Methotrexate is an immunosuppressant and chemotherapeutic agent used in the treatment of a range of autoimmune disorders and cancers. Its main serious adverse effects, bone marrow suppression and gastrointestinal complications, arise from its antimetabolite effect. Nevertheless, hepatotoxicity and nephrotoxicity are two widely described adverse effects of methotrexate. Its hepatotoxicity has been studied mainly in the low-dose, chronic setting, where patients are at risk of fibrosis/cirrhosis. Studies of acute hepatoxicity of high dose methotrexate, such as during chemotherapy, are scarce. We present the case of a 14-year-old patient who received high-dose methotrexate and subsequently developed acute fulminant liver failure and acute kidney injury. Genotyping of MTHFR (Methylene tetrahydrofolate reductase gene), ABCB1 (codes for P-glycoprotein, intestinal transport and biliary excretion), ABCG2 (codes for BCRP, intestinal transporter and renal excretion) and SLCO1B1 (codes for OATP1B1, hepatic transporter) identified variants in all the genes analysed that predicted a reduced rate of methotrexate elimination and thus may have contributed to the clinical situation of the patient. Precision medicine involving pharmacogenomic testing could potentially avoid such adverse drug effects.
Neonatal abstinence syndrome (NAS) is a constellation of signs of withdrawal occurring after birth following in utero exposure to licit or illicit opioids. Despite significant research and public health efforts, NAS remains challenging to diagnose, predict, and manage due to highly variable expression. Biomarker discovery in the field of NAS is crucial for stratifying risk, allocating resources, monitoring longitudinal outcomes, and identifying novel therapeutics. There is considerable interest in identifying important genetic and epigenetic markers of NAS severity and outcome that can guide medical decision making, research efforts, and public policy. A number of recent studies have suggested that genetic and epigenetic changes are associated with NAS severity, including evidence of neurodevelopmental instability. This review will provide an overview of the role of genetics and epigenetics in short and longer-term NAS outcomes. We will also describe novel research efforts using polygenic risk scores for NAS risk stratification and salivary gene expression to understand neurobehavioral modulation. Finally, emerging research focused on neuroinflammation from prenatal opioid exposure may elucidate novel mechanisms that could lead to development of future novel therapeutics.