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A globally accurate potential
energy surface and quantum
dynamics calculations on the
Be(1S) + H2(v0 = 0, j0 = 0)→ BeH+
H reaction

Zijiang Yang and Maodu Chen*

Key Laboratory of Materials Modification by Laser, Electron, and Ion Beams (Ministry of Education),
School of Physics, Dalian University of Technology, Dalian, China

The reactive collision between Be atom and H2 molecule has received great

interest both experimentally and theoretically due to its significant role in

hydrogen storage, astrophysics, quantum chemistry and other fields, but the

corresponding dynamics calculations have not been reported. Herein, a globally

accurate ground-state BeH2 PES is represented using the neural network

strategy based on 12371 high-level ab initio points. On this newly

constructed PES, the quantum time-dependent wave packet calculations on

the Be(1S) + H2(v0 = 0, j0 = 0) → BeH + H reaction are performed to study the

microscopic dynamics mechanisms. The calculated results indicate that this

reaction follows the complex-forming mechanism near the reactive threshold,

whereas a direct H-abstraction process gradually plays the dominant role when

the collision energy is large enough. The newly constructed PES can be used for

further dynamics calculations on the BeH2 reactive system, such as the

rovibrational excitations and isotopic substitutions of the H2 molecule, and

the presented dynamics data would be of importance in experimental research

at a finer level.

KEYWORDS

potential energy surface, quantum dynamics, neural network, ab initio, time-
dependent wave packet, Be(1S) + H2 reaction

1 Introduction

In recent decades, the interactions between beryllium atom and hydrogen molecules

have been of great attention because of their significance in astrophysics, hydrogen

storage, quantum chemistry and other fields. On the one hand, the collision product BeH2

molecule presents the fundamental and technological interest in potential applications,

such as the nuclear materials and rocket fuel technology [1, 2], owing to its small mass and

large hydrogen-to-metal mass ratios. Moreover, the molecular BeH2, with a simple

electronic structure, has become an excellent candidate for testing new computational

methods for quantum chemistry [3–6]. On the other hand, the further product BeH

molecule in the collision process of Be + H2 is a popular testing target for the electronic

OPEN ACCESS

EDITED BY

Yujun Zheng,
Shandong University, China

REVIEWED BY

Yongqing Li,
Liaoning University, China
Chuan-Lu Yang,
Ludong University, China

*CORRESPONDENCE

Maodu Chen,
mdchen@dlut.edu.cn

SPECIALTY SECTION

This article was submitted to Atomic and
Molecular Physics,
a section of the journal
Frontiers in Physics

RECEIVED 18 August 2022
ACCEPTED 29 August 2022
PUBLISHED 14 September 2022

CITATION

Yang Z and Chen M (2022), A globally
accurate potential energy surface and
quantum dynamics calculations on the
Be(1S) + H2(v0 = 0, j0 = 0) → BeH +
H reaction.
Front. Phys. 10:1022222.
doi: 10.3389/fphy.2022.1022222

COPYRIGHT

© 2022 Yang and Chen. This is an open-
access article distributed under the
terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution
or reproduction is permittedwhich does
not comply with these terms.

Frontiers in Physics frontiersin.org01

TYPE Original Research
PUBLISHED 14 September 2022
DOI 10.3389/fphy.2022.1022222

4

https://www.frontiersin.org/articles/10.3389/fphy.2022.1022222/full
https://www.frontiersin.org/articles/10.3389/fphy.2022.1022222/full
https://www.frontiersin.org/articles/10.3389/fphy.2022.1022222/full
https://www.frontiersin.org/articles/10.3389/fphy.2022.1022222/full
https://www.frontiersin.org/articles/10.3389/fphy.2022.1022222/full
https://www.frontiersin.org/articles/10.3389/fphy.2022.1022222/full
https://www.frontiersin.org/articles/10.3389/fphy.2022.1022222/full
https://www.frontiersin.org/articles/10.3389/fphy.2022.1022222/full
https://www.frontiersin.org/articles/10.3389/fphy.2022.1022222/full
https://www.frontiersin.org/articles/10.3389/fphy.2022.1022222/full
https://www.frontiersin.org/articles/10.3389/fphy.2022.1022222/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fphy.2022.1022222&domain=pdf&date_stamp=2022-09-14
mailto:mdchen@dlut.edu.cn
https://doi.org/10.3389/fphy.2022.1022222
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://doi.org/10.3389/fphy.2022.1022222


structure calculations in open-shell systems [7, 8]. In addition,

BeH is also an important interstellar molecule, which has been

identified in stars and comets [9, 10].

Various experimental studies on the BeH2 system have been

implemented [11–18]. Tague and Andrews first detected the

BeH2 in molecular form by using infrared spectroscopy and the

matrix isolation technique [11]. In their experiment, the pulsed

laser evaporated Be atoms react with the hydrogen, and the

primary product BeH and BeH2 are largely favored compared

with the other four more complex product molecules of Be2H,

HBeHBeH, HBe(H)2BeH and HBeBeH. [12] synthesized the

gaseous BeH2 molecule using an electrical discharge facility,

which is verified by infrared emission spectroscopy. Their

study concluded that the stable BeH2 is a linearly symmetric

molecule with the BeH bond length of 1.334 Å. The high-

precision infrared emission spectra of the BeH2 and BeD2

molecules were measured by [14]. The antisymmetric

stretching modes and some hot bands of the two molecules

were studied and the spectroscopic data were accurately

determined. In their later study [17], the new vibration-

rotation hot bands of the BeH2 molecule were analyzed, and

an accurate value was obtained for the frequency of the bending

vibrational mode.

In the theoretical aspect, numerous ab initio calculations on

the BeH2 molecule have also been performed [19–26]. Martin

and Lee [19] accurately calculated the quartic force field of BeH2

using the CCSD(T) method, and the obtained spectroscopic

constants are consistent with the corresponding experimental

measurements. Hrenar et al. reported the first potential energy

surface (PES) of the BeH2 molecule used for the vibrational

configuration-interaction calculations by a multilevel scheme

[23]. Their calculated results can reproduce the experimental

values of the gas phase measurements and matrix isolation. The

ground-state equilibrium structure and PES of BeH2 were

calculated utilizing the CCSD(T) method combined with the

cc-pVTZ through cc-pV6Z basis sets by Koput and Peterson

[24]. Furthermore, the rovibrational energy levels of BeH2 and its

isotopic variations of BeD2 and BeHD were accurately calculated

by a variational method. The newest PES of the BeH2 system was

constructed by Li and Roy [25] utilizing the three-dimensional

spline interpolation over 6,864 energy points with the internally

contracted multi-reference configuration interaction (icMRCI)/

aug-cc-pV5Z level. On this PES, the spectral constants of the

BeH2 and BeD2 molecules were accurately calculated and the

corresponding data of the BeHD molecule were predicted.

Although the BeH2 system has received great attention both

experimentally and theoretically, most of those studies focused

on its structural and spectral properties, and the dynamics

mechanisms of the Be + H2 reaction process have not been

reported up to now. In theory, the most reliable approach for

obtaining the accurate dynamics information of a chemical

reaction is to implement rigorous quantum scattering

calculations on a globally high-precision PES [27, 28]. The

previous PESs of the BeH2 system are extremely reliable and

accurate for describing the BeH2 complex, whereas they are not

suitable for the reaction dynamics calculations since some key

regions where the reaction could reach are not included.

Therefore, constructing a global and accurate BeH2 PES is a

crucial premise for studying the microscopic dynamics

mechanisms of this reactive system.

Herein, a high-fidelity ground-state BeH2 PES is

represented based on a mass of high-precision ab initio

energy points and the permutation invariant polynomial-

neural network (PIP-NN) scheme [29, 30]. Moreover, the

quantum dynamics calculations at the state-resolved level for

the Be(1S) + H2(v0 = 0, j0 = 0) → BeH + H reaction are carried

out by the time-dependent wave packet (TDWP) method [31,

32] on this newly constructed PES. The computational details

and the characteristics of the PES are given in Section 2. Section

3 displays the calculated dynamics results and the relevant

discussion of the dynamics mechanisms for the title reaction

and Section 4 concludes this work.

2 Ground-state BeH2 potential
energy surface

2.1 Ab initio calculations

The energy points of the BeH2 system at the 11A′ state are

calculated using the icMRCI method [33, 34] with the Davidson

correction (+Q). The molecular orbitals are optimized by the

complete active space self-consistent field (CASSCF) method [35,

36] before the MRCI calculations are carried out. The CASSCF

orbitals are determined by the state-averaged calculations with

equal weight for the 11A′, 21A′, 11A″ and 21A″ states. The active
space is composed of nine active orbitals (8a′ + 1a″). The aug-cc-
pV5Z basis set [37] is used for both the two different atoms. The

energies calculated for the symmetrical configuration of Be-H2 is

defined by 0.8 ≤ RHH/a0 ≤ 8.0, 0.1 ≤ RBe-HH/a0 ≤ 16.0, 0 ≤ θ ≤ π/2,
and the configuration of H-BeH is constructed by 2.0 ≤ RBeH/a0 ≤
10.0, 0.1 ≤ RH-BeH/a0 ≤ 16.0, 0 ≤ θ′ ≤ π, Here, the ab initio

calculations are performed utilizing Molpro 2012 software [38].

2.2 Permutation invariant polynomial-
neural network fitting

The ground-state BeH2 PES can be expressed by the

summing of the two-body potentials and three-body potential:

V(R1, R2, R3) � ∑3
i�1
V(2)

i (Ri) + V(3)(R1, R2, R3) · f(R) (1)

where Ri (i = 1, 2, 3) are the bond length of Be-Ha, Ha-Hb and Be-

Hb, respectively. A switch function f(R) is used to get a better

Frontiers in Physics frontiersin.org02

Yang and Chen 10.3389/fphy.2022.1022222

5

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.1022222


representation in the asymptotic areas of the PES, and its form is

written as:

f(R) � ∏
n�1,2,3

(1 − 1
2
(1 + tanh(Rn − Rd

Rw
))) (2)

where Rd and Rw are the central position and the constant of

switch strength, respectively.

The two-body potentials are obtained by a feedforward NN

structure, which consists of two hidden layers with five neurons.

A total of 69 and 53 ab initio points are calculated to fit the

potential energy curves (PECs) of HH and BeH, respectively, and

the corresponding root mean square error (RMSE) are 0.036 and

0.385 meV. Figure 1 shows that the fitting PECs of H2(X
1Σg

+) and

BeH(X1Σ+) molecules can pass through the center of each ab

initio point. To further demonstrate the accuracy of the two-body

potentials, Table 1 displays that the spectroscopic constants of

the two diatomic molecules determined on the analytical PECs

are in good agreement with the corresponding experimental data

[39–41], suggesting the presented PES are sufficiently accurate

for representing the reactant and product channels when the

dynamics calculations are carried out.

The global ground-state BeH2 PES is represented by the PIP-

NN strategy [29, 30], which can rigorously assure that the

constructed PES satisfies the exchange symmetry of the two

hydrogen atoms, and this scheme has been widely and

successfully applied to lots of molecular systems [42–51].

First, the fundamental invariants can be expressed as:

Pi � exp(−αRi) (i � 1, 2, 3) (3)

where α is a constant between 0 and 1, and here the value of α is

set as 0.2. Second, the symmetrized polynomial vector G = {Gi} is

constructed as:

G1 � (P1 + P3)/2 (4)
G2 � P1 × P3 (5)

G3 � P2 (6)

Finally, G is normalized as the input of the NN model:

Ii � 2(Gi − Gi,min)(Gi,max − Gi,min) − 1, (i � 1, 2, 3) (7)

where Gi,max and Gi,min are the maximum and minimum values

of Gi, respectively.

The NN model used for constructing the global CaH2
+ PES

consists of two hidden layers with 12 neurons. The hyperbolic

tangent function and linear function are used as the transfer

functions φ in the 1–2, 2–3 layers, and 3–4 layers, respectively.

FIGURE 1
Comparison of the ab initio data and the NN fitting results of
the PECs of H2(X

1Σg+) and BeH(X1Σ+).

TABLE 1 Spectroscopic constants of H2(X
1Σg

+) and BeH(X1Σ+).

Re (Bohr) De (eV) ωe (cm
−1) ωexe (cm−1)

H2(X
1Σg+)

This worka 1.401 4.750 4400.9 124.6

Experimentb 1.401 4.747 4401.2 121.3

BeH(X1Σ+)

This worka 2.544 2.176 2054.0 39.4

Experiment 2.537c 2.181c 2060.8d 36.3d

aObtained on the analytical PECs.
bRef. 39.
cRef. 40.
dRef. 41.

FIGURE. 2
Distribution of the PIP-NN fitting errors of the ground-state
BeH2 PES.
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The finally analytical expansion of the final PES can be

presented as:

y � φ(3)⎛⎝b(3)1 +∑12
i�1
w(3)

i1 φ(2)⎛⎝b(2)i +∑12
j�1
w(2)

ji φ
(1)⎛⎝b(1)j +∑3

k�1
w(1)

kj Ik⎞⎠⎞⎠⎞⎠
(8)

where y represents the normalized potential energy. The connecting

weight w and bias b between the adjacent two layers are iteratively

optimized by the Levenberg–Marquardt algorithm [52]. Here, a total

of 12371 molecular configurations are picked out to take part in the

PIP-NN fitting, which are randomly classified into 90% training data,

5% testing data, and 5% validation data to avoid over-fitting. The

parameters of w and b of the analysis PES are determined by the

training data; the testing data are used to evaluate the generalization

performance of the trained PES and the training should stop

immediately when the testing error starts to rise; the validation

data can be used for the initial assessment and adjustment of the NN

model. The distribution of the fitting errors of the ground-state BeH2

PES is plotted in Figure 2. This figure shows that the constructed PES

can keep small fitting errors in the whole energy area. The overall

RMSE of the PIP-NN PES is only 1.972 meV, and the energy points

with an absolutely fitting error less than 0.005 eV can reach 97.2% of

all the selected configurations, implying the fitting PES is globally

accurate and suitable for performing the reaction dynamics studies

on the BeH2 system.

2.3 Topographic characteristics of
potential energy surface

Figures 3A,B display the contour plots of the PIP-NN PES at

the D∞h and C2v symmetries, respectively. Excellent exchange

symmetry of the PIP-PES is displayed in Figure 3A. There is a

deep well with an energy minimum of −6.382 eV below the

asymptotic H-Be-H at R1 = R3 = 2.515 a0, and it is also the global

minimum (GM) of the ground-state BeH2 PES, which has been

demonstrated in the previous theoretical and experimental

FIGURE 3
Contour plots of the ground-state BeH2 PES at the (A) D∞h and (B) C2v symmetries.

TABLE 2 Structures, energies and vibrational frequencies of the GM and TS for the ground-state BeH2.

R1 (a0) γ (degree) E (eV) v1 (cm−1) v2 (cm−1) v3 (cm−1)

GM (D∞h)

This worka 2.515 180 −1.632 2042.9 705.1 2244.7

Ab initiob 2.507 180 −1.663 1991.8 711.8 2178.8

Experiment 2.507c 180c — — 711.5d 2178.9c

TS (C2v)

This worka 2.801 47.8 2.594 937.4 2334.2i 1567.5

Ab initiob 2.822 42.1 2.587 — — —

aObtained on the PIP-NN PES.
bRef. 25. Calculated at the icMRCI/aug-cc-pCV5Z level and the core-electron correlation is included.
cRef. 14.
dRef. 17.
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studies [14, 25]. At the relatively low collision energy, the Be atom

collideswith theH2moleculewith the remarkable elongation of theHH

bond, and theBeHproduct is formedby the dissociationof the collinear

BeH2 molecule. For panel (B), a saddle point structure with the energy

value of −2.156 eV is presented at R2 = 2.269 a0, RBe-HH = 2.561 a0,

which is corresponding to the transition state (TS) of the BeH2 system

and dominates the collision process of the H- exchange path of Ha +

BeHb → Hb + BeHa. The valley at R2 = 1.401 a0 corresponds to the

Be(1S) + H2 channel, and the GM is also shown at R2 = 5.030 a0, RBe-

HH = 0 a0 since the D∞h configuration is a limitation of the C2v
symmetry.

Table 2 lists the structures, energy values and vibrational

frequencies of the GM and TS for the ground-state BeH2

calculated at the PIP-NN PES, and the available experimental

and ab initio values are also presented. The energy values are

relative to the Be(1S) + H2 asymptotic channel. The newly

constructed PES can accurately reproduce the geometries and

the corresponding energies of the two stationary points, and the

vibrational frequency v2 is consistent with the experimental [14,

17] and extremely high-precision ab initio data [25] well. There

FIGURE 4
Contour plots of the ground-state BeH2 PES at four Be-H-H angles (45°, 90°, 135°, and 180°).

FIGURE 5
Global MEP and the MEPs at four Ca+-H-H angles (45°, 90°,
135°, and 180°) of the Be(1S) + H2 → BeH + H reaction obtained on
the ground-state BeH2 PES.
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exist some deviations for the values of v1 and v3 between the data

calculated on the PIP-NN PES and the experimental or ab initio

results, which are caused by the small fitting error because the

harmonic frequencies are very sensitive to the small difference of

PES, but they nearly do not affect the subsequent reaction

dynamics results. In general, the PIP-NN PES can precisely

represent the characteristics of the GM and TS of the ground-

state BeH2.

The contour maps of the ground-state BeH2 PES at four fixed

Be-H-H approaching angles (45°, 90°, 135°, and 180°) are

presented in Figure 4. It is clear that the constructed PES is

smooth in the entire configuration space, and there is no non-

physical structure for each angle, suggesting the over-fitting

behavior does not exist during the fitting PES. For the PES at

every angle, the bottom valley is the Be(1S) + H2 channel, and the

left valley is corresponding to the BeH + H channel. The energy

of the bottom channel is lower than the left channel, indicating

that the Be(1S) + H2→ BeH + H reaction is endothermic. For the

angles of 45° and 90°, the reactant and product channels are

connected by a barrier structure, which is generated by the avoid

crossing behavior of the 21A′ state. The energy value of the

barrier is higher than the energy of the product channel, implying

the larger collision energy is needed to initiate this reaction by the

collision approach with a relatively small Be-H-H approaching

angle. In addition, a potential well with the depth of 2.496 eV

relative to the BeH + H asymptotic region is shown when the

approaching angle is at 45°, and many bound states or quasi-

bound states can be supported by this well. For the angles of 135°

and 180°, no well or barrier exists in the PES, thus the title

reaction proceeds via a direct H-abstraction process when the

collision angle becomes larger enough.

Figure 5 shows the minimum energy paths (MEPs) of the

Be(1S) + H2 → BeH + H reaction at four Be-H-H approaching

angles (45°, 90°, 135°, 180°), calculated by scanning the ground-

state BeH2 PES with the fixed angle shown in Figure 4 at

different coordinates to obtain the energy minimum. In

addition, the global MEP generated by scanning the whole

PES is also given in this plot, which plays the dominant role in

FIGURE 6
(A) Contour plot of the ground-state BeH2 PES when the Be atom moves around the H2 molecule with the fixed bond length at 1.401 a0 (B)
Contour plot of the ground-state BeH2 PES when a H atom moves around the BeH molecule with the fixed bond length at 2.544 a0.
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determining the microscopic mechanisms of the title reaction,

especially at relatively low energy. Under the action of collision

energy, the reactants pass a barrier with the height of 2.096 eV

relative to the reactant asymptotic region, and then a linear

H-Be-H complex is formed on the well, which corresponds to

the GM of the PES, finally, a Be-H bond is broken to generate

the BeH molecule in the product channel. When the zero-point

energies of the reactant and product molecules are taken into

consideration, the endothermicity of the Be(1S) + H2 → BeH +

H reaction calculated on this newly constructed PES is

2.716 eV.

Figure 6A displays the contour plot of the ground-state BeH2

PES in the case of the Be atom moving around the H2 molecule

fixed at its equilibrium distance. It is clear that the Be atom is

always repelled by the H2 molecule, so initiating the title reaction

is difficult when the HH bond is stabilized at its equilibrium

structure. As shown in Figure 3A, when the HH bond is

elongated 5.030 a0, there exist the attractive interactions

between the Be atom and the H2 molecule, and a stable BeH2

complex is formed. A similar map to Figure 6A but for a H atom

moving around the BeH fixed at its equilibrium distance is

displayed in Figure 6B. Different from the case of Figure 6A,

it appears the attractive interactions between the H atom and

BeH molecule, and the well around the Be atom is deeper than

the well around another H atom, suggesting that this H atom

prefers to get out from the side of H atom of BeH in the product

region.

3 Quantum dynamics calculations

For most of the triatomic and some tetratomic reactive

systems, the quantum TDWP method [31, 32, 53–55] is a

high-efficiency and accurate tool for calculating the dynamics

data. The full-dimensional quantum dynamics calculations of the

Be(1S) + H2(v0 = 0, j0 = 0)→ BeH + H reaction are carried out on

this newly constructed PIP-NN PES by the TDWP method for

understanding the state-resolved dynamics mechanisms. The

Coriolis coupling effect is included in the quantum TDWP

calculations. Here, only the main equations in the TDWP

calculations are displayed below. The Hamiltonian of the title

reaction can be expressed as:

Ĥ � − Z2

2μR

z2

zR2
− Z2

2μr

z2

zr2
+ (Ĵ − ĵ)2

2μRR
2
+ ĵ

2

2μrr
2
+ V̂ (9)

where µr and µR are the reduced masses associated with r and R in

the Jacobi coordinate, respectively. J and j express the total

TABLE 3 Main numerical parameters in the TDWP calculations.

Be(1S) + H2(v0 = 0, j0 = 0) → BeH + H

Grid/basis range and size R (a0)∈[0.1, 25], NR = 299 (199 for interaction region)

r (a0)∈[0.01, 20], Nr = 239 (79 for asymptotic region)

Nj = 99

Initial wave packet exp [−(R−Rc )2
2Δ2

R
] cos k0R Rc = 16 a0, ΔR = 0.20 a0, k0 = (2E0μR)

1/2 with E0 = 4.0 eV

Total propagation time 20,000 a.u.

FIGURE 7
Collision energy dependence of (A) total reaction
probabilities with four partial waves (J = 0, 20, 40 and 50) and (B)
total ICS of the Be(1S) + H2(v0 = 0, j0 = 0) → BeH + H reaction
calculated by the TDWP method on the ground-state
BeH2 PES.
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angular momentum quantum number of BeH2 and rotational

angular momentum quantum number of H2, respectively. The

initial wave packet consists of a Gaussian type wave function, a

rovibrational eigenfunction of H2, and an eigenfunction of the

total angular momentum, written as:

ΨJMε
av0j0 l0

(t � 0) � G(Rα)ϕv0
(rα)j0(θα)

∣∣∣∣JMj0l0ε〉 (10)

To avoid the reflection of wave packet at the grid edge, the

absorption potential used in the TDWP calculations is defined as:

D(x) �
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

exp[ − Δt · Ca · ( x − xa

xb − xa
)2], xa ≤ x≤xb

exp[ − Δt · Cb · ( x − xb

xend − xb
)2] × exp(−Δt · Ca), xb <x≤xend

(11)

where Ci and xi (i = a, b) represent the strength and positions of

the absorption potential, respectively. Here, the time evolution of

the wave packet is realized by the split operator scheme [56]

and using the reactant coordinate-based method [57, 58] to

extract the state-resolved S-matrix. The rovibrationally state-

resolved reaction probability obtained by the S-matrix is

expressed as:

PJ
vj ← v0j0

� 1
2j0 + 1

∑
K

∑
K0

∣∣∣∣∣SJvjK ← v0j0K0

∣∣∣∣∣2 (12)

The state-resolved integral cross sections (ICSs) are

calculated by summing the probabilities of all the calculated

partial wave J:

σvj←v0j0 �
π(2j0 + 1)k2v0j0 ∑K ∑

K0

∑
J

(2J + 1)
∣∣∣∣∣SJvjK ← v0j0K0

∣∣∣∣∣2 (13)

where kv0j0 is the momenta in the entrance channel. The state-

resolved differential cross sections (DCSs) can be obtained by the

following equation:

FIGURE 8
Rovibrationally state-resolved ICSs of the Be(1S) + H2(v0 = 0, j0 = 0) → BeH + H reaction at four collision energies (3.0, 4.0, 4.5, and 5.0 eV)
calculated by the TDWP method on the ground-state BeH2 PES.
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dσvj←v0j0(ϑ, E)
dΩ � 1(2j0 + 1)∑K ∑

K0

∣∣∣∣∣∣∣∣∣∣
1

2ikv0j0
∑
J

(2J + 1)dJ
KK0

(ϑ)SJvjK ← v0j0K0

∣∣∣∣∣∣∣∣∣∣
2

(14)

wheredJKK0
(ϑ) represents the reduced Wigner matrix,

andϑexpress the scattering angle.

In this work, the reactant H2 molecule is set at its ground-

rovibrational state of v0 = 0, j0 = 0, and the number of partial

waves is calculated up to 65, which can obtain the convergent ICS

and DCS up to the collision energy of 5.0 eV. In Table 3, the main

parameters determined bymany times tests of convergence in the

TDWP calculations are listed.

The collision energy dependence of total reaction

probabilities for the Be(1S) + H2(v0 = 0, j0 = 0) → BeH + H

reaction with four partial waves (J = 0, 20, 40 and 50) are

presented in Figure 7A. For J = 0, the curve exhibits relatively

dense oscillation structures, which are attributed to the

potential well on the reactive path. The title reaction is

dominated by the global MEP and there is a well with the

depth of 1.632 eV, resulting in obvious quantum resonances

because numerous bound and quasi-bound states can be

formed in the well. As the increase of J values, the reactive

threshold becomes larger and the oscillations are gradually

weakened. This is because the increasing centrifugal barrier

reduces and even smooths the effective potential well, and the

other collision channels shown in Figure 5 are opened, causing

the amplitudes of oscillations on the reaction probability curves

become less pronounced. Figure 7B shows the collision energy

dependence of total ICS for the title reaction. The total ICS

value increases monotonically with the increase of collision

energy, which is consistent with the characteristic of an

endothermic reaction. Compared to the reaction

probabilities, there is no oscillation structures on the ICS

curve due to the superposition of all the calculated partial

waves.

To understand the dynamics mechanisms of the Be(1S) +

H2(v0 = 0, j0 = 0) → BeH + H reaction at the state-to-state

level, the rovibrationally state-resolved ICSs of the product

BeH molecule at four collision energies (3.0, 4.0, 4.5, and

5.0 eV) are shown in Figure 8. For the collision energy of

3.0 eV, the BeH molecule only can be excited to the lowest

three vibrational states, but the maximum of the rotational

quantum number can reach j′ = 21 at v′ = 0, and the peak

value of the rovibrationally state-resolved ICS is located at

v′ = 0, j′ = 16. The presented vibrationally cold and

rotationally hot distribution conforms to the complex-

forming mechanism. More rovibrational states become

available with the increase of collision energy, and there is

a population inversion of the vibrational quantum number.

For the collision energy of 5.0 eV, the product BeH molecule

can populate at very high rovibrational states (v′ = 10, j′ = 28),

suggesting more collision energy is effectively transformed

into the internal energy of the product molecule. The

contributions of high-order partial waves are larger and

more reaction paths are gradually opened as the collision

energy increases, thus the lifetime of the forming BeH2

complex becomes shorter and the title reaction prefers a

direct H-abstraction process when the collision energy is

large enough.

To study the dynamics process of the Be(1S) + H2(v0 = 0,

j0 = 0) → BeH + H reaction more intuitively by giving the

angular distribution of the product molecule, Figure 9

presents the total DCSs varying with the scattering angle

and collision energy. It is clear that the peak values of the

angular distribution are located at the two extreme angles

(0° and 180°) and the forward-backward symmetric DCSs

are displayed when the collision energy is slightly larger

than the reactive threshold, which is due to the forming of a

BeH2 complex supported by the potential well on the global

MEP. With the increase of collision energy, the product

BeH molecule increasingly prefers the forward scattering,

showing an obviously non-statistical behavior. It also can

be explained by the increasing contributions of the

centrifugal barriers and more open reactive paths

without a well at large collision energy. The calculated

results of the total DCS further imply that the title

reaction follows the complex-forming mechanism near

the reactive threshold, whereas s direct H-abstraction

process gradually plays a dominant role at high collision

energy.

FIGURE 9
Total DCS of the Be(1S) +H2(v0 = 0, j0 = 0)→ BeH+H reaction
as a function of scattering angle and collision energy calculated by
the TDWP method on the ground-state BeH2 PES.
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4 Conclusion

In this paper, a globally accurate ground-state BeH2 PES is

structured using the PIP-NN scheme based on 12371 ab initio

points calculated at the icMRCI + Q/aug-cc-pCV5Z level. The PES

can accurately reproduce the original ab initio data in each region,

and the global fitting RMSE is only 1.972 meV. The molecular

constants of H2(X
1Σg+) and BeH(X1Σ+) calculated on the PES are

consistent with the corresponding experimental data, and the PES

can reproduce the characteristics of stationary points well. The GM

and TS of the ground-state BeH2 correspond to the D∞h and C2v

symmetries, respectively. The topographic features of the PES are

described in detail. On this newly constructed PES, the dynamics

calculations are performed on the Be(1S) + H2(v0 = 0, j0 = 0) →
BeH +H reaction at the state-to-state level by the quantumTDWP

method for understanding the microscopic mechanisms. The

endothermicity of the title reaction determined by the PES is

2.716 eV. There exist obvious oscillation structures on the curves of

reaction probabilities since the well on the global MEP can support

numerous bound and quasi-bound states, and the total ICS

increases monotonically with the increase of collision energy.

The rovibrationally state-resolved ICSs present vibrationally

cold and rotationally hot distribution at relatively low collision

energy, and the product BeH molecule can populate at very high

rovibrational states. The total DCSs are forward-backward

symmetric when the collision energy is slightly larger than the

reactive threshold, but only the forward scatting is presented at

high collision energy. The dynamics results indicate that the title

reaction follows the complex-forming mechanism near the

reactive threshold, whereas a direct H-abstraction process

gradually plays the dominant role at high collision energy.

Further dynamics studies for this reaction system can be

carried out on the presented PES, such as the effects of

rovibrational excitations and isotopic substitutions of the H2

molecule, and the dynamics data calculated in this paper would

be of importance in the experimental studies on the title reaction.
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The hydrogen bond rotation of
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In this work, we report quantum tunnelling effects on the confined water chain

flipping, different from the spatial size and even electronic correlation effects of

the confinement environment. First-principles calculations and analyses

confirm that quantum tunnelling from the water chain itself enhances the

hydrogen bond rotation. Importantly, the neglected resonant tunnelling can

result in tunnelling rotation of hydrogen bonds with a probability close to

1 through the provided 0.6 eV energy, while the probability of generally

recognized sequential tunnelling is only 10−6. Not only that, compared to

sequential tunnelling, resonant tunnelling leads to a 20 K higher flipping

temperature of the water chain. Additionally, the ratio of the resonant

tunnelling probability to the thermal disturbance probability at 200 K is at

least ten times larger than that of sequential tunnelling, which further

illustrates the enhancement of hydrogen bond rotation brought about by

resonant tunnelling.

KEYWORDS

resonant tunnelling, quantum coherence, thermal disturbance, hydrogen bond,
confinement, first-principles

Introduction

To achieve effective regulation of the water transport process, an important goal is to

deeply understand the confined hydrogen bond (H-bond) rotation mechanism at the

atomic level. Quantum effects have been reported to be essential and should be carefully

considered on a microscopic scale [1–7], including quantum effects related to water, such

as properties of electronic correlation [8–10], nuclear quantum effects [11, 12] and

tunnelling [13, 14]. This suggests that quantum effects play an important role in

understanding the nature of water and even regulating its behavior. More

importantly, some studies show that the H-bond rotation of water is affected by

quantum effects [8, 15]. As a microstructure, a hydrogen atom has a very small mass,

which leads to the existence of tunnelling effects from the water chain itself during

H-bond rotation. Moreover, a recent experiment revealed that quantum coherence can

effectively improve the tunnelling effects [1]. This inspired us to explore the deep effect of

the quantum properties of a water chain on the H-bond rotation.
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Currently, many studies have been performed on the

transport and H-bonds of confined water [16–23], including

on the step-by-step rotation behavior of confined water and its

intrinsic mechanism [24]. Many studies have shown that the

flipping of confined water is affected by the spatial size [25–30].

For example, the transport of confined water has a high

conductivity [28, 29], and the water flux through a carbon

nanotube (CNT) has a linear relationship with the radius of

the CNT when the length is much larger than the radius [30].

However, due to the inherent complexity of the molecular

system, the understanding of the mechanism of water chain

flipping under confinement is still unclear. The experimental

technique has been greatly improved compared with the past,

which has resulted in water chains formed in CNTs with

diameters as small as 0.548 nm, and an extremely high

freezing temperature has been detected [31, 32]. However,

observing the details of the mechanism of water chain flipping

in a short time, much less regulating the mechanism of water

chain flipping, is still a great challenge. Considering that the

tunnelling effects, especially the previously often neglected

quantum coherence, have a more fundamental significance in

quantum physics, studying the resonance effects caused by the

coherence that exists when a water chain flips in a confined space

from the perspective of the basic principles of tunnelling is

necessary.

In this work, we study the possible flipping of a water chain

under quasi-one-dimensional (1D) confinement and find that

the quantum tunnelling cannot be ignored. Significantly,

quantum resonant tunnelling brings different effects than

generally recognized tunnelling and thermal processes. Here,

the calculation results show that the H-bond rotation of the water

chain in a 1D-CNT is obviously affected by tunnelling, especially

resonant tunnelling. Compared with the tunnelling without

considering quantum coherence, the resonant tunnelling with

considering quantum coherence can achieve a higher probability

with less provided energies, which leads to an increase of water

chain flipping temperature by 20 K. Therefore, our work opens a

new perspective for the quantum regulation of water chain

flipping in channels.

Computational methods

For first-principles calculations, the empirical-dispersion-

corrected hybrid Perdew-Burke-Ernzerhof (PBE0-D3) method

of density functional theory was carried out in the Gaussian

09 package [33–35]. The basis sets 6-311+G (d, p) and 6-31G (d)

were used for water and the CNT, respectively. The armchair-

type single-walled (6, 6) CNT was employed, and the diameter

and length were set to 8.20 Å and 20 Å, respectively. After CNT

preoptimization, we froze all of the atoms of the CNT to ensure

constant confinement effects on the water. In the CNT, three

water molecules were selected to form the water chain. The water

chain was along the tube axis, and the molecules were connected

to each other by H-bonds. Based on the different initial

geometries of the water chain, we searched the structures for

extreme points (including equilibrium and transition states) in

the rotation of water molecules in the CNT and traced the

reaction paths of the flipping for the water chain according to

the intrinsic reaction coordinate [36, 37]. The reduced masses are

1.0834 amu and 1.0955 amu for the water chain flipping along

the path containing L-type and D-type defective intermediates.

For the formula without considering quantum coherence, the

Wentzel-Kramers-Brillouin (WKB) approximation is used for

calculating the tunnelling probability for a single barrier using

the following formula [38, 39]:

P � Exp[ − 2
-
∫x2

x1

������������
2m(V(x) − E)√

dx] (1)

where - is the reduced Planck constant, V(x) represents the

potential energy surface (PES) function with the coordinate x as

the variable, expressed by a Gaussian fitting function, and x1 and

x2 are the two coordinates when V(x) and E are equal. The

tunnelling probability for double barriers is obtained by

multiplying the tunnelling probability of two single barriers.

For the formula considering quantum coherence, the steady-

state Schrödinger equation of N multiple barriers is strictly

solved. For the convenience of calculation, the equivalent

square barrier is used to fit the PES. In detail, we first take

the half-height width of the left-side barrier as the square barrier

width to obtain the approximate equivalent square barrier. Then,

the local minimum value is taken as the axis of symmetry to

obtain the ideal double barrier model. This equivalent square

barrier method is an approximation based on the principle that

original barrier and approximate square barrier have the same

tunnelling probability. The general expression of the Schrödinger

equation can be written as follows:

ψ j � C2j−1 exp(ikjx) + C2j exp(−ikjx) (2)

in which C2j-1 represents the transmission amplitude, C2j is the

reflection amplitude and kj is the wavenumber. The tunnelling

probability is defined as the ratio of the flow of particles out of the

barrier to the flow of particles into the barrier as follows:

T � |C4N+1|2
|C1|2 (3)

For the thermodynamic model, the Boltzmann distribution is

used to describe the probability of crossing the barrier from the

classical perspective as follows:

Pthermal � Exp(−ΔE
kT

) (4)

where k is the Boltzmann constant and T is the temperature. ΔE
represents the relative energy between the initial provided energy

and the barrier peak. Additionally, to compare the classical and
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quantum methods of crossing the barrier, the ratio of the

quantum tunnelling probability to the thermal disturbance

probability is studied.

Results and discussion

To study the possible flipping of a water chain under

confinement, the water molecules in a CNT that form a 1D

chain are examined (Figure 1A). We give two reaction paths,

and the corresponding PESs of flipping are shown in

Figure 1B. There are five extreme points along each

reaction path: two structures with lower energies (reactant

and product, labelled Min1 and Min2), two transition state

structures (labelled TS1 and TS2), and an intermediate

structure (labelled Int). These structures are shown in

Figure 1C. This suggests that the flipping of the water

chain is a step-by-step process, and the formation of the

intermediate is necessary, which is consistent with our

previous study [24]. For the two reaction paths, the main

difference lies in the structure of the intermediate. In detail,

when the water chain flips along the nanotube axis in the

opposite direction to the H-bonds, the heights of the energy

barriers of the two transition states to be overcome are

approximately 0.660 eV, and an intermediate with an

energy of approximately 0.524 eV is formed. This structure

has the two hydrogen atoms in the middle water molecule

forming H-bonds with the oxygen atoms of the two adjacent

water molecules. We call this the intermediate with an L-type

defect [40]. The H-bonds are oriented towards the middle

water molecule. When the water chain flips along the direction

of the H-bond, it needs to overcome two energy barriers with

FIGURE 1
Different mechanisms by which the water chain with three water molecules in the CNT achieves reorientation. (A)Model of the confined water
chain. (B) PESs of thewater chain flipping. Dotted lines are the equivalent square energy barriers obtained by fitting the double barriers of the PESs. (C)
Water chain structures corresponding to each extreme point on the PESs. (D) Variation in the quantum tunnelling probability with provided energy
without considering coherence. The dotted and solid lines indicate the tunnelling probability at provided energies below and above the
intermediate energies, respectively. (E) Variation in the quantum tunnelling probability with provided energy considering coherence. According to
the square barriers, the energy height provided are 0.477–0.597 eV and 0.524–0.634 eV, corresponding to the two reaction paths. The dotted lines
represent the provided energy at the start or end of the two reaction paths. Green and yellow represent the reaction paths containing D-type and
L-type defective intermediates, respectively.
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heights of approximately 0.640 eV. Additionally, the

intermediate formed has an energy of approximately

0.477 eV. In this structure, the oxygen atom in the middle

water molecule forms H-bonds with the hydrogen atoms of

the two adjacent water molecules. The H-bonds are oriented

towards both ends of the water molecules, which is called the

intermediate with a D-type defect [40]. The energy of the

intermediate with an L-type defect is approximately 10−2 eV

higher than that of the intermediate with a D-type defect. This

indicates that the water chain is more likely to flip along the

path of the intermediate with a D-type defect.

Reorientation of the water chain can be achieved not only

through step-by-step flipping by classical thermodynamic

perturbations but also by quantum tunnelling. Here, to

obtain the sequential tunnelling probability for double

barriers without considering the quantum coherence, the

WKB approximation is applied [39, 40]. We considered the

difficulty of the water chain to achieve reorientation by

quantum tunnelling at different provided energies. As

shown in Figure 1D, with an increase in the provided

energy, the tunnelling probability gradually increases.

Taking the path containing the L-type defective

intermediate as an example, the tunnelling probabilities are

approximately 10−25, 10−16 and 10−6 when the provided

energies are approximately 0.477 eV, 0.524 eV and

0.597 eV, respectively. For the two paths containing L-type

and D-type defective intermediates, when the provided energy

is approximately 0.477 eV, the two tunnelling probabilities are

almost equal. However, when the provided energy is larger

than 0.477 eV, the tunnelling probability of the water chain

along the path containing the L-type defective intermediate is

less than that along the path containing the D-type defective

intermediate. For example, at the provided energy of 0.597 eV,

the tunnelling probabilities are approximately 10−6 and 10−5

for the reaction paths containing the L-type and D-type

defective intermediates, respectively. When the provided

energy is less than 0.477 eV, the tunnelling probability of

the water chain along the path containing the L-type defective

intermediate is greater than that along the path containing the

D-type defective intermediate.

In addition to quantum tunnelling, thermal effects can

also cause the water chain to flip. To clearly show the

relationship between tunnelling and thermal disturbance

with temperature and provided energy, we treat thermal

disturbance and tunnelling as independent probability

events. Under this condition, we compare the probabilities

of the water chain achieving reorientation by quantum

tunnelling and thermal disturbance (25–200 K). As shown

in Figure 2A, when the provided energies at the double

barriers of the two reaction paths are given, the probability

of water chain flipping by thermal disturbance increases with

the temperature. When the temperature is lower than 84 K,

quantum tunnelling is more dominant than thermal

disturbance. At temperatures above 120 K, thermal

disturbance plays a dominant role, rather than quantum

tunnelling. Therefore, we infer that at room temperature,

thermal disturbance is more likely to cause the water chain

to flip.

FIGURE 2
Ratio of the tunnelling probability to the thermal disturbance probability for the water chain in the CNT to achieve reorientation at certain
provided energies and different temperatures. (A)Coherence is not considered in the tunnelling probability calculation. (B)Coherence is considered
in the tunnelling probability calculation. The temperature range is 25–200 K, and the interval is 25 K “~” is the magnitude.
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Remarkably, due to the narrow width (approximately 1.9 Å

and 2.5 Å for the reaction paths containing the L-type defect and

D-type defect, and the values are similar to the previous article

predicting hydrogen atom resonance tunneling [41]) of the well

between the double barriers along the reaction path, the quantum

coherence should not be ignored. Therefore, a discussion of the

quantum tunnelling effects while considering coherence, that is,

resonant tunnelling, is necessary. The tunnelling probability is

defined as the ratio of the flow of particles out of the barrier to the

flow of particles into the barrier. As shown in Figure 1E, with an

increase in the provided energy, the tunnelling probability

increases and decreases at times, showing a nonlinear change.

This is significantly different from the quantum tunnelling

probability without considering coherence. In addition,

according to the peaks in Figure 1E, compared with quantum

tunnelling without coherence, quantum tunnelling with

coherence can achieve a higher probability at smaller provided

energy. Taking the path containing the L-type defective

intermediate as an example, the probabilities of quantum

tunnelling without and with consideration of coherence are

approximately 10−15, 10−12, 10−10, 10−6, and 10−3 and 10−6, 10−3,

10−1, 100, and 100 when the provided energies at the double

barrier are approximately 0.529 eV, 0.543 eV, 0.566 eV, 0.597 eV

and 0.632 eV, respectively. In a word, at some specific provided

energies, such as about 0.6 eV (detailed value is 0.597 eV), the

resonant tunnelling with consideration of coherence greatly

improves the tunnelling probability compared with sequential

tunnelling (see in Figures 1D,E), which means that neglected

quantum coherence may play an important role in the process of

water chain flipping.

Our previous study has demonstrated that the persistent time

(t) of the H-bond alignment for the confined water chain was

closely related to the PES of flipping [24]. It is negatively

correlation with the probability that the water chain achieves

flipping by overcoming energy barriers. And the relationship

between the number of water molecules (n) and the persistent

time is written:

Log (t) � a × n + b (5)
where a is the dynamic parameter of thermodynamic flipping

under the traditional perspective. In this work, we found that the

quantum tunneling, especially resonant tunneling, from the

water chain itself has a positive impact on its flipping. This

means that the existence of quantum tunnelling effects will

reduce the persistent time (i.e., reducing the value of a),

thereby enhancing the effect of water chain flipping. It is

reported that with the increase of water molecules [24], water

chain rotation becomes more difficult, which is expected to lead

to relatively weak quantum tunneling effects.

Furthermore, we compare the probabilities of the water

chain achieving reorientation via two different mechanisms

(quantum tunnelling considering coherence and thermal

disturbance), as shown in Figure 2B. The results show that

when the temperature is lower than 105 K, tunnelling is

dominant compared with thermal disturbance. When the

temperature is higher than 155 K, thermal disturbance

gradually becomes dominant. This temperature is

approximately 20 K higher than that without considering

coherence, indicating that the neglect of quantum

coherence could lead to underestimation of the tunnelling

capability. In addition, the ratios of the tunnelling probability

to the thermal disturbance probability at 200 K are analyzed

(Figure 2). For example, the ratios with coherence and without

coherence are approximately 10−11 and 10−7 when the

provided energy is 0.5 eV for the reaction path containing

the D defect, respectively. This further suggests that H-bond

rotation is greater affected by quantum tunnelling than is

generally recognized due to the presence of quantum

coherence. Importantly, resonant tunnelling has been

experimentally observed in hydrogen atom systems with an

energy precision of 10−3 eV in previous report, which is

equivalent to the resolution when considering resonant

tunneling in this manuscript [1]. This suggests that there

are opportunities for experimental observation and even

regulation of water chain flipping in channels in the future,

and our work is expected to provide theoretical guidance.

Although the approximation method in one-dimensional

coordinates is widely used in the study of general tunnelling

[42], it necessarily has some potential drawbacks in the study

of resonant tunnelling. One of the problems neglected due to

simplification is decoherence, i.e., the coherence breaking

process caused by the interaction between the reaction

coordinates and other coordinates under the influence of

external environmental perturbations, which will

correspondingly attenuate the effect of resonance

tunnelling. However, it is well known that, the

multidimensional quantum dynamics has remained difficult

to describe properly with simulations up to now. We hope that

our work will provide understanding of physical images and

expect that further discussions on other factors can be

performed in the future.

Conclusion

In summary, we shown the quantum tunnelling effects from the

water chain itself under ideal conditions, which enhance theH-bond

rotation. Importantly, compared with the generally recognized

sequential tunnelling, the resonant tunnelling that considers

quantum coherence can achieve a higher probability given less

provided energy, which further enhances the rotation of the

water chain. This work enriches the understanding of quantum

tunneling effects on H-bonds and highlights the enhanced water

chain rotation effect of previously neglected resonant tunneling due

to quantum coherence, which is hoped to enable quantum

regulation of the H-bond rotation mechanisms for confined water.
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State-to-state dynamics of the
C+(2P) + SH(X2Π) → H(2S) +
CS+(X2Σ+) reaction using a
time-dependent wave packet
and quasi-classical trajectory
methods

Dong Liu1, Juan Zhao1, Wei Wang1, Yuzhi Song2,
Qingtian Meng2 and Lulu Zhang1*
1School of Science, Shandong Jiaotong University, Jinan, China, 2School of Physics and Electronics,
Shandong Normal University, Jinan, China

The time-dependent quantum wave packet (TDWP) and quasi-classical

trajectory (QCT) are the basic research methods of reaction dynamics.

Utilizing these two methods, the total reaction probability (J = 0), integral

cross section (ICS), and rate parameter for the C+(2P) + SH(X2Π)(v = 0, 1, 2, 3) →
H(2S) + CS+(X2Σ+) reactions are calculated on an accurate potential energy

surface [Zhang et al. Phys. Chem. Chem. Phys. 2022, 24, 1007]. The results of

QCT are slightly different from those of the TDWP in value, but the trend is

consistent. They are also weakly dependent on the initial vibrational excitation

of SH. The state-to-state reaction probability and ICS at fixed collision energies

(0.1, 0.3, 0.5, and 0.7 eV) are first calculated using QCTmethods. It is hoped that

our work can attract experimentalists to study the dynamics of this interesting

but rarely discussed system.

KEYWORDS

time-dependent quantumwave packet, quasi-classical trajectory, reaction probability,
integral cross section, rate constant

1 Introduction

The ion-neutral collisions in the interstellar medium play essential roles in the field of

molecular physics and astrophysics [1, 2]. Also, the interaction between the C+ ion and SH

radical is considered to be significant in the production of carbon monosulfide ions. The

precise dynamics information on this reaction requires a full-dimensional analytical

potential energy surface (PES) of high quality.

The research on HCS+(X1Σ+) could date back to 1978 when Bruna et al. [3] found that

the global minimumHCS+ is a linear structure with CS+ = 2.814 a0 and CH = 2.062 a0, and

one of its isomer, HSC+, is located 4.770 eV above HCS+. The equilibrium structure of

HCS+ was also calculated by Botschwina and Sebald [4], who reported the intensities of
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the stretching vibrations simultaneously. Wong et al. [5] found a

tiny barrier (about 0.104 eV) between HCS+ and HSC+, and

HSC+ is 3.089 eV above HCS+. Puzzarini [6] accurately

investigated the structural and energetic characteristics of

HCS+ and HSC+ using the coupled cluster method with single

and double excitations with a perturbative treatment of the

connected triples [CCSD(T)] method, and the results are in

good agreement with the experimental results. Kaur and

Kumar [7, 8] computed the various energy transfer channels

of the collision between atomic H and CS+ molecular ions and 3D

ab initio PESs of the ground state and low-lying excited states of

the HCS+ system. Recently, the analytical global three-

dimensional PES of HCS+(X1Σ+) for the C+(2P) + SH(X2Π) →
H(2S) + CS+(X2Σ+) reaction was first constructed by Zhang et al.

[9]. This PES is fitted by a grid of 7,907 ab initio energy points

computed at a multi-reference configuration interaction level

plus the Davidson correction [MRCI(Q)] [10, 11] with aug-cc-

pV(5 + d)Z basis sets [12, 13]. The MRCI method uses the full-

valence complete active space self-consistent field (CASSCF) [14]

wave function as a reference. By using this PES of high accuracy,

with a final root mean square error of 0.0419 eV and a maximum

error of 0.0251 eV, the structures and locations of the global

minimum HCS+, local minimum HSC+, and transition states are

obtained. Scrutiny of the HCS+(X1Σ+) PES shows that the

isomeric HSC+ is in a potential well, 3.178 eV above the most

stable HCS+ structure, but it is separated from HCS+ only with a

tiny barrier (0.139 eV). According to the PES, the most likely

minimum energy path for the C+(2P) + SH(X2Π) → H(2S) +

CS+(X2Σ+) reaction and the energies of relative stationary points

are displayed in Figure 1. The reaction is found to be exothermic

(≈ 2.555 eV) and barrierless relative to the entrance channel.

The reaction probability and integral cross section (ICS) were

first calculated by Zhang et al. [9] with a time-dependent quantum

wavepacket (TDWP)andquasi-classical trajectory (QCT)methods

[9]. The calculated reaction probabilities for total angular

momentum J = 0, 10, 60, and 120 by the TDWP and QCT are

consistent with each other at high collision energies. Although the

divergence in the ICSsobtainedfromthe twomethods isevident, the

evolutional trend is consistent. Substantial dynamic information on

the title reaction should be deduced with a more time-saving QCT

method in the high-energy region in comparison with the time-

consumingTDWPcalculations. Finally, the typeof the title reaction

isgivenbyusingtheQCTmethod.Thecomplexwithalonglifeeasily

formed in the title reaction is attributed to a distinct potentialwell in

the path of reaction. Therefore, the indirect reaction is the primary

mechanism for C+(2P) + SH(X2Π)→ H(2S) + CS+(X2Σ+).

In the present work, both the TDWP and QCT methods are

applied to study the C+(2P) + SH(X2Π) → H(2S) + CS+(X2Σ+)

reaction on the PES of Zhang et al. [9] at the state-to-state level.

The paper is structured as follows. Section 2 gives a brief survey of

the TDWP and QCT theoretical methods used in this work. The

results and discussion, and conclusions are explained in Section 3

and Section 4, respectively.

2 Theory

2.1 Time-dependent quantum wave
packet

The TDWP [15–20] method is applied to calculate the

accurate dynamic information on the C+(2P) + SH(X2Π) →
H(2S) + CS+(X2Σ+) reaction. The core idea is to get the

numerical solution to the Schrödinger equation through the

split-operator propagation scheme. The Hamiltonian is

expressed in reactant Jacobi coordinates as follows:

H � − Z

2μR

z2

zR2
+ J − j( )2

2μRR
2
+ j2

2μrr
2
+ V R, r, γ( ) + h r( ), (1)

where r, R, and γ are the bond length of the reactant molecule, the

distance from the atom to the center-of mass of the diatomic, and

the angle between the R and r vectors, respectively. μR and μr are

the reduced masses between the center-of-mass of the diatomic

and atom and the reduced mass of the reactant molecule,

respectively. J and j are the total angular momentum

operators and the rotational angular momentum operator of

BC, respectively. V(R, r, and γ) is the potential energy (total

energy deducted from the diatomic potential energy), and h(r) is

the diatomic reference of Hamiltonian defined as follows:

h r( ) � − Z

2μr

z2

zr2
+ V r( ), (2)

where V(r) is the diatomic reference potential usually used as an

asymptotic diatomic potential.

FIGURE 1
Energy diagram for the reaction pathway and relative
stationary points of the C+( [2]P) + SH(X2Π) → H( [2]S) + CS+(X2Σ+)
reaction. Energies are given relative to the C+( [2]P) + SH(X2Π)
asymptote with the unit of eV.

Frontiers in Physics frontiersin.org02

Liu et al. 10.3389/fphy.2022.1044959

23

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.1044959


In this calculation, the initial wave packet is usually chosen as

the product of a localized translational wave packet and a specific

rovibrational eigenfunction [18, 21]. After the wave packet is

propagated into the product region, the reaction probability and

ICS can be calculated as follows:

PJ
vjk E( ) � Z

μr
Im 〈Ψ E( )|δ r − r0( ) z

zr
|Ψ E( )〉[ ], (3)

σvj E( ) � 1
2j0 + 1

π

k′2
∑
Jk

2J + 1( )PJ
vjk E( ), (4)

where v and j are the vibrational and rotational quantum

numbers of the reactant, and k is the projection quantum

number of j. Ψ(E) can be derived from the Fourier transform

of the time-dependent wave function Ψ(t). k′ � ����
2μrE

√
, with E

being the collision energy. To get convergence results, a lot of test

calculations are carried out for each parameter. Table 1 lists the

parameters used in the quantum calculations of the C+(2P) +

SH(X2Π) → H(2S) + CS+(X2Σ+) reaction.

The rate constant determined by the ICS σvj(E) is as follows:

kvj T( ) � ge T( ) 8

πμR kBT( )3( )1
2 ∫∞

0
Eσvj E( )e−E/kBTdE, (5)

TABLE 1 Numerical parameters used in the present quantum
wavepacket calculations (atomic units unless the number of
argument).

Scattering coordinate (R)
range

2.0–20

Number of grid points in R (interaction region) 520 (170)

Diatomic coordinate (r) range 1.8–18.0

Number of grid points in r (interaction region) 270 (124)

Number of angular basis functions 120

Absorption region length in R (r) 3.0 (3.0)

Absorption strength in R (r) 0.03 (0.03)

Center of the initial wave packet R0 16.1

Width of the wave packet 0.12

Time step for propagation 10

Total propagation time 80000

TABLE 2 Values of bmax (in Å) for the C+ + SH(v = 0 − 3, j = 0)→ H + CS+

reaction.

Ec bmax,v

0 1 2 3

0.10 3.390 4.126 4.665 5.150

0.12 3.944 4.460 4.899 5.280

0.14 4.277 4.683 5.030 5.360

0.16 4.481 4.819 5.110 5.400

0.18 4.622 4.904 5.166 5.425

0.20 4.723 4.976 5.205 5.433

0.22 4.496 5.020 5.228 5.449

0.24 4.855 5.050 5.242 5.474

0.26 4.900 5.078 5.252 5.490

0.28 4.930 5.090 5.265 5.499

0.30 4.950 5.100 5.269 5.486

0.32 4.968 5.109 5.270 5.472

0.34 4.974 5.112 5.266 5.454

0.36 4.983 5.105 5.256 5.432

0.38 4.983 5.100 5.241 5.415

0.40 4.982 5.100 5.230 5.374

0.42 4.976 5.090 5.210 5.345

0.44 4.971 5.074 5.187 5.325

0.46 4.957 5.048 5.153 5.264

0.48 4.939 5.015 5.101 5.220

0.50 4.902 4.980 5.064 5.172

0.60 4.760 4.805 4.865 4.950

0.70 4.626 4.665 4.719 4.773

0.80 4.520 4.550 4.601 4.642

FIGURE 2
Total reaction probabilities at J = 0 as a function of collision
energy calculated using the TDWP (top panel) and QCT (bottom
panel) methods for various initial vibrational states of the SH for the
title reaction.
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where kB is the Boltzmann constant and ge(T) is the electronic

partition function with a form, which is as follows:

ge T( ) � 1
2 + 4e−91.25/T( ) 2 + 2e−542.36/T( ). (6)

2.2 Quasi-classical trajectory

The QCTmethod [22–27] has been widely applied to explore

chemical reaction dynamics [28–33]. Here, only the details

pertinent to the present work are summarized. In the QCT

calculation [34–37], the distance from the atom C+ to the

center-of-mass of S and H is set to 20 �A for the conservation

of total energy and angular momentum. The total

100,000 trajectories are introduced for the C+(2P) + SH(X2Π)
→ H(2S) + CS+(X2Σ+) reaction, with the time step being 0.1 fs.

The impact parameter bmax,v tabulated in Table 2 is simulated at

each pair of E and v in the collision energy ranging from 0.1 eV to

0.8 eV and the initial vibrational quantum number ranges from

0 to 3. In the calculations, bmax,v is obtained by systematically

increasing the value of the impact parameter, b, until no reaction

trajectory is found for each trajectory at a given collision energy

and initial vibrational quantum number. The ICS can be given as

follows:

σv � πb2max,vPv, (7)
where Pv � Nr

N is the average reaction probability, withN being the

total trajectory number and Nr the reactive trajectory number.

3 Results and discussion

3.1 Total and state-to-state reaction
probabilities at J = 0

Figure 2 depicts the evolution of total reaction probability

(J = 0) with collision energy obtained by employing the TDWP

and QCT methods for C+ + SH(v = 0–3, j = 0) reactions. The

reaction probabilities selected initially (v = 0–3; j = 0) illustrate

that the title reaction is typically exothermic without threshold

characteristics; in other words, the reaction is barrierless and the

probability decreases with the increase of collision energy. A deep

potential well in the reaction path makes the TDWP reaction

probability in the upper panel a fluctuating decline. It is easily

found that the reaction probability seems to decrease first with

FIGURE 3
Final v′ state-resolved reaction probabilities at J=0 for the C+ + SH(v=0, j=0)→H+CS+(v′) reaction at selected collision energies (0.1, 0.3, 0.5,
and 0.7 eV) obtained with the QCT method. (A) for 0.1 eV, (B) for 0.3 eV, (C) for 0.5 eV, (D) for 0.7 eV.
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initial v from 0 to 2 and then hardly changes with v at higher

collision energies. With the increase in the vibrational energy

level, the reaction probability becomes more and more gentle

with the collision energy, and when v = 3, the probability is the

most gentle. This is because, at higher vibration energy levels, the

effect of the collision energy is weaker on the reaction probability.

The QCT reaction probability (lower panel) perfectly reproduces

the overall shape of the TDWP in the whole collision energy

range (from v = 0 to 3).

Figure 3 reveals the QCT reaction probability of product

vibrational distributions at J = 0 for the reaction of C+ + SH(v = 0,

j = 0)→H+CS+(v′) at certain collision energies (0.1, 0.3, 0.5, and
0.7 eV). It is easily found in a great number of vibrational

excitation products with a distinguished population inversion.

At Ec = 0.1 eV, the distribution is bimodal, peaking at v′ = 11 and

v′ = 13 and the highest vibrational excitation product at v′ = 19.

The vibrational distributions get hotter and wider as the collision

energy increases. Also, the v′ state-resolved reaction probability

decreases gradually when the collision energy increases,

consistent with the total probability.

Figure 4 displays the final j′ state-resolved reaction

probabilities for the most populated product vibrational

quantum states, i.e., v′ = 13, 14, and 15, at the four selected

collision energies. Similarly, the higher the collision energy, the

higher the rotational energy level and the more obvious the

population inversion are. Meanwhile, the shapes of

probabilities for each v′ state resemble each other as

explained. On the whole, the QCT product rotational

distribution shows a significant oscillatory behavior,

particularly at the low collision energy for low final

rotational quantum states. It clearly appears that the lower

the vibrational excitation, the higher the rotational excitation of

products with the same collision energy is. For instance, at

0.1eV, the maximum product rotational energy level j′ is

64 when the vibrational energy level of the product v′ = 13,

while for v′ = 14 and v′ = 15, the maximum of j′ is 61 and 55,

respectively, which is consistent with the energy conservation.

QCT vibrational state-resolved reaction probabilities at the

various collision energies for C+ + SH(v = 0–3, j = 0)→ H + CS+

are shown in Figure 5. The distinguishing feature of the

vibrational distributions for the reaction is that because of the

rise of v or collision energy, the distribution curve becomes wider

and the peak value shifts rightward. The distributions are

oscillatory, especially at lower collision energies. Moreover, the

FIGURE 4
Final j′ state-resolved reaction probabilities at J = 0 for the C+ + SH(v = 0, j = 0)→H + CS+(v′ = 13, 14, 15) reaction at selected collision energies
(0.1, 0.3, 0.5, and 0.7 eV) obtained with the QCT method. (A) for 0.1 eV, (B) for 0.3 eV, (C) for 0.5 eV, (D) for 0.7 eV.
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FIGURE 5
Final v′ state-resolved reaction probabilities at J= 0 for the C+ + SH(v= 0 − 3, j= 0)→H+CS+(v′) reaction at selected collision energies (0.1, 0.3,
0.5, and 0.7 eV) obtained with the QCT method. (A) for 0.1 eV, (B) for 0.3 eV, (C) for 0.5 eV, (D) for 0.7 eV.

FIGURE 6
IntegralcrosssectionsasafunctionofcollisionenergyfortheC++SH(v=0−3, j=0)→H+CS+(v′)reactionobtainedwiththeTDWPandQCTmethodologies.

Frontiers in Physics frontiersin.org06

Liu et al. 10.3389/fphy.2022.1044959

27

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.1044959


shapes of reaction probability curves for each v are similar to each

other. Analogously, the reaction probability gradually decreases

when the collision energy increases, consistent with the total

probability.

3.2 Total and state-to-state integral cross
sections

Figure 6 indicates the TDWP and QCT ICSs as a function

of collision energy for C+ + SH(v = 0–3, j = 0)→ H + CS+. The

ICSs calculated both with the TDWP and QCT methods climb

over a mountain and gradually reach a plateau with increasing

collision energy. The behavior is the common characteristic of

barrierless exothermic reactions and similar to the same type

reactions such as H + CH [38–40], S+ + H2 [41], and C + SH

[30, 42]. First, we find that the shapes of ICSs for C+ + SH(v =

0–3, j = 0) are analogous in four panels obtained by the TDWP

and QCT methods, indicating that the ICSs are insensitive to

the vibrational quantum state of reactant SH. Then, it is

distinguished that the QCT ICSs are slightly higher than

the TDWP ICSs, particularly at low collision energies. The

reason may be that in the present TDWP calculation, the zero-

point energy (ZPE) is considered naturally, whereas in the

QCT calculation, the ZPE is not taken into account, which

leads to the larger ICS of the QCT than the TDWP calculation

in the low energy range for such an exothermic reaction. In

other words, the quantum effect cannot be ignored, especially

at low collision energies. The error bars are calculated and

added in Figure 6 for the QCT method. We find that the

uncertainties of ICSs for the title reactions are very small in

the entire collision energy ranges, so their accuracy can be

warranted. Since the trend of the ICSs obtained by these two

methods is consistent and as the two cases gradually approach

the vibrational quantum state of SH increases, the QCT

method can be used for further study due to the low time

consumption.

The vibrational state-resolved ICSs computed by the QCT

method at various collision energies (0.1, 0.3, 0.5, and 0.7 eV)

for C+ + SH(v = 0–3, j = 0) → H + CS+ are shown in Figure 7.

FIGURE 7
Final v′ state-resolved integral cross sections for the C+ + SH(v = 0 − 3, j = 0)→ H + CS+(v′) reaction at selected collision energies (0.1, 0.3, 0.5,
and 0.7 eV) obtained with the QCT method. (A) for 0.1 eV, (B) for 0.3 eV, (C) for 0.5 eV, (D) for 0.7 eV.
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The most obvious feature is a population inversion of the

vibrational distribution peak at a low value of v′. An increase

in collision energy and the initial vibrational quantum

number can make the ICS distributions wider. The

distributions become hotter along with the enlargement of

the initial vibrational quantum number. However, the

distributions become colder as collision energy increases, at

variance with the effect of the initial vibrational quantum

number.

3.3 Rate constants

The initial state-selected rate constants shown in Figure 8 are

calculated by the TDWP (in upper panel) and QCT (in lower

panel) methods in a large temperature range from 1200 to

92000 K for C+ + SH(v = 0–3, j = 0) → H + CS+. The current

rate constants are calculated by numerical integration over the

collision energy in the range of 0.10–0.80 eV. As revealed in

Figure 8, both the TDWP and QCT rate constants rise slightly

with increasing temperature until reaching a plateau. The

increase in the QCT rate constants at a lower temperature is

much faster than those of TDWP. In addition, the QCT rate

constants are a little higher than the TDWP rate constants;

meanwhile, the distributions are consistent with the TDWP

and QCT ICSs as a function of collision energy. The TDWP

state-selected rate constants are slightly positively correlated with

the initial vibrational quantum number of the reagent molecule

SH. Nevertheless, the QCT rate constants are insensitive to v,

which is analogous to the cross-section results of Figure 6. In

conclusion, the rate constants obtained by the TDWP and QCT

methods are in essential agreement, especially in the high-

temperature region.

In the present work, we provided a new and reliable rate

constant for the C+ + SH(v = 0–3, j = 0) → H + CS+ reaction.

Although there are no other theoretical and experimental results

for the title reaction on the HCS+(X1Σ+) PES, the vibrational

distribution information is of deep value for further study of this

system.

4 Conclusion

This study presents the initial state-selected reaction

probabilities, ICSs, and rate constants calculated with both

the QCT and TDWP methods. The QCT reaction probability

perfectly reproduces the overall shape of the TDWP results in the

whole collision energy region for v = 0 to 3. The ICSs obtained by

the QCT are slightly higher than those obtained by the TDWP,

and as the initial vibrational quantum state increases, the ICSs

obtained by these two methods are in more substantial

agreement. The QCT rate constants are slightly higher than

those of the TDWP, and ICSs obtained from the two methods

show a similar relationship. Overall, the aforementioned QCT

results are consistent with those of the TDWP, both showing

practical independence with the initial vibrational excitation.

The QCT method is employed to obtain the state-to-state

reaction probabilities and product state-resolved ICSs at fixed

collision energies (0.1, 0.3, 0.5, and 0.7 eV). The probability

distributions are hotter, wider, and peak at higher v′ values at
higher collision energy and a larger vibrational quantum

number. An increase in collision energy and the initial

vibrational quantum number can also make the ICS

distributions wider. The ICS distributions become hotter

along with the enlargement of v, while the collision energy

has the opposite effect. Considering the time cost, the QCT

method can well describe this reaction. We hope that our work

can attract the attention of experimentalists to this fascinating

but scarcely studied system.
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FIGURE 8
Vibrationally state-specific rate constants as a function of
temperature for the C+ + SH(v = 0 − 3, j = 0) → H + CS+ reaction
calculated with the TDWP (top panel) and QCT (bottom panel)
methods.
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Exploring the implications of the
uncertainty relationships in
quantum mechanics

Huai-Yu Wang*

Department of Physics, Tsinghua University, Beijing, China

Heisenberg guessed, after he established the matrix quantum mechanics, that

the non-commutativity of thematrices of position andmomentum implied that

the position andmomentum of a particle could not be precisely simultaneously

determined. He consequently conjectured that time and energy should also

have a similar relationship. Soon after, Robertson derived an inequality

concerning the space coordinate and momentum, which was thought to be

themathematical expression of the uncertainty relation guessed byHeisenberg.

Since then, people have tried various devices to prove the correctness of these

two relations. However, no one conducted a careful analysis of Heisenberg’s

primary paper. In this work, we point out some serious problems in Heisenberg’s

paper and the literature talking about the uncertainty relationships: the physical

concepts involved in the uncertainty relations are not clear; one physical

concept had more than one explanation, i.e., switching concepts; there has

never beenmeasurement experiment to support the relations. The conclusions

are that the so-called coordinate–momentum uncertainty relation has never

been related to actual measurement and there does not exist a time–energy

uncertainty relation.

KEYWORDS

coordinate–momentum uncertainty relation, time–energy uncertainty relation,
measurement, dimension of a wave function in quantum mechanics, uncertainty,
lifetime of energy level

1 Introduction

As soon as Heisenberg founded quantum mechanics (QM) in matrix form [1–3], he

acutely perceived that the matrices of the position and momentum of a particle were non-

commutative. He thought that this non-commutativity should have some physical

meaning. In a later paper [4], he guessed that the physical meaning of the non-

commutativity was that the position and momentum of a microscopic particle could

not be precisely simultaneously determined by experimental measurement. He was unable

to provide an explicit expression for that, but merely presented qualitative discussion,

including the gedanken experiments. He inferred consequently that there was a similar

relationship between time and energy.

Soon after that, Robertson [5] derived an inequality, which was believed the

mathematical expression of the uncertainty relation guessed by Heisenberg. Thus, the
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guess of the uncertainty relationship proposed by Heisenberg was

generally accepted by people, and this was set in stone. Almost all

QM textbooks introduce the coordinate–momentum relation

and time–energy relation [6–30]. The uncertainty relations are

thought of as fundamental ones in QM. They have been

frequently mentioned by researchers and were even promoted

as a principle—uncertainty principle [6–12].

When the present author carefully read the introductions and

explanations of the uncertainty relations in Heisenberg’s primary

paper [4] and the literature, questions emerged. A striking

problem is that the uncertainty relations ought to be related

to actual measurement, but it seems not to be so. Even in [4],

Heisenberg merely talked about idealized experiments. The

narrations connecting the uncertainty relations and the

experiments are farfetched and specious. Confusions between

different conceptions appear frequently. As a matter of fact,

someone has been aware that there exist wrong explanations in

the literature [31, 32]. We think that it is desirable to analyze in

detail all the aspects involved in the uncertainty relations.

In the 1920s, Heisenberg, Schrödinger, Dirac et al. performed

pioneering work in founding QM, which was a completely new

field in physics. A series of new concepts merged. Some new

concepts were formed. Among the new concepts, some were not

very clear to people; they were not very clear even to these

pioneers themselves, which should not be surprising. Hence, no

one could guarantee that their works were flawless.

For example, when Schrödinger proposed his wave equation of

QM, he unknowingly put down the negative kinetic energy (NKE)

Schrödinger equation (33). However, thisNKE Schrödinger equation

was never realized by himself and others and was abandoned since

then. We found that the NKE Schrödinger equation could be

obtained by taking low-momentum approximation from

relativistic quantum mechanics equations (RQMEs), and it was of

explicit physical meanings [34, 35]. Dirac explained the NKE

solutions of his RQME as representing antiparticles. Although

people know that this explanation implied contradictions, no one

could propose the right scenario to resolve the contradictions. We

have given a correct explanation of the NKE solutions [35, 36].

There are two reasons that make people not aware of these

pioneers’mistakes in some aspects. One is that due to their genius

achievements, people think that what they said was right. The

other is that the related mistakes have not brought perceivable

affection up till now. For instance, if there is no so-called

uncertainty relationship, the evaluations and measurements in

QM are not affected. The new theories raised after the uncertainty

relations had been established, such as RQMEs, quantum

electrodynamics (QED), quantum field theory (QFT), and

quantum information, did not resort to the uncertainty

relations. The computation of the band structures in solid-state

materials and of nuclear physics does not need uncertainty

relations. Physical experiments have never been arranged under

the guidance of uncertainty relations, in spite of that, they are

called principles. The uncertainty relations are usually employed to

provide explanatory notes to some known phenomena and results.

After almost one hundred years, as later generations, we have

grasped knowledge much more and wider than the pioneers did.

People nowadays ought to have more sophisticated and rigorous

reasoning. We should be able to recognize what the problems left

by these pioneers are and how to resolve them. With clearer

distinguishing and understanding of physical concepts, we are

able to solve some difficulties left in QM [34–42].

The study of physics obeys physical laws. The physical laws

are represented by fundamental equations and statements. The

conclusions in physics need to be verified by experiments, which

means that quantitative results are necessary. Theoretically,

quantitative results are obtained by mathematical derivation

starting from the fundamental equations. Theoretical

discussions observe rigorous logical reasoning. We believe that

in order to avoid the flaws in physical discussions as far as

possible, some principles related to the physical contents

discussed should be obeyed besides the mathematical

derivation. The principles are presently called the basic

viewpoints of the author.

The basic viewpoints depended on the concrete contents

under discussion. The author’s previous papers [34–42]

concerned some basic problems in QM. When we discussed

one of these problems, certain viewpoints were based on [35, 42].

The uncertainty relationship is believed to be a fundamental

topic in QM. In the present work, we are going to investigate this

topic based on certain points of view. In the author’s following

work, more topics will be touched on, and corresponding basic

viewpoints will be stemmed on.

All the basic viewpoints we have been aware of are listed in

Supplementary Appendix SA. We think that only when these

viewpoints are abided by can one guarantee logical rigorousness

and validity of the conclusions in discussing physical problems.

Or, conception confusion may occur, and subsequently, the

problem may not be solved correctly.

Here we mention one of the basic points of view. In QM, we

always deal with wave functions. Every wave function satisfies a

fundamental QM equation. Explicitly, the fundamental QM

equation is in the form of

iZ
z

zt
ψ(t) � Hψ(t). (1.1)

Here, the coordinate variables are not explicitly shown. In

this paper, we always assume that (Eq. 1.1) is Schrödinger

equation. If the Hamiltonian H is time-independent, the

dependence of the wave function on time can be written as

ψ(t) � e−iEt/Zφ. (1.2)

Thus, the function φ meets the stationary equation

Hφ � Eφ. (1.3)
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Every wave function is necessarily the solution of Eq. 1.1. The

wave functions of stationary states observe Eq. 1.3. In other

words, when one discusses a wave function, he must be able to

put down the corresponding Hamiltonian H. This is important.

In textbooks, some functions are treated as wave functions

because of their seemingly good behaviors. However, they are

not the solutions of Eq. 1.1, i.e., there is no corresponding

Hamiltonian. In Section 2, we will see two examples: the wave

packet and wave train with the finite length for moving particles.

In Sections 2 and 3, we discuss coordinate–momentum and

time–energy uncertainty relations, respectively. We will point out

that physical conceptions are confused in the literature in

discussing the two uncertainty relations. In [4], Heisenberg

proposed the possible relations between the uncertainties of

position and momentum, directed against single particles.

Naturally, the similar relation between time and energy that

he guessed was also for single particles. We stress this because in

the literature, the problems of single-particles are confused with

those of many-body systems. Section 4 is further discussion, and

Section 5 contains the conclusions. Supplementary Appendix SA

lists our basic viewpoints. Supplementary Appendix SB

introduces the derivation of the so-called

coordinate–momentum uncertainty relation.

2 Coordinate–momentum
uncertainty relation

There are confusions of concepts when the

coordinate–momentum uncertainty relation is discussed. The

inequality derived by Robertson [5] was irrespective of

experiments and Heisenberg’s primary paper [4]. This section

presents a detailed analysis.

In this paper, we always consider the case of one dimension.

2.1 Heisenberg’s primary discussion

The paper [4] was the first one to talk about possible

uncertainty relationships. The whole article did only

qualitative discussion with no rigorous mathematical

derivation. Heisenberg, based on his established QM in matrix

form, found that the commutator of the twomatrices q and p had

the following result:

pq − qp � iZ. (2.1)

The nonzero result meant that the two matrices could not

exchange the order in their product. From this, he guessed that

when a particle’s position and momentum were measured, both

had some uncertainties.

“Let q1 be the precision with which the value q is known (q1
is, say, the mean error of q); therefore, here, it is the wavelength of

the light. Let p1 be the precision with which the value p is

determinable; that is, here, it is the discontinuous change of p in

the Compton effect. Then, according to the elementary laws of

the Compton effect, p1 and q1 stand in the relation

q1p1 ~ Z.”[4]. (2.2)

Here, the definition of the uncertainty of q was obvious: “q1
be the precision with which the value q is known (q1 is, say, the

mean error of q)”. q1 is also the measurement precision of q.

Then, its value must rely on the measurement equipment and

measurement process. For instance, he mentioned a special case

where photons were used to impinge a particle. Then, the

uncertainty of the particle’s position was the photon’s wave

length. This example showed that the measurement precision

was indeed closely related to the measurement instrument

chosen.

According to the basic viewpoint I.1 in Supplementary

Appendix SA, every physical concept should have an explicit

mathematical expression, or people would not clearly understand

the conception.

First, in QM, a particle is described by its wave function. The

wave function is the function of the spatial coordinate q, that is to

say, q is an argument in a function, e.g., Eqs. 3, 12–(14) in [4]. In

Heisenberg’s words, “Let q1 be the precision with which the value

q is known”. What is the meaning of the q in this sentence was

not clear. In Eq. 2.1, q and p are matrices. It seems that

Heisenberg unknowingly regarded them as numbers.

Next, we discuss the contents in the QM field. Following the

viewpoint II.2, a wave function must be the solution of a

fundamental QM equation. Heisenberg put down functions

for discussion, but some of them were not the solutions of the

Schrödinger equation for the system under consideration.

“If, for any definite state variable η, we determine the position

q of the electron as q′ with an uncertainty q1, then we can express

this fact by a probability amplitude S(η, q), which differs

appreciably from zero only in a region of spread q1 near q′.
For example, one can write

S(η, q)∝ exp[ − (q − q′)2/2q21 − ip′(q − q′)/Z]”.[4]. (2.3)

This should be a wave function in QM. Such a function was

called a Gaussian wave packet and used in the literature [6,

13–16]. It is time independent. Only the stationary

eigenfunctions of a harmonic oscillator are of the form of

ψ(x)∝ e−αx2 , and the possible parameter is the location of the

center of the oscillator. Otherwise, we do not know what the

Hamiltonian of the wave function Eq. (2.3) is, while describing a

moving particle we are talking about. When the Hamiltonian of a

free particle is acted on this function,

− Z2

2m
z2

zq2
ψ(q) � Z2

2m
⎡⎣ 1
2q21

− ( q

2q21
+ ip′

Z
)2⎤⎦ψ(q). (2.4)
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It is seen that the function (Eq. 2.3) is not a free particle. We

do not know what a potential V(q) enables us to put down the

stationary equation for the wave function (2.3).

[ − Z2

2m
z2

zq2
+ V(q)]ψ(q) � Eψ(q). (2.5)

We are unable to write down a V(q) other than the oscillator

potential, and neither the expression of the corresponding

Hamiltonian H.

In Eq. 2.3, q is the spatial coordinate of the wave function, but

not the position of the electron. Heisenberg confused the concepts.

Eq. 18 in [4] was

S(t, p) � e−αtψ(E2, p)e−iE2t/Z + (1 − e−2αt)1/2ψ(E1, p)e−iE1t/Z.

(2.6)
This was a time-dependent function. When it is substituted

into the left-hand side of Eq. 1.1, the result is

iZ
z

zt
S(t, p) � ( − α − iE2t/Z)e−αtψ(E2, p)e−iE2t/Z

+( αe−2αt

1 − e−2αt
− iE1/Z)(1 − e−2αt)1/2ψ(E1, p)e−iE1t/Z.

(2.7)
We are unable to find a time-dependent Hamiltonian H(t)

such that the function Eq. 2.6 satisfies Schrödinger Eq. 1.1:

iZ
z

zt
S(t, p) � H(t)S(t, p). (2.8)

Therefore Eq. 2.6 is not a wave function in QM.

For the wave function (22) in [4], one was unable to write a

corresponding Hamiltonian as well, and so it was not a wave

function in QM.

Whenwriting down a function, one should first prove that it is the

solution of a fundamental QM equation or has its corresponding

Hamiltonian.Otherwise, it cannot be treated as awave function inQM.

Third, Heisenberg did not present explicit expressions or

rigorous mathematical derivations when he mentioned some

physical conceptions.

For example, he mentioned “statistical error” more than

once, but we do not know what he meant by it.

In Eq. 2.6, a concept of “radiation damping” was used.

However, Heisenberg did not provide the mathematical

derivation for the form in Eq. 2.6. In QM, a single particle

does not have the concept of “radiation damping.” This concept

must belong to a many-body system.

In [4], the argument below Eq. 8 was questionable. A beam of

electrons was arranged to run through two fields successively in

two different manners. In the second manner, no derivation was

presented. Therefore, one could not know how the result Znl �∑
m
cnm�cnmdml

�dml was reached.

Fourth, according to viewpoint I.3, when a gedanken experiment

leads to a positive conclusion, it cannot explain anything. Such a

conclusion could neither be proved nor be disproved.

In short, Heisenberg’s primary paper [4] lacked rigorous

mathematics, was not quantitatively related to real experiments,

and was not very clear in some physical concepts.

Heisenberg’s paper [4] just considered the measurement

precisions of the position and the momentum of a single particle.

2.2 The analysis of the
coordinate–momentum uncertainty
relation

In 1929, Robertson [5] derived the famous mathematical

inequality, see Supplementary Appendix SB. The conclusion was

that the mean square errors of coordinate and momentum

obeyed the following inequality:

ΔxΔp≥ Z/2. (2.9)

This inequality was believed to be the mathematical

expression of the uncertainties of coordinate and momentum

that Heisenberg guessed. So, (2.9) was called the Heisenberg

uncertainty relation.

Here, we distinguish the concepts of the position of a particle

and coordinate. Heisenberg discussed the uncertainties of the

measured position and momentum of a particle, so that his

assumed relation was called the position–momentum uncertainty

relation. However, in QM, a particle at a state is described by a wave

function, which is a function of coordinates. The Δx in (2.9) does

not involve the meaning of a particle’s position. Hereafter, (2.9) is

called the coordinate–momentum uncertainty relation.

According to the current understanding, the Δx and Δp in

(2.9) are two quantities related to measurement. We point out in

Supplementary Appendix SB that (2.9) is irrespective to both

measurement and the content in Ref. [4].

Now, we explain that it is not right to understand the Δx and

Δp in (2.9) as measurement uncertainties of coordinate and

momentum, and as a matter of fact, it is impossible to implement

measurement in the way of (2.9).

Usually, the recognition of (2.9) is that if one measures the

position x and momentum p of a particle, they cannot be

precisely simultaneously measured, and the smaller the

measuring deviation of one quantity is, the greater the other.

This recognition is incorrect.

Since (2.9) is regarded as the relation between the ncertainties

of position and momentum, it ought to be related to the statistics

of measured quantities. This prompts us to explain the

implication of the inequality and the way of statistics of

measured quantities.

2.2.1 The implication of the
coordinate–momentum uncertainty relation

The coordinate is expressed by x, and the momentum

operator is p � −iZ z
zx. Suppose a microscopic system’s
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Hamiltonian H is known, and its wave function ψ is solved

from (1.1).

The inner product of any two functions ψ and φ is defined by

(ψ,φ) � ∫ dxψ*φ � (φ,ψ)*. (2.10)

We perform the following calculations:

�x � (ψ, xψ), (2.11)
Δx � (ψ, (x − �x)2ψ)1/2. (2.12)

�p � (ψ,−iZ z

zx
ψ). (2.13)

Δp � (ψ,( − iZ
z

zx
− �p)2

ψ)1/2

. (2.14)

The four calculated quantities meet (2.9).

Because the forms of 2.11–2.14 seem the same as that of the

definition of mean square error, people mistakenly believe that

2.11–2.14 are of the meanings of the mean square error in the

sense of measurement.

When talking about 2.9, people usually think that the

smaller the one of Δx and Δp, the larger the other. However, it

is seen from 2.11–2.14 that Δx and Δp are uniquely

determined by the given wave function, and their product

necessarily meet (2.9). As a matter of fact, neither of Δx and

Δp is variable.

For a one-dimensional harmonic oscillator, the nth

stationary state wave function is denoted by ψn. It is evaluated

[3, 7, 17] that in ψn, Δx � ������
n + 1/2

√
1
α and Δp � ������

n + 1/2
√

Zα, so

that ΔxΔp � (n + 1
2)Z. Both Δx andΔp increase with the index n.

For the wave functions of hydrogen, we have Δx � a0
2
�
3

√
������
7n2 + 5

√
,

which increases with energy level, and Δp � Z�
3

√
a0
, remaining

unchanged for all the energy levels [3].

We turn to look at the comparison between the ground states

of different systems. A hydrogen atom and an atomic nucleus

have different dimensions. Compared with the hydrogen atom,

the dimension of the nucleus is smaller, and so, the uncertainty

Δq seems smaller and that of momentum Δp seems larger. This is

often used as an example showing that if one of Δq and Δp is

smaller, the other is necessarily larger. However, such a

comparison is incorrect. It is meaningless to compare the

quantities in two different systems. Furthermore, in the

comparison, one confuses the two conceptions: the dimension

of a particle and the uncertainty of the particle’s position, which

will be made clear in Section 2.3.1 below.

Personally, Eq. 2.9 has only one usage: it can be used to judge

if the wave function solved from (1.1) has some error. If the Δx
and Δp calculated through (2.11–2.14) do not meet (2.9), then it

is assured that the wave function is not a correct one in QM.

What if (2.9) is satisfied? Nothing is explained because (2.9) is

originally an inequality that every normalized function ought to

satisfy.

2.2.2 There is no way to implement
measurement according to the uncertainty
relation

People usually say that (2.9) concerns measurement, and it

shows that the position and momentum of a particle cannot be

precisely simultaneously measured. We recall how the statistics

of the measured results are made.

Suppose that there is a sample, Y. We measure its value. The

ith measured value is denoted as yi. After N times of the

measurement, this sample’s averaged value and mean square

deviation are evaluated by

�y � 1
N

∑N
i�1
yi (2.15)

and

Δy � ⎡⎣ 1
N

∑N
i�1
(yi − �y)2⎤⎦1/2. (2.16)

Now, we have a QM system, and amechanical quantity F is to

be measured. Suppose that an appropriate device is designed, and

the value of F can be measured experimentally.

According to QM, the average of the mechanical quantity F

in a state ψ is

�F � (ψ, Fψ). (2.17)

The inner product is defined by (2.10). In order to evaluate

the average (2.17), in principle, at any spatial coordinate x, the

value of F should be measured. Actually, one has to check, if

possible, the measurement at discrete x points. Hence, the

integration is replaced with the form of summation

�F � ∑N
i�1
biF(xi). (2.18)

The coefficients bis are related to the square of the absolute

value of the wave function at point xi, |ψ(xi)|2. If this can be

done, one further measures the values of F2(xi) at point xis. After

these manipulations, one calculates F2 by

F2 � (ψ, F2ψ) � ∑N
i�1
biF

2(xi). (2.19)

In this way, the mean square deviation ΔF � (F2 − �F2)1/2 can
be obtained.

However, what is the meaning of F(xi) in (2.18)—measuring

the value of a physical quantity at individual coordinates? How

can this quantity be measured? The same questions also rise for

F2(xi) in (2.19).

In QM, the state of a particle is represented by its wave

function. The wave function distributes in space at any time. One

cannot say that the wave function is at a point at one instant and

another point at the next instant. The physical quantity F belongs

to the whole QM system and is not fixed to discrete spatial points.
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We do not know how to experimentally measure �x, x2, �p, and

p2 in the way of (2.18, 2.19). In short, Eq. 2.9 cannot correspond

to practical measurement. As a matter of fact, people never apply

(2.11–2.14) to perform measurements.

Furthermore, from Eq. 2.9 itself, we are unable to see the

concepts of “position uncertainty” and “momentum

uncertainty”, since it is irrespective to measurement. That is

to say, the uncertainty relation (2.9) itself does not contain the

concepts of “position uncertainty” and “momentum

uncertainty”, since it does not contain the information related

to measurement.

The relation (2.9) is sometimes called a principle. However,

no one designs an experiment based on this so-called principle.

The conclusion is that Eq. 2.9 is irrespective to measurement.

2.3 The discussions of the uncertainty
relation in the literature

We have pointed out above that in [4], there was no rigorous

argument and mathematical derivation, and some concepts were

confused. However, people a priori believed that the content in

this paper was right and the mathematical expression was what

Robertson [5] provided. Some textbooks presented (2.9) without

explanation [8, 17, 18]. Some others tried various devices in order

to explain that this uncertainty relation was correct.

Because the narration in [4] was not clear, when later people

talked about the uncertainty relation, they did not have fixed

rules, but depended on their own imaginative development.

Different people had different explanations. Each explanation

was unable to overturn others. Therefore, according to the basic

viewpoint I.2, none of the explanations were right. The so-called

examples, that were believed to support the uncertainty relation,

were just farfetched ex-post explanations.

There are three typical examples giving farfetched

explanations: finite-length wave train or a piece of truncated

plane wave, single-slit diffraction, and the ground state of

hydrogen atom. Before analyzing these examples, we

distinguish between two concepts: a particle’s dimension and

the uncertainty of its position.

2.3.1 Distinguishing a particle’s dimension and
the uncertainty of its position

A particle’s dimension and the uncertainty of its position are

two different conceptions.

In QM, a particle at a state is described by a wave function.

For each wave function, we are able to roughly define a range in

space, outside which the wave function can be regarded as zero.

This range is defined as the dimension of this particle at this state.

For instance, in an infinitely deep square potential with width a,

the dimension of a particle is just the potential width a. For a one-

dimensional harmonic oscillator, the ground state wave function

is ψ0 ∝ e−α2x2/2. We define the length of the interval [−
�
2

√
α ,

�
2

√
α ] as

the dimension of this particle in the ground state. In the case that

Eq. 2.3 represents the wave packet of a particle, then the

dimension of this particle is the length of the interval

[− �
2

√
q1,

�
2

√
q1]. As soon as a state is known, the dimension

is definitely determined by its wave function.

The De Broglie relation tells us that as long as a particle’s

momentum is known, its dimension can be roughly estimated by

λ � h/p. (2.20)

Here, we regard De Broglie wave length as the particle’s

dimension. The De Broglie relation tells us that the larger the

momentum of a particle, the less its dimension. It is seen that Eq.

2.2 guessed by Heisenberg was more like the De Broglie relation.

The uncertainty of a particle’s position can be roughly

defined as the precision, or error range, of the measured

position of the particle.

We stress that a particle’s dimension and the uncertainty of a

particle’s position are two different concepts. The former is

uniquely determined by the wave function, independent of

measurement, whereas the latter depends on the measurement

devices and measurement process.

For example, Heisenberg mentioned [4] that when a photon

was employed to collide with a particle, “the highest attainable

accuracy in the measurement of position is governed by the

wavelength of the light.” Thus, roughly speaking, when the light

wavelength is λ, the measuring precision of the particle’s position

is λ; when the light wavelength is 2λ, the precision will be 2λ.

In literature, the two concepts were confused frequently.

In [4], Heisenberg put down a wave packet, Eq. 2.3, and said

that the wave function “differs appreciably from zero only in a

region of spread q1 near q′.” That is to say, 2q1 was the dimension

of the wave packet. Then, he thought that the relation p1q1 � Z

limited the precision of the wave packet, where q1 is the precision

of measuring the position of the wave packet. So, he equated the

dimension and uncertainty. On one hand, the uncertainty q1
ought to be given after measurement and might vary depending

on the measurement. On the other hand, q1 was the half

dimension of the wave packet and was contained in the

function already. In this case, the two concepts were confused.

FIGURE 1
Two wave trains (interrupted sine waves) with finite lengths.
(A) Longer length. (B) Shorter length.
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The confusion of the two concepts, or concept stealing, also

occurred later [14, 19].

2.3.2 Wave train with finite length
Figures 1A,B are often used to represent the two states of a

moving particle. This picture is utilized to explain the

coordinate–momentum uncertainty relation [9]. An intuitive

understanding is that the shorter the particle’s dimension or

its position uncertainty, the greater its momentum uncertainty.

Comparison of Figures 1A,B prompted such a recognition: “we

can see very clearly that the better the position is defined, the

more poorly is the momentum defined” [9].

Here, we are considering a particle with a mass. Figure 1

represents the wave functions of the particle. Following basic

viewpoint II.2, the wave functions should be the solutions of

Eq. 1.1.

The two pictures in Figure 1 are actually the stationary wave

functions in two one-dimensional infinitely deep square potential

wells with different widths. Because the widths are different, the

two wells are of different Hamiltonians. The two wave functions

are in different systems. Comparing the positions and momenta of

the particles in the different systems is meaningless. Furthermore,

the average of momentum in each state is exactly zero. In this case,

discussing the momentum uncertainty is meaningless.

It can be certain that a particle which is marching is not

represented by the functions in Figure 1. Thus, the two pictures in

Figure 1 are not wave functions in QM for describing a moving

particle.

Now, suppose that ψa and ψb are two real wave functions in

QM, instead of those in Figure 1. Assume that the dimension of

ψa is longer than that of ψb. In this situation, we make following

discussion.

First, we should not say that the uncertainty of ψa is greater

than that of ψb, because we have not arranged the measurement.

The discussion of the uncertainties of the functions in Figure 1

actually confuses dimension and uncertainty, which is known as

concept stealing.

Next, since ψa and ψb are two different wave functions, they

may either belong to different Hamiltonians, i.e., different

systems, or belong to one Hamiltonian but two different

states. In either case, comparing the uncertainties of two

different states is meaningless.

Another analysis commonly used is to write a function’s

Fourier transformation and inverse Fourier transformation [9].

ψ(x) � ∫∞

−∞
dpeipxA(p). (2.21)

A(p) � ∫∞

−∞
dxe−ipxψ(x). (2.22)

It was analyzed that the more localized the ψ(x) in space, the

more extended the A(p) in momentum space. An illustration of

it was Figure 4 in [13].

Equations 2.21 and 2.22 are Fourier transformation and its

inverse of each other. This is a general mathematic property, not

a unique property in QM. Furthermore, the localization and

extension of the ψ(x) refer to the dimension, not uncertainty. In

the Fourier components, the ranges of momenta and the

uncertainties of momenta are confused. Since the explicit

form of 2.21 is not given, one does not know if it is a wave

function in QM. If it is, the corresponding Hamiltonian should be

given. This pair of functions should not be used to explain the

uncertainty relation.

2.3.3 Single-slit diffraction
Single-slit experiment is often used to explain the uncertainty

relation of a particle [9, 13, 14].

Let the width of a slit be d and the wavelength of particles be

λ. The particles go through the slit and diffraction occurs as λ>d.
At the moment when a particle just reaches the position of the

slit, its wave function is confined within the slit. Then, the slit

width d is regarded as the uncertainty Δx in (2.9).

Δx � d. (2.23)

This is not correct. When a particle is within the slit, its wave

function is zero outside of the slit. At this moment, the width d is

the dimension of the particle, which is independent of

measurement. However, Δx must be evaluated by the wave

function following 2.12, not simply written in terms of the

geometric dimension of the system. Eq 2.23 is again an

example that a particle’s dimension is confused with its

position’s uncertainty. This confusion also reflects that people

subconsciously do not think of the Δx in 2.9 as a quantity related

to measurement.

If the measurement precisions of the position and

momentum of a particle obey the uncertainty relation, these

precisions ought to be obtained in experimental measurements.

In single-slit diffraction experiment, neither a single particle’s

position nor its momentum is measured. The energy of the

incident particle is already known. Since the slit width d is

known, the diffraction pattern, the distribution of the

outgoing particles with diffraction angle, is determined, which

can be evaluated by means of the diffraction law before the

experiment. The diffraction pattern obtained experimentally is in

agreement with the theoretical calculation, and is stable. The

single-slit diffraction experiment just lets particles go through a

slit, and all the information is known before the experiment.

According to viewpoint I.3, this experiment is not a

measurement.

The single-slit experiment is just an observation of a

phenomenon, not a measuring manipulation. Every wave,

when going through a region, the room of which is less than

the wave length, yields diffraction. Water waves are the same, and

no one would explain the water diffraction by uncertainty

relation. The behavior of water waves is explained by the
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Huygens–Fresnel principle. The wavelength of radio waves can

be as long as kilometers, so that they can diffract in a larger room.

The distribution of the electromagnetic field can be evaluated by

Maxwell equations under specific boundary conditions. These

diffractions are irrespective to uncertainty relation.

Suppose that there are two slits, with widths d1 and d2,

respectively, and d1 >d2. People may say that the first order

diffraction minimum from d1 slit is less than that from d2 slit,

which seems to embody the uncertainty relation. Please note that

the two slits with widths d1 and d2 are two different systems,

because their Hamiltonians are different. Comparing the

quantities in two different systems is meaningless. To verify

the uncertainty relation, one should measure a particle’s position

and momentum simultaneously in one system, which implies

that the slit width d remains unchanged,

In [4], Heisenberg considered using photons to probe

electrons, a measurement of single particle. In the single-slit

experiment, no physical quantity of a single particle is measured.

The single-slit diffraction shows the angular distribution of a

large number of particles after going through the slit. The

distribution is stable, and there is no concept of uncertainty.

Single-slit diffraction is a collective effect of many particles.

Trying to explain the uncertainty relation by the single-slit

diffraction is a confusion of the single-particle system and

many-particle system.

Figure 2.8 in [19] actually showed the distribution of a large

number of particles, and not the uncertainty of a particle’s

position.

2.3.4 The ground state of hydrogen atom
There is a way of estimating the energy of the ground state of

a hydrogen atom [6, 9, 20, 21], which is thought of as an

application of the uncertainty relation. The energy of a

hydrogen atom reads

E � p2

2m
− e2

r
. (2.24)

The dimension of this system is very small, i.e., the r is very

small and Δr is of the same order of magnitude as r. So, r is

replaced by Δr. Because Δp is the same order of magnitude as p, p

is replaced by Δp. Then, the relation

ΔrΔp ~ Z (2.25)
is used to express Δp by Δr. These replacements recast (2.24) to

become

E ~
Z2

2m(Δr)2 −
e2

Δr. (2.26)

By taking the derivative of Δr, the energy minimum is

estimated:

E min � −me4

2Z2 . (2.27)

In this course, it seems that the uncertainty relation (2.25) is

employed. This method is also employed to estimate the ground

state energy of a nucleus.

First, this example is irrespective to measurement. It is just an

estimation of the energy minimum. Second, the above procedure

can be simplified. Using rp ~ Z, which is actually the De Broglie

relation, Eq. 2.24 can be recast to become E ~ Z2

2mr2 − e2

r . Then,

taking the derivative of r leads to the same energy minimum.

There is no need for replacing r by Δr and replacing p by Δp.
That is to say, the so-called uncertainty relation (2.25) is actually

not touched. Third, the r here is actually the dimension of the

hydrogen atom. Replacing r by Δr is substantially again the

confusion of a particle’s dimension and its position uncertainty.

Fourth, taking derivative with respect to Δr is ridiculous, because
Δr is, in the sense of either (2.12) or the position uncertainty, not

a variable. In the course of derivation, the uncertainty relation

(2.25) is used, but a definite result is obtained. This is not a

correct mathematical derivation because wrong logic is involved.

We stress once more that a particle’s dimension is a definite

quantity, whereas its position’s uncertainty relies on

measurement.

2.4 Real measurement experiments

Until now, when discussing the uncertainty relation, often

idealized experiments have been concerned, which are irrelative

to the experiment of measurement.

Actually, there is no such experiment in which the position

and momentum of a particle are measured simultaneously, and

their uncertainties are estimated from the measured information,

so as to meet Eq. 2.9.

To gain the uncertainty of a particle’s position, one first has to

measure its position. Nevertheless, in QM, a particle is described

by a wave function, and has a dimension as having been defined

in Section 2.3.1. In QM, the concept of a particle’s position is not

clearly defined. Because of this fact, in experiments, no

measurement of the so-called position of a particle is carried out.

People did measure a particle’s momentum, and estimate the

uncertainty from the information of the experiment. However,

they did not measure the particle’s position in the same

experiment simultaneously. There are two examples [14].

One is that the momentum of a charged particle is measured

by deflection in a constant magnetic field, the strength of which

is denoted by B. An electron with a charge e enters the magnet

after passing through a diaphragm with width d1, and leaves it

through another diaphragm with width d2 after having suffered

a 180-degree deflection. The trajectory of the electron in the

magnet is a semicircle, the radius R of which is equal to half of

the distance between the two diaphragms. When the

momentum of the electron is measured to be p, the

precision is estimated to be
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Δp � p

R
(d1 + d2). (2.28)

At the instant at which the electron enters the magnet

through the first diaphragm, it moves along the y axis. The

uncertainty is estimated as

Δy ≈
4πZ
eBd1

. (2.29)

Thus, it seems that ΔyΔp ≈ 4πZ(1 + d2
d1
), satisfying the

coordinate–momentum uncertainty relation.

However, the right-hand side of Eq. 2.29 has been already

known before the measurement. In the experiment, the position

of the electron is not detected, and consequently, one is unable to

estimate the precision of the position of the electron from

measurement. This experiment does not need the knowledge

of QM.

Another experiment measuring a particle’s momentum is to

let a photon collide with the particle. Before the collision, the

photon’s frequency ] is precisely known and the momentum of

the particle is p. Let us suppose that before and after the collision,

the photon and the particle move along a line, set as y axis. After

the collision, the measured momentum and frequency are p′ and
]′, respectively. The precision Δp′ of the p′ relies on the Δ]′ of ]′:

Δp′ ≈ mc
Δ]′
]′ + ]

. (2.30)

Assuming that the uncertainty at the time of the collision

is Δt,

Δ]′Δt≥ 1. (2.31)

Within the time, the particle can go a distance of

Δy �
∣∣∣∣p − p′

∣∣∣∣
m

Δt. (2.32)

Substitution of (2.31) into (2.32) leads to the uncertainty of

the position of the particle.

Δy≥
∣∣∣∣p − p′

∣∣∣∣
mΔ]′ � 2πZ

mc

] + ]′
Δ]′ . (2.33)

It seems that ΔyΔp′≥ Z, meeting the uncertainty relation.

This explanation is problematic. The relation 2.31 has neither

rigorous mathematical derivation nor experimental verification.

Eq. 2.32 assumes that within the time uncertainty Δt, the particle
goes with the velocity of about p/m. Unfortunately, Δt is a part of
the time period within which the collision occurs. In this period,

the particle’s momentum changes drastically, such that the

particle’s velocity cannot be estimated in the way of 2.32. This

experiment does not involve the particle’s wave function in QM,

i.e., the particle is treated as a classical one.

The common features of these two examples are as follows:

the measurement of a particle’s position is out of question; the

measured particles are actually treated as classical ones. Though

the momentum is measured, the estimated Δp based on the

measurements has nothing to do with Eq. 2.14. In conclusion,

these two experiments do not embody the uncertainty relation.

3 Time–energy uncertainty relation

3.1 There is no way to derive the
time–energy uncertainty relation

In Ref. [4], having discussed the possible uncertainty relation

between the position and momentum, Heisenberg noticed that

the product of the coordinate and momentum was of the

dimension of angular momentum, and the result was

proportional to the Planck constant. He associated the

commutator of time and energy, and thus postulated the

following commutator:

[t, E] � iZ. (3.1)

Then, imitating the discussion of position and momentum,

he thought that the uncertainties of time and energy obeyed,

similarly to (2.2), the relation

tE ~ Z. (3.2)

Later, people accepted his postulation. Furthermore,

imitating ΔxΔp≥ Z/2, people guessed that there was a similar

inequality,

ΔtΔE≥ Z/2. (3.3)

Since Δt and ΔE in 3.3 are uncertainties, they should be

quantities related to measurement.

Eq. 3.3 is the so-called time–energy uncertainty, but it is even

worse than the coordinate–momentum uncertainty relation.

Heisenberg put forth Eq. 3.1 without any derivation and

proof. He did not even present the concrete form of the

operator E. Hilgevoord [32] thought that “a relation like”

(3.1) “does not occur in quantum mechanics”. His reason was

that “there is no Poisson bracket defined between t and H.

Consequently, in quantum mechanics, one does not have a

relation like” Eq. 3.3. “Accordingly, there is no natural analog

for energy and time of the ‘canonical’ uncertainty relations”

Eq. 2.9.

At the time when QM was established, Heisenberg himself

did not know explicitly what the relation between time and

energy was. The mathematical theory of QM had not been

accomplished yet. In Heisenberg’s paper [4], there was neither

rigorous derivation nor an association with real experiments.

Thus, Heisenberg did not give a convincing conclusion, but

people deemed that what he said was right. Later, many people

tried to show that there was indeed the inequality (3.3). Everyone

raised his own version, without rigorous derivation and

experimental correspondence.
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Until 1961, “there has been an erroneous interpretation of

uncertainty relations of energy and time.” [31] Until 1990, “no

general agreement has been reached. One finds physicists

claiming that ‘there is no energy–time uncertainty relation at

all,’ while others stress, for instance, that the relation is applied

quite effectively to the analysis of individual short-lived

elementary particles (resonances). Even among those who

accept the validity of the relation, there is appreciable

disagreement as to meanings of the relation.” [43] Until 1996,

“It is generally thought desirable that quantum theory entail an

uncertainty relation for time and energy similar to the one for

position and momentum. Nevertheless, the existence of such a

relation has still remained problematic” [32].

As a matter of fact, up to now, there has been no final verdict

with respect to the time–energy uncertainty relation.

It should also be noted that Heisenberg discussed the

measurement of individual particles, which can be inferred

from his examples about the uncertainty relation (2.9).

Subsequently, the discussion of time–energy uncertainty

should be for individual particles. However, later, people often

discuss many-particle systems.

Now we start to carefully analyze the so-called time–energy

uncertainty relation.

First, let the two operators in Eq. (B1) be time and energy,

respectively, F � t and G � H. Nevertheless, the commutator

[t,H] (3.4)

does not have a definite result. When the Hamiltonian H is

independent of time, the result is zero.

[t,H] � 0,whenH is independent of time. (3.5)

The key is that the coordinate and momentum operators on

the left-hand side of (2.1) have explicit forms, no matter what

function they act on. By contrast, the form of Hamiltonian H

depends on the system under investigation. Hilgevoord noticed

that “for a system of particles, one should not demand a

communication relation between t and H as a complement to

the ones between q and p, nor could there be such a commutation

relation.” [32].

Time t is not an operator. According to Pauli, “the

introduction of an operator t is basically forbidden, and the

time t must necessarily be considered as an ordinary number

(‘c-number’).” [12] The average of t in any normalized state is still

the time itself, �t � (ψ, tψ) � t(ψ,ψ) � t, which makes the

average meaningless.

Therefore, there is no way to derive a time–energy

uncertainty relation starting from (3.4) in the way in

Supplementary Appendix SB.

People may think that although the Hamiltonian H in (3.4)

depends on systems, the operator iZ z
zt on the left-hand side of

(1.1) corresponds to Hamiltonian and is independent of systems.

There is a definite commutator

[t, iZ z

zt
] � iZ. (3.6)

It seems, then, that imitating the procedure of deriving (2.9)

can lead to (3.3). It is not so. Obviously, the averages of time t and

its square t2 in any normalized function are still t and t2, so that

Δt � 0. It is easily verified that (ψ, iZ z
ztψ)2 � (ψ, (iZ z

zt)2ψ).
Therefore, along this routine, one is unable to reach Eq. 3.3.

The conclusion is that there is no way to acquire (3.3)

through the procedure in Supplementary Appendix SB. In

[44], Eq. 3.3 was just a hypothesis.

3.2 The operator of taking a derivative with
respect to time

Here we intend to clarify the implication of the operator iZ z
zt.

Someone thought it to be an energy operator and denoted it

by [22]

Ê � iZ
z

zt
. (3.7)

Following this definition, (3.1) could be understood as (3.5),

but this problematic.

When we put down z
zt, it is just an operator taking a derivative

with respect to time, without any other physical information.

When we put down iZ z
zt, we just let the dimension of the operator

become that of energy and make it a Hermitian one, and no

physical information is added yet.

An operator should have its eigenvalues and corresponding

eigenfunctions under appropriate boundary conditions, such as a

momentum operator. The operator iZ z
zt is not of this property. In

[19], an attempt was made to define a time operator, but no

eigenvalue and eigenfunction could be given. One may define an

operator in some way, but it is meaningless if the operator does

not have eigenvalues and eigenfunctions.

Then, why do people think of iZ z
zt as an energy operator? The

reason is based on the fundamental QM equation. In Eq. 1.1, iZ z
zt

is directly connected to HamiltonianH. When, and only when, in

this equation, the operator iZ z
zt represents the Hamiltonian on

the right-hand side of this equation.

It is stressed that iZ z
zt should not be regarded as a

Hamiltonian operator or energy operator carelessly except in

the case of (1.1). The following two points are important: (i)

according to Eq. (1.1), the operator iZ z
zt must be related to a

specific Hamiltonian of the system under investigation; (ii) only

when the operator iZ z
zt acts on the wave function ψ satisfying

(1.1), can it show the meaning of energy, because this action is

just that of this specific Hamiltonian on this wave function ψ.

When these two points are met, the result calculated through

(ψ, iZ z

zt
ψ) � (ψ, Hψ) � �E (3.8)
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is of the meaning of the energy average in this state.

For any function of φ not satisfying (1.1), (φ, iZ z
ztφ) is not of

the meaning of energy.

Since the implication of the operator iZ z
zt is clarified, we are

able to figure out the Pauli difficulty, which is as follows [12, 19].

Let Hamiltonian H be independent of time and its

eigenfunction be denoted as ψE.

HψE � EψE. (3.9)

We construct a wave function e−iαt/ZψE, where α can be any

real number. Let the Hamiltonian act on this functionHe−iαt/ZψE,

and make the Taylor expansion of the factor e−iαt/Z. It follows that

He−iαt/ZψE � (E − α)e−iαt/ZψE. (3.10)

This result shows that for any α, E − α is an eigenvalue of the

H. That is to say, the eigenvalues of the H compose a continuous

spectrum covering the whole real axis. However, the energy

spectrum of the Schrödinger equation (1.1) must have a lower

limit. This contradiction is the Pauli difficulty.

We explain how this difficulty is yielded. When taking the

Taylor expansion of the factor e−iαt/Z on the left-hand side of

(3.10), the commutator [t,H] � iZ is employed [19], which

results on the right-hand side of (3.10). The reason of the

Pauli difficulty is the employment of the relation [t,H] � iZ.

We have pointed out above that there is no such relation. Eq. 3.8

is one for stationary states, i.e., H is independent of time. So, Eq.

3.5 has to be employed. Starting from the left-hand side of (3.10),

one obtains

He−iαt/ZψE � Ee−iαt/ZψE, (3.11)

instead of the right-hand side of (3.10). If

ψ � e−iαt/ZψE (3.12)

is still an eigenfunction of the H, it must meet (1.1).

iZ
z

zt
e−iαt/ZψE � He−iαt/ZψE. (3.13)

Since ψE is independent of time,

iZ
z

zt
e−iαt/ZψE � αe−iαt/ZψE. (3.14)

The right-hand side of (3.11) and (3.14) should be equal. It is

seen that α � E; i.e., α must be an eigenvalue of the H, not an

arbitrary number.

3.3 The derivations and explanations of the
so-called time– energy uncertainty
relation in the literature

In [4], the relation (3.3) between the uncertainties of time and

energy was guessed without derivation, and the discussion was

vague. People believed that what Heisenberg said was right.

Some first assumed (3.3), resembling (3.3), and then, tried to

derive it by supposing various scenarios. Different persons

present the derivation based on their own understanding of

the uncertainties of time and energy. Among different

derivations, none of them could overturn the others.

Therefore, according to viewpoint I.2, none was correct. In

fact, every derivation was apparently right but actually wrong.

Although it was noticed [31, 32] that some of the derivations

were wrong, a thorough analysis is desired.

In the following, we list several derivations and present our

comments. In each case, we extract the concepts of Δt and ΔE,
demonstrating that the concepts differ from person to person.

The common features are that almost every proof has concept

stealing and that no one made the measurements that could

match the formulas.

Before the introduction, we emphasize that in

inequality (B14),

ΔAΔE≥
1
2
|〈[H,A]〉|, (3.15)

and ΔA is defined by

ΔA �
�������
A2 − �A

2
√

� [(ψ, A2ψ) − (ψ, Aψ)2]1/2. (3.16)

It is a definite quantity determined by the known wave

function but not a variable. One more point should be

stressed that ΔA is finite, meaning that it is neither infinitely

small nor infinitely large.

1) Using the concept of wave packet [14, 15, 19]:

This is for a single particle. Suppose that the particle is a wave

packet with width Δx, moving along the x axis with speed v. The

time it passes one point in the x axis is not definitely determined,

but has an uncertainty

Δt ≈ Δx
v
. (3.17)

On the other hand, the wave packet has some extension in

momentum space, so that the particle’s energy has an

uncertainty ΔE.

ΔE ≈
zE

zp
Δp � vΔp. (3.18)

The product of these two equations yields

Δt · ΔE ≈Δx · Δp. (3.19)

Then Eq. 2.9 is used to result in (3.3), “which limits the

product of the spread ΔE of the energy spectrum of the wave

packet and the accuracy Δt of the prediction of the time of

passage at a given point” [19].
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Comment:

Since the right-hand side of (3.19) is just (2.9), the Δx and Δp
ought to be evaluated in the way of (3.16). However, the Δx from

(3.17) is the dimension of the wave packet and the Δp from (3.18)

is the increment of the momentum, both not being the meanings

of uncertainties. The concept stealing is obvious.

The use of (3.19) means that Eqs. (2.9) and (3.3) ought to be

compatible. However, the two relations were thought to express

two different and incompatible viewpoints in [19].

Here, Δt is the time a wave packet needs to pass through a

distance. The ΔE is the increment of energy irrespective to

measurement.

2) Making use of the formulas in Supplementary Appendix SB

[3, 14, 19, 21, 23]:

When a quantity A varies, the time it needs to change ΔA is

Δt � ΔA
|d〈A〉/dt|. (3.20)

We make use of the formula

d〈A〉
dt

� 1
Z
|〈[H,A]〉|. (3.21)

Then, by (3.15)

ΔAΔE≥
1
2
|〈[H,A]〉| � Z

2
d〈A〉
dt

. (3.22)

The combination of these three equations results in

ΔtΔE≥
Z

2
. (3.23)

Comment:

We point out that Eq. 3.20 is strange. In the denominate and

following equations, A is regarded as an operator, and the

numerator should be written as Δ〈A〉. It is not clear from

which fundamental formula (3.20) was derived.

In Eq. 3.20, the Δt is variable and is the time increment when

A has an increment ΔA. In (3.22), both the ΔA and ΔE should be

calculated by (3.16), and are not variable. The ΔA in (3.20) is

different form that in (3.22). The concept confusion happens

from (3.20) to (3.22). Furthermore, both the Δt and ΔE do not

have the meanings of uncertainty.

The authors of [45] recast (3.22) to be the form ΔtΔE≥ Z
2
d〈A〉
dA

by replacement of the ΔA by dA and of the dt by Δt, which
seemed to be a smart way to obtain (3.23), but this was wrong.

The dAwas a variable and could be taken as infinitesimal, but the

ΔA on the left-hand side of (3.22) is calculated by (3.16), so it is

finite and not a variable. This distinction stands also for the dt

and Δt. Therefore, the replacements were illegal. The authors of

[45] addressed that the quantity A in (3.20) could be arbitrary:

“its physical meaning depending thus on the choice of this

quantity.” However, the A could not be t.

Here, the Δt is a time increment when a quantity A changes

ΔA, and the ΔE is calculated by (3.16), both being irrespective to

measurement.

3) Making use of the difference of two energy levels [3, 14]:

Suppose that a particle had two energy levels, E1 and E2.

Their difference is

ΔE � |E1 − E2|. (3.24)

When the two states superpose, the particle oscillates

between the two states and the oscillation period is

τ � Z

ΔE. (3.25)

Then, ΔE is explained as the uncertainty of the energy level,

and τ is explained as the time one needs to observe the system’s

variation. Eq. 3.25 is recast to be

τΔE ≈ Z, (3.26)

which is explained as the time–energy uncertainty relation.

Comment:

Here, the τ is the oscillation period between two energies of

the system, and the ΔE is the difference of the two energies, both

being not of the meaning of uncertainty.

Eq. 3.26 is simply the copy of (3.25), but the concepts are

endowed different connotations, i.e., concept stealing. In Eq.

3.26, the ΔE and τ are respectively said to be the uncertainties of

energy and time, which are created out of nothing.

4) Using the concept of “time packet” [6]:

It was assumed that a particle’s behavior was a pulse or ‘time

packet’.

“We consider the case such that ψ(t) is a pulse or ‘time packet’,

which is negligible except in a time interval Δt.” This time packet

can be expressed as a superposition of monochromatic waves of

angular frequency ω by the Fourier integral

ψ(t) � ∫∞

−∞
dωG(ω)e−iωt, (3.27)

where the function G(ω) is given by

G(ω) � 1���
2π

√ ∫∞

−∞
dtψ(t)eiωt. (3.28)

As the ψ(t) takes only significant values for a duration Δt, it
follows from the general properties of Fourier transformations

that G(ω) is only significant for a range of angular frequencies

such that

ΔωΔt≥ 1. (3.29)

Since
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E � Zω, (3.30)
the width of the distribution in energy, ΔE, satisfies the

time–energy uncertainty relation

ΔEΔt≥ Z.”[6]. (3.31)

In this way, it seems that the uncertainty relation can be

proved.

Comment:

Here, the Δt is the time the particle exists—from its

appearance to its vanishing, and the ΔE is the width of the

distribution of the particle’s energy. Both the concepts are

strange, because we cannot image what the system is and how

its Hamiltonian is written.

It is well known that a light pulse can be produced

experimentally. But what about a massive particle? This

imagined pulse or ‘time packet’ of a massive particle is not

possible. No one is able to find a Hamiltonian H such that

the solution ψ(t) of Eq. 1.1 is a ‘time packet’. If someone knew

such a Hamiltonian, he would have put it down.

5) Making use of the interaction between the measured system

and measuring device [10, 24, 46]:

The measured system and measuring device are combined to

become a larger system. In other words, the whole system is

divided into two parts, measured system and measuring devices,

the energies of which are E and ε, respectively. “We suppose that

it is known that at some instant these parts have definite values of

the energy, which we denote by E and ε, respectively.” “The

energies E, ε, on the other hand, can be measured to any degree of

accuracy at any instant” [10].

Because of the interaction between the two parts, each time

the measurement would cause the energy E to change, say, to be

E′. It was treated as the transition between the energies E and E′.
The transition probability for a system subject to a periodic

perturbation was given by the formula (43.2) in [10]. By taking

ω � 0 in this formula, the transition probability was

sin 2[(E′ − E)t/2Z]
(E′ − E)2 . (3.32)

According to this formula, “The most probable value of E′ −
E is of the order of the magnitude of Z/t.” [10]. Subsequently, it

was believed that

∣∣∣∣E + ε − E′ − ε′
∣∣∣∣Δt ~ Z. (3.33)

This was called the “uncertainty relation for energy.”

Comment:

According to this result, the energy conservation in QM was

understood in an alternative way. “It shows that, in quantum

mechanics, the law of conservation of energy can be verified by

the means of two measurements only to an accuracy of the order

of Z/Δt, where Δt is the time interval between the

measurements.” “The quantity (E + ε) − (E′ + ε′) in (44.1) is

the difference between two exactly measured values of the energy

E + ε at two different instants, and not the uncertainty in the

value of the energy at a given instant” [10]. However, “the

statement that the conservation law of energy may be violated

by an amount δE during a time δt � Z/δE. . .. . . confuses the

energy of the actual system with the energy of the unperturbed

system” [32].

It was believed that the relation ΔtΔE> Z “does not signify

that the energy cannot be known exactly at a given time (for in

that case the concept of energy would have no meaning), nor

does it means that the energy cannot be measured with arbitrary

accuracy within a short time” [10].

This scenario is totally different from the above ones. Here

the energy of a system can be measured in any accuracy, which

contradicts the uncertainty of energy.

According to [10, 46], because the measured system is

interacted by the measuring device, its energy shifts after the

measurement. The amount of the shift and the time interval

between adjacent measurements form the time–energy

uncertainty relation: “the smaller the time interval Δt, the

greater the energy change that is observed” [10]. This brings a

question that why the shorter the time interval, the greater the

energy shift.

In the transition probability formula, the difference of two

energy levels is used, which is not the energy uncertainty.

Furthermore, in [10], Eq. (42.3) was valid under a condition

of (42.1) which required that the frequency ω should not be zero.

It is hard to understand the transition expressed by (3.32)

without releasing or absorbing photons.

Equations (3.32) and (3.33) contradict each other. Eq. 3.32

means that there were two energy levels E and E′ in the system.

The existence of the two energy levels was determined by the

Hamiltonian of the system, independent of whether the

transition happened or not. What is more, it was thought that

Δ(E − E′)> Z/Δt [46], which meant both E and E′ had some

uncertainties. However, Eq. 3.33 reflected that there was only one

energy level E, which, after the measurement, shifted to E′. That
is to say, before the measurement, there was no energy level E′,
and after the measurement, there was no energy level E.

Here, the Δt is the lifetime of an energy level. The ΔE is the

energy shift caused by the measurement, and meanwhile, it is the

difference of two energy levels.

This scenario was criticized in [31].

In [10, 46], following the above content, momentum

variation was discussed by collision as an example.

Nevertheless, Eq. 3.32 was obtained by perturbation theory,

while collision could not be treated by the perturbation theory.

The last part of Section 44 in [10] related the difference E −
E′ to the lifetime of energy level. This recognition, also seen in

other textbooks [6, 7], is going to be expounded in next

subsection.
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All in all, it is seen from the entries 1) – 5) that people

presumed the relation (3.3) and then designed certain ideas to

scrape it together. None of the above scenarios were connected to

a real measurement. All of them are incorrect.

Different people had different explanations of the Δt and ΔE
in (3.3). In one textbook, more than one explanation arose [3, 10,

14, 18]. This fully revealed the serious confusion regarding these

concepts. Some other narrations are as follows.

In [13], the relation (3.3) was given without derivation. The

explanation was that “an energy determination that has an

accuracy ΔE must occupy at least a time interval Δt ~ Z/ΔE;
thus if a system maintains a particular state of motion not longer

than a time Δt, the energy of the system in that state is uncertain

by at least the amount ΔE ~ Z/Δt, since Δt is the longest time

interval available for the energy determination.” Here the Δt had
the implication of the lifetime of the state of the system.

In [14], the ΔE was regarded as the uncertainty of the

measured energy or the change of the energy of the system,

but meanwhile, the ΔE is the difference of two energy levels,

which could be both measured precisely.

In [19], there were contradictory statements. One was that

“the energy of a system can be determined with arbitrary

precision at any time.” The other was that Eq. 3.3, written as

τΔE ~ Z, “is the lifetime–width relation for unstable systems,

i.e., systems which are not stationary and do not correspond to a

well-defined value of the energy but rather to an energy spectrum

with a certain spread ΔE, called the level width. The mean lifetime

τ of the stable (or metastable) state here plays the role of the

characteristic time considered above”. “In this case, the accuracy

ΔE of the energy measurement is connected with the time Δt
required for the measurement itself.”

In [24], the Δt and ΔE were replaced by δt and δE,

respectively. “The time–energy uncertainty relation relates the

rate at which the state of a system changes to the uncertainty δE

of its energy. If the state of the system changes appreciably during

a time interval δt, then the time–energy uncertainty relation

states that δtδE≥ Z. I have written δt and δE, rather than Δt and
ΔE, to emphasize that these are not standard deviations.” Here,

the time interval δt was regarded as the lifetime of the system.

3.4 The concept of the lifetime of an
energy level

One explanation of the Δt in (3.3) was the lifetime of an

energy level [16, 31, 32], and correspondingly, one of

explanations of the ΔE was the width of the energy level [14,

19, 31, 32]. It is necessary to clarify the concept of the lifetime of

an energy level [47, 48].

In Eq. 3.3, the ΔE, as mentioned in Section 3.3, at least has

three explanations: the energy shift, energy width, and difference

of two energy levels. All the explanations concern the real part of

the energy. Unfortunately, the lifetime of a state is irrelative to the

real part of the energy of the state. Let us recall the definition of

the lifetime of a state.

In a wave function, there is a factor containing energy E and

time t, e−iEt. If the energy is a complex number,

E � ε − iγ, (3.34)
then

e−iEt/Z � e−iεt/Ze−γt/Z. (3.35)

The wave function decays with time exponentially. After a

time period of about

τ ~ Z/γ, (3.36)

the wave function almost disappears. Due to this fact, we say that

the lifetime of this state is about Z/γ.

Here, we emphasize the following points: (1) The lifetime τ of

a state is determined by the imaginary part, not the real part, of

the state’s energy. (2) The lifetime is defined by (3.36). It is not the

case that we have first the two quantities ΔE and τ, which then

meet Eq. 3.3. (3) The lifetime of the state is determined by the

state itself, irrespective of the measurement process. (4) The

lifetime reflects the decay of the state wave function, but is not

related to the shift of the energy. From the lifetime, one is unable

to gain the information of energy shift. (5) The lifetime does not

involve energy level broadening, which is a property of the real

part of the energy. From the lifetime, one is unable to gain the

information of the energy level broadening. (6) The energy (3.34)

has an imaginary part. This fact shows that this is a many-particle

system.

In a many-particle system, there are interactions between

particles, such as electron–phonon interaction, collision, and so

on. Due to the interactions, elementary excitations are formed,

and they are of finite lifetimes. An elementary excitation’s

lifetime is determined by the imaginary part of its energy [47, 48].

A detailed analysis was given in [25]. The interactions inside

a system result in transitions between energy levels. The

transitions in turn cause an energy shift and broadening. Now

we introduce the analysis.

Suppose that in a system there are two states denoted by a

and b, respectively. When there is no interaction, both are

stationary states, and their energies are Ea and Eb,

respectively. When there are interactions, the transition

between them can occur. Suppose that a and b are,

respectively, the initial and final states of the transition. In the

course of the transition, the initial state a will vary. The state after

the change is denoted by a′ with energy E′
a − iΓ, i.e., energy

changes,

Ea → E′
a − iΓ. (3.37)

The change yields not only a shift of the energy but also an

imaginary part of the energy, the latter being determined by

transition probability. This imaginary part determines the
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lifetime of the state a′. This is because the amplitude of the state a′
contains a factor

e−i(E′
a−iΓ)t/Z � e−iE

′
at/Ze−Γt/Z. (3.38)

It is seen that in about time Δta, where

ΓΔta ~ Z, (3.39)
the state a′will almost vanish. Therefore, Δta ~ Z/Γ is the lifetime

of the state a′.
Meanwhile, the energy of the final state b has a broadening

with a Lorentz line shape, the half height width of which happens

to be Γ, too. We denote this half height width by ΔEb.

ΔEb � Γ. (3.40)

Then,

ΔEbΔta ~ Z. (3.41)

Equations (3.39) and (3.41) seem to be the form of the

time–energy uncertainty relation, but they are not. The former

is the definition of the Δta, the lifetime of state a′. The latter

relates the lifetime of state a′ and the half height width of the

energy of state b. Among these quantities, none has the physical

meaning of uncertainty, and none is to be determined by

measurement.

4 Discussion

People subjectively thought that what Heisenberg said in his

paper [4] were certainly right, and the inequality that Robertson

derived [5] was just what Heisenberg wanted to express. Under

these presumptions, people tried their best to present

explanations to the coordinate–momentum uncertainty

relation, and to derive the so-called time–energy uncertainty

relation. There is no uniform and standard explanation. Several

scenarios were proposed. From the source, the discussions in

Heisenberg’s primary paper [4] were ambiguous. The

explanations and derivations are of the following defects.

One mathematical symbol has different explanations, that is,

concept stealing. In the coordinate–momentum uncertainty

relation, the Δx should be the uncertainty of measuring a

particle’s position, but is often replaced by the dimension of that

particle, the range that the particle’s wave function is not zero; the

Δp should be the uncertainty of measuring a particle’s momentum,

but is often replaced by the width of the momentum range of the

Fourier component of a wave packet. In the so-called time–energy

uncertainty relation, theΔt is explained as either the time that a wave

packet goes through a space point, or the time needed for measuring

an energy level, or the lifetime of an energy level; theΔE is explained

as energy shift, or the difference of two energies, or energy width.

A truncated plane wave with finite length for a moving

particle is not the wave functions in QM.

All the derivations of the so-called time–energy uncertainty

relation are not rigorous, but simply patchwork. The last words in

[31], “energy can be measured reproducibly in an arbitrarily short

time”, utterly negated the so-called time–energy uncertainty relation.

No real measurement was touched. Gedanken experiments

were assumed, which could not verify the uncertainty relations.

The application of the coordinate–momentum uncertainty

relation was just to make some ex-post explanations to well-

known phenomena such as single-slit diffraction. Even in these

explanations there were confusions of the concepts.

In discussion of the time–energy uncertainty relation, the

problems in one-particle and many-particle systems were confused.

There is more than one explanation for an uncertainty

relation. This fact itself illustrates that none of the

explanations is right. If one explanation was right, the other

would be no longer displayed.

We have mentioned in Introduction the reasons that people

do not realize the problem of the uncertainty relations. The

uncertainty relations have never been related to real

measurements, and solving problems and establishing new

theories in QM do not resort to the uncertainty relations.

Up to now, the quantum measurement problem, that what

precisely happens when a quantum measurement is performed, is

still in dispute [49, 50], but the so-called uncertainty principle for

quantum measurement was proposed long before. That is strange!

5 Conclusion

Heisenberg’s primary paper did not explicitly present an

uncertainty relation.

Robertson derived the coordinate–momentum uncertainty

relation ΔxΔp≥ Z/2. In this relation, Δx and Δp are uniquely

determined by the wave function, and are not variable. In this

relation, there is no quantity that needs to be gained by

measurement. This relation does not need any knowledge of

Heisenberg’s primary paper and of measurement. The

conclusion is that the coordinate–momentum uncertainty

relation is irrespective to measurement.

There is no definite result for the commutation of time and

Hamiltonian [t,H]. This is because Hamiltonian depends on

systems. The operator iZ z
zt can represent a concrete Hamiltonian

H only when the iZ z
zt and H are connected in one quantum

mechanics equation. The discussions of the time–energy

uncertainty relation in the literature are incorrect. The

conclusion is that there is no so-called time–energy relation.
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dynamical localization−skin
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In the present study, the driven dynamics in a non-Hermitian Aubry–André (AA)

model under the open boundary condition (OBC) are studied. For this model,

non-Hermiticity is introduced by the non-reciprocal hopping, and this model

undergoes a localization–skin effect phase transition depending on the

strength of the quasi-periodic potential. Although the properties of non-

Hermitian systems are very sensitive to the imposed boundary conditions,

we find that the scaling behavior can also be described by the same set of

the exponents under the periodic boundary condition (PBC). When the initial

state is prepared deep in the localized phase and the potential strength is slowly

driven through the critical point, we find that the driven dynamics of the

localization length ξ and the inverse participation ratio (IPR) could be

described by the Kibble–Zurek scaling (KZS). Then, we numerically verify

these predictions for different initial states. Finally, the dynamical emergence

of the skin effect state is found, and the dynamics can also be described by the

Kibble−Zurek scaling with the same set of critical exponents.

KEYWORDS

non-Hermitian quasi-periodic system, Aubry–André model, localization–skin effect
phase transition, driven dynamics, Kibble–Zurek scaling, Anderson localization

1 Introduction

In recent years, the Anderson localization transition in quasi-periodic systems has

attracted increasing interest [1–4]. The quasi-periodic system lacks a translational

invariance but shows a long-range order, leading to some peculiar properties in

comparison with the disordered system. For instance, the one-dimensional (1D)

quasi-periodic system can show the Anderson localization transition [1]. A typical

quasi-periodic example is the Aubry–André (AA) model, which undergoes a

localization transition with the change of the potential strength [1, 4–7].
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Many unusual characteristic features have been found in the

AA model and generalized AA models [8–10], such as the self-

similar energy spectra and non-trivial topological properties [1],

the remarkable self-dual metal localization transition at a

multifractal critical point [11], and many-body localization by

including the interaction [6, 7, and 12–19]. Moreover, non-

equilibrium dynamics in AA models have attracted increasing

attention [20–25], and exotic properties, therein, have been

discovered, e.g., the periodic driving can not only turn the

localized eigenstates into extended eigenstates and vice versa

[20 and 21] but also bring the system into the topological MBL

phase [22]. For the driven dynamics in the AA model, it was

shown that the driven dynamics from the initial state deep in the

localized phase can be well described by the Kibble–Zurek scaling

(KZS) [25].

On the other hand, the non-Hermitian systems have attracted

enormous studies [26–40]. Due to the release of Hermiticity

constraints, the non-Hermitian system exhibits rich phenomena

without the Hermitian counterparts, e.g., the topological non-

Hermitian skin effect under the open boundary condition (OBC),

i.e., the wave functions in large systems under the OBC accumulate

on the boundary [27–34], exceptional points [41–44], etc. The

interplay of non-Hermiticity and the quasi-periodic system

brings a new perspective for the localization phenomena [45–56].

Non-Hermiticity can affect the localization transition behavior, e.g.,

non-Hermiticity can destroy Anderson localization and lead to

delocalization even in the 1D system, and it introduces a new

scale and breaks down the one-parameter scaling, which is the

central assumption of the conventional scaling theory of localization

[57]. Furthermore, it has been demonstrated that non-Hermiticity

can change the energy spectra of the disorder or the quasi-periodic

system. A significant change of the energy spectra is the emergence

of the imaginary parts, and the real-complex phase transition always

appears accompanied by the localization transition [46, 48, 50, 53,

and 58]. Very recently, the effect of the non-Hermiticity on the

driven dynamics in a non-Hermitian AA model under the periodic

boundary condition (PBC) has been studied [59]. It was found that

the critical exponents for the non-Hermitian AA model under the

PBC are different from those of the Hermitian AA model, and the

driven dynamics of the localization–delocalization transition for

different classes of initial states could be described by the KZS with

the same set of critical exponents.

FIGURE 1
(A) Phase diagram of the non-Hermitian AA model under the OBC. (B) Typical spatial distributions of ‖Ψg〉|2 in the skin effect phase, localized
phase, and critical phase under the OBC. The lattice size is L = 610 and g = 0.5 in (B).

FIGURE 2
Energy gap between the ground and first excited states Δc as
a function of the lattice size L. The power fit yields Δc ∝ε−2.002.
Double-log scales are used. Here, g = 0.5, and the results are
averaged for 100 choices of ϕ.
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Although the driven dynamics of the non-Hermitian AAmodel

under the PBC has been investigated, the driven dynamics of the

non-Hermitian AA model under the OBC is still unknown. Since

the skin effect, the non-Hermitian AA model undergoes a

localization–skin effect transition under the OBC, which

corresponds to a transition of the localization center of the wave

functions from isolated sites to the boundary. Therefore, the

behavior of the localization–skin effect transition under the OBC

is different from that of the localization−delocalization transition

under the PBC. Moreover, the energy spectrum under the OBC is

different from that under the PBC [50]. Considering the effects of

non-Hermiticity, it is interesting to investigate the driven dynamics

of the non-Hermitian AA model under the OBC.

In the present paper, the static scaling behavior of the driven

dynamics of the localization–skin effect transition in the non-

Hermitian AA model under the OBC was studied. The non-

Hermiticity of this model is induced by the non-reciprocal

hopping [50]. Then, the static scaling behavior in the critical

region of the localization–skin effect transition was studied, and

the critical exponents were determined therein. Starting from the

deep localized phase and slowly tuning the potential strength

across the critical point, the driven dynamics in this model under

the OBC were studied. It was shown that the driven dynamics of

the localization–skin effect transition for the initial ground and

excited states can be well described by the KZS with the same set

of exponents. Finally, the dynamical emergence of the skin effect

was observed, and the dynamics can be described by the KZS

with the same set of exponents as well.

The rest of the paper is arranged as follows: the non-

Hermitian AA model and phase diagram under the OBC are

introduced in Section 2. The static scaling properties under the

OBC are studied in Section 3, and the critical exponents are

determined by the numerical study. Then, in Section 4, the driven

dynamics are studied, and the KZS is numerically verified. A

summary is given in Section 5.

2 The non-Hermitian AA model and
phase diagram under the OBC

The Hamiltonian of the AA model is as follows [50]:

H � ∑L
i->j

JLc
+
j cj+1 + JRc

+
j+1cj( ) + λ∑L

j

cos 2π γj + ϕ( )[ ]c†jcj, (1)

FIGURE 3
Finite scaling of ξ and IPR of the ground state in the localized phase. The curves of ξ versus ε before (A1) and after (A2) rescaling, according to Eq.
5 for different L values. The curves of the IPR versus ε before (B1) and after (B2) rescaling, according to Eq. 8 for different L values. Here, g = 0.5, ε > 0,
and the model is in the localized phase region. Double-log scales are used, and the results are averaged for 100 choices of ϕ.
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in which c†j(cj) is the creation (annihilation) operator of the hard-

core boson, JL = Je−g and JR = Jeg are the asymmetry hopping

amplitudes between the nearest neighboring (NN) sites, λmeasures

the amplitude of the quasi-periodic potential, γ � ( 	
5

√ − 1)/2 is an
irrational number, and ϕ ∈ [0, 1) is the phase of the potential. In the

following calculation, the OBC is imposed.

In Figure 1A, the phase diagram of the non-Hermitian AA

model for g > 0 is plotted. It is shown that the model is in the

localized phase when λ > 2eg, while it is in the skin-effect phase when

λ < 2eg. At λ = 2eg, the eigenstates of the system are all critical.

Therefore, by varying λ through the critical point λc = 2eg, the system

undergoes a localization–skin effect phase transition under theOBC.

In different phases, the spatial distributions of the eigenstates

show great different behaviors, which is an important characteristic

feature in distinguishing these phases. Since the behavior of the

spatial distributions of different eigenstates is similar to each other,

the ground state is chosen as an example. As shown in Figure 1B, the

spatial distribution of the ground states |Ψg〉 in different phases is

plotted. In the localized phase, one finds that the wave function is

localized on some isolated sites. However, in the skin effect phase,

the wave function is localized on the boundary due to the non-

Hermitian skin effect. The wave function is localized near the right

side, but different from the skin effect, where the wave function is

not localized on the boundary. Therefore, the localization–skin effect

transition corresponds to a transition of the localization center from

some isolated sites to the boundary.

3 Static critical properties in the
critical region of localization–skin
effect transition

3.1 Static scaling forms in the critical
region

In this section, the static properties in the critical region of

the localization–skin effect transition are studied, and the critical

exponents for the localization–skin effect transition are examined

by studying the static behaviors of the energy gap between the

first excited state and the ground state Δc, localization length ξ,

and inverse participation ratio (IPR). We found that the critical

exponents for the localization–delocalization transition under

the PBC are still applicable in the localization–skin effect

transition.

As in the usual quantum criticality, the energy gap between

the first excited state and the ground state at the critical point is

FIGURE 4
Finite scaling of ξ and IPR of the ground state in the skin effect phase. The curves of ξ versus |ε| before (A1) and after (A2) rescaling, according to
Eq. 5 for different L values. The curves of the IPR versus |ε| before (B1) and after (B2) rescaling, according to Eq. 8 for different L values. Here, g=0.5, ε <
0, and the model is in the skin effect phase region. Double-log scales are used, and the results are averaged for 100 choices of ϕ.
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usually used to characterize the localization–skin effect

transition. According to finite-size scaling, the energy gap Δc

should scale as follows:

Δc ∝L−z. (2)

For the Hermitian AA model, z was determined as z = 2.37

[25], while z = 2 for the non-Hermitian AA model under the

PBC [59].

The localization length ξ is defined as follows [25−59]:

ξ �
														
∑L
n>nc

n − nc( )2[ ]Pn

√√
, (3)

in which Pn is the probability of the wave function at site n, and nc
≡∑nPn is the localization center. Near a critical point, ξ scales

with the distance to the critical point ε as follows:

ξ∝ ε−], (4)

in which ε = λ–λc. Taken into account the finite-size scaling, the

scaling form of ξ is given as follows:

ξ � Lf1 εL1/]( ), (5)

where f1 is the scaling function for the static ξ. For the Hermitian

AA model and non-Hermitian AA model under the PBC, ] is

determined as ] = 1 [25, 59, and 60].

The IPR is defined as follows [61 and 62]:

IPR � ∑L
j�1‖Ψ j( )〉|4

∑L
j�1‖Ψ j( )〉|2, (6)

where |Ψ(j)〉 is the eigenvector. Under the OBC, the IPR shows a

local minimum at the critical point, indicating the

localization−skin effect transition [50]. Near the critical point,

the IPR satisfies a scaling relation, shown as follows:

IPR∝ εs. (7)

Taken into account the finite-size scaling, the scaling form of

the IPR is given as follows:

IPR � L−s/]f2 εL1/]( ), (8)

in which f2 is the scaling function for the static IPR. For the non-

Hermitian AA model under the PBC, s is determined as s =

0.1196 [54 and 59].

3.2 Numerical results

By applying a finite-size scaling of Δc, the dynamical

exponent z can be verified. The numerical results for Δc as

a function of L are plotted in Figure 2. By a power-law fitting,

one finds that Δc∝ L−2.002 with the exponent very close to z = 2,

confirming that z = 2 is also applicable under the OBC.

In the localized phase, the Eqs 5− 8 are tested, and the

ground state is taken as an example. As shown in Figure 3

(A1), we calculate the curves of ξ versus ε for different lattice

sizes. After rescaling ξ as ξL−1 and ε as εL1/] with ] = 1, one

finds that the rescaled curves match with each other very well,

as plotted in Figure 3 (A2). In Figure 3 (B1), the curves of the

IPR of the ground state versus ε for different lattice sizes are

plotted. After rescaling the IPR as IPRLs/] and ε as εL1/] with

] = 1 and s = 0.1196, the rescaled curves collapse onto each

other.

Different from the non-Hermitian AA model under the

PBC, ξ and IPR are still well defined under the OBC when λ <
2eg. Therefore, the scaling functions of Eqs 5−8 are also

verified in the skin effect phase. The numerical results are

plotted in Figure 4. Figure 4 (A1) and (B1) show the ε

dependence of ξ and IPR in the skin effect phase,

respectively. After rescaling according to Eqs 5 and 8 with

the same ] and s, we find that the rescaled curves collapse onto

each other, as shown in Figure 4 (A2) and (B2).

FIGURE 5
(A) ξ and (B) IPR at = 0 as a function of R. Here, we use g = 0.5 and L = 987. The results are averaged for 10 choices of ϕ.
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These results confirm that the same set critical exponent of

the non-Hermitian AAmodel under the PBC is applicable for the

localization–skin effect transition. These exponents, z, ], and s,

are usually enough to determine the critical behavior in the

localization–skin effect critical region.

4 Kibble–Zurek scaling in the
localization–skin effect transition

4.1 General theory of the KZS

Here, we slowly vary ε across the critical point from an initial

state in the localized phase. ε varies as follows:

ε � −Rt, (9)

whereR is the varying rate.We choose the initial time as t0 = −ε0/R.

According to the KZS, when |ε| > R1/]r with r = z+1/], the system
can evolve adiabatically as the state has enough time to adjust to

the change in the Hamiltonian. When |ε| < R1/]r, the system enters

the impulse region and ceases to evolve as a result of the critical

point slowing down.

Around the critical point, the driven dynamics of ξ satisfy the

KZS, which is given as follows:

ξ ε, R( ) � R−1/rg1 εR−1/r]( ), (10)

where g1 is the scaling function for the driven dynamical ξ and

r = z+1/]. The driven dynamics of the IPR of the nth eigenstate

around the critical point satisfy the following:

IPR ε, R( ) � Rs/r]g2 εR−1/r]( ), (11)

where g2 is the scaling function for the driven dynamical IPR.

It should be noted that the scaling functions Eqs 10 and 11 are

suitable to describe the driven dynamics of the

localization–delocalization phase transition under the PBC since

the exponents are the same under the PBC andOBC. The full scaling

form for a quantity, e.g., Eqs 10 and 11 for ξ and IPR, has also been

proposed from different perspectives in classical and quantum phase

transitions [25, 63–69]. In the recent study, such scaling forms have

been generalized to study the non-equilibrium dynamics in the non-

Hermitian systems under the PBC [42, 59, and 70]. In this work, we

perform this full scaling form in the dynamical localization–skin

effect transition in the non-Hermitian AA model under the OBC.

FIGURE 6
Driven dynamics with the initial ground state at ε = 1. (A1) Curves of ξ versus ε and (A2) the rescaled curves according to Eq. 10 for different R
values. (B1) Curves of the IPRn versus ε and (B2) the rescaled curves according to Eq. 11 for different R values. Here, we use ε0 = 1, g= 0.5, and L = 987,
and the results are averaged for 10 choices of ϕ. The arrows in (a1) and (b1) point to the direction of the changing ε.
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4.2 Numerical results for the initial states
deep in the localization phase

First, we verify the scaling function Eqs 10 and 11 with the

initial state deep in the localized phase. We numerically solved

the Schrodinger equation for the model (Eq. 1) under the OBC,

and the finite difference method in the time direction is used. In

the numerical calculation, the time interval is chosen as 10−3.

According to Eqs 10 and 11, at ε = 0, ξ and IPRn become the

following:

ξ ε � 0, R( )∝R−1/r, (12)
IPR ε � 0, R( )∝Rs/r]. (13)

In Figure 5, we take the ground state at ε0 = 1 as the initial

state to test these predictions, where we plot the curves of ξR (ε =

0, R) and IPRn(ε = 0, R) as a function of R. The power-law fitting

yields ξ(ε = 0, R)∝ R−0.3367 and IPR(ε = 0, R)∝ R0.0420, which are

consistent with the predictions in Eqs 12 and 13.

In Figure 6 (A1), the curves of ξ versus ε with the initial

ground state at ε = 1 for different R values are plotted. After

rescaling ξ and ε with R, according to Eq. 10, the rescaled

curves collapse onto each other very well, as plotted in Figure 6

(A2). It confirms the scaling law of Eq. 10. The numerical

results of the IPR versus ε and rescaled curves according to Eq.

11 are plotted in Figure 6 (B1) and (B2). The collapse in

Figure 6 (B2) confirms the scaling function Eq. 11.

In addition to the initial ground state, the scaling functions of

Eqs 10 and 11 are also verified for the excited states. The 609th

excited state at ε = 1 is selected as the initial state. Figure 7 (A1)

and (B1) show the evolution of ξ and IPR, respectively, for the

609th excited state. After the rescaling according to Eqs 10 and 11

with the same set of the critical exponents, we find the rescaled

curves collapse onto each other, as shown in Figure 7 (A2) and

(B2). These results confirm that the rescaling functions of Eqs 10

and 11 are applicable for the excited eigenstates.

4.3 Dynamical emergence of the skin
effect

Since the critical exponents in the skin effect phase are

identical to those in the localized phase, it is expected that the

driven dynamics in the skin effect phase can also be described by

the scaling functions of Eqs 10 and 11. To verify this prediction,

we studied the driven dynamics with even smaller varying rates.

In Figure 8 (A1) and (B1), we calculate the curves of ξ and

IPR versus ε for various R values. Here, we set the lattice size as

FIGURE 7
Driven dynamics with the initial 609th excited state at ε= 1. (A1) Curves of ξ versus ε, and (A2) the rescaled curves according to Eq. 10 for different
R values. (B1) Curves of the IPRn versus ε and (B2) the rescaled curves according to Eq. 11 for different R values. Here, we use ε0 = 1, g = 0.5, and L =
987, and the results are averaged for 10 choices of ϕ. The arrows in (A1) and (B1) point to the direction of the changing ε.
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L = 233; R values vary from 5 × 10−5 to 12 × 10−5, which is small

enough to observe the behavior of the dynamical emergence of

the skin effect. The ground state at ε = 1 is chosen as the initial

state. By rescaling ξ and ε as ξR1/r and εR−1/r], the rescaled curves

collapse onto each other, as shown in Figure 8 (A2), confirming

Eq. 10. As shown in Figure 8 (B1) and (B2), the curves of the IPR

versus ε before and after rescaling according to Eq. 11 are plotted.

We find that the rescaled curves, according to Eq. 11 with the

same set of the critical exponents, collapse into a single curve.

Furthermore, one finds that ξ shows a peak value and IPR shows

a valley around ε = 0. Then, with the further decrease of ε, ξ

decreases and IPR increases again. Such behaviors of ξ and IPR

correspond to the dynamical emergence of the skin effect. These

results confirm that Eqs 10 and 11 are still applicable in the

dynamical emergence of the skin effect.

5 Summary

In summary, we have studied the static scaling behavior and the

driven dynamics of the localization–skin effect transition in a non-

Hermitian AA model under the OBC. By investigating the static

behavior of ξ, IPR, and Δc, respectively, it is shown that the same set

of critical exponents of ], s, and z under the PBC are also applicable

under the OBC. The driven dynamics of the localization–skin effect

transition for different initial states are studied, and we find that the

driven dynamics in both the initial ground and excited states can be

described by the KZS with the same set of critical exponents. Then,

the dynamical emergence of the skin effect is observed with an even

small varying rate R, and it is shown that the dynamical emergence

of the skin effect can also be described by the same scaling functions

with the same set of critical exponents. Our present work generalizes

the KZS to the localization–skin effect transition in non-Hermitian

systems under the OBC.
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By solving the full-dimensional time-dependent Schrödinger equation with the
thermal-random-phase wavepacket method, we investigate the photoassociation
(PA) process of hot (1000 K) magnesium atoms induced by two time-delayed
femtosecond laser pulses. Driven by the 840 nm fs laser pulses, the Mg2
molecules can be formed on the four excited states, (1)1Πg, (1)1Πu, (2)1Πu, and
(2)1Σ+

u, from the initial electronic ground state X1Σ+
g. It is found that the three-

photon couplings between X1Σ+
g and the three ungerade states [(1)1Πu (2)1Πu, and

(2)1Σ+
u], play dominant roles in the population transfer process. By scanning the pulse

duration τ from 50 to 200 fs, and varying the delay time δt0 from 0 to 2τ fs, we find
that the final PA population is strongly dependent on the two parameters. For a given
δt0, the parameter τ can induce a significant variation (2 ~ 6.8 times) for the final PA
population transfer, and for a given τ, one can also obtain a significant variation (2.7 ~
3.5 times) of the final PA population by varying δt0. Additionally, the dynamics of the
coherently vibrational wavepackets of the four excited states are also influenced by
the two parameters.

KEYWORDS

femtosecond (fs) laser, photoassociation, time-dependent schrodinger equation, thermal-
random-phase wavepacket, multiphoton transition

1 Introduction

Through the interaction of the external laser fields with the colliding atoms, the molecular
bond can be formed by absorbing or stimulated emitting one or several photons. This process is
named as photoassociation (PA). PA has been studied extensively by using different laser pulses
such as ultrashort laser pulses [1, 2], shaped laser pulses [3–5], pulse trains [6–8], etc. Shaped
laser pulses are used in many PA experiments because of the advantages of the controlling of
phase [9], amplitude [10, 11] and polarization [12]. Compared with ultrashort laser pulses with
symmetric time profiles, the shaped laser pulses can enhance the PA transition efficiency in both
the resonant and non-resonant spectral ranges [13, 14]. Zhang et al. employed a slowly-turned-
on and rapidly-turned-off (STRT) laser pulse to achieve the PA process of the Cs2 system [13].
The calculations indicated that the shaped STRT laser pulse has an obvious advantage over the
unshaped pulses. The train of laser pulses is also a powerful way to transfer populations between
different electronic states. Yang et al. investigated the effect of a train of ultrashort pulses on
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multiphoton transitions theoretically [6]. They found that the
population accumulations are dependent on the relative phase
between two adjacent pulses. It was proved that even higher PA
efficiency can be achieved by using a train of STRT pulses [15]. They
found that the population accumulations are dependent on the relative
phase between two adjacent pulses. It was proved that even higher PA
efficiency can be achieved by using a train of STRT pulses [16].

Many methods have been used to control the PA dynamics. Luc-
Koenig et al. investigated the yield of molecules by using the
theoretical framework of a Gaussian wavepacket as the initial state
[16, 17]. Koch et al. found that molecules can be transferred directly
from high-lying bound states to the ground vibrational level by using
shaped femtosecond laser pulses [18]. de Lima et al. used a
combination of two transition pathways to form molecules of the
electronic ground state [19]. The first pathway is to use pump-dump
time-delayed laser pulses to transfer populations to the electronic
ground state. The second pathway applies a single far-infrared pulse to
obtain electronic ground state molecules from free atoms directly. The
interference between the pathways can be controlled by modifying the
laser parameters, and the yields of the target ground state molecules
can be enhanced.

With the development of laser techniques, researchers can achieve
PA through ultrashort laser pulses such as femtosecond pulses.
Ultrashort laser pulses are used to pump the free atom pairs to
bound molecular states because of the broad bandwidth [20]. In
previous studies, Salzmann et al. verified the PA of ultracold
rubidium dimers using coherent femtosecond pulses and produced
electronic excited rubidium molecules [2]. Merli et al. investigated the
PA of ultracold rubidium atoms with shaped femtosecond laser pulses
[4]. Vardi et al. calculated the radiative recombination of cold Na
atoms by short laser pulses [21]. It was demonstrated that resonantly
enhanced two-photon recombination of ultracold atoms is an efficient
way to produce ultracold molecules.

Instead of forming ultracold molecules, PA also serves as another
role in laser control of chemical reaction, i.e., the formation of chemical
bonds in thermal atom gas. The PAof thermal atoms using femtosecond
laser pulses and shaped pulses can lead to coherent control of thermal
molecules [22, 23]. de Lima et al. used the non-perturbative laser pulse
to produce molecules in a thermal atomic gas [24]. Levin et al. verified
the coherent control of photoreactions in thermal conditions in
experiment [25]. Wang et al. investigated the coherent control of the
rovibrational dynamics of HF molecules by two-color pulses [26]. The
population distributions oscillate with a period of π when the relative
phase between the fundamental and the second-harmonic laser pulses
varies.

In previous studies, many efforts have been devoted into the
investigations of the effect of laser parameters, such as duration,
amplitude, carrier envelope phase, etc., on PA process. And these
laser pulse parameters are controllable and can also be used to enhance
the PA efficiency in the pump-dump scheme [27]. Zhang et al.
investigated the PA dynamics of Cs atoms system driven by a
picosecond pulse with cubic phase modulation [28]. In the
investigation of two-photon PA of 87Rb atoms system, Kallush
et al. found that a frequency-chirped pulse can enhance the
molecular formation rate [29]. Zhang et al. used a modulated two-
color laser field to steer the PA of ultracold Cs atoms in theory and
control the PA dynamics through changing the phase of envelope and
the period of the laser field [30]. Some researchers also used optimal
control theory to obtain laser pulses in population transfer studies. For

instances, the shaped laser pulses with minimum intensity proposed
by the optimal control theory can transfer the highly excited Na2
molecules to the ground vibrational level with a high efficiency of
.99 [18]; and Ndong et al. used optimal control theory to drive the
vibrational transfer from the dissociation limit to the vibrational
ground state in the KRb system [31].

Compared to the single laser pulse, time-delayed pulses can
introduce more various combination modes and be used in
different ways in population transfer. There were reports on the
formation of cold molecules by the PA process with consideration
of the time delay of two laser pulses (see, e.g., Refs. [19, 24]). The
dissociation process of the HD+ molecule driven by two overlapping
THz and infrared laser pulses was reported recently [32]. The effect of
2 picosecond pulses on the adiabatic population transfer of the LiH
molecule was also reported [33]. However, there is few report on the
influence of the pulses’ delay time on the PA process in thermally hot
atomic gas, except in Ref. [34].

Thus, we are motivated to investigate the influence of two time-
delayed laser pulses on the PA process in thermally hot atomic gas. In
this paper, the hot Mg atoms at 1000 K are taken as a model system,
because it is a prototypical system for the study of PA processes in
thermally hot atoms (see, e.g., Refs. [25, 34–36]). In thermal
conditions, Mg2 molecules can be produced through the
multiphoton PA process by using chirped femtosecond laser pulses
[25]. Hu et al. proposed a full-dimensional thermal-random-phase
wavefunction method to simulate the thermal PA process including
rovibrational couplings [35]. By using this method, the detailed
population transfer dynamics has been revealed by employing the
five-electronic-state model [36]. Here, we use the same five-electronic-
state model as the one used in Ref. [36], yet we consider the interaction
of two time-delayed femtosecond laser pulses with the system instead.
At different delay times and pulse durations, we simulate the final
populations of the four excited states and investigate the feasibility of
control the thermal PA process by manipulating the combination of
two pulses.

This paper is organized as follows: In Section 2, we briefly
introduce the theory. In Section 3, we discuss the effect of the
delay time and pulse duration on the population transfer of PA
process of Mg atoms at 1000 K. In Section 4, the conclusions are
summarized.

2 Theoretical approach

The initial thermal ensemble of the numerous rovibrational
eigenfunctions |n, j〉 of the X1Σ+

g state is described by the thermal-
random-phase wavefunction method. For the details of this method
with consideration of fully coupled rovibrational dynamics, one can
refer to Ref. [35]. Here, we just briefly list the main equations and
numerical parameters. The normalized initial thermal-random-phase
wavefunction of the X1Σ+

g state is expressed as,

ψk
1 R, θ, t � 0( ) � 1��

Z
√ ∑

n,j

�����
2j + 1

√
eiΘ

k
n,j e−

En,j
2kBT|n, j〉, (1)

where R is the internuclear distance and θ is the angle between the
molecular axis and the z-axis of the space fix frame which is taken to be
the polarization direction of the linear polarized laser pulses. Θk

n,j is the
initial random phase of the |n, j〉 quantum eigenstate, with k = 1, . . . , N
labeling different sets of random phases. n and j denote the translational
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and rotational quantum numbers, respectively. Z � ∑n,j(2j + 1)e−
En,j
kBT is

the normalization factor of the Boltzmann distribution. N different
thermal-random-phase initial wavefunctions are then used as initial
states for propagations, respectively. For a large number of N, the
statistical average of the expectation values will converge.

The laser field used in this work consists of 2 femtosecond
Gaussian pulses with the same wavelength of 840 nm and with a
specific delay time between each other. The total electric field of the
two laser pulses can be expressed as,

E t( ) � ΣiE0fi t( ) cos ω0 t − t0i( )[ ], i � 1, 2 (2)
where t01 and t02 represent the central time of the two Gaussian pulses.
We define δt0 = t02 − t01 as the delay time. E0 = 5 × 1012 W/cm2 is the
peak amplitude of the two Gaussian pulses. fi(t) �
exp[−4 ln 2(t − t0i)2/τ2] is the envelope function of the ith laser
pulse. τ is the full width at half maximum (FWHM) denoting the
pulse duration.

In this paper, we focus on the influences of the delay time δt0 and
the FWHM τ on the PA process. To compare the results with the
variation of δt0, we set τ = 100 fs to be the time unit to present δt0. The
envelope functions of the two pulses are shown in Figure 1A and the
two pulses gradually separate from each other with the increase of δt0
from 0 to 2τ. Figure 1B presents the sum of the envelopes of the two
Gaussian pulses, i.e., the total envelope function ftot(t), for different δt0.

The Hamiltonian that governs the propagation of the thermal-
random-phase wavefunction is expressed as

Ĥ �

Ĥ1 + ωS
1 W12 W13 W14 W15

W12 Ĥ2 + ωS
2 W23 W24 W25

W13 W23 Ĥ3 + ωS
3 V34 0

W14 W24 V34 Ĥ4 + ωS
4 0

W15 W25 0 0 Ĥ5

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (3)

where Ĥξ � T̂ + L̂
2

2μR2 + V̂ξ(R), ξ � 1, 2, 3, 4, 5 is the nuclear
rovibrational Hamiltonian in the absence of external fields for a
given electronic state. ξ = 1, 2, 3, 4, 5 represent the states X1Σ+

g,
(1)1Πg, (1)

1Πu, (2)
1Πu, and (2)1Σ+

u , respectively. And we use |1〉, |2〉, |
3〉, |4〉, and |5〉 to simply represent these five states. T̂, L̂ and V̂ξ

represent the vibrational kinetic energy operator, angular momentum
operator and the interaction potential of the two atoms, respectively.

Note that the potential energy functions, V̂3(R) and V̂4(R), and the
diabatic coupling, V̂34(R), are in the diabatic representation which
correspond to the (1)1Πu and (2)1Πu states in the adiabatic
representation. μ is the reduced mass of the Mg2 molecule. In Eq.
(3), ωS

ξ � −1
4E

2
0f

2
tot(t)∑j,j′ϵjϵj′αξjj′ cos2 θ is the dynamic Stark shift of

the ξth electronic state. αξjj′ represents the dynamic electronic
polarizability. Wξξ′ (ξ ≠ ξ′) is the coupling of states |ξ〉 and |ξ′〉. In
the two-photon rotating-wave approximation, W12 �
1
4E

2
0f

2
tot(t)∑j,j′ϵjϵj′M2←1

jj′ cos2 θ represents the two-photon coupling
between states |1〉 and |2〉, whereM2←1

jj′ denotes the tensor element of
the two-photon electric transition dipole moment [37]. Wξξ′ = μξξ′(R)
E(t) cos θ (ξξ′ = 13, 14, 15, 23, 24) is the coupling via the transition
dipole moment. W13, W14 and W15 are the three-photon couplings
and W23, W24 and W25 are the one-photon couplings.

The five-state time-dependent Schrödinger equation of the Mg2
system is shown as

i
z

zt

ψk
1 R, θ, t( )

ψk
2 R, θ, t( )

ψk
3 R, θ, t( )

ψk
4 R, θ, t( )

ψk
5 R, θ, t( )

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ � Ĥ

ψk
1 R, θ, t( )

ψk
2 R, θ, t( )

ψk
3 R, θ, t( )

ψk
4 R, θ, t( )

ψk
5 R, θ, t( )

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (4)

where ψk
ξ(R, θ, t) is the nuclear wavefunction of the |ξ〉 state for a

given initial random-phase label k. The wavefunction can be divided
into R- and θ-dependent parts, with the former expanded on a Fourier
grid [38] and the latter expanded on a Legendre-Gauss quadrature
grid [35].

We solve Eq. (4) by using the split-operator propagation method
[39, 40]. At the critical time t = tf when the action of the laser pulses is
over, the final population on the |ξ〉 state is calculated by statistically
averaging over the expectation values of all thermal-random-phase
wavefunctions,

Pξ tf( ) � 1
N

∑N
k�1

∫
R
∫

θ
ψk
ξ R, θ, tf( )[ ]*ψk

ξ R, θ, tf( )R2 sin θdθdR. (5)

Note that Eq. (5) is the integral over R and θ, and we can also obtain
the population distribution along R at any given time t, i.e., the
propagation of the radial wavepacket, by performing integral only
over θ,

FIGURE 1
(A) The envelope functions of the two laser pulses at five different delay times, δt0 = 0, 1/2τ, τ, 3/2τ and 2τ, respectively. The solid and dashed curves
denote f1(t) and f2(t), respectively. (B) The total envelope function of the two laser pulses according to the five different delay times. Here, τ = 100 fs.
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Pξ R, t( ) � 1
N

∑N
k�1

∫
θ
ψk
ξ R, θ, t( )[ ]*ψk

ξ R, θ, t( )R2 sin θdθ. (6)

3 Results and discussions

The initial temperature of the colliding Mg atoms system is set to
be 1000 K. The potential energy curves of the five relevant electronic
states of the Mg2 system are shown in Figure 2A. The relevant
molecular datas, including the potentials, diabatic couplings,
electric dipole moments, dynamic electronic polarizabilities, etc.,
are taken from Refs. [35, 37]. 1,024 and 250 grid points are used to
express the radial range from 3 to 40 Bohr and the angular range from
0 to π, respectively. The time step is set to be .4 fs for the propagation of
the wavepacket. These numerical parameters are kept the same as
those used in Ref. [36] which have been checked to be able to provide
the converged results.

Driven by the 840 nm laser field, these electronic states can
interact with each other via one-, two- or three-photon couplings.
The two-photon transition, which have been considered extensively
in the PA process of the titled system (see, e.g., Refs. [25, 34–37]),
can occur between the two gerade states, |1〉 and |2〉. As shown in
Figure 2B, the energy difference between the two potentials at R = 6.83
Bohr exactly equals to the energy of two photons. The other higher
excited states, are all ungerade states and energetically close with each

other. Thus, we use |u〉 to denote the states |3〉, |4〉 and |5〉 states, for
simplicity. Via the one-photon interaction, the gerade |2〉 state can
couple with the ungerade |u〉 state. Due to the different shapes of the
potential energy curves, the critical internuclear distance for one-
photon resonance between the two potentials of |2〉 and |u〉 varies
with u. As shown in Figure 2C, for |2〉 and |4〉, the one-photon
resonance may probably occur at R = 5.56 Bohr, while for |2〉 and |3〉
(or |5〉), the one-photon resonance may probably occur in the vicinity
of R ~ 7 Bohr. Recent theoretical calculations demonstrated that the
three-photon transition from |1〉 to |u〉 may also play an important
role in the PA process [35, 36]. In Figure 2D, we illustrate those critical
internuclear separations at which the potential energy gaps between
|1〉 to |u〉 equal to three-photon energy, which also present variance.

The above different kinds of coupling interactions can construct
several transition pathways for PA. As demonstrated in Ref. [36], with
the action of the 840 nm fs laser pulse, the direct two-photon
transition from |1〉 to |2〉 is much weaker than the three-photon
transition from |1〉 to |u〉, because the three-photon transition
between the gerade and ungerade states is electric dipole allowed,
while the two-photon transition between the two gerade states is
electric dipole forbidden. Thus, the major population transfer path is
considered to be |1〉 →+3Zω|u〉→−Zω|2〉, corresponding to the schematic plot
in Figure 3A.

In this paper, we mainly investigate the effect of the delay time δt0
and the FWHM τ of the laser pulses on the populations of the four
excited states. Thus, we divide our discussion into different cases: Case

FIGURE 2
(A) The potential energy curves of the five-state-model of the Mg2 system. The diabatic coupling between the |3〉 and |4〉 states is shown in the inset. (B)
The two-photon coupling between the states |1〉 and |2〉. (C) The one-photon couplings between the states |2〉 and |u〉. (D) The three-photon couplings
between the states |1〉 and |u〉. Here, u = 3, 4, 5.
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1, corresponds to the major population transfer path, as shown in
Figure 3A where the two-photon transition is neglected, and W12 in
Eq. 3 is set to be zero in the propagating; Case 2, only the three-photon
transition between |1〉 and |u〉 is considered, and W12, W23, W24 and
W25 in Eq. 3 are all set to be zero; Case 3, all the possible couplings have
been taken into account, and the propagating is performed with the
full Hamiltonian as presented in Eq. 3; Case 4 denotes the transition
from |1〉 to |u〉 via one-photon resonant coupling with the central
frequency corresponding to 280 nm wavelength instead, and the
Hamiltonian is formally the same as the one used for Case
2 except that the central frequency for W13, W14 and W15 is
changed accordingly. By comparing the calculation results of Cases
1 and 3, we can further confirm the major pathway for the PA process
induced by the two time-delayed laser pulses. By comparing Cases
1 and 2, we can identify the enhancement of the one-photon coupling
between |2〉 and |u〉 on the three-photon transition process. And by
comparing Cases 1 and 4, we can demonstrate that the three-photon
resonant transition and one-photon resonant transition depend on
different laser-molecule interaction mechanism and that they behave
differently with the laser parameters.

We first fix the FWHM of the two laser pulses to be τ = 100 fs
and the delay time δt0 = 0 fs. Considering the major population
transfer path, driven by the 840 nm laser pulses, i.e. Case 1, the
formations and propagations of the radial wavepackets of the four
excited states are shown in Figure 4. We can see that after the action
of the laser pulses, the radial wavepackets oscillate periodically on
the states |2〉, |4〉 and |5〉, respectively. This indicates that
several certain vibrational levels have been populated on these
specific electronic states. The oscillation period of the radial

wavepacket of |2〉 is about 130 fs, which corresponds to a
vibrational frequency of roughly 256 cm−1 which is quite
comparable with the vibrational signal reported in experiment
[34]. The radial wavepacket on |3〉 actually contains both the
vibrational-bound and the continuous states.

In Case 1, the one- and three-photon couplings are taken into
account. Here, we correlate the R position at which the radial
wavepacket is initially formed, with the one at which two different
electronic states resonate with each other. Since the three-photon
coupling between |u〉 and |1〉 plays a major role in the population
transfer process [36], we first concern about the wavepackets
formed on the three ungerade excited states. In Figure 4B,
during the action of the laser pulses (mainly from t = 150 to
250 fs), the radial wavepacket on the |3〉 is partly formed in the
vicinity of R ~ 5 Bohr, which is right around the resonant position
between the potentials of |3〉 and |1〉 marked in Figure 2D. The
other parts of the radial wavepacket on the |3〉 are formed around
R ~ 6, 7 Bohr and in the large R region of over 8 Bohr. This can be
ascribed to the diabatic coupling between the |3〉 and |4〉 states. As
shown in the inset plot in Figure 2A, the diabatic coupling can
influence the wavefunctions of the |3〉 and |4〉 in the range from
roughly 6 to 10 Bohr. Thus, although |3〉 and |1〉 are not quite
resonant with each other in this R region, once |4〉 and |1〉 are
resonant or near resonant, then the |3〉 state can be populated via
diabatic coupling with the |4〉 state. As shown in Figure 4C, the
corresponding radial wavepacket on the |4〉 state is initially in the R
region from 6.5 to 8.5 Bohr which is in accordance with the above
mentioned diabatic coupling region. Additionally, the resonance
between the |4〉 and |1〉 states mainly occurs around 6.76 Bohr as

FIGURE 3
The four cases with the consideration of different coupling conditions. (A) Case 1: The one-photon coupling between |2〉 and |u〉 and the three-photon
coupling between |1〉 and |u〉 are considered. (B)Case 2: Only the three-photon coupling between |1〉 and |u〉 is considered. (C)Case 3: All the one-, two- and
three-photon couplings are taken into account. In Cases 1–3, the laser wavelength is 840 nm. (D) Case 4: The one-photon coupling between |1〉 and |u〉 is
considered with the wavelength setting to be 280 nm.
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shown in Figure 2D, which also falls in the diabatic coupling region
between |4〉 and |3〉. Therefore, one can expect that the population
is firstly transferred from |1〉 to |4〉 around 6.76 Bohr due to
the three-photon resonance, and then redistributed between |4〉 and
|3〉 in an even larger R region from 6 to 10 Bohr due to the diabatic
coupling. Similarly, the radial wavepacket on |5〉 is initially formed
around 7 Bohr at t = 200 fs when the peak of the laser pulse occurs, as
shown in Figure 4D. This is consistent with the three-photon resonant
position between |5〉 and |1〉 shown in Figure 2D.

The one-photon coupling between |2〉 and |u〉 can additionally
enhance the population transfer process from |1〉 to |u〉. As shown in
Figure 2C, in the vicinity of 7 Bohr, the one-photon coupling between |2〉
and |5〉 (|3〉) is strong. Thus, we can expect the three-photon transition
from |1〉 to |5〉 (|3〉) may be enhanced around R ~ 7 Bohr. This can be
verified from Figures 4B,D: When t varies from 200 to 250 fs, the
distributions of the wavepackets on the |5〉 and |3〉 states have been
enhanced around 7 Bohr. The similar circumstance occurs for the |4〉 state.
As seen in Figure 4C, when t varies from 200 to 250 fs, there is an
enhancement of the wavepacket around 5 Bohr which is consistent with
the resonant position, R ~ 5.56 Bohr, between |4〉 and |2〉 shown in
Figure 2C. The wavepacket on the |2〉 completely results from the one-
photon coupling between |2〉 and |u〉, and consequently, it can be found to
be initially localized around R ~ 5 and R ~ 7 Bohr, as shown in Figure 4A.

Here, the two laser pulses are set to coincide with each other in
time, and we further discuss the influence of the delay time between
the two pulses, δt0, on the population transfer process. The thermally

averaged final populations of the four excited states vary with δt0 for
different cases are shown in Figure 5, where τ is still fixed at 100 fs.

One aspect shown in Figure 5 is that the population transfer process is
dominated by the three-photon resonant transition from |1〉 to |u〉 which
can be enhanced by the one-photon resonant coupling between |2〉
and |u〉. Specifically, in Figure 5A, we compare the final populations
of the four excited states in Case 1 (dashed line) with those in Case 3
(solid line). It can be found that the population variations with δt0 in the
two cases are almost the same. This illustrates that the two-photon
coupling between |1〉 and |2〉 has little influence on the population
transfer process, because Case 3 additionally includes the effect of two-
photon coupling compared to Case 1. Figure 5B is then the comparison
of the final populations of the four excited states between Case 1 (dashed
line) and Case 2 (solid line). We can see that the final populations of the
states |2〉, |4〉 and |5〉 in Case 1 are higher than those in Case 2, while
that of the state |3〉 is not changed obviously from Case 1 to Case 2. This
further indicates that the one-photon coupling between |u〉 and |2〉 can
enhance three-photon transition from |1〉 to |u〉. These findings are
consistent with the report in Ref. [36] based on the simulation of a single
laser pulse action, and here we further extend it in the two time-delayed
laser pulses condition.

The other aspect shown in Figure 5 is that the final populations of the
four excited states can vary with δt0 to different extent. In Figure 5B, in
Case 2 where only the three-photon coupling between |1〉 and |u〉 is taken
into account, P3, P4, and P5 all decrease with the increase of δt0 from 0 to
100 fs? However, the absolute value of P5 is relatively small, which has

FIGURE 4
The propagations of the radial wavepackets for the four excited states, (A) |2〉, (B) |3〉, (C) |4〉, and (D) |5〉, in Case 1 with τ = 100 fs and δt0 = 0.
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been enhanced significantly by the one-photon coupling between |2〉 and
|5〉. Therefore, the variation of P5 with δt0 in Case 1, as the dashed pink
line shown in Figure 5B, can not duplicate its behavior in Case 2. To
understand why the three-photon resonant transition probability
decreases with the increase of δt0, we compare the final populations of
the four excited states in Case 2 (dashed lines) with those in Case 4 (solid
lines) in Figure 5C. Here, we find that in the |1〉 → |u〉 process, the
resonance excitation of one-photon coupling is much higher than that of
three-photon coupling. Moreover, the variation behavior of final
population on a given state with δt0 in Case 2 is totally different from
the one in Case 4. This is because the one-photon resonance excitation

mainly depends on the pulse shape and area of the laser field, while the
multiple-photon resonance excitation more greatly relies on the peak
intensity of the laser field [41, 42]. As shown in Figure 1B, the shape and
area of the total pulse envelope vary with δt0 which leads to the variations
of P3, P4, and P5 in Case 4; while the peak intensity of the laser field first
decreases dramatically from δt0 = 0 to 100 fs and then keeps almost
unchanged from δt0 = 100 to 200 fs, which is consistent with the variation
behaviors of P3, P4, and P5 in Case 2. Thus, the delay time between the
pulses can be used as a good parameter for steering of the
photoassociation process in the time area when the two pulses overlap
with each other.

The FWHM of the laser pulse is another important laser parameter
for steering molecular dynamics. To investigate its influence on the PA
process, we first fix δt0 = 0 and decrease FWHM τ from 100 to 50 fs. The
propagation dynamics of the wavepackets on the four excited states in
Case 1 are shown in Figure 6. Obviously, the wavepacket dynamics and its
corresponding excitation probability vary from those in Figure 4. The
pulse with short duration can form wavepackets with more concentrative
localization and the vibrational periods also vary a little. For instance, the
period for |2〉 decreases to roughly 100 fs which corresponds to an
increase of the vibrational energy difference and suggests that some lower
vibrational levels be populated. This can be ascribed to the relatively
broader frequency domain of the τ = 50 fs pulse. Additionally, for the
same peak intensity, the area of the τ = 50 fs pulse is smaller than that of
the τ = 100 fs pulse. Thus, the final transition probability may also be
influenced.

To further indicate the influence of τ and δt0 on the PA efficiency, we
calculate the total population of the four excited states as a function of the
delay time for different FWHMs, with consideration of Case 3 including
all one-, two-, and three-photon couplings. As shown in Figure 7, the four
lines related to different τ present the similar behavior with the variation
of the delay time. The total population first exhibits a relatively maximal
value at δt0 = 0, then decreases with the increase of the delay time from
δt0 = 0 to δt0 = τ, and finally tends to be steadywhen the delay time further
increases from δt0 = τ to δt0 = 2τ. This can be ascribed to the fact that the
three-photon transition plays a dominant role in the PA process. And the
three-photon transition heavily depends on the peak amplitude of the
laser field. As shown in Figure 1, at δt0 = 0, the peak amplitude of the laser
field is the strongest, and it decreases with the increase of δt0 and is
unchanged when the two pulses separate from each other. Thus, it is good
for us to use τ as the unit to define the delay time δt0.

In Figure 7, it can be seen that the two parameters, τ and δt0 both
strongly influence the final PA populations. We note that at δt0 = 0, the
population for τ = 200 fs can reach .0073, while the one for τ = 50 fs
decreases to roughly .0035. The former value is roughly 2 times larger than
the latter one. At δt0 = 0.5τ, the total population for τ = 200 fs is roughly
.0068, while the one for τ = 50 fs decreases to roughly .001. The former is
about 6.8 times bigger than the latter. At δt0 = τ, the total population for
τ = 200 fs is roughly .0041, while the one for τ = 50 fs decreases to roughly
.002. At this point, the former is roughly 2 times greater than the latter.
Thus, for a given δt0, the parameter τ can induce a significant variation (2
~ 6.8 times) for the population transfer of the PA process. Similarly, we
can consider the influence of δt0 on the total final population for a given τ.
For τ = 200 fs, we can obtain the minimal total population of roughly
.0027 at δt0 = 1.5τ, compared to the maximal one (roughly .0073) at δt0 =
0. If we consider τ = 50 fs instead, the minimal value is roughly .001 at
δt0 = 0.5τ, compared to the maximal one (roughly .0035) at δt0 = 0. Thus,
it is also a significant variation (2.7 ~ 3.5 times) which can be induced
by δt0.

FIGURE 5
The comparisons of the final populations of the four excited states
vary with δt0 between (A) Case 1 and Case 3, (B) Case 1 and Case 2, (C)
Case 2 and Case 4. Here, τ = 100 fs.
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FIGURE 6
The propagations of the radial wavepackets for the four excited states, (A) |2〉, (B) |3〉, (C) |4〉, and (D) |5〉, in Case 1 with τ = 50 fs and δt0 = 0.

FIGURE 7
The total population of |2〉, |3〉, |4〉 and |5〉 as a function of the delay time in Case 3 for τ = 50, 100, 150, and 200 fs.
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4 Conclusion

We have investigated theoretically the PA dynamics of hot Mg atoms
induced by two time-delayed femtosecond laser pulses. In the typical five-
electronic-state model, the molecules can be formed on the gerade excited
state (1)1Πg and the three ungerade higher excited states (1)1Πu, (2)

1Πu,
and (2)1Σ+

u from the initial ground state X1Σ+
g. Driven by the 840 nm

laser pulses, there are one-photon couplings between (1)1Πg and the three
ungerade excited states, two-photon coupling between X1Σ+

g and (1)1Πg,
and three-photon couplings between X1Σ+

g and the three ungerade
excited states. All these couplings are taken into account and it is
found that the three-photon coupling plays a dominant role in the PA
population transfer process. The three-photon transitions from the initial
groundX1Σ+

g state to the three ungerade higher excited states are strongly
dependent on the peak intensity of the laser field. Thus, the pulse delay
time δt0 and the pulse duration τ can greatly influence the final PA
populations. The total PA population of the four excited states is obtained
with τ varying from 50 to 200 fs and δt0 varying from 0 to 2τ. For a given
δt0, the parameter τ can induce a significant variation (2 ~ 6.8 times) for
the final PA population, and for a given τ, one can also obtain a significant
variation (2.7 ~ 3.5 times) of the final PA population by varying δt0.
Additionally, the dynamics of the coherent vibrational wavepackets on the
four excited states are also influenced by the two parameters.
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Simulation of quantum shortcuts to
adiabaticity by classical oscillators
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It is known that the dynamics and geometric phase of a quantum system can be
simulated by classical coupled oscillators using the quantum−classical mapping
method without loss of physics. In this work, we show that this method can also
be used to simulate the schemes of quantum shortcuts to adiabaticity, which can
quickly achieve the adiabatic effect through a non-adiabatic process. By mapping
quantum systems by classical oscillators, two schemes, Berry’s “transitionless
quantum driving” and the Lewis−Riesenfeld invariant method, are simulated by a
corresponding transitionless classical driving method, which keeps adiabatic phase
trajectories and acquires Hannay’s angle and the classical Lewis−Riesenfeld invariant
method by manipulating the configurations of classical coupled oscillators. The
classical shortcuts to adiabaticity for the two coupled classical oscillators, which is
the classical version of a spin-1/2 in a magnetic field, is employed to illustrate our
results and compared with quantum shortcuts-to-adiabaticity methods.

KEYWORDS

shortcut to adiabaticity, quantum−classical mapping, transitionless quantum driving,
Lewis−Riesenfeld invariant, geometric phase

1 Introduction

Adiabatic processes of quantum systems have become a significant ingredient in
quantum information processing for various practical purposes in metrology,
interferometry, quantum computing, and control of chemical interaction [1–4].
Achieving state preparation or transferring the population with high fidelity versus
parameter fluctuations should take a long time [5–7]. However, there are many
instances where we need to speed these operations up to prevent them from suffering
decoherence, noise, or losses [8, 9]. Therefore, proposing a way to speed up the adiabatic
approaches has drawn considerable attention [10–13]. So far, a variety of techniques to
implement shortcuts to adiabaticity (STA) have been proposed [5, 8, 14–21]. Notably,
there is a shortcut passage algorithm proposed by Berry called “transitionless quantum
driving” (TQD) [10]. This method accelerates adiabatic evolution in a hurry by designing a
time-dependent interaction followed by the system exactly [10]. Moreover, Chen et al. put
forward another method to accelerate the adiabatic passage using the Lewis−Riesenfeld
(LR) invariant to keep the eigenstates of a Hamiltonian from a specified initial to the final
configuration in an arbitrary time [8].

Not only STA techniques are developed in quantum systems but there are also
dissipationless classical drivings in classical systems [20, 22–26]. Moreover, it is already
known that a quantum system in a Hilbert space possesses a mathematically canonical
classical Hamiltonian structure in the phase space [27–41]. For example, the structures of
their phase spaces are usually regarded as the same [42, 43]. Classical and quantum mechanics
can also be embedded in a unified formulation as a quantum−classical hybrid system [44].
There is a way to devote elements of quantum mechanics to classical mechanics, in which we
can simulate the microscopic quantum behavior by a transition of the average value from a

OPEN ACCESS

EDITED BY

Libin Fu,
Graduate School of China Academy of
Engineering Physics, China

REVIEWED BY

Arkajit Mandal,
Columbia University, United States
Yue Ban,
Basque Research and Technology Alliance
(BRTA), Spain

*CORRESPONDENCE

H. D. Liu,
liuhd100@nenu.edu.cn

H. Y. Sun,
sunhy507@nenu.edu.cn

SPECIALTY SECTION

This article was submitted to Atomic and
Molecular Physics,
a section of the journal
Frontiers in Physics

RECEIVED 06 November 2022
ACCEPTED 28 December 2022
PUBLISHED 13 January 2023

CITATION

Liu Y, Zhang YN, Liu HD and Sun HY (2023),
Simulation of quantum shortcuts to
adiabaticity by classical oscillators.
Front. Phys. 10:1090973.
doi: 10.3389/fphy.2022.1090973

COPYRIGHT

© 2023 Liu, Zhang, Liu and Sun. This is an
open-access article distributed under the
terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Physics frontiersin.org01

TYPE Original Research
PUBLISHED 13 January 2023
DOI 10.3389/fphy.2022.1090973

69

https://www.frontiersin.org/articles/10.3389/fphy.2022.1090973/full
https://www.frontiersin.org/articles/10.3389/fphy.2022.1090973/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fphy.2022.1090973&domain=pdf&date_stamp=2023-01-13
mailto:liuhd100@nenu.edu.cn
mailto:liuhd100@nenu.edu.cn
mailto:sunhy507@nenu.edu.cn
mailto:sunhy507@nenu.edu.cn
https://doi.org/10.3389/fphy.2022.1090973
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://doi.org/10.3389/fphy.2022.1090973


quantum system Hamiltonian into a classical system consisting of
oscillators without losing any physics [45–55]. Therefore, it is possible
to map and generalize adiabatic processes and STA for quantum
systems to classical systems by the quantum−classical mapping
method. As a matter of fact, we are inspired to ask if we can
simulate the STA in quantum systems by classical oscillators. Based
on this mapping and simulation, can it give specific classical schemes
for quantum schemes for the STA as the dissipationless classical
driving did? What is the relation between the quantum and
classical STA?

In this paper, we first introduce the quantum−classical mapping and
the relation between the Berry phase for the original quantum system and
Hannay’s angle for the mapped classical system in Section 2. In Section 3,
we generalize and simulate the two kinds of STA methods, TQD and LR
invariant-based methods, for quantum systems into the classical system
through the quantum−classical mapping and construct a complete
theoretical framework for both methods of achieving the STA in
classical systems. On one hand, the TQD method which implements
the STA by finding an additional Hamiltonian to drive the system can be
simulated by adding an additional driving Hamiltonian to keep adiabatic
phase trajectories and acquireHannay’s angle [23, 24]. On the other hand,
the LR invariant method which keeps energy eigenstates from a specified
initial to the final configuration can also be simulated bymanipulating the
configurations of classical coupled oscillators [20, 22]. To illustrate these
two classical methods, we study the quantum−classical mapping and the
two STAmethods for a spin-1/2 in amagnetic field, which corresponds to
two coupled classical oscillators in Section 4. Finally, we give a conclusion
in Section 5.

2 Adiabatic evolution in
quantum−classical mapping

We consider an N-level quantum system governed by
Hamiltonian Ĥ(t); its dynamical evolution can be described by the
following Schrödinger equation (see Appendix for details):

iZ
dψn t( )
dt

� zHC

zψn*
, (1)

with the probability amplitudes ψn of the state |Ψ〉 = ∑nψn(t)|ψn〉 on
the bare basis {|ψn〉} and the mean value energy
HC(ψ,ψ*, t) � 〈Ψ|Ĥ(t)|Ψ〉, where ψ(t) � (ψ1(t), . . . ,ψn(t), . . . ,ψN(t))T.
To study the adiabatic evolution of the system, it is convenient to
transform the bare basis {|ψn〉} into the adiabatic basis {|Ek(t)〉}, which
consists of the time-dependent eigenstates |Ek(t)〉 of the Hamiltonian
Ĥ(t). The amplitudes φ(t) � [φ1(t), . . . ,φn(t), . . . ,φN(t)]T on the
adiabatic basis are determined by |Ψ〉 = ∑kφk(t)|Ek(t)〉. These two
bases can be connected by the unitary transformation given as follows:

ψ t( ) � U t( )φ t( ), (2)
with Unk = 〈ψn|Ek(t)〉. By the adiabatic theorem, the probability |φk(t)|

2

remains unchanged in the adiabatic limit. The phase of the amplitudes φk
accumulated via evolution includes a dynamic phase ∫Ek(t)dt and a Berry
phase γk = ∫〈Ek(t)|dtEk(t)〉dt [56].

This quantum adiabatic evolution can be equivalently mapped into
a classical one without losing any physics [45, 46, 52]. If we decompose
ψn into real and imaginary parts ψn(t) � [qn(t) + ipn(t)]/

���
2Z

√
, the

Schrödinger equation and its complex conjugate can be written as
Hamilton canonical Eqs 46, 47, 53, shown as follows:

_qn �
zHC

zpn
, _pn � −zHC

zqn
. (3)

The Hamiltonian HC(ψ, ψ*, t) can be transformed into h(q, p, t),
and the quantum dynamics in Eq. 1 can be represented by the classical
evolution of the “position variable q(t)” and “momentum variable
p(t)” in Eq. 3.

The adiabatic evolution of adiabatic states can also be mapped to a
classical one. One can introduce a new pair of variables (θ, I)
corresponding to the amplitudes on the adiabatic basis by

φk t( ) �
��
Ik
Z

√
e−iθk t( ) (4)

and the Hamiltonian changes into [52]

HC θ, I, t( ) � ∑
k

Ek t( )Ik/Z + zS q, I, t( )
zt

, (5)

where Ek(t) corresponds to the eigenvalues of the Hamiltonian Ĥ, with
corresponding eigenstates |Ek(t)〉. S(q, I, t) is the generating function
of the classical transformation (q(t), p(t)) → (θ(t), I)

pn t( ) � ∑
k

���
2Ik

√
cos θkIm Unk t( )[ ] − sin θkRe Unk t( )[ ]{ },

qn t( ) � ∑
k

���
2Ik

√
cos θkRe Unk t( )[ ] + sin θkIm Unk t( )[ ]{ } (6)

between the position−momentum variable and action−angle variable,
which corresponds to the quantum unitary transformation |Ek(t)〉 =∑nUnk(t)|ψn〉 between the adiabatic basis and the bare basis. Under the
adiabatic evolution, it has been proved that the two new variables θ(t)
and I satisfy the same canonical equations as the angle−action
variables in classical mechanics [46], given as follows:

_θk � Ek t( )/Z − zAH I; t( )
zIk

, _Ik � 0. (7)

Like the Berry phase, the adiabatic evolution will accumulate a
dynamic angle ∫Ek(t)/Zdt and an additional angle onto the angle
variable called Hannay’s angle [57].

Δθk I( ) � − z

zIk
∫AH I; t( ), (8)

where

AH I; t( ) � 〈p θ, I; t( )ztq θ, I; t( )〉θ
� 1

2π( )N ∫dθ∑
n

pn θ, I; t( )ztqn θ, I; t( ) (9)

is the angle connection for Hannay’s angle [51]. The angular brackets
〈/ 〉θ denote the averaging over all angles θ (this averaging process is
called the averaging principle, which can be treated as the classical
adiabatic approximation), and zt is defined as ztF(t) � zF(t)

zt . It can be
proved that AH = ∑kiIkAB(k; t) [52]. We note that AB(k; t) is nothing
but a one-form for the Berry phase [51], and this means that Hannay’s
angle is exactly equal to the minus Berry phase of the original quantum
system [48, 52], which is given as follows:

Δθk I( ) � − z

zIk
∫AH I; t( ) � −i∫AB k; t( ) � −γk. (10)

So far, a quantum adiabatic evolution and its Berry phase can be
perfectly mapped to a classical one and its Hannay’s angle. Next, we
will show that the two different methods for the quantum STA can also
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be mapped to classical systems. It will not only connect the current
methods for the classical STA to the quantum ones but also shed more
light on the classical methods.

3 Shortcut to adiabaticity: From a
quantum to classical system

3.1 Transitionless classical driving

We first discuss the transitionless tracking algorithm. For the non-
adiabatic quantum driving, the quantum evolution cannot be restricted to
an eigenstate, whatever the initial state is. According to the STA proposed
by Berry, for the Hamiltonian Ĥ(t) we discussed in the previous section,
if we want to keep no transitions between the eigenstates

|φn t( )〉 � ei βn+γn( )|En t( )〉 (11)
of Ĥ(t) in the exact quantum evolution without the adiabatic
approximation with the dynamic phase βn � −1

Z∫ t

0
En(τ)dτ and the

geometric phase γn � i∫ t

0
∫〈En(τ)|zτEn(τ)〉dτ, we need an effective

TQD Hamiltonian [10], given as follows:

Ĥeff � ∑
n

|En t( )〉En t( )〈En t( )|

+ iZ∑
n

|ztEn t( )〉〈En t( )| − 〈En t( )|ztEn t( )〉|En t( )〉〈En t( )|( ).

(12)
To drive state Eq. 11, the first sum in Eq. 12 is exactly the original

Hamiltonian Ĥ(t) represented by the adiabatic basis, and the second
sum contains two terms that cancel the transition between eigenstates
and generate the accumulated Berry phase, respectively.

Similarly, for non-adiabatic classical driving, the evolution of the
canonical coordinates q and p will also fail to keep the action variable I
unchanged without the averaging principle, and their trajectories in the
phase space will not follow adiabatic trajectories (see Figure 1B).
Accordingly, the action variable I will be conserved in a classical
evolution as long as the additional effects caused by the time-
dependent canonical transformation are canceled. This means that if
we want the Hamiltonian function driving the canonical variables as Eq.
7 without the average principle, the transitionless classical driving (TCD,
no transition between action variables) Hamiltonian function can be
written as follows [25]:

Heff
C I; t( ) � HC I; θ; t( ) +HCI I; θ; t( )

� HC I; θ; t( ) − zF

zt
− AH.

(13)

With the quantum−classical mapping method we introduced in
the last section, we can derive a more explicit form of the TCD
HamiltonianHeff

C by averaging TQDHamiltonian Ĥeff Eq. 12. After
a straightforward derivation, we have

Heff
C � 〈ψ|Ĥeff|ψ〉

� ∑
n

En|φn|2 + iZ ∑
n,m≠n

φm*φn〈Em|ztEn〉

� ∑
n

Inωn −∑
n

〈pn θ, I; t( )ztqn θ, I; t( )〉θ

+1
2
∑
n

pn θ, I; t( )ztqn θ, I; t( ) − qn θ, I; t( )ztpn θ, I; t( )[ ]
�∑

n

Inωn −∑
n

zt pn θ, I; t( )qn θ, I; t( )[ ], (14)

where ωn = En/Z and the angular brackets 〈/ 〉 denote the averaging
over all angle variables 1

(2π)NΠ
N
k ∫ 2π

0
dθk. Comparing Eq. 13 with Eq. 9,

FIGURE 1
(A) Initial phase trajectory (solid line) and initial phase points (blue dots). (B) Final adiabatic trajectory (solid line) and final phase points driven byHCwhen t/
τ= 1, τ = .5 (red dot blanks) and τ = 30 (blue dots). (C) Final adiabatic trajectory (solid line) and final phase points driven byHC+HCI, when t/τ= 1 and τ = .5 (blue
dots). (D) Final adiabatic trajectory (solid line) and final phase points driven by HC + HCI, when t/τ = 2 and τ = .5 (blue dots). (E) Final adiabatic trajectory (solid
line) and final phase points driven by Heff

I , when t/τ = 1 and τ = .5 (blue dots). (F) Final adiabatic trajectory (solid line) and final phase points driven by Heff
I ,

when t/τ = 2 and τ = .5 (blue dots).
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the terms canceling the non-adiabatic evolution and generating
Hannay’s angle can be written as follows:

zF

zt
� −1

2
∑
n

qn θ, I; t( )ztpn θ, I; t( ) − pn θ, I; t( )ztqn θ, I; t( )[ ],
AH � ∑

n

〈pn θ, I; t( )ztqn θ, I; t( )〉θ,
(15)

respectively. Like the TQD, the choice of eigenfrequencies ωn can be
arbitrary and the geometric angles can be dropped for keeping the
actions I conserved [10]. The simplest form of the Hamiltonian
driving the canonical coordinates q and p with the conserved
action I can be written as follows:

Heff
I � 1

2
∑
n

pn θ, I; t( )ztqn θ, I; t( ) − qn θ, I; t( )ztpn θ, I; t( )[ ]. (16)

3.2 LR invariant-based scheme

A different approach to realize the quantum STA is based on the
LR invariants [8, 58]. For the Hamiltonian Ĥ(t), a time-dependent
invariant can be determined by

iZ
zÎ t( )
zt

+ Î t( ), Ĥ t( )[ ] � 0. (17)

The eigenvalues λn of Î(t) remain constant over time, and the
time-dependent eigenstates |λn(t)〉 will accumulate an LR phase

Ωn t( ) � 1
Z
∫ t

0
〈λn τ( )|iZ z

zτ
−H τ( )|λn τ( )〉dτ (18)

via the dynamical evolution. By using the time-dependent unitary
evolution operator

U � ∑
n

eiΩn t( )|λn t( )〉〈λ 0( )|, (19)

the Hamiltonian can be written as follows [8]:

Ĥd ≡ iZ ztU( )U† � −Z∑
n

|λn t( )〉 _Ωn〈λn t( )| + iZ∑
n

|ztλn t( )〉〈λn t( )|,

(20)

where the second term can be used to drive the eigenstates |λn(t)〉 of
Î(t) and generate the LR phase. Without loss of generality, the
arbitrariness of choosing Hd can be fixed by the constrain
[Î(0), Ĥ(0)] � 0 and [Î(t), Ĥ(t)] � 0 [8]. Invariant condition Eq.
17 can also be derived by comparing Eq. 20 with the original form of
Ĥ(t). Therefore, one can design an evolution path from the initial
Hamiltonian Ĥ(0) to the final one Ĥ(T) along one of the eigenstates
|λn(t)〉 of Î(t) to achieve the STA.

For a classical system, we can also find similar classical time-
dependent invariants that satisfy

_Jk � zJk t( )
zt

+ Jk t( ), HC q, p; t( ){ } � 0. (21)

By introducing a new pair of variables including the time-
dependent invariants (ξ, J) (hereafter referred to as LR variables),
we have the following canonical equations:

_Jk � −zG α, t( )
zξk

� 0, _ξk � zG α, t( )
zJk

, (22)

where G(ξ, t) =HC(ξ, J, t) + S(ξ, J, t) is the Hamiltonian after a classical
transformation (q(t), p(t))→ (ξ(t), J) with the generating function S(q,
I, t). Since Jk are invariants, the Hamiltonian G(ξ, t) does not contain
the angle variables ξk. The changes of angles then can be rewritten as
follows:

Δξk � ∫ T

0
dt

z〈HC ξ, J, t( )〉ξ
zIk

+ z〈S ξ, J, t( )〉ξ
zIk

( ),
� ∫ T

0
dt

z �HC J, t( )
zIk

− zALR J, t( )
zIk

( ) (23)

with �HC(J, t) ≡ 〈HC(ξ, J, t)〉ξ and
ALR(J, t) ≡ ∑n〈pn(ξ, J, t)ztqn(ξ, J, t)〉ξ which is similar to the
dynamical part and geometrical part in the angle changes of the
classical adiabatic evolution. The angular brackets 〈/ 〉ξ denote an
averaging over all LR angles ξ. Note that these LR variables are
generally not action−angle variables of HC. However, we can set
{Jk(0), HC(0)} = {Jk(T), HC(T)} = 0; the LR action variables Jk can,
thus, be chosen as action variables that are related to the
eigenfrequencies at initial time t = 0 and final time t = T. Similar
to the quantum STA based on LR invariants, we can also design an
evolution path from HC(0) to HC(T) with the invariants Jk, in which
the initial action variables of H are equal to those in the final time.

To determine the specific form of the classical LR invariant-based
scheme, we define the probabilities amplitudes dk of |Ψ〉 =∑kdk|λk〉 on
the LR basis {|λk〉} as

dk �
��
Jk
Z

√
e−iξk , (24)

using the quantum−classical mapping method. The canonical
transformation (q, p) → (ξ, J) between position−momentum
variables and LR variables can correspond to the quantum unitary
transformation |λk(t)〉 =∑nUnk(t)|ψn〉 between the adiabatic basis and
the bare basis given as follows:

pn t( ) � ∑
k

���
2Jk

√
cos ξkIm Unk t( )[ ] − sin ξkRe Unk t( )[ ]{ },

qn t( ) � ∑
k

���
2Jk

√
cos ξkRe Unk t( )[ ] + sin ξkIm Unk t( )[ ]{ }. (25)

Similar to the classical TQD scheme of the STA, the driving
Hamiltonian should cancel the effect of the time-dependent
transformation S and generate the angle Δξk. By Eqs 13–23, we have

Hd � �HC J, t( ) − ALR J, t( ) − zS

zt
� 〈HC ξ, J, t( )〉ξ −∑

n

〈pn ξ, J, t( )ztqn ξ, J, t( )〉ξ

+1
2
∑
n

pn ξ, J; t( )ztqn ξ, J; t( ) − qn ξ, J; t( )ztpn ξ, J; t( )[ ],
(26)

with

zS

zt
� −1

2
∑
n

pn ξ, J; t( )ztqn ξ, J; t( ) − qn ξ, J; t( )ztpn ξ, J; t( )[ ]. (27)

According to the quantum−classical mapping, this classical
Hamiltonian of LR invariants method is just the mean value of the
quantum LR, given as follows:
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Hd � 〈ψ|Ĥd|ψ〉. (28)
Therefore, the form of LR variables can be determined by equating

Hd and HC, and the boundary conditions are as follows:

Jk 0( ), HC 0( ){ } � Jk T( ), HC T( ){ } � 0. (29)
On the contrary, we can design the classical Hamiltonian Hd from

the evolution of LR variables to realize the classical LR invariant-based
scheme.

4 Spin-1/2 in a magnetic field

To illustrate our results, we consider the adiabatic evolution and
STA scheme for a simple two-level quantum system, i.e., a spin-half
particle with the magnetic moment μ in an external magnetic field B =
B(sin α cos β, sin α sin β, cos α). Its Hamiltonian reads

Ĥ � −μσ̂ · B � −μB cos α sin αe−iβ

sin αeiβ −cos α( )
� −μB cos α | + 〉〈 + | − | − 〉〈 − |( ) + sin α e−iβ| + 〉〈 − | + eiβ| − 〉〈 + |( )[ ],

(30)

where σ̂ � (σ̂1, σ̂2, σ̂3) are Pauli matrices and |±〉 are the two spin
eigenstates.

4.1 Transitionless classical driving

As we introduced in the previous section, if the two spin
eigenstates |±〉 are chosen as the basis, the Hamiltonian in Eq. 30
can be mapped to the classical Hamiltonian of a coupled oscillator,
given as follows:

h p, q;B( ) � −μB
Z

1
2

p2
2 + q22 − p2

1 − q21( )cos α[
+ p1q2 − p2q1( )sin α sin β + q1q2 + p1p2( )sin α cos β], (31)

with |ψ〉 = ψ1| − 〉 + ψ2| + 〉 and ψj � (qj + ipj)/
���
2Z

√
, (j = 1, 2). The

canonical variables (q, p) satisfy the normalization condition [46],
shown as follows:

∑2
j�1

p2
j + q2j( ) � 2Z. (32)

It is interesting to note that by defining a vector S = (S1, S2, S3) with

S1 � 〈σ1〉 � q1q2 + p1p2( )/Z,
S2 � 〈σ2〉 � p1q2 − p2q1( )/Z,
S3 � 〈σ3〉 � p2

2 + q22 − p2
1 − q21( )/ 2Z( ),

⎧⎪⎨⎪⎩ (33)

the Hamiltonian function can be written as follows:

h S;B( ) � −μS · B, (34)
where the normalization condition of S is S2 ≡ S21 + S22 + S23 � 1, and
their Poisson bracket has a relation with the quantum commutator,
shown as follows [45]:

Si, Sj{ } � 2εijkSk/Z � 1
iZ
〈ψ| σ̂ i, σ̂j[ ]|ψ〉. (35)

We now move to calculate Hannay’s angle. Since the Hamiltonian
in Eq. 30 has two eigenstates,

|E1〉 � cos
α

2
| + 〉 + sin

α

2
eiβ| − 〉,

|E2〉 � −sin α

2
| + 〉 + cos

α

2
eiβ| − 〉,

(36)

with eigenenergies −μB and μB, respectively. The canonical
transformation (q, p) → (θ, I) and the mapped Hamiltonian
function can be written as follows:

q1 � ���
2I1

√
sin

α

2
cos β − θ1( ) + ���

2I2
√

cos
α

2
cos β − θ2( ),

q2 � ���
2I1

√
cos

α

2
cos θ1 −

���
2I2

√
sin

α

2
cos θ2,

p1 � ���
2I1

√
sin

α

2
sin β − θ1( ) + ���

2I2
√

cos
α

2
sin β − θ2( ),

p2 � − ���
2I1

√
cos

α

2
sin θ1 +

���
2I2

√
sin

α

2
sin θ2,

�h I;B( ) � μB I2 − I1( )/Z.
(37)

We can calculate the forms of variable I by the following:

I1 � Z

2
1 + S · b( ),

I2 � Z

2
1 − S · b( )

(38)

with q = (q1, q2), p = (p1, p2), θ = (θ1, θ2), I = (I1, I2), and b = B/B.
Therefore, we obtain the angle one-form by Eq. 9, given as follows:

AH � −1
2

1 − cos α( ) _βI1 − 1
2

1 + cos α( ) _βI2. (39)

Hannay’s angles can, thus, be obtained by Eq. 10, given as follows:

Δθ1 � ∮ 1
2

1 − cos α( ) _βdt,
Δθ2 � ∮ 1

2
1 + cos α( ) _βdt,

(40)

which differ from the Berry phases in the original quantum
Hamiltonian [58] only by a sign.

By Eq. 14, we have the following:

Heff
I � 1

2
−p2

1 − q21( ) _β + p1q2 − p2q1( )cos β _α − p1p2 + q1q2( )sin β _α[ ]
� Z

2
S3 − 1( ) _β + S2 cos β _α − S1 sin β _α[ ],

(41)
AH � −1

2
1 − cos α( )I1 − 1

2
1 + cos α( )I2

� −Z
4

1 − cos α( ) 1 + S · b( ) + 1 + cos α( ) 1 − S · b( )[ ]
� −Z

2
1 − cos αS · b( ).

(42)

Therefore, we can get the TCD Hamiltonian function

HCI I; θ;X( ) � Z

2
S3 − 1( ) _β + S2 cos β _α − S1 sin β _α[ ] + Z

2
1 − cos αS · b( ) _β

� Z

2B2 S · B ×
zB
zt

( ),
(43)

which takes a similar form as the counter-adiabatic driving
Hamiltonian for spin-1/2 system Eq. 30. This means that the TCD
scheme can be treated like a classical version of the TQD scheme by
representing coordinate−momentum variables by the classical “spin”
defined by Eq. 33.
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We illustrate the evolution of the states through their trajectories
in the phase space. The evolution of the points on phase trajectories
can be determined by the dynamic equation of classical “spin,” given
as follows:

_Si � Si,HC{ } � −2μB
Z

εijk bjSk − bkSj( ). (44)

By defining θ = arccos S2 and ϕ = arctan S2/S1, the dynamics of the
original Hamiltonian HC takes the following form:

_θ � −2μB
Z

sin α sin β − ϕ( ),
_ϕ � −2μB

Z
cos α − sin α cos β − ϕ( )

tan θ
[ ]. (45)

The parameters of the magnetic field B are chosen as

α � π

2
− π

4
sin

πt

τ
, β � π − π

2
cos

πt

τ
,

_α � −π
2

4τ
cos

πt

τ
, _β � π2

2τ
sin

πt

τ
,

(46)

and μB/Z = −1.
As shown in Figure 1B, the evolution of the canonical coordinates

p and q will keep the action variable I almost unchanged, and their
trajectories in the phase space will follow adiabatic trajectories when
the frequency is slow.

For the TCD Hamiltonian HC + HCI, the effective magnetic field
changes into the following:

Beff � B − Z

2μ
b × _b( )

� B sin α cos β + Z

2μB
sin β _α + sin α cos α cos β _β( )[ ]i{

+ sin α sin β − Z

2μB
cos β _α − sin α cos α sin β _β( )[ ]j+ cos α − Z

2μB
sin2 α _β( )k}.

(47)

The dynamics of the TCD Hamiltonian can, thus, be written as
follows:

_θ � cos β − ϕ( ) _α − sin α sin β − ϕ( ) 2μB
Z

+ cos α _β( ),
_ϕ � −2μB

Z
cos α + sin2 α _β + sin α cos β − ϕ( )(2μB/Z + cos α _β) + sin β − ϕ( ) _α

tan θ
.

(48)

To drive the eigenstates using HC + HCI, the evolution of the
canonical coordinates p and q will keep action variables I unchanged,
and their trajectories in the phase space will follow adiabatic
trajectories no matter how fast the frequency is (see Figures 1C,
D). By tracing the same phase points of the initial phase trajectory
(see Figure 1A) and the final adiabatic trajectory, we can find that there
is an angle of shift after an adiabatic evolution. Also, the angle of shift
after a whole period is double that after half a period.

Moreover, for the simplest Hamiltonian Eq. 41 [dropping the
constant term and the term generating the Hannay’s angle Eq. 42], the
dynamics of the simplest Hamiltonian Heff

I is determined by the
following:

_θ � cos β − ϕ( ) _α,
_ϕ � _β + sin β − ϕ( ) _α

tan θ
.

(49)

It is easy to find that the adiabatic trajectories will remain
unchanged after any period (see Figures 1E, F).

4.2 Classical LR invariant

In the approach of the LR invariant, the eigenstates of the LR
invariant parallel to the eigenstates in Eq. 36 can be constructed as
follows [8]:

|λ1〉 � cos
η

2
| + 〉 + sin

η

2
eiδ | − 〉,

|λ2〉 � −sin η

2
| + 〉 + cos

η

2
eiδ| − 〉,

(50)

and the LR invariant can be expressed as follows:

Î t( ) � Z

2
Ω0

cos η sin ηe−iδ

sin ηeiδ −cos η( ). (51)

In the classical expression of the adiabatic process, without loss of
generality, the time-dependent classical invariants can be designed by
classical spin Eq. 33 as follows:

J1 � Z

2
1 + S · b′( ), J2 � Z

2
1 − S · b′( ). (52)

where b′ = (sin η cos δ, sin η sin δ, cos η) is the scaling factor with the
parameters (η, δ).

The canonical transformation between position−momentum
variables (q, p) and LR variables (ξ, J) can be written as follows:

q1 � ���
2J1

√
sin

η

2
cos δ − ξ1( ) + ���

2J2
√

cos
η

2
cos δ − ξ2( ),

q2 � ���
2J1

√
cos

η

2
cos ξ1 −

���
2J2

√
sin

η

2
cos ξ2,

p1 � ���
2J1

√
sin

η

2
sin δ − ξ1( ) + ���

2J2
√

cos
η

2
sin δ − ξ2( ),

p2 � − ���
2J1

√
cos

η

2
sin ξ1 +

���
2J2

√
sin

η

2
sin ξ2.

(53)

After this canonical transformation, the Hamiltonian h(q, p; B)
becomes

G J;B( ) � �HC J;B( ) − ALR J;B( )
� μ

Z
B · b′ J2 − J1( ) + 1

2
J1 1 − cos η( ) + J2 1 + cos η( )[ ] _δ.

(54)
We can calculate LR angles accumulated via the evolution process

by Eq. 23, given as follows:

Δξ1 � ∫dt
μ

Z
B · b′ − 1

2
1 + cos η( ) _δ[ ],

Δξ2 � ∫dt −μ
Z
B · b′ − 1

2
1 − cos η( ) _δ[ ]. (55)

According to Eq. 26, the driving Hamiltonian of the LR invariant-
based scheme becomes

Hd � �HC J, t( ) − ALR J, t( ) − zS

zt
� μ

Z
B · b J2 − J1( ) + sin ξ1 − ξ2( ) _η − cos ξ1 − ξ2( ) sin η _δ[ ] ����

J1J2
√

,

� S3 −μB · b′ cos η + Z

2
sin2 η _δ[ ] + S1 −μB · b′ sin η cos δ − Z

2
sin δ _η + sin η cos η cos δ _δ( )[ ]

+S2 −μB · b′ sin η sin δ + Z

2
cos δ _η − sin η cos η sin δ _δ( )[ ]

� S · Bd,

(56)

where Bd � (B · b′)b′ − Z
2μb′ × _b′. Comparing it with Eq. 34, the

scaling factor b′ satisfies the following:

_b′ � 2μ
Z
b′ × B. (57)
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The system invariant boundary conditions in Eq. 29 become

_b′ 0( ) � _b′ T( ) � 0, (58)
and the driving magnetic field in the Hamiltonian H can be chosen as

B � − Z

2μ
b′ × _b′ (59)

to realize the evolution from initial energy eigenstates |λn(0)〉 to final
energy eigenstates |λn(T)〉.

By equating HamiltonianHd Eq. 56 and �HC(J, t), we can calculate
these two pairs of parameters satisfying the following equation:

_δ � −2μB
Z

cos α + sin α
cos η
sin η

cos β − δ( )[ ],
_η � −2μB

Z
sin α sin β − δ( ). (60)

In particular, there is still arbitrariness in the choice of parameters η
and δ. To illustrate the adiabatic evolution driven by Eq. 56, we make the
invariants of the initial and finalmoments satisfy the boundary conditions
and Eq. 60. For example, to transfer the state from the first oscillator with
canonical variables q1 and p1 to the second oscillator with canonical
variables q2 and p2, we can set _η(0) � 0, η(0) = 0, and η(T) = π to satisfy
the boundary conditions and chose a different scheme for δ.

To illustrate this result, we choose two different configurations of
time-dependent parameters as shown in Figure 2. The first set of
parameters

η � π

2
+ π

2
cos

πt

τ
,

δ � −π
2
+ sin

πt

τ

(61)

in Figure 2A which implements the adiabatic invariance of action
variables can reproduce the evolution manipulated by the TQD
Hamiltonian Eq. 43 as shown in Figure 2B. The action variables Ji

exactly follow the adiabatic trajectories. The evolution of the phase
trajectory is just like that in Figures 1A, E driven by Heff

C . Similar to
the fact that the TQD can be seen as one of the schemes for the inverse
engineering based on the quantum LR invariant [59], the TCD which
keeps the evolution exactly on the adiabatic trajectories in phase space of
the classical Hamiltonian can be seen as one of the schemes for inverse
engineering based on the classical LR invariant, which only needs the
initial and final trajectories in the phase space matching adiabatic
trajectories in the phase space of the classical Hamiltonian. Therefore,
we can also design the classical Hamiltonian by different parameters to
realize the classical LR invariant scheme. For example, the parameters

η � π − 3πt2 + 2πt3,

δ � −π
2
+ π

2
t − 5π

2
t2 + 4πt3 − 2πt4

(62)

in Figure 2C can also realize the state transfer between the two
oscillators with a nearly unchanged δ. Thus, the optional form of
the parameters to implement the adiabatic invariance is not unique.
These results can be perfectly related to the LR invariant method for
the spin-1/2 system [59].

5 Conclusion

To sum up, we use the quantum−classical mapping method to
simulate the two schemes of the STA, i.e., the TQD and quantum LR
invariant method, by the classical system consisting of coupled
oscillators. On one hand, for the TQD, which implements the STA
by finding an additional Hamiltonian to drive the system, we derived
the explicit form of an additional driving Hamiltonian to keep the
evolution of adiabatic phase trajectories and acquire the Hannay’s
phase. This TCD method can perfectly simulate and match the TQD
method. On the other hand, the Lewis−Riesenfeld invariant method,
which keeps the energy eigenstates from a specified initial to the final

FIGURE 2
(A−C) Evolution of the parameters η (solid blue line) and δ (solid red line). (B−D) Time evolution of the action variables J1 (solid red line), J2 (solid blue line)
driven by Hd, and adiabatic approximate invariants Jad1 (dashed red line) and Jad2 (dashed blue line) when t/τ = 1 and τ = .5.
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configuration, can also be simulated by manipulating the
configurations of classical coupled oscillators. Both of the
approaches can accelerate the adiabatic process effectively under
different circumstances and matches the quantum methods of the
STA. These results prove that the protocol of the quantum−classical
mapping can be used to generalize quantum schemes of the STA into
the classical system. By this simulation, our theory could be expected
to find applications of the STA for classical systems.
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Appendix: Derivation of the Schrödinger
equation in the canonical form

The dynamical evolution of the N-level quantum system governed
by the Hamiltonian Ĥ(t) can be described by the following
Schrödinger equation:

iZzt|Ψ〉 � Ĥ t( )|Ψ〉, (63)
which can be expanded by the quantum state |Ψ〉 = ∑ψn(t)|ψn〉 as
follows:

iZzt ∑
n

ψn t( )|ψn〉⎛⎝ ⎞⎠ � Ĥ t( )|Ψ〉, (64)

with the probability amplitudes ψn on the bare basis {|ψn〉}. Since
{|ψn〉} is a time-independent bare basis, Eq. 64 becomes

iZdtψn t( )|ψn〉 � Ĥ t( )|Ψ〉. (65)
Multiplying Eq. 65 by 〈ψm|, we have the following:

iZdtψm t( ) � 〈ψm|Ĥ t( )|Ψ〉, (66)
withHC(ψ,ψ*, t) � 〈Ψ|Ĥ(t)|Ψ〉 � ∑mψm* 〈m|Ĥ(t)|Ψ〉. Therefore, the
Schrödinger equation in the canonical form can be written as follows:

iZ
dψm t( )

dt
� zHC

zψm*
, (67)

which is just the same as Eq. 1.
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Light controls edge functional
groups to enhance membrane
permeability

Tingyu Sun1, Lei Wang1, Rengkai Hu1, Yangmei Li2* and Zhi Zhu1*
1Key Laboratory of Optical Technology and Instrument for Medicine, Ministry of Education, College of
Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai,
China, 2Innovation Laboratory of Terahertz Biophysics, National Innovation Institute of Defense Technology,
Beijing, China

Functionalized membranes have high potential value in a broad range of practical
applications, and the functional groups at the membrane edge play a vital role in the
permeability of the membranes. Here, based on an edge-functionalized graphene
oxide (GO) membrane model, we theoretically report that high-frequency terahertz
stimulation at the frequency near 44.0 THz can significantly enhance the water
permeability of themembrane by nearly five times. Its mechanismwas revealed to be
that the stimulation amplified the C-O stretching of the functional groups and
suppressed other vibration modes of the groups. As a result, the modulation of
edge functional groups brings down the energy barricade of the membrane and
allows water molecules to penetrate the GO membrane more easily. These findings
provide a new perspective for enhancing membrane permeability by modulating
particular functional groups such as the carboxyl on the edge of the GOmembrane.

KEYWORDS

graphene oxide, terahertz light, spectrum, permeation enhancement, absorption

Introduction

Membranes play an imperative role in life science and industrial applications, such as
disease treatment and water purification [1, 2]. It is of important significance to understand and
manipulate the transportation of water through membranes in many physical, chemical,
biological, and technical applications. In different artificial and biological membranes,
functional groups on the membrane determine the properties of the membrane and have a
great influence on the permeability of water [3]. For example, as a two-dimensional (2D)
material derived from graphene, GO has almost completely different properties from graphene
[4, 5]. Compared to hydrophobic graphene, the polar oxygen-containing functional groups on
the membrane make it hydrophilic and have different properties from graphene in many ways
[6, 7]. GO membranes, as a feasible artificial membrane for water desalination and wastewater
treatment [8–10], was first developed by Nair et al., and it was discovered that stacking GO film
can selectively block the motion of non-aqueous solutions and allow water permeation through
a unique pathway [11]. From then, many attempts to develop the application of GO membrane
and methods to control the interlayer spacing of stacking GO have been discovered [12–15].

The interlayer spacing of the stacking GO membrane determines the ion and water
permeation efficiency, a smaller interlayer spacing leads to better ion-sieving performance,
while the flow rate of water decreases exponentially with the reduction in interlayer spacing
[16–20]. The carboxyl group at the edge of the GO membrane is one of the major factors
affecting the permeation of water molecules and other ions through the membrane due to the
steric effect [21–24]. Previous attempts made to enhance the permeability of GO were mainly
surface modification or reassembling [25, 26]. In contrast, THz electromagnetism (EM)
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stimulus is a novel and efficient approach. In recent years, the
application of THz EM waves in biochemistry and the theoretical
discussion on the interaction between light and matter are increasing
gradually [27], starting from using an electric field, to enhance the
water transport in nanochannels and gas dissolving in aqueous
solutions [28, 29], to the application of terahertz-regulated
dissolution of methane hydrate [30] or using THz wave to detect
different materials and defects [31, 32]. Furthermore, in a biological
system, THz stimuli can be applied to enhance the permeability of ion
channels by directional interaction with functional groups [33–35]
and even can be used to accelerate the DNA unwinding [36].
Biophotons at high-frequency THz range can also participate in the
replication of DNA and neurotransmission [37, 38]. Previous research
on THz–water interaction proves that THz wave can enhance the
water permeability by changing the H-bond structure of one-
dimensional (1D) and two-dimensional (2D) water in artificial
membrane materials such as graphene and carbon tube [39–44]. As
a 2D material sharing analogous behaviors with biological
membranes, functional groups on GO membranes can also be
stimulated with THz EM with high efficiency and directionally
[45]. Inspired by the studies of THz light enhancing water
transportation by interacting with matter and functional groups,
we propose a light-based modulation method targeting edge
functional groups to change the permeability of the GO membrane.

In this study, based on a special GO membrane model and
primarily considering carboxyl groups on the edge of the
membrane (Figure 1A), we uncovered the interaction between
44.0 THz EM wave and carboxyl, as well as the subsequent
influence on the conformation of GO membrane water channels.

The underlying mechanism is shown to be that THz EM stimuli can
change the oscillation of carboxyl at the entrance and exit of the
channel by affecting the carboxyl groups resonantly, thereby reducing
the energy barrier for water molecules to enter and exit the GO
membrane, thus improving the permeability of GO membranes by
nearly five times.

Method

To explore the influence of THz EM stimulus on the dynamic
properties of edge functional groups on a membrane and its
subsequent effect on the conformation of the water channel and
the permeability of the membrane, we designed a GO membrane
model by stacking two sheets of GO in parallel with lengths, widths,
and interlayer spacings of 3.42, 4.94, and 0.78 nm, respectively.
Conventionally, the molecular structure of GO contains hydroxyl
and epoxy functional groups on the basal plane and carboxyl
grafted on the edges of the sheet, following the well-known
Lerf–Klinowski model [46]. In our previous research, we studied
the effect of the interaction between light and hydroxyl groups on
the permeability of the GO membrane, while the epoxy shares a
similar property with hydroxyl [45]. Relatively, the location of
carboxyl groups exerts its effect on water permeation different
from that of hydroxyl and epoxy groups, but it is an ideal model
for studying the influence of edge functional groups on water
permeation. Therefore, we focused on a pure carboxyl-
functionalized GO membrane model to simplify the molecular
dynamic simulation and the following data analysis. In order to

FIGURE 1
Electromagnetic (EM) stimulus at a specific frequency significantly enhances the permeability of the functionalized membrane for water. (A) Structural
model of the normal GO plate. The gray, red, and cyan balls represent carbon, oxygen, and hydrogen atoms, respectively. (B) Schematic diagram of the GO
membrane model by stacking two sheets of GO in parallel. (C) Schematic diagram for distinguishing water flow and flux, where flow and flux are the sum and
difference of watermolecules between the forward transport (F1) and the backward transport (F2), respectively. (D) Transition to a super permeation state
of confined water modulated by 44.0 THz EM stimuli (orange curve) at different strengths (A) without the gradient field. (E) In the presence of a gradient field
with a 500 MPa pressure difference, 44.0 THz EM stimulus enhances both thewater flow and flux through theGOmembrane. (F) EM stimulus did not enhance
the permeability of ions due to the steric effect.

Frontiers in Physics frontiersin.org02

Sun et al. 10.3389/fphy.2023.1098170

80

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1098170


ensure that the water can be affected by the carboxyl on the path of
permeating through the GO membrane, we grafted the carboxyl at the
edge of the GO sheet with a certain space around 0.4–0.8 nm. The
charge model for carboxyl was based on the carboxyl group in ASPH
amino acid to ensure that the system was electrically neutral. The GO
membrane was centered in the simulation box with side lengths of Lx =
5.75 nm, Ly = 5.11 nm, and Lz = 3.78 nm. Then, we filled the rest of the
box with flexible SPCE-modelled water molecules [47–49].
Consequently, the size of the GO membrane model and the box
ensures that the water molecules can only permeate through the GO
membrane along the x-axis (Figure 1B; Supplementary Figure S1).

EM waves will be applied to the entire system at the beginning of
the MD simulation. Since the electric component of EM waves
dominates the interaction of the EM wave with small molecules at
room temperature [40], an electric field E(t) � A · u · cos(ωt + φ)was
applied to simulate the EM wave, where A is the maximum amplitude
of the electric field that determines the strength of the EM wave. The
polarization direction of the wave was set to u = (1, 0, 0), which is
parallel to the membrane plane. The frequency f of the EM wave
relates to the angular frequency ω via the equation f = ω/2π.
Furthermore, to investigate the effect of hydrostatic pressure and
THz stimuli together on the permeability of the membrane, we used
the accelerated function of GROMACS to generate desired pressure
difference (ΔP) [50]. F was applied to define the permeability of the
GO membrane (Figure 1C), where F1 and F2 are the number of water
molecules traversing forward and backward from one side of the
membrane to the other along the x-axis, respectively. Furthermore,
Fflow and Fflux are the sum and difference of F1 and F2 divided by the
product of the simulation time and the cross-section area of the
channel, respectively. Therefore, we use Fflow to describe the
bidirectional permeability and Fflux to describe the unidirectional
permeability of the membrane. To minimize the influence of
temperature fluctuation on the simulation, a Nose–Hoover
thermostat with a time constant for coupling of 0.2 ps was applied
to maintain the average system temperature at 300 K with a
fluctuation under 5 K (Supplementary Figure S2). More details of
the simulation methods are shown in Supplementary Section S1.

Result and discussion

Under the effect of 44.0 THz EM, the GO membrane becomes
more permeable to water molecules, but repellency to ions is
maintained (Figures 1D–F). Evidently, the Fflow tends to increase
non-linearly with increasing EM stimuli strength A under an
equilibrium state, while the Fflux only fluctuates within a certain
value without a substantial increase (Figure 1D). Under normal
conditions without osmotic pressure and THz EM stimuli, the
value of the Fflow and Fflux is around 2.42 ± 0.09 ns−1·nm−2 and
0.25 ± 0.01 ns−1·nm−2, respectively. With the stimuli of
44.0 THz EM, the Fflow will increase rapidly as A increases from
0.1 to 1.0 V/nm and remain in a super state with Fflow = 11.89 ±
0.44 ns−1·nm−2 when A ≥ 1.0 V/nm. In contrast, the Fflux fluctuated
between 0.25 ns−1·nm−2 and 0.65 ns−1·nm−2 and does not increase with
the stimulation of 44.0 THz EM. The reason behind this fact is that the
values of F1 and F2 are close to each other under normal conditions,
while the THz EM stimuli will boost up both F1 and F2, resulting in
Fflux fluctuating within a certain range. However, if we applied
44.0 THz EM stimuli under a gradient field of ΔP = 500 MPa, both

Fflow and Fflux will be excited to a super permeation state (Figure 1E).
This is because the gradient field of ΔP = 500 MPa will boost up F1 or
F2 depending on the direction of osmotic pressure, leading to a huge
diverse between F1 and F2; thus, the value of Fflow and Fflux will be close
to each other. Consequently, in the absence of THz EM stimuli, the
osmotic pressure of ΔP = 500 MPa can enhance the permeability of the
membrane in both Fflow and Fflux to 4.81 ± 0.31 ns−1·nm−2 and 4.78 ±
0.29 ns−1·nm−2, respectively. Subsequently, both Fflow and Fflux can
increase by about four times under the stimulation of 44.0 THz EM
with strength A ≥ 1.0 V/nm, reaching the values of Fflow = 20.60 ±
0.99 ns−1·nm−2 and Fflux = 19.54 ± 0.91 ns−1·nm−2. This fact indicates
that THz EM stimuli can enhance both the bidirectional and
unidirectional permeability of the membrane with the presence of a
gradient field.

Notably, we used higher osmotic pressure to make the phenomena
more obvious. However, similar phenomena will occur in a lower
gradient field, such as ΔP = 50 MPa (see details in Supplementary
Figure S3; Supplementary Section S2). Neither gradient field nor THz
EM can change the ion rejection of the membrane (Figure 1F). The
GO membrane with an interlayer spacing of 0.78 nm has a strong
steric effect on ions, which can refuse ions to enter the channel, as FIon
remained 0 ns−1·nm−2 at any stimuli strength A. In other words,
44.0 THz EM stimuli can enhance the water permeability of the
membrane while keeping the ion rejection of the membrane
unchanged.

In order to reveal the mechanism behind the phenomenon of the
specific frequency of EM stimuli that can enhance the permeability of
functionalized membranes, we focused on the vibration spectrum of
carboxyl groups, which are essential for the permeation of water
through the membranes. In the classical approximation, the
absorption spectrum intensity (I) in terms of frequency can be
calculated by using Fourier transform for the autocorrelation
function of total charge current J(t) � ∑iqivi(t) [44], where qi and
vi represent the charge and velocity of the ith atom, respectively. The
first principle of frequency selection is that the stimulation at a
particular frequency can resonate with the vibration of functional
groups on the membrane (see the frequency selection of other
membrane models in Supplementary Figure S4). Furthermore, the
stimulation at the selected frequency is weakly absorbed by the bulk
water and confined water. As shown in Figure 2A, the carboxyl groups
have characteristic peaks at 35.0 THz, 44.0 THz, and 112.0 THz, which
correspond to the bending vibration of O-H and the stretching
vibrations of C-O and O-H, respectively. They are far away from
the prominent absorption peaks of bulk water and confined water,
denoting that carboxyl can resonantly absorb the photon energy from
the 35.0, 44.0, and 112.0 THz EM stimuli. The vibration modes of C-O
and C=O show certain similarities.

To clarify the belonging of the frequency of 44.0 THz, we
calculated the vibration of C-O and C=O separately and found out
that the vibration of 44.0 THz is mainly contributed to the C-O
stretching (Figure 2B). It is essentially in agreement with the result
from the FT-IR measurement, indicating that the simulations are well
calibrated. Among these characteristic frequencies, only 35.0 and
44.0 THz EM stimuli are able to enhance the permeability of the
GO membrane, and the mechanism behind this enhancement is
similar (the effect of 35.0 THz EM stimuli on the permeability of
the membrane is shown in Supplementary Figure S5; Supplementary
Section S4). Therefore, we will focus on 44.0 THz EM stimuli to
uncover the mechanism behind this enhancement. From Figure 2C,
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we can clearly see that the vibration mode of the carboxyl group
changes greatly after the application of 44.0 THz EM stimuli. Notably,
the vibration mode with an intrinsic frequency of 44.0 THz is greatly
enhanced by the corresponding stimuli, while other vibration modes
had been reduced to a relatively weak state. In other words, due to the
over-damping phenomenon caused by EM stimuli, all other vibration
modes of carboxyl are suppressed, except for the vibration mode with
an intrinsic frequency of 44.0 THz. As a result, the motion of the
carboxyl group at the entrance of the water channel has changed
dramatically under the influence of EM wave stimulation, which
undoubtedly changes the permeability of the GO membrane.

Since the carboxyl group is located at the edge of the GO
membrane and is hydrophilic, it tends to oscillate up and down in
the direction perpendicular to the membrane plane under the
attraction of water molecules around and the restriction of the
carbon plate (Figure 3A). Figure 3B shows the trajectory of
carboxyl in the absence and presence of THz EM stimuli.
Evidently, the tendency of carboxyl to oscillate up and down has
been suppressed after the application of 44 THz EM, confirming
the conclusion of Figure 2C, and all vibration modes except C-O
stretching have become weaker. Moreover, we can find that the
oscillation period of carboxyl increases with the growth of the EM
stimuli strength A (Figure 3C). Originally, it only takes 2.8 ns on
average for carboxyl to complete a period of oscillating up and
down, but as the stimuli strength A increases to 1.5 V/nm, the
oscillation period increased to 8.6 ns on average. The dynamical
change in carboxyl also changes the energy barrier for water

molecules to permeate through the GO membrane. From
Figure 3D, we can see the intermolecular interaction energy
between the water molecule and the GO membrane. As the
gateway for water molecules permeating through the membrane,
carboxyl locates around 1.3 nm and 4.5 nm along the x-axis. Under
normal circumstances, hydrophilic carboxyl will attract water
molecules by forming H-bond with the interaction energy of
Ew-c = -24.0 kJ/mol, making it difficult for water molecules to
enter or exit from the inside of the membrane. However, with
the application of 44.0 THz EM stimuli, the dynamic conformation
of carboxyl changes and the interaction energy Ew-c reduces to
-19.0 kJ/mol, making it less attractive to water and easier for water
molecules to pass through. This fact leads to the conclusion that the
movement change of carboxyl has a great influence on the
membrane permeability due to its gateway location of water
molecule transportation.

At last, it is worth noting that at the macroscopic level, the electric
field required in an experiment to produce the dielectric breakdown of
water is 0.07 V/nm. However, in classical molecular dynamics
simulations, the electric field needed to affect the dynamic property
of water significantly is almost 10 times greater than 0.07 V/nm. We
did not observe the dielectric breakdown phenomenon in the
simulation because the classical force field fixed the charge of
atoms. This treatment just considered the orientation polarization
and ignored the electron polarization. At the molecular level, dielectric
breakdown is a bond-breaking process [51], and the electric field
threshold to dissociate water molecules and sustain an ionic current

FIGURE 2
Mechanism behind the permeability enhancement of the membrane caused by EM stimuli at a specific frequency. (A) Vibrational spectra of bulk water
(gray curve), confined water (black curve), and the carboxyl groups on the GO membrane (dark red curve). The vibrational models of carboxyl have
characteristic frequencies centered at 35.0, 44.0, and 112.0 THz, respectively, which are far away from the prominent absorption peaks of bulk and confined
waters. Consequently, carboxyl resonantly absorbs the photon energy of 35.0 and 44.0 THz EM stimuli, and its dynamical conformation is affected.
(B)Composition detail of the vibrational spectra of carboxyl at the range of 40.0–52.0 THz. Distinctly, the vibrationmode at 44.0 THz ismainly affected by
the stretching vibration of the C-O bond. (C) Vibrational spectra of the carboxyl group before (dark red curve) and after (orange curve) the application of
44.0 THz stimulus.
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needs to be up to 3.5 V/nm [52]. Therefore, under this threshold, we
can reveal the classical image rather than the quantum image of the
influence of the external field on molecular orientation and vibration
dynamics. Furthermore, in the simulation, thermal dissipation is based
on the thermostat algorithm, while the water bath is used to control
the system’s temperature in the experiment. Although 44.0 THz is not
the strongest absorption frequency band that water absorbs the EM
stimulus, the local temperature will still rise if we irradiate the light on
the water. Based on the continuous light source we applied in the
simulation, the injected power from 44.0 THz EM stimulus to the unit
volume of water is less than 0.6 × 10−9 W/nm3 when A < 1.5 V/nm (see
details in Supplementary Section S5). Therefore, to investigate the
non-thermal effect of the enhancement of membrane permeability
caused by light, the water bath needs to be designed to take away the
injected energy in the process of the experiment as shown in the
previous work [35].

Conclusion

In this work, we found that EM stimuli at a frequency of 44 THz
can be resonantly absorbed by carboxyl groups at the edge position
of the GO membrane, thereby changing the vibration mode and
dynamic conformation of carboxyl groups. As a result, it reduced
the energy barrier of water molecule transport and ultimately
increased the permeability of the membrane by five times. It is
worth noting that in various biological and artificial particle

transport channels and membranes, the edge functional groups
play an important role in screening molecules or ions. Therefore,
our findings bring new insights into the study of biological
channels and artificial membranes and provide a new approach
to manipulating the transmembrane transport of water molecules
and other particles in life science and industrial applications.
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Scaling laws of out-of-time-order
correlators in a non-Hermitian
kicked rotor model

Wen-Lei Zhao* and Ru-Ru Wang

School of Science, Jiangxi University of Science and Technology, Ganzhou, China

We investigate the dynamics of the out-of-time-order correlators (OTOCs) via a
non-Hermitian extension of the quantum kicked rotor model, where the kicking
potential satisfies PT -symmetry. The spontaneous PT -symmetry breaking
emerges when the strength of the imaginary part of the kicking potential
exceeds a threshold value. We find, both analytically and numerically, that in
the broken phase of PT symmetry, the OTOCs rapidly saturate with time
evolution. Interestingly, the late-time saturation value scales as a pow-law in
the system size. The mechanism of such scaling law results from the interplay
between the effects of the nonlocal operator in OTOCs and the time reversal
induced by non-Hermitian-driven potential.

KEYWORDS

out-of-time-order correlators, PT-symmetry, kicked rotor system, information
scrambling, quantum chaos

1 Introduction

In recent years, the out-of-time-order correlators (OTOCs) C = −〈[A(t),B]2〉 have
attracted extensive attention in diverse fields of physics, ranging from quantum chaos [1,2]
and quantum information [3] to black hole physics [4]. A fundamental concept in these
fields is information scrambling, namely, the spread of information encoding in local degrees
of freedoms over the entire system to be inaccessible by local measurement [5–7]. This
progress is quantified by the growth of local operators with time evolution, due to which it
will be no longer commutable with other operators, separated by a long distance [8,9]. The
operator growth is dominated by the classical chaos in such a way that the rate of exponential
growth of OTOCs is proportional to the classical Lyapunov exponent [10,11]. Nowadays, the
OTOCs are being widely used to diagnose the many-body localization [12,13], quantum
entanglement [14–16], quantum thermalization [17–19], and many-body chaos [20–22],
hence promoting intensive investigations in the field of many-body physics [23,24].
Interestingly, experimental advances have observed both the quantum information
scrambling and quantum phase transition by measuring the OTOCs in the system of the
quantum circuit [25,26] and a nuclear magnetic resonance quantum simulator [27].

For PT -symmetric systems, the dynamics of OTOCs signals the Yang–Lee edge
singularity [28] of phase transition and shows the quantized response to external driven
potential [29]. It is now widely accepted that the non-Hermiticity is a fundamental
modification to conventional quantum mechanics [30–36] since many systems, such as
optics propagation in the “gain-or-loss” medium [37–39], the electronics transport in the
dissipative circuit [40–43], and cold atoms in the tailored magneto-optical trap [44–48], are
described by a non-Hermitian theory. The extension of Floquet systems to non-Hermitian
regimes uncovers rich understandings of physics [49–53]. For example, the scaling of the
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spontaneous PT -symmetry breaking and its relation with classical
chaos are revealed in a non-Hermitian chaotic system [54]. The
ballistic energy diffusion [55] and quantized acceleration of
momentum current [56] are reported in a PT -symmetric kicked
rotor (PTKR) model. The quantum kicked rotor (QKR) and its
variants provide ideal platforms for investigating fundamental
problems, such as the quantum transport in momentum-space
lattice [57,58], the quantum-to-classical transition of chaotic
systems [59,60], and the quantum thermalization in many-body
systems [61]. The operator growth and chaotic information
scrambling in different variations of QKR are still open issues
and require urgent investigations.

In this context, we investigate, both analytically and numerically,
the dynamics of OTOCs in a PTKRmodel, with focus on the broken
phase of PT symmetry. We observed that the OTOCs rapidly
saturate with time evolution. Interestingly, the saturation value is
the power-law function of the dimension of the system, which
demonstrates a kind of scaling-law of the OTOCs with the
system size. The mechanism of such scaling law results from two
aspects. One is that the action of the non-local operators
constructing the OTOCs on the state leads to a power-law
decayed distribution in momentum space. The other is that the
non-Hermitian kicking potential induces the perfect time reversal of
thequantum state in momentum space. Using the power-law
decayed quantum state, we analytically obtain the scaling of
OTOCs with the size of momentum space, for which the OTOCs
is the power-law function of the dimension of the system. This
demonstrates that the OTOCs unboundedly increase with the
system size, revealing a kind of fast scrambling [62,63]. Our
result sheds light on the Floquet engineering of the fast
scramblers in the non-Hermitian map systems.

The paper is organized as follows. In Section 2, we show our
model and the scaling-law of OTOCs. In Section 3, we present the
theoretical analysis of the scaling law. Section 4 contains the
conclusion and discussion.

2 Model and results

The Hamiltonian of a PTKR reads

H � p2

2
+ VK θ( )∑∞

n�0
δ t − tn( ), (1)

with the kicking potential

VK θ( ) � K cos θ( ) + iλ sin θ( )[ ], (2)
which satisfies the PT symmetry VK(θ) � VK* (−θ) [55]. Here,
p = −iZeffz/zθ is the angular momentum operator and θ is the
angle coordinate, which obey the communication relation [θ, p] =
iZeff with Zeff, the effective Planck constant. The parameters K and λ

control the strength of the real and imaginary part of the kicking
potential, respectively. The time tn is integer, i.e., tn = 1, 2 . . . ,
indicating the kicking number. All variables are properly scaled and
thus in dimensionless units. The eigenequation of the angular
momentum operator is p|ϕn〉 = pn|ϕn〉 with eigenstate 〈θ|ϕn〉 �
einθ/

���
2π

√
and eigenvalue pn = nZeff. On the basis of |ϕn〉, an arbitrary

quantum state can be expanded as |ψ〉 � ∑∞
n�−∞ψ(pn)|ϕn〉.

The evolution of the quantum state from tj to tj+1 is given by
|ψ(tj+1)〉 = U|ψ(tj)〉, where the Floquet operator U takes the form

U � exp −i p2

2Zeff
( )exp −i VK θ( )

Zeff
[ ]. (3)

In numerical simulations, one period evolution splits into two steps,
namely, the kicking evolution UK(θ) � exp(−iVK(θ)/Zeff ) and the
free evolution Uf(pn) � exp(−ip2

n/2Zeff ) [57–59]. At first, we
construct the kicking evolution in angle coordinate space,
ψ′(θl) = UK(θl)ψ(θl, tj) with discrete grids θl = −π + 2πl/N (0 ≤
l < N) and N = 2m. Then, the fast Fourier transform is used to realize
the transformation of the state |ψ′〉 to momentum space yielding the
state ψ′(pn) with −NZeff/2 ≤ pn ≤ (N − 1)Zeff/2. Finally, we take the
free evolution, i.e., ψ(pn, tj+1) = Uf(pn)ψ′(pn). By repeating the same
procedure, one can get the state |ψ(tn)〉 at an arbitrary time. In the
experiment, the PTKR model can be realized by an optical platform
with a Fabry–Perot resonator consisting of two plane mirrors, one of
which is equipped with a mixed-loss phase grating to mimic the
periodic kicking sequence of PT-symmetric potential [55]. It is
found that in the broken phase of PT-symmetry, the light
propagation in the Fabry–Perot resonator demonstrates the
unidirectional transport in frequency domain.

The eigenequation of the Floquet operator has the expression
U|φε〉 = e−iε|φε〉, where the eigenvalue ε is named as quasienergy.
Intrinsically, the quasienergy of the PTKRmodel is complex, i.e., ε =
εr + iεi, when the value λ exceeds a threshold value, i.e., λ > λc [54,55],
which is a signature of the spontaneous PT -symmetry breaking of
Floquet systems. Based on the relation |ψ(tn)〉 � ∑εCεe−iεrtn eεi tn |εε〉,
the norm N � 〈ψ(tn)|ψ(tn)〉 exponentially increases with time for
positive εi. We numerically investigate the time evolution of N for
different λ. Figure 1A shows that for very small λ (e.g., λ = 10–4), the
norm remains at unityN � 1 with the time evolution, which implies
that εi = 0 and the system is in the unbroken phase of PT symmetry.
Interestingly, for sufficiently large λ (e.g., λ = 0.002), the norm
exponentially increases with time, i.e., N � eγt, signaling the
occurrence of the spontaneous PT symmetry breaking. The
growth rate γ increases with the increase of λ. In order to
quantify the phase transition point λc, we numerically investigate
the time-averaged value of norm �N � ∑M

j�1N (tj)/M for different
values of λ. Our results show that for a specific Zeff, the average value
�N equals to unity for λ smaller than a critical value λc, beyond which
the �N gradually increases (see Figure 1B). Moreover, the λc increases
with the increase of Zeff.

The OTOCs are defined as the average of the squared
commutator, i.e., C(t) = −〈[A(t),B]2〉, where both operators
A(t) = U†(t)AU(t) and B are evaluated in the Heisenberg picture,
and 〈/ 〉 = 〈ψ(t0)|/|ψ(t0)〉 indicates the expectation value taken
over the initial state |ψ(t0)〉 [23]. It usually uses the thermal states for
taking the average in the investigation of OTOCs of lattice systems.
For the Floquet-driven system, however, there are no well-defined
thermal states, as the temperature tends to be infinity as time evolves
[64]. Without loss of generality, we choose a Gaussian wavepacket as
an initial state, i.e., ψ(θ, 0) = (σ/π)1/4 exp (−σθ2/2) with σ = 10. We
consider the case as A = θ and B = pm (m ∈ N), hence C(t) �
−〈[θ(t), pm]2〉.

Our main result is the scaling law of the late-time behavior of the
OTOCs
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C t( ) ~ N2m−1θ2c , (4)

where N is the dimension of the momentum space of the PTKR
model, and θc = π/2. This prediction is verified by numerical results
in Figure 2. As an illustration, we consider m = 1, 2, and 3 in
numerical simulations. Figure 2A shows that for a specific m, the
C(t) saturates rapidly as time evolves, which is in perfect agreement
with our theoretical prediction in Eq. 4. The critical time for
the saturation of C decreases with the increase of λ, until

saturation (as shown in Figure 2A). In order to further confirm
the scaling law of C(t), we numerically investigate the C at a specific
time for different values of N. Figure 2B shows that for t = t10, the
value of C increases in the power-law of N, which coincides with the
theoretical prediction in Eq. 4. The scaling of C(t) with dimensions
of the system demonstrates that it diverges as N → ∞, which is of
interest in the study of fast scrambling [63]. We would like to
mention that we previously found the scaling law for the OTOCs
constructed by A = θ and B = p, in a Gross–Pitaevskii map system

FIGURE 1
(A) Time dependence of N for Zeff = 0.1 with λ = 10–4 (squares), 0.002 (circles), 0.005 (triangles), and 0.007 (diamonds). Solid lines indicate the
exponential fittingN � eγt . (B) The average value �N versus λwith Zeff = 0.1 (squares), 0.5 (circle), and 0.9 (triangles). Arrowsmark the phase transition point
λc for Zeff = 0.1. Horizontal dashed lines in (A,B) denote N � 1 and �N � 1, respectively. The parameter is K = 2π.

FIGURE 2
(A) Time dependence ofC(t) with B= p (squares), p2 (circles), and p3 (triangles) withN= 213. The arrowmarks the critical time tc forB= p. Inset: Critical
time tc versus λ. (B) C(t) at the time t = t10 versus N. Solid lines in (A,B) denote our theoretical prediction in Eq. 4. The parameters are K = 2π, λ = 0.9, and
Zeff = 0.1.
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[65]. Our present work explores the scaling law for B = pm with the
arbitrary integer m; moreover, it extends the investigation to non-
Hermitian systems, which is evidently a significant advance in the
fields of operator growth in chaotic systems.

3 Theoretical analysis

3.1 Scaling law of the C1(t)

Straightforward derivation yields the expression of OTOCs

C t( ) � C1 t( ) + C2 t( ) − 2Re C3 t( )[ ], (5)
where the three terms in right side are defined by

C1 t( ) � 〈ψR t0( )|p2m|ψR t0( )〉, (6)
C2 t( ) � 〈φR t0( )|φR t0( )〉, (7)

and

C3 t( ) � 〈ψR t0( )|pm|φR t0( )〉, (8)
with |ψR (t0)〉 = U†(tn, t0)θU (tn, t0)|ψ(t0)〉 and |φR (t0)〉 = U†(tn,
t0)θU (tn, t0)p

m|ψ(t0)〉.
To get the state |ψR (t0)〉, one needs three steps: 1) forward

evolution t0 → tn, i.e., |ψ(tn)〉 = U (tn, t0)|ψ(t0); 2) action of the
operator θ on |ψ(tn)〉, i.e., |~ψ(tn)〉 � θ|ψ(tn)〉; and 3) backward
evolution tn → t0, i.e., |ψR(t0)〉 � U†(tn, t0)|~ψ(tn)〉. C1 (tn) (see Eq.
6) is just the expectation value of the p2m taken over the state |ψR
(t0)〉. For the numerical calculation of the state |φR (t0)〉, one should
first construct the operation of pm on the initial state |ψ(t0)〉,
i.e., |φ(t0)〉 = pm|ψ(t0)〉. Then, forward evolution from t0 to tn
yields the state |φ(tn)〉 = U (tn, t0)|φ(t0)〉. At time t = tn, the
action of θ on the state |φ(tn)〉 results in a new state
|~φ(tn)〉 � θ|φ(tn)〉, starting from which the time-reversal process
tn → t0 yields the state |φR(t0)〉 � U†(tn, t0)|~φ(tn)〉. The norm of
|φR (t0)〉 is just the C2 (tn) (see Eq. 7). As the two states |ψR (t0)〉 and
|φR (t0)〉 are available at the end of time reversal, one can calculate
the C3 (tn) according to Eq. 8.

It is known that in the PT -symmetry breaking phase, the norm
of quantum state N ψ(tn) � 〈ψ(tn)|ψ(tn)〉 exponentially increases
for both the forward and backward time evolutions. To eliminate the
contribution of norm to OTOCs, it is necessary to take the
normalization for the time-evolved state. Specifically, for the
forward evolution t0 → tn, we set the norm of the quantum state
equals to that of the initial state, i.e., N ψ(tj) � 〈ψ(t0)|ψ(t0)〉 with
0 ≤ j ≤ n. The backward evolution starts from the time t = tn with the
state |~ψ(tn)〉, whose norm N ~ψ(tn) � 〈ψ(tn)|θ2|ψ(tn)〉 is
expectation value of θ2 with the state |ψ(tn)〉. It is evident that
the value of N ~ψ(tn) is important information encoded by the
operation of θ on the state |ψ(tn)〉. Based on this, we take the
normalization of the quantum state in the backward evolution tn →
t0 in such a way that its norm equals to N ~ψ(tn),
i.e., N ψR

(tj) � N ~ψ(tn). One can find that for both the forward
and backward evolutions, the norm of a time-evolved state always
equals that of the state which the time evolution starts from. The
same procedure of normalization is applied in calculating C2 (tn).
Therefore, we have the equivalence N φ(tj) � 〈φ(t0)|φ(t0)〉 and
N φR(tj) � 〈~φ(tn)|~φ(tn)〉 (0 ≤ j ≤ n) for the forward evolution and
time reversal, respectively.

We rewrite the C1 as

C1 t( ) � 〈ψR t0( )|p2m|ψR t0( )〉 � 〈p2m t0( )〉RN ψR
t0( ), (9)

whereN ψR
(t0) � 〈ψR(t0)|ψR(t0)〉 is the norm of the quantum state

|ψR (t0)〉 and 〈p2m(t0)〉R � 〈ψR(t0)|p2m|ψR(t0)〉/N ψR
(t0) indicates

the exception value of p2m of the state |ψR (t0)〉with the division of its
norm. We numerically investigate both the forward and backward
evolutions of the norm N , and the mean values 〈θ〉 and 〈p〉 for a
specific time, e.g., t = t10. It should be noted that we define the
expectation value of observable Q as 〈Q〉 � 〈ψ(t)|Q|ψ(t)〉/N (t)
with N (t) � 〈ψ(t)|ψ(t)〉. It is evident that such kind of definition
eliminates the contribution of norm to mean value. Figure 3A shows
that the norm is in unity during the forward time evolution (i.e., t0→
t10) and remains at a fixed value, i.e., N ψR

(t0) ≈ θ2c during the
backward evolution (i.e., t10 → t0). For t0 → t10, the value of norm
equals to that of the normalized initial state, so N (tj) � 1. For the
time reversal t10 → t0, our normalization procedure results in the
equivalence N ψR

(tj) � 〈ψ(tn)|θ2|ψ(tn)〉. Interestingly, our
numerical investigations in Figures 4A, C, E show that for the
forward evolution, the initial Gaussian wavepacket rapidly moves to
the position θc = π/2; it should be noted that the initial Gaussian
wavepacket has not moved to the position θc before t4. This is the
reason why C(t) decays sharply before t4. During the time reversal, it
remains localized at θc with the width of distribution being much
smaller than that of the state of forward evolution. Correspondingly,
the mean value 〈θ〉 has very slight differences with θc (see
Figure 3A). Since the quantum state is extremely localized at θc,
one can get the approximation

N ψR
t0( ) � 〈ψ tn( )|θ2|ψ tn( )〉 ≈ θ2c . (10)

Figures 4B, D, F show the momentum distribution of the state
during both forward and backward evolutions. For the forward
evolution, the quantum state behaves like a soliton which moves to a
positive direction in momentum space, resulting in the linear
increase of the mean momentum, i.e., 〈p〉 = Kt (see Figure 3B).
Themechanism of the directed acceleration has been unveiled in our
previous investigations [29,56]. Intriguingly, at time t = t10, the
action of θ yields a state with a power-decayed shape,
i.e., |ψR(p, t0)|2 ∝ (p − pc)−2 (see Figure 4F). Most importantly,
during the backward evolution, the quantum state still retains the
power-law decayed shape, for which the center pc decreases with
time and almost overlaps with that of the state of the forward
evolution. This clearly demonstrates a kind of time reversal of
transport behavior in momentum space.

In the aspect of the mean momentum 〈p〉, we find that the value
of 〈p〉 linearly decreases during the backward evolution and is in
perfect symmetry with that of the forward evolution, which is a solid
evidence of time reversal. In the end of the backward evolution, the
quantum state |ψR (t0)〉 is localized at the point p = 0 (see Figure 4B).
By using the power-law distribution |ψR (p, t0)|

2 ~ p−2, it is
straightforward to get the estimation of the expectation value of
p2m, i.e., 〈p2m〉ψR

� ∫pN/2

p−N/2
p2m|ψR(p, t0)|2dp∝N2m−1. Taking both

〈p2m〉ψR
and N ψR

(t0) in Eq. 10 into Eq. 9 yields the relation

C1 t( )∝N2m−1θ2c , (11)
which is verified by our numerical results in Figure 5. As an
illustration, we consider the cases with m = 1, 2, and 3. Our
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numerical results of the late-time saturation values of C1 are in
good agreement with Eq. 11. It is now clear that the scaling
of C(t) with N originates from the power-law decay of

the state |ψR (t0)〉. The reason for the formation of
power-law decayed wavefunction has been uncovered in
Ref. 65.

FIGURE 3
Time evolution of N (A), 〈θ〉 (A), and 〈p〉 (B) with t = t10. In (A), solid and dash-dotted lines indicate N � θ2c and 〈θ〉 = θc (= π/2), respectively. In (B),
solid line indicates 〈p〉 = Kt. Green dashed lines in (A,B) are auxiliary lines. The parameters are the same as in Figure 2.

FIGURE 4
Distributions in real (left panels) andmomentum (right panels) space. In (A–D), black and red lines indicate the distribution of the states at the forward
|ψ(tj)〉 and backward |ψR (tj)〉 evolution, respectively, with t = t0 (top panels), t = t5 (middle panels), and t = t10 (bottom panels). In (E–F), red and black lines
indicate the distribution of the states |ψ(t10)〉 and |~ψ(t10)〉 � θ|ψ(t10)〉. Blue dashed lines indicate the power-law decay |ψ|2 ∝ (p − pc)−2. The parameters are
the same as in Figure 2.

Frontiers in Physics frontiersin.org05

Zhao and Wang 10.3389/fphy.2023.1130225

90

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1130225


3.2 Analytical analysis of C2(t)

We proceed to evaluate the time dependence of C2(t) in Eq. 7,
which is just the norm of the state |φR (t0)〉 at the end of backward
evolution. According to our normalization procedure, the value of
C2 equals to the norm of the state |~φ(tn)〉 � θ|φ(tn)〉, hence

C2 � 〈φ tn( )|θ2|φ tn( )〉 � 〈θ2〉N φ tn( ), (12)
with N φ(tn) � 〈φ(tn)|φ(tn)〉 and 〈θ2〉 � 〈φ(tn)|θ2|φ(tn)〉/N (tn).
We numerically find that the state |φ(tn)〉 is extremely localized at
the position θc during the forward evolution (see Figure 6). Then, a
rough estimation yields 〈θ2〉 ~ θ2c . The norm N φ(tn) equals that of
the initial state |φ(t0)〉 = pm|ψ(t0)〉. By using the initial Gaussian
wavepacket ψ(p, t0) � (1/σZ2effπ)1/4 exp(−p2/2σZ2eff ), one can
straightforwardly obtain

N φ tn( ) � ∫∞

−∞
p2m|ψ p, t0( )|2dp � 2m − 1( )‼

2mαm
,

where α = 1/(σZ2) and (. . .)!! denote a double factorial. Taking both
the 〈θ〉 andN φ(tn) into Eq. 12 yields the late-time saturation value

C2 t( ) ~ θ2c
2m − 1( )‼
2mαm

, (13)

which is in good agreement with our numerical results in Figure 5.

3.3 Scaling law of C3(t)

The value of C3(t) depends on both the states |ψR (t0)〉 and |φR
(t0)〉 (see Eq. 8). Figure 7 shows the probability density distributions
of the two states in both the real space and momentum space. For
comparison, the two states are normalized to unity. One can find the
perfect consistence between |ψR (t0)〉 and |φR (t0)〉. Then, we roughly
regard C3 as the expectation value of the pm taking over the state ψR
(t0) or φR (t0), i.e., C3(t) ≈ 〈pm(t0)〉ψR

�������
N ψR

(t0)
√ �������

N φR(t0)
√

, where
according to aforementioned derivations N ψR

(t0) � θ2c and
N φR(t0) � C2(t). By using the power-law decayed wavepacket
|ψR (t0)|

2 ∝ p−2, one can obtain the estimation

〈pm t0( )〉ψR
≈ ∫ pN/2

p−N/2

pm|ψR p, t0( )|2dp
~

0 for odd m,
Nm−1 for even m.

{ . (14)

Accordingly, the C3 is approximated as

C3 t( ) ~ 0 for odd m,
ηNm−1 for even m.

{ . (15)

with the prefactor η∝ θ2c[(2m − 1)!!/2mαm]12.
We numerically calculate the absolute value of the real part of

C3. Interestingly, our numerical results of |Re [C3]| is in good
agreement with the analytical prediction in Eq. 15 (see Figure 5),
which proves the validity of our theoretical analysis. We further
numerically investigate the |Re [C3(t)]| at a specific time for different
N. Figure 8 shows that for B = p, the value of |Re [C3(t)]| is nearly
zero with varying N, which is consistent with our theoretical
prediction in Eq. 15. For B = p3, the value of |Re [C3(t)]| has
slight difference with zero for large values of N, signaling the

FIGURE 5
C1 (squares), C2 (circles), and |Re[C3]| (triangles) versus time with
B = p (A), p2 (B), and p3 (C). Dash-dotted, solid, and dashed lines
indicate our theoretical prediction in Eq. 11 forC1, Eq. 13 forC2, and Eq.
15 for C3, respectively. The parameters are the same as in
Figure 2.

FIGURE 6
Probability density distributions in real space at the time t = t0
(squares), t5 (triangles), and t10 (circles) with B = p (A), p2 (B), and p3 (C).
The parameters are the same as in Figure 2.
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derivations with Eq. 15. This is due to the fact the quantum state |ψR
(t0)|

2 is not exactly symmetric around p. In order to quantify such
asymmetry, we numerically investigate the difference of the sum of

the probability between the positive and negative momentums Δρ �∑N
2−1
n�0 |ψR(t0, pn)|2 −∑−1

n�−N
2
|ψR(t0, pn)|2 and find that it is non-zero

Δρ = 0.13. Interestingly, for B = p2, the value of |Re [C3(t)]| increases
linearly with increasing N, which is clear evidence of the validity of
our theoretical prediction.

4 Conclusion and discussion

In the present work, we investigate the dynamics of the
C(t) = −〈[θ(t), pm]〉 in a PTKR model. The spontaneous
PT -symmetry breaking is assured by the condition λ > λc. In the
broken phase of PT -symmetry, we find, both analytically and
numerically, the scaling law of C(t) with the dimension of the
momentum space, i.e., C(t) ~ N2m−1θ2c . This demonstrates that the
value of C increases unboundedly with N, which implies that the local
perturbation can spread to the entire system very rapidly. In order to
reveal the mechanism of the scaling, we make detailed investigations on
both the forward and backward evolutions of the quantum state. Our
investigations show that the action of θ on a quantum state leads to the
formation of the power-law decayed momentum distribution
|ψ(p)|2 ∝ (p − pc)−2. Interestingly, such a shape retains during the
time reversal, in addition to the decrease of pc to almost zero. Based on the
power-law decayed state, we analytically derive the late-time saturation
values of the three parts of theC, which is confirmed by numerical results.

FIGURE 7
Comparison of the distribution of states |ψR (t0)〉 (solid lines) and |φR (t0)〉 (dashed lines) in real (A, C, E) andmomentum space (B, D, F)with B = p (top
panels), p2 (middle panels), and p3 (bottom panels). Blue dashed lines in (B, D, F) indicate the power-law decay |ψR (t0)|

2 (|φR (t0)|
2)∝ p−2. The parameters are

the same as in Figure 2.

FIGURE 8
|Re [C3(t)]| at the time t = t10 versus N with B = p (squares), p2

(circles), and p3 (triangles). Red solid line indicates our theoretical
prediction in Eq. 15 with η = 6.05 × 10−7 for B = p2. The parameters are
the same as in Figure 2.
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In recent years, fruitful physics of quantum many-body systems,
such as dynamical phase transition, many-body localization, and
thermalization have received extensive studies. It is found that the
energy conservation of chaotic systems leads to the scaling law of
OTOCs, for which the late-time saturation of OTOCs scales as the
inverse polynomial with the system size [66]. For chaotic systems with
long-range interaction, the late-time saturation values of OTOCs obey
the dynamical scaling law near the phase transition point [67].
Accordingly, our finding of the power-law scaling of OTOCs with
the system size of the PTKR model serves as a new element of the
quantum information scrambling in non-Hermitian map systems.
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Photodissociation of water
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In our last study [J. Phys. B At. Mol. Opt. Phys. 54, 125,102 (2021).], we reported the
ab initio calculation of the full-dimensional potential energy surfaces of water
molecule including 9 A’ and 9 A” states in Cs symmetry. In this study, we performed
additional non-adiabatic semi-classical studies based on the potential energy
surfaces. Our simulation successfully repeated the near picosecond lifetime of the
~F
1
A′ state measured by time resolved photo-electron spectra experiment

[Chinese J. Chem. Phys. 32, 53 (2019)]. We also determined the dissociation
branching ratio including H +OH(X, A), H + H+O and H2+O channels. In addition,
the reaction path corresponding to H2+O (1S) channel is clearly marked out, which
is found in recent free-electron laser experiment [Nat. Commun. 12, 6,303 (2021)].

KEYWORDS

photodissociation, semi-classical, surface-hopping, potential energy surface, non-
adiabatic dynamics

1 Introduction

With the development of vacuum ultra-violet free electron laser (VUV-FEL) light
sources combined with time-sliced velocity-map imaging (TSVMI) [1] and time-resolved
photo-electron spectroscopy (TRPES) technique [2], dynamical studies for the photo-
chemistry process in molecules from highly excited electronic states have been
performing for several years before [1, 3, 4]. Among small molecules, water had been
extensively studied as an ideal polyatomic system. Interesting phenomena have been found
for the photodissociation dynamics of highly-excited states of water, including the hot
rotation of OH fragments in ground and excited states at special incident photon
wavelengths [4, 5] the long-lived lifetime of ~F and ~F′ states [6] and the high yield of the
three-body H + H + O channel [7] at short wavelengths.

Despite the extensive experimental studies of the photodissociation of water molecule in
highly-excited states, corresponding theoretical studies are relatively scarce due to the lack of
the corresponding potential energy surfaces (PES). On the other hand, most theoretical
studies focus on specific fragment quantum distributions such as the rovibronic [8] or the
fine structures of OH radical [9], and few studies consist of all three channels of H + OH,
H2+O and H + H + O. In our latest work [10], we obtained the full dimensional potential
energy surfaces with the combined multi configurational self-consistent field and multi
reference single and double excitation configuration interaction method (MCSCF +
MRDCI), nearly 99,000 geometries are considered which include all the three mentioned
channels.
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If we do not aim at studying quantum effects such as
interference, energy resonant, or geometric phase, a semi-
classical simulation of the nuclear motions is good enough to
describe the reaction behavior with a lower computational cost.
In this paper, based on our full-dimensional PESs, the
photodissociation of water molecule with respect to the
photon energy of 9–12 eV are studied with a semi-classical
method, and the non-adiabatic transition is included using a
Landau-Zener type approach near conical-intersections or avoid-
crossings. It should be noted that, in the present study, only the
states of 1A′ symmetry are taken into consideration because the
ones with 1A″ symmetry are either long-lived [2, 6](second or
higher 1A″) or lower than the energy range of interest ( ~A

1
A′, less

than 8eV).

2 Theoretical method

The semi-classical simulation is performed by solving the
Newton equations with the Verlet algorithm:

q t + Δt( ) � 2q t( ) − q t − Δt( ) + €q t( )Δt2 (1)
Here, q is the coordinate of an atom. The acceleration €q is

determined from a finite difference on the PES with a multi-
dimensional B-spline interpolation. Non-adiabatic process is
considered using two main approximations—surface hopping
and the Landau–Zener model [11, 12], which has been
analyzed and tested in several conical intersection problems
[13–15]. When the potential energy gap comes minimal along
the classical trajectory, a non-adiabatic transition may occur.
Considering a classical trajectory associated with the ith adiabatic
surface, if at a critical time tc, the energy gap function Zij(qc)
between the ith and jth surfaces at the coordinate qc{ } reaches a
minimum, a transition from surface i to j can take place. The
transition probability can be described by a Landau-Zener
formula [11]:

PLZ � exp
−π
2Z

�������������
Zij qc( )3

d2

dt2Zij q t( )( ) ∣∣∣∣ t�tc
√√⎛⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎠ (2)

During the simulation, such probability is compared with a
pseudorandom number ξ within a uniform interval of [0,1]. If
ξ >PLZ the trajectory stays on the current surface i. If ξ <PLZ,
the trajectory hops from the current surface i to the surface j, and the
velocities are rescaled as:

∑
α

1
2
mα _qα t( )∣∣∣∣ ∣∣∣∣2 + Ui qc( ) � ∑

α

1
2
mα _qrsα t( )∣∣∣∣ ∣∣∣∣2 + Uj qc( ) (3)

to ensure the energy conservation. The summation is over all nuclear
with mass mα. In our approach, only j � i ± 1 are taken into
consideration i.e. only the hopping between the adjacent surfaces
are considered.

The initial geometry samplings are based on a Wigner
distribution [16, 17] near the equilibrium geometry of the
ground state ~X1A′ at the ground vibrational state.

3 Results and discussion

3.1 The lifetime of state ~D
1
A′ and ~F

1
A′

We obtain the lifetime of state ~D
1
A′ and ~F

1
A′ by applying the

simulation from each specific adiabatic surface. Thousands of
trajectories are performed with different initial condition and
then we can collect the numbers of undissociated trajectories at
each time t as N(t). Finally, the lifetime τ is obtained through an
exponential fitting on N(t) versus t as: N(t) � N0 exp (−t/τ).

The state ~D
1
A′ is believed to be unstable due to the strong non-

adiabatic coupling with the lower state of ~B
1
A′ at the bending

geometry. Several experimental studies have reported slightly
diverging results. Steinkellner etal [18] obtained a value of
60 ± 50 fs with a large uncertainty using an ultrafast two-photon
experiment in 2004. Then Yuan etal [19] estimated the lifetime of
~D
1
A′ to be 13.5 fs from the bandwidth value of a two-photon

spectrum. In the present study, as shown by Figure 1A, the
dissociation lifetime for ~D

1
A′ state is determined to be near

124 fs. The relatively short lifetime of 13.5 fs by Yuan etal [19] is
within the lower limit of 60 ± 50 fs by Steinkellner etal [18] while the
present value of 124 fs is near the upper limit of that. Present study
may slightly overestimate the lifetime of ~D

1
A′ state because other

non-adiabatic processes (e.g. Coriolis couplings) may also lead to the
dissociation thus reduce the dissociation lifetime. More theoretical
and experimental works are required to accurately determine the
lifetime of ~D

1
A′ state. It should be noticed that, at the first

50 femtoseconds, the counts in Figure 1A is flat. This is caused
by our simulation algorism: in first tens of femto-seconds, most
trajectories cannot reach the defined dissociation conditions (e.g.
OH bond length larger than a threshold value), so they are not
regarded as ‘dissociated’.

The lifetime of ~F
1
A′ state had been determined by Yang etal [6] to

be as long as 1000 ± 300 fs using the time-resolved photo-electron
spectroscopy (TRPES). They suggested a weak non-adiabatic traisition
from ~F

1
A′ to ~D

1
A′, followed by dissociation from the ~D

1
A′ surface as

discussed above. However, in our last study [10], we suggested that the
long lifetime should come from the long-time for symmetry-breaking
process by analysing the PESs corresponding to such process. As shown
in Figure 1B, the lifetime of ~F

1
A′ is determined to be about 770 fs with

our semi-classical simulation which is in good agreement with the
TRPES results of Yang etal [6]. So our initial suggestions are well
supported by the present simulation.

3.2 The channel ratio with respect to the
incident photon energy

In previous theoretical studies, researchers mainly focus on part
of the dissociation channels. e.g., for H + OH dissociation channel,
Jiang etal [20] studied the rotational and vibrational distributions of
the OH fragment, Zhou etal [8] studied the effect of spin-orbit
couplings on the rotational distributions of OH fragment. For H2+O
channel, the only theoretical study was performed by van Harrevelt
etal [21], in which the rotational and vibrational distributions of H2

were obtained, a 10% ratio for the H2+O channel was found which
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was in good accordance with earlier experimental results t [22]. For
the three body channels, no specific theoretical studies are published.
In a recent study, Chang etal [7] found a quite large ratio of the
three-body channel at short wavelengths (near 100 nm, 12.34 eV).

Here we perform a simulation containing all three channels with
the full-dimensional PESs obtained in our last work [10]. A key
point is the determination of the initial surface. In the present study,
we perform the simulation from all the excited 1A′ states and the
numbers of the trajectories from each surface are determined as:

Ni ∝ D1i Re( )| |2/ω2
1i. (4)

HereNi is the number of the trajectories from the ith (i > 1) 1A′
surface, and D1i(Re) and ω1i are the transition dipole moments and
vertical excitation energy at the equilibrium geometry from 1A′ to
i1A′. Such approximation is based on a vertical excitation from the
ground state to the ith excitation state. Then the photon energy of
each trajectory is determined as:

Ep � Ui q t � 0( )( ) +∑
α

1
2
mα _qα t � 0( )∣∣∣∣ ∣∣∣∣2 − E0 (5)

Ep and E0 are the photon energy and the zero-point energy of
ground state, respectively. Ui is the PES of the ith surface. q(t � 0)
and _qα(t � 0) correspond to the initial coordinates and velocities of
each atom. Totally, hundreds of thousands of trajectories are
performed, and the channel ratios are obtained and shown in
Figure 2.

As shown in Figure 2, at low photon energy (near 9 eV), most
trajectories lead to the H + OH(X) channel. As the photon energy
increases the ratio of H + OH(X) channel reduces rapidly and the
ratios of other channels rise. H + OH(A) channel corresponds to the
dissociation on B1A′ surface: as the photon energy increases, the
ratio of H + OH(A) channel rises to the maximum at near 10.7 eV.
This may due to the fact that at higher photon energy, competition
between three-body and H2+O channel can take place. The H2+O
channel also rises with the photon energy increases from 9 eV and
reaches the maximum at about 11.2 eV. It should be noted that, at
about 10.2 eV, the H2+O channel ratio is close to 10%, this is in good
agreement with the ones presented by the theoretical results of van
Harrevelt etal [21] and the experimental ones of Slanger etal [22].
The three-body dissociation of water molecule is an important way
to generate the oxygen atom, and was discovered by both
dissociative electron attachment [23] and photodissociation [7]
experiments, but the mechanisms are different because the PESs
of H2O molecule and its anion are quite different. In present result,
the ratio of three-body channel reaches the first maximum of about

FIGURE 1
Number of undissociated trajectories versus simulation time of state ~D

1
A′ (panel (A)) and ~F

1
A′ (panel (B)). The lifetimes are obtained through a fitting

procedure with an exponential function. Points are the simulated values and lines are the fitted curves. The uncertainties are due to the fitting procedure.

FIGURE 2
Branching ratio versus photon energy. OH(X) and OH(A)
correspond to the H + OH channel with the OH fragment on ground
and first excited states, respectively. “Three” correspond to theH+H+
O channel. The error bars are determined from the statistical
error of the number of the trajectories of each channel.
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22% at near 10 eV, and reduces to below 10% at 10.6eV. Such
reduction may come from the competition of the H + OH(A) and
H2+O channel. After that, the ratio of the three-body channel
increases rapidly. A quite large value of 62% ± 12% of such
channel is determined near 12 eV. In the recent experimental
study by Chang etal [7], the ratios considering only H + OH and
three-body channels are obtained, and a value of near 85% at 102 nm
photon wavelength (12.15 eV) was presented. In present study, if we
also exclude the H2+O channel, the ratio of three-body channel can
be determined as near 78% ± 15% at 12 eV. Such value is within the
range of the experimental ones by Chang etal [7].

3.3 The H2+O channel

In recent experimental work of Chang etal [3], the photo
dissociation of water at wavelength ranging from 102.67 to
112.81 nm (10.99—12.08 eV), corresponding to the H2+O
channel, was studied. The H2+O (1S) channel was observed and
the vibrationally excited H2 molecule was mostly populated. This is

surprising because the H2+O (1S) channels correspond to the fourth
1A′ surface at the asymptotic region and there exist a rather high
energy barrier to overcome on this surface as shown in Figure 3B. In
our last work [10] and the theoretical study in Chang etal [3], it was
pointed out that the system can follow a non-adiabatic reaction path
which corresponds to an avoid crossing zone between ~D

1
A′ and

4th1A′ (two OH bonds near 3.4 bohr and HOH angle near 45°), after
such non-adiabatic transition, the system falls into a well which leads
to the hot vibration of H2 fragment. In present study, we also found
few numbers of trajectories leading to the H2+O (1S) channel. A
typical trajectory for the H2+O (1S) channel is shown in Figures 3A,B
not only with the geometry movement but also the adiabatic state
transition processes. Just as illustrated in our last study [10], the
system oscillates for several cycles on the bending and symmetric
stretching coordinates, but when the system transit to ~D

1
A′ surface

and the two OH bonds enlarge to near 2.6 bohr, at the HOH angle of
180°, the length of the two OH bonds will not shorten or elongate for
a while and the system will keep staying at the ~D

1
A′ surface. The

main movement then is the contraction of HOH angle from 180 ° to
near 60 °. Then the system moves to the avoid crossing between

FIGURE 3
Reaction path corresponding to H2+O (1S) channel. In panel (A), the adiabatic potential energies within the 1A′ symmetry along the reaction path is
shown, the values corresponding to the trajectory is shown as a dashed line. In panel (B), the symmetric (ROH1 = ROH2) PES of 41A′ in electron volts is
shown, and the trajectory for the H2+O (1S) channel is shown in a multi-colored line, and each color correspond to an adiabatic surface shown by the
legend. The color of the trajectory line depends on which adiabatic state the system is on during the reaction process. It should be noted that the
horizonal axis correspond to the average length of the two OH bonds within this trajectory.
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~D
1
A′ and fourth 1A′ and transit to fourth 1A′ which leads to the

H2+O (1S) channel.

4 Conclusion

By performing semi-classical simulation with Landau-Zener
surface hopping approximation, the photo-dissociation dynamics
of water molecule in high-lying states are studied. The lifetimes of
~D
1
A′ and ~F

1
A′ states are determined and found in good agreement

with previous experiments. The dissociation channel ratio
considering all three channels of H + OH, H2+O and H + H +
O within the photon energy from 9 to 12 eV are obtained. Good
agreement is found between present ratio values and available
experimental and theoretical ones. The H2+O (1S) channel is also
found in the simulation and the corresponding reaction path is
shown, which may help understanding such interesting reaction
channel better. In future works, for deeper understanding of the
dissociation mechanisms, more analysis of the reaction channels,
and full-quantum mechanically studies including non-adiabatic
coupling matrix elements and the wave-package propagation
simulation should be performed.
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Sampling strategies for the
Herman–Kluk propagator of the
wavefunction
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Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland, 2Zentrum Mathematik, Technische
Universität München, Munich, Germany

When the semiclassical Herman–Kluk propagator is used for evaluating quantum-
mechanical observables or time-correlation functions, the initial conditions for
the guiding trajectories are typically sampled from the Husimi density. Here, we
employ this propagator to evolve the wavefunction itself. We investigate two grid-
free strategies for the initial sampling of the Herman–Kluk propagator applied to
the wavefunction and validate the resulting time-dependent wavefunctions
evolved in harmonic and anharmonic potentials. In particular, we consider
Monte Carlo quadratures based either on the initial Husimi density or on its
square root as possible and most natural sampling densities. We prove
analytical convergence error estimates and validate them with numerical
experiments on the harmonic oscillator and on a series of Morse potentials
with increasing anharmonicity. In all cases, sampling from the square root of
Husimi density leads to faster convergence of the wavefunction.

KEYWORDS

quantum propagator, time-dependent semiclassical approximation, highly oscillatory
integral, statistical convergence of Monte Carlo methods, mesh-free discretization

1 Introduction

Semiclassical initial value representation techniques [1, 2] have evolved into useful tools
for calculations of the dynamics of atoms and molecules [3]. Frozen Gaussians and their
superposition were introduced by Heller in 1981 [4] as an extension to the thawed Gaussian
approximation [5] in order to capture non-linear spreading of the wavepackets. Herman and
Kluk justified the frozen-Gaussian ansatz and introduced an improved approximation [6–8],
now known as the Herman–Kluk propagator, which contains an additional prefactor that
rigorously compensates for the fixed width of these frozen Gaussians and ensures unitarity of
the time evolution in the stationary-phase limit [7]. The Herman–Kluk approximation keeps
the trajectories of the individual Gaussians uncoupled, which sets it apart from the more
accurate, but computationally more demanding approaches like the coupled coherent states
[9] or the variational multi-configurational Gaussian method [10].

In the spirit of the semiclassical initial value representation, the Herman–Kluk
propagator avoids the root search problem [2, 11]. Because of its high accuracy, this
propagator belongs among the most successful semiclassical approximations [12–18]
and has been derived in many different ways [9, 19–22]. There are observables, such as
low-resolution vibronic spectra in mildly anharmonic systems, which can be well
described by the more efficient thawed Gaussian approximation [23, 24] and other
single-trajectory methods [25–30]. In chaotic and other systems, however, increased
anharmonicity leads to wavepacket splitting and non-trivial interference effects. In such
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situations, the single-trajectory methods break down, whereas
the Herman–Kluk propagator often remains accurate and, at the
least, provides a qualitatively correct insight (see, e.g., Figure 1).
However, in its basic form, the Herman–Kluk propagator cannot
describe non-adiabatic dynamics and quantum tunneling. To
overcome this limitation, various extensions have been
developed: For example, surface hopping Herman–Kluk initial
value representation [31, 32] captures non-adiabatic dynamics,
whereas higher-order semiclassical corrections to the
Herman–Kluk propagator [33, 34] incorporate nuclear
tunneling.

The multi-trajectory nature of the Herman–Kluk propagator is
not only its advantage, but also its bottleneck. In particular,
converged computations might require an extremely large
number of trajectories. For this reason, several groups designed
various methods, whose goal is reducing the number of trajectories
required by the Herman–Kluk propagator. These include, e.g.,
Filinov filtering [13, 35–37], time-averaging [38–41], semiclassical
interaction picture [42, 43], multiple-coherent states [44], hybrid
dynamics [45–47], mixed quantum-semiclassical dynamics [48–50],
and many others, which achieve the reduction in the number of
trajectories by applying one of several possible further
approximations.

Yet, the number of guiding trajectories can already be
significantly reduced simply by choosing the sampling density
of the initial conditions wisely. Although the acceleration of the

convergence may be smaller than with the previously mentioned
approximate methods, the advantage of this “purely numerical”
approach based on improved exact sampling of the unaltered
Herman–Kluk initial value representation is that the converged
results agree exactly with the converged results of the original
Herman–Kluk propagator. For this reason, an early numerical
study [8] of the Herman–Kluk wavefunction employed the square
root of the Husimi distribution as the sampling density of the
initial state, whereas most calculations of observables, time-
correlation functions, and wavepacket autocorrelation
functions, i.e., quantities quadratic in the wavefunction,
correctly employ sampling from the Husimi density [2, 51]. In
contrast to observables and correlation functions, the
Herman–Kluk wavefunction itself has not been studied much
since the early papers [6, 8] and rigorous numerical analysis has
been presented only recently [52, 53]. However, the choice of the
optimal sampling density for the Herman–Kluk wavefunction
itself has not been analyzed in detail.

The goal of this work is, therefore, to analyze the
convergence of the Herman–Kluk wavefunction for different
initial sampling strategies and to understand the convergence
error as a function of time. Specifically, we investigate two
mesh-free discretization approaches for the initial
sampling—first analytically and then numerically on the
examples of harmonic and Morse oscillators with increasing
anharmonicity. In a follow-up paper, an analogous detailed
analysis of the convergence of the norm, energy, and other
expectation values will be presented.

The remainder of this paper is organized as follows. In the
next section we briefly introduce the Herman–Kluk propagator
and its components necessary for numerical computations. We
define the initial sampling densities and specify the algorithm
used for numerical experiments. In the main Section 3, we
analyze the errors at the initial and final times due to the
phase-space discretization. In particular, we prove that in the
harmonic oscillator this error is a periodic function of time. Our
numerical experiments in Section 4 confirm the theoretical error
estimates and provide further insights into the anharmonic
evolution generated by Morse potentials, which are not
accessible to explicit analytical calculations.

2 Discretising the Herman–Kluk
propagator

2.1 Herman–Kluk propagator

Evolution of a quantum state |ψ(t)〉 is governed by the time-
dependent Schrödinger equation

iZ
d

dt
|ψ t( )〉 � Ĥ|ψ t( )〉, |ψ 0( )〉 � |ψ0〉 (1)

where Z is the reduced Planck constant and Ĥ is the Hamiltonian
operator. Here, we assume the Hamiltonian to be the time-
independent operator

Ĥ � 1
2m

p̂T · p̂ + V q̂( ), (2)

FIGURE 1
Upper panel: Spectra of a Morse potential evaluated using the
exact quantum dynamics, Herman–Kluk (HK) propagator, and thawed
Gaussian approximation (TGA). Both approximations yield accurate
results. Lower panel: Position density at time t ≈ 392 fs
propagated in the same Morse potential. In contrast to the
Herman–Kluk propagator, the thawed Gaussian approximation does
not capture interference between faster and slower components of
the wavepacket. For more details, see the last paragraph of Section 4.

Frontiers in Physics frontiersin.org02

Kröninger et al. 10.3389/fphy.2023.1106324

101

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1106324


wherem is the mass (after mass-scaling coordinates), and q and p are
D-dimensional position and momentum vectors. Under the usual
regularity and growth assumptions on the potential energy function
V, the spectral-theorem [54] provides for all times t ∈ R a well-
defined unitary propagator

Ût :� exp −iĤt/Z( ), (3)

in terms of which the solution of (1) can be expressed as

|ψ t( )〉 � Ût|ψ0〉 (4)
for all square integrable initial data ψ0(x) � 〈x|ψ0〉 ∈ L2(RD).

Solving the Schrödinger equation numerically is notoriously
difficult for various reasons. With respect to the atomic scale, the
nuclear mass is rather large, so that the presence of the factorm−1 in
the kinetic energy operator induces highly oscillatory motion both
with respect to time and space. More importantly, for most
molecular systems the dimension D of the configuration space is
so large that grid-based integration methods are very expensive if
not infeasible. Therefore, one often resorts to mesh-free
discretization methods or semiclassical approximations, both of
which alleviate this “curse of dimensionality” at least partially.

The semiclassical Herman–Kluk propagator utilizes frozen
Gaussian functions

gγ
z x( ) � detγ

πDZD
( )1/4

× exp − x − q( )T · γ · x − q( )/2 + ipT · x − q( )[ ]/Z{ } (5)

with a centre at the phase-space point z � (q, p) ∈ R2D and with a
fixed, real, symmetric, positive-definite width-matrix γ ∈ RD×D. The
frozen Gaussians {|gγ

z〉: z ∈ R2D} form an over-complete subset of
the Hilbert space of square integrable functions. They have the
striking property that any |ψ〉∈ L2(RD) can be decomposed as [55]

|ψ〉 � ∫
R2D

〈gγ
z|ψ〉|gγ

z〉d], (6)

with the scaled phase-space measure d] = dz/(2πZ)D. Using this
decomposition for our solution of the time-dependent Schrödinger
equation, we obtain

Ût|ψ0〉 � ∫
R2D

〈gγ
z|ψ0〉Ût|gγ

z〉 d]. (7)

Approximating the exact propagator Ût with the Herman–Kluk
propagator

Û
HK

t :� ∫
R2D

R t, z( )e iS t,z( )/Z|gγ
z t( )〉〈gγ

z|d] (8)

yields the Herman–Kluk wave function

|ψHK t( )〉 :� Û
HK

t |ψ0〉

� ∫
R2DR t, z( )e iS t,z( )/Z〈gγ

z|ψ0〉|gγ
z t( )〉d].

(9)

Here, z(t) = (q(t), p(t)) is the solution to the underlying classical
Hamiltonian system

_w � J · ∇h w( ), w 0( ) � z, (10)
for the Hamiltonian function h(q, p) = T(p) + V(q), where

J � 0 IdD
−IdD 0

( ) ∈ R2D×2D (11)

is the standard symplectic matrix. S denotes the classical action
integral

S t, z( ) � ∫ t

0

d

dτ
q τ( ) · p τ( ) − h z τ( )( )[ ]dτ (12)

which solves the initial value problem

_S t, z( ) � T p t( )( ) − V q t( )( ), S 0, z( ) � 0, (13)
for all z � (q, p) ∈ R2D. In (9), the Herman–Kluk prefactor

R t, z( ) � 2−D/2 · det Mqq + γ−1 ·Mpp · γ − iMqp · γ + iγ−1 ·Mpq( )1/2
(14)

depends on the matrices

Mαβ � zαt/zβ0 ∈ RD×D α, β ∈ q, p{ }( ), (15)

i.e., the fourD ×D block components of the 2D × 2D stability matrix
M. Stability matrix, defined as the Jacobian M(t) = zz(t)/zz of the
flow map, is the solution to the variational equation

_M t( ) � J ·Hess h z t( )( ) ·M t( ), M 0( ) � Id2D, (16)
with Hess h the Hessian of the Hamiltonian function h.

The Herman–Kluk approximation (9) has been mathematically
justified in different works [53, 56–58]. It has been shown that the
exactly evolved quantum state is approximated by the Herman–Kluk
state (9) with an error of the order of Z. More precisely,

sup
t∈ 0,T[ ]

|||ψ t( )〉 − |ψHK t( )〉||L2 ≤C T( )Z, (17)

for all initial data |ψ0〉 of norm one, where T > 0 is a fixed time and
C(T) > 0 is a constant independent of Z and independent of |ψ0〉. If
the potential is at most quadratic, then the approximation is exact
[53]. For the expectation value of an observable Â, the error of the
Herman–Kluk approximation can be pessimistically estimated as

〈ψ t( )|Â|ψ t( )〉 � 〈ψHK t( )|Â|ψHK t( )〉 +O Z( ), (18)
by using the triangle inequality. In particular, this gives an upper
bound for the error of the squared norm (if Â � Î) or energy (if
Â � Ĥ). However, this coarse estimate is potentially not sharp, since
it cannot account for error cancellation due to oscillation.

2.2 Discretisation

Evolving the wavefunction (9) with the Herman–Kluk propagator
requires evaluating an integral over the phase spaceR2D and the overlap
of the initial state with a frozen Gaussian. Furthermore, the algorithm
needs to propagate the trajectories z(t) = (q(t), p(t)), the classical action
S(t, z), and the Herman–Kluk prefactor R(t, z) according to Hamilton’s
equations ofmotion for all chosen quadrature points z ∈ R2D. The latter
can be achieved using symplectic integration methods to preserve also
the symplectic structure of the classical Hamiltonian system. Due to the
curse of dimensionality, for high D the integral on R2D must be
evaluated using mesh-free discretization, such as Monte Carlo
methods [59].
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To evaluate the Herman–Kluk wavefunction (9) byMonte Carlo
sampling, we rewrite the integral from Eq. 9 as

|ψHK t( )〉 � 〈r z( )|ϕ t, z( )〉〉ρ z( ), (19)
where we introduced the notation

〈|ψ t, z( )〉〉ρ z( ) :� ∫
R2D |ψ t, z( )〉 dμ

� ∫
R2D |ψ t, z( )〉ρ z( ) d] (20)

for the phase-space average of |ψ(t, z)〉 with respect to a probability
measure μ with density ρ(z) = dμ/d] and defined a time-dependent
state

|ϕ t, z( )〉 :� R t, z( )e iS t,z( )/Z|gγ
z t( )〉, (21)

i.e., a propagated frozen Gaussian multiplied by the Herman–Kluk
and phase prefactors, and a time-independent function

r z( ) :� 〈gγ
z|ψ0〉 ρ z( )−1. (22)

The Monte Carlo estimator is then given by

|ψN t( )〉 � 1
N
∑N
j�1

|ψ(t, zj)〉, (23)

where ψ(t, zj) is the state obtained from initial condition zj and z1, z2,
. . . , zN are sampled from probability density ρ(z).

As for any importance sampling, there are infinitely many ways
to decompose the time-independent part of the phase-space
integrand in Eq. 9 into the product 〈gγ

z|ψ0〉 � r(z)ρ(z) of a
prefactor r with a normalized sampling density ρ. If one
computes observables and correlation functions, which are
quadratic in the initial state, ρ(z) is typically taken to be the
Husimi probability density

ρH z( ) :� |〈gγ
z|ψ0〉|2 (24)

of the initial state |ψ0〉. For Husimi distribution, the prefactor r(z)
becomes

rH z( ) � 〈ψ0|gγ
z〉−1. (25)

However, since the wavefunction evolved with the Herman–Kluk
propagator is first- and not second-order in |ψ0〉, it is natural to also
test the square root of the Husimi density and to consider the probability
density

~ρ z( ) :� |〈gγ
z|ψ0〉|∫

R2D |〈gγ
w|ψ0〉|d]

(26)

with a bounded prefactor

~r z( ) :� 〈gγ
z|ψ0〉 ~ρ z( )−1. (27)

Indeed, in their early paper [8], Kluk et al. used this “square-root”
approach for computing the Herman–Kluk wavefunction and
mentioned that it was “especially appealing because it [was] a
well defined, non-arbitrary way of choosing the basis [. . .].” In
the following, we shall show that the square-root approach is indeed
optimal, but the number of samples still suffers from an exponential
dependence on the dimension.

The two probability densities ρH(z) and ~ρ(z) can now be used to
compute the phase-space integral by Monte Carlo integration. To
sum up, we have two cases, in which we evaluate |ψHK(t)〉 either as

|ψHK t( )〉 � 〈rH z( )|ϕ t, z( )〉〉ρH z( ) (Case H)
or as

|ψHK t( )〉 � 〈~r z( )|ϕ t, z( )〉〉~ρ z( ). (Case sqrt ‒ H)

In general, the integral overRD defining the overlap of the initial
wavefunction with a Gaussian has to be computed by numerical
quadrature. However, for important specific cases analytical
formulas are available. If the initial wavefunction is a Gaussian
wavepacket |ψ0〉 � |gγ

z0〉 centred at some phase-space point
z0 � (q0, p0) ∈ R2D, then

〈gγ
z|ψ0〉L2 RD( ) � exp − 1

4Z
z − z0( )T · Σ0 · z − z0( )[ ]

· exp i

2Z
p + p0( )T · q − q0( )[ ], (28)

where Σ0 : � γ 0
0 γ−1( ) is the matrix containing the width

parameters of the initial coherent state. Then, the Husimi density
is given by

ρH z( ) � exp − 1
2Z

z − z0( )T · Σ0 · z − z0( )[ ], (29)
whereas the second approach provides the density

~ρ z( ) � 2−D exp − 1
4Z

z − z0( )T · Σ0 · z − z0( )[ ] (30)
and prefactor

~r z( ) � 2D exp
i

2Z
p + p0( )T · q − q0( )[ ]. (31)

2.3 Summary of the numerical algorithm

Taking into account all the previous considerations, we slightly
extend the natural numerical algorithm (described, e.g., Section 4 of
Ref. [52]) for finding the Herman–Kluk approximation to the
wavefunction at time t.

Algorithm 1: (Herman–Kluk propagation)

1. Draw independent samples z1, . . . , zN ∈ R2D from a distribution
with density ρH(z) or ~ρ(z) given by Eqs. 29 and 30.

2. For all j ∈ {0, 1, . . . , N}:
2.1 Set initial values z(0) = zj, M(0) = Id2D and S(0) = 0.
2.2 Compute approximate solutions to Eqs. 10, 13 and 16 up to

time t with a symplectic integration method [60] based on the
Störmer–Verlet scheme [61, 62].

2.3 Compute the Herman–Kluk prefactor R(t, zj) from M(t) while
choosing the correct branch of the complex square root [63],
which guarantees continuity of R(t, zj) as a function of t.

3. Calculate |ψN(t)〉 by means of formula (23) with |ψ(t, zj)〉 replaced
with either

|ψH(t, zj)〉 � rH(zj)R(t, zj)e iS(t,zj)/Z|gγ
zj t( )〉 (32)

or
|~ψ(t, zj)〉 � ~r(zj)R(t, zj)e iS(t,zj)/Z|gγ

zj t( )〉,
(33)
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where rH(zj) and ~r(zj) are given by Eqs. 25, 28 and 31.
We note that Eqs. 10, 13 and 16 can be evaluated simultaneously

with a single numerical integrator. To increase the accuracy of the
time integration one can use higher-order compositionmethods [64,
65]. They increase the order of the time integrator, but also its
numerical cost. A higher-order time integrator is not necessarily
useful since the phase-space error occurring from the Monte Carlo
quadrature usually dominates the time integration error.

3 Phase space error analysis

Algorithm 1 relies on the discretisation of the phase-space
integrals and of the system of ordinary differential equations.
Here we focus only on the phase-space discretisation error. A
similar, but less formal phase-space error analysis was applied to
various algorithms for computing fidelity and classical correlation
functions [66–69].

3.1 Moments of the integrand

To assess the accuracy of the Monte Carlo estimator (23), we
examine the moments of the two different integrands: |ψH(t)〉 and
|~ψ(t)〉. First, we observe that for any s > 0,

E ‖~ψ t( )‖s[ ] � ∫
R2D

|R t, z( )|s |~r z( )|s d~μ z( )<∞, (34)

since ~r(z) and the Herman–Kluk prefactor R(t, z) are both bounded
functions. For a discussion of the boundedness of R(t, z), see Section
1 of the Supplementary Material. In contrast,

E ‖ψH t( )‖s[ ] � ∫
R2D |R t, z( )|s |rH z( )|s dμH z( )

� ∫
R2D |R t, z( )|s |〈gγ

z|ψ0〉|2−s d]
(35)

ceases to be finite for s ≥ 2. However, both integrands have a finite
first moment, so that the strong law of large numbers (Theorem
2.4.1 in Ref. [70]) provides convergence of the estimator,

|ψN t( )〉→|ψHK t( )〉 as N → ∞, (36)
with probability one. Divergence of the secondmoment for (Case H)
does not violate convergence of the estimator, but results in a slightly
worse convergence rate than the one for (Case sqrt-H). Numerical
results in Section 4 confirm this expectation. This shows that the
initial sampling density has to be chosen carefully.

3.2 Mean squared error

For (Case sqrt-H) the second moment is finite, so that the mean
squared error of the Monte Carlo estimator (23) is well-defined and
satisfies

E ‖|ψN t( )〉 − |ψHK t( )〉‖2[ ] � V |~ψ t( )〉[ ]
N

, (37)

where the expectation value and the variance are with respect to the
density ~ρ(z). Moreover (see also [52]),

V |~ψ t( )〉[ ] � ∫
R2D‖|~ψ t( )〉 − E |~ψ t( )〉[ ]‖2 d~μ z( )

� ∫
R2D |R t, z( )|2 |~r z( )|2 d~μ z( ) − ‖|ψHK t( )〉‖2. (38)

In the special case of an initial Gaussian initial wavepacket
|ψ0〉 � |gγ

z0〉, this simplifies to

V |~ψ t( )〉[ ] � 4D∫
R2D

|R t, z( )|2 d~μ z( ) − ‖|ψHK t( )〉‖2, (39)

and at initial time t = 0 we obtain

V |~ψ 0( )〉[ ] � 4D − 1, (40)
since the Herman–Kluk prefactor satisfies R(0, z) = 1.

For a more general assessment of the variance, numerical
experiments in Section 4 consider the error between the
approximations with N and 2N samples. By the linearity of the
expectation value and the triangle inequality, this error can be
estimated by

E ‖|ψN t( )〉 − |ψ2N t( )〉‖2[ ]
≤E ‖|ψN t( )〉 − |ψHK t( )〉‖2[ ] + E ‖|ψHK t( )〉 − |ψ2N t( )〉‖2[ ]
� 3
2
V |ψ t( )〉[ ]

N
.

(41)

Note that Eq. 37 gives only the expected convergence error,
i.e., the convergence error averaged over infinitely many
independent simulations, each using N trajectories. The actual
convergence error for any specific simulation with N trajectories
may deviate from this analytical estimate substantially due to
statistical noise. Nevertheless, in Section 2 of the Supplementary
Material, we explain how Eq. 37 can also provide a rigorous lower
bound and asymptotic estimate of the number of trajectories needed
for convergence of a single simulation.

3.3 Other sampling densities

For the special case of an initial Gaussian wavepacket |ψ0〉 � |gγ
z0〉,

the two proposed sampling densities ρH(z) and ~ρ(z) belong to a family
of normal distributions with probability density functions

ρa z( ) � 2
a
( )D exp − 1

aZ
z − z0( )T · Σ0 · z − z0( )[ ] (42)

with a ≥ 2. In the spirit of importance sampling, the Herman–Kluk
wavefunction can accordingly be written as a phase-space average

|ψHK t( )〉 � 〈|ψa t, z( )〉〉ρa z( ). (43)

At time t = 0, the norm of the integrand satisfies

‖|ψa 0, z( )〉‖ � a

2
( )D exp − a − 4

4aZ
( ) z − z0( )T · Σ0 · z − z0( )[ ], (44)

which implies for the variance

V |ψa 0( )〉[ ] � a

4πZ
( )D∫

R2d
exp − a − 2

2aZ
( )|z|2[ ]dz − 1

� a2

2 a − 2( )( )D

− 1.
(45)

For a > 2, the function a↦a2/(2a − 4) attains its minimum at a =
4, which corresponds to the sampling density ~ρ. In other words,
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(Case sqrt-H) is optimal as far as the mean squared error is
concerned. Nevertheless, even this optimal sampling results in an
unfavorable exponential growth with the number of
dimensions D.

3.4 Harmonic motion

The one-dimensional harmonic oscillator

Ĥ � − Z2

2m
d2

dx2
+ mω2

2
x2 (46)

is one of the rare examples for which explicit expressions for the solution
of the Schrödinger equation and for the Herman–Kluk prefactor exist.
For an initial Gaussian wavepacket |ψ0〉 � |gγ

z0〉 with position and
momentum q0, p0 ∈ R, the exact wavefunction is given by [71]

ψex x, t( ) � exp
i

Z

αt
2

x − qt( )2 + pt x − qt( ) + βt[ ]{ }, (47)
where

αt � b
α0 cos ωt( ) − b sin ωt( )
b cos ωt( ) + α0 sin ωt( ), (48)

qt � q0 cos ωt( ) + p0

b
sin ωt( ), (49)

pt � p0 cos ωt( ) − bq0 sin ωt( ) and (50)
βt � β0 +

1
2

qtpt − q0p0 + iZ ln
zt
b
( )[ ] (51)

with the abbreviations zt = b cos(ωt) + α0 sin(ωt), α0 = iγ, and b =
mω. Here, β0 includes the normalization constant for the
wavefunction at time t = 0. The classical action is given by

S t, q0, p0( ) � 1
2
sin ωt( ) p2

0

b
− bq20( )cos ωt( ) − q0p0 sin ωt( )[ ]. (52)

The four components of stability matrix M can be obtained, from
their definition (15), by differentiating expressions for qt and pt with
respect to q0 and p0, namely,

M t( ) � cos ωt( ) b−1 sin ωt( )
−b sin ωt( ) cos ωt( )( ). (53)

The Herman–Kluk prefactor satisfies

R t( ) � 1
2

2 cosωt − i sin ωt( ) γ

b
+ b

γ
( )[ ]{ }1/2

, (54)

so that the variance (38) can be written as

V |~ψ t( )〉[ ] � 2 4 cos2 ωt( ) + γ

b
+ b

γ
( )2

sin2 ωt( )[ ]1/2 − 1. (55)

This implies that for (Case sqrt-H) applied to a harmonic oscillator,
the mean squared error of our Monte Carlo estimator oscillates with
a period of π/ω between

3≤V |~ψ t( )〉[ ]≤ 2
γ

mω
+ mω

γ
( ) − 1. (56)

4 Numerical examples

In this section, we complement our previous theoretical results
with numerical examples. We start by examining how the
performance of Algorithm 1 depends on the method to discretise
the phase space. We explore the time dependence of the variance of
the Monte Carlo estimator in one dimension in a harmonic
oscillator as well as in a series of increasingly anharmonic Morse
potentials. The Monte Carlo integration is tested by averaging over
N independent, identically distributed samples of initial conditions.
We approximate its convergence rate by assuming a power law

F N( ) � cN−s (57)
dependence of the mean statistical error on the number of samples
N. The prefactor c and order s of convergence are determined by the
linear fit (in the least-squares sense) of the logarithm of Eq. 57 to the
dependence of the logarithm of the statistical error on the
logarithm of N.

Throughout our numerical examples, we work in atomic units
(Z = 1), mass-scaled coordinates and with an initial state that is a
Gaussian wavepacket with phase-space centre z0 ∈ R2D.

FIGURE 2
Sampling error of the initial wavefunction in one (upper panel)
and four (lower panel) dimensions as a function of the number N of
Monte Carlo points. The plot displays the error for sampling from the
Husimi density (Case H) and its approximated convergence
(marked lines) as well as the error for sampling from the square root of
the Husimi density (Case sqrt-H) and its analytical error estimation
(dotted line).
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4.1 Initial phase-space error

We start by considering a spherical initial Gaussian wavepacket
|ψex(0)〉 � |gγ

z0〉 with a width parameter γ = 2IdD in one and four
dimensions. For D = 1, it is centred at z0 = (−1, 0) and for D = 4, at
z0 = −(1, 1, 1, 1, 0, 0, 0, 0). Figure 2 shows the L2-distance

‖|ψN 0( )〉 − |ψex 0( )〉‖L2 (58)
of the Monte Carlo estimators for (Case H) and (Case sqrt-H) from
the exact wavefunction at initial time as a function of the number of
Monte Carlo quadrature points. We can immediately see that the
analytical prediction (40) of the mean squared error (37) of (Case
sqrt-H) is fulfilled. For (Case H), the curve-fitting approximation
(57) provided (c, s) = (2.56, −0.48) forD = 1 and (c, s) = (19.3, −0.36)
for D = 4. It shows that both cases converge to the correct result and
that (Case sqrt-H) performs slightly better than (Case H).
Additionally, Figure 3 displays the L2-distance of the estimators
for both cases from the exact wavefunction at initial time as a
function of the dimension D. Each wavefunction was approximated
with N ≈ 8 · 105 trajectories. The analytical prediction (40) for (Case
sqrt-H) is realized. Moreover, the error for (Case H) increases faster
with D.

4.2 Harmonic potential

To analyze the effect of dynamics on the convergence, let us
consider a harmonic potential V(x) = x2/2 in one dimension and
explore the dynamics for one full oscillation period. The initial
Gaussian wavepacket is still localized in z0 = (−1, 0) with width γ = 2.
In Figure 4, we compare the exact wavefunction (47) with the
numerical realization of the Herman–Kluk propagator which uses
the exact solution to q(t), p(t), S(t, z) and R(t, z) stated in Eqs 49, 50,
52, 54. Since the Herman–Kluk propagator is exact for harmonic
motion and since we supply exact classical trajectories, the observed
numerical error is only due to the Monte Carlo integration. The
upper panel of Figure 4 shows the time dependence of the L2-error

‖|ψN t( )〉 − |ψex t( )〉‖L2 , (59)
where the semiclassical wavefunctions were generated using N =
216 trajectories. Sampling from the square root of the Husimi
density (Case sqrt-H) results in approximately twice smaller
error than sampling from the Husimi density itself. For (Case
sqrt-H), the figure also displays the analytical error estimate
derived in (55), which matches the numerical error up to small
statistical noise. To remove this statistical noise and to match the
analytical estimate (55) more accurately, in the lower panel of
Figure 4 we plot the empirical root mean square error (RMSE)
[59] S100, where

SK :� 1
K
∑K
j�1

‖|ψ j( )
N t( )〉 − |ψex t( )〉‖2, (60)

K is an integer number of independent simulations (indexed by j)
and each ψ(j)

N was itself approximated usingN independent samples.
One can see that

E SK[ ] � E ‖|ψN t( )〉 − |ψex t( )〉‖2[ ] � V |~ψ t( )〉[ ]
N

. (61)

For K = 1, one obtains the result represented in the upper panel of
Figure 4. For K → ∞, due to the strong law of large numbers, SK

FIGURE 3
Dependence of the sampling error of the initial wavefunction on
dimension D for N = 100 · 213 ≈ 8 · 105 points sampled from either the
Husimi density (Case H) or its square root (Case sqrt-H). The analytical
error estimate for the latter sampling is shown by the dotted line.

FIGURE 4
Time dependence of the sampling error of the Herman–Kluk
wavefunction propagated in a harmonic oscillator. The upper panel is
produced by one run with N = 216 = 65,536 trajectories, whereas the
lower panel is produced by K = 100 independent runs, each with
N = 216 = 65,536 trajectories, and averaging the square of the error
over the K runs. The analytical error estimate for the sampling from the
square root of the Husimi density (Case sqrt-H) is shown with the
dotted line.
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converges almost surely to its expectation value and hence to the
analytical error estimate.

The lower panel of Figure 4 shows the empirical RMSE
computed with K = 100 and N = 216. For (Case sqrt-H), it
coincides almost perfectly with the analytical prediction. We note
that the error reaches its maximum whenever the wavefunction
passes through the bottom of the potential and its minimum when
the wavefunction arrives at the turning points. Even though this
analysis makes only sense for finite variance, the figure also displays
the empirical RMSE for (Case H), which is nearly constant. Both
panels show a qualitatively similar error evolution for (Case H),
however, at a magnitude that is considerably larger than the error for
(Case sqrt-H).

4.3 Morse potential

To investigate the convergence of the Herman–Kluk
wavefunction in anharmonic systems, we consider dynamics
generated by a less and more anharmonic Morse potentials. The
parameters were taken from [29]. Our initial state is a Gaussian
wavepacket with zero initial position and momentum (q0, p0) = (0,
0), and with a width parameter γ = 0.00456 a.u. ≈ 1000 cm−1. The
Morse potential

V x( ) � Veq +De 1 − e−a x−qeq( )[ ]2 (62)

is characterized by the dissociation energy De, decay parameter a,
and the position qeq and energy Veq of the minimum.We considered
two Morse potentials, both with Veq = 0.1 and qeq = 20.95 a.u., but
with different values of a and De. The latter two parameters,
however, were chosen so that the global harmonic potential fitted
to the Morse potential at qeq had the same frequency

ωeq �
�������
V′′ qeq( )√

� �����
2Dea2
√ � 0.0041 a.u. ≈ 900 cm−1 (63)

for the two Morse potentials. The anharmonicity of the potentials
was conveniently controlled with the dimensionless parameter

χ � Z
ωeq

4De
, (64)

which is also reflected in the bound energy levels [71]

En � Zωeq n + 1
2

( ) − χ n + 1
2

( )2[ ] (65)

of a Morse oscillator. Then De and a are given by

De � Z
ωeq

4χ
,

a �
�����
2
ωeqχ

Z

√
.

(66)

We choose two different values

χ � 0.005 and χ � 0.01 (67)
of anharmonicity and compare the Herman–Kluk propagation with a
grid-based reference quantum calculation obtained by the Fourier-split
method [72], which is second-order accurate with respect to the time
step. The position grid was set from x = −200 to 1500 with
4096 equidistant points for χ = 0.005 and from x = −200 to

10,000 with 16,384 equidistant points for χ = 0.01. The larger grid
for χ = 0.01 was required to capture oscillations of the wavefunctions in
the tail region, which are due to the increased anharmonicity. For the
time propagation of the Herman–Kluk wavefunction, we used a second
order Størmer-Verlet scheme with step size Δt = 8 a.u. ≈ 0.194 fs.

Because the Herman–Kluk approximation is not exact in a
Morse potential, to separate the statistical convergence error
from the semiclassical error of the fully converged Herman–Kluk
approximation, in Figure 5 we show the L2-error

‖ψN t( ) − ψ2N t( )‖ (68)
between the Herman–Kluk wavefunctions calculated with N and 2N
trajectories as a function of N. Both wavefunctions were propagated in a
Morse potential with anharmonicity χ = 0.005. Each panel includes the
error for the fixed time t after approximately one oscillation (196 time
steps) and ten oscillations (1960 time steps). In addition, the convergence
rates for both sampling schemes were fitted to the same power law (57).
We observe that sampling from the square root of the Husimi density
(Case sqrt-H), shown in the lower panel, performs better than sampling
from the Husimi density (Case H), displayed in the upper panel.

Figure 6 shows the analogous results obtained in a Morse potential
with a larger anharmonicity parameter χ = 0.01. Here, we display the
wavefunctions after 202 and 2020 time steps, which are approximately the
times after the first and tenth oscillations. As expected for anharmonic
evolution, the error after ten oscillations is worse than after one oscillation.

FIGURE 5
Sampling error between the Herman–Kluk wavefunctions
obtained with N and 2N Monte Carlo quadrature points as a function
of N. The wavefunctions are calculated in a Morse potential with
anharmonicity parameter χ = 0.005 after approximately one
(solid line) or ten oscillations (dashed line). The upper panel shows
both errors and their approximated convergence rates for (Case H).
Similarly, (Case sqrt-H) is displayed in the lower panel.
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Increased anharmonicity also increases the error in comparison to
Figure 5. Again, the sampling from the square root of the Husimi
density (Case sqrt-H) has consistently a lower error than (Case H).

To complement the abstract convergence study of the L2-error, in the
upper panels of Figures 7 and 8, we compare the more intuitive position

probability densities of the “exact” quantum grid-based solution with
those of (Case H) and (Case sqrt-H). Both figures were obtained in a
Morse potential with anharmonicity parameter χ= 0.01 at a time after ten
oscillations. The difference lies in the number of trajectories used. The less
converged results in Figure 7 were obtained with only N = 800
trajectories, whereas the fully converged results in Figure 8 employed
N = 100 · 214 trajectories. The lower panels of the two figures display the
absolute errors of the position density for the two cases, measured with
respect to the “exact” grid-based position density. The two panels of
Figure 7 confirm again that sampling from the square root of Husimi
density (Case sqrt-H) results in faster convergence than sampling from
theHusimi density (Case sqrt-H). The upper panel of Figure 8 shows that
in the numerically converged regime, the Herman–Kluk propagator
approximates the exact solution in this system very well, regardless
whether one samples from theHusimi density or its square root. The fact
that results are numerically converged is confirmed in the lower panel of
Figure 8, where the errors of (Case H) and (Case sqrt-H) are
approximately the same, which implies that the common remaining
error is the error of the Herman–Kluk approximation and not the phase-
space discretization error.

Analytical expressions and numerical fits to the convergence rates
for all studied systems are summarized in Table 1.

Finally, we note that Figure 1 in the Introduction was based, as
Figure 8, on the Morse potential with anharmonicity parameter χ = 0.01
and Herman–Kluk calculations used N = 100 · 214 trajectories. For the
computation of the position density, we used the more efficient (Case

FIGURE 6
Same as Figure 5, except that the anharmonicity parameter of the
Morse potential was increased to χ = 0.01.

FIGURE 7
Position probability densities (upper panel) and their absolute
errors (lower panel) in a Morse potential with χ = 0.01 after
10 oscillations (2020 time steps ≈ 392 fs). Position probability densities
of the Herman–Kluk approximation for (Case H) and (Case sqrt-
H) were computed with N = 800 trajectories.

TABLE 1 Summary of convergence rates for (Case sqrt-H) and (Case H) at initial
time, in a harmonic oscillator and in two Morse potentials after one and ten
oscillations.

(Case sqrt-H) (Case H)

Initial time

D = 1
�������(4D − 1)√ ·N−1/2 2.56 · N−0.48

D = 4
�������(4D − 1)√ ·N−1/2 19.3 · N−0.36

Harmonic potential V[|~ψ(t)〉]1/2 ·N−1/2

with variance

from (55)

Morse pot.: χ = 0.005

1 oscillation 2.19 · N−0.49 2.14 · N−0.41

10 oscillations 4.68 · N−0.51 3.24 · N−0.36

Morse pot.: χ = 0.01

1 oscillation 3.35 · N−0.50 3.57 · N−0.42

10 oscillations 8.24 · N−0.50 8.59 · N−0.38
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sqrt-H). The spectra in the upper panel were obtained by the Fourier
transform of the wavepacket autocorrelation function; the Herman–Kluk
autocorrelation function was computed by sampling from the Husimi
density (CaseH), because it gives the exact result (=1) at t= 0 regardless of
the number of trajectories and, therefore, converges faster at short times.

5 Conclusion and outlook

We compared two different sampling strategies for evaluating the
semiclassical wavefunction evolved with the Herman–Kluk propagator.
For the initial phase-space sampling, we either used the Husimi density
(Case H) or its square root (Case sqrt-H). We showed that the square
root sampling produces a Monte Carlo integrand with finite second
moment, while the Husimi sampling comes with an undesirable infinite
second moment. The numerical experiments for the harmonic
oscillator and two Morse oscillators with different extents of
anharmonicity confirm that the infinite second moment results in a
slower convergence of the Monte Carlo estimator. Therefore, we
recommend the square root approach (Case sqrt-H) whenever the
Herman–Kluk propagator is used directly for approximating the
quantum-mechanical wavefunction and the L2-error of the
wavefunction approximation is the relevant accuracy measure.
However, we explicitly verified that at initial time the square root
density’s second moment, even though it is finite, has an unfavorable,
exponential dependence on the dimension, possibly leading to a large
number of trajectories required for a reasonably accurate wavefunction.

Although the wavefunction is a central object in quantum
mechanics, one is often interested directly in observables, which can

be computed as expectation values. It is clearly inefficient to compute
expectation values, such as energy or squared norm, with the
Herman–Kluk propagator by computing the wave function first. A
follow-up paper, in which an analysis similar to that presented here will
be applied to the autocorrelation function as well as to the expectation
values is in preparation. In particular, the approach to expectation
values proposed in [52] will be analysed in detail. Our present analysis
and sampling approaches could, in principle, help increase the efficiency
of any Gaussian-based method, although it is difficult to predict the
possible implications that the coupling between different Gaussians
present in Gaussian basis methods [9, 10] might have for the choice of
the optimal sampling density.
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