Antonio, TX), while the rabbit

anti-L2HGDH antibody (Cat # 15707-1-AP) and the rabbit anti-

SGLT2 antibody (Cat. # 24654-1-AP) were from Proteintech

(Rosemont, IL). The mouse monoclonal anti-beta actin antibody

was from Santa Cruz Biotech (Dallas, TX). The secondary

antibodies (Horseradish Peroxidase (HRP)-coupled Goat anti-

Rabbit and HRP-coupled Goat anti-Mouse), as well as the

SsoAdvanced Universal Syber Green Supermix, were obtained

from Bio-Rad Laboratories (Hercules, CA). Collagenase Class IV

was from Worthington (Freehold, NJ). Western Blocking

Reagent, produced by Roche, as well as bovine insulin, human

transferrin, hydrocortisone, and other chemicals was from

Sigma Aldrich Chemical Corp. (St. Louis, MO). Selenium was

from Difco laboratories (Detroit, MI). New Zealand White

rabbits, 4-5 lb, male, were from Charles River (Wilmington,

MA). Prism 9 software was from GraphPad, Inc. (San

Diego, CA).
2.2 Plasmids

The pLK0.1 TRC cloning vector (17), the pLKO.1-TRC

vector (17), and the scramble shRNA vector in pLKO.1 (18)

were obtained from Addgene (Watertown, Mass). The pMD2.G

vector [expressing VSV-G envelop; Addgene plasmid # 12259;

http://n2t.net/addgene:12259;RRID:Addgene_12259), and

psPAX2 (a lentiviral packaging vector; Addgene plasmid #
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12260; http://n2t.net/addgene:12260;RRID:Addgene_12260)]

were gifts from Didier Trono.
2.3 Cell culture

The basal medium, which consists of a 50:50 mixture of

Dulbecco`s Modified Eagle`s Medium and Ham’s F12 Medium

containing 15 mM HEPES and 20 mM sodium bicarbonate

(DMEM/F12) (pH 7.4), is supplemented with 5 µg/ml bovine

insulin, 5 µg/ml human transferrin, 5 × 10-8 M hydrocortisone,

92 U/ml penicillin, and 0.01% kanamycin (i.e., Medium RK-1).

Water used for medium and growth factor preparations was

purified using a Milli-Q deionization system. Cultures were

maintained in a humidified 5% CO2/95% air mixture at 37°C.

Primary rabbit RPT cell cultures were initiated from rabbit

kidneys, as previously described (7). Animal use was reviewed

and approved by the Institutional Animal Care and Use

Committee of the State University of New York at Buffalo.

After their removal from the animal, rabbit kidneys were

perfused via the renal artery, with DMEM/F12 containing

0.5% iron oxide (w/v), until the kidney turned gray black in

color. Renal cortical slices were removed, disrupted with a sterile

glass homogenizer, and the material was separated sequentially

through 253 µm and 83 µm nylon sieves. Tubules and glomeruli

on the 83 µm sieve were transferred into DMEM/F12, glomeruli

(containing iron oxide) removed with a stir bar, and remaining

proximal tubules incubated in DMEM/F12 containing 0.05mg/

ml collagenase IV/0.5 mg/ml soybean trypsin inhibitor (2′; 23°
C). Dissociated tubules were centrifuged, resuspended in

DMEM/F12, and plated into culture dishes (or 12-well plates)

containing Medium RK-1. The medium was changed the day

after plating, and every 2 days thereafter.
2.4 Treatment of primary cultures with
either L2HGDH siRNA or L2HGDH shRNA

The sequence of rabbit L2HGDH stealth siRNA

(UUACAGUACUCAUACAUGAGGGCUG, positive strand) and

scrambled (scr) control stealth siRNA (UUAGGCAU

GAACUCACAUGAGUCUG, positive strand) was determined

using Stealth siRNA software (Thermo Fisher), whereas the

sequence of rabbit L2HGDH Silencer Select siRNA

(GAUGCUUACUGUUUUGGAAtt) was determined using

Silencer Select siRNA software (Thermo Fisher). Silencer Select

Negative Control siRNA #1 was used in parallel with L2HGDH

silencer select siRNA. Primary RPT cells were transfected with

either Rabbit L2HGDH siRNA or a Control siRNA (scrambled

stealth siRNA) using lipofectamine, while transfections with

L2HGDH Silencer Select siRNA or a Control siRNA (Silencer

Select Negative Control siRNA #1, ThermoFisher) were conducted

using lipofectamine RNAiMAX. Two days later, the cultures were
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either used experimentally or transfected a second time with

the siRNAs.

A rabbit L2HGDH shRNA oligo, generated by RNAi

Consortium Software, the Broad Institute, (CCGGAA

GATGGGATGAAATATCCAATTCTCGAGTTGGATATTT

CATCCCATCTTTTTTTG), was inserted into a pLK0.1 TRC

cloning vector. The sequence was verified by the Roswell Park

Cancer Institute Sequencing Facility (Buffalo, NY). The pLKO.1-

TRC vector and the scramble shRNA vector in pLKO.1 were used

controls. To prepare lentivirus, 292 T cells were cotransfected,

using a TransIT-LT1 transfection agent, with a pLK0.1 TRC

vector, pMD2.G, and psPAX2 followed by medium change

(after 24 h). Medium containing virus was collected 48 and 72 h

after transfection. and the virus was titered using HT1080.

Primary RPT cell cultures were transduced with lentiviral

particles, and transformants selected for 7 days using puromycin.
2.5 Matrigel cultures

Growth factor depleted matrigel, prepared as described by

Taub et al. (8), was stored at -20°C. Prior to its use, matrigel was

thawed and maintained at 4°C. Prior to the addition of the

cultures, 12-well plates were coated with matrigel. Subsequently,

monolayer cultures of primary RPT cell cultures were detached

from their dishes using EDTA/trypsin. Trypsin action was

inhibited using 0.1% soybean trypsin inhibitor in PBS. The

cells were suspended in DMEM/F12 and pelleted at 500×g for

5 min. After resuspension in DMEM/F12, the cell number was

determined using a Coulter counter, and the cells were added to

matrigel at 4°C. The cells in matrigel were plated into individual

wells of matrigel-coated 12 well plates at 2 × 104 cells/well. The

matrigel cultures were maintained in a humidified 5% CO2

incubator in a humidified 5% CO2/95% air environment at 37°

C. DMEM/F12 medium containing 5 µg/ml bovine insulin, 5 µg/

ml human transferrin (DMEM/F12-IT), and other pertinent

factors (including 5 ng/ml EGF) was added the day after

plating. The matrigel cultures were incubated with EGF, and/

or other appropriate supplements. One week later, the number

of tubules was determined in each of 25 microscope fields/well,

in three wells per condition, and compared to control values in

the absence of added growth factor (unless otherwise stated).
2.6 Realtime PCR

RNA was purified from the cultures using an RNA-4PCR kit.

Subsequently, genomic DNA was removed using TURBO DNase I,

and cDNAwas synthesized using a Superscript Vilo kit. Transcripts

were amplified using a BioRad CFX96 RealTime System using

SsoAdvanced Universal Syber Green Supermix containing 5 µM

forward and reverse primers complementary to cDNA templates.

Ct values (obtained using BioRad software) were determined in
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quadruplicate. Relative mRNA levels were calculated using the Ct

values, as described by Pfaffl (19) using beta actin mRNA as an

internal control. Primers were designed by using Primer-BLAST

(NCBI website) and synthesized by ThermoFisher.
2.7 Western analysis

Cell lysates were prepared in RIPA buffer containing protease

inhibitors, as previously described (20), and protein levels were

determined using the micro BCA protein assay (21). The samples,

equalized with respect to protein, were separated by electrophoresis

through 7.5% SDS/polyacrylamide gels, and transferred to

nitrocellulose, as previously described (22). The blots were

incubated first with a primary antibody and, subsequently, with

an HRP-conjugated secondary antibody, also as previously

described (22). Following an incubation with WesternBright

Sirius Chemiluminescent HRP substrate, bands were visualized in

a BioRad Chemidoc MP. Band intensities were compared using

ImageLab Software.
2.8 5-Hydroxymethylcytosine slot blots

Slot blots were employed to probe for 5-hydroxymethylcytosine

(5hmC) in genomic DNA, using serial dilutions of known

quantities of genomic DNA, a semi-quantitative method

described by Liu et al. (23) and Jia et al. (24). To summarize,

genomic DNA was purified using a Monarch Genomic DNA

Purification Kit and quantitated using a Nanodrop. In order to

expose the bases, the DNA was denatured at 99°C for 5 min, and

quick cooled. Dilutions of the samples were applied onto an

Hybond-N+ membrane, using a HybriSlot Manifold, and baked

at 80°C for 1 h. The membrane was blocked 1 h in 1% Blocking

Solution (1% Western Blocking Reagent in Tris Buffered Saline

(TBS)), followed by 1 h incubation with 5-hydroxy methyl cytosine

(5-hmC) rabbit polyclonal antibody in 0.5% Blocking Solution. The

membrane was washed twice in TBS + 0.1% Tween 20 (TBST) and

incubated for 1 h in 0.5% blocking solution containing a

Horseradish Peroxidase (HRP)-coupled Goat anti-Rabbit

secondary antibody. After four washes with TBST, bands were

developed using a SiriusWestern Bright detection kit and visualized

using a BioRad Chemidoc MP.

Following 5hmC blotting, the blots were stained with

methylene blue, in order to visualize total DNA on the blots,

within the limits of its sensitivity.
2.9 Analysis of histones

Primary RPT cell cultures in 60 mm dishes were treated with

either a) L2HGDH stealth siRNA in parallel with scrambled (scr)

control siRNA or b) L2HGDH Silencer Select siRNA in parallel
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with Silencer Select Negative Control #1 siRNA. Two days later,

histones were extracted from the cultures using a Histone

Extraction Kit (ab113476; Abcam, Cambridge, MA), and protein

was determined as described by Scopes (25), employing a

Nanodrop. Purified histones, equalized with respect to protein,

were separated on 12.5% SDS-polyacrylamide gels, transferred to

Nitrocellulose, and subjected to Western analysis (using rabbit

polyclonal antibodies against di- and tri-methylated histones), as

previously described (22).
2.10 Determination of L- and D-2HG,
and glutamine

Primary RPT cell cultures in 100 mm dishes were treated

with either a) L2HGDH Stealth siRNA or scrambled control

siRNA, or b) L2GDH Silencer Select siRNA or Negative Control

1 siRNA, as described above. Two days later, the cultures were

harvested as follows. The medium was changed 2 h prior to

harvesting. The cultures were treated with EDTA/trypsin.

Dislodged cells were transferred into a 2 ml screwtop tube

(removing a sample to determine cell number). The cells were

centrifuged (3,000×g), washed with PBS, and flash-frozen in dry

ice/ethanol. Samples were then utilized for the determination of

L- and D- 2HG levels. Subsequently, samples were homogenized

in a bead mill homogenizer, L- and D-2HG were derivatized

using acidified R-2-butanol, and derivatized L- and D-2HG were

separated by GC-MS, as described by Li and Tennessen (26). The

identity of the peaks for L- and D-2HG was verified using L,D-

[2,3,3-2H3]-2-hydroxyglutarate) as an internal standard, and

peak areas for L- and D-2HG were determined, also as

described by Li and Tennessen (26), The final concentration of

L- and D-2HG (determined in nanomoles) was standardized

with respect to cell number, as determined using a

Coulter Counter. Final values are averages of triplicate

determinations +/- the SEM.

In order to examine the effect of glutaminase inhibitor CB-

839 on glutamine levels, intracellular glutamine and glutamate

were determined in triplicate cultures using the Promega

Glutamine/Glutamate-Glo Assay. Cultures were grown in 96-

well plates in Medium RK-1. The medium was changed to either

Medium RK-1 with diluent (DMSO), or Medium RK-1

supplemented with 1 µM CB-839. After a 3-day incubation,

the cultures were lysed in 0.1N HCl. A portion of the lysate was

treated with glutaminase, while the other portion was untreated.

Subsequently, the glutamate level was determined both in

glutaminase-treated and untreated lysates using the

Glutamate-Glo Assay. Emitted light was quantitated using a

Biotek Plate Reader. The glutamine level was determined by

subtracting the glutamate level measured in an untreated lysate

from the glutamate level determined in the portion of the lysate

treated with glutaminase. Values are averages +/- SEM of

triplicate determinations.
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2.11 Transwell migration assay

Primary RPT cells were trypsinized and plated (5 × 104 cells/

0.5 ml) into matrigel coated tissue culture plate inserts with PET

membranes in 12-well plates. DMEM/F12 containing

chemoattractant was added to the bottom chamber. The next

day, the transwell was removed and washed with PBS, and the

cells were removed from the membrane side facing the upper

chamber using a cotton swab. After fixing the cells with

formalin, the transwell was washed twice with PBS, the cells

were stained with Hoechst (10 µg/ml), and the transwells were

washed twice with PBS. Images were captured (in at least 25

microscope fields) using a Zeiss Axio Observer Inverted

Microscope. The cells in each of the images were automatically

counted using NIH ImageJ software. The average number of

cells/10 microscope fields was determined in each of the three

transwells/condition.
2.12 Statistical analysis

Statistical analyses were conducted using Prism software.

Statistical results are expressed as means +/- SEM. Statistical

differences between groups were determined using a two-tailed

t-test. Differences between means were considered statistically

significant when p < 0.05.
3 Results

3.1 Effect of L2HGDH KD on
tubulogenesis

The effect of an L2HGDH Knockdown (KD) on renal

proximal tubulogenesis in vitro was examined. Towards these

ends, primary RPT cell cultures were transduced with lentiviral

particles containing vectors expressing either L2HGDH shRNA,

or the Control TRC shRNA vector, and selected with puromycin.

Subsequently, transduced cells were introduced into matrigel

and cultured in the presence of EGF. Figure 1A shows tubules

observed in Control TRC transduced cultures, as compared with

the structures in cultures transduced with L2HGDH shRNA.

Quantitative studies of parallel cultures indicated that both the

number of tubules and the L2HGDHmRNA levels were reduced

by 80% (Figures 1B, C, respectively). Similar results were

obtained when primary RPT cell cultures were transfected

with Silencer Select L2HGDH siRNA, in comparison with

Negative Control siRNA (as shown in Figures 1D–F).

Previously, Shelar et al. (2) conducted studies which

indicated that L2HG is primarily generated from Glutamine
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(Gln) in RCCs. The proposed pathway is illustrated in Figure 2A.

Consistent with this hypothesis, the glutaminase inhibitor CB-

839 was observed to reduce L-2HG levels in ccRCC cells (2).

Thus, the effect of the glutaminase inhibitor 1 µM CB-839 on

tubulogenesis by primary RPTs was examined. Figure 2B shows

that incubation of primary RPTs transduced with lentiviral

L2HGDH shRNA with 1 µM CB-839 prevented the decrease

in the number of tubules caused by L2HGDH shRNA. In

contrast, 1 µM CB-839 did not significantly affect the number

of tubules in matrigel cultures transduced with the Control TRC

vector. Similarly, as shown in Figure 2C, CB-839 significantly

alleviated the decrease in tubulogenesis caused by Silencer Select

L2HGDH siRNA. Figure 2D shows that 1 µM CB-839 caused a

significant increase in intracellular glutamine levels, indicating

that glutaminase was significantly inhibited under these

conditions. Thus, these results are consistent with the

hypothesis that the decrease in tubule formation normally

caused by the L2HGDH shRNA can be attributed to an

increase in the L2HG level, and that this increase no longer

occurs in the presence of CB-839.

In order to evaluate this hypothesis further, the effect of

extracellular L2HG on tubule formation was examined. The

intracellular level of L2HG has been reported to vary

dramatically in normal cells derived from different tissues,

including 0.4 µM L-2HG in macrophages (27) and 43.79 µM

in HEK293FT cells, derived from human kidney (28), and 2HG

levels high as 700 µM in white blood cells (29). While the level of

D- and L-2HG in the renal microenvironment has not been

precisely determined, 1.37 µM 2HG has been measured in

serum (30).

Thus, initially the effect of the cell permeable octyl L-2HG

on tubulogenesis was examined. Figure 3A shows the typical

impairment in tubule formation in matrigel cultures treated

with 1 µM octyl L-2HG. As shown in Figure 3B as the octyl L-

2HG concentration was gradually increased to 100 µM, the

number of tubules decreased to 0. In contrast, as the L-2HG

concentration was increased to 100 µM, tubule formation only

decreased by 50%. Figure 3C shows that the 75% decrease in

tubule formation observed at 10 µM octyl L-2HG was

associated with a forty-fold increase in intracellular L-2HG.

Presumably then, the inhibitory effect of octyl L-2HG can be

attributed to the increased intracellular L-2HG, which inhibits

aKG-dependent dioxygenases. Consistent with this

hypothesis, the inhibitory effect of octyl L-2HG on tubule

formation was alleviated by 5-octyl-aKetoglutarate (aKG)
(as shown in Figure 3D). This latter observation can be

explained if 5-ocytl-aKG successfully competes with the

elevated L-2HG for binding to aKG-dependent dioxygenases,
thereby preventing the inhibitory effect of the elevated L-2HG

on aKG-dependent dioxygenases.
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3.2 Effect of L2HGDH KD on L- and
D-2HG levels

In order to determine a) whether L2HGHD siRNA causes a

significant increase in L-2HG, and b) whether the L-enantiomer,

rather than the D- enantiomer is affected, the level of both L- and

D-2HG was determined in primary cultures treated with either

L2HGDH Stealth siRNA or Scrambled control siRNA by means

of a GC-MS analysis. Figure 4A shows that in control primary

cultures treated with Scr siRNA D- was the major enantiomer of

2HG (0.34 +/- 0.07 nmol D-2HG/106 cells vs. 0.16 +/- 0.01 nmol

L-2HG/106 cells). In contrast, in primary cultures treated with

L2HGDH stealth siRNA, L- was the major enantiomer. This can

be attributed to a 4.4-fold increase in the L-enantiomer of 2HG

in primary RPT cells treated with L2HGDH stealth siRNA (to

0.70 +/- 0.06 nmol/106 cells), unlike the D-enantiomer, which

did not change significantly (0.40 +/- 0.07 nmol/106 cells).

Figure 4B shows that similarly, L-2HG became the

predominant enantiomer in primary RPT cultures treated with

L2HGDH silencer select siRNA (vs. Negative Control siRNA).

This can be explained by a significant increase in the level of

the L- rather than the D- enantiomer of 2HG in primary RPTs
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treated with L2HGDH silencer select siRNA. These results are

consistent with the hypothesis that L2HGDH stealth siRNA

caused a specific increase in L2HG due to a reduction in the level

of the L2HGDH enzyme without affecting D2HGDH

enzyme levels.
3.3 Effect of L2HGDH KD on DNA and
histone methylation

Previously, a knockdown of L2HGDHwas observed not only

to cause an increase in L2HG levels, but in addition to cause

alterations in the level of DNA hydroxymethylation and histone

methylation in renal carcinomas and other cultured renal cells

(31). In this respect, an increase in L2HG has similar

consequences to those caused by increases in D2HG (and a

decrease in D2HGDH) observed in other types of cancers (32).

Such changes in DNA and histone methylation have been

attributed to the ability of 2HG to inhibit aKG-dependent
dioxygenases that control gene expression (32). Included

amongst these dioxygenases are TET methylcytosine

dioxygenases, as well as Jumonji domain containing histone
A B C

D E F

FIGURE 1

Inhibition of tubulogenesis by L2HGDH shRNA AND L2HGDH siRNA. Primary RPT cell cultures were either (A) transduced with lentivirus
containing either L2HGDH shRNA or Control TRC shRNA vectors, or (D) transfected with either Silencer Select L2HGDH siRNA, or Negative
Control siRNA. Prior to culturing in matrigel, the shRNA transduced cells were selected 1 week with 1.6 µg/ml puromycin, while the siRNA
transfected cells were cultured 1 day to allow for gene expression. Subsequently, the primary cultures were trypsinized and passaged into
matrigel in DMEM/F12-IT further supplemented with 5 ng/ml EGF, as described in Materials and Methods. Representative microscope fields of
matrigel cultures are illustrated including (A1) matrigel cultures transduced with either Control TRC shRNA or L2HGDH shRNA, and (B1) matrigel
cultures transfected with either Silencer Select L2HGDH siRNA or Negative Control siRNA. (B) the effect of the L2HGDH shRNA on number of
tubules was quantitated, relative to Control shRNA, and (C) the relative levels of L2HGDH mRNA determined in the two conditions. Similarly, in
(E) the effect of Silencer Select L2HGDH siRNA on the number of tubules was quantitated, relative to Negative Control siRNA, and (F) the
relative levels of L2HGDH mRNA determined in the same 2 conditions. Values are averages +/- SEM of triplicate determinations. (*) p < 0.05
relative to either the TRC control shRNA (B, C) or the Negative Control siRNA (E, F), respectively. Scale Bars, 50 µm.
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demethylases (JMDHs), a family of histone demethylases. Thus,

the hypothesis was examined that the inhibition of these two

families of aKG-dependent dioxygenases resulting from an

L2HGDH knockdown could be responsible for the inhibition

of tubulogenesis caused by an L2HGDH knockdown in normal

renal cells, as well as other related alterations.

The TET methylcytosine dioxygenases (including TET1,

TET2, and TET2) are involved in the demethylation of 5-

methylcytosine (5mC) in genomic DNA (1). The reaction

initially involves the formation of 5-hydroxymethyl cytosine
Frontiers in Endocrinology 07
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(5hmC) from 5mC, to determine whether this enzymatic

activity is altered in primary RPT cultures were treated with

either L2HGDH shRNA or Scrambled shRNA. Subsequently,

genomic DNA was purified from these primary cultures, and

the level of 5hmC in the genomic DNA was examined by

means of slot blots. Figure 5A shows that the level of 5hmC is

indeed reduced in genomic DNA derived from cultures

treated with L2HGDH shRNA, as compared with Scrambled

Controls. Similar results were obtained when the primary

cultures were treated with Silencer Select L2HGDH siRNA, as
A

B

D

C

FIGURE 2

Effect of Glutaminase Inhibitor CB-839 on tubulogenesis. (A) Model for the Effect of CB-839 on Gln metabolism. Shelar et al. (2) previously
presented evidence indicating that L2HG in RCCs primarily originates from Gln, initially occurring via the metabolism of Gln to Glu by
Glutaminase. L2HG is subsequently metabolized to aKG by L2HGDH. (B) Primary RPT cultures were transduced with lentivirus containing either
L2HGDH shRNA or Control TRC shRNA, selected with puromycin, and passaged into matrigel, as described in the Figure 1 legend. (C) Primary
RPT cell cultures were transfected with Silencer Select L2HGDH siRNA or Negative Control siRNA, and passaged into matrigel 1 day later, as
described in the Figure 1 legend. In parts (B, C) Matrigel cultures were incubated with DMEM/F12- IT further supplemented with 5 ng/ml EGF
and either 1 µM CB-839 or no further supplement, the day after cultures were initiated in matrigel. In parts (B, C), tubules were counted as
described in the Figure 1 legend. Values are averages +/- SEM of triplicate determinations. (*) p < 0.05 relative to untreated Control TRC;
(#) p < 0.05 relative to the untreated L2HGDH condition. (D) The level of glutamine and glutamate was determined in primary RPT cell cultures
treated with either 1 µM CB-839 or untreated, as described in Materials and Methods. Values are averages +/- SEM of triplicate determinations.
(*) p < 0.05 relative to untreated control in the glutamine condition.
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D
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FIGURE 3

Inhibition of tubulogenesis by Octyl L-2HG. (A) Representative microscope fields of either control matrigel cultures in DMEM/F12-IT
supplemented with 5 ng/ml EGF alone, or further supplemented with 100 µM Octyl L-2HG. (B) The frequency of tubule formation as a
function of the concentration of either Octyl L-2HG or L-2HG. (C) Effect of 10 µM L-2HG or Octyl L-2HG on the intracellular L- and
D-2HG concentration. (D) Effect of 5-octyl-aKG (250 µM) on the Octyl L-2HG (100 µM)-induced inhibition of tubulogenesis. Values are
averages +/- SEM of triplicate determinations. (*) p < 0.05 relative to untreated cultures; (#) p < 0.05 relative to Octyl L2HG. Scale Bar,
50 µm.
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compared with Negative Control-treated cultures (as show in

Figure 5B). These results are consistent with reduced TET

enzymatic activity in primary RPT cell cultures treated with

L2HGDH shRNA.

Inhibition JMDHs would also be expected to occur

following an increase in L-2HG levels, which would prevent

the demethylation of some classes of histones. Thus, the effect

of L2HGDH siRNA on methylated histones was examined.

Figure 6A shows that there was a generalized increase in the

level of methylated histones in primary cultures treated with

L2HGH Stealth siRNA, as compared with parallel cultures

with Scrambled Control siRNA. Not only did the level of K4

dimethyl histone H3 increase, but in addition, there was an

increase in the level of both K27 dimethyl and trimethyl

histones in L2HGDH Stealth siRNA treated cultures. The

level of K36 dimethyl histone increased in an analogous

manner in the L2HGDH Stealth siRNA treated cultures. In

addition, K79 dimethyl and trimethyl Histone H3 levels

increased in primary RPT cells treated with L2HGDH

Stealth siRNA. As shown in Figure 6B, similar increases in

histone methylation were observed in primary cultures

treated with L2HGDH Silencer Select siRNA. Thus, our

results are consistent with the hypothesis that both DNA

and histone methylation increase in primary RPT cell cultures

with an L2HGDH KD.
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3.4 Effect of an L2HGDH KD on the
expression of differentiated transporters

The expression of RPT transporters is induced during the

tubulogenesis which occurs during kidney development (12, 33).

Included amongst these transporters are the Na+/phosphate

cotransporter (NPT2a), the p-Aminohippurate transporter

(OAT1), Aquaporin 1 (AQP1), and the Na+/glucose

cotransporter (SGLT2). Initially, the effect of an L2HGDH KD

was examined in monolayer cultures. Figure 7A. shows the

reduced NPT2a, OAT1 and SGLT2 mRNA levels in

monolayer cultures of primary RPT cells transduced with

lentiviral L2HGDH shRNA. Transporter mRNA levels were

similarly reduced in primary RPT monolayers transduced with

L2HGDH Stealth siRNA (vs. Scrambled Controls) (Figure 7B),

as well as L2HGDH Silencer Select siRNA (Figure 7C).

The effect of an L2HGDH KD at the protein level was also

examined. Figures 8A, B show that in primary RPTs treated with

L2HGDH shRNA, the level of the NPT2a and SGLT2 proteins

was reduced by 67 +/- 11% and 58 +/- 11%, respectively, as

compared with Con TRC shRNA-treated controls. Similar

reductions in the level of NPT2a and SGLT2 proteins were

observed in primary cultures treated with either L2HGDH

Stealth siRNA or L2HGDH Silencer Select siRNA, as

compared with their respective controls. Figures 8A, B also

shows a substantial reduction in the L2HGDH protein level in
A

B

FIGURE 4

Effect of L2HGDH shRNA an L2HGDH siRNA on the intra- and extracellular L- and D-2Hydroxyglutarate Level. (A) Primary RPT cells were
transfected with either L2HGDH Stealth siRNA or the corresponding Scrambled siRNA. The medium was changed on Days 1, 2 and 3 post-
transcription. (A) Two hours after the medium change on Day 3 post-transfection, frozen cell pellets were prepared, and medium was collected.
(B) Primary cultures were transfected either with L2HGDH Silencer Select siRNA or Negative Control siRNA. As in part A, the medium was
changed on Days 1, 2 and 3 post-transfection. The medium that was changed on Day 3, however, was collected and frozen, while frozen pellets
were prepared 2 h after the final medium change. The L- and D-2HG in each of the samples (i.e. cell pellets and medium) was derivatized,
separated by GC/MS, and quantitated, as described in Materials and Methods. Values are averages (+/- SEM) of triplicate determinations. In part
A, *p < 0.05 relative to intracellular L-2HG with Scr siRNA, while in part B, *p < 0.05 relative to Negative Control siRNA in the same condition
(i.e. either intracellular L-2HG, or extracellular L-2HG). In the insets, L2HGDH mRNA levels were determined as described in Materials and
Methods. (*) p < 0.05 relative to Control condition.
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primary cultures treated with L2HGDH shRNA, L2HGDH

Stealth siRNA, or L2HGDH Silencer Select siRNA, as

compared with their respective controls (Con TRC shRNA,

Scrambled S t ea l th s iRNA, and Nega t i ve Cont ro l

siRNA, respectively).

Relative to their respective controls, the L2HGDH protein levels

were 16 +/- 4% (L2HGDH shRNA), 29 +/- 7% (L2HGDH Stealth

siRNA), and 33 +/- 1% (L2HGDH Silencer Select siRNA).
3.5 Effect of basement membrane on
gene expression, as well as on alterations
caused by L2HGDH knockdowns

3.5.1 Effect of L2HGDH KD on Transporter
gene expression: Influence of matrigel

Previous studies indicate that the basement membrane

components of matrigel promote the differentiation of cells

originating from a diverse number of tissues (34). Thus, it is

reasonable to determine whether the expression of differentiated

renal transporters is altered by basement membrane matrigel, as

well as by the process of tubulogenesis itself (35). For this reason, the

effect of basement membrane matrigel on the expression of

transporter mRNAs and the cellular response to L2HGDH

shRNA was examined, including studies both in Control RPT cell

cultures (treated with lentiviral Con TRC shRNA), as well as in RPT

cell cultures treated with lentiviral L2HGDH shRNA.

As shown in Figure 9, the expression of SGLT2 mRNA and

NPT2a mRNA increased when Control primary RPT cell
Frontiers in Endocrinology 10
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cultures were maintained in matrigel (where they form

tubules) as compared to plastic (as shown in Figures 9A, B,

respectively). The expression of SGLT2 and NPT2a mRNA was

reduced in matrigel as well as in monolayer cultures transduced

with L2HGDH shRNA (Figures 9A, B). In contrast, Figure 9C

shows that the AQP1 mRNA level increased in matrigel cultures

transduced with L2HGDH shRNA, unlike the Control TRC

cultures, which exhibited a decreased level of AQP1 mRNA in

matrigel. This unexpected observation with AQP1 mRNA

(which distinguishes AQP1 from the two other transporters

studied) may possibly be attributed to the role of AQP1 in cell

adhesion and migration, in addition to transport (36).

3.5.2 Effect of L2HGDH KD on HNF
transcription factor expression: Influence
of matrigel

Hepatocyte nuclear factors (HNFs) not only regulate the

expression of a number of renal transporters (13) but also play a

role in kidney development (37). Thus, the decreased expression

of renal transporter mRNAs observed in cultures treated with

L2HGDH shRNA may possibly be explained by reduced

expression of HNFs in RPT cell cultures treated with lentiviral

L2HGDH shRNA. To examine this hypothesis, the expression of

the mRNAs encoding for 2 HNFs, HNF1a, and HNF1b was

examined both in monolayer and matrigel cultures treated with

either lentiviral L2HGDH shRNA or Control TRC shRNA. The

level of HNF1a and HNF1bmRNA was significantly reduced in

matrigel cultures transduced with L2HGDH shRNA (vs. Control

TRC cultures), as shown in Figures 10A, B, respectively. In
A

B

FIGURE 5

Effect of L2HGHD shRNA and siRNA on DNA methylation. The effect of L 2HGDH shRNA and siRNA on 5hmC levels. Genomic DNA was purified
from primary cultures (A) transduced with lentivirus containing either Scrambled shRNA or L2HGDH shRNA vectors, or (B) transfected with
either Negative Control siRNA, or Silencer Select L2HGDH siRNA. Serial dilutions of the genomic DNA were applied to slot blots. Subsequently,
blots were probed with a 5hmC antibody, and total DNA visualized with methylene blue.
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addition, a significant reduction in the HNF1a and HNF1b
mRNA was observed in monolayer cultures transduced with

L2HGDH shRNA (Figure 10A). Thus, these results are

consistent with the hypothesis that a reduction in the level of

HNF1a and HNF1b contributes to reduced expression of

transporter mRNAs as well as reduced tubulogenesis caused

by L2HGDH shRNA.

3.5.3 Effect of L2HGDH KD on other genes
affecting tubulogenesis: Influence of matrigel

The expression of other genes which affect tubulogenesis was

also examined both in matrigel and monolayer cultures.

Figure 11A shows that the level of E-Cadherin (CDH1),

urokinase type-Plasminogen Activator (PLAU), and Wingless/

Integrated 1 (Wnt1) mRNA increased significantly in matrigel,

as compared with monolayer cultures, unlike Chibby 1 (CBY1).

However, similar increases in the level of CDH1 and PLAU

mRNA were not observed in L2HGDH shRNA-derived matrigel

cultures (Figures 11B, C). Indeed, in matrigel cultures treated

with L2HGDH shRNA, the PLAU mRNA level declined to a

level significantly below that observed in Control monolayer

cultures. In contrast, Wnt1 mRNA increased substantially in

monolayer cultures transduced with lentiviral L2HGDH shRNA,

and this increased level of Wnt1 mRNA was maintained in

matrigel cultures with an L2HGDH KD (Figure 11D). In

contrast, the level of CBY1 mRNA decreased in matrigel

cultures with an L2HGDH KD (Figure 11E). CBY1 is a
Frontiers in Endocrinology 11
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negative regulator of b-catenin-mediated transcriptional

activation (38), and thus a reduction in CBY1 gene expression

would be expected to stimulate Wnt signaling via b-catenin.
Decreases in the expression of E-cadherin and urokinase

type-Plasminogen Activator may very well result in reduced cell

migration, and, as a consequence, reduced tubulogenesis in EGF

treated matrigel cultures. Thus, the effect of EGF on cell

migration through transwells was examined. Figure 11F shows

that the stimulatory effect of EGF on the migration of RPT cells

transduced with lentiviral L2HGDH shRNA was reduced greater

than six-fold. This observation is consistent with the hypothesis

a reduction in cell migration through matrigel contributes to the

reduced tubulogenesis observed in RPT cells transduced with

lentiviral L2HGDH shRNA.
4 Discussion

Previously, the studies of Shelar et al. (2) indicated that “the

L2HG/L2HGDH axis” plays a significant role in the

development of RCCs. The expression of a number of genes

which possess high-CpG-density promoters was altered because

of the elevated L2HG levels in RCCs, including Polycomb

proteins, which target developmentally regulated genes (2).

The increased L2HG in RCCs may very well contribute to the

altered signal transduction pathways observed in these tumors,

including signaling pathways involving EGF and Wnt (39–41),
A B

FIGURE 6

Effect of L2HGDH siRNA on histone methylation. Nuclear histones were purified from primary cultures transfected either with (A) L2HGDH
Stealth siRNA or Scrambled Control Stealth siRNA, or (B) Silencer Select L2HGDH siRNA or Negative Control siRNA. Three days later, nuclear
histones were purified. Subsequently, nuclear histones were separated by SDS/PAGE, transferred to nitrocellulose, followed by Western analysis,
as described in Materials and Methods.
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C

FIGURE 7

Effect of L2HGDH shRNA and L2HGDH siRNA on the expression of transporter mRNAs in monolayer cultures. (A) The expression of the mRNAs
for L2HGDH, NPT2a, OAT1, GAPDH and SGLT2 was determined in primary cultures transduced with lentivirus containing either an L2HGDH
shRNA or Control TRC vector. The relative expression of mRNAs in cultures transduced with L2HGDH shRNA was compared to the level in
cultures transduced with Control TRC shRNA. (B) Relative mRNA levels were determined in primary RPT cells transfected twice with either
L2HGDH Stealth siRNA or Scrambled siRNA. (C) Relative mRNA levels were determined in primary RPT cells transfected twice with either
L2HGDH Silencer Select siRNA or Negative Control siRNA, as described in Materials and Methods. In part A, (*) p < 0.05 relative to either the
TRC Control (Part A), the Scrambled Control (Part B), or, the Negative Control (Part C).
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as well as PI3K/Akt/mTOR (42, 43) and VHL/HIF (44). Both the

EGF and Wnt mediated signaling pathways control kidney

development and differentiation (45, 46). Thus, changes in

these signaling pathways would be expected to alter the

differentiated state, and to select for stemness. Indeed, recent

studies indicate that these pathways are activated in renal cancer

stem cells (41, 47).

In this report, evidence is presented that EGF-induced renal

proximal tubulogenesis is controlled by the L2HG/L2HGDH

axis. As we have previously reported, tubulogenesis by primary

RPT cells in matrigel normally occurs in response to EGF (9).

However, here we present evidence indicating that tubulogenesis

in matrigel is inhibited when L2HGDH is knocked down by

lentiviral L2HGDH shRNA. Consistent with the hypothesis that
Frontiers in Endocrinology 13
20
L2HG is involved in mediating the inhibitory effect of EGF on

tubulogenesis, a) the L2HG level increased in cultures with an

L2HGDH knockdown, b) L2HG octyl-ester inhibited

tubulogenesis, and c) the glutaminase inhibitor CB-839

prevented the inhibitory effect of L2HGDH shRNA on

tubulogenesis. This latter observation can be explained if CB-

839 causes a decline in L2HG levels, similar to that reported by

Shelar et al. (2) in RCC cells treated with CB-839. This latter

observation can be explained as being the consequence of the

inhibition of the glutamine (Gln) metabolic pathway leading to

L2HG (the pathway being Gln ! Glutamic (Glu)!
aKetoglutarate (aKG)! L2HG) (2).

Our metabolomic studies indicate that an L2HGDH KD

results in an increase in L2HG levels7, which is presumably
A

B

FIGURE 8

Effect of lentiviral L2HGDH shRNA and L2HGDH siRNA on the level of the NPT2a, SGLT2 and L2HGDH proteins in monolayer cultures. (A) Blots
of shRNA and siRNA-treated primary cultures. Blots used in the study were prepared following Western transfers of SDS/PAGE gels, as described
in Materials and Methods. The samples in the blots were derived from lysates of primary cultures treated either with (i) L2HGDH shRNA (or
Control TRC shRNA), (ii) L2HGDH Stealth siRNA (or Scrambled siRNA), or (iii) L2HGDH Silencer Select siRNA (or Negative Control siRNA). (B)
Relative Levels of NPT2a, SGLT2 and L2HGDH. The relative levels of NPT2a, SGLT2 and L2HGDH were determined using ImageLab software.
Values are averages (+/- SEM) from duplicate bands for each sample. (*) p < 0.05 relative to the TRC Control (for L2HGDH shRNA), the Scr
Control (for L2HGDH Stealth siRNA), and the Negative Control (for L2HGH Silencer Select siRNA).
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responsible for the inhibition of tubulogenesis. Both L- and D-

2HG are competitive inhibitors of a-KG dependent

dioxygenases. A considerable number of a-KG dependent

dioxygenases are present in mammalian cells, including

enzymes affecting metabolic processes, in addition to enzymes

affecting the methylation of DNA and histones.

Our recent metabolomic studies (unpublished) also indicate

that the level of a number of metabolites whose synthesis
Frontiers in Endocrinology 14
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depends upon a-KG dependent dioxygenases is indeed altered

in primary RPT cells treated with L2HGDH siRNA. For

example, the level of saccharopine is reduced in cultures

treated with L-2HGDH siRNA. Saccharopine is produced

from lysine and a-KG by the lysine-ketoglutarate reductase

domain of a-aminoadipate semialdehyde synthase (48).

Similarly, the increased level of leucine can be explained by

reduced leucine metabolism to 4-methyl-2-oxopentanoate by L-
A B C

FIGURE 9

Effect of matrigel on transporter gene expression. Primary cultures of RPT cells were transduced with lentiviral L2HGDH shRNA or Control TRC
shRNA. A portion of the cultures was transferred into either matrigel or onto plastic. The relative level of mRNA for (A) SGLT2, (B) NPT2a, and (C)
AQP1 was determined as described in Materials and Methods. (*) p < 0.05 for the Con TRC Plastic Control; (**) p < 0.05 for the ConTRC
Matrigel Control.
A B

FIGURE 10

Effect of L2HGDH shRNA on expression of HNF1a and HNF1a. Primary RPT cells were transduced with lentiviral L2HGDH shRNA or Control TRC
shRNA. A portion of the cultures was transferred either into matrigel or onto plastic. The relative level of mRNA for (A) HNF1a and (B) HNF1b
was determined as described in Materials and Methods. (*) p < 0.05 relative to Con TRC Monolayers; (#) p < 0.05 relative to Con TRC Matrigel
cultures.
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FIGURE 11

Expression of genes affecting tubulogenesis, and cell migration. (A). The relative level of mRNA encoding for E-Cadherin (CDH1), tissue
Plasminogen Activator (PLAU), Wnt1 and Chibby homolog 1 (CBY1) was determined in parallel monolayer and matrigel cultures. The relative
level of the mRNA encoding for (B) E-Cadherin, (C) Plasminogen Activator, (D) WNT1, and (E) CBY1 (1) was determined in monolayer and
matrigel cultures tranduced with lentiviral L2HGDH shRNA or Control TRC shRNA. (F) EGF-stimulated cell migration across PET membranes
was determined in RPT cells following their transduction with lentiviral L2HGDH shRNA or Con TRC shRNA. (*) p < 0.05 relative to monolayer
cultures in the same condition in panel (A); In panels (B–E), (*) p < 0.05 relative to the Con TRC monolayer culture condition; in 11F (*)
p < 0.05 relative to the scr shRNA condition; (#) p < 0.05 relative to the Con TRC Matrigel Condition (E).
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leucine-2-oxoglutarate aminotransferase (a-KG receiving the

NH2-group from leucine) (49). The contribution of these

metabolic changes to the altered tubulogenesis observed in

these studies is unclear.

However, it is likely that the L2HG-mediated changes in

differentiation observed in these studies can be attributed to the

inhibition of those DNA and histone demethylases which are

included amongst the family of aKG-dependent dioxygenases.
Included amongst the DNA demethylases which are aKG-
dependent dioxygenases, and inhibited by 2HG, are TET1,

TET2, and TET3 enzymes. The TETs sequentially remove the

methyl group from 5methylcytosine, by a series of successive

oxidations which include the initial formation of 5hmC. Our

5hmC slot blotting study indicates that the level of 5hmC

increased in primary RPT cells treated with L2HGDH siRNA,

consistent with the inhibition of TETs by L2HG in this

condition. Thus, the inhibition of tubulogenesis by L2HG can

possibly be explained by the inhibition of DNA demethylation.

Consistent with this hypothesis, aKG octyl ester alleviated the

inhibition of tubulogenesis caused by L2HG-octyl ester,

presumably by preventing competitive inhibition of TET

enzymes by L2HG.

Our experimental results show a generalized increase in the

level of methylated histones in primary RPT cell cultures treated

with L2HGDH siRNA. A similar observation was made in 3T3-

L1 cells with a 2HG-producing IDH2 mutation (5). In the 3T3-

L1 cells expressing this IDH2 mutation, the increase in histone

methylation (as well as DNA methylation) was associated with a

block which prevented their differentiation into adipocytes (5).

The increased histone methylation observed in these 3T3-L1

cells was attributed to the inhibition of JHDMs by 2HG (5, 50).

Consistent with this hypothesis, Lu et al. (5) observed that

differentiation of 3T3L1 cells into adipocytes was similarly

impaired when the histone demethylase KDM4C was

inhibited. KDM4C is a H3K9me3 demethylating JHDM. These

latter studies suggest that the block in tubulogenesis observed in

our RPT cultures transduced with lentiviral L2HGDH shRNA is

also a consequence of repressive H3K9 trimethylation.

Consistent with this hypothesis, H3K9me3 is downregulated in

nascent nephrons during kidney development (51).

The effect of an L2HGDH knockdown on the expression of

mRNAs encoding for RPT transporters was also examined in

our studies. The level of Npt2a and Sglt2 mRNA was

substantially reduced in matrigel cultures which had been

transduced with lentiviral L2HGDH shRNA (as observed in

monolayer cultures). These observations can be explained if the

expression of the genes encoding for Npt2a and Sglt2 (SLC34A1

and SLC5a2, respectively) is repressed due to increased

methylation of CpG islands present within their promoters

and/or the promoters of HNF transcription factors

(presumably due to the inhibition of TET enzymes).

Consistent with the hypothesis of gene repression due to

promoter methylation is the observation that the SLC5a2 gene
Frontiers in Endocrinology 16
23
is present within a differentially methylated region (DMR) of

genomic DNA, that is hypomethylated in the RPT, unlike other

tissues (52).

Consistent with the hypothesis that HNF transcription

factors are involved are studies indicating that the expression

of SLC34A1 and SLC5a2 is dependent upon the binding of

HNF1a and HNF4a to their promoters (13). Similarly, the

expression of renal OATs depends upon the binding of

HNF1a and HNF1b to the promoter region, which in turn is

controlled by the DNA methylation status (13, 53). The

expression of the genes encoding for the HNF family of

transcription factors themselves can also be suppressed by

methylation of their promoters. For example, the methylation

of 4 CpG sites in the HNF1A promoter results in the silencing of

the HNF1A gene, and its downstream targets, such as GnT-4a

glycosyltransferase in pancreatic b cells (54). The HNF4A gene is

similarly silenced by DNA promoter methylation (5mC), as

exemplified by liver progenitors, whose differentiation depends

upon TET mediated formation of 5hmC, resulting in the

expression of HNF4A, and the initiation of a hepatocyte

developmental program (55).

Although DNA 5mC hypermethylation is a characteristic of

cells that overproduce 2HG, increased histone methylation is

also observed in cells which overproduce 2HG. Indeed,

Schvartzman et al. (4) and Lu et al. (5) have proposed that the

block in adipocyte differentiation and myocyte differentiation

caused by 2HG is a consequence of increased histone H3K9

methylation rather than a rise in DNA methylation. However, in

nephron progenitors, the Polycomb proteins EZH1 and EZH2

maintain stemness by stimulating H3K27 trimethylation. EZH2

reportedly suppresses expression of HNF1b (56), as well as

HNF1a (57 ) , p r e sumab ly by s t imula t ing H3K27

trimethylation. The increased level of H3K27me3 in primary

RPTs treated with L2HGDH siRNAmay similarly be responsible

for the inhibition of tubulogenesis in matrigel (58). However, we

cannot rule out the involvement of other trimethylated histones,

and/or methylated CpG islands, given that similar results were

obtained with the EHMT1/2 inhibitor Unc0638 and the DNA

methylase inhibitor 5AzaC (unpublished).

A consequence of increased DNA and histone methylation

may very well include reduced expression of transcription

factors such as HNF1a and HNF1b. Indeed, epigenetic

silencing of both the HNF1A and HNF1B genes has been

reported and has been attributed to the methylation of CpG

islands in the promoters of these genes (54, 59). Thus, reduced

expression of HNF1a, and HNF1b may contribute to the

inhibition of tubulogenesis caused by L2HGDH shRNA. Both

HNF1a and HNF1b play significant, but distinct roles in kidney

development (37, 60, 61). HNF1b appears when the nephrogenic

mesenchyme is induced to form a polarized epithelium (which

involves Wnt signaling) (37, 62, 63). HNF1b is also involved in

segmentation of the developing nephrons, which involves Notch

signaling (64). HNF1a appears after HNF1b, playing a role in
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formation of renal proximal tubules, including the expression of

differentiated RPT transporters (e.g., Npt2a, SGLT2 and OAT1)

(13, 65).

In our experimental studies, we examined the effects of an

L2HGDH KD on the expression of a number of mRNAs and

their respective proteins, expressed in the RPT, unlike

other nephron segments. Consistent with our observations,

are the results of high-throughput technologies employed

to quantitatively analyze the transcriptomes, proteomes,

and genomes of mammalian cells (66). A central conclusion

that has come from this work is that protein levels at steady

state are primarily determined by mRNA levels (66).

Admittedly, this relationship between protein and mRNA

levels is not necessarily maintained during “dynamic”

adaptation processes, and during short-term temporal

adaptions post-transcriptional processes are important (66).

However, our studies with primary RPT cells treated with

lentiviral shRNA were conducted more than 10 days after

lentiviral transduction. Although the effects of an L2HGDH

knockdown on mRNA levels were also examined following

transfection with L2HGDH siRNA, the results obtained were

very similar to those obtained with an L2HGDH KD obtained

with lentiviral L2HGDH shRNA. A very significant aspect of

our studies was the observation that the expression of a number

of the mRNAs encoding for differentiated RPT transporters

was higher in matrigel cultures, as opposed to monolayer

cultures. However, the mRNA levels were examined after 1

week in matrigel, and under these conditions, a reduction in

the level of SGLT2 and NPT2a mRNAs was still observed,

similar to results observed in parallel cultures maintained on a

plastic substratum.

Recently, cancer stem cells (CSCs) with activated Wnt and

Notch signaling, have been isolated from clear cell RCCs (41).

The activation of Wnt signaling (observed in RPT monolayers

with an L2HGH KD) occurs when the level of the Wnt

antagonist DKK1 declines, an event which may result from the

hypermethylation of the DKK1 promoter, the trimethylation of

H3K27, and the recruitment of the Polycomb complex, as

observed in lung cancers (67). In contrast, the activation of

Notch signaling may occur when STRAP (serine-threonine

kinase associated protein) interacts with the Polycomb

complex, so as to inhibit H3K27 methylation, which as a

consequence increases the expression of the Notch effectors

HES1 and HES5, as observed in colorectal CSCs (68). Unlike

the case with Wnt and Notch signaling, HNF1a- and HNF4a-
mediated signaling is reduced in RCCs (69, 70), resulting in

reduced expression of distinctive RPT genes, such as SLC34A1

(NaPi2a) and SLC22A6 (OAT1) (71). In contrast, the expression

of AQP1 often increases in RCCs (72, 73), similar to the

increased expression of AQP1 mRNA in RPT matrigel

cultures with an L2HGDH KD.
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To summarize, this report has evaluated the effects of an

L2HGDH KD on the differentiation of normal RPT cells, the cell

of origin of ccRCCs. Evidence is presented that EGF-induced

tubulogenesis is inhibited by L2HG itself, as well as an L2HGH

KD, which frequently occurs in ccRCCs. We have conducted

metabolomic studies which indicate that the L2HGDH KD

results in a significant increase in L-2-hydroxygutarate. The

inhibition of tubulogenesis caused by an L2HGDH KD was

associated with reduced expression of a number of mRNAs

encoding for differentiated transporters expressed in the RPT, as

well as reduced expression of mRNAs encoding for transcription

factors which regulate the expression of these transporter

mRNAs. The reduced expression of these mRNAs can be

attributed to the increased DNA and histone methylation

which occurred as a consequence of an L2HGDH KD. In

addition, our studies indicate that EGF-induced cell migration

was impaired as a consequence of an L2HGDH KD, which could

be explained by reduced expression of mRNAs encoding for

such proteins as plasminogen activator. Thus, the reduction in

tubulogenesis observed in normal cells with elevated 2HG can be

attributed to the impairment of functions required for the

process of tubulogenesis, as well as dedifferentiation.
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Co-administration of MDR1 and
BCRP or EGFR/PI3K inhibitors
overcomes lenvatinib resistance
in hepatocellular carcinoma

Dawei Sun1, Juan Liu2,3, Yunfang Wang2,3* and Jiahong Dong1,2,3*

1Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University,
Changchun, China, 2Hepato-Pancreato-Biliary Centre, Beijing Tsinghua Changgung Hospital,
Tsinghua University, Beijing, China, 3Research Unit of Precision Hepatobiliary Surgery Paradigm,
Chinese Academy of Medical Sciences, Beijing, China
Lenvatinib is the first-line treatment for hepatocellular carcinoma (HCC), the

most common type of primary liver cancer; however, some patients become

refractory to lenvatinib. The underlying mechanism of lenvatinib resistance (LR)

in patients with advanced HCC remains unclear. We focused on exploring the

potential mechanism of LR and novel treatments of lenvatinib-resistant HCC. In

particular, we established a Huh7 LR cell line and performed in vitro,

bioinformatic, and biochemical assays. Additionally, we used a Huh7-LR cell-

derived xenograft mouse model to confirm the results in vivo. Following LR

induction, multidrug resistance protein 1 (MDR1) and breast cancer resistance

protein (BCRP) transporters were markedly upregulated, and the epidermal

growth factor receptor (EGFR), MEK/ERK, and PI3K/AKT pathways were

activated. In vitro, the co-administration of elacridar, a dual MDR1 and BCRP

inhibitor, with lenvatinib inhibited proliferation and induced apoptosis of LR

cells. These effects might be due to inhibiting cancer stem-like cells (CSCs)

properties, by decreasing colony formation and downregulating CD133,

EpCAM, SOX-9, and c-Myc expression. Moreover, the co-administration of

gefitinib, an EGFR inhibitor, with lenvatinib retarded proliferation and induced

apoptosis of LR cells. These similar effects might be caused by the inhibition of

EGFR-mediated MEK/ERK and PI3K/AKT pathway activation. In vivo, co-

administration of lenvatinib with elacridar or gefitinib suppressed tumour

growth and angiogenesis. Therefore, inhibiting MDR1 and BCRP transporters

or targeting the EGFR/PI3K pathway might overcome LR in HCC. Notably,

lenvatinib should be used to treat HCC after LR induction owing to its role in

inhibiting tumour proliferation and angiogenesis. Our findings could help

develop novel and effective treatment strategies for HCC.

KEYWORDS

hepatocellular carcinoma (HCC), lenvatinib resistance (LR), multidrug resistance
protein 1 (MDR1), breast cancer resistance protein (BCRP), epidermal growth factor
receptor (EGFR), elacridar, gefitinib, copanlisib
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1 Introduction

Primary liver cancer (PLC) poses a global health challenge.

According to GLOBOCAN 2020, PLC ranks sixth in cancer

incidence and second in cancer-related mortality, with

approximately 906,000 new cases and 830,000 deaths worldwide

in 2020 (1). Unfortunately, these numbers will continue to rise, as

over one million individuals will be diagnosed with HCC annually

by 2025 (2). Hepatocellular carcinoma (HCC) is the most

common form of PLC, accounting for 75–85% of PLC cases (1).

Marked improvements have been achieved in the early detection

and subsequent treatment of HCC; however, the reality of HCC

management remains poor. Presently, only 44% of HCC cases are

diagnosed at the localised stage, and 27% and 18% of HCC cases

are diagnosed at the regional and distant stages, respectively (3).

Consequently, the five-year survival rate of all HCC stages is

barely 20%, and this rate decreases to as low as 3% for distant stage

HCC (3). The mainstay treatments for localised stage HCC

include resection, transplantation, and ablation. However, the

presence of underlying diseases (e.g., liver cirrhosis) often

complicates surgical management, as liver transplantation is not

always available due to the scarcity of donor organs, and local

ablation is sometimes not amenable in cases of knotty tumours.

Nevertheless, systemic therapies, such as tyrosine kinase

inhibitors (TKIs), provide hope for patients with unresectable

HCC and increase overall survival and improve the quality of life

of this population (2). Lenvatinib, an oral inhibitor of multiple

receptor tyrosine kinases (RTKs), exerts its antitumour effect by

inhibiting vascular endothelial growth factor receptors 1–3

(VEGFR1–3), platelet-derived growth factor receptor a
(PDGFRa), fibroblast growth factor receptors 1–4 (FGFR1–4),

c-KIT, and RET (4). In patients with unresectable HCC,

lenvatinib showed non-inferiority in improving survival

outcomes compared with sorafenib (5). In the past decade,

sorafenib has become the only effective therapeutic choice for

patients with advanced HCC, and lenvatinib has been approved

as the first-line drug and is used worldwide (6).

Numerous clinical trials have verified the therapeutic efficacy

of lenvatinib in patients with HCC. However, the clinical

benefits of lenvatinib administration are limited, as some

HCCs become refractory to lenvatinib treatment. Hence,

substantial interest has focused on the mechanisms of

lenvatinib resistance (LR). Particularly, LR is mediated by

hepatocyte growth factor/c-MET axis-associated mitogen-

activated protein kinase (MAPK)/extracellular signal-regulated

kinase (ERK) and phosphatidylinositol 3-kinase (PI3K)/AKT

pathway activation (7), upregulated interferon regulatory factor

2 (IRF2) and b-catenin expression (8), FGFR1 overexpression

and downstream AKT/mTOR and ERK signalling activation (9),

and upregulated VEGFR2 expression and downstream RAS/

MEK/ERK pathway activation (10). However, we could hardly

find studies on the underlying mechanism of LR following long-
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term exposure to lenvatinib. Notably, a well-designed combined

therapy might successfully inhibit compensatory signalling

activation following LR induction; however, a feasible

drug combination that could overcome LR has not yet

been established.

In this study, we aimed to establish a Huh7 LR cell line to

elucidate the underlying mechanism of LR and explore novel

drugs that could be used to overcome LR in HCC.
2 Materials and methods

2.1 Reagents and antibodies

Lenvatinib (HY-10981), gefitinib (HY-50895), and copanlisib

(HY-15346A) were purchased from MedChemExpress

(Shanghai, China), and elacridar (S7772) was purchased from

Selleck Chemicals (Shanghai, China). Stock solutions of 20 mM

lenvatinib, 100 mM elacridar, and 20 mM gefitinib were

dissolved in 100% dimethyl sulfoxide (DMSO), and the stock

solution of 10 mM copanlisib was dissolved in Milli-Q water.

Antibodies against total epidermal growth factor receptor

(EGFR; A11577, ABclonal), phospho-EGFR (AP0820,

ABclonal), total PI3K (ab32089, Abcam), phospho-PI3K (4228,

CST), total AKT (9272, CST), phospho-AKT (4060, CST), total

MEK1/2 (A4868, ABclonal), phospho-MEK1/2 (AP0209,

ABclonal), total ERK1/2 (4695, CST), phospho-ERK1/2 (4376,

CST), caspase-3 (T40051, Abmart), Bcl-2-associated X (Bax;

T40044, Abmart), multidrug resistance protein 1 (MDR1;

13978, CST), breast cancer resistance protein (BCRP; 130244,

Abcam), and glyceraldehyde 3-phosphate dehydrogenase

(GAPDH; 5174, CST) were used. Horseradish peroxidase

(HRP)-conjugated goat anti-rabbit and goat anti-mouse

antibodies were purchased from Beyotime Biotechnology

(Shanghai, China). Alexa Fluor-conjugated goat anti-rabbit

(647 nm) and goat anti-mouse (488 nm) antibodies were

purchased from Invitrogen (Shanghai, China).
2.2 Cell line and cell culture

The Huh7 parental (Huh7 P) cell line was obtained from the

Cell Bank of National Biomedicine Research (Beijing, China)

and cultivated in Dulbecco’s modified Eagle’s medium (DMEM)

supplemented with 10% foetal bovine serum and 1% antibiotics

(penicillin and streptomycin) at 37°C and 5% CO2. To generate

the Huh7 LR cell line, Huh7 P cells were exposed to lenvatinib at

an initial dose of 1 mM. Thereafter, the stable cell line was

exposed to a lenvatinib concentration that was gradually

increased by 1.0–2.0 mM per week. Approximately 10 months

later, the Huh7 LR cell line was established and maintained in

culture medium containing 20 mM lenvatinib.
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2.3 RNA sequencing assay

Total RNAwas extracted using TRIzol from a 10 cm cell culture

plate when the cells reached 70–80% confluence. Three

independent samples from each group (Huh7 P and Huh7 LR)

were used for RNA-seq by Biomarker Technologies (Beijing,

China). Log2 (mRNA fold change) was used to assess

differentially expressed mRNAs, with the calculated value of < -1

or > 1 deemed statistically significant (p < 0.001). The online

bioinformatics database (DAVID Bioinformatics Resources 6.8,

NIAID/NIH; website, https://david.ncifcrf.gov/tools.jsp) was used

to analyse the Kyoto Encyclopedia of Genes and Genomes (KEGG)

pathways and biological processes based on the RNA-seq results.
2.4 Cell proliferation assay

Cells were plated at a density of 4,000 cells per well in a 96-

well plate and cultivated overnight. The cells were then exposed to

drugs suspended in DMEM (10% FBS) for 96 h. Thereafter, 3-

(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

(MTT) solution at a working concentration of 5 mg/mL was

added to the culture medium. After 4 h of incubation, the upper

medium was removed, and 100 mL of DMSO was added to

dissolve the crystals formed in the lower medium. After 10 min

of incubation and shaking, the absorbance was measured at a

wavelength of 490 nm. A real-time cell analyser (RTCA) S16

(Celligence, China) was used to compare cell proliferation ability.

During this process, 4,000 cells per well were seeded in a 16-well

plate and cultivated in medium containing 20 mM lenvatinib.

During the next 72 h, a detector connected to a computer

constantly calculated and displayed relative cell proliferation by

measuring the electrical resistance of the plate bottom.
2.5 Clonogenicity assay

To compare the clonogenicity of Huh7 P and Huh7 LR cell

lines, 1,000 cells per well were seeded in a 6-well plate and

continuously exposed to culture medium containing lenvatinib

(20 mM) for two weeks. To assess the clonogenicity of the Huh7

LR cell line after different drug treatments, 2,000 cells were

seeded per well in a 6-well plate, drug-containing media was

removed from the cells after 72 h of exposure, and the medium

without drugs was changed every 3 days for the next 11 days.

After fixing in methyl alcohol for 15 min and staining with

crystal violet for 20 min, the colonies were photographed using a

camera and analysed using Image J Software.
2.6 Cell apoptosis assay

Cells were seeded at a density of 2×105 cells per well in a 6-well

plate and cultivated overnight. The cells were then treated with the
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control or drug-containing media for 72 h. Subsequently, the cells

were collected and stained with Annexin V-FITC and propidium

iodide (Beyotime Biotechnology, China) for 20 min and then

analysed using flow cytometry (Beckman Coulter, USA). At least

5×104 cells were analysed for each sample.
2.7 Quantitative real-time polymerase
chain reaction

Total RNA was extracted from Huh7 P and Huh7 LR cells

using TRIzol reagent, and cDNA synthesis was conducted using a

reverse transcription kit (Toyobo FSQ 301, Japan) following the

manufacturer’s protocol. Subsequently, qRT-PCR was performed in

a total volume of 20 mL, containing Milli-Q water (2 mL), c-DNA (6

mL), forward and reverse primers (2 mL), and q-PCR mix (10 mL;
Toyobo QPS-201, Japan). The primers used in this study were

manufactured by Ruibiotech (Beijing, China) with the following

sequences: b-actin forward: 5′-ATCGTCCACCGCAAATGCT
TCTA-3′ and reverse: 5′-AGCCATGCCAATCTCATCTTGTT-
3′, MDR1 forward: 5′-GGGAGCTTAACACCCGACTTA-3′ and
reverse: 5′-GCCAAAATCACAAGGGTTAGCTT-3′, and BCRP

forward: 5′-GCCACAGAGATCATAGAGCCT-3′ and reverse: 5′-
TCACCCCCGGAAAGTTGATG-3′. The results were normalised

to b-actin expression and are presented as relative mRNA

expression levels.
2.8 Immunofluorescence staining

Cells (Huh7 P and Huh7 LR) were seeded at a density of

30,000 cells per well in an 8-well plate (BD Falcon 354108, USA)

overnight. The cells were then washed thrice with PBS, fixed

with 4% paraformaldehyde (PFA) for 20 min, blocked with 10%

goat serum, and incubated with primary antibodies MDR1

(Rabbit mAb #13978 CST) and BCRP (Mouse mAb #130244

Abcam) for another day. After washing thrice with PBS, the cells

were incubated with conjugated secondary antibodies for two

hours at room temperature. Subsequently, 4′,6-diamidino-2-

phenylindole was added and incubated for 15 min, and images

were captured using a VS200 SlideView (Olympus, Japan).
2.9 Western blotting analysis

After incubation with different drugs, the cells were collected

and lysed using radioimmunoprecipitation assay buffer

supplemented with a protease and phosphatase inhibitor cocktail

(Beyotime Biotechnology, China). Equal amounts of protein from

each sample were loaded on 8% or 10% sodium dodecyl-sulphate-

polyacrylamide gel electrophoresis and transferred onto an

Immobilon®-P Transfer membrane (Merck Millipore Ltd.). After

blocking with 5% non-fat milk, the labelled membrane was
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incubated with relevant primary antibodies at 4°C overnight. The

membranes were then incubated with HRP-conjugated secondary

antibodies for two hours at room temperature. Finally, the

membranes were incubated with enhanced chemiluminescence

reagent (Applygen, China), and the bands were detected.

GAPDH was used as an internal reference.
2.10 Xenograft tumour in nude mice

BALB/C nude mice (male, 6 weeks old) were obtained from

Charles River (Beijing, China). Huh7 LR cells (1.0×107 cells per

mouse) were injected into the flanks of the mice. After tumour

establishment, the mice were randomly assigned to six groups

(five mice per group): the vehicle, lenvatinib (5 mg/kg), gefitinib

(80 mg/kg), elacridar (80 mg/kg), lenvatinib (5 mg/kg)

combined with elacridar (80 mg/kg), and lenvatinib (5 mg/kg)

combined with gefitinib (80 mg/kg) groups. The drugs were

suspended in 5‰ carboxymethylcellulose sodium (powder

dissolved in Milli-Q water). In the lenvatinib and elacridar

group, elacridar was administered two hours prior to

lenvatinib. All indicated treatments were orally administered

to the mice 5 days per week. Tumour length and width were

measured using callipers, and their volumes were calculated

using the following formula: tumour volume = ½ length ×

width2. All animal experiments were conducted in accordance

with the approved protocol from Charles River (No. P2021049).
2.11 Histological analysis

Harvested tumours were fixed in 4% PFA, dehydrated

gradually, embedded in paraffin, and sliced into 4 mm thick

sections. Some sections were subjected to haematoxylin-eosin

(H&E) staining, whereas other sections were used for

immunohistochemistry (IHC). After routine IHC procedures, the

samples were incubated with primary antibodies against Ki67 (14-

5698-80, Invitrogen) and proliferating cell nuclear antigen (PCNA;

13110, CST) at 4°C overnight. The samples were then incubated

with secondary antibodies using the VECTASTAIN ® Elite ® ABC

Universal Kit, Peroxidase (Horse Anti-Mouse/Rabbit IgG; PK-6200,

Vector Laboratories, Inc., USA).
2.12 Statistical analysis

OriginPro 2021 software was used to perform data analysis.

Data are presented as the mean ± standard deviation based on

triplicate experiments, and the final results are representative of

more than two independent experiments, excluding the

xenograft tumour experiment. All p values are denoted as

significant at p < 0.05. Following the Chou-Talalay method

(11), CompuSyn software (ComboSyn, Inc., Paramus, NJ, USA)
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was used to calculate combination index (CI) values. The CI

values reflect the interaction between two drugs (CI < 1,

synergism; CI = 1, additive effect; CI > 1, antagonism).
3 Results

3.1 Establishment of a lenvatinib
resistant cell line

After continuous exposure to lenvatinib (1–20 mM) for

approximately 10 months, the Huh 7 LR cell line was normally

passaged and maintained in medium containing 20 mM lenvatinib

(Figure 1A). In contrast to Huh7 P cells, Huh7 LR cells were

smaller in size and grew aggressively (Figure 1B). TheMTT results

revealed that Huh7 LR cells exhibited a higher proliferation rate

than Huh7 P cells did in cultivation medium containing different

lenvatinib concentrations (1.25, 2.5, 5, 10, and 20 mM), and the

half maximal inhibitory concentration (IC50) of lenvatinib in

Huh7 LR cells (IC50 > 20 mM) was significantly higher than that

in Huh7 P cells (IC50 5.34 ± 1.07 mM) (Figure 1C). Meanwhile,

Huh7 LR cells exhibited a relatively higher proliferation rate

(Figure 1D) and higher colony forming ability (Figure 1E) than

Huh7 P cells did in medium containing 20 mM lenvatinib.

Moreover, Huh7 LR cells exhibited a higher anti-apoptotic

activity than Huh7 P cells did in cultivation medium containing

20 mM lenvatinib (Figure 1F). These results confirmed that the

Huh7 LR cell line was resistant to lenvatinib.
3.2 Transcriptomic analysis results

RNA-seq results were obtained to assess differentially

expressed mRNAs between the Huh7 P and Huh7 LR cell lines

(Supplementary Table 1). Three independent samples were

examined for each cell line (Figure 2A), and the Huh7 LR cell

line exhibited 728 upregulated and 274 downregulated genes

compared with those in the Huh7 P cell line (Figure 2B). KEGG

pathway enrichment analysis revealed that pathways related to

metabolism and ATP-binding cassette (ABC) transporters and the

ERBB signalling pathway were enriched after LR induction

(Figure 2C). Additionally, gene annotation analysis of biological

processes demonstrated that cellular efflux and metabolic

processes were increased after LR induction (Figure 2D).
3.3 MDR1 and BCRP overexpression and
EGFR signalling pathway activation
following LR induction

The expression of MDR1 and BCRP, important ATP-binding

cassette (ABC) transporters, was upregulated according to the

RNA-seq results (Supplementary Table 2). We used qRT-PCR,
frontiersin.org

https://doi.org/10.3389/fonc.2022.944537
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Sun et al. 10.3389/fonc.2022.944537
western blotting, and immunofluorescence staining to further verify

MDR1 and BCRP expression levels. First, the qRT-PCR results

revealed that Huh7 LR cells exhibited significantly higher MDR1

and BCRPmRNA levels than Huh7 P cells did (Figure 3A). Second,

western blotting demonstrated that Huh7 LR cells exhibited

significantly higher MDR1 and BCRP levels than Huh7 P cells

did (Figure 3B). Third, immunofluorescence staining revealed that

MDR1 and BCRP were located in the cell membrane, and their

expression was significantly higher in Huh7 LR cells than inHuh7 P

cells (Figure 3C).

The EGFR signalling pathway is an important branch of the

ERBB signalling pathway, and the activation of EGFR signalling

pathway is a hallmark of human malignancies (12–14).

Supplementary Table 3 demonstrates that the transcriptional levels

of EGFR and the downstream RAS/RAF/MEK/ERK and PI3K/AKT/

mTOR pathways were normal or upregulated after LR induction.

Importantly, among the upregulated mRNAs, PIK3R2, an oncogene

involved in the physiological activation of PI3K (15), ranked first in

fold-change (Log2FC = 5.71) (Supplementary Tables 1, 2, Figure 2B).

However, RNA-seq only reflects transcriptional level but cannot
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comprehensively reflect protein levels and functional alterations.

Therefore, western blotting was performed to determine the levels

of total and phosphorylated proteins involved in EGFR signalling and

its downstream pathways. The western blot results revealed that

phosphorylated EGFR, PI3K, AKT, MEK1/2, and ERK1/2 were

significantly upregulated in Huh7 LR cells compared to those in

Huh7 P cells (Figure 3D).
3.4 In vitro antitumour effect of
combined treatments

3.4.1 Elacridar ameliorated LR by inhibiting
MDR1 and BCRP

Both MDR1 and BCRP mediate drug efflux from tumour

cells, which decreases the effective concentration of antitumour

drugs and results in chemotherapeutic failure (16–18). Here, we

speculated that elacridar, a dual MDR1 and BCRP inhibitor (19),

could overcome LR in Huh7 LR cells by inhibiting MDR1 and

BCRP (Figure 4A).
A B

D E

F

C

FIGURE 1

Successfully established Huh7 LR cell line. (A) The timeline and lenvatinib concentration. (B) The representative morphology of the Huh7 P and
Huh7 LR cell lines. (C) The MTT assay during 96 h revealed that the Huh7 LR cell line had a substantially higher IC50 than the Huh7 P cell line
did. (D) RTCA revealed that Huh7 LR cells had a higher proliferation rate than Huh7 P cells did in medium containing 20 mM lenvatinib. (E) The
Huh7 LR cell line exhibited higher colony forming ability than the Huh7 P cell line did in cultivation medium containing 20 mM lenvatinib.
(F) Flow cytometry assay showed that Huh7 LR cells exhibited higher anti-apoptosis ability than Huh7 P cells did in cultivation medium
containing 20 mM lenvatinib for 72 hours. ***p < 0.001.
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According to the MTT results, the relative cell viability of the 20

mM lenvatinib-treated group was 76.23%, whereas the relative cell

viability of the 5 mM elacridar-treated group was 92.49%. However,

the relative cell viability of the 20 mM lenvatinib- and 5 mM elacridar-

treated group significantly decreased to as low as 39.67% (Figure 4B).

The synergistic antitumour effect of lenvatinib and elacridar was

further verified using CI values and the Chou-Talalay method. As

shown in Figure 4C, the calculated CI values were < 1, indicating that

elacridar synergised with lenvatinib to inhibit Huh7 LR cell

proliferation. Thereafter, flow cytometry was performed to assess

the pro-apoptotic effect of elacridar in Huh7 LR cells following

treatment with a single drug or with co-administration of

lenvatinib for 72 h (Figure 4D). According to the quantitative

results (Figure 4E), lenvatinib (20 mM) in combination with

elacridar (10 mM) significantly induced Huh7 LR cell apoptosis

(apoptosis rate, 37.32%) compared with that of the control (1%

DMSO), lenvatinib (20 mM), and elacridar (10 mM) groups

(apoptosis rates, 2.14%, 3.79%, and 5.48%, respectively). Therefore,

elacridar sensitised Huh7 LR cells to lenvatinib treatment.
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Additionally, our in vitro results demonstrated that the

combination of elacridar with lenvatinib significantly inhibited

colony formation (Figure 4F) and decreased CD133, epithelial

cellular adhesion molecule (EpCAM), SRY-box transcription

factor 9 (SOX-9), and c-Myc expression (Figure 4G).

3.4.2 Gefitinib or copanlisib ameliorated LR by
targeting the EGFR/PI3K pathway

EGFR and/or PI3K/AKT pathway activation is associated

with chemotherapeutic resistance in human cancers (20, 21).

Unfortunately, lenvatinib exerts antitumour effects by targeting

multiple cell membrane RTKs, including VEGF1-3, PDGFR,

FGFR1-4, c-KIT, and RET rather than EGFR (4). Here, we

speculated that EGFR signalling pathway activation might be

associated with LR; therefore, we investigated whether the

addition of TKIs targeting the EGFR/PI3K/AKT pathway

could overcome LR. We selected and tested FDA-approved

clinical drugs, including gefitinib (targeting EGFR) and

copanlisib (targeting PI3K) (Figure 5A).
A B

DC

FIGURE 2

Transcriptomic analysis of Huh7 P and Huh7 LR cells based on RNA sequencing (three samples for each group). (A, B) Clustering heatmap and
volcano plot show differentially expressed genes between the Huh7 P and Huh7 LR cell lines (> 2-fold change, p < 0.001). (C, D) KEGG pathways
and biological processes associated with significantly upregulated genes in Huh7 LR cells (> 2-fold change, p < 0.001).
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First, we performed an MTT assay to assess the effect of

gefitinib or copanlisib on Huh7 LR cell proliferation following

treatment with a single drug or with co-administration of

lenvatinib. As shown in Figure 5B, the addition of gefitinib or

copanlisib significantly enhanced the inhibitory effect of

lenvatinib in Huh7 LR cells. We used the Chou-Talalay

method and determined that lenvatinib and gefitinib or

copanlisib synergistically inhibited cell proliferation, as the

calculated CI values were < 1 (Figure 5C). Thereafter, we

performed flow cytometry to assess the pro-apoptotic effect of

gefitinib or copanlisib in Huh7 LR cells after drug treatment for

72 h (Figure 5D). According to the quantitative results

(Figure 5E), the addition of gefitinib or copanlisib significantly

enhanced the pro-apoptotic effect of lenvatinib in Huh7 LR cells.

Therefore, gefitinib or copanlisib sensitised Huh7 LR cells to

lenvatinib treatment.

Regarding the potential antitumour mechanism, western

blotting revealed that co-treatment with gefitinib and

lenvatinib significantly inhibited the phosphorylation of EGFR,

PI3K, AKT, MEK1/2, and ERK1/2 (Figure 5F), whereas the

combination of copanlisib and lenvatinib significantly inhibited

the phosphorylation of PI3K and AKT (Figure 5G). Moreover,

the addition of gefitinib or copanlisib increased the levels of
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apoptosis-associated proteins, including caspase-3 and Bax

(Supplementary Figure 1). Here, we proposed that upon

targeting cell membrane RTKs, including VEGFR, FGFR, RET,

PDGFR, and c-KIT, with lenvatinib, EGFR was activated to

compensate for LR. The downstream MEK/ERK and PI3K/AKT

pathways were then activated in response to EGFR activation,

which resulted in LR by promoting cell proliferation and

survival. However, upon targeting EGFR with gefitinib or

PI3K with copanlisib in combination with lenvatinib,

compensatory activation of the EGFR signalling pathway or its

downstream PI3K/AKT pathway, respect ively , was

inhibited (Figure 5H).
3.5 In vivo antitumour effect of
combined treatments

The in vivo antitumour effects of lenvatinib in combination

with elacridar or gefitinib were assessed using xenografts derived

from the Huh7 LR cell line. One week after tumour cell injection,

the average xenograft size reached approximately 6 mm in

diameter, and therapeutic treatment was initiated accordingly.

Subsequently, the tumour volume and mouse body weight were
A

B

D

C

FIGURE 3

MDR1 and BCRP overexpression and EGFR signalling pathway activation following LR induction. (A–C) qRT-PCR, western blotting, and
immunofluorescence analysis demonstrated that MDR1 and BCRP expression was upregulated following LR induction. Scale bars, 100 mm.
(D) Western blotting revealed that EGFR and its downstream MEK/ERK and PI3K/AKT pathways were markedly activated following LR induction.
**p < 0.01. ***p < 0.001.
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measured once every two to three days. The mice were orally

administered with the drugs for two weeks and then sacrificed.

The harvested tumours were imaged and their corresponding

weights were measured. Compared with that in the vehicle

group, neither elacridar nor gefitinib inhibited tumour growth,

and lenvatinib-based co-treatments significantly suppressed

tumour growth (Figures 6A–C). Intriguingly, lenvatinib-based

co-treatments exerted a much better antitumour effect than

lenvatinib treatment alone did. Particularly, the co-

administration of lenvatinib with elacridar exhibited the most

potent antitumour efficacy (Figures 6A–C). During the
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treatment, no significant side effects were observed, as the

mouse body weights were comparable in different

groups (Figure 6D).

Regarding the histological analysis, lenvatinib alone and

lenvatinib-based co-administrations significantly inhibited

tumour angiogenesis, which could be easily determined by

observing the general shape of the harvested tumours

(Figure 6B). Upon further analysis using pathological H&E

staining, remaining tumour micro-vessels were observed in the

group treated with lenvatinib alone, but not in the group treated

with co-administration of gefitinib or co-administration of
A B

D
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F

G

C

FIGURE 4

In vitro combined antitumour effect of lenvatinib and elacridar. (A) Schematic diagram indicates that elacridar dually inhibited MDR1 and BCRP.
(B, C) The MTT results and CI plots confirmed that elacridar synergised with lenvatinib to inhibit Huh7 LR cell viability. (D, E) Co-treatment with
elacridar and lenvatinib enhanced cell apoptosis, as shown in micrographs and flow cytometry plots. (F, G) Combined elacridar and lenvatinib
treatment inhibited colony formation and downregulated CD133, EpCAM, SOX-9, and c-Myc expression. ***p < 0.001.
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elacridar (Figure 7A). Lenvatinib alone could inhibit cell

proliferation; however, lenvatinib-based co-administration

enhanced the inhibition of cell proliferation, which was

assessed using IHC for Ki67 and PCNA (Figures 7B, C).
4 Discussion

Systemic therapies for unresectable HCC are limited. In

addition to sorafenib, lenvatinib is currently the first-line
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treatment for patients with advanced HCC worldwide (6).

Recently, a meta-analysis comprising five clinical studies with

1,481 patients demonstrated that lenvatinib treatment

significantly improved progression-free survival (PFS),

objective response rate (ORR), and disease control rate

compared with those of sorafenib treatment in patients with

advanced HCC (22). However, a standard salvage treatment has

not yet been established for patients with advanced HCC after

lenvatinib therapy failure. Considering the dismal outcomes of

patients with HCC after lenvatinib treatment failure, exploring
A B

D E
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H

C

FIGURE 5

In vitro combined antitumour effect of lenvatinib and gefitinib or copanlisib. (A) Schematic diagram indicates that gefitinib and copanlisib targeted
EGFR and PI3K, respectively. (B, C) The MTT results and CI plots confirmed that combined treatments synergistically inhibited cell viability. (D, E) The
addition of gefitinib or copanlisib enhanced cell apoptosis, as shown in micrographs and flow cytometry plots. (F, G) The EGFR pathway was
significantly inhibited by the addition of gefitinib, and the PI3K/AKT pathway was significantly inhibited by the addition of copanlisib. (H) Schematic
diagram delineates the proposed mechanism of overcoming LR in HCC by targeting the EGFR/PI3K pathway. ***p < 0.001.
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the underlying mechanism of LR and novel drugs to overcome

LR is warranted.

To the best of our knowledge, this is the first study to reveal

that ABC transporters and the EGFR signalling pathway are

activated in HCC after long-term exposure to lenvatinib. MDR1

or P-glycoprotein and BCRP, important ABC transporters, have

consistently been implicated in mediating multiple drug

resistance by promoting drug efflux in various human cancers

(16–18). Coincidentally, lenvatinib is a substrate for MDR1 (23,

24); however, the changes in MDR1 and BCRP transporters after

LR induction have not yet been clarified. Moreover, EGFR, a

pioneer member of the RTK family, is frequently overexpressed

in human cancers (13, 25, 26), and its activation is crucial for

essential cancer cell processes, including cell growth, survival,

and drug resistance (25). Unfortunately, lenvatinib targets

multiple cell membrane RTKs but EGFR (4). Recently, one

study has revealed that blocking EGFR by gefitinib and

lenvatinib exhibited a relatively potent antitumour efficacy in

HCC (27), whereas the activation status of EGFR and its

downstream pathways (MEK/ERK and PI3K/AKT) after LR
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induction in HCC has not been fully understood. Notably, our

in vitro results revealed that MDR1 and BCRP transporters were

significantly upregulated, and EGFR and the MEK/ERK and

PI3K/AKT pathways were activated after LR induction.

Subsequently, considering that ABC transporters and EGFR

signalling pathways were activated after LR induction, we

utilised three drugs: elacridar, gefitinib, and copanlisib.

Elacridar (GF12098) is a dual MDR1 and BCRP inhibitor (19).

In vitro, preclinical, and clinical studies have demonstrated that

co-administration of elacridar could reverse MDR1 and/or

BCRP-mediated chemotherapeutic resistance and increase

systemic exposure to antitumour drugs by inhibiting efflux

pumps (19, 28, 29). Furthermore, gefitinib selectively inhibits

EGFR and was first used to treat advanced non-small cell lung

cancer after other treatments failed (30). As monotherapy or

combination therapy, gefitinib is also used to treat other human

malignancies (31). Moreover, gefitinib inhibits the growth and

accelerates the apoptosis of human HCC cells and promotes cell

cycle arrest in these cells (32). Blocking EGFR by gefitinib exerts

antitumour effects by reducing HCC nodule formation in rats
A B

DC

FIGURE 6

Lenvatinib in combination with elacridar or gefitinib suppressed HCC xenograft growth. (A) Xenograft response to treatment with vehicle,
elacridar (80 mg/kg), gefitinib (80 mg/kg), lenvatinib (5 mg/kg), and drug combination (elacridar 80 mg/kg and lenvatinib 5 mg/kg or gefitinib 80
mg/kg and lenvatinib 5 mg/kg). (B) Harvested tumours are arranged according to the treatment group. (C) Tumour weights were measured after
resection. (D) Mouse body weights were measured during the treatment. ***p < 0.001.
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(33). Lastly, copanlisib (BAY80-6946) has emerged as a newly

developed pan-PI3K inhibitor (34, 35) and was first approved for

treating relapsed follicular lymphoma (36). Subsequently,

copanlisib has been used in patients with advanced or

refractory solid tumours (37). In vitro studies have recently

demonstrated that copanlisib synergises with sorafenib to

promote cell death in HCC (38). However, the therapeutic role

of these drugs in HCC after LR induction has not been reported.

Previous in vivo studies have demonstrated that lenvatinib is

a substrate of MDR1, and inhibiting MDR1 using rifampicin or

ketoconazole can significantly increase plasma lenvatinib

concentrations in healthy adults (23, 24). Elacridar, a third-

generation MDR1 inhibitor and a dual inhibitor of MDR1 and

BCRP transporters (39), can improve therapeutic efficacy in

various diseases by blocking drug efflux, according to previous in

vitro, preclinical, and clinical studies (28). Theoretically,

elacridar should also inhibit lenvatinib efflux by inhibiting
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MDR1 and BCRP efflux pumps. Additionally, cancer stem-like

cells (CSCs) harbouring stem cell-like properties, including

aberrant differentiation and self-renewal potential, are

associated with chemotherapeutic resistance in cancers (40–

42). Coincidentally, Sugano et al. found that inhibiting MDR1

using elacridar inhibits CSC properties (43). Parallelly, our in

vitro experiments demonstrated that inhibiting lenvatinib efflux

by inhibiting MDR1 and BCRP efflux pumps might represent

the potential mechanism of synergism between elacridar and

lenvatinib to overcome LR. Here, we attempted to summarise

and explain the antitumour effect of combined treatment.

Lenvatinib in combination with elacridar exerted a

significantly synergistic antitumour effect in vitro and the most

significant antitumour effect in vivo. Additionally, a combination

of lenvatinib and elacridar significantly inhibited CSC properties

by decreasing colony formation and downregulating CD133,

EpCAM, SOX-9, and c-Myc expression. Moreover, lenvatinib
A

B

C

FIGURE 7

Lenvatinib in combination with elacridar or gefitinib inhibited tumour proliferation and angiogenesis. (A) Representative images of blood vessel
density visualised by H&E staining. Scale bars, 200 mM. (B, C) IHC for Ki67 and PCNA expression. Scale bars, 100 mM.
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alone suppresses CSCs marked by CD133 and CD44 expression

in HCC (44), and this inhibitory effect was presumably enhanced

because elacridar could inhibit lenvatinib efflux by inhibiting

MDR1 and BCRP transporters, which might account for the

above findings. Furthermore, co-administration of lenvatinib

and gefitinib significantly inhibited EGFR, MEK/ERK, and

PI3K/AKT activation, and co-administration of lenvatinib with

copanlisib significantly inhibited PI3K/AKT activation; both

combinations exerted synergistic antitumour effects in vitro.

Moreover, gefitinib in combination with lenvatinib exerted

potent antitumour effects in vivo.

According to our literature review, other research groups are

also attempting to develop salvage systemic treatment for

patients with HCC after lenvatinib treatment failure. For

example, one clinical study of 22 participants with failed

lenvatinib therapy who received second-line regorafenib

treatment revealed that the PFS and ORR were 3.2 (range,

1.5–4.9) months and 13.6%, respectively (45). Another clinical

study involving 13 patients with unresectable HCC who were

treated with sorafenib after lenvatinib treatment failure revealed

that the PFS and ORR were 4.1 (range, 2.1–9.2) months and

15.3% (2/13), respectively (46). The survival outcomes were poor

in patients who received second-line treatments after lenvatinib

withdrawal. Coincidentally, our study found that xenografts

grew faster and exhibited increased angiogenesis in the groups

without lenvatinib treatment, including the gefitinib-

treated group.

We proposed hypotheses regarding the dismal patient

outcomes after stopping lenvatinib treatment and the increased

xenograft growth observed in the groups without lenvatinib

treatment. One hypothesis is that despite drug resistance,

lenvatinib still blocked the intracellular signal transduction

phosphorylation cascade by inhibiting ligand binding to cell

membrane RTKs; in particular, the activation of VEGFR

correlated with angiogenesis and the activation of PDGFR,

FGFR, c-KIT, and RET correlated with cell proliferation (47,

48). Another hypothesis is that lenvatinib inhibited CSCs

harbouring stem cell-like properties, including aberrant

differentiation and self-renewal potential, which was verified by

our in vitro experiments (lenvatinib inhibited colony formation)

and the findings reported by Shigesawa et al. (lenvatinib inhibited

CD133- and CD44-positive CSCs) (44). However, once lenvatinib

is withdrawn, the underlying inhibition of intracellular signal

transduction and of CSC-associated characteristics is reversed,

which consequently accelerates tumour growth and angiogenesis.

Therefore, we wondered whether patient outcomes would

improve if lenvatinib was continuously administered in

combination with second-line treatment after LR, which is

merely our theoretical conjecture based on the xenograft

experiment results. Certain issues, particularly the side effects

and energy expenditure caused by combination treatment,

remain to be seriously considered.
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Finally, our study had certain limitations and provided scope

for further research. First, our in vitro and in vivo results were

based on a Huh7 LR cell line and the Huh7 LR cell line-derived

xenografts. Thus, our findings and conclusions should be further

replicated and verified in more cell lines, as well as in patients

with HCC after LR induction, if possible. Second, some drugs

(e.g., lenvatinib and gefitinib) used in this study are readily

soluble in DMSO but not in cultivation media, which resulted in

the parallelism of MTT results being lower than expected. Third,

the antitumour effect of lenvatinib combined with copanlisib was

not examined in the xenograft model. Therefore, the antitumour

effects of copanlisib, an FDA-approved drug, alone or in

combination with lenvatinib in HCC after LR induction

should be investigated. Lastly, in vivo side effects of drug

combinations, such as changes in organ function and/or

microscopic structure, should also be assessed in the future.
5 Conclusions

In summary, inhibiting MDR1 and BCRP transporters or

targeting the EGFR/PI3K pathway might overcome LR in HCC.

Intriguingly, we observed the synergistic effects of lenvatinib and

elacridar or gefitinib. Notably, lenvatinib should be used to treat

HCC after LR because of its role in inhibiting tumour proliferation

and angiogenesis. Importantly, our results and raised hypotheses

should be further evaluated in patients with HCC following LR

induction. Nevertheless, we provide a theoretical basis for the

salvage treatment of HCC after LR induction.
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Obesity confers an independent risk for carcinogenesis. Classically viewed as a

genetic disease, owing to the discovery of tumor suppressors and oncogenes,

genetic events alone are not sufficient to explain the progression and

development of cancers. Tumor development is often associated with

metabolic and immunological changes. In particular, obesity is found to

significantly increase the mortality rate of liver cancer. As its role is not

defined, a fundamental question is whether and how metabolic changes

drive the development of cancer. In this review, we will dissect the current

literature demonstrating that liver lipid dysfunction is a critical component

driving the progression of cancer. We will discuss the involvement of

inflammation in lipid dysfunction driven liver cancer development with a

focus on the involvement of liver macrophages. We will first discuss the

association of steatosis with liver cancer. This will be followed with a

literature summary demonstrating the importance of inflammation and

particularly macrophages in the progression of liver steatosis and highlighting

the evidence that macrophages and macrophage produced inflammatory

mediators are critical for liver cancer development. We will then discuss the

specific inflammatory mediators and their roles in steatosis driven liver cancer

development. Finally, we will summarize the molecular pattern (PAMP and

DAMP) as well as lipid particle signals that are involved in the activation,

infiltration and reprogramming of liver macrophages. We will also discuss

some of the therapies that may interfere with lipid metabolism and also

affect liver cancer development.
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Introduction

Metabolic disorders, particularly obesity increases the risk of

a number of cancers, e.g. colon, mammary, pancreas, liver (1, 2),

etc. Obesity, which occurs in half of the US population, is now

recognized as a confounding factor for cancer-related death (3,

4). The contribution of lipid dysfunction to cancer is particularly

high for liver cancer. The mortality risk for liver cancer is

estimated to be 4.52-fold higher in men with >35 body mass

index (BMI) compared with those with BMI <29 (1). Liver

steatosis is a common comorbid disease for liver cancer and is

associated with metabolic diseases including obesity, insulin

resistance (IR), and diabetes as well as in other related

disorders such as alcohol usage disorders (5). While

hyperinsulinemia, hyperglycemia, and hyperlipidemia as a

result of peripheral insulin resistance and metabolic disorder

can directly contribute factors to promote tumorigenesis (6), the

resulting development of liver steatosis due to these conditions

directly establishes the microenvironment to promote tumor

development. This review will focus on the local tumor

microenvironment in liver steatosis for its role in promoting

cancer development.
Contribution of steatosis to
liver cancer

In the liver, steatosis is defined when at least 5% of lipid

droplets are accumulated among hepatocytes in the

histopathological diagnosis (7, 8), and is classified as alcoholic

or nonalcoholic forms due to etiology. Non-alcoholic fatty liver

disease (NAFLD) and non-alcoholic steatohepatitis (NASH)

develop in patients with metabolic syndromes including

obesity, IR and diabetes (9, 10) whereas alcoholic liver disease

(ALD) and ASH (alcoholic steatohepatitis) are caused by

excessive alcohol drinking which also contributes to lipid

metabolic dysfunction (11, 12). While simple fatty liver is

reversible by lifestyle changes, ASH and NASH can progress to

more morbid forms of liver pathologies including fibrosis/

cirrhosis and is highly associated with liver cancer (13).

Patients with varying degrees of steatosis are susceptible to

hepatocellular carcinoma (HCC) and cholangiocarcinoma

(CCA), the two dominant forms of liver cancer. In particular,

the NAFLD-HCC incidence ratio increased significantly (1.92-

fold for men and 12.7-fold for women) in the last 20 years

whereas it decreased or remain unchanged for many other major

etiologies of HCC (14). This increase is concurrent with the

increase of obesity epidemic particularly in women, suggesting a

role of lipid dysfunction in liver carcinogenesis. Consistently,

alcohol consumption and associated alcoholic liver disease was

estimated to be an independent risk factor for poor disease-free

survival, particularly in non-virus hepatitis associated HCC (15).
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Earlier studies using chemical carcinogen to induce cancer

formation found that high fat diet (HFD) feeding significantly

induced cell proliferation in diethyl nitrosamine (DEN) induced

HCC models (16). While this observation is supported by high

fructose, high cholesterol and alcohol feeding studies (17–19),

other experiments show that HFD protects against DEN induced

liver injury, leading to reduced HCC (20, 21). Avoiding the

complications of chemical induced injury, genetic models were

used to explore liver cancer development. Liver cancer is highly

heterogenous on the pathohistological levels as well as genetic

landscape. In recent years, exome sequencing has led to the

discovery of TERT, CTNNB1 and TP53 as the dominant

mutations and PI3K/AKT/PTEN/mTOR together with MAPK

pathway as the primary signaling pathways that promote liver

cancer development together with Wnt/b-catenin signaling

pathway (22, 23). Mutation of TERT1 promoter is found to be

a primary characteristic of NAFLD associated liver cancer (24)

and loss of telomerase promotes metabolic dysfunctions in

hepatocytes (25). Activating mutation of CTNNB1 (encodes b-
catenin) occurring in 37% of HCC is thought to support the

growth and transformation of liver cancer stem cells (26–29). As

such, activating mutation of CTNNB1 confers the oncogenic

potential of b-catenin and promotes HCC development (26, 27).

Interestingly, manipulation of neither TERT, CTNNB1 nor

TP53 by themselves is sufficient to result in liver tumor

development (25, 26, 30, 31). Activation of PI3K signaling

pathway, however unequivocally resulted in the development

of HCC and CCA. Activating PI3K/AKT signal via deletion of

Pten showed spontaneous tumor development following

steatosis and fibrosis (32–35). The PI3K/AKT signal

upregulation results in increased lipid anabolic metabolism in

addition to acting as a pro-growth and pro-survival signal (35–

45). In the Pten deletion model, inhibiting steatosis attenuates or

abolishes tumor development, suggesting that steatosis is

required for liver tumor development (32, 33), whereas short

term feeding of HFD accelerates the development of tumors

(46). The PI3K/AKT signal is necessary for driving the steatosis

phenotypes in the liver (35, 37). As such, introduction of

activated AKT delivered through hydrodynamic injection of

myristylated AKT is necessary to drive the development of

HCC and CCA for a number of signals including Notch, YAP,

Shp2, Hippo and others (28, 47–49). Consistent with this notion,

combining other genetic models with non-genotoxic chemicals

and diet manipulations demonstrated that liver injury and

steatosis promotes the development of tumors (28, 31–33, 50–

52). In several mouse models including those lacking p53 and

Indian Hedgehog, consumption of a Western-style diet, or a

high-fat/high-cholesterol diet to the point of developing hepatic

steatosis was shown to promote higher liver tumor incidence

than the control diet group (53, 54).

In these genetic models where HFD feeding accelerates/

promotes tumorigenesis, liver injury is a main consequence

associated with steatosis (33, 46, 55). In fact, the effect of p53
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https://doi.org/10.3389/fonc.2022.958696
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Tu et al. 10.3389/fonc.2022.958696
on hepatocytes apoptosis may have contributed to the lack of

tumorigenic effects observed in p53 deletion mice (31, 51) as p53

deficiency protected hepatocytes from undergoing apoptosis in

response to HFD feeding and subsequent liver injury (56).

Similarly, while activated b-catenin mutation is capable of

promoting hepatocyte regeneration, the genotoxic effect

requires steatosis and/or liver injury to promote liver cancer

development (26, 28, 30). In fact, the function of b-catenin in

sustaining normal hepatocyte function explains how b-catenin
loss also promotes a protumor environment (57, 58). Deletion of

b-catenin leads to loss of liver zonation, resulting in spontaneous

repopulation of b-catenin+ cells due to hepatocyte death

associated with loss of zonation. The death of hepatocytes also

leads to cancer development from the b-catenin+ cells when

genotoxic chemicals are introduced (29, 58, 59). Similar to

chemical induced injury, steatotic injury has been shown to

induce Wnt signal in the liver and elsewhere (60–63). Together,

these studies suggest that liver steatosis establishes a

microenvironment that promotes the growth of liver cancer

cells and permits the expansion of any initial genotoxic events to

develop into tumors (Figure 1).

Macrophage response to steatotic
liver injury: A double-edged sword
in liver carcinogenesis

The liver is known as an immunosuppressive organ as

illustrated by the lower dose of immunosuppressive therapy
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needed for liver transplantation as compared with other organ

transplantations (64, 65). Liver macrophages play a critical role

in this process. There are 2 basic populations of macrophages in

the liver, the local proliferating Kupffer cells and the infiltrating

monocyte derived macrophages (66). Kupffer cells are located

within the liver sinusoids and play surveillance functions by

monitoring pathogens coming into the liver. Being the largest

tissue resident macrophage population in the body, Kupffer cells

are the first responders in liver immune system. Unlike

monocyte derived macrophages, Kupffer cells are highly

effective in binding and clearing Escherichia coli (E. coli)

brought in via the portal circulation (67).

During homeostasis, Kupffer cells, but not monocyte derived

macrophages, present antigens to induce immune tolerance

through expansion of select regulatory T-cells and inhibition

of T cytotoxic lymphocytes and to induce apoptosis in other T-

cells (64, 68). In response to inflammation that cannot be cleared

by Kupffer cells alone including those induced by pathogens and

injury, inflammatory mediators released by Kupffer cells also

recruit other inflammatory cells including monocytes-derived

macrophages and neutrophils in addition to subsets of CD4+

and CD8+ T lymphocytes and NK/NKT cells (Figure 2). In

particular, neutrophils, being the most abundant leukocytes in

circulation are the first responders to acute inflammation to clear

pathogens and damaged/dying cells. Similar to macrophages,

neutrophils are highly enriched in the steatotic livers and

depletion of neutrophils protects mice from experimentally

induced steatohepatitis (69). Together, these infiltrating

immune cells crosstalk with macrophages to clear pathogens
FIGURE 1

Steatotic Liver Damage Establishes a Tumor Microenvironment. The primary functions of the liver are metabolism and detoxication. Nutrients
from the gut are metabolized in the liver involving the insulin regulated PI3K/PTEN pathway. Wnt/b-catenin signaling also plays important role in
regulating the metabolic and detoxicating functions of the liver as it regulates liver structure and zonation. Following a diet containing high fat,
sugar, cholesterol, or alcohol, activation of these signals results steatosis. The consequence cell death due to steatosis and loss of liver structure
leads to inflammatory cell infiltration. Inflammatory mediators produced due to liver inflammation propagate any genotoxic events as the induce
the proliferation of tumor initiating cells that carry mutations of TERT, CTNNB1, TP53 and to a lesser extend PTEN and MYC as well as others.
The Wnt/b-catenin, PI3K/PTEN and MAPK signaling pathways as well as cytokine and chemokine are all implicated in the proliferation of the
tumor cells and play roles in propagating the initial mutagenic events.
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and damaged tissues. In chronic injury conditions such as those

presented by ALD and NAFLD, these inflammatory cells

establish an environment that is pro-tissue repair and

returning to homeostasis on the one hand; and pro-tumor

growth when genotoxic events are present on the other.

Recognition of damaged hepatocyte-released molecules by

macrophages is important in the propagation of the signals

and the sustained inflammatory response (see later section).

Interaction of macrophages with other cell types such as

cholangiocytes and hepatic stellate cells are also important in

the disease progression and the establishment of the tumor

microenvironment. This review focuses on the role of

macrophages and macrophage produced inflammatory

mediators. The interactions of macrophages with other

inflammatory cells and their function in the tumor immune

environment is also important for liver cancer development (70).
Steatotic liver damage establishes
a pro-inflammatory tissue
microenvironment

Early studies showed that administration of liver toxicants

such as carbon tetrachloride (CCL4) and 3,5-Diethoxycarbonyl-
Frontiers in Oncology 04
45
1,4-Dihydrocollidine (DDC) provoke the growth and infiltration

of macrophages in the liver (71, 72). In patient samples,

macrophages have been observed to be recruited to the NASH

livers (73). These macrophages play roles in the disease

progression of steatosis by producing inflammatory factors

that sustain injury (6, 65, 74). In B6 mice fed HFD to induce

NAFLD, infiltration of immature macrophages that are

CD11b+Ly6ChiLy6G- are observed. These macrophages are

more readily able to produce proinflammatory cytokines than

those from the lean mice controls (75). In mice fed methionine-

choline deficient (MCD) diet to induce NASH, induction of

macrophage proinflammatory genes is found to associate with

more progressive fibrosis (76). Depletion of macrophages using

liposomes to deliver clodronate led to reduced expression of

proinflammatory genes and attenuated the progression to NASH

and fibrosis in mouse models (32, 77). In genetic models where

cytokine signals are manipulated, infiltration of macrophages are

also found to prolong liver injury (78). Deletion of Ccl2 (C-C

motif chemokine ligands 2), a chemokine that recruits

monocytes to the liver, results in reduced liver damage and

fibrosis (76). Treatment with a dual antagonist for CCR2 and

CCR5, receptors for CCL2 and CCL5, significantly reduced

macrophages and protected rats from liver injury in a diet

induced NASH model (79) and has shown promising effects
FIGURE 2

Innate immune system regulate liver repair and tumorigenesis due to steatosis. The liver developed a unique immune response system that
tolerate gut bacterial-induced inflammation while eliminating them at the same time. During hepatocyte homeostasis (grey cells), Kupffer cells
(KC) binds to and eliminate gut bacterial while producing anti-inflammatory cytokines to inhibit CD8+ cytotoxic T cells and induce their
apoptosis. At the same time, Kupffer cells also induce antigen specific CD4+ Treg cells to assume tissue repair functions. In response to chronic
injury presented in NAFLD and liver steatosis (grey cells with lipid droplets), Interleukine-17 (IL-17) and interferon g (IFNg) produce from Tregs
recruit monocyte derived macrophages as well as activating a M1 proinflammatory program in Kupffer cells. The proinflammatory cytokines
produced by these M1 macrophages/Kupffer cells including IL-1, IL-6, TNFa, etc induces hepatocyte proliferation to repair the damaged tissues
and replace apoptotic hepatocytes due to steatosis. These proinflammatory cytokines also establishes a pro-tumor microenvironment as they
propagate any genotoxic events that are present in the tumor initiating cells (orange cells). The M1 macrophage/Kupffer cells also produces
chemokines to promote hepatocyte and tumor cell proliferation, leading to tissue repair and/or tumorigenesis.
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for NASH in phase II clinical trial (80). Inhibiting activation of

Kupffer cells and infiltration of monocytes by deletion of

proinflammatory receptor Trem-1 also significantly attenuated

liver inflammation, injury and liver fibrosis induced by CCL4

treatment (81). Adoptive transfer of Trem1-sufficient Kupffer

cells led to reactivated inflammation and injury, suggesting that

the presence of Trem1-sufficient Kupffer cells can sustain

chronic inflammation. In both CCL4 induced liver injury and

MCD feeding induced NASH mice, pharmacological inhibition,

or deficiency of monocyte chemoattractant protein (MCP-1 or

CCL2) led to reduced liver injury and inflammation (76, 82).

Together, inflammation is thought to be a crucial phase for the

disease progression of NAFLD and the role of macrophages

appear to be important in this progression.
Steatosis induced inflammation
establishes a pro-tumor
microenvironment

Chronic injury and the associated inflammatory responses are

a major link between liver steatosis and cancer development. The

development of liver cancer is a slow process that evolves from

premalignant lesions developed within chronically damaged livers

(83). In chemical induced hepatocarcinogenesis, HFD feeding

promotes hepatic inflammation and exacerbates tumor

development (84). In HCC mice induced by transgenic

expression of hepatitis C virus core protein, HFD feeding to

induce liver steatosis significantly increased tumor incidence

(85). In these mice, the toll-like receptor (TLR) signal involved

in innate immune response was found to promote the

transformation of liver tumor initiating cells (86). In mice

lacking p53 and concurrent expression of c-Myc, T cell

mediated immune surveillance was found to reduce tumor

formation and increase survival. This tumor surveillance is

overcome when the b-catenin pathway is induced by exogenous

expression of active b-catenin, further confirming that b-catenin
signal sustains tumor growth (87). In the Pten deletion model,

steatosis is required for tumor growth and is accompanied by

inflammation and induction of b-catenin (33, 88). It was

discovered that depletion of macrophages reduces Wnt/b-
catenin signals and attenuates tumor growth (32, 89). Together,

these studies suggest steatosis establishes an inflammatory

environment that is pro-tumor growth.

Infiltration and reprogramming of macrophages are

observed in essentially all experimental models and HCC

patients. In HFD fed mice where tumors are initiated by DEN

treatment, macrophage recruitment accompanied chronic liver

injury and liver cancer development (84). In genetic models of

NAFLD-NASH-liver cancer, macrophages also play a dominant

role in promoting liver cancer development. Depletion of

macrophages resulted in reduced tumor incidence in the Pten

deletion mice (32) and this was thought to involve TLR signaling
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(90). Together, this evidence suggests that while macrophages

can produce pro-repair cytokines, sustained presence of

macrophages can prolong liver injury and result in further

liver damage.

During liver repair in response to injury, liver macrophages,

particularly Kupffer cells are credited in producing pro-

mitogenic cytokines to induce the growth of liver progenitor

cells and promote liver regeneration (91–93). Depletion of

macrophages attenuates tissue repair and resulted in

exacerbated fibrogenic phenotype (92) and also led to delayed

recovery of metabolic functions performed by the liver (94).

When inflammation is not resolved, the signals produced by

macrophages exacerbate liver injury and lead to chronic

inflammatory conditions and sustain the production of

proinflammatory cytokines (6, 65). During liver tumorigenesis,

the chronic inflammatory condition and proinflammatory

cytokines promote tumorigenesis by providing the tumor

microenvironment as well as signaling the growth and

promoting the proliferation of tumor initiating cells (91). High

fat diet feeding induces macrophage production of a number of

inflammatory factors and cytokines including interleukins, C-C

ligands (CCLs), interferon g (IFNg) and tumor necrosis factor a
(TNFa) to facilitate hepatocyte proliferation (84). Cytokines

produced by these resident as well as infiltrating macrophages

such as TNFa, transforming growth factor b (TGF-b),
interleukin 6 (IL-6) and 18 (IL-18) are highly associated with

the development and progression of hepatocellular carcinoma

(HCC). In a mouse tumor model established by subcutaneous

transfer of DEN-initiated liver tumor initiating cells, depletion of

macrophages attenuated the progenitor cell properties and

reduced tumor development (95). The presence of

macrophage-produced TNFa also triggers chromosomal

instability in liver tumor initiating cells, permitting

propagation of genotoxic events leading to tumorigenesis (95).

TNFa produced by macrophages are also proposed to promote

the proliferation of liver cancer initiating cells (96). These tumor

initiating cells were found to display similar transcriptome

profiles as the ov-6 positive liver progenitors that express LIN-

28 (97). The expression of LIN-28 allows these cells to respond

to the interleukin-6 (IL-6) signal to proliferate. In MCD diet fed

mice, macrophage reprograming also contributed to the

proliferation of liver progenitors and promoted HCC

proliferation (98). In tumors induced by expression of Myc

and deletion of TP53, upregulation of b-catenin promoted

immune escape of the tumors involving defective recruitment

of myeloid lineage cells that include macrophages (87). As a

potential driver mutation gene, activation of b-catenin is

associated with liver tumor initiation (27, 48). In the Pten

deleted NAFLD-NASH-Tumor mice, b-catenin was found

necessary to sustain the growth of liver tumor initiating cells

as deletion of b-catenin attenuated their growth (32, 33, 88).

Depletion of macrophages suppressed Wnt/b-catenin signal and

led to reduced tumor burden in these mice. TLR4 was found to
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play a role in the macrophage-promoted proliferation of tumor

initiating cells and tumorigenesis in these mice (90). Together,

these data suggest that macrophages may be necessary to both

sustain tumor initiating cell proliferation as well as establishing

the liver injury environment that allows the tumors to grow.
Cytokines in steatosis driven HCC

Inflammatory cy tok ines p lay key ro les in the

communication between macrophages with surrounding cell

types and also reprograming macrophages to different

spectrums of polarizations under given stimulatory conditions,

resulting in high heterogeneity of liver macrophages (99).

Beyond proliferation of resident Kupffer cells and infiltration

of monocyte-derived macrophages, hepatic macrophages are

also stimulated or “reprogrammed” to produce a variety of

pro- and anti-inflammatory cytokines that classify them on the

spectrums of M1 vs. M2 polarization (Figure 3). During steatosis

driven liver cancer development, a complex interaction of anti-

and pro-inflammatory cytokines promotes cell proliferation and

activation of HCC progenitor cells and results in cancer

promotion (95, 97). Like macrophages themselves, these
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cytokines play dual roles in liver cancer development by 1)

promoting proliferation of cancer cells and 2) exacerbating liver

injury to produce a protumor microenvironment.
Proinflammatory cytokines

Several proinflammatory cytokines appear to be induced

during the development and progression from steatosis to liver

injury to cancer (71, 75, 90, 100–106). In patients with chronic

inflammatory and fibrotic liver diseases, analysis of classical

CD14++CD16- monocytes in the liver found that they express

both macrophage and dendritic cell markers with a high capacity

for phagocytosis, antigen presentation, and regulatory T cell

proliferation (103). They also secrete proinflammatory cytokines

including TNFa, IL-6, IL-8 as well as IL-1 consistent with a role

in the wound healing response where proinflammatory

cytokines induce hepatocyte proliferation for tissue repair. In

mice fed a Western diet, tumor progression is associated with a

predominant M1 proinflammatory cytokine vs. the M2 pattern

(83). In ALD, severe liver damage is also accompanied by

significantly elevated M1 proinflammatory macrophage

marker expression in C57Bl/6 mice, whereas less damage is

observed in Balb/c mice where no change of M1 markers is
FIGURE 3

Macrophage Reprogramming in Steatosis Driven HCC. During liver inflammation, Kupffer cells and macrophages express scavenger receptors
(SR) and pattern recognition receptors (PRR) to respond to pathogens and liver damages. Activation of PRR receptors by pathogen activated
molecular pattern (PAMP) and damage activated molecular pattern (DAMP) molecules reprograms hepatic macrophages to produce
inflammatory cytokines/chemokines. The binding of PRRs and SRs to steatotic induced PAMP and DAMPs reprograms hepatocyte macrophages.
The reprogramed M1 macrophages produce a proinflammatory cytokines where the reprogrammed M2 macrophages produce anti-
inflammatory cytokines to mediate the progression of steatosis to cancer. Toll like receptor (TLRs) and NOD-like receptors (NLRs) are two
common PRRs used by PAMP and DAMP to induce macrophage reprogramming. Cluster of differentiation 36 (CD36) belongs to SR family of
receptors and binds to oxidized LDL. Other PRR receptors include the C-type lectin receptors (CLRs) is also expressed on the reprogrammed
macrophages. Binding of these receptors to their ligands such as lipopolysaccharide (LPS), high mobility group box 1 (HMGB1) and oxidized low
density lipoprotein (oxLDL) activates the innate immune response and produce cytokines and chemokines that play important roles in
tumorigenesis. It also activates nuclear factor kappa B (NF-kB) and proliferator-activated receptor (PPAR) and other liver nuclear receptors such
as liver X receptor (LXR) regulates transcriptional reprograming of these macrophages.
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found (104). In morbidly obese patients with NAFLD, reduced

liver M2 anti-inflammatory macrophage marker expression

(increased M1/M2 ratio) is associated with more severe

steatosis. This reduced M2 macrophage phenotype also

correlated with increased hepatocyte cell death and elevated

serum levels of alanine aminotransferase (ALT), a clinical index

of liver injury (107). Together, the proinflammatory cytokines

secreted by macrophages in steatotic liver establishes a pro-

inflammatory tissue microenvironment that can promote

further liver damage and sustained inflammation.

One of the proinflammatory cytokines produced with

steatosis, TNFa, plays a key role in liver carcinogenesis (16,

108). TNFa is a pleiotropic cytokine produced by many cell

types with monocyte lineage cells being the primary source. In

the liver, both Kupffer cells and infiltrating monocytes can

produce TNFa in response to stimulation. TNFa produced by

macrophages was found to promote cancer cell sphere formation

in vitro (95). In this study, TNFa enhances the self-renewal

abilities of the cancer cells. Consistently, in MUP-uPA mice fed

with HFD, development of NASH and HCC are dependent on

macrophage secreted TNFa. Knocking down TNFa Receptor 1

(TNFR1) significantly reduced liver damage and tumor

formation (109). NFkB signal is implicated in this TNFR1

mediated hepatocyte death as deletion of IKKb or NEMO, two

NFkB signal modulators resulted in spontaneous progression of

TNFa mediated hepatitis to cancer (110). In a DEN induced

tumor model, deletion, or inhibition of TNFa resulted in

reduced tumor incidence accompanied by suppressed

activation and proliferation of hepatic progenitors via the

TNFR2-STAT3 pathway (111). Consistent with a role of

TNFa in liver regeneration, hepatocyte growth is also

inhibited, resulting in a shorter lifespan even though tumor

burden was reduced. In CCA, this effect of TNFa signal in

chronic liver injury was shown to be mediated by JNK signaling

and involves mitochondrial reactive oxygen species (ROS)

production (112).

It was determined that hepatic IL-6 expression is

significantly increased in the livers of patients with NASH

(113). IL-6 signals through two pathways on target cell:

classical signaling involves IL-6 binding to its receptor IL-6R

on target cells. In the absence of IL-6R, IL-6 trans-signaling is

induced, which involves an IL-6 binding to cleaved and soluble

IL-6R provided by surrounding cells (114). During

hepatocellular carcinogenesis, IL-6 trans-signaling pathway,

rather than the IL-6 classic signaling contributes to the

development of tumors by enhancing tumor proliferation

through STAT3 and b-catenin activation and stimulating

endothelial cell proliferation to promote tumor angiogenesis

(115). Furthermore, IL-6 induces pre-cancerous progenitor cell

proliferation and transformation into tumor initiating cells (97).

IL-6 treatment in vitro led to early S phase entry in H4IIE HCC

cells as shown by the reduced G0/G1 phase after treatment (116).

IL-6 also contributes to the drastically different HCC incidence
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in male vs female mice treated with DEN (117). Recruitment of

tumor-associated macrophages by the Yes-associated protein

YAP, an oncogene overexpressed in a subset of HCC patients,

also involves IL-6 signaling (118). Similar to the role of TNFa,
IL-6 signals through STAT3 protect from chronic liver injury.

However, the role of IL-6 in liver injury and tumorigenesis is also

context dependent as IL-6 also protects from liver injury by

promoting hepatocyte regeneration. In the multidrug-resistant

gene 2 knockout (Mdr2-/-) mice where 50% of the mice develop

tumors after chronic injury, IL-6 signal deficiency led to more

severe steatosis and inflammation presumably due to the

inability of hepatocyte regeneration/increased hepatocyte

apoptosis after injury (101). Regardless, the resulting

infiltration of macrophages promoted tumor growth and led to

increased tumor burden (101, 119).

Other proinflammatory cytokines including IL-1, IL-8, IL-17,

IL-18 and IFNg may also be produced by macrophages to play

similar roles in liver regeneration and sustain tumor cell growth.

Like IL-6 and TNFa, IL-1 is commonly induced in steatotic livers

when macrophage proliferation and infiltration are induced (17,

77, 84, 120) and is necessary for the whole spectrum of pathologies

associated with steatosis, injury and cancer (104, 106). The

expression of C-X-C receptor 2 (CXCR2), a receptor for IL-8, is

upregulated in both HCC and iCCA. Targeting inhibition of

CXCR2 results in reduced proliferation in Huh7 and HepG2

cells (121). The induction of liver IL-8 also provides signals for

breast cancer cells to escape dormancy when they metastasize to

the liver, suggesting that IL-8 indeed establishes a protumor

environment in the liver (122). Blockade of IL-17 was shown to

protect from liver injury including injuries induced due to

steatosis (123). While macrophages may or may not be the

primary source of IL-17 (124, 125), IL-17 does induce hepatic

macrophage production of IL-6 and TNFa (126, 127). IL-18 is

produced by THP-1 macrophages together with IL-1 in cultures

exposed to hepatitis C virus (128). In the liver, administration of

recombinant IL-18 induces severe liver injury concurrent with

induced IFNg secretion from NK cells (129). Delivery of

neutralizing antibody targeting IL-18 reduced serum ALT levels

and liver inflammation. Together, the proinflammatory cytokines

produced by Kupffer cells and infiltrating monocyte derived

macrophages establishes a sustained inflammatory environment

to promote the growth of hepatocytes. This proinflammatory

environment also acts on tumor initiating cells to propagate the

genotoxic events, leading to tumor development.
Anti-inflammatory cytokines

Macrophage polarization was defined by IL-1b/iNOS

producing macrophages as M1 and Arg-1/IL-10 expressing

macrophages as M2 phenotypes. As the defining M2 cytokine,

IL-10 is one of the best documented anti-inflammatory

cytokines. In HFD feeding or alcohol induced liver injury, IL-
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10 is also induced (84, 108). It was proposed that the Kupffer cell

production of IL-10 is also pro-regeneration and pro-survival for

the hepatocytes (130). During the initial stage of chronic liver

damage, liver macrophages also express C-X-C Ligand16

(CXCL16) to recruit NKT cells (131). This results in the

formation of NKT and Kupffer cell clusters during liver

steatosis. Clustered NKT-Kupffer cells secrete IFNg and IL-10

(23). Another IL-10 family of cytokine, IL-22 also plays a role in

NASH driven hepatocarcinogenesis. IL-22 levels gradually

increase 5 months after the start of DEN treatment. It was

concluded that continuous activation of STAT3 and CyclinD1

sustained IL-22 promoted cell proliferation (132). More recently,

metformin, the antidiabetic drug was found to promote cell

apoptosis through activation of Hippo signaling and to inhibit

IL-22 induced tumor cell proliferation and invasion (133).
Chemokines

Chemokines are released by Kupffer cells, liver sinusoidal

endothelial cells and hepatic stellate cells to recruit infiltrating

immune cells (134). Chemokine levels and their receptors are

elevated in tissue and blood samples from patients with NASH

and HCC compared with healthy and non-tumor controls (135–

142). Among the two primary groups of chemokines, CC

chemokines (CCLs) are known for their ability to recruit

monocytes and lymphocytes, while CXC chemokines (CXCLs)

are potent neutrophil attractants and can promote

angiogenesis (143).

Upon ligand binding, Kupffer cells release CCL2 to recruit

monocytes (144). In Ccl2 deletion mice, reduced inflammatory

cell infiltration is observed (76). Inhibition of CCL2 with an

RNA oligonucleotide that binds to CCL2 or neutralizing

antibody for CCL2 led to reduced monocyte chemotaxis and

reduced macrophage infiltration into the liver (82). These

treatments resulted in reduced production of TNFa and IL-6,

two macrophage produced cytokines. In NAFLD and NASH

livers, macrophages also upregulate CCL3 and this induction of

CCL3 facilitates macrophage infiltration and production of

proinflammatory cytokines (135).

Kupffer cells also release CXCL1,CXCL2 and CXCL8 to recruit

neutrophils (144). In HFD+Alcohol induced liver steatohepatitis,

blockage of CXCL1 was found to reduce hepatic neutrophil

infiltration and significantly inhibit liver injury (145). CXCL2

induction was shown to play a pivotal role in the recruitment of

neutrophils in ConA induced hepatitis (146). In cholestatic patients,

upregulation of CXCL8 and its receptors CXCR1/2 is associated

with neutrophil infiltration whereas macrophage infiltration is

associated with CXCL8 signal upregulation in non-cholestatic

patients (147). This upregulation of CXCL8 signal plays

important roles in the tumor microenvironment (122, 142).

Furthermore, the macrophage derived CXCL9 and 10 are

required for immune checkpoint therapy to block the infiltration
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of CD8+ T cells (148). The release of CXCL10 frommacrophages is

induced by steatosis (149) and deficiency of macrophage lipid

receptor CD36 led to reduced release of CXCL10 in the liver

(150). The role of CXCL5 in steatosis and liver cancer has drawn

attention recently (151). Hepatic CXCL5 expression was higher in

patients with severe fibrosis and cirrhosis (141). Multivariate Cox

analysis of TCGA data identified that among 110 differentially

expressed genes that were associated with HCC overall survival,

CXCL5 and IL18RAP were the only 2 genes that predict the

prognosis independently (142).
Macrophage reprogramming in
steatosis driven HCC

The crosstalk of macrophage with hepatocytes is crucial for

sustaining inflammatory signals during liver injury. In normal

livers, macrophages contribute to normal hepatocytes function by

regulating glucocorticoid signals (152). During liver

inflammation, Kupffer cells and infiltrating macrophages express

scavenger (SR) and pattern recognition receptors (PRR) to readily

respond to pathogens and liver damage (153). Activation of PRR

receptors by pathogen activated molecular pattern (PAMP) and

damage activated molecular pattern (DAMP) molecules produced

primarily by hepatocytes reprogram hepatic macrophages to

produce inflammatory cytokines/chemokines that reverse the

immune-suppressive liver environment and facilitate tissue

repair (154). Scavenger receptors (SRs) are defined as

macrophage receptors for modified lipids in foam cell formation

but can also bind to other bioactive ligands (155). While binding

of PRRs to ligands induces the release of pro- and anti-

inflammatory cytokines and chemokines, uptake of modified

lipids via SRs also leads to removal of the pathogen/damaged

cells that present the recognized molecular patterns in addition to

releasing inflammatory mediators (Figure 4).
Pattern recognition receptors

Macrophages possess a number of different receptors that

recognize intracellular and extracellular PAMPs and DAMPs as

well as membrane bound ligands. This includes the TLR family

of membrane receptors that play key roles in both innate and

adaptive immune response. A cytosolic nucleotide-binding

domain and leucine-rich repeat containing receptors (NOD-

like receptors, NLRs) is another super family of PRR that is

responsible for inflammasome activation which is essential for a

successful immune response. The C-type receptors (CLRs) at the

cell membrane recognize foreign antigens including bacterial

and fungal antigens. Other PRRs including the 5’-triphosphate-

RNA and dsRNA RIG-I-like receptors, as well as several DNA

cytosolic sensors are also expressed in the liver microenvironment.
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In NAFLD and ALD, steatosis induces chronic injury and

hepatocyte damage. The damaged hepatocytes are the major source

for DAMPs in the steatotic liver. For example, bile acid

accumulation in hepatocytes triggers the assembly of NLR protein

3 inflammasome and the subsequent release of IL-1b that can bind

to IL-1 receptors on macrophages. The TLR family members are

high-affinity transmembrane receptors expressed on macrophages

including Kupffer cells (156). The engagement of TLR4 with LPS

triggers the sequential release of proinflammatory cytokines

including TNF, IL-1, and IFN-b and other proinflammatory

mediators such as the high mobility group box 1 (HMGB1)

(157). During fatty liver diseases, free fatty acids also induce

HMGB1 overexpression and secretion from hepatocytes. HMGB1

binds and activates TLR4 receptors on Kupffer cells and induce the

release of proinflammatory cytokines such as TNFa and IL-6 (158).

Similarly, during HFD feeding, hepatocytes release mitochondrial

DNAs which stimulate Kupffer cell TLR9 receptors and subsequent

TNFa secretion. Cholesterol laden lipid droplets formed within

hepatocytes can also activate Kupffer cells through direct contact,

this promotes IL-1b secretion in these Kupffer cells (159).
Scavenger receptors

The distinct characteristic of steatotic liver injury is lipotoxicity.

The accumulation of lipids in hepatocytes results in metabolic and

oxidative stress that not only results in hepatocyte apoptosis but also

directly signals inflammatory responses viamacrophage cell surface

receptors (55, 160, 161). During the pathogenesis of atherosclerosis,
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plaque formation is induced by the foam cells formed when

macrophages scavenge modified low-density lipoproteins (LDL)

and deposit them into the endothelial linings of blood vessels.

Brown and Goldstein identified SR that are responsible for uptake

of the modified LDLs (155). The family of scavenger receptors now

are diverse and bind other DAMPs and PAMPs as well. In addition

to modified and unmodified LDLs, other lipids such as cholesterols

and phospholipids, bacterial pathogens, oxidative particles, and

apoptotic cells are all scavenged by macrophages via these

scavenger receptors (155). In NASH induced by feeding of

Western diet, deletion of macrophage scavenger receptor MSR or

type B1 scavenger receptor CD-36 led to reduced inflammation

likely due to their effects on intracellular cholesterol trafficking in

Kupffer cells (162, 163). In LDL receptor deficient (ldl4-/-) mice fed

HFD, loss of CD36 or MSR resulted in reduced hepatic

inflammation (162). In ConA induced liver injury, it was shown

that CD36 sustains inflammation and expression of

proinflammatory cytokines and is required for C-X-C ligand 10

induced apoptosis of hepatocytes (150).

Uptake of cholesterol via these SRs reprograms liver X receptor

(LXR) regulated transcription in macrophages and attenuates the

expression of anti-inflammatory genes (164, 165). In addition, the

expression of macrophages CD36 and SR-B2 are also subjected to

the transcriptional regulation by the orphan nuclear receptor

peroxisomal proliferator-activated receptor (PPAR) (166–168). In

THP-1 macrophages, it was shown that the downregulation of

CD36 in macrophages likely resulted from reduced PPARg
regulated transcription when ratio of n-6/n-3 polyunsaturated

fatty acids (PUFAs) is reduced (169). PPARg has long been
FIGURE 4

Programing of Hepatic Macrophages by PAMP and DAMP via PRR and SR. In normal, Kupffer cells recognize pathogen induced molecular
patterns (PAMP) such as LPS coming through the portal vein. Kupffer cells clears these bacterial toxins without inducing inflammation to
maintain hepatocyte homeostasis. During steatosis and steatotic injury, PRRs also bind to damage induced molecular patterns (DAMP) released
by hepatocytes. The chronic injury induces proinflammatory responses from Kupffer cells as well as infiltrating macrophages. In addition,
particles released by steatotic hepatocytes are also taken up by macrophages via scavenger receptors (SR). The binding of DAMP and lipid
particles to PRR and SR induces the release of proinflammatory cytokines and chemokines including TNFa, IL-1, IL-6, CCL2 and 3 as well as
CXCL1,2,5, and 8. These inflammatory mediators signals tissue repair and also promotes genotoxic events in liver cancer.
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recognized as a potential receptor for PUFA produced eicosanoids

(170). These effects of PUFAs on CD36 expression and the function

of macrophages to produce inflammatory metabolites are at least

partially mediated through the activation of PPARs by the bioactive

eicosanoids produced from PUFAs (171–173). In fact,

cyclooxygenase 2 (COX-2), one of the enzymes metabolizing

PUFAs to eicosanoids is only expressed in tissue and infiltrating

macrophages in the healthy liver (174). Activation of PPARg by

eicosanoids was found to sustain the production of TNFa, IL-1 and
IL-6 induced by LPS and induce IL-10 downregulation in

macrophages (175). In HFD induced NAFLD, loss of CD47, an

inhibitor for macrophage activation and phagocytosis, leads to

increased production of proinflammatory cytokines involving

activation of PPARa (176). In Kupffer cells, LPS treatment

induced TNFa and IL-6 is attenuated by PPAR agonist

rosiglitazone (177). Thus, via regulation of PPARs, macrophages

scavenge lipid particles to produce both pro- and anti-inflammatory

cytokines (160). These PUFA derivatives including prostanoids,

leukotrienes, HETES, EETs and lipoxins have all been indicated to

promote a protumor inflammatory environment (178). During

hepatocarcinogenesis, inhibiting COX-2 and epoxide hydrolase

led to reduced “cytokine and eicosanoid storm”, resulting in

cancer prevention (179). The treatment with lipoxin A4, a pro-

resolving eicosanoid in inflammation, led to reduced HCC

proliferation induced by activated macrophages (180). Together,

macrophage engulfment of lipids via the scavenger receptors will

result in increased production of PUFA derived eicosanoids. These

eicosanoids can be inflammatory mediators on their own and

induce the production of inflammatory cytokines/chemokines via

the transcriptional activities of nuclear receptors such as PPAR and

others. By producing the proinflammatory eicosanoids and

cytokines, macrophages/Kupffer cells establish a pro-tumor

microenvironment in the injured livers of NAFLD and NASH

(181–183).
The therapeutic potential of
targeting steatosis for liver
cancer treatment

Pathologically, 80% of liver cancer occurs in patients with

underlying liver disease that displays lipid metabolic dysfunctions

known as liver steatosis (184), a condition that develops in all obese

individuals and is commonly associated with liver cancer (5). In a

zebra fish model of HCC promoted by HFD, metformin the first

line drug used for treatment in diabetes, reduced TNFa expressing

pro-inflammatory macrophages leading to increase T-cell

population in the livers, and inhibited cancer progression (185).

In mouse HCC induced by DEN treatment, metformin treatment

reduced the number of foci. This reduction was thought to be an

effect of lowered hepatic expression of interleukin-22 and inhibition

of YAP phosphorylation (133). The binding of metformin directly
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to the C-terminal of HMGB1 may also play roles in its anti-

inflammatory and tumor suppressive functions (186). Statin, a

cholesterol lowering drug has been proposed as treatment for

chronic liver disease (187). NAFLD patients who take more than

600 cumulative daily doses of statin had a 70% reduction in hazards

of developing HCC (HR, 0.30; 0.20-0.43) (188). Longer usage of

more than 5 years and higher doses reduced the rate of NASH

related HCC by 24-35% (189, 190). BothMetformin and Statin may

target AMPK for their lipid reduction function (191). In a HFD

model treated with DEN, AMPK activator reduced tumorigenesis

and IL-6 signaling in the liver (192). Activation of AMPK also

suppresses HCC progression and metastasis induced due to

deficiency of FATP5 (fatty acid transporter protein 5) (193). Loss

of the upstream kinase, LKB1 that phosphorylates and activates

AMPK was also found to synergize with Pten loss to promote liver

cancer development (194). Indeed, Sorafenib, the first line targeted

therapy for HCC suppresses NASH through mechanisms involving

alteration of mitochondrial uncoupling and subsequent activation

of AMPK (195). These observations indicated that mitochondrial

metabolism is an underexplored mechanism that may provide

potential targets for HCC treatment as LKB-AMPK acts as

primary cellular sensors of energy crisis to promote ATP

production. Consistently, plasmas from NASH patients were

found to contain high levels of mitochondrial DNA and these

mitochondrial DNA signal through TLR9 to regulate hepatic

inflammation, acting as a potential mechanism for how steatosis

establishes the proinflammatory tumor microenvironment. In

addition, targeting mitochondrial functions attenuates steatosis

and inflammation in the liver (196, 197). Together, this evidence

suggests that targeting steatosis via reducing lipid burden and/or

a l ter ing mitochondria l funct ion can impact l iver

cancer development.

The majority of liver cancer patients are diagnosed in the

advanced stages of the disease, eliminating surgery or

transplantation the only curative treatment for liver cancer. In

patients with advanced disease, the combination of immune

checkpoint (CPI) therapy such as anti PD-L1 antibody

atezolizumab and the VEGF antibody bevacizumab has become

the new standard of care. PD-L1 is highly expressed by liver

macrophages in the tumor stroma (198). These macrophages

repress the tumor-specific CD8 T-cell activity and induce their

apoptosis through the Fas receptors to promote tumor growth (199,

200). Furthermore, Kupffer cells also stimulate the proliferation of

antigen specific CD4+ Tregs and their release of IL-10 to inhibit the

activities of cytotoxic T lymphocyte (91, 92). Additionally,

prostaglandins produced by Kupffer cells may inhibit T cell

activation (201–203). Together, activation of hepatic macrophages

and their expression of PD-L1 appears to promote tumor escape by

inducing an immune tolerance and reduce immune surveillance.

Patients with NASH and ASH respond poorly (median survival

5.4 months) to CPIs compared to those without steatosis (Median

survival 11 months) (204). Given that CPI blocks the ability of

macrophage/Kupffer cells to induce immunosuppressive
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TABLE 1 Current Therapy for HCC Treatment and Effects of Potential Lipid Modifying Therapy.

Current Treatment Advantage Disadvantage

Resection Potential currative Many patients are diagnosed late

Sorafenib Targeted Poor response rate

CPI Advanced patients Steatosis interfers with response

Potential lipid metabolic targeting AMPK and mitochondrial function

Metformin Promising mouse studies

Statin (600 daily dose) 70% reduction in hazards of developing HCC
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environment in the liver, identifying the hepatic macrophage

produced factors that allow the liver to escape this immune

surveillance may be a key to future therapeutic development

targeted at inflammatory tumor microenvironment associated

with steatosis. As DAMP and PAMP that are present in the

NAFLD/NASH livers, PRR and SR signals that controls the

macrophage response to DAMP and PAMP are considered

potential targets of intervention. A promising dietary intervention

is n-3 fatty acids. Treatment with n-3 fatty acids was shown to

inhibit both protein and mRNA levels of CD36 whereas n-6 fatty

acids activate both (205, 206). In fat-1 transgenic mice fed STZ/

HFD to induce NASH, ubiquitous expression of n-3 desaturase

converts n-6 PUFAs to n-3 PUFAs and led to downregulation of

CD36 and reduced liver damage (207). These dietary intervention

studies suggest that targeting PRR and SR may be promising to

reduce the tumor microenvironment and may work together with

CPI to attenuate tumor growth in the liver.

One interesting discovery in CPI resistance is the role of the

Wnt/b-catenin signal. The Wnt/b-catenin signaling pathway plays

versatile roles in liver metabolism and tumorigenesis (32, 48, 208)

due to its varied functions in different cell types in the liver. As such,

upregulation of b-catenin allows tumors to escape CPI therapy and

is one of the signals highly associated with CPI resistance together

with steatosis (87). Interestingly, steatosis was found to induce

macrophage expression of Wnt and the Wnt/b-catenin signaling

mediates tumorigenesis in mouse models (32, 88). Thus, the

induction of Wnt in macrophages by steatosis may play a role in

the immune escape of these tumors. Further studies to elucidate

how steatosis induces Wnt upregulation in macrophages is

necessary to understand the resistance of steatosis associated liver

cancer to CPI treatment.

Overall, liver cancer is the 6thmost common type of cancer and

the second leading cause of cancer deaths in the world with a

median 10-year survival of just 11 months (209–211). In the liver,

cancer development is highly associated with the development of

steatosis and inflammation. Innate immune system and particularly

Kupffer cells, the residence macrophages, act as the first responders

following steatotic liver injuries. As such, targeting steatosis that

show promising results in attenuating liver inflammation holds

great potential in further therapeutic development as treatment of

liver cancer (Table 1). Additionally, steatosis hinders CPI responses

partially due to their effects on macrophages and macrophage
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production of inflammatory signals. Understanding how Kupffer

cell are reprogramed to interact with innate immune system during

the progression of steatosis is crucial for future therapeutic

development targeted at overcoming resistance to current liver

cancer therapy. Finally, identifying signals within tumor cells that

respond to these protumor inflammatory signals produced by

macrophages will result in novel therapeutic target that can

overcome resistance to immunotherapy. In summary, targeting

macrophages and macrophage interaction with tumor cells

will provide therapeutic potential for steatosis-driven liver

cancer treatment.
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The magic bullet: Niclosamide
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The term ‘magic bullet’ is a scientific concept proposed by the German Nobel

laureate Paul Ehrlich in 1907, describing a medicine that could specifically and

efficiently target a disease without harming the body. Oncologists have been

looking for a magic bullet for cancer therapy ever since. However, the current

therapies for cancers—including chemotherapy, radiation therapy, hormone

therapy, and targeted therapy—pose either pan-cytotoxicity or only single-

target efficacy, precluding their ability to function as amagic bullet. Intriguingly,

niclosamide, an FDA-approved drug for treating tapeworm infections with an

excellent safety profile, displays broad anti-cancer activity in a variety of

contexts. In particular, niclosamide inhibits multiple oncogenic pathways

such as Wnt/b-catenin, Ras, Stat3, Notch, E2F-Myc, NF-kB, and mTOR and

activates tumor suppressor signaling pathways such as p53, PP2A, and AMPK.

Moreover, niclosamide potentially improves immunotherapy by modulating

pathways such as PD-1/PDL-1. We recently discovered that niclosamide

ethanolamine (NEN) reprograms cellular metabolism through its uncoupler

function, consequently remodeling the cellular epigenetic landscape to

promote differentiation. Inspired by the promising results from the pre-

clinical studies, several clinical trials are ongoing to assess the therapeutic

effect of niclosamide in cancer patients. This current review summarizes the

functions, mechanism of action, and potential applications of niclosamide in

cancer therapy as a magic bullet.

KEYWORDS

niclosamide, mitochondrial uncoupler, metabolism, epigenetics, anti-tumor effect,
oncogenic pathways, tumor suppressors, magic bullet
Introduction

In 1907, the German Nobel Laureate Paul Ehrlich conceived the pioneering concept

of the “magic bullet,” a medicine that specifically targets disease without causing harm to

healthy tissues (1). Based on this theory, he identified salvarsan as the first “magic bullet”

for syphilis in 1909. Likewise, oncologists have sought a magic bullet for cancer therapy,

culminating in the discovery of chemotherapy (2). However, generations of oncologists

interpreted the magic bullet as a compound that could target a single protein encoded by
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a crucial oncogene, without proper consideration of the fact that

cancer is a systemic disease that is not driven by a single driver/

mutation (1). In fact, given the genetic heterogeneity of tumors,

targeting the gene product(s) of any single mutation would lead

to the selective outgrowth of a cancer cell population carrying

other mutations, resulting in drug resistance and relapse (3).

Thus, targeted therapy and other current cancer therapies that

pose pan-cytotoxicity in patients, such as chemotherapy and

radiation therapy, do not qualify as magic bullets. A true “magic

bullet” for cancer treatment remains to be identified.

According to Otto Warburg, the inhibition of mitochondrial

respiration leading to enhanced lactate production from

glycolysis, namely the Warburg effect, is the primary cause of

tumorigenesis (4, 5). The electron transport chain (ETC)

coupled to ATP synthesis represents the core function of

mitochondrial respiration. Based on Warburg’s theory, we

hypothesize that activating the ETC could reverse the

Warburg effect and inhibit tumorigenesis. A potential

candidate is the mitochondrial uncoupler niclosamide, an

FDA-approved anthelmintic medicine that has been used to

treat tapeworm infestations for nearly 50 years 6. Recently, a

number of studies and clinical trials have aimed to repurpose

niclosamide for Covid-19 and cancer treatment (6, 7).

Accumulating evidence indicates that niclosamide is a

pleiotropic compound that targets multiple biological

processes and signal pathways. Because niclosamide shuttles

electrons across the mitochondrial inner membrane to activate

the ETC, niclosamide reprograms intracellular metabolism (8),

which can impact cellular epigenetic regulation at the

transcriptional, translational, and post-translational levels (9,

10). Furthermore, the ability of niclosamide to modify the global

epigenetic landscape through metabolic reprogramming (8) may

explain its ability to simultaneously inhibit oncogenic signaling

pathways and activate tumor suppressor signaling pathways.

The fact that a modulator of metabolism, such as niclosamide,
Frontiers in Oncology 02
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inhibits tumorigenesis through potentially pleiotropic

mechanisms further validates Warburg’s hypothesis: the

primary cause of tumorigenesis is metabolic reprogramming.
The discovery, nomenclature,
formula and structure
of niclosamide

Niclosamide, also known as Bayluscide, was first discovered

in the Bayer chemotherapy research laboratories in 1958 (11)

through screening chemical compounds against the aquatic

pulmonated gastropod mollusk Biomphalaria glabrate, an

intermediate host for the human parasitic trematode

Schistosoma mansoni. As a secondary carboxamide that goes

by the name of 5-Chloro-N-(2-chloro-4-nitrophenyl)-2-

hydroxybenzamide in the IUPAC nomenclature system,

niclosamide is a product formed through the condensation of

the carboxy group of 5-chlorosalicylic acid with the amino group

of 2-chloro-4-nitroaniline (Figure 1A). The molecular

formulation of niclosamide is C13H8Cl2N2O4 with a molecular

weight of 327.12 Dalton (Da). Niclosamide is considered

thermally stable, with hydrolysis only happening by boiling in

concentrated alkalis or acids (12).
Applications of niclosamide as an
anthelmintic drug

Niclosamide is a widely used anthelmintic drug in the

treatment of parasitic infections. It was approved by the FDA

in 1982 and listed in the World Health Organization’s list of

essential medicines (13, 14). It is generally taken at a 2g single
A B

FIGURE 1

The structure of niclosamide (A) The structure and formulation of niclosamide. (B) The structure of salicylamides, which are weakly acidic
phenolic compounds consisting of two basic chemical structures: a salicylic acid ring and an anilide ring.
frontiersin.org

https://doi.org/10.3389/fonc.2022.1004978
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Jiang et al. 10.3389/fonc.2022.1004978
dose for adults and 1-1.5g single dose for the children4. For D.

latum, T. saginata, D. caninum, and T. solium, a single dose of

niclosamide is effective. Because niclosamide is not effective

against mature H. nana cysts, effective treatment regimens

require repeated daily doses for 1 week to completely eradicate

the infection (13). In humans and animals, niclosamide is

partially absorbed in the intestinal canal and rapidly

eliminated by the kidney (11). The original pharmacokinetics

study showed that the maximal serum concentration can reach

0.25-6.0ug/ml (0.76-18.34 µM) following administration of a

single 2g dose (11). The native form of niclosamide, along with

its derivatives 2’,5-dichloro-4’-aminosalicylanilide and 2’,5-

dichloro-4’-acetaminosalicylanilide, has been shown to be

completely eliminated from the human body within 1-2 days

(11). Overall, niclosamide shows a significant anthelmintic effect

along with a strong safety profile and tolerability in humans.
Mechanism of action: Mitochondrial
uncoupling

Mitochondrial uncoupling is a process that dissipates the

proton gradient across the inner mitochondrial membrane,

inhibiting ATP synthesis and activating the ETC to promote

NADH oxidation (15, 16). Niclosamide is a derivative of

salicylamides, a class of potent mitochondrial uncouplers (17–

20). Salicylamides are weakly acidic phenolic compounds

consisting of two basic chemical structures: a salicylic acid ring

and an anilide ring (Figure 1B). In general, drugs with

uncoupling properties possess three characteristics: an acid

dissociable group, a bulky hydrophobic moiety, and strong

electron-withdrawing group (21). In the case of salicylamides,

the salicylic acid ring and anilide ring serve as the acid-

dissociable group and bulky hydrophobic moiety, respectively,

while the amide group is the electron-withdrawing group (22).

Structural studies have determined that the formation of a six-

membered hydrophobic ring between a -NH in the aniline moiety

and a phenolic -OH in the salicylic acid moiety by intramolecular

hydrogen bonding contributes to the high hydrophobicity and

structural stability important for uncoupler activity (21, 22).

These chemical structures are absolutely essential for the

mitochondrial uncoupling activity of salicylamides (22–25). For

example, replacing the phenolic hydroxyl (-OH) group to a methyl

(-CH3) of niclosamide is thought to abolish its mitochondrial

uncoupling activity, resulting in a loss of anti-growth effect in

both wild-type or p53-null cancer cells, suggesting that the

antitumor effect of niclosamide relies on its uncoupling function

(20). A signaling mechanism by which this effect is thought to be

mediated involves niclosamide decreasing the mitochondrial

potential to inhibit ATP synthesis (Figure 2A), leading to the

activation of AMPK and the induction of either cell cycle arrest

or apoptosis (15, 18–20). Nonetheless, a potential downside exists;
Frontiers in Oncology 03
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namely, the hydrophobic properties of mitochondrial uncouplers

may limit their bio-availability as drugs.

A potential solution to the aforementioned challenge is

niclosamide ethanolamine (NEN), a salt form of niclosamide

that also functions as a mitochondrial uncoupler with a superior

safety profile and enhanced bioavailability (11, 26). Alasadi et al.

reported that NEN treatment enhances pyruvate entry into

mitochondria, and reduces glucose flux to the pentose

phosphate pathway, serine synthesis, and lactate production

(15). Recently, we discovered that NEN activates the ETC to

boost NADH oxidation, thereby leading to an increased

intracellular NAD+/NADH ratio and driving the TCA cycle

forward. The NAD+/NADH ratio dictates the equilibrium of

pyruvate/ lac tate and a-ketoglutarate (a-KG)/L-2-

hydroxyglutarate (L2-HG) (27–29). Excessive lactate

production is a hallmark of the Warburg effect, and 2-HG is a

competitive inhibitor of a-KG-dependent dioxygenases such as

DNA demethylase ten eleven translocation enzymes (TET) (30,

31). NEN treatment increases the intracellular pyruvate/lactate

ratio, the a-KG/2-HG ratio, and total intracellular a-KG levels,

leading to a reversal of the Warburg effect and the induction of

cellular differentiation (Figure 2A). Consistent with these

observations, NEN treatment induces promoter CpG island

demethylation and epigenetic landscape remodeling

(Figure 2B) (8). In neuroblastoma cells, many genes activated

by NEN treatment are involved in neurogenesis, nervous system

development and neuron differentiation. The NEN-upregulated

genes are enriched in the favorable prognosis gene signatures,

while the NEN-downregulated genes are more enriched in

unfavorable prognosis gene signatures. Consistent to the

prognosis gene signatures changes, NEN treatment not only

reduced the tumor growth but also prolonged the survival for

tumor bearing mice (8). In vivo, NEN treatment also effectively

increased the NAD+/NADH ratio and reduced lactate and 2-HG

levels in xenograft tumors (8).

Together, these data suggest that when the ETC is inhibited,

a shift towards more Warburg-like metabolism leads to cell

dedifferentiation, a consequence of global epigenetic remodeling

rather than alterations within a single gene or a pathway. Thus,

activating the ETC with mitochondrial uncouplers not only

antagonizes the Warburg effect by promoting TCA cycling,

but also redirects the cellular epigenome and transcriptome

towards that of a differentiated state. This highlights the

advantage mitochondrial uncouplers hold over other drugs:

the ability to target many oncogenic pathways simultaneously.
Common signaling targets
of niclosamide

Multiple studies have now demonstrated the anti-cancer

efficacy of niclosamide (6, 32). In this section, we summarize the
frontiersin.org

https://doi.org/10.3389/fonc.2022.1004978
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Jiang et al. 10.3389/fonc.2022.1004978
major oncogenic and tumor suppressor signaling pathways that are

modulated upon niclosamide treatment (Figure 3, Table 1).
Oncogenic pathways

Wnt/b-catenin
The Wnt/b-catenin pathway is a developmental signaling

pathway that regulates multiple key cellular biological processes

including proliferation, migration, genetic stability, polarity,

apoptosis, differentiation, and stem cell renewal (70, 71). The

Wnt/b-catenin pathway is commonly dysregulated in many
Frontiers in Oncology 04
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cancer types, leading to research into the role of WNT

signaling in tumorigenesis and the subsequent development of

various Wnt signaling inhibitors for cancer therapies. In the

absence of Wnt ligands, cytosolic b-catenin is sequestered by its

destruction complex APC, axis inhibitor (AXIN), casein kinase

1a (CK1a), and glycogen synthase kinase 3b (GSK3b) (72).

Subsequently, phosphorylation of b-catenin by both CK1a and

GSK3b marks itself with ubiquitination by E3 ligases b-
transducin repeat–containing protein (bTrCP), resulting in

proteasomal degradation (71, 72). Conversely, when

extracellular Wnt protein binds to a heterodimeric complex of

Frizzled receptors (FZD) and coreceptors low-density
A

B

FIGURE 2

Mitochondrial uncoupling reprograms metabolism and epigenetic landscape (A) Mitochondrial uncouplers dissipate the proton gradients which
are essential to ATP synthesis, resulting in reduction of ATP/ADP ratio. When proton gradient reduce, the electron transfer chain, particularly
complex I, are activated, leading to increased intracellular redox NAD+/NADH ratio. Given the NAD+/NADH ratio is the major driving force for
TCA cycle, the oxidative TCA cycle and glutaminolysis are accelerated. Because the chemical equilibrium of many metabolites pair such as a-
KG/2-HG and pyruvate and lactate (not show in the figure) are dictating by NAD+/NADH ratio. Thus, increased NAD+/NADH mediated by
mitochondrial uncoupler shift the equilibrium from 2-HG to a-KG, resulting in increased a-KG/2-HG ratio. In the other hand, opposite to the
oxidative TCA cycle, the reductive TCA cycle particular reductive carboxylation is inhibited by mitochondrial uncoupler. (B) The increased a-KG/
2-HG ratio activates the a-KG-dependent dioxygenases such as TET and PHD, leading to DNA demethylation and HIFs protein degradation.
These epigenetic rewiring activate the expression of differentiation makers and repress the stemness genes, consequently, cell differentiation.
Created with >BioRender.com.
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lipoprotein receptor-related proteins 5 and 6 (LRP5/6), the

cytoplasmic tail of LRPs is phosphorylated, recruiting axis

inhibition (AXIN) and the destruction complex to the cell

membrane and activating dishevelled (DVL). The activated

DVL represses the destruction complex of b-catenin, allowing
the cytoplasmic accumulation and nuclear translocation of b-
catenin. Subsequently, nuclear b-catenin interacts with T-cell

factor/lymphoid enhancing factor (TCF/LEF) to induce the

expression of specific target genes (71, 72).

Niclosamide inhibits Wnt/b-catenin signaling at multiple

levels. Employing a primary imaged-based GFP fluorescence

assay that uses Frizzled1 endocytosis as the readout to perform a

high-throughput screen, Chen et al. reported that niclosamide

downregulates Dishevelled-2 protein levels, antagonizing the

Wnt3A-mediated induction of b-catenin and its downstream

transcriptional activity (33). Ensuing studies have reported on

the efficacy of niclosamide in targeting Wnt/b-catenin pathway

in a wide spectrum of cancer types including prostate (34),

ovarian (39), breast (34, 35), colorectal (36–38), pancreatic (41),

and neuroblastoma (8). Niclosamide-driven Dishevelled-2 and

Frizzled 1 degradation may also rely on the induction of

autophagosomes (36, 38). Autophagosomes are double-

membrane sequestering vesicles, originating from phagophores

that engulf parts of the cytoplasm, eventually fusing with

lysosomes to initiate substrate degradation (73). In support of

this model, Frizzled 1 or b-catenin co-localizes with LC3, an

autophagosome marker, in niclosamide-treated cells.

Furthermore, niclosamide-mediated inhibition of Wnt/b-
catenin signaling is rescued by the autophagosome inhibitor 3-

MA and is attenuated in autophagy-deficient ATG5−/−MEF cells
Frontiers in Oncology frontiersin.org05
62
(38). At the signaling receptor level, niclosamide suppresses

LRP6 expression and phosphorylation, leading to a block in b-
catenin stabilization induced by Wnt3A without affecting the

expression level of Dishevelled-2 (34, 39). Niclosamide was also

reported to bind GSK3 directly, resulting in disruption of the

Axin-GSK3 complex and attenuation of canonical Wnt activity

(37). A recent study reported that niclosamide increases GSK-3b
phosphorylation to promote the ubiquitin-mediated

degradation of b-catenin (41). The mechanism of Wnt

pathway inhibition by niclosamide is summarized in Figure 4.

K-Ras
KRAS is the major mutated isoform of the Ras gene in

cancers, including in∼85% of all cancers (74, 75). Cancers driven by

mutant KRAS proteins are considered refractory to most therapies.

Given the “undruggable” tertiary structures of Ras, a potent and

selectiveRas inhibitor remainedelusive for clinical useuntil Sotorasib

was approvedby theUSFoodandDrugAdministration inMay2021

to target the growth of tumors caused byKRASG12Cmutation (42,

76).Nonetheless,more options are needed to targetKRASmutation-

driven malignant transformation.

Surprisingly, niclosamide activated GSK-3 through

disruption of the Axin-GSK3 complex (37), leading to Pan-Ras

or K-Ras protein degradation (42). Ras degradation can be

rescued by pharmacological GSK-3 inhibition with the GSK-3

inhibitor BIO, suggesting that niclosamide inhibits Ras signaling

in a GSK-3 dependent manner. In addition, niclosamide

suppresses Ras activity at various levels in colon cancer cells

regardless of mutational status and inhibits G12V mutant K-

Ras-induced transformation (42).
FIGURE 3

Niclosamide activates tumor suppressors and inhibits oncogenic pathways. Niclosamide has anti-tumor effect through inhibiting multiple
oncogenic pathways such as Wnt/b-catenin, Ras, Stat3, Notch, E2F-Myc, NF-kB and mTOR, and activating tumor suppressor signaling such as
p53, PP2A and AMPK. Created with BioRender.com.

https://BioRender.com
https://doi.org/10.3389/fonc.2022.1004978
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Jiang et al. 10.3389/fonc.2022.1004978
Stat3
Hyperactive STAT3 drives cancer progression by promoting

cell proliferation, angiogenesis, migration, invasion, and

immune invasion (77, 78). Hyper-activated growth factor

signaling and overexpression of stimulatory receptor-ligand

pairs contribute to constitutive STAT3 activation,

characterized by phosphorylation of Y705 and nuclear

translocation of STAT3. Specific inhibitors like ‘Stattic’ have

been developed to target Y705 for STAT3 inhibition (79).

However, recent studies showed that STAT3 is activated by

Y727 phosphorylation independent of Y705 status in trible

negative breast cancer, thereby attenuating the effect of STAT3

inhibitor ‘Stattic’ (80).

Niclosamide was identified as a potent inhibitor of STAT3

after screening 1500 clinical-approved compounds in a STAT3
Frontiers in Oncology 06
63
reporter system (45). Niclosamide treatment inhibits

phosphorylation and nuclear translocation of STAT3, leading

to the repression of STAT3 transcriptional activity. Moreover,

STAT3 dephosphorylation induces cell cycle arrest and

apoptosis in Du145 cells expressing constitutively active

STAT3 (45). More importantly, Pranay et. showed the

niclosamide not only reduces the phosphorylation of the

canonical site Y705 but also the phosphorylation of the non-

canonical site Y727 (81). Aberrant activation of STAT3 by

chemotherapeutic drugs or radiotherapy causes therapy

resistance, which can be overcome by niclosamide-mediated

STAT3 inhibition (46, 47, 49–51). Beyond affecting cancer

cell-intrinsic signaling, niclosamide can regulate signals

communicated from other cel l types in the tumor

microenvironment such as adipocyte-mediated epithelial to
TABLE 1 Niclosamide activates tumor suppressor and inhibit oncogenic pathways.

Target pathway Effect of niclosamide Cancer type Reference

Oncogenic pathways Wnt/b-catenin Inhibition sarcoma (33)

prostate (34)

breast (34, 35)

colon (36–38)

ovarian (39)

pancreas (40, 41)

KRAS Inhibition colon (42)

liver (43)

ovarian (44)

STAT3 Inhibition prostate (45, 46)

lung (47, 48)

colon (49, 50)

breast (51, 52)

liver (53)

Notch Inhibition colon (54)

liver (55)

E2F Inhibition neuroblastoma (8)

N-myc Inhibition neuroblastoma (8)

c-Myc ovarian (56)

NF-kB Inhibition ovarian (44, 56)

leukemia (57, 58)

mTOR Inhibition breast (59)

cervix (60, 61)

lung (62, 63)

ovarian (64)

HIF1a Inhibition colon (65, 66)

lung (67)

neuroblastoma (8)

Tumor suppressors p53 Activation ovarian (20)

neuroblastoma (8)

AMPK Activation liver (18, 68)

PP2A Activation lung (69)
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mesenchymal transition through inhibition of the interleukin-6/

STAT3 signaling axis (52).

Notch
Like the Wnt/b-catenin pathway, Notch is also a

developmental signaling pathway dysregulated in cancer that can

promote cell proliferation, angiogenesis, invasion and migration,

and immune evasion (82, 83).When cognateNotch ligands bind to

Notch receptors, the Notch receptor is cleaved and released from

the cell membrane. Subsequently, the released Notch Intracellular

Domain translocates into the nucleus and regulates expression of

Hes and Hey family genes such as p27cip1/waf1, p21.cyclin D1, c-

Myc, Survivin, slug, and Nanog (84).

It was reported that niclosamide decreases the protein

expression of Notch1, Notch2, and Notch3 in colon cancers

and is associated with the inhibition of cell proliferation,

repression of cell migration, and induction of apoptosis (54).

Another study employed niclosamide-loaded pluronic

nanoparticles (NIC-NPs) to treat thioacetamide-induced

hepatocellular carcinoma (HCC) in rats (55). The researchers

found that NIC-NPs treatment restores liver integrity, reduces

alpha-fetoprotein (AFP) levels, and inhibits Notch signaling by

reducing notch1 mRNA levels.
E2F and Myc
E2Fs are the ultimate effectors of the cyclin-dependent

kinase (CDK)–RB–E2F axis, the central transcriptional

pathway driving cell cycle progression. Dysregulation of one or

more components of this axis such as CDKs, cyclins, the CDK

negative regulator, and/or the RB family of proteins is common
Frontiers in Oncology 07
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in all cancers, leading to hyperactive oncogenic E2F activity and

unrestrained proliferation (85–87). TheMYC oncogene plays an

important role in the tumorigenesis of many cancer types, is

deregulated in >50% of human cancers, and is generally

associated with unfavorable patient prognosis (88–91).

Reported cellular functions of MYC include amplifying

transcription of already existing gene expression programs,

promoting DNA replication, increasing protein synthesis, and

reprograming metabolism to support cell proliferation (90–92).

Additionally, MYC is essential for maintaining stemness and for

rewiring the tumor microenvironment to evade the immune

system (91). Given the “undruggable” protein structure of the

Myc protein, targeting Myc directly in cancer treatment has been

a challenge for decades (89, 91).

Multiple levels of crosstalk exist between E2Fs and Myc.

E2F1, E2F2 and E2F3 were shown to bind the promoter region

and activate the transcription of the MYCN gene in MYCN-

amplified neuroblastoma (93). Furthermore, overexpression of

the Cdk-inhibitor p16INK4A inhibits E2F activity, resulting in

MYCN repression. However, overexpression of E2Fs fails to

activate MYCN transcription in MYCN non-amplified

neuroblastoma, indicating that E2Fs are necessary but not

sufficient regulators of MYCN (94). In addition, MYCN

overexpression induces E2F5 expression and promotes cell

proliferation in neuroblastoma (95).

Due to the known crosstalk between E2F and Myc, we

wondered whether E2F and Myc can be simultaneously

targeted with a single intervention. We recently observed that

a salt form of niclosamide, niclosamide ethanolamine (NEN),

reduces the mRNA and protein expression of MYCN in vitro
FIGURE 4

Niclosamide inhibits Wnt pathway through multiple mechanism. The Wnt pathway inhibition by niclosamide depends on multiple ways of
action: (1) Niclosamide suppresses LRP6 expression. (2) Niclosamide promotes the degradation of Frizzled 1 and Dishevelled-2 through
autophagy. (3) Niclosamide binds GSK3 directly, resulting in disruption of the Axin-GSK3 complex and attenuation of canonical Wnt activity.
Created with BioRender.com.
frontiersin.org
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and in vivo. In line with the reduction of MYCN, MYCN target

genes are globally deregulated by NEN treatment (8). NEN also

reduces expression of E2F target genes. Notably, our findings are

supported by another study that utilizded a secreted Gaussia

luciferase reporter system (56) to show that niclosamide

treatment reduces MYCN transcription.

NF-kB
The transcriptional factor NF-kB contributes to cancer

initiation and progression, metastasis, and therapeutic

resistance in human cancers (96–98). Constitutive activation of

NF-kB activity caused by the inflammatory microenvironment

and various oncogenic mutations are observed in many cancer

types. NF-kB activation promotes cancer cell proliferation,

suppresses cel l apoptosis , and activates epithelial–

mesenchymal transition to initiate metastasis (96, 97).

Inhibition of NF-kB in tumor cells prevents tumor

progression, making the NF-kB pathway an attractive

therapeutic target (97). Under basal conditions, the inactive

NF-kB complex (IKK, p65 and p50) is retained in the cytosol.

Upon stimulation by factors such as TNFa , IkB is

phosphorylated and degraded by ubiquitinylation via a multi-

step process. The remaining NF-kB complex (p65 and p50) is

then translocated into the nucleus to activate target gene

transcription (99).

Niclosamide was reported to suppress NF-kB signaling and

tumor growth in acute myelogenous leukemia (AML) (57, 58)

and ovarian cancer (56). Mechanistically, niclosamide inhibits

TNFa-mediated phosphorylation and degradation of ikba,
thereby inhibiting the phosphorylation and translocation of

p65 to the nucleus (57, 100, 101). In line with the reduction of

nuclear NF-kB, niclosamide represses NF-kB–mediated gene

transcription as determined by luciferase reporter assays

(56, 57).

mTOR
Mammalian/mechanistic target of rapamycin (mTOR) is a

serine/threonine kinase that senses nutrients, growth factors,

and environmental cues to regulate various fundamental cellular

processes such as protein synthesis, autophagy, growth,

metabolism, aging, and regeneration (102, 103). The mTOR

pathway is frequently dysregulated in human cancers, rewiring

cancer cell metabolism and the tumor microenvironment to

promote tumor progression (102, 103).

Niclosamide was reported to inhibit mTOR signaling in lung

cancer, ovarian cancer, cervical cancer, and the diabetic mouse

kidney (61–64, 104). Accumulating evidence suggests that

niclosamide-mediated mTOR inhibition may be accomplished

through at least two distinct mechanisms. First, as a

mitochondrial uncoupler, dissipating the mitochondrial proton

gradient leads to a reduction in intracellular ATP and increase in

the AMP/ATP ratio, resulting in the activation of AMP-
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activated protein kinase (AMPK) (8, 15, 18). AMPK activation

inhibits mTOR directly through inhibitory phosphorylation of

the mTORC1 subunit Raptor at Ser-792 or indirectly through

disrupting the TSC2-Rheb axis (102). Second, Bruno et al.

showed that niclosamide does not interact with or inhibit

neither upstream PI3K/AKT signaling nor mTORC1 itself

(59). Instead, the protonophoric activity of niclosamide is

essential for dissipating protons (down their concentration

gradient) from lysosomes to the cytosol and effectively

lowering cytoplasmic pH, resulting in mTOR inhibition.

Therefore, by suppressing mTOR signaling, niclosamide can

a l so induce au tophagy by inh ib i t ing au tophag i c

degradation (60).

HIF
Hypoxia is a common tumor microenvironment stress that

induces DNA methylation (105) and generation of the

oncometabolite 2-hydroxyglutarate (2-HG) (27, 29) and is

associated with poor prognosis and therapeutic resistance (106).

By using a hypoxia inducible factor 1 subunit alpha

(HIF1a)-based luciferase reporter system as the read-out for

high-throughput screening, niclosamide was identified as an

inhibitor of HIF1a signaling with an approximate IC50 of 1.59

µM (65). Niclosamide inhibits HIF1a signaling to enhance the

effects of radiation in non-small cell lung cancer (67) and blocks

EGF-induced HIF1a signaling to repress tumorigenesis and

invasion in colorectal cancer (66). Recently, we found that

NEN represses both HIF1a and HIF2a protein and HIF target

genes such as PDK1, PDK3, PGK1 and LDHA in both normoxia

and hypoxia (8). Because HIF-1a and HIF-2a degradation relies

on a-KG-dependent prolyl hydroxylases (PHDs), which can also

be inhibited by 2-HG (31), we reasoned that niclosimide-

mediated HIF1a/HIF2a inhibition could result from

diminished generation of 2-HG from a-KG (8).
Tumor suppressors

In addition to inhibiting oncogenic pathways, niclosamide

was also reported to activate or restore tumor suppressor

signaling (Figure 3A, Table 1)

p53
Often referred to as “the guardian of human genome,” the

p53 protein is crucial for modulating DNA repair, cell division,

survival, and metabolism (107–109). Following DNA damage,

p53 plays a critical role in determining whether the cell initiates

the DNA repair process or induces programmed cell death to

eliminate damaged DNA. By preventing cells harboring mutated

or damaged genes from dividing, p53 prevents tissues from

acquiring cancer fitness-promoting genomic alterations (109).

While loss of wild-type p53 is common in cancer, tumor-
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associated p53 missense mutations can actually provide gain of

function rather than simply loss of wild-type tumor-suppressing

function. Mutant p53 proteins switch from a tumor suppressor

to an oncogenic protein, promoting proliferation, cell survival,

invasion, and metastasis (107, 108, 110).

A chemical library screen revealed that the mitochondrial

uncoupling function of niclosamide selectively kills p53-

deficient cells by triggering intracellular calcium flux leading to

the release of arachidonic acid, a fatty acid normally detoxified

by the p53 targets ALOX5 and ALOX12B in wild-type cells (20).

One could envision that the synthetic lethality between

mitochondrial uncoupling and p53 loss would confer

niclosamide tumor-suppressor functions by establishing a

metabolic environment favoring the outgrowth of p53 wild-

type cells. Moreover, niclosamide increases the expression of p53

at both the mRNA and protein level (8, 20). In adult cancers,

TP53 is often mutated, yet in pediatric cancers such as

neuroblastoma, TP53 mutations are very rare (111). Instead,

p53 is typically silenced epigenetically through promoter

methylation (111). Both NEN and 5-AZA treatment increase

p53 protein levels in NB16 and SK-N-BE(2) cells, suggesting that

mitochondrial uncoupling can upregulate p53 in NB cells

through DNA demethylation.

AMPK
AMPK is a highly conserved central energy sensor that

coordinates energy status with intracellular metabolism during

cell growth, development, and adaption to stress (112). AMPK is

an essential downstream effector of the tumor suppressor LKB1,

which signals to COX-2 (cancer progression), ULK1/2

(autophagy), ACC1/2 (Fatty acid metabolism), mTOR (cell

growth and protein synthesis), and p53 (apoptosis) (113–115).

As described before, niclosamide dissipates the

mitochondrial proton gradient requisite for ATP synthesis,

leading to the reduction of intracellular ATP and an increased

AMP/ATP ratio, culminating in the activation of AMP-activated

protein kinase (AMPK) (8, 15, 18). Additionally, niclosamide

may activate AMPK through a mechanism independent of the

increased AMP/ATP ratio, namely through the AMPK b2
subunit (68).

PP2A
Protein phosphatase 2A (PP2A) represents a family of

ubiquitously expressed serine–threonine phosphatases that

maintain cellular homoeostasis through regulating many

important kinase-driven intracellular signaling pathways such

as Akt, p53, c-Myc, and b-catenin (116, 117). The protein

phosphatase 2A (PP2A) has a well-established role as a

regulator of the cell cycle, signal transduction, and apoptosis.

Loss of activity due to mutation in some of its subunits or the
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PP2A phosphatase activator (PTRA) is frequently observed in

many cancer types, leading to neoplastic transformation (118,

119). In addition, CIP2A, an endogenous inhibitor of PP2A, is

upregulated in many cancer cells, including non-small cell lung

cancer (NSCLC) cells (120).

High-throughput screening identified niclosamide as a

potent inhibitor of cancerous inhibitor of protein phosphatase

2A (CIP2A), leading to the activation of PP2A (69). The

inhibitory effect of niclosamide on CIP2A depends on the

reduction of CIP2A transcription, leading to lower CIP2A

mRNA and protein levels and increased PP2A activity (69).
Niclosamide regulates
cellular epigenetics

DNA methylation is controlled by de novo methylation by

DNA methyltransferases (DNMTs) and/or demethylation by

DNA demethylases (121). Ten-eleven translocation (TET) DNA

demethylase uses a-ketoglutarate (aKG) as the substrate to

convert 5mC to 5-hydroxymethylcytosine (5hmC), followed by

further reactions to remove methylation (122, 123). The two

enantiomers of 2-hydroxyglutarate (2-HG) exert similar effects

on TET and other a-KG-dependent dioxygenases but are

generated under different conditions. The D-enantiomer (D-2-

HG) is produced through gain-of-function point mutations in

isocitrate dehydrogenases (IDH1/2) (124). In hypoxic tumor cells,

including NB cells, the relatively lower NAD+/NADH ratio favors

the conversion of aKG to the L-enantiomer (L-2-HG) (27, 29).

Recent reports have shown that a-KG promotes pancreatic cancer

and colon cancer cell differentiation through reduced DNA

methylation (125, 126). However, because the hypoxic tumor

microenvironment promotes the conversion of a-KG to 2-HG,

preventing this metabolic reaction presents a major challenge in

cancer therapy.

Although inhibitors of mutant IDH enzymes exist and are

being evaluated in the clinic (some has been approved by FDA,

find it out and specify), an effective therapeutic strategy to inhibit

L-2-HG production remains elusive. L-2-HG is a more potent

inhibitor of a-KG dependent dioxygenases (31, 127). Tumor

hypoxia develops when tumor growth exceeds the ability of

available vasculature to supply tumor cells with oxygen and

nutrients. Clinically, tumor hypoxia is a significant obstacle to

treatment because hypoxic tumor cells are more resistant to

radiation therapy (128, 129) and chemotherapy (130–132). It

was reported recently that DNMT inhibitor (DNMTi) treatment

overcomes hypoxia-induced chemoresistance (133), suggesting

that DNA hypermethylation under hypoxia can cause

chemoresistance. DNA hypermethylation is reinforced through

hypoxia-mediated repression of TET activity (105). Due to their
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similar chemical structures, 2-HG inhibits a-KG-dependent
enzymes, including TET and Jumonji C domain-containing

proteins (JMJDs) (31, 134), leading to hypermethylation of

DNA and histones that blocks cellular differentiation.

Therefore, under the low NAD+/NADH ratios observed in

solid tumors, the potential to use a-KG as a cancer

demethylation agent is limited. In addition, both D-2-HG and

L-2-HG inhibit other a-KG-dependent dioxygenases such as

prolyl hydroxylase domain (PHD) proteins to stabilize hypoxia

inducible factor (HIF) a subunits and activate HIF signaling (27,

31) (Figure 1).

The signaling and metabolic alterations caused by niclosamide

can potentially reprogram the global epigenetic landscape in

multiple ways. On one hand, as we discovered, NEN treatment

increases the intracellular NAD+/NADH ratio, inhibiting 2-HG

generation from a-KG, leading to an increased intracellular a-KG/
2-HG ratio to promote TET2 activity and DNA demethylation (8).

Unlike DNMT inhibitors such 5-azacytidine, NEN treatment

remodeled the DNA methylation landscape rather than simply

reducing the global methylation level. The cancer epigenome is

characterized with promoter CpG island hypermethylation but

gene body hypomethylation. NEN treatment reversed this

epigenetic remodeling pattern, reducing methylation in promoter

CpG Island but increasing methylation in gene body region. This

epigenetic remodeling strategy could be more effective and precise

than DNMTi treatment (8). On the other hand, NEN treatment

dramatically elevates ADP and AMP levels while lowering ATP

levels (8). AMPK activation phosphorylates TET2 at serine 99,

thereby stabilizing the tumor suppressor to promote DNA

demethylation (135). Thus, it is possible that NEN treatment also

increases TET activity through activating AMPK.

The fact that NEN treatment alters the cellular transcriptional

profile is consistent with the theory that NEN treatment reprograms

the epigenome. The number of upregulated genes is more than two-

fold higher than the number of downregulated genes induced by

NEN treatment, indicating that NEN treatment has a major role in

activating gene expression (8). The top pathways upregulated by

NEN treatment includes pathways related to neurogenesis, nervous

system development, and neuron differentiation. The top

downregulated pathways are involved in DNA replication and

cell cycle progression. Importantly, while almost all the NEN-

upregulated genes are enriched in gene signatures that indicate

favorable prognosis, all the NEN-downregulated genes are enriched

in gene signatures that indicate unfavorable prognosis (8). These

data indicate that mitochondrial uncoupling rewires the global

transcriptome in a way that leads to cell differentiation and

proliferation arrest, rather than targeting one specific signaling

pathway that may fail to trigger such broad-scale changes.
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Combination of niclosamide with
other therapies

Radiation

Radiotherapy is an effective cancer treatment for up to 50%

of cancer patients. However, one significant challenge during

radiotherapy is the buildup of acquired radioresistance (136).

Thus, it is important to identify strategies that improve the

efficiency of and overcome the resistance to radiotherapy.

Niclosamide was reported to enhanced the radiation

sensitivity of many cancer types such as lung cancers (62, 67,

137), triple-negative breast cancer (35), nasopharyngeal

carcinoma (138), and colorectal cancer (139). Synergism

between niclosamide and radiotherapy may occur in part

through the ability of niclosamide to inhibit multiple adaptive

pathways upregulated during or following radiation.

Niclosamide pretreatment induces C-Jun expression and

phosphorylation, promoting apoptosis in cells that failed to

control radiation-induced reactive oxygen species (ROS) (137).

STAT3 was also reported to protect cells following radiation. As

a potent inhibitor of STAT3, niclosamide reduces STAT3

nuclear translocation to restore radiation sensitivity (62).

Niclosamide inhibits the hypoxic induction of Wnt/b-catenin
and HIF1a signaling, leading to tumor radiosensitivty (35, 67).

Niclosamide downregulates the expression of Ku70/80,

inhibiting DNA double-strand break repair to sensitize the

cancers to radiation (138, 139).
Chemotherapy

Chemoresistance is a common obstacle to cancer treatment

involving multiple resistance mechanisms (140–142).

Identifying therapeutic strategies to enhance chemotherapy

efficiency and overcome acquired resistance hold immense

interest in the cancer biology field.

Niclosamide has shown synergistic anti-tumor effects with a

broad spectrum of chemotherapy drugs. Niclosamide’s potential

functions as a chemotherapy enhance are summarized in

Table 2.
Immunotherapy

Discoveries from the last decade have shown that

immunotherapy, unleashing power from the patient’s own

immune system to recognize and eliminate cancer cells, is a
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promising approach for cancer treatment. The immune

receptor/ligand pair PD-1/PD-L1 constitutes a key inhibitory

immune checkpoint system hijacked by cancer to escape

destruction by the immune system, thereby highlighting its

importance as a target for cancer immunotherapy (152).

Niclosamide is reported to disrupt PD-1/PD-L1 interactions in

non-smal l ce l l lung cancer (153) , metastat ic lung

adenocarcinoma (154), and pancreatic cancer (41, 155)

primarily through PD-L1 ligand downregulation in cancer

cells. Importantly, several studies observed that niclosamide

potentiates PD-1/PD-L1 blockade in preclinical cancer models

(41, 153–155). At the molecular level, this reduction of PD-L1

expression by niclosamide may rely on the suppression of

STAT3 phosphorylation and transcription factor binding to

the PD-L1 promoter in the nucleus (153).
Clinical trials

The plethora of preclinical studies demonstrating impressive

antiviral and anticancer effects of niclosamide have led to a series

of clinical trials. There are currently 31 records of clinical trials

involving niclosamide, as published on the clinicaltrials.gov

database. Among these, 16 trials relate to Covid-19 treatment

and 8 trials relate to cancer treatment. We summarize the

cancer-relevant clinical trials in Table 3. Despite the promising

data generated in preclinical models, proof of efficacy and safety

is still required. These properties are associated with diverse

biopharmaceutical challenges such as the relationship between

physicochemical properties and oral absorption of the drug with
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clinical outcomes (156). Published data regarding the

pharmacokinetics (PK) of niclosamide suggest that it has poor

oral bioavailability (11), potentially limiting its application as a

cancer drug, consistent with observations made in clinical trial

NCT02532114 (156). In this trial, either 500mg or 1000mg

niclosamide was given three times daily to patients. However,

the maximal plasma concentration ranged from 35.7–82 ng/mL

(0.1µM-0.25 µM), a range that failed to be consistently above the

minimum effective concentration in preclinical studies (156). In

contrast, the ongoing clinical trial NCT02807805 is

administering 1200 mg of reformulated orally bioavailable

niclosamide orally (PO) three times daily to patients, resulting

in 0.21µM-0.723 plasma niclosamide concentrations exceeding

the therapeutic threshold of > 0.2 µM. In prostate cancer

patients, combination of niclosamide with abiraterone/

prednisone induced a prostate-specific antigen (PSA) response

in 5 of 8 evaluable patients (158). Overall, niclosamide displays

an excellent safety profile across these clinical trials. However,

the bio-availability and standalone anti-tumor effect of

niclosamide are still major challenges. To overcome these

limitations, new delivery strategies and rational combination

therapies with other treatments need to be developed.
Conclusion and future directions

Cancer is the second leading cause of death in the world after

heart disease, accounting for 1 out of every 6 deaths in 2021

(159). An effective and low-risk cancer treatment has remained

elusive for decades. Indeed, current treatments such as
TABLE 2 Niclosamide has synergetic effect with chemotherapy.

Drugs Cancer type Potential mechanism Reference

cytarabine Acute Myelogenous Leukemia NS (57)

etoposide NS

daunorubicin NS

dasatinib chronic myeloid leukemia inhibiting Erk/Mnk1/eIF4E pathway (143)

castration prostate cancer inhibition ofandrogen receptor variants (144)

cisplatin renal cellcarcinoma NS (145)

lung cancer Suppression of lung resistance−related protein and c−myc (146)

esophageal cancer Inhibition of STAT3 pathway (147)

Hepatocellular Carcinoma Inhibition of STAT3 pathway (53)

Oxaliplatin Colorectal Cancer increased H2O2 production (148)

5-FU esophageal cancer Inhibition of STAT3 pathway (147)

paclitaxel triple negative breast cancer NS (149)

esophageal cancer Inhibition of STAT3 pathway (147)

erlotinib colorectal cancer Inhibition of STAT3 pathway (49)

SN38 colorectal cancer Inhibition of STAT3 pathway (50)

Doxorubicin Breast Cancer downregulating the Wnt/b-catenin pathway (150)

camptothecin glioblastoma NS (151)
fro
NS, not sure.
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chemotherapy, radiation therapy, hormone therapy, and

immunotherapy each have their own limitations as a “magic

bullet” against cancer. Namely, their off-target effects stem from

the fact that these therapies are aiming at the “passengers” but

not the “drivers” in the cancer cell “bus.”

A major metabolic hallmark of cancer is to divert glucose

flux away from mitochondrial oxidation to cytosolic

fermentation and lactate production, a process also known as

the Warburg effect (160, 161). According to Warburg himself,

the consequence of this metabolic reprogramming is to convert

differentiated normal cells to undifferentiated cells, namely,

cancer cells (4, 162). Hence, identifying compounds that can

target the metabolic reprogramming of cancer should present

substantial benefit for cancer treatment. Recently, we found that

the mitochondrial uncoupler niclosamide could reverse this

metabolic hallmark of cancer, leading to a rewiring of the

global epigenetic landscape and the induction of cell

differentiation (8). Thus, we propose the mitochondrial

uncoupler niclosamide can serve as a compound to target

cancer metabolic reprogramming.

Numerous oncogenic pathways or tumor suppressors have

been reported to be influenced by niclosamide treatment.

However, these alterations could be secondary effects resulting

from inhibition of the primary target. What could this primary

target be? Three major targets of niclosamide have been

proposed. Firstly, as a mitochondrial uncoupler, niclosamide

uncouples the mitochondrial membrane potential from ATP

synthesis (11). Secondly, the protonophoric activity of

niclosamide can dissipate protons from lysosomes (59).

Thirdly, niclosamide directly binds to GSK3, resulting in

disruption of the Axin-GSK3 complex and attenuation of

canonical Wnt activity (37). Among these targets, the

mitochondrial uncoupling function is reported to be essential

for targeting both p53 wild-type and mutant cancers (20).

Nonetheless, additional studies are needed to elucidate the

primary target of niclosamide as an anti-tumor compound.
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Clinically, the major challenge for niclosamide is poor oral

bioavailability, potentially limiting its use as a cancer drug (11, 156).

Efforts have been taken to improved its bioavailability, including: (1)

reformulating niclosamide for better delivery and stability (158,

163–166) and (2) modifying the structure of niclosamide to

generate derivatives with enhanced efficiency (167, 168) or

pharmacokinetics (169, 170). Nonetheless, the process of

identifying these derivatives involved screens with readouts of

either cell apoptosis or oncogenic pathway inhibition, processes

that may not reflect the primary property of niclosamide as anti-

tumor compound, thereby reinforcing the need to identify the

primary target of niclosamide to accelerate pharmacological

development of new derivatives. Another area of important need

is to improve the clinical potential of niclosamide; specifically,

initiating studies that address the synthetic lethality of

niclosamide in cancer to identify pathway dependencies or gene

mutations sensitive to niclosamide treatment. Based on the results

of clinical trials, it is likely that niclosamide treatment alone will not

be enough to achieve a complete response in cancer patients.

Therefore, further effort is needed to test combination therapies

using niclosamide with other therapeutic agents.
Author contributions

HJ, AL and JY conceived and wrote the manuscript. All

authors contributed to the article and approved the

submitted version.
Funding

This work was supported by a Stanford Maternal and Child

Health Research Institute Research Scholar Award (2020) and an

American Cancer Society Research Scholar Grant (RSG-20-036-

01) to JY.
TABLE 3 The clinical trials using niclosamide for cancer therapy.

Ref Cancer type Potential target Mechanism Phase

NCT05188170 Acute Myeloid Leukemia CREB (58) Inducing apoptosis and cell cycle arrest Phase
1

NCT04296851 Familial adenomatous polyposis
(FAP)

Axin-GSK3 (37) inhibition of Wnt pathway and Snail-mediated EMT Phase
2

NCT03123978 Metastatic/Recurrent Prostate
Carcinoma

IL6-Stat3-AR pathway (46) overcome enzalutamide resistance and inhibit migration and
invasion

Phase
1

NCT02807805 Metastatic/Recurrent Prostate
Carcinoma

androgen receptor variant 7 synergizes with abiraterone Phase
2

NCT02687009 Colon Cancer Frizzled receptor (36) Inhibition of Wnt/b-catenin pathway Phase
1

NCT02532114 Castration-Resistant Prostate
Carcinoma

Inhibition of androgen receptor splice variants or Wnt/b-catenin
pathway (156)

Phase
1

NCT02519582 Colorectal Cancer Wnt/b-catenin pathway signaling
(157)

restricting S100A4-driven metastasis Phase
2
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The hypoxia-inducible factor-1a (HIF-1a), a key player in the adaptive regulation

of energy metabolism, and the M2 isoform of the glycolytic enzyme pyruvate

kinase (PKM2), a critical regulator of glucose consumption, are the main drivers

of the metabolic rewiring in cancer cells. The use of glycolysis rather than

oxidative phosphorylation, even in the presence of oxygen (i.e., Warburg effect

or aerobic glycolysis), is a major metabolic hallmark of cancer. Aerobic glycolysis

is also important for the immune system, which is involved in both metabolic

disorders development and tumorigenesis. More recently, metabolic changes

resembling the Warburg effect have been described in diabetes mellitus (DM).

Scientists from different disciplines are looking for ways to interfere with these

cellular metabolic rearrangements and reverse the pathological processes

underlying their disease of interest. As cancer is overtaking cardiovascular

disease as the leading cause of excess death in DM, and biological links

between DM and cancer are incompletely understood, cellular glucose

metabolism may be a promising field to explore in search of connections

between cardiometabolic and cancer diseases. In this mini-review, we present

the state-of-the-art on the role of the Warburg effect, HIF-1a, and PKM2 in

cancer, inflammation, and DM to encourage multidisciplinary research to

advance fundamental understanding in biology and pathways implicated in the

link between DM and cancer.

KEYWORDS

aerobic glycolysis, diabetes mellitus, hypoxia inducible factor (HIF)-1a, inflammation,
methylglyoxal (MGO), oxidative phoshorylation, pyruvate kinase M isoform 2,
Warburg effect
1 Introduction

Recent epidemiological studies have reported a transition from cardiovascular diseases

to cancer as the leading cause of excess death associated with diabetes mellitus (DM) (1, 2).

Cancer mortality among people with DM, especially type 2 (T2) DM, is approximately

30%-50% higher than in the general population, particularly for pancreatic, liver,
frontiersin.org0174

https://www.frontiersin.org/articles/10.3389/fonc.2023.1202093/full
https://www.frontiersin.org/articles/10.3389/fonc.2023.1202093/full
https://www.frontiersin.org/articles/10.3389/fonc.2023.1202093/full
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2023.1202093&domain=pdf&date_stamp=2023-05-25
mailto:stefano.menini@uniroma1.it
https://doi.org/10.3389/fonc.2023.1202093
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2023.1202093
https://www.frontiersin.org/journals/oncology


Iacobini et al. 10.3389/fonc.2023.1202093
colorectal, and endometrial cancers (3, 4). Clinical and preventive

efforts must be directed at fighting DM-related risk factors for

cancer to reduce the excess mortality risk in individuals with DM.

Possible mechanisms for a biological link between DM and

cancer are hyperinsulinemia, inflammation, and hyperglycemia (5).

Hyperglycemia is the distinctive feature of DM and the main cause

of various life-threatening complications in both type 1 (T1) DM

and T2DM (6, 7). A direct link between hyperglycemia and cancer

comes from studies showing that, at high concentrations, glucose

acts as DNA-damaging factor and impedes tumor suppressive

functions, leading to genomic instability and eventually resulting

in malignant transformation (8, 9). DM has been also associated

with cancer promotion and progression (10–12); mechanisms

involved in the regulation of cancer cell metabolism and the way

cancer cells utilize glucose may mediate this association.

After briefly summarizing the molecular and biochemical

characteristics of the Warburg effect in cancer cells, we will

examine the updated evidence demonstrating similar metabolic

and molecular changes in immune cells involved in inflammation

and in target cells and tissues of chronic DM complications. In

particular, the role of hypoxia inducible factor (HIF)-1a and M2

isoform of the glycolytic enzyme pyruvate kinase (PK) in driving

the metabolic reprogramming of tumor, inflammatory, and diabetic

cells will be discussed. Finally, to foster multidisciplinary

investigation, the collected evidence will be illustrated in the

context of a plausible hypothesis centered on changes in cellular

glucose metabolism as mechanistic link between DM and cancer.

2 Warburg effect, HIF-1a, and PKM2 in
cancer: when metabolism rhymes
with opportunism

In cancer, a close relationship exists between the rate of glucose

utilization and that of cell proliferation (13). In 1924, Otto Warburg

identified the link between cancer and glucose by showing that

tumor tissues consume and metabolize to lactate tremendous

amounts of glucose relative to non-transformed tissues (14).

While some cancer cel ls are oxidative and targeting

mitochondrial oxidative phosphorylation (OXPHOS) may be a

promising therapeutic target for oxidative carcinomas (15), most

cancers cells exhibit suppressed mitochondrial respiration and a

high rate of glucose uptake even in the presence of oxygen. This

metabolic rewiring is known as both Warburg effect and aerobic

glycolysis. Consistent with the importance of the Warburg effect for

cancer cells, withdrawing glucose or inhibiting glycolysis is

deleterious to tumorigenesis in experimental models of cancer

(16, 17). How cancer cells take advantage from these metabolic

changes and how glycolysis is related to cell proliferation is still not

fully understood. Along with the proposal that the Warburg

metabolism may be a way to produce ATP quickly (18), widely

accepted hypothesis include: 1) expansion of the pool of glycolytic

biosynthetic intermediates to support anabolic reactions and redox

demand (19), 2) persistent NAD+ regeneration to sustain de novo

lipogenesis (20), and 3) augmented lactate production to favor

tumor growth and metastasis by affecting the tumor
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microenvironment (21). Along with changes in the tissue

microenvironment, oncogenes and tumor suppressors that drives

tumorigenesis contribute to the acquisition of the Warburg

phenotype via activation of numerous transcription factors

(including HIF-1a) regulating several genes encoding glycolytic

proteins (including PKM2) (22).

HIF-1a is a master regulator of oxygen homeostasis playing a

key role in the adaptive regulation of energy metabolism in

mammalian tissues. By simultaneously increasing the expression

of glycolytic enzymes and restraining mitochondrial function, HIF-

1a can switch glucose metabolism from OXPHOS to glycolysis also

in response to physiological and pathological stimuli other than

hypoxia (23), including hyperglycemia-induced oxidative (24) and

carbonyl (25) stress. In cancer cells, HIF-1a cooperates with the

oncoprotein MYC to activate transcription of genes involved in

glucose metabolism, including glucose transporters (e.g. GLUT1

and GLUT3) and glycolytic enzymes (e.g. lactate dehydrogenase A,

hexokinase 2, PKM2, etc.) (26). In addition to stimulate glycolysis,

HIF-1a actively represses mitochondrial respiration and biogenesis

by inducing pyruvate dehydrogenase kinase 1 (27) and reducing

peroxisome-proliferator-activated receptor g co-activator-1a (28).

Consistent with an important role in cancer cell biology, HIF-1a
overexpression strongly correlates with poor prognosis for several

solid cancers. Accordingly, pharmacological targeting of the HIF-

1a signaling pathways has been recognized as a promising strategy

for cancer therapy in the recent years (29).

The PKs are terminal enzymes of the glycolytic pathway that

catalyze the conversion of phosphoenolpyruvate and ADP to

pyruvate and ATP and are important modulators of cellular

glucose metabolism. The PKM1/M2 isoforms are encoded by the

same gene (PKM) and are generated by the alternative splicing of

PKM mRNA (30). While PKM1 only exists as a stable and highly

active tetrameric form and is expressed in most adult tissues (31),

PKM2 is highly expressed during embryonic development and is

reactivated in tissue regeneration and tumor development,

suggesting that it is critical for actively proliferating cells (32).

Unlike the constitutionally active PKM1, PKM2 is in equilibrium

among the dimeric and monomer forms, which are catalytically

inactive, and the active tetrameric form. Therefore, the glycolytic

activity of PKM2 is subject to allosteric control (33). This implies

that, at the same protein level, PKM2 is much less effective than

PKM1 in catalyzing the last step within glycolysis (31). Accordingly,

high ratios of PKM2/PKM1 lead to accumulation of all upstream

glycolytic intermediates and diversion of metabolic flux towards the

glycolytic biosynthetic branches, including the pentose-phosphate

pathway, the hexosamine pathway, and the glycerol synthesis (34).

This process is exploited by cancer cells to sustain their high

biosynthetic and redox demand (35).

PKM2 and HIF-1a regulate each other. In fact, PKM2 is a

transcriptional target of HIF-1a and a key player in the Warburg

effect of glycolytic cancer cells (26). In turn, as a dimer, PKM2

translocates into the nucleus, interacts with, and promotes the

transcriptional activity of HIF-1a (36). Therefore, HIF-1a and

PKM2 are recognized as major drivers of cancer metabolism

participating in a positive feedback loop that enhances the

Warburg effect and feeds the glycolysis branch pathways (23, 30).
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3 Warburg effect, HIF-1a, and PKM2 in
inflammation: a matter of polarization

It has been almost 50 years since the first demonstration of

aerobic glycolysis during lymphocyte proliferation (37). In the 2000s,

some observations on metabolic reprogramming were extended to

other cells of innate and adaptive immunity. Since then, a growing

interest in the role of metabolism in immune regulation has bloomed.

The exciting advances in the field of immunometabolism have been

recently reviewed (38, 39). We summarize here the role of aerobic

glycolysis, HIF-1a, and PKM2 in immune cells involved in chronic

inflammation, which participates in all stages of tumorigenesis as well

as DM development and progression to complications (40, 41).

In dendritic cells and macrophages, pro-inflammatory stimuli

induce the shift to aerobic glycolysis and the production of

inflammatory cytokines, such as interleukin (IL)-1b and tumor

necrosis factor-a (TNF-a) (42). IL-1b and TNF-a are involved in

insulin resistance (43, 44) and, together with other IL family

members, promote tumorigenesis through complex mechanisms

that involve direct growth stimulation and production of growth

factors, recruitment of myeloid cells and immunosuppression,

endothelial cell activation and promotion of angiogenesis (45, 46).

In macrophages, the metabolic rewiring towards an enhanced

glycolytic phenotype promotes polarization to the classically

activated (or “M1”) phenotype and the production of many

inflammatory mediators (44). Consistently, the glycolysis

inhibitor 2-deoxy-D-glucose (2-DG) blocks (47), whereas GLUT1

overexpression enhances (48) M1 inflammatory functions.

Conversely, OXPHOS is critical for the anti-inflammatory and

tissue repair functions of alternatively activated (or “M2”)

macrophages (49, 50). The balance between glycolysis and

mitochondrial respiration also differentially regulates the

phenotype and function of various subsets of T cells. For

instance, T regulatory cells (Tregs) rely on glycolysis only during

initial activation and proliferation, after that they switch toward

oxidative metabolism for their regulatory functions. Consistently,

GLUT1 expression increases the number of Tregs, but reduces their

immunosuppressive capacity (51). Vice versa, T helper (Th)17 cells

- a distinct subset of CD4+ T cells that produce the highly pro-

inflammatory IL-17 – can be converted into Tregs by blocking

glycolysis with 2-DG (52). Like the pro-inflammatory CD4+ Th17

cells, CD8+ lymphocytes require a Warburg-like metabolism not

only for their proliferative capacity, but also for their effector

functions (53, 54).

It is by now long-established that HIF-1a stabilization in

immune cells can occur in an oxygen-independent manner.

Bacteria and their cell membrane component lipopolysaccharide

(LPS), inflammatory mediators, and endogenous molecules, such as

the tricarboxylic-acid cycle intermediate succinate (47), can induce

HIF-1a protein accumulation in macrophages through

transcriptional and post-translational mechanisms under

normoxic conditions (55–58). By cross talking with the nuclear

factor-kB pathway, HIF-1a modulates essential inflammatory

functions in myeloid cells (59). In keeping with a critical role for

HIF-1a in the pro-inflammatory response in macrophage and T
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cells, HIF-1a deletion induces defective macrophage response to

LPS and inhibits Th17 cell generation in mice (44, 60).

In addition to induce HIF-1a accumulation, pro-inflammatory

stimuli trigger the expression of PKM2, which is now recognized as

a critical determinant of the Warburg effect in macrophages. In fact,

stabilizing PKM2 tetramerization with the allosteric activator

TEPP-46, thus favoring PKM2 glycolytic activity and the

glycolytic flux toward pyruvate, restores OXPHOS and reduces

LPS-induced production of IL-1b, while promoting macrophage

M2 polarization (61). In addition, PKM2 over expression induces,

whereas downregulation inhibits, the activation of several toll-like

receptor pathways (62). PKM2 tetramerization by TEPP-46 also

blocks PKM2 nuclear translocation and restrains pro-inflammatory

polarization in T cells by inhibiting the Warburg metabolism and

favoring OXPHOS (63).

Overall, upregulation of aerobic glycolysis supports

inflammatory immune funct ions . Hinder ing HIF-1a
accumulation and PKM2 expression or favoring glycolytic activity

over transcriptional activity of PKM2 by allosteric activation, blocks

the Warburg metabolism and curbs inflammatory responses by

supporting regulatory and anti-inflammatory immune phenotypes.
4 Warburg effect, HIF-1a, and PKM2 in
diabetes: team members or individual
runners on the road to complications?

While confirming previous findings of increased levels of

glycolytic intermediates, recent omics studies in DM and related

target organ damage have provided evidence of impaired

mitochondrial metabolism and biogenesis, along with other

features of a metabolic rewiring resembling the Warburg effect

(64–66). Several metabolic intermediates and glycolytic enzymes,

including PKM2, have been proposed as potential triggers of

aerobic glycolysis and diversion of glycolytic intermediates into

branch pathways (64).

Diabetic complications arise in tissues that exhibit insulin-

independent glucose uptake (67, 68). In the cells of these tissues,

activation of aerobic glycolysis may be a consequence of increased

glucose uptake from systemic circulation and an attempt to quickly

metabolize excess cellular glucose (69) (Figure 1). The drawback of

this process is the cellular accumulation of toxic glucose metabolites

(66, 70). In fact, at variance with cancer cells, normal cells are not

actively proliferating. Accordingly, the enhanced glucose uptake,

buildup of glycolytic intermediates, and flux through the glycolytic

branch pathways results in an accumulation of sorbitol, diacylglycerol,

and advanced glycation end products (AGEs) leading to the activation

of pro-inflammatory and -oxidative pathways (71). To our knowledge,

only one study has attempted to establish a relationship between

mitochondrial dysfunction, the Warburg-like metabolism, and

accumulation of toxic glucose metabolites in DM. By showing that

high glucose induces HIF-1a activity and a switch from oxidative

metabolism to glycolysis and its principal branches, this study suggests

that aerobic glycolysis may play an initiating role in glucotoxicity and

diabetic complications (25).
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In addition to hypoxia, numerous metabolic stressors associated

with DM, including hyperglycemia, affect HIF-1a stabilization and

activity. Due to the heterogeneity of the findings, what is the net

impact of DM-related factors on HIF-1a signaling is a matter of

debate in literature (72). Concisely, hyperglycemia seems to inhibit

HIF-1a expression induced by low-oxygen conditions (73, 74),

suggesting a weaker HIF-1a-dependent response to hypoxia in DM.

Conversely, high glucose concentrations promote HIF-1a nuclear

translocation, transcriptional activity, and lactate accumulation in

normoxic conditions (25, 72, 75–78). Ultimately, these

discrepancies in the effect of DM on HIF-1a signaling are likely

the result of different experimental conditions (e.g., hypoxia vs

normoxia) used for modulating the levels and activity of HIF-1a. In
this regard, it must be remembered that the Warburg effect occurs,

by definition, in the presence of normal levels of oxygen.

Recently, proteomic studies conducted in T1DM patients have

demonstrated increased circulating and renal levels of mitochondrial

and glycolytic enzymes in those without diabetic nephropathy (DN).

Curiously, elevated levels of the underactive glycolytic enzyme PKM2

were associated with reduced renal accumulation of toxic glucose

metabolites and susceptibility to DN, suggesting a protective role of

PKM2 by improving cellular glucose metabolism (66, 79). However,

preclinical work by the same and other investigators has shown that

TEPP-46 treatment reverses metabolic abnormalities, mitochondrial

dysfunction, and kidney pathology of diabeticmice by enhancing PKM2

tetramer formation (i.e., glycolytic activity) and suppressing HIF-1a and
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lactate accumulation (66, 80, 81). These experimental findings suggest

that also in DM, as in cancer and immune cells (61, 82), PKM2

overexpression may favor glucose metabolic reprogramming towards

aerobic glycolysis, accumulation of glycolytic intermediates, and pro-

inflammatory signaling. Collectively, these interesting findings could

lead to greater understanding of DM complications if the functional

complexity of PKM2 and its role as a key regulator of glucose

metabolism is considered.

In general, the body of knowledge acquired in a century of

research on cancer and immune metabolism has been overlooked in

the interpretation of the data concerning several aspects of cellular

glucose metabolism in DM, including aerobic glycolysis, HIF-1a
induction, and PKM2 expression. For example, claims that HIF-1a
activity should be enhanced in DM because HIF-1a signaling is

submaximal for the degree of hypoxia in diabetic tissues (83, 84)

overlook the role of this transcription factor in aerobic glycolysis and

inflammation. Increased cellular glucose uptake, mitochondrial

dysfunction, and pro-inflammatory signaling induced by HIF-1a
activity (26–28, 44) would not be at all beneficial for tissues affected

by DM complications (70). Rather, regarding the role of chronic

hypoxia in DM complications, it might be more biologically sound to

promote the activity of the HIF-2a isoform, which has different

effects to HIF-1a on glucose metabolism and even opposite effects on

redox state and inflammation (72, 85). Another naive conclusion,

which is inconsistent with the mechanisms that regulate cellular

glucose metabolism and drive hyperglycemia-induced cell damage, is

that overall PKM2 expression should be increased to enhance PK

activity and prevent DM complications (80, 86). Actually, to favor

glycolytic flux to pyruvate and reduce the accumulation of toxic

glucose metabolites, the expression of the constitutively active

enzyme PKM1 should be preferred over that of PKM2. Favor the

expression of the less active isoformM2 and then have to enhance PK

activity with pharmacological agents does not seem the best strategy

to improve cellular glucose metabolism and prevent DM-induced

target organ damage. As in cancer (87), PKM2 activators are

interesting drugs to consider for complications of DM, but the

simplistic view that high PKM2 levels mean high levels of PK

activity must be overcome. In fact, it is the exact opposite (31, 61).

Overall, more research is needed to fully characterize the

changes in cellular glucose metabolism associated with DM

complications and the role of HIF-1a and PKM2 as components

of a molecular network that regulates metabolic reprograming

towards the Warburg effect.
5 Discussion

Tight glucose control is important for reduction of cancer risk

in T2DM (88). Substantial evidence supports a direct causal link

between DM and carcinogenesis; hyperglycemia can in fact induce

malignant transformation by causing DNA damage (9), oncogenic

mutations (8), and loss of tumor suppressive functions (89). Besides

this, cancer and DM share similar changes in some aspects of

cellular energetics, particularly glucose metabolism. Hyperglycemia

leads to excessive cellular glucose uptake and changes in glucose
FIGURE 1

Glucose metabolic reprogramming induced by hyperglycemia in
insulin-independent cells. Refer to the main text for detailed
description and references. Dashed lines/arrows indicate well-
established processes in cancer cells not yet confirmed in normal
cells exposed to glucose concentrations in the diabetic range. In
particular, the interaction between the hypoxia inducible factor 1-a
(HIF-1a) and the M2 isoform of pyruvate kinase (PKM2), and the role
of PKM2 in reducing the overall PK activity leading to accumulation
of glycolytic intermediates need to be demonstrated. PEP,
Phosphoenolpyruvate; GLUTs, glucose transporters; DAG,
diacylglycerol; AGEs, advanced glycation end-products.
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metabolism resembling the Warburg effect, including accumulation

of glycolytic intermediates (64–66). Interestingly, among the

molecular mechanisms associated with the anti-tumor activity of

the anti-diabetic drug metformin, suppression of theWarburg effect

has also been proposed (90). The question whether the Warburg

effect, besides being a consequence, might also play a causal role in

carcinogenesis has been raised in the past without receiving much

attention, mainly because of the lack of plausible pathomechanisms

(91). However, there are numerous clues that lead us to consider the

metabolic reprogramming induced by hyperglycemia as a possible

field of investigation to unravel the connections between diabetes

and cancer.

Tumorigenesis comprises multiple steps of mutations subjected

to a natural selection (Figure 2). Environmental forces and cellular

adaption mechanisms that provide the mutated cell clone with

survival and proliferative advantages over the neighboring cells

govern this process (92). As tumor microenvironment factors

influence cancer metabolism (93), hyperglycemia may promote

the acquisition of a Warburg metabolism in transforming cells. In

turn, hyperglycemia-mediated glycolytic reprogramming may

contribute to shape the metabolic features of the evolving tumor

cells by increasing the activity and fostering mutations of oncogenes

regulating cell metabolism (8, 93), thus playing an active role in

cancer promotion and progression. For example, high glucose was

recently shown to stabilize and induce aberrant transcriptional

activity of N-MYC - a member of the MYC family - even in

normal cells, leading to increased proliferation and functional

impairment (94). Overall, by inducing a Warburg-like

metabolism, hyperglycemia might favor tumorigenesis by both

contributing to the selection of more malignant phenotypes and

directly inducing, in normal cells, the transcriptional activity of

oncogenes that regulate multiple aspects of tumor metabolism,

eventually increasing the chances of malignant transformation.
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The mechanisms by which aerobic glycolysis favors cell

proliferation, regulates inflammatory immune functions, and

induce cell damage in DM are not yet fully elucidated. The

“anabolic” (34) and “energetic” (18) hypotheses explain how the

Warburg metabolism provides building blocks and an increased

rate of ATP to support the anabolic and energetic demand of

proliferating cells. Regardless of the discussion of their validity (18),

the current hypotheses do not address the question of the causal

relationship and mechanistic link between aerobic glycolysis and

cell proliferation in tumor and immune cells, or cell injury in DM.

Studies in the fields of immunology and metabolism have identified

interesting alternative (or complementary) mechanisms that may

explain how glycolytic reprogramming benefits cancer and immune

cells and promotes DM complications. These mechanisms rely on

the signaling function of glycolytic intermediates and/or their

spontaneous decomposition products, including the inevitable

side-product of glycolysis methylglyoxal (MGO). This is a highly

reactive dicarbonyl compound and major precursor of advanced

glycation end-products (AGEs) (95). By acting at both

transcriptional and post-translational levels, MGO plays

important roles in the immune response to inflammatory stimuli

(96–98) and, together with AGEs, is involved in the pathogenesis of

DM complications (25, 95, 99–101) and in the onset and

progression of many cancers (10, 11, 102–104).

In conclusion, oncology and immunology scientists have

continued to build on the seminal work by biochemists to

improve understanding of glucose metabolic rewiring in cancer

and immune system biology and pathology. Researchers in

endocrinology and metabolism have lagged behind in this process

and are struggling to put the puzzle pieces together. A

multidisciplinary approach could not only help to unravel the

skein and effectively interpret data for a real progress in

cardiometabolic research, it also may generate new knowledge on

the mechanisms linking DM and cancer.
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Introduction: The latest GLOBOCAN 2021 reports that colorectal cancer (CRC)

is the second leading cause of cancer-related death worldwide. Most CRC cases

are sporadic and associated with several risk factors, including lifestyle habits, gut

dysbiosis, chronic inflammation, and oxidative stress.

Aim: To summarize the biology of CRC and discuss current therapeutic

interventions designed to counteract CRC development and to overcome

chemoresistance.

Methods: Literature searches were conducted using PubMed and focusing the

attention on the keywords such as “Current treatment of CRC” or

“chemoresistance and CRC” or “oxidative stress and CRC” or “novel drug

delivery approaches in cancer” or “immunotherapy in CRC” or “gut microbiota

in CRC” or “systematic review and meta-analysis of randomized controlled trials”

or “CSCs and CRC”. The citations included in the search ranged from September

1988 to December 2022. An additional search was carried out using the clinical

trial database.

Results: Rounds of adjuvant therapies, including radiotherapy, chemotherapy,

and immunotherapy are commonly planned to reduce cancer recurrence after

surgery (stage II and stage III CRC patients) and to improve overall survival (stage

IV). 5-fluorouracil-based chemotherapy in combination with other cytotoxic

drugs, is the mainstay to treat CRC. However, the onset of the inherent or

acquired resistance and the presence of chemoresistant cancer stem cells

drastically reduce the efficacy. On the other hand, the genetic-molecular

heterogeneity of CRC often precludes also the efficacy of new therapeutic

approaches such as immunotherapies. Therefore, the CRC complexity made

of natural or acquired multidrug resistance has made it necessary the search for

new druggable targets and new delivery systems.

Conclusion: Further knowledge of the underlying CRC mechanisms and a

comprehensive overview of current therapeutic opportunities can provide the

basis for identifying pharmacological and biological barriers that render therapies

ineffective and for identifying new potential biomarkers and therapeutic targets

for advanced and aggressive CRC.
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CRC, adjuvant treatments, chemoresistance, CSCs, drug delivery system
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1 Introduction

Colorectal cancer (CRC) is the third most diagnosed cancer and

the second leading cause of death worldwide regardless of gender

(1). Approximately 90% of CRCs are adenocarcinoma originating

from epithelial cells of the colorectal mucosa, whilst the remaining

10% are represented by rare CRC types (i.e., squamous cell

carcinoma, adenosquamous carcinoma, spindle cell carcinoma,

and undifferentiated carcinoma) (2).

Most CRC cases are sporadically and associated with non-

hereditary spontaneous mutations and epigenetic aberrations

arising from several risk factors, including dysregulation of the

gut microbiome, obesity, sedentary lifestyle, excess intake of meats,

fats, starches, and sugars, folate deficiency, alcohol, cigarette

smoking, and so on (3). However, a lower percentage of cases

(about 30%) is represented by familial cases, of which

approximately 5% present specific genetic signatures, penetrance,

and transmission due to germline variants in CRC predisposing

genes, e.g., adenomatous polyposis coli (APC), mismatch repair

(MMR) genes, epithelial cell adhesion molecule (EPCAM),

SMAD4/BMPR1A, and MUTYH (4–7).

Data report that the highest CRC incidence rates are recorded in

developed countries and the incidence of early-onset CRC in

individuals younger than 50 continues to rise (2, 4). Therefore, to

facilitate diagnosis of CRC cancer in earlier stages, the

recommended screening age was recently lowered to 45.

Early-stage colon cancer may be asymptomatic and often

become symptomatic late in the disease. Indeed, about >25% of

patients are diagnosed with advanced disease, i.e., extensive or

metastatic colorectal cancer (mCRC), at the time of diagnosis,

while more than 50% of patients with the initially localized

disease develop metastases during or after therapies (8, 9). As

known, metastasis poses a huge clinical challenge because only

20% of mCRC patients survive (10).

When neoadjuvant therapy is not included in the treatment

plan, surgical resection is performed as the first curative intent in

patients with localized and locoregional CRC (stages I, II, and III),

as well as for those with resectable distant metastases (5, 11–13).

However, the National Comprehensive Cancer Network (NCCN)

guidel ines recommend neoadjuvant oxal iplat in-based

chemotherapy for patients with “bulky nodal disease or clinical

T4b” colon cancer to decrease the size of the tumor before surgery

(14). To reduce the risk of cancer recurrence and improve patient

outcomes, an adjuvant postoperative chemotherapy regimen is

routinely employed in stage III patients (i.e., localized tumor with

lymph node invasion) and, in some cases, in stage II patients (i.e.,

localized tumor w/o lymph node invasion) (15, 16). Moreover,

chemotherapy is the first-line therapy also for mCRC treatment.

The genetic variability of CRC makes necessary to identify the

tumor subtypes (e.g., mismatch repair or microsatellite instability

status, mutations in KRAS, NRAS, BRAF) to set the most suitable

adjuvant therapy (i.e., systemic chemotherapy alone or with other

FDA-approved drugs).

The CRC prognosis depends essentially on comorbid

conditions, the frailty of patients, and drug resistance promoted

by cancer stem cells and/or genetic mutations in key driver genes
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(e.g., KRAS, p53, BRAF) (17, 18). Therefore, this present review

aims to summarize the mechanisms that characterize the stepwise

nature of CRC, its genetic landscape, and the current and future

approaches for CRC management.
2 Methods

The data in this present systematic review were collected using

two different searches: PubMed (https://pubmed.ncbi.nlm.nih.gov/)

and an online bioinformatic database (http://clinicaltrials.gov). The

search of the references using PubMed identified a total of 144 hits

from 1988 to 2022 relatively to keywords such as “Current

treatment of CRC” or “immunotherapy in CRC” or “gut

microbiota in CRC” or “chemoresistance and CRC” or “oxidative

stress and CRC” or “novel drug delivery approaches in cancer” or

“CSCs and CRC” or “systematic review and meta-analysis of

randomized controlled trials”. Thus, the combined information

obtained from the two data sources has represented the basis for

writing the review.
3 Results

3.1 Mechanisms of CRC initiation
and progression

The stepwise nature of sporadic CRC is still poorly understood,

even though several mechanisms have been described to be involved

in its initiation and progression. Epidemiological studies have found

a relationship between CRC and chronic exposure to environmental

risk factors (see above section) with strong pro-inflammatory

potential. Moreover, increasing evidence suggests that intestinal

microbiota and its products (e.g., butyrate and bacterial toxins) play

a pivotal role in all CRC steps (initiation, progression, and

metastasis) (19–21) (Figure 1). CRC patients display a reduced

bacterial diversity and richness compared to healthy individuals,

reflecting a distinctive intestinal microbial dysbiosis (22). Dysbiosis

causes alteration in gut mucosa integrity and permeability, due to

alteration of intercellular tight junctions. This condition, enhancing

the colocyte susceptibility to mutagenic/carcinogenic factors and

pathogenic bacteria, also promotes the activation of Mucosal

Associated Lymphatic Tissue. Moreover, Th2-derived cytokines

induced by pathogens or autoantigens may result in myeloid cell

recruitment (neutrophils and macrophages) and, consequently in

Reactive Oxygen Species (ROS) production.

As known, inflammation and oxidative stress are tightly

coupled; in fact, a chronic activation of inflammatory cells and

production of pro-inflammatory mediators (e.g., cyclooxygenase 2,

prostaglandin E2, tumor necrosis factor a, and transforming

growth factor b) enhance ROS generation and dysregulate the

activity of signal transduction pathways, including Transducer

and Activator of Transcription 3, Nuclear Factor-kappa B (NF-

kB), hypoxia-inducible factor-1a (HIF1a), NF-E2 related factor-2

(NRF2) (23–25). In addition, it has been reported that ROS

overproduction may result in genetic/epigenetic changes, such as
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single-strand cleavage, point mutations, miscoding, abnormal

amplification, oncogene activation, and immune suppression,

leading to possible precancerous lesions (i.e., adenomatous

polyps) (26, 27).

Mutations providing a selective growth advantage to the cells

within their microenvironment can potentially drive cancer

development. Generally, two mutated gene drivers can lead to a

net cell gain and detectable benign lesions, but over three gene

mutations promote the invasion through the basement membrane,

thereby leading to malignancy. In CRC, the first mutations usually

concern the APC gene resulting in a proliferative advantage of

epithelial cells promoting benign lesions (small adenomas)

(Figure 2). APC mutated small adenomas have a slow growth

rate, but further mutations of the KRAS gene can increase their

proliferation. However, the mutational status may be worsen by

sequential mutations of genes such as PIK3CA, SMAD4, and TP53

that promote the onset of malignant tumors capable of infiltrating

surrounding tissue and metastasizing distant organs (Figure 2) (28).

In addition, both colorectal adenomas and CRC are linked to

epigenetic alterations such as aberrant DNA methylation in key
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tumor-suppressor and oncogenes and dysregulation of miRNA

expression (29, 30).

Well-known examples of the carcinogenic role of ROS in CRC

are missense mutations at p53 suppressor gene, activation of

canonical Wnt signaling pathway (Wnt/b-catenin), which is

involved in cancer stem cell renewal process, and PI3K/Akt

signaling pathway, which regulates cell proliferation (31, 32).

Moreover, the most frequent ROS-dependent pre-mutagenic

DNA lesion is represented by 8-oxoguanine (8-oxoG) (33).

Notably, oxidative stress, due to either ROS overproduction or a

reduced activity of the enzymatic and non-enzymatic antioxidant

systems, is often involved in development and progression of

several cancers via activation of redox-responsive signaling

pathways leading to uncontrolled cell growth and oxidation of

lipids, carbohydrates, and proteins (i.e., cancer initiation,

promotion, and progression stages). Accordingly, oxidative stress

is one of the main cancer research topics given its involvement in

both genetic and metabolic cell damage (34–36). Increasing

evidence showed that oxidative stress control biogenesis of

cancer-associated microRNA (miRNA) via targeting various
FIGURE 1

Mechanisms of CRC initiation and progression. Environmental and genetic risk factors promoting Reactive Oxygen Species production, dysbiosis,
and inflammation.
FIGURE 2

Stepwise molecular/genetic events that underlie the initiation and progression of CRC.
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transcription and epigenetic factors. Recently, CRC-associated

miRNAs (e.g., miR-106b-5p, miR-335-5p, miR-193a-5p, miR-

378a-3p and miR-423-5p) are becoming attractive biomarkers as

they are expressed from the early stage of tumor development (37).

Moreover, either up-regulation or down-regulation of miRNAs

also known as “onco-miRNAs” are involved in CRC progression

and metastasis contributing to dysregulate several signaling

pathways, including mitogen-activated protein kinases (e.g., miR-

422a, miR-195), Wnt (e.g., miR-135a, miR-135b, miR-155, miR-17–

5p, miR-224), transforming growth factor-b (e.g., miR-224, miR-

20a-5p) and epithelial-to-mesenchymal transition (EMT) (e.g.,

miRNA-155, miR-34) (38–40).

Oncogene, oncosuppressor and metabolic gene mutations

contribute to the profound metabolic alterations found in cancer

cells, i.e., impaired respiration, increased fermentation and

anabolism (41). In most cases, the metabolism of cancer cells

favors aerobic glycolysis (the Warburg effect) rather than

oxidative metabolism to fulfill their biosynthetic and bioenergetic

demands of rapid and sustained proliferation. Mitochondrial

Oxidative Phosphorylation System (OXPHOS) is not necessarily

defective in tumorigenic cells, and it can take place proportionally

to the oxygen supply. Indeed, it has been shown that cancer stem

cells are able to revert glycolysis to TCA cycle to better satisfy their

metabolic needs and overproduce ROS (42). The Warburg

phenotype has been demonstrated to be driven by overexpression

of oncogenes such as c-Myc and HIF-1a (43). The inhibition of

pyruvate dehydrogenase activity and the increase of lactate

dehydrogenase activity lead to the conversion of pyruvate to

lactate following the mass action law (44). Moreover, lactate is

also generated from catabolism of glutamine and it is considered a

metabolite eliciting a broad spectrum of effects useful to sustain

cancer progression and metastasis (45). Cancer cells are capable of

adapting to metabolic-derived acidosis via monocarboxylate

transporters (MCTs), which export lactate and favor intracellular

alkalinization. Thus, the lactate exported by tumor cells can be

imported by cells of tumor microenvironmental where it acts as

important intracellular signaling for angiogenesis (46, 47).

Notably, cancer cells well adapt to ROS by triggering a powerful

antioxidant response mainly driven by glutathione (GSH) and

antioxidant enzymes, such as superoxide dismutase, catalase,

peroxiredoxins, GSH peroxidases, and thioredoxins (48). Thus,

the maintenance of the oxidative balance enables cancer cells to

perform their biological functions such as proliferation,

differentiation, and migration (49–51).

3.1.1 Genetic- molecular heterogeneity of CRC
CRC from a genetic-molecular standpoint is extremely

diversified. In fact, there are four main mechanisms of gene

alteration: (i) microsatellite instability (MSI), (ii) chromosomal

instability (CIN), (iii) CpG island methylator phenotype (CIMP),

(iv) and BRAF or KRAS mutations (52). Another aspect concerning

the molecular and phenotypic differences is the tumor localization

(i.e., the right or left side), which leads to different gene expression

and mutation profiles. Right-sided CRC occurs mainly in patients

with genetic predisposition and is characterized by hypermethylation,

higher frequency of BRAF mutation, and, in some cases, MSI (53).
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Instead, left-sided CRC is characterized by CIN and the activation of

the EGFR pathway (54). Moreover, differences in tumor

microenvironment components (e.g., tumor epithelial cells,

immune cells, and cancer-associated fibroblasts) play a critical role

in defining CRC with a positive or poor prognosis and in maintaining

immune surveillance (through the increase in tumor T-lymphocyte

subset density) or in promoting immune escape (55). For example, a

high density of specific tumor-infiltrating lymphocytes (i.e. cytotoxic

and memory T-cells) in MSI-high CRC can be considered a favorable

prognostic marker, because it counteracts the establishment of the

“immunoediting” process and reduces the tumor spread (56–58).

Furthermore, Canna et al. (59), found a relationship between

systemic inflammatory response and local inflammatory response

in patients undergoing resection for CRC, demonstrating that a high

concentration of C-reactive protein and low tumor-infiltrating CD4+

are predictive of poor cancer-specific survival.

The analysis of genetic profiles cannot be used for clinical

purposes due to a discrepancy in results (e.g., sample preparation

methods, use of different data processing and algorithms among

different patient cohorts, gene expression platforms, and so on).

However, the consensus molecular subtypes (CMS), which

represent a transcriptome-based classification of CRC, include

some superficial similarities useful for predictable CRC prognosis

(60, 61). The first called CMS1 (MSI immune) is characterized by

hypermutation, frequent BRAF mutation, MSI, and strong immune

activation, the CMS2 (canonical) by CIN and marked WNT and

MYC signaling, and the CM3 (metabolic) by evident metabolic

dysregulation and KRAS-mutated tumors. Lastly, the CM4

(mesenchymal), includes tumors characterized by prominent

TGFb activation, epithelial-mesenchymal transition gene up-

regulation, angiogenesis, and matrix remodeling.
3.2 Adjuvant treatments of CRC

Chemotherapy agents are usually used after a surgical excision as

the treatment of choice to eradicate Minimal Residual Disease (MRD)

in high-risk stage II and stage III patients and to increase the overall

survival rate in stage IV patients (62–65). However, the only use of

chemotherapy as standard-of-care (Table 1) can represent a limit due

to the high systemic toxicity, unsatisfactory response rate, the onset of

drug resistance, and the low tumor-specific selectivity. Therefore,

massive investments have been earmarked to develop new

approaches to improve patient outcomes. The identification of
TABLE 1 The main therapeutic approaches in the CRC treatment.

Cytotoxic drug regimen • Fluoropyrimidines;
• FOLFOX (5-FU/LV/Oxaliplatin);
• FOLFIRI (5-FU/LV/Irinotecan).

Targeted and immune-therapies • EGFR inhibitors;
• Anti-angiogenesis therapies;
• BRAF inhibitors;
• Kinase inhibitor;
• Immunotherapeutics
• HER2 inhibitors;
• KRAS inhibitors.
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point mutations in specific oncogenes (KRAS, NRAS, and BRAF),

amplification of human epidermal growth factor receptor 2 (HER2),

the MSI status, the DNA mismatch repair status (deficiency or

proficiency), has provided a framework for finding additional

approaches, as well as new prognostic perspective (66). Up to today

it is possible to hit the cancer more effectively, by administering the

most suitable biological agents with the standard chemotherapy

taking into account the genetic setting of patients (67, 68). In this

regard, targeted therapies (i.e., antibodies and small molecules) and

immunotherapies, which actively or passively target the patient’s

immune system, are widely used in combination with FOLFOX or

FOLFIRI as a first-/second-line setting or alone as a third-line setting

to improve the overall survival (OS) and progression-free survival

(PFS) of advanced/metastatic cancer patients (69, 70). Moreover,

antitumor immunity exerted by vaccines, specialized dendritic cells or

new generation of cytotoxic T cells are currently under investigation

in clinical trials (71, 72) (Table 2).

In patients with left-sided KRAS wild-type tumors, for instance,

the administration of anti-EGFR (i.e., cetuximab or panitumumab)

in combination with standard-of-care chemotherapy as a first-line

setting shows improvement in both OS and progression-free

survival (PFS) (73–75). Additionally, anti-EGFR can be used

alone in chemo-refractory patients with advanced CRC (76).

Recently, in patients with BRAF-mutated mCRC, the use of

anti-EGFR in combination with a selective inhibitor of BRAF kinase

(encorafenib) and a reversible inhibitor of the kinase activity of

mitogen-activated extracellular signal-regulated kinase 1 (MEK1)

and MEK2 (binimetinib) has been proposed as the third line

treatment to improve the prognosis (77, 78).
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Among the first- and second line interventions for mCRC, also

the VEGF inhibitors (i.e., Bevacizumab, Aflibercept) in

combination with standard-of-care chemotherapy contribute to

improve OS and PFS in patients (79, 80).

Another targeted therapy to treat advanced/metastatic CRC

refractory to all standard treatments is represented by the

diphenylurea-based multikinase inhibitor (i.e., Regorafenib). This

anti-tumoral drug targeting multiple protein kinases regulating

angiogenesis, proliferation, immunity, and metastases, increases

OS of heavily pre-treated patients (79, 81–83).

KRAS-targeted drugs, such as sotorasib and adagrasib, are

emerging for their anti-cancer activity in heavily pre-treated

patients harboring the KRASG12C mutation. These drugs are

small molecules that keep KRAS in its inactive state, allowing

apoptosis. However, their use in CRC treatment is still under

investigation (84).

3.2.1 5- fluorouracil
5-FU is a fluorinated analogue of uracil that belongs to

fluoropyrimidines. It was developed in 1957 and still today, it

represents the mainstay of systemic combination chemotherapy

for the treatment of CRC (85, 86). Although several 5-FU

administration schedules were used (e.g., bolus intravenous, bolus

plus intermittent intravenous infusion), today the standard of care is

represented by continuous or intermittent intravenous infusion

(87). Moreover, for around twenty years, also oral 5-FU prodrugs

(e.g., Capecitabine, Tegafur, 5′-deoxy-5-fluorouridine) are

commonly used as part of combination regimens or as

monotherapy (88, 89).
TABLE 2 Current clinical trials based on immunotherapy.

Clinical trials N° CRC stage Treatment Stage of trials Status of trials

NCT01890213 III CEA (6D) VRP vaccine I Completed

NCT02466906 III RhGD-CSF II Unknown

NCT02912559 III Chemotherapy and Atezolizumab III Active

NCT02280278 Post-therapy III Cytokine-induced Killer cell Immunotherapy III Unknown

NCT03507699 Metastatic Nivolumab, Ipilimumab CMP-001 and radiosurgery I Completed

NCT04044430 Metastatic Encorafenib, Binimetinib and Nivolumab I Completed

NCT05130060 Metastatic Vaccine (PolyPEPI1018) and TAS-102 I Active

NCT03310008 Metastatic NKR-2 + Folfox I Unknown

NCT02834052 Metastatic Pembrolizumab and Poly-ICLC I/II Completed

NCT03377361 Metastatic Nivolumab, Trametinib with or without Ipilimumab I/II Active

NCT03436563 Metastatic Anti-PD-L1/TGFbII fusion protein M7824 I/II Active

NCT03711058 Metastatic Copanlisib and Anti-PD1 Nivolumab I/II Active

NCT04599140 Metastatic CXCR1/2 inhibitor (SX-682) and Nivolumab I/II Recruiting

NCT03993626 Metastatic CXD101 and Nivolumab I/II Unknown

NCT02981524 Metastatic GVAX (with CY) colon vaccine and Pembrolizumab II Completed

NCT04109924 Pre-treated metastatic TAS-102 Irinotecan and Bevacizumab II Active

NCT04362839 Chemoresistant metastatic Regorafenib, Ipilimumab and Nivolumab I Active
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5-FU is easily incorporated into DNA and RNA where it acts as

an antimetabolite because shares a common structure with

pyrimidines (90). After administration, 5-FU is converted via

anabolic pathways into fluorodeoxyuridine monophosphate

(FdUMP), fluorodeoxyuridine triphosphate (FdUTP), and

fluorouridine triphosphate (FUTP) (91). Stable complex between

FdUMP and thymidylate synthase (TS) inhibits deoxythymidine

mono-phosphate production, which consequently results in severe

disruption of DNA synthesis and repair. Leucovorin (LV, Folinic

acid), and Methotrexate (MTX, Folate analogue) are preferably used

in combination with 5-FU to improve its antitumor activity (92, 93).

Moreover, metabolites of 5-FU produce also alterations in the

cellular membrane (89).

Approximately 80% of the total 5-FU dose is metabolized

primarily in the liver by dihydropyrimidine dehydrogenase

(DPD) (94), an enzyme that catalyzes the rate-limiting step in

its metabolism.

Severe 5-FU-associated toxicity (e.g., leukopenia, neutropenia,

thrombocytopenia, anemia, neuropathy, skin rash, hand-foot

syndrome, and so on) is mainly due to a partial or complete DPD

deficiency (95–99). In particular, different rare variants in the gene

encoding DPD (DPYD) have been identified as validated risk

variants for drug toxicity (86). Therefore, FDA-approved drug

label prevents the use of 5-FU in individuals with absent DPD

activity (88), while the Clinical Pharmacogenetics Implementation

Consortium and the Dutch Pharmacogenetics Working Groups

report dosing recommendations for 5-FU-based chemotherapy,

based on DPYD genotype (88, 100, 101).

Although 5-FU-based chemotherapy combining with

oxaliplatin or irinotecan has improved the response rate in

pa t i en t s w i th advanced CRC, pr imary or acqu i r ed

chemoresistance is the leading cause of unsatisfactory outcomes

in over 90% of patients with metastatic disease (93, 102). Indeed,

intratumoral heterogeneity due to genetic mutations, tumor

microenvironment (TME), and the presence of cancer stem cells,

and the molecular complexity of CRC as well, making it necessary

to develop other novel therapeutic strategies to overcome drug

resistance and improve drug response rates.
3.3 The presence of cancer stem cells
limits therapy efficacy against CRC

The main limiting factor for cancer patients is the onset of

multi-drug resistance (MDR), which makes cancer cells tolerant to

anti-cancer drugs. In fact, the combined chemotherapy and the

development of different administration schedules are not always

sufficient to avoid these issues due to the biological complexity of

the tumor (103).

Tumor MDR is a highly-complex phenomenon that

encompasses a plethora of molecular mechanisms involving not

only cancer cells, but also infiltrating cells (e.g., endothelial,

hematopoietic, and stromal cells) and the resulting tumor

microenvironment (104). The constant interactions between

tumor cells and their surrounding stroma result in alterations of

many different cellular processes. Moreover, the presence of a sub
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clonal variation among cancer cells allows greater adaptability of the

tumor to therapy, promoting its evolution.

Multiple molecular mechanisms have been identified as

contributing factors to MDR development. Among these, the

interplay between pre-existing and drug-induced mechanisms,

including defects in the apoptotic machinery, mitochondrial

dysfunction, altered autophagy activity, aberrant cell signaling,

reduction in drug concentration and genetic and epigenetic

changes, plays a significant role (105–108).

Moreover, the major cause of primary therapy resistance is

represented by unresponsive subpopulations, such as cancer stem

cells (CSCs) that can increase by up to 30% following long-term

drug treatment (109).

Stochastically CSCs are distributed within tumors, but

preferably they reside in specific niches, characterized by hypoxia,

low pH, and fewer nutrients, which in addition to conferring them

stemness features, allow the generation of differentiated progenies

(110, 111).

CSCs are frequently quiescent and poorly differentiated cell

populations with a lower level of intracellular ROS that share with

normal stem cells both properties (i.e., self-renewal, self-sufficiency,

and differentiation), and stemness signaling pathways (e.g., Notch,

Sonic hedgehog, WNT/b-Catenin, JAK/STAT, and NF-kB). Their

origin is still debated but it has been suggested that, at the moment

of tumor initiation, the acquisition of CSC phenotype from either

transformed differentiated cells (stochastic model) or transformed

tissue-resident stem cells (hierarchical model) is promoted by the

overexpression of oncogenes and the inhibition of tumor

suppressor genes (e.g., APC, TP53, TGFBR2, SMAD4, PTEN, and

RAS). Instead, following chemotherapy or radiotherapy regimen,

new CSCs derive from either non-CSC subpopulations or therapy-

induced senescent tumor cells (112).

Standard chemotherapy is not a valid therapeutic option for

CSCs because they can effectively counteract the chemotherapy-

induced oxidative stress through their free radical scavenging

systems, such as GSH, and overexpression of the anti-apoptotic

protein B-cell lymphoma 2 (Bcl2) (113–115). Moreover, the

enhancement of ATP-binding cassette (ABC) transporters and

aldehyde dehydrogenase (ALDH) expression, the increased

resistance to apoptosis, and the activation of DNA damage sensor

and repair machinery contribute to give to CSCs a survival

advantage against anti-cancer therapy (116). Additionally, CSCs

can transiently and reversibly switch between epithelial and

mesenchymal states and vice versa (i.e., epithelial-mesenchymal

plasticity) via Wnt/b-catenin signaling (117, 118). Such versatility,

consequently, results in metabolic reprogramming in cellular

bioenergetics, where energy supply can alternatively depend on

aerobic glycolysis or mitochondrial OXPHOS.

It has been shown that metformin potentially offers

therapeutic advantages by inhibiting the mitochondrial

respiration, forces CSCs to a metabolic shift from OXPHOS to

glycolysis (119, 120). The temporary OXPHOS suppression

renders CSCs more prone to apoptosis. However, tumor relapse

under metformin treatment cannot be excluded since CSCs can

acquire resistance mainly due to MYC overexpression, promoting

a Warburg-like glycolytic phenotype (120). Also, progressive
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increase in glycolysis-derived lactate may promote the activation

of proteases, leading to ECM degradation, and resistance to

chemotherapy (121).

The release of IL-4 from colorectal CSCs promotes their

survival and hampers the CD8+T cell-mediated antitumor

immune response, while the presence of inflammatory cytokines,

including IL-1, IL-4, IL-6, IL-8, IL-10, and TGF-b, fuels an

inflammatory loop, via Stat3/NF-kB pathways, for stimulating the

self-renewal of CSCs (118, 122). Moreover, the tumorigenic and

self-renewal capacity of CSCs also depend on the hyperactivation of

b-catenin, Notch, and Hedgehog signaling pathways (123, 124).

Although several CSC biomarkers have been identified for CRC,

their preclinical application is still unavailable due to the intrinsic

features of CSCs, i.e., phenotypic heterogeneity, and the influence of

the TME or CSC behavior. In this regard, previous studies have

focused the attention on both the CSC-related signature and

immune cell infiltration as important prognostic factors. The

correlation between infiltrating portion of immune cells, i.e.,

tumor immune microenvironment (TIME), and hallmark gene

sets may represent a possible starting point for developing CSC-

targeted therapeutic strategies (122, 125).
3.4 New drug delivery approaches and
latest strategies implemented in the
treatment of CRC

Increasing evidence suggests that the use of nanoscale

nanoparticles (NPs) as drug delivery systems (DDS), including

liposomes, nanoemulsions, hydrogels, multifunctional inorganic
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materials (e.g., carbon nanotubes, gold nanoparticles, quantum

dots), and peptides, could provide a novel therapeutic approach

useful in overcoming MDR and improving the pharmacokinetics

and biodistribution of anticancer compounds, resulting in reduced

side effects (126). These NPs refers to nanometer scale systems (10-

1000 nm) capable of protecting encapsuled molecules from

degradation and passively or actively delivering drugs, small

molecules, proteins, peptides, DNA and RNA into specific targets.

However, their bio-distribution and clearance in the body depend

not only by the NP chemical, physical and biological properties

(e.g., size, stability, surface charge, solubility, and so on) but also by

factors, such as the administration route (e.g., intravenous, oral,

pulmonary and dermal administration) and host environment (e.g.,

pre-existing inflammation) (127).

Recently, it has been reported that NPs can accumulate in

tumor tissues by passive or active delivery. Passive delivery of drug-

loaded nanoparticles (i.e., the Enhanced Permeability and

Retention, EPR, effect) is mainly due to fenestrated and immature

new tumor vessels (128–131) while, the active delivery is due to a

ligand-binding mechanism (e.g., nanoparticles targeting EpCAM,

the folate receptor, EGFR and CD44) (132–134) (Figure 3).

However, regardless of NP delivery, nanoparticle-protein

complex, namely protein corona (PC), can permanently change

the NP fate. The protein profile of the corona complex does not

have a standard composition, because it varies not only among NPs

of different chemical designs but even across the NPs of the same

type. This latter is explained by the so-called Vroman effect, in

which protein turnover depends not only by the high-affinity

binding of proteins, but also on their exchange kinetics (135). In

general, on the basis of the binding affinity between plasma proteins
FIGURE 3

Evolution of nanoparticles as innovative drug delivery systems. pH-sensitive pegylated nano drug delivery systems (HA-mPEG-Cis NPs) are able to
target CD44+ cells; Gold nanoparticles (AuNPs) find application in photodynamic therapy (PDT); Lipid-based NPs; Nanoemulsions (NEs) are a system
to deliver hydrophobic drugs and hydrophilic or hydrophobic compounds.
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and NP surfaces a “hard corona” and a “soft corona” are

distinguished, respectively (136). Moreover, proteins participating

in the complex influence the cell recognition pathway by the

reticuloendothelial system (RES) and promote biological

processes against NPs, including aggregation, opsonization, and

phagocytosis. Therefore, either second-generation NPs or

PEGylation technique enhance the effect of cancer therapy by

ensuring drug delivery within the tumor and evading

phagocytosis (137). In this regard, emerging self-assembly pH-

sensitive pegylated nano drug delivery systems, namely HA-

mPEG-Cis NPs, are able to target CD44-CRC-positive cells and

dissolve the hydrated PEG in the acidic tumor environment. These

drug delivery systems improve drug circulation time and tumor

targeting while reducing the side effects of the loaded drug

(138) (Figure 3).

Inorganic nanocarrier, of controlled size and shape, such as gold

NPs (AuNPs), show a certain versatility of use, including chemical

sensing, imaging, and drug delivery due to their favourable optical

and physical properties coupled with a reasonable biocompatibility

with regard to biological environment (139). Interestingly,

AuNPs, including gold nanorods, nanocages, nanostars,

nanocubes, and nanospheres, find application in photodynamic

therapy (PDT) for their specific physical features (i.e., optical and

Surface Plasmon Resonance properties, proton-capture cross-

section) (140) (Figure 3).

Lipid-based NPs are already FDA-approved for various

therapeutic purposes, including cancer treatment (e.g., Doxil®,

DaunoXome®, Myocet®, DepoCyt®, Marqibo® and Onivyde®),

severe infections or immunocompromised conditions (e.g.

AmBisome®) and RNAi therapeutic (Onpattro®) (127,

141) (Figure 3).

Liposomes are small-size vesicles consisting of an outer lipid

bilayer, synthetic or natural, and an aqueous core, widely used to

encapsulate/entrap drugs or nucleic acids (i.e. gene therapy) (142).

Currently, the manipulation of liposome lipid membrane

components (e.g., neutral and/or negatively charged lipids plus

cholesterol, sphingomyelin plus cholesterol, hydrogenated soy

phosphatidylcholine plus cholesterol) as well as specific key

parameters (e.g., size and shape) has improved their biological

performance, in term of enhanced delivery efficiency, maximizing

so-called nano-bio interactions (143).

Nanoemulsions (NEs) are another system to deliver

hydrophobic drugs and hydrophilic or hydrophobic

compounds through different routes of administration (e.g.,

aerosols, ingestion, and injections). NEs are made as single

(i.e., oil-in-water [o/w], water-in-oil [w/o]) or dual (w/o/w, o/

w/o) emulsions with biocompatible and FDA-approved

biodegradable oils (143). Previous in vitro studies have shown

that natural active compounds encapsulated within NEs, acting

synergistically with chemotherapy, can improve the therapeutic

value of treatment despite the use of a lower dosage of drug

(144, 145). Also, the entrapment of active or cytotoxic drugs

within nanoemulsions can be useful to sensitize CSCs to

apoptosis (146) (Figure 3).

Over the past decade, nanotechnology has been widely explored

to develop cytotoxic drug carriers. Although further improvements
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are needed, different types of NPs are already considered reliable

systems for drug delivery due to their ability in targeting the tumor

before releasing the drug.
4 Conclusion

Considering the critical nature of this review, and the variety of

the included studies, it highlights that the sporadic CRC is a multi-

stage and multi-step process in which the early mutational events

seem to be driven by dysbiosis, chronic inflammation, and ROS.

Moreover, treatments with standard cytotoxic agents, such as

FOLFOX and FOLFIRI regimens, also contribute to the variation

in the molecular profile of CRC in the advanced stage. Furthermore,

this review also highlights that the limitation in treatment

approaches for advanced CRC patients is mainly represented by

both extrinsic (chemotherapy) and intrinsic mutation burden in

cancer subpopulations (CSCs) developing MDR phenotype. In this

regard, many strategies have been studied to overcome this issue,

including the inhibition of crucial signaling involved in the self-

renewal and metabolism of CSCs, as well as the redox-targeting

approach. Moreover, using anti-vasculature therapies (e.g.,

bevacizumab and cetuximab) to modulate the tumor

microenvironment represents a valid approach for enhancing

cytotoxic drug uptake. Lastly, the development of novel DDS and

promoter drugs can improve the delivery and the effectiveness of

anti-cancer agents, opening up to personalized treatment protocols

for CRC.
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93. André T, de Gramont A, Vernerey D, Chibaudel B, Bonnetain F, Tijeras-
Raballand A, et al. Adjuvant fluorouracil, leucovorin, and oxaliplatin in stage II to III
colon cancer: updated 10-year survival and outcomes according to BRAFmutation and
mismatch repair status of the MOSAIC study. JCO (2015) 33(35):4176–87. doi:
10.1200/JCO.2015.63.4238

94. Sharma V, Gupta SK, Verma M. Dihydropyrimidine dehydrogenase in the
metabolism of the anticancer drugs. Cancer Chemother Pharmacol (2019) 84(6):1157–
66. doi: 10.1007/s00280-019-03936-w

95. Liu JH, Cheng YY, Hsieh CH, Tsai TH. The herb–drug pharmacokinetic
interaction of 5-fluorouracil and its metabolite 5-Fluoro-5,6-Dihydrouracil with a
traditional Chinese medicine in rats. IJMS (2017) 19(1):25. doi: 10.3390/ijms19010025

96. Forouzesh DC, Moran GR. Mammalian dihydropyrimidine dehydrogenase.
Arch Biochem Biophysics (2021) 714:109066. doi: 10.1016/j.abb.2021.109066

97. Ibrahim B, Mady OY, Tambuwala MM, Haggag YA. pH-sensitive nanoparticles
containing 5-fluorouracil and leucovorin as an improved anti-cancer option for colon
cancer. Nanomedicine (2022) 17(6):367–81. doi: 10.2217/nnm-2021-0423

98. Vodenkova S, Buchler T, Cervena K, Veskrnova V, Vodicka P, Vymetalkova V.
5-fluorouracil and other fluoropyrimidines in colorectal cancer: past, present and
future. Pharmacol Ther (2020) 206:107447. doi: 10.1016/j.pharmthera.2019.107447

99. Vainchtein LD, Rosing H, Schellens JHM, Beijnen JH. A new, validated HPLC-
MS/MS method for the simultaneous determination of the anti-cancer agent
capecitabine and its metabolites: 5′-deoxy-5-fluorocytidine, 5′-deoxy-5-fluorouridine,
5-fluorouracil and 5-fluorodihydrouracil, in human plasma. BioMed Chromatogr
(2009) 24:374–86. doi: 10.1002/bmc.1302
frontiersin.org

https://doi.org/10.1038/s41698-021-00142-x
https://doi.org/10.1038/nature11252
https://doi.org/10.1038/nature11252
https://doi.org/10.3390/ijms19123733
https://doi.org/10.1038/onc.2008.271
https://doi.org/10.1056/NEJMoa051424
https://doi.org/10.1016/j.humpath.2004.01.022
https://doi.org/10.1200/JCO.2008.19.6147
https://doi.org/10.1038/sj.bjc.6602419
https://doi.org/10.1200/JCO.18.02258
https://doi.org/10.1038/nm.3967
https://doi.org/10.1200/JCO.2004.05.063
https://doi.org/10.1016/j.ymthe.2020.12.017
https://doi.org/10.3748/wjg.v20.i20.6113
https://doi.org/10.1093/jjco/hyh054
https://doi.org/10.1093/jjco/hyh054
https://doi.org/10.2478/raon-2019-0033
https://doi.org/10.1159/000094357
https://doi.org/10.1016/S0140-6736(02)08514-8
https://doi.org/10.3389/fimmu.2020.01624
https://doi.org/10.1038/nrd3500
https://doi.org/10.1038/s41577-019-0210-z
https://doi.org/10.1038/s41416-020-01048-4
https://doi.org/10.1038/s41416-020-01048-4
https://doi.org/10.1007/s12325-018-0791-0
https://doi.org/10.1200/JCO.2009.27.4860
https://doi.org/10.1056/NEJMoa071834
https://doi.org/10.1200/JCO.20.02088
https://doi.org/10.1200/JCO.20.02088
https://doi.org/10.1056/NEJMoa1908075
https://doi.org/10.1016/S1470-2045(12)70516-8
https://doi.org/10.1200/JCO.2012.42.8201
https://doi.org/10.1200/JCO.2012.42.8201
http://link.springer.com/10.1007/978-3-319-91442-8_3
https://doi.org/10.1016/j.ctrv.2019.101912
https://doi.org/10.1158/1078-0432.CCR-11-1900
https://doi.org/10.1158/2159-8290.CD-20-1616
https://doi.org/10.1158/2159-8290.CD-20-1616
https://doi.org/10.1016/j.clcc.2014.11.002
https://doi.org/10.1002/cpt.2334
https://doi.org/10.1007/s00280-016-3054-2
https://doi.org/10.1177/17588359211009001
https://doi.org/10.1177/17588359211009001
https://doi.org/10.2174/0929867324666170111152436
https://doi.org/10.1111/cas.14532
https://doi.org/10.1016/j.ejca.2003.12.004
https://doi.org/10.1016/j.ejca.2003.12.004
https://doi.org/10.3390/molecules13081551
https://doi.org/10.1200/JCO.2015.63.4238
https://doi.org/10.1007/s00280-019-03936-w
https://doi.org/10.3390/ijms19010025
https://doi.org/10.1016/j.abb.2021.109066
https://doi.org/10.2217/nnm-2021-0423
https://doi.org/10.1016/j.pharmthera.2019.107447
https://doi.org/10.1002/bmc.1302
https://doi.org/10.3389/fonc.2023.1208140
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Tirendi et al. 10.3389/fonc.2023.1208140
100. Dean L, KaneM. Fluorouracil therapy and DPYD genotype. In: Pratt VM, Scott
SA, Pirmohamed M, Esquivel B, Kattman BL, Malheiro AJ, editors. Medical genetics
summaries. Bethesda (MD: National Center for Biotechnology Information (US (2012).
Available at: http://www.ncbi.nlm.nih.gov/books/NBK395610/.

101. Kindler HL, Schilsky RL. Eniluracil: an irreversible inhibitor of
dihydropyrimidine dehydrogenase. Expert Opin Investigational Drugs (2000) 9
(7):1635–49. doi: 10.1517/13543784.9.7.1635

102. Longley DB, Harkin DP, Johnston PG. 5-fluorouracil: mechanisms of action
and clinical strategies. Nat Rev Cancer (2003) 3(5):330–8. doi: 10.1038/nrc1074

103. Vasan N, Baselga J, Hyman DM. A view on drug resistance in cancer. Nature
(2019) 575(7782):299–309. doi: 10.1038/s41586-019-1730-1

104. Kreso A, Dick JE. Evolution of the cancer stem cell model. Cell Stem Cell (2014)
14(3):275–91. doi: 10.1016/j.stem.2014.02.006

105. Peetla C, Vijayaraghavalu S, Labhasetwar V. Biophysics of cell membrane lipids
in cancer drug resistance: implications for drug transport and drug delivery with
nanoparticles. Advanced Drug Delivery Rev (2013) 65(13–14):1686–98. doi: 10.1016/
j.addr.2013.09.004

106. Samuel P, Fabbri M, Carter DRF. Mechanisms of drug resistance in cancer: the
role of extracellular vesicles. Proteomics (2017) 17(23–24):1600375. doi: 10.1002/
pmic.201600375

107. Brasseur K, Gévry N, Asselin E. Chemoresistance and targeted therapies in
ovarian and endometrial cancers. Oncotarget (2017) 8(3):4008–42. doi: 10.18632/
oncotarget.14021

108. Lu C, Shervington A. Chemoresistance in gliomas. Mol Cell Biochem (2008)
312(1–2):71–80. doi: 10.1007/s11010-008-9722-8

109. NajafiM, Mortezaee K, Majidpoor J. Cancer stem cell (CSC) resistance drivers.
Life Sci (2019) 234:116781. doi: 10.1016/j.lfs.2019.116781

110. Morrison SJ, Spradling AC. Stem cells and niches: mechanisms that promote
stem cell maintenance throughout life. Cell (2008) 132(4):598–611. doi: 10.1016/
j.cell.2008.01.038

111. Barbato L, Bocchetti M, Di Biase A, Regad T. Cancer stem cells and targeting
strategies. Cells (2019) 8(8):926. doi: 10.3390/cells8080926

112. Walcher L, Kistenmacher AK, Suo H, Kitte R, Dluczek S, Strauß A, et al.
Cancer stem cells–origins and biomarkers: perspectives for targeted personalized
therapies. Front Immunol (2020) 11:1280. doi: 10.3389/fimmu.2020.01280

113. Baumann M, Krause M, Hill R. Exploring the role of cancer stem cells in
radioresistance. Nat Rev Cancer (2008) 8(7):545–54. doi: 10.1038/nrc2419

114. Eyler CE, Rich JN. Survival of the fittest: cancer stem cells in therapeutic
resistance and angiogenesis. JCO (2008) 26(17):2839–45. doi: 10.1200/
JCO.2007.15.1829

115. Ding S, Li C, Cheng N, Cui X, Xu X, Zhou G. Redox regulation in cancer stem
cells. Oxid Med Cell Longevity (2015) 2015:1–11. doi: 10.1155/2015/750798

116. Zhao J. Cancer stem cells and chemoresistance: the smartest survives the raid.
Pharmacol Ther (2016) 160:145–58. doi: 10.1016/j.pharmthera.2016.02.008

117. Eun K, Ham SW, Kim H. Cancer stem cell heterogeneity: origin and new
perspectives on CSC targeting. BMB Rep (2017) 50(3):117–25. doi: 10.5483/
BMBRep.2017.50.3.222

118. Sulaiman A, McGarry S, Li L, Jia D, Ooi S, Addison C, et al. Dual inhibition of
wnt and yes-associated protein signaling retards the growth of triple-negative breast
cancer in both mesenchymal and epithelial states. Mol Oncol (2018) 12(4):423–40. doi:
10.1002/1878-0261.12167

119. Banerjee A, Birts CN, Darley M, Parker R, Mirnezami AH, West J, et al. Stem
cell-like breast cancer cells with acquired resistance to metformin are sensitive to
inhibitors of NADH-dependent CtBP dimerization. Carcinogenesis (2019) 40(7):871–
82. doi: 10.1093/carcin/bgy174

120. Sancho P, Burgos-Ramos E, Tavera A, Bou Kheir T, Jagust P, Schoenhals M,
et al. MYC/PGC-1a balance determines the metabolic phenotype and plasticity of
pancreatic cancer stem cells. Cell Metab (2015) 22(4):590–605. doi: 10.1016/
j.cmet.2015.08.015

121. Chen C, Bai L, Cao F, Wang S, He H, Song M, et al. Targeting LIN28B
reprograms tumor glucose metabolism and acidic microenvironment to suppress
cancer stemness and metastasis. Oncogene (2019) 38(23):4527–39. doi: 10.1038/
s41388-019-0735-4

122. Zheng H, Liu H, Li H, Dou W, Wang J, Zhang J, et al. Characterization of stem
cell landscape and identification of stemness-relevant prognostic gene signature to aid
immunotherapy in colorectal cancer. Stem Cell Res Ther (2022) 13(1):244. doi: 10.1186/
s13287-022-02913-0

123. Vermeulen L, Snippert HJ. Stem cell dynamics in homeostasis and cancer of
the intestine. Nat Rev Cancer (2014) 14(7):468–80. doi: 10.1038/nrc3744

124. Zeuner A, Todaro M, Stassi G, De Maria R. Colorectal cancer stem cells: from
the crypt to the clinic. Cell Stem Cell (2014) 15(6):692–705. doi: 10.1016/
j.stem.2014.11.012
Frontiers in Oncology 1192
125. Wang W, Xu C, Ren Y, Wang S, Liao C, Fu X, et al. A novel cancer stemness-
related signature for predicting prognosis in patients with colon adenocarcinoma. Stem
Cells Int (2021) 2021:1–23. doi: 10.1155/2021/7625134

126. Sun Y, Ma X, Hu H. Application of nano-drug delivery system based on
cascade technology in cancer treatment. IJMS (2021) 22(11):5698. doi: 10.3390/
ijms22115698
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Inherited metabolic disorders arise from mutations in genes involved in the

biogenesis, assembly, or activity of metabolic enzymes, leading to enzymatic

deficiency and severe metabolic impairments. Metabolic enzymes are essential

for the normal functioning of cells and are involved in the production of amino

acids, fatty acids and nucleotides, which are essential for cell growth, division and

survival. When the activity of metabolic enzymes is disrupted due to mutations or

changes in expression levels, it can result in variousmetabolic disorders that have

also been linked to cancer development. However, there remains much to learn

regarding the relationship between the dysregulation of metabolic enzymes and

metabolic adaptations in cancer cells. In this review, we explore how

dysregulated metabolism due to the alteration or change of metabolic

enzymes in cancer cells plays a crucial role in tumor development,

progression, metastasis and drug resistance. In addition, these changes in

metabolism provide cancer cells with a number of advantages, including

increased proliferation, resistance to apoptosis and the ability to evade the

immune system. The tumor microenvironment, genetic context, and different

signaling pathways further influence this interplay between cancer and

metabolism. This review aims to explore how the dysregulation of metabolic

enzymes in specific pathways, including the urea cycle, glycogen storage,

lysosome storage, fatty acid oxidation, and mitochondrial respiration,

contributes to the development of metabolic disorders and cancer.

Additionally, the review seeks to shed light on why these enzymes represent

crucial potential therapeutic targets and biomarkers in various cancer types.

KEYWORDS

inherited metabolic disorders, enzymatic dysregulation, cancer, urea cycle, glycogen
storage, lysosome storage, fatty acid oxidation, mitochondrial respiration
1 Introduction

Inherited metabolic disorders can be caused by mutations of genes involved in the

biogenesis, assembly or activity of metabolic enzymes, which can lead to enzymatic

deficiency and severe life-threatening metabolic impairments (1). Metabolism is the

process by which macromolecules (lipids, carbohydrates, nucleic acids, and proteins) are
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broken down to produce energy (catabolism) or used for energy

storage (anabolism). In normal cells, macromolecules go through a

series of biochemical reactions catabolized by metabolic enzymes in

the presence of oxygen to produce ATP through mitochondrial

respiration. By-products resulting from this metabolic activity are

then recycled or eliminated. Dysregulation of the activity of these

enzymes due to mutation or changes in levels of expression

(upregulation and downregulation) can lead to several metabolic

disorders and also have been associated with cancer development

(Figure 1) (2).

The “Warburg effect” or aerobic glycolysis, one of the altered

metabolisms in cancer, was first described in 1927 by Otto Warburg

who observed that cancer cells have altered glucose metabolism due

to increased glucose uptake in the cytoplasm where glucose is

converted into lactate, even in the presence of oxygen (3). This

discovery showed for the first time how cancer cells can benefit

from metabolic adaptation to ensure their survival and

proliferation. It has been proposed that cancer cells, which

require high energy consumption, use aerobic glycolysis to

facilitate the uptake and incorporation of nutrients into their

biomass (4). However, the reasons why some cancer cells switch

from oxidative phosphorylation to aerobic glycolysis remain

unclear (5), and recent research has shown that oxidative

phosphorylation can also drive cancer growth (6). Since the

“Warburg effect” discovery, considerable research has been

conducted on the importance of metabolism for cancer

development, making metabolism reprogramming one of the

hallmarks of cancer and cancer itself a metabolic disease (7, 8).

Cancer cell rewiring of metabolism plays a key role in

tumorigenesis, tumor progression, and drug resistance, which can

be influenced by the tumor microenvironment (TME) and the

genetic context in which tumors arise and progress. Enzymatic
Frontiers in Oncology 0294
deficiency can notably lead to an accumulation of metabolites,

known as oncometabolites, which can act as signaling molecules

for regulating gene expression and promoting tumor growth (9–11).

The upregulation or downregulation of metabolic enzymes can

promote and sustain the activation of metabolic pathways that play

a key role in cancer cell proliferation and survival, notably by

preventing nutrient depletion (2). However, whether the expression

of metabolic enzymes is a cause or a consequence of metabolic

adaptations often remains unclear. As the interplay between cancer

and metabolism reprogramming is becoming established, more

research is needed to fully understand how cancer cells take

advantage of metabolic enzyme dysregulation. In this context,

here we review enzymatic dysregulation of the metabolic

pathways for the urea cycle, glycogen storage, lysosome storage,

fatty acid oxidation and mitochondrial respiration, with regard to

their role in the development of metabolic disorders and cancer,

and why these enzymes represent important potential therapeutic

targets and biomarkers in most cancer types.
2 Urea cycle disorders

Urea cycle defects or disorders (UCDs) arise from an inherited

deficiency in one of the five catalytic enzymes that play a crucial role

in the urea cycle pathway. This leads to an accumulation of

ammonia (hyperammonemia), which in turn results in

neurocognitive deficits and/or chronic liver dysfunction. The urea

cycle is the primary pathway for the elimination of nitrogenous

waste, mainly in the liver, such as ammonia and glutamine, into

urea (12). The five catalytic enzymes in the urea cycle are

Carbamoyl phosphate synthetase I (CPS1), Ornithine

transcarbamylase (OTC), Argininosuccinate synthetase (ASS1),
FIGURE 1

Interplay between enzymatic deficiencies, metabolic disorders, and cancer. Enzymatic activity deficiencies due to genetic mutations or changes in
levels of expression (upregulation and downregulation) can lead to several metabolic disorders and have been associated with cancer development
affecting metabolic pathways such as urea cycle, glycogen storage, lysosome storage, fatty acid oxidation, and mitochondria respiration. The Figure
was partly generated using Biorender under the agreement number: WM25LGLSAK (www.Biorender.com).
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Mahé et al. 10.3389/fonc.2023.1230934
Argininosuccinate lyase (ASL), and Arginase (ARG1) (Figure 2A)

(13). The manifestation of deficiency in any of these enzymes has

been linked with the progression of cancer due to the generation of

nucleotide imbalances that instigate the occurrence of mutation

patterns. This highlights the importance of these enzymes in

maintaining normal cellular function and preventing the

development of cancer.

The first step in the urea cycle is catalyzed by CPS1, converting

ammonia into carbamoyl phosphate (CP). CPS1 deficiency is

characterized by complete or partial absence of the CPS enzyme,

leading to patients experiencing vomiting, seizures, progressive

lethargy, coma, and even death (14). CPS1 overexpression has

been linked to poor prognosis in various types of cancer,

including colorectal (15), cholangiocarcinoma (16), glioblastoma

(17), lung adenocarcinoma (18), and non-small cell lung cancer

(NSCLC) (19, 20). Upregulated CPS1 expression in tumor cells

produces significant amounts of CP, which is then translocated to

the cytoplasm and incorporated into the reaction catalyzed by a

trifunctional enzyme, the CAD protein (21, 22). CAD is composed

of carbamoyl-phosphate synthetase 2, aspartate transcarbamylase,

and dihydroorotase, necessary to maintain cellular fundamental

function (i.e., DNA and RNA biosynthesis) by initiating pyrimidine
Frontiers in Oncology 0395
synthesis (23). However, in other types of cancer, such as small

intestine adenocarcinoma (24) and hepatocellular carcinoma

(HCC) (25), the levels of CPS1 are downregulated, which

associates with decreased survival and an increase of CAD

expression, resulting in the reuse of ammonia for the synthesis of

glutamine as a means to initiate de novo pyrimidine synthesis (21).

The second step in the urea cycle is catalyzed by OTC, converting

ornithine and carbamoyl phosphate into citrulline, which detoxifies

the ammonia produced from amino acid catabolism. OTC deficiency

is a rare X-linked genetic disorder identified by complete or partial

lack of the enzyme OTC, leading to impairment of the central

nervous system, which has the potential to result in permanent

brain damage and is fatal in newborn infants (26). The

downregulated OTC expression level results in accumulated

ammonia and has been associated with larger tumor size, advanced

grade, and poor prognosis for patients with hepatocellular carcinoma

(HCC) (27). The downregulation of mitochondrial NAD-dependent

protein deacetylase sirtuin-3 (SIRT3) in HCC cells may contribute to

the protection of these cells from apoptosis. SIRT3 is a regulator of

OTC deacetylation, and the acetylation of lysine 88 inhibits the

enzyme activity of OTC, highlighting the important role of a

deacetylase in regulating the function of OTC (26, 28, 29).
B CA

FIGURE 2

Metabolic Enzymatic Pathways. (A) The urea cycle is the primary pathway for the elimination of nitrogenous waste, mainly in the liver, such as
ammonia and glutamine, into urea. The five catalytic enzymes in the urea cycle are Carbamoyl phosphate synthetase I (CPS1), Ornithine
transcarbamylase (OTC), which are both located in the mitochondrial matrix, Argininosuccinate synthetase (ASS1), Argininosuccinate lyase (ASL), and
Arginase (ARG1), located in the cytoplasm. The urea cycle starts in the mitochondrial matrix with the conversion of ammonia into carbamoyl-
phosphate, which is then converted into citrulline by OTC. Citrulline is exported to the cytoplasm where it is converted into argininosuccinate by
ASS1. The ASL enzyme then converts argininosuccinate into arginine, which is then converted into ornithine by ARG1, leading to the production of
urea. Ornithine enters the mitochondria to participate in the conversion of carbamoyl phosphate into citrulline. (B) Glycogen serves as the main
storage form of glucose in humans, mostly in the liver and muscles. The primary enzymes involved in glycogen synthesis (glycogenesis) and
breakdown (glycogenolysis) are glycogen synthase and glycogen phosphorylase. During glycogenesis, glucose is converted into glucose-6-
phosphate (Glucose-6-P) by glucokinase. Glucose-6-P is converted into glucose-1-phosphate (Glucose-1-P) by phosphoglucomutase. Then,
Glucose-1-P is converted to glycogen by the enzyme glycogen synthase. During glycogenolysis, glycogen is converted to Glucose-1-P by glycogen
phosphorylase, which is then converted back into Glucose-6-P by phosphoglucomutase. And finally, Glucose-6-P is converted to glucose by
Glucose-6-phosphatase. (C) The lysosome is an essential catabolic organelle that provides an acidic environment, where macromolecules are
metabolized by hydrolytic enzymes, such as proteases, lipases, glycosidases, and phosphatases. The Figure was partly generated using Biorender
under the agreement number: TR25LH0BWF (www.Biorender.com).
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The third step in the urea cycle is catalyzed by ASS1, in which

citrulline is condensed with aspartate to form argininosuccinic acid

and functions as an enzyme for arginine metabolism (30).

Citrullinemia type I (CTLN1) is caused by a deficiency or absence

of the enzyme ASS1, resulting in increased intracranial pressure

(ICP), increased neuromuscular tone, seizures, loss of

consciousness, and death (31). The incidence of ASS1 deficiency

changes significantly with the tumor type and tissue of origin (32).

Increased levels of ASS1 have been observed in human non-small

cell lung cancer (NSCLC) and colon carcinomas, which may be

supporting arginine synthesis and facilitating cellular survival under

low-nutrient stress conditions (33). In contrast, decreased ASS1

levels have been shown in breast cancer, primary hepatocellular

carcinoma (HCC), melanoma, sarcomas, renal cell carcinoma, and

prostate cancer (32). ASS1 loss in tumors hinders arginine

biosynthesis, leading to dependence on extracellular arginine for

survival. Thus, arginine depletion therapy is a promising strategy

for ASS1-negative tumors, which constitute nearly 70% of tumors

(30). Rabinovich S et al. were also able to demonstrate that ASS1

deficiency in cancer increases cytosolic aspartate levels leading to

increased activation of the enzymatic complex CAD (carbamoyl-

phosphate synthase 2, aspartate transcarbamylase, dihydroorotase

complex) by upregulating its substrate availability and by increasing

its phosphorylation by S6K1 through the mTOR pathway. They

were able to show that decreased activity of ASS1 in cancers

supports proliferation by activating CAD and facilitating

pyrimidines synthesis (34). Furthermore, ASS1 plays a crucial role

as a biomarker for the response to glutamine deprivation.

Impairment of ASS1 activity elevates sensitivity towards arginine

and glutamine deprivation, whereas upregulation of ASS1 activity

augments resistance towards arginine and glutamine

deprivation (35).
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The fourth reaction in the urea cycle is catalyzed by ASL,

leading to the breakdown of argininosuccinic acid to arginine and

fumarate. Argininosuccinic aciduria is an inherited disorder

described by deficiency or lack of the enzyme ASL, leading to an

accumulation of citrulline and argininosuccinic acid, causing

vomiting, drowsiness, seizures, and/or coma (36). ASL is highly

expressed in melanoma, HCC, and breast tumor tissues (37, 38).

ASL and nitric oxide synthase (NOS) form the citrulline-

argininosuccinate-arginine cycle, facilitating nitric oxide (NO)

production. Overproduction of NO has been associated with the

progression of cancer (38, 39).

The fifth reaction in the urea cycle is catalyzed by ARG1,

involved in the hydrolysis of arginine to ornithine and urea,

which regulate the proliferation, differentiation, and function of

different cell types. Arginase-1 deficiency is identified by either a

complete or partial absence of the arginase enzyme in the liver and

red blood cells, with symptoms that can include vomiting, poor

growth, seizures, and stiff muscles with increased reflexes

(spasticity) (40, 41). Increased expression of arginases (either

Arg1 or Arg2) is considered a poor prognostic factor in several

types of cancer, including lung cancer (42, 43), head and neck

cancer (44), neuroblastoma (45), acute myeloid leukemia (46),

pancreatic ductal carcinoma (47), ovarian carcinoma (48), and

colorectal cancer (49). Arginine metabolism plays a crucial role in

T-cell activity and survival. Increased enzymatic activity of arginase

depletes arginine levels in the tumor microenvironment, leading to

immunosuppression and impaired T-cell function, which is critical

for effective immune surveillance and anti-tumor response (50).

The urea cycle and its five catalytic enzymes play a crucial role

in maintaining normal cellular function, and their deficiencies have

been associated with cancer progression. Table 1 provides a

comprehensive overview of enzyme mutations in the urea cycle,
TABLE 1 Urea Cycle Disorders (UCDs).

Enzymes Role Disease Name Upregulated Cancers Downregulated
Cancers

Carbamoyl
phosphate
synthetase I
(CPS1)

Synthesizes carbamoyl
phosphate (CP) from
ammonia, bicarbonate, and 2
molecules of ATP.

Carbamoyl phosphate
synthetase I deficiency
(CPS1 deficiency)

Colorectal (15), cholangiocarcinoma (16),
glioblastoma (17), lung adenocarcinoma (18), and
non-small cell lung cancer (NSCLC) (19, 20).

Small intestine
adenocarcinoma (24)
and hepatocellular
carcinoma (HCC) (25).

Ornithine
transcarbamylase
(OTC)

Catalyzes the reaction
between CP and ornithine to
form citrulline and
phosphate.

Ornithine transcarbamylase
deficiency (OTC deficiency)

HCC (27).

Argininosuccinate
synthetase (ASS1)

Catalyzes the synthesis of
argininosuccinic acid from
citrulline and aspartate

Arginosuccinate synthetase
deficiency (ASS deficiency),
also known as Citrullinemia
type I (CTLN1)

NSCLC and colon carcinomas (33). Breast, HCC,
melanoma, sarcomas,
renal cell carcinoma,
and prostate (32).

Argininosuccinate
lyase (ASL)

Catalyzes the reversible
hydrolytic cleavage of
argininosuccinic acid into
arginine and fumarate

Argininosuccinate lyase
deficiency (ASL deficiency),
also known as
Argininosuccinic aciduria

Melanoma, HCC, and breast (37, 38).

Arginase (ARG1) Catalyzes the breakdown of
arginine into urea
and ornithine

Arginase deficiency (ARG1
deficiency), also known as
Argininemia or
Hyperargininemia

Lung (42, 43), head and neck cancer (44),
neuroblastoma (45), acute myeloid leukemia (46),
pancreatic ductal carcinoma (47), ovarian carcinoma
(48), and colorectal (49).
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their respective enzymatic roles, associated diseases, and the

regulation status (up or down) of both the enzyme and genes in

different types of cancer. Further research is needed to explore the

interplay between the urea cycle and cancer progression.

Understanding the molecular mechanisms underlying these

defects may provide potential targets for therapeutic interventions

to prevent cancer development and improve patient outcomes.
3 Glycogen storage disorders

Glycogen Storage Disorders (GSDs) are a set of hereditary

metabolic disorders that affect glycogen metabolism, which is

responsible for regulating glycogen synthesis or degradation (51).

Glycogen serves as the main storage form of glucose in humans,

mostly in the liver and muscles (52). The primary enzymes involved

in glycogen synthes is (g lycogenesis) and breakdown

(glycogenolysis) are glycogen synthase and glycogen

phosphorylase (Figure 2B) (51). GSDs are classified based on the

specific enzyme deficiency and the primary affected tissues with an

increasing number of GSD types being identified. We will be

focusing on Type 0 due to its two distinct forms of glycogen

synthase, and Types I, II, III, and IV, which are the four most

common types of GSD (53). Table 2 describes the mutated names of

enzymes involved in glycogen storage, alongside their enzymatic

roles and the corresponding diseases they are associated with, and

information about whether the enzymes or genes are upregulated or

downregulated in various types of cancer.

GSD type 0 is caused by mutations in the GYS1 gene, leading to

muscle glycogen synthase deficiency, and mutations in the GYS2

gene, leading to liver glycogen synthase deficiency. The two

isoforms of glycogen synthase share a common role of forming
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glycogen by linking glucose molecules (66). A study by Favaro et al.

showed that GYS1 is rapidly induced in glioblastoma, breast, and

colon cancer cell lines under hypoxic conditions, followed by a

decrease of glycogen phosphorylase (PYGL), an enzyme that

degrades glycogen. This results in glycogen accumulation,

decreased nucleotide synthesis, and increased reactive oxygen

species (ROS) levels that contribute to p53-dependent growth

arrest and impaired tumorigenesis in vivo (54). Meanwhile, the

knockdown of GYS2 in HCC promotes cell proliferation in vitro

and tumor growth in vivo by regulating p53 expression.

Interestingly, p53 is capable of transcriptionally regulating GYS2,

PYGL, and other genes involved in glycogen synthesis (55). In

addition, p53 has been identified as a key regulator of glucose

metabolism through its ability to suppress glucose uptake and

glycolysis in tumor cells (67).

GSD type I, also known as Von Gierke disease, has three

subtypes: GSD 1a is caused by G6PC gene mutations involving

glucose-6-phosphatase (G6Pase) deficiency. G6Pase is a membrane-

bound protein associated with the endoplasmic reticulum (ER)

involved in providing glucose during starvation by catalyzing the

hydrolysis of glucose-6-phosphate (G6P) (68). While GSD 1b and

1c are caused by SLC37A4 gene mutations resulting in glucose-6-

phosphate trans locase (G6PT) deficiency. G6PT is a

transmembrane protein involved in translocating G6P from the

cytosol into the lumen of the ER for glucose hydrolysis (69).

Abnormal expression of G6PC is observed in different cancers,

with low expression in HCC (59) and clear renal cell carcinoma

(60), likely resulting in the accumulation of G6P. This accumulation

of G6P may lead to increased glucose metabolism by producing

ribose-5-phosphate through the hexose monophosphate (HMP)

shunt pathway (an alternative pathway to glycolysis) in tumor

cells, resulting in cell division, cell survival, and tumor growth
TABLE 2 Glycogen Storage Disorders (GSDs).

Enzymes Role Disease Name Upregulated
Cancers

Downregulated
Cancers

Glycogen
synthase

Catalyzes the rate-limiting
step in glycogenesis by
transferring glucose
monomers to growing
glycogen chains

GSD Type 0, also known as Glycogen synthase deficiency (Muscle
glycogen synthase deficiency (encoded by GYS1) and liver glycogen
synthase deficiency (encoded by GYS2)).

GYS1 in
glioblastoma,
breast, and colon
(54).

GYS2 in HCC (55).

Glucose-6-
Phosphatase
(G6Pase)

Provides glucose during
starvation by catalyzing the
hydrolysis of glucose-6-
phosphate (G6P).

GSD Type I or Von Gierke disease, also known as Glucose-6-phosphate
deficiency. GSD Type 1a (GSD1a) glucose-6-phosphatase (G6Pase)
deficiency (encoded by G6PC). Type 1b and 1c (GSD1b or 1c) glucose-6-
phosphate translocase (G6PT) deficiency (encoded by SLC37A4).

G6PC in ovarian
(56),
glioblastoma
(57), and cervical
(58).

G6PC in HCC (59)
and clear renal cell
carcinoma (60).

alpha-1-4-
glucosidase
(acid
maltase)

Breaks down glycogen into
glucose in the lysosome.

GSD Type II or Pompe disease, also known as alpha-1,4-glucosidase
deficiency.

Pancreatic cells (61).

Glycogen
debranching
enzyme

Breaks down glycogen and
mobilizes glucose reserves
from glycogen deposits in
the muscles and liver.

GSD Type III, Cori disease or Forbes disease, also known as Glycogen
debrancher deficiency.

Bladder (62).

Glycogen
branching
enzyme

Adds branches to the
growing glycogen molecule
during glycogenesis

GSD Type IV or Andersen disease, also known as Glycogen branching
enzyme deficiency.

Lung
adenocarcinoma
(63–65).
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(59). In contrast, overexpression of G6PC affects glucose

metabolism in ovarian (56), glioblastoma (57), and cervical cancer

(58), contributing to tumor proliferation, metastasis, and poor

prognosis in patients. The overexpression of G6PC increases the

amount of blood glucose, leading to an increase in the rate of

glycolysis. This may be occurring by inducing alteration in other

pathways, such as cell cycle regulation via the Forkhead box protein

O1 (FOXO1) pathway in ovarian cancer (56), intracellular glycogen

degradation by hypoxia-inducible factor 1-alpha (HIF1a) and

signal transducer and activator of transcription 3 (STAT3) in

glioblastoma (57), and by regulating the activation of PI3K/AKT/

mTOR pathway in cervical cancer (58). In turn, G6PT regulates

glucose homeostasis in glioblastoma leading to inhibition of cancer

cell proliferation, extracellular matrix (ECM) degradation, or

inducing cell death. G6PT may be functioning as a “bioswitch”

allowing cells to switch between migration or cell death in response

to external stimuli, such as hypoxia or intracellular metabolic

changes (i.e., Ca2+ flux and cytosolic ATP) controlled by the

PTEN/Akt /PI3K/mTOR pathway (70) . Fur thermore ,

overexpression of G6PT in glioblastoma cells induced cell

migration by regulating calcium-mediated signaling (71) and

G6PT expression regulates bone marrow-derived stromal cells

(BMSC) survival, ECM degradation, and mobilization by

inhibiting the activation of pro-matrix metalloproteinase-2

(proMMP-2) media ted by membrane type 1 matr ix

metalloproteinase (MT1-MMP) (72).

GSD type II (known as Pompe disease), also classified as

lysosomal storage disease, is caused by mutations in the GAA

gene resulting in a deficiency of alpha-1-4-glucosidase (acid

maltase) causing marked accumulation of glycogen in lysosomes

(73). Hamura et al. showed that knockdown of GAA decreased cell

proliferation and increased apoptotic signals in pancreatic cells,

accompanied by accumulation of dysfunctional mitochondria,

caused by the suppression of the transcription factor EB (TFEB),

which plays a critical role in lysosomal biogenesis (61).

GSD type III, also known as Cori or Forbes disease, is caused

by mutations in the AGL gene, which results in glycogen

debranching enzyme deficiency, an enzyme that helps facilitate

the breakdown of glycogen and mobilize glucose reserves from

glycogen deposits in the muscles and liver. A recent study by Guin

et al. showed that AGL serves as a prognostic marker for bladder

cancer survival, and decreased AGL enhances tumor growth by

increasing glycine synthesis through increased expression of serine

hydroxymethyltransferase 2 (SHMT2), an enzyme that allows cells

to process glycogen into glycine (62).

GSD type IV, also known as Andersen disease, results from

mutations in the GBE1 gene, causing a deficiency in the glycogen

branching enzyme, which adds branches to the growing glycogen

molecule during the synthesis of glycogen, allowing for easy and

quick glycogen utilization when it is broken down (74). Studies have

revealed that GBE1 expression is upregulated in hypoxia-

conditioned primary lung adenocarcinoma cells mediated by

HIF1a, while decreased GBE1 expression inhibits lung cancer cell

growth by directly affecting glycogen production and glucose

metabolic signaling pathways. These findings suggest that GBE1
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expression protects cells from hypoxia and allows them to survive,

thereby further promoting proliferation and metastasis (63–65).

Glycogen accumulation has been shown to play a crucial role in

promoting cell survival under hypoxic conditions in both normal

and cancer cells, as demonstrated by various studies including

cancer cell lines such as breast, kidney, uterus, bladder, ovary,

skin, and brain cancer cell lines (54, 64, 75–79). Furthermore, a

recent study found that glycogen accumulation is essential for

tumor initiation in human and mouse liver tumors, which

commonly exhibit hypoxic stress in the early stages (80). The

elimination of glycogen accumulation has been shown to abrogate

liver cancer incidence, while increasing glycogen storage accelerates

tumorigenesis. These findings suggest that glycogen metabolism

plays a crucial role in tumor initiation and growth and could be a

potential target for cancer treatment.
4 Lysosomal storage disorders

Lysosome Storage Disorders (LSDs) are caused by heritable

mutations in genes encoding lysosomal enzymes (known as

hydrolytic enzymes), resulting in the buildup of various

unmetabolized macromolecules ( i .e . , proteins , l ipids,

carbohydrates, and nucleic acids) impairing lysosomal

homeostasis and activity (81). The lysosome is an essential

catabolic organelle found in eukaryotic cells and provides an

acidic environment, where macromolecules are metabolized by

hydrolytic enzymes, such as glycosidases, lipases, proteases,

sulfatases, nucleases, and phosphatases (Figure 2C) (82, 83).

Hydrolytic enzymes facilitate the breakdown of chemical bonds

within different types of compounds including proteins, nucleic

acids, starch, fats, phosphate esters, and other macromolecules (84).

LSDs represent over 70 disorders, characterized by lysosomal

dysfunction, in which 50 of these disorders are caused by enzyme

deficiencies. Table 3 offers insights into enzyme mutations and their

respective enzymatic functions in lysosome storage, along with

associated diseases. Additionally, it highlights whether the

enzymes or their corresponding genes are upregulated or

downregulated in different types of cancer. Depending on the

accumulated material in the lysosomes, these enzyme deficiencies

can be classified into three categories: sphingolipidoses,

glycoproteinosis, and mucopolysaccharidoses (118).
4.1 Sphingolipidoses

Sphingolipidoses are a group of heterogeneous inherited

metabolic disorders characterized by an accumulation of

glycolipids or phospholipids, which have ceramide as a common

structure (119). Sphingolipidoses can lead to several diseases, the

most common are Gaucher’s disease (GD), Fabry disease, Farber

disease, and Niemann-Pick disease.

The most common LSDs is Gaucher Disease (GD), an

autosomal recessive disorder caused by mutations in the GBA

gene, resulting in b-Glucocerebrosidase (b-glucosidase) deficiency.
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TABLE 3 Lysosome Storage Disorders (LSDs).

Sphingolipidoses

Enzymes Role Disease Name Upregulated Cancers Downregulated
Cancers

b-Glucocerebrosidase
(b-glucosidase)
encoded by GBA

Breaks down
glucocerebroside into
glucose and ceramide.

Gaucher Disease (GD), also
known as Glucocerebrosidase
deficiency

GBA in liver (85).

a-Galactosidase A Breaks down
globotriaosylceramide
(known as Gb3 or CD77)

Fabry disease, also known as
Alpha-galactosidase A
deficiency

Gb3 in breast (86, 87), ovarian (88), and colon
cancer (89).

Acid ceramidase Metabolizes ceramides into
sphingosine and a fatty acid

Farber disease, also known
as Farber lipogranulomatosis
or Acid ceramidase
deficiency

Prostate cancer (90, 91), head and neck
squamous cell carcinoma (92), liver (93), and
breast (94).

Acid
sphingomyelinase
(ASM)

Metabolizes the hydrolysis of
sphingomyelin into
phosphorylcholine and
ceramide.

Niemann-Pick Disease Types
A and B (NPD-A and B),
also known as
Sphingomyelinase deficiency

Breast, lung, thyroid, and
bladder (95).

Glycoproteinoses

Enzymes Role Disease Name Upregulated Cancers Downregulated
Cancers

Lysosomal a-
mannosidase,
encoded by MAN2B1

Breaks down
oligosaccharides containing a
mannose.

a-mannosidosis, also known
as Alpha-mannosidase
deficiency or Mannosidosis

MAN2B1 in bladder urothelial carcinoma,
breast invasive carcinoma, colon
adenocarcinoma, glioblastoma multiforme, low-
grade gliomas, and laryngeal cancer (96, 97).

a-L-fucosidase,
encoded by FUCA1

Cleaves fucose-rich
oligosaccharides,
glycoproteins, and
glycolipids.

Fucosidosis, also known as
Alpha-fucosidase deficiency

FUCA1 in glioblastoma multiforme (98),
papillary thyroid cancer (PTCs) samples (99),
and breast cancer (100).

FUCA1 in colorectal cancer
(101), HCC (102), and
anaplastic thyroid cancer
(ATCs) samples (99).

Lysosomal
neuraminidase-1
(NEU1; also known
as sialidase)

Removes terminal sialic acid
residues from sialo-rich
oligosaccharides,
glycoproteins and
glycolipids.

Sialidosis, also known as
Mucolipidosis Type I

HCC (103, 104), ovarian (105), and colon
(106).

Mucopolysaccharidoses

Enzymes Role Disease Name Upregulated Cancers Downregulated
Cancers

Alpha-L-iduronidase
(IDUA)

Breaks down
glycosaminoglycans, such as
dermatan sulfate and
heparan sulfate.

MPS I, also known as IDUA
deficiency, Hurler syndrome,
Scheie syndrome or Hurler-
Scheie syndrome

Breast (107) and ovarian
(108).

Iduronate-2-sulfatase
(IDS)

Breaks down
glycosaminoglycans, such as
dermatan sulfate and
heparan sulfate.

MPS II, also known as
Hunter Syndrome or
Iduronate 2-sulfatase
deficiency

Breast (109).

Arylsulfatase B
(ARSB; also known
as N
−acetylgalactosamine
−4−sulfatase)

Breaks down
glycosaminoglycans, such as
dermatan sulfate and
chondroitin sulfate.

MPS VI, also known as
Maroteaux-Lamy syndrome
or Arylsulfatase B deficiency

Melanoma (110), colorectal
(111), prostate, and breast
(112, 113).

b−glucuronidase,
encoded by GUSB

Breaks down
glycosaminoglycans, such as
dermatan sulfate and keratan
sulfate.

MPS VII, also known as Sly
syndrome or Beta-
glucuronidase deficiency

Colorectal (114), gastric (115), and pancreas
(116). GUSB in HCC (117).
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b-glucosidase is an enzyme that helps break down glucocerebroside

into glucose and ceramide. Deficiency of b-glucosidase leads to an

accumulation of glucocerebroside (also called glucosylceramide)

and glucosylsphingosine in macrophages through the body, called

Gaucher cells, mainly affecting the liver, spleen, and bone marrow

(120, 121). GD has been classified by type and severity of

neurological involvement: Type 1 GD (GD1) is defined as the

non-neuronopathic subclass, acute neuronopathic GD (GD2) is

characterized by acute neurological decline, and chronic

neuronopathic GD (GD3) is identified by a highly variable

spectrum of associated neurological and non-neurological

manifestations (122). According to the Gaucher Registry, GD1 is

the most common accounting for 90% - 95% of all documented

cases of GD in Europe and North America (123). Notably, several

case reports have shown a link between patients with GD1 and

different cancers, including bone (124), breast (125), colon (126,

127), hematologic (125, 128), kidney (125, 129), liver (125, 130,

131), melanoma (125), multiple myeloma (125, 132), and non‐

Hodgkin lymphoma (125, 133). The development of cancer in GD

patients could be explained by the accumulat ion of

glucocerebroside in macrophages, leading to lipid-engorged

macrophage activation, which affects immune system regulation

in several different ways. The levels of pro-inflammatory, as well as,

anti-inflammatory cytokines, chemokines, and growth factors,

mostly those involved in inflammation and B-cell function are

altered in the serum of GD patients compared to normal controls

(134–138). The thymus shows the most prominent dysregulation,

causing severe impairment of T-cell differentiation and maturation,

abnormal B-cell recruitment, upregulation of CD1d and major

histocompatibility complex (MHC) class II expression, which are

mostly expressed on antigen-presenting cells (APCs), such as

dendritic cells, thymic epithelial cells, and B cells. Suggesting

impaired immune surveillance, which can support the

development of malignancy (139–144). Furthermore, the

downregulation of GBA expression in liver cancer tissues

increased cellular glucosylceramide levels, promoting the

metastasis ability by supporting the epithelial-mesenchymal

transition (EMT) through activation of the Wnt/b-catenin
signaling pathway (85).

Fabry disease is caused by mutations in the GLA gene leading to

a deficiency of the a-Galactosidase An enzyme, causing the

accumulation of globotriaosylceramide (known as Gb3 or CD77),

a glycosphingolipid functioning as a receptor for pathogens and

pathogenic products (145). This receptor particularly binds to the

Shiga-like toxin 1 (SLT-1), a high-affinity harmless natural ligand

that, upon binding to the receptor, the toxin is internalized and

travels retrograde (against the flow) through the Golgi network and

the ER, preventing the endo-lysosomal vesicular pathway, therefore,

avo id ing the degrada t i on o f the tox in (146 , 147) .

Glycosphingolipids have been associated with oncogenesis (148).

Several studies have shown that upregulation of Gb3 expression is

necessary for cell invasiveness and correlates with metastasis in

several cancer types, such as breast (86, 87), ovarian (88), and colon

cancer (89). Suggesting that elevated Gb3 expression could act as an

indicator of the transformation of tumor cells from their primary

cancer state to the metastatic state, proposing that various invasive
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tumor types could share common mechanisms for metastasis (89).

Moreover, a recent study showed that using the toxin

internalization mechanism, they were able to deliver Shiga toxin-

coated nanoparticles directly into the cytoplasm of Gb3-expressing

head and neck cancer cells, demonstrating a novel way to deliver

peptides or therapeutic nanomaterials inside cells (147).

Farber disease is a rare autosomal recessive disorder, also

known as Farber lipogranulomatosis, caused by a mutation in the

ASAH1 gene, which leads to ceramide accumulation in several

organs and tissues due to lysosomal acid ceramidase deficiency

(149). Acid ceramidase is the enzyme that metabolizes ceramides

into sphingosine and a fatty acid, products that are then recycled to

create new ceramides. Ceramides are pro-apoptotic lipids and are

part of the outer membrane surrounding cells, where they sense

stress and other external factors and can mediate growth arrest,

differentiation, and apoptotic cell death (150). In addition, acid

ceramidase enzyme activity and sphingosine kinase can promote

the formation of sphingosine-1-phosphate (S1P), a potent anti-

apoptotic lipid mediating cell proliferation and survival (90).

Acid ceramidase is overexpressed in prostate cancer (90, 91),

head and neck squamous cell carcinoma (92), liver (93), and

breast (94). The increase of acid ceramidase causes decreased

ceramide accumulation and increased levels of sphingosine and

S1P, indicating its involvement in metabolizing a significant portion

of ceramides in tumor cells, resulting in tumor growth, survival, and

resistance to therapy (90, 91, 93, 94). Suggesting that targeting the

enzymes, acid ceramidase and sphingosine kinase, will block the

tumor cell’s ability to metabolize ceramide, leading to an increase of

pro-apoptotic ceramide levels, which will result in apoptosis (151,

152), growth inhibition (93, 152, 153), and increased sensitivity to

radiation (154), and chemotherapeutics (155, 156).

Niemann-Pick Disease Types A and B (NPD-A and B) are rare

autosomal recessive LSDs, categorized as sphingolipidoses due to

sphingomyelin accumulation. These diseases arise from the

deficiency of the acid sphingomyelinase (ASM) enzyme, caused

by mutations in the sphingomyelin phosphodiesterase 1 (SMPD1)

gene (157). ASM metabolizes the hydrolysis of sphingomyelin into

phosphorylcholine and ceramide. A recent study demonstrated the

incidence of cancer in patients diagnosed with ASM deficiency was

abnormally elevated with four types of cancers being observed:

breast, lung, thyroid, and bladder (95). Moreover, dysfunction of

the ASM enzyme can alter sphingolipid metabolism leading to the

downregulation of ceramide (a pro-apoptotic lipid) and the

upregulation of S1P (a proliferative lipid) in cancer, possibly

resu l t ing in tumorigenic i ty and/or the potent ia l to

metastasize (158).
4.2 Glycoproteinoses

Glycoproteinoses are characterized as LSDs affecting

glycoprotein degradation, causing an increased accumulation of

undegraded oligosaccharides and/or glycoconjugates in lysosomes

(159). Glycoproteinoses are rare and can lead to several diseases

with high prevalence, such as a-mannosidosis, fucosidosis, and

sialidoses (160).
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a-mannosidosis is an autosomal recessive disorder caused by

mutations in the MAN2B1 gene, which encodes lysosomal a-
mannosidase and results in a-mannosidase deficiency, leading to

accumulation of mannose-rich oligosaccharides (161). Elevated

expression of MAN2B1 has been found in several cancers,

including bladder urothelial carcinoma, breast invasive

carcinoma, colon adenocarcinoma, glioblastoma multiforme, low-

grade gliomas, and laryngeal cancer (96, 97). Specifically, the

overexpression of MAN2B1 in glioma tissues is associated with

immune response and anti-inflammatory functions by correlating

with the expression of tumor-associated macrophages and M2

macrophages, and correlates with malignant clinical features and

poor outcome for glioma patients (96). In addition, expression of a-
mannosidases has been shown in human papillomavirus (HPV)-

associated cervical tumors (162) and nasopharyngeal carcinoma

(163), resulting in tumor growth and metastasis. Furthermore, an

inhibitor of a-mannosidases, known as swainsonine, was shown to

block metastasis of melanoma and lymphoid tumor cells in mice

and reduce the growth rate in vitro and in vivo of human melanoma

cells. These data suggest that the expression of oligosaccharides

associated with a malignant phenotype may be involved in tumor

growth (164). However, other in vivo studies with HPV-associated

cervical tumors, showed that swainsonine led to tumor growth, by

inducing the accumulation of myeloid cells in the spleen of tumor-

bearing mice, thereby inhibiting T-cell activation and aggravating

the tumors system effects on the immune system, thus enabling

tumor growth (162).

Fucosidosis is caused by mutations in the FUCA1 gene,

resulting in defective lysosomal a-L-fucosidase, which leads to the

accumulation of fucose-rich oligosaccharides, glycoproteins, and

glycolipids in tissues and urine (165). Several studies have shown

that FUCA1 is a p53 target gene, involved in tumorigenesis, and is

capable of hydrolyzing various fucosylation sites on the epidermal

growth factor receptor (EGFR), which ultimately determines the

activation of EGFR (98, 99, 166, 167). According to various studies,

it appears that the expression of FUCA1 in human cancers is

complex. Decreased FUCA1 expression has been observed in

colorectal cancer (101), hepatocellular carcinoma (102), and

anaplastic thyroid cancer (ATCs) samples (99). While increased

FUCA1 expression has been observed in glioblastoma multiforme

(98), papillary thyroid cancer (PTCs) samples (99), and breast

cancer (100). Tsuchida et al., observed a potential relationship

between FUCA1 expression and p53 status, with a decreased

expression of FUCA1 and the presence of mutated p53 in ATCs,

and an increased expression of FUCA1 in PTCs, which

predominantly harbor wild-type p53 (99). In addition, Ezawa

et al. were able to demonstrate that tumor suppressor protein p53

is involved in protein glycosylation and targets FUCA1 gene

expression, resulting in its upregulation. This upregulation leads

to the removal of fucose from the EGFR protein, ultimately

suppressing cancer cell growth and inducing cell death.

Furthermore, the study suggests that the upregulation of FUCA1

expression contributes to the repression of the EGFR signaling

pathway and has tumor‐suppressing activity in various human

cancers (166). Moreover, Xu et al. showed that FUCA1 is highly

expressed in glioma tissues, leading to poor prognosis in glioma
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patients. The inhibition of FUCA1 suppressed glioma growth in

vitro and in vivo, promoting autophagy through the formation of

large acidic vacuoles and by lowering levels of tumor-infiltrating

macrophages (98).

Sialidosis, also known as Mucolipidosis Type I, is caused by

autosomal recessive mutations in the NEU1 gene, encoding the

lysosomal enzyme neuraminidase-1 (NEU1; also known as

sialidase), a glycosidase that removes terminal sialic acid residues

from sialo-rich oligosaccharides, glycoproteins and glycolipids

(168). Sialidase deficiency leads to the accumulation of

sialyloligosaccharides and glycopeptides (169). NEU1 is also

involved in other cellular processes, such as cell proliferation/

migration/differentiation, macrophage-associated immune and

pro-inflammatory responses, and lysosomal exocytosis (103, 170–

173). NEU1 is upregulated in HCC tumor tissues, which correlates

with advanced stage, grade, and worse survival of HCC patients.

Higher expression of NEU1 is associated with increased

proliferation, migration, and lower levels of B cells, T-cells, and

natural killer (NK) cells, regulating several tumor-related proteins

and pathways, such as lysosome, spliceosome, and mTOR signaling

pathways (103, 104). In pancreatic cancer cells, NEU1 forms a

complex with MMP-9 and G protein-coupled receptors (GPCRs) to

regulate EGFR activation and cellular signaling, playing a crucial

role in the activation of receptor tyrosine kinases and downstream

signaling pathways, making it a potential therapeutic target (174,

175). Oseltamivir phosphate (Tamiflu), anti-NEU1 antibodies, and

broad-range MMP inhibitor galardin (GM6001) were found to

inhibit NEU1 activity associated with EGF-stimulated cells (174).

In addition, aspirin and celecoxib were also shown to inhibit NEU-1

activity in pancreatic cells, suggesting a novel multimodality

mechanism of action for these drugs as anti-cancer agents (175).

The inhibition of NEU1 activity in breast cancer cells, using

oseltamivir phosphate or siRNA, also suppressed cell growth and

induced apoptosis (176). Furthermore, NEU1 is overexpressed in

ovarian cancer tissues compared with adjacent normal tissues. The

siRNA of NEU1 in human ovarian cancer effectively inhibited

proliferation, apoptosis, and invasion of cells by targeting

lysosome and oxidative phosphorylation signaling (105). In

contrast, NEU1 overexpression in colon cancer suppresses

metastasis in vivo, and in vitro decreases cell migration, invasion,

and adhesion, which involves downregulation of MMP-7, through

integrin beta4-mediated signaling (106).
4.3 Mucopolysaccharidoses

Mucopolysaccharidosis (MPS) is an inherited disorder caused

by a deficiency or malfunction in lysosomal enzymes responsible for

breaking down glycosaminoglycans (GAGs), such as dermatan

sulfate, heparan sulfate, keratan sulfate, and chondroitin sulfate.

The ECM contains significant amounts of GAGs, which play a

crucial role in promoting cell-to-cell and cell-to-ECM adhesion

(177). The deficiency of the enzymes responsible for the proper

degradation of GAGs can lead to systemic accumulation of GAGs in

cells, blood, brain, spinal cord, and connective tissues. MPS is

categorized as seven types of diseases, some of which are further
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categorized into subtypes. Six MPS types are autosomal-recessive

inherited, and one type is inherited by the X-linked gene, known as

MPS II or Hunter Syndrome (178). A retrospective study showed

that the highest incidence rate at birth and prevalence rate was

found for MPS I, II, and III in the US (179). Since MPS I and II have

the relatively highest incidences at birth, compared to the other

types of MPS, we will mainly focus on these two types of diseases. In

addition, we will present types of MPS VI and VII, which have

shown a link with cancer development, even though they have very

low incidences at birth.

MPS I is an autosomal recessive disorder characterized by

alpha-L-iduronidase (IDUA) enzyme deficiency, which is caused

by a mutation in the IDUA gene, leading to the accumulation of

dermatan sulfate and heparan sulfate in several organs and tissues.

MPS I can show various degrees of clinical manifestations, and

therefore is categorized according to its severity: the most severe

form of MSP I is Hurler syndrome, the moderate form is Hurler-

Scheie, and the least severe is Scheie syndrome (177). Currently,

there is limited knowledge about the involvement of IDUA in

cancer. One study found that tumors from breast cancer patients

with visceral metastasis had significantly decreased IDUA

expression levels compared to those without visceral metastasis.

Suggesting an association between IDUA gene expression with the

development of visceral organ metastasis and survival of breast

cancer patients (107). Another study by Liu et al. performed a

bioinformatics analysis with data from the Gene Expression

Omnibus (GEO) database and obtained a glycometabolism-

related gene set associated with the overall survival of patients

with ovarian cancer. They were able to identify IDUA as a

prognostic gene of ovarian cancer. In addition, they analyzed the

expression of IDUA in ovarian cancer cells. Results showed that

IDUA expression was significantly downregulated compared to

human ovarian epithelial cells (108). However, additional studies

are needed to elucidate the role and understand the mechanistic

relationship between IDUA and cancer.

MPS II, also known as Hunter Syndrome, is caused by an

inherited mutation in the IDS gene encoding for the iduronate-2-

sulfatase (IDS) enzyme, resulting in dermatan sulfate and heparan

sulfate accumulation. Presently, there is one research study

exploring the potential relationship of IDS with cancer. Singh

et al. found depleted IDS levels in invasive malignant epithelia of

breast cancer sections compared to non-invasive or untransformed

breast tissues. Simultaneously, there was a rise in levels of dermatan

sulfate in the extracellular environment. Following a reduction in

IDS levels, non-invasive breast cancer (MCF-7) cells displayed an

increase in invasion and a shift towards a mesenchymal

morphology with cytoplasmic protrusions on collagen matrices,

whereas control cells retained their polygonal shape. These findings

suggest that transformed cells may secrete dermatan sulfate, which

can modify the mechanical characteristics and polymeric

organization of nearby collagen fibers. This, in turn, may promote

improved interaction between cells and the ECM, and facilitate

mesenchymal migration of breast cancer cells (109).

Furthermore, it should be noted that other types of MPS, such

as Type VI (Maroteaux-Lamy syndrome) caused by mutations in

the ARSB gene, leading to deficiency of arylsulfatase B (ARSB; also
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known as N−acetylgalactosamine−4−sulfatase), has also been found

to be associated with cancer development. The main role of ARSB is

to break down GAGs into dermatan sulfate and chondroitin sulfate

(180). In melanoma cells, ARSB activity was decreased compared to

normal melanocytes. The decrease of ARSB activity resulted in the

overexpression of melanoma progression factors, such as

chondroitin sulfate proteoglycan 4 (CSPG4) and pro-matrix

metalloproteinase 2 (pro-MMP2), causing increased invasiveness

of melanoma cells (110). A decrease of ARSB activity in colorectal

cancer cells compared to colonic epithelial cells, demonstrated an

increase in cell adhesion, migration, and invasion, through

upregulation of MMP9 expression and RhoA activation, which

are mediators of cellular motility, implicating a key role of ARSB

activity in the metastatic potential of epithelial cells (111). In

addition, a decline in ARSB activity has been shown in prostate

and breast carcinoma cells, which is associated with an increase in

total sulfated GAGs and chondroitin sulfate content in malignant

cells, suggesting a role in cell-to-cell and cell-to-matrix interactions

(112, 113).

MPS Type VII (Sly syndrome) caused by b−glucuronidase
deficiency involving the GUSB gene, has also been linked to

cancer development. Several studies have reported that

b−glucuronidase activity was higher in different cancers, such as

highly invasive colorectal carcinoma cells compared to poorly

invasive cells (114), gastric cancer compared to non-cancerous

tissues (115), and pancreatic cancer due to an increased steady-

state level of the enzyme compared to healthy pancreas (116). These

results suggest that increased b-glucuronidase is closely related to

tumor progression and metastasis. Moreover, a recent article

investigating the resistance mechanism of anti-PD1 (programmed

cell death 1 protein) found that GUSB expression was higher in

HCC tumors that do not respond to anti-PD1 treatment compared

to responding tumors. Anti-PD1 therapy has been shown to play a

major role in inhibiting effector immune cell depletion, resulting

in successful treatment advances (181, 182). However, HCC tumors

can develop resistance against anti-PD1 (183). It was found that

increased GUSB expression in HCC cells promotes cancer cell

growth, reduced PD-L1 expression, and immunosuppression.

In contrast, silencing GUSB prevents proliferation, invasion, and

migration of HCC human cells, upregulation of PD-L1 expression,

increased NK and T-cells in the tumor microenvironment, and

decreases immunosuppressive cells such as regulatory T-cells

(Tregs) and M2 macrophages. Therefore, inhibiting GUSB

expression offers a novel strategy to reduce HCC cell progression

and improve the sensitivity to anti-PD1 therapy (117).
5 Fatty acid oxidation disorders

Mitochondrial Fatty Acid Beta Oxidation (FAO) is a major

multi-step process by which cells break down fatty acids and

catabolize them into acetyl-coA, which subsequently enters the

tricarboxylic acid (TCA) cycle resulting in the production of more

ATP than the oxidation of carbohydrates (Figure 3) (184). Beta-

oxidation is an important source of energy, especially during
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periods of high-energy demand such as fasting or exercise, but also

for high-energy dependent tissues, such as the heart, muscle, liver,

and brain. This is why mutations in the genes coding for the

enzymes involved in either the beta-oxidation cycle or the

transport of long-chain fatty acids (LCFA) into mitochondria can

lead to severe inherited metabolic FAO disorders (FAODs) (185,

186). Unlike Medium or Short-chain fatty acids, LCFA cannot enter

mitochondria through passive diffusion and need to be activated

into fatty acyl-coenzyme A in the cytosol by acetyl-CoA synthetase,

and then conjugated to carnitine to be imported into the

mitochondrial matrix (187).

The shuttle of LCFA into mitochondria is carried out by three

enzymes: the outer mitochondrial membrane enzyme Carnitine
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palmitoyltransferase 1A (CPT1A), the mitochondrial

intermembrane space enzyme Carnitine-acylcarnitine translocase

(CACT), and the inner mitochondrial membrane enzyme Carnitine

palmitoyltransferase 2 (CPT2). CPT1 catalyzes the rate-limiting

step of FAO by converting fatty acyl-CoA into acyl-carnitine, which

is then transported into the mitochondrial matrix via CACT. CPT2

carries out the last reaction by converting carnitine into Acyl-CoA,

which can then enter the beta-oxidation cycle (Figure 3) (185, 186,

188, 189). Alterations in either of the three enzymes (CPT1A,

CACT, and CPT2) can prevent the body from using certain types

of fatty acids leading to hypoketotic hypoglycemia (decreased

glucose in the blood) under fasting conditions or during exercise.

Moreover, CPT2 deficiency has more severe clinical presentations
FIGURE 3

Mitochondrial Fatty Acid Beta Oxidation and TCA cycle. Mitochondrial Fatty Acid Beta Oxidation (FAO) is a major multi-step process by which cells
break down fatty acids and catabolize them into acetyl-coA, which subsequently enters the tricarboxylic acid (TCA). The FADH2 and NADH
produced by FAO are used by the Electron Transport Chain (ETC) to produce ATP. Long-chain fatty acids (LCFA) cannot enter mitochondria through
passive diffusion, like Medium-chain fatty acids (MCFAD), and need to be activated into fatty acyl-coenzyme A in the cytosol by acetyl-CoA
synthetase, and then conjugated to carnitine to be imported into the mitochondrial matrix. The shuttle of LCFA into mitochondria is carried out by
three enzymes: the outer mitochondrial membrane enzyme Carnitine palmitoyltransferase 1A (CPT1A), the mitochondrial intermembrane space
enzyme Carnitine-acylcarnitine translocase (CACT), and the inner mitochondrial membrane enzyme Carnitine palmitoyltransferase 2 (CPT2). Once
fatty acyl-CoA is inside the mitochondrial matrix, it can enter the beta-oxidation cycle to produce acetyl-CoA, which can subsequently enter the
TCA cycle. Four main enzymes are involved in the beta-oxidation cycle: acyl-CoA dehydrogenase, 2,3-Enoyl-CoA hydratase, 3-Hydroxyacyl-CoA
dehydrogenase, and 3-Ketoacyl-CoA thiolase. The other beta-oxidation steps are catalyzed by the mitochondrial trifunctional protein (TFP or MTP),
a protein complex attached to the inner mitochondrial membrane composed of two types of subunits: the alpha subunit (TFPa) and the beta subunit
(TFPb). The TFPa subunit comprises the 2,3-enoyl-CoA hydratase and 3-hydroxyacyl- CoA dehydrogenase activities, whereas the TFPb subunit
comprises the 3-Ketoacyl-CoA thiolase activity. The TCA cycle is a key metabolic node whose main function is to generate electrons to fuel the
mitochondrial ETC (mETC) for ATP production. The breakdown of fatty acids (beta-oxidation), glucose (glycolysis), and some amino acids leads to
the production of Acetyl-CoA, which can then enter the TCA cycle. Acetyl-CoA is a key substrate that participates in the first reaction of the TCA
cycle, ensured by Citrate Synthase (CS) enzyme which converts oxaloacetate into citrate. The second reaction of the TCA cycle leads to the
conversion of citrate into isocitrate by Aconitase (ACO2), which converts citrate into isocitrate. Isocitrate is then converted by Isocitrate
Dehydrogenase (IDH), during the third reaction of the TCA cycle into a-ketoglutarate. a-ketoglutarate is converted into Succinyl-CoA by a-
Ketoglutarate Dehydrogenase (a-KGDH). Succinyl-CoA is then converted by Succinyl-CoA synthetase (SCS) into succinate, which is then converted
by Succinate dehydrogenase (SDH or mETC Complex II) into fumarate. Fumarate is converted into malate by Fumarate Hydratase (FH). The last
reaction of the cycle is the conversion of malate into oxaloacetate by Malate Dehydrogenase (MDH2). The mETC is composed of 5 enzymatic
complexes: Complex I-V. Electrons generated by the TCA cycle funnel through the mETC allowing the complexes I, III, and IV to pump protons
generating a membrane potential used by the complex V to generate ATP. The Figure was partly generated using Biorender under the agreement
number: VS25LLE9OH (www.Biorender.com).
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than CPT1 deficiency (189). It is interesting to note that while

CPT1A and CPT2 are involved in the same metabolic pathway,

their levels of expression, such as CPT1A upregulation and CPT2

downregulation, can have opposite effects in different types of

cancer. CPT1A upregulation has been found to promote the

proliferation, survival, and invasion of several cancer types,

including colorectal cancer (190–192), nasopharyngeal cancer

(193), ovarian cancer (194, 195), glioblastoma (196), gastric

cancer (197), and HCC (198), and in many cases is associated

with poor prognosis and metastasis. In contrast, downregulation of

CPT2 was found to be associated with poor prognosis and

tumorigenesis in colorectal cancer (199–201) and HCC (198, 202).

The elevated expression of CPT1A has been observed in

metastatic tumors compared to primary tumors of colorectal

cancer patients (191). Wang et al. showed that CPT1A

upregulation promotes metastasis of detached colorectal cancer

cells by inhibiting anoikis, a programmed cell death that occurs

when cells detach from the ECM, while a decrease in metastasis was

observed in CPT1A-depleted colorectal cancer cells (190). An in

vitro study showed that adipocytes co-cultured with colon cancer

cells release fatty acids which are taken up by cancer cells, allowing

them to survive in nutrient-deprived conditions by upregulating

mitochondrial FAO. Whereas in vivo studies showed that co-

injection of adipocytes with colon cancer cells promotes tumor

growth (191), silencing CPT1A in colon cancer cells eliminated the

protective effect of fatty acids against nutrient deprivation and

decreased the expression of genes associated with cancer stem

cells downstream of the Wnt/b-catenin pathway (192). This

suggests that the presence of adipocytes in the TME are a source

of energy and metabolic regulators, facilitating the survival and

proliferation of colon cancer cells. Additionally, CPT1A

upregulation has been observed in radiation-resistant

nasopharyngeal cancer cells associated with Rab14 (a GTPase),

which facilitates fatty acid trafficking from lipid droplets to the

mitochondria where FAO takes place, resulting in decreased

radiation-induced lipid accumulation, demonstrating a role for

CPT1A in radiation resistance (193). Moreover, CPT1A is

overexpressed in most ovarian cancer cell lines, primary ovarian

serous carcinomas, and a subset of high-grade serous ovarian

cancers (HGSOCs) (194, 195). Studies in vitro showed CPT1A

deficiency in ovarian cancer cell lines results in decreased cellular

ATP levels, cell cycle arrest, suppression of anchorage-independent

growth, and reduced xenograft formation through the induction of

p21 (cyclin-dependent kinase inhibitor) by activation of the

transcription factor FoxO by AMPK, JNK, and p38 (194).

On the other hand, the downregulation of CPT2 in colorectal

cancer promotes cell proliferation capacity (199, 200) and inhibits

apoptosis by decreasing p53 expression (200). In addition, the

downregulation of CPT2 in colorectal cancer can promote cancer

stemness and oxaliplatin (chemotherapy drug) resistance through

the activation of the Wnt/b-catenin pathway by inducing glycolytic

metabolism (201). In HCC tissues and serum of HCC patients, the

accumulation of acylcarnitines, which serve as carriers to transport

activated LCFA into the mitochondria for beta-oxidation, could be

attributed to CPT2 downregulation, leading to the suppression of

beta-oxidation and metabolic reprogramming to escape lipotoxicity
Frontiers in Oncology 12104
and promote hepatocarcinogenesis (198). Moreover, the

downregulation of CPT2 has been shown to have a link to

human nonalcoholic fatty liver disease (NAFLD)-related

hepatocarcinogenesis. Elevated levels of transcription factors E2F1

and E2F2 were observed in NAFLD, suggesting that these

transcription factors may be metabolic drivers of HCC by

promoting a lipid-rich environment (203). In glioblastoma

multiforme, enhanced fatty acid metabolism by co-enhancement

of CPT1A and CPT2 and immune checkpoint CD47, which

functions as an anti-phagocytic signal, promotes the growth of

radioresistant glioblastoma multiforme cells. By blocking FAO

there is a reduction of CD47 anti-phagocytosis and tumor

growth. Targeting the FAO-CD47 axis could therefore be an

efficient way to block the growth of radioresistant glioblastoma

multiforme cells (196).

Once fatty acyl-CoA is inside the mitochondrial matrix, it can

enter the beta-oxidation cycle to produce acetyl-CoA, which can

subsequently enter the TCA cycle. Four main enzymes are involved

in the beta-oxidation cycle: acyl-CoA dehydrogenase, 2,3-Enoyl-

CoA hydratase, 3-Hydroxyacyl-CoA dehydrogenase, and 3-

Ketoacyl-CoA thiolase (also known as acetyl-CoA transferase)

(Figure 3). The beta-oxidation cycle can be described in four

steps: (i) Fatty acyl-CoA is dehydrogenated by acetyl-CoA

dehydrogenase resulting in the formation of 2,3-enoyl-CoA, (ii)

2,3-enoyl-CoA is hydrated to form 3-hydroxyacyl-CoA by 2-enoyl-

CoA hydratase, (iii) 3-hydroxyacyl-CoA is dehydrogenated by 3-

hydroxyacyl-CoA dehydrogenase to form the 3-ketoacyl-CoA

compound, and (iv) 3-ketoacyl-CoA is cleaved by thiolase

yielding acetyl-CoA and an acyl-CoA two carbons shorter than

the original, which can re-enter at the first step in the beta-

oxidation pathway.

The first beta-oxidation step is catalyzed by various acyl-CoA

dehydrogenases, each with a specific affinity towards different fatty

acyl chain lengths. Acyl-CoA Dehydrogenase Very-Long Chain

(ACADVL or VLCAD) and Acyl-CoA Dehydrogenase Medium-

chain (ACADM or MCAD), are two types of Acyl-CoA

dehydrogenases that initiate beta-oxidation of Very-Long Chain

Acyl-CoA esters and Medium-Chain Acyl-CoA esters, respectively.

Deficiencies in these enzymes are common in FAOD and result in

hypoketotic hypoglycemia, liver dysfunction, and liver failure.

VLCAD deficiency is clinically distinct, causing rhabdomyolysis

(muscle t i ssue breakdown re leas ing myoglobin) and

cardiomyopathy, which are not observed in MCAD deficiency

(204). Recent studies have shown that the downregulation of

VLCAD in human HCC tissues and cells promotes cell

proliferation and metastasis (205). On the other hand, in

glioblastoma, MCAD plays a crucial role in protecting cancer cell

integrity against the accumulation of toxic by-products that would

otherwise affect mitochondrial activity, demonstrating the non-

energetic role of FAO enzymes in the dependence on fatty acid

metabolism in cancer (205, 206).

The other three beta-oxidation steps are catalyzed by the

mitochondrial trifunctional protein (TFP or MTP), a protein

complex attached to the inner mitochondrial membrane (207,

208). TFP is composed of two types of subunits: the alpha

subunit (TFPa), encoded by the HADHA gene, and the beta
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subunit (TFPb), encoded by the HADHB gene. The TFPa subunit

comprises the 2,3-enoyl-CoA hydratase and 3-hydroxyacyl-CoA

dehydrogenase activities, whereas the TFPb subunit comprises the

3-Ketoacyl-CoA thiolase activity (Figure 3) (209). Mutations of

HADHA or HADHB genes leads to TFP deficiency, an autosomal

recessive disorder affecting LCFA oxidation characterized by

hypoglycemia, hypotonia (decreased muscle tone), and liver

dysfunction (210, 211). The TFP is a promising target to restrain

tumor growth in lung carcinomas by targeting the activity of the

HADHA enzyme (212, 213). Ameodo et al. observed a metabolic

heterogeneity between human biopsies of lung adenocarcinomas

and divided them into two subgroups: (i) tumors with a low

mitochondrial respiration and (ii) tumors with a high

mitochondrial respiration. This second group was poorly relying

on glucose and was presenting an increased expression of the TFP

enzyme HADHA compare to the adjacent tissue. Inhibition of the

TPF activity in vivo leads to a reduction of tumor growth (212).

Moreover, both HADHA and HADHB enzymes have been found

overexpressed in malignant lymphoma progression (214, 215),

relying on fatty acid metabolism and notably FAO as a key

metabolic pathway for tumor progression and survival (216, 217).

Additionally, in colorectal cancer and stomach adenocarcinoma,

HADHB has been proposed as a tumor suppressor, its expression

being significantly lower in tumors compared to normal tissue

(218, 219).

Glucose and amino acids have been well-studied in cancer

metabolism and are considered important sources of energy to

fuel tumor growth and survival. It is also well known that cancer

cells can rely on fatty acid metabolism, and notably de novo lipid

synthesis, an anabolic pathway, for their proliferation and survival.

Over the last decade, research has highlighted how cancer cells can
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also rely on FAO (catabolic pathway) reshaping our view on how

tumors can use lipid metabolism to their advantage (220, 221).

Table 4 encompasses details about mutated enzyme names,

enzymatic roles, diseases linked to the enzymes, and the

regulation (up or down) of these enzymes in different cancer

types involved in Fatty Acid Oxidation. Further research is

needed to fully characterize the energetic and non-energetic roles

that FAO enzymes can play to promote cancer progression.
6 Mitochondrial disorders

The most common inherited metabolic disorders are

mitochondrial disorders caused by dysfunction of mitochondrial

activity (222). The mitochondria is a key cellular organelle, known

as the powerhouse of the cell, which ensures energy production in

the form of ATP. The mitochondrial machinery relies on genes

from both nuclear DNA (nDNA) and mitochondrial DNA

(mtDNA). The mtDNA codes for 2 rRNAs, 22 tRNAs, and 13

proteins, which are part of the multi-subunit enzymatic complexes

of the electron respiratory chain (ETC) (223, 224). The TCA cycle,

also known as the Krebs cycle, is a key metabolic node whose main

function is to generate electrons to fuel the ETC for ATP production

(225). The TCA cycle comprises 8 enzymes, all encoded by genes

located in the nDNA. Electrons generated by the TCA cycle allow

the ETC to generate a membrane potential, which is used to convert

ADP into ATP, a process called oxidative phosphorylation

(OXPHOS) (Figure 3). Mutations in genes encoding the enzymes

involved in the TCA cycle and OXPHOS can lead to mitochondrial

disorders and cancer, due to the inability of mitochondria to

produce energy. Table 5 encompasses details about enzyme
TABLE 4 Fatty Acid Oxidation Disorders (FAODs).

Enzymes Role Disease Name Upregulated Cancers Downregulated
Cancers

Carnitine palmitoyltransferase 1A (CPT1A) Catalyzes the transfer of the
acyl group of a long-chain
fatty acyl-CoA from
coenzyme A to carnitine.

Carnitine
palmitoyltransferase
I (CPT I) deficiency
or CPT 1A
deficiency

Colorectal cancer (190–192),
nasopharyngeal cancer (193), ovarian
cancer (194, 195), glioblastoma (196),
gastric cancer (197), and HCC (198).

Carnitine palmitoyltransferase 2 (CPT2) Catalyzes the re-conjugation
of long and very-long-chain
acyl-carnitines to acyl-CoA

Carnitine
palmitoyltransferase
II (CPT II)
deficiency or CPT2
deficiency

Colorectal cancer
(199–201) and HCC
(198, 202).

Acyl-CoA Dehydrogenase Very-Long Chain
(ACADVL or VLCAD)

Breaks down a group of
very long-chain fatty acids

Very long-chain
acyl-CoA
dehydrogenase
(VLCAD) deficiency

HCC (205).

Acyl-CoA Dehydrogenase Medium-chain
(ACADM or MCAD)

Breaks down a group of
medium-chain fatty acids.

Medium-chain acyl-
CoA dehydrogenase
(MCAD) deficiency

Glioblastoma (205, 206).

Mitochondrial trifunctional protein (TFP or
MTP), composed of two types of subunits: the
alpha subunit (TFPa; HADHA gene), and the
beta subunit (TFPb; HADHB gene).

Catalyzes the last three
reactions in the fatty acid b-
oxidation process. Breaks
down long-chain fatty acids.

Mitochondrial
trifunctional protein
deficiency or MTP
deficiency

HADHA in lung carcinomas (212,
213) and both HADHA and HADHB
in malignant lymphoma (214, 215).

HADHB in colorectal
cancer and stomach
adenocarcinoma
(218, 219).
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mutations involved in the TCA cycle, their respective enzymatic

roles, associated diseases, and the regulation status (up or down) of

the enzymes and genes across diverse cancer types.
6.1 Tricarboxylic acid cycle

The first reaction of the TCA cycle is catalyzed by citrate

synthase (CS), which binds with the oxaloacetate and reacts with

acetyl-CoA, leading to the production of citrate. Chen et al. found

that CS was upregulated in human ovarian tumors and human

ovarian tumor cell lines. Knockdown of CS in ovarian cancer cells

leads to decreased cell proliferation accompanied by

downregulation of ERK phosphorylation, inhibition of cell

migration and invasion with decreased expression of p-FAK,

MMP2, and Vimentin, and decreased drug resistance by

downregulation of ATG12 (226). Additionally, the activity of CS

is significantly higher in human pancreatic ductal carcinoma
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compared with adjacent nonneoplastic tissue, contributing to the

conversion of glucose to lipids, which provides the substrate for

membrane lipid synthesis in pancreatic cancer (227). In colon

cancer cells, CS has been shown to interact with SIRT5, a

nicotinamide adenine dinucleotide (NAD)+-dependent

deacetylase. SIRT5 dessucinylates CS, regulating its enzymatic

activity, whereas hypersuccinylation of CS reduces its enzymatic

activity and inhibits the proliferation and migration of colon cancer

cells (228). Furthermore, Lin et al. found that reduced expression of

CS in human cervical cancer cells leads to a change in cellular

energy production, from mitochondrial aerobic respiration to

cytosolic glycolysis. This change is accompanied by the induction

of EMT, which results in accelerated tumor malignancy due to the

deregulation of p53 functions and abnormal cell growth

signaling (229).

The second reaction of the TCA cycle is ensured by an aconitase

(ACO2) which catalyzes the conversion of citrate into isocitrate.

ACO2 is a key enzyme of the TCA cycle and is also involved in lipid
TABLE 5 Mitochondria Disorders – TCA Cycle.

Enzymes Role Disease Name Upregulated Cancers Downregulated
Cancers

Citrate synthase (CS) Binds with the oxaloacetate
and reacts with acetyl-CoA,
leading to the production
of citrate.

Ovarian (226), pancreas (227),
and colon (228).

Cervical (229).

Aconitase (ACO2) Catalyzes the conversion of
citrate into isocitrate

Cerebellar-retinal
degeneration (230, 231)
and with severe optic
atrophy and spastic
paraplegia (232).

HCC (233). Gastric cancer (234)
and colorectal cancer
(235).

Isocitrate dehydrogenase (IDH). Three IDH
isoforms exist IDH1, IDH2, and IDH3.

Converts of isocitrate into
a-ketoglutarate (a-KG)

IDH1 and IDH2 in
glioblastoma (236) IDH2 in
colorectal (237) and lung
(238). IDH3-a in glioblastoma
(239) and in HCC (240).

a-ketoglutarate dehydrogenase (a-KGDH), also
called 2-oxoglutarate dehydrogenase (OGDH).

Converts a-KG into
succinyl-CoA

alpha-ketoglutarate
dehydrogenase complex
(KGDHC) deficiency

Gastric (241).

Succinyl-CoA synthetase (SCS), also known as
Succinyl-CoA ligase.
SCS is composed of two subunits, an a-subunit
which is encoded by the gene SUCLG1, and the b-
subunit which is encoded by the gene SUCLA2
(specificity for ADP), or by the gene SUCLG2
(specificity for GDP).

Breaks down succinyl-CoA
into succinate and free
CoA, and converts ADP or
GDP into ATP or GTP,
respectively.

Succinyl-CoA ligase
deficiency

SUCLG1 in acute myeloid
leukemia (242).

SUCLA2 in prostate
(243).

Succinate dehydrogenase (SDH), also known as
Succinate-coenzyme Q reductase (SQR). SDH is
composed of four subunits, SDHA, SDHB, SDHC
and SDHD.

Catalyzes the oxidation of
succinate to fumarate and
transfers electrons from
succinate to ubiquinone
(coenzyme Q).

Succinate
dehydrogenase (SDH)
deficiency

SDHB in ovarian
(244).

Fumarase, also known as fumarate hydratase Catalyzes the hydration of
fumarate into L-malate.

Fumarase deficiency,
also known as
Fumarate hydratase
deficiency or Fumaric
aciduria.

Clear cell renal
carcinomas (245).

Malate dehydrogenase (MDH2) Catalyzes the reversible
conversion of malate into
oxaloacetate

Mitochondrial malate
dehydrogenase (MDH2)
deficiency

Prostate (246).
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metabolism. Citrate can be exported from the mitochondrial matrix

to the cytosol to be converted back into oxaloacetate and acetyl-

CoA, which can be used for fatty acid synthesis. The reduced ACO2

enzyme activity in cells can lead to a deficiency in cellular

respiration, mitochondrial DNA depletion, and altered expression

of some TCA components and electron transport chain subunits

(247). ACO2 mutations have been associated with cerebellar-retinal

degeneration (230, 231) and with severe optic atrophy and spastic

paraplegia (232). ACO2 expression has been found dysregulated in

different types of cancers and linked to tumor progression.

Decreased expression of ACO2 is associated with poor prognosis

in gastric cancer (234) and colorectal cancer (235) by promoting a

switch from mitochondrial oxidative phosphorylation to glycolysis

in the cytosol. The knockdown of ACO2 in colorectal cancer

promotes cell proliferation and colorectal cancer growth (235).

However, compared with normal hepatocytes, ACO2 was

overexpressed in HCC cells, promoting cell proliferation and

migration by affecting molecular pathways involved in cellular

energy metabolism, metabolite changes, and fatty acid metabolic

pathway (233).

The third step of the TCA cycle is the conversion of isocitrate

into a-ketoglutarate (a-KG) by the enzyme isocitrate

dehydrogenase (IDH). Three IDH isoforms exist IDH1, IDH2,

and IDH3. IDH1 is present in the cytosol and the peroxisome,

while IDH2 and IDH3 are present in the mitochondrial matrix.

IDH1 and IDH2 are both NADP+-dependent homodimers and

catalyze the reversible conversion of isocitrate into a-KG. By
contrast, IDH3 is an NAD+-dependent heterotetrameric protein

composed of two a subunits (IDH3A), one b subunit (IDH3B), and

one g subunit (IDH3G), that catalyzes the irreversible conversion of

isocitrate into a-KG (248). The a subunit ensures the catalytic

activity of the holoenzyme, requiring the function of the b and g
subunits (249). IDH2 and IDH3 are both involved in the TCA cycle.

The IDH2 catalytic activity results in the reduction of NAPD+ into

NAPDH, and the IDH3 catalytic activity results in the production

of the electron donor NADH. IDH1 and IDH2 are the most

frequently mutated metabolic genes in human cancer, and their

mutations have been identified in different types of cancer, notably

in gliomas, secondary glioblastomas, cartilaginous and bone

tumors, and acute myeloid leukemia (236, 250–252). Mutated

IDH1 and IDH2 acquire a new ability by converting a-KG into

the oncometabolite 2-HG (2-hydroxyglutarate), accumulation of

which can lead to the modification of the epigenome, notably by

inhibiting a-KG-dependent dioxygenases (248, 252–254). While

the role of the mutant IDH2 in cancer has been well characterized,

recent studies have shown there is a pro-tumorigenic role for wild-

type IDH2 as well. In colorectal cancer, wild-type IDH2 protects

cancer cells against ROS-mediated DNA damage (237).

Additionally, in lung cancer cells, the overexpression of IDH2

decreases a-KG concentrations, enhances the production of 2-

HG, and decreases ROS levels, protecting cancer cells against

DNA damage. The downregulation of a-KG promotes the

transcription of HIF1a-targeted glycolytic genes (238). While

mutated IDH1 and IDH2 are cancer-driver genes through the

production of 2-HG and its impact on the epigenome, IDH3 has

not been characterized as such in cancer. A study showed that
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IDH3-a is elevated in glioblastoma, and loss of function decreases

TCA cycle turnover and inhibits oxidative phosphorylation (239).

Moreover, IDH3-a is upregulated in HCC tissues and is associated

with increased tumor size and greater clinicopathologic stage of

HCC. In vitro studies showed that IDH3-a promotes EMT by

increasing metastasis associated 1 (MTA1), an oncogene involved

in the progression of cancer cells to metastasis, thereby enabling

migration and invasion of HCC cells (240).

The fourth reaction of the TCA cycle is the conversion of a-KG
into succinyl-CoA, leading to the reduction of NAD+ into NADH,

an electron donor which directly transfers electrons to complex I

of the ETC. This reaction is catalyzed by a-ketoglutarate
dehydrogenase (a-KGDH), also cal led 2-oxoglutarate

dehydrogenase (OGDH), a highly regulated enzyme, whose role

in carcinogenesis has been unclear until recently (255). The levels of

OGDH in gastric cancer tissues are highly upregulated compared to

normal tissues, which correlates with poor clinicopathological

parameters for gastric cancer patients. The overexpression of

OGDH results in decreased EMT epithel ial markers ,

mitochondrial membrane potential, oxygen consumption rate,

intracel lular ATP product, and upregulation of EMT

mesenchymal markers, ROS levels, and NADP+/NAPDH ratio,

and facilitated the activation of Wnt/b-catenin signal pathway. In

addition, the overexpression of OGDH promoted tumorigenesis of

gastric cancer cells in nude mice (241).

The fifth reaction of the TCA cycle is catalyzed by Succinyl-CoA

synthetase (SCS; also known as succinate-CoA ligase), which breaks

down succinyl-CoA into succinate plus free CoA, and converts

ADP or GDP into ATP or GTP, respectively. SCS is composed of

two subunits, an a-subunit which is encoded by the gene SUCLG1,

and the b-subunit which is encoded by the gene SUCLA2

(specificity for ADP), or by the gene SUCLG2 (specificity for

GDP) (256). Mutations in both SUCLG1 and SUCLA2 have been

associated with encephalomyopathic mtDNA depletion syndrome

with methylmalonic aciduria (257). SUCLG1 mutations can lead to

severe lactic acidosis and elevated levels of methylmalonic acid and

pyruvic acid in the blood and urine. While, SUCLA2 mutations can

lead to hypotonia (decreased muscle tone), muscle weakness, Leigh

syndrome (a severe neurological disorder), dystonia (movement

disorder), and sensorineural hearing loss (256). Increased SUCLG1

expression in acute myeloid leukemia patients is associated with a

decreased percent survival and identifies as a risky prognostic gene

(242). SUCLA2 has been previously shown to be significantly

downregulated in prostate cancer (243). A model presented by

Wang et al. predicts that in malignant prostate cancer cells, the

GTP-specific beta subunit of succinyl-CoA synthetase (SUCLG2) is

selectively lethal because the alternative route via ATP-specific

succinyl-CoA synthetase (SUCLA2) is not present in these cells,

creating a selective vulnerability to SUCLG2 knockdown in

malignant cells (258). Additionally, a recent study found that the

overexpression of the epidermal growth factor receptor (EGFR) in

prostate cancer cells leads to the upregulation of the ligand for the

LIF receptor (LIFR). The upregulation of LIFR in turn leads to the

overexpression of SUCGL2, an enzyme involved in the production

of succinate. The increased production of succinate promotes the

neuroendocrine differentiation of prostate cancer cells, which
frontiersin.org

https://doi.org/10.3389/fonc.2023.1230934
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
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makes them more resistant to androgen deprivation therapy

(ADT) (259).

The sixth reaction of the TCA cycle is ensured by Succinate

dehydrogenase (SDH), also called Succinate-coenzyme Q reductase

(SQR), a mitochondrial metabolic enzyme complex (respiratory

complex II) involved in both the TCA cycle and OXPHOS. SDH

catalyzes the oxidation of succinate to fumarate and then transfers

electrons from succinate to the ubiquinone pool of the ETC via the

electron donor FADH2 (260–262). SDH is composed of four

subunits, SDHA and SDHB subunits that ensure the catalytic

activity of the SDH complex, and SDHC and SDHD subunits that

anchor the complex to the inner mitochondrial membrane (263,

264). The subunits of this complex are exclusively encoded by genes

located in the nDNA (260, 265). Mutations have been identified in

the genes SDHA, SDHB, and SDHD and in one assembly gene factor

(SDHAF1) in patients presenting Complex II deficiency (266, 267).

Moreover, germline mutations of SDHB, SDHC, or SDHD, are

associated with an increased risk of aggressive variants of renal cell

carcinoma (264, 268–270). In addition, SDHB was found to be

decreased in ovarian tumors. The knockdown of SDHB in mouse

ovarian cancer cells increases proliferation, promotes EMT, and

leads to histone hypermethylation. In SDHB-depleted cells, the

amount of glucose fueling the TCA cycle is decreased and is

compensated by an increase of glutamine, a contribution to

sustaining TCA cycle activity. This suggests that the glucose

entering the pentose phosphate pathway is increased in SDHB-

deficient cells to sustain nucleotide biosynthesis and rapid

proliferation (244).

The seventh step of the TCA cycle is ensured by fumarase or

fumarate hydratase (encoded by the gene FH), which catalyzes the

conversion of fumarate into malate. FH deficiency results in

neonatal and infantile encephalopathy (271–273). Germline

mutations of FH are associated with Multiple Cutaneous

Leiomyomas with Uterine Leiomyomas (MCUL) syndrome, also

known as Reed syndrome, and share features with hereditary

leiomyomatosis and renal cancer cell (HLRCC) (274–276).

HLRCC is a hereditary condition that causes the development of

multiple leiomyomas (fibroids) in the skin and uterus, and an

increased risk of developing renal cell carcinoma (277).

Individuals with hemizygous germline FH mutations have an

increased risk of renal cancer. The remaining wild-type allele in

these tumors is often functionally inactivated, suggesting that FH

inactivation promotes tumor development. The study shows that

FH inhibition and the resulting elevation of intracellular fumarate

leads to the upregulation of hypoxia-inducible factors (HIFs), which

are involved in many cancers including clear cell renal carcinomas

(245). In addition, an aggressive subtype of renal cell carcinoma

caused by mutations in the FH gene is Fumarate hydratase (FH)-

deficient renal cell carcinoma (FHdRCC), which can lead to

fumarate accumulation, resulting in the activation of HIF through

the inhibition of prolyl hydroxylases. HIF activation promotes

tumorigenesis by inducing a metabolic shift to glycolysis,

promoting the transcription of genes such as vascular endothelial

growth factor (VEGF), and a tumor-promoting mechanism

between HIF and EGFR (278).
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The eighth and last reaction of the TCA cycle is ensured by

Malate Dehydrogenase (MDH2), which catalyzes the reversible

conversion of malate into oxaloacetate. MDH2 deficiency has

been shown recently to lead to early-onset severe encephalopathy,

a cause of Leigh syndrome, and has been identified as a

pheochromocytoma and paraganglioma susceptibility gene (279,

280). Moreover, the overexpression of the gene MDH2 was

associated with shorter relapse-free survival in prostate cancer

patients who underwent chemotherapy. The knockdown of

MDH2 in prostate cancer cell lines decreased cell proliferation,

increased sensitivity to the chemotherapy drug docetaxel, and

affected signaling pathways and metabolic efficiency by

influencing JNK signaling and oxidative metabolism (246).
6.2 Oxidative phosphorylation

Glycolysis and FAO fuel the TCA cycle which transfers

electrons to the ETC to generate ATP through OXPHOS. The

ETC is composed of 5 enzymatic multi-subunit complexes (CI-CV)

(Figure 3). Complex I, also known as NADH dehydrogenase, plays a

crucial role by facilitating the oxidation of NADH to NAD+.

Complex II, also known as succinate dehydrogenase, facilitates

the conversion of succinate to fumarate through oxidation.

Complex III, commonly known as Cytochrome c reductase, has

the pivotal function of reducing cytochrome c. Complex IV, known

as Cytochrome c oxidase, has a crucial function in the oxidation of

cytochrome c. Finally, Complex V, commonly referred to as ATP

synthase, earns its name from its essential role in the synthesis of

ATP utilizing the proton motive force (281). Electrons go through a

series of redox reactions when passing through the ETC complexes

CI, CIII, and CIV releasing energy used by the complexes CI, CIII,

and CIV to pump protons (H+) from the mitochondrial matrix

resulting in the generation of a membrane potential. This

membrane potential is then used by Complex V to catalyze the

conversion of ADP and inorganic phosphate into ATP (282).

Mutations in genes involved in the respiratory chain complex

biogenesis or activity leads to mitochondrial diseases, notably

Leigh syndrome, MELAS (mitochondrial encephalopathy, lactic

acidosis and stroke-like episodes) syndrome, MERRF (myoclonic

epilepsy with ragged red fibers (MERRF) syndrome, and

mitochondrial myopathies (283).

As cancer cells rewire their metabolism to use glucose through

aerobic glycolysis, one of the causes could be mitochondrial defects

(284). However, it has been shown that dysfunctional OXPHOS can

also promote the dependence of cancer cells for aerobic glycolysis

(285–287). Recent studies have highlighted that cancer cells can be

highly reliant on OXPHOS for their proliferation and survival, and

that the mitochondrial ETC can play an essential role in tumor

growth (288–292). Birsoy et al. showed that cancer cells sensitive to

low glucose levels harbor glucose use deficiencies or Complex I

mutations that lead to mitochondrial dysfunction, and that these

two phenomena constitute two distinct mechanisms (293). The

OXPHOS pathway has also been found to be part of tumor

metabolic heterogeneity. In a murine model of pancreatic ductal
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adenocarcinoma (PDAC), mutations of the oncogene KRAS,

known to play a critical role in PDAC, lead to the death of most

cancer cells but induce the survival of a subpopulation of dormant

tumor cells relying on OXPHOS (294). Moreover, in PDAC (295),

Acute Myeloid Leukemia (AML) (292), and triple-negative breast

cancer (TNBC) (296), chemotherapy-resistant cells have been

found to rely on a high OXPHOS status, while in high-grade

serous ovarian cancer (HGSOC), high OXPHOS cells are chemo-

sensitive (297). Metabolic heterogeneity observed in some cancers

highlights the importance of combining drugs targeting different

metabolic pathways to synergistically impair cancer cell

proliferation and survival. Suggesting OXPHOS as a cancer

vulnerability and a new potential therapeutic target (298).

Several studies have deciphered the role played by the OXPHOS

complexes, specifically Complex I, for cancer cell proliferation, and

the impact of their inhibition (299, 300). Mutations of genes located

in both nDNA and mDNA genes coding for Complex I subunits

have been found associated with Complex I deficiencies (301, 302).

Complex I activity can be inhibited in cancer cells with different

compounds, such as Metformin, an anti-diabetic drug, which has

been investigated as a potential treatment for cancer (303, 304).

Diabetic patients present increased cancer mortality compared to

those without diabetes., While cancer mortality is increased when

diabetic patients are treated with insulin or sulfonylureas, it is

decreased when they are treated with Metformin, which slows down

tumor growth (305). In human cancer cells, Metformin decreases

cell proliferation in the presence of glucose and reduces hypoxic

activation of HIF-1, but increases cell death upon glucose

deprivation, indicating that cancer cells rely exclusively on

glycolysis for survival in the presence of Metformin (306).

Masoud et al. suggested that high OXPHOS cells are protected

against stress induced by chemotherapy due to high mitochondrial

respiration (295). Furthermore, a clinical-grade small-molecule

inhibitor of Complex I, known as IACS-010759, is currently in

phase I clinical trials and has been investigated in tumor growth of

different types of tumors. Molina et al. has shown that IACS-010759

inhibits cell proliferation and induces apoptosis in brain cancers

and AML, which are known to rely on OXPHOS, by elevating

NADH levels and nucleotide monophosphates and decreasing

nucleotide triphosphates (307). The inhibition of Complex I by

IACS-010759 in Chronic Lymphocytic Leukemia (CLL), showed a

minor effect on cell death and lead to upregulation of glucose uptake

and glycolysis as a compensatory mechanism. However, the

inhibition of both glycolysis and OXPHOS results in increased

cell death, showing the importance of targeting multiple metabolic

pathways to obtain a synergic effect (308). In addition, a study

identified the therapeutic potential of targeting OXPHOS in lung

tumors with SWI/SNF mutations, and demonstrated the selective

anti-tumor effects of IACS-010759 in these specific tumor

types (309).

Understanding the dysregulation of the TCA cycle and

OXPHOS in mitochondrial disorders provides valuable insights

into the pathogenesis of cancer and other related diseases. Targeting

these metabolic pathways holds promise for the development of

novel therapeutic strategies to fight mitochondrial disorders and

improve patient outcomes.
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The dysregulation of metabolic enzymes is intricately linked to

both metabolic disorders and cancer. Metabolic reprogramming in

cancer cells, characterized for a long time as the “Warburg effect,”

plays a crucial role in tumorigenesis, tumor progression, and drug

resistance. Understanding the dysregulation of metabolic enzymes

in different metabolic pathways provides insights into the

mechanisms driving these diseases. Similarities among the

mechanisms described for the different groups of disorders

(UCDs, GSDs, LSDs, FAODs, and mitochondrial diseases) are

related to their involvement in various aspects of cellular

metabolism and signaling pathways, as well as their impact on

tumor growth, invasion, migration, and metastasis. Disruptions in

metabolic pathways, such as pyrimidine synthesis, arginine

biosynthesis, glucose metabolism, fatty acid oxidation, and

mitochondrial function are some of the mechanisms that can

affect energy production, nucleotide synthesis, and other essential

cellular processes. In addition, several mechanisms contribute to

tumor growth and proliferation, by promoting cell cycle

progression, DNA synthesis, and cell division. Dysfunctional

enzymes or regulators may lead to increased cell proliferation

or impaired growth arrest, allowing tumors to evade normal

control mechanisms and immune surveillance, leading to

immunosuppression and impaired T-cell function.

Moreover, dysfunctional enzymes or metabolic alterations can

impact various signaling pathways involved in tumor growth and

progression. Some signaling pathways are regulated in several of the

metabolic disorders, which includeWnt/b-catenin, known to regulate
key cellular functions such as proliferation, differentiation, migration,

genetic stability, cell death, and stem cell renewal (310). The HIF-1a
signaling pathway mediates the transcription of genes, allowing cells

to adapt to hypoxic environments and lead to changes in glycolysis,

nutrient uptake, waste handling, angiogenesis, cell death, and cell

migration that may promote tumor survival and metastasis (311).

The PI3K/AKT/mTOR pathway plays a vital role in controlling cell

survival, metabolism, cell and tumor growth, and protein synthesis in

various conditions, including normal physiological processes and

pathological states, with a particular emphasis on cancer (312). And

p53 signaling acts as a multifunctional transcription factor that

activates and represses a growing number of target genes

implicated in cell cycle control, apoptosis, programmed necrosis,

autophagy, metabolism, stem cell homeostasis, angiogenesis, and

senescence (313). Aberrant activation or suppression of these

pathways can promote tumorigenesis, angiogenesis, and metastasis.

Additionally, EMT is a crucial process in cancer progression, where

epithelial cells acquire a mesenchymal phenotype, allowing increased

invasion, migration, and metastasis. Furthermore, multiple studies

consistently demonstrate the involvement of MMPs (notably MMP1,

MMP2, MMP7, and MMP9) in the processes of migration associated

with ECM degradation and EMT. The several mechanisms described

involve the regulation of EMT-related genes and pathways,

contributing to tumor invasiveness and metastatic potential. It’s

important to note that these mechanisms are not exclusive to the

mentioned disorders but are commonly observed in various types

of cancers.
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Most of the patients with an inherited enzymatic disorder will

receive a supportive, multidisciplinary treatment to alleviate their

symptoms and their multisystemic conditions (314–318). However,

specific treatments are available for some of these enzymatic

disorders. Specifically, in UCDs and some GSDs, liver

transplantation is the most effective treatment option (314, 319).

Furthermore, multiple clinical trials are investigating treatment

options for metabolic disorders such as the administration of

recombinant protein (NCT no. 03378531), gene replacement

(NCT no. 02991144), and mRNA administration (NCT no.

03767270) (314). For LSDs, a common therapy is substrate

reduction, used to inhibit the synthesis of the accumulating

macromolecule, or administration of chaperones, which help

proteins to fold into their correct conformation. In addition,

another common and effective treatment for some LSDs is

enzyme replacement therapy (ERT), in which the deficient

enzyme is administered intravenously to patients. The

recombinant enzyme is taken up by the cells and the accumulated

macromolecules are catabolized in lysosomes. ERT works

specifically well for LSDs through the mannose-6-phosphate

(M6P) receptor, which can bind and transport M6P-enzymes to

lysosomes, therefore the intravenously M6P-tagged enzymes can be

taken up by cells through the receptor and then delivered to

lysosomes where they will catalyze the accumulated substrate

(317). Moreover, several of the metabolic enzymes mentioned

here seem to influence the efficiency of some chemotherapeutic

drugs. The upregulation or downregulation of some genes in

various tumors was associated with chemoresistance against some

drugs, and depletion or inhibition of the enzymes can contribute to

a higher sensitivity to chemotherapeutic drugs.

Nevertheless, there remain significant information gaps in the

understanding of the genetics that underlie enzymatic dysfunction

in metabolic diseases and cancer. While there is now a rich

literature and well-established understanding of the metabolomics

of metabolic diseases and of cancer, as well as gene alterations,

including mutations, amplifications and loss of heterozygosity, as

well as transcriptional alterations, there is only a poor

understanding regarding translational regulatory alterations.

Transcriptional changes often are not reflected in the proteome

due to post-transcriptional regulatory events, including the selective

translational regulation of many mRNAs, and targeted protein

degradation. Ultimately, there will need to be a concerted effort to

begin integrating these many layers of gene control to build a more

complete understanding of enzymatic dysfunction in metabolic

diseases and cancer. The identification of metabolic enzymes as
Frontiers in Oncology 18110
potential therapeutic targets and biomarkers holds promise for

improving cancer therapy and developing new treatment options.

Continued research into the interplay between cancer and

metabolic enzyme dysregulation will contribute to our

understanding of cancer biology and potentially lead to the

development of novel therapeutic strategies.
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Gdansk, Gdansk, Poland, 3Department of Environmental Analysis, Faculty of Chemistry, University of
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Purpose: Amino acids (AAs) play important physiological roles in living cells.

Some amino acid changes in blood are specific for autoimmune disorders, and

some are specific for thyroid cancer. The aims of this study were to profile AA

metabolites in the serum of patients with papillary thyroid carcinoma (PTC0)

without Hashimoto’s thyroiditis (HT) and patients with PTC with HT (PTC1) and

predict whether AA metabolites are associated with thyroid disease, thyroid

hormone and thyroid autoantibodies.

Methods: A total of 95 serum samples were collected, including 28 healthy

controls (HCs), 28 PTC0 patients and 39 PTC1 patients. Serum samples were

analyzed by high-performance liquid chromatography-triple stage quadrupole-

mass spectrometry (HPLC-TSQ-MS), and twenty-one amino acids (AAs) were

detected.

Results: The serum concentration of glutamic acid was significantly elevated in

PTC1 patients compared with PTC0 patients. Lysine was the second amino acid

that differentiated these two groups of PTC patients. In addition, the serum

concentrations of glycine, alanine and tyrosine were significantly reduced in both

PTC patient groups compared to the HC group. These AAs were also correlated

with thyroid hormones and antibodies. Five amino acid markers, namely, glycine,

tyrosine, glutamic acid, glutamine and arginine, separated/distinguished PTC0

patients from healthy subjects, and eight AA markers, the same AAs as above

without arginine but with alanine, leucine, valine and histidine, separated/

distinguished PTC1 patients from healthy subjects based on ROC analysis.

Conclusion: Compared with the HCs, changes in AAs in PTC0 and PTC1 patients

showed similar patterns, suggesting the possibil ity of a common

pathophysiological basis, which confirms preliminary research that PTC is

significantly associated with pathologically confirmed HT. We found two AAs,

lysine and alanine, that can perform diagnostic functions in distinguishing PTC1

from PTC0.
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amino acids, Hashimoto’s thyroiditis, papillary thyroid cancer, serum, LC-MS
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1 Introduction

Thyroid cancer (TC) is responsible for over 1% of neoplasms

diagnosed every year in the general population. In Europe, there are

approximately 3,500 new cases each year (1). Females are involved

3–5 times more often than men. The incidence of TC has increased

rapidly in the last several years. In terms of short-term prognosis, it

may become the second most common malignant neoplasm in

women. Papillary thyroid cancer (PTC) accounts for more than

90% of all thyroid neoplasms (2) with a global incidence of 586,000

cases (3). Although PTC is related to an indolent disease course and

has a favorable prognosis, it is a major challenge to stratify patients

by risk of mortality or recurrence. Currently, clinicopathologic

features associated with an unfavorable prognosis include older

age, large tumor size, extrathyroidal extension (ETE), lymph node

metastasis (LNM) and distant metastasis. Individuals with those

features require more aggressive treatment (4, 5). On the other

hand, low-intensity treatment or even active surveillance may be

sufficient for patients who do not have these risk factors. Although

some recent studies have indicated that Hashimoto’s thyroiditis

(HT) (6) may be a tumor-promoting factor, HT-related issues have

barely been mentioned in current TC treatment guidelines. The link

between chronic inflammation and cancer is well described (7);

however, it is generally associated with indolent potential in the GI

tract, liver, and skin (8). There are several theories to explain the

potential relationship; for example, misbehaved follicular epithelial

regeneration following chronic inflammatory damage (9) or

enhanced TSH stimulus together with additional inflammatory

cytokines act as potential activators of aberrant cell proliferation

(10). However, the exact molecular pathomechanism remains

unclear. Autoimmune thyroid diseases, including Hashimoto’s

thyroiditis (HT), are T-cell‐mediated organ‐specific autoimmune

diseases, and the annual incidence of Hashimoto thyroiditis

worldwide is estimated to be 0.3-1.5 cases per 1000 persons (11).

HT, affects women 7-10 times more often than men (12).

Prevalence increases with age, especially in patients diagnosed

with other autoimmune conditions. There are various signs and

symptoms of HT mainly due to hypothyroidism, including cool and

dry skin, coarse hair, loss of body hair, and hyperlipidaemia (13).

Chronic HT-induced inflammation may be associated with an

increased risk of thyroid cancer. A recent meta-analysis reported

that the rate of HT in PTC patients ranged between 4.75 and 38.4%,

whereas the rate of PTC in HT patients ranged between 0.12 and

64.3% (14). The immune responses against PTC and HT are

different. In PTC, the immune system is more silent and allows

tumor progression, while in HT, the reaction is aggressive,

destroying the proper functioning of the gland. According to

some authors, HT is associated with a better prognosis due to an

enhanced immune response and better control of tumor

progression (15). However, the role of HT in PTC seems

ambiguous and should be elucidated. It has been proven that HT

plays a role in protein metabolism (16). As the basic building blocks

of peptides and proteins, amino acids have a variety of physiological

functions. Serum levels of polyamine metabolites were found to

differ between patients with autoimmune thyroid disease and
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healthy controls (17). Hypothyroid status is related to lower

alanine, aspartate, and glutamate concentrations. It is mainly

caused by decreased whole-body proteolysis and maldigestion

(18). Amino acids are the primary units of proteins and are

involved in multiple physiological and pathophysiological

processes (19). According to many publications, amino acids

(AAs) may play a critical role in cancer cell metabolism. In

contrast to hypothyroidism status, it is known that in cancer,

especially in the early stages, the amino acid turnover rate is

increased because of hypermetabolism. Glutamine, as a nitrogen

and carbon source, is involved in the metabolic reprogramming in

cancer and plays a pivotal role in the growth and proliferation of

cancer cells (18, 20–22). Most thyroid cancer studies have presented

increased concentrations of glutamine and glutamate in tumor

samples (23–25), as well as in serum (25–27). High glutamine

uptake is related with upregulated glutaminase in several tumor

models (28–30). Glutaminase initiates glutaminolysis by converting

glutamine to glutamate. This pathway is involved in the

maintenance of the TCA cycle and synthesis of non-essential

amino acids, nucleotides and fatty acids (11) as well as in cell

signaling (29, 30). Also, alteration of arginine metabolism is

characteristic for cancer metabolism. It is necessary for growth of

cancer cells, but paradoxically, arginine is important for immune

surveillance (31). Alanine also is desired amino acid in most of the

perturbed pathways (25). Glycine and serine provide crucial

substrates for the synthesis of nucleic acids, proteins and lipids,

which are essential for cancer cell growth (32). High levels of glycine

have been observed in cancer thyroid tissues (24, 33) and in

malignant nodules (34) compared to samples from healthy

subjects. Also, other amino acid are necessary for maintenance of

cellular redox homoeostasis (35). Some derivatives produced from

AAs may support cancer growth, but tryptophan induces

immunosuppression by weakening the ability of dendritic cells

and T cells to target and eliminate cancer cells (36). Our aim was

the examination of AA profile disorders in PTC1 and PTC0 and

comparison of changes in AA concentrations in these 2 pathologies.
2 Materials and methods

2.1 Patients

The present study was approved by the Independent Bioethics

Committee for Scientific Research at the Medical University of

Gdansk under number NKBBN/62/2021. The study was performed

in agreement with the Declaration of Helsinki of the World Medical

Association. Female patients who underwent thyroidectomy or

lobectomy for PTC at the Thyroid Cancer Center of the Medical

University of Gdansk from January 1, 2021, to March 31, 2022, were

included in the study. The study groups consisted of 28 PTC0

(mean age 42.3 ± 13.7 years) and 39 PTC1 patients (mean age 42.0 ±

14.1 years). The controls were healthy participants (43.6 ± 8.87

years). An extensive medical history was taken from the control

group regarding various ailments (hypertension, chronic kidney

disease, heart failure, ischemic heart diseases, cerebrovascular,
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dyslipidemia, diabetes mellitus, type 2 diabetes mellitus, thyroid

diseases) and taken drugs. The control group consisted of women

without the above diseases. Written informed consent was obtained

from all participants. Data such as age, sex, preoperative serum

autoantibody levels, tumor characteristics, and treatment modalities

were obtained from the medical records. Standard pathologic

diagnoses were based on World Health Organization criteria (37).

Routine laboratory parameters were determined at the Central

Clinical Laboratory at the Medical University of Gdansk, the

results of which are collected in Table 1. Only patients with

confirmed PTC by histopathology were included in the study.

Coexistent HT was determined by elevated anti-thyroglobulin

antibodies (TgAbs) and thyroid peroxidase antibody (TPOAb)

and postoperative sectioning and examination of paraffin-

embedded thyroid tissue specimens; a positive result was defined

as the presence of diffuse lymphocytic and plasma cell infiltrate,

oxyphilic cells, formation of lymphoid follicles, and reactive

germinal centers. Only women participated in this study, and we

ruled out other autoimmune thyroid diseases, such as Graves’

disease, through the determination of the levels of thyrotropin

receptor autoantibodies (TSHR-Abs). Blood samples were

collected in the morning from all study subjects, and before

thyroidectomy from PTC patients. After the blood was
Frontiers in Endocrinology 03120
centrifuged, the serum samples obtained were stored in aliquots

at -80 °C until assayed.
2.2 Amino acid analysis

Concentrations of amino acids were determined by liquid

chromatography/mass spectrometry (LC/MS) according to the

procedure described previously (38). Briefly, internal standards (a

mixture of amino acids labelled with stable isotopomers C-13 and

N-15, Sigma−Aldrich) were added to 0.025 ml of serum. The sample

was then deproteinized by the addition of 0.1 ml acetonitrile, incubated

for 15 minutes on ice and centrifuged at 12,000 x g for 15 minutes at 4°

C. The collected supernatant was freeze-dried and then dissolved in 25

µl of water. Samples were analyzed by ion-pair reversed-phase high-

performance liquid chromatography coupled with mass spectrometric

detection. Chromatographic separation was performed using a 2.5 mm
Synergy Hydro-RP 50 x 2.0 mm column. The mobile phase was

delivered at a rate of 0.2 mL/min in a gradient from 0% to 60%

acetonitrile over 12 minutes. A mass detector (TSQ Vantage, Thermo,

USA) with a heated electrospray ion source (HESI-2) was operated in

MS2 positive mode for amino acid detection. The electrospray cone

voltage was set at 4.5 kV, and the heated capillary temperature was 275°
TABLE 1 Selected biochemical and anthropometric characteristics in the study groups.

HC PTC0 PTC1 HC vs PTC0 HC vs PTC1 PTC0 vs PTC1

Age (year) 43.6 ± 8.87 42.3 ± 13.7 42.0 ± 14.1 NS NS NS

BMI (kg/m2) 25.4 ± 7.31 26.5 ± 4.47 25.1 ± 4.45 NS NS NS

TG (mg/dL) 98.5 ± 44.6 87.3 ± 32.6 81.6 ± 32.3 NS NS NS

HDL (mg/dL) 68.8 ± 18.0 62.0 ± 12.8 59.8 ± 12.5 NS NS NS

LDL (mg/dL) 101 ± 27.4 112 ± 35.4 109 ± 33.6 NS NS NS

TC (mg/dL) 160 ± 50.9 199 ± 42.2 188 ± 42.0 *0.014 NS NS

CRP (mg/L) 0.77 ± 0.54 0.84 ± 0.52 2.77 ± 1.99 NS <0.001 <0.001

Glucose (mg/dL) ND 93.9 ± 27.0 95.3 ± 20.3 ND NS NS

HBA1C (%) ND 5.37 ± 0.46 5.29 ± 0.34 ND NS NS

Insulin (uU/mL) ND 9.14 ± 5.86 8.24 ± 6.05 ND NS NS

Albumin (g/L) ND 42.0 ± 2.48 40.7 ± 3.46 ND NS NS

Creatinine (mg/dL) ND 0.68 ± 0.11 0.69 ± 0.13 ND NS NS

1,25-(OH)2D (pg/mL) ND 54.8 ± 15.0 51.3 ± 17.1 ND NS NS

TSH (uU/mL) ND 1.14 ± 0.67 1.19 ± 0.80 ND NS NS

fT3 (pmol/L) ND 4.30 ± 0.48 4.30 ± 1.06 ND NS NS

fT4 (pmol/L) ND 12.3 ± 1.83 12.8 ± 3.03 ND NS NS

aAnty-TSHr (IU/l) ND <0.20 <0.20 ND NS NS

bAnty-TPO (IU/mL) ND <3.00 449 ± 532 ND ND **<0.001

cAnty-TG (IU/mL) ND <3.00 133 ± 471 ND ND **<0.001
p from one-way analysis of variance followed by the all-pairwise comparisons Holm−Sidak method, * p from nonparametric Kruskal−Wallis one-way analysis of variance followed by the all-
pairwise comparisons Dunn’s method for ranks. ** <0.001 - comparison between the two PTC study groups was evaluated by the Mann–Whitney rank sum test for nonparametric data. a <0.2 IU/l
– reference value for TSHr-Ab, b<34 IU/ml - reference value for TPO-Ab, c ≤115 IU/ml - reference value for TG-Ab. ND – not determined, NS – not significant.
Healthy control (HC), patients with PTC without Hashimoto thyroiditis (PTC0) and patients with Hashimoto thyroiditis (PTC1). Values are mean ± SD.
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C. The sheath gas flow was set at 35 arbitrary units. Individual amino

acids were identified and confirmed by the similarity of molecular

masses, chromatographic retention time and fragmentation pattern.
2.3 Data analysis

The data analysis was performed in SigmaPlot 14.5 (Systat

Software Inc., San Jose, CA, USA). All values are presented as the

mean ± standard deviation (SD). The P value was considered

significant at < 0.05. Comparisons among the three study groups

were carried out with the one-way analysis of variance (ANOVA)

followed by the all-pairwise comparison Holm−Sidak method.

Nonparametric data were subjected to the Kruskal−Wallis one-

way analysis of variance followed by the all-pairwise comparison

Dunn’s method for ranks. Comparison between the two PTC study

groups was evaluated by the Mann–Whitney rank sum test for

nonparametric data. Correlations between pairs of variables were

determined by linear regression analysis.

ROC analysis was carried out in MetaboAnalyst 5.0v (39) to

evaluate the area under the curve (AUC) to compare the predictive

ability of significant metabolites between the tested groups. The

linear SVM algorithm was used to build the ROC curve. To

understand if it is possible to increase the predictive power, the

single ROC curve was built for both comparisons, HC with PTC0

and HC with PTC1, using only the metabolites with a p-value <0.01.

ROC curve analyses for combinatorial AAs, the 10-fold Coss

Validation was used to generate a logistic regression model and

calculate the performance. MetaboAnalyst 5.0v uses the

MetaboAnalyst R package with metabolomic data analysis,

visualization, and functional interpretation. The raw data were

subjected to normalization to the total area and autoscaled.

MetPA software (39) was used to carry out an analysis of serum

metabolic pathways for the identified metabolites. Metabolome

analysis identified all matched pathways based on p values

determined during pathway enrichment analysis and pathway

impact values determined by pathway topology analysis. The raw

data were subjected to normalization to the total area and autoscaled.

The pathway-associated metabolite set was the chosen metabolite

library, and all compounds in this library were used. Pathways with a

p value <0.05 were significantly altered in serum samples.
3 Results

Common biochemical parameters obtained from whole blood

are presented in Table 1. PTC1 patents had elevated C-reactive

protein compared with HC and PTC0 patients (although the values

were within the reference range). PTC0 patients had significantly

elevated concentrations of total cholesterol compared with HCs.

Among the other parameters, significant differences were not

observed. PTC0 patients differed statistically from PTC1 patients

in thyroid peroxidase and thyroglobulin antibody levels.
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3.1 Differences in serum AA concentrations
in PTC patients with and without
Hashimoto’s disease and healthy controls

One-way analysis of variance was used to compare individual

amino acids between study groups, and the significantly different

AAs among these three groups were defined (Table S1).

Concentration of some of these AAs decreased in the serum of

both PTC0 and PTC1 patients due to the increased metabolic rate,

which is typical of cancer. Glycine, alanine and tyrosine were

reduced in both PTC groups compared with the HC group

(Figures 1A-C). However, the values for glycine and valine

(Figure 1D) were comparable for PTC0 and PTC1 patients, while

the concentration of alanine showed a declining trend in the PTC1

group compared to that in the PTC0 group. In the PTC1 group,

glutamate and lysine were significantly elevated in patients’ serum

compared to the PTC0 group, and there were only two AAs that

separated/distinguished these two groups of patients with PTC

(Figures 1E, F and Table S1). All PTC patients had elevated levels

of glutamic acid, aspartic acid, glutamine and valine compared to

the healthy controls, and glutamic acid was noted to be almost two

times higher in PTC1 patients than in PTC0 patients (Figures 1D, E,

G, H). Significantly elevated concentrations of arginine, leucine and

histidine were observed only in the PTC1 group compared with the

healthy control group (Figures 1I-K). The increase in histidine was

slight. In the PTC0 group, only leucine and arginine showed an

upwards trend (Table S1).
3.2 Diagnostic potential of serum AA
concentrations in PTC patients

ROC curve analysis of each box plot was used to evaluate the

diagnostic ability of the discriminating metabolites as screening

biomarkers in patients with PTC0 and PTC1. The ROC curve

summarizes the specificity and sensitivity (the x-axis and y-axis,

respectively) of a single feature to accurately classify data, which can

then be us ed to compare the ove r a l l a c cu ra cy o f

different biomarkers.

The results showed that the AUCs of five metabolites in the

PTC0 vs. healthy group (Figure 2A) were larger than 0.780, and the

AUCs of eight metabolites in the PTC1 vs. healthy group were

larger than 0.742 (Figure 3A). Specific changes for PTC0 were found

in arginine with an AUC of 0.789, and specific changes for PTC1

were found in alanine with an AUC of 0.853, leucine with an AUC

0.825, valine with an AUC 0.759 and histidine with an AUC of

0.0.742. The remaining AAs had different AUC values between

PTC0 and PTC1. The highest AUC values noted was glycine in

PTC0 and PTC1 (0.834 and 0.849, respectively) (Figures 2, 3). As

shown in Figures 2B, 3B, the ROC curve for the predictive power of

combined index to distinguish PTC0 from HC and PTC1 from HC

was plotted. The AUC was 0.831 and 0.828, respectively

(Figures 2B, 3B).
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FIGURE 1

Boxplots of the 11 most significant metabolites (p < 0.05) in the analysis of variance results comparing the three groups (PTC0, yellow boxes; PTC1, red
boxes; and healthy controls, green boxes). (A) glycine, (B) alanine, (C) tyrosine, (D) valine, (E) glutamine, (F) lysine, (G) glutamic acid, (H) aspartic acid, (I)
arginine, (J) leucine, (K) histidine. The x-axis shows the specific metabolite, and the y-axis is the normalized peak intensity. HC, healthy control; PTC0,
papillary thyroid carcinoma without Hashimoto; PTC1, papillary thyroid carcinoma with Hashimoto. Values are means ± SDs. (***p<0.001, **p<0.01,
*p<0.05 one-way analysis of variance followed by the all-pairwise comparisons Holm−Sidak method; ***p<0.001, **p<0.01, *p<0.05 from
nonparametric Kruskal−Wallis one-way analysis of variance followed by the all-pairwise comparisons Dunn’s method for ranks).
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3.3 Analysis of correlations between serum
AA and concentrations and other selected
blood parameters

The next step was the analysis of correlations between patient

serum parameters of thyroid function and serum AAs in the

research PTC groups (Table 2). Alanine was negatively correlated

with free thyroxine (fT4). Arginine was positively correlated with

fT4 (0.407, p<0.05) and leucine with TSH (-0.428, p<0.05). Only

proline correlated with free triiodothyronine (fT3) (-0.426, p<0.02).

There was only one strong negative correlation of histidine with C-

reactive protein (-0.626, p<0.001).

Significantly more relationships and stronger correlations were

observed in the PTC1 group, similar to the ANOVA and ROC

analysis (Table 3). Among them were AA correlations with thyroid

hormones. The PTC1 entity affects a greater number of correlations.

Tyrosine, which was reduced in both the PTC0 and PTC1 groups,
Frontiers in Endocrinology 06123
was positively correlated with fT3 (0.469, p<0.01) and fT4 (0.460,

p<0.01). Lysine positively correlated with thyroglobulin antibodies

(TG-Abs) (0.434, p<0.01) and was one of two AAs that were

different between PTC0 and PTC1 (Table S1). In turn, alanine,

which was also reduced in PTC1, was strongly negatively correlated

with thyroid peroxidase antibodies (TPO-Abs) (-0.567, p<0.001).

Another strong correlation was the positive correlation of glutamic

acid with thyroid-stimulating hormone (TSH) (0.530, p<0.001).
3.4 Metabolic pathway analysis of
the serum AA profiles in PTC0 and
PTC1 patients

Metabolic pathway analysis was performed to interpret the

biological relevance of the differences in serum AA profiles in

PTC0 and PTC1. The KEGG and HMDB databases were used to
A B

FIGURE 3

Receiver operating characteristic curve (ROC curve) analyses of the ability of 8 AAs (A) and a combinatorial AAs (B) to predict PTC1 vs. HC.
A B

FIGURE 2

Receiver operating characteristic curve (ROC curve) analyses of the ability of 5 AAs (A) and a combinatorial AAs (B) to predict PTC0 vs. HC.
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TABLE 2 Correlation coefficients between the selected blood parameters and amino acid concentrations (µM) in serum samples from patients with PTC without Hashimoto thyroiditis (PTC0) (Pearson correlation
coefficient).

Glu Ser Met Tyr His Ile Lys Leu Arg Phe Trp

64 -0.130 -0.303 0.196 0.112 -0.626 0.006 -0.172 -0.004 -0.180 0.177 -0.411

48 -0.126 0.125 -0.264 -0.332 0.082 -0.095 -0.006 -0.428 -0.297 -0.012 0.020

71 0.055 -0.117 -0.359 -0.104 0.294 -0.154 0.132 0.081 0.209 0.138 0.062

36 0.212 -0.103 0.100 0.114 -0.290 0.024 0.235 0.236 0.407 -0.154 -0.087

– – – – – – – – – – –

– – – – – – – – – – –

lutamine, Glu – glutamic acid ine, Cre – creatinine, Val – valine, Met –methionine, Tyr - tyrosine, His - histidine, Ile – isoleucine, Lys – lysine,
tryptophane.

selected blood parame ples from patients with PTC with Hashimoto thyroiditis (PTC1) (Pearson correlation

n Glu Ser Met Tyr His Ile Lys Leu Arg Phe Trp

94 -0.285 0.149 -0.091 -0.137 0.141 0.174 -0.165 0.266 0.210 0.041 0.261

9 0.530 -0.051 0.070 -0.005 0.007 0.126 0.243 0.198 -0.026 -0.002 -0.063

0 -0.301 0.199 -0.077 0.469 0.077 -0.021 -0.237 -0.013 -0.310 0.112 0.085

37 -0.171 0.177 0.013 0.460 0.105 -0.009 -0.213 0.033 -0.277 0.003 0.159

53 0.268 0.083 -0.219 -0.150 -0.038 -0.092 0.040 -0.112 -0.154 -0.250 -0.003

26 0.001 -0.195 -0.198 -0.062 0.096 -0.086 0.434 -0.064 -0.117 0.023 0.018

lutamine, Glu – glutamic acid ine, Cre – creatinine, Val – valine, Met –methionine, Tyr - tyrosine, His - histidine, Ile – isoleucine, Lys – lysine,
tryptophane.
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Asp Asn Gly Gl

CRP 0.220 -0.385 -0.091 -0.2

TSH -0.271 0.074 -0.108 -0.1

fT3 -0.300 0.151 0.050 -0.1

fT4 -0.208 -0.132 0.189 -0.2

anty-TPO – – – –

anty-TG – – – –

Asp – aspartic acid, Asn – asparagine, Gly – glycine, Gln –

Leu – leucine, Arg – arginine, Phe – phenylalanine, Trp –

p<0.05; p<0.001.

TABLE 3 Correlation coefficients between th
coefficient).

Asp Asn Gly G

CRP -0.309 -0.212 -0.124 -0.2

TSH 0.356 -0.095 0.105 0.1

fT3 -0.217 0.377 -0.117 0.0

fT4 -0.308 0.247 -0.352 -0.1

anty-TPO 0.103 -0.182 -0.278 -0.1

anty-TG 0.215 -0.088 -0.016 -0.0

Asp – aspartic acid, Asn – asparagine, Gly – glycine, Gln –

Leu – leucine, Arg – arginine, Phe – phenylalanine, Trp –

p<0.05; p<0.001.
n

g

e

l

0

3

g

Bet Thr Ala Pro Cre Val

-0.247 -0.322 -0.109 -0.165 -0.037 -0.15

-0.256 -0.036 -0.022 -0.334 0.386 -0.20

-0.139 -0.017 -0.221 -0.426 0.020 -0.27

-0.117 -0.340 -0.397 -0.245 -0.111 0.000

– – – – – –

– – – – – –

Ser – serine, Bet – betaine, Thr – threonine, Ala – alanine, Pro – pro

ers and amino acid concentrations (µM) in serum sam

Bet Thr Ala Pro Cre Val

-0.262 -0.006 -0.022 -0.067 -0.085 0.137

-0.010 -0.228 -0.097 0.362 0.088 0.046

0.027 0.288 0.290 0.202 0.223 0.104

-0.100 0.180 0.154 0.258 0.184 -0.08

-0.244 0.013 -0.567 -0.169 -0.110 -0.18

-0.173 0.078 -0.272 -0.144 -0.318 -0.23

Ser – serine, Bet – betaine, Thr – threonine, Ala – alanine, Pro – pro
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analyze twenty-one detected amino acids, and the results were

submitted to MetaboAnalyst 5.0 to display the statistical analysis

results of informatics analysis. This analysis generates a pathway

impact score and the associated p value. A value >0.1 was chosen as
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the cut-off for less important pathways (Figures 4, 5). All the

identified pathways are shown in Supplementary Tables S2 and S3.

Pathway analysis showed that “glyoxylate and dicarboxylate

metabolism” was the most significant pathway characteristic of
FIGURE 5

Pathway analysis of serum amino acid profiles of the papillary thyroid carcinoma with Hashimoto group and the control group. Pathway impact
values are plotted against the X-axis, and -log (P) values are plotted against the Y-axis. For visual clarification, the pathway importance and the
statistical significance are proportional to the node radius and colour, respectively. FDR p is the p value adjusted using the false discovery rate.
Impact is the pathway impact value calculated from pathway topology analysis.
FIGURE 4

Pathway analysis of serum amino acid profiles of the papillary thyroid carcinoma without Hashimoto group compared to the control group. Pathway
impact values are plotted against the X-axis, and -log (P) values are plotted against the Y-axis. For visual clarification, the pathway importance and
the statistical significance are proportional to the node radius and colour, respectively. FDR p is the p value adjusted using the false discovery rate.
Impact is the pathway impact value calculated from pathway topology analysis.
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PTC0 (Figure 4), which was selected on the basis of disturbed

concentrations of glycine, glutamine and glutamic acid in the serum

of PTC0 patients compared with healthy controls. However, the

pathway “D-Glutamine and D-glutamate metabolism” had the

highest FDR value and pathway impact value calculated from

pathway topology analysis (Table S3). The next most significantly

changed pathways were “arginine biosynthesis” and “nitrogen

metabolism” (Table S3). The most commonly changed AAs in

these pathways were glutamine and glutamic acid.

A very similar set of metabolic pathways was observed in the

pathway analysis based on changes in the AA profile in patients

with PTC1 (Figure 5); however, there were higher FDR values and

different pathway impact scores (Table S3). The two PTC groups

were differentiated by the pathway “glutathione metabolism”.
4 Discussion

The standard diagnostic tools for PTC are ultrasound and fine

needle aspiration biopsies (6). In turn, HT identification is based on

clinical symptoms of hypothyroidism, the presence of TPOAbs, and

ultrasound features, although seronegative HT can be observed in

more than 10% of cases. In such cases, diagnosis is made based on

final histopathology. Additional diagnostic tools that may help to

identify PTC and distinguish Hashimoto concomitant with PTC

may have crucial clinical implications. Indeed, recent guidelines

allow less aggressive treatment for PTC in some circumstances,

which might significantly reduce postoperative complications (40).

However, there is no gold standard that would allow us to

distinguish between Hashimoto’s and cancer, and this distinction

is of great importance in further management/treatment. In the

development of cancer, AA metabolism is reprogrammed.

Additionally, HT affects patient catabolism, and preliminary

research suggests that increased serum TSH concentration and

autoimmune thyroid inflammation are involved in thyroid tumor

growth (18). Therefore, is it possible to find the difference between

these two diseases based on the amino acid profiles?

To the best of our knowledge, this is the first study to determine

AA profiles in serum samples from PTC0 patients and PTC1

patients compared to those of healthy controls.

Lysine was one of the AAs that was elevated in PTC1 compared

to PTC0. Lysine affects the production of proteins in muscles and

bones, and lysine deficiency causes chronic fatigue, irritability, hair

loss, anemia, susceptibility to infection, recurrent herpes and

metabolic disorders. Jiang et al. (41) studied the serum of HT

patients and showed that lysine degradation pathways had an

impact on different clinical stages of HT (41). Additionally, lysine

was increased in the serum of HT and Graves’ disease patients (17).

In our study, lysine was increased only in the PTC1 group.

According to the referenced authors, alterations in lysine

degradation affect the occurrence of HT (42).

Other AAs increased in the serum of PTC1 patients compared

to HCs were leucine and arginine (Table S1). Interestingly, in PTC0

patients, we also observed a strong increase in arginine

concentration (Table S1). Serum concentrations of arginine were

altered in both PTC0 and PTC1 patients, which was also indicated
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by the MetPA analysis pathway “arginine biosynthesis” (Figures 4,

5). A positive correlation of arginine with fT4 was observed in PTC0

serum (Table 2). Interestingly, Ittermann et al. (43) found that in

patients with hyperthyroidism, serum concentrations of arginine

and its metabolites, including asymmetric and symmetric

dimethylarginines and homoarginine, were associated with serum

TSH, fT3, and fT4 concentrations. Treatment of hyperthyroidism

by antithyroid drugs increased arginine levels (44). In turn, Gluvic

et al. (44) described many cases of increased NO bioavailability by

levothyroxine therapy. Thyroid hormones stimulate L-arginine

uptake by endothelial cells by upregulating L-Arg transporters

(45), and arginine is a major regulator of mitochondrial activities

in cancer metabolism (31). Supplementation with arginine rewires

T-cell metabolism from glycolysis to oxidative phosphorylation and

promotes its survival and antitumor ability (31). Lu et al. (46), in H1

NMR analysis of plasma from papillary thyroid microcarcinoma

patients, reported reduced levels of valine, lysine and leucine

compared with healthy groups. In a study by Jiang et al. (41),

valine, leucine, and isoleucine degradation and valine, leucine, and

isoleucine biosynthesis differentiated euthyroid HT patients from

HT patients with subclinical hypothyroidism. However, it should be

stressed that Hashimoto disease may influence the metabolism of

many other tissues, and this may affect serum AA concentrations.

Indeed, we observed elevated concentrations of leucine in serum

from HT patients. According to Krishnamurthy et al. (47), arginine,

valine, and leucine are important in immunological responses,

including the synthesis of various antibodies and the activation of

T cells and macrophages. It appears that the deficiency of any

essential AAs, including valine, impairs T4 production and leads to

primary hypothyroidism (48). Thyroid hormones have a catabolic

effect on protein metabolism. In most catabolic states, uptake of

branched-chain amino acids from body proteins is reduced;

therefore, the increase in their concentrations does not depend on

the increase in their content in the diet but results from both their

reduced peripheral metabolism and increased release from fat-free

tissues (49). Additionally, in our study, the concentration of valine

was elevated in both PTC groups; however, much higher differences

in valine levels were observed in PTC1 patients. Plasma branched-

chain amino acids are decreased in short-term profound

hypothyroidism and increase in response to thyroid hormone

supp l ementa t ion (16) . There fore , thyro id hormone

supplementation can be a reason for the higher serum

concentrations of BCAAs in PTC1 patients (Table S1). The next

amino acid, glycine is a highly desirable compound for cancer cells

(24, 33)., therefore, reduced levels of glycine in the serum of PTC

patients (Table S1) could be the reason for glycine participation in

cancer pathogenesis (21). We observed an inverse correlation of

glycine with fT4 in PTC0 serum (Table 2). Glycine supplementation

improves the conversion of fT4 to fT3, which contributes to the

proper functioning of the thyroid gland. Mannisto et al. reported

that intraperitoneal administration of glycine inhibited TSH

secretion in rats (50).

In turn, glutamate and aspartate, which are excitatory amino

acids, act by increasing the concentrations of TSH, fT3 and fT4 in

rat serum (51). Indeed, in our study, glutamate and aspartate were

positively correlated with TSH in the serum of PTC1 patients.
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Moreover, significantly higher concentrations of glutamate and

aspartic acid were detected in the serum of PTC0 and PTC1

patients in comparison to healthy controls (Table S1). Aizawa

et al. (52) studied the effects of glutamic acid and glutamine on

TSHb expression in pars tuberalis (PT) slice cultures from rat

brains. After 2- and 4-h treatments, glutamic acid and glutamine

significantly stimulated TSHb expression in PT slices, and the

impact of glutamic acid was stronger than that of glutamine (52).

TSH was also positively correlated with aspartic acid, although the

correlation was weak (0.356, p<0.05) (Table 3). The enzymes

involved in glutaminolysis were overexpressed in thyroid cancer

tissue (20, 21, 53) and promoted the transformation of glutamine to

glutamate to sustain the TCA cycle and anabolic processes (27).

Therefore, excess products of glutaminolysis, such as aspartic and

glutamic acid, can be removed into the serum of PTC patients.

Furthermore, aspartic and glutamic acid are substrates for

nucleotide biosynthesis, and increased amounts could replenish

the levels of the metabolites of the TCA cycle that may be decreased

as a result of aerobic glycolysis (Warburg effect) (25). According to

Cheng et al. (54), the increased glutamate concentrations in PTC

patients are a result of increased glutamine metabolism in tumour

cells. Moreover, the existing association of thyroid autoimmunity

with PTC may be involved in increased serum glutamine

concentrations (18). One of the amino acids with a reduced

concentration in serum samples in both the PTC0 and PTC1

groups compared to HCs was alanine. Additionally, Qing Huang

et al. (25) found reduced concentrations of alanine in the serum of

PTC patients. A similar reason is indicated by Wojtowicz et al. (26).

Decreased alanine might be evidence of its fast utilization from

circulating blood as an answer for energy demands (26). In our

study, alanine showed a decreasing trend in the serum of PTC1

patients compared to PTC0 patients. Additionally, we observed a

strong negative correlation of alanine with TPO-Abs in the serum of

PTC1 patients. Thyroid hormones control a multitude of

homeostatic functions, including protein proteolysis (16). In

Hashimoto, the antibody titre is significantly elevated, so this may

be another factor lowering the concentration of alanine in patients

with HT. When comparing different studies, the differences in the

abundance of these amino acids between healthy subjects and

patients with benign or malignant thyroid lesions do not always

match. Certainly, observed results need further investigations. One

of this reason might be the use of different sampling methods,

techniques and study groups. However, there is agreement that

plasma/serum levels of tyrosine, a precursor of thyroid hormones,

are lower in PTC patients than in controls (26, 46, 55–57). The T3

hormone, triiodothyronine, constitutes only 10% of the total

thyroid hormones, although it is considered responsible for most

of the thyroid’s activities and is 3-4 times stronger than the T4

hormone. Tyrosine is necessary for synthesis of thyroxine, which is

produced by the thyroid gland (47). Reduced values of fT4 and

elevated values of fT3 accompany Hashimoto (18). Deficiency in

tyrosine, as well as phenylalanine, results in altered levels of thyroid

hormones (47). Tyrosine is considered a nonessential amino acid

because it can be synthesized from phenylalanine; nonetheless, it
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has an important role in the production of proteins that are a part of

signal transduction processes, acting as a receiver of phosphate

groups transferred through tyrosine kinases. In turn, these enzymes

have been associated with the regulation of cellular proliferation,

survival, differentiation, function and motility, linking them to a

cancer phenotype Tahara et al. (48) demonstrated the effects of

amino acid deficiency on serum levels of T4, T3, fT4, and reverse

T3; they reported that reduction of phenylalanine and tyrosine

drastically affected the serum levels of thyroid hormones. We

observed a positive correlation between tyrosine and fT3 and fT4

in the serum of PTC1 patients. Interestingly, in HT and other

autoimmune thyroid diseases, other studies (17, 18) did not observe

the phenomenon of decreased levels of tyrosine in serum patients.

Jiang et al. (41) suggested that lysine degradation and tyrosine

metabolism played an important role in the HTS group compared

to the control group. However, this was not supported by measured

tyrosine concentrations, only enrichment analysis (41). This may be

due to the effects of the HT drugs.
4.1 Conclusion

Our study aimed to contribute to further understanding of how

AAs differ between patients with papillary thyroid cancer alone and

those with comorbid Hashimoto thyroiditis in relation to healthy

controls. By examining the amino acid profile in the blood, we

found some unique patterns that would allow us to distinguish

PTC0 patients from PTC1 patients. The clinical significance of these

findings remains unclear. This is due to several limitations (1),

absence of serum from the HT group, (2) relatively small study

groups, (3) absence of laboratory tests of thyroid function or thyroid

autoantibodies from control group. Therefore, despite finding

differences in several AAs depending on the analysis used, only

two were actually changed in most analyses and could be used to

distinguish the studied PTC groups. The AA that most strongly

separated PTC0 from PTC1 was lysine. Lysine, in addition to

glutamic acid, differentiated both PTC groups and was positively

correlated with anti-TG. The second AA marker with high

probability may be alanine. Although no statistically significant

difference was found (probably due to high SD), its concentration

showed a downwards trend in the PTC1 group compared to the

PTC0 and HC groups. Alanine was also negatively correlated with

anti-TPO and was one of the 8 markers of AAs that separated/

distinguished PTC1 patients from healthy subjects based on ROC

analysis. We believe that long-term studies in larger populations are

needed to confirm the predictive potential of selected metabolites in

diagnosing thyroid lesions.
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Background: Epidemiological studies emphasize the link between metabolic

factors and thyroid cancer. Using Mendelian randomization (MR), we assessed

the possible causal impact of metabolic factors on thyroid cancer for the first time.

Methods: Summary statistics for metabolic factors and thyroid cancer were

obtained from published Genome-wide association studies. The causal

relationships were assessed using the inverse-variance weighted (IVW) method

as the primary method through a two-sample Mendelian Randomization (MR)

analysis. To account for the potential existence of horizontal pleiotropy, four

additional methods were employed, including Mendelian Randomization–Egger

(MR-Egger), weighted median method (WM), simple mode, and weighted mode

method. Given the presence of interactions between metabolic factors, a

multivariable MR analysis was subsequently conducted.

Results: The results showed there was a genetic link between HDL level and

protection effect of thyroid cancer using IVW (OR= 0.75, 95% confidence intervals

[CIs] 0.60-0.93, p=0.01) and MR-Egger method (OR= 0.70, 95% confidence

intervals [CIs] 0.50- 0.97, p=0.03). The results remained robust in multivariable

MR analysis for the genetic link between HDL level and protection effect of thyroid

cancer (OR= 0.74, 95% confidence intervals [CIs] 0.55-0.99, p=0.04).

Conclusions: This study suggests a protection role for HDL on thyroid cancer. The

study findings provide evidence for the public health suggestion for thyroid cancer

prevention. HDL’s potential as a pharmacological target needs further validation.
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Introduction

Thyroid cancer is widely regarded as the most prevalent

endocrine malignancy. In numerous countries, the frequency of

thyroid cancer has experienced a notable rise in recent decades (1).

The treatment options for thyroid cancer encompass surgical

intervention to excise the thyroid gland, radioactive iodine

therapy, and hormone replacement therapy. With early detection

and appropriate treatment, patients have a good chance of long-

term survival and a good quality of life. However, ongoing

monitoring and follow-up care is important to detect any

recurrence or new cancerous growths.

The exact cause of thyroid cancer is not known. Various studies

have linked metabolic factors to thyroid cancer, but the majority of

the findings remain controversial. There exists empirical evidence

indicating that metabolic factors are associated with an elevated risk

of developing various carcinogenic mechanisms, including those

affecting the liver, colon, and mammary tissue, but the association

between thyroid cancer and metabolic factors is inconsistent (2, 3).

Specifically, the correlation between diabetes and thyroid cancer has

yielded inconsistent results across studies (2, 3). Existing research

posits that metabolic hormone imbalances, including insulin and

leptin, may play a role in the pathogenesis of thyroid cancer (4, 5).

Elevated insulin resistance and heightened insulin levels in the

bloodstream have been correlated with an augmented susceptibility

to thyroid cancer (4). Furthermore, obesity, which is concomitant

with insulin resistance, has been demonstrated as a risk factor for the

onset of thyroid cancer (6, 7), although this was not corroborated by a

Mendelian randomization study (8). Additionally, reduced levels of

vitamin D have been associated with an increased likelihood of

thyroid cancer (9). Nevertheless, there exists evidence that vitamin

D levels are not linked to the risk of thyroid cancer (10). A

retrospective cohort study has reported a positive correlation

between uric acid and thyroid nodules (11), while a cohort study

from China has reported an association between nonalcoholic fatty

liver disease and an increased risk of thyroid cancer (12). These

studies are predominantly epidemiological and clinical in nature, and

the causal relationship remains unclear. Therefore, it is imperative to

evaluate the causality of these associations to inform updates to

thyroid cancer prevention strategies.

The Mendelian randomization (MR) technique is a statistical

methodology employed to investigate the causal associations

between variables in observational research (13). It is based on

the principle of Mendel’s laws of inheritance, which state that the

distribution of genetic variations among offspring is random (14).

Due to the random assignment of genotypes during the

transmission from parents to offspring (14), it can be inferred

that groups of individuals characterized by genetic variation

related to a particular exposure at a population level are expected

to have minimal association with the confounding factors

commonly encountered in observational epidemiology studies.

Furthermore, germline genetic variation remains unchanged after

conception and is not influenced by the occurrence of any outcome

or disease, thereby eliminating the possibility of reverse causation.

The utilization of genetic variations as instrumental variables in MR

enables the inference of the causal effect of a risk factor on a specific
Frontiers in Endocrinology 02131
outcome of interest. Notably, MR offers an advantage

over conventional observational studies by facilitating the

establishment of a causal relationship between a risk factor and

an outcome, despite the presence of confounding factors (15).

Genetic variants that are correlated with the risk factor of interest

are detected in MR studies and employed as surrogates for the

exposure (16). These variants are then used to estimate the causal

effect of the risk factor on the outcome, while controlling for the

influence of other confounding variables. Because genetic variants

are randomly assigned at conception, they are not subject to the

biases and confounding factors that can impact the results of

observational studies (17). Thus, Mendelian randomization can be

conceptualized as akin to a randomized controlled trial conducted

by nature. The MR method has become a popular tool in

epidemiology and public health research, particularly for

investigating the causal relationships between lifestyle factors and

health outcomes. The results of MR studies have provided valuable

insights into the causal relationships between risk factors and health

outcomes and have helped to inform public health policies and

interventions aimed at improving population health (18).

In this article, we applied Mendelian randomization

methodology to explore the causal association between metabolic

factors and thyroid cancer.
Methods

Mendelian randomization (MR) employs genetic variation as a

means to investigate causal inquiries pertaining to the potential

impact of modifiable exposures on health, developmental, or social

outcomes. Methods for MR are usually based on instrumental

variables (IVs). Genetic variants serve as a potential exogenous

source of variation in the exposure, thereby functioning as an IV.

Figure 1 showed our study workflow.

We tried to cover metabolic factors as much as we can to

provide evidence for the public health suggestion for thyroid cancer

prevention. Metabolic factors reported to be associated with thyroid

cancer but that remained controversial were included in the study

(2–12). Metabolic factors reported in other solid tumors but lack of

evidence in thyroid cancer were also included in the study (19–21).

Finally, our study included 17 metabolic factors according to

present epidemic study reporting the relevance to thyroid cancer.

Firstly, we estimated the associations of metabolic factors and

thyroid cancer using univariable MR analysis. Considering the

metabolic factors may have interaction, multivariable MR analysis
FIGURE 1

Experimental workflow. MR, Mendelian randomization.
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were conducted to increase the analysis power. The study was based

on publicly available, summary-level data of genome- wide

association studies (GWAS), the FinnGen study (22), the UK

Biobank study (23), and other large consortia. Informed consent

was obtained from participants in included studies, which were

approved by an appropriate ethical review board.
Exposures chosen

Significant SNPs for 17 metabolic factors were extracted from

corresponding GWAS studies (Table 1). The SNP used as the

exposure instrumental variables (IVs) were selected with a p-

value less than 5E-8. Then we performed linkage disequilibria

based clumping to return only independent significant

associations. SNPs without linkage disequilibrium r2 < 0.001 and

a clump distance >10,000kb window were obtained.
Outcomes chosen

Based on reported GWAS data, we obtained summary statistics

on SNP associations with thyroid cancer. GWAS data from the

largest publicly available thyroid cancer case–control study

involving 218792 Europeans (989 cases, 217,803 controls) was

obtained from FinnGen. 16,380,466 SNPs in finn-b-

C3_THYROID_GLAND was downloaded for further analysis.
Frontiers in Endocrinology 03132
Statistical analysis

IVs and outcome data were firstly harmonized to be relative to

the same allele. MR analysis was then conducted. Various methods

were employed to assess the resilience of the outcomes and identify

pleiotropy, such as the inverse-variance weighted (IVW),

Mendelian Randomization–Egger (MR-Egger), weighted median

method (WM), simple mode, and weighted mode method, in

order to compute the causal effect. Analyzing causal relationships

was primarily conducted using IVW methods. Results were mostly

derived from IVW (random effects) and sensitivity analysis. The

meta-analysis approach employed by IVW amalgamates the Wald

ratios of individual SNPs to yield precise estimates. A significance

level of P < 0.05 was deemed indicative of a potential association.

The MR-Egger method is a proficient strategy for identifying

deviations from the assumptions underlying instrumental

variables (24). Weighted median method can provide sensitivity

analyses with multiple genetic variants. If the weight of valid

instruments exceeds 50%, consistent causal estimates may be

obtained (25). Although less powerful than IVW, simple mode

offers robustness against pleiotropy (26). As a supplementary

analysis method, weighted mode is sensitive to challenging

bandwidth selections for mode estimation (27). The MR-Egger

regression intercept term tests were utilized to identify horizontal

pleiotropy. Heterogeneity in IVW and MR-Egger regression

analyses was quantified using Cochran’s test.
TABLE 1 Metabolic factors included in the Mendelian randomization study.

Exposure Participants Included in Analysis Dataset

Body mass index 339,224 ieu-a-2

Height 6,974 ieu-a-1032

Waist-to-hip ratio 224,459 ieu-a-72

Body fat 100,716 ieu-a-999

LDL cholesterol 440,546 ieu-b-110

HDL cholesterol 403,943 ieu-b-109

triglycerides 441,016 ieu-b-111

Total cholesterol 187,365 ieu-a-301

apolipoprotein A-I 393,193 ieu-b-107

Adiponectin 39,883 ieu-a-1

Nonalcoholic fatty liver disease 218792 finn-b-NAFLD

Type 2 diabetes 655,666 ebi-a-GCST006867

Hemoglobin A1c 42,790 bbj-a-26

Serum 25-Hydroxyvitamin D levels 496,946 ebi-a-GCST90000618

Uric acid 109,029 bbj-a-57

hypertension 463,010 ukb-b-12493

Systolic blood pressure 757,601 ieu-b-38

diastolic blood pressure 757,601 ieu-b-39
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For significant associations identified in the analyses, the

multivariable MR was further used as a sensitivity analysis to

explore whether this causal effect was robust to the adjustment.

All statistical analyses were conducted in R (version 4.2.2) using

the TwoSampleMR (28), MRInstruments packages. Plots were

generated using ggplot2 R package. Our code is publicly available

on GitHub: https://github.com/heleliangww/MR-for-thyroid-

cancer-.
Result

IVW analysis showed there was a genetic link between HDL

level and protection effect of thyroid cancer (Figure 2). Results

revealed an increase in HDL level was strongly associated with a

decrease in the risk of thyroid cancer (OR= 0.75, 95% confidence

intervals [CIs] 0.60-0.93, p=0.01). The scatter plots in Figure 3

illustrated the SNP- thyroid cancer associations against the SNP-

HDL associations. There was a consistent association in sensitivity

analyses using MR-Egger method (OR= 0.70, 95% confidence

intervals [CIs] 0.50- 0.97, p=0.03). Based on MR-Egger regression

intercept analysis, no significant horizontal pleiotropy was detected

(intercept= 0.002, SE= 0.005, p= 0.58). Using Cochran’s Q test, no

heterogeneity was observed among SNPs in IVW analysis and MR-

Egger analysis, suggesting no strong unbalanced horizontal

pleiotropy (Q_pval = 0.09 in IVW method, Q_pval= 0.09 in MR

Egger method). There was a balanced pleiotropy in SNP effects

around the effect estimate, as evidenced by the funnel

plot (Figure 4).

IVW analysis showed there was a genetic link between diastolic

blood pressure and increased risk of thyroid cancer (Figure 2).

Results revealed an increase in diastolic blood pressure level may

associated with an increase in the risk of thyroid cancer (OR=1.03,

95% confidence intervals [CIs] 1.00-1.06, p=0.046). While, the

result was not consistent in MR-Egger method analysis (OR=

0.99, 95% confidence intervals [CIs] 0.92- 1.06, p=0.71).

Considering there were interactions between different lipid

components, multivariable MR was conducted. Diastolic blood

pressure was also included in the multivariable MR analysis for

its positive IVW analysis (Figure 5). As with the univariate MR

analysis, the results remained robust in multivariable MR analysis

for the genetic link between HDL level and protection effect of

thyroid cancer (OR= 0.74, 95% confidence intervals [CIs] 0.55-

0.99, p=0.04).
Discussion

This study used GWAS summary statistics to perform MR

analysis to investigate the causal association between thyroid cancer

and metabolic factors. We believe this is the first MR study to

identify a large number of modifiable causal risk factors for thyroid

cancer. We found serum HDL-cholesterol level was associated with

a reduced risk of thyroid cancer. We did not find a causal

relationship between obesity, diabetes, blood pressure,
Frontiers in Endocrinology 04133
NAFLD, uric acid, and serum 25-hydroxyvitamin D levels and

thyroid cancer.

HDL, also known as high-density lipoprotein, is commonly

acknowledged as “good” cholesterol due to its ability to eliminate

excess cholesterol from the bloodstream and transport it to the liver

for processing and excretion from the body. Numerous published
FIGURE 2

Metabolic factors and thyroid cancer in Mendelian randomization
(MR) analyses. The first column from left showed the corresponding
methods. The second column from left showed the number of SNPs
involved in the analyses. The third column from left showed the
corresponding p value. The forth column from left showed odds
ratio and 95% confidence interval.
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observational studies have established a consistent correlation

between HDL and thyroid cancer. For instance, a Korean

epidemiological study discovered that obese women with low

HDL cholesterol levels were at a heightened risk of developing

thyroid cancer (29, 30). Similarly, the Swedish Apolipoprotein-

Related Mortality Risk (AMORIS) Cohort study demonstrated that

thyroid cancer risk was associated with blood levels of total

cholesterol (TC) and HDL-C (31). HDL-C level was found to be

a statistically significant independent predictor of thyroid cancer in

a model developed by Zhang et al. (32). Some retrospective

observational studies have reported an association between total

cholesterol (31) and apolipoprotein A1 (33) with thyroid cancer,

which is somewhat inconsistent with the results of our study. In the

observational study, HDL may be a confounding factor for other

lipid profiles.

Few studies have investigated the mechanism of HDL in thyroid

cancer in vivo and in vitro. HDL has been reported to play a role in

the invasion, metastasis, and development of other solid tumors.

When HDL levels are within a certain range, tumor development
Frontiers in Endocrinology 05134
can be inhibited in vivo (34). In vitro studies have shown that HDL

inhibits tumor cell growth or promotes apoptosis by inhibiting

components of tumor microenvironments (34). The HDL reduce

oxidative stress and proinflammatory molecules in cancer cells (35).

Additionally, HDL can inhibit angiogenesis and reverse tumor

immune escape (35). In pancreatic ductal adenocarcinoma,

research showed cancer cell growth is reduced by HDL-mediated

cholesterol removal (36). Relevant functional studies are lacking,

further research is needed to fully understand the relationship

between HDL and thyroid cancer.

IVW analysis showed a genetic link between diastolic blood

pressure and thyroid cancer, which was inconsistent in MR-Egger

method analysis. The result might be biased by pleiotropy or other

confounding factors.

Unlike observational studies, our results do not confirm a causal

role for other metabolic factors in thyroid cancer. Confounding

factors such as HDL levels may lead to false associations in clinical

observations. By using genetic variants, we can limit those

confounding factors in by using Mendelian randomization.

In this study, we address metabolic factors and related traits and

the effect on thyroid cancer for the first time using Mendelian

randomization. We acknowledge, however, that there are some

limitations to our study. Our MR analysis power was limited by

the fact that we had only 989 thyroid cancer cases. Our analysis was

not stratified by gender. There is a need for further GWAS studies

with a larger number of cases and detailed information on

disease characteristics.

In conclusion, our study found serum HDL-cholesterol level

was associated with a reduced risk of thyroid cancer. Our study

provided genetic evidence that HDL might protect thyroid cancer

patients. The study findings provide evidence for the public health

suggestion for thyroid cancer prevention. Further validation of our

findings in other cohorts and ethnicities will require independent
FIGURE 5

Multivariable MR result for metabolic factors and thyroid cancer.
FIGURE 3

The scatter plot of five Mendelian randomization methods on HDL
and thyroid cancer.
FIGURE 4

Funnel plot for HDL and thyroid cancer.
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GWAS and large prospective studies. HDL’s potential as a

pharmacological target needs further validation.
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Cancer treatment still encounters challenges, such as side effects and drug

resistance. The tripartite-motif (TRIM) protein family is widely involved in

regulation of the occurrence, development, and drug resistance of tumors.

MG53, a member of the TRIM protein family, shows strong potential in cancer

therapy, primarily due to its E3 ubiquitin ligase properties. The classic membrane

repair function and anti-inflammatory capacity of MG53 may also be beneficial

for cancer prevention and treatment. However, MG53 appears to be a key

regulatory factor in impaired glucose metabolism and a negative regulatory

mechanism in muscle regeneration that may have a negative effect on cancer

treatment. Developing MG53mutants that balance the pros and cons may be the

key to solving the problem. This article aims to summarize the role and

mechanism of MG53 in the occurrence, progression, and invasion of cancer,

focusing on the potential impact of the biological function of MG53 on

cancer therapy.

KEYWORDS

MG53, cancer, glucose metabolism, membrane repair, insulin resistance
1 Introduction

The tripartite-motif (TRIM) family is characterized by a really interesting new gene

(RING) finger domain, one or two B-box domains, and a coiled coil domain (1). Tripartite

domains are highly conserved among TRIM proteins and hence perform similar functions

in cellular processes (2). The vast majority of TRIM proteins contain RING finger domains

in their N-terminal regions and seem to participate mostly in ubiquitination (3). B-box

domains may exist solely in TRIM proteins and may mediate protein–protein interactions

(1, 4). The coiled coil domain has been proven to mediate homo-oligomeric and hetero-

oligomeric interactions given that self-association via this domain is believed to play a

critical role in catalytic activity of TRIM proteins (5). The variation in the C-terminal

domain contributes to the diverse functions of TRIM proteins.

About 80 TRIM protein genes have been identified in humans (6). Many diseases have

been shown to be associated with TRIM proteins. These diseases include metabolic and

neurodegenerative diseases, viral infections, and cancers (7–10). The role of TRIM proteins

in cancer has received more attention. As a result of structural differences, TRIM proteins

act as oncogenes and tumor suppressors in different cancers (11). However, the
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relationship between some members of TRIM proteins and cancer

remains unexplored (10).

TRIM72, also known as Mitsugumin 53 (MG53), is secreted by

muscle tissues and is a TRIM family protein derived from an

immunoproteomics pool (12). The C-terminal of MG53 contains

PRY and SPRY domains, which are the most common domains in

TRIM proteins (4, 13). These domains can recognize specific

partner proteins, thus acting as protein-interacting modules (14).

As a typical E3 ubiquitin ligase, MG53 was initially found to

participate in damage repair in skeletal muscle cells, and its key

feature of membrane repair in a variety of organ injuries was later

confirmed (12, 13). MG53 overexpression can inhibit systemic

insulin response and subsequently cause metabolic issues (15).

However, other researchers take a completely opposing position

(16). Evidence suggesting that MG53 may perform an anticancer

role in cancers, such as hepatocellular carcinoma, colorectal

carcinoma, tongue cancer, and nonsmall cell lung cancer

(NSCLC), has recently emerged (17–20). In this review, we

summarize the roles and mechanisms of MG53 in a variety of

cancers and discuss the possible contribution of the diverse

biological functions of MG53 in cancer.
2 Beneficial effects of MG53 on
cancer therapy

2.1 MG53 in colorectal carcinoma

Colorectal cancer is the second most common cause of cancer

deaths worldwide and is expected to cause 1.2 million deaths by

2030 (21, 22). Considering that most patients with colorectal cancer

progress slowly over many years, colorectal cancer is usually curable

if diagnosed at an early stage (23). Screening for colorectal cancer

requires the development of sensitive biomarkers in peripheral

blood. Many members of the TRIM protein family have been

reported to act as oncogenic and tumor-suppressive factors in

gastrointestinal cancers via different signaling pathways (24). In

addition, TRIM47 may be an effective diagnostic marker for

predicting colorectal cancer (25).

The gene and protein levels of MG53 were considerably lower in

colon cancer tissues than in healthy colon tissues, and the same

results were found in the serum of patients with colon cancer (26). In

colon cancer and normal colon tissues, MG53 may be expressed and

secreted by stromal cells instead of normal colon or colon cancer cells,

and serum MG53 levels are negatively correlated with colon cancer

stage and metastasis, suggesting that the low MG53 levels in the

serum of patients with colon cancer may be due to local tissue lesions

(26). Low levels of MG53 in focal tissues have also been suggested to

account for the poor prognosis of stage II colon carcinoma (27).

Under colorectal carcinogen induction, MG53 knockoutmice present

more severe tumor progression than wild-type mice, whereas mice

with MG53 overexpression have relatively good colorectal structure

and function (19). MG53 has also been shown to inhibit the

proliferation of colorectal cancer cells in an in vitro study. And this

study found that MG53, as an E3 ubiquitin ligase capable of targeting
Frontiers in Endocrinology 02138
cyclin D1, induces its ubiquitination-dependent degradation to

inhibit the proliferation of gastrointestinal cancer cells by arresting

the cell cycle at the G1 phase (28). In addition, MG53 acts differently

on different anticancer drugs. MG53 and pabocinib inhibit the

proliferation of colon cancer cells synergistically, and MG53 could

partially ameliorate drug resistance (19). The safety of recombinant

human MG53 (rhMG53) has been validated in a mouse model of

colorectal cancer (28). Although rhMG53 do not affect the

doxorubicin sensitivity of resistant colorectal cancer cells (SW620/

AD300), it inhibits the proliferation of colorectal cancer cells.

Moreover, in mouse tumor xenograft models of colorectal

adenocarcinoma with multidrug resistance, the combination of

doxorubicin and rhMG53 appeared to be more effective than

doxorubicin or rhMG53 alone (28).
2.2 MG53 in hepatocellular carcinoma

Although vaccination and antiviral therapy have reduced the

incidence of hepatocellular carcinoma, the incidence and mortality

rates of this malignancy continue to increase in many regions of the

world (29). In hepatocellular carcinoma, the expression of

numerous TRIM proteins tends to be altered and has been shown

to be correlated with diagnosis, treatment, and prognosis (30).

TRIM proteins appear to be involved in the survival, growth,

aerobic glycolysis, immune infiltration, and invasion of

hepatocellular carcinoma cells (31–34).

The mRNA expression of MG53 was detected in human

hepatocellular carcinoma and normal human hepatocyte cell

lines. In patients with hepatocellular carcinoma, the high

expression of MG53 may be associated with poor overall survival

(35). However, one study has shown that the gene and protein

expression levels of MG53 have been suggested to be drastically

lower in hepatocellular carcinoma tissue than in matched

noncancerous liver tissue (17). MG53 regulates the ubiquitination

and degradation of RAC1, a small GTPase with oncogenic function,

this effect, in turn, inhibits the malignant progression of

hepatocellular carcinoma and improves the resistance of

hepatocellular carcinoma to sorafenib treatment by blocking the

RAC1/MAPK signaling pathway (17).
2.3 MG53 in NSCLC

Although the application of precision medicine in NSCLC

treatment has advanced considerably over the past decade, the 5-

year survival rate of patients with metastatic NSCLC remains less than

5% due to multiple drug resistance mechanisms (36, 37). Some TRIM

proteins may contribute to NSCLC or resistance to targeted drugs

(38–44), whereas others have completely opposite functions (45–47).

MG53 is downregulated in metastatic tumors from patients

with NSCLC relative to in nonmetastatic tumors, and MG53

knockout promotes the growth and metastasis of lung tumors in

mice (48, 49). G3BP2, a protein associated with the formation of

multiple tumors, was upregulated in the cytosol of tumor cells from

patients with NSCLC relative to in nontumor cells. Circulating
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levels of MG53 appear to influence the proliferation and migration

of NSCLC cells directly via G3BP2. Instead of performing classical

ubiquitination-dependent degradation functions, the amino

terminus of MG53 physically interacts with G3BP2 and enhances

its nuclear translocation, which may be a key mechanism by which

MG53 inhibits the G3BP2-mediated formation of lung cancer

tumors and stress granules (20, 50). Furthermore, an in vitro

study showed that rhMG53 inhibited the formation of stress

granules and potentiated the cytotoxic effect of cisplatin on

human NSCLC cells (20).
2.4 MG53 in other cancers

MG53 appears to have an ameliorative effect on multiple types

of cancer. However, many TRIM proteins have inconsistent effects

on different cancers. A three-dimensional growth system study

reported that MG53 dramatically suppressed the proliferation,

invasion, and colony formation of tongue cancer cells (18).

Knocking down MG53 in tongue cancer cells resulted in a

remarkable increase in the phosphorylation of AKTSer308 and

AKTThr473. Animal studies showed that in mice, knocking out

MG53 also accelerated the progression of tongue cancer (18). O6-

methylguanine DNA methyl transferase (MGMT) is an important

target in cancer therapy because it blocks the beneficial effects of

chemotherapy on tumor cells (51). The RING structural domain of

MG53 interacts with the N-terminal region of MGMT and regulates

the ubiquitination-dependent degradation of MGMT. Human uveal

melanoma cells have higher MGMT levels and lower MG53 levels

than normal human pigment epithelium cells . MG53

overexpression in uveal melanoma cells contributes to improved

chemoresistance to dacarbazine treatment (52). MG53 is
Frontiers in Endocrinology 03139
downregulated in the tumor tissue of patients with breast cancer

relative to in paired adjacent nontumor tissue and is also

downregulated in many breast cancer cell lines relative to in

normal human mammary cell lines. In vivo and in vitro, MG53

inhibits breast cancer progression likely because it can inhibit the

activation of the PI3K/Akt/mTOR pathway and reduce lactate levels

through protein phosphatase 3 catalytic subunit a (53). One study

analyzed ubiquitin-related genes in The Cancer Genome Atlas

cohort and found that MG53 was correlated strongly with the

grade, stage, and T stage of clear cell renal cell carcinoma. However,

the expression of MG53 in patients with clear cell renal cell

carcinoma remains to be confirmed (54).

In accordance with the current evidence, MG53 appears to be

beneficial for delaying the progression of various cancers and

improving resistance to some anticancer drugs in in vitro and

animal models (Figure 1). Available studies suggest that the

antitumor effect of MG53 may be mainly derived from its role as

an E3 ubiquitin ligase. However, the current evidence for specific

cancer types remains insufficient and lacks mechanism research.

Further safety verification is required for the application of rhMG53.
3 Other biological functions of MG53
may contribute to cancer therapy

3.1 Potential role of MG53 as a plasma
membrane repair protein in cancer
treatment

During cancer progression and treatment, many organs suffer

varying degrees of tissue damage from the tumor, cancer
FIGURE 1

Beneficial effects of MG53 on cancer. MG53 can inhibits the progression of a broad range of cancers and helps improve the therapeutic sensitivity of
numerous anticancer drugs. The antitumor capacity of MG53 may be mainly attributed to its E3 ubiquitin ligase properties.
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complications, and treatment side effects, all of which are related to

plasma membrane damage and may accelerate cancer progression

(55–57). MG53 was initially well known for its function in the

repair of muscle cell membranes. Evidence showing that MG53 can

participate in the repair of various cell membranes and promote

tissue regeneration has emerged with the deepening of research (13,

58). MG53 secreted by skeletal muscles is transported in the

circulatory system in the form of vesicles and participates in

muscle cell membrane repair. The failure of MG53-mediated

membrane damage repair may cause certain skeletal muscle

diseases (12, 59–61). In addition, the pathological processes of

myocardial injury and cancer are intertwined, and heart failure

induced by anticancer therapy has become a key focus in cardiac

oncology research (62, 63). Evidence also suggests that cancer and

ischemia–reperfusion injury share common pathways also

exists (64).

3.1.1 MG53 in kidney injury
The occurrence of acute and chronic kidney injury is strongly

associated with the development of kidney cancer, and early

intervention for kidney injury is an effective means of kidney

cancer prevention (65). Moreover, the presence of acute kidney

injury is fairly prevalent in patients with cancer. The management

strategies for acute kidney injury differ in accordance with

predisposing factors. For example, immunotherapy-induced acute

kidney injury is influenced by tumor type and treatment modality

(66, 67). When renal proximal tubular epithelium cells experience

acute injury, such as mechanical or chemical damage, MG53 rapidly

translocates to the injured site to form a repair patch. By contrast, in

injured renal proximal tubular epithelium cells with MG53

knockout, the defect in membrane repair function leads to rapid

death of cells. MG53 knockout mice exhibit tubulointerstitial

defects and show more severe renal injury than wild-type mice

during ischemia–reperfusion. In animals, the preadministration of

rhMG53 alleviates cisplatin or iodine contrast agent-induced acute

kidney injury (68, 69). In chronic kidney disease, MG53 provides

benefits by controlling inflammation and promoting mitochondrial

autophagy (70, 71).

3.1.2 MG53 in lung injury
Chronic lung injury, such as chronic obstructive pulmonary

disease, is strongly associated with the development of lung cancer,

and this mechanistic overlap has attracted increasing attention (72,

73). Chemotherapy, surgery, medication treatment for lung cancer,

and even treatment for other types of cancer can lead to lung injury

(74–77). Chronic moderate liver injury tends to induce hepatic cell

carcinogenesis rather than hepatocellular senescence, which can

inhibit carcinogenesis (78). In several models of lung injury, MG53

shows reparative effects on pulmonary epithelial cells. Animals

lacking MG53 exhibit increased susceptibility to injury induced

by various factors, and rhMG53 can protect lung tissue from lung

injury. MG53 may execute its membrane repair function by

coregulating the endocytosis of alveolar epithelial cells with

caveolin 1 (79–85).
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3.1.3 MG53 in liver injury
The liver is susceptible to the effects of drugs, such as

conventional chemotherapy drugs, small-molecule-targeting

drugs, including multikinase inhibitors, or immune checkpoint

inhibitors, all of which can induce varying degrees of liver injury

(86–88). With the widespread application of immune checkpoint

inhibitors in liver tumor therapy, the relationship between

checkpoint inhibitors and liver safety has received increased

attention (89). Although hepatocytes do not express MG53

mRNA, circulating MG53 leads to the ubiquitination-dependent

degradation of RIPK3, which inhibits the phosphorylation and

membrane translocation of MLKL and thus alleviates

acetaminophen-induced hepatocyte injury (90, 91). MG53 can

also ameliorate oxidative stress and hepatocyte death induced by

hepatic ischemia–reperfusion through interaction with

dysferlin (92).

Overall, the plasma membrane repair function of MG53 has

considerable potential for application in cancer prevention and

treatment. Current research focuses on the association between

MG53 and the progression of tumor tissues, whereas only a few

studies have investigated the contribution of plasma membrane

repair by MG53 to cancer treatment. However, the fact that

excessive membrane repair contributes to cancer cell invasion is

also important to consider when using rhMG53 (93). For example,

the annexin family, which participates in membrane repair together

with MG53, is overexpressed in invasive cancer cells and promotes

the plasma membrane repair of cancer cells. Inhibiting Annexin-

mediated repair is beneficial for inducing cancer cell death (94–98).
3.2 Potential role of MG53 as an anti-
inflammatory factor in cancer treatment

Inflammatory response is an important defense mechanism of

the body, but it can also promote the formation of tumor

microenvironment and tumor promotion, especially chronic

inflammation (99). Anti-inflammatory therapy targeting

inflammation-related factors such as nuclear factor-kB (NF-kB)
plays an important role in cancer control (100). TRIM proteins are

widely involved in regulating inflammatory responses and MG53

appears to have anti-inflammatory effects in multiple tissues (101).

MG53 interacts with the p65 subunit of NF-kB and thereby

inhibits the nuclear translocation of NF-kB, which in turn alleviates

inflammatory responses in kidney, nervous system and airway (70,

102, 103). After infection of macrophages or mice with virus, MG53

attenuates inflammatory response by decreasing type I interferon

levels (104). In mice with Duchenne muscular dystrophy, MG53

appears to enhance mitochondrial autophagy, thereby reducing

nucleotide oligomerization domain-like receptor protein 3

(NLRP3) inflammasomes and suppressing chronic inflammation

in skeletal muscles (105). Similarly, it was emphasised that MG53

may improve neuroinflammation by decreasing NLRP3

inflammasomes in a study using human umbilical cord

mesenchymal stem cells and mice (106).
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MG53 can ameliorate inflammation inmany disease models, but its

role in carcinogenic inflammation, inflammation caused by cancer and

inflammation triggered by cancer treatment remains to be investigated.

Furthermore, other biological functions ofMG53may be beneficial

for cancer therapy. For example, angiogenesis is an important target for

cancer treatment, and MG53 inhibits angiogenesis in vivo and in vitro

by decreasing focal adhesion kinase phosphorylation and blocking the

Src/Akt/ERK1/2 signaling pathway (107, 108). Peroxisome

proliferator-activated receptor-a (PPARa) agonists have a role in

anti-tumor therapy and MG53 attenuates inflammatory responses in

cardiomyocytes by upregulating PPARa expression (109, 110).

However, there is too little relevant evidence to demonstrate that

these functions of MG53 are beneficial for cancer therapy.
4 Potential adverse effects of MG53
on cancer treatment

4.1 MG53 overexpression may disrupt
glucose metabolism signals

Insulin resistance is a key factor in the occurrence and

development of cancer, and a substantial proportion of patients with

cancer have insulin resistance (111–114). Impaired glucose tolerance is

also strongly associated with long-term cancer risk and is an important

risk factor for cancer-related death (115–119). During cancer

treatment, the blood glucose and insulin levels of patients must be

monitored to learn about the insulin resistance induced by therapeutic

measures and thus adjust the treatment protocol promptly (120).

The relationship between MG53 and insulin resistance has long

been controversial. Some studies have suggested that MG53 induces

insulin resistance through multiple pathways, including targeting

insulin receptor substrate 1 (IRS-1), insulin receptors (IRs), and

AMP-activated protein kinase for ubiquitin-dependent degradation,

promoting the expression of peroxisome proliferator-activated

receptor-a and its target genes to facilitate myocardial lipid uptake

and thereby leading to lipid accumulation and toxicity, and binding to

the extracellular structural domains of IRs to inhibit receptors

allosterically (15, 121–124). In addition, the direct application of

rhMG53 may exacerbate insulin resistance, and the protective effect

of MG53 on myocardial cells may be counteracted by its adverse

metabolism. Two mutants of rhMG53, rhMG53-C14A and rhMG53-

S255A, can eliminate adverse effects on metabolism while retaining the

membrane repair function of rhMG53 (121, 125–128).

However, MG53 expression is inconsistent in various models of

metabolic disorders, and neither the ablation nor overexpression of

MG53 in wild-type and db/db mice has been noted to alter insulin

signaling. Additionally, in rats, the repeated intravenous

administration of rhMG53 does not seem to affect glucose

metabolism (16, 129–133). Indeed, the lack of IRS-1 does not

immediately give rise to diabetes because strong compensatory

mechanisms exist between different IR subtypes (134, 135).

The aforementioned controversy may be attributed to the

overlooked role of MG53 in pancreatic b-cells. In the absence of

global insulin resistance, the IRs of pancreatic b-cells can inhibit high
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glucose-induced insulin secretion and their knockout can promote

insulin secretion and improve glucose tolerance. However, this

regulatory function of the IRs to b-cells does not occur in the

presence of global insulin resistance (136). High glucose and insulin

levels can promote the secretion of MG53 in striated muscle, and

MG53 can induce the ubiquitination-dependent degradation and

inactivation of IRs (15, 121). Under the assumption that MG53 can

affect the function of pancreatic b-cells through IRs, MG53

overexpression would have a complicated effect on glucose

metabolism in healthy and insulin-resistant humans (Figure 2). A

cohort study involving 283 subjects supports our hypothesis. This study

found that although serum MG53 levels appeared to be unrelated to

insulin resistance, subjects with impaired glucose metabolism had

remarkably higher circulating levels of MG53 than healthy subjects.

Furthermore, circulating levels of MG53 were found to be an

independent risk factor for the development of type 2 diabetes rather

than a simple disease marker, and elevated circulating levels of MG53

represent the diminished function of b-cells (137).
The above evidence suggests that MG53 has important

implications for glucose metabolic disorders although the

relationship between MG53 and insulin resistance is controversial.

However, current research remains insufficient to elucidate its

underlying mechanisms. Additional robust evidence is needed to

explain the mechanism underlying the involvement of MG53 in

glucose metabolism and validate the safety of rhMG53 in patients

with metabolic disorders and cancer.
4.2 MG53 inhibits myogenesis and
promotes myocardial fibrosis

The potential adverse effects of MG53 on cancer cachexia must

also be considered when applying rhMG53 in cancer therapy.

Cancer cachexia, a common syndrome among patients with

cancer, is characterized primarily by the loss of muscle tissue and

inadequately relieved by nutritional means (138, 139). Changes in

factors related to protein metabolism during cancer progression or

treatment led to an imbalance between protein synthesis and

degradation, resulting in muscle tissue reduction (140, 141).

Reduced muscle mass in cancer cachexia is partly attributed to

suppression of the anabolic signaling pathway induced by insulin-

like growth factor1 (140). Cardiac atrophy and fibrosis in cancer

cachexia are associated with the activated transforming growth

factor-b (TGF-b)-mediated SMAD2/3 catabolic signaling pathway

(142–145). MG53 inhibits the IGF-induced IRS-1/PI (3)K/Akt

pathway, which is the best-characterized mechanism in cardiac

and skeletal muscle myogenesis, through the ubiquitin-dependent

degradation of IRS-1 (125, 139, 146, 147). Caveolin-1 plays an

antifibrotic role in multiple organs and reduces cardiac fibrosis by

repressing the TGF-b/Smad2 pathway (148, 149). MG53 can inhibit

the expression of caveolin-1, thereby promoting TGF-b1/SMAD2-

induced myocardial fibrosis (150). The activation of signal

transducers and activator of transcription 3 (STAT3) has been

implicated in promoting the progression of many cancers as well as

exacerbating the loss of skeletal muscle tissue in cancer cachexia

(151, 152). MG53 overexpression promotes the phosphorylation of
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STAT3, which thereby induces cardiac fibrosis, and its effect on

cardiac lesions in cancer cachexia remains to be investigated (153).

Current research strongly suggests that MG53 is an important

cancer therapy target, despite its potentially negative effects. Future

researches should be focused on elucidating the mechanism of

MG53’s role in cancer, glucose metabolism, and myogenesis, and on

this basis, attempts should be made to retain the cancer therapeutic

ability of MG53 while removing its side effects. MG53 mutants that

retain membrane repair function without impairing glucose

metabolism have been developed by eliminating the E3 ubiquitin

ligase property of MG53 (128). In cancer therapy, however, the E3

ubiquitin ligase function of MG53 seems to play a crucial role. For

the ubiquitination-dependent degradation of different proteins,

MG53 may need to be activated at different sites, which could be

the key to solving this problem (123, 128).

In summary, discussing the possible negative effects of MG53 on

cancer treatment, especially in the context of varying degrees of insulin

resistance and across gender, is urgently needed. If adverse effects are

evident, developing safe mutants of MG53may be a win-win approach.
5 Conclusions

The TRIM protein family has always been an important therapeutic

target for cancer treatment, and in recent years, the role of MG53 in

cancer has gradually been recognized. We found that almost all the

evidence indicates that MG53 has a strong inhibitory effect on the

progression of cancer and may serve as a biomarker for cancer.

However, due to the lack of clinical research, the effect of MG53 on
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human cancer is actually undetermined. Furthermore, current research

appears to overlook the contribution of the membrane repair function

and anti-inflammatory properties of MG53 to cancer and does not

discuss the potential adverse effects of MG53 on cancer treatment.

Therefore, the safety of rhMG53 also needs further discussion. From the

perspective of the biological functions of MG53, MG53 may still be a

double-edged sword in cancer treatment and further research is needed

to comprehensively investigate its role in cancer.
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FIGURE 2

MG53 and glucose metabolism. Elevated glucose levels increase MG53 secretion from muscle tissue, and excess MG53 can lead to global insulin
resistance through the inhibition of IRs or other pathways. High glucose also stimulates insulin secretion from pancreatic b-cells, where IRs play an
inhibitory role. However, in the case of global insulin resistance, this inhibitory function of IRs fails. MG53 may have different effects on insulin
secretion and therefore glucose metabolism in different severities of insulin resistance.
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Population-enriched innate
immune variants may identify
candidate gene targets at the
intersection of cancer and
cardio-metabolic disease
Susan Yeyeodu1,2, Donia Hanafi 1, Kenisha Webb3,
Nikia A. Laurie1 and K. Sean Kimbro3*

1Julius L Chambers Biomedical/Biotechnology Institute (JLC-BBRI), North Carolina Central University,
Durham, NC, United States, 2Charles River Discovery Services, Morrisville, NC, United States,
3Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine,
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Both cancer and cardio-metabolic disease disparities exist among specific

populations in the US. For example, African Americans experience the highest

rates of breast and prostate cancer mortality and the highest incidence of

obesity. Native and Hispanic Americans experience the highest rates of liver

cancer mortality. At the same time, Pacific Islanders have the highest death rate

attributed to type 2 diabetes (T2D), and Asian Americans experience the highest

incidence of non-alcoholic fatty liver disease (NAFLD) and cancers induced by

infectious agents. Notably, the pathologic progression of both cancer and

cardio-metabolic diseases involves innate immunity and mechanisms of

inflammation. Innate immunity in individuals is established through genetic

inheritance and external stimuli to respond to environmental threats and

stresses such as pathogen exposure. Further, individual genomes contain

characteristic genetic markers associated with one or more geographic

ancestries (ethnic groups), including protective innate immune genetic

programming optimized for survival in their corresponding ancestral

environment(s). This perspective explores evidence related to our working

hypothesis that genetic variations in innate immune genes, particularly those

that are commonly found but unevenly distributed between populations, are

associated with disparities between populations in both cancer and cardio-

metabolic diseases. Identifying conventional and unconventional innate

immune genes that fit this profile may provide critical insights into the

underlying mechanisms that connect these two families of complex diseases

and offer novel targets for precision-based treatment of cancer and/or cardio-

metabolic disease.
KEYWORDS

innate immune variants, pleiotropic actions, cancer disparities, cardio-metabolic
disparities, population-enriched variants, candidate protein targets
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1 Introduction

1.1 Double-edged swords: important
factors connecting metabolic disorders
and cancer development

The following perspective was written in response to an invited

Frontiers research topic to explore methods, mechanisms, and

hypotheses that may ultimately identify and exploit biological

processes contributing to complex disease progression and

molecular interactions enabling cross-talk between cancer and

cardio-metabolic disease. Based on our hypothesis that innate

immunity differences contribute to observed population disease

disparities in cancer and metabolic disorders, we apply a functional

genomics approach to identify specific innate immune genes as

potential therapeutic targets at the intersection of these two

complex disease families.
1.2 Framing precision drug target discovery
in the context of health disparities

1.2.1 Defining health disparities
The US National Institute on Minority Health and Health

Disparities (NIMHD) defines health disparities as “a health

difference (compared with the general population), based on one or

more health outcomes (such as the overall rate of disease incidence,

prevalence, morbidity, mortality or survival) that adversely affect

disadvantaged populations.” In the US, such populations include

Blacks/African Americans, Hispanics/Latinos, Asians, American

Indians/Alaska Natives, and Native Hawaiians/other Pacific

Islanders) (1). Diverse sources, from sponsored websites (such as 2

and associated links) to peer-reviewed articles summarizing

disparities in one or more diseases between two or more

populations, provide ample evidence for differences in cancer (3),
Frontiers in Endocrinology 02148
cardio-metabolic disease (4) and overall health risks and outcomes

(5) based on ethnic background/geographic ancestry. By way of

illustration, Tables 1, 2 summarize disparities in cancer incidence

and mortality among US ethnic populations (adapted from 6) and

population differences in overall mortality rates of cancer and cardio-

metabolic diseases (adapted from 7), respectively.

Assessing health differences between populations is complicated

because results may vary depending on the size and granular

composition of the populations being compared. On the one

hand, evaluating larger, more heterogeneous populations

improves statistical reliability, but this approach may mask

disparities among subpopulations. For example, among Asians in

the US (8) and Asia (9), the incidence of liver cancer varies widely

based on geography and/or geographic ancestry. Further, trends in

incidence and/or mortality may change due to cohort variations in

age, exposure to risk, and geographic location, as is the case for liver

(10) and breast cancer incidence (11) in the US and for global

cancer mortality rates (e.g., 12).

Defining/distinguishing populations is a critical aspect of

evaluating health disparities. Many analyses have been based on self-

identified ethnicity; it stands to reason that this approach is likely to

align more closely with social determinants of health. In contrast, a

relatively precise biological assessment of geographic ancestry can be

obtained using genetic markers to identify ethnic origins. In this

approach, selected ancestry informative markers (AIMs) were

initially used to evaluate genetic admixture and geographic ancestry

and provide valuable background information when comparing

individuals representing different populations (13). Improved

methods and more extensive and complete reference datasets have

further refined admixture mapping (14).

For the purposes of this perspective, we will refer to populations

as they are defined by individual authors; populations in Section 3

are defined according to Karczewski (15). The interested reader is

referred to a recent book chapter entitled “Using Population

Descriptors in Genetics and Genomics Research: A New

Framework for an Evolving Field” written by the National
TABLE 1 Ethnic Disparities in US Cancer Incidence and Mortality.

EA AA ASN/PI NA/AN HISP

Cancer Incidence breast prostate stomach colon
kidney
liver
lung
stomach
uterine

uterine

Cancer Mortality lung breast
colon
prostate
uterine

stomach kidney
liver
stomach

liver
adapted from "Table 9. Incidence and Mortality Rates for Selected Cancer by Race and Ethnicity, US" (6).
standard font indicates most frequently occuring cancer among aggregate populations; italics indicate most frequently occuring cancer for a specific ethnic group (not aggregate).
EA, European American, non-Hispanic White; AA, African American, non-Hispanic Black; ASN/PI, Asian American/Pacific Islander; NA/AN, Native American/Alaskan Native; HISP,
Hispanic/Latino.
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Academies of Sciences’ Committee on the Use of Race, Ethnicity,

and Ancestry as Population Descriptors in Genomics Research (16)

for a thorough treatment of this subject.

1.2.2 Past and present challenges to advancing
research in the biology of health disparities

Cancer and cardio-metabolic disease disparities have

multifactorial etiologies, including biological, behavioral,

environmental, and social components. There is ample evidence

that these disparate etiological factors are not adequately

understood in isolation from one another. The interested reader

is referred to reviews on the impact of physical, social, and chemical

environments on the biology of health disparities (17–19) and on

the biological impacts of stress (20), including racism-induced

stress and increased allostatic load (21–23), all of which are

beyond the scope of this perspective.

The relative contribution of biology to cancer and cardio-

metabolic disparities continues to be a matter of debate among

scientists in various disciplines and even among biologists

themselves (24). The hesitation to consider geographic ancestral

differences in biology among some mainstream biomedical

scientists is just one of several obstacles that have hindered a

rigorous study of the biology of health disparities.

Social forces continue to hinder the participation of minority

populations in medical research and to limit their access to medical

care. For example, an entrenched and well-founded mistrust of the

medical establishment in the US exists among minority populations

due to a long history of abuses (25). Limited access to healthcare

and subpar healthcare quality further exacerbate health disparities

in minority populations, leading to lower life expectancy in

American Hispanic and Black populations (26).

Traditional research approaches and the most widely available

resources in the biomedical sciences have also unintentionally

hindered a rigorous characterization of the biological differences

that underlie health disparities. In vitro studies employ samples and

cell lines obtained most often from individuals of European descent

(27, 28) and the majority of clinical trials disproportionately enroll
Frontiers in Endocrinology
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individuals from this same population (29, 30). Thus, at multiple

stages in the drug research and development cycle, biases exist

towards agents optimized for those of European ancestry.

Fortunately, the need to increase the diversity of human samples

and cell lines and to engage diverse study populations in biomedical

research and clinical trials has recently gained the attention and

enthusiastic support of pre-eminent scientists (29, 31–33) and the

NIH (34).

1.2.3 Considering geographic ancestry in the
development of effective treatments

The human genome possesses a high degree of variation.

According to a 2016 meta-analysis of 60,706 individuals of

diverse ancestries, an average of 1 in 8 bases of the coding

sequence were variants, and 72% of these had not been previously

identified and/or characterized (35). Wide genetic variations within

populations are at least as diverse as genetic variations between

populations (36). This finding implies that not all genetic variations

contribute to putative biological differences between populations.

Genetic differences associated with geographic ancestry, such as

AIMs, may result in the uneven among populations distribution of

gene variants. In many cases, these variants are uncommon, and/or

their impact on protein expression, function, or disease is either

insignificant or unknown. However, an intriguing study by Ahsan

et al. (37) identified 65 “minor” drug response alleles that were

present in more than 50% of individuals in at least one population;

in other words, in some populations, the variant was more common

than the wild type/canonical protein. Consistent with this is a body

of clinical evidence that specific drug responses vary according to

geographic ancestry, with outcomes that range from lack of efficacy

to drug-related pathology and death in one or more minority

populations (38–40). Therefore, we sought to identify population-

specific potential therapeutic targets at the intersection of cancer

and cardio-metabolic disease, in part by hand-curating gene

variants with “minor” alleles that were common in at least one

major population (as defined by 15) but that were significantly less

common in at least one other major population.
TABLE 2 Deaths from Cancer, Cardio-Metabolic, and Infectious Diseases in the US as of 2018.

Cause of Death Aggregate EA AA NA/AN ASN PI HISP

heart disease 23.1% 23.4% 23.6% 18.0% 21.3% 23.5% 19.8%

cancer 21.1% 21.2% 20.4% 16.8% 25.1% 21.9% 20.5%

stroke 5.2% 5.1% 5.7% 3.6% 7.6% 6.2% 5.5%

diabetes 3.0% 2.5% 4.5% 5.6% 4.1% 7.3% 4.6%

infection (flu, pneumonia) 2.1% 2.1% 1.8% 2.3% 3.3% 2.2% 2.1%

kidney disease 1.8% 1.6% 2.8% 1.8% 2.1% 2.2% 2.1%

liver disease * 1.4% 1.0% 6.2% 0.9% 1.3% 3.2%

hypertension * 1.1% 1.9% 1.1% 2.1% 1.4% 1.4%
fr
adapted from Tables C & D in "Deaths: Leading Causes for 2018." Heron, M. National Vital Statistics Reports 70(4) (7).
bold indicates highest mortality rate for given cause of death.
italics indicates lowest mortality rate for given cause of death.
*aggregate data were only available for top ten causes of death.
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1.3 Innate immunity as a biological driver
of health disparities

Gene variants that confer protective immunity are retained in

each population to optimize survival. For example, in the case of

those with African ancestry, gene variants retained in the pan-

African genome have been identified that provide defense against

indigenous pathogens such as malaria and trypanosomiasis

(African sleeping sickness/Chagas disease). The selective pressure

imposed by pathogens on gene variation is impressive; in the case of

malaria, variants of at least 40 different genes are thought to protect

against one or more species of Plasmodium (41, 42).

Unfortunately, immune protection frequently involves a trade-

off where protective innate immune variants may introduce new

pathologies. For example, among the gene variants that protect

against malaria, HbS also promotes sickle cell anemia, HbE

promotes thalassemia, G6PD variants promote hemolytic anemia,

and Duffy antigen receptor (DARC) variants are associated with

increased breast cancer metastasis and mortality (43, 44). Similarly,

the same APOL1 variants shown to protect against severe

trypanosomiasis are also associated with nephropathy (45, 46).

Several lines of evidence affirm that innate immune genes are

highly adaptable and optimized to respond to local pathogens. First,

within the human genome, genes associated with immunity are
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under the strongest selective pressure (47, 48). Second, selective

pressure on immune genes is pathogen-driven (49, 50). Third, the

geographic distribution of populations bearing the highest

frequency of HbS (51) and DARC (52) gene variants closely

resemble the geographic distribution of the malarial strains they

protect against. Finally, according to their geographical ancestry,

populations differ in their susceptibility to infectious disease (53), in

their immune response to pathogens (54) and even in their

macrophage function and circulating cytokine levels (55–57). All

of these findings indicate that protective innate immune variants are

distributed among individuals based on their geographic ancestry.

It is important to note that genes associated with innate

immunity are structurally and functionally diverse. Some are

well-characterized participants in inflammation, including but not

limited to cytokines, chemokines, and pattern recognition receptors

(lectins, Toll-like receptor (TLR) family members, and NLRs) and

their related pathways. However, as illustrated by the variety of

genes that protect against malaria (summarized in Table 3), others

are pleiotropic, expressed in non-immune tissues and/or frequently

better known for their “day jobs”. Most of the protective variants

listed in Table 3 can be tied directly to immunity. Still, a few (such as

APOE, G6PD, glycophorin (GYP), hemoglobin (HB), and

haptoglobulin (HP)) would be considered unconventional innate

immune genes.
TABLE 3 Innate immune genes that provide protection against malaria (adapted from 41, 42).

Gene Name/Function Expression Association with Disease
(based on titles available in
Google Scholar)

ABO ABO blood group secreted cancer, cardiovascular disease,
diabetes, obesity, NAFLD

APOE apolipoprotein E secreted cardiovascular disease, obesity,
diabetes, NAFLD, cancer

CD36, thrombospondin receptor,
scavenger receptor B3

broad specificity receptor for proteins and lipids adipose, liver, others cardiometabolic disease, cancer

CR1, CD35, C3b/C4b complement receptor,
Knops blood group antigen

erythrocytes,
leukocytes,
glomerular podocytes,
splenic DCs

gallbladder and liver cancer, diabetes,
kidney disease

DARC, FY, ACKR1, CD234, CCBP1 Duffy atypical chemokine receptor erythrocytes,
endothelia

breast cancer, prostate cancer,
cardiometabolic disease

FCGRA2, CD32 low affinity Fc receptor phagocytes breast cancer, cardiovascular events

G6PD glucose-6-phosphatase dehydrogenase
rate-limiting step to pentose-phosphate, NADPH

lymphoblasts,
granulocytes

cancer, diabetes, cardiovascular disease

GYPA,B,C, CD235a,b,c glycophorin A,B,C sialoglycoproteins A broad expression

B,C erythrocytes C leukemia, oral cancer

HBA, HBB hemoglobin, O2/CO2 transport erythrocytes thalassemia, sickle cell anemia

HLA-B component of MHC class I broad expression elimination of infected or
transformed cells

(Continued)
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TABLE 3 Continued

Gene Name/Function Expression Association with Disease
(based on titles available in
Google Scholar)

HLA-DR series (A,B1,3,4,5) components of MHC class II antigen
presenting cells

elimination of infected or
transformed cells

HP haptoglobulin, plasma protein that binds Hb liver, others diabetic nephropathy and coronary
artery disease

ICAM1, CD54 intercellular adhesion molecule 1, receptor for CD11a
or b/CD18 integrins and rhinovrius

immune and
endothelial cells

cancer, diabetes, obesity

IFNAR1,2 interferon alpha (and beta) receptor, subunits 1 and 2 broad expression 1 gastric, colorectal, breast cancer; 2
lung cancer, diabetes

IFNG interferon gamma circulating cancer, diabetes

IFNGR1,2 IFN gamma receptor 1 (CD119), 2 broad expression 1,2 cancer

IL1A/IL1B interleukin 1A, 1B circulating A, B cancer, obesity; B diabetes

IL1RN IL1 receptor antagonist secreted cardiovascular disease, cancer,
obesity, diabetes

IL10 interleukin 10 circulating cancer, obesity,
diabetes, atherosclerosis

IL10RB IL10 receptor, subunit beta broad expression obesity

IL12B interleukin 12, beta subunit circulating diabetes, cancer

IL4 interleukin 4 circulating cancer, diabetes

IRF1 interferon regulatory factor 1 broad expression cancer

MBL2 mannose binding lectin 2, collectin 1 circulating cancer, diabetes, atherosclerosis

MST1, HGFL macrophage stimulating 1, hepatocyte growth
factor like

secreted cancer, diabetes, NAFLD,
cardiovascular disease

NCR3, CD337 natural cytotoxicity triggering receptor 3 NK cells cancer

NOS2A nitric oxide synthase 2 liver, retina, bone,
lung, cartilage, fat

cancer, diabetes

PECAM1, CD31 platelet-endothelial cell-adhesion molelcule 1 immune and
endothelial cells

cancer, cardiovascular disease, diabetes

PSMB9 proteosome 20S subunit beta 9 MHC II
expressing tissues

cancer, diabetes

SCL4A1, CD233, erythrocyte band 3 prot. chloride/bicarbonate exchanger, Diego blood group erythrocytes, kidney,
bone, others

CO2 transport from tissues to lungs, structural protein cardiovascular disease,
colorectal cancer

SELE, CD62E selectin E endothelia cancer

TCRB T-cell receptor, beta subunit T-cells diabetes, cancer

TIRAP, MAL, Myd88-2 TIR domain containing adapter protein broad expression cancer, diabetes, NAFLD

TL4 Toll-like receptor 4 broad expression cancer, obesity, diabetes,
NAFLD, cardiovascular

TAP1, ABCB2 transporter 1, ATP binding cassette, subfamily B broad expression cancer, diabetes

TNF tumor necrosis factor circulating cancer, obesity, diabetes, NAFLD,
cardiovascular disease

TNFSF5 CD40 ligand, CD154, TNF superfamily member 5 circulating diabetes, cancer, cardiovascular
disease, obseity
F
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1.4 Inflammation is a component of cancer
and cardio-metabolic diseases

1.4.1 Cancer and inflammation
Hanahan and Weinberg, in their seminal review, describe six

hallmarks of cancer, many of which are enabled by mechanisms of

immunity, including inflammation (58). Their observations are

particularly relevant to this perspective since further research in

the field has established that reprogrammed energy metabolism and

immune evasion are additional hallmarks (58, 59).

In a previously published perspective, we presented evidence for

an association between breast and prostate cancer disparities in

African Americans (AAs) and classic innate immune gene variants

(interleukins, Toll-like receptors, monocyte activity) more

commonly found in AAs (60). Since 2019, Google Scholar

(accessed 4/18/23) has listed more than 18,000 publications with

titles that include “cancer” and “inflammation,” “infection”,

“immune,” “immunity,” or “innate”; these publications address a

wide range of topics, including immune escape by cancer cells, the

contribution of chronic inflammation to tumor progression, and

immune-based cancer therapies, that are beyond the scope of this

perspective. Notably, less than 40 of these publications (< 0.2%)

include the terms “disparity” or “disparities” in their titles. Among

this small set of publications are descriptions of population

differences in tumor microenvironment and immune signatures

in breast (61, 62), head and neck (63–65), lung (66, 67), and

colorectal (68, 69) cancers, as well as cancer generally (70). Of

particular interest is a recent exploration of the link between racial

differences in mitochondrial metabolism and the tumor immune

microenvironment (71).

1.4.2 Cardio-metabolic disease and inflammation
The constellation of inter-related cardio-metabolic diseases has

been collectively referred to as metabolic syndrome (MetS), and

their cumulative effect on global health is massive (reviewed in 72–

74). Clinical definitions of MetS vary depending on which disease(s)

are of primary interest (reviewed in 75–77). The National Heart

Lung and Blood Institute (NHLBI) lists the following MetS risk

factors as abdominal obesity and/or insulin resistance, elevated

triglycerides and LDL-cholesterol, reduced HDL-cholesterol,

hypertension, elevated glucose and pro-thrombotic or pro-

inflammatory states (78). Several metabolic diseases have been

associated with these risk factors, including hypertension, obesity,

atherosclerotic cardiovascular disease, type 2 diabetes (T2D), non-

alcoholic fatty liver disease (NAFLD), and stroke.

Genetic and environmental factors impact cardio-metabolic

diseases, and their risk, morbidity, and mortality vary with age,

gender, and race/ethnicity (4, 76). Unfortunately, the effects of MetS

are not confined to cardio-metabolic co-morbidities, given that

MetS is also associated with increases in the incidence and/or

mortality of arthritis, chronic kidney disease, schizophrenia,

depression and cancer, as noted in references (79, 80).

Inflammation is a key contributor to MetS and associated co-

morbidities (81–83), just as MetS pathologies impact inflammation
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(c.f. 84). In general, low-grade chronic inflammation evoked during

metabolic disease stimulates the production of pro-inflammatory

cytokines, immuno-modulatory proteins, lipids, and other

mediators of inflammation that impact systemic and/or localized

tissue inflammation (82, 85). Unfortunately, the treatment of

metabolic diseases is complicated by the cross-talk between pro-

and anti-inflammatory mechanisms at work among MetS co-

morbidities (c.f. 77, 86–88). Further, inflammation from one

metabolic disease can also exacerbate other MetS co-morbidities.

As with almost all tissues, organs that regulate systemic

metabolism possess innate immune response capabilities. Notably,

some organs that regulate overall metabolic homeostasis also

impact systemic inflammation. In the case of both adipose tissue

(89–91) and liver (92–94), these organs harbor and partner with

resident macrophages (ATMs and Kupffer cells, respectively) in

inflammation. Further, adipose tissue and liver produce unique

immunologically active biomolecules, such as adipokines (86, 95)

and bile acids (96–99). Perhaps less appreciated are two additional

organs associated with metabolic homeostasis that control systemic

levels of immunologically active biomolecules: the gallbladder

regulates bile acid levels and the pancreas controls insulin, which

levels of insulin, with its known anti-inflammatory effects (100).

Just as mediators of metabolism can impact inflammation,

mediators of immunity can impact metabolism. For example,

innate immune receptors have demonstrated roles in metabolic

disease progression (101), and pro-inflammatory cytokines

produced in the adipose tissue of obese individuals contribute to

the development of T2D (102). Significantly, biomolecules such as

adipokines, insulin, and bile acids mediate metabolism and

inflammation. Further, besides their widely recognized role in

lipid transport and cellular metabolic homeostasis, serum lipids

and lipoproteins also provide innate immune protection (103, 104).
2 A functional genomics approach to
novel target discovery

Using functional genomics, we and others have observed

associations between specific innate immune gene variants and

cancer or metabolic disease risk or outcome that differ according to

geographic ancestry (57, 60, 105). Given that immunity including

inflammation contributes to the progression of both complex

disease families, we have hypothesized that population differences

in genetic (and epigenetic) innate immune programs contribute to

complex disease disparities between populations. Based on this

conceptual framework, this perspective seeks to identify innate

immune gene candidates associated with both cancer and cardio-

metabolic disease that differ between populations.

Genome wide association studies (GWAS) in general (106) and

the Genome Aggregation Database (gnomAD) in particular (107)

provide researchers with the capacity to compare thousands of

complete genomes from individuals among all largely-grouped

populations. These resources catalog gene variations called single

nucleotide polymorphisms (SNPs) across the entire genome of each
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individual. SNPs are located not only in protein coding genes

(including coding exons as well as non-coding introns and

remote, up-, down-, and mid-stream regulatory sites), but also

across regions associated with short and long non-coding RNAs,

chromosomal architecture, and other essential functions that have

been previously underappreciated and mislabeled as “junk DNA”

(108). The number of genes and the percentage of the human

genome they occupy varies depending on their definition (109).

Notably, most SNPs associated with disease states or changes in

phenotype (95%) are located outside coding exons (110).

Nevertheless, in this perspective, we will focus on widely occurring

gene variants that code for changes in the canonical amino acid (aa)

sequence, also referred to as missense variants or nonsynonymous

SNPs, as a first step towards accelerating the development of optimally

safe and active drugs that target understudied protein variants widely

found in patients with diverse geographical ancestries. Importantly,

nonsynonymous SNPs have the potential to impact protein

conformation, activity and/or protein-protein interactions, potentially

altering disease states and phenotypes. For simplicity, we have also

excluded synonymous SNPs (exonic point mutations that do not alter

aa sequence), in spite of mounting evidence that suggests they can

function in isoform selection (protein size and sequence), transcript

expression levels and stability, translational folding rate, overall

conformation, and posttranslational modifications, all of which

possess potential functional consequences on cell behavior and

disease risk (111–113).

This perspective identifies conventional and unconventional

innate immune genes (summarized in Section 3) that meet the

following criteria. First, there is evidence that each gene participates

in, is a target of, or is associated with innate immunity including

inflammation. Second, there is evidence that each gene is associated

with at least one form of cancer and at least one cardio-metabolic

disease. Finally, each gene occurs among the global population as at

least one population-enriched variant, which we define as a widely

occurring missense variant distributed unevenly among populations.

We have employed a hand-curated discovery process to identify

population-specific innate immune genes at the intersection of

cancer and metabolic disease. From the primary and secondary

literature, gene lists associated with innate immunity (49, 114, 115),

cancer (116, 117), or cardio-metabolic disease (118, 119) were

vetted for the following characteristics:
Fron
1) Evidence in the primary or secondary literature (accessed

through Google Scholar) indicated that the candidate

gene was involved in all three disease categories:

innate immunity/inflammation, cancer, and cardio-

metabolic disease.

2) Indication in gnomAD that the candidate gene occurs as at

least one nonsynonymous SNP/missense variant with
tiers in
a. a high minor allele frequency (MAF ≥ 0.2 in at least

one of the six major populations defined by 15):

African/African American (AFR/AA), East Asian (E

ASN), non-Finnish European (EUR), Latino/Latina

(LAT), Middle Eastern (MID E), and South Asian

(S ASN),
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b. a difference in MAF among significant populations

of ≥ 0.2 from the highest to lowest frequency.
Note that among genes with missense variants, we chose only

those with common variants that occur widely among individuals in

one or more populations, i.e., missense variants that occurred in at

least 20% of individuals in one or more populations (by definition,

having a minor allele frequency (MAF) ≥ 0.20 and varying widely in

the frequency of their occurrence among populations. This

approach was based on our rationale that variants selected and

retained in the human genome provide a survival benefit for the

population(s) in which they occur, even as they may also

paradoxically contribute to complex disease as discussed above

for HbS and APOL1 variants (see Section 1.3).
3 Candidate innate immune genes at
the intersection of cancer and cardio-
metabolic disease disparities

Among the candidate innate immune genes that we identified at

the intersection of cancer and cardio-metabolic disease, we found both

“conventional” innate immune genes, such as cytokines and cytokine

receptors, pattern recognition receptors, and other genes that have

widely acknowledged roles in immune cell function, and

“unconventional genes” with pleiotropic functions that include innate

immunity, such apolipoproteins, biomolecule transporters, and

transcription regulators. Using the approach described in Section 2,

three lists of innate immune genes implicated in cancer and cardio-

metabolic disease were generated. Each gene listed in the three tables

below possesses at least one population-enriched variant with an amino

acid replacement that differs in its distribution among populations,

suggesting its potential role in both cancer and cardio-metabolic

disparities. The 52 genes identified provide a representative but not

exhaustive list of candidate genes, thus serving as preliminary data for

further investigation.

Section 3.1 summarizes conventional innate immune genes and

their corresponding population-enriched variants previously shown to

impact disease or biological function. Similarly, Section 3.2 summarizes

unconventional innate immune genes (better known for their non-

immune functions) and their corresponding population-enriched

variants that have been previously shown to impact disease or

biological function. Finally, Section 3.3 summarizes genes associated

with innate immunity, cancer, and cardio-metabolic diseases and their

corresponding population-enriched variants whose impact on disease

or biological function has not yet been established.
3.1 Conventional innate immune genes
with previously characterized population-
enriched variants

Table 4 includes 14 genes best known for their roles in

immunity, including inflammation, that are present as at least

one population-enriched variant shown to impact biological
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function. Among these are cytokines and cytokine receptors,

including macrophage inhibitory cytokine 1 (MIC-1/GDF15),

interleukin 3 and the alpha subunit of its receptor (IL3 and

IL3RA), along with subunits for interleukin 4, 6 and 7 receptors

(IL4R, IL6R, and IL7R), and the leptin adipokine receptor (LEPR).

Additional immune receptors include the soluble receptor for MHC

I antigens I (leukocyte Ig-like receptor A3, LILRA3/CD85E) and two

pattern recognition receptors, the intracellular pattern recognition

receptor nucleotide-binding oligomerization domain containing 2

(NOD2) and the five transmembrane stimulator of interferon

response CGAMP interactor 1 (STING1/TMEM173). Also

included were the catalytic enzyme in the rate-limiting step of the

kynurenine pathway during inflammation indoleamine 2,3-

dioxygenase 2 (IDO2), the temperature-sensitive cation channel

TRPM8, and two adhesion molecules, one expressed in lymphocytes

(integrin alpha L, ITGAL/LFA-1/CD11A) and the other expressed in

leukocytes (junctional adhesion molecule-like, JAML/AMICA).

3.1.1 Interleukin 3 and interleukin 3 receptor
alpha chain

IL-3 is a growth factor produced by activated T-cells (129) that

regulates the growth of hematopoietic progenitor cells and activates

mature neutrophils and macrophages (208). IL-3 is also implicated

in priming (131) and activating (130) basophils. Intriguingly,

increased serum levels of IL-3 have recently been associated with

the onset of type 2 diabetes in African American women as

determined by serum levels of glucose and HbA1c (133). Genetic

variations in IL3 have been noted in colon and rectal cancers (132).

The Pro27Ser variant (5-132060785-C-T) has been associated with

protection against malaria (134) but also with an increase in

miscarriages following in vitro fertilization (IVF) in women of

various populations (209).

The interleukin 3 receptor is a heterodimer comprised of an

interleukin 3-specific alpha chain (IL-3RA, CD123) and the common

cytokine beta chain CSF2RB, another candidate listed below in Section

3.3, that also forms dimers with the alpha chains of both GM-CSF and

IL-5 receptors. High-affinity IL-3 binding induces hetero-dimerization

of IL-3RA and CSF2RB, and subsequent disulfide linkage of these

receptor chains is required for receptor activation and CSF2RB

phosphorylation (210). IL-3RA expression varies among CD34+

hematopoietic cell types, with negative/low expression in primitive

hematopoietic cells and little or no surface expression in early erythroid

progenitors, but high expression in B-lymphoid and myeloid

progenitors (135). The X-chromosome-linked IL3RA Val323Leu

variant (X-1378751-G-C) was associated with non-complete response

to neoadjuvant chemotherapy against locally advanced rectal cancer in

Hong Kong patients (138).

3.1.2 Interleukin 4 receptor alpha chain
The IL-4R alpha chain (IL4R, CD124) forms heterodimers with

at least two partners. Type 1 IL-4 receptors are composed of IL-4R

complexed with the common cytokine receptor gamma chain

(IL2RG, CD132), which may alternatively dimerize with IL-2, IL-

7 and IL-21 cytokine receptors, so that IL-2, IL-7, and IL-21
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receptors compete with IL-4R for binding to IL2RG. Type 2 IL-4

receptors are composed of IL-4R complexed with IL-13RA1

(IL13Ra1, CD213A1). Thus, IL-4 activates both Type 1 and Type

2 IL-4 receptors, while IL-13 activates Type 2 IL-4 receptors. Both

IL-4 and IL-13 signaling through the IL-4R mediate type 2

(humoral, as opposed to type 1 cellular) immunity against

helminths, toxins and tropical parasites such as plasmodium

(malaria) and trypanosomes (African sleeping sickness/Chagas

disease) (139–141, 211). Both IL-4Ra and IL13-Ra1 have also

been implicated in cancer progression and were recently

identified as prognostic indicators in soft-tissue sarcoma patients

when present in the nucleus. IL-4 regulates lipid metabolism (143),

and (142) recent findings highlight an intriguing relationship

between non-hematopoietic IL-4Ra activation of a non-canonical

signaling pathway that regulates a high-fat, high-carbohydrate diet-

driven induction of obesity and impacts the severity of obesity-

associated sequelae in mice (212). Numerous genetic

epidemiological studies have also shown that IL4 and IL4R and

their gene polymorphisms play important roles in asthma in various

populations. Notably, individuals carrying one or two copies of the

IL4R Glu400Ala (16-27362551-A-C) minor allele were at higher

risk to suffer from allergy (145) and asthma (144, 213).

3.1.3 Interleukin 7 receptor alpha chain
The integral membrane interleukin 7 receptor (IL-7R) transmits

pro-inflammatory signals initiated by IL-7 at the cell surface. The

functional IL-7 receptor is a heterodimer comprised of the IL-7

receptor alpha chain (IL7R, IL7Ra, CD127) and the same common

cytokine receptor gamma chain (IL2RG, CD132) that dimerizes with

the IL-4R alpha chain. The assembled IL-7R recognizes not only IL-7

but also thymic stromal lymphopoietin (TSLP), both cytokines with 4

a-helical strands (214). Multiple transcriptional and post-

transcriptional mechanisms exist to regulate expression of the IL-7R

protein (215). Some of these mechanisms are homeostatic, molecular

and cytokine-mediated, where IL7Ra transcription decreases in CD4+

and CD8+ cells once naïve T cells become activated. Notably, IL-7

binding to IL-7R activates the Janus kinase (JAK/STAT) pathway,

which plays an essential role in lipid metabolism (216). However,

peripheral blood mononuclear cells (PBMCs) in breast cancer patients

show defects in STAT5 phosphorylation and altered expression of IL-

7Ra that ultimately impacts memory T cell development (156).

Notably, compared to the canonical gene, the IL7R variants 5-

35874473-C-T (rs6897932), 5-35860966-T-C (rs1494558) and 5-

35871088-G-A (rs1494555) alter the pathology of autoimmune and

infectious diseases due to their impact on IL7R expression and

alternative splicing (155). Further, all three population-enriched

missense variants of IL7R identified in Table 4 show an association

with cardio-metabolic disease: Ile66Thr (5-35860966-T-C,

rs1494558) with post-transplantation diabetes (158); Val138Ile (5-

35871088-G-A, rs1494555) with body mass index (BMI) in

lymphoma patients (161), and Ile356Val (5-35876172-A-G,

rs3194051) with severe liver disease (162). However, to date only

Val138Ile has been associated with increased cancer risk, both in

lung (160) and stomach (159).
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Associated w/ Metabolic Disease Ref

120 stress, metabolic and cardiovascular disease 121

121 deficiency protects against atherosclerosis 123

126 NAFLD 118

128

132 T2D in obese AA women 133

137 ligand IL3 implicated in T2D in obese AA women 133

138

wed
142

IL-4 dysregulation caused decreased lipid
metabolism, decreased lipolysis and increased
adipogenesis leading to diseases such as obesity
and Type 2 Diabetes
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Associated
w/ Immunity Ref

Associated
w/ Cancer Ref

GDF15

growth
differentiation factor
15, macrophage
inhibitory cytokine 1

induced by HCV 120 regulates hepatocellular
carcinoma genes

MIC-1 mediates tissue tolerance 122 pro- and anti-
tumor activity

19-
18386331-T-
A
(rs1059369)

2 (2) Ser48Thr 0.38 E ASN to
0.14 MID E

systemic lupus erythematosus
(SLE) risk in Chinese population

124

IDO2
indoleamine 2,3-
dioxygenase 2

immunomodulator 125 multiple cancers

8-39982715-
A-
G
(rs4736794)

3 (2) Ile140Val (2 of
4 transcripts)

E ASN 0.34 to
0.03 AFR/AA

major depressive
disorder symptoms

127

8-40005362-
C-
T
(rs10109853)

3 (2) Arg248Trp (2 of
4 transcripts)

S ASN 0.54 to
0.25 E ASN

multiple myeloma risk in
a small Japanese cohort

IL3

interleukin 3 hematopoietic growth factor,
mast-cell growth factor,
multipotential colony
stimulating factor

129
130
131

colon cancer risk

5-
132060785-
C-
T (rs40401)

1 (1) Pro27Ser AFR/AA 0.53 to
0.22 EUR

protection against malaria 134

IL3RA
interleukin 3
receptor, CD123

production and differentiation of
hematopoietic progenitor cells

135 leukemia 136,

X-1378751-
G-
C
(rs17883366)

2 (2) Val323Leu MID E 0.26 to
0.06 AFR/AA

colorectal cancer
treatment response

IL4R

interleukin 4
receptor, CD124,
IL4RA, IL13 receptor

ligand IL4 provides protection
against malaria, schistosomiasis
and helminths

139–
141

IL4R overexpressed on
the surface of multiple
cancer types (breast,
lung, etc.)
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TABLE 4 Continued

f Associated w/ Metabolic Disease Ref

146 type I diabetes? yes: 147
no: 148, 149

51, 152 cardiometabolic disease 153

154

156 type I diabetes 157

post-transplantation diabetes 158

59, 160 BMI in lymphoma patients 161

severe liver disease 162

63, 164 bioinformatic assn w aortic valve calcification in
metabolic syndrome

165

166

167

51, 170 diabetic nephropathy 171, 172
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16-
27362551-A-
C
(rs1805011)

5 (3) Glu400Ala 0.53 AFR/AA to
0.06 S ASN

allergy, asthma 144,
145

lung cancer response
to radiation

IL6R
IL6 receptor,
CD126, Gp80

receptor for pleiotropic
cytokine IL6

150 lung and other cancers 1

1-
154454494-
A-
C
(rs2228145)

3 (2) Asp358Ala 0.49 LAT to
0.14 AFR/AA

liver cancer

IL7R
interleukin 7
receptor,
CD127, IL7RA

variants involved in
autoimmunity and
infectious disease

155 reduced in breast cancer

5-35860966-
T-
C
(rs1494558)

5 (4) Ile66Thr 0.75 AFR/AA to
0.42 E ASN

5-35871088-
G-
A
(rs1494555)

3 (3) Val138Ile 0.87 AFR/AA to
0.48 E ASN

gastic cancer in EUR,
increase lung cancer

1

5-35876172-
A-
G
(rs3194051)

3 (1) Ile356Val 0.34 AFR/AA to
0.07 E ASN

ITGAL
integrin alpha L,
LFA-1, CD11A

lymphocyte function
associated antigen

renal cancer, gastric
cancer
prognostic marker

1

16-
30506720-G-
C
(rs2230433)

6 (3) Arg791Thr 0.66 S ASN to
0.14 E ASN

protection against renal
cell carcinoma

risk of IDC breast
carcinoma in
Han women

JAML
junctional adhesion
molecule-
like, AMICA

regulates inflammatory
cell migration

168,
169

lung cancer 1

156
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TABLE 4 Continued

ef Associated w/ Metabolic Disease Ref

regulation of fat metabolism, obesity 174, 175

177 NAFLD 86

178 early atherosclerosis 179

obesity in Pacific Islanders 180

182 elevated plasma HDL 183

185 downregulated in obesity, metabolic syndrome 186

14, 189 deficiency promotes diabetes and NAFLD in mice 190, 191

192

93, 195 cardiovascular and metabolic disease 196
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Associated
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11-
118198037-
T-
C
(rs2298831)

8 (5) Ile322Met 0.36 AFR/AA to
0.07 S ASN

steroid interaction with
Duchenne muscular dystrophy in
a multi-center European cohort
(n=301 cases)

173

LEPR

leptin receptor,
CD295, OBR

required for lymphopoiesis

leptin (ligand) produced by
lymphocytes, NK
cells, monocytes

176 susceptibility to HBV
induced
hepatocellular carcinoma

1-65570758-
A-
G
(rs1137100)

7 (6) Lys109Arg 0.81 E ASN to
0.10 MID E

colorectal cancer risk

1-65592830-
A-
G
(rs1137101)

7 (6) Gln223Arg 0.88 E ASN to
0.34 MID E

LILRA3

leukocyte Ig-like
receptor A3, CD85E

soluble receptor for MHC
I antigens

181 benign prostatic
risk hyperplasia

184 lymphomagenesis risk

19-
54803504-A-
C
(rs6509862)*

3 (3) Leu107Arg 0.79 AFR/AA to
0.12 EUR

statin intolerance 187

NOD2

nucleotide binding
oligomerization
domain containing 2,
CARD15, NLRC2,
BLAU, IBD1

immune response, inflammation 188 triple negative breast
cancer, therapeutic target

1

16-
50710713-C-
T
(rs2066842)

7 (4) Pro241Ser 0.28 MID E to
0.01 E ASN

assn with follicular
lymphoma survival

TMEM173
STING1, stimulator
of interferon
genes, MPYS

activates IFN innate immune
response genes

193,
194

multiple cancers 1

157
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ation, 200,
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multiple cancers 202, 203 obesity, blood pressure 204, 205

iveness 206 blood lipid profile, BMI in Russian population 207

st one variant in the human genome that occurs in at least 20% (Minor Allele Frequency (MAF) ≥ 0.2) of one or more populations. Missense variants
P cluster ID), and amino acid location numbers and identities of the original and coded replacement. Populations are defined by Karczewski 2020
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158
Gene
(SNP)

Affected
Transcripts

Name/
Function

Population
MAF Range

Associated
w/ Immunity

5-
139477397-
C-
T
(rs7380824)

17 (4) Arg293Gln 0.41 E ASN to
0.14 EUR

LOF, decreased response t
bacterial ligands, poxvirus

5-
139478340-
C-
G
(rs78233829)

18 (4) Gly230Ala 0.41 E ASN to
0.14 EUR

altered c-di-GMP
lid conformation

5-
139481493-
C-
T
(rs11554776)

16 (5) Arg71His 0.41 E ASN to
0.03 AFR/AA

large effect on loss of func

TRPM8
transient receptor
potential
cation channel

immune response, inflamm
temperature regulation

2-
233955144-
G-
A
(rs7593557)

4 (2) Ser419Asn 0.55 AFR/AA to
0.05 EUR

cold-induced hyperrespon
in bronchial asthma

Genes listed have been associated with innate immunity/inflammation, cancer, and cardio-metabolic disease and have at le
are described by their location in the GRCh38 reference genome (accessed from gnomAD v3.1.2), rs number (reference S
(15): African/African American (AFR/AA), East Asian (E ASN), non-Finnish European (EUR), Latino/Latina (LAT), Mid
missense mutations (in parentheses) that contain the gene variant, but do not include transcripts of any overlapping ge
e
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3.2 Unconventional innate immune genes
with previously characterized population-
enriched variants

Table 5 includes 18 genes representing several classes of

proteins primarily associated with non-immune functions that

occur as population-enriched variants shown to impact biological

function. These genes include transport membrane proteins,

consisting of the multidrug resistance pump (ABCB1), the

Niemann-Pick cholesterol transporter 1 (NPC1, SLC65A1), and

the Na+-dependent multivitamin transporter (SLC5A6). Among

the class of regulatory metabolic enzymes are alcohol

dehydrogenase (ADH1C), mitochondrial dihydroorotate

dehydrogenase (DHODH ) , hydroxys te ro id (17-be ta)

dehydrogenase 4 (HSD17B4) involved in peroxisomal fatty acid

beta-oxidation, and glycogen phosphorylase B (PYGB) involved in

regulating glycogen mobilization. Among the genes that participate

in signal transduction are the membrane glycoprotein signaling co-

receptor neuregulin (NRG1), phosphodiesterase 10A (PDE10A,

which regulates cAMP concentrations), along with the small

bioactive neuropeptide neuromedin B (NMB). Transcription

factors and/or nucleic acid binding protein genes coded as

population-enriched variants include hypoxia-inducible factor 2A

(EPAS1, HIF2A), Iroquois homeobox 2 (IRX2), mismatch repair

MutL homolog 3 (MLH3), the novel intracellular and extracellular

ribonuclease T2 (RNASET2) and the SURP and G-Patch domain

containing 1 (SUGP1) splicing factor. Also included are the lipid

transport protein apolipoprotein B (APOB), the triacylglycerol

lipase patatin-like phospholipase domain containing 3 (PNPLA3),

and the adhesion cadherin family member desmoglein 2 (DSG2).

3.2.1 Multidrug resistance gene
The ATP binding cassette subfamily B member 1 (ABCB1) gene

is commonly known as the first of two multidrug resistance (MDR1)

genes in humans and is one of 48 ABC family members (217).

ABCB1 functions at the plasma membrane as a 170 kDa monomer

with 12 transmembrane domains (TMs), is glycosylated on the first

extracellular loop (between TM1 and TM2), and has two

intracellular ATP binding sites (one located between TMs 6 and

7, and the other in the carboxy terminus downstream of TM12).

ABCB1 is expressed in a wide range of tissues (such as intestine,

colon, placenta, liver, and blood-brain barrier) to protect against the

intracellular build-up of xenobiotic molecules in vulnerable cells

and organs by expelling toxins, including chemotherapeutics, from

the cell interior. Thus, ABCB1 has become a widely-known source

of and marker for chemoresistance (c.f. 219). ABCB1 also functions

as a broad specificity lipid translocase (326). In a Chinese cohort, a

variant in the ABCB1 promoter showed pleiotropic effects related to

T2D and lipid metabolism (221). Notably, the ABCB1 Ser893Ala

variant (7-87531302-A-C, rs2032582) has been correlated with

obesity in a Japanese population (220) and with increased

susceptibility to lung cancer in a Spanish cohort (223). This

ABCB1 variant occurs in 91% of Africans/African Americans, but

in only 35-62% of other populations (gnomAD) and was shown to
Frontiers in Endocrinology 13159
impact drug (etanercept) efficacy in the treatment of Chinese Han

patients with ankylosing spondylitis (222).

3.2.2 Mismatch repair protein MutL homolog 3
MLH3 is a homolog of the mismatch repair protein MutL. DNA

mismatch repair (MMR) proteins play a vital role in maintaining

genome integrity and in antibody maturation during class switch

DNA recombination and somatic hypermutation (276). In cases of

microsatellite instability, tumors often display somatic mutations in

MLH3, while hereditary nonpolyposis colorectal cancer type 7

(HNPCC7) has been associated with germline mutations in the

same gene (276, 327). Further, reduced MLH3 expression was

observed in individuals diagnosed with grade II and III breast

cancer, suggesting MLH3 may serve as a reliable susceptibility

marker (278, 328). There was no correlation between the MLH3

Pro844Leu variant (14-75047125-G-A, rs175080, predominantly

found in the Middle East) and susceptibility to colorectal cancer

in a predominantly white cohort (279). However, in Chinese

patients this variant was associated with both cervical cancer

(280) and hepatocellular carcinoma (281).

3.2.3 Apolipoprotein B
Lipoproteins enclose otherwise insoluble lipid particles (made

up of a central core of cholesterol esters and triglycerides and an

outer layer of phospholipids, free cholesterol, and apolipoproteins)

for transport through the blood to various tissues (329).

Apolipoprotein B (APOB) serves as the primary carrier for

several classes of serum lipid particles, including chylomicrons,

low-density lipoprotein (LDL), very low-density lipoprotein

(VLDL), intermediate-density lipoprotein, and lipoprotein. In

LDL particles, APOB interacts with the apoB/E (LDL) receptor,

facilitating the removal of LDL cholesterol from the circulation via

cellular uptake followed by intracellular LDL breakdown. In a small

Japanese study correlating variants of genes related to lipid

regulation (including apolipoproteins), the population-enriched

missense APOB variant 2-21002409-C-T (rs1042034) correlated

with HCV infection (235) variant has an allele frequency of 0.85

in African American populations but only 0.26 in East Asian

populations (gnomAD). Another population-enriched missense

APOB variant, 2-21008652-G-A (rs676210) (present in 73% of

East Asians vs. 15% of Africans/African Americans (gnomAD))

correlated with the occurrence of initial non-cardioembolic

ischemic stroke in a small European cohort (239). A third

population-enriched missense APOB variant, 2-21028042-G-A

(rs679899) (present in 85% of East Asians vs. 17% of Africans/

African Americans (gnomAD)) and was protective against acute

coronary syndrome in a Mexican population (238). This was

associated with both hypertension and chronic kidney disease in a

cohort of 3696 Japanese individuals (240).

Functional effects of additional APOB missense variants have

also been reported. The Arg3638Gln variant (2-21005955-C-T,

rs1801701), which is present in no more than 10% of any

population, was associated with survival outcomes in non-small

cell lung cancer (NSCLC) patients (236). Additionally, two
frontiersin.org
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Associated w/ Metabolic Disease Ref

, 219 Japanese obesity, diabetes and serum lipids
in Chinese

220, 221

223

, 226 endogenous substrate bile acids involved in lipid,
glucose and energy metabolism and impact
metabolic syndrome

227, 228

229

, 232

233

234

236 variants in Asian population associated with
metabolic syndrome

237

protective against acute coronary syndrome in
Mexican population

238

stroke 239

chronic kidney disease risk among Japanese
with hyptertension

240

, 245 glucose metabolism, insulin resistance 246, 247

(Continued)

Y
e
ye

o
d
u
e
t
al.

10
.3
3
8
9
/fe

n
d
o
.2
0
2
3
.12

8
6
9
79

Fro
n
tie

rs
in

E
n
d
o
crin

o
lo
g
y

fro
n
tie

rsin
.o
rg
Gene (SNP)
Affected
Transcripts Name/Function
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Associated
w/ Cancer Ref

ABCB1
MDR1, P-glycoprotein 1, ATP
binding cassette B1

multidrug resistance,
xenobiotic protection

217 gallbladder
carcinoma,
drug resistance

218

7-87531302-
A-
C (rs2032582)

5 (3) Ser893Ala 0.91 AFR/
AA to 0.35
S ASN

drug efficacy 222 increased lung
cancer risk

ADH1C

alcohol dehydrogenase 1C (class
I), gamma

downregulated during
inflammation in
ulcerative colitis,

224 liver cancer 225

increased expression
reduces IL-6 and IL-
8 secretion

224 colorectal cancer

substrates (estrogen, bile
acids) impact
innate immunity

96, 230 lung cancer 231

4-99339632-
T-C (rs698)

1 (1) Ile350Val 0.52 EUR to
0.08 E ASN

increased cancer risk
in Africans
and Asians

4-99342808-
C-
T (rs1693482)

Arg272Gln 0.52 EUR to
0.08 E ASN

Japanese upper
aerodigestive
tract cancer

APOB
apolipoprotein B HCV infection 235 variants associated

with NSCLC survival

2-21002409-
C-
T (rs1042034)

1 (1) Ser4338Asn 0.85 AFR/
AA to 0.26
E ASN

HCV infection 235

2-21008652-
G-
A (rs676210)

1 (1) Pro2739Leu 0.73 E ASN
to 0.15
AFR/AA

2-21028042-
G-
A (rs679899)

3 (2) Ala618Val 0.85 E ASN
to 0.17
AFR/AA

DHODH

dihydroorotate dehydrogenase defense against bacteria,
viruses and protozoa

241–243 multiple cancers,
pro-
inflammatory
ferroptosis

244

16-72008783-
A-
C (rs3213422)

4 (4) Lys7Gln 0.75 E ASN
to 0.34
MID E

rheumatoid arthritis
drug response

248–250

160
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Associated w/ Metabolic Disease Ref

252 pancreatic islet function, insulin resistance 253, 254

cardiomyopathy in Yi population 255

, 258 dyslipidemia and NAFLD 259

262 peroxisomal fatty acid oxidation 263

264 lipid and bile acid metabolism 265

267

268

271,
ewed
272

VEGF altered in ischemic stroke and atherosclerosis reviewed
in 273

274

present in 5/10 Indian congenital heart defects 275

277 mutations only found in breast cancer patients with
metabolic disease

278

(Continued)
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Associated
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DSG2
desmoglein 2 receptor for selected

adenovirus serotypes
251 multiple cancers

18-31542836-
G-
A (rs2278792)

1 (1) Arg773Lys 0.48 E ASN
to 0.08
AFR/AA

EPAS1
endothelial PAS domain protein
1, HIF2A, hypoxia-inducible
factor 2A

IL31 induction in CD4+
T cells

256 non-small cell lung
cancer,
colorectal, others

257

2-46382433-
A-
C
(rs59901247)

2 (1) Thr766Pro 0.41 AFR/
AA to 0.01
S ASN

N-acetylaspartate levels in
elite athletes

260

HSD17B4

hydroxysteroid (17-beta)
dehydrogenase 4, DBP, MFE-2,
MPF-2, SDR8C1

peroxisomal
multifunctional
protein (detox)

261 overexpressed in
prostate cancer

downregulated in
non-small cell
lung cancer

5-119475838-
G-
A (rs25640)

18 (7) Arg131His, Arg106Pro or His LAT 0.56 to
AFR/
AA 0.17

homozygous D-bifunctional
peroxisomal protein disease

266

5-119525243-
T-
C
(rs11539471)

20 (7) Trp536Arg AFR/AA 0.3
to 0.00
E ASN

protective against
endometrial cancer

5-119526018-
A-
G (rs11205)

21 (7) Ile584Val LAT 0.53 to
0.29 S ASN

testicular germ cell
tumor risk

IRX2

Iroquois Homeobox 2 mediates expression of
immune regulators MMP9
and VEGF

269, 270 sarcomas,
breast, leukemia rev

i

nasopharyngeal
cancer marker

5-2748943-C-
A
(rs76906087)

2 (1) Glu255Asp 0.28 S ASN
to 0.03
AFR/AA

MLH3
mutL homolog protein 3,
mismatch repair, HNPCC7

Ig class switch 276 colorectal cancer
microsatellite
instability

161
i
n
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ef Associated w/ Metabolic Disease Ref

279

280

281

283 highly expressed in adipose, variants related
to obesity

284

obesity 284

286 obesity 287, 288

type 2 diabetes 290

obesity 291

cardiovascular disease (Iranian) 292

294 regulates insulin sensitivity 295

300 diabetes, diet-induced obesity, insulin sensitivity 301

(Continued)
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Associated
w/ Cancer

14-75047125-
G-
A (rs175080)

4 (3) Pro844Leu 0.52 MID E
to 0.15
E ASN

no assn w CRC in
white population

susceptibility to
cervical cancer
in Chinese

hepatocellular
carcinoma in Han

NMB
neuromedin B innate immune response to

influenza A virus
282 cervical and

other cancers

15-84657289-
G-
T (rs1051168)

2 (2) Pro73Ala 0.37 MID E
to 0.05
AFR/AA

NPC1

Niemann Pick cholesterol
transporter, SLC65A1

NKT cell development 285 breast cancer

endosomal entry receptor
for ebolavirus

289

18-23540480-
T-
C (rs1805082)

3 (2) Ile858Val 0.63 E ASN
to 0.30
MID E

18-23560468-
T-
C (rs1805081)

2 (1) His215Arg 0.41 EUR to
0.08
AFR/AA

NRG1
neuregulin macrophage response

to yeast
293 NRG1 gene fusions

drive multiple
solid tumors

8-32595840-
G-
A (rs3924999)

21 (17) Arg30Gln 0.77 E ASN
to 0.11
AFR/AA

susceptibility to
schizophrenia in
Chinese Han

296

Fin susceptilibity to reward
dependence in
major depression

297

PDE10A
phosphodiesterase 10A mediator of lung and

vascular inflammation
298, 299 ovarian cancer target

6-165654841-
C-
G (rs880121)

10 (2) Glu15Asp 0.63 MID E
to 0.04
E ASN

sporadic Parkinson's in
Chinese Han

302

162
R
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307–309 carbohydrate metabolism 310

European
mors

us
FAP)

311

ressor in

cers

151, 313 myocardial lipotoxicity in obesity 314

er 317 lymphocyte metabolic programming 318

serum levels of glucose (during fasting)
and pantothenate

319, 320

322 NAFLD 118

waist-hip ratio
fasting insulin and glucose

324
325

curs in at least 20% (Minor Allele Frequency (MAF) ≥ 0.2) of one or more populations. Missense variants
bers and identities of the original and coded replacement. Populations are defined by Karczewski 2020
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Associate
w/ Cance

PNPLA3
Patatin Like Phospholipase
Domain Containing 3, adipnutrin

platelet and
monocyte levels

303 hepatic ca
(European
Han Chin

22-43928847-
C-
G (rs738409)

4 (2) Ile148Met (2 of 4 transcripts) 0.42 LAT to
0.14
AFR/AA

hepatic ca

PYGB
glycogen phosphorylase B TCR activation stimulates

PYGB-
dependent glycogenolysis

306 prostate, g
non-small
lung cance

20-25278370-
G-
T (rs2228976)

1 (1) Ala303Ser (1 transcript) 0.34 E ASN
to 0.08
AFR/AA

present in
desmoid tu
in familial
adenomato
polyposis

RNASET2
ribonuclease T2, RNASE6PL degrades microbial RNAs

for recognition by TRL8
312, 313 tumor sup

lung and
ovarian ca

6-166938616-
C-
A (rs3777722)

14 (1) Arg226Met 0.4 E ASN
to 0.04
AFR/AA

putative association with
preterm birth

315

SLC5A6

Na+ dependent
multivitamin transporter

anti-inflammatory in
murine gut

316 gastric can

B lymphocyte maturation 318

2-27201768-
G-A (rs1395)

7 (2) Ser481Phe 0.86 E ASN
to 0.24
AFR/AA

SUGP1
SURP And G-Patch Domain
Containing 1, Splicing Factor 4

altered splicing in
innate immunity

321 pan-cance

19-19302283-
C-
T
(rs17751061)

8 (1) Arg290His (1 of 8 transcripts) 0.26 MID E
to 0.00
E ASN

serum IgE levels 323

Genes listed have been associated with innate immunity/inflammation, cancer, and cardio-metabolic disease and have at least one variant in the human genome that o
are described by their location in the GRCh38 reference genome (accessed from gnomAD v3.1.2), rs number (reference SNP cluster ID), and amino acid location nu
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nonsynonymous variants unique to the Asian population, namely

2-21006289-G-A (rs144467873, MAF = 0.001253 and 0.0003594 in

East and South Asians, respectively, but < 0.00008 for all other

populations (gnomAD v2.1.1) and 2-21029662-G-A (rs13306194,

MAF = 0.1343 in East Asians, MAF < 0.007 in all other populations)

were evaluated for their association with lipid profiles, metabolic

syndrome and risk of diabetes in a large Taiwan Biobank study

(237). Both variants were independently associated with total, LDL,

and non-HDL cholesterol levels, whereas rs144467873

(Arg3527Trp) was associated with elevated lipid levels and

metabolic syndrome, while rs13306194 (Arg532Trp) was linked

with serum triglyceride levels.

3.2.4 Dihydroorotate dehydrogenase
Dihydroorotate dehydrogenase (DHODH), which catalyzes the

initial and rate-limiting step of the de novo pyrimidine pathway, is

positioned on the inner mitochondrial membrane (330). DHODH

has been a therapeutic target for the treatment of rheumatoid

arthritis, psoriasis, autoimmune disorders, and Plasmodium,

bacterial and fungal infections (241). For over five decades,

elevated DHODH expression has been known to promote tumor

progression. De novo pyrimidine synthesis becomes essential during

increased demands for nucleic acid precursors in rapidly dividing

cells making cancer cells highly dependent on DHODH and

suggesting that this enzyme is a strategic target for cancer therapy

(245). Recently, DHODH was also shown to protect against

mitochondrial ferroptosis by preventing the lipid peroxidation

that triggers this phenomenon (244). Notably, cancer cells exhibit

low levels of glutathione peroxidase 4 (GPX4) and inhibition of

DHODH hinders respiration, boosts glycolysis and enhances

GLUT4 translocation to the plasma membrane (246). This is

further supported by the activation of the tumor suppressor p53,

which elevates the levels of GDF15/MIC1 (another candidate listed

in Table 4), a cytokine known for its appetite-reducing effects and

ability to extend lifespan. DHODH inhibition that depletes

pyrimidine ribonucleotides is also thought to be responsible for

reduced RNA virus replication and decelerated growth in rapidly

dividing cells, such as activated T cells and, as just mentioned,

cancer cells (243). Interestingly, uridine, a pyrimidine nucleoside

present in RNA, has been shown to modulate insulin activity and

glycogen synthesis through its interaction with uridine diphosphate

(UDP)-glucose (247). The base sequence of the DHODH gene is

remarkably conserved, with one exception being a prevalent

Lys7Gln missense polymorphism (16-72008783-A-C, rs3213422)

found in its first exon (248). This variant is found in 75% of

individuals in East Asia vs. 34% of individuals in the Middle East

(gnomAD) and has been linked with drug (leflunomide) response

to rheumatoid arthritis (248–250).
3.3 Population-enriched variants with
unknown/uncharacterized function

No known effect on gross phenotype or evidence of association

with disease has yet been reported among the population-enriched
Frontiers in Endocrinology 18164
variants identified with the 20 genes listed in Table 6. However, a

newly released resource, GWAS Central (457), was accessed to

provide phenotype associations with a subset of variants in Table 6.

Further, disease disparities related to the parent gene and/or other

variants of the gene were identified and/or the predicted impact of a

population-enriched variant on the coded change in protein

function were evaluated and listed in Table 6.

3.3.1 Understudied genes SIPA1L2 and TVP23C
Among the 20 genes in Table 6, six of these remain

understudied, including the exosomal CCDC105/TEKTL1, the

putative protein disulfide isomerase CRELD2, the FAM131C

protein with unknown function, the putative immune checkpoint

ITPRIPL1 membrane protein, the presumptive neural GTPase

activator SIPA1L2, and the putative vesicular protein transporter

TVP23C. Notably, evidence of an impact on function does exist for

one of two population-enriched variants of SIPA1L2 and one of

three population-enriched variants of TVP23C. In the case of

SIPA1L2, both characterized and uncharacterized variants occur

at the same high frequency (MAF = 0.48) in East Asians, but

Gly1639Ser increases the number of potential phosphorylation

sites, whereas Thr1322Ala reduces them, which may result in

different functional outcomes (e.g. changes in activation status

and/or protein-protein interactions). In both SIPA1L2 variants,

eight of nine possible transcripts code for missense mutations,

whereas with TVP23C, only in the canonical transcript does the

variant result in a missense mutation among five (Ser256Arg) or

twelve (Trp202Arg and Ser199Thr) possible isoforms, some of

which are read-through fusions with CDRT4 (CMT1A

Duplicated Region Transcript 4). It is likely that the TVP23C

Trp202Arg and Ser199Thr variants commonly co-occur, given

their proximity to one another on the gene and their matching

frequency distribution, as both have MAFs that range from 0.54 in

East Asians to 0.28 in South Asians. Thus, one might speculate that

the unknown functional impact of Ser199Thr matches that of

Trp202Arg, which was found in a choriocarcinoma patient (458).

Notably, choriocarcinoma shows a geographical disparity as it

occurs at a ten-fold greater frequency in Southeast Asia than in

the West (reviewed in 439). The third TVP23C variant Ser256Arg is

most common among Africans/African Americans (MAF = 0.24)

and involves the loss of a potential phosphorylation site about 50

amino acid residues downstream of the other two TVP23C variants.

3.3.2 Additional representative genes of interest
The remaining 14 genes in Table 6 are better characterized;

notably, many have pleiotropic functions beyond the functions

initially attributed to them. ATPase Phospholipid Transporting

10D (ATP10D) codes for the cata lyt ic subunit of a

glycoslyceramide flippase complex at the endoplasmic reticulum

(ER), nucleoplasm, and plasma membrane. DnaJ Heat Shock

Protein Family (Hsp40) Member B11 (DNAJB11) codes for an

ER-resident and secreted co-chaperone of BiP/GRP78/HSPA5.

Desmocollin 1 (DSC1) codes for an adhesive glycoprotein

cadherin family member. The Immunoglobulin Like Domain

Containing Receptor 1 protein (ILDR1) maintains structural
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TABLE 6 Geographic Ancestral Variants with Unknown/Uncharacterized Function.

Gene
(SNP)

Affected
Transcripts

Name/
Function

Population
MAF Range

Associated
w/
Immunity Ref

Associated
w/ Cancer Ref

Associated w/
Metabolic
Disease Ref

ATP10D

ATPase, class V,
type 10D

sphingolipids
assoc w/ innate
immune response

331 lung cancer 332 controls circulating
sphingolipids
responsible for
atherosclerosis, T2D

333

transports
glucosylceramide,
a sphingolipid

downregulated by
TGFb
in eosinophils

334 colorectal cancer 335

4-47514685-
C-
T
(rs33995001)

3 (2) Thr43Ile 0.44 LAT to
0.16 E ASN

4-47582029-
G-
A
(rs1058793)

4 (1) Val1240Ile 0.58 E ASN to
0.16 EUR

found in
Bulgarian
centenarians

336

4-47591266-
G-
C (rs4145944)

3 (1) Ser1389Thr 0.62 AFR/AA to
0.12 E ASN

serum cholesterol 323

Disease Disparity: Sphingolipid levels are elevated in lupus [337] and hepatocellular carcinoma [338], two diseases with known
disparities based on geographic ancestry [339 and 340, respectively]

CCDC105

coiled-coil domain containing 105,
tektin like 1, TEKTL1

HBV infection 341 colon,
lung cancer

342,
343

interacts with MESD
[344], part of WNT
pathway in cancer
and
cardiovascular
disease

345,
346

19-15020518-
G-
A
(rs35352238)

1 (1) Val245Met 0.54 E ASN to
0.11 AFR/AA

19-15023114-
C-
A
(rs8112667)

1 (1) Pro499Thr 0.53 E ASN to
0.18 MID E

serum fibrinogen 323

Disease Disparity: interacts with MAGEA11 [347], a biomarker for stomach cancer [348], which shows racial and geographic
disparities [reviewed in 349]

CRELD2
cysteine rich with
EGF like
domains 2

marker in
joint infection

350 multiple cancers 350 cardiometabolic
disease

350

22-49921715-
C-
A
(rs8139422)

10 (5) Asp182Glu 0.51 AFR/AA to
0.03 EUR

age-related
macular
degeneration

351

Disease Disparity: breast [352] and prostate [353] cancers, reviewed in [60]

CSF2RB

IL3RB,
CD131, IL5RB

colony
stimulating factor
2 receptor beta
surfactant
homeostasis

354 variant assoc w
leukemia
variant assoc w
breast cancer

355
356

peptide agonists of
EPOR/CD131
heteroreceptor are
anti-atherosclerotic

357

22-36930401-
G-
C (rs16845)

4 (4) Glu249Gln 0.21 AFR/AA to
0.00 E ASN

Disease Disparity: breast cancer [60, 352]
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F
rontiers in Endo
crinology
 19165
 frontier
sin.org

https://doi.org/10.3389/fendo.2023.1286979
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Yeyeodu et al. 10.3389/fendo.2023.1286979
TABLE 6 Continued

Gene
(SNP)

Affected
Transcripts

Name/
Function

Population
MAF Range

Associated
w/
Immunity Ref

Associated
w/ Cancer Ref

Associated w/
Metabolic
Disease Ref

DNAJB11
ER-associated
DnaJ Hsp40
member B11

immune
infiltration
in thyroid

358 liver, breast,
pancreatic
cancer

358 diabetes 119

3-186583914-
A-G (rs8147)

3 (2) Ile264Val 0.47 AFR/AA to
0.15 E ASN

rheumatoid
arthritis

359

Disease Disparity: context-dependent breast cancer [60, 352]

DSC1
desmocollin 1 reduced in

pediatric
pneumomia

360 head and neck,
ovarian, anal

361–
363

prevents
HDL biogenesis

360

18-31140184-
C-
T
(rs17800159)

2 (2) ValIle460Ile 0.48 E ASN to
0.03 AFR/AA

Disease Disparity: ovarian cancer [364]

FAM131C

family with
sequence
similarity 131
member C

autoimmune
target in ApoE
KO mice

365 associated with
cancer survival

366 upregulated in high
fat diet

367

upregulated in
M1 macrophage-
rich adipose

368

1-16058636-
C-
A
(rs1832151)

2 (1) Ser215Ile 0.33 AFR/AA to
0.0013 E ASN

1-16060000-
C-
T
(rs71510977)

2 (1) Arg107Gln 0.78 E ASN to
0.10 AFR/AA

1-16062531-
T-
C (rs2863458)

2 (1) Lys48Glu 0.38 AFR/AA to
0.01 E ASN

waist-hip ratio 324

Diseaese Disparity: interacts with VSNL1 [369], which is associated with colon cancer [370, 371] and gastric cancer [372], both
cancers that show ethnic disparities [373]

ILDR1
Ig-like domain
containing
receptor 1

flu
virus replication

374 gastric
cancer marker

375 diet-induced obesity
and hyperglycemia

376

3-121993958-
G-
C (rs3915061)

5 (3) Pro264Arg 0.49 S ASN to
0.22 E ASN

Disease Disparity: gastric cancer [reviewed in 349, 373]

ITPRIPL1

inositol triphosphate interacting
protein like 1, KIAA1754L

immune
checkpoint
inhibition of T-
cell activation

377 gene
methylation
assoc w
breast cancer

378 diabetic nephropathy 379

2-96328019-
C-
T (rs2279105)

4 (4) Thr463Met 0.69 S ASN to
0.21 E ASN

HbA1c 323

Disease Disparity: breast cancer [60, 352]

PDIA6
protein disulfide
isomerase A6,
ERP5

lymphoid and
myeloid
development

380
381

NSCLC, breast,
bladder, gastic,
oral,

382–
387

diabetes 119

(Continued)
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TABLE 6 Continued

Gene
(SNP)

Affected
Transcripts

Name/
Function

Population
MAF Range

Associated
w/
Immunity Ref

Associated
w/ Cancer Ref

Associated w/
Metabolic
Disease Ref

TXNDC7
thioredoxin
domain
containing 7

platelet
aggregation
and activation

pancreatic
cancers

2-10790777-
T-C (rs4807)

6 (6) Lys214Arg 0.39 E ASN to
0.125 AFR/AA

serum IgE,
HbA1c,
rheumatoid
arthritis

323,
359

age-related
macular degeneration

351

Disease Disparity: breast [60, 352] and gastric cancer [reviewed in 349, 373]

RB1
retinoblastoma 1
transcriptional
co-repressor

associated with
Treg infiltration
in bladder cancer

388 tumor
suppressor in
multiple cancers

389 negative association
with BMI and
insulin resistance

390

13-48599402-
T-
C (rs1887154)

1 (1,
non-

cannonical)

Leu99Ser
(1 transcript)

0.79 AFR/AA to
0.28 MID E

Predicted Impact: potential phosphorylation site introduced (+Ser): RB1 phosphorylation inactivates this tumor suppessor and
promotes tumor progression [389], impacts several regulatory pathways and protein-protein interactions [391]

RPAIN

RPA interacting
protein, nuclear
transporter, HRIP

variants assoc w/
influenza A virus
(RNA)
pathogenesis

392
393

alternate splice
variants in
colon cancer,
glioblastoma

394
395

gene expression is
associated with BMI

396

17-5422825-
C-
G (rs12761)

16 (11) Asn103Lys 0.82 E ASN to
0.22 AFR/AA

BMI 397

Disease Disparity: colon cancer [398]

SEMA6D

sematophorin D6 regulates late
phase CD4+ T
cells response,
anti-inflammatory
macrophage
polarization

399
400,
401

lung cancer,
chemoresponse
in breast cancer

151,
402

cardiomyocyte
development,
immune
cell metabolism

401
403

15-47764022-
A-
G
(rs3743279)

9 (9) Asn307Ser 0.24 AFR/AA to
0.00 EUR

skin pigmentation 404

15-47765874-
G-
A (rs532598)

9 (8) Ser478Asn 0.59 E ASN to
0.34 MID E

partial
epilepsies, asthma

405,
406

Disease Disparity: SEMA6D expression is associated with survival in triple negative breast cancer [407], which occurs
disproportionately among women of African descent [352]

Predicted Impact: both variants may alter phosphorylation status (+/- Ser) with the potential to alter activity, stability and/or
protein-protein interactions

SIPA1L2

signal induced
prolif assoc 1 like
2, SPAR2,
SPAL2,
KIAA1389

assoc w/ H2O2
release from
healthy
Caucasian
lymphoblastoids

408 metastatic clear
cell kidney
carcinoma
(EUR)

409 identified by
bioinformatics in
type 2 diabetes

410

inactivates RAP1
(involved in
inflammatory
response)

410 varying
correlation with
23 cancers

411 gene expression assoc
with NAFLD

412

(Continued)
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TABLE 6 Continued

Gene
(SNP)

Affected
Transcripts

Name/
Function

Population
MAF Range

Associated
w/
Immunity Ref

Associated
w/ Cancer Ref

Associated w/
Metabolic
Disease Ref

1-232403473-
C-
T (rs2275303)

9 (8) Gly1639Ser 0.48 E ASN to
0.00 AFR/AA

Alzheimer's in
Asian population

413

1-232439175-
T-
C (rs2275307)

9 (8) Thr1322Ala 0.48 E ASN to
0.22 EUR

Disease Disparity: gene shows highest correlation with cancers with known ethnic disparities [411], including bladder [414],
esophageal [415], hepatocellular carcinoma [416], and ovarian [364]

Predicted Impact: both variants may alter phosphorylation status (+Ser and -Thr) with the potential to alter activity, stability and/or
protein-protein interactions

TBC1D4

AS160 Akt
substrate of
160 kD

delivery to
chlamydial
inclusions

417 breast cancer,
multiple
myeloma

418,
419

nonsense variant
confers insulin
resistance and T2D
in
Greenlandic
population

420

13-75286865-
A-
G (rs557337)

4 (4) Val1275Ala 0.49 AFR/AA to
0.00 E ASN

fibrinogen 323

13-75481466-
G-
A
(rs77685055)

3 (3) Ala101Val 0.29 E ASN to
0.02 AFR/AA

RBC count mean
corp.
Hb, hematocrit

421–
423

Disease Disparity: gene associated with cancers that show ethnic disparities, including breast [60, 352] and multiple myeloma [424]

TESPA1

HSPC257, thymocyte expressed,
positive selection associated 1

development and
maturation of T
cells
TCR regulation

425 pan-
cancer
prognostic

426 mito-assoc ER mb
proteins are assoc w/
cardiovascular
disease

427

12-54950349-
C-
G
(rs2171497)

7 (2,
non-canonical)

Leu103Phe 0.64 E ASN to
0.05 AFR/AA

ulcerative colitis 428 BMI 397

12-54961249-
C-
T (rs997173)

8 (5) Leu496Lys 0.63 E ASN to
0.06 AFR/AA

Kuru and sCJD
(prion diseases)

429

Disease Disparity: although TESPA1 expresssion is upregulated in several cancers, the most dramatic increase in expression occurs
in acute myeloid leukemia (AML) [426], a cancer which shows ethnic disparities [430]

TVP23C

TGN vesicle
protein 23
homolog
C, FAM18B2

gene is an
integration site
for HBV in
liver cancer

431 plasma protein
assoc w/
colorectal cancer

432 bioinformatic feature
gene assoc w/
ischemic stroke

433

platelet granule
secretion, chronic
immune
thrombocytopenia

434 data mining
prognostic
marker for
liver cancer

435 readthrough
translation with
CDRT4
downregulated in
obese individuals

436

associated with
CD4 Tex
(exhausted
T) cells

437 fusion CDRT4
found in
pancreatic
cancer

438

17-15502927-
A-
C
(rs73289533)

5 (1) Ser256Arg 0.24 AFR/AA to
0.00 E ASN

(Continued)
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barriers in epithelia and auditory neurosensory hair cells (459),

mediates fatty acid and lipoprotein-stimulated cholecystokinin

secretion in the small intestine (460), regulates water homeostasis

in kidney (461), and interferes with phospholipid scramblase
Frontiers in Endocrinology 23169
(PLSCR1) anti-viral activity (374). Protein Disulfide Isomerase

Family A Member 6 (PDIA6) inhibits intracellular aggregation of

misfolded proteins and extracellular aggregation of platelets (381).

Replication Protein A Interacting Protein (RPAIN) participates in
TABLE 6 Continued

Gene
(SNP)

Affected
Transcripts

Name/
Function

Population
MAF Range

Associated
w/
Immunity Ref

Associated
w/ Cancer Ref

Associated w/
Metabolic
Disease Ref

17-15540420-
A-
G
(rs200768112)

12 (1) Trp202Arg 0.54 E ASN to
0.28 S ASN

choriocarcinoma 439

17-15540428-
C-
G
(rs2302252)

12 (1) Ser199Thr 0.54 E ASN to
0.28 S ASN

Disease Disparity: Choriocarcinoma incidence rate 10-fold higher in Southeast Asia than in the West [439]

ZNF23
KOX16,
ZNF359, ZNF612

correlation with
pathogenic
environment

49 downregulated
in cancer

440 mitochondrial
dysregulation
in melanoma

441

16-71453303-
T-
C (rs2070832)

9 (7) Ser28Gly 0.94 AFR/AA to
0.29 E ASN

partial epilepsies 405 BMI 323

Disease Disparity: reduced expression of this tumor repressor gene in ovarian and endometrial cancers [440]; oviarian cancers show
ethnic disparities [364]

Predicted Impact: variant occurs in a putative N-terminal strong transcriptional repressor KRAB domain [442], loss of Ser may alter
activity and/or binding interactions

Note: ZNF23 KRAB domain is truncated and does not appear to alter repressor activity [440], however not all ZNF23 interactors
(such as mitochondrial ATPAF2. keratin-associated KRTAP10-8, myelin-associated MOBP, growth factor signaling regulators
SPRED1 and SPRY1, and TNFR associated adaptor TRAF1), are transcription factors

ZNF267

Zinc Finger
Protein
267, HZF2

P.
gingivalis
infection

443 hepatic,
colorectal
cancer, B-
cell lymphoma

444–
446

liver disease
(cirhhosis), NAFLD

447,
448

16-31915298-
G-
A
(rs3850114)

2 (1) Cys350Tyr 1.0 E ASN to
0.61 AFR/AA

serum IgE 323

Disease Disparity: hepatic and colorectal cancers show ethnic disparities [340, 449]

ZNF628

Zinc Finger
Protein 628, ZEC

target gene
protamine
inhibits
microbial
infection

450–
452

protamine 1
marker for
leukemia and
colorectal cancer

453,
454

protamine alters BP,
mitochondrial
function

455

19-55481893-
A-
G
(rs34864744)

2 (2) Thr234Ala 0.93 AFR/AA to
0.45 E ASN

Disease Disparity: ethnic disparities observed in colorectal cancers [449]

Predicted Impact: variant alters potential phosphorylation status (-Thr) in a disordered region of this transcription activator [344]
between two zinc finger clusters of the canonical protein that bind DNA independently [456]
frontier
Genes listed have been associated with innate immunity/inflammation, cancer, and cardio-metabolic disease and have at least one variant in the human genome that occurs in at least 20% (Minor
Allele Frequency (MAF) ≥ 0.2) of one or more populations. Missense variants are described by their location in the GRCh38 reference genome (accessed from gnomAD v3.1.2), rs number
(reference SNP cluster ID), and amino acid location numbers and identities of the original and coded replacement. Populations are defined by Karczewski 2020 (15): African/African American
(AFR/AA), East Asian (E ASN), non-Finnish European (EUR), Latino/Latina (LAT), Middle Eastern (MID E), and South Asian (S ASN). The number of affected transcripts listed include total
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DNA metabolism, nuclear import, and response to UV light. The

Semaphorin 6D (SEMA6D) gene codes for an integral membrane

protein member of the semaphorin family whose members

collectively sculpt axonal paths, branches, conduction, and target

selection; the distribution of nine SEMA6D transcript isoforms

varies according to developmental stage and tissue type. Tre-2/

BUB2/CDC16 (TBC) Domain Family Member 4 (TBC1D4, also

referred to as Akt Substrate of 160 kD or AS160) is a Rab-GTPase

activator with multiple transcript variants; isoform 2 promotes

SLC2A4/GLUT4 presentation at the plasma membrane to

increase cellular glucose uptake (344). Thymocyte Expressed,

Positive Selection Associated 1 (TESPA1) interacts with COP9

and TCR signalsomes and participates in T cell differentiation

and T cell receptor signaling. Three zinc finger (ZNF) proteins

ZNF23, ZNF267, and ZNF628 localize to the nucleus and regulate

transcription. Parent genes and the corresponding population-

enriched variants of the common cytokine receptor beta chain

CSF2RB and the transcription co-repressor RB1 are both

discussed below.

3.3.2.1 CSF2RB

Colony stimulating factor 2 receptor beta (CSF2RB, CD131)

forms dimers with the alpha receptor subunits for cytokines IL-3,

IL-5, and GM-CSF (CSF2). As noted above, a population-enriched

variant of the IL3RA subunit also exists, although the population

distributions of these two variants are very different: the Val323Leu

IL3RA variant is found least frequently among Africans/African

Americans (MAF = 0.06, Table 4), whereas the Glu249Gln CSF2RB

variant is more predominant in Africans/African Americans than

any other population (MAF = 0.21).

CSF2RB is associated with pulmonary alveolar proteinosis (PAP),

which involves the accumulation of surfactant and macrophage

dysfunction in alveoli (reviewed in 462). Although studies so far

have not suggested geographic or population differences in PAP

occurrence, the most common PAP co-morbidities include

cardiovascular disease, type 2 diabetes, and hypertension, all of

which are unevenly distributed among populations. Further, a rare

Arg461Cys CSF2RB variant (MAF< 0.001, not listed in Table 6) was

found in individual patients with leukemia (355) and breast cancer

(356). Notably, both of these cancers show racial and ethnic

disparities [430 and 352 respectively].

3.3.2.2 RB1

Retinoblastoma (RB1) was one of the first tumor suppressors to

be identified. Alterations in the expression and sequence of the RB1

gene have been implicated in several cancers besides retinoblastoma

where they were originally characterized (reviewed in 391). More

than 40 years of extensive research indicates that regulation of and

by RB1 is highly complex, linked with multiple signaling pathways,

and varies with context. Not surprisingly, the number of proteins

shown to interact with RB1 is more than 30 as curated by UniProt

(344) and more than 150 as curated in BioGRID (463) and IntAct

(464). The functional diversity of the binding partners of RB1 is
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consistent with its pleiotropic effects, which extend beyond

transcription and cell cycle control to include progenitor

maturation, terminal differentiation, and immune evasion (391).

Five protein coding transcripts of RB1 have been identified.

These include 1) the MANE select (canonical) protein composed of

27 exons encoding a total of 928 aa residues; 2) a closely related

transcript that is 5 as shorter and differs from the canonical protein

by 18 of its last 19 C-terminal residues; and 3) three much shorter

transcripts (coding for 53, 103 or 110 aa peptides) which include all

or portions of only 2 or 3 exons of the canonical protein. Of these

shorter transcripts, the two shortest are derived from the N-

terminal portion of RB1. In contrast, the 110 aa non-canonical

transcript codes for an unidentified N-terminal residue equivalent

to the Ser501 residue of the canonical protein and then aligns with

all canonical residues up through Ser565; the remaining non-

canonical aa residues 66-110 are located downstream of the

canonical C-terminal residue 928. It is in this extra-exonic

portion of the non-canonical 110 aa RB1 isoform that the

Leu99Ser population-enriched variant, which introduces a

potential phosphorylation site, is found. In spite of the high

number of aa residues (n ≥ 105) in the canonical RB1 protein

that are known to be post-translationally modified, within the aa

501-565 residue range that overlaps with the first 65 residues of the

110 aa isoforms, only two potential ubiquitination sites have been

identified in the vicinity of aa 550) (391).
4 Conclusion

Population studies have traditionally focused on querying

individual diseases or combinations of diseases, including cancer

and cardio-metabolic disease, which frequently show disparate

prevalence and/or severity in non-European populations. In this

perspective, we have introduced a complementary approach that

explores the intersection of innate immunity, cancer, and cardio-

metabolic diseases. The effective elimination of disease disparities

will involve not only addressing the profound social and behavioral

determinants of health, but also identifying and treating the

biological contributors of disease that include novel genes as well

as previously characterized genes that participate in novel pathways.

We suggest that careful evaluation of population differences in

conventional and unconventional innate immune genes and their

related pathways will provide key insights into the underlying

mechanisms that connect cancer and cardio-metabolic diseases.

At the same time, the genes we have identified in this study that are

associated with both cancer and cardio-metabolic diseases may play

critical roles in under-appreciated facets of innate immunity and

their contribution to disease disparities. Further, we predict that the

geographic ancestral distribution of innate immune gene variants

will match the geographical distribution of the environmental

stressors (including but not limited to infectious agents) that they

are designed to mitigate as described above for HbS and DARC

variants with malaria (Section 1.3).
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The genes we have identified serve as potential targets for

diagnostics and/or therapeutic interventions. Notably, the

development and clinical use of therapeutics targeting these

candidate genes is likely to require a nuanced approach since

variations in these genes across different global populations are

likely to alter the activity and/or expression of their coded proteins,

with the subsequent potential to impact therapeutic outcomes.

Assessing the prevalence of specific target variants in one or more

major populations and, more precisely, the presence of these

specific target variants in individuals is a consequential step

towards increasing the safety and effectiveness of emerging

therapies. This perspective highlights the importance of 1)

considering genetic diversity in identifying and developing

treatments and 2) continuing to incorporate ongoing GWAS

projects as they identify and characterize new or understudied

genes and their population-enriched variants associated with

complex and infectious diseases.
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