Efficient Deep Neural Network For Intelligent Robot System: Focusing On Visual Signal Processing

34.9K
views
46
authors
13
articles
Editors
4
Impact
Loading...
Flowchart of facial expression recognition based on NGO-BILSTM.
2,300 views
5 citations
The pose estimation of the OP network (left), HG network (middle), and HR network (right) after model transfer.
2,530 views
5 citations
2,157 views
2 citations
Qualitative comparisons on real-world images from Fattal (2014). (A) Hazy. (B) DCP. (C) DCPDN. (D) MSBDN. (E) FFA. (F) DA. (G) PSD. (H) RefineD. (I) Ours.
Original Research
01 December 2022

Motivation: Image dehazing, as a key prerequisite of high-level computer vision tasks, has gained extensive attention in recent years. Traditional model-based methods acquire dehazed images via the atmospheric scattering model, which dehazed favorably but often causes artifacts due to the error of parameter estimation. By contrast, recent model-free methods directly restore dehazed images by building an end-to-end network, which achieves better color fidelity. To improve the dehazing effect, we combine the complementary merits of these two categories and propose a physical-model guided self-distillation network for single image dehazing named PMGSDN.

Proposed method: First, we propose a novel attention guided feature extraction block (AGFEB) and build a deep feature extraction network by it. Second, we propose three early-exit branches and embed the dark channel prior information to the network to merge the merits of model-based methods and model-free methods, and then we adopt self-distillation to transfer the features from the deeper layers (perform as teacher) to shallow early-exit branches (perform as student) to improve the dehazing effect.

Results: For I-HAZE and O-HAZE datasets, better than the other methods, the proposed method achieves the best values of PSNR and SSIM being 17.41dB, 0.813, 18.48dB, and 0.802. Moreover, for real-world images, the proposed method also obtains high quality dehazed results.

Conclusion: Experimental results on both synthetic and real-world images demonstrate that the proposed PMGSDN can effectively dehaze images, resulting in dehazed results with clear textures and good color fidelity.

1,800 views
4 citations
Recommended Research Topics