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Editorial: Network-based
mathematical modeling in cell
and developmental biology

Michael L. Blinov1* and Susan D. Mertins2*
1Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, Farmington, CT,
United States, 2BioSystems Strategies, LLC, Frederick, MD, United States
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Editorial on the Research Topic
Network-based mathematical modeling in cell and
developmental biology

The Research Topic onNetwork-basedMathematicalModeling in Cell andDevelopmental
Biology raised various subjects of interest for mathematical modelers that also provide insight
for future studies by bench scientists. In essence, three themes emerged and will be discussed
below. First, the crucial and essential ResearchTopic of reproducibility of publishedmodels was
addressed. Secondly, novel mathematical and computational approaches enabled a deeper
understanding of biological systems. A third theme arose through the significant efforts aimed
at creating whole cell models and downstream applications.

Enhancing reproducibility through rigor and transparency is a long-term goal of NIH
(Collins andTabak, 2014) and other agencies such as NSF.Wet-lab experiments can be difficult
to reproduce because of variations in the conditions. Are models, essentially computational
experiments, easily reproducible? Guided by FAIR principles (Findable, Accessible,
Interoperable, and Reusable), Pedro Mendes examined a highly cited mathematical model
that described segment polarity in Drosophilia published by Von Dassov et al. (2000). The
unavailability of the original software forced the author to recode themodel, which was a labor-
intensive process that required de novomodel implementation. The major take-home message
from the report is that publication of mathematical models in a widely used standard format is
essential, as only this will ensure the model is reproducible in the future.

Several novel mathematical approaches were taken by investigators to better understand
cellular reaction networks.Marrone et al. described the use of nullclines, curves on a plane that
are solutions to the differential equations, for analysis of systemswithmore than two variables.
The authors followed Zhang et al. (2011) in considering pseudo-nullclines (an analog of
nullclines for a system that can be decomposed into twomodules) and used them to reproduce
the dynamics of several well-known systems such as the embryonic cell cycle and MAPK
cascade. Glazer et al. developed a new Monte Carlo Boolean Modeler (MC-Boomer) method
to generate large (hundreds of thousands) collections of Boolean models whose simulations
agree with observed data. A pipeline for analyzing these models and discovering novel
regulatory interactions was developed and applied to a well-known model of the Drosophila
segment polarity network (Albert and Othmer, 2003). Analysis of the models generated by
MC-Boomer can be used to identify alternate hypotheses for the gene regulatory mechanism
that could be then experimentally validated. Eidi et al. used stochastic modeling to investigate
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the spatial arrangement of cell types during stem cell division,
governed by two Turing signaling patterns. Their model predicts
the pattern of the differentiated cells and identifies the signaling
patterns that influenced the formation of the cellular structure.

Biological networks are usually described as graphs with nodes
representing biological entities (e.g., genes, proteins, functional
complexes) and connecting edges representing influences on their
behavior. Thus, graph-theoretical methods are under constant
development, as illustrated by the two manuscripts in this Research
Topic. Nam and Gunawardena introduced the linear framework—a
graph-theoretic approach to analyzing biomolecular systems described
by continuous time Markov processes, such as post-translational
modification and gene regulation. The nodes represented individual
molecular states and edges represented the probabilities of transitions
between molecular states. This report described the application of linear
frameworks before the steady state was reached. Specifically, the authors
showed that the properties of the First Passage Time (FPT) were
functions of the edge labels. The FPT defined a timescale of single-
molecule kinetics, such as the enzyme’s completion time, and the
approach described by the authors can be used for the analysis of
real-time single-molecule data. Lecca et al. represented a biological
network as a system of springs, in which the nodes constituted the
masses and the edges were springs that connected these masses. Further,
they defined latent geometry through the embedding of the spring
network model into the metric space (Euclidean, hyperbolic, and
spherical). Geometric properties of the embedded network (such as
nodes clustering according to their radial coordinates) can be used for
the analysis of the original biological network. The authors analyzed the
transcriptome network of chronic myeloid leukemia and identified a set
of candidate driver genes for network dynamics.

The third theme that emerged under the Research Topic
addressed mathematical modeling beyond biochemical signaling
networks. Georgouli et al. provided a review of existing multi-scale
models of whole cells, starting from genome-scale models of
metabolism developed in the nineties to the first whole-cell model
incorporating the activity of nearly all molecules in M. genitalium to
the recent efforts to develop the whole-cell model of E. coli. Gilbert
et al. continued the theme of whole cell modeling by building a
computational model of chromosome replication in a synthetic
minimal bacterial cell. The authors used Langevin simulations to
analyze chromosome organization. The authors noted that the
polymer model of the chromosome can be used to prepare
molecular dynamics models of entire Syn3A cells, validating cell
states predicted by the whole-cell models. Hansen et al. discussed a
topic closely related to whole-cell modeling–digital twins, multi-scale
computational models of tissue and organs that work as a substitute
for real human organ systems and can predict physiological events
from genomic and molecular data. The authors presented
opportunities and challenges for building digital twins, including
parameter uncertainty, the use of artificial intelligence (AI) and

machine learning (ML) methods to speed up model building,
simulation and validation, and assessing the quality of predictions.

In summary, the Research Topic, Network-based Mathematical
Modeling in Cell and Developmental Biology, gathered many state-
of-the-art studies that will guide future directions. The melding of
dry and wet laboratory studies is anticipated to advance our
understanding of Systems Biology in new and exciting ways.
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Reproducibility and FAIR
principles: the case of a segment
polarity network model

Pedro Mendes1,2*
1Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, Farmington, CT,
United States, 2Department of Cell Biology, University of Connecticut School of Medicine, Farmington,
CT, United States

The issue of reproducibility of computational models and the related FAIR
principles (findable, accessible, interoperable, and reusable) are examined in a
specific test case. I analyze a computational model of the segment polarity
network in Drosophila embryos published in 2000. Despite the high number of
citations to this publication, 23 years later the model is barely accessible, and
consequently not interoperable. Following the text of the original publication
allowed successfully encoding the model for the open source software COPASI.
Subsequently saving themodel in the SBML format allowed it to be reused in other
open source software packages. Submission of this SBML encoding of the model
to the BioModels database enables its findability and accessibility. This
demonstrates how the FAIR principles can be successfully enabled by using
open source software, widely adopted standards, and public repositories,
facilitating reproducibility and reuse of computational cell biology models that
will outlive the specific software used.

KEYWORDS

reproducibility, model reuse, computational modeling, ODE modeling, systems biology,
SBML, segment polarity network

1 Introduction

Embryonic development is characterized by frequent dynamic changes in gene
expression that lead to the formation of different tissues and organs. Several patterns
form during development caused by the interaction of biochemical reactions and diffusion,
which was first suggested by the pioneering work of Turing (1952). Since then computational
models have been used to attempt to rationalize the formation of various patterns that are
crucial in development. One of these is the formation of segments in the body of insects,
studied intensively in the Drosophila embryo (Jaeger, 2009). Insects, and other arthropods,
have segmented bodies with each segment being a unit bearing a pair of appendages (such as
legs). The formation of these segments during embryogenesis originates from periodic
patterns of gene expression that occur in various stages. First, genes maternally expressed
determine the broad regions of the body (anterior, posterior and terminal), followed by the
expression of “gap genes” and then by “pair-rule genes”. Mutations on the gap genes delete
contiguous segments, while mutations on pair-rule genes affect every other segment. These
stages happen when cell boundaries (membranes) have not yet formed and thus multiple
nuclei share a common cytoplasm (a syncytium). After separation of nuclei into separate
cells, by formation of plasma membranes, the “segment polarity genes” are expressed at
different levels in each cell forming a pattern that will ensure the persistent polarity of the
segments throughout the rest of embryonic development.
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The year 2000 is often considered to mark the beginning of the
modern systems biology era. This derives from several events that
happened in that year, such as the founding of the Institute for
Systems Biology, the first International Conference for Systems
Biology, and the publication of various articles that are now
considered “classics”. One of those publications, by von Dassow
et al. (2000), describes a model of the Drosophila segment polarity
network, where a gene regulatory network operates in each one of a
series of neighboring cells, with their protein products also
interacting across cells (hereafter, the “SPN model”). The main
conclusion, from a set of computer simulations sampling the SPN
model’s parameter space, was that it is “remarkably” robust as many
more random combinations of parameter values than expected give
rise to the characteristic spatial gene expression pattern required for
segmentation. The inference that the network structure, rather than
a narrow set of parameter values, is determinant to the phenotype
has been cited as a general property of systems by more than one
thousand publications to this date. Another conclusion derived from
those results is that the phenotype is therefore robust against
perturbation of the parameters—and this has also frequently
been assumed to be a general property of biological systems.

An important activity in computational systems biology is the
deposition of models in public repositories using standard formats
like SBML (Hucka et al., 2003) or CellML (Hedley et al., 2001). This
allows any scientist to easily find and access those models and use
them to run simulations or derive new ones using several compatible
software applications. Through the last couple decades most classic
models have been added to model repositories.

Surprisingly, being described in such a highly cited publication,
the SPN model is not available in any of the four major systems
biology model repositories: BioModels database (Le Novère et al.,
2006; Malik-Sheriff et al., 2020), the Physiome model repository (Yu
et al., 2011), JWS online (Olivier and Snoep, 2004), or the database of
Virtual Cell published models (Moraru et al., 2008). To make
matters worse, the software Ingeneue (Meir et al., 2002; Kim,
2009), used to create this model, is no longer available, not even
through the Wayback Machine (Internet Archive, 1996). Web
searches revealed an SBML implementation (Sethna, 2008) which
encodes the mathematics of the model in a 4 × 6 grid of cells, but not
the biochemical network.

Given the importance that the results obtained from the SPN
model have had in systems biology it seems important that they be
available in a well-supported software simulator and distributed in a
standard format by one of the model repositories. I therefore set to
encode this model with COPASI (Hoops et al., 2006; Bergmann
et al., 2017) and to make sure that it was correctly implemented, use
it to reproduce the simulation results of von Dassow et al. (2000), at
least partially. It has been noted that reproducing results from
computational studies in general (Mesirov, 2010; Peng, 2011;
Stodden et al., 2016), and also computatational systems biology
(Waltemath and Wolkenhauer, 2016; Mendes, 2018; Tiwari et al.,
2021), is as hard as with laboratory experiments. This has also been
the case here and the obstacles encountered are described below.

Through a careful examination of the publications that cite von
Dassow et al. (2000), I was able to identify 15 cases where the SPN
model was reused (Table 1). Only two actually reproduced their

TABLE 1 Publications that reproduced or re-used the von Dassow et al. (2000) SPN model.

References Description Approach Software

von Dassow and Odell (2002) re-used original SPN model ODE Ingeneuea

Albert and Othmer (2003) Boolean network similar but not equal to original SPN Boolean unknown

Tegner et al. (2003) Single-cell version of original SPN, without diffusive transitions ODE unknown

Ingolia (2004) re-coded original SPN model ODE C programb

Ma et al. (2006) re-coded original SPN model ODE C programb

Gutenkunst et al. (2007) re-coded original SPN model ODE SloppyCellc

Daniels et al. (2008) re-used code from Gutenkunst et al. (2007)d ODE SloppyCellc

Chaves et al. (2009) simplification of SPN model ODEse algebraic N/A

Dayarian et al. (2009) simplification of SPN model ODEse algebraic unknown

Kim and Fernandes (2009) re-coded diploid version of SPN model ODE Mathematicab

Mallavarapu et al. (2009) re-coded original SPN model ODE Little ba

Albert et al. (2011) re-coded original SPN model algebraic MATLABb

Zañudo et al. (2017) re-used original SPN model ODE Pythonb

Rozum and Albert (2018) re-coded single-cell version of original SPN model algebraic Python

Marazzi et al. (2022) re-used SBML model from Daniels et al. (2008)d ODE COPASI

aSoftware no longer available.
bCode not publicly available.
cSoftware available from https://sloppycell.sourceforge.net/.
dSBML version available from https://sethna.lassp.cornell.edu/Sloppy/vonDassow/model.html.
eUsed a square grid of cells.
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results (Ingolia, 2004; Ma et al., 2006), and another expanded the
analysis to diploidy (Kim and Fernandes, 2009). Several authors
used the SPN model to illustrate other issues, such as robustness
(Chaves et al., 2009; Dayarian et al., 2009; Albert et al., 2011),
“sloppyness” (Gutenkunst et al., 2007; Daniels et al., 2008), or new
methodologies (Tegner et al., 2003; Zañudo et al., 2017; Rozum and
Albert, 2018; Marazzi et al., 2022). Several software applications
were used, such as the original Ingeneue (Meir et al., 2002; Kim,
2009) and Little b (Mallavarapu et al., 2009), both now unavailable,
and bespoke C programs that were never distributed (Ingolia, 2004;
Ma et al., 2006)—all those results are now difficult to reproduce.
Only the Sethna group publications (Gutenkunst et al., 2007; Daniels
et al., 2008) resulted in a version of the model that is runnable in
several simulators; Marazzi et al. (2022) re-used that model and also
provided a COPASI version in their GitHub repository.

This exercise identifies issues that hinder reproducibility and
reuse of biomodels, and illustrates how they can be overcome with
modern open science practices addressing the FAIR principles

(Wilkinson et al., 2016). Reproducing it required a certain level
of “archeological” craft to find missing parts. I hope that this also
serves as a demonstration of procedures that make models usable
beyond the lifetime of the software that created them. Of course, the
SPN model was an important and early application of
computational systems biology to developmental biology, and
reproducing its results is also not irrelevant.

2 Methods

2.1 Software

Model simulations and parameter sampling were carried out
with COPASI version 4.39 (Hoops et al., 2006; Bergmann et al.,
2017, RRID:SCR_014260), Virtual Cell version 7.5.0 (Schaff et al.,
1997; Moraru et al., 2008, RRID:SCR_007421), Tellurium version 2.
2.7 (Choi et al., 2018) that uses libRoadRunner version 2.3.2 (Welsh

FIGURE 1
Diagram of the segment polarity network following the SBGN standard (Le Novère et al., 2009; Touré et al., 2021). Boxes in light green represent
proteins, boxes in yellow representmRNA. The full model includes several hexagonal cells, this diagram shows only one (cell_0,1) and its interactions with
one of its neighbors (cell_0,2). Note that the membrane proteins (EWG, PTC, HH, and PH) exist in six pools, one for each side of the hexagonal cell. Only
the proteins in side 5 are shown on the diagram, as well as the proteins on side 2 of the neighboring cell. The membrane proteins are allowed to
diffuse between sides of the hexagon, which is also not shown here (eg. EGW5_0,1 can transfer reversibly to EGW4_0,1 and EGW6_0,1). The box labeled
PTC_T_0,1 represents the sum of all PTC species (from the six sides of the membrane of cell_0,1).
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et al., 2023, RRID:SCR_014763), and AMICI version 0.11.25
(Fröhlich et al., 2021), which was accessed through
runBioSimulations (Shaikh et al., 2021, RRID:SCR_019110). The
model file was constructed with python scripts using the BasiCO
package that interfaces with COPASI (Bergmann, 2023).
Simulations were run at the local high-performance computing
cluster using the Cloud-COPASI web interface (Kent et al.,
2012). Results were visualized with COPASI, with Gnuplot
version 5.4.3 (Williams and Kelley, 2022, RRID:SCR_008619), or
with the Python libraries Seaborn (Waskom, 2021) (RRID:SCR_
018132) and Matplotlib (Hunter, 2007, RRID:SCR_008624). The
SBGN diagram of Figure 1 was created using Cell Designer version 4.
4 (Funahashi et al., 2003, RRID:SCR_007263) and then edited with
Inkscape version 1.1 (RRID:SCR_014479).

2.2 Model

The model used here is the segment polarity network model
described by von Dassow et al. (2000). Briefly it represents a
hexagonal array of cells, where each cell can express various
genes (wingless, engrailed, hedgehog, cubitus interruptus, and
patched) and where their protein products interact within a cell,
and across neighboring cells. Figure 1 depicts the interaction
network using the SBGN standard (Le Novère et al., 2009; Touré
et al., 2021). Note that von Dassow et al. (2000) analyze two versions
of this model, one having less interactions than the other. Here we
only look at their full model (i.e., including the dashed arrows in the
diagram of their Box 1). Since a 1 × 4 grid of cells is enough to
replicate the results (von Dassow et al., 2000), that was used here to
obtain all results.

My implementation of the model was first created for the widely
used software COPASI (Hoops et al., 2006; Bergmann et al., 2017)
through a Python script that creates a model with arbitrary number
of cells at the user’s desire. A second script was created to generate
the same model with only one cell, where the interacting species
from neighboring cells are included as fixed concentrations.
COPASI generates the full set of ODEs automatically based on
the network and reaction kinetic rate laws. Unlike the SBML version
from Sethna (2008), here we have the full reaction network, not just
the differential equations. A small formal difference between this
version and the original SPNmodel, is that COPASI expresses ODEs
in terms of the species amounts rather than concentrations, but since
the cell volumes are not variable this makes no difference and both
sets of equations are equivalent.

The model makes extensive use of Hill-type functions where
various terms appear in the form baseexponent. This is often
problematic in IEEE floating point since, for non-integer
exponents, those operations are carried out based on the
equivalence:

baseexponent � eexponent×log base( ). (1)
Therefore, calculations fail when base is negative, even if

infinitesimally small (generates a NaN, which in COPASI is
translated to an error “Invalid state”). Unfortunately, due to the
nature of predictor-corrector integration algorithms, this can easily
happen during a time course integration if one species concentration

becomes very close to zero. In order to avoid this problem one can
use a kind of “guarded” exponentiation:

baseexponent ≃ max ϵ, base( )exponent, ϵ> 0. (2)
Applying this protection to the model changes the rate laws. For

example, the rate law for transcription with inducer-repressor pair
changes from the original:

V ·
I · 1 − Rh2

k
h2
2 +Rh2

( )
h1

kh11 + I · 1 − Rh2

k
h2
2 +Rh2

( )
h1

(3)

to the alternative:

V ·
I · max ϵ, 1 − max ϵ,R( )h2

k
h2
2 +max ϵ,R( )h2( )

h1

kh11 + I · max ϵ, 1 − max ϵ,R( )h2
k
h2
2 +max ϵ,R( )h2( )

h1
. (4)

The terms kh11 and kh22 are not protected by a “guard” because k1
and k2 are constants that are always positive. In the results presented
here I have used ϵ = 10–80, which reduced the incidence of
simulations with NaNs from around 10%–0.1%. von Dassow
et al. (2000) did not describe how they avoided this problem
within the software Ingeneue. Use of these alternative rate laws
was necessary for the random parameter sampling, but for specific
time course simulations one can almost always use the original rate
laws as described in von Dassow et al. (2000).

Several aspects of the original SPN model were not fully
described by von Dassow et al. (2000) and I have had to resort
to later publications to infer what they could be. For the sake of
complete transparency, here are all the details that had to be inferred
from sources other than the original article.

• Parameter HEWG does not feature in the differential equations
of the Supplementary Material S1 or in von Dassow and Odell
(2002), instead there the proteins EWG and IWG have the
same half-life (HIWG). However the parameter is clearly
described as one of the 48 parameters sampled in Meir
et al. (2002), from the same group. Thus in my
implementation EWG has its own half-life HEWG.

• The identity of the 48 parameters that are sampled was not
described unequivocally. There are in fact 53 parameters in the
model (when considering 4 cells), so while 46 were obvious
from their Supplementary Table S1, the other 2 could have
been any of the remaining 7 . . . Again, a Figure in Meir et al.
(2002) provided the identity of the 48 parameters (which
include the one mentioned in the previous bullet).

• The ranges for parameter samplings are provided in
Supplementary Table S1, however it missed including the
ranges for parameters PTC0 and HH0. Kim (2009)
mentions this range as 1–1000 (their table 3, parameters
“max”), while an Ingeneue network file (named spg1_01_
4cell.net), recovered from the Internet Archive (Kim, 2010),
suggests it could be 103–106. I ran simulations with both
ranges, and the range 1–1000 produces results closer to
those reported by von Dassow et al. (2000).

• The score function used to identify parameter sets that result
in the desired properties was described without sufficient
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detail. This scoring function is a composite of a function to
identify the gene expression pattern (Eq. 15 of their
Supplementary Material S1), and another to detect stable
stripes (Eq. 16 of their Supplementary Material S1); the
final score being the largest of these two. The text does not
specify clearly what the symbols of Eq. (16) mean, particularly
the StripeScore. Thus I only used Eq. (15) for scoring. By
definition my results should identify more parameter sets than
the full scoring criterion (since we are looking for scores below
a threshold of 0.2).

• The initial conditions probed in each line of Table 1 of the
original paper are not specified exactly, instead they provide
ranges, such as < 20% value, or 20%–60%, not saying whether
the values used were random within that range or some actual
specific values. I used 0.15 for when they indicate < 20%,
0.4 for when they specify 20%–60%, and 0.9 when they specify
60%–100%. For the “degraded” initial condition this is even
more problematic as they only provided a bar chart without
axes, rather than actual values. The values I used here are
specified in the Python code and in the COPASI and SBML
files for the time course described below.

As described in the Interoperability section of Results, below, the
model can be exported from COPASI in standard formats,
particularly the systems biology markup language (SBML, Hucka
et al., 2003; Keating et al., 2020) and the OMEX format (Bergmann
et al., 2014) containing a SBML file for the model and a SED-ML
(Waltemath et al., 2011b) file with the simulation specification.

3 Results

3.1 Reproducibility

It is rather unfortunate that the term “reproducibility” has itself
been used with various different meanings. This confusion in
terminology was discussed in detail by Goodman et al. (2016),
Plesser (2018), Miłkowski et al. (2018), and especially Barba
(2018). As previously (Mendes, 2018), I will follow the
definitions of Goodman et al. (2016), which specifies three
distinct types of reproducibility.

• reproducibility of methods requires one to be able to exactly
reproduce the results using the same methods on the same
data;

• reproducibility of results requires one to obtain similar results
in an independent study applying similar procedures;

• reproducibility of inferences requires the same conclusions to
be reached in an independent replication potentially following
a different methodology.

Because the software Ingeneue, originally used to build and
simulate the SPN model, has now disappeared from circulation,
reproducibility of methods can no longer be effectively carried out.
In a later publication von Dassow and Odell (2002) appear to have
reproduced the results with the same software (see Table 1), however
since these are the original authors, that can hardly be seen as
independent verification. Of all the works listed in Table 1, only

Ingolia (2004) and Ma et al. (2006) can be seen as independent
reproductions of the original results. Unfortunately those two
publications used their own C programs but did not publish
them. It was work in Sethna’s lab (Gutenkunst et al., 2007;
Daniels et al., 2008) that resulted in an electronic version of the
model being created in the SBML format that is still available (see
notes to Table 1), and which was re-used by Marazzi et al. (2022).
However this SBML implementation coded the ODEs directly
without representing the reaction network, an important limitation.

I attempted to reproduce the results of Table 1 in von Dassow
et al. (2000), displayed in our Table 2. Overall these results match the
original ones fairly well. There are some discrepancies in two
samplings, but these are likely due to the uncertainty on the
actual initial values, as pointed out in Methods. Bear in mind
that these are very small samples of a 48-dimensional parameter
space and the differences may just be due to random sampling.
Figure 2 displays the succesful parameter sets in the sampling with
crisp initial conditions, corresponding to Figure 2A in von Dassow
et al. (2000). Careful comparison between the Figure and the original
one reveals similar distributions. For example, in both cases κCNen
rarely takes large values. The conclusions taken by von Dassow et al.
(2000) would not change if their Figure 2A was substituted by this
Figure 2. Taking these results together, I propose that the current
implementation of the SPN model matches the results of the
original—reproducibility of results.

3.2 Interoperability

To demonstrate that this implementation of the SPN model is
interoperable across different software, a specific time course was
chosen to be run by several simulators (herafter named
timecourse1). One of the successful parameter sets generated
in the random sampling with the “degraded” initial condition
was chosen and saved as a native COPASI file, an SBML Level
3 Version 1 file (Hucka et al., 2018), and an OMEX file
(Bergmann et al., 2014). Both the COPASI and OMEX files
include the specification of the time course (end time of
1100 time units, sampled every 5 time units), though the
SBML file requires that time course to be specified separately
in the destination simulator.

Timecourse1 was simulated in four different software tools:
COPASI, Virtual Cell (Schaff et al., 1997; Moraru et al., 2008),
Tellurium (Choi et al., 2018), and AMICI (Fröhlich et al., 2021).
It was run locally with COPASI, Virtual Cell, and Tellurium,
and through the web service runBioSimulations (Shaikh et al.,
2021) with AMICI. COPASI used the native file format,
Tellurium used the SBML (through a small Python script
runTellurium.py), while Virtual Cell and AMICI used the
OMEX file.

Figures 3, 4 display the time course simulations obtained with
four different software. There are no visible differences in the
trajectories displayed confirming that these packages are all
equally able to reproduce the results. Note that different ODE
solvers were used by each one: COPASI used LSODA (Petzold,
1983), Virtual Cell used a fixed-step size Adams-Moulton method
(Han and Han, 2002), Tellurium used CVODE (using the Adams-
Moulton variable order, variable step size method) and AMICI used
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CVODES, both part of the SUNDIALS suite (Hindmarsh et al.,
2005).

3.3 Findability and accessability

To promote findability and accessibility, the model files and
associated scripts are made available through the following channels:
a) a GitHub repository https://github.com/pmendes/models/tree/
main/vonDassow2000, b) a Zenodo accession DOI (doi:10.5281/
zenodo.7772570), c) a submission to the Biomodels database
(MODEL2304060001), and d) model files deposited in the
database of public Virtual Cell models. Note that the complete

result files are only accessible through Zenodo since several files were
larger than the limit at GitHub.

3.4 Reuse

To demonstrate how the model can be reused for different
purposes, I decided to ask the question “how often do parameter sets
of the SPN model have multiple steady states?” Earlier von Dassow
and Odell (2002) and especially Ingolia (2004) proposed that the
robustness of pattern formation in the SPN model is due to multi-
stability of steady states. Ingolia (2004) showed this in SPN models
of a single cell (where the interacting species from the neighboring
cells are kept constant). Here I investigate the answer to this question
in a 1 × 4 array of cells. The strategy I used is as follows.

1. Generate p random sets of parameter values;
2. For each set of parameter values generate i random sets of initial

conditions and calculate their steady state by integration;
3. Determine how many sets of parameter values produced more

than one steady state.

COPASI can easily to carry out such a study directly with the
Parameter scan and Steady state tasks. The steady state task was
applied here disabling the Newton method and therefore only using
ODE integration to find the steady state reachable from the initial
conditions (the steady state resolution was set to 10–4 and the
criterion used was “distance and time”). With the parameter scan
task, 5,000 random parameter sets were sampled, using the same
rules as in Section 3.1 above. Then, for each parameter set, it sampled
15 random initial conditions. Since we use a model of 1 × 4 array of
cells, the initial conditions are composed of 132 species
concentrations that were sampled in the interval [0,1].

From the 5,000 random parameter sets generated, 3,387 had
at least one steady state (the remainder are likely to contain limit
cycles, but this was not investigated). Of those 3,387 parameter
sets with steady states, 498 contained more than one steady state.
This rate of 1/10 parameter sets displaying multistability is not
entirely surprising given the study by Ingolia (2004) which
highlighted the positive feedbacks contained in the SPN
model. Nevertheless it is interesting to investigate if these

TABLE 2 Frequency of solutions as a function of initial conditions.

Von Dassow et al. (2000) This work

Initial conditions Hits Tries Hit rate Hits Tries Hit rate

Crisp 1,192 240,000 1/201 1,015 239,272 1/236

Degraded 149 750,000 1/5,000 22 749,988 1/34,090

Crisp, plus ubiquitous low-level ci and ptc 110 41,258 1/375 91 41,941 1/461

3-cell band of ci, wg stripe on posterior margin 69 40,338 1/585 97 41,994 1/433

3-cell band of ptc, en stripe on anterior margin 127 36,196 1/285 102 37,994 1/372

3-cell band of ptc, out-of-phase 3-cell band of ci 16 226,084 1/14,130 168 229,996 1/1,369

10.5281/zenodo.7772570 Close to target pattern 464 21,526 1/46 556 21,992 1/39

FIGURE 2
Graphic representation of ”solutions” obtained with crisp initial
conditions. All 1,015 parameter sets with a score below 0.2 are
displayed. Black lines plot mean and standard deviation. Each spoke
represents the log-scale range of one parameter. Half-lives and
cooperativity coefficients are omitted, as in Panel 2A of von Dassow
et al. (2000). This figure was created with the open source software
Gnuplot and its source is included with the available data sets (see
Data Availability Statement).
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498 parameter sets have special characteristics versus the other
2,889 that have only one steady state.

The distributions of parameter values that support multiple
steady states was compared with those that appear to only
support a single steady state. Calculation of the relative change in
the median values for each parameter in the single steady state set
versus the multiple steady state set revealed that only κCNptc shows a
large difference, with a median 5-fold larger in the multiple steady
state set than in the single steady state set. Three others have much
lower differences: κCNen 0.7-fold smaller, κCIptc 0.46-fold smaller, and
HH0 0.45-fold smaller. The other 44 parameters have smaller
differences. Figure 5 depicts the distributions of values of κCNptc
and κCNen for the two data sets. Supplementary Figures S1–S3 depict
histograms for all of the 48 parameters. There seems to be very few
parameter sets that lead to multiple steady states with low values of
κCNptc, while many more have high values for this parameter. This
suggests that in order to achieve multiple stability the repression of

patched (ptc) transcription by the truncated protein product of
cubitus interruptus (CN) should be weak. Note that there is
another negative feedback loop between these two genes, through
induction of ptc transcription by the full length cubitus interruptus
protein (CI).

4 Discussion

It is widely recognized that there is a “reproducibility crisis” in
science (Baker, 2016) that includes computational science (Mesirov,
2010; Peng, 2011; Stodden et al., 2016) and indeed computational
modeling of biological systems (Waltemath andWolkenhauer, 2016;
Mendes, 2018; Tiwari et al., 2021). I and others argue that
reproducibility of results obtained from computer simulations of
biological models (biomodels) could be enhanced by using open
source software (Ince et al., 2012; Mendes, 2018) that implement

FIGURE 3
Time course simulation of mRNA species in a 1×4 arrangement of cells using a parameter set obtained by random sampling from the “degraded”
initial condition (see Table 2). Columns represent the different cells; the middle dashed line separating cell 2 and cell 3 represents a parasegmental
boundary. Displayed in each plot are the time evolution of all mRNA species in that cell. Note the formation of the expected segment polarity pattern
around the parasegmental boundary, with high levels ofwingless and patched in cell 2, and high levels of engrailed and hedgehog in cell 3. Each row
corresponds to simulations carried out by different software. COPASI used the LSODA algorithmwith absolute tolerance 10–13 and relative tolerance 10–8.
Virtual Cell used a fixed step size Adams-Moulton algorithm (step size 0.1). Tellurium used CVODE non-stiff algorithm (variable step size, variable order
Adams-Moulton) with absolute tolerance of 10–12 and relative tolerance of 10–6. AMICI used CVODES with absolute tolerance of 10–16 and relative
tolerance of 10–8. Results from the four simulators are visibly the same.
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widely adopted standards (Waltemath and Wolkenhauer, 2016;
Blinov et al., 2021; Porubsky et al., 2021), which are part of
various sets of rules proposed in the last 2 decades (Le Novère
et al., 2005; Waltemath et al., 2011a; Lewis et al., 2016; Porubsky
et al., 2020). Adoption of such practices, though, will only become
widespread when enforced by publishers (Schnell, 2018; Stodden
et al., 2018) and funding agencies (Yale Law School Roundtable
Participants, 2010). A recent move by the US National Institutes of
Health to enforce standards for data management (National
Institutes of Health, 2020) is an encouraging move in that direction.

While reproducibility is a fundamental part of the scientific
process (Popper, 1959), another important aspect is that new
discoveries are almost always dependent on previous results,
methodologies, and theories. To facilitate reuse of scientific data
the community is increasingly adopting the so-called FAIR data
principles (Wilkinson et al., 2016) which promote Findability,
Accessibility, Interoperability, and Reuse of data. While biomodels
are usually seen as mathematics or software, they are operationally

complex data objects and these principles ought to apply to them as
well. Here I reproduced the reaction network, ODE model and
associated simulations described in the classic systems biology paper
by von Dassow et al. (2000) with the software COPASI. I then
exported the model and simulation specifications in community-
derived standard formats that are supported by many software
applications. Finally these files were contributed to model and
data repositories. This essentially makes the model available to be
manipulated by a large number of software applications, not only
extant but likely future ones. Even if the standards used here will be
abandoned in the future, it is most likely that converters would be
developed to upgrade models to the new standards. Model and data
repositories are also expected to last a long time. Thus this classic
systems biology and development model is now available to a wide
community, enabling its re-use for many decades.

As in previous case studies (e.g., Jablonsky et al., 2011; Tiwari
et al., 2021), not all required information to reproduce the model
and simulations were available in the original publication.

FIGURE 4
Time course simulation of protein species as in Figure 3. Displayed in each plot are the time evolution of some of the protein species in that cell.
Species EWGT represents the total amount of EWG protein (product of wingless) located in the membranes of the six neighboring cells to the one
displayed; PHT is the sum of all patched–hedgehog complexes located in the six sides of that cell’s membrane, and PTCT is the sum of all free patched
receptor located in the six sides of that cell’s membrane. Each row corresponds to simulations carried out by different software with different
algorithms. As in Figure 3, there are no visible differences in the results of the four simulators.
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Fortunately, there were subsequent publications by the authors and
other members of their teams that hinted at the missing pieces. In
some cases there is still uncertainty whether I made the correct
choices, however the results obtained (Figure 2) are sufficiently close
to the original that these choices are at least validated to be highly
plausible. This supports previous suggestions (Claerbout and
Karrenbach, 1992; Hothorn and Leisch, 2011; Stodden et al.,
2016) that true computational reproducibility requires availability
of electronic executable versions. Unfortunately textual descriptions
are almost always deficient in details, as it is only too easy to miss
something.

While the missing information in von Dassow et al. (2000) could
be seen as a negative, I note that at the time the software Ingeneue
was distributed together with files that allowed reproduction of the
results. Additionally the model was actually described in great detail,
so much that I was able to re-implement it. It is not uncommon to
come across cases where even the model equations are not listed
(see, e.g., Hübner et al., 2011, for a survey). However, this also
highlights that publishing an electronic version alone is not
guarantee that others in the future will be able to use it. In this
case the software Ingeneue is no longer distributed and thus the
electronic version is essentially lost (I could have tried to seek a copy
from the original authors but I decided not to do so in order to test
whether I could reproduce it with the information available).
Publication of models in a widely used standard format is
essential, as only this will assure the model to be interoperable by
future software. Again, this is not a criticism of this 23 year-old
publication, since at that time the relevant standards were
nonexistent.

In conclusion: we have all the tools needed to make
computational systems biology models FAIR. They should be
encoded in standard formats with relevant metadata and
deposited in widely used repositories. Only this will assure that
future researchers will be able to study and re-use these models. Any
other option, such as only describing model equations, making the
model available “upon request”, or non-standard electronic
encodings of the model will likely be lost within a decade or less.
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Dynamics of chromosome
organization in a minimal bacterial
cell
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Siewert J. Marrink2 and Zaida Luthey-Schulten1,4,5*
1Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, United States,
2Molecular Dynamics Group, Groningen Biomolecular Sciences and Biotechnology Institute, University of
Groningen, Groningen, Netherlands, 3NVIDIA Corporation, Santa Clara, CA, United States, 4NIH Center for
Macromolecular Modeling and Bioinformatics, Beckman Institute, University of Illinois at Urbana-
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Computational models of cells cannot be considered complete unless they
include the most fundamental process of life, the replication and inheritance of
genetic material. By creating a computational framework to model systems of
replicating bacterial chromosomes as polymers at 10 bp resolution with Brownian
dynamics, we investigate changes in chromosome organization during replication
and extend the applicability of an existing whole-cell model (WCM) for a
genetically minimal bacterium, JCVI-syn3A, to the entire cell-cycle. To achieve
cell-scale chromosome structures that are realistic, we model the chromosome
as a self-avoiding homopolymer with bending and torsional stiffnesses that
capture the essential mechanical properties of dsDNA in Syn3A. In addition,
the conformations of the circular DNA must avoid overlapping with ribosomes
identitied in cryo-electron tomograms. While Syn3A lacks the complex regulatory
systems known to orchestrate chromosome segregation in other bacteria, its
minimized genome retains essential loop-extruding structural maintenance of
chromosomes (SMC) protein complexes (SMC-scpAB) and topoisomerases.
Through implementing the effects of these proteins in our simulations of
replicating chromosomes, we find that they alone are sufficient for
simultaneous chromosome segregation across all generations within nested
theta structures. This supports previous studies suggesting loop-extrusion
serves as a near-universal mechanism for chromosome organization within
bacterial and eukaryotic cells. Furthermore, we analyze ribosome diffusion
under the influence of the chromosome and calculate in silico chromosome
contact maps that capture inter-daughter interactions. Finally, we present a
methodology to map the polymer model of the chromosome to a Martini
coarse-grained representation to prepare molecular dynamics models of entire
Syn3A cells, which serves as an ultimate means of validation for cell states
predicted by the WCM.

KEYWORDS

whole-cell modeling, chromosome replication, chromosome segregation, brownian
dynamics, smc proteins, topoisomerase, Martini model
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1 Introduction

The goal of computational modeling of a single cell is to create
whole-cell models (WCMs) that propagate the state of an entire cell
through time, where the propagation is governed by the chemical
and physical interactions within the cell and between the cell and its
environment (Karr et al., 2012; Goldberg et al., 2018; Macklin et al.,
2020; Marucci et al., 2020; Luthey-Schulten et al., 2022; Maritan
et al., 2022; Thornburg et al., 2022). To model any cell in 3D,
configurations and dynamics of the chromosome(s) are critical in
defining the spatial heterogeneity of gene expression over the course
of a cell-cycle (Llopis et al., 2010). While there are several existing
models that can simulate entire bacterial chromosomes
(Buenemann and Lenz, 2010; Messelink et al., 2021; Wasim
et al., 2021), relatively few are at spatial resolutions less than
hundreds to thousands of base pairs (bp) per particle (Hacker
et al., 2017; Goodsell et al., 2018; Gilbert et al., 2021). Here, we
introduce a computational model to simulate the 3D dynamics of
the chromosome of a genetically minimal bacterium, JCVI-syn3A, at
10-bp resolution including replicating chromosome states (Cooper
and Helmstetter, 1968; Bremer and Dennis, 2008; Youngren et al.,
2014) and loop-extrusion by structural maintenance of
chromosomes (SMC) protein complexes (Hirano, 2006; Alipour
and Marko, 2012; Ganji et al., 2018; Lioy et al., 2020; Davidson and
Peters, 2021; Lee et al., 2021).

JCVI-syn3A is a minimal bacterial cell with a chemically
synthesized 543 kbp genome composed of 493 genes (Breuer
et al., 2019). The SynX-series of organisms began with JCVI-
syn1.0, which was created by transplanting a chemically
synthesized Mycoplasma mycoides genome into living
Mycoplasma cells (Gibson et al., 2010). JCVI-syn3.0 was
subsequently created by synthetically reducing the 1,079 kbp
genome of Syn1.0 until what was considered a genetically
minimal bacterium with a 531 kbp genome, stripped of all but
the necessary components to continue proliferating, was achieved
(Hutchison et al., 2016). Finally, Syn3A was created by re-
introducing 19 genes from Syn1.0 back into Syn3.0’s genome.
While this produced an arguably less-minimal bacterium, it
increased the growth rate (180 min doubling-time in Syn3.0 to
110 min doubling-time in Syn3A) (Breuer et al., 2019) and
restored a regular spherical morphology to the cells (Pelletier
et al., 2021).

With a genome and physical size approximately one-tenth the
size of the model bacterium Escherichia coli, Syn3A is ideally suited
for whole-cell modeling due to the corresponding reduction in
complexity. Syn3A′s initial cell state was defined through
experimental charactizations of its biochemical components —

genome-wide gene-essentiality and proteomics (Breuer et al.,
2019), metabolomics (Haas et al., 2022), lipidomics (Thornburg
et al., 2022), and cellular architecture from cryo-electron
tomography (cryo-ET) (Gilbert et al., 2021). Systematic
investigations of the interactions amongst Syn3A′s biochemical
components were undertaken — defining the metabolic map
(Breuer et al., 2019), genetic information processes (Thornburg
et al., 2019), and reaction kinetics of coupled metabolic/genetic
information processes (Thornburg et al., 2022). By combining these
with hybrid stochastic-deterministic methods leveraging GPU-
accelerated simulation software (Roberts et al., 2012; Hallock

et al., 2014; Bianchi et al., 2018), a well-stirred WCM (WS-
WCM) and 3D spatially resolved WCM (4D-WCM) that predict
time-dependent Syn3A cell states were created (Thornburg et al.,
2022).

However, due to the methodology used to model the
chromosome (Gilbert et al., 2021), the existing 4D-WCM was
limited to the part of the cell-cycle prior to the onset of DNA
replication (Thornburg et al., 2022). This study resolves that issue by
transitioning from a lattice polymer model to a continuum polymer
model (Figure 1A) of the chromosome, while retaining the previous
model’s strengths; namely, the ability to fold chromosomes within
cellular architectures dictated by cryo-ET and a high spatial
resolution (10 bp per monomer) that enables modeling of the
hetergeneous diffusion of macromolecular complexes due to
excluded-volume interactions with the chromosome.
Furthermore, the new method allows for progressive DNA
replication of the chromosome to reach nontrivial replication
states (Cooper and Helmstetter, 1968; Bremer and Dennis, 2008;
Youngren et al., 2014; Khan et al., 2016;Wasim et al., 2021; Pountain
et al., 2022) and for the segregation of daughter chromosomes
(Goloborodko et al., 2016a; Gogou et al., 2021) under the
influence of known essential components (Breuer et al., 2019),
SMC-complexes (Ganji et al., 2018; Lee et al., 2021) and
topoisomerases (Wang, 1991; McKie et al., 2021; Sutormin et al.,
2021; Conin et al., 2022). These nontrivial replication states have
Ori:Ter ratios greater than 2:1 (Figure 2), where Ori is the origin of
replication and Ter is the terminus of replication, and were predicted
in Syn3A by WS-WCM simulations and measured by experimental
quantitative-PCR (qPCR) (Thornburg et al., 2022). These new
capabilities lay the groundwork for the extension of the 4D-
WCM to the full cell-cycle. Additionally, by using a binary tree
model (Figure 2A) the full spectrum of replication of states for a
circular chromosome can be explored and in silico chromosome
contact maps resolving inter-daughter interactions can be calculated
(Figure 3A).

Beyond the information stored in the sequence of the
genome, the 3D organization of eukaryotic (Kempfer and
Pombo, 2019) and bacterial (Dame et al., 2019; Lioy et al.,
2021) genomes plays a role in cellular behavior (Dekker and
Mirny, 2016). While imaging techniques such as DNA-FISH
(Giorgetti and Heard, 2016) provide insights about targeted
interactions, the wide-spread accessibility of next-generation
sequencing (Goodwin et al., 2016) catalyzed the proliferation
of sequence-based techniques that assess genome-wide
interactions such as DNA-protein binding using CHIP-seq
(Park, 2009) and DNA-DNA proximity using chromosome
conformation capture (3C) (Dekker et al., 2002). Following
the creation of 3C, many variations have been developed
(Denker and de Laat, 2016; Goel and Hansen, 2020), the most
well-known of which is perhaps Hi-C (Lieberman-Aiden et al.,
2009). Although researchers have a stunning breadth of
experimental data characterizing interactions throughout the
genome, computational models (Rosa and Zimmer, 2014;
Tiana and Giorgetti, 2019) are required to solve the inverse
problem of determining 3D genome organization (Di Pierro
et al., 2017; Messelink et al., 2021; Shi and Thirumalai, 2023)
and provide mechanistic insights (Sanborn et al., 2015;
Fudenberg et al., 2016; Banigan et al., 2020; Fiorillo et al., 2021).
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FIGURE 1
Schematic of chromosome modeling protocol: (A) Diagram of system with ribosomes and chromosome comprised of 10 bp DNA monomers. (B)
Snapshot of system with an unreplicated 54,338 monomer Syn3A chromosome and 500 ribosomes in a 200 nm radius cell. (C) Bending (Ub

i ), twisting
(Ut

i ), aligning (Ua
i ), and stretching (Us

i ) potential energy functions for intramonomer interactions, and potential energy functions for excluded-volume
interactions (Ue.v.

ij ) between DNA monomers and ribosomes. (D) DNA loops are created by applying harmonic bonds between pairs of “anchor” (A,
white) and “hinge” (H, black) monomers. Loop-extrusion is simulated by periodically updating the hinge monomer from the set of candidates within the
grab radius, rg. Monomers with a red cross are excluded from hinge updates due to not satisfying the minimal loop length requirement, Lmin. (E) Average
windowed radius of gyration as a function of time for simulations of a single unreplicated chromosome with varying numbers of loops. Simulations were
run for 4.0E + 6 timesteps with parameters given in Section 2.4.4. Inset are snapshots of the simulations with 0 loops and 100 loops at t = Tf.
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FIGURE 2
Replication of chromosomes in polymer model: (A) Progressive replication (ρi � ρcwi + ρccwi ) of 100 monomer circular DNA using binary tree model.
For each of the four stages of replication, we show the theta structure in the top-left, the binary tree representation in the top-middle, the physical model
in the top-right, and the bond topology of the physical model in the bottom. The bond topology displays all monomers using the colorbar at the bottom.
Adjacent monomers in regions of the colorbar partitioned by red lines (chromosome boundaries) are bonded. All other bonds in the system (Ters
creating circular chromosomes and forks creating theta structures) are depicted using arcs between the bonded monomers. (B) Beginning with an
unreplicated Syn3A chromosome (543,379 bp) within a 200 nm radius cell containing 500 ribosomes, 20,000 bp (2,000 monomers) were replicated
using the train-track model (see schematic). The Oris, Ter, and forks in the replicated system are highlighted with circles.
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Syn3A is a compelling system for a systematic study of bacterial
chromosomes (Birnie and Dekker, 2020), including but not limited
to their replication and segregation, and the bacterial cell cycle (Olivi
et al., 2021) because the protein functions encoded by its remaining
essential genes hypothetically represent the minimal ingredients
necessary for successful proliferation of bacterial cells. Based on
what is known of chromosome organizing elements, key among
these minimal ingredients should be at least one creating DNA loops
(DNA regions distant in sequence but constrained in close spatial
proximity) (Davidson and Peters, 2021) and one resolving DNA
knots and catenanes (McKie et al., 2021). Syn3A′s genome encodes
the prokaryotic condensin complex, SMC-scpAB (Table 1),
whose Saccharomyces cerevisiae homolog extrudes DNA loops
at rates of hundreds of bp per second (Ryu et al., 2021), along with
two type-II topoisomerases that allow strand-passage of dsDNA
(Liu et al., 1980), DNA-gyrase (gyrase) and topoisomerase-IV
(topo-IV) (Table 1)— all of these genes were found to be essential
by transposon mutagenesis (Breuer et al., 2019). We compare
Syn3A′s proteomics counts of SMC-scpAB and type-II
topoisomerases with respect to the model bacteria E. coli and
B. subtilis on the basis of their counts relative to the total DNA
content of the genome, as the DNA is what these proteins
manipulate. After accounting for the 4:2:4 stoichiometry (Lee
et al., 2021) of E. coli′s SMC complex, MukBEF, we find that the
densities of SMC core proteins per bp of genome are ranked in
decreasing order as 1) E. coli, 2) Syn3A, 3) B. subtilis (Table 1).
However, the difference between E. coli and B. subtilis is only one
order-of-magnitude and we can conjecture that this might be due
to Syn3A and E. coli compensating for their lack of a parABS
system (Livny et al., 2007; Badrinarayanan et al., 2015) that
preferentially loads SMC complexes onto the chromosome
(Marbouty et al., 2015; Tran et al., 2017). We find similar
trends among the densities of the two type-II topoisomerases
(Table 1). Given the comparable densities of these chromosome-
manipulating proteins between Gram-positive (Syn3A and B.
subtilis) and -negative (E. coli) bacteria, we feel that Syn3A is a

suitable system in which to study the dynamics of bacterial
chromosome organization.

As was noted in a previous study (Gilbert et al., 2021), unlike
many bacteria Syn3A codes for a single nucleoid-associated protein
(NAP) (Dame, 2005; Lioy et al., 2018; Verma et al., 2019; Lioy et al.,
2021), HU (JCVISYN3A_0350), which is known to have two
binding modes: 1) low-affinity binding to linear DNA and 2)
high-affinity binding to structurally deformed DNA (Kamashev,
2000; Verma et al., 2023). One result of HU binding is the
stabilization of supercoiling (Le et al., 2013; Lioy et al., 2018;
Strzałka et al., 2022). Curiously, while the HU gene was found to be
essential by transposon mutagenesis, the proteomics count is so
vastly lower than that of E. coli, B. subtilis, and related-organism
Mesoplasma florum (Gilbert et al., 2021) that its genome-wide
influence (Pelletier et al., 2012) is likely to be negligible.
Furthermore, chromosome contact maps from 3C-seq libraries
of Syn3A do not exhibit chromosome interaction domains (CIDs)
(Gilbert et al., 2021), which are known to be a result of persistent
supercoiling (Le et al., 2013; Trussart et al., 2017; Lioy et al., 2018).
Given these considerations, we hypothesize that HU’s lingering
essentiality in Syn3A is a reflection of it only acting through an
interaction specific to the high-affinity binding mode. In E. coli,
HU is known to interact with replication initiator protein DnaA
(Chodavarapu et al., 2007), HUα/DNA stoichiometry has been
shown to increase for faster-growing E. coli cells (Abebe et al.,
2017), and experimental evidence suggests a mechanism of HU
promoting duplex unwinding at the oriC replication origin
(Yoshida et al., 2023). Additionally, HU is essential for
replication initiation in Gram-positive B. subtilis (Karaboja and
Wang, 2022; Schramm and Murray, 2022), whose replication
origin is similarly a DnaA-based oriC. Based on these results in
other bacteria and HU’s enhanced binding to dsDNA repair and
recombination intermediates (Kamashev, 2000), we believe a small
number of HU was retained to fulfill an essential role during
replication initiation using a DnaA-based oriC in Syn3A
(Thornburg et al., 2019), but do not expect it to influence

TABLE 1 Comparative proteomics of proteins in Syn3A that are known to interact with bacterial chromosomes (SMC-scpAB, DNA-gyrase, topoisomerase-IV, and
HU). Values were taken from Supplementary Table S1 of (Thornburg et al., 2022).

Protein (stoichiometry) Locus # Syn3A #/Genome size [#/bp]

Syn3A E. colia B. subtilisb

SMC (2) 0415 202 3.72E-4 2.18E-3c 1.07E-4

ScpA (1) 0327 1 (10)d 1.84E-5 - -

ScpB (2) 0328 31 5.71E-5 - 1.88E-5

gyrase-A (2) 0007 298 5.48E-4 1.86E-3 3.05E-4

gyrase-B (2) 0006 244 4.49E-4 1.32E-3 1.67E-4

topoIV-A (2) 0453 156 2.87E-4 2.77E-4 4.83E-5

topoIV-B (2) 0452 157 2.89E-4 1.38E-4 4.71E-5

HU (2)e 0350 28 5.15E-5 2.69E-3 2.01E-3

a4.6 Mbp genome.
b4.4 Mbp genome.
cSMC complex in E. coli is MukBEF, with stoichiometry of 4:2:4.
dProteins with counts less than 10 were assumed to be a minimum of 10 in whole-cell simulations.
eGreatest %-identity with α-subunit (HUα), HU, forms homo- (αα or ββ) and heterodimers (αβ) in E. coli.
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chromosome-scale organization with its reduced proteomics
count, and therefore exclude HU from our model of the
chromosome.

Given the absence of NAPs structuring Syn3A′s chromosome
into bacterial chromatin (Dame and Tark-Dame, 2016), we chose to
model the chromosome of essentially naked dsDNA as a twistable
and elastic worm-like chain (Klenin et al., 1998; Brackley et al., 2014;
Maffeo and Aksimentiev, 2020). The polymer is comprised of
3.4 nm diameter spherical monomers containing 10 bp of
chromosomal DNA (Figure 1A), 54,338 such monomers bonded
in a circle are used to create Syn3A′s 543,379 bp circular
chromosome (Figure 1B). Adjacent monomers interact through
stretching, bending, and twisting potentials (Figure 1C) that
reproduce the tensile, bending, and torsional stiffness of dsDNA
(Cocco et al., 2002; Brackley et al., 2014), and are parameterized by
linear (45 nm) (Manning, 2006; Geggier et al., 2010; Mantelli et al.,
2011) and twist (85 nm) (Mosconi et al., 2009) persistence lengths.
The monomers are subject to non-bonded interactions that prevent
strand-crossings and cause them to avoid ribosomes modeled as
20 nm diameter spherical particles (Figure 1C). We chose to neglect
electrostatics and hydrodynamic interactions in this current model.
The complete system of chromosomes and ribosomes is simulated
using a Brownian dynamics (Snook, 2007) integrator for aspherical
particles in LAMMPS (Thompson et al., 2022). To explore the
influence of loop-extruding SMC complexes and strand-crossing
type-II topoisomerase in this framework, we have developed
algorithms to selectively introduce and remove additional terms
in the energy function that emulate their effects.

While the computational methodologies described in this paper
are tailored to reaching the longer-timescales necessary for WCMs
that include fundamental processes of bacterial life such as
chromosome replication and segregation, returning to the near-
atomic scale provides the ultimate means of validation and reveals
additional insights. Researchers have previously completed
molecular dynamics (MD) simulations of representative volumes
of bacterial cytoplasm (Yu et al., 2016; Rickard et al., 2019; Heo et al.,
2022), but only recently has it become possible to prepare a MD
simulation of an entire bacterium (Stevens et al., 2023). We will
describe how our polymer model for the chromosome can be
directly mapped to a coarse-grained Martini model (Marrink
et al., 2022) of dsDNA that is ready to be simulated using
Gromacs-2023 (Páll et al., 2020; Abraham et al., 2023).

2 Materials and methods

2.1 Twistable polymer model

The chromosome is modeled under the assumption that due to the
low density of NAPs in Syn3A, the vast majority of the chromosome is
essentially naked dsDNA in a good solvent (Breuer et al., 2019; Szatmári
et al., 2020; Thornburg et al., 2022). The naked dsDNA is represented as
a twistable and elastic worm-like chain of spherical monomers, each of
which contain 10 bp of DNA and have a radius (rDNA) of 1.7 nm. We
model the 10 bp monomers as spheres rather than 3.4 nm cylindrical
segments with diameters equal to that of a dsDNA helix (2 nm) because
using isotropic pair potentials for spherical particles is less
computationally intensive. We consider the spherical monomer

approximation acceptable for our chromosome-scale model because
relative to a cylindrical segment the excluded volume is overestimated
by less than a factor of two and the translational damping (Section 2.2)
is overestimated by only 15% (Supplementary Analyses). Monomers
interact through the energy function fromBrackley et al. (Brackley et al.,
2014) — the monomers are bonded using finitely extensible nonlinear
elastic (FENE) potentials (li in Figure 1C), the bending stiffness of
dsDNA is implemented using a cosine potential whose argument is the
angle (θi in Figure 1C) between (i− 1)-, i-, and (i+ 1)-thmonomers, and
the torsional stiffness of dsDNA is implemented using a cosine potential
whose argument is the sum of Euler angles parameterizing the rotation
matrix describing the transformation between the local coordinate
systems, (ûi, f̂ i, v̂i), of i- and (i + 1)-th monomers (αi and γi in
Figure 1C). The linear and torsional stiffness parameters, κb and κt,
are determined based on the assumed linear persistence length, lp, of
45 nm (Manning, 2006; Geggier et al., 2010; Mantelli et al., 2011) and
twist persistence length, lt, of 85 nm (Mosconi et al., 2009), respectively.
The alignment term in the potential serves to align the ûi basis vector of
the i-th monomer’s local coordinate system with the displacement
vector between the i- and (i + 1)-th monomers, si. While the monomer
orientations and torsional interactions play a limited role in the current
simulations due the assumption of a relaxed supercoiling state, we
elected to include them for a few reasons. First, the train-track model of
replication (Section 2.6) uses the monomer orientations to specify the
coordinates of the daughter chromosomes (Figure 2B). Second, in the
future we intend to use the model to investigate chromosome
organization due to DNA-binding HU (Lioy et al., 2018) when its
expression is restored and tomechanochemically couple transcriptional
activity in the 4D-WCM to the torsional state of the chromosome (Liu
and Wang, 1987; Chong et al., 2014; Dorman, 2019; Kim et al., 2019;
Chatterjee et al., 2021; Guo et al., 2021; Geng et al., 2022).

The chromosome as a whole is modeled as a homopolymer and
all monomers, including those representing theOris, Ters, and forks,
have an identical radius of rDNA. The ribosomes are modeled as
spheres with a radius (rribo) of 10.0 nm. Not pictured in Figure 1 are
boundary particles with a radius (rbdry) of 5rDNA that create the
closed membrane shape. All non-bonded particles interact through
purely repulsive Weeks-Chandler-Andersen (WCA) pair potentials
(Figure 1C), which serve to prevent dsDNA strand-crossings
(Supplementary Video SV1), create the excluded-volume
interactions between the chromosome and ribosomes, and
confine all DNA monomers and ribosomes within the surface
comprised of boundary particles.

The total potential energy function for the chromosome/
ribosome system is

U � ∑
NDNA

i�1
Ub

i + Ut
i + Ua

i + Us
i[ ]+

+ ∑
NDNA−1

i�1
∑

NDNA

j�i+1
UDNA−DNA

ij + ∑
NDNA

i�1
∑
Nribo

j

UDNA−ribo
ij

+ ∑
Nribo−1

i�1
∑
Nribo

j�i+1
Uribo−ribo

ij

+ ∑
Nbdry

i�1
∑

NDNA

j

Ubdry−DNA
ij + ∑

Nbdry

i�1
∑
Nribo

j

Ubdry−ribo
ij ,

(2.1)

where the details of the energy functions may be found in Figure 1A.
Soft pair potentials of the form
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Usoft/topo
ij � ϵsoft/topo 1 + cos

πrij
σ ij

( )[ ], where rij < σ ij (2.2)

are used to reduce overlaps during energy minimizations
(replacing UDNA−DNA

ij and UDNA−ribo
ij ) and permit strand-

crossings of DNA (Supplementary Video SV1) under the
assumed action of topoisomerases (replacing UDNA−DNA

ij ).
Additionally, the FENE bonds between monomers are
replaced with harmonic bonds of the form

Us
i � kmin li − l0( )2 (2.3)

during the initial energy minimizations to prevent over-stretching.
Excluding the SMC looping interactions, which are described in
greater detail in Section 2.3, all energetic parameters for the potential
energy function are listed in Table 2.

2.2 Brownian dynamics

The time-integration was carried out using an OpenMP-
accelerated version of the Brownian dynamics integrator for
aspherical particles (Delong et al., 2015; Ilie et al., 2015) in
LAMMPS (Thompson et al., 2022). The Brownian equation of
motion

dxi
dt

� Fsystem + Frandom

γi
(2.4)

approximates the overdamped limit of the Langevin equation

mi

γi

d2xi
dt2

� −dxi
dt

+ Fsystem + Frandom

γi
, (2.5)

and is only an accurate approximation if the inertial forces are
insignificant compared to the viscous forces (Snook, 2007). The
mass of the 10 bp monomers is sequence-independent and was
calculated as the molar mass of an average 10 bp sequence from
Syn3A′s genome (Breuer et al., 2019). We model only complete
70S ribosomes with an assumed mass of 2,700 KDa (Yamamoto
et al., 2006). Both ribosomes and DNA monomers are assumed to
behave as spherical particles undergoing normal Brownian
motion in a Newtonian fluid. In the case of the ribosomes,
their characteristic size is 20 nm when we do not include
polysomes (multiple ribosomes translating a single mRNA)
(Xue et al., 2022), and their motion should be decoupled from
metabolic activity due to falling below a 30 nm size threshold
(Parry et al., 2014). Although the chromosome is a cytoplasmic
component with size well in excess of this threshold, we model
the DNA monomers under the same simplifying assumption of
normal Brownian motion. In reality, bacterial chromosome
dynamics are a result of ATP-dependent motion (Weber et al.,
2012), and part of this motion originates from loop-extrusion by
SMC (Hirano, 2006), which is addressed by another part of our
computational model (Section 2.3). The damping coefficients for
the translational and rotational motion of DNA monomers and
ribosomes are listed in Table 3. Translational damping constants,
γTi , were calculated using the Stokes-Einstein equation for
spherical particles (Snook, 2007)

γTi � 6πηri (2.6)

with the dynamic viscosity used previously in the 4D-WCM
(Thornburg et al., 2022). Rotational damping constants, γRi , were
calculated assuming no-slip boundary conditions between the
spherical solute particles and surrounding solvent

γRi � γTi r
2
i

3
. (2.7)

the timestep, Δt = 0.1 ns, was selected such that it satisfies
the conditions of the overdamped limit of the Langevin equation,
Δt≫mi/γTi and Δt≫ Ii/γRi (where Ii � 2mir2i /5), while remaining
small enough to prevent unphysical strand crossings (Supplementary
Video SV1). The boundary particles are held fixed at their initial
coordinates and are not subject to coordinate updates due to energy
minimizations nor time-integrations.

2.3 SMC-induced DNA loops

The 3D loop-extruding action of SMC protein complexes are
simulated using the methodology of Bonato and Michieletto
(Bonato and Michieletto, 2021; Ryu et al., 2021), which simulates

TABLE 2 Potential energy parameters for the chromosome and ribosome
system. All simulation units are using “units real” in LAMMPS (Thompson et al.,
2022).

Parameter Symbol Simulation units

Quantity Unit

DNA monomer radius rDNA 1.7E+1 Å

ribosome radius rribo 1.0E+2 Å

boundary particle radius rbdry 2.5rDNA Å

eq. monomer spacing l0 2rDNA Å

linear persistence length lp 4.5E+2 Å

twist persistence length lt 8.5E+2 Å

bending energy κb/kBT lp/(2rDNA) n.d.

twisting energy κt/kBT lt/(2 × (2rDNA)) n.d.

aligning energy κa 2κt Kcal/mol

FENE rep. energy ϵs/kBT 1.0 n.d.

FENE rep. length σs 2rDNA Å

FENE att. energy κsσ2s /kBT 1.0E+2 n.d.

FENE finite-length L0 1.5σs Å

DNA-DNA WCA energy ϵDNA-DNA/kBT 1.0 n.d.

DNA-DNA WCA length σDNA-DNA 2rDNA Å

DNA-ribo WCA energy ϵDNA-ribo/kBT 1.0 n.d.

DNA-ribo WCA length σDNA-ribo rDNA + rribo Å

ribo-ribo WCA energy ϵribo-ribo/kBT 1.0 n.d.

ribo-ribo WCA length σribo-ribo 2rribo Å

bdry-DNA WCA energy ϵbdry-DNA/kBT 1.0 n.d.

bdry-DNA WCA length σbdry-DNA rbdry + rDNA Å

bdry-ribo WCA energy ϵbdry-ribo/kBT 1.0 n.d.

bdry-ribo WCA length σbdry-ribo rbdry + rribo Å

soft pairs ϵsoft/kBT 1.0 n.d.

topoisomerase pairs ϵtopo/kBT 1.0E-1 n.d.

minimization bond energy kminl
2
0/kBT 1.0E+3 n.d.
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the action of SMC heads associating with the DNA and then
translocating the DNA between the head and the hinge (Nunez
et al., 2019). DNA loops are created by adding harmonic bonds
between “anchor” and “hinge” monomers (Figure 1D)

Uloop � kl d − d0( )2, (2.8)
rather than explicitly simulating the conformational changes of
SMC protein complexes (Higashi et al., 2021; Nomidis et al.,
2022). Due to physical considerations of the bending stiffness of
dsDNA, the anchor and hinge monomers of all loops are required
to be separated by a minimal loop length, Lmin, in units of bonded
monomer distance (Figure 1D). Loops are initialized by first
identifying regions of the chromosome accessible to loops by
determining contiguous series of bonded monomers that are
partitioned by replication forks at either end. Anchors are
then randomly assigned to each of the regions with a
probability proportional to the number of monomers in the
region relative to the total number of looping accessible
monomers across all regions. The region-assigned anchors are
distributed uniformly within their respective regions. Finally, for
each anchor a matching hinge is selected in a random direction
along the polymer, and at a distance of bonded monomers that is
equal to the minimal loop length.

Loop extrusion is simulated by periodically pausing the time-
integration and updating the positions of the hinges while leaving
the anchors fixed. There are two possible events during these
hinge-update steps (Bonato and Michieletto, 2021) — 1) intra-
strand motion in which the hinge advances in 1D along the
current strand in the previously assigned direction or 2) inter-
strand motion in which the hinge unbinds from the current
strand with probability punbind and rebinds to a new strand within
a 3D spherical volume centered about the anchor (Figure 1D).
For this study we made the simplifying assumption that only

intra-strand motion is permitted (punbind = 0), which has been
used in other studies (Ryu et al., 2021), but the software is capable
of simulating inter-strand motion. For both types of updates,
only monomers whose distance from the anchor monomer is less
than the grab radius, rg, and in the case of intra-strand updates,
whose bonded monomer distance on the current strand is greater
than the minimal loop length, are considered as viable update
candidates (Figure 1D). The grab radius is chosen to be 50 nm
based on the coiled-coil structure of SMC protein complexes
(Diebold-Durand et al., 2017). Based on results showing that
eukaryotic SMC complexes can traverse one-another to form
Z-loops (Kim et al., 2020), we do not include any interactions
between hinge and anchors that are not paired.

If the first case of intra-strand motion is selected with
probability 1 − punbind, the update monomer is selected from
the set of intra-strand candidates by sampling a Poisson
distribution with mean Lext-avg and truncated at Lext-max.
Based on step-size distributions measured with magnetic
tweezers (Ryu et al., 2021) and analytical calculations
(Takaki et al., 2021), we chose these to be Lext-avg = 20
monomers (68 nm) and Lext-max = 30 monomers (102 nm).
Should there be no intra-strand candidates, the hinge will
remain at its current monomer. If the second case of inter-
strand motion is selected with punbind, the update monomer is
selected from the set of inter-strand candidates with equal
probability. Should there be no inter-strand candidates
following an unbinding, the hinge will remain unbound until
there are inter-strand candidates in a subsequent hinge update
step. The pseudocode for this process is presented in
Supplementary Algorithm S1.

The length-scale of the grab radius is much greater than that of
pairwise interactions between non-bonded DNA monomers, we
therefore make the simplifying assumption that the DNAmonomers
available as hinge update candidates have a nearly uniform
distribution within the spherical volume of radius rg centered
about any anchor. Under such conditions, the average separation
distance, �d, between the anchor and hinge following a hinge update
may then be calculated as

�d � ∫rg

0
dr r × 4πr2( )
∫rg

0
dr4πr2

� 3
4
rg, (2.9)

the loop will then perform on average the amount of work, �Wloop,
necessary to pull the hinge and anchor to their equilibrium
separation distance

�Wloop � − Uloop d0( ) − Uloop
�d( )[ ] � kl �d − d0( )2. (2.10)

given that each extrusion event (emulated by hinge updates and
subsequent pulling in this case) was measured to complete
approximately 4kBT of work (Ryu et al., 2021) and ATP
hydolysis is sufficient to provide this, we estimate the spring
constant in our model to be

kl � 4kBT
�d − d0( )2 . (2.11)

all spatial, energetic, and probabilistic parameters for the loop-
extrusion model are listed presented in Table 4.

TABLE 3 Time-integration parameters for the Brownian dynamics simulations.
All simulation units are using “units real” in LAMMPS (Thompson et al., 2022).

Parameter Symbol Simulation units

Quantity Unit

thermal energy kBT 6.16 Kcal/mol

DNA monomer mass mDNA 6.18E+3 g/mol

ribosome mass mribo 2.11E+6 g/mol

DNA monomer rotational inertia IDNA 7.14E+5 (g/mol)·Å2

ribosome rotational inertia Iribo 8.45E+9 (g/mol)·Å2

dynamic viscosity η 7.04E+1 (g/mol)/(fs·Å)
monomer translational damping γTDNA 2.39E+4 (g/mol)/fs

ribosome translational damping γTribo 2.81E+5 (g/mol)/fs

monomer rotational damping γRDNA 9.21E+6 (g/mol)·Å2/fs

ribosome rotational damping γRribo 1.50E+10 (g/mol)·Å2/fs

monomer translational time-scale τTDNA 2.74E-1 fs

ribosome translational time-scale τTribo 1.59E+1 fs

monomer rotational time-scale τRDNA 8.21E-2 fs

ribosome rotational time-scale τRribo 4.77E+0 fs

simulation timestep Δt 1.0E+5 fs
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2.4 Polymer model simulation protocols

2.4.1 Simulation software
All polymer model simulations were performed using the C++

program btree_chromo (Supplementary Table S1), which implements
the binary tree model of replication states, replication within the
chromosome system using the train-track model, and Brownian
dynamics simulations that include the effects of SMC complexes and
topoisomerases by calling LAMMPS as a library (Thompson et al., 2022).
This program is executed from the command-line and takes a single input
script of program directives that it then parses into commands and
parameters before executing in sequence. Additionally, a number of
metacommands are included that allow for sections of the script to be
repeated within loops and other similar functions that aid in defining
simulation protocols. All directives are documented within the project’s
repository (Supplementary Table S1). Spatial, energetic, and temporal
parameters for the model and subroutines that are regularly performed
during the course of simulations are storedwithin a separate directory as a
set of LAMMPS input scripts that are fed into the LAMMPS simulation
object. The directory containing LAMMPS input scripts can be redefined,
allowing the user to systematically test alternate chromosome models or
change models on-the-fly within a simulation. Walltimes for a
representative selection of the simulations presented in this study are
included in Supplementary Table S2.

2.4.2 Generating initial conditions
Initial configurations of the chromosome are generated using an

algorithm based on a midpoint-displacement approach (Fournier
et al., 1982) that builds three-dimensional, closed curves resembling
Koch curves (von Koch, 1904) out of spherocylinder segments
(i.e., cylinders with hemispherical caps) that overlap about the
centerpoint of the caps (Supplementary Figure S1A). Given a
spherical cell containing a known spatial distribution of ribosomes,
the initially unrelaxed configuration of the continuummodel is placed
within the confines of the spherical cell by growing a circular and self-
avoiding chain of spherocylinders. The freely-jointed chain of
spherocylinders uses a series of decreasing cylinder lengths during
the growth process to generate a chromosome configuration
organized as a fractal globule (Lua et al., 2004) with clearly-defined
chromosomal territories (Lieberman-Aiden et al., 2009; Sanborn et al.,
2015), which is consistent with our previous lattice methodology
(Gilbert et al., 2021). This is accomplished using an iterative procedure
in which a specified number of spherocylinder segments are added.
Self- and ribosome-avoidance are imposed at every stage between the
spherocylinder segments and the spherical ribosomes. Furthermore,
tracking the crossing of the spherocylinders during segment addition
steps was used to prevent the introduction of knots. In the final step,
spherical monomers with radii equal to the spherocylinder radii
(17.0 Å) are then interpolated along the spherocylinders and any
remaining monomers are inserted using an equivalent midpoint-
displacement method. The model of an unreplicated Syn3A
chromosome is comprised of 54,338 monomers, each containing
10 bp. This method creates suitable chromosome configurations
for both the small and large Syn3A cell geometries and ribosome
distributions reconstructed from cryo-ET (Gilbert et al., 2021)
(Supplementary Figures S1B–C) and has been further extended to
fill cell geometries with multiple circular chromosomes
simultaneously (Supplementary Figure S2).

2.4.3 Standard polymer model simulations
At the start of any polymer model simulation and before any

Brownian dynamics steps are taken, potential particle overlaps are
relaxed by running the following sequence of minimizations and short
runs (Table 5): 1) minimize_soft_harmonic, 2) run_soft_
harmonic, 3) minimize_hard_harmonic, 4) run_hard_

harmonic, and 5) minimize_hard_FENE. The stopping
criteria and maximum number of iterations for each of these are
defined within the directory of input scripts. This is sufficient to
relax the initial structure without significantly altering it, while
remaining tolerant to the insertion of new monomers, ribosomes, or
reshaping of the boundary. Brownian dynamics integration then
proceeds using run_hard_FENE to simulate the system with
stretching, bending, and twisting of the dsDNA polymer while
preventing strand-crossings. Following replication using the train-
track model (Figure 2B), the system is relaxed using the previously
mentioned protocol to resolve particle overlaps that may have resulted
from the addition of new monomers.

2.4.4 Simulations with SMC-looping and
topoisomerases

Given that SMC complexes and topoisomerases were
identified to be essential in Syn3A by transposon mutagenesis,
we developed a simulation method to describe their interaction
with the DNA at the scale of the full chromosome. Simulations of
systems that include SMC-looping and the action of
topoisomerases are performed using an algorithm that
iteratively alternates between updating loop locations,
minimizing the now non-equilibrium system’s energy, and
performing Brownian dynamics steps (Supplementary
Algorithm S2). We chose to use this approach because the
small timesteps (Δt = 0.1 ns) used to prevent strand-crossings
of the 10 bp monomers would otherwise prevent us from running
Brownian dynamics over timescales required for multiple loop-
extrusion steps that occur on the order of seconds (Ryu et al.,
2021). Intermittently, this process is stopped to run a set of
Brownian dynamics steps with DNA-DNA pair interactions
replaced by soft potentials permitting strand-crossings, run_
topoDNA_FENE (Table 5). This and similar approaches have
been used in previous studies to model the net effect of

TABLE 4 Energetic, spatial, and probabilistic parameters for SMC loops. All
simulation units are using “units real” in LAMMPS (Thompson et al., 2022).

Parameter Symbol Simulation units

Quantity Unit

equilibrium bond distance d0 4rDNA Å

grab radius rg 500.0 Å

average grab distance �d 3rg/4 Å

spring constant kl 2.61E-2 Kcal/(mol·Å2)

minimum loop length Lmin 5 # monomers

average 1D extrusion length Lext-avg 20 # monomers

maximum 1D extrusion length Lext-max 30 # monomers

unbinding probability punbind 0.0 n.d.
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topoisomerases (Goloborodko et al., 2016a; Mitra et al., 2022b).
We note that this better emulates topo-IV rather than gyrase, but
we feel this is appropriate given that topo-IV is known to
primarily decatenane replication products (Zechiedrich et al.,
1997; Cebrián et al., 2015). The number of loops, duration of loop
simulations before updates (Δtloops), frequency of topoisomerase
runs (Ttopo), and duration of topoisomerase runs (ΔTloops) are
specified by the user. For the simulations in this study we used the
following values in units of timesteps: Δtloops = 10,000, Ttopo =
50,000, Δtloops = 50,000. Additionally, this algorithm was
restarted every 100,000 timesteps to sample new locations for
the loop anchors. Simulations show that increased loop numbers
lead to greater chromosome compaction (Figure 1E), with
100 loops reducing the windowed radius of gyration by
approximately 35% relative to the case with 0 loops.

2.5 Replication states

Beyond the configurational state of the chromosome, we wish to
consider the replication state of the chromosome system. We will
use a binary tree model (Taylor and Garnier, 2009) (Figure 2A),
where the replication state is described by the extent of replication
for each of the possible Oris. The Oris are labeled by their lineage
relative to the mother chromosome (m), i.e., the root of the tree. For
example, replication of the mother chromosome produces two new
daughter Oris, a left daughter (ml) and a right daughter (mr). This
pattern continues for subsequent generations, i.e., the mother’s right
daughter (mr) will create the daughter Oris labeled mrl and mrr
when it undergoes replication (Figure 2A). Aside from the initial
mother chromosome, we uniformly refer to Oris represented as
leaves in the binary tree (Figure 2A) as “daughters” and use the label
to describe the generation, i.e., a daughter (ml) vs. a
granddaughter (mrl).

If we assume the mother is the zero-th generation, we can
write the space of labels for the q-th generation as Iq= {I0, I1, . . ., Iq−1, Iq},
where I0 =m and Ij ∈ (l, r) for all j > 0. This is essentially a q-dimensional
vector of binary values (the zero-th element is trivially constant), but for
clarity we will write it as a list of labels selecting the left/right daughters at
each generation. If we have a chromosome in the q-th generationwith the
label iq, then we denote the labels of its daughters in the (q + 1)-th
generation as iql and iqr. Conversely, if we have a chromosome in the q-th

generation with label iq, then we denote the label of its mother in the (q −
1)-th generation as iq(−) .

The genomic content of any daughter chromosome is
determined by the extent of replication of its mother. i.e., the
genomic content of the chromosome labeled iq is determined by
the extent of replication, ρ, of the chromosome labeled iq(−) . Given
this, the replication microstate of some general chromosome system
with a maximum generation of q is given by the vector

ρq � ρcwi0 , ρ
ccw
i0

,{
ρcwi0l , ρ

ccw
i0l

, ρcwi0r , ρ
ccw
i0r

,
ρcwi1l , ρ

ccw
i1l

, ρcwi1r , ρ
ccw
i1r

,

..

.

ρcwi(q−1)l , ρ
ccw
i(q−1)l , ρ

cw
i(q−1)r , ρ

ccw
i(q−1)r},

(2.12)

where ρcwi and ρccwi denote the extent of replication in the clockwise
and counter-clockwise directions, respectively, of the chromosome
with the label i. For example, replication state 2 in Figure 2A is a
replicating chromosome with replication proceeding from theOri to
the Ter in both clockwise and counter-clockwise directions. For
notational convenience, it is assumed that iq includes all variations of
labels in the q-th generation. For example, i2 includes {mll, mlr,mrl,
mrr} and i2l includes all 4 possible left daughters originating from the
chromosomes with these labels. The number of dimensions of ρq
increases geometrically as a function of the number of considered
generations as 2q. We purposefully neglect to include the terms for
replication extents deeper in the binary tree that are trivially zero.

The replication microstates are subject to two constraints. First,
the extent of replication of the daughter chromosome with label is
may not exceed that of its mother with label is(−) , i.e.,

ρcwis < ρcwis −( ) and ρccwis
< ρccwis −( ) . (2.13)

this constraint is included because it is physically impossible for a
daughter to replicate DNA sequences that do not yet exist. Second,
the total replication extent, ρis, must be less than or equal to the total
genomic content of the chromosome, i.e.,

ρi � ρcwi + ρccwi ≤ 1. (2.14)
these two constraints guarantee that only physically realistic
replication states are permitted by the model. A change in
replication microstate is denoted as

TABLE 5 Models used during energy minimizations (minimize_“bonds_pairs”) and Brownian dynamics time-integrations (run_“bonds_pairs”) of the
system. Hard-pair interactions are used between boundary particles and all other particles for every model.

Model DNA bonds Pair interactions

DNA-DNA DNA-ribo ribo-ribo

soft_harmonic harmonic soft soft soft

soft_FENE FENE soft soft soft

hard_harmonic harmonic hard hard hard

hard_FENE FENE hard hard hard

topoDNA_harmonic harmonic topo hard hard

topoDNA_FENE FENE topo hard hard
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Δρ � Δρcwi � a,Δρccwi � b,Δρcwj � c,Δρccwj � d, . . .{ }, (2.15)

where only the forks with a nonzero change are included. Changes
that lead to replication states not satisfying the two constraints are
instead completed up to the maximum extent at which the
constraints are still satisified.

We have previously presented a formal definition of replication
microstates, we now turn to characterizing replication macrostates
using state variables that correspond to experimental measurements.
We begin this by defining a number of quantities that are measurable
by experiments for the replicationmicrostates. The totalDNAcontent of a
replicationmicrostate relative to theDNAcontent of a single, unreplicated
chromosome is given by

G ρq( ) � 1 + ∑
q−1

p�0
∑
i∈Ip

ρi( ) (2.16)

and corresponds to experimental measurements of the DNA
content, such as fluorescent intensity of stained DNA. The
number of Oris in a replication microstate is given by

NOri ρq( ) � 1 + ∑
q−1

p�0
∑
i∈Ip

Θ ρcwi + ρccwi( ), (2.17)

whereΘ is again the Heaviside step-function. The number of Ters in
a replication microstate is given by

NTer ρq( ) � 1 + ∑
q−1

p�0
∑
i∈Ip

Θ ρcwi − 1/2( ) + Θ ρccwi − 1/2( )[ ], (2.18)

the ratio of the most-replicated region to the least-replicated region
in a replication microstate is the number of Oris divided by the
number of Ters and is given by

ϒ ρq( ) � NOri ρq( )/NTer ρq( ) (2.19)

and corresponds to experimental measurements comparing the relative
quantities of target sequences, such as qPCR. Given experimental
measurements of the DNA content, Gexp. and ϒexp., in a population
of cells, and amaximum possible generation, p, we wish to determine the
distribution of replication microstates, P(ρ), whose ensemble averages
(〈G〉 and 〈ϒ〉) match these experimental constraints. In other words,
find P(ρ) such that

1 � 〈1〉 � ∑
{ρ}

P ρ( ) (2.20)

Gexp � 〈G〉 � ∑
{ρ}

G ρ( )P ρ( ) (2.21)

ϒexp � 〈ϒ〉 � ∑
{ρ}

ϒ ρ( )P ρ( ) (2.22)

are satisfied.

2.6 Train-track model of replication

In the “train-track” model of bacterial DNA replication
(Gogou et al., 2021), the replisomes are thought to
independently traverse the opposite arms of the mother
chromosome while replicating the DNA (Dingman, 1974).

Recent work has provided additional evidence for the train-
track model by imaging independently moving replisomes
using fluorescently labeled β-clamps (DnaN) in E. coli cells
with synchronized replication initiation (Japaridze et al.,
2020). We assume that DNA replication in Syn3A obeys the
train-track model due to the aforementioned experimental
evidence and the absence of multi-protein regulatory systems
coded for in the minimized genome (Breuer et al., 2019;
Thornburg et al., 2022).

In our implementation of the train-track model, monomers are
added to the left and right daughter chromosomes following
replication events by creating pairs of additional monomers
centered about the location of the mother’s corresponding
monomer (Figure 2B). For convenience, we will denote the
spatial coordinates of the i-th monomer of mother, left daughter,
and right daughter as xmi , x

l
i, and xri , respectively, and similarly

denote the orientation quaternions as qmi , q
l
i, and q

r
i . The coordinates

of the newly-replicated left and right daughter monomers are

xli � xmi + rDNA qmi êy qmi( )−1[ ]
and

xri � xmi − rDNA qmi êy qmi( )−1[ ], (2.23)

where êy is a quaternion whose scalar component is zero and vector
component is the unit basis vector in the y-direction. The
orientations of the newly-replicated left and right daughter
monomers are

qli � qmi and qri � qmi . (2.24)
This method is applicable to nontrivial replication states

(Figure 2A), efficiently replicates the chromosome in crowded
environments (Figure 2B), and can occur mid-simulation
(Supplementary Video SV2). Additionally, because this method is
based on the binary tree model, it can be applied for replication
events involving multiple forks (e.g.,
Δρ � {Δρcwm � 10,Δρccwm � 10,Δρcwml � 5,Δρcwml � 5}) by
hierarchically replicating the new monomers. The number of
monomers that will be replicated can range from 0 up to the
number of monomers of unreplicated DNA along the mother
chromosome.

For the purposes of this model, we neglect to include the
difference in the leading-versus lagging-strands, and model the
fork itself as a standard DNA monomer. We add a harmonic
angle potential of the form

Ub
fork � kfork θ − θ0( )2 (2.25)

between the following triplets of particles formed by the fork (f) and
three bonded monomers, mother (m), left (l), and right (r): (m-f-l),
(m-f-r), and (l-f-r). The parameters are θ0 = 2π/3 radians and kfork ×
(1 radian)2 = κb. Additionally, there are no torsional interactions
between (f-m), (f-r), or (f-l).

2.7 Chromosome segregation calculations

Given a pair of replication forks producing left and right
daughters, each of which may themselves be potentially
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undergoing replication, the sets of Nl and Nr replicated monomers
belonging to the left and right daughters are {xli} and {xri },
respectively. For example, in state 4 shown in Figure 2A, the
daughter sizes are Nl = 60 and Nr = 90 for fork m and Nl = 30
and Nr = 30 for fork mr. Segregation of the daughter chromosomes
can be investigated using these sets of coordinates for all pairs of
forks in a system with a nontrivial replication state by analyzing the
disentanglement and the partitioning.

2.7.1 Disentanglement
The number of monomers belonging to the same (s) daughter

within a radius, R, of the i-th replicated monomer of the left/right (l/
r) daughter are

n
s, l/r( )
i R( ) � ∑

N l/r( )

j�1,j≠i
Θ R − x

l/r( )
i

∣∣∣∣∣∣ − x
l/r( )

j

∣∣∣∣∣∣( ) (2.26)

and the number of monomers belonging to the opposite (o)
daughter within that radius are

n
o, l/r( )
i R( ) � ∑

N r/l( )

j�1
Θ R − x

l/r( )
i

∣∣∣∣∣∣ − x
r/l( )

j

∣∣∣∣∣∣( ). (2.27)

the fraction of monomers on the same daughter within the radius
about the i-th monomer is

φ
l/r( )

i R( ) � n
s, l/r( )
i R( )

n
s, l/r( )
i R( ) + N l/r( )/N r/l( )[ ] × n

o, l/r( )
i R( )

, (2.28)

the average fraction for each daughter is

�φ l/r( ) R( ) � 1
N l/r( )

∑
N l/r( )

i�1
φ

l/r( )
i R( ), (2.29)

and the degree of disentanglement (DoD) is a function of these

DoD R( ) � f �φl R( ), �φr R( )( ). (2.30)
we use the harmonic mean for this function as it provides a
conservative estimate, then shift and scale the result such that the
range of the degree of disentanglement is [0,1]

f �φl R( ), �φr R( )( ) � 2 ×
2 × �φl R( ) × �φr R( )[ ]

�φl R( ) + �φr R( ) − 1
2

( ). (2.31)

using this definition, 0 corresponds to a fully entangled system
that overlaps everywhere and 1 corresponds to a disentangled
system whose constituent parts are separated by at least a
distance R. When calculating the DoD for our system we use
R = 4rDNA.

2.7.2 Partitioning
We evaluate the extent to which the daughter chromosomes are

partitioned by calculating the distance between their centers of
mass (CoM)

dCoM � |X l
CoM − Xr

CoM|, (2.32)
where

X
l/r( )

CoM � 1
N l/r( )

∑
N l/r( )

i�1
x

l/r( )
i . (2.33)

the dCoM was then compared to a length-scale characteristic of what
we will refer to as an “ideal partitioning”. In an ideal partitioning, we
assume the daughters will occupy volumes that are proportional to
their relative sizes, Nl and Nr, in units of monomers and share a
planar interface with minimal surface area. Given a radius of the
spherical confinement, r, we then determine the distance between
their centers of mass in this ideal scenario, which we will refer to as
Lpartition(Nl, Nr, r) (Supplementary Material).

2.8 Intra- and inter-daughter contact
calculations

While the interactions between equivalent loci on daughter
chromosomes are distinguishable in the in silico model, they are
indistinguishable to most sequence-based experimental
techniques, such as 3C methods. However, efforts have been
made to resolve these interactions in eukaryotic systems with
sister-chromatid-sensitive Hi-C (Mitter et al., 2020) and bacterial
systems with recombinase assays (Lesterlin et al., 2012; Espinosa
et al., 2020; Oomen et al., 2020). We extend our methodology for
in silico contact maps (Supplementary Material) to the case of
replicating chromosomes by using the relative position within the
bond topology (Figure 2A) of the monomer identified as the Ori
to determine equivalent loci containing identical DNA sequences
on daughter chromosomes (Figure 3A). If F is the true contact
map encoding the entirety of all intra- and inter-daughter
interactions, then we will denote the sequence-equivalent map
reflecting 3C observations as ~F. The sequence-equivalent map is
determined by summing the contributions for each of the
possible interactions (Figure 3B) before rebalancing the
resulting matrix. Additionally, this methodology can be
further extended to address the determination of in silico
contact maps that represent a mixture of chromosomes in
different replication states (Supplementary Figures S6, S7) by
calculating weighted averages of sequence-equivalent maps,
which outside of isolated cases (Nagano et al., 2013; Ramani
et al., 2017; Kos et al., 2021), are what 3C libraries are ultimately
measuring within a population of unsynchronized cells.

2.9 Martini model preparation

Simulating a Martini model of the Syn3A chromosome
requires CG starting coordinates and a CG topology that
specifies all the bonded and non-bonded interactions of the
DNA model (Uusitalo et al., 2015). In traditional protocols,
both are generated by forward mapping an all-atom structure
to Martini resolution (Uusitalo et al., 2015; 2017; Kroon et al.,
2022). However, given the size of the chromosome, this approach
becomes infeasible. Thus we follow a strategy that splits the
generation of topology and coordinates into two separate steps.
First, we generate starting coordinates at Martini resolution
directly from the polymer model’s coordinates using a new
backmapping protocol. In the second step, the chromosome
topology is generated from the genome sequence. Both steps
are implemented in a Python package, Polyply, which focuses on
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facilitating the setup of MD simulation of complex polymer
systems (Grünewald et al., 2022).

2.9.1 Generation of the starting coordinates
The protocol for constructing coordinates for the chromosome

at Martini resolution starts with interpolating the 10 bp per
monomer polymer model generated as previously described
(Figure 4, step 1). To this end, a periodic B-spline, m(s), is fitted
to the monomer positions, {xi}, which represents the chromosome’s
helical axis (Dierckx, 1996; Virtanen et al., 2020). Along the helical
axis, the bp positions, {mj}, are sampled such that each segment of
the curve between monomer centers contains 10 bp spaced
equidistantly. Next, we align bp template coordinates at the
Martini level using the resulting bp positions. To properly align
the templates, we have to define the internal coordinates (ûj, f̂ j, v̂j)
for all the sampled positions (Figure 4, step 2).

In order to construct these internal coordinates, we use a
rotation minimizing frame (RMF). An RMF is a reference frame
that does not rotate around the instantaneous tangent of the curve
m(s), which is defined continuously along any B-spline. The stability
of an RMF is ideal for our application since discontinuities in the
orientation of consecutive bases will lead to an unrealistic
chromosome geometry. The RMF is constructed along the
sequence of bp positions, {mj}, using the double reflection
method outlined by (Wang W. et al., 2008). The paper describes
a simple and fast algorithm for approximating our chromosome’s
RMF with a global error in the order of O(h4), where h is the
distance between consecutive bps.

To apply the double reflection method and construct the RMF,
we first calculate the instantaneous tangent ûj on the bp positions

using numerical differentiation. To ensure the double reflection
method’s accuracy, the approximation error of the tangents ûj to the
true tangent vector, m′(s), must be of the order O(h5). Given an
arbitrary starting reference vector, the RMF can now be constructed
along the entire helical axis.

In order to transform the RMF to the internal coordinates of the
chromosome, we must apply two additional transformations to
the RMF. Since Syn3A′s chromosome is circular, the additional
boundary condition that has to be satisfied is the continuity
between the first and last bp’s internal coordinates. This
condition is realized by applying an additional twist per bp,
i.e., a rotation over ûi, to compensate for a possible
discontinuity in the RMF. Additionally, to incorporate the
intrinsic helical pitch of B-DNA, an additional twist of 34.3°

per bp is applied to each frame (Sinden, 1994). Approximating
the DNA’s intrinsic structure by a uniformly twisting double
helix is justified by the absence of NAPs in Syn3A, resulting in
the chromosome not sustaining any significant supercoiling
(Gilbert et al., 2021). Finally, using a rigid transformation,
templates of the Martini bps are placed on the sampled
positions and aligned to the corresponding internal
coordinates, building the starting coordinates of the Martini
chromosome model (Figure 4, step 3).

2.9.2 Generation of the chromosome topology
The topology at the Martini level comprises the bead-type

assignments (i.e., non-bonded interactions), the bonded
interactions, and possibly structural biases such as an elastic
network. The typical frameworks for generating topology files at
the Martini level take an all-atom structure as input (Brooks et al.,

FIGURE 3
In silico contact calculations for replicating chromosomes: (A) The true contact map, F, of intra- and inter-daughter interactions in a replicating
chromosome system with a nested theta structure. The system presented is replication state 4 in Figure 2A. Solid-colors indicate self-interactions of
daughter chromosomes and checkerboard patterns indicate interactions between pairs of daughter chromosomes. (B)Mapping of loci in contact map of
replicating chromosome system in (A) to equivalent loci with identical sequences in unreplicated system. The overlapping patterns are summed to
produce the sequence-equivalent contact map, ~F, that is equivalent to contact maps observed by sequence-based experimental methods.
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1983; Liwo et al., 1997; Case et al., 2005; Phillips et al., 2005; de Jong
et al., 2013; Machado and Pantano, 2016; Kroon et al., 2022;
Abraham et al., 2023). Subsequently, a connectivity graph is
generated from the distance matrix and valency-based rules.
From this graph, using the all-atom to Martini correspondence
defined in the mapping of the nucleobases, the Martini topology is
created. This process is called resolution transformation. Using the
complete all-atom connectivity graph makes procedures invariant to
molecular topology and allows the identification of chemical
modifications (e.g., methylation) on the fly. However, the
underlying subgraph isomorphism is an NP-complete problem.
Thus, while this procedure is very rigorous, it is not very efficient.

Instead, we extended the multiscale graph matching protocol
implemented in Polyply to dsDNA. In essence, the protocol
performs a resolution transformation from the residue graph to
target resolution, in this case, Martini. Utilizing the residue graph
gives the needed speed-up to handle polymers of the size of the
chromosome. Even though the algorithm still uses a subgraph
isomorphism, it is faster since it only works on the residue graph
instead of the full molecule graph. Using this algorithm, the
molecule topology is generated in two steps: 1) From a set of
provided building blocks, all bonded interactions and bead-type
assignments are determined for the individual nucleobases
(i.e., intra-residue). 2) Bonded interactions, which span multiple
residues, are assigned by finding all valid subgraph isomorphisms
between graph fragments that describe these inter-residue
interactions and the target graph at the residue level. For each
match, the bonded interactions are added to the topology.
Furthermore, the bead-types are also modified to account for the
links between residues where needed. The second strand is generated

in the same way by running the algorithm on the complementary
single-strand sequence.

The intra- and inter-residue graph fragments, referred to as
blocks and links, need to be provided to Polyply as input files. Thus
we have extended the Polyply library with data files that describe
DNA parameters for Martini2 (Uusitalo et al., 2015). Furthermore,
for convenience, Polyply was extended with a parser for .fasta and .ig
data files that describe DNA sequences. Most importantly, an
automatic recognition of circular DNA is possible when provided
with an .ig data file.

Finally, we note that all Martini DNA needs a secondary
structure stabilization (i.e., elastic network). Informed by the
generated starting coordinates of the Martini chromosome, an
elastic network connects nearby beads with harmonic bonds. A
simple auxiliary script was used to add the elastic network to the
already existing topology generated with Polyply.

2.9.3 Additional structural components
In addition to modeling the intrinsic dynamics of the

chromosomal DNA, the polymer model also captures the DNA
interacting with the cell membrane and ribosomes. For our Martini
chromosome model, these contributions can also explicitly be taken
into account with the same near-atomistic resolution. To model the
ribosomes, we use a bacterial homolog previously published by
(Uusitalo et al., 2017). Initially, we attempt to align the ribosomes
with their counterparts in the polymer model. In this step, steric
clashes with the chromosome can occur, which we resolve by
applying small random rigid body transformations to the
ribosomes. The translation length in this transformation acts as a
fudge factor, which slowly increases per failed iteration. Lastly, a

FIGURE 4
Martini backmapping protocol: Schematic depicting the steps in the protocol used to generate coordinates in the Martini representation. By
backmapping a dsDNA polymer model, the protocol efficiently creates a near-atomistic model of the entire chromosome. In the final output Martini
model at the far-right, each bp is represented by 7 purple beads for the nucleobases (3 per pyrimidine, 4 per purine) and 3 green beads for each backbone
(2 per sugar, 1 per phosphate), for a total of 13 Martini beads per bp (Uusitalo et al., 2015).
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realistic cell membrane is constructed using the TS2CG tool,
including both a realistic lipid composition and a representative
membrane protein density (Pezeshkian et al., 2020).

3 Results

3.1 Diffusion of ribosomes and DNA
monomers

The spatial heterogeneity of macromolecules and complexes
within the cell and the need for them to encounter one another via
diffusion strongly contribute to the stochastic nature of gene
expression. For example, a RNA polymerase (RNAP) must
diffuse to a gene to perform transcription and a mRNA and
ribosome must diffuse to one another to perform translation.
Some of these reactions can become coupled with one another,
such as multiple ribosomes reading the same mRNA (polysomes)
or a ribosome reading a nascent mRNA that is still being
transcribed from a RNAP (expressomes - coupled
transcription and translation) (O’Reilly et al., 2020). These
couplings have been observed to varying extents in multiple
bacteria. The proportion of ribosomes found in polysomes in
E. coli has been reported as high as 80% (Bremer and Dennis,
2008), and the proportion in an organism related to Syn3A,
Mycoplasma pneumoniae, has been reported as 26% (Xue et al.,
2022). Expressomes have been observed to a lesser extent, the
proportion of ribosomes participating in one only being 3% of
ribosomes in M. pneumoniae (O’Reilly et al., 2020). Based on
cryo-ET we estimated the proportion of ribosomes in polysomes
in Syn3A is 25%–40% and from prior simulations we estimate the
proportion of ribosomes in close enough proximity to the DNA
to form an expressome to be roughly 20% (Gilbert et al., 2021). In
the WS-WCM of Syn3A, polysomes were shown to be a critical
factor in accurately doubling the proteome over the course of a
cell cycle (Thornburg et al., 2022). Before we try to quantify how
the effects of these coupled mechanisms affect the spatial
organization and diffusion of the chromosome and ribosomes
(Mondal et al., 2011), here we quantify how the chromosome and
complete, intact ribosomes affect the diffusion of one another at
the scale of a whole Syn3A cell.

Simulations were performed on 50 replicate systems of
representative Syn3A cells with a radius of 200 nm, each of
which contained 500 uniformly distributed ribosomes and a
randomly-generated configuration of a single unreplicated
chromosome. Following an initial energy minimization of the
standard polymer model of the chromosome, bond (Us

i ), bending
(Ub

i ), and twisting (Ua
i and Ut

i ) interactions between all DNA
monomers were added/removed from the system for two test
cases, which we will refer to as “with bonds” and “without
bonds”, respectively. We analyzed the diffusion of DNA
monomers and ribosomes in two regions of the cell: 1) a central
spherical volume extending to 150 nm within which surface effects
are assumed to be negligible (Śmigiel et al., 2022) and 2) an outer
concentric spherical shell extending from 150 nm to 200 nm.
Particles are assigned to these shells using their initial
coordinates at t = 0. Mean-squared displacements of the DNA
monomers and ribosomes were calculated as ensemble averages

within each of the regions for each replicate system, these are the
transparent time-traces (Figures 5A, B), respectively. Least-squares
fits were then used to determine the Brownian diffusion constants,
D, and the power-law exponent, α, for the case of anomalous
diffusion (Barkai et al., 2012; Oliveira et al., 2019; Muñoz-Gil
et al., 2021) for each replicate (Supplementary Material). The
ensemble-averaged values across replicates are reported in the
legends (Figures 5A, B).

In the absence of bonds, the DNA monomers move
following nearly Brownian diffusion. Bonding the monomers
causes their motion to become sub-diffusive with α ≈ 0.79 for
both inner and outer regions (Figure 5A). Sub-diffusive motion
is an expected result for monomers within polymers, but Rouse
dynamics predict α = 0.5 for times shorter than the relaxation
time (Doi and Edwards, 1988). Our result agrees with theoretical
predictions (α = 0.75) for short-time segmental motion in stiff
worm-like chains with contour lengths much longer than their
persistence length (Berg, 1979) and experimental measurements
(α = 0.75) of large (relative to void) particle diffusion in
networks of stiff filaments (Amblard et al., 1996). We
repeated similar simulations using systems whose initial
conditions were generated without ribosomes to probe the
origin of DNA monomers’ sub-diffusive behavior in our
model. In the scenario without ribosomes the DNA
monomers are less sub-diffusive with α ≈ 0.85
(Supplementary Figure S4), which suggests sub-diffusive
motion is a result of the confined chromosome forming a
stiff polymer network. Our model’s deviation from observed
sub-diffusive behavior (α = 0.4) of chromosomal loci in E. coli
(Weber et al., 2010a) is likely a result of neglecting the
viscoelastic nature of the bacterial cytoplasm (Weber et al.,
2010b). These results for the DNA are observed for both the
inner and outer regions.

Ribosomes move sub-diffusively within the inner region of the
system without bonds and approach Brownian diffusion in the outer
region of the system without bonds, where the DNA density is lower.
When bonds are added to the system the ribosomes in the inner
region undergomotion closer to Brownian diffusion. Comparing the
radial distribution functions (Patrone and Rosch, 2017) of DNA
monomers about the ribosomes (Figure 5C; Supplementary
Material), we determined that this was a result of the system
with bonds creating a polymer mesh with persistent voids
(Sorichetti et al., 2020; Xiang et al., 2021) for the ribosomes to
diffuse within, in contrast to the case without bonds where the DNA
monomers rapidly diffuse and are closely crowded around the
ribosomes. It should be noted that the asymptotic approach of
the radial distribution functions in the outer shell approaching a
value less than one is expected due to the cutoff radius including
empty volumes outside the boundaries of the cell. The Brownian
diffusion constants of ribosomes in systems with bonds is within the
range of experimental measurements in other bacteria (Bakshi et al.,
2012; Sanamrad et al., 2014). No significant correlations between the
Brownian/anomalous diffusion of the DNA monomers and
ribosomes were observed, as can be seen by the covariance
ellipsoids and Pearson correlation coefficients reported in the
legends (Figure 5C). These were not repeated for the case of
chromosomes with loops and topoisomerase due to the non-
equilibrium nature of those simulations.
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3.2 Chromosome segregation

There is experimental evidence of chromosome segregation
during replication (Nielsen et al., 2006), and furthermore,
segregation of replicating chromosomes in nontrivial replication
states in E. coli (Youngren et al., 2014). For the purposes of this
study, we separate chromosome segregation into two effects: A) the

disentanglement of daughter chromosomes and B) the partitioning
of the daughter chromosomes’ centers of mass into different regions
of the mother cell. Both chromosome disentanglement through the
influence of compaction (Goloborodko et al., 2016b) caused by
DNA-looping (Marko, 2009; 2011; Goloborodko et al., 2016a;
Brahmachari and Marko, 2019) and the partitioning of
chromosomes through entropic repulsion of polymer topologies

FIGURE 5
Cell-scale diffusion of ribosomes and DNA monomers: 50 replicates of a system with an unreplicated 54,338 monomer chromosome in 200 nm
radius cell containing 500 uniformly distributed ribosomes were simulated. (A) Brownian and anomalous diffusion of DNA monomers with and without
bonds forming DNA polymer. For the two concentric spherical shells, dashed lines are the least-squares fits for the Brownian diffusion constant (linear-
linear) and anomalous diffusion power-law (log-log), respectively. (B) Brownian and anomalous diffusion of ribosomes with and without bonds
forming DNA polymer. For the two concentric spherical shells, dashed lines are the least-squares fits for the Brownian diffusion constant (linear-linear)
and anomalous diffusion power-law (log-log), respectively. (C) Correlations between DNA and ribosome diffusion with and without bonds forming DNA
polymer. Above are scatter plots with covariance ellipses for Brownian and anomalous diffusion, Pearson correlation coefficients are reported in the
legends. Below are estimates of the radial distribution function of DNA monomers about ribosomes, the dashed lines indicate the cutoff for WCA
interactions. Results are shown for the two concentric spherical shells.
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FIGURE 6
Disentanglement of daughter chromosomes during replication: (A) Replication progress (ρi � ρcwi + ρccwi ) as a function of time for the set of
simulations testing the influence of loop extrusion and topoisomerases on disentanglement. The corresponding binary tree representations of the
replication states are shown on the right. (B) Bond topology of the replicated system at t = Tf. (C) Mean degree of disentanglement as a function of
simulation time for the six cases (i-vi) considered (solid line), five replicate systems were simulated for each case (faint lines). The trace labeled m
corresponds to the entanglement ofml and its descendents (mll-purple,mlr-blue) withmr and its descendents (mrl-green,mrr-yellow),ml corresponds
to the entanglement of the replicated region of ml, i.e., the regions of mll (purple) and mlr (blue) connected by forks, and ml corresponds to the
entanglement of the replicated region ofmr, i.e., the regions ofmrl (green) andmrr (yellow) connected by forks. Snapshots of the final configurations at
t = Tf are shown above each plot, respectively.
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within confinements (Jun and Mulder, 2006; Jung and Ha, 2010;
Jung et al., 2012; Junier et al., 2013; Wasim et al., 2021; Mitra et al.,
2022a) have been previously been studied in computational settings.

We probed chromosome segregation using a toy system
approximately one-tenth the volume of a Syn3A cell with similar
number densities (90 nm radius, a single unreplicated 50,000 bp
chromosome, and 50 ribosomes). We carried out a series of
simulations to probe the essential nature of proteins hypothesized
to be necessary for simultaneous chromosome segregation during
replication. Over the course of the simulations, the 5,000 monomer
chromosome was replicated and the Ori to Ter ratio changed in the
following sequence I) 1:1, II) 2:1, III) 3:1, and IV) 4:2 (Figure 6A).
The final replication state is that of two fully replicated daughter
chromosomes, each of which are themselves in the process of
replication (Figure 6B), where the DNA content has more than
tripled to 16,000 monomers (160,000 bp). The number of loops
present in the systems were varied between 0, 10, and 20, and these
systems were then simulated with and without the action of
topoisomerases, for a total of six cases (i-vi in Figure 6C). Five
independently generated initial conditions were used to prepare five
replicate simulations per case, for a total of thirty simulations. Each
simulation was run until the final time of Tf = 2.0E+7 timesteps
using the looping and topoisomerase algorithm and parameters
described in Section 2.4, which corresponds to 2,000 extrusion
events for each loop present in the system. At every timestep, we
used the binary tree model to group monomers into left/right
daughters and their descendants, each with Nl and Nr monomers,
respectively, and used those groupings to analyze the
disentanglement and partitioning of the daughter chromosomes
about each set of replication forks (m,ml,mr). We have completed an
equivalent proof-of-concept simulation on the full system with
54,338 monomers in a 200 nm cell containing 500 ribosomes
(Supplementary Video SV2).

3.2.1 Disentanglement of daughter chromosomes
We calculated a metric describing the relative number of

contacts between different daugther chromosomes, which we will
refer to as the degree of disentanglement, as a function of simulation
time (Figure 6C) for all six cases. First, we note that for all cases the
degree of disentanglement exhibits abrupt decreases when portions
of the chromosome are replicated, i.e., each abrupt decrease is a
result of the step-wise increases in the replication state (Figure 6A).
This result was anticipated because daughter chromosomes are in
close spatial proximity as they are generated using the train-track
model (Figure 2B) and is consistent with experimental observations
of daughter(/sister) chromosome cohesion due to precatenanes in
the wake of the replication fork (Wang X. et al., 2008; Cebrián et al.,
2015). This effect would be less-pronounced if a smaller fraction of
the genome was replicated in each step. We find that both
topoisomerase and loop-extruding SMC protein complexes are
necessary for daughter chromosomes to be disentangled as
replication occurs. In cases i-iii without topoisomerases,
topological constraints cannot be resolved and the system
remains entangled (Figure 6C). Interestingly, while adding loops
in cases ii and iii assists in disentanglingml andmr about forkm, the
presence of loops increases the entanglements of mll with mlr about
fork ml and mrl with mrr about fork mr, respectively (Figure 6C).
Within our model, looping in the absence of topoisomerases is

deletrious for subsequent rounds of replication because enhanced
compaction increases the likelihood that topological constraints are
introduced during replication. However, including solely
topoisomerase in case iv is not effective at disentangling the
chromosome (Figure 6C). We hypothesize that this is because
diffusive motion is insufficient to cross strands when the soft
potential emulating topoisomerases in our model is active and
that loop-extrusion assists to isolate possible strand-crossings
before completing the crossings in subsequent extrusion steps to
resolve topological constraints. In cases v and vi, we find the greatest
degrees of disentanglement (Figure 6C). When comparing the
disentanglement of ml and mr about fork m between cases ii-iii
and v-vi, we find that a plateau is reached in cases ii-iii when the
topological constraints cannot be resolved (Figure 6C). In summary,
we find that systems require both topoisomerase and loops to
simultaneously disentangle all daughter chromosomes as they are
being replicated. Furthermore, increasing the number of loops
increases the rate of disentaglement, as seen in case vi versus v.
The trends quantified by the degree of disentanglement can also be
qualitatively observed in the snapshots of the final configurations at
t = Tf (Figure 6C). The degree of disentanglement was calculated for
the proof-of-concept simulation of the full chromosome
(Supplementary Video SV2) and shows the same behavior as the
cases (v and vi) with both SMC and topoisomerase (Supplementary
Figure S8).

3.2.2 Partitioning of daughter chromosomes
We calculated the Euclidean distance separating the daughters’

centers of mass relative to an ideal partitioning, Lpartition(Nl, Nr,
Rsphere), to assess the extent to which the daughter chromosomes had
been partitioned to different volumes within the cytoplasmic space
(Figure 7). If the daughters and their descendants have an equal
number of monomers (Nl =Nr), ideal partitioning would correspond
to them occupying identical hemispherical volumes (Supplementary
Figure S2). The daughters’ centers of mass would then be found at
the centroids of the hemispheres and separated by 3Rsphere/4. The
functional dependence of the ideal partitioning on Nl and Nr

accounts for possible asymmetries in nontrivial replication states,
such as states III and IV (Figure 6A). Similar to the results of the
degree of disentanglement (Figure 6C), we find that partitioning was
the most complete in case vi with topoisomerase and the greatest
number of loops (Figure 7). However, over the timescales simulated,
the distance separating the daughters’ centers of mass is still
relatively insignificant as compared to the size of the confining
volume. This can be observed qualitatively in the manner in which
the compacted globules of the disentangled daughters are folded
around one another (Figure 6C). Based on this, we conclude that
disentanglement is necessary for partitioning to occur, and due to
the necessity of topoisomerase and loops for disentanglement,
successful partitioning is also dependent on topoisomerase and
loops. However, absent a regulatory system introducing a spatial
heterogeneity or active force, the partitioning in our model proceeds
over a much longer time-scale than the disentanglement. This can be
seen in case vi, where the degree of disentanglement about forkm is
reaching a plateau near one, indicating that all that remains is an
interface between the now disentangled daughters (Figure 6C), while
the extent of partitioning has yet to reach half of the ideal distance,
Lpartition (Figure 7).
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3.2.3 Contact maps between daughter
chromosomes

Chromosome segregation was also investigated using
chromosome contact maps of the same replicating chromosome
systems. Contact maps were calculated at 250 bp resolution using
the configurations from 3Tf/4 ≤ t ≤ Tf (i.e., when the replication state
is constant) averaged over the five replicates for each case. We will
denote the true contact maps for cases iii (Figure 8A) and vi
(Figure 8B) as A and B and the sequence-equivalent maps as ~A
and ~B, respectively. For both cases we can observe inter-daughter
interactions indicated by the increased contact frequency within the
off-diagonal regions of the true maps. The inter-daughter contacts
are enriched in the case iii, where the system lacks topoisomerase,
particlularly between the Ters ofmll (unreplicated region ofml) and
mrl (unreplicated region of mr), which is consistent with our
findings when using the degree of disentanglement (Figure 6C)
and partitioning (Figure 7), and agree with experimental
observations of topo-IV modulating daughter(/sister) cohesion
(Lesterlin et al., 2012; Conin et al., 2022). Additionally, we can
calculate sequence-equivalent maps to determine how these inter-
daughter interactions would be represented in an experimental
contact map generated from a 3C library of cells in this
replication state, and under these topoisomerase conditions. The
sequence equivalent maps, ~A and ~B, retain the characteristic primary
diagonal and peaks at opposite corners indicative of circular
chromosomes (inset Figure 8C). The effect of inter-daughter

interactions are analyzed by comparing the average rates of loci
self-interactions between the true and sequence-equivalent maps.
The average loci self-interactions in true maps A and B are

∑iAii

N
� 0.083 and

∑iBii

N
� 0.091, (3.1)

respectively. The average loci self-interactions in sequence-
equivalent maps ~A and ~B are

∑i
~Aii

~N
� 0.146 and

∑i
~Bii

~N
� 0.121, (3.2)

respectively.
Confoundingly, while one might anticipate a higher rate of loci

self-interactions in ~B relative to ~A given the loci self-interactions in
the true maps, the opposite case is true due to contributions from the
inter-daughter interactions (Figure 8C), which are the result of
precatenanes in the replicated daughters (Wang X. et al., 2008;
Cebrián et al., 2015). This simple example is illustrative of how
experimental contact maps not only encode an ensemble of
chromosomes with different configurational states (Junier et al.,
2015; Sekelja et al., 2016), but also encode an ensemble extending
across an extra set of dimensions corresponding to the space of
replication states. Sequence-equivalent maps have the further benefit
of allowing one to observe changes in chromosome organization as a
system follows a trajectory in configurational and replication state
space. Using the simulations of case vi (Figure 6C), contact maps

FIGURE 7
Partitioning of daughter chromosomes during replication: Mean separation of daughters’ centers of mass (dCoM) relative to the length-scale of ideal
partitioning, Lpartition(Nl, Nr, Rsphere), in a spherical volume of daughters with Nl and Nr monomers as a function of simulation time for the six cases (i-vi)
considered (solid line), five replicate systems were simulated for each case (faint lines). The trace labeled m corresponds to the separation of ml and its
descendents (mll,mlr) withmr and its descendents (mrl,mrr),ml corresponds to the separation of the replicated region ofml, i.e., the regions ofmll
and mlr connected by forks, and ml corresponds to the separation of the replicated region of mr, i.e., the regions of mrl and mrr connected by forks
(Figure 6B).
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were calculated for ten time intervals of equal length
(Supplementary Figures S6, S7). We see that the approach to a
plateau in the degree of disentanglement (Figure 6C), which
indicates the system is approaching a decatenaned state, is
reflected in reduced differences in the sequence-equivalent
contact maps (Supplementary Figures S6, S7).

3.3 Martini model

Using our new backmapping protocol, a Martini model of the
Syn3A′s chromosome is constructed (Figure 9). With the aim of
performing a molecular dynamics (MD) simulation, both starting
configuration and topology are generated based on the previously
described polymer model and the genome’s sequence. The resulting
Martini model contains around 7 million Martini beads,
representing the 34 million atoms constituting the chromosome.

The chromosome model is energy minimized in vacuum using
Gromacs-2023 (Abraham et al., 2023). However, running an MD
simulation, additionally requires the solvation and charge
neutralization of the model. This step dramatically increases the
number of particles in the simulation to over 500 million Martini
beads. At the current stage, Gromacs can not handle systems of this
size, which restrains us from further exploring the dynamics of the
system.

However, to illustrate our DNA backmapping protocol, we
model and simulate the previously described toy chromosome
system of approximately one-tenth the size of the Syn3A. Before
applying our chromosome modeling protocol to this toy model, we
first sample an artificial 50 kbp sequence with the same relative
nucleobase frequency as the Syn3A genome. The resulting Martini
model is solvated in a 185 nm cubic box, neutralized, and
subsequently, a physiological salt concentration of 0.15 M NaCl is
added to the system. To incorporate the confinement effect of the
membrane on the chromosome, an additional spherical boundary
potential with a radius of 90 nm is added to the model. Note that in
the Martini version of the toy system, we omitted to model the
ribosomes.

The final simulation consists of approximately 50 million
Martini beads, representing over 500 million atoms (Figure 10A).
First, we energy minimize and equilibrate the system before starting
the production simulation, which is stable at a 20 fs timestep. In
total, the system is simulated for 50 ns We note that on this short
timescale, the chromosome will not fully equilibrate. Nevertheless,
we have the ability to confirm that our backmapped model is
consistent with the intended structure and observed sub-diffusive
motion (α ≈ 0.87) of 10 bp segments of the Martini dsDNA
(Supplementary Figure S5) that is consistent with the Brownian
dynamics simulations of the full chromosome in the absence of
ribosomes (Supplementary Figure S4).

A direct comparison between the polymer andMartini simulations
is possible by analyzing the models’ persistence lengths, lp. For the
Martini simulation, we determine the persistence length of the
chromosomal DNA by calculating the orientational correlation of
the bond vectors, ûi, connecting the centers of consecutive bps. In
an idealized worm-like chain approximation, we expect the bond
vectors to decorrelate exponentially along the chain,
〈ûi · ûi+j〉 � e−j〈l0〉/lp , where 〈l0〉 is the mean distance between bps.

FIGURE 8
Contact maps of replicating chromosomes: (A) True contact
map, A, for case iii (20 loops, without topoisomerase) of replicating
chromosome system in Figure 6C. (B) True contact map, B, for case vi
(20 loops, with topoisomerase) of replicating chromosome
system in Figure 6C. (C) Difference in sequence-equivalent contact
maps ~A and ~B, which are created by mapping A and B, respectively,
using the procedure illustrated in Figure 3B. Inset are the sequence-
equivalent maps, displayed after taking an element-wise square-root
to enhance visual clarity. Within A-C, the arrows along the colorbar
indicate the average value of the diagonal elements representing loci
self-interactions.
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However, calculating the bond vector correlations for the last
25 ns of the Martini simulation (Figure 10B) reveal a clear deviation
from this idealized model. An additional oscillatory contribution is
observed in the decay of the bond vector correlations, which can be

attributed to the geometric confinement of the chromosome by the
cell wall (Liu and Chakraborty, 2008; Cifra and Bleha, 2010; Castro-
Villarreal and Ramírez, 2021). The resulting decay trend is well-
captured by

FIGURE 9
Backmapping Martini model of entire Syn3A cell: Example backmapping of polymer model of 200 nm radius Syn3A cell with a single unreplicated
chromosome to near-atomistic resolution Martini representation using Polyply. For both representations we show the chromosome (yellow), ribosomes
(magenta), and membrane (blue). The membrane in the Lattice Microbes representation is shown using the 8 nm cubic subvolumes used for reaction-
diffusionmaster equation (RDME) simulations and themembrane in theMartini representation, which includes the lipid composition andmembrane
proteins of Syn3A (Thornburg et al., 2022), was generated using TS2CG (Pezeshkian et al., 2020). The two representations are complementary in that the
combined polymer-RDME model resolves cell-wide chemical transformations over timescales comparable to the cell-cycle by neglecting detailed
physical interactions among particles, while the Martini model alternatively resolves these detailed physical interactions among macromolecules over
shorter timescales.

FIGURE 10
Martini simulation of toy system: (A) Snapshot of Martini simulation of toy system. The system consists of approximately 50 million Martini
beads—chromosome 650,000 (yellow), water 50,528,240 (not shown), chloride ions 571,949 (blue), and sodium ions 671,949 (blue). The ions are only
displayed on the right-half to enhance visual clarity. (B) Plot of bond vector correlations as a function of bp separation along the polymer chain and the
least-squares fit of the effective persistence length, le, and confinement length scale, B.
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〈ûi · ûi+j〉 � e
−j〈l0〉

le · cos 2πj〈l0〉
B

( ), (3.3)

where le is the effective persistence length of the DNA, and B is a
length scale related to the confinement size (Liu and Chakraborty,
2008). By performing a least-squares fit of the model to our
simulation, we find le = (4.9 ± 0.3)E+01 nm and B = (1.291 ±
0.003)E+02 nm. Considering the 45 nm persistence length of the
polymer model, which is a chosen model parameter, we observe a
qualitative agreement between the two models. The quantitative
deviation can be attributed to the confinement reducing the
chromosome’s conformational space and increasing its effective
rigidity. In general, the measured le will be greater than or equal
to lp under confinement. However, the small amplitude of the
fluctuations in the measured bond vector correlations indicates a
moderate confinement regime, suggesting that le and lp are
comparable (Liu and Chakraborty, 2008).

4 Discussion

4.1 Study overview and methods

We developed a computational framework to investigate the
minimal required components for chromosome replication and
segregation in a genetically minimal bacterium, Syn3A. This
framework is built around six major components: 1) a method to
fold chromosomes around ribosome distributions originating from
cryo-ET or other experimental measurements (Supplementary
Figure S1), 2) an implementation of a 10 bp per monomer
polymer model of dsDNA that includes its intrinsic mechanical
properties (bending and twisting stiffness) and can be simulated
using Brownian dynamics (Figures 1A–C), 3) algorithms that
emulate the effect of known essential proteins that manipulate
the chromosome — DNA-looping SMC complexes and strand-
crossing type-II topoisomerases (Figure 1D; Supplementary
Algorithms S1, S2), 4) a binary tree model to systematically
describe nontrivial replication states and create accompanying 3D
physical structures obeying the polymer model (Figure 2), 5) in silico
chromosome contact maps of replicating chromosomes that capture
intra- and inter-daughter interactions (Figure 3), and 6) a procedure
mapping the chromosome to equivalent higher-resolution Martini
whole-cell models using Polyply (Figure 9).

4.2 Key findings

Using the binary tree model of replication states, we have created
a means to systematically describe nontrivial replication states that
are known to be present in bacteria (Cooper and Helmstetter, 1968;
Bremer and Dennis, 2008; Youngren et al., 2014). Previous
simulations of replicating chromosomes have used either a set of
fixed replication states (Wasim et al., 2021; 2023; Mitra et al., 2022b)
or a pre-defined replication protocol (Mitra et al., 2022a). Our
software implementation of this model enables users to create
physical models of these states with the bond topology of nested
theta structures (Figure 2A) and modify the states using
computational equivalents of biological processes (Figure 2B).

Furthermore, the aspects of the program used to create,
manipulate (replicate asymmetrically at specific forks, replicate
under well-stirred assumption), query (export bond topology, loci
for true and sequence-equivalent maps, counts of genomic regions,
etc.), and save replication states may be used independently from
simulations of a physical model, which allows other researchers to
use the program as a tool.

By combining the binary tree model with the Brownian
dynamics model of the chromosomal dsDNA, we have developed
a method to generate physics-based models of replicating
chromosomes at 10 bp resolution, and simulate their time-
evolution while undergoing diffusive motion and non-
equilibrium replication events. Cryo-ET of Syn3A demonstrated
that the ribosome distribution is near-uniform and the cytoplasm
appears denser than other bacteria (Gilbert et al., 2021) and the
chromosome itself, through excluded volume interactions with
other macromolecular complexes (Dersch et al., 2022) and
spatially localized transcription (Llopis et al., 2010), potentially
represents the greatest influence on spatially heterogeneous
reaction-diffusion processes within simulations of Syn3A
(Thornburg et al., 2022).

After folding chromosomes organized as a fractal globule
around ribosomes positions from cryo-ET (Gilbert et al., 2021),
we measured the diffusion of complete 70S bacterial ribosomes. We
find that configurations of the chromosomes create polymer
meshworks that have voids containing ribosomes. Within these
voids the ribosomes undergo nearly Brownianmotion with diffusion
constants lower than those observed in E. coli (Bakshi et al., 2012).
We find that non-specific DNA-looping in the absence of a parABS
system compacts the chromosome, with the assumed number of
loops based on proteomics of SMC-scpAB components (Table 1)
reducing the radius of gyration of 100-monomer segments by
approximately 35% (Figure 1E). Although this compaction is
substantial, the chromosome can be still be replicated using our
implementation of the train-track model without issues.

In the context of our model, we find that both DNA-looping
and strand-crossings are necessary for the segregation of
daughter chromosomes during and after replication, which is
in agreement with Syn3A′s gene essentiality data for SMC-
complexes and type-II topoisomerases from transposon
mutagenesis experiments (Breuer et al., 2019). We analyzed
the time-course of chromosome segregation in a toy system by
dividing it into two processes, disentanglement of the daughter
chromosomes (Figure 6) and partitioning of the daughter
chromosomes into distinct volumes (Figure 7). The system
cannot be disentangled when no loops are present. Increasing
the number of loops leads to disentanglement of the first
generation of daughters, but that process will stall if
topoisomerase is absent and the topological restraints cannot
be resolved (Figure 6C), which is in agreement with experiments
(Wang X. et al., 2008). Additionally, if there are loops and no
topoisomerase, subsequent generations will be even more
entangled due to replication occurring in the daughters
already compacted by loops (Figure 6C). This coordinated role
between SMC complexes and topo-IV has been observed in E. coli
(Zawadzki et al., 2015; Nolivos et al., 2016; Mäkelä and Sherratt,
2020). Identical behavior is observed in the partitioning of the
daughters (Figure 7), but the partitioning occurs over a slower
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timescale than the disentanglement, with the partitioning less
than 50% complete on average in case vi, where the daughters are
almost completely disentangled. Based on this, successful
disentanglement is necessary in our model for partitioning to
proceed. It is qualitatively clear that partitioning lags behind
disentanglement in the proof-of-concept simulation of the full
chromosome undergoing simultaneous replication and
segregation (Supplementary Video SV2), but we are
encouraged by the preliminary result for the degree of
disentanglement demonstrating that SMC complexes and
topo-IV are sufficient at the chromosome-scale
(Supplementary Figure S8).

Overall, these findings regarding the influence of SMC
complexes and topoisomerases on chromosome segregation are
consistent with computational studies of eukaryotic sister
chromatids (Goloborodko et al., 2016a) and show that the same
mechanisms are capable of segregating nested theta structures in
bacteria. While wemodel the chromosome as a homopolymer rather
than a heteropolymer, the energy landscape picture of proteins
within a funnel (Bryngelson et al., 1995; Onuchic et al., 1997) is
relevant when interpreting the process of chromosome segregation.
The ATP-consuming process of loop-extrusion isolates knots and
causes the system to approach energetic barriers representing these
topological restraints within the system. Our model’s periodic action
of topoisomerases then lowers the barriers and loop-extrusion drives
the system over the lowered barriers. We found that neither of these
effects is sufficient in isolation, and the combination of ATP-
consuming driving forces and lowered barriers enable the
departure from a local energy minimum with a more-knotted
topology into a new energy minimum with a less-knotted
topology, which is consistent with previous computational studies
on knotted chromosome topologies (Racko et al., 2018; Orlandini
et al., 2019). These processes are akin to the role of protein-folding
chaperones in resolving kinetically trapped misfolded proteins in a
rugged energy landscape (Todd et al., 1996; Thirumalai et al., 2019).

Previous studies have calculated in silico chromosome contact
maps of replicating bacterial chromosomes (Wasim et al., 2021;
2023), but to the best of our knowledge, did not include inter-
daughter contacts. Using our model, we have created a procedure to
calculate true maps that include inter-daughter contacts and convert
those maps extending over the full DNA content of the replicating
chromosome system back to the sequence-equivalent maps that
would bemeasured by experimental 3Cmethods (Figure 3). This not
only elucidates variations in the sequence-equivalent maps due to
differing spatial organization of chromosomes in identical
replication states (Figure 8), but also enables the comparison of
maps originating from chromosomes in different replication states
and the creation of maps representing a mixture of replication states.
Features in contact maps that are attributed to processes during
replication and chromosome segregation have been previously
reported in synchronized Caulobacter crescentus cells (Le et al.,
2013) and E. coli topo-IV knockout studies (Conin et al., 2022).

Using Polyply, we showed that we can obtain a starting structure
of the entire Syn3A chromosome at near-atomic resolution, ready
for subsequent sampling of its configuration space using molecular
dynamics. Previous dynamics simulations of entire chromosomes
are either based on simplified (1-2 bead per bp) models or are

restricted to simulating smaller, viral genomes and nanostructures
(Maffeo and Aksimentiev, 2020; Sengar et al., 2021).

4.3 Limitations

There is no sequence-specificity in the homopolymer model
of replicating chromosomes beyond specific landmark
monomers such as Oris and Ters, and there is no means to
represent ssDNA. This limitation precludes us from modeling
the unique molecular structures of the bubble during
replication initation (Shimizu et al., 2016) and replisome
during replication (Maffeo et al., 2022). The essentiality of
HU in Syn3A despite its reduced proteomics count and high-
affinity for structurally deformed DNA (Kamashev, 2000)
suggests a role in DNA replication, which is further
supported by the Ori:Ter ratio of B. subtilis being reduced
upon HU deletion (Karaboja and Wang, 2022). However, in
contrast to E. coli where HU/IHF has a well-defined role of
stabilizing bent dsDNA in DnaA-based replication at an oriC
(Yoshida et al., 2023), there is a lack of clarity regarding HU’s
role in Syn3A′s more minimalistic oriC (Richardson et al., 2019;
Thornburg et al., 2019). In a similar vein, although the binary
tree model fully describes topologies of nontrivial replication
states that may be undergoing asymmetric replication, the
absence of ssDNA prevents us from making the distinction
between leading and lagging strands, which would be at the
extreme end in opposite directions (clockwise vs. counter-
clockwise) on the left and right daughters.

In the chromosome-scale polymer model, we neglected
hydrodynamic interactions and did not directly include
electrostatics beyond the parameterization of the persistence
length, we feel the ability to backmap the system to a Martini
representation with near-atomistic detail helps resolve this
deficiency by providing information about the effect of
neglecting those interactions. In particular, to address the
viscoelastic nature of the medium, which was neglected in the
Brownian dynamics model, one could simulate the polymer
model using dissipative particle dynamics (DPD) (Español and
Warren, 2017), where the memory function encoding non-
Markovian dynamics due to the medium is constructed
(Klippenstein et al., 2021) from whole-cell Martini simulations
(Stevens et al., 2023). The Brownian dynamics timesteps (Δt =
0.1 ns) are much smaller than the timescales of loop-extrusion
events (~1 s) (Ryu et al., 2021), and vastly smaller than Syn3A′s
cell-cycle (~6600 s) (Breuer et al., 2019; Thornburg et al., 2022).
To circumvent this, we used energy minimizations to relax the
chromosome after non-equilibrium loop-extrusion steps, which
helped to accelerate the simulations. However, this came at the
cost of disconnecting the Brownian dynamics simulation time
from the biological time of the loop-extrusion events. The current
implementation of the code calls LAMMPS (Thompson et al.,
2022) to run the Brownian dynamic simulations using multiple
CPU-threads with OpenMP. Although this approach was
sufficiently fast, in the course of the study it has become clear
that moving the simulations to the GPU would offer a significant
improvement.
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4.4 Future directions

Now that we have created a computational model of Syn3A′s
chromosome that includes replication and segregation of
nontrivial replication states, we intend to integrate it with the
4D-WCM of Syn3A (Thornburg et al., 2022) to extend its
predictive capabilities to the full cell-cycle. Information
concerning the spatial coordinates of the replicating genome
will be sent to the 4D-WCM and information regarding
reaction events will be returned, similar approaches have been
used by other researchers (Popov et al., 2016). Two immediate
applications are the modeling of DnaA filamentation leading to
formation of the replication bubble and the dynamic formation of
polysomes based on translational activity. Given the absence of
regulatory elements in Syn3A, an open-question is if the
arrangement of genes can serve as a means of regulation
(Chatterjee et al., 2021; Geng et al., 2022) as a result of the
mechanochemical coupling between transcription and
supercoiling (Chong et al., 2014; Kim et al., 2019). Following
transcription events in the 4D-WCM, dynamically applying
torsional strain to the chromosome model would enable local
configurational changes in genes, thereby modulating their
transcriptional propensity.

While the methods described in this study enable us to calculate
in silico chromosome contact maps whose Ori:Ter ratio matches
experimental qPCRmeasurements of 3.4 (Thornburg et al., 2022) by
using a mixture of replication states with different ratios, there is a
lack of clarity about relative weights of these states. Furthermore,
there are a vast multitude of compatible replication microstates for
each Ori:Ter ratio. Given that we now have a means to generate
sequence-equivalent in silico contact maps of chromosomes in
different replication states, this motivates the development of a
protocol to deconvolve experimental maps generated from
populations of unsynchronized cells (Junier et al., 2015; Sefer
et al., 2016; Carstens et al., 2020; Zhou et al., 2021; Rowland
et al., 2022) to determine the subpopulations of cells in different
replication states. The respective replication states would then be
found by an inversion of subpopulation contact maps
(Supplementary Figures S6, S7) from their sequence-equivalent
form to the true contact maps (Figure 3). We note that this
proposed methodology faces two challenges: 1) the solution
requires knowledge of sequence-equivalent contact maps for
replication microstates and 2) even with that information, the
problem likely remains underdetermined if only subject to the
example set of constraints (Section 2.5) and not more
informative constraints such as DNA abundance distributions
(Bhat et al., 2022). Assuming further performance improvements
of the simulation software, this study helps to address the first issue,
but the second issue will need to be resolved.

All simulations of chromosome segregation in this study used a
spherical confinement reflecting the observed morphology of SynX-
series (Gilbert et al., 2021; Pelletier et al., 2021) and M. mycoides
(Rideau et al., 2022) cells. Varying confinement over the cell-cycle
will allow us to test entropic segregation in shapes with long aspect-
ratios (Jun and Mulder, 2006; Jung and Ha, 2010; Jung et al., 2012;
Youngren et al., 2014).

Simulations with the Martini model are limited in the
description of DNA strand hybridization. To keep the strands

together, an elastic network is used. Ongoing efforts are directed
to include additional (virtual) bead types that provide a more
accurate description of the directed hydrogen bonds that give rise
to specific base pairing. Another challenge is to capture the
replicating chromosome when creating whole-cell Martini models
of different stages of the cell cycle. To this end, a Martini model of a
complete replisome has to be constructed and integrated into our
chromosome modeling protocol. As part of our DNA backmapping
algorithm, we plan to support the incorporation of protein-DNA
complexes, thereby facilitating the construction of complete
replication forks.
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Many important processes in biology, such as signaling and gene regulation, can
be described using logic models. These logic models are typically built to
behaviorally emulate experimentally observed phenotypes, which are assumed
to be steady states of a biological system. Most models are built by hand and
therefore researchers are only able to consider one or perhaps a few potential
mechanisms. We present a method to automatically synthesize Boolean logic
models with a specified set of steady states. Our method, called MC-Boomer, is
based on Monte Carlo Tree Search an efficient, parallel search method using
reinforcement learning. Our approach enables users to constrain the model
search space using prior knowledge or biochemical interaction databases, thus
leading to generation of biologically plausible mechanistic hypotheses. Our
approach can generate very large numbers of data-consistent models. To help
develop mechanistic insight from these models, we developed analytical tools for
multi-model inference and model selection. These tools reveal the key sets of
interactions that govern the behavior of the models. We demonstrate that MC-
Boomer works well at reconstructing randomly generated models. Then, using
single time point measurements and reasonable biological constraints, our
method generates hundreds of thousands of candidate models that match
experimentally validated in-vivo behaviors of the Drosophila segment polarity
network. Finally we outline how our multi-model analysis procedures elucidate
potentially novel biological mechanisms and provide opportunities for model-
driven experimental validation.

KEYWORDS

MCTS algorithm, Boolean model, model inference, Drosophila development, segment
polarity network, multi-model inference

1 Introduction

Technological advances in high throughput sequencing have significantly increased the
amount of data available to biologists. However, the systems of molecular interactions that
generate many cellular phenotypes remain poorly understood. This lack of understanding is
a particularly pressing problem for diseases such as cancer, in which small genetic
perturbations can have drastic clinical consequences. In order to understand and
potentially intervene in the mechanisms by which cellular systems become dysregulated,
one must first create a hypothesis of the system’s interactions.
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Given the complexity and non-linearity of many biological
systems, computational models are a key tool for hypothesis
generation and testing, allowing in silico perturbation and
experimentation. Much previous work has shown the value of
computational models of cellular systems for both understanding
mechanisms and predicting cellular response to perturbation (Sáez-
Rodríguez et al., 2007; Schlatter et al., 2009; Béal et al., 2019).

However, manually creating these computational models can be
time consuming and difficult for several reasons. First, selecting a set
of interactions that lead to the desired behavior is challenging due to
the vast number of possible interactions. Further, introducing a new
interaction can create feedback loops that change the model’s
behavior in unintuitive ways. Finally, data is often limited, only
covering a limited set of conditions. Thus, many possible model
configurations may have behavior that matches the (limited) data
equally well. In order to have a reasonable chance of finding a model
that captures an accurate representation of the biological system,
including in conditions outside the given data, onemust create many
models.

Thus, automated model synthesis is desirable as it alleviates the
difficulty of manually constructing a wide variety of models that are
consistent with data. However, an efficient search algorithm is
required to synthesize data-consistent models from the vast space
of possible Boolean models. In this work, we focus on automatic
synthesis of Boolean models (Kauffman, 1969).

Approaches to inferring Boolean models with data-consistent
behavior can be divided into two categories: constraint solving and
optimization. Constraint solving basedmethods pose the problem as
a series of mathematical constraints, e.g., that the update functions
must be consistent with steady states described in the data. These
constraints are typically encoded as Boolean logic equations or in a
more abstract formalism such as answer set programming (ASP)
(Chevalier et al., 2020; 2019) or satisfiability modulo theories (SMT)
problems (Fisher et al., 2015; Yordanov et al., 2016). Specialized
solvers then find a set of models which satisfy all the constraints
specified by the data and the modeling assumptions.

Optimization methods use general purpose discrete
optimization algorithms to generate Boolean models, which are
then scored according to a user-defined objective function
(incorporating, e.g., similarity to data or model complexity). The
optimization algorithms then generate new models which are
variations of the best scoring models (Terfve et al., 2012; Lim
et al., 2016).

Inspired by recent work in reinforcement learning for games,
which also have combinatorially large search spaces, we
investigate Monte Carlo Tree Search (MCTS) for Boolean
model synthesis. Our method uses MCTS to iteratively build
Boolean models by adding interactions to the model’s update
rules, similar to the way this algorithm is used to select moves in
the games of chess or Go (Gelly et al., 2006). We show that MCTS
works well for a wide variety of input data and model structures
by testing the algorithm’s ability to recover randomly generated
Boolean models. Further, we show that it works for a more
biologically realistic scenario: generating multi-cellular models
of the Drosophila segment polarity network. Our method
generated hundreds of thousands of models of the segment
polarity network that are all consistent with experimental
observations.

Having created a large collection of data-consistent models, one
must derive some insight into the key interactions or mechanisms
which drive their behavior. This is itself a challenging pattern
recognition problem, which we address by developing data driven
methods to extract mechanisms from models. Specifically, we
present methods for clustering models based on the structure of
their interactions. Using the structural clustering, our methods
reveal the key interactions that control model behavior. We use
this analysis to develop a novel hypothesis for the mechanism of
regulation of the wg gene by isoforms of CI in Drosophila.

We call this pipeline of automated model generation and
mechanism exploration MC-Boomer, or Monte Carlo Boolean
Modeler.

Our method differs from previous approaches in several key
ways. First, we use a heuristic optimization method, in contrast to
linear programming or satisfiability solver based approaches. This
allows us to trivially encode more complex model dynamics (e.g.,
multi-cellularity) and constraints on the form of update rules.
Further, our optimization approach requires simulation of all
models, giving us a view into the state spaces of our models.
This allows us to characterize models according their behavior
between initial conditions and steady states, yielding greater
insight into populations of models that all have similar steady
states. This comes at the cost of greater required computational
resources compared to methods based on specialized constraint
solvers. However, our method is trivially parallelizable, which we
exploit to find large numbers of data-consistent models in a
reasonable time frame. Finally, our optimization based approach
immediately generates models that are partial matches to the
experimental data. In contrast, constraint solvers may neglect
useful models that do not perfectly satisfy constraints, even when
those constraints are mis-specified or based on noisy data. In the
worst case, constraint solvers may yield zero models after a lengthy
search, while our approach yields a spectrum of models of varying
complexity and goodness of fit to the data.

More generally, the computational problem that MC-Boomer
solves can be framed as follows: Boolean models are comprised of
mathematical, logical equations that are instantiated and simulated
as computer programs. Our approach constructs the update
equations of a Boolean model, simulates its behavior, and
compares this behavior to a reference dataset. Following this
definition, Boolean model synthesis can also be considered a
particular form of the more general problems of program
synthesis or symbolic regression. These fields are concerned with
generating programmatic or mathematical expressions whose
behavior is consistent with a given data set. More broadly, this
fits into the category of non-linear discrete optimization problems.
Consequently, we note MCTS has been shown to perform well for
program synthesis, comparable to established search algorithms
such as genetic programming (Lim and Yoo, 2016). Further,
previous empirical comparisons of MCTS and genetic algorithms
in two discrete optimization problems show that while MCTS is not
strictly better performing, it does produce good results more quickly
(Höfer, 2020) and produces more diverse solutions (Bosc et al.,
2018) than genetic algorithms. These two features of MCTS are
critical in allowing MC-Boomer to generate a large number of
diverse Boolean models of biological systems. This is a key
advancement of MC-Boomer compared to conceptually similar
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optimization based approaches to Boolean model synthesis such as
BTR (Lim et al., 2016) and PRUNET (Rodriguez et al., 2015). These
previous approaches to Boolean model synthesis focus on finding a
single model with a good fit to the data. In contrast, the efficiency of
MCTS allows MC-Boomer to find large numbers of models that fit
the data well. Thus, we are able to make inferences about possible
mechanisms of biological systems that are based on families of
thousands of potential models. Another previous approach (Saez-
Rodriguez et al., 2009) considers the relative probabilities of
individual interactions, based on the whole population of data-
consistent models. However, we investigate model structures with
more sophisticated and fine-grained analyses, such as structure-
based clustering and clustering interpretability methods.

2 Boolean models

Here we provide a brief introduction to Boolean models.
Boolean models are two-state, discrete dynamical systems, with
the state update equations defined by Boolean logic. We provide
a simple example below, which has three species and their
corresponding update rules.

At+1 � Bt and Ct

Bt+1 � Ct

Ct+1 � At or not Bt
(1)

Each node has a state, which can be false or true (equivalently zero
or one). The next state of the system, at time t + 1, is determined by the
value of the update equations applied to the current state (time t) of the
species. Updating every state at every time step is called synchronous
updating. Repeatedly applying synchronous updates gives a simulation
trajectory, which is guaranteed to converge to an attractor state or a
cyclic attractor (Albert et al., 2008). An attractor is a fixed point: a state
which does not change after the update equations are applied. A cyclic
attractor is a cycle of states, which periodically repeats as the update
equations are applied. Applying synchronous updating to the example
three species model (with an arbitrary initial state) gives the four step
simulation trajectory as shown in Table 1, with the last two steps
representing an attractor with all node states equal to one.

We restrict the form of our Boolean update functions to only
“dominant inhibition”, having the form:

xt+1 =(actt0 or act
t
1 or . . . act

t
n) and not (inh

t
0 or inh

t
1 or . . . inh

t
m)

Here, x is the species in the model that will be updated, actt1 ...n
and inht1 ...m are the states (at time t) of other species in the network
that regulate the target node. Both acti and inhi can be a single
species or composites of two or more species connected by an and
clause, e.g., (a and b). A node is activated at t + 1 only if one or more

of its activators is active and no inhibitors are active at t. In the rest of
the paper, we use green arrows to show activating interactions and
red arrows to show inhibiting interactions in model figures.

The goal of our framework, MC-Boomer, is to automatically
generate these models so that their attractor states are similar to
observed or reference gene expression data.

3 Methods

Here we describe the components of our framework for
automated generation and exploration of mechanistic hypotheses,
which we call MC-Boomer (Monte Carlo Boolean Modeler). As
shown in Figure 1, our framework consists of three steps: gathering
data and prior knowledge (Figure 1, left), using Monte Carlo Tree
Search to generate and test model hypotheses (Figure 1, middle), and
finally analyzing the model collection using data-driven and multi-
model inference approaches (Figure 1, right). The first step involves
collecting data describing the state of a biological system (e.g., RNA
or protein expression), as well as delineating constraints on the
possible interactions between components of the biological system.
In this section, we primarily describe the second step, the
algorithmic components involved in generating models. We
describe the third step, analysis of the models generated by
MCTS, in more detail in the Results (Section 4), as part of our
analysis of the segment polarity network.

We separate our discussion of model generation (Figure 1,
middle) into three sections: simulation, scoring, and search. We
simulate our models with Boolean update rules, introduce a novel
edit distance for scoring, and use Monte Carlo Tree Search (MCTS)
for search. Below we will describe each component in more detail.

3.1 Simulation

A Boolean model is composed of logic rules that determine the
state of each species in the system at the next step. We use
synchronous updating which updates the state of every species of
the model at each step. Synchronous updating is deterministic and is
guaranteed to reach either a single stable attractor state or a sequence
of periodically repeating states, called a cyclic attractor (Albert et al.,
2008). We detect both stable and cyclic attractors by recording the
simulation state history and halting the simulation when the current
state matches a previously simulated state.

Each Boolean model generated by MCTS is simulated once from
each initial state specified by the user. Each simulation proceeds
from its initial state until it converges to an attractor state (si). This
attractor state si is represented by a bit vector containing the Boolean
state (0/1, False/True) of each species in the model. Each initial state
may converge to a unique attractor or several may converge to the
same attractor. Thus, each attractor state observed in the simulations
has an occurrence count (cMi ), indicating the number of initial
states which converge to this attractor. Similarly, the states observed
in the reference data set must have associated occurrence
counts (cDj ) indicating the number of times they were observed
in the data.

A more comprehensive review of simulating biological systems
with Boolean networks can be found in Albert et al. (2008).

TABLE 1 Example Simulation of Boolean Model. This shows the states of a four
step simulation of the Boolean model shown in Equation 1.

t = 0 t = 1 t = 2 t = 3

A 1 0 1 1

B 0 1 1 1

C 1 1 1 1
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3.2 Scoring

We implemented an edit distance that compares reference data
to model steady states (described in Figure 2). This distance is used
to guide the MCTS search algorithm towards models that generate
steady states that are similar to the data.

Given a model, we simulate it as described above in Section 3.1.
This yields a set of attractor states and their occurrence counts. In
addition, we assume that the user has provided a set of reference
states and observation counts, derived from data or other
observations. Our similarity score calculates the total number of
state changes that are needed to transform the simulated attractor
states to be equivalent to the reference states and occurrence counts.
We describe our algorithm for calculating this similarity score
below.

At each step of the distance calculation, we calculate the cost
of transforming (i.e., editing) each simulated attractor state into
each reference state. An edit consists of changing the value of the
species in an simulated attractor state so that the simulated state
becomes equivalent to a state in the reference. The size of an edit
is the Manhattan distance between the bit vectors representing
the state of the individual species in each attractor, i.e., how many
species have different values in the simulated and reference
states. The total “cost” C of an edit is the size of the edit
multiplied by the difference in the occurrence counts between
the simulated and reference states. This gives the total number of
state bit vector changes required to transform a simulated
attractor state into a reference state. At each step in the
scoring algorithm we apply the edit with minimum cost. We

apply the minimal cost edit by changing the count of the edited
simulation state and increasing the total cost by C. We then
repeat the process until all occurrence counts are equal between
simulation and data. By accumulating edit costs at each step we
obtain a total edit distance between simulated and measured
attractor sets. This is normalized between (0,1) by dividing by the
maximum possible edit distance |si|· Nc, where |si| is the number
species in the model and Nc is the sum of occurrence counts.

Dedit Asim, Aobs( ) � ∑Ne
k�1Ck

|si|Nc

where Ne is the number of edits required, and Ck is the cost of the
edit at step k. A graphical example of the edit distance calculation is
shown in Figure 2.

Note that algorithm described above assumes that the simulated
attractors are each single state attractors, rather than cycles. When
the model reaches a cyclic attractor state, we simply average all the
states in the cycle to obtain a single non-binary fractional state,
which is then used normally in the scoring algorithm. We justify the
choice to average cycles by assuming that the measurements used as
inputs for MC-Boomer are noisy snapshots of cellular states. Thus,
an average is a reasonable representation for multiple measurements
of variable, noisy processes.

3.3 Monte Carlo tree search

The core task of MC-Boomer is generating the update rules
of Boolean models such that the simulated attractor states of the

FIGURE 1
MC-Boomerworkflow. TheMC-Boomerworkflowconsists of three steps. The first is to gather data of the steady state expression levels of the genes
of interest. Additional prior knowledge about known relationships between genes can guide and constrain the second step, model generation. We use
Monte Carlo Tree Search to generate models (Section 3.3; Figure 3). The objective of search is to findmodels that have simulated attractor states that are
similar to data, asmeasured by an edit distance, described in Section 3.2. We test this algorithm’s ability to recover randommodels in Section 3.4. We
further apply the method to a more biologically realistic model: the Drosophila segment polarity network, described in Section 4.1. We analyze the
generated segment polarity models further in Sections 4.2 to extract structural features.
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generated models are similar to the observed, reference data.
MC-Boomer employs Monte Carlo Tree Search (MCTS) to
search the space of Boolean logic update rules. At each
iteration, MCTS probabilistically selects a new term to add to
one update equation of the model. In biological terms, this
corresponds to adding an activating or inhibiting interaction
between two genes in a regulatory network. MC-Boomer
maintains a list of valid interactions between genes (update
equation terms) that MCTS selects from, and this list is
regenerated after each iteration so that MCTS can not add

terms to the update equations that would result in
biologically implausible or invalid models. See Section 3.1 for
details on the mathematical form of the Boolean model update
rules. After adding the new interaction to the model, MC-
Boomer then simulates the model until it reaches a steady
state (see Section 3.1) and compares its similarity to data
(Section 3.2). Thus, the Boolean model update rules are
constructed by adding individual interactions to the model,
with the tree search guided by the simulation and similarity
scoring of each model.

FIGURE 2
Distance calculation for a systemwith five genes. Top row:Model attractors (left) are generated frommodel simulations. Themodel attractors will be
compared to attractors derived from the data (e.g., RNA expression) (middle left). Note that the data has three unique attractor states denotedDiwhile the
simulation only has two, denoted Mi. To calculate the first entry in the distance matrix (right) attractor states M1 and reference states D1 are compared.
Differences are assigned a “1” while matches are assigned a “0.” As shown, the distance between statesM1 and D1 is “3” because they differ at three
genes (C,D,E). Bottom boxes: Sequence of edits required to calculate the distance between simulation attractors (M) and data attractors (D). In the first
step (1), we choose an edit by selecting the smallest valid distance from the distancematrix. This edit changes one of theM1 attractors toD2, but these are
already identical, so the cost is zero. In step two (2) we select the next smallest distance (M2 toD1, with distance two) and change two attractors for a total
cost of four. In step three (3) and four (4) we continue the same process. Note that in step threewe removemultiple edits involvingM2 from consideration,
as all of the availableM2 states have been edited already. In step four, the new state exactly equalsD, so we halt the process with a final edit distance of ten.
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Each unique combination of interactions is represented by a
branch of the search tree. We show this graphically in Figure 3,
where each branch of the search tree is annotated with the unique
set of interactions that comprise the corresponding model.
Multiple rule proposals are enumerated during the search
(Figure 3 left, labels M1-M3). MCTS probabilistically chooses
which branches to continue expanding, based on a statistical
upper bound on the similarity score of models from each branch.
The upper bound is called the Upper Confidence bound for Trees
(UCT). The upper bound is approximated by tracking the
number of times a branch has been explored (visit count) and
the average similarity scores of models on each branch of the
search tree. These statistics and an example upper bound are
shown for each node in the search tree in Figure 3.

MCTS uses the upper bound to balance exploration of
different rules versus exploitation of rules that have already
produced high scores (Figure 3). The leftmost branch is
relatively unexplored but models on that branch have high
average similarity to the data. Thus, this branch has a high
upper bound and the MCTS algorithm will preferentially
explore and expand it. In contrast, the middle left branch has
low average similarity scores but a low visit count so the upper
bound is moderate, suggesting that MCTS may return to further
explore this branch. The middle right branch has low similarity,
but has been explored several times, yielding a very low upper
bound. This effectively prunes the branch from the search, as the
low upper bound corresponds to a low selection probability for
further exploration. This pruning is not absolute, as MCTS will
probabilistically explore all branches with a non-zero upper
bound, given enough iterations. Finally, the rightmost branch
has high scores, but has been visited many times, and so the upper
bound is close to the average score.

We implemented several modifications to standard MCTS that
have been shown to improve the algorithm’s performance. Notably

we used RAVE, a simple modification to the MCTS algorithm that
shares value estimates of actions across all branches of the search
tree (Gelly and Silver, 2011). Nested search uses the actions from the
best random rollout to choose the next step, rather than selecting
based on upper confidence bound (Rosin, 2011). Branch retention
keeps the upper confidence bound from previous search iterations
and reuses them for every subsequent search step. These methods
are described in more detail in the Supplementary Material.

3.4 Validation experiments

We performed two experiments to demonstrate MC-Boomer for
inferring Boolean models. In Section 3.4.2 and Section 3.4.3, we
randomly generated Boolean models of various sizes, then tested
MC-Boomer’s ability to recover the structure and behavior of the
random models. Then, in Section 4.1.1, we tested MC-Boomer’s
ability to recover the structure and behavior of the Drosophila
segment polarity network, a complex multicellular model that
accurately recapitulates key aspects of drosophila embryo
morphogenesis (Albert and Othmer, 2003).

3.4.1 Random model generation
We first tested whether MC-Boomer could find models with a

wide variety of behaviors and structures. We tested this by randomly
generating models, simulating them, and then applyingMC-Boomer
to generate models matching their steady states. We randomly
generated Boolean models with dominant inhibition update rules
by sampling uniformly from a list of all possible interactions
between sets of 8 or 16 species. Following this procedure, we
generated 80 random networks.

Before testing MC-Boomer on the randomly generated models,
we ensured that the attractor states of the random models had
realistic, diverse characteristics. The attractors reached by the

FIGURE 3
Monte Carlo Tree Search overview. On the left are the Boolean models corresponding to the branch of the search tree shown on the right, denoted
M1, M2, M3. At each node in the tree, we also show the average score of models on the branch and the number of times the MCTS algorithm has visited
the branch. These statistics are used to calculate the upper bound. In the bottom right, we show a conceptual overview of the functional form of the
upper bound. In short, MCTS will aggressively explore branches with high scores but low number of visits. More exploration (i.e., a higher visit count)
will progressively lower the upper bound until MCTS chooses another branch to explore.
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random models do not collapse to an all active or inactive state, and
instead have roughly one-third active species (as shown in
Supplementary Table S2). We consider the characteristics of
these attractors to be biologically relevant, similar to data that
might be obtained from an experiment. Thus, good performance
on these randomly generated models indicates that MC-Boomer can
generalize to a realistic variety of input distributions.

3.4.2 Steady state behavioral similarity
We applied MC-Boomer to attempt to recover these random

models using only their initial states and attractors as input data.
Figure 4A shows that the models generated by MC-Boomer at the
beginning of the search process poorly matched the behavior of the
ground truth models. This is expected, as the MCTS algorithm is
effectively a random search process during the initial steps.
However, by the end of the search, MC-Boomer reliably found
models that had steady states with high similarity to the ground
truth models. Across all model sizes, MC-Boomer was able to find
several exact behavioral matches, with a majority having > 95%
similarity, as shown in Figure 4B.

3.4.3 Rule set similarity
In addition to the steady state behavior of the models, we are

also concerned with the content of the update rules generated by
MC-Boomer. Many possible rule sets can have the same steady
state behavior. However, many of these rule sets may be
significantly different from each other and, most importantly,
different from the underlying biological system. Under novel
perturbations or conditions, these models may behave in
radically different ways. Thus, we would like MC-Boomer to
find models that match both the steady state behavior and the
“interaction topology” of the underlying system. To validate
MC-Boomer in this regard, we tested its ability to generate
models with interactions that are similar to the reference
models. In our tests, we quantified similarity by converting

the update rules to sets of interactions for both the reference
(randomly generated) model and the model generated by MC-
Boomer. We then find the Jaccard index between the two
interaction sets. This process is illustrated in Figure 5.
Higher Jaccard indexes indicate that the MC-Boomer model
matches the reference topology well.

With no restriction on the interactions selected by the model
search process, MC-Boomer was able to find models with behavior
that exactly matched the steady states of the reference models, but
using rule sets that differed by as much as 80%. This corresponds to
the left-most column of Figure 6, with zero reduction in search
space, indicating that MC-Boomer was generating models using all
possible interactions and no bias towards the true reference
interactions.

We next investigated the effect of utilizing “prior knowledge”
on MC-Boomer’s ability to recover correct rules. As noted above,
model inference is an underconstrained problem with many
possible models having data-consistent behavior, and so ruling
out infeasible interactions can reduce the number of spurious
models. We simulated varying levels of prior knowledge by
randomly removing incorrect interactions from MC-Boomer’s
action list, while retaining all of the correct interactions. We
repeated the search five times, removing 10%, 25%, 50%, 75%,
and then 90% of incorrect interactions from a set of 80 models.
The aggregated Jaccard similarities for each percentage are
shown in Figure 6. For models with both 8 and 16 species,
increasing prior knowledge increased the Jaccard similarity to
the reference data, as expected. Note that most protein-protein
interaction databases are much sparser than our highest tested
level of prior knowledge. For example, BioGRID (version
4.4.2021) has 26 k genes and 806 k interactions, which
corresponds to a 99.9% reduction from all possible
interactions (Oughtred et al., 2021). Thus, our tests simulate a
very difficult scenario, relying on much less prior knowledge than
is available in biochemical interaction databases.

FIGURE 4
(A)Orange histogram depicts distribution of similarities from the first one thousand models sampled during the MCTS search. Blue histogram is the
distribution of similarities from the last thousand models. The blue distribution is significantly shifted towards higher rewards, indicating that MCTS was
systematically sampling goodmodels. (B)Distribution of highest reward obtained by each independent search process. Most searches foundmodels with
>90% similarity.
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4 Results

Here we show the result of applying MC-Boomer to the
segment polarity network (SPN). In Section 4.1.1 and Section
4.1.2, we describe the SPN and show MC-Boomer can generate
models that are structurally similar to it, automatically
discovering interactions that were previously manually
selected by experts. Additionally we describe the large
collection of alternate mechanisms generated by MC-Boomer,
analyzing several in detail.

4.1 Segment polarity network (SPN)

As shown in the previous sections, MC-Boomer is able to
generate models that are behaviorally and structurally similar to
a variety of synthetically generated reference systems. While this was
useful for validation, we also applied MC-Boomer to a more realistic
setting to demonstrate the usefulness of the proposed framework. To
that end, we employed MC-Boomer to build models of the
Drosophila Segment Polarity Network (SPN), which is a gene
circuit that controls the formation of borders and directionality
of body segments during development of the Drosophila embryo. As
a reference, we have chosen a well-studied model by Albert and
Othmer (Albert and Othmer, 2003). Briefly, this model comprises
4 cells, with several distinct components, including genes, proteins,
membranes, protein isoforms, and complexes. A diagram of the SPN
interactions is shown in Figure 7 and a complete listing of the
reference rules are shown in Supplementary Table S3. Albert and
Othmer provided binarized expression levels for wild type
conditions as well as three gene knockouts, shown in
Supplementary Table S4. We applied MC-Boomer with these
expression profiles to automatically generate models of the SPN.

4.1.1 Model generation
First, we will describe how we initialized the model and

performed the search.
We applied several constraints to the search process so that MC-

Boomer would only generate biologically plausible models.
Membrane proteins (WG, PTC, SMO, PH, HH) could interact
with membrane proteins only on adjacent cells. Internal proteins
(EN, SLP, CI, CIR, CIA) could interact with other internal proteins,
membrane proteins in the same cell, and genes in the same cell.
Genes (en, ci, ptc, hh) could only activate their corresponding
protein, and these gene-protein activating interactions were pre-
specified in our search process. We generated all possible
interactions that conform to these constraints, resulting in
334 possible interactions. We did not use any prior knowledge

FIGURE 5
Example calculation of Jaccard similarity. We compare the structural similarity between two Boolean models by computing the Jaccard similarity
between their sets of interactions. Here, shared interactions between the two models are colored orange, while interactions that are unique to each
model are in black. In this example, the two models share three interactions in common, but have three more that are unique to each model. Thus they
have a Jaccard similarity of 3/(3+3)=3/6=0.5.

FIGURE 6
Jaccard similarity between synthetic reference and generated
models with varying levels of prior knowledge. The violin plots show
the distribution of Jaccard similarities achieved by MC-Boomer for
synthetic models. The horizontal axis shows varying proportions
of incorrect interactions randomly removed from the list of actions
that MC-Boomer can choose when generating models. Removal of
incorrect edges simulates the effect of prior knowledge, for example,
using only interactions from a database of validated biochemical
interactions. As expected, higher levels of prior knowledge lead to
higher Jaccard similarities, as MC-Boomer has a higher probability of
choosing correct interactions from a smaller list.
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about the possible interactions beyond the basic biological
knowledge described above, simulating a scenario in which a user
does not bias the search to previously described interactions between
genes. This tests MC-Boomer’s ability to recover the reference model
without assistance from biological prior knowledge, as well as its
ability to generate novel, interesting hypotheses about the possible
structure of the regulatory network.

All interactions added during the search process were repeated
across all 4 cells. Multi-cellular membrane interactions were
symmetric, added in both directions between neighboring cells.

The reference SPN model specified initial and stable states for
the wild type network as well as initial and attractor states for
knockouts of wg, hh, and en (see Supplementary Figure S4 for
details).

We applied MC-Boomer to search for models that matched the
behavior of the reference SPN model across the wild-type and three
knockout conditions. At each search iteration, we simulated the
model across all conditions, calculated the edit distance between
simulated and reference steady states, then averaged all conditions’
similarity scores to get a final score for the iteration. We
implemented knockouts by removing all interactions to and from
the hh, en and wg genes across all cells.

We ran 1,500 searches in batches of 30 in parallel on our
institution’s computing cluster. In each search step, MC-Boomer
simulated 10 k model variations before adding the best
interaction to the model and starting the next step. We

restricted the search to terminate after 30 steps, but not before
completing 8 steps. Every search was run with RAVE, nested
search, and branch retention enabled with the same uniformly
random sampled parameter distributions as in the synthetic data
experiments. The complete search process took 41 h and
simulated 430 million unique models. Eleven of the
1,500 search processes found models with exactly the same
steady states as the reference model for all four conditions.
Collectively, these eleven search processes generated > 202k
models with perfect consistency to the attractor data.

4.1.2 Visualizing the set of data-consistent models
Given the large size of our collection of models with consistent

steady state behavior, we were motivated to develop methods for
visualization and exploration of large numbers of models.

First, we applied dimensionality reduction and clustering
methods to visualize similarities between the models. We
randomly sampled fifty thousand of the 202k data-consistent
models and clustered them with the UMAP algorithm (McInnes
et al., 2018) using the interaction set Jaccard distance between
models, as illustrated in Figure 5. Model sampling was necessary
because UMAP requires computation of a pairwise distance matrix
that would have been infeasible for the full data set. Multiple
different samples all gave similar results, thus giving us
confidence that the sample analyzed here was representative of
the overall model population.

FIGURE 7
Reference Model for Segment Polarity Network. Diagram of the interactions in Albert and Othmer’s model of the segment polarity network (Albert
and Othmer, 2003). Green edges indicate activating interactions. Red are inhibiting. Lower case ovals indicate genes and upper case indicate proteins.
The dotted border indicates the cell membrane, with membrane proteins straddling the border. On the right is the adjacent cell, with several interactions
spanning between cells. Albert and Othmer’s model has four cells with the same interactions inside each cell. Interactions between cells are
symmetric, though only one direction is shown in the diagram to maintain clarity.
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Applying UMAP with the Jaccard distance yielded the result
shown in Figure 8 with eleven well separated clusters, corresponding
to the eleven independent searches that produced data-consistent
models.

4.1.3 Structural similarity between clusters and
reference

We then compared the interactions in each MC-Boomer
generated model with the interactions in the reference model’s
update rules to find the “structural” similarity.

The update rules of the reference model had 26 total
interactions. We manually pre-specified eleven of the interactions
in the reference segment polarity network. That is, all models
generated by MC-Boomer included these interactions as “prior
knowledge.” This included all the interactions in which a gene
activated its corresponding protein, as well as four interactions
that did not fit the dominant inhibition dynamics of the rest of
the network (Supplementary Figure S1). Our tests evaluated MC-
Boomer’s ability to discover models that included the remaining
15 interactions in the reference model.

Within each cluster of MC-Boomer models, we computed the
mean, median, and maximum size of the intersection between the
cluster’s models’ interactions and the reference model’s interactions,
as shown in Table 2.

Comparison across clusters revealed a wide disparity in
accuracy, with cluster 3 having, on average, three rules in
common with the reference SPN model. We note that while the
models in cluster 3 had low structural similarity to the reference SPN
model, all of the models in every cluster have the same steady state
attractors as the reference. Cluster 7 had the highest average
intersection, with several models in the cluster having 11 out of
15 rules in common with reference model. For cluster 7, we found
the most common rules, i.e., those shared by > 90% of the models in
the cluster. Figure 9A shows these common rules and Figures 9B,C
shows “false positive” and “false negative” rules, respectively. False
positive rules were present in MC-Boomer models but not in the
reference and false negative rules were in the reference but not the
MC-Boomer models. In the following sections, we investigate two of
these interactions, one of which was not present in the reference
model.

FIGURE 8
Scatter plot depicting clustering of unique data-consistent segment polarity models after UMAP projection to two dimensions. There are elevenwell
separated clusters, corresponding to the eleven independent search processes that found data-consistent models.
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4.2 Mechanism identification

In the following sections, we investigate the specific
interaction patterns or mechanisms that MC-Boomer
generates. We first focus specifically on individual
interactions that are present across all data-consistent
models, proposing a novel hypothesis for the biological
mechanism encoded by the Boolean logic of the interaction.
Then, we propose data-driven methods to extract a diverse set
of mechanisms from the large collections of models generated
by MC-Boomer.

4.2.1 Investigating common mechanisms
The high-level clustering analysis shows that MC-Boomer

generates models with a wide variety of structures but identical
steady state behavior. However, this analysis is too broad to elucidate
the precise nature of the mechanisms that these models use to
generate this behavior. Accordingly, we more closely investigated
two key interactions that are present in every model generated by
MC-Boomer. Specifically, we consider “EN inhibits ci” and “CIR
inhibits CIA”, which are present in 100% of the data-consistent
models.

First, we look at EN inhibiting CI, which is present in all of our
models and also present in the reference model. This indicates that
this interaction is a crucial link across the very diverse mechanisms

TABLE 2 Structural Intersection with Reference Model. For each cluster of
models shown in Figure 8 we computed the intersection between these
common rules and the reference model. We show the mean, median, and
maximum intersection between each cluster’s models and the reference.
Cluster 7 has the highest intersection across all three statistics, while cluster
3 shares the fewest interactions with the reference. We further investigate the
most common interactions in Cluster 7 in Figure 9.

Cluster Intersection Cluster size

Mean Median Max

0 4.80 5 8 5321

1 6.03 6 9 6566

2 6.32 6 9 1654

3 3.23 3 6 2057

4 6.87 7 9 5673

5 6.49 6 9 4805

6 3.30 3 6 6710

7 8.68 9 11 5493

8 5.22 5 8 2277

9 6.90 7 10 6413

10 8.27 8 11 3031

FIGURE 9
(A)Most common interactions in cluster 7. These interactions that are found in >90% ofmodels in cluster 7. Transparent lines represent interactions
that were pre-specified as prior knowledge, while more opaque interactions were generated by MC-Boomer. (B) Interactions highlighted in red and
green are common in cluster 7 but are not present in the referencemodel. Grey interactions are shared between the referencemodel and cluster 7. Note
the red inhibiting interaction between CIR and CIA, which is investigated in more detail in Section 4.1.2.(B) The reference model is shown here,
highlighting interactions that are in not present in cluster 7. Again, note the red inhibiting interaction between CIR and wg. Section 4.1.2 proposes an
alternative mechanism for inhibition of wg by CIR.
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employed by the eleven clusters of models and the reference model.
Simulating a random sample of one thousand models with this
interaction knocked out resulted in a 28% average absolute
reduction in similarity to the reference steady state data. We
observed that knocking out the EN to ci interaction in the
reference model also reduced similarity to the reference data by
28%. Again, this indicates that the while the models are structurally
diverse, they share a similar reliance on this particular interaction of
EN and ci.

On the contrary, CIR inhibition of CIA is not present in the
reference model. This interaction is shared by more than two
hundred thousand unique models generated by MC-Boomer. The
high frequency of the CIR inhibiting CIA interaction motivated
further investigation into CIR and CIA’s role in regulation of the
wg gene.

To provide necessary background for our discussion of wg
regulation, we briefly describe the key genes in this pathway.
CIA is an activated, nuclear transported form of the CI protein,
while CIR is a proteolytically cleaved form of CI which represses
wg transcription. In the absence of HH, SMO forms a complex
with CIA and Cos2, a kinesin-like protein that binds and
sequesters CIA, preventing its nuclear translocation and
permitting its cleavage into CIR. In the presence of HH,
SMO is activated and Cos2 releases CIA, which is then
transported to the nucleus, where it activates wg (Lum et al.,
2003; Kalderon, 2004; Ranieri et al., 2012). The exact
mechanisms and network dynamics behind CI activation,
cleavage, and nuclear translocation have long remained a
point of debate and uncertainty (Ruel et al., 2003).

In addition to CIR inhibiting CIA, MC-Boomer also
suggests (in 34% of models) an inhibitory interaction
between CIR and SMO. The novel inhibition of CIA and
SMO by CIR can be interpreted in at least two ways, as
shown in Figure 10.

1) These interactions do not represent real signaling mechanisms.
In accordance with the reference model, the bi-directional

inhibitory loop between CIR and SMO may simply reflect
the normal activation states of these proteins. When SMO is
active, CIR cannot be produced because SMO destabilizes
Cos2 and therefore all CI is available as CIA. Conversely,
when SMO is inactive, Cos2 binds CI and conversion to CIR
occurs. Therefore, the inhibition of CIA and SMO by CIR may
not represent genuine biochemical interactions, but may simply
be artifacts of MC-Boomer’s automated model generation
process.

2) These interactions do represent real, redundant signaling
mechanisms. The novel inhibition of CIA and SMO by CIR
may represent redundant signals which prevent the
possibility of competition at the target gene binding site.
This type of redundancy is a feature observed in other
biological signaling networks (Albert et al., 2011) CIR
inhibition of CIA and SMO in the cytosol ensures that
CIR can bind and inhibit wg in the nucleus without
interference from CIA. In this interpretation, CIR is not
just a passive cleavage product, but also an active participant
in a feedback loop that inhibits the activity of CIA.

This second interpretation describes an instance of
signaling redundancy. If CIR inhibits SMO and CIA, this
helps to ensure a full transition between on and off network
states and prevents any potential binding competition at the
target gene.

Overall, these observations show that the proposed method can
both reproduce the known biological features as well as provide
novel insight into the segment polarity network by generating new
mechanistic hypotheses, which require further investigation through
experiments.

4.2.2 Identifying unique mechanisms in model
clusters

We are able to analyze these two interactions in detail because
they are shared across all models and their limited scope eases their
interpretation. However, our clustering analysis showed that there

FIGURE 10
(A) The reference model depicts the modification of CI as a forked pathway, where the resulting product is determined by the activation state of
SMO. In the reference model, active SMO promotes CIA and inhibits CIR. (B) The MC-Boomer model, in contrast, includes two novel interactions where
CIR inhibits CIA and SMO. Figures partially based on Figure 3 from Hooper and Scott (2005)
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are at least eleven groups of models with widely differing
structures. Accordingly, we also investigated the role of
interactions that are specific to individual clusters of models.
We searched for sets of up to 5 interactions that are present in
a high proportion of models in each cluster, while not being
present in models in other clusters. We call these distinguishing
sets. We found between 25 and 21,570 distinguishing sets per
cluster.

Given the large number of distinguishing sets for some
clusters, we needed a measure of which sets are most
important to the function of the models in the cluster. We
quantified this by simulating knock outs of each distinguishing
set in a sample of 100 models from their respective clusters and
calculating the reduction in similarity to the reference data
caused by the knockouts. We refer to distinguishing sets with
the largest reduction in similarity as the maximally disruptive
sets. These maximally disruptive sets identify the unique
mechanisms that the models in each cluster most highly rely
on to generate their behavior.

Comparing the interactions in the maximally disruptive sets
revealed heterogeneity across the clusters. Most of the maximally
disruptive sets shared two or fewer interactions in common. For
example, the maximally disrupting sets for cluster 7 (Figure 11A)
and cluster 8 (Figure 11C) only share a single interaction in
common. Simulated knockouts of cluster 7 and 8’s maximally
disruptive sets reduced similarity to reference data by 31% and
39%, respectively. This indicates that models in these two clusters
depend, to a similar degree, on these distinct sets of interactions
for generating correct behavior. Inspection reveals that while the
two mechanisms are not similar by a direct comparison, they
share functional similarity in primarily modulating the
connectivity and activity of EN. This corresponds with our
previous analysis showing that EN interactions are crucial for
correct model behavior across our whole collection of models.
However, the actual mechanism by which EN activity is directed

is quite distinct. The interactions in cluster 7 (Figure 11A) give
EN a mixed activating/inhibiting role, while cluster 8
(Figure 11B) relies on several inhibitory feedback loops
centered on EN.

Similar to the case of CIR described in Section 4.2.1, many
of the distinguishing sets do not have any effect on the behavior
of the model; one such example is illustrated by Figure 11B.
One perspective is that these interactions are redundant and
only increase the complexity of the model. Accordingly, several
previous approaches (Terfve et al., 2012; Lim et al., 2016)
penalize models with more interactions. Another perspective
is that these redundant connections may confer robustness,
i.e., an ability to recover from aberrant initial conditions or
losses of function, or as with CIR they could help ensure full
response to inhibition or activation.

5 Discussion

Biology is inherently complex, yet our measurements
capture only a limited slice of the true activity within a cell.
Current assay technology can only describe a subset of
biomolecules at low time resolution and with significant
noise. From this blurry view researchers must synthesize a
model that can both describe the phenomena under
investigation and predict the system’s behavior in novel
circumstances. Synthesizing a model can be made easier by
choosing the simplicity of the Boolean logic modeling
formalism to represent the system. Nonetheless, even for a
small number of interacting species, the number of possible
Boolean models is vast. Consequently, a typical researcher,
creating models through trial and error, may only find one or
perhaps a few models whose behavior is consistent with the
observed data. However, as we have shown in Section 4.1.1,
even in a small system with multiple measurements and

FIGURE 11
(A) Shown in red and green is the maximally disruptive set for cluster 7. These are interactions that are common in cluster 7, but are very uncommon
in other clusters. Additionally, knocking out these interactions reduces similarity to the reference steady states more than other sets of common
interactions (shown in grey). (B) Another distinguishing set of interactions, but these areminimally disruptive. Knocking themout only reduces similarity to
the reference data by a negligible amount. (C)Maximally disruptive set for cluster 8. These reduce similarity to reference data to a similar degree as
the most disruptive set in cluster 7, but these interactions utilize a different mechanism.
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reasonable prior assumptions on model structure, there are
hundreds of thousands of models that are all consistent with
the data.

This observation was made possible by using an efficient search
technique, Monte Carlo Tree Search, to build models. We
demonstrate the power of MCTS to synthesize models with the
correct steady-state behavior and the correct interactions in Section
3.4. While previous studies have shown that similar optimization
methods (e.g., tabu search in Aghamiri and Delaplace (2020)) are
effective for finding data-consistent models, they have focused on
finding a single model that is “best” in terms of both complexity and
fit to the data. In contrast, we retain every model that fits the data
well and in Section 4.2.1 and Section 4.2.2 we develop a set of
techniques for making sense of this large collection of models. We
approach this from a data-driven perspective, in the sense that our
MCTS algorithm generates data about the space of valid hypotheses.
By clustering models based on their structural features, we can find
recurrent motifs across the whole collection of models, as well as
distinct motifs that discriminate the structure of groups of models.
Simulated knockouts of these motifs then reveal that some are
critical to the models’ correct behavior.

5.1 Using MC-Boomer to design
experiments

As we describe in Section 4.2.1, analysis of the models generated
by MC-Boomer pointed us towards an alternate hypothesis for the
mechanism by which CIR and CIA regulate expression of the
wingless gene (wg) in the segment polarity network. An
investigator using MC-Boomer to study this pathway may
propose that CIA activation of wg depends on both SMO
(Smoothened) stabilization and, as MC-Boomer suggests, the
absence of CIR. The existence of these novel inhibitory
relationships could be experimentally validated by introducing
CIR into cells in which HH signaling has already activated SMO
and CIA. Reduced concentrations of active CIA or SMO would
indicate that CIR does, in fact, inhibit the activity of CIA and SMO.

5.2 Limitations and future work

Previous work (Fauré et al., 2006) has suggested that the general
asynchronous updating scheme yields more biologically realistic
results for Boolean network simulations. While our current
approach uses synchronous updating, extending MC-Boomer to
work with asynchronous updating would be straightforward.

The current approach is limited in its scalability to models with
large numbers of interacting species by several key bottlenecks. First,
this approach requires simulation of every synthesized model, and
simulation becomes prohibitively expensive for large models. This
could be alleviated through partial or approximate simulations of the
models. While this would yield an approximation of the model’s
similarity to data, the UCT upper bound allows MCTS to tolerate
some noise in the search process. Second, the search space scales
exponentially with the number of species in the model. We show
that restricting the search space through prior knowledge
constraints on model structure is an effective strategy for

improving structural and behavioral accuracy of synthesized
models. The efficiency of the search algorithm could further be
improved by using deep learning to guide MCTS. This is similar to
the approach used by the AlphaZero algorithm (Silver et al., 2018),
that proved to be exceptionally effective at searching the
combinatorially large space of moves in games like chess and Go.
We are currently exploring each of research directions as potential
optimizations of the MC-Boomer algorithm.

6 Conclusion

Our work demonstrates that automated Boolean model inference
can generate many alternative, hypothetical regulatory networks that
each explain a systems’s steady state behavior equally well. We observe
that Monte Carlo Tree Search is effective at this task for both synthetic
and real-world data, as it balances exploration of novel models with
exploitation to generate multiple variations of high performing models.
By using data analysis techniques on the huge collections of models that
result from tree search, we find families of models and the core
regulatory structures underlying their common behavior. Applying
this analysis to a well known model of Drosophila development
revealed previously known regulatory mechanisms as well as
suggesting a novel role for the CI gene in wg regulation. This
demonstrates that Boolean model inference should not be treated as
a search for a single best performing model, but instead as a process of
hypothesis generation and comparison.
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A powerful method to qualitatively analyze a 2D system is the use of nullclines,
curves which separate regions of the planewhere the sign of the time derivatives is
constant, with their intersections corresponding to steady states. As a quick way to
sketch the phase portrait of the system, they can be sufficient to understand the
qualitative dynamics at play without integrating the differential equations. While it
cannot be extended straightforwardly for dimensions higher than 2, sometimes
the phase portrait can still be projected onto a 2-dimensional subspace, with some
curves becoming pseudo-nullclines. In this work, we study cell signalingmodels of
dimension higher than 2 with behaviors such as oscillations and bistability.
Pseudo-nullclines are defined and used to qualitatively analyze the dynamics
involved. Our method applies when a system can be decomposed into 2modules,
mutually coupled through 2 scalar variables. At the same time, it helps track
bifurcations in a quick and efficient manner, key for understanding the different
behaviors. Our results are both consistent with the expected dynamics, and also
lead to new responses like excitability. Further work could test the method for
other regions of parameter space and determine how to extend it to three-
module systems.

KEYWORDS

pseudo-nullclines, oscillations, bistability, MAPK, signaling, bifurcations, cell cycle

1 Introduction

In cell signaling, mathematical modeling plays an important role in analyzing and
predicting different systems behavior. The range of complexity is vast, with examples as
different as the two-dimensional Fitzhugh–Nagumo model (FitzHugh, 1961) and a
description of the MAPK cascade with 23 equations (Kochańczyk et al., 2017).

In general, it is well known that most nonlinear differential equations modeling
biological systems are not analytically solvable. Therefore, the goal of qualitative analysis
of dynamical systems is to provide information about its possible behaviors without having
access to its analytical solutions. In this context, a powerful method to analyze qualitatively a
planar (i.e., 2D) system is the use of nullclines. These are curves where the derivative of one of
the variables is equal to zero. These curves separate regions of the plane where the sign of the
derivatives is constant. Moreover, their intersections correspond to steady states of the
dynamics. This information can provide a quick way to sketch the phase portrait of the
system, like for instance the aforementioned Fitzhugh–Nagumo model. Thus, the technique
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of nullclines is sometimes sufficient to understand the qualitative
dynamics of the system without integrating their differential
equations.

However, this technique cannot be extended straightforwardly
to phase spaces of dimension higher than 2 because the geometrical
objects corresponding to the nullclines are no longer curves but
more generally (hyper-)surfaces of codimension-1. Nevertheless,
there are cases where the phase portrait of the system can still be
projected onto a 2-dimensional subspace, with some curves
playing the role of pseudo-nullclines. When applicable, phase
plane analysis, and in particular the concept of nullclines, has
been one of the most useful tools for the qualitative analysis of
dynamical systems. Since the main limitation of the nullcline
method is its restricted application to a 2-dimensional phase
space, any extension of said method to a higher number of
dimensions should be valuable.

In this work, we study signaling models of dimension higher
than 2, where pseudo-nullclines are defined and used to
qualitatively analyze the system dynamics. The first one is an
early cell cycle model in Xenopus laevis embryo (Tsai et al., 2014).
The authors study the change in the oscillatory behavior during
this developmental phase, which is present across different phyla.
The second example we analyze corresponds to a subsystem of
the Mitogen Activated Protein Kinase (MAPK) cascade, found in
all eucaryotic cells. Signals from growth factors in cell surface
receptors activate three sequential levels of proteins, with the
output of the cascade responsible for the phosphorylation of
multiple transcription factors. This leads to its involvement in
responses like proliferation and differentiation (Lewis, et al.,
1998; Schaeffer and Weber, 1999; Kochańczyk et al., 2017).
The well-studied model by Huang and Ferrell consists of
22 equations describing the three-level cascade (Huang and
Ferrell, 1996). The last two levels, corresponding to double
phosphorylation (DP) cycles, constitute the motif that we
study in this work.

Our method applies when a system can be decomposed into
2 modules which are mutually coupled through 2 scalar variables.
We show that, by projecting the whole dynamics onto the
subspace subtended by the two scalar variables, we can define
curves that play the role of pseudo-nullclines. Intersections of
these pseudo-nullclines correspond to steady states of the full
system. Although the use of these pseudo-nullclines is more
limited than with true nullclines, we show that this approach
can be useful to figure out the onset of oscillations, and other
dynamical behaviors like excitability, for a system whose actual
phase space dimension is larger than 2. Other works use pseudo-
nullclines to analyze different cell cycle motifs (Tyson and
Novák, 2022), by using specific features only applicable to
those models. We propose a more systematic approach based
on the modularity of the analyzed systems.

We illustrate that situations where the pseudo-nullclines
intersect transversely or tangentially enable the distinction of
phase portraits of oscillations described respectively by
supercritical Hopf or by SNIC bifurcations, while also pointing
toward Saddle-Homoclinic bifurcations. On the other hand, we
show that these pseudo-nullclines admit a natural interpretation
in terms of response functions of each module submitted to a
constant input of the other module.

2 Methods

The idea of the method is to decompose the system in 2 modules,
assuming that the coupling between the modules is one-dimensional.
This means that if the variables of the modules are denoted respectively
by two sets of real variables, i.e., x � (x1, x2, . . . , xn) and
y � (y1, y2, . . . , ym), the model equations can be written as:

dx
dt

� f x, α y( )( )
dy
dt

� g y, β x( )( ) (1)

where α(y) and β(x) are two real-valued functions. Such a system
can be seen as a first module, described by equations dx

dt � f (x, a),
where a is some input parameter, interconnected with a second
module whose equations are dy

dt � g(y, b), with b being the
corresponding input parameter. The interconnection comes from
replacing the input a of the first module by the function α(y), and
the input b of the second module by β(x). Decomposing a system
into two interconnected modules has been considered in the
literature by (Angeli et al., 2004).

To simplify the presentation and the notations in what follows
we will continue with a basic example, where the coupling functions
are simply α(y) � y1 and β(x) � x1. The extension to amore general
function is easy and is included at the end of the Supplementary
Material, along with a sketch of the general scheme.

Thus, now a stationary state (x*, y*) of system (1) is a solution of
the system of equations:

f x, y1( ) � 0

g y, x1( ) � 0

Suppose that the solutions of this system of equations can be
written as follows:

x � X y1( )
y � Y x1( ) (2)

Then, by projecting these functions on the plane of coordinates
(x1, y1), we define pseudo-nullclines of the system as two curves C1

and C2 whose graphs are respectively given by the parametrizations
(X1(y1), y1) and (x1,Y1(x1)). The first curve can be seen as the
response function of (component 1 of) the first module with respect
to its input parameter y1. Similarly, one can interpret the second
pseudo-nullcline as the response function of the second module
submitted to its input parameter x1. One advantage of this definition
is that by construction said stationary states of the couple modules
must be found among the intersections of the two pseudo-nullclines.
Indeed, by definition (x1*, y1*) can be written in two ways, either
(X1(y1*), y1*), or (x1*,Y1(x1*)), thus belonging to the two graphs of C1

and C2.
Conversely, if (x1*, y1*) belongs to the intersection set of the

pseudo-nullclines C1 and C2, then:

x1
* � X1 y1

*( )
y1
* � Y1 x1

*( )

And by construction, the functions X and Y satisfy the steady
state equations:
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FIGURE 1
(A) Scheme of the cell cycle model, based on the one found in (Tsai et al., 2014). The parameter ksynth (synthesis rate of the cyclin) acts as the input of
the system. Two positive feedbacks (with Cdc25 and Wee1) and one negative feedback (with Apca) govern the motif. The output Cdk1 (active) is involved
in the mitotic phosphorylation. (B) Motif scheme based on the pseudo-nullcline method, separating the two modules, and representing how they are
interconnected. More details on the equations can be found in the Supplementary Material. (C) Pseudo-nullclines C1 (in blue) and C2 (in red) for r =
0.5 and input = 0.04, with the corresponding time series (in black). Arrows denote the trajectory taken by the system, from cdk1a = 60 to a steady state
represented by the curves intersection. (D) The input is now 0.05, leading to a small limit cycle around the intersection. (E)With input = 1.5, the limit cycle
grows in amplitude, following the lower branch of C1 but not the upper one, as shown in (Tsai et al., 2008).
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f X y1
*( ), y1*( ) � 0

g(Y x1
*( ), x1*) � 0

In other words, x* � X(y1*) and y* � Y(x1*) constitute a steady
state of the coupled system since they satisfy the system of equations:

f x*, y1
*( ) � 0

g(y*, x1*) � 0

Another advantage of this geometrical method is that it is able to
reveal a limit point bifurcation, like a saddle-node bifurcation. As it
shown in the Supplementary Material, this occurs when a steady
state corresponds to a tangential intersection of the pseudo-
nullclines. In particular, this feature enables to distinguish
between a SNIC bifurcation or a Hopf bifurcation because in the
first case oscillations appear through a tangent bifurcation, whereas
in the second case the pseudo-nullclines intersect transversely. Both
cases are illustrated by applying our method to different signaling
motifs studied in the Results section.

3 Results

3.1 Pseudo-nullclines method applied to a
cell cycle model combining positive and
negative feedback loops

In (Tsai et al., 2014), the authors study an oscillatory cell cycle
model in X. laevis embryos, where the period and shape of the
oscillation change between the first mitotic cycle and the subsequent
cycles. They analyze the system obtaining experimental data and
running computational simulations. A scheme of the model is
presented in Figure 1A, showing the two positive feedback loops
and the negative one involved.

The system of equations is as follows, written in a more generic
manner (see Supplementary Material for the equations in detail):

d cdk1a[ ]
dt

� f 1 cdk1a[ ], cdk1i[ ], apca[ ]( )
d cdk1i[ ]

dt
� f 2 cdk1a[ ], cdk1i[ ], apca[ ]( )

d plxa[ ]
dt

� g1 plxa[ ], cdk1a[ ]( )
d apca[ ]

dt
� g2 apca[ ], plxa[ ]( )

The first module, with f1 and f2, consists of two equations
depending on three variables. The last of these, Apca, is the only
one belonging to the second module and thus treated as an input
parameter. This results in two equations with two variables: for each
value of Apca, a solution can be found. With both equations equal to
zero, one can reach an expression that determines the first pseudo-
nullcline:

F cdk1a[ ], apca[ ]( ) � 0

In the secondmodule, with g1 and g2, we also have two equations
and three variables. The input parameter from the other module is
Cdk1a. As before, taking both equations equal to zero, one can reach
an expression for the second pseudo-nullcline:

G apca[ ], cdk1a[ ]( ) � 0

Finally, we do for both curves a change of variables from Apca to
Cyctot (total cyclin, the sum of active and inactive complexes), and
work in the (Cyctot, Cdk1a) phase space (see Supplementary Material
for details).

In Figure 1B, we present a scheme of the model following this
modular description, as a comparison to the previous scheme based
on (Tsai et al., 2014). All parameter values are presented in the
Supplementary Material. The parameters changed are reported in
the following text and in the Figures.

In Figure 1C, we present the pseudo-nullclines for the system and
the corresponding time series trajectory (starting from Cdk1a = 60 nM)
for ksynth = 0.04, which is just outside the oscillatory range (see
Supplementary Material for a bifurcation diagram with ksynth as the
input, showing two supercritical Hopf bifurcations). The parameter that
controls the positive feedback strength, r, is equal to 0.5 (used in the Tsai
et al. work). The system trajectory drops and then ascends following the
lower branch of C1, forming a spiral before ending at a fixed point. The
intersection of pseudo-nullclines and the fixed point are within a very
small distance of each other, meaning that the intersection represents
the stable steady state of the system.

In Figure 1D, ksynth = 0.05, which corresponds to a limit cycle of
relatively small amplitude. The intersection of curves occurs within the
cycle, representing the unstable steady state, and is located just below the
fold of C1. In a 2D system analyzed with true nullclines, it would be
expected for oscillations to occur only when the intersection is located
between the two folds of the S-shaped curve. The crossing between our
pseudo-nullclines taking place close but below the fold, plus the
minimal distance between the intersection and the end point of the
time series in the previous case, reflect the “pseudo” character of our
method while still showing its usefulness.

In Figure 1E, ksynth = 1.5, the value used in the work of Tsai et al.
Once again, the trajectory follows the lower branch of C1 but not the
upper one. This is consistent with results showed by the authors in
(Tsai et al., 2008).

Given the bistable shape of the pseudo-nullcline for the
Cdk1 module, there is the question of whether both curves could
be brought together in a tangential manner. The results shown so far
only deal with transversal intersections, with one stable fixed point
or limit cycles around an unstable point, born through Hopf
bifurcations. A tangency would represent a saddle-node
bifurcation, which could act as a SNIC or indicate the existence
of a Saddle-Homoclinic (SHom) bifurcation, since there would be a
saddle (by virtue of the SN) and a limit cycle (as already established).
These global bifurcations would allow more control over the period
than what is possible with Hopf bifurcations.

Considering the shape of C1, the distance with C2, and the
composition of Hill functions that goes into C2, we performed a few
modifications in the model with the goal of bringing about a
tangency. First, we added an extra parameter into the differential
equation for Apca (see Supplementary Material). Since low values of
Apca correspond to high values of Cyctot (outside of the plot scale),
adding the extra parameter can bring C2 to a drop in Cdk1a close to
the right-hand fold of C1. At the same time, it could represent basal
activity of Apca in absence of Plxa.

With ksynth = 1.5, r = 10 (value used in (Tsai et al., 2008)) and
increasing ec50 for Plxa to adjust the threshold of C2, we arrived at
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Figure 2A. The distance between the pseudo-nullclines close to the
right-hand fold of C2 is small enough that a tangency seems possible.
We ran the model in MatCont and found two SN at ksynth = 1.516765

and 1.530532. Figures 2B,C show the pseudo-nullclines at these values.
The tangential behavior of the curves can be appreciated. For the lower
input value, the tangency occurs between the C1 folds and the

FIGURE 2
Cell cycle model: pseudo-nullclines C1 (in blue) and C2 (in red) for r = 10, ec50plx = 72, extra = 2.6e-5 and different input values, with their
corresponding time series (in black) for all panels except the first one. (A) Input = 1.5, the pseudo-nullclines are close to a tangency, taking advantage of
the right-hand fold in C1. (B) Input = 1.516765, tangency at a distance of the fold, with the time series ending at the lower intersection (the stable steady
state). (C) Input = 1.530532, tangency close to the fold, intersection between the folds (an unstable steady state), and a limit cycle develops. (D)
Input= 1.52, taking advantage of the saddleone can choosedifferent initial conditions toobtain excitability (or not). Above the saddle, the systemgoes around
the phase space before ending at the stable steady state. (E) Input = 1.52, with an initial condition below the saddle it goes directly to the stable steady state.
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transversal intersection outside of them, corresponding to a stable
steady state. For the higher input, the tangency is much closer to
the C1 fold while the intersection is between the folds, representing an
unstable fixed point around which the limit cycle takes place. Between
these two SN for the full system, an SHom bifurcation was found at
ksynth = 1.527.

In Figure 2D, we show a case for ksynth = 1.52, which is outside of
the oscillatory range but between the two SN. Depending on the initial
condition, the system can 1) go around the phase space describing one
output peak in time before ending at the steady state or 2) take a
shorter path to said fixed point. With the initial condition of
Figure 2D, just above the saddle point represented by the middle
intersection, it goes around. In Figure 2E, it starts from below the
saddle, and so it goes directly to lower intersection, corresponding to
the stable steady state. The model displays excitability in this region of
parameter space, well described by the pseudo-nullclines.

In all, not only our method was consistent with bifurcations born
from the original parameter set, but it also allowed us to find a new
bifurcation through the manipulation of the two pseudo-nullclines.
Moving one parameter at a time facilitates an exploration where the
intersections between the curves can change and lead to new findings.
In this particular system, the use of Hill functions shows a useful path
for the exploration, by modifying the amplitude and threshold of C2.
We argue that, since Hill functions are prevalent in system biology,
this example could serve as inspiration for the analysis of many other
cases. At the same time, for any model, the pseudo-nullclines will
provide a visual guide for finding new behaviors.

3.2 MAP kinase subsystem where both
modules are capable of bistability

The second model studied in this work corresponds to the last
two levels of the MAPK cascade. It consists of a DP cycle where its
output, the double phosphorylated substrate, acts as the kinase for

another DP cycle. We will call it the 2 + 2 system, following the
double modification process in each level. A scheme is presented in
Figure 3A. This motif is of interest for our work, taking the
application of the method to a subsystem in an important and
well-studied model in biology. But also, there are two important
differences with the cell cycle motif from the previous subsection: it
is of higher dimension (17 variables versus 4) and capable of
bistability in both modules (Markevich et al., 2004).

The parameter set we chose comes from our previous work
(Marrone et al., 2023), where the DP cycle displayed bistability when
scanning the input kinase. This was a necessary condition to obtain
oscillations in the motifs studied and valuable for this work since the
presence of oscillations in the model and bistability in each of the
twomodules (emergent through SN or fold bifurcations) will test the
pseudo-nullclines method.

We work with a reduced version of the 2 + 2 system, which can
be written as follows (see Supplementary Material for the detailed
reduction from the original 17 equations):

d K0[ ]
dt

� f 1 K0[ ], K1[ ],X,Z( )
dX
dt

� f 2 K0[ ], K1[ ],X,Z( )
d A[ ]
dt

� g1 A[ ], Ap[ ], App[ ],X,Z( )
d App[ ]
dt

� g2 A[ ], Ap[ ], App[ ],X,Z( )

X and Z are functions of some of the original variables:

X � K[ ] + AK[ ] + ApK[ ]
Z � c1 A[ ] + c2 Ap[ ]

These two are the coupling functions of the model, one for each
module, connecting the first and second DP cycle. All parameter
values are presented in the Supplementary Material. The input

FIGURE 3
(A) Scheme of the 2 + 2model. The input kinase E1 activates the first-level kinase, which goes through two steps before phosphorylating, also in two
steps, the second-level substrate. (B) Motif scheme based on the pseudo-nullcline method, representing the first- and second-level modules and how
they are interconnected through X and Z. More details on the equations can be found in the Supplementary Material.
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parameter is reported in the following text and in the Figures. Also in
the Supplementary Material, a bifurcation diagram for the full
system (of 17 equations) with the input E1tot as the parameter,
showing four SN bifurcations and two Hopf bifurcations.

In Figure 4A, we show the results at input = 0.26, including the
time series for the reduced system. Only one intersection exists,
corresponding to a stable fixed point, where the series culminates. It
is important to remark once again that both modules are capable of
bistability, so it is within the bounds of expectation for both pseudo-
nullclines to have folds. In Figure 4B, the input reaches an SN (in the
full-system bifurcation diagram), and the two curves are tangent to
one another. The new two intersections in Figure 4C represent the
new steady states that come after the SN.

In Figure 4D, the input takes the system to a second SN, and the
tangency between pseudo-nullclines occurs at a higher value of Z
than in Figure 4B. This is coherent with the output App being lower
on this SN. When Z (combination of A and Ap) is high, App is low
and vice versa. It is also worth noting that this second tangency takes
place near a different fold of the first-level curve.

Starting from this input value, oscillations are found, as shown
in Figure 4E. There is only one curve intersection, representing an
unstable steady state. This point is located between the two folds of
both C1 and C2. The output spends most of each period at a low
level, with brief peaks of activity.

In Figure 4F, the system is close to the next SN. The curves are
close to a tangency at a value just above Z = 0. The previous
intersection between the folds remains, and two new intersections
are close to occur. The output now spends more time at a high level,
with relatively brief drops.

The nature of these oscillations comes from the system’s
proximity to global bifurcations. When the pseudo-nullclines are
almost tangent and the behavior is oscillatory, the trajectory of the
system slows down in the vicinity of the almost-tangency. For the
input of Figure 4E, the almost-tangency occurs for high Z, low App.
The system can spend a relatively long time in this area. In Figure 4F,
at low Z, high App, the high-level time can be extended with precise
manipulations of the input, leaving narrow drops in output.

An interesting aspect of this case is that we have not been able
to confirm the presence of SNIC bifurcations via MatCont for the
full system (even though SN bifurcations are found when the
tangencies occur), while the reduced system cannot be analyzed
due to the implicit equations for the conservations (see
Supplementary Material). We argue that our method provides
further evidence of global bifurcations when a well-known
software for analyzing bifurcations falls short of confirmation.

Once the input reaches the next SN, in Figure 4G, the curves are
tangent, and the time series stops at that point. At this tangency, the
oscillations disappear. The range for stable limit cycles appears
limited by two SN bifurcations, with the limit cycle taking
advantage of C2’s amplitude all along the oscillatory range.

Further scanning of the input shows what is expected, with two new
intersections and the time series stopping at the lowest one in Z (the

FIGURE 4
2 + 2 model: pseudo-nullclines C1 (in blue) and C2 (in red) for
different input values, with their corresponding reduced-model time
series (in black). Arrows denote the trajectory taken by the system. (A)
Input = 0.26, only one intersection, where the time series ends.
(B) Input = 0.2844226, a tangency takes place between the curves,
where an SN is located in the full system. (C) Input = 0.315, three
intersections are found, with the time series going to the
representative of the stable fixed point (D) Input = 0.35139898, a
second tangency for the second full-system SN. (E) Input = 0.352.
Left: the limit cycle takes full advantage of C2’s amplitude. Only one
intersection remains, the unstable steady state. Right: the peaks are
narrow compared to the time the output is off. (F) Input = 0.41071.
Left: close to the next SN, the system continues to oscillate with
relatively unchanged amplitude, and the first-level pseudo-nullcline
shows up for low values of Z (vertical axis plotted from a negative value
for clarity). The curves are close to each other. Right: the output is on

(Continued )

FIGURE 4 (Continued)
for a longer time, with brief drops. (G) Input = 0.41072821, the
tangency at low Z occurs, where the next full-system SN is located.
Right: the time series no longer is an oscillation.
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highest in App). Eventually, the last SN point of the full system is
represented by a new tangency close to the left-hand fold of the second-
level curve (see Supplementary Material for these last results).

Even though, throughout Figure 4, we are plotting the trajectory of
the reduced system, one can find similar results when integrating the
full system. And while we cannot obtain with MatCont a bifurcation
diagram for the reduced system (as mentioned, due to the implicit
nature of the conservation equations), we selected input values
following the bifurcations in the full system, with consistent results.

4 Discussion

In this work, we applied our pseudo-nullclines method on two
models, one corresponding to the embryonic cell cycle and another
to a subsystem of the MAPK cascade. They represent two well-
known and important examples in systems biology. The parameter
sets involved different bifurcations and behaviors, with the purpose
of testing the method.

For the Tsai et al. motif, not only we found consistency in our
results using the authors’ parameter values, but we were also able to
manipulate the pseudo-nullclines toward different bifurcations and
therefore, new behaviors. The use of Hill functions for the differential
equations was convenient in this regard, and their recurrent use in
mathematical modelling of biological systems means that the pseudo-
nullclines could be useful for dynamical analysis.

The 2 + 2 motif, unlike the first case, displayed folds for both
pseudo-nullclines, representing the underlying bistability in each DP
cycle and therefore expanding the pseudo-nullclines application to a
bistability-in-both-modules example. Themethod proved consistent
with the motif behavior even though a reduction of the system
equations was first necessary, and also helped tracked bifurcations
that were not confirmed on MatCont. It remains to be seen whether
the method continues to provide useful and consistent results for
other regions of parameter space, and how it can be extended to the
full MAPK cascade, which involves three modules.

A 2021 work by De Boeck et al. studies the embryonic cell cycle
through two bistable switches (a three-equation system), finding high
amplitude oscillations with increased robustness: a larger oscillatory
region of parameter space than in the case with one bistable switch (De
Boeck et al., 2021). Our results, coming from a cell cycle motif (with one
bistablemodule) and a system composed of two bistablemodules, could
be further developed in this area of cell biology considering the
advantages from the work by De Boeck et al. (correct cell cycle
progression) and our own (consistent and different behaviors with a
four-equation system). In particular, recent work by Parra-Rivas et al.
presents a very detailed bifurcation study of various cell cycle models,
including the combination of two bistable switches (Parra-Rivas et al.,
2023). Our pseudo-nullclines method could be useful for further
interpretation in the origin of said bifurcations, which include those
of the global type (like the two motifs studied in our present work).

One can find cases in the literature for which our method cannot
be applied, like in (Kraikivski et al., 2015) where the system in
question, a large cell cycle model in yeast, is divided into a high
number of modules, some of them having more than one connection
to the rest. It is possible that some type of model reduction or
approximation is first necessary to analyze it through pseudo-
nullclines. On the other hand, other candidates in the literature

are found for applying the pseudo-nullclines method. In (Perez-
Carrasco et al., 2018), the authors combine two simple motifs to
arrive at a system capable of different behaviors, not obtained with
each motif in isolation. The three-equation description is such that
two modules are readily determined, each one depending on the
other through their coupling variables. The same can be said of the
motifs in (Ananthasubramaniam and Herzel, 2014), where the
authors lower the degree of cooperativity necessary for
oscillations to occur by adding positive feedbacks on three-
component negative feedback loops. We believe that the method
can be of great value in systems biology, with useful analysis and
potential findings in experimental biology.
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The linear framework II: using
graph theory to analyse the
transient regime of Markov
processes

Kee-Myoung Nam† and Jeremy Gunawardena*

Department of Systems Biology, Harvard Medical School, Boston, MA, United States

The linear framework uses finite, directed graphs with labelled edges to model
biomolecular systems. Graph vertices represent chemical species or molecular
states, edges represent reactions or transitions and edge labels represent rates
that also describe how the system is interacting with its environment. The present
paper is a sequel to a recent review of the framework that focussed on how graph-
theoretic methods give insight into steady states as rational algebraic functions of
the edge labels. Here, we focus on the transient regime for systems that
correspond to continuous-time Markov processes. In this case, the graph
specifies the infinitesimal generator of the process. We show how the
moments of the first-passage time distribution, and related quantities, such as
splitting probabilities and conditional first-passage times, can also be expressed as
rational algebraic functions of the labels. This capability is timely, as new
experimental methods are finally giving access to the transient dynamic regime
and revealing the computations and information processing that occur before a
steady state is reached. We illustrate the concepts, methods and formulas through
examples and show how the results may be used to illuminate previous findings in
the literature.

KEYWORDS

linear framework, graph theory, Matrix-Tree theorems, rational functions, Markov
processes, first-passage times

1 Introduction

The linear framework is a graph-theoretic approach to analysing biomolecular systems
(Gunawardena, 2012; Mirzaev and Gunawardena, 2013; Gunawardena, 2014). A recent
review (Nam et al., 2022) described how the framework has been used to study systems at
steady state, in contexts such as post-translational modification and gene regulation. The
present paper is a sequel to this review, which describes how the graph-theoretic approach
can be extended to the transient regime, prior to the steady state being reached, for systems
that are Markov processes. These new results were introduced in the first author’s Ph.D.
thesis (Nam, 2021) and full details with complete proofs are being published separately (Nam
and Gunawardena, 2023). The purpose of the present paper is to provide an elementary
introduction to this circle of ideas for a wider readership in cell and developmental biology.
We hope this will be of interest to anyone who wants to explore the transient regime for
biological systems that can be modelled by Markov processes.

Linear framework graphs (hereafter, “graphs”) are finite, simple, directed graphs with
labelled edges. (A simple graph is one in which there is at most one edge between any two
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distinct vertices and there are no self-loops.) Graph vertices, usually
denoted 1, 2, 3, . . ., represent chemical species or molecular states;
edges, denoted i → j, represent reactions or transitions; and edge
labels, denoted ℓ(i → j), represent rates which are positive and have
dimensions of (time)−1. Importantly, the labels may include
expressions that describe how the underlying system is
interacting with its environment. For example, the graph in
Figure 1A shows how ligand binding gives rise to concentration
terms in the edge labels.

A graph yields a linear dynamics, from which the linear
framework gets its name. The dynamics is most simply described
by imagining that the edges are chemical reactions with the edge
labels as the rate constants for mass-action kinetics. Since each
reaction has only a single substrate, the resulting dynamics is
necessarily linear and can be expressed in matrix form as

du t( )
dt

� L G( ) · u t( ). (1)

Here, u(t) � (u1(t), . . . , uN(t))T is the column vector of
concentrations at each of the N vertices, and L(G) is the
Laplacian matrix of the graph (Figure 1B). Graph Laplacians are
defined with varying conventions and scalings and they may be
interpreted as discrete versions of the classical Laplacian differential
operator (Chung, 1997). From this viewpoint, Eq. 1 is a discretised
diffusion equation. Since matter is neither created nor destroyed
during the dynamics, there is a conservation law,

u1 t( ) +/ + uN t( ) � utot. (2)
Eq. 2 manifests itself in the column sums of the Laplacian being zero,
1 · L(G) � 0 (Figure 1B), where 1 denotes the all-ones row vector of
the appropriate dimension.

The framework is typically used in two contexts: for bulk
biochemistry of reacting chemical species, where u(t) in Eq. 1
describes the deterministic time evolution of species
concentrations; and for individual molecular systems that exhibit
stochastic transitions, where u(t) describes the deterministic time

evolution of the probabilities of the molecular states. In the latter
case, since probabilities sum to 1, utot = 1. It is interesting that the
same mathematics describes both contexts. Here, we will be working
in the context of individual molecules and stochastic transitions.
From now on, u(t) will be the vector of probabilities and we will
assume that utot = 1.

The graph formulation allows nonlinear biochemistry, which
often arises from ligand binding, to be disentangled into a linear part
carried by the linear dynamics in Eq. 1 and a nonlinear part that
comes through the edge labels (Nam et al., 2022). The terms
appearing in the labels, such as ligand concentrations
(Figure 1A), have to be dealt with separately. They may be
specified by separate conservation laws or by other graphs (Nam
et al., 2022). For the present paper, we will assume that any ligands
that are interacting with a graph are present in “reservoirs” (Nam
et al., 2022, §4), similar to thermodynamic reservoirs, so that their
free concentrations do not change upon binding. Accordingly, edge
labels are treated as constants over the timescale of the dynamics in
Eq. 1. In this case, for the stochastic context described above, the
graph specifies the infinitesimal generator for a finite-state,
continuous-time, time-homogeneous Markov process, X(t),
(hereafter, a “Markov process”), so that the edge labels are given by,

ℓ i → j( ) � lim
h→0

Pr X t + h( ) � j | X t( ) � i( )
h

,

whenever the right-hand side is nonzero and therefore positive. (A
zero infinitesimal rate does not yield an edge.) Conversely, any such
Markov process with an infinitesimal generator is specified by a
graph (Mirzaev and Gunawardena, 2013, Theorem 4). The
Laplacian dynamics in Eq. 1, with utot = 1, becomes the master
equation for the forward evolution of the vertex probabilities, u(t).
The linearity of the linear framework is perhaps less surprising now,
as master equations are, indeed, linear (van Kampen, 1992). We see
that, within reservoir assumptions, the linear framework provides a
graph-theoretic way to define and study the Markov processes that
have been widely used to model biological systems.

FIGURE 1
Linear framework graph and Laplacian matrix. (A) An example graph, G, representing the binding of two ligands, each to one site, on a biomolecule,
with vertices indexed 1, . . ., 4 as shown. The labels on the edges 1→ 2 and 3→ 4 include the concentration, x, of the blue ligand that binds to the first site
and the labels on the edges 1→ 3 and 2→ 4 include the concentration, y, of the purple ligand that binds to the second site. The parameters k1, k3, k5 and k7
are on-rates for binding, with dimensions of (concentration × time)−1; the other parameters are simple rates with dimensions of (time)−1. Graphics
were generated using BioRender.com. (B) The Laplacian matrix, L(G), for the graph in panel A.
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Surprisingly, the graph rarely makes an appearance in the
Markov process literature. This may be because the graph theory
has so far primarily been used to study steady states of the Laplacian
dynamics (Nam et al., 2022), which may not have been of much
mathematical interest outside of applications in biology. Since Eq. 1
is linear, it can readily be solved in terms of the eigenvalues and
eigenvectors of L(G). Recall that if L(G) · v � λv, for some vector v
and some scalar λ, then v is an eigenvector for the eigenvalue λ

(Strang, 2022). By definition, the steady state of Eq. 1, which we will
denote by u∞(G), satisfies du∞(G)/dt = 0, so it follows from Eq. 1
that L(G) · u∞(G) � 0. In other words, u∞(G) is an eigenvector for
the zero eigenvalue.

When G is strongly connected (see below), the steady state,
u∞(G) is unique. This particular eigenvector can be calculated
from L(G) using the determinants of principal sub-matrices, or
the first minors of L(G), which thereby have terms of alternating
sign (Strang, 2022). It is a remarkable property of Laplacian matrices
that extensive cancellations take place so that their minors can be
written asmanifestly positive polynomials in the edge labels (Eq. 5). A
polynomial is a sum ofmonomials, where a monomial is an algebraic
expression consisting solely of a product of variables and a numerical
coefficient, like 5a3bc2 (Barbeau, 1989). A polynomial is manifestly
positive if the numerical coefficient of each monomial is positive. (A
polynomial like a2 − 2ab + b2 = (a − b)2 is positive for any distinct
positive values of a and b, but it is not manifestly positive.) A rational
function or rational expression is the ratio of two polynomials and is
itself manifestly positive if both its numerator and denominator
polynomials are manifestly positive.

The algebra that gives rise to manifestly positive polynomials is
controlled by appropriate subgraphs of G, described in the classical
Matrix-Tree theorem (MTT), which goes back to 19th century work
on electrical circuits (Kirchhoff, 1847; Mirzaev and Gunawardena,
2013); the manifest positivity is exactly what is required for
parametric dependence in biology. Steady-state probabilities
thereby emerge as manifestly positive rational functions of the
edge labels (Eq. 4). This representation has proved very useful in
giving mathematical access to steady states (Nam et al., 2022).

An important feature of this rational expression for steady-state
probabilities is that it holds for systems that do not necessarily reach
a steady state of thermodynamic equilibrium. Briefly, graphs that
can reach thermodynamic equilibrium must be reversible, so that,
given any edge i→ j, there is an edge j→ i that represents the reverse
process, and must satisfy the cycle condition: the product of the label
ratios along any cycle of reversible edges is always 1 (Nam et al.,
2022, §4). The cycle condition is equivalent to detailed balance or
microscopic reversibility. In this case, a considerable simplification
can be made in describing steady-state probabilities and the
resulting expressions turn out to be equivalent to those of
equilibrium statistical mechanics (Nam et al., 2022, §4). One
great advantage of the linear framework is that it provides a
restricted context in which non-equilibrium statistical mechanics
can be exactly solved in rational algebraic terms. The functional
significance of energy expenditure is a very interesting problem in
cellular information processing (Estrada et al., 2016) but lies outside
the scope of the present paper. We will mention some of the
questions that arise in the Discussion.

A distinguishing feature of the linear framework is that the
graph is treated, not just as a description or as a vehicle for doing

Matrix-Tree calculations, but as a mathematical entity in its own
right, in terms of which general theorems can be formulated. The
graph provides a rigorous language in which salient biological
features can be precisely expressed while others can be left
largely unspecified, thereby allowing some general principles to
emerge from behind the overwhelming molecular complexity that
is ever present. Among the areas for which this approach has yielded
insights are input-output responses (Wong et al., 2018; Yordanov
and Stelling, 2018), post-translational modifications (Dasgupta et al.,
2014; Nam et al., 2020), allostery (Biddle et al., 2021) and gene
regulation (Estrada et al., 2016; Biddle et al., 2019).

Since the initial development of the linear framework, we had
long thought that only steady states could be expressed as rational
functions of the edge labels. However, as we will show here,
important properties of the transient regime, such as first-passage
times, can also be calculated as rational functions of the edge labels.
The capability to analyse transient behaviour using graph-theoretic
methods is particularly welcome because real-time and single-
molecule experimental methods are finally giving access to the
transient regime within living cells (Kleine Borgmann et al., 2013;
Liao et al., 2015; Jones et al., 2017; Loffreda et al., 2017; Chen et al.,
2018; Dufourt et al., 2018; Mir et al., 2018; Volkov et al., 2018;
Nandan et al., 2022). Much of our understanding of biochemical
behaviour has relied on steady-state assumptions, which are not
always explicitly stated. The rich complexity of transient behaviours
which are beginning to emerge suggests that the time is ripe to
develop a more fundamental understanding of the kinds of
biochemical computations and information processing that can
be achieved transiently. For this, the mathematical methods
described here may be of some value.

2 Results

2.1 Steady states and spanning trees

As preparation for discussing first-passage times, we briefly
explain how steady-state probabilities are calculated in terms of
the graph; see (Nam et al., 2022, §2) for more details. If we have a
graph G, we noted in the Introduction that the steady state, u∞(G),
satisfies L(G) · u∞(G) � 0, so that, in linear algebra terms, u∞(G)
lies by definition in the kernel of the Laplacian matrix:
u∞(G) ∈ kerL(G). If G is strongly connected—i.e., if, for any pair
of distinct vertices i and j, there is a directed path of edges from i to
j—then this kernel is one-dimensional (Gunawardena, 2012),

dim kerL G( ) � 1. (3)
(The structure of kerL(G) is well understood for non-strongly
connected graphs (Mirzaev and Gunawardena, 2013). We will
not need this for steady states but we will encounter non-strong
connectivity when discussing first-passage times in the next section.)
Eq. 3 means that if z ∈ kerL(G) is any nonzero vector, then any
other vector in the kernel, such as u∞(G), is a scalar multiple of z:
u∞(G) = λz, for some number λ.

The classical Matrix-Tree theorem (MTT) yields a formula for a
canonical basis vector, ρ(G) ∈ kerL(G). We will describe this
formula shortly but note first that, as just mentioned, u∞(G)
must be a scalar multiple of ρ(G), so that u∞i (G) � λρi(G) for
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i = 1, . . ., N. Using the conservation law in Eq. 2 and recalling that
utot = 1 for probabilities, λmay be removed by normalising, so that,

u∞
i G( ) � ρi G( )

ρ1 G( ) +/ + ρN G( ). (4)

We need some terminology to explain how ρ(G) is determined
fromG. A spanning forest, F, ofG is a subgraph that contains all vertices
in G (“spanning”), lacks cycles when edge directions are ignored
(“forest”), and has at most one outgoing edge from each vertex. The
vertices with no outgoing edges are called the roots of F. If F has only one
root, it is called a spanning tree. A forest consists of separate trees,
although the forest is upside down, with each tree ascending to its root.
Given any non-empty subset of vertices,∅ ≠ U ⊆{1, . . ., N}, let ΦU(G)
denote the set of spanning forests of G that are rooted at U. Finally,

given any subgraph H of G, let w(H) denote the product of all the edge
labels inH:w(H) =∏i→j∈Hℓ(i→ j). As a matter of convention, ifH has
no edges, thenw(H) = 1. Then, ρi(G) is obtained by summingw(F) over
all spanning trees F of G that are rooted at i,

ρi G( ) � ∑
F∈Φ i{ } G( )

w F( ). (5)

ρi(G) is a manifestly positive polynomial in the edge labels, with each
w(F) being a monomial with coefficient +1. The steady-state
probabilities, u∞(G), can be recovered from ρi(G) by using Eq. 4.
Figure 2 illustrates this calculation for an example graph with five
vertices and i = 5. Spanning trees are sufficient to calculate steady-
state probabilities in Eq. 5 but spanning forests are also needed for
the transient quantities considered below (Eqs. 6, 7).

FIGURE 2
Spanning trees and steady-state probabilities. (A) An example graph, G, on five vertices, 1, . . . , 5{ }, with 11 edges, labeled k1,. . ., k11. G is strongly
connected. (B) The 20 spanning trees of G rooted at vertex 5 (red), each with its corresponding monomial product of edge labels. The sum of these
20 edge label products gives ρ5(G) in Eq. 5.
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Eq. 5 is a consequence of the classical MTT. TheMTT is one of a
family of theorems that describe the relationship between theminors
of L(G) and spanning forests of G. The details of how Eq. 5 arises
from the MTT, along with a statement and proof of the MTT itself,
are given in Mirzaev and Gunawardena (2013).

Since a strongly connected graph contains at least one directed
path from each vertex to every other vertex, there is always at least
one spanning tree rooted at each vertex. Therefore, the right-hand
side of Eq. 5 is never empty and has at least one term for any choice
of i. However, the number of rooted spanning trees may depend on
the vertex: in Figure 2, there are 20 spanning trees rooted at vertex
5 but the reader can check that there is only one spanning tree rooted
at vertex 3. The size of ρi(G) can vary markedly with i, depending on
the structure of G.

It follows from Eq. 4 that u∞(G) is a manifestly positive rational
function of the labels and is also always nonzero, irrespective of the
values of the labels. It is well known in probability theory that the
steady-state probabilities of a Markov process are always positive
when the corresponding graph is strongly connected, and here we
not only see why this is so but also how to calculate these
probabilities in terms of the transition rates.

Manifest positivity is what we would want for a formula that
yields a steady-state probability. It is a striking fact that many well-
knownmathematical formulas of molecular biology, such as those of
Michaelis–Menten and King–Altman in enzyme kinetics,
Monod–Wyman–Changeux and Koshland–Némethy–Filmer in
protein allostery and Ackers–Johnson–Shea in gene regulation, all
have the structure of manifestly positive rational functions.
However, they are typically derived in entirely different ways. In
fact, all these rational functions can be shown to arise from Eqs. 4, 5
applied to appropriate linear framework graphs (Gunawardena,
2012; Wong et al., 2018; Nam et al., 2022), thereby revealing a
surprising mathematical unity underlying the complexity of
molecular biology.

2.2 First-passage times and spanning forests

We turn now from the steady state to the transient regime and
specifically to first-passage times (FPTs) (Iyer-Biswas and Zilman,
2016). Given a graph G, the FPT from one vertex, i, to a distinct
target vertex, j ≠ i, is the random variable for the time it takes the
underlying Markov process, X(t), to reach j for the first time when
starting from i. Formally,

Θi,j G( ) � inf t> 0 : X t( ) � j | X 0( ) � i{ }.
Of interest are the mean and higher moments of the FPT
distribution. Recurrence times for the process returning to i after
leaving i can be treated similarly, as can FPTs for reaching a subset of
target states from a distinct subset of initial states, but we will leave
these refinements aside so as not to complicate the discussion.

For the kinds of stochastic molecular systems considered here,
FPTs have been used to quantify several properties: the completion
time of an enzymatic turnover (Fisher and Kolomeisky, 1999; Kou
et al., 2005; Shaevitz et al., 2005; Kolomeisky and Fisher, 2007;
Chemla et al., 2008; Garai et al., 2009; Bel et al., 2010; Moffitt et al.,
2010; Cao, 2011; Moffitt and Bustamante, 2014); the speed with
which an enzyme can discriminate between correct and incorrect

substrates (Banerjee et al., 2017; Cui and Mehta, 2018; Mallory et al.,
2019); the statistical structure of transcriptional bursting (Lammers
et al., 2020); and the time by which a regulated molecule crosses an
abundance threshold (Co et al., 2017; Ghusinga et al., 2017; Gupta
et al., 2018). We briefly discuss two examples by way of motivation
before proceeding to the technical details.

The development of single-molecule techniques for visualising
transcription in live cells (Fukaya et al., 2016; Dufourt et al., 2018)
has revealed that transcription is often characterised by transient
“bursts” of mRNA expression interspersed by periods of inactivity.
Efforts to explain how such bursting arises have focussed on
stochastic transitions between transcriptionally active and inactive
states in a Markovian setting (Peccoud and Ycart, 1995; Lammers
et al., 2020). In active states, successive mRNAs are produced in a
burst, which is terminated when the system makes a transition to an
inactive state. The FPT to reach an active state from an inactive one
provides an estimate of the time between bursts, which can be
measured experimentally. As noted by Lammers et al. (2020),
comparing the distributions of such FPTs offers a sensitive
means to discriminate between different gene regulatory models.

FPTs have also been used to quantify the time at which a
regulated molecule reaches a specific abundance threshold (Co
et al., 2017; Ghusinga et al., 2017; Gupta et al., 2018). An
example of this type of system is bacterial lysis by phage λ. Upon
infecting Escherichia coli, phage λ expresses a protein, holin S105,
that accumulates in the inner cell membrane until a threshold
concentration is reached, at which point the holin molecules
abruptly initiate lysis by puncturing the membrane with large
irregular holes (White et al., 2010). Various other cellular
processes, such as bacterial sporulation (Piggot and Hilbert,
2004), cell cycle progression (Liu et al., 2015) and cell migration
during development (Gupta et al., 2018), rely on similar
thresholding mechanisms. The FPT analysis undertaken by
Ghusinga et al. (2017) shows the impact of different regulatory
strategies on the variance in the FPT to reach the threshold and gives
insight into the regulatory mechanism of bacterial lysis.

Despite their broad usefulness in biology, FPTs have often been
calculated by numerical simulations (Lammers et al., 2020) or by
analytical methods that rely on the special structure of the model
(Ghusinga et al., 2017). We describe here a systematic graph-
theoretic scheme, similar to that in Eq. 5, by which the moments
of the FPT distribution can be expressed as rational functions of the
edge labels.

SinceΘi,j(G) measures the time taken by X(t) to reach j from i for
the first time, the distribution of Θi,j(G) does not depend on the
outgoing edges from j or their labels. Therefore, one can remove
from G the edges leaving j without affecting the distribution of
Θi,j(G). For example, the distribution of Θi,5(G) is the same for the
strongly connected graph in Figure 2A and for the graph in
Figure 3A, which is formed by removing the edges leaving
5 from the graph in Figure 2A. In consequence, it is convenient
when working with FPTs to deal with graphs that may not be
strongly connected, for which some additional terminology is
helpful.

A graph G always has a unique decomposition into strongly
connected components (SCCs), which can be thought of as the
maximal strongly connected subgraphs; see Mirzaev and
Gunawardena (2013) for the full details. The directed edges
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which leave these SCCs give rise to a partial order on the set of SCCs.
Those SCCs which are maximal in the partial order are called
terminal. For example, the graph in Figure 2A is strongly
connected and therefore has only a single SCC, but if the edge 5
→ 1 is removed, to yield the graph in Figure 3A, this graph has
3 SCCs in the partial order {1, 2, 3}⪯{4}⪯{5}. Let us consider the
special case where G has a unique terminal SCC that contains just
one vertex, say, q ∈ {1, . . ., N}, like the graph in Figure 3A. This is
what happens upon removal of the edges leaving a vertex, q, in a
strongly connected graph, as in Figure 2A: q forms a unique terminal
SCC, {q}, with only one vertex. If the underlying Markov process
X(t) starts from any other vertex, say i, then the probability that X(t)
eventually reaches q is 1. There may, of course, be trajectories of the
process along which q is never reached but these form a set of
probability zero.

We need just a bit more notation. The quantities we want to
calculate are the kth moments of the probability distribution of the
FPT from i to q,

τ k( )
i,q G( ) � 〈Θi,q G( )k 〉,

where 〈 − 〉 denotes the average over the underlying sample space of
trajectories. Let I denote the subset of non-terminal vertices,
I � {1, . . . , N}\{q}. Given any non-empty subset of vertices, ∅ ≠
U ⊂ {1, . . ., N}, and vertices j ∈ {1, . . ., N} and r ∈ U, let ΦU:j⇝r(G)
denote the set of spanning forests of G that are rooted at U and
contain a directed path of edges from j to the root r, specified by j⇝
r. By convention, there is always a (trivial) directed path from any
vertex to itself, so that r⇝ r. Then, for the mean FPT, we have (Nam
and Gunawardena, 2023),

τ 1( )
i,q G( ) �

∑j∈I∑F∈Φ j,q{ }: i⇝j G( )w F( )
∑F∈Φ q{ } G( )w F( ) . (6)

The numerator in Eq. 6 runs over all doubly-rooted spanning forests of
G in which q is one root and there is a directed path of edges from i to
the other root. Figure 3B demonstrates this calculation for the graph in
Figure 3A. The denominator in Eq. 6 runs over all spanning trees of G
rooted at q and is similar in that respect to the right-hand side of Eq. 5.

The combinatorics become more complicated for the higher
moments of Θi,q(G). Choose k-tuples of non-terminal vertices,

FIGURE 3
Spanning forests and FPTs. (A)An example graph,G, obtained by taking the graph in Figure 2A and removing the outgoing edge from vertex 5.G has a
single terminal SCC containing the single vertex 5. (B) The 24 doubly-rooted spanning forests of G in which 5 is a root (red font) and there is a path from
1 to the other root (also in red font), eachwith its corresponding product of edge labels. The sumof these 24 edge label products is equal to the numerator
of τ(1)1,5(G) in Eq. 6.
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j1, . . . , jk( ) ∈ I ×/× I︸



︷︷



︸
k times

,

and set j0 = i. Then, for the kth moment, we have (Nam and
Gunawardena, 2023),

τ k( )
i,q G( ) �

k!∑ j1 ,...,jk( ) ∏k
u�1 ∑F∈Φ ju,q{ }: ju−1⇝ju G( )w F( )( )( )
∑F∈Φ q{ } G( )w F( )( )

k
. (7)

The product in the numerator of Eq. 7 again involves doubly-rooted
spanning forests, in which q is one of the roots and the other root
shifts along the k-tuple from j1 to jk, with ju−1 having a directed path
to ju as u runs from 1 to k. Eq. 7 reduces to Eq. 6 when k = 1.

Note that a spanning forest, or the special case of a spanning
tree, that has q as a root cannot include any outgoing edge from q.
Hence, the spanning forests or trees with q = 5 as a root are the same
for the strongly connected graph in Figure 2A as for the graph in
Figure 3A, in which {q} has become the unique terminal SCC by
removing the edges that leave q. Accordingly, both the numerator
and denominator in Eqs. 6, 7 give the same result for q = 5 in either
graph. This is the graph-theoretic consequence of the fact,
mentioned above, that the probability distribution of Θi,5(G) is
the same for the graphs in Figure 2A and Figure 3A.

Eq. 7 and, by specialisation, Eq. 6 can be derived, after some
manipulations, from the All-Minors Matrix-Tree theorem, a more
recent generalisation of the classical MTT (Nam and Gunawardena,
2023).

As a sanity check on Eq. 7, we note that if G has N vertices, then
any spanning forest with r roots has N − r edges, as can be checked
for the examples in Figure 2B and Figure 3B. It follows from Eq. 7
that τ(k)i,q (G) has dimensions of (time)k, as expected for the kth
moment of an FPT.

Let us see what Eq. 7 tells us for the graph G consisting of just
two vertices, 1 and 2, with ℓ(1 → 2) = a and ℓ(2 → 1) = b. If we
consider τ(k)1,2 (G), then, for the denominator of Eq. 7, we need the
spanning trees rooted at 2, given by Φ{2}(G). There is only one such
tree F, for which w(F) = a. As for the numerator, we need the
spanning forests rooted at ju and 2, given by Φ{ju,2}: ju−1⇝ju(G). Since
the roots have to be distinct, the only possibility is that ju = 1. But
then the only forest, F, with these roots has just these vertices and no
edges. Recalling the convention for what happens when there are no
edges, we find that w(F) = 1. It follows that Eq. 7 collapses to the
simple conclusion that

τ k( ) G( )
1,2 � k!

ak
.

In particular, the mean FPT is 1/a and the variance, which is
τ(2)1,2 (G) − (τ(1)1,2(G))2, is 1/a2. Only the rate a is relevant, as we
would expect, since the rate b is the label on an edge that leaves the
target vertex. Because this example is so simple, the moments of the
FPT distribution can be readily calculated without the paraphernalia
of Eq. 7. The case of a longer pipeline of vertices is more demanding,
as we will see below (Figure 5).

Eq. 7 gives a general and systematic method to calculate FPTs
from the linear framework graph associated with a Markov process.
It can be used to calculate exact formulas in simple graphs and to
avoid estimating FPT moments by cumbersome numerical

simulations of the Markov process. The combinatorics rapidly
become formidable as the graph becomes larger or less
symmetric, as is perhaps already evident in Figure 2B and
Figure 3B. The broader value of Eq. 7 is that it reveals the
mathematical structure of the FPT moments as manifestly
positive rational functions of the edge labels. This can often be
informative in its own right, as we will see in discussing enzyme
kinetics below. We will say more about ways of dealing with the
combinatorial complexity in the Discussion.

2.3 Splitting probabilities and conditional
FPTs

In the previous section, we considered the FPT distribution from
a given vertex i to a single target vertex. It is, however, often the case
that there are several target vertices and one wants to know the
probability of reaching a particular target vertex or the FPT to that
vertex conditioned on the Markov process actually reaching it. (If
target vertices lie in different SCCs that are not related in the partial
order, then a trajectory that reaches one target can never reach any
other target, so that the mean FPT to each target becomes infinite.
Conditioning on reaching the target is therefore essential.) Let us
suppose, therefore, that G is a graph with one or more terminal
SCCs, each of which consists of a single vertex. Let T ⊂ {1, . . . , N}
be the subset consisting of these terminal vertices. Given i ∈ {1, . . .,
N} and q ∈ T , define the splitting probability from i to q, denoted
πi,q(G), to be the probability that the underlying Markov process,
when started from i, eventually reaches q, as opposed to any other
terminal vertex. Then we have (Nam and Gunawardena, 2023),

πi,q G( ) � ∑F∈ΦT : i⇝q G( )w F( )
∑F∈ΦT G( )w F( ) . (8)

The denominator in Eq. 8 runs over all spanning forests of G rooted
at T , and the numerator runs over the subset of those spanning
forests in which there is a directed path of edges from i to the root q.
Accordingly, the right-hand side of Eq. 8 must lie between 0 and 1, as
expected for a probability. If i ∈ T and i ≠ q, then there is no directed
path from i to q and so Eq. 8 gives 0, while if i = q, then every
spanning forest has a (trivial) path of directed edges from i to q and
so Eq. 8 gives 1. If G contains only one terminal vertex, then every
spanning forest of G rooted at T � {q} has a path of directed edges
from i to q, and so Eq. 8 again gives 1. Figure 4 illustrates the
calculation of the splitting probability from i = 1 to q = 5 on a six-
vertex graph with two terminal vertices, 5 and 6.

Let us turn now to the conditional FPT for reaching a particular
target vertex, q ∈ T , from the vertex i ∈ I , where, as before, I is the
subset of non-terminal vertices, I � {1, . . . , N}\T . For the mean
conditional FPT from i ∈ I to q ∈ T , denoted by χ(1)i,q (G), we find
that (Nam and Gunawardena, 2023),

χ 1( )
i,q G( ) �

∑j∈I ∑F∈ΦT ∪ j{ }: i⇝j G( )w F( )( ) ∑F∈ΦT : j⇝q G( )w F( )( )
∑F∈ΦT : i⇝q G( )w F( )( ) ∑F∈ΦT G( )w F( )( )

. (9)

If there is only one terminal vertex, so that T � {q}, then the mean
conditional FPT, χ(1)i,q (G), as given by Eq. 9, is equal to themean FPT,
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τ(1)i,q (G), as given by Eq. 6. Formulas for the higher moments of the
conditional FPT can be obtained in a similar way.

Evidently, the unconditional mean FPT to reach any terminal
vertex in T from i, denoted ψ(1)

i (G), is now given by,

ψ 1( )
i G( ) � ∑

p∈T
πi,p G( ) χ 1( )

i,p G( ).

Combining Eqs. 8, 9, we can show that this mean FPT can also be
expressed in terms of the spanning forests of G, as

ψ 1( )
i G( ) �

∑j∈I ∑F∈ΦT ∪ j{ }: i⇝j G( )w F( )( )
∑F∈ΦT G( )w F( )( ) , (10)

which specialises to Eq. 6 when there is only a single terminal vertex.
Splitting probabilities and conditional FPTs have not been as widely

used as have the unconditional FPTs described in the previous section.
This reflects the relatively simple models that have been formulated so
far in the literature. However, as we have shown here, there is no greater
difficulty in dealing with these more complex quantities, at least within
the graph-theoretic approach that we have outlined here. All the
quantities we have considered are manifestly positive rational
functions of the edge labels. This mathematical accessibility should
allow deeper analysis of transient stochastic properties.

2.4 Single-molecule enzyme kinetics

Single-molecule experimental methods have given
unprecedented access to the stochastic kinetics of individual
enzymes and have stimulated the development of theoretical
models to account for the resulting data. This literature offers a
convenient setting to illustrate the ideas introduced above.

A frequently used model in enzyme kinetics corresponds to a
pipeline graph (Figure 5) (Fisher and Kolomeisky, 1999; Kou et al.,
2005; Kolomeisky and Fisher, 2007; Chemla et al., 2008; Garai et al.,
2009; Moffitt et al., 2010; Moffitt and Bustamante, 2014). Such a
graph consists of vertices 1, . . ., N, representing different
conformations of the enzyme, with nearest-neighbour transitions,
i→ i + 1 or i→ i − 1. Substrate may bind at any forward transition,
i→ i + 1, so that ℓ(i→ i + 1) incurs a concentration term that we will
denote by x, and binding is assumed to be reversible, so that i + 1→ i.
The final transition, N − 1 → N, is usually treated as an irreversible
catalytic step, with the enzyme returning to its initial conformation,
so that vertex N corresponds to vertex 1 in the next enzymatic cycle.
A pipeline may be thought of as partitioned into reversible “blocks”
that are separated by sequences of irreversible transitions. Figures
5A, C show pipeline graphs with 1 and 3 reversible blocks,
respectively.

FIGURE 4
Splitting probabilities. (A) An example graph, G, on six vertices, 1, . . . ,6{ }, with three SCCs. The partial order is given by {1, 2, 3, 4}⪯{5} and {1, 2, 3, 4}⪯
{6}, with {5} and {6} being the two terminal SCCs. (B) The 18 spanning forests of G rooted at vertices 5 and 6 (red font), with those containing a path from
1 to 5 in the green box and those containing a path from 1 to 6 in the purple box. Each spanning forest is shown with its corresponding product of edge
labels. The sum of all 18 edge label products is equal to the denominator of π1,5(G) in Eq. 8; the sum of the six edge label products in the green box is
equal to the numerator of π1,5(G) in Eq. 8.
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The mean FPT for reaching vertex N from vertex 1 is a measure
of the enzyme’s completion time. Bustamante and colleagues have
emphasised how the substrate dependence of τ(1)1,N(G) and τ(2)1,N(G)
contains information about the enzyme mechanism, and they have
built on previous studies (Derrida, 1983) to analyse this theoretically
(Moffitt et al., 2010). This amounts to studying τ(1)1,N(G) and τ(2)1,N(G)
as functions of x, which falls directly into the scope of the results
described above. We will show how the graph-theoretic methods
introduced here provide a straightforward way to recover some of
these previous findings. We do not intend to be exhaustive and there
is much more of interest in the cited references. We hope, rather, to
show the advantages of the graph-theoretic approach over the
variety of approaches used previously, such as recursive solution
of the master equation (Derrida, 1983) or Fourier transformation
and determinants (Chemla et al., 2008).

Consider first a pipeline graph, G, with a single reversible block
consisting of the vertices 1, . . ., N − 1 and recall Eq. 6 for the mean
FPT, where the terminal vertex is q = N. An example is shown in
Figure 5A with the notation that we will use for the edge labels, ℓ(i→
i + 1) = pi and ℓ(i + 1→ i) = qi. It is evident that there is only a single
spanning tree, T ∈ Φ{N}(G), consisting of all the forward edges, so
that w(T) = p1/pN−1. This gives the denominator of τ(1)1,N(G). As for
the doubly-rooted spanning forests of Φ{j,N}(G) in the numerator,
they can be indexed as F(j, k, N), where j < k ≤ N and k is the vertex
with the smallest index that has a directed path to the root N
(Figure 5B). Furthermore, each such forest has a directed path from
1 to the root j, so thatΦ{j,N}:1⇝j(G) =Φ{j,N}(G).We see from the labels
in Figure 5B that

w F j, k,N( )( ) � p1/pj−1qj/qk−2pk/pN−1, (11)
where the “missing” label, between vertices k − 1 and k, corresponds
to the gap between the tree rooted at j and the tree rooted at N in the
forest. If we divide by the denominator, we see that each spanning

forest F(j, k, N) contributes a rational function of the labels that we
may write in the form,

w F j, k,N( )( )
w T( ) � 1

pj
∏
k−2

u�j

qu
pu+1

.

The spanning forests in Φ{j,N}(G) therefore contribute the sum,

∑F∈Φ j,N{ }: 1⇝j G( )w F( )
w T( ) � Δ j,N( )

pj
,

where,

Δ j,N( ) � ∑
N

k�j+1
∏
k−2

u�j

qu
pu+1

⎛⎝ ⎞⎠. (12)

Note that, in Eq. 12, the empty product for k = j + 1 is by convention
taken to be 1. It follows from Eq. 6 that the enzyme completion time
is given by,

τ 1( )
1,N G( ) � ∑

N−1

j�1

Δ j,N( )
pj

. (13)

With some notational translation, Eq. 13 can be seen to be the same
as (Moffitt et al., 2010, Eq. S2). The quantity Δ(j, N) in Eq. 12 first
appears in Derrida’s derivation of the velocity and diffusion constant
of a Markov particle on a periodic pipeline (Derrida, 1983, Eq. 24);
Δ(j, N) = Γ(j + 1, N − 1), where Γ is the quantity defined in Eq. S3 of
Moffitt et al. (2010). The calculation above, using the general
formula for the mean FPT in Eq. 6, is hopefully more transparent.

Suppose now that substrate binds at s forward transitions in the
pipeline graph, with concentration x. We will refer to terms other
than x in the edge labels as “kinetic parameters,” which thereby
include both simple rates and on-rates. Since we can exclude the
final catalytic transition from substrate binding, it follows that 1 ≤

FIGURE 5
Pipeline graphs. (A) A pipeline graph on 8 vertices that consists of a single reversible block, with substrate binding with concentration x at the edges 2
→ 3 and 4 → 5, followed by a single irreversible transition, 7 → 8. (B) The spanning forest F(2, 6, 8), in the notation described in the text, for the graph in
panel A. The two roots, 2 and 8, are in red font. (C) A pipeline graph with three reversible blocks, in each of which the substrate binds once. As explained in
the text, the mean FPT, τ(1)1,8(G), has a reciprocal Michaelis–Menten dependence on the substrate concentration, x, as in Eq. 15.
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s ≤ N − 2. Eq. 11 then shows that the enzyme completion time has
the following structure as a rational algebraic function of x,

τ 1( )
1,N G( ) � a0 + a1x +/ + asxs

bxs
. (14)

Here, the coefficients a0, . . ., as and b are all manifestly positive
polynomials in the kinetic parameters. In particular, the forest F(N −
1, N, N) includes all the substrate-binding transitions, which
confirms that as > 0. If the substrate-binding transitions are
specified, these polynomials may be explicitly calculated using
Eq. 11. Eq. 14 already provides some insight. In the limit of low
substrate, the completion time diverges at an order, 1/xs, that
depends on the number of substrate-binding transitions. In
contrast, in the limit of high substrate, the completion time
asymptotes to the positive value as/b. If substrate binds at only
one transition in the pipeline, so that s = 1, then the completion time
exhibits a reciprocal Michaelis–Menten form (Kou et al., 2005; Garai
et al., 2009; Moffitt et al., 2010; Moffitt and Bustamante, 2014)
(Discussion),

τ 1( )
1,N G( ) � a0 + a1x

bx
. (15)

The higher moments of the FPT, as specified by Eq. 7, are more
complicated to calculate but the doubly-rooted spanning forests that
are needed for the numerator, which are contained in
Φ{ju,N}: ju−1⇝ju(G), have already been enumerated by the forests
F(j, k, N) introduced above (Figure 5B). It seems reasonable to
conclude from Eq. 7 that τ(k)1,N(G) has a similar rational algebraic
structure as shown in Eq. 14 but with a degree of ks for both the
numerator and the denominator. In particular, if substrate binds at
only one transition, so that s = 1, the second moment of the FPT is a
quadratic rational function (Moffitt et al., 2010).

In their study of the packaging motor for the φ29 bacteriophage,
Bustamante and colleagues consider a more general pipeline graph,
G, that consists of multiple reversible blocks separated by single
irreversible transitions (Figure 5C) (Moffitt et al., 2010). The
packaging motor is a pentameric ring of identical ATPase units
that compacts the φ29 double-stranded DNA into the assembling
viral capsid. It has been found to do this in a burst of four ATP-
consuming steps per cycle. ATP hydrolysis during the catalytic step
is typically irreversible under physiological conditions and a pipeline
with 4 reversible blocks serves as a model for the motor (Moffitt
et al., 2010, Figure 4A).

If the Markov process takes an irreversible transition in G, it
cannot subsequently visit the preceding reversible blocks. Also, every
irreversible transition must be taken to reachN. Hence, any trajectory
that begins at 1 and reaches N must take each irreversible transition
exactly once. It follows from this that the FPT from 1 to N is just the
sum of the FPTs for each reversible block considered separately and
these FPTs are all independent of each other. Suppose there are m
reversible blocks which start at the vertices e0, e1, . . ., em−1, where 1 =
e0 < e1 < e2 </ < em−1 < N. Let Gi be the subgraph consisting of the
vertices from ei−1 to ei, which includes the ith reversible block and the
immediately following irreversible transition. It follows that,

τ k( )
1,N G( ) � τ k( )

1,e1
G1( ) + τ k( )

e1 ,e2
G2( ) +/ + τ k( )

em−1 ,N Gm( ). (16)

If substrate binds at the same number of transitions in each
reversible block, then Eq. 7 shows that the τ(k)ei−1 ,ei(Gi) all have the

same rational algebraic structure with the same degrees in both the
numerator and the denominator. It follows from Eq. 16 that τ(k)1,N(G)
must also have this same rational algebraic structure. For the case of
the φ29 packaging motor, ATP binds at only one transition in each
reversible block, so the completion time has the reciprocal
Michaelis–Menten form of Eq. 15 and the resulting curve may be
fitted to the experimental data (Moffitt et al., 2010, Figure 3A).
Bustamante and colleagues make use of the reciprocal of the
coefficient of variation,

nmin �
τ 1( )
1,N G( )( )2

τ 2( )
1,N G( ) − τ 1( )

1,N G( )( )2
,

which is readily seen from the discussion above to be a quadratic
rational function of x, and they also fit this curve to the experimental
data (Moffitt et al., 2010, Figure 3B). A theorem due to Aldous and
Shepp (1987), which is of independent interest, tells us that, for an
arbitrary graph with N vertices, nmin < N.

An interesting question arises as to whether nmin itself is also
manifestly positive, as might be expected of a coefficient of variation,
given that this is true for both τ(1)1,N(G) and τ(2)1,N(G). A further point
made by Moffitt et al. (2010) is that the quadratic structure of nmin

may not be limited to pipeline graphs but may be true also for some
graphs with branches and parallel pathways. If so, the graph-
theoretic methods described here offer a way to generalise their
findings.

3 Discussion

We have reviewed here how the graph-theoretic linear
framework, as applied to continuous-time Markov processes, can
be used to show that the moments of the FPT distribution (Eqs. 6, 7),
splitting probabilities (Eq. 8) and conditional mean FPTs (Eq. 9) can
be exactly expressed as manifestly positive rational algebraic
functions of the edge labels or transition rates. This reveals that
not only steady-state probabilities but also transient properties of
Markov processes have this same algebraic structure, thereby
substantially expanding the mathematical scope of the linear
framework.

The formulas given here can be used to obtain closed-form
solutions for simple graphs, as we showed for the pipeline graphs
used in enzyme kinetics (Eq. 13). However, this is a little misleading
because enumeration of spanning forests becomes rapidly
intractable as the graph becomes larger or less symmetric.
Moreover, as is evident by examining the algebraic terms in
Figure 2B and Figure 3B, every label in the graph can appear in
the formulas. There is both a combinatorial explosion and a global
parametric dependence. These challenges have long been recognised
when dealing with steady-state probabilities (Nam et al., 2022),
before the transient regime became mathematically accessible, and
several strategies have emerged for dealing with them.

First, when properties of interest are treated as functions of
substrate concentration, a great deal can be said about the resulting
rational algebraic structure, even when it is hard to calculate the
coefficients explicitly in terms of the edge labels (Thomson and
Gunawardena, 2009; Nam et al., 2022). As we saw with Eq. 14, the
algebraic structure for the mean FPT, τ(1)1,N(G), is highly informative,
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especially with respect to the limits of low or high concentration,
whichmay also be experimentally accessible. TheMichaelis–Menten
structure, or its reciprocal in Eq. 15, arises in a remarkably wide
range of biological contexts that are far removed from the 3-vertex
pipeline graph considered, in effect, by Michaelis and Menten
(Michaelis and Menten, 1913). The linear framework allows
general theorems to be proved, which characterise many of the
contexts in which the Michaelis–Menten structure does appear
(Wong et al., 2018). In this respect, the context discussed above,
of a pipeline graph with multiple reversible blocks, in which
substrate binds once in each block, falls outside the scope of the
theorems inWong et al. (2018). As suggested byMoffitt et al. (2010),
it seems plausible that the Michaelis–Menten structure may also
arise for more complicated graphs and an interesting problem arises
in characterising this new context.

Second, the question of when the Michaelis–Menten structure
arises is closely related to whether or not the graph satisfies the cycle
condition and can thereby reach a steady state of thermodynamic
equilibrium. If it can, there is a necessary and sufficient condition for
the emergence of the Michaelis–Menten structure; if it cannot, and
the graph reaches a non-equilibrium steady state, then only partial
sufficient conditions are known (Wong et al., 2018). Of course, the
pipeline example just mentioned cannot reach thermodynamic
equilibrium, as it contains irreversible transitions (Figure 5A). If
the cycle condition is satisfied, the complexity problem is
substantially reduced, insofar as calculating steady-state
probabilities is concerned. It is possible to find an alternative
basis element to ρ(G) in kerL(G) (Eq. 5), which is based on
paths rather than spanning trees, for which the combinatorial
explosion disappears and the parametric dependence becomes
local, not global (Nam et al., 2022). It is a very interesting
question as to whether transient quantities like FPTs show any
similar reduction in complexity for graphs that satisfy the cycle
condition.

Aside from the calculational complexity, the thermodynamic
issues also have a deep impact on biological function. The role of
energy expenditure in force generation or pattern formation has
been widely studied (Kolomeisky and Fisher, 2007; Karsenti, 2008)
but its significance for cellular information processing has been
more elusive (Wong and Gunawardena, 2020). In the latter domain,
unlike the two former ones, information processing can take place at
thermodynamic equilibrium, for instance, through binding and
unbinding. However, there is a limit to how well this can be
done, as first pointed out by Hopfield (1974). We have
introduced the concept of the Hopfield barrier, as the limit to
how well a given information processing task can be undertaken
by a mechanism that operates at thermodynamic equilibrium
(Estrada et al., 2016). For example, the Hill function with Hill
coefficient n is the universal Hopfield barrier for the sharpness of
input-output responses with n binding sites for the input (Nam et al.,
2022; Martinez-Corral et al., 2023). Another interesting question
arises as to whether there are also Hopfield barriers in the transient
regime. That is, if a graph satisfies the cycle condition and can reach
a steady state of thermodynamic equilibrium, are there limits on the
moments of the FPT distribution, τ(k)i,q (G), which can only be
exceeded if energy is expended to break the cycle condition,
allowing the system to reach a non-equilibrium steady state?

Third, the algebraic complexity of non-equilibrium steady states
can be reorganised to make the complexity more tractable (Çetiner
and Gunawardena, 2022). This breakthrough has enabled steady-
state calculations to be undertaken that were previously out of reach.
It is conceivable that similar kinds of reorganisation may also throw
light on the calculation of transient quantities. Finally, a fourth
potential approach to overcoming the complexity is to exploit the
recursive technique for enumerating spanning forests that was
developed by Chebotarev and Agaev (2002). While this technique
looks promising, it has yet to be properly exploited.

The methods outlined here bring the FPTs of Markov
processes into focus as manifestly positive rational algebraic
functions of the transition rates. This gives mathematical
access to them in a way that has been lacking in previous
treatments, which have not exploited graph theory and the
Matrix-Tree theorems. We hope this review will encourage
more use of the linear framework in cell and developmental
biology. We anticipate that, as we have found for steady states,
this exploration will lead to further general principles and
mathematical theorems that rise above the molecular
complexity that confronts us in biology.
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Multi-scale models of whole cells:
progress and challenges
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Whole-cell modeling is “the ultimate goal” of computational systems biology and
“a grand challenge for 21st century” (Tomita, Trends in Biotechnology, 2001, 19(6),
205–10). These complex, highly detailed models account for the activity of every
molecule in a cell and serve as comprehensive knowledgebases for the modeled
system. Their scope and utility far surpass those of other systems models. In fact,
whole-cell models (WCMs) are an amalgam of several types of “system” models.
The models are simulated using a hybrid modeling method where the appropriate
mathematical methods for each biological process are used to simulate their
behavior. Given the complexity of the models, the process of developing and
curating these models is labor-intensive and to date only a handful of these
models have been developed. While whole-cell models provide valuable and
novel biological insights, and to date have identified some novel biological
phenomena, their most important contribution has been to highlight the
discrepancy between available data and observations that are used for the
parametrization and validation of complex biological models. Another
realization has been that current whole-cell modeling simulators are slow and
to run models that mimic more complex (e.g., multi-cellular) biosystems, those
need to be executed in an accelerated fashion on high-performance computing
platforms. In this manuscript, we review the progress of whole-cell modeling to
date and discuss some of the ways that they can be improved.

KEYWORDS

whole-cell modeling, systems biology, multi-scale models, data integration, high
performance computing

1 Introduction

Biology once was considered a data poor science. That era has long passed. Today, thanks
to revolutionary advances in sequencing and other high-throughput analytical techniques,
staggering amount of biological data is being collected (Marx, 2013). Soon the cost of storing
and analyzing the biological data could be more concerning than the cost of generating it
(Fritz et al., 2011; Berger et al., 2013; Jagadish et al., 2014; Stephens et al., 2015). Further
complicating the challenge, the data that is being generated is highly heterogeneous. The data
is also variable. At times, measurements from the same biosystem but from different groups,
or even the same group but on different days or on different instruments could disagree with
one another. Therefore, data processing and integration from widely diverse databases have
become important tasks during in silico systematic analyses (Bajcsy et al., 2005; Shamim
et al., 2010).
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2 Whole-cell models

French polymath René Descartes in his Discourses put forth the
idea that the world behaves like a clockwork machine and therefore
it can be understood by dividing it into smaller pieces and studying
the individual components (Descartes, 1984). Molecular biology
investigations followed this idea for most of 20th century. But while
reductionist studies dominated the field and provided invaluable
insights into workings of specific processes in various model
organisms, the Aristotelian view that “the totality is not, as it
were, a mere heap, but the whole is something besides the parts”
(Cohen and Reeve, 2000) always had advocates among biologists.
These detractors observed the emergent behavior of whole systems
and argued that the observations that structures of systems
organized and controlled the performance of the component
parts refuted the reductionist basis of many studies since they
failed to account for critical system-level orchestrations. For a
long time, holistic analyses were impossible due to absence of
system-level data. That shortcoming has now been overcome and
the ready availability of various types of omics data have led to a
renaissance in the field of systems biology (Figure 1).

Soon after first genomes became available, computational
system-level models were developed. Genome-scale models of
metabolism (GEMs) are among the most widely used system-
level models. Metabolism was chosen as one of the first
bioprocesses to be examined on a system-level thanks to tireless
efforts of biochemists and microbiologists who for generations
conducted extensive targeted mechanistic analyses of enzymes
and pathways (Hill, 1970; Schilling et al., 1999; Papin et al., 2003;
Cornish-Bowden, 2013; Johnson, 2013) and bioinformaticians who
processed and deposited this information in numerous databases.

Coupling of GEMs with constraint-based reconstruction and
analysis (COBRA) methods such as popular Flux Balance Analysis
(FBA) has provided a wealth of general information regarding
fundamental organization and function of metabolic pathways
(e.g., (Almaas et al., 2004; Almaas et al., 2005)) while on a
biosystem specific level it has shed light on the metabolic
capabilities of the modeled organisms, their environmental niches
and the robustness of their metabolism to environmental and
genetic perturbations.

The popularity of these constraint-based modeling approaches
stems from the fact that they utilize the data that is readily available
(annotated genomes, empirical measurements of growth, nutrient

uptake, and byproduct excretion) and circumvent the issue of dearth
of kinetic data that plague generation of system-level kinetic models.
Some system-level kinetic models have been developed e.g., (Klipp,
2007; Bordbar et al., 2015; Jamei, 2016), but they usually tend to
account for the activity of significantly fewer genes than COBRA
models due to a lack of detailed kinetic data for all cellular processes.
There have been many methods developed that use Bayesian
parameter estimation to predict reasonable thermodynamic and
kinetic values to constrain COBRA models e.g., (Liebermeister and
Klipp, 2006a; Liebermeister and Klipp, 2006b; Stanford et al., 2013)
and subsequently there have been a number of attempts to add
kinetic information to FBA models (e.g., (Jamshidi and Palsson,
2008; Adadi et al., 2012; Stanford et al., 2013; Chowdhury et al.,
2015; Pozo et al., 2015; Khodayari andMaranas, 2016; Sánchez et al.,
2017; Shameer et al., 2022)). Despite this progress, currently the vast
majority of FBA models do not contain kinetic information.

Given their wide range of uses many upgrades to FBA methods
have been made to incorporate heterogenous omics data into them.
Many methods have been developed that constrain COBRA models
with omics data other than genome (e.g., (Becker and Palsson, 2008;
Chandrasekaran and Price, 2010; Zur et al., 2010; Jensen and Papin,
2011; Fang et al., 2012; Navid and Almaas, 2012; Sánchez et al., 2017;
Bekiaris and Klamt, 2020; Hadadi et al., 2020; Di Filippo et al.,
2022)). Several methods have also been developed that analyze
multi-omics data using machine learning models prior to their
incorporation into FBA models (Kim et al., 2016; Zampieri et al.,
2019; Lewis and Kemp, 2021; Sahu et al., 2021). In one case, FBAwas
embedded into artificial neural networks resulting in a hybrid
mechanistic-machine learning model that allows quantitative
predictions of medium uptake fluxes based solely on medium
composition (Faure et al., 2023). This development could greatly
improve our ability to develop condition- and species-specific GEMs
using data that are more readily available and easier to access.

There are also models available that account for the sequence-
specific synthesis of gene products, their function and all catalyzed
biochemical processes (Thiele et al., 2012; Ma et al., 2017). However,
despite all these advances in COBRAmodeling, all GEMmodels and
upgraded variants do not fully account for activity of every known
biological molecule and process. It is also important to account for
the structure of the cell since most molecular processes use it to
collocate into interacting modules at multiple scales (Betts and
Russell, 2007). While GEMs for eukaryotes bin the reactions of
metabolic reconstructions into different cellular compartments, they

FIGURE 1
Timeline of some of the important milestones in development of whole-cell models.
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do not explicitly account for clustering of molecules and proteins
within prokaryotes or organelles in a manner that could explain
observed interacting units. Additionally, most GEMs contain many
sources or sinks of energy and metabolites which hinder accurate
and detailed description of mechanisms associated with homeostasis
in a system (Roberts, 2014). Whole-cell models aim to overcome
these limitations.

Whole-cell models, as with other “system-level” models aim to
predict cellular phenotypes from genotype and biochemical and
biophysical characteristics of the environment. Where WCM
supersedes the other modeling efforts is the ambitious goal of
incorporating the function of each gene, gene product, and metabolite
in the modeled system (Karr et al., 2015). Thus, WCMs serve as nearly
comprehensive knowledgebases for the modeled system. They allow in
silico experiments that can lead to prediction of novel biological
phenomena, identification of gaps in our knowledge, generation of
new hypotheses and design of new studies (Tomita, 2001). The
models can be easily updated with new information which can be a
quick way of ascertaining the significance of new discoveries. Also, in this
golden age of machine learning, regression techniques can be used to
examine large heterogenous biological datasets and with a relatively high
degree of accuracy predict phenotypes (Guzzetta et al., 2010; Smith et al.,
2020; Guo and Li, 2023); in fact WCMs are the ideal complementary
models to the black box nature of machine learning models and can
provide a mechanistic underpinning to the predicted phenotypes.

2.1 Whole-cell model of Mycoplasma
genitalium

The first whole-cell model, one that can reasonably claim to
incorporate the activity of nearly all molecules in a system, was
developed for the small bacteriumM. genitalium (Karr et al., 2012).
M. genitalium is a facultative anaerobic pathogen that can cause
sexually transmitted diseases. In men it causes nongonococcal
urethritis and in women it could cause a variety of ailments
including cervicitis, endometritis, pelvic inflammation, infertility,
and even unfavorable birth outcomes.

AlthoughM. genitalium (MG) does have somemedical significance,
themain reasonwhy it was chosen as the first organism for development
of a WCMwas that it has one of the smallest known genomes (~580 kb
and 480 coded proteins) (Fraser et al., 1995). Also, compared to other
genomes, including well studied model organisms like E. coli, MG’s
genome contains significantly fewer genes of unknown function. Despite
its small size and complexity, the development of theMGmodel was still
a monumental undertaking and was a very labor-intensive process. The
model contains 1900 parameters from over 900 publications and is
nearly 3000 pages of Matlab code. It divides the activity of all annotated
MG gene products into 28 subcellular processes. To ensure the most
accurate representation and simulation, the most appropriate
mathematical modeling method was used for each subcellular
process. To link all these disparate models together, the developers
devised a hybridmodeling approach where all 28mathematical modules
are linked to a subset of other modules via 16 cell variables. Metabolism
in the MG WCM uses similar metabolic reconstructions as GEMs;
however, the internal fluxes of the reactions are dynamically constrained
bymultiplying the amount of catalyzing enzyme present in the system (a
variable in the WCM) by its catalytic constant (kcat).

The simulation starts with an initial set of values for these variables.
All the modules then run for a set period (e.g., 1 s) and afterwards the
value of each cell variable is updated based on input from all the
modules that link to it (Figure 2). Once the variables have been updated,
the modules are run again using the new values. The process continues
until a preset biological objective has been accomplished. Given the
complexity of the problem, the amount of data that needed to be
transferred back and forth between variables and modules, and the
inefficiency of the solver, the simulation time for the originalMGmodel
was slow (~1 day for 1 cell cycle). The model provided some interesting
insights into working of MG and predicted some novel phenotypes.

In cases where experimental results and model predictions
disagreed, gaps in our knowledge were identified and some
parameter values were corrected (Karr et al., 2012). This type of
model-driven knowledge gap filling and correction is a strong suit
ofWCMs. For example, theMGWCMwas used in a follow upwork by
Sanghvi and coworkers (Sanghvi et al., 2013) to compare the WCM
predicted growth rates for all non-lethal single-gene deletions with
experimental data. In cases of quantitative disagreement betweenmodel
predictions and experimental measurements, the authors examined the
“molecular pathology” of each gene-deleted strain and identified gene
targets which during the genome annotation process had been wrongly
assigned a function or had a missing function that was not included in
the model. In some other cases they identified alternate metabolic
pathways that could compensate for loss of a gene product. Finally,
given the more quantitative nature of WCM (in comparison to FBA
models) due to their incorporation of kinetic data into their metabolic
simulations; the authors were able to use the quantitative differences
between model predictions and experiments to predict appropriate
kinetic parameters for several critical enzymes. The predicted values
were experimentally validated. Comparing the new measured values
with the literature data that originally was used to train the MGWCM
showed significant differences, in some cases up to four orders of
magnitude.

The ability of WCMs to reliably predict in a quantitative manner
the in vivo dynamics of a system; information that cannot easily be
measured but is invaluable for assessing the state of a system and
guiding efforts to alter it, makes WCMs critical tools for biological
engineering projects. For example, WCMs can provide invaluable
information about how incorporating synthetic gene circuits in an
organism could alter the working of the system and how internal
processes that are almost always unaccounted for in silico models can
divert the system behavior away from desired outcome. In this vein,
Purcell et al. (2013) used theMGWCM to examine the effects of adding
genes into MG. They also examined how codon usage affects gene
expression and in agreement with results from E. coli (Kudla et al.,
2009). They found no difference in expression rates. Recently (Rees-
Garbutt et al., 2020) have used theMGWCMwithin a design-simulate-
test framework to predict a minimal genome that (if biologically
correct) could be smaller than JCVI-Syn3.0minimal genome bacterium.

3 Progress

3.1 Whole-cell model of Escherichia coli

While the development of MG whole-cell model (WC-MG) was
a monumental achievement and has been used to highlight the
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immense potential ofWCM for a variety of important uses,WC-MG
has limited utility for common uses of in silico models such as
predicting targets or outcomes for bioengineering. To have that
ability, the logical next organism to be modeled needed to be the best
studied bioengineering chassis organism, namely, E. coli. To that
end, a hybrid multi-math, multi-scale model for E. coli has been
developed (WC-EC) (Macklin et al., 2020). It incorporates the
function of over 40% of the well-annotated genes in E. coli
genome (1,214 genes). Although the model does not account for
activity of every gene product in E. coli, the model is significantly
larger than the WC-MG (>10,000 mathematical equations
and >19,000 parameters). This is not surprising given that
E. coli’s genome is an order of magnitude larger than MG’s and
E. coli has nearly 50 times more molecules. E. coli’s metabolism and
regulatory mechanisms are also significantly more sophisticated
than those for MG. Another advantage of WC-EC over WC-MG
is that 100% of former’s parameters are derived from experimental
measurements compared to less than 30% of the WC-MG
parameters. The WC-EC, in addition to omics data, is informed
by a large amount of kinetic data. This data was collected from
1,200 hand-curated papers after reviewing 12,000 papers in the
BRENDA (Schomburg et al., 2002; Chang et al., 2009) database. The
fact that all the parameters in WC-EC are empirically measured
allowed its use for examining the cross-consistency between the
disparate data sources that were used for its parameterization. The
results of analyses showed that most of the data used for the
development of WC-EC were consistent with predicted
behaviors. However, parameter sets that were not consistent
resulted in discrepancies that were alarming. For example, the
incorporated data for rate of activity by ribosomes and RNA
polymerases were too low to result in measured growth rates.
Another interesting finding was that some essential genes are not

transcribed during division cycles and yet cells proliferate. This latter
finding is a strong reminder that besides the catalytic capability and
concentration of an enzyme, the time course of its production and
eventual degradation can also have a significant effect on the
robustness of a system to environmental and genetic perturbations.

After the publication of WC-EC, its creators have initiated the
E. coliwhole-cell modeling project (Sun et al., 2021). The project aims to
expand on the published WC-EC model and ultimately develop the
most detailed model E. coli ever. The project invites input and
collaboration from the scientific community to accelerate the
development process. As part of this effort, updated versions of
WC-EC have been developed. One update (Ahn-Horst et al., 2022)
incorporates additional growth rate control regulations such as global
regulator guanosine tetraphosphate, as well as dynamics of amino acid
biosynthesis and translation. The additions significantly improve the
WC-EC’s ability to simulate dynamics of cellular responses as a
response to environmental perturbations. Another update (Choi and
Covert, 2023) added accurate tRNA aminoacylation, codon-based
polypeptide elongation, and N-terminal methionine cleavage
mechanisms to WC-EC which permits better examination of
inconsistencies between different types of measurements. The
updated model was used to verify that in vitro tRNA
aminoacylation measurements are insufficient for cellular proteome
maintenance. The model predicted a positive feedback mechanism that
regulates arginine synthesis.

3.2 Whole-cell model of Saccharomyces
cerevisiae

Saccharomyces cerevisiae’s (SC, Brewer’s yeast) genome was the
first eukaryotic genome to be sequenced (Goffeau et al., 1996). SC is

FIGURE 2
Assembly process for whole-cell models.
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an extremely important organism economically. It is genetically
tractable and has been engineered through a plethora of homologous
recombination techniques. Overall, SC is the best studied single cell
eukaryotic organism. Given this distinction, SC was the obvious best
choice for developing the first whole-cell model of a multi-
compartmented organism. The yeast whole-cell model (WM_
S288C) (Ye et al., 2020) was developed by expanding upon an
earlier FBA model of the organism (Österlund et al., 2013). It
incorporates products of 6,447 genes (100% of genome),
975 metabolites and 6,156 reactions. Overall, it includes
26 cellular processes. Unlike WC-EC, not all incorporated
parameters were available from yeast experiments. So instead,
measurements from other organisms were used. The WM_
S288C’s predictions were validated against experimental results
and when compared against predictions from its progenitor FBA
model they showed significant improvement (e.g., precision of
accurately predicting essential genes WM_S288C 70%, FBA
model 28%). The developers used the model to conduct an
extensive study of roles of various molecules in the system. They
ascertained the function of 1,140 essential genes, thus providing a
mechanistic understanding of vulnerable processes under different
conditions. They also gained new insights into function of non-
essential genes, namely, that these genes can regulate nucleotide
concentrations and thus affect cellular growth rates.

3.3 Vivarium

As noted earlier, whole-cell models integrate a diverse set of
intracellular processes using numerous simulation methods. When
developing the first whole-cell model, accuracy and completeness
were primary considerations. Speed of simulation was a secondary
consideration. However, (Karr et al., 2012), did attempt to speed up
the whole-cell simulation by executing multiple pathway sub-
models simultaneously for the agreed simulation time interval
using multiple CPU cores with one per pathway in Matlab
(Gunawardena, 2012). This attempt exposed a few significant
challenges to speeding up simulations of hybrid models. Firstly,
the time interval for all pathways is restricted by the smallest time
interval needed by any individual pathway. Secondly, the level of
parallelism is limited by the number of pathways. Thirdly, the
pathways tend to be extremely heterogeneous in terms of the
computational work needed to advance within the selected time
interval. Consequently, simulating the same interval for different
pathways may require vastly different computing times, making the
parallelization essentially ineffective.

To answer some of these problems, Vivarium (Agmon et al.,
2022), a platform for integrative multi-scale modeling, has been
developed. It provides an interface for combining existing models in
the nested hierarchies of multiple scales via a discrete event
simulation engine. This eases the software engineering task of
combining smaller pathways into a larger whole-cell model.
Vivarium makes it easier to combine multiple pathways together
and thus allows larger models and more computational parallelism.
Vivarium offers utilities to partition molecular species shared
between pathways based on expected demand in such a way that
mass is conserved. In this way, individual pathways can run
independently from each other within a time interval. Vivarium

can also leverage the message-passing of the Pythonmultiprocessing
module to exploit the inherent parallelism in the model across
multiple cores and multiple processors. While the original version of
Vivarium faced some of the same limitations as the original WCM
models—linked timesteps, parallelism by pathways, and uneven
computational load between pathways but updates have been
made and are on the way that answer some of these issues
(Skalnik et al., 2023).

3.4 Unbalanced growth and non-steady-
state metabolism

In all WCMs developed so far, metabolism is solved using
updated variants of FBA method that account for each enzyme’s
abundance and catalytic rate constant. Typical FBA models use a
rigid biomass reaction where a single set of stoichiometric
coefficients define the ratio of reactants that are used for
production of a set amount of biomass and a fixed set of
coefficients to define the other byproducts of cell maintenance
and replication (Orth et al., 2010). This balance growth
assumption is valid for most conditions, particularly if one must
assume a long-term analysis. However, for the development of
WCMs where FBA models are integrated in a hybrid format to
interact with dynamic simulations of bioprocesses with significantly
shorter timescales, this assumption is problematic. To overcome this
flaw, (Birch et al., 2014), developed two variations of FBA called
flexible FBA (flexFBA) and time-linked FBA (tFBA) that when run
simultaneously within WCMs improve the accuracy of model
predictions. In flexFBA, the fixed ratios of biomass reactants have
been removed in the objective function. This eliminates the classical
assumption of balanced growth. In tFBA the ratios between the
reactants and byproducts in the biomass equation are no longer
fixed and thus the common steady-state growth constraint of
classical FBA is eased. Using these methods for WCM allows for
“short time” FBA which allows integration of output from different
types of mathematical models.

3.5 Colony-scale whole system modeling

Phenotypic heterogeneity in a microbial community,
particularly those that persist for more than one generation can
have a significant impact resilience of a system to environmental
changes and threats. Bacterial persistence, the phenomenon where
genetically identical bacterial colonies behave heterogeneously to
introduction of antibiotics is known to play a key role in
development of antibiotic resistance in bacteria (Gefen and
Balaban, 2009). The heterogenous differences could stem
molecular processes, such as stochastic expression of antibiotic
resistance genes (Akiyama and Kim, 2021). Mechanistic WCMs
are ideal tools for gaining a system level understanding of these
phenomena. But to gain a colony level perspective requires
simulating many cells interacting with one another via a shared
environment. Vivarium allows such multi-scale simulations and
Skalnik et al. (2023) have used it to alter WC-EC model and develop
the first colony level holistic model. The model was then run in
parallel using cloud computing to study the emergence of antibiotic
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resistance in E. coli when treated with two antibiotics with different
modes of action.

4 Challenges

Despite all the advances and progress in the development of
WCMs over the last decades, there are still persistent fundamental
challenges that hinder not only the development of new models but
also any efforts to develop computational tools for accelerating
model simulation. In this section, we will discuss these challenges
and propose possible solutions.

4.1 Data collection

As the aim of WCMs is to accurately and comprehensively
predict the cell behavior, a huge amount of biological data is needed
for model parameterization and validation. This need increases with
the complexity and size of the cell (Babtie and Stumpf, 2017). The
main challenge with efforts at gathering the needed data is ensuring
that the publicly available data is in a useable format. This will allow
easy identification, extraction, and aggregation of high-quality data.
Unfortunately, the high dimensionality, the heterogeneity, and the
lack of sufficient annotation of the data pose important challenges
regarding their interpretation, and reusability. These challenges have
led to calls for standardization of databases, simulation softwares
and overall modeling standards (Waltemath et al., 2016).

Fortunately, a variety of tools and databases have been
developed to facilitate the data collection and aggregation
process. These tools also ease the burden of additional curation
of data. For example, there are many repositories providing
pathway/genome information such as BioCyc (Karp et al., 2017),
BiGG (Schellenberger et al., 2010; King et al., 2015a), WholeCellKB
(Karr et al., 2013), KEGG (Kanehisa and Goto, 2000; Kanehisa et al.,
2004; Kanehisa et al., 2016) and BRENDA (Schomburg et al., 2002;
Chang et al., 2009). In addition, there are databases that include
experimental data for a specific organism, such as EcoCyc (Keseler
et al., 2011; Keseler et al., 2017) where interestingly in its latest
version (Karp et al., 2023) there is a bidirectional connection with
the E. coli whole-cell modeling project that can be used for
importing data from EcoCyc to parametrize the WCM and
updating the WCM with EcoCyc’s latest mechanistic
information. Human curation of data collected on bioprocesses is
key to developing accurate WCMs and to this end visualization of
metabolic maps can provide extremely valuable insights for data
integration. Network visualization tools such as Escher (King et al.,
2015b; Rowe et al., 2018) and Pathview (Luo and Brouwer, 2013; Luo
et al., 2017) can be used for this task. However, these tools rely on
pre-drawn maps and cannot support inputs of large networks with
multi-type models.

In cases when data have not been deposited in any database,
literature text mining tools for extracting biological data like
Integrated Network and Dynamical Reasoning Assembler
(INDRA) (Gyori et al., 2017; Bachman et al., 2023), BioQRator
(Kwon et al., 2014) and PubTator (Wei et al., 2013) can help with
data collection and curation efforts. However, despite these
resources, there are still a few problems that need to be addressed.

Some parameters still remain unknown or of poor quality. This
is because while we have been generating massive amounts of omics
data, we have badly neglected measuring data needed for building
kinetic models. While there are databases such as BRENDA (Chang
et al., 2009) that contain some kinetic parameters such as catalytic
turnover rates and substrate-protein affinity coefficients, there is
wide variability between measured values even for the same
organisms. Sometimes, the only available data is from an
organism that might be in a different phyla or even biological
kingdom.

Another problem that is a major issue with all system-level
biological modeling efforts is inaccurate assignment of function to
gene products. It has been shown that different annotation tools can
assign widely different functions for the same proteins, particularly
for proteins of non-model organism (Griesemer et al., 2018).
WCMs’ ability to reconcile kinetic parameters is another
significant means in our toolbox for overcoming the errors
prevalent in the data we use for model parameterization. Given
that WCMs integrate large heterogenous sets of data, they can be
used to examine the incorporated data and through cross-validation
improve the accuracy of model parameters. These types of data
cross-validation and correction have already been shown to be a
strength of WCMs (Sanghvi et al., 2013; Macklin et al., 2020).

Finally, we have been mostly overlooking the activities of
“underground” metabolic processes in our models. Underground
metabolic processes are biochemical reactions that occur due to
promiscuity of enzymes. In our biological network reconstructions,
we usually only include the canonical function for a protein and
associated reactions if the proteins are enzymes. We typically ignore
low flux reactions that occur when proteins interact with alternate
metabolites. While the activity of underground metabolism under
most conditions is very low, under extraordinary conditions their
reaction rates can significantly increase and lead to evolution of new
pathways and adaptation to new environments (Notebaart et al.,
2018). Omission of underground metabolic processes from WCMs
could affect the accuracy of model predictions, particularly when
examining the behavior of a system under stress.

A promising solution to the problem of poor quality or missing
parameters can be use of sophisticated machine learning techniques.
Using big biological datasets with state-of-the-art methods like deep
learning approach for symbolic regression (Petersen et al., 2019),
where interpretable models can be generated by inferencing the
optimal format of equations and parameters from given data, could
predict some of these values.

4.2 Data and model integration

Combining heterogenous data together is a labor-intensive
process, though advances are being made that make it easier to
use disparate data and assemble it into a large model. The biomodels
database (Juty et al., 2015; Malik-Sheriff et al., 2020) is one such
database that captures reaction and metabolic pathways for many
different cellular models. The model physiome project (Hunter et al.,
2006) offers another. An ideal way of accelerating the process of
WCM development is to import extant models and use them as
submodels in WCMs. Chelliah et al. (2015) and Pan et al. (2021)
have offered means to automatically and programmatically link
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disparate submodels together into one cohesive whole. Bouhaddou
et al. (2018) make the case that it is important to distribute the tools
and thus conditions needed for a study can be “unit-tested” like
software subroutines. In this way each individual model can be
checked for errors and results can be reproduced in isolation before
assembled into a larger whole. Other groups agree about the need for
greater reproducibility for computational models (Papin et al., 2020;
Niarakis et al., 2022). Developments of tools like Memote (Lieven
et al., 2020) for standardizing the GEMs and FROG ensemble of
analyses for ensuring reproducibility of published models (Tatka
et al., 2023) have significantly increased confidence in the quality of
models that will be incorporated in future WCMs.

Though advances are being made in automatically assembling
disparate data together, researchers must take care tomake sure each
data source is appropriate for the task at hand. This requires an
extensive literature search with proper data provenance to ensure
each pathway and parameter is appropriately sourced and justified.

Once this data is assembled, deciding how best to simulate the
model is no small task. From a software engineering standpoint,
reference code implementations from different research teams are
usually completely incompatible with each other. This requires
recoding and translating, which is why having reproducible
results are so important. Model definition languages like SBML
(Hucka et al., 2018), CellML (Lloyd et al., 2004), and Modelica
(Fritzson and Engelson, 1998) offer an advantage here because they
separate the model definition from its numerical implementation,
which simplifies composing different cellular models from different
sources.

From a mathematical/numerical analysis standpoint, it can
be difficult to decide how to integrate the different models into
one cohesive whole that can offer numerically sound
predictions. How the hybrid modeling process deals with the
different time scales for the various types of mathematical
models is a major challenge. For example, FBA models do not
follow a time-varying process at all—they assume that the system
operates at steady state and instantaneously adjusts to changes in
order to optimize some biological objective. Ordinary
differential equations (ODEs) and stochastic differential
equations (SDEs) give continuous approximations of the
evolution of high-concentration chemical concentrations
within a component. There are well-established best practices
on how to simulate ODEs/SDEs accurately, but best practices
like simulating all the equations together with a global adaptive
timestep fall at odds with WCM’s practical need to modularize
and separate different subcomponents from each other. For low-
concentration chemical pathways, simulation methods like
discrete chemical kinetics are preferred (Gillespie et al., 2007;
Gillespie et al., 2013). Putting these disparate mathematical
models together is hard, and care must be taken to ensure
that artificial numerical artifacts are not introduced in the
process. Here are some examples of difficulties that can arise
when combining multiple different mathematical models.

• Each numerical method has different time stepping
requirements. It is unclear how one determines which
method controls the global timestep.

• The frequency of synchronization between different numerical
mathematical models is unknown.

• In cases when ODE method is extremely stiff and requires
miniscule timesteps the simulation can grind to a halt.

• The method for synchronizing continuous models like ODE/
SDE with discrete chemical kinetics is unknown.

• When the concentration of a molecule gets too low in an ODE
model there is a need to switch to discrete chemical kinetics.
Current hybrid modeling method cannot handle this switch.

• At times it will be necessary for models to evolve
independently from each other while at other times they
need to be tightly coupled and must be solved together.
This requires an evolving architecture of links between
submodels and system variables which currently is
unavailable.

None of these problems have simple solutions. It is up to the
individual research teams to find the modeling format that provides
the most accurate predictions and useable models. However, this
level of variance could drastically lower the reusability of the models
for other studies.

Aside from physical and mathematical scaling problems, from a
computational viewpoint, solving the different types of models can
be quite intense. FBA simulators require linear programming
solvers, which have O(n3) computational requirements (i.e., every
time the size of the model doubles, you need eight times the
computational resources). As models get larger, it is unclear how
one can spread this work across many processors to speed up the
simulation. ODE/SDE solvers are usually extremely efficient, but
whole-cell modeling is an inherently multi-physics and multiscale
problem, with stiff processes that evolve/oscillate on a microscale
timescale interacting with processes that evolve on a timescale of
days. How do you synchronize these disparate timescales efficiently,
and how do you separate the workflow onto multiple processors
without incurring too much communication overhead? Discrete
chemical kinetics require timing and tracking every chemical
reaction in a cell. As concentration increases, your timestep
becomes prohibitively small. How do you keep these systems
from dominating the computational running time as they
interact with high-concentration ODE models? How do you split
these discrete chemical reactions onto multiple processors to help
distribute the computational load?

4.3 Slow simulators

Although development of Vivarium (Agmon et al., 2022) has
helped with some of the issues that plague simulation speed of
complex whole-cell models, it is still limited to running on a single
CPU with multiple cores although in principle it can extend to
support distributed memory systems. Nevertheless, load balancing
remains challenging while limiting the speedup.

While it might be possible to answer some of the problems
associated with simulation of complex systems by building
accurate reduced models (e.g., (Gates et al., 2021; Avanzini
et al., 2023)), alternative solutions have been proposed.
Goldberg et al. (2016) envision highly parallel whole-cell
simulations by clustering species and reactions into groups
that interact infrequently with each other and by simulating
them in the parallel discrete event simulation (PDES) paradigm
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(Jefferson et al., 1987). PDES enables further parallelism
otherwise difficult to leverage via speculative execution and
rollback management (Jefferson et al., 1987). This requires
elaborate implementation and is currently under development.

Other potential remedies include parallelization of
individual sub-models, especially the computationally
demanding ones. Among the modeling approaches used in
whole-cell models, stochastic simulation algorithm (SSA)
(Gillespie, 1976; Gillespie, 1977) implements the most
detailed model of discrete biochemical reaction events. SSA is
necessary for accurately simulating statistically correct
trajectories of species especially with low constituent counts.
As more and more kinetic data become available for developing
more accurate models, SSA can be used to simulate larger
reaction networks. However, its computational cost is
prohibitive for the scale of whole-cell models, even for the
smallest organisms.

A popular approach to speed up an SSA simulations is to
simultaneously execute multiple independent realizations of a
simulation (Klingbeil et al., 2011; Sanft et al., 2011).
Unfortunately, this approach is not directly beneficial to whole-
cell modeling as it couples SSA-based models with other types of
models for a simulation run.

However, there exist a variety of SSA methods (Gillespie,
1977). Especially, the next reaction method (NRM) (Gibson and
Bruck, 2000) exposes opportunities for parallel processing. It
employs a dependency graph to identify the coupling between
reactions via their commonly referenced species (biomolecules
in WCMs), and to selectively update the propensity and the time
of the next occurrence of each reaction impacted by the fired one
(Gibson and Bruck, 2000). Such updates can be processed
independently of each other (Yeom et al., 2021). The degree
of parallelism here is bounded by the number of system updates,
i.e., the number of reactions involving the species consumed or
produced by the reaction fired as well as the cost reduction in
updating the priority queue. Some species may be shared by
many reactions. This will result in a non-trivial number of
updates, exposing the performance optimization opportunity.
Goldberg et al. theorizes a PDES-based approach to parallelize
SSA for distributed memory systems (Goldberg et al., 2020).

The cost of a single update itself may not be significant and
dedicating a processor to that may not be beneficial. Therefore,
an existing approach partitions the reaction network into
multiple subnetworks and updates them simultaneously with
one processor per group of reactions of each subnetwork via
OpenMP (Yeom et al., 2021). Partitioning a network of highly
skewed degree distribution for load balancing is known to be
challenging (Gonzalez et al., 2012; Yeom et al., 2014). In the
bipartite-graph abstraction of biochemical networks, a reaction
node represents a computation, and a species node does a state.
The edge indicates the dependency of the computation on the
states. If a state is referenced by different reactions across
multiple subnetworks over distributed memory systems, state
replication, maintained by a means of coherent updates, may
help mitigate the message passing cost. When parallelized for
shared memory systems, the state must be accessed in a
coordinated fashion among different processors to maintain
consistency (Yeom et al., 2021). For balancing compute loads

across processors, partitioning must consider the distribution of
aggregate reaction update rates of subnetworks, which
dynamically evolve through the course of simulation. This
presents another challenge for load balancing and may
require re-partitioning.

There exist works that parallelize SSA using accelerator
hardware (Indurkhya and Beal, 2010; Komarov and D’Souza,
2012; Manolakos and Kouskoumvekakis, 2017). However, these
approaches assume only the mass-action type reactions (van der
Schaft et al., 2013) and leverage it for parallelization. These do not
support general forms of reaction rate formula to accommodate
diverse modeling practices in the field, or do not support the
community standard model description, such as SBML, to its full
reaction expression capacity (Bornstein et al., 2008; Sayikli and
Bagci, 2011; Erdem et al., 2022).

ODE is another common simulation method used inWCM, and
there exist solver packages that speed up by distributed memory
parallelism using MPI along with node-level acceleration using GPU
or OpenMP (Fidler et al., 2019; Balos et al., 2021; Städter et al., 2021;
Elrod et al., 2022).

5 Conclusion

The field of whole-cell modeling is growing. Since the
publication of the first WCM a decade ago a handful of models
for important research, industrial, and medicinal model systems
have been developed. Other than the ones mentioned above earlier,
WCMs have been developed for JCVI-syn3A (Thornburg et al.,
2022) and human epithelial cells (Ghaemi et al., 2020). Given the
difficult and very labor-intensive process of developing WCMs, this
is a remarkable achievement and a testament to how scientists view
the potential of these models. The creation of these models has led to
the development of whole-cell structural models (Maritan et al.,
2022; Stevens et al., 2023) and even multicellular whole community
models (Skalnik et al., 2023).

There are still several problems that need to be addressed before
the use of these models becomes as common as usage of genome-
scale models of metabolism. These include problems with data
collection, model integration and parallel simulation of hybrid
models. However, advances thus far are a good indication that
these obstacles will soon be overcome.

Author contributions

KG: Writing–original draft, Writing–review and editing. JY:
Writing–original draft, Writing–review and editing. RCB:
Writing–original draft, Writing–review and editing. AN: Funding
acquisition, Supervision, Writing–original draft, Writing–review
and editing.

Funding

The author(s) declare financial support was received for the
research, authorship, and/or publication of this article. This work
was funded by the Laboratory Research and Development program

Frontiers in Cell and Developmental Biology frontiersin.org08

Georgouli et al. 10.3389/fcell.2023.1260507

90

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2023.1260507


(19-ERD-030) at LLNL and partially by the LLNL μBiospheres
Scientific Focus Area, funded by the U.S. Department of Energy,
Office of Science, Office of Biological and Environmental Research,
Genomic Science program under FWP SCW1039.

Acknowledgments

The authors would like to thank Drs. Arthur Goldberg, Jonathan
Karr, Marc Birtwistle, and Eran Agmon for sharing their experiences
in developing large multi-scale systems models and insights into
challenges associated with whole-cell modeling. Work at LLNL was
performed under the auspices of the U.S. Department of Energy by
Lawrence Livermore National Laboratory under Contract DE-
AC52-07NA27344. LLNL-JRNL-851344.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

References

Adadi, R., Volkmer, B., Milo, R., Heinemann, M., and Shlomi, T. (2012). Prediction of
microbial growth rate versus biomass yield by a metabolic network with kinetic
parameters. PLoS Comput. Biol. 8 (7), e1002575. doi:10.1371/journal.pcbi.1002575

Agmon, E., Spangler, R. K., Skalnik, C. J., Poole, W., Peirce, S. M., Morrison, J. H., et al.
(2022). Vivarium: an interface and engine for integrativemultiscalemodeling in computational
biology. Bioinformatics 38 (7), 1972–1979. doi:10.1093/bioinformatics/btac049

Ahn-Horst, T. A., Mille, L. S., Sun, G., Morrison, J. H., and Covert, M. W. (2022). An
expanded whole-cell model of E. coli links cellular physiology with mechanisms of
growth rate control. npj Syst. Biol. Appl. 8 (1), 30. doi:10.1038/s41540-022-00242-9

Akiyama, T., and Kim, M. (2021). Stochastic response of bacterial cells to antibiotics:
its mechanisms and implications for population and evolutionary dynamics. Curr.
Opin. Microbiol. 63, 104–108. doi:10.1016/j.mib.2021.07.002

Almaas, E., Kovacs, B., Vicsek, T., Oltvai, Z. N., and Barabasi, A. L. (2004). Global
organization of metabolic fluxes in the bacterium Escherichia coli. Nature 427 (6977),
839–843. doi:10.1038/nature02289

Almaas, E., Oltvai, Z. N., and Barabasi, A. L. (2005). The activity reaction core and plasticity
of metabolic networks. PLoS Comput. Biol. 1 (7), e68. doi:10.1371/journal.pcbi.0010068

Avanzini, F., Freitas, N., and Esposito, M. (2023). Circuit theory for chemical reaction
networks. Phys. Rev. X 13 (2), 021041. doi:10.1103/physrevx.13.021041

Babtie, A. C., and Stumpf, M. P. H. (2017). How to deal with parameters for whole-cell
modelling. J. R. Soc. Interface 14 (133), 20170237. doi:10.1098/rsif.2017.0237

Bachman, J. A., Gyori, B. M., and Sorger, P. K. (2023). Automated assembly of
molecular mechanisms at scale from text mining and curated databases.Mol. Syst. Biol.
19 (5), e11325. doi:10.15252/msb.202211325

Bajcsy, P., Han, J., Liu, L., and Yang, J. (2005). Survey of biodata analysis from a data
mining perspective. Data Min. Bioinforma. 2005, 9–39. doi:10.1007/1-84628-059-1_2

Balos, C. J., Gardner, D. J., Woodward, C. S., and Reynolds, D. R. (2021). Enabling
GPU accelerated computing in the SUNDIALS time integration library. Parallel
Comput. 108, 102836. doi:10.1016/j.parco.2021.102836

Becker, S. A., and Palsson, B. O. (2008). Context-specific metabolic networks are consistent
with experiments. PLoS Comput. Biol. 4 (5), e1000082. doi:10.1371/journal.pcbi.1000082

Bekiaris, P. S., and Klamt, S. (2020). Automatic construction of metabolic models with
enzyme constraints. BMC Bioinforma. 21 (1), 19. doi:10.1186/s12859-019-3329-9

Berger, B., Peng, J., and Singh, M. (2013). Computational solutions for omics data.
Nat. Rev. Genet. 14 (5), 333–346. doi:10.1038/nrg3433

Betts, M. J., and Russell, R. B. (2007). The hard cell: from proteomics to a whole cell
model. FEBS Lett. 581 (15), 2870–2876. doi:10.1016/j.febslet.2007.05.062

Birch, E. W., Udell, M., and Covert, M. W. (2014). Incorporation of flexible
objectives and time-linked simulation with flux balance analysis. J. Theor. Biol.
345, 12–21. doi:10.1016/j.jtbi.2013.12.009

Bordbar, A., McCloskey, D., Zielinski, D. C., Sonnenschein, N., Jamshidi, N., and Palsson, B.
O. (2015). Personalized whole-cell kineticmodels ofmetabolism for discovery in genomics and
pharmacodynamics. Cell Syst. 1 (4), 283–292. doi:10.1016/j.cels.2015.10.003

Bornstein, B. J., Keating, S. M., Jouraku, A., and Hucka, M. (2008). LibSBML: an API
library for SBML. Bioinformatics 24 (6), 880–881. doi:10.1093/bioinformatics/btn051

Bouhaddou, M., Barrette, A. M., Stern, A. D., Koch, R. J., DiStefano, M. S., Riesel, E.
A., et al. (2018). A mechanistic pan-cancer pathway model informed by multi-omics
data interprets stochastic cell fate responses to drugs and mitogens. PLoS Comput. Biol.
14 (3), e1005985. doi:10.1371/journal.pcbi.1005985

Chandrasekaran, S., and Price, N. D. (2010). Probabilistic integrative modeling of
genome-scale metabolic and regulatory networks in Escherichia coli andMycobacterium
tuberculosis. Proc. Natl. Acad. Sci. 107 (41), 17845–17850. doi:10.1073/pnas.1005139107

Chang, A., Scheer, M., Grote, A., Schomburg, I., and Schomburg, D. (2009).
BRENDA, AMENDA and FRENDA the enzyme information system: new content
and tools in 2009. Nucleic acids Res. 37 (1), D588–D592. doi:10.1093/nar/gkn820

Chelliah, V., Juty,N., Ajmera, I., Ali, R., Dumousseau,M., Glont,M., et al. (2015). BioModels:
ten-year anniversary. Nucleic Acids Res. 43 (D1), D542–D548. doi:10.1093/nar/gku1181

Choi, H., and Covert, M. W. (2023). Whole-cell modeling of E. coli confirms that
in vitro tRNA aminoacylation measurements are insufficient to support cell growth and
predicts a positive feedback mechanism regulating arginine biosynthesis. Nucleic Acids
Res. 51 (12), 5911–5930. doi:10.1093/nar/gkad435

Chowdhury, A., Khodayari, A., and Maranas, C. D. (2015). Improving prediction
fidelity of cellular metabolism with kinetic descriptions. Curr. Opin. Biotechnol. 36,
57–64. doi:10.1016/j.copbio.2015.08.011

Cohen, S. M., and Reeve, C. D. C. (2000). Aristotle’s metaphysics.

Cornish-Bowden, A. (2013). The origins of enzyme kinetics. FEBS Lett. 587 (17),
2725–2730. doi:10.1016/j.febslet.2013.06.009

Descartes, R. (1984). The philosophical writings of Descartes. Cambridge: Cambridge
University Press.

Di Filippo, M., Pescini, D., Galuzzi, B. G., Bonanomi, M., Gaglio, D., Mangano, E.,
et al. (2022). INTEGRATE: model-based multi-omics data integration to characterize
multi-level metabolic regulation. PLoS Comput. Biol. 18 (2), e1009337. doi:10.1371/
journal.pcbi.1009337

Elrod, C., Ma, Y., Althaus, K., and Rackauckas, C. (2022). Parallelizing explicit and
implicit extrapolation methods for ordinary differential equations (United States: IEEE).

Erdem, C., Mutsuddy, A., Bensman, E. M., Dodd, W. B., Saint-Antoine, M. M.,
Bouhaddou, M., et al. (2022). A scalable, open-source implementation of a large-scale
mechanistic model for single cell proliferation and death signaling. Nat. Commun. 13
(1), 3555. doi:10.1038/s41467-022-31138-1

Fang, X., Wallqvist, A., and Reifman, J. (2012). Modeling phenotypic metabolic
adaptations ofMycobacterium tuberculosisH37Rv under hypoxia. PLoS Comput. Biol. 8
(9), e1002688. doi:10.1371/journal.pcbi.1002688

Faure, L., Mollet, B., Liebermeister, W., and Faulon, J.-L. (2023). A neural-
mechanistic hybrid approach improving the predictive power of genome-scale
metabolic models. Nat. Commun. 14 (1), 4669. doi:10.1038/s41467-023-40380-0

Fidler, M., Hallow, M., Wilkins, J., and Wang, W. (2019). RxODE: facilities for
simulating from ODE-based models. R. package version 1 (9).

Fraser, C. M., Gocayne, J. D., White, O., Adams, M. D., Clayton, R. A., Fleischmann,
R. D., et al. (1995). The minimal gene complement of Mycoplasma genitalium. Science
270 (5235), 397–403. doi:10.1126/science.270.5235.397

Fritz, M. H.-Y., Leinonen, R., Cochrane, G., and Birney, E. (2011). Efficient storage of
high throughput DNA sequencing data using reference-based compression. Genome
Res. 21 (5), 734–740. doi:10.1101/gr.114819.110

Fritzson, P., and Engelson, V. (1998).Modelica—a unified object-oriented language for
system modeling and simulation1998 (Berlin, Germany: Springer).

Gates, A. J., Brattig Correia, R., Wang, X., and Rocha, L. M. (2021). The effective graph
reveals redundancy, canalization, and control pathways in biochemical regulation and
signaling. Proc. Natl. Acad. Sci. 118 (12), e2022598118. doi:10.1073/pnas.2022598118

Frontiers in Cell and Developmental Biology frontiersin.org09

Georgouli et al. 10.3389/fcell.2023.1260507

91

https://doi.org/10.1371/journal.pcbi.1002575
https://doi.org/10.1093/bioinformatics/btac049
https://doi.org/10.1038/s41540-022-00242-9
https://doi.org/10.1016/j.mib.2021.07.002
https://doi.org/10.1038/nature02289
https://doi.org/10.1371/journal.pcbi.0010068
https://doi.org/10.1103/physrevx.13.021041
https://doi.org/10.1098/rsif.2017.0237
https://doi.org/10.15252/msb.202211325
https://doi.org/10.1007/1-84628-059-1_2
https://doi.org/10.1016/j.parco.2021.102836
https://doi.org/10.1371/journal.pcbi.1000082
https://doi.org/10.1186/s12859-019-3329-9
https://doi.org/10.1038/nrg3433
https://doi.org/10.1016/j.febslet.2007.05.062
https://doi.org/10.1016/j.jtbi.2013.12.009
https://doi.org/10.1016/j.cels.2015.10.003
https://doi.org/10.1093/bioinformatics/btn051
https://doi.org/10.1371/journal.pcbi.1005985
https://doi.org/10.1073/pnas.1005139107
https://doi.org/10.1093/nar/gkn820
https://doi.org/10.1093/nar/gku1181
https://doi.org/10.1093/nar/gkad435
https://doi.org/10.1016/j.copbio.2015.08.011
https://doi.org/10.1016/j.febslet.2013.06.009
https://doi.org/10.1371/journal.pcbi.1009337
https://doi.org/10.1371/journal.pcbi.1009337
https://doi.org/10.1038/s41467-022-31138-1
https://doi.org/10.1371/journal.pcbi.1002688
https://doi.org/10.1038/s41467-023-40380-0
https://doi.org/10.1126/science.270.5235.397
https://doi.org/10.1101/gr.114819.110
https://doi.org/10.1073/pnas.2022598118
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2023.1260507


Gefen, O., and Balaban, N. Q. (2009). The importance of being persistent:
heterogeneity of bacterial populations under antibiotic stress. FEMS Microbiol. Rev.
33 (4), 704–717. doi:10.1111/j.1574-6976.2008.00156.x

Ghaemi, Z., Peterson, J. R., Gruebele, M., and Luthey-Schulten, Z. (2020). An in-silico
human cell model reveals the influence of spatial organization on RNA splicing. PLoS
Comput. Biol. 16 (3), e1007717. doi:10.1371/journal.pcbi.1007717

Gibson, M. A., and Bruck, J. (2000). Efficient exact stochastic simulation of chemical
systems with many species and many channels. J. Phys. Chem. A 104 (9), 1876–1889.
doi:10.1021/jp993732q

Gillespie, D. T. (1976). A General method for numerically simulating the
stochastic time evolution of coupled chemical reactions. J. Comput. Phys. 22,
403–434. doi:10.1016/0021-9991(76)90041-3

Gillespie, D. T. (1977). Exact stochastic simulation of coupled chemical reactions.
J. Phys. Chem. 81, 2340–2361. doi:10.1021/j100540a008

Gillespie, D. T.,Hellander, A., and Petzold, L. R. (2013). Perspective: stochastic algorithms for
chemical kinetics. J. Chem. Phys. 138 (17), 170901. doi:10.1063/1.4801941

Gillespie, D. T., Lampoudi, S., and Petzold, L. R. (2007). Effect of reactant size on discrete
stochastic chemical kinetics. J. Chem. Phys. 126 (3), 034302. doi:10.1063/1.2424461

Goffeau,A., Barrell, B. G., Bussey,H., Davis, R.W.,Dujon, B., Feldmann,H., et al. (1996). Life
with 6000 genes. Science 274 (5287), 563–567. doi:10.1126/science.274.5287.546

Goldberg, A. P., Chew, Y. H., and Karr, J. R. (2016). Toward scalable whole-cell
modeling of human cells (United States: ACM).

Goldberg, A. P., Jefferson, D. R., Sekar, J. A. P., and Karr, J. R. (2020). Exact
parallelization of the stochastic simulation algorithm for scalable simulation of large
biochemical networks. arXiv preprint arXiv:200505295.

Gonzalez J. E., LowY., GuH., BicksonD., andGuestrin C. (2012). {PowerGraph}: distributed
{Graph-Parallel} computation on natural graphs (United States: USENIX Association).

Griesemer, M., Kimbrel, J. A., Zhou, C. E., Navid, A., and D’haeseleer, P. (2018).
Combining multiple functional annotation tools increases coverage of metabolic
annotation. BMC genomics 19 (1), 948. doi:10.1186/s12864-018-5221-9

Gunawardena, J. (2012). Silicon dreams of cells into symbols. Nat. Biotechnol. 30 (9),
838–840. doi:10.1038/nbt.2358

Guo, T., and Li, X. (2023). Machine learning for predicting phenotype from genotype
and environment. Curr. Opin. Biotechnol. 79, 102853. doi:10.1016/j.copbio.2022.102853

Guzzetta, G., Jurman, G., and Furlanello, C. (2010). A machine learning pipeline for
quantitative phenotype prediction from genotype data. BMC Bioinforma. 11 (8), S3–S9.
doi:10.1186/1471-2105-11-S8-S3

Gyori, B. M., Bachman, J. A., Subramanian, K., Muhlich, J. L., Galescu, L., and Sorger,
P. K. (2017). From word models to executable models of signaling networks using
automated assembly. Mol. Syst. Biol. 13 (11), 954. doi:10.15252/msb.20177651

Hadadi, N., Pandey, V., Chiappino-Pepe, A., Morales, M., Gallart-Ayala, H., Mehl, F., et al.
(2020). Mechanistic insights into bacterial metabolic reprogramming from omics-integrated
genome-scale models. NPJ Syst. Biol. Appl. 6 (1), 1. doi:10.1038/s41540-019-0121-4

Hill, R. (1970). The chemistry of life: eight lectures on the history of biochemistry.
Cambridge: CUP Archive.

Hucka, M., Bergmann, F. T., Dräger, A., Hoops, S., Keating, S. M., Le Novère, N., et al.
(2018). The Systems Biology Markup Language (SBML): language specification for level
3 version 2 core. J. Integr. Bioinforma. 15 (1), 20170081. doi:10.1515/jib-2017-0081

Hunter, P. J., Li, W. W., McCulloch, A. D., and Noble, D. (2006). Multiscale
modeling: physiome project standards, tools, and databases. Computer 39 (11),
48–54. doi:10.1109/mc.2006.392

Indurkhya, S., and Beal, J. (2010). Reaction factoring and bipartite update graphs
accelerate the Gillespie algorithm for large-scale biochemical systems. PloS one 5 (1),
e8125. doi:10.1371/journal.pone.0008125

Jagadish, H. V., Gehrke, J., Labrinidis, A., Papakonstantinou, Y., Patel, J. M.,
Ramakrishnan, R., et al. (2014). Big data and its technical challenges. Commun.
ACM 57 (7), 86–94. doi:10.1145/2611567

Jamei, M. (2016). Recent advances in development and application of
physiologically-based pharmacokinetic (PBPK) models: a transition from
academic curiosity to regulatory acceptance. Curr. Pharmacol. Rep. 2,
161–169. doi:10.1007/s40495-016-0059-9

Jamshidi, N., and Palsson, B. Ø. (2008). Formulating genome-scale kinetic models in
the post-genome era. Mol. Syst. Biol. 4 (1), 171. doi:10.1038/msb.2008.8

Jefferson, D., Beckman, B., Wieland, F., Blume, L., and DiLoreto, M. (1987). Time
warp operating system (United States: ACM).

Jensen, P. A., and Papin, J. A. (2011). Functional integration of a metabolic network
model and expression data without arbitrary thresholding. Bioinformatics 27 (4),
541–547. doi:10.1093/bioinformatics/btq702

Johnson, K. A. (2013). A century of enzyme kinetic analysis, 1913 to 2013. FEBS Lett.
587 (17), 2753–2766. doi:10.1016/j.febslet.2013.07.012

Juty, N., Ali, R., Glont, M., Keating, S., Rodriguez, N., Swat, M. J., et al. (2015).
BioModels: content, features, functionality, and use. CPT pharmacometrics Syst.
Pharmacol. 4 (2), e3–e68. doi:10.1002/psp4.3

Kanehisa, M., and Goto, S. (2000). KEGG: kyoto encyclopedia of genes and genomes.
Nucleic acids Res. 28 (1), 27–30. doi:10.1093/nar/28.1.27

Kanehisa,M.,Goto, S., Kawashima, S.,Okuno,Y., andHattori,M. (2004). TheKEGGresource
for deciphering the genome. Nucleic acids Res. 32 (1), D277–D280. doi:10.1093/nar/gkh063

Kanehisa, M., Sato, Y., Kawashima, M., Furumichi, M., and Tanabe, M. (2016). KEGG
as a reference resource for gene and protein annotation. Nucleic acids Res. 44 (D1),
D457–D462. doi:10.1093/nar/gkv1070

Karp, P. D., Billington, R., Caspi, R., Fulcher, C. A., Latendresse, M., Kothari, A., et al.
(2017). The BioCyc collection of microbial genomes and metabolic pathways. Brief.
Bioinforma. 20, 1085–1093. doi:10.1093/bib/bbx085

Karp, P. D., Paley, S., Caspi, R., Kothari, A., Krummenacker, M., Midford, P. E., et al.
(2023). The EcoCyc database. EcoSal Plus 2023, eesp0002. eesp-0002. doi:10.1128/
ecosalplus.esp-0002-2023

Karr, J. R., Sanghvi, J. C., Macklin, D. N., Arora, A., and Covert, M. W. (2013).
WholeCellKB: model organism databases for comprehensive whole-cell models.Nucleic
Acids Res. 41, D787–D792. doi:10.1093/nar/gks1108

Karr, J. R., Sanghvi, J. C., Macklin, D. N., Gutschow, M. V., Jacobs, J. M., Bolival, B.,
et al. (2012). A whole-cell computational model predicts phenotype from genotype. Cell
150 (2), 389–401. doi:10.1016/j.cell.2012.05.044

Karr, J. R., Takahashi, K., and Funahashi, A. (2015). The principles of whole-cell
modeling. Curr. Opin. Microbiol. 27, 18–24. doi:10.1016/j.mib.2015.06.004

Keseler, I. M., Collado-Vides, J., Santos-Zavaleta, A., Peralta-Gil, M., Gama-Castro, S.,
Muniz-Rascado, L., et al. (2011). EcoCyc: a comprehensive database of Escherichia coli
biology. Nucleic Acids Res. 39, D583–D590. doi:10.1093/nar/gkq1143

Keseler, I. M., Mackie, A., Santos-Zavaleta, A., Billington, R., Bonavides-Martínez, C.,
Caspi, R., et al. (2017). The EcoCyc database: reflecting new knowledge about
Escherichia coli K-12. Nucleic Acids Res. 45 (1), D543–D50. doi:10.1093/nar/gkw1003

Khodayari, A., and Maranas, C. D. (2016). A genome-scale Escherichia coli kinetic
metabolic model k-ecoli457 satisfying flux data for multiple mutant strains. Nat.
Commun. 7 (1), 13806. doi:10.1038/ncomms13806

Kim, M., Rai, N., Zorraquino, V., and Tagkopoulos, I. (2016). Multi-omics integration
accurately predicts cellular state in unexplored conditions for Escherichia coli. Nat.
Commun. 7 (1), 13090. doi:10.1038/ncomms13090

King, Z. A., Dräger, A., Ebrahim, A., Sonnenschein, N., Lewis, N. E., and
Palsson, B. O. (2015b). Escher: a web application for building, sharing, and
embedding data-rich visualizations of biological pathways. PLoS Comput. Biol. 11
(8), e1004321. doi:10.1371/journal.pcbi.1004321

King, Z. A., Lu, J., Dräger, A., Miller, P., Federowicz, S., Lerman, J. A., et al. (2015a).
BiGG Models: a platform for integrating, standardizing and sharing genome-scale
models. Nucleic acids Res. 44 (D1), D515–D522. doi:10.1093/nar/gkv1049

Klingbeil, G., Erban, R., Giles, M., and Maini, P. K. (2011). STOCHSIMGPU: parallel
stochastic simulation for the Systems Biology Toolbox 2 for MATLAB. Bioinformatics
27 (8), 1170–1171. doi:10.1093/bioinformatics/btr068

Klipp, E. (2007). Modelling dynamic processes in yeast. Yeast 24 (11), 943–959.
doi:10.1002/yea.1544

Komarov, I., and D’Souza, R. M. (2012). Accelerating the Gillespie exact stochastic
simulation algorithm using hybrid parallel execution on graphics processing units. PLoS
One 7 (11), e46693. doi:10.1371/journal.pone.0046693

Kudla, G., Murray, A. W., Tollervey, D., and Plotkin, J. B. (2009). Coding-
sequence determinants of gene expression in Escherichia coli. science 324 (5924),
255–258. doi:10.1126/science.1170160

Kwon, D., Kim, S., Shin, S.-Y., Chatr-aryamontri, A., and Wilbur, W. J. (2014).
Assisting manual literature curation for protein–protein interactions using BioQRator.
Database 2014, bau067. doi:10.1093/database/bau067

Lewis, J. E., and Kemp, M. L. (2021). Integration of machine learning and genome-
scale metabolic modeling identifies multi-omics biomarkers for radiation resistance.
Nat. Commun. 12 (1), 2700. doi:10.1038/s41467-021-22989-1

Liebermeister, W., and Klipp, E. (2006a). Bringing metabolic networks to life:
convenience rate law and thermodynamic constraints. Theor. Biol. Med. Model. 3,
41–13. doi:10.1186/1742-4682-3-41

Liebermeister, W., and Klipp, E. (2006b). Bringing metabolic networks to life:
integration of kinetic, metabolic, and proteomic data. Theor. Biol. Med. Model. 3
(1), 42–11. doi:10.1186/1742-4682-3-42

Lieven, C., Beber, M. E., Olivier, B. G., Bergmann, F. T., Ataman, M., Babaei, P., et al.
(2020). MEMOTE for standardized genome-scale metabolic model testing. Nat.
Biotechnol. 38 (3), 272–276. doi:10.1038/s41587-020-0446-y

Lloyd, C. M., Halstead, M. D. B., and Nielsen, P. F. (2004). CellML: its future, present and
past. Prog. biophysics Mol. Biol. 85 (2), 433–450. doi:10.1016/j.pbiomolbio.2004.01.004

Luo, W., and Brouwer, C. (2013). Pathview: an R/Bioconductor package for
pathway-based data integration and visualization. Bioinformatics 29 (14),
1830–1831. doi:10.1093/bioinformatics/btt285

Luo, W., Pant, G., Bhavnasi, Y. K., Blanchard, S. G., Jr, and Brouwer, C. (2017).
Pathview Web: user friendly pathway visualization and data integration. Nucleic acids
Res. 45 (W1), W501–W8. doi:10.1093/nar/gkx372

Frontiers in Cell and Developmental Biology frontiersin.org10

Georgouli et al. 10.3389/fcell.2023.1260507

92

https://doi.org/10.1111/j.1574-6976.2008.00156.x
https://doi.org/10.1371/journal.pcbi.1007717
https://doi.org/10.1021/jp993732q
https://doi.org/10.1016/0021-9991(76)90041-3
https://doi.org/10.1021/j100540a008
https://doi.org/10.1063/1.4801941
https://doi.org/10.1063/1.2424461
https://doi.org/10.1126/science.274.5287.546
https://doi.org/10.1186/s12864-018-5221-9
https://doi.org/10.1038/nbt.2358
https://doi.org/10.1016/j.copbio.2022.102853
https://doi.org/10.1186/1471-2105-11-S8-S3
https://doi.org/10.15252/msb.20177651
https://doi.org/10.1038/s41540-019-0121-4
https://doi.org/10.1515/jib-2017-0081
https://doi.org/10.1109/mc.2006.392
https://doi.org/10.1371/journal.pone.0008125
https://doi.org/10.1145/2611567
https://doi.org/10.1007/s40495-016-0059-9
https://doi.org/10.1038/msb.2008.8
https://doi.org/10.1093/bioinformatics/btq702
https://doi.org/10.1016/j.febslet.2013.07.012
https://doi.org/10.1002/psp4.3
https://doi.org/10.1093/nar/28.1.27
https://doi.org/10.1093/nar/gkh063
https://doi.org/10.1093/nar/gkv1070
https://doi.org/10.1093/bib/bbx085
https://doi.org/10.1128/ecosalplus.esp-0002-2023
https://doi.org/10.1128/ecosalplus.esp-0002-2023
https://doi.org/10.1093/nar/gks1108
https://doi.org/10.1016/j.cell.2012.05.044
https://doi.org/10.1016/j.mib.2015.06.004
https://doi.org/10.1093/nar/gkq1143
https://doi.org/10.1093/nar/gkw1003
https://doi.org/10.1038/ncomms13806
https://doi.org/10.1038/ncomms13090
https://doi.org/10.1371/journal.pcbi.1004321
https://doi.org/10.1093/nar/gkv1049
https://doi.org/10.1093/bioinformatics/btr068
https://doi.org/10.1002/yea.1544
https://doi.org/10.1371/journal.pone.0046693
https://doi.org/10.1126/science.1170160
https://doi.org/10.1093/database/bau067
https://doi.org/10.1038/s41467-021-22989-1
https://doi.org/10.1186/1742-4682-3-41
https://doi.org/10.1186/1742-4682-3-42
https://doi.org/10.1038/s41587-020-0446-y
https://doi.org/10.1016/j.pbiomolbio.2004.01.004
https://doi.org/10.1093/bioinformatics/btt285
https://doi.org/10.1093/nar/gkx372
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2023.1260507


Ma, D., Yang, L., Fleming, R. M. T., Thiele, I., Palsson, B. O., and Saunders, M. A.
(2017). Reliable and efficient solution of genome-scale models of Metabolism and
macromolecular Expression. Sci. Rep. 7 (1), 40863. doi:10.1038/srep40863

Macklin, D. N., Ahn-Horst, T. A., Choi, H., Ruggero, N. A., Carrera, J., Mason, J. C.,
et al. (2020). Simultaneous cross-evaluation of heterogeneous E. coli datasets via
mechanistic simulation. Science 369 (6502), eaav3751. doi:10.1126/science.aav3751

Malik-Sheriff, R. S., Glont, M., Nguyen, T. V. N., Tiwari, K., Roberts, M. G., Xavier, A.,
et al. (2020). BioModels—15 years of sharing computational models in life science.
Nucleic Acids Res. 48 (D1), D407–D15. doi:10.1093/nar/gkz1055

Manolakos, E. S., and Kouskoumvekakis, E. (2017). StochSoCs: high performance
biocomputing simulations for large scale Systems Biology (United States: IEEE).

Maritan, M., Autin, L., Karr, J., Covert, M.W., Olson, A. J., and Goodsell, D. S. (2022).
Building structural models of a whole Mycoplasma cell. J. Mol. Biol. 434 (2), 167351.
doi:10.1016/j.jmb.2021.167351

Marx, V. (2013). Biology: the big challenges of big data. Nature 498 (7453), 255–260.
doi:10.1038/498255a

Navid, A., and Almaas, E. (2012). Genome-level transcription data of Yersinia pestis
analyzed with a New metabolic constraint-based approach. BMC Syst. Biol. 6 (1), 150.
doi:10.1186/1752-0509-6-150

Niarakis, A., Waltemath, D., Glazier, J., Schreiber, F., Keating, S. M., Nickerson, D.,
et al. (2022). Addressing barriers in comprehensiveness, accessibility, reusability,
interoperability and reproducibility of computational models in systems biology.
Briefings Bioinforma. 23 (4), bbac212. doi:10.1093/bib/bbac212

Notebaart, R. A., Kintses, B., Feist, A. M., and Papp, B. (2018). Underground
metabolism: network-level perspective and biotechnological potential. Curr. Opin.
Biotechnol. 49, 108–114. doi:10.1016/j.copbio.2017.07.015

Orth, J. D., Thiele, I., and Palsson, B. O. (2010). What is flux balance analysis? Nat.
Biotechnol. 28 (3), 245–248. doi:10.1038/nbt.1614

Österlund, T., Nookaew, I., Bordel, S., and Nielsen, J. (2013). Mapping condition-
dependent regulation of metabolism in yeast through genome-scale modeling. BMC
Syst. Biol. 7 (1), 36. doi:10.1186/1752-0509-7-36

Pan, M., Gawthrop, P. J., Cursons, J., and Crampin, E. J. (2021). Modular assembly of
dynamic models in systems biology. PLoS Comput. Biol. 17 (10), e1009513. doi:10.1371/
journal.pcbi.1009513

Papin, J. A., Mac Gabhann, F., Sauro, H. M., Nickerson, D., and Rampadarath, A.
(2020). Improving reproducibility in computational biology research. San Francisco, CA
USA: Public Library of Science, e1007881.

Papin, J. A., Price, N. D., Wiback, S. J., Fell, D. A., and Palsson, B. O. (2003).
Metabolic pathways in the post-genome era. Trends Biochem. Sci. 28 (5), 250–258.
doi:10.1016/S0968-0004(03)00064-1

Petersen, B. K., Landajuela, M., Mundhenk, T. N., Santiago, C. P., Kim, S. K., and Kim,
J. T. (2019).Deep symbolic regression: recovering mathematical expressions from data via
risk-seeking policy gradients. arXiv preprint arXiv:191204871. 2019.

Pozo, C., Miró, A., Guillén-Gosálbez, G., Sorribas, A., Alves, R., and Jiménez, L.
(2015). Gobal optimization of hybrid kinetic/FBA models via outer-approximation.
Comput. Chem. Eng. 72, 325–333. doi:10.1016/j.compchemeng.2014.06.011

Purcell, O., Jain, B., Karr, J. R., Covert, M. W., and Lu, T. K. (2013). Towards a whole-
cell modeling approach for synthetic biology. Chaos 23 (2), 025112. doi:10.1063/1.
4811182

Rees-Garbutt, J., Chalkley, O., Landon, S., Purcell, O., Marucci, L., and Grierson, C.
(2020). Designing minimal genomes using whole-cell models. Nat. Commun. 11 (1),
836. doi:10.1038/s41467-020-14545-0

Roberts, E. (2014). Cellular and molecular structure as a unifying framework for
whole-cell modeling. Curr. Opin. Struct. Biol. 25, 86–91. doi:10.1016/j.sbi.2014.01.005

Rowe, E., Palsson, B. O., and King, Z. A. (2018). Escher-FBA: a web application for
interactive flux balance analysis. BMC Syst. Biol. 12, 84–87. doi:10.1186/s12918-018-
0607-5

Sahu, A., Blätke, M.-A., Szymański, J. J., and Töpfer, N. (2021). Advances in flux
balance analysis by integrating machine learning and mechanism-based models.
Comput. Struct. Biotechnol. J. 19, 4626–4640. doi:10.1016/j.csbj.2021.08.004

Sánchez, B. J., Zhang, C., Nilsson, A., Lahtvee, P. J., Kerkhoven, E. J., and Nielsen, J.
(2017). Improving the phenotype predictions of a yeast genome-scale metabolic model
by incorporating enzymatic constraints. Mol. Syst. Biol. 13 (8), 935. doi:10.15252/msb.
20167411

Sanft, K. R., Wu, S., Roh, M., Fu, J., Lim, R. K., and Petzold, L. R. (2011). StochKit2:
software for discrete stochastic simulation of biochemical systems with events.
Bioinformatics 27 (17), 2457–2458. doi:10.1093/bioinformatics/btr401

Sanghvi, J. C., Regot, S., Carrasco, S., Karr, J. R., Gutschow, M. V., Bolival, B., et al.
(2013). Accelerated discovery via a whole-cell model. Nat. Methods 10 (12), 1192–1195.
doi:10.1038/nmeth.2724

Sayikli, C., and Bagci, E. Z. (2011). Limitations of using mass action kinetics method in
modeling biochemical systems: illustration for a second order reaction (Berlin, Germany:
Springer).

Schellenberger, J., Park, J. O., Conrad, T. M., and Palsson, B. O. (2010). BiGG: a
Biochemical Genetic and Genomic knowledgebase of large scale metabolic
reconstructions. BMC Bioinforma. 11, 213. doi:10.1186/1471-2105-11-213

Schilling, C. H., Schuster, S., Palsson, B. O., and Heinrich, R. (1999). Metabolic
pathway analysis: basic concepts and scientific applications in the post-genomic era.
Biotechnol. Prog. 15 (3), 296–303. doi:10.1021/bp990048k

Schomburg, I., Chang, A., Hofmann, O., Ebeling, C., Ehrentreich, F., and Schomburg,
D. (2002). BRENDA: a resource for enzyme data and metabolic information. Trends
Biochem. Sci. 27 (1), 54–56. doi:10.1016/s0968-0004(01)02027-8

Shameer, S., Wang, Y., Bota, P., Ratcliffe, R. G., Long, S. P., and Sweetlove, L. J.
(2022). A hybrid kinetic and constraint-based model of leaf metabolism allows
predictions of metabolic fluxes in different environments. Plant J. 109 (1),
295–313. doi:10.1111/tpj.15551

Shamim, A., Shaikh, M. U., and Malik, S. U. R. (2010). “Intelligent data mining in
autonomous heterogeneous distributed bio databases,” in 2010 Second International
Conference on Computer Engineering and Applications, Bali, Indonesia, 2010 19-
21 March.

Skalnik, C. J., Cheah, S. Y., Yang, M. Y., Wolff, M. B., Spangler, R. K., Talman,
L., et al. (2023). Whole-cell modeling of E. coli colonies enables quantification of
single-cell heterogeneity in antibiotic responses. PLOS Comput. Biol. 19 (6),
e1011232. doi:10.1371/journal.pcbi.1011232

Smith, A. M., Walsh, J. R., Long, J., Davis, C. B., Henstock, P., Hodge, M. R., et al.
(2020). Standard machine learning approaches outperform deep representation
learning on phenotype prediction from transcriptomics data. BMC Bioinforma. 21
(1), 119–218. doi:10.1186/s12859-020-3427-8

Städter, P., Schälte, Y., Schmiester, L., Hasenauer, J., and Stapor, P. L. (2021).
Benchmarking of numerical integration methods for ODE models of biological
systems. Sci. Rep. 11 (1), 2696. doi:10.1038/s41598-021-82196-2

Stanford, N. J., Lubitz, T., Smallbone, K., Klipp, E., Mendes, P., and Liebermeister, W.
(2013). Systematic construction of kinetic models from genome-scale metabolic
networks. PloS one 8 (11), e79195. doi:10.1371/journal.pone.0079195

Stephens, Z. D., Lee, S. Y., Faghri, F., Campbell, R. H., Zhai, C., Efron, M. J., et al.
(2015). Big data: astronomical or genomical? PLoS Biol. 13 (7), e1002195. doi:10.1371/
journal.pbio.1002195

Stevens, J. A., Grünewald, F., van Tilburg, P. A. M., König, M., Gilbert, B. R., Brier, T.
A., et al. (2023). Molecular dynamics simulation of an entire cell. Front. Chem. 11,
1106495. doi:10.3389/fchem.2023.1106495

Sun,G., Ahn-Horst, T. A., andCovert,M.W. (2021). TheE. coliwhole-cellmodeling project.
EcoSal plus 9 (2), eESP00012020. eESP-0001. doi:10.1128/ecosalplus.ESP-0001-2020

Tatka, L. T., Smith, L. P., Hellerstein, J. L., and Sauro, H. M. (2023). Adapting
modeling and simulation credibility standards to computational systems biology.
J. Transl. Med. 21 (1), 501. doi:10.1186/s12967-023-04290-5

Thiele, I., Fleming, R. M. T., Que, R., Bordbar, A., Diep, D., and Palsson, B. O. (2012).
Multiscale modeling of metabolism and macromolecular synthesis in E. coli and its
application to the evolution of codon usage. PLoS One 7, e45635. doi:10.1371/journal.
pone.0045635

Thornburg, Z. R., Bianchi, D. M., Brier, T. A., Gilbert, B. R., Earnest, T. M., Melo, M.
C. R., et al. (2022). Fundamental behaviors emerge from simulations of a living minimal
cell. Cell 185 (2), 345–360.e28. doi:10.1016/j.cell.2021.12.025

Tomita, M. (2001). Whole-cell simulation: a grand challenge of the 21st century.
Trends Biotechnol. 19 (6), 205–210. doi:10.1016/s0167-7799(01)01636-5

van der Schaft, A., Rao, S., and Jayawardhana, B. (2013). On the mathematical
structure of balanced chemical reaction networks governed by mass action kinetics.
SIAM J. Appl. Math. 73 (2), 953–973. doi:10.1137/11085431x

Waltemath, D., Karr, J. R., Bergmann, F. T., Chelliah, V., Hucka, M., Krantz, M., et al.
(2016). Toward community standards and software for whole-cell modeling. IEEE
Trans. Biomed. Eng. 63 (10), 2007–2014. doi:10.1109/TBME.2016.2560762

Wei, C.-H., Kao, H.-Y., and Lu, Z. (2013). PubTator: a web-based text mining tool for
assisting biocuration. Nucleic acids Res. 41 (W1), W518–W522. doi:10.1093/nar/gkt441

Ye, C., Xu, N., Gao, C., Liu, G., Xu, J., Zhang, W., et al. (2020). Comprehensive
understanding of Saccharomyces cerevisiae phenotypes with whole-cell model WM_
S288C. Biotechnol. Bioeng. 117 (5), 1562–1574. doi:10.1002/bit.27298

Yeom J., Bhatele, A., Bisset, K., Bohm, E., Gupta, A., and Kale, L. V. (2014).
Overcoming the scalability challenges of epidemic simulations on blue waters
(United States: IEEE).

Yeom, J., Georgouli, K., Blake, R., and Navid, A. (2021). Towards dynamic simulation
of a whole cell model. Proceedings of the 12th ACM Conference on Bioinformatics,
Computational Biology, and Health Informatics.

Zampieri, G., Vijayakumar, S., Yaneske, E., and Angione, C. (2019). Machine and
deep learning meet genome-scale metabolic modeling. PLoS Comput. Biol. 15 (7),
e1007084. doi:10.1371/journal.pcbi.1007084

Zur, H., Ruppin, E., and Shlomi, T. (2010). iMAT: an integrative metabolic analysis
tool. Bioinformatics 26 (24), 3140–3142. doi:10.1093/bioinformatics/btq602

Frontiers in Cell and Developmental Biology frontiersin.org11

Georgouli et al. 10.3389/fcell.2023.1260507

93

https://doi.org/10.1038/srep40863
https://doi.org/10.1126/science.aav3751
https://doi.org/10.1093/nar/gkz1055
https://doi.org/10.1016/j.jmb.2021.167351
https://doi.org/10.1038/498255a
https://doi.org/10.1186/1752-0509-6-150
https://doi.org/10.1093/bib/bbac212
https://doi.org/10.1016/j.copbio.2017.07.015
https://doi.org/10.1038/nbt.1614
https://doi.org/10.1186/1752-0509-7-36
https://doi.org/10.1371/journal.pcbi.1009513
https://doi.org/10.1371/journal.pcbi.1009513
https://doi.org/10.1016/S0968-0004(03)00064-1
https://doi.org/10.1016/j.compchemeng.2014.06.011
https://doi.org/10.1063/1.4811182
https://doi.org/10.1063/1.4811182
https://doi.org/10.1038/s41467-020-14545-0
https://doi.org/10.1016/j.sbi.2014.01.005
https://doi.org/10.1186/s12918-018-0607-5
https://doi.org/10.1186/s12918-018-0607-5
https://doi.org/10.1016/j.csbj.2021.08.004
https://doi.org/10.15252/msb.20167411
https://doi.org/10.15252/msb.20167411
https://doi.org/10.1093/bioinformatics/btr401
https://doi.org/10.1038/nmeth.2724
https://doi.org/10.1186/1471-2105-11-213
https://doi.org/10.1021/bp990048k
https://doi.org/10.1016/s0968-0004(01)02027-8
https://doi.org/10.1111/tpj.15551
https://doi.org/10.1371/journal.pcbi.1011232
https://doi.org/10.1186/s12859-020-3427-8
https://doi.org/10.1038/s41598-021-82196-2
https://doi.org/10.1371/journal.pone.0079195
https://doi.org/10.1371/journal.pbio.1002195
https://doi.org/10.1371/journal.pbio.1002195
https://doi.org/10.3389/fchem.2023.1106495
https://doi.org/10.1128/ecosalplus.ESP-0001-2020
https://doi.org/10.1186/s12967-023-04290-5
https://doi.org/10.1371/journal.pone.0045635
https://doi.org/10.1371/journal.pone.0045635
https://doi.org/10.1016/j.cell.2021.12.025
https://doi.org/10.1016/s0167-7799(01)01636-5
https://doi.org/10.1137/11085431x
https://doi.org/10.1109/TBME.2016.2560762
https://doi.org/10.1093/nar/gkt441
https://doi.org/10.1002/bit.27298
https://doi.org/10.1371/journal.pcbi.1007084
https://doi.org/10.1093/bioinformatics/btq602
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2023.1260507


How the latent geometry of a
biological network provides
information on its dynamics: the
case of the gene network of
chronic myeloid leukaemia
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Background: The concept of the latent geometry of a network that can be
represented as a graph has emerged from the classrooms of mathematicians and
theoretical physicists to become an indispensable tool for determining the structural
and dynamic properties of the network in many application areas, including contact
networks, social networks, and especially biological networks. It is precisely latent
geometry thatwediscuss in this article to showhow thegeometry of themetric space
of the graph representing the network can influence its dynamics.

Methods: We considered the transcriptome network of the Chronic Myeloid
Laeukemia K562 cells. We modelled the gene network as a system of springs using
a generalizationof theHooke’s law ton-dimension (n≥ 1).Weembedded the network,
described by the matrix of spring’s stiffnesses, in Euclidean, hyperbolic, and spherical
metric spaces to determine which one of these metric spaces best approximates the
network’s latent geometry. We found that the gene network has hyperbolic latent
geometry, and, based on this result, we proceeded to cluster the nodes according to
their radial coordinate, that in this geometry represents the node popularity.

Results: Clustering according to radial coordinate in a hyperbolic metric space
when the input to network embedding procedure is thematrix of the stiffnesses of
the spring representing the edges, allowed to identify the most popular genes that
are also centres of effective spreading and passage of information through the
entire network and can therefore be considered the drivers of its dynamics.

Conclusion: The correct identification of the latent geometry of the network leads
to experimentally confirmed clusters of genes drivers of the dynamics, and,
because of this, it is a trustable mean to unveil important information on the
dynamics of the network. Not considering the latent metric space of the network,
or the assumption of a Euclidean space when this metric structure is not proven to
be relevant to the network, especially for complex networks with hierarchical or
modularised structure can lead to unreliable network analysis results.
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network geometry, graph embedding, dynamical systems, spring systems, chronic
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1 Introduction

With the emergence of systems biology around the year 2000, the
representation of a system of interacting biological entities, such as
proteins, molecules, functional complexes, etc., in the form of a network
or graph has become preponderant and an unreliable prerequisite of
any mathematical model regarding both the static and dynamic
properties of the network. This representation of the components of
a system as network nodes and their interactions as arcs between the
nodes proved to be easy to understand as it is intuitive and also an
excellent tool for organising data. However, the immediacy of
understanding such a representation comes at the price of its low
informational power, its susceptibility to misinterpretation and its use
that often takes place under tacit or even unconscious assumptions.
Particularly in the graph representation of a network, it is natural to
think of the concept of distance between nodes as the number of arcs
separating the nodes, or, if the weights of the arcs are known, as the
weighted sum of the number of arcs separating the nodes. In doing so, it
is implicitly assumed that the distance between two nodes is a Euclidean
distance, or, in other words, that the metric space in which the network
resides is flat Euclid space. This implicit assumption on a measure as
important as the distance between nodes, used in multiple contexts as a
measure of the intensity of an interaction between nodes, if not of the
propensity of the interaction itself, may not only be reductive or
approximate, but may even be incorrect. An erroneous assumption
about the metric space that represents the geometry of the network
carries serious risks, one of which is that of not being able to grasp the
organizational principles of the typology and consequently the
dynamics of the network. Indeed, the distribution of widely used
centrality metrics like as degree and clustering coefficient reflect the
features of the metric space, which defines the network’s geometry. For
example, heterogeneous degree distributions and significant clustering
emerge naturally as reflections of the underlying hyperbolic geometry’s
negative curvature and hyperbolic metric characteristic (Krioukov et al.,
2010). On the opposite, if a network has some metric structure and a
heterogeneous degree distribution, the network has an effective
hyperbolic geometry below (Krioukov et al., 2010).

It is often said to indicate themetric space of a network that the graph
representing the network is “embedded” in ametric space, which is called
the latent geometry of the network. The adjective “latent” is justified by
the fact that the graph representation of a network does not make visible
the characteristics of the metric space in which the coordinates of the
nodes are actually defined. The verb “to embed”, on the other hand,
although commonly used, we condemn somewhat misleadingly, since
the network, if endowed with a metric structure, is in fact not embedded
in a metric space as if it were a distinct entity that fits into it, but is itself a
portion of it, more precisely a discrete version of the continuous metric
space that represents it. The use of the verb “to embed” stems from the
procedures dedicated to understanding what the latent geometry of the
network might be and based on tests in which the network is considered
to have metrics of a different nature and then the distortion that the new
metric has with respect to the original metric defined by the network’s
similarity matrix (i.e., weighted adjacency matrix) is assessed.

The latent geometry of a network is an important area of study in
network science. We refer the reader to Boguñá et al. (2021); Jhun
(2022) or an overview of the studies and fields of application of the study
of the latent geometry of a network. In Jhun (2022), it is reported that
latent geometry has been used to travel networks efficiently (Kleinberg,

2000; Boguñá et al., 2010) detect missing links (Liben-Nowell and
Kleinberg, 2007; Clauset et al., 2008), map the brain (Allard and
Serrano, 2020), and analyse proximity network (Papadopoulos and
Flores, 2019). Interestingly, it has been shown that the map of
contagions of various pandemics develops through paths defined on
the latent geometry of the network of contacts and movements of
individuals (Taylor et al., 2015). Systems biology has also benefited from
the results of latent network geometry analysis, in particular the study of
genetic networks and protein-protein interaction networks as reported
in (Alanis-Lobato et al., 2018; Härtner et al., 2018; Pio et al., 2019;
Klimovskaia et al., 2020; Sun et al., 2021; Lecca and Re, 2022; Lecca,
2023; Seyboldt et al., 2022).

While we can say that the relationship between latent geometry and
static topological properties of the network, such as those measured by
the centrality indices, is well established, the relationship between latent
geometry and network dynamical properties is little investigated. A
recent attempt in this direction was made by Rand et al. (2021). In this
paper, Rand et al. study embryonic development. From egg to adult,
embryonic development results in the reproducible and organised
manifestation of complexity. In this process, the activity of gene
networks culminates in the sequential differentiation of distinct cell
types that construct this complexity, which has been likened by Conrad
Waddington metaphor (Fard et al., 2016; Squier, 2017; Sánchez-
Romero and Casadesús, 2021) to a flow through a landscape with
valleys representing alternative destinies. Geometric approaches enable
the formal description of such landscapes and codify the types of
behaviours produced by differential equation systems.

With this study of ours, we wish to make a contribution in this still
very unexplored field of the relations between latent geometry and the
evolution of a network, particularly a biological network. We propose a
method to infer the equations governing the dynamics of a network of
genes previously identified by the authors (Lombardi et al., 2022) as
involved in the development and progression of Chronic Myeloid
Leukaemia (CML). The method consists of two steps: i) the
determination of the latent geometry of the network through
embedding of the network in three models of metric space
(Euclidean, hyperbolic, and spherical), and ii) the determination of
the dynamic equations describing this metric space. If the result of the
step i) is the hyperbolic metric, the parameter of the dynamics of the
interactions in the network conceived as a subspace of a hyperbolic space
will depend on the hyperbolic distance between the interacting partners.
Similarly, if the result of step i) is a spherical metric, the dynamics of the
network will be parametrized by distance of the interacting nodes in the
spherical space, and finally, if the result of step i) is an Euclidean metric,
the network will be a dynamical systems whose parameters will depend
on Euclidean distance between the interacting nodes.

In this study, we conceive of a network as a system of springs, in
which the nodes constitute the masses and the arcs the springs that
connect these masses/nodes. The spring constant represents the
transmission efficiency of the interaction between the nodes. The
interaction between a node A and a node B is seen as a change in
the state of A causing a change in B. In accordance with the spring
model, the interaction between nodes is seen as a propagation of the
alteration of A’s state through the spring to B, which absorbs the
alteration of A in turn changing its state. The vibrational states of the
networks nodes are governed by a generalization of the Hook law.
According to this law, the spring constant is calculated by dividing the
force required to stretch or compress a spring by the lengthening or
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shortening of the spring. It is statedmathematically as k = −F/Δx, where
Δx is the displacement of themass, F is the force applied over x, and k is
the spring constant (also known as spring stiffness). The propagation
velocity of the elastic wave in a spring stressed by a force is directly
proportional to the square root of the spring’s elastic constant. A stiffer
spring has a greater spring stiffness, and vice versa. As a consequence, a
high spring stiffness is interpreted as high efficiency and thus greater
ease in the transmission of interaction between nodes. The elastic
constant metaphor, in network metric space, corresponds to a measure
of similarity between nodes, such that nodes connected by harder
springs are closer nodes in terms of similarity. In the model of network
we present here, the elastic constants of the springs are obtained from a
generalization of the Hook’s law for a system with N masses and E
springs (N corresponding to the number of nodes and E corresponding
to the number of edges), where the mass of the node is given by its total
degree and the change in the position of the node is given by the index
of vibrational centrality proposed by Estrada and Hatano (2010). The
matrix of elastic constants is used in network embedding procedures in
three types of space, Euclidean, hyperbolic, and spherical. The metric
space for which the embedding of the network shows a minimum
distortion of the values of this matrix is considered as the best
approximation for the metric space of the network. The distances of
the nodes in this metric space constitute the parameters of the network
dynamics, which we describe here in terms of mass action law.

The article is organised as follows: in Section 2 we introduce the
three types of isotropic spaces considered in this study and the
embedding techniques we used to identify which of the metric

spaces considered best represents the network’s latent geometry. In
Section 3 we describe the data and the gene network of the case
study. In Section 4, we describe the mathematical modelling of the
gene network as a system of springs, and finally in Section 5 we
report the results obtained. This is followed by some concluding
remarks and a recapitulation of the study performed (Section 6). In
Figure 1 we illustrate the main steps of the analysis presented in this
study.

2 Network geometry and methods of
embedding

A graph embedding consists in the determination of the
coordinates of the graph node in a given metric space in such a
way that the graph similarity matrix is reproduced with as little error
as possible. The embedding of a graph thus consists of the problem
of finding the coordinates of the nodes in a given metric space from
the similarity matrix of the graph, which is a measure of the
distances between nodes. In the final analysis, embedding
consists of finding coordinates of points given their distance.
Isotropic spaces can only be classified as Euclidean (flat), elliptic
(having positive curved), or hyperbolic (having negative curvature).
In the following sections, we will recall some basic definitions, such
as that of inner product and distance for these three types of spaces,
and briefly mention the mathematical techniques of graph
embedding, of which there are many variants in literature. We

FIGURE 1
In this study, we obtained the gene network of interest by querying the Pathway Commons database with the list of genes of interest. We
represented the network as a system of springs whose masses are the expression level of the genes as measured in our experiments in (Lombardi et al.,
2022). We calculated the weighted adjacency matrix of the network as that matrix whose entries are given by the spring constant calculated at
equilibrium. Finally, we used this matrix to embed the graph into three spaces (flat, positively curved and negatively curved)space) in order to
determine which of them best represented the network’s latent geometry. Finding the hyperbolic space fits best the latent geometry of the network, we
proceeded to cluster the nodes according to their radial coordinate, that representative of the node popularity (Papadopoulos et al., 2012).
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also recall how the latent geometry is related to the structure and
organizational principles of the network (e.g., presence of
communities, hierarchical organization, etc.).

2.1 Euclidean space

The Euclidean geometry is based on the following five
postulates: (i) Any two points can be joined by a straight line
segment. (ii) Any portion of a straight line can be stretched
forever. (iii) Any straight line segment can be used as the radius
of a circle, with one endpoint serving as the centre. (iv) All right
angles are congruent. (v) When two lines are drawn so that they
intersect a third in a fashion that results in a side where the total of
the inner angles is less than two right angles, the two lines will always
cross each other if they are extended far enough.

More formally, an Euclidean space, is a real vector space (i.e., a
vector space whose field of scalars is R) E equipped with a positive
definite symmetric bilinear form φ: E × E → R. The real number φ
(x, y) is called the inner product between the vectors x = (x1, x2, . . . ,
xn) and y = (y1, y2, . . . , yn), that is defined as

φ x, y( ) � x1, x2, . . . , xn( ) · y1, y2, . . . , yn( )
� x1y1 + x2y2 +/ + xnyn. (1)

Usually the inner product of two vectors x, y is dented with the
angular bracket 〈x, y〉. In the Euclidean space Rn the distance
between the points whose coordinates are given by the vectors x and
y is

d x, y( ) �
�����
〈x, y〉

√
�

������������
φ y − x, y − x( )

√

�
�������������������������
y1 − x1( ) y2 − x2( )/ yn − xn( )

√
≡ � ‖y − x‖. (2)

To embed a graph into an Euclidean space, we used the classical
(metric) multidimensional scaling algorithm that, given as an input
the pairwise dissimilarities matrix {dij}, reconstructs a map that
preserves distances. The algorithm implements the following steps.

1. Find a random arrangement of points, for example, by taking a
sample from a normal distribution.

2. Determine the distances between the points.
3. Find the best monotonic transformation for the proximity to get

the best scaled data.
4. Find a new arrangement of points to reduce the stress between

the optimally scaled data and the distances. The stress of the
embedding in Euclidean space is defined by the following residual
sum of squares

Stress x1, x2, . . . , xn( ) �
��������������������������
∑

i≠j�1,...,n
d

input( )
ij − d

embedding( )
ij( )

2
√

(3)

where, in the case of Euclidean embedding, d(embedding)
ij � ‖xi − xj‖.

5. Compare the stress to a certain standard. If the stress is too low,
stop the algorithm; otherwise, go back to step 2.

We implemented the embedding in R (R Core Team, 2021),
using the function cmdscale (Gower, 2015) of the library stats.

Theoretical foundations and details about multidimensional scaling
techniques can be found in many text books and review paper [see,
for example, (Borg and Groenen, 2005; Cox and Cox, 2008; Zhang
and Takane, 2010)].

2.2 Hyperbolic geometry and the Poincaré
model

Hyperbolic geometry accepts the first four axioms of Euclidean
geometry but rejects the fifth, namely, that there exists a line and a
point not on the line with at least two parallels to the given line
crossing through the provided point. This is equivalent to
performing geometry on a surface with a constant negative
curvature. This geometry differs greatly from the more
conventional Euclidean geometry, and are hard to visualise. The
main reason is that by the Hilbert’s theorem (Hilbert, 1933) the
hyperbolic plane cannot be isometrically embedded into Euclidean
3D-space (isometric means preserving the length of every curve).
We must flatten the curvature to display the hyperbolic plane. In
doing this, many of the straight lines in hyperbolic space end up
being curved as a result. The French mathematician Henri Poincaré
is responsible for one of the widely accepted theories for flattening
the hyperbolic plane and the n-dimensional ball model (Poincaré
disk in 2D) (Anderson, 2005).

The Poincaré n-dimensional ball Bn
R (Bn

R � {x | ‖x‖2 < 1}) is a
model for n-dimensional hyperbolic geometry in which lines are
represented by circle diameters or by arcs of a circle with ends
perpendicular to the boundary of the ball. (Figure 2). If n = 2 the
Poincaré model is a unit open disc. We briefly summarize here the
method in Conn (2010) to calculate the distances in the unit disc
model Consider the fractional linear transformation S that sends
∞↦i and ±1↦ ± 1. S sends the real axis to the boundary of the unit
disc and, since fractional linear transformations preserve the
orientation of circles, it sends the upper half-plane to the disc’s
interior. The H2-distance between two points a, b in the unit disc is
the H1-distance between their preimages S−1(a), S−1(b) in the upper
half-plane (Conn, 2010), and in this way the unit disc inherits a
metric from the metric of the upper half-plane.

Let D1 denote the interior of the unit disc and suppose

γ: 0, 1[ ] → D1

is a piecewise continuously differentiable curve. If Hk(γ) (k = 1, 2)
denotes the length of the curve γ, then

H2 γ( ) � H1 S−1◦γ( ). (4)
Writing S−1 ≡ T, we have

H1 T◦γ( ) � ∫
T◦γ

1
Im z( )|dz| � ∫

1

0

1
Im T◦γ( ) t( )( ) T◦γ( )′ t( )∣∣∣∣ ∣∣∣∣dt

� ∫
1

0

1
Im T γ t( )( )( ) T′ γ t( )( )∣∣∣∣ ∣∣∣∣ γ′ t( )∣∣∣∣ ∣∣∣∣dt

� ∫
γ

1
Im T z( )( ) T′ z( )∣∣∣∣ ∣∣∣∣∣∣∣∣dz∣∣∣∣. (5)

Since T has the form

T z( ) � iz − 1
−z + i

. (6)
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we have that

Im T z( )( ) � Im
iz − 1( ) −�z − i( )
| − z + i|2( ) � 1 − |z|2

| − z + i|2, (7)

and

T′ z( )∣∣∣∣ ∣∣∣∣ � 2

| − z + i|2, (8)

we obtain

H2 γ( ) � ∫
γ

2

1 − |z|2|dz| (9)

that is general formula calculating distances in the Poincaré disc.
2/(1 − |z|2)dz is the element of arc length. Consequently, the
distance between two points a, b ∈ C on Poincaré disc is

d a, b( ) � H2 a, b( ) � log
|1 − �ab| + |b − a|
|1 − �ab| − |b − a|. (10)

Any diameter of the unit disc is a geodesic, so if z is a point in the
unit disc, then the Euclidean segment from 0 to z is also a hyperbolic
segment from 0 to z. We have hence that

H2 0, z( ) � ∫
|z|

0

2
1 − t2

dt � 2 tanh−1 |z|( ) � log
1 + |z|
1 − |z|( ). (11)

Complex networks connect different nodes. This diversity
indicates that there is at least some element taxonomy, meaning
that all nodes can be classified in some way. This classificationmeans
that nodes can be separated into large groups that are made up of
smaller subgroups that are made up of even smaller sub-subgroups,
and so on. The relationships between such groups and subgroups
can be approximated by treelike structures, which illustrate hidden
hierarchies in networks. Krioukov et al. demonstrated that the
metric structures of trees and hyperbolic spaces are equivalent
(Krioukov et al., 2010; Kurkofka et al., 2021; Lecca, 2023; Lecca
and Re, 2022). It is not necessary for the node classification
hierarchy to be exactly a tree, but rather approximately a tree.
When a network can be approximated by a tree, its latent geometry
is negatively curved (Gromov, 2007).

To perform the embedding into a hyperbolic space (Poincaré
model), we used the function hydraPlus of the R library hydra
(HYperbolic Distance Recovery and Approximation) (Keller-Ressel,

2019), that uses a strain-minimizing hyperbolic embedding based on
reduced matrix eigendecomposition (Keller-Ressel and Nargang,
2020). The stress of embedding in hyperbolic space is then given by
formula (3), where d(embedding) is given by the output of hydra.

2.3 Spherical geometry and embedding

Spherical geometry is the geometry of a hypersphere’s surface.
The hypersphere can be easily immersed in euclidean space; for
example, the embedding of a three-dimensional sphere of radius r is
well known relation x2 + y2 + z2 = r2, with x = (r sin u sin v,r cos u
sin v,r cos v)T. A simple extension of this is the embedding of a (n −
1)-dimensional sphere in n-dimensional space:

∑
n

i�1
x2
i � r2. (12)

There is a constant sectional curvature of 1/r2 throughout this
curved surface. The length of the shortest curve that lies in the
space and connects the two points is the geodesic distance between
two points in a curved space. The geodesic on the hypersphere is a
perfect circle for a spherical space. The distance is equal to the width
of the arc that connects the two locations on the great circle.

If two points in the hypersphere’s centre form an angle with θij,
then the distance between them is

dij � rθij. (13)
A point can be represented by a position vector xi of length rwith the
coordinate origin at the origin of the hypersphere. We can also write

dij � r cosh
〈xi, xj〉

r2
(14)

since the inner product is 〈xi, xj〉 = r2 cos θij.
To perform the embedding of the graph in a hypersphere, we

used the method proposed by Wilson et al. (2014a), and the Matlab
code that this authors made available in Wilson et al. (2014b). We
summary briefly the core of embedding method in this way.

Given a dissimilarity matrix D, we want to determine the set of
points on a hypersphere that give the same distance matrix. Because
the curvature of the space is unknown, we must also determine the

FIGURE 2
(A). Geodesics in Poincaré disk. (B). Reflections in Poincaré disk geometry. 0, x, x + h and v are points on the diameter. 0 is the reflection of x, and v is
the reflection of x + hwith respect to the hyperbolic segment l. (C). The distance between two generic points P1 and P2 can be found first transforming P1
tp 0 and P2 to x.
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radius of the hypersphere. We have n items of interest, thus we
would ordinarily look for a n − 1 dimensional Euclidean space. A
coordinate system with the origin at the centre of the hypersphere is
considered. A matrix X of point positions vectors is constructed in
such a way that

XXT � Z � zij{ } � r2 cos
dij

r
(15)

Z is a n × n matrix that is positive semi-definite and has rank n − 1
since the embedding space has dimension n − 1, X is made up of n
points that are located in a space of dimension n − 1, and so does the
embedding space. This means that the Z’s eigenvalues are positive,
with only one being zero. This observation can be used to calculate
the radius of curvature. Then, in order to find r, Wilson et al. (2014a)
proposed to create Z(r) and identify the smallest eigenvalue λ1, to
calculate then the optima radius of curvature as

r* � argmin
r

|λ1 Z r( )[ ]|. (16)

The stress of embedding in hyperbolic space is then given by
formula (3), where d(embedding) is given by the elements of the
matrix Z.

2.4 How latent geometry influences network
dynamics

By the term “dynamic” of a system, we mean the time and space
evolution of the system as described by differential and/or
algebraic equations whose variables are quantitative features of
the system’s actors, and whose mathematical form model the
topological system’s organization. The equations of the
dynamics are parameterized by the dynamical properties of the
system itself (such as frequency of oscillation, if the system is
oscillatory, elastic constant, if the system is assimilated to a spring
system, specific rate of reaction, etc.) There are interesting studies
showing how the geometry of complex networks affects the
dynamics. To cite a relevant contribution to the field, we
mention the work of Millán et al. (2018) which shows that the
latent geometry of a network has a significant impact on the
synchronization dynamics. Unlike Millán et al. work, which is
more focused on the dynamic properties of the system
(i.e., parameters and synchronization laws), here we focus on
the influence that latent geometry can have on network
organization. And since from the network organization, the
dynamics of the network is derived, we can expect latent
geometry to influence the dynamics. In particular, the geometry
of the network determines the presence or absence of functional
modules containing highly cooperative nodes. The identification of
these possible functional clusters can be done correctly only if the
metric space of the network is identified. In fact, this space defines
the distance between nodes, the measure on which clustering
algorithms are based. A clustering in Euclidean space may lead
to a different result from clustering in hyperbolic space, the
distance computed in this space being different from the
distance computed in Euclidean space. The correct dynamics is
one whose parameters and functional modules are established by
the latent geometry for at the network under consideration.

In this study, we conceived a network as a spring system.
Through the identification of the most appropriate latent
geometry of the network under consideration, i.e., that geometry
that most closely reproduces the values of the spring constants of the
edges thought of as springs, we were able to identify cluster of gene
drivers for the network dynamics. The role of drivers of these genes
was validated through functional analysis of them. In the next
sections, the data from which we built the network, as well as the
model and analysis of the network itself are reported.

3 Data and gene network

We use here the data of gene expression relevant to the
landscape of Chronic Myeloid Leukemia K562 cells. We refer the
reader to a recent publication by the authors (Lombardi et al.,
2022)], where we describe the experimental activity implemented for
data measurement and algorithmic procedures for selecting
differentially expressed genes. For the reader’s convenience we
summarise it briefly below.

On an Agilent whole human genome oligo microarray
(#G4851A, Agilent Technologies, Palo Alto, CA), the RNAs from
the samples were hybridised. This microarray consists of
60,000 distinct human transcripts represented by 60-mer DNA
probes created using SurePrint technology. The manufacturer’s
recommended protocol was followed when one-color gene
expression was carried out. In a nutshell, samples were used to
extract the total RNA fraction using the Trizol Reagent (Invitrogen).
Agilent Technologies’Agilent 2100 Bioanalyzer was used to evaluate
the quality of the RNA samples. RNAs with low integrity (RNA
integrity number less than 7) were not included in the microarray
analysis. Using the Low Imput Quick-Amp Labelling Kit, one colour
(Agilent Technologies) in the presence of cyanine 3-CTP, labelled
cRNA was produced from 100 ng of total RNA. In a revolving oven,
hybridizations were carried out for 17 h at 65°C. Agilent’s scanner
produced images with a 3 μm resolution, and Agilent Technologies’
Feature Extraction 10.7.3.1 software was utilised to extract the
microarray raw data. The GeneSpring GX 11 programme
(Agilent Technologies) was then used to analyse the microarray
results. Data transformation was used to normalise all of the data’s
negative raw values to 1.0 using the 75th percentile. Only the probes
expressed in at least one sample (marked as Marginal or Present)
were retained using a filter on low gene expression.

The data used in this work come from the aforementioned
examination of the CML cell transcriptome (K562) using
microarray hybridization under various settings. The cells were
transfected with full-length PTPRG and compared to three
controls: cells transfected with the empty vector, cells
transfected with a PTPRG inactive mutant with a mutation in
the catalytic domain (D1028A), and cells treated with Imatinib,
which targets the oncogene BCR/ABL1. The complete dataset is
publicly available at the GitLab repository. https://gitlab.inf.unibz.
it/Paola.Lecca/chronic-myeloid-leukemia-genes.

Here, from the entire dataset available at this link, we only
considered the gene expression levels of the untreated group (empty
vector and inactive mutant domain D1028A) and those of the
treatment group expressing full-length PTPRG. We then selected
the genes, that, according to the analysis in Lombardi et al. (2022),
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result to be differentially expressed between the two groups. To
construct the gene network, we queried PathwaysCommons
(PathwayCommons.All.hgnc repository) (Cerami et al., 2010a;
Cerami et al., 2010b) by providing as input for the search the list
of gene names we considered in this study. The obtained gene
network is a representation of molecular associations specified
through nodes (genes) and edges (molecular interactions or
statistical relationships). Among the various format,
PathwaysCommons gives as output result of the query the gene
networks also in SIF (Simple Interaction format), which is a table
providing details on gene-gene interactions. This format offers
various levels of detail such as: interaction type, reference data
source, Pubmed id, reference pathways, and mediators id. Our
analyses focused on the most granular level of information,
namely, the interactions between pairs of genes, listed in the SIF
table as“Participant A” and “Participant B” (we refer the reader to
the public repository of our data to view the data format). The types
of interactions included in the network are as follows: interacts-with,
in-complex-with, catalysis-precedes, controls-state-change-of,
controls-transport-of, controls-transport-of-chemical, controls-
expression-of, controls-phosphorylation-of, controls-production-
of, chemical-affects, consumption-controlled-by.

As a final result of querying to common pathways and selecting
differentially expressed genes on the two groups (treated and
untreated), we obtained a network that is a non-planar multi-
edge graph with 2,080 nodes and 3,745 edges, that we simplify to
a non-multi-edge graph with 2,080 nodes and 3,464 edges.

3.1 Graph embedding in presence of noise of
input data: Some remarks

The presence of noise on the data in the adjacencymatrix used as
input to the graph embedding procedures could be a vexing problem
if embedding stresses in different metric spaces are to be compared
to identify which metric space is best representative of the latent
geometry of the network. Noise, for example, may not allow weak
edges to be distinguished from the absence of nodes and may affect
the reliability of the measurement of even the most robust arcs
(i.e., those with the greatest weight). Data analysis frequently faces
the challenge of distinguishing between real weak edges and noise-
induced low-weight edges. To solve this issue, noise is typically
either eliminated or studied in the absence of data.

In the specific case of our study, the experimental data from
which we start to construct the weighted adjacency matrix of the
graph are very accurate. Our dataset was validated comparing the
outcome of the cDNAmicroarray with the analysis of a specific set of
genes chosen for being informative and for being predicted up and
downregulated. Validation was performed in triplicate with
quantitative PCR on a new, independent, preparation of cDNA
derived from the same cell lines, thus ensuring that the results
present in our dataset represent a true variation in mRNA levels.
Notably the analysis permitted to predict a shift to erythroid
differentiation of the cells that was confirmed also at protein
level. All supporting data are reported on the publication
(Lombardi et al., 2022).

Interesting and noteworthy works elucidating the role and the
influence of noise in graph embedding has been done recently by

Maddalena et al. (2022) and Okuno and Shimodaira (2019). The
treatment of the presence of noise is in fact so complex that it
deserves the implementation of a focused study and consequently
the writing of a separate article. It is out of the scope of this study,
give the high quality of the data we used here, but it is our intention
to explore this issue further in a forthcoming study.

To the best of our knowledge at present, we find of particular
interest the study of Blevins et al. (2021). Instead, by analysing
the structure of noisy, weak edges that have been artificially
added to model networks, the authors explored how noise and
data coexist in this work. They discovered that there are
qualitative classifications of noise structure that arise, and that
these noisy edges can be used to categorise the model networks.
The authors state that the structure of low-weight, noisy edges
varies depending on the topology of the model network to which
they are added. Interestingly, Blevins et al. showed that noise is a
complex, topology-dependent, and even valuable phenomenon in
characterising higher-order network interactions rather than a
monolithic annoyance.

4 Mathematical model of the gene
network

To estimate the weights of the network arcs, we conceptualise
the network as a system of masses (representing the nodes) and
springs (representing the edges), as in Figure 3. Estrada and Hatano
(2010) has brought a remarkable contribution to spring-like
network models. In a complex network, Estrada and Hatano
suggested a new metric for measuring node vulnerability. The
metric is based on an analogy where the network’s nodes are
represented by masses and its edges by springs. They defined the
measure as the node displacement, or the amplitude of vibration of
each node, under variation caused by the thermal bath in which the
network is intended to be immersed, and that represents the
environment from which stimuli may possibly come. The Estrada
index for the vibrational centrality of the node i is defined as the
node displacement (Δx)ii

Δx( )ii �
����
T

k
L+
ii

√
, (17)

where T is the temperature of the external bath, and k is the spring
stiffness. Estrada and Hatano assumed that the network edges are
identified with springs with a common spring stiffness k.

Instead in the network spring model of Lecca and Re (2020),
the authors postulated that weights of the arcs are given by the
stiffness of the springs representing the arcs, so each arc may
have a different stiffness/weight. The harder the spring, the more
efficiently the signal is transmitted from node to node; the softer
the spring, the less quickly the signal is transmitted from node to
node. According to this metaphor, edges characterised by high
values of the stiffness of the hypothetical spring joining them are
nodes that interact more effectively than nodes whose spring
stiffness joining them is lower. The stiffness of the spring is thus
interpreted as the efficiency of the interaction. Next, we briefly
summarize the computational method developed by Lecca and
Re (2020), and used in this study, to calculate the stiffnesses of
the springs.

Frontiers in Cell and Developmental Biology frontiersin.org07

Lecca et al. 10.3389/fcell.2023.1235116

100

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2023.1235116


The elastic force applied to the nodes by the springs according to
the generalised Hooke’s law for a system of N springs is

Felastic � −KΔx, (18)
where K is the matrix providing the stiffnesses of all of the springs,
and the elements of Δx are the vibrational centralities of the nodes.
We obtain the force on the nodes by multiplying Felastic by the
transpose of the graph weighted incidence matrix C⊤, where, in
general, the weights are given by the node masses, i.e.,

C � AM (19)
where A is the unweighted incidence matrix. We should remark that
weighting the incidence matrix with node mass values means taking
into consideration the nodes’ inertia to the propagation of the elastic
force through the springs incident to them (Lecca and Re, 2020). In
this study, the nodes’ masses are given by the nodes’ total degree.

The force on node is then defined by

Fnodes � −C⊤KΔx (20)
At the equilibrium Fnodes = 0, i.e.,

C⊤KΔx � 0, (21)
where K is obtained as the nullspace (or kernel) of C⊤, in formula:

K � Ker C⊤( ). (22)
Indeed, all vectors K that have the properties that C⊤K = 0 and K are
not zero make up the null space of any matrix C⊤.

Once K is obtained, we construct the dissimilarity matrix of the
graph, which is then used as input for the embedding algorithms, as
follows

dij � 1
1 + kij

(23)

where kij are the elements of the matrixK. Thus, nodes connected by
a spring with a high value of the elastic constant have a lower
dissimilarity value than nodes connected by a spring with a low value
of the elastic constant. This reflects the situation where the
propagation speed of the interaction along a spring with high
stiffness is higher than along a spring with low stiffness.

Of particular interest is in case the system is not in equilibrium.
In fact, K is independent on Δx only when the system is at
equilibrium, i.e., when Fnodes = 0 and Eq. 21. In non-equilibrium
conditions, we have instead that Fnodes = C⊤KΔx ≠ 0. Suppose that
we know the forces Fnodes acting on nodes. For example, this could
be the case in which perturbation experiments are implemented to
measure and analyse the responsiveness of the network nodes to
stimuli and/or stresses, or, assimilating forces on nodes to white
noise distributed over all nodes, noise always present in biological
systems at the micro-scale given their inherent stochastic dynamics).
To calculate the matrix K, in this case, the requirements are that the
matrices C⊤ and Δx are invertible, so that

K � C⊤( )−1Fnodes Δx( )−1. (24)
Note, Δx is invertible if and only if all the entries on its main
diagonal are non-zero, which means that little to much all nodes
have a significantly non-zero response to stress.

5 Results

We embedded the gene network in the three metric spaces
considered by considering different dimension values. We
started with dimension 3, since the network is not planar. As
shown in Figure 4, the embedding that produces the least
amount of stress on the dissimilarity matrix - obtained as in
Section 4 - is the hyperbolic embedding. The network is then

FIGURE 3
A spring system, also known as a spring network, is a model of physics used in engineering and physics that is represented as a graph with a mass at
each vertex and a spring with a specific stiffness and length along each edge. Extending the Hooke’s law to higher dimensions (see the Section ?), it is
possible to calculate the spring stiffnesses that in this model represent the edge weights.
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characterized by a power-law degree, and by a hierarchical
structure reflected also in the presence of clusters in the
radial coordinates of the points, that is known to represent
the node popularity (Papadopoulos et al., 2012; Yang and
Rideout, 2020; Kovács and Palla, 2021). By nodes having high

popularity, we mean nodes that are related to the majority of the
other nodes in the graph [see also (Lecca et al., 2023) for a short
review of the Papadopoulos et al. definition of node popularity].
These nodes can aid in the efficient spreading of information
throughout the network.

FIGURE 4
Embedding stress vs. metric space dimensions. The embedding with the least stress is the hyperbolic one, revealing a putative hyperbolic latent
geometry of the gene network.

FIGURE 5
The optimal number of clusters of the set of radial coordinates of the points (node) on the Poincaré disk, according to the Elbow method, is 12.
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We found that the set of radial coordinates, whose values range
in [0.7036133, 0.7709305], is characterized by 12 clusters as
determined by the Elbow method (Umargono et al., 2020) (see
Figure 5). The range of radial coordinate values is. In Figure 6A we
report the cluster ID and the size of the 12 clusters of the radial
coordinates as obtained by a single run of the k-means algorithm.
We found that the gene with the smallest popularity (i.e., with the
smallest radial coordinate) is ZRANB1. This gene allows for K63-
linked polyubiquitin modification-dependent protein binding and
thiol-dependent deubiquitinase activity. Involved in a variety of
functions, including the positive control of the Wnt signalling
pathway, protein deubiquitination, and cell morphogenesis
regulation (NIH, 2023). However, according to the date in The
Human Atlas of Proteins is a low immune cell specificity gene
(Pontén et al., 2008; Uhlen et al., 2017; Uhlén et al., 2022a; Uhlén
et al., 2022b). To assess the stability and the quality of the clustering,
we repeated the k-means 1,000 times and graphed the distributions
of the within- and between-sum of squares (see Figure 6B) that show
that the first is two order of magnitude smaller then the second. The
skewness of the distributions and the disproportion between within-

and between-cluster sum of squares indicate the stability and
accuracy of the clustering, respectively.

Nodes with similar radial co-ordinate have similar popularity, so
clustering according to the radial co-ordinate identifies communities
of nodes with similar popularity. However, the radial co-ordinate, in
addition to representing the popularity of a node, i.e., its degree of
connectivity with other nodes in the network, identifies the distance
from the origin in the Poincaré ball. In a network with hyperbolic
latent geometry, in its representation in the Poincaré ball, the mean
degree of a node is a negative exponential function of the node’s
radial coordinate (Krioukov et al., 2010). Thus, the average degree of
a node decreases exponentially with increasing distance of the node
from the origin of the Poicaré ball, or, in other terms, the higher the
radial co-ordinate of a node, the lower its degree on average. The
area inside the unit ball represents the infinite hyperbolic plane, and,
consequently, nodes with radial co-ordinate equal 1 are points at
infinity. Clustering according to the radial co-ordinate thus
identifies bands of points (nodes) that are concentric on the
Poincaré disc and that have a decreasing degree of connectivity
as one moves away from the origin. This is why we say that

FIGURE 6
(A). Centroids of the radial coordinate clusters versus cluster identifier in a single run of k-means algorithm. The number of genes belonging to each
cluster is shown in red. The gene belonging to the cluster number four is ZRANB1, a gene characterized by low immune cell specificity, and belong to NK-
cells immune cell expression cluster (Uhlén et al., 2022b). (B). We performed 1,000 runs of the k-means for the clustering of the radial co-ordinate of the
nodes of the network in hyperbolic space and drew the distributions of the within- and between-clusters sum of squares. The within-cluster sum of
squares quantifies the internal cohesion inside each cluster. The between-cluster sumof squares quantifies the external separation between clusters. The
figure shows that for the k-means clustering of the radial coordinates the between-clusters sum of squares is two orders of magnitude greater than the
within-cluster sum of squares, revealing the accuracy and then reliability of the clustering results.

Frontiers in Cell and Developmental Biology frontiersin.org10

Lecca et al. 10.3389/fcell.2023.1235116

103

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2023.1235116


clustering according to radial co-ordinates allows clusters of strongly
interconnected nodes to be identified (if any). The cluster of nodes
closest to the origin identifies not only nodes with high connectivity,
but also nodes that are close to each other (this second characteristic
also applies to clusters far from the origin). The coexistence of two
characteristics such as high degree and small distance between nodes
is typical of a cluster of nodes with efficient interactivity and greater
inertia to perturbations induced by external stimuli, such as
variation of expression level, interactions with drugs, etc. The
short inter-node distance reflects the high efficiency of
communications, the high connectivity may be responsible of the
node robustness.

Nodes that are thus highly interconnected and close in network
metric space are potential drivers of network dynamics. This
conjecture is demonstrated in the case where the distribution of
the stiffness of the arcs in the cluster to which these nodes belong is
similar to the distribution of the stiffness of the arcs in the overall
network. Stiffness is in fact a dynamic property of the system. The
cluster of nodes and arcs with dynamic properties that are reflected
in the dynamic properties of the entire network can thus be
considered a cluster of driver nodes, a characteristic that

designates it as a prime candidate for further wet experiments. In
the case of our study, experiments and data from the literature
support the hypotheses formulated by the computational analysis, as
we shall see below. Indeed, the results we report below are intended
to demonstrate these statements.

Figure 7, shows the barplot of the percentage of edges
connecting nodes belonging to the same cluster of radial
coordinates. Of the 2,162,160 total edges of the graph
1,512 belong to cluster 5, 2,877 to cluster 9, and 19,701 to cluster
12. The remaining 2,138,069 arcs connect nodes belonging to
different clusters. In order to understand whether and, if so, how
clustering according to radial co-ordinate is reflected in the
distribution of spring stiffness, we produced the graph in
Figure 8, showing the density plots of the spring stiffness of the
interactions between node within the three clusters (5, 9 and 12)
compared with the density plot of all spring stiffness of the network.
To make the results easier to read and understand, we rescaled the
spring stiffness values obtained by formula (22) within a range
between 0 and 1 and applied formula (23) to the values obtained in
this range.

Of interest we find as shown in this Figure 8 the two peaks of the
density plot in red colour corresponding to the stiffness of the
interactions between the nodes belonging to cluster number 12. Of
the three clusters of radial node distance, number 12 is the one that
best reflects the density plot of total spring stiffness. The interactions
between nodes belonging to cluster 12 are markedly clustered as is
the distribution of stiffnesses across all the arcs of the graph. We
interpret this result as the fact that cluster 12 contains nodes that
share similar popularity values and are involved in driver
interactions of the network dynamics, since the distribution of
spring stiffnesses of the arcs of these nodes reproduce the
distribution of spring stiffnesses of the entire network.

Cluster 12 contains 199 genes, which a functional analysis
implemented with the enrichGO function of R library
clusterProfiler for the Gene Ontology (GO) Enrichment
Analysis (Yu, 2012; Yu et al., 2012) finds to have the molecular
functions shown in barplot of Figure 9 and the ontologies of the
cellular compartments as in Figure 10. The list of the gene names of

FIGURE 7
Barplot showing the percentage of edges joining nodes
belonging to the same cluster according to the radial co-ordinate
value. Only clusters 5, 9 and 12 contain nodes that are connected by
an edge and belong to the cluster. The remaining edges connect
nodes belonging to different clusters.

FIGURE 8
Density plot of the distribution of spring stiffness in the tree clusters (5, 9, and 12) and in whole dataset. The trend of the red curve for Cluster 12 is the
one that most accurately reproduces the global density plot of the stiffness of the arches of the entire network. The nodes in Cluster 12 recapitulate the
overall dynamics of the network through their interactions and can therefore be regarded as putative drivers of the dynamics.
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Cluster 12, as well as the summary of enrichGO and of gost
function of the R library gprofiler2 (Raudvere et al., 2019;
Kolberg et al., 2020; Raudvere et al., 2023) are available in the
Supplementary Material. To give a more complete view of the results
of the gene set enrichment analysis of Cluster 12, we show in Figure
11 theManhattan-plots of the gene set enrichment analysis, of which
we also give an interactive version in the Supplementary Material.

Of interest is a result shown in Figure 9, namely, the presence in
Cluster 12 of genes co-involved in the molecular processes of
“SMAD binding”. Smad proteins, are central mediators of the
signal transduction of TGF-β family members were identified in
the dataset analysed. A Cross-talk between TGF-β/Smad pathway
andWnt/β-catenin pathway in pathological scar formation has been
described suggesting a complicated interaction between the two
signal pathways in pathological scar formation (both synergy and
antagonism) (Sun et al., 2015). More recently TGF-β/SMAD,
Hippo/YAP/TAZ, and Wnt/β-catenin signalling pathways, major
inducers of transcriptional reprogramming, were shown to converge

at several levels and were all required for a proliferative-to-invasive
phenotype switch in melanoma development (Lüönd et al., 2021).
We already described in a previous study the involvement of Wnt/β-
catenin signalling pathway in the tumour suppressor effect driven by
PTPRG in CML (Tomasello et al., 2020) and the current data
reporting the involvement of SMAD pathway is in line with a
complex cellular reprogramming induced by PTPRG expression
whose key role in the haematopoietic differentiation program was
already described (Sorio et al., 1997). This complex reprogramming
is supported by the large number pathways involved in DNA
binding/transcription reported on Cluster 12 GSEA. In particular,
in our previous study (Lombardi et al., 2022), we validated the
SMAD1 gene. Specifically, qRT-PCR was used to assess gene mRNA
levels, and the relative fold changes were calculated between
K562 expressing PTPRG and the untreated control group
(control and D1028A). The endogenous control was GAPDH.
We found that the fold change of SMAD1 is markedly greater in
the case of the control [see Figure 3 of Lombardi et al. (2022)].

FIGURE 9
GO Enrichment Analysis of the gene set of Cluster 12. The barplot shows the enrichment GO categories of molecular functions after false discovery
rate control. See also the verbose tabular outbut in Cluster_12_GSEA_results_EnrichGO_MF.xlsx provided in Supplementary Material.

FIGURE 10
GO Enrichment Analysis of the gene set of Cluster 12 (obtained with the R function enrichGO). The barplot shows the enrichment GO categories of
cellular compartment after false discovery rate control. See also the verbose tabular outbut in Cluster_12_GSEA_results_EnrichGO_CC.xlsx provided in
Supplementary Material.
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5.1 Comparison with spectral clustering

We compared the results of the clustering by radial
coordinate in hyperbolic space with the spectral clustering
method. This method is widely used to identify communities
of nodes in a network by examining the edges that connect them,
i.e., taking as an input the weighted adjacency matrix of the

graph. It is a well-established method with theoretical
foundations in graph theory (we refer the reader to JingMao
and YanXia (2015); von Luxburg (2007) for a review and a
tutorial on this popular spectral clustering methods). Processing
directly the weighted adjacency matrix of the graph, that is the
same input as our embedding procedure, we consider spectral
clustering to be the most appropriate method to deal with,
compared to clustering methods based on graph centrality
measures, or on statistical correlation measures between
nodes, who do not into account directly distance measures
between nodes. Before applying spectral clustering, we
estimated the optimal number of clusters with eigengap
heuristics [appropriate procedure for estimating the number
of clusters for spectral clustering methods (von Luxburg, 2007)],
obtaining that the optimal number of clusters is 2 (see Figure
12). Cluster 1 contains 1,731 nodes and cluster 2 contains
349 nodes. Using the R script Spectral_clustering.R to
implement spectral clustering - available in GitLab repository,
we found that the within cluster sum of squares by cluster is
1.1079409 and 0.2348562, whereas the between sum of squares is
0.6502382. As a consequence, we conclude that the results of the
spectral clustering are not reliable. This result highlights how
taking into account the latent geometry of the network and with
it the clustering according to the spatial co-ordinate of the
nodes/points of the network resulted in a much better quality
of clustering, compared to a clustering which, as in our

FIGURE 11
In this figure, the enrichment results of the gene set of Cluster 12 are visualized with a Manhattan-like-plot using the function gostplot (Raudvere
et al., 2023). The x-axis depicts functional terms that are colour-coded and categorised according to data sources and positioned in the fixed “source_
order.” The order is set up so that terms that are close together in the source hierarchy are also close together in the Manhattan plot. The modified
p-values are displayed on the y-axis in negative log10 scale. Every circle represents one phrase and is proportional to the term size, i.e., larger terms
have larger circles. The Supplementary Material includes an interactive version of this plot (Manhattan_plot_GSEA_Gost.html). Hovering over the
circle in the interactive plot will display the appropriate information. If the −log10 (p-values) exceed 16, they are capped at 16. This adjusts the y-axis scale
to keep Manhattan plots from different queries similar, and it is also intuitive because statistically, p-values less than that can all be summarized as highly
significant.

FIGURE 12
Eigengap heuristic: the optimal number of clusters, k, that
maximises the eigengap (difference between consecutive eigenvalues
of the Laplacianmatrix of the graph). The optimal number of clusters is
that k such that λk+1 is reasonably large but all other eigenvalues,
λ1, . . . , λk, are very small. The closer the eigenvectors of the ideal case
are, and hence the better spectral clustering performs, the wider this
eigengap is.
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approach, processes the weighted adjacency matrix, but does not
consider the latent geometry of the network expressed by the
position of the points in the optimal embedding space and the
distance defined by the metric in this space.

That various clustering methods are not appropriate for
graphs with geometry has also been pointed out by
Avrachenkov et al. (2021) that states that while it has been
demonstrated that spectral clustering is consistent in some
geometric graphs, a cut-based technique (such as spectral
clustering) can also be significantly hindered by the geometric
structure. It is possible to divide space into regions in such a way
that there is relatively little interaction between nodes in two
different regions. Therefore, the Fiedler vector of a geometric
graph may only be linked to a geometric arrangement and
contain no information regarding the labelling of the latent
community. Furthermore, because the regions of space can
include a balanced number of nodes, the widely used
regularisation strategy (Zhang and Rohe, 2018), which seeks
to penalise small size communities in order to bring back the
vector associated with the community structure in the second
position, would not function in geometric graphs.

6 Conclusion

In this study, we modelled the transcriptome network of the of
Chronic Myeloid Laeukemia K562 cells overexpressing the tumour
suppressor gene PTPRG, as a physical system of springs and then
deduced the spring constant from topological properties of the
nodes, such as total degree. To represent the network, we
considered the dissimilarity matrix consisting of the values of the
spring’s elastic constant, which in our model quantifies the efficiency
of information transmission between nodes. Through network
embedding procedures that processed the dissimilarity matrix to
derive the coordinates of the nodes in a metric os pact we
determined the optimal latent geometry of the network is
hyperbolic. This important information made it possible to
proceed with the classification of nodes according to radial co-
ordinates (which is the geometric equivalent of the ‘physical’
concept of node popularity) and to identify a set of candidate
driver genes for network dynamics.

This methodology aimed at analysing a network without
ignoring the existence of its metric space with a geometry other
than the Euclidean one usually imposed or taken for granted,
shows how latent geometry can determine a classification of
nodes according to their relevance in the network’s evolutionary
processes, ultimately its dynamics. In the particular case study
presented here we obtained that the network has hyperbolic
latent geometry, and based on this we proceeded to utilise the
concept that in this type of geometry the radial coordinate is a
fundamental variable for clustering nodes. Geometries other
than hyperbolic are characterised by other spatial variables
that can be considered discriminating for the purpose of
identifying driver nodes of the dynamics. What is presented
in the paper, besides being a concrete result on a specific case

study, is also a proposal for a method of analysing a network in
order to reveal information about the dynamics of the network
itself.
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Cell level functions underlie tissue and organ physiology. Gene expression
patterns offer extensive views of the pathways and processes within and
between cells. Single cell transcriptomics provides detailed information on
gene expression within cells, cell types, subtypes and their relative proportions
in organs. Functional pathways can be scalably connected to physiological
functions at the cell and organ levels. Integrating experimentally obtained
gene expression patterns with prior knowledge of pathway interactions
enables identification of networks underlying whole cell functions such as
growth, contractility, and secretion. These pathways can be computationally
modeled using differential equations to simulate cell and organ physiological
dynamics regulated by gene expression changes. Such computational systems
can be thought of as parts of digital twins of organs. Digital twins, at the core, need
computational models that represent in detail and simulate how dynamics of
pathways and networks give rise to whole cell level physiological functions.
Integration of transcriptomic responses and numerical simulations could
simulate and predict whole cell functional outputs from transcriptomic data.
We developed a computational pipeline that integrates gene expression timelines
and systems of coupled differential equations to generate cell-type selective
dynamical models. We tested our integrative algorithm on the eicosanoid
biosynthesis network in macrophages. Converting transcriptomic changes to a
dynamical model allowed us to predict dynamics of prostaglandin and
thromboxane synthesis and secretion by macrophages that matched
published lipidomics data obtained in the same experiments. Integration of
cell-level system biology simulations with genomic and clinical data using a
knowledge graph frameworkwill allow us to create explicit predictivemodels that
mechanistically link genomic determinants to organ function. Such integration
requires a multi-domain ontological framework to connect genomic
determinants to gene expression and cell pathways and functions to organ
level phenotypes in healthy and diseased states. These integrated scalable
models of tissues and organs as accurate digital twins predict health and
disease states for precision medicine.
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Introduction

Accurate multiscale computational models of physiological
functions of different organs within the human body have the
potential to revolutionize our understanding of human biology
and greatly advance the practice of medicine. Vast amounts of
data are being collected in different domains of genomics,
biochemistry, cell biology and physiology and clinical sciences. It
will be necessary to bring together these data to understand the
physiology of organ systems. Physiology is dynamics (Rubin et al.,
2019). Understanding how the function of organs changes over time
is essential for understanding both homeostasis for health and
disease origins and progression. The functions of organs arise
from cell-level physiological activity. Examples include the heart,
where ability of cardiomyocytes to contract in a rhythmic and
coordinated fashion underlie the beating of heart, and the kidney
where ability of different cell types of the nephron to filter large
molecules and reabsorb ions, water and small molecules underlie our
ability to regulate water balance, excrete end products of
metabolism, maintain pH balance in blood, and control blood
pressure. Thus, to generate accurate predictive models of organ
function, the first step is to build accurate models of whole cell
functions. Such models should consider the key components and
pathways within the cell; the networks that arise from interactions
between pathways and pathway components; the topological
features of the networks including the feedback loops,
feedforward loops and bifans (Milo et al., 2002) which enable
processing of information within the cell (Ma’ayan et al., 2005);
and state changes driven by bistable switches (Bhalla and Iyengar,
1999; Tanaka and Augustine, 2008).

To go from cell-based models to organ level models we need to
consider how the different cell types in the organ function and
interact as well as the role of the extracellular matrix in controlling
the mechanical and signaling properties of the organ. Multiple
anatomical structures make up each organ. Blood vessels are one
example of tissue components contributing to an organ’s
physiology. Blood vessels have vascular smooth muscle cells,
fibroblasts, endothelial cells (Sturtzel, 2017) that line the wall of
the blood vessels and make up the capillaries, as well as pericytes
(Lee and Chintalgattu, 2019) in some organs. The latter two cell
types are often the source of important signaling molecules and
sense mechanical forces such as the pressure from blood flow to
control organ function.

Changes in cell state are driven by changes in gene expression
patterns that control whole cell responses. Transcriptomic profiles
represent cell identity as well as cell state. Hence, we hypothesize that
changes in gene expression patterns can be used to predict dynamic
physiological capabilities. We describe our initial approach to test
this hypothesis and provide preliminary evidence that the approach
we propose could work. Our approach consists of two sets of
operations that integrate two different modeling approaches.
First, we take a ranked list of genes, typically differentially
expressed mRNAs indicative of two different conditions (states)
the cells or organs are in and create networks using pathway
information from prior knowledge databases. These interacting
pathways are enriched for the differentially expressed genes and
could account for change in activity. Going from genes to pathways
using prior knowledge is a very widely used statistical modeling

approach called gene-set enrichment analysis (Subramanian et al.,
2005). Second, the reactions participating in identified pathways that
together make up edges in directed subgraphs or graphs are readily
converted to systems of coupled differential equations. These
systems of coupled differential equations are dynamical models
that can be used to run simulations to predict how cell
biochemical or physiological functions change with time. Here,
we describe how this two-step algorithm can work, and
eventually become part of a larger algorithm for a digital twin. In
biology, digital twins can be thought of multi-scale computational
models that can predict physiological events from genomic and
molecular data. Such predictions may be at the cell level, tissue/
organ level or at the whole organism level. In this review we consider
the cell and organ levels.

Computational approaches to
modeling dynamics

To support widespread use of single cell transcriptomics
multiple approaches to conduct trajectory analyses from time
series and single timepoint experiments have been published, and
these approaches are described and compared in a review article
(Ding et al., 2022). This approach has been particularly useful in
mapping trajectories during developmental processes and provide
useful insight into precursor and differentiated cell types in many
organ systems. However, all these approaches provide pseudo-time
series outputs that can only be constrained by experimental time
series analyses. Pseudo time series order entities with respect to one
another to infer trajectories. For example, ligand activation of
receptor and stimulation of membrane effectors occur prior to
activation of protein kinases. This information can be used to
develop trajectories from receptors to physiological effectors such
as channels and metabolic enzymes. Pseudo time series analyses do
have value in understanding the progression of biological states and
we had used pseudo time series in a 2005 study (Ma’ayan et al., 2005)
to understand the role of regulatory motifs such as feedforward and
feedback loops in signal propagation from receptor to transcription
factors to control the duration of transcription factor activation.
Orthogonal experimental approaches such as single nucleus ATAC
Seq and CRISPR/Cas9 mediated gene modification provide
mechanistic insights into trajectory analyses and together they
may help define realistic time-dependent predictions in the
future. The limitation of pseudo-time series to capture
physiological dynamics lies in its inability to be scalable and
hence is likely to be of limited value in realistic digital twins.

A combination of proteomic and phenotypic feature
measurements to identify new drug combinations that would
work on drug resistant cells uses differential equation-based
modeling to develop predicted responses of cancer cells (Frohlich
et al., 2018). The approach is similar to the PK/PD modeling widely
used in pharmacology that is a mainstay in the drug discovery
process. Such approaches that integrate perturbation data with prior
pathway information can predict drug responses, especially
responses to combination therapy. The Cell Box Software suite
(Yuan et al., 2021) provides a useful tool set for such analyses
including network development in a purely data driven manner.
Limitations of such a modeling approach is that the captured
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perturbation dynamics depend on many undefined reactions and
rate constants and hence it is uncertain whether such an approach
will work under different physiological states and conditions
without specific large-scale gathering of experimental data for
each condition.

An integrative dynamical model using coupled differential
equations that are solved in a standard solver using MATLAB
has been developed to predict macrophage polarization (Zhao
et al., 2021; Zhao and Popel, 2021). The scope of the model is
extensive and impressive, although surprisingly the prostaglandin
biosynthesis and signaling pathways are missing. Nevertheless, the
model represents an important step in the development of the virtual
macrophage that can predict macrophage polarization and functions
in various physiological states. Such models could well be adapted to
describe other types of blood cells although and their trajectories in
health and disease. Beyond cell level models, these researchers have
proposed approaches that integrate omics data and dynamical
models for tissue level angiogenesis models that represent
communication between different cell types (Zhang et al., 2022).
Such approaches are likely to be useful in developing digital twins for
angiogenesis.

The approach we propose here has some similarities and
differences with these previously described models. Our approach
is focused on getting the cell-level molecular and pathway details
“right” and then determining if dynamical models based on granular
biochemical and biophysical reactions can be used to predict and
understand physiological behaviors at the cell level and at the organ
level. The pros and cons of this approach and its use as the core of
digital twins of organs are discussed below.

Advantages and challenges in the use of
numerical analyses to predict
physiological dynamics

Modeling biochemical and physiological processes using
standard chemical kinetics is better than most other approaches
because this is the most realistic representation of these processes
including those involved in generation and sensing of forces. We
have long favored the use of chemical kinetics representations and
shown that we can make non-intuitive experimentally verifiable
predictions. Our model using systems of ordinary differential
equations (Bhalla and Iyengar, 1999) that predicted the existence
bistable positive feedback loops that can enable switching cellular
states has been experimentally validated by others in cerebellar long-
term depression (Tanaka and Augustine, 2008). Our spatial partial
differential equation model predicting selective cAMP accumulation
in dendrites as compared to cell body of neurons (Neves et al., 2008)
was validated using a cAMP biosensor inmouse brain slice tissues by
Castro et al. (2010). We have continued to use this approach to
develop predictive models of interactions between subcellular
processes. We predicted that dynamic balance between
membrane vesicle transport and microtubule growth is required
for neurite outgrowth (Yadaw et al., 2019). We used gene
knockdown of vesicle transport and docking protein to
demonstrate the validity of our prediction (Yadaw et al., 2019;
Hansen et al., 2022). Despite these successes, challenges have
always been present. Initially some of the challenges were

computational, such as computational costs and propagation of
errors. With the exponential increase in computational capability
these challenges have become less of a barrier. However, the
biological challenges persist. The cellular concentrations of most
proteins have yet to be explicitly measured in most cell types of the
human body, although it is often possible to estimate or guesstimate
them from the vast biochemistry and cell biology literature. Also,
reaction rates are often not known. Databases such as BRENDA
(Schomburg et al., 2017) are useful, although kinetic information
regarding mammalian systems is limited. Another useful resource is
Bionumbers which contains many “average” values used to set up
the models for numerical simulations (Milo et al., 2010).

Gene expression changes to neurite
outgrowth, a whole cell response:
identifying and modeling cell
regulatory pathways and networks

In a recent study, we have shown how transcriptional patterns
can be used by cells to drive cell state changes and whole cell
responses to external signals through well-known canonical
pathways (Hansen et al., 2022). Although our study is based on
bulk transcriptomics and discovery proteomics obtained from only
one cell line cultured in isolation, our analysis strategy should be
applicable to single cell transcriptomics and other omics
technologies as well. Briefly, we treated the neuronal cell line
Neuro2A (N2A) with an agonist for the cannabinoid receptor 1
(CB1R) to induce neurite outgrowth. Differentially expressed genes
and proteins induced after different stimulation periods were
subjected to pathway enrichment analysis (Figure 1), using the
Molecular Biology of the Cell Ontology (MBCO), a cell biology
focused ontology that was generated in our lab (Hansen et al., 2017).

We identified many subcellular processes (SCPs), which are
commonly thought of as constitutive pathways that are operational
in many, if not all cell types. While these SCPs such as alternative
splicing, pyrimidine salvage and membrane protein synthesis are
universal, the ability of the extracellular signal to regulate them in a
coordinated manner gives the cell additional capacity to mount the
whole cell response. Our data documents that the canonical SCPs are
activated in a chronological order that matches their dependencies
(Figure 2). It can be readily seen that many cellular pathways in
different organelles such as the nucleus, endoplasmic reticulum
(ER), cytosol and growing neurite compartments are involved.
Although shown in an abstracted form for clarity, each of the
SCPs shown in Figure 2 contains multiple interacting proteins
that come together to form larger functional networks. The
different pathways must work in a highly coordinated fashion
and imbalances in their coordination can lead to stoppage of the
cellular responses. This conclusion is supported by dynamical
modeling of one set of SCPs involved in transporting newly
synthesized membranes as cytosolic vesicles from the Trans-
Golgi network (TGN) through the neurite shaft to the growing
tip at the end of the neurite. The new membrane is needed to build
the axonal shaft as neurite grows. The importance of dynamics is
inferred from the multicompartment ordinary differential equation
(ODE) model that simulates the movement of newly synthesized
vesicles from the TGN in the cell body to the growing tip. After
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developing an analytical solution for the prediction of parameter
settings that allow neurite outgrowth at a given velocity and
literature-curated model constraints with high accuracy, we could
show howmultiple pathways interact with each other to generate the
whole cell response. Our analysis revealed that increased neurite
outgrowth depends on increased backward vesicle traffic from the
neurite tip to the TGN (Figure 3). This initially counter intuitive
dependency ensures back transport of components needed for
forward vesicle traffic. Such focused simulations within the larger
overall computational model are likely to be critical parts for
verification of the underlying pathways and validation of
mechanisms at the subcellular levels could also be used to
parameterize and identify the uncertainty in how interactions
between SCP subnetworks as well as interactions with the cell
and extracellular matrix lead to dynamics of organ level functions.

Predicting cardiomyocyte
electrophysiology and contractility
from transcriptomic changes

The ability to develop a dynamical model for cell functions is
dependent on the pathways and networks inferred from the DEGs
and DEPs. Once these networks are identified, pathway activities can
be readily connected to systems of coupled differential equations
that can be used for multi-compartment ODE models or PDE
models. Although most models that capture biochemical SCPs
use a pathways framework, biophysical models can also capture
changes in gene expression to predict responses to perturbation. In a

recent study using cardiomyocytes differentiated from healthy
human subjects, gene expression changes induced by tyrosine
kinase inhibitor drugs that are effective cancer therapeutics was
used to develop computational models that predict arrhythmogenic
responses to cancer drug therapy in individuals (Shim et al., 2023).
Changes in levels of gene expression of different channel proteins by
drugs were scaled and incorporated as changes in level of channel
proteins into a multicompartment ODE model of cardiomyocyte
action potential and contractility. Experimental measurements of
cardiomyocyte action potentials, intracellular calcium, and
contraction in the cardiomyocytes demonstrated that modeling
predictions were mostly (80%) accurate. The simulations were
also able to predict responses to drugs and a second perturbation
such as hypokalemia (low potassium). Together the biochemical and
biophysical models demonstrate the ability of numerical simulations
to use transcriptomic data for predictions.

An integrated algorithm to go from
differentially expressed genes to
biochemical dynamics: eicosanoid
biosynthesis network in macrophages

We developed a computational pipeline that integrates a
canonical model of interest with transcriptomic or proteomic
data – either bulk or single cell - to develop cell-type selective
dynamical models for the prediction of cell-type selective whole cell
responses (Figure 4). The canonical model would involve all known
enzymes and reactions described for any cell type of the same

FIGURE 1
A flow chart showing the steps used for building networks of subcellular pathways (SCPs) underlying neurite outgrowth (NOG). Standard and
dynamic enrichment analysis refer to methods used inferring pathway from differentially expressed genes (DEGs) or proteins (DEPs). Reproduced from
and for details see Hansen et al. (2022).
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organism. Like others (Frohlich et al., 2018), we assume that the
reaction rate parameters are canonical as well, i.e., they are the same
for all cell types within an organism. Experimental confirmation of
our spatial cAMPmodels (Neves et al., 2008) by others (Castro et al.,
2010) indicate that this is likely to be true. Starting sources for the
construction of a canonical model could be the KEGG metabolic
networks (Kanehisa et al., 2017) or Reactome pathways (Gillespie
et al., 2022) for reaction schemas and BRENDA database
(Schomburg et al., 2017) for reaction rate parameters. Using
transcriptomic and/or proteomic data our computational pipeline
adds cell-type selectivity to canonical dynamical models by adjusting
steady-state or time-dependent concentrations of enzymes and
other proteins to experimentally observed levels.

In more detail, our computational script converts the canonical
model into cell-type selectivemodels by first removing enzymes that are
not expressed and all reactions that as a consequence lost connection to
precursor metabolites because of interrupted substrate flow. In the case
of transcriptomic data, our pipeline automatically adds translation and
protein degradation reactions to each proteoform in each compartment
that can be linked to experimentally determined mRNA levels.
Canonical models can be updated based on new knowledge, and
our pipeline will generate updated cell-type selective models as well.
The individualization of dynamicalmodels from cell-type selective omic
datasets has been implemented by other authors as well, studying drug
effects on the survival of cancer cell lines (Frohlich et al., 2018).
Currently, our algorithm allows compartmentalization of the cell

and is capable of predicting metabolite profiles in addition to
protein states. After generation of cell-type selective models, our
script writes functional MATAB code for each cell type, allowing
simulation of cell-type selective responses using standard ODE
solvers. Our algorithm can be readily modified to write code for
modeling software such as Octave, or Python ODE solvers.

To test our algorithm, we selected arachidonic acid (AA)
metabolism that is operative in many cell types and organs. The
metabolites generated by this network are important signaling
mediators with physiological effects on kidney, uterus and blood
vessels as well as other organ systems. Due to the availability of
proteomic, transcriptomic and metabolomic datasets from the same
experiments, we selected a macrophage cell line, bone-marrow
derived macrophages (BMDM), to develop the model and assess
its predictive capability.

Our canonical model (Figure 4) focused on the synthesis of the
major derivatives of AA, i.e., prostaglandins, prostacyclins,
thromboxane, leukotrienes and the products of 12- and 15-
lipoxygenases (Wang et al., 2021). AA is generated from intracellular
membranes by cytosolic phospholipase A2 that is recruited to the site of
action by an intracellular calcium peak induced by macrophage
activation (Leslie, 2015). Canonical reaction parameters were curated
from the literature, if available (PENTACON, 2023). To generate a cell-
type-selective dynamic model, we used freely available transcriptomic,
proteomic and lipidomic datasets generated from BMDM. The
proteomic data described protein expression values in unstimulated
BMDMs (Qie et al., 2022) andwas used to determine protein expression
values at baseline. The published transcriptomic and lipidomic data was
generated after BMDM activation by sequential stimulation with Lipid
A, an LPS analogue and ATP (Kihara et al., 2014). Both ligands work
through cell surface receptors. We used the transcriptomic data to
predict how the enzyme expression levels obtained from the proteomic
data change in response to macrophage activation. After
individualization of the canonical model our script wrote the related
MATLAB code that allowed simulation of metabolite profiles after
macrophage activation (Figure 5).

The researchers who generated the transcriptomic and lipidomic
datasets also published a dynamical model of arachidonic acid
metabolism that predicts experimental lipid profiles with high
accuracy and showed functional coupling between cyclooxygenases
and the terminal synthases (Kihara et al., 2014). We outline the major
differences between their and our approaches. These researchers a)
simulated reactions using flux dynamics, where fluxes depend on
enzyme-specific rate parameters as well as time-dependent enzyme
and substrate concentrations. Our equations are based explicitly on
Michaelis Menton Kinetics. b) They assumed enzyme protein
concentrations follow gene expression values with a delay of 4 h.
We use mRNA translation and protein degradation rates to simulate
changes of baseline enzyme expression that we predicted from
proteomics data. In our model using translation and degradation
rates protein expression profiles follow the gene expression profiles
with only a short delay. c) The original study focused on the reactions
downstream of AA and use the experimental AA time course as a given
input for their reactions. Our model includes simulation of AA
production and recycling. d) our model contains multiple subcellular
compartments, i.e., cytoplasm, endoplasmic reticulum/nuclear
membranes, and the Golgi apparatus whose sizes are determined
from experimental data. Inclusion of multiple different

FIGURE 2
Whole cell response requires deep and distributed responses. All
shown SCPs are related to growth of the neurite shaft or scaffold.
Described functions summarize pathway activities predicted at indicated
time points from gene expression profiles induced by CB1R
stimulation. MTOC: Microtubule organization center, PE/PS:
Phosphatidylethanolamine/-choline, GM: Ganglioside, ER: Endoplasmic
reticulum. Adapted from and for details see Hansen et al. (2022).
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compartments allows consideration of different intracellular
localizations of downstream enzymes (Yuan and Smith, 2015;
Calder, 2020), simulation of enzyme membrane recruitments
triggered by the calcium peak (Leslie, 2015) as well as vesicular
enzyme trafficking (Yuan and Smith, 2015). These realistic details
allow for better specification of cell type identity. Overall, our
automated algorithm works well (Figure 5). Generally, if initial
simulations are substantially different from experimental
observations, the model can be revised to add additional cell
biological details such as post-translational regulation or additional
subcellular compartments. Such variations on a canonical thememodel
provide a feasible approach to model cell type selective metabolic
changes and can be readily adapted to single cell transcriptomic data.

Dynamical models from single cell
transcriptomic data—use of ML-AI
approaches

The rapid advances in transcriptomics at the single cell has
greatly enhanced our understanding of tissue and organ function.
Single cell transcriptomics not only allows us to document the

abundances of the different cell types and subtypes in an organ,
but also to estimate their capacities for physiological functions.
Further, in disease states, single cell transcriptomic measurements
enable us to identify infiltrating immune cells and the mechanisms
by which they control inflammation and organ responses that can
drive disease initiation and progression. Developing accurate
computational models of physiological dynamics at the single cell
level will be a necessary first step in creating digital twins to
understand how organ function changes in disease states. Once
an ML or AI algorithm is trained on a particular model, its use can
significantly decrease the time needed for simulation with a
previously untested sets of expression levels, without loss of
quality of the predictions (Nilsson et al., 2022). Such models can
also be used to understand the molecular and cellular basis of organ
robustness, wherein the organ remains resilient to damage from
different types of perturbation including external insults. ML and AI
algorithms can also be trained to generate predictions in the
opposite direction, i.e., to predict the underlying expression levels
from the observed output of the dynamical system. ML and AI
algorithms could also help to identify suited drug combinations that
generate the desired effect in one cell type, while avoiding the
unwanted side effect in another cell type.

FIGURE 3
Multicompartment ODEmodel showing the necessity for vesicle recycling (i.e., membrane back transport) for neurite growth. Recycling is required
to maintain the dynamic concentrations of the motor protein kinesin and the fusion protein v-SNARE for the whole cell response. TGN, Trans-Golgi
Network; PM, Plasma Membrane. Reproduced from Hansen et al. (2022). For details see Hansen et al. (2022) and Yadaw et al. (2019).
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Advances in hardware technologies including the development
of increasingly fast GPU processers have made the running of
thousands to millions of models both cheap and fast.
Commercial software such as MATLAB or freeware such as
Octave offers programs that that can be used for such
simulations. The barriers to using these technologies are mostly
at the biological level. The overall biological knowledge of the system
being simulated should be utilized to constrain the development of
the large-scale simulations with flexibility. Such an approach would
prevent simulation of the proverbial spherical cow, but at the same
time allow detection of black swans - rare variations in whole cell
functions with high impact on physiology.

To fully utilize the knowledge from single cell transcriptomic data, a
systematic approach to build organ level dynamical models from single
cell transcriptomic data starts with building reasonable models for each
cell type and each cell assigned to a cell type (Figure 6). Single cell
transcriptomic data indicate that different components of a pathway are
expressed at varying levels in individual cells. Model simulations can
generate outputs for all observed expression profiles. Additional
synthetic training data can be generated by introduction of random
variations in enzyme concentrations that lie within biologically
reasonable constraints. If the model contains equations describing
drug actions, their concentration can be varied in the synthetic and

experimental training data using the same rules. Overall, such an
approach could allow the generation of thousands or even millions
of different models, each of which will link its own enzyme and drug
profile to its simulated molecular response profile. Training of ML and
AI algorithms on all profiles can unveil relationship patterns between
individual molecules or groups of molecules across the three
different profiles.

Machine learning approaches are already used as an alternative
to classical dynamical modeling for signaling pathways from
receptors to transcription factors (Nilsson et al., 2022). Using a
genome-scale artificial neural network and synthetic data based on
canonical pathways and parameters the model predicted with
reasonable accuracy the relationship between ligand receptor
interactions and transcription factor activation in macrophages as
assessed by transcriptomics.

In other fields that use numerical simulation extensively, neural
networks have been successfully used to develop models and make
reasonably accurate predictions. Adaptation of graph neural
networks that use a “encode-process-decode” approach as
described by the authors has been used to develop accurate
medium range weather predictions (Lam et al., 2023). This
machine learning approach uses network framework where
system states (e.g., reactant identity, reactant concentrations) are

FIGURE 4
An algorithm that integrates canonical networks of subcellular processes with gene expression profiles to produce cell type specific networks and
systems of reactions that can be used for dynamical modeling. AA, arachidonic acid.
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represented as nodes and dynamics are approximated by message-
passing between these nodes. Such systems do not require explicit
formulation of the system in terms of differential equations
(Sanches-Gonalez et al., 2020), nevertheless are able to learn and
produce complex simulations with mesh-based systems (Sanchez-
Gonzalez and Battaglia, 2021). Although we have not yet seen the
use of such graph neural systems-based models for dynamics from
single cell transcriptomics data, it is likely that such simulations will
be useful to extract deep knowledge as we accumulate spatial
transcriptomic data at the single cell level.

Cell to tissue models and disease
states–integrating with clinical and
pathology phenotypes

Cell models as cores of digital twins presume a middle-out
format. This format uses a cell centric approach in going from genes
to organ level physiological functions. The components (mostly
proteins) of pathways and functional units within cells can be
connected to genes and their genomic and epigenetic
determinants at one end and organ physiology and organismal
phenotypes at the other end. Changes in cellular components in

different physiological and pathophysiological states are
experimentally identified from omics analyses. To make these
connections in an explicit manner so distant functional
relationships are not only computable but also findable at every
scale of organization and traceable across scales we need knowledge
graphs that connect components and features both within and
between knowledge domains.

An example of framework that connects physiological and
pathophysiological characteristics (phenotypes) to genomics at an
individual level is the Global Alliance for Genomics and Health
(GA4GH) Phenopacket schema (Jacobsen et al., 2022). This schema
uses ontology terms across various domains such as genomic
variants, pathology, clinical measurements, and therapeutic
actions to connect features from one domain to another.
Developing Phenopacket-like schemas as knowledge graphs will
be the next challenge to be solved to connect cell level physiology to
organ phenotypes. In addition to pathways and processes within
each cell type at a single cell level, such connections will have to
include molecular details of cell-cell interactions and cell-matrix
interaction. Technologies advances in spatial transcriptomics,
metabolomics, and proteomics, at the single cell level are making
it possible to identify and map spatial relationships between
individual cells in a single cell type, and between different cell

FIGURE 5
Comparison of simulation and experimental data for production of lipid messengers in macrophages. (A)Gene expression profiles (light blue circles
in left figure column, n ≥ 3) induced by sequential treatment of Bone-marrow-derived Macrophages with the LPS analogue Lipid A and ATP (Kihara et al.,
2014) were mapped to the canonical network of Arachidonic Acid Metabolism and subjected to spline interpolation (light blue dashed lines). Assuming
high turnover rates, protein expression time series (dark blue lines) were predicted frommRNA profiles. To allow direct comparison we adjusted the
mRNA profile values to lie within the same range as the protein concentrations. ATP stimulation generates a cytoplasmic calcium burst that triggers
translocation of multiple eicosanoid enzymes, including cytoplasmic phospholipase A2 (PLA2G4A) from the cytoplasm (Cyt) to intracellular membranes,
e.g., the endoplasmic reticulum or Golgi membranes (ERMem, GolgiMem, respectively). Simulated concentrations of the lipid messengers (PGD2 and
TXB2 - green lines in right column) agree with lipidmessengers measured in the extracellular space (Ecs) (culturemedium) in the same experiment (green
circles and standard deviations). AA: Arachidonic Acid, PGD2: Prostaglandin D2, TXB2: Thromboxane B2. PTGDS: Prostaglandin D2 synthase, TBXA1:
Thromboxane A1 synthase 1. (B) Enzyme kinetics in our model are simulated by Michaelis Menton kinetics.
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types. A simplified schematic of a digital twin for organ function
prediction is shown in Figure 7. The genomic interpretation
workflow is taken from the Phenopackets schema (Jacobsen
et al., 2022).

Relationships between multicellular structures within an organ
such as blood vessels and nephrons in kidney or blood vessels and
chambers (e.g., left ventricle) in the heart will be specified in terms of
molecular interactions. This spatial knowledge will have to be
incorporated into functional models to accurately simulate how
cell-level physiology functions enable the emergence of organ

phenotypes that are clinically measured, such as estimated
glomerular filtration rates for kidney and left ventricular ejection
fraction for heart. At the other end of a multilayered knowledge
graph, we will have to connect the transcriptomic data in different
cell types and subtypes to genomic determinants such as single
nucleotide polymorphisms, copy number variations and other
features. We will also have to connect epigenetic determinants to
transcriptomic profiles. The effects of non-coding RNAs in
controlling transcription will have to be mapped to the
knowledge graph to fully describe the various modes of
regulation that control mRNA levels for translation.

Cell endowment is a concept that emerges from single cell
transcriptomics. Cell endowment states that normal function of
organ level physiological functions is dependent on the levels of key
cell types. Single cell transcriptomic data sets provide information
regarding the number of cells in each cell type and subtype in
addition to the gene expression profiles and this information will be
the basis for important parameters that connect cell physiological
events to organ phenotypes. This information can be captured in the
knowledge graphs as node attributes at the cell level and used in a
quantitative fashion in the numerical models The ability to encode
cell endowment within the graph structure is a good example of
power of graphs in representing multidimensional biological
systems. For such graphs to be properly constructed it is essential
that the semantic frameworks within different domains are
appropriately and correctly harmonized and that ontology
integration is an early focus in development of digital twins.

Conclusion and perspective

Challenges in building realistic digital twins
for organ function

Organ structure
The conversion of cell-level physiology into organ function is in

part controlled by the spatial organization of the different cell types
within the organ in the context of the extracellular matrix.
Additionally, both local and global geometries in the organ will
shape biophysical forces that in turn control cell-level physiology
through mechanotransduction. Here, we have to account both for
the contributions of the extracellular matrix to the overall
biomechanical properties of the tissue and organ as well as the
interactions of matrix proteins with cell membrane proteins to
communicate both biomechanical and biochemical signals to the
different cell types. It is likely that these properties will vary from
organ to organ and even within regions of an organ. How these
similarities and differences are encoded in the knowledge graphs is a
challenge that needs to be addressed.

Cell biological rules
Physiological functions at the whole cell level are governed by a

myriad of rules including those that specify constitutive properties.
Such rules need to consider the regulation by the vast signaling
networks that transduce external and intracellular signals to control
effector functions, such as cytoskeletal dynamics or intracellular
degradation pathways. Rules governing the relationship between
mRNA and protein levels are of importance as well, when building

FIGURE 6
Workflow for ML and AI-based extraction of molecular
relationships from simulations of dynamic models. Dynamic models
that incorporate experimental or synthetic enzyme concentrations as
independent variables allow generation of dependent large-
scale simulated response profiles. Statistical, ML and AI algorithms can
allow identification of hidden relationships between individual
enzyme, drug, and response molecule concentrations.

FIGURE 7
A simplified schema adopted from (Jacobsen et al., 2022) of how
genomic descriptors (red boxes) within the Phenopacket schema can
be connected to single cell transcriptomic data andmodels to develop
digital twins of organ function. ACMG, American College of
Medical Genetics; VCF, variant call format.
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functional networks from single cell or bulk transcriptomic data.
Rules for protein turnover and location are also important and need
to be appropriately coded as node attributes. Although there is
general concordance between mRNA and protein levels (Buccitelli
and Selbach, 2020) this needs to be ascertained for individual
proteins of interest and can be done by parameter variation
exercises in dynamical models.

Not every cellular function is required for simulation of whole cell
physiology that drives organ phenotype. However, for an organ
function of interest, it is essential to generate rules on how to
simulate the activities of relevant pathways and their functional
interactions. For example, for simulating organ functions such as
nutrient absorption in the intestines (Kellett et al., 2008), glucose
reabsorption in the kidney proximal tubule cells (Chichger et al., 2016)
or water reabsorption in the kidney principal cells (Zhao et al., 2023) it
is essential that rules governing trafficking (i.e., transport and
recycling) of the appropriate transporters, channels and pumps are
specified for the cell types of interest. Many of these rules can be
generated from the vast experimental literature in cell biology,
biochemistry and physiology that have studied individual processes
in depth. The rules can be encoded as edge specifications. However, in
using prior knowledge, it is important to have strict guidelines in
interpreting the experiments to avoid artefactual conclusions. A
common example is the caution we need to exercise in extracting
rules from studies that overexpress proteins of interest in exogenous
systems to obtain insight into native physiological functions.

Parameters for interactions
For building dynamical models, obtainment of kinetic parameters

for the reactions and concentrations of reactants has remained among
the most intractable problems, although databases such as BRENDA
(Schomburg et al., 2017) offer great help for this task. Since our early
work on bistable switches for cell states in the late nineties (Bhalla and
Iyengar, 1999) till today, 25 years later, no systematic effort to develop
catalogs of quantitative parameters has been undertaken. This lack of
data sets has led us to estimate and guesstimate parameters (Bhalla and
Iyengar, 1999; Rangamani et al., 2011) or calculate parameter
dependencies (Yadaw et al., 2019) over the years. Others have used
the Hill equation approximation (Ryall et al., 2012) which provides
biologically relevant simulations as assessed by experiments that test
simulation predictions.

Specification of reaction rates is complicated by the fact that
often post-translational modifications such as phosphorylation
change reaction rates. Hence, these rates need to be specified for
different states of the same proteins (proteoforms) (Melani et al.,
2022). Additionally, initial concentrations of protein reactants arise
from mixtures of these proteoforms and knowledge of the relative
proportions of the proteoforms is very valuable in accurately
specifying initial concentrations for a group of reactions. Such
detailed knowledge exists for very few pathways within the
mammalian cell but can be estimated from experimentally
obtained overall profiles of pathways activities.

The issues regarding kinetic parameters can lead one to conclude
that dynamical models are often not worth the effort. However, this
is not so. Dynamical models are important because physiology is
dynamics. Unless we can develop and integrate dynamical models
with the growing array of informatics and statistical reasoning
models we will not achieve the full predictive capability that

current large datasets can enable. Artificial intelligence (AI) and
machine learning (ML) algorithms that sort through vast arrays of
parameter variations in a combinational manner can help. Steady
state behavior of stimulated signaling networks has already been
successfully modeled with high computational performance using
recurrent neuronal networks that reflect network topologies and
approximate protein interactions with a perturbation-specific
activation function (Nilsson et al., 2022). AI and ML algorithms
incorporated at the interface of transcriptomic data derived
networks and their casting as dynamical models can help sort
through both the rules required to specify and constrain and the
parameters needed to run the simulations. Initially such integration
will be by trial and error. However, as we develop large libraries of
models that predict a range of organ physiological behaviors, we will
be able to select well-constrained models for understanding and
predicting an organ state or function of interest.

Error propagation, uncertainty and accuracy of
predictions

The advances in data gathering and enormous growth in
computing capability have brought us to the cusp of building
accurate computational representations of many organ systems in
our body. Integration of the different modeling approaches will
ensure that we do not produce spherical cows, rather multiscale
models with zoom-in zoom out capabilities where macroscopic
functions of the whole organs can be understood and predicted
from genomic characteristics underlying molecular and cellular
properties. While at 30,000 feet view the ability to develop digital
twins that predict organ behavior from genomic information based
on mechanistic functions at the molecular and cell level appear
achievable given the vast amounts of data in different domains cheap
high-performance computing and current advance in machine
learning and artificial intelligence algorithms, the picture at the
ground level is considerably more complex. There are multiple levels
of uncertainty that can lead to propagation of errors resulting in
diminishing the accuracy of predictions. At a minimum there are
many types of uncertainty 1) within a data domain there can be
uncertainty regarding node size and attributes 2) within molecular
interaction domains uncertainty regarding the existence of edge and
edge strength 3) uncertainty in connections between edges and
potential interdomain edges being affected by distal domains. 4)
errors in computations arising frommethods of simulations, such as
errors due to large time steps in ODE models. There is a need to
develop methods to quantify each of these uncertainties and error
generating steps and develop an overall numerical score that reflects
the reliability and accuracy of prediction. It is likely this will be a
separate sub-field in the development of digital twins for organs.

It is commonly understood that each individual is different from
others, but nevertheless belongs to groups or categories of
physiological functions such that disease states in these groups
can be treated with similar therapeutic approaches. It is also
commonly observed in clinical practice that some individuals
within a therapeutically defined group need to have a
personalized therapeutic strategy that is optimal to control their
pathophysiology. Currently this is done empirically by trial and
error. As accurate digital twins are developed, we should be able to
predict the clinical responses of these individuals for optimal
therapeutic benefits.
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The spatial arrangement of variant phenotypes during stem cell division plays a
crucial role in the self-organization of cell tissues. The patterns observed in these
cellular assemblies, where multiple phenotypes vie for space and resources, are
largely influenced by a mixture of different diffusible chemical signals. This
complex process is carried out within a chronological framework of
interplaying intracellular and intercellular events. This includes receiving
external stimulants, whether secreted by other individuals or provided by the
environment, interpreting these environmental signals, and incorporating the
information to designate cell fate. Here, given two distinct signaling patterns
generated by Turing systems, we investigated the spatial distribution of
differentiating cells that use these signals as external cues for modifying the
production rates. By proposing a computational map, we show that there is a
correspondence between the multiple signaling and developmental cellular
patterns. In other words, the model provides an appropriate prediction for the
final structure of the differentiated cells in a multi-signal, multi-cell environment.
Conversely, when a final snapshot of cellular patterns is given, our algorithm can
partially identify the signaling patterns that influenced the formation of the
cellular structure, provided that the governing dynamic of the signaling
patterns is already known.

KEYWORDS

developmental pattern, signaling, cell tissue, self-organization, regenerative therapy,
Turing dynamics

1 Introduction

The duality of variety and organization is among the canonical concerns in biology.
During the course of development in multicellular organisms, although successive cell
divisions lead to the creation of diverse cells, it does not result in colony-like accumulation
of piled-up cells. Although, in principle, the genetic material of every single cell of an
organism is the same, influenced by variant stimulants, they are capable of generating highly
complex spatial patterns (Liu and Warmflash, 2021; Dubrulle et al., 2015; Heemskerk et al.,
2019; and van Boxtel et al., 2015). A diverse range of chemical stimuli, as underlying drivers
of non-genetic variations, act at multiple scales (Shahbazi et al., 2019). These stimuli play a
crucial role in directing cell fate determination in stem cells at the individual cell level
(Britton et al., 2021). On the other hand, collective processes such as tissue homeostasis,
wound healing, angiogenesis, and tumorigenesis are intimately linked with competing
environmental chemical cues (Schweisguth and Corson, 2019). Understanding the
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mechanisms underlying the generation and maintenance of these
ordered spatial assemblies could potentially aid in the development
of novel strategies for controlling tissue organization and function
in vitro and in vivo.During the development of multicellular
organisms, tissues are created through the spatial arrangement of
differentiated cells. Although modeling the formation of a spatial
arrangement from a single stem cell is complex, it becomes even
more complicated in reality as tissues are formed from the spatial
arrangement of cells from different stem cells. This process requires
intercellular signal transmission, which affects gene expression
regulation and intracellular decision-making.Internal mechanisms
are responsible for generating the right proportion of different types
of specialized cells, distributing them in their right position, and
maintaining the organized structure in the presence of intercellular
chemical signaling agents (Khorasani and Sadeghi, 2022). Cells also
sense and respond to mechanical stimuli and the physical properties
of their environment via induced downstream genetic regulatory
networks (Valet et al., 2022; Lenne et al., 2021; Wagh et al., 2021).
Several multi-stable regulatory networks play their role as the
internal decision-makers of dividing cells (Khorasani and
Sadeghi, 2022). This study investigates the impact of various
chemical signals on the mechanism by which multiple stem cells
generate intricate tissue structures and tries to provide a deeper
understanding of the mechanisms behind morphological variations.
In reality, the formation of intermediate structures during embryo
development or the formation of a tissue consisting of cells with
different phenotypes and with organization in their spatial
arrangement without a previous template is a complex problem,
andmodeling them using the simplest possible assumptions can lead
to a better comprehension of the development process in
multicellular organisms.We would like to answer these questions,
or, more realistically, get any enlightenment about the following:
first, in the presence of variant positional cues, how can spatially
organized populations give rise to and maintain large-scale
inhomogeneities starting from an initially roughly homogeneous
mass of intermixed stem cell populations? Second, how do
individual stem cells perceive and interpret their surrounding
spatial information to make decisions about their developmental
pathway in response to the local concentration of these stimulants?
Finally, is it possible to infer information about the specific form of
the signals that created them from the final structure of cell
populations?

The basis of cellular pattern formation is mounted on the
interaction of the mediating nonlinear diffusive signaling
components (Murray, 2001). For the spontaneous construction of
patterns during development, as proposed by Turing’s classic theory,
the system requires two diffusive chemical compounds: an activator
compound and an inhibitor compound (Turing, 1990). The latter
locally undergoes an autocatalytic reaction to generate more of itself
and also activates the formation of the inhibitor compound in some
way. Meanwhile, the former inhibits the formation of more activator
compounds. The key element for obtaining spatial patterns is that
the activator and the inhibitor components diffuse through the
reaction medium at different rates. Thus, the effective ranges of their
respective influences are different. Accordingly, if the inhibitor agent
diffuses faster than the activator one, a stable pattern can emerge
from a homogeneous background merely by the amplification of
small perturbations. The patterns generally take the form of spots

(and reverse spots) or stripes based on the choice of model
parameters (Murray, 2001). The dynamic elaborates different
possible pattern formation processes in a variety of
developmental situations. The related examples span from the
regeneration of hydras (Meinhardt, 2003) to animal coating
patterns (Koch and Meinhardt, 1994). Wave phenomena can also
generate patterns of spatiotemporal type (Cotterell et al., 2015; Eidi
et al., 2021). Since the typical characteristic time of cell division is
higher than that of a traveling wave, here, we exclude the formation
of cellular patterns induced by spatiotemporal signaling patterns.
Recently, Marcon et al. (2016) proposed a new development in
classical Turing models, indicating that the essential prerequisite of
varied diffusion rates for mobile signaling molecules is not essential
for pattern formation. Remarkably, specific networks are capable of
creating patterns using signals without the constraint of relative
diffusion rates.

Here, we assume that there are two multipotent stem cells as
resources of variation generation, each of which is potentially
capable of constructing its own organized structure in the
absence of the other. Although the cells do not directly interact,
they have an intracellular signal-dependent tri-stable switch that
affects their reproduction rates in response to multiple signals in the
environment. We present a computational model for their internal
mechanism in the presence of each other to form an organized
population consisting of whole descendants. We see that signaling
messengers play a significant and irreplaceable role as regulatory
agents in communication between different cell types. Our results
indicate that the association of variant environmental signaling
messengers and intracellular decision-making switches grants a
diverse range of cellular patterns. Furthermore, having the
ultimate arrangement of cellular organization, one can
approximately indicate the signaling patterns based on which the
cellular patterns have been established, provided that the prior
assumption of the pattern is given.

2 Materials and methods

In this model, we consider a scenario where a plane is initially
populated by two types of stem cells, SC1 and SC2. These stem cells
can both renew themselves and divide into their corresponding
differentiated cells. When they divide into specialized cells, SC1 can
give rise to eitherA or B, while SC2 can give rise to either C orD; see
Figure 1A. In this case, to simplify the computational process and
maintain the essence of the scenario, we will disregard any
intermediate stages and assume a direct division of stem cells
into their offspring. The division outcomes of each cell are
influenced by the amount of signaling agent that the mother cell
receives (Khorasani et al., 2020; Khorasani and Sadeghi, 2022,
Khorasani and Sadeghi, 2024). Here, the main idea is that in the
absence of cellular displacement, competition between existing
chemical signals in the environment plays the principal role in
the pattern formation process at the population level. To model the
underlying mechanism, we need to answer the following questions:

• What type of signal does the model refer to?
• How can a mixture of different signals impact the fate of an
individual cell?
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• What is the effect of the signals on the offspring at the
population level?

The materials and methods is structured as follows: first, we
introduce different possible dynamics for propagating extracellular
signals in the environment, including positional information in
Section 2.1.1 and reaction–diffusion dynamics in Section 2.1.2.
Subsequently, in Section 2.2, we propose a regulatory switch that
allows an individual cell to determine its fate influenced by the
uptake of different environmental signals. Finally, in Section 2.3, we
describe an algorithm for predicting the final cellular pattern of a
system that is initially composed of multiple signaling agents and
dividing cells.

2.1 Signals

Let us assume that the stem cells in a medium are exposed to
spatial chemical information, we refer to them as signals, which are
captured and interpreted by the cells to develop the spatial
organization. There are various ways to provide spatial patterns
in biology, among which, positional information and
reaction–diffusion dynamics are the most prominent (Green and
Sharpe, 2015).

2.1.1 Positional information dynamic
Generally, positional information dynamic refers to the

development of the spatial cellular organization in the embryo

differentiating at specific positions based on their response to the
gradient of environmental signals (Schweisguth and Corson, 2019).
For example, embryonic organizer centers secrete morphogens that
specify the emergence of germ layers and the establishment of the
body’s axes during embryogenesis (De Santis et al., 2021). In the
current study, by positional information, we mean any external
chemical cues whose procedure of setting up is immaterial for us,
and we merely focus on their impact on the regulation of internal
switches. To illustrate the relationship between different signals,
Figure 2 exemplifies the simultaneous presence of two signal profiles
of Gaussian type (the first column), a Gaussian profile and a
sinusoidal one (the second and third columns), and two
sinusoidal with different frequencies (the fourth column). In each
column, the final cellular pattern resulting from the process of cell
division and self-renewal of competing stem cells is represented by
the third row. Initially, the stem cells are randomly distributed in an
environment that contains upper-row signals. In all cases, the final
pattern can be distinguished by six different colors. The colors
magenta and green represent Sc1 and Sc2, respectively. The colors
blue, cyan, yellow, and red are used to represent the offspring A, B,
C, and D, respectively. The pattern formation process is
implemented using Algorithm 1.

2.1.2 Signaling through the
reaction–diffusion dynamic

To generate two independent signaling agents in the medium,
we consider a system that consists of two independent
reaction–diffusion processes. Each process involves two

FIGURE 1
Fate determination of stem cells under the influence of environmental signaling agents. (A) Differentiation of SC1 leads to either phenotype A or B,
while SC2 can differentiate into phenotype C or D depending on the amount of signaling agent exposure. (B) Regulation switch present in each stem cell
contributes to its development toward a specific fate, which is influenced by environmental stimulant pairs (s1 , s2). (C) The cruciform shape in the (s1 , s2)
plane represents the phase field of possible developed cells. Each phenotype is color-coded, with blue representing A, cyan representing B, yellow
representing C, and red representing D. The values of s1 and s2 have been scaled up to fall within the range of (0,5). Each quadrant in the plane
corresponds to a specific phenotype. The values of (s1 , s2) directly affect the determinants within the cell and, thereby, influence the outcome of cell
division, as described by Equations 3, 4. The gray cross denotes a comparable concentration of signaling agents, within which randomness plays a
significant role in determining cell division outcomes. (D) Fate of each stem cell SCi is influenced by a specific combination of (s1 , s2) pairs. There are
different pairs (s1 , s2) that can affect SC1 and leave SC2 unaffected. For example, columns 1 to 4 can influence SC1 and leave SC2 neutral, while columns
5 to 8 have the opposite effect.
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FIGURE 2
Resulting cellular pattern (third row) of a system influenced by two independent static signal profiles (first and second rows). The signal profiles
consist of a Gaussian profile, described by the exponential function exp[−(2σ2)−1((x − x*)2 + (y − y*)2)], and a sinusoidal profile sin(kx). The third row in
each column displays the final cellular pattern resulting from stem cell division and self-renewal. Initially, stem cells are randomly distributed in an
environment containing the signal profiles from the upper row. The final pattern, distinguishable by six colors, reveals specific cell types:magenta for
Sc1, green for Sc2, blue for offspring A, cyan for offspring B, yellow for offspring C, and red for offspring D. The outcome depends on the comparison of
signal concentrations at each point. The randomness involved in the patterns belongs to the areas where the concentration of positional signals is
comparable. The first column: (top) x* � 40, y* � 30, and σ � 2, (middle) x* � 60, y* � 30, and σ � 2 (bottom) the developed pattern in consequence of the
combination of its upper-head signals. The second column: (top) x* � 40, y* � 30, and σ � 2 (middle) and k � 4.5 (bottom) the developed pattern in
consequence of the combination of its upper-head signals. The third column (top) k � 4.5, (middle) x* � 40, y* � 30, and σ � 2 (bottom) the developed
pattern in consequence of the combination of its upper-head signals. The fourth column: (top) k � 1.5 (middle) and k � 4.5 (bottom) the developed
pattern in consequence of the combination of its upper-head signals.

FIGURE 3
Possible signaling agent patterns si (s(i)u ) following Equations 1, 2 with parameters: A � 0.9, B � 1.2, γ � 10000, and C � 0.2 and lattice size h � 0.01.
(Left) Spot pattern with Du � 1 and Dv � 20 Du, (middle) reverse spot pattern with Du � 25 and Dv � 500 Du, and (right) stripe pattern with Du � 1 and
Dv � 20 Du.
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interacting chemicals, namely, s(i)u and s(i)v , where i ∈ {1, 2}. The
spatial distribution of s(i)u and s(i)v is interdependent, as governed by
their corresponding dynamics. Thus, there are two independent
chemical variants produced by these two reaction–diffusion
processes. We assume that the concentration field of s(i)u in the
medium, i ∈ {1, 2}, defines the dynamic profile of each independent
signaling agent. Moreover, s(i)u and s(i)v are deemed to spread over the
environment with Ds(i)u

and Ds(i)v
, respectively. The governing

equations for the propagation of s(i)u and s(i)v are as follows (Shoji
et al., 2003):

∂s i( )
u

∂t
� ∇2s i( )

u + γf s i( )
u , s i( )

v( ), (1)
∂s i( )

v

∂t
� d∇2s i( )

v + γg s i( )
u , s i( )

v( ). (2)

Here, by rescaling the space variable, the diffusion coefficient of

s(i)u and s(i)v are set to 1 and d, respectively. Here, d is equal to
D

s(i)v
D

s(i)u

.

Thus, assuming that d≥ 1, the diffusivity of s(i)v is larger than that of

s(i)u . In addition, f(s(i)u , s(i)v ) and g(s(i)u , s(i)v ) are reaction kinetics of
the system represented with the following terms:

f s i( )
u , s i( )

v( ) � As i( )
u − s i( )

v + C and g s i( )
u , s i( )

v( ) � Bs i( )
u − s i( )

v − 1.

Here, A, B, and C are the controlling parameters. The kinetics also
constrains the variable s(i)u within a finite range: 0≤ s(i)u ≤ s(i)umax

. The
parameter γ exhibits the relative strength of reaction kinematics.
This dynamic with a reflective boundary condition can produce
steady-state heterogeneous spatial patterns of chemical
concentrations (Shoji et al, 2003). The diffusion process, with
d≥ 1, in this context, is considered the main deriving process for
the heterogeneity in the system. Moreover, s(i)umax

is considered the
controlling parameter, upon which the behavior of spatial patterns
differs; see Figure 3. To simulate the dynamic, we implement the
Gillespie method (Gillespie et al., 2007), which exhibits some degree
of randomness in the simulation of chemical kinetics. The Gillespie

algorithm is widely regarded as the “gold standard” for explaining
the behavior of systems characterized by a limited number of
determinants and driven by inherent fluctuations, all while
avoiding the complexities of mathematical equations. This
method generates a statistically possible solution of Equations 1,
2, for which the reaction rates are known. Defining the propensity
function for every single reaction, including diffusion ones that are
considered to be reducible to an analogous reaction, we have a
measure to find out the time when the next chemical reaction takes
place and determine which reaction is likely preferred by the system.
The entire reactions of the system and their corresponding
propensity functions are listed in Table 1. By updating the
propensity functions at each step, one can track the changes in
the corresponding cell-type population vector, which is induced by a
single occurrence of a particular reaction. Repeating the algorithm
simulates the whole behavior of the reaction–diffusion system
stochastically. The complete algorithm implementation is detailed
in Section 2.3. Before delving into that, it is crucial to explain how
various chemical environmental signals impact the ultimate fate of
an individual cell.

As previously mentioned, we assume that the concentration field
of s(i)u in the medium, where i ∈ 1, 2, represents the dynamic profile
of each separate signaling agent. From this point forward, whenever
we refer to si, we are referring to s(i)u .

2.2 Biased internal switch of determinants

Once we have identified the environmental signals that can
influence the fate of stem cells, we can explore the subsequent
question: how do simultaneous signals impact the destiny of a
single cell?

Let us assume that within the cytoplasm of each stem cell
SCi (i � 1, 2), there are two interacting chemical determinants, xi

and yi, where i ∈ {1, 2}, whose values play a crucial role in
determining the outcome of cell division. In this model, the
interaction dynamics of these cytoplasmic determinants of the
stem cell SCi (i � 1, 2) are controlled by a tri-stable regulatory
switch. This switch controls the fate of cell division and
determines whether the stem cell differentiates or self-renews.
(Balázsi et al., 2011; Staff, 2017; Khorasani et al., 2020; Khorasani
and Sadeghi, 2022, Khorasani and Sadeghi, (2024)). See Figure 1B.

∂xi

∂t
� α i( )

x

xn
i

βn + xn
+ k1

βn

βn + yn
i

− γ1xi, (3)
∂yi

∂t
� α i( )

y

yn
i

βn + yn
i

+ k2
βn

βn + xn
i

− γ2yi. (4)

In Figure 1B, the regulatory switch is shown. It involves mutual
repression of xi and yi and their degradation effects, as well as their
self-activation in the form of the Hill function. In the above
equations, n is the Hill coefficient, β is the synthesis rate of
determinants, α(i)x and α(i)y are the self-activation rates, k1 � k2
are the inhibition rates, and γ1 � γ2 are the degradation rates of
xi and yi, respectively.

It has been demonstrated by Khorasani et al. (2020) that in the
absence of stimulant signaling chemicals, when there is only one
type of stem cell and the coefficients in Equations 3, 4 are constant,

TABLE 1 Involved reactions and their corresponding propensity functions
(reaction no. 1–6) generating signaling patterns and the reactions (reaction
no. 7–10) involved in the production and degradation of intracellular
determinants. In total, there are 20 reactions incorporated in the Gillespie
algorithm, i ∈ {1,2}.

Reaction no. Reaction type Propensity function

1 Production of s(i)u γ(As(i)u + C)

2 Degradation of s(i)v γ(s(i)v )

3 Diffusion of s(i)u Du/h2

4 Production of s(i)u γ(Bs(i)u )

5 Degradation of s(i)v γ(s(i)v + 1)

6 Diffusion of s(i)v Dv/h2

7 Production of xi α(i)x
xni

βn+xn + k1
βn

βn+yn
i

8 Degradation of xi γ1xi

9 Production of yi α(i)y
yn
i

βn+yn
i
+ k2

βn

βn+xni

10 Degradation of yi γ2yi
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there are three stable steady-states for each stem cell. These steady
states correspond to three distinct cell fates: the stem cell itself and its
corresponding differentiated cells. The cell’s absorption to a specific

attractor is determined by the values of xi and yi, which, in turn,
defines the domains of the three attractors. Building upon previous
research, we aim to investigate how variant environmental chemical

FIGURE 4
Schematic illustration of the formation of developmental patterns influenced by external signals. Stem cells respond to dynamic signals, leading to
differentiation and self-renewal based on the number of determinants produced within their cytoplasm. Look-up tables summarize cell division
outcomes based on the signal combination intervals. The highlighted section with dice in the lower panel represents regions with comparable signal
concentrations. Here, the response of stem cells to these signals becomes unpredictable, and randomness plays an important role in determining
the outcome. See Algorithm 1 for in-depth details.
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signals influence the concentrations of xi and yi. In this study, we
consider two types of stem cells, SC1 and SC2, and assume the
presence of two independent signals, s1 and s2, in the environment.
The values of these signals evolve, and each stem cell (SCi) can
detect the presence of both s1 and s2. The cell then regulates its
internal determinants based on the amount of these signals it
receives, denoted as (s1, s2). We assume that the coefficients α(i)x

and α(i)y are not fixed parameters, but rather, they are influenced by
environmental signals s1 and s2. The behavior of α(i)x and α(i)y is
governed by the following relations:

α 1( )
j � α 1( )

0j + η s1( )η s2( ) if j � x
ζ s1( )ζ s2( ) if j � y

{ , (5)

α 2( )
j � α 2( )

0j + η s2( )ζ s1( ) if j � x
η s1( )ζ s2( ) if j � y

{ (6)

Here, η � s2

K2
1+s2 and ζ � K2

2

K2
2+s2. K1 and K2 are the fixed

parameters. We see that different concentrations of s1 and s2 will
lead to different levels of xi and yi, which will, in turn, influence the
fate of the stem cells.In this study, the parameters of Equations 3, 4
were set as follows: γ1 � γ2 � 0.38, β � 42, k1 � k2 � 30,
α(1)0j � α(2)0j � 30, and n � 4. Additionally, in the definition of η

and ζ , both K1 and K2 were adjusted to equal 2.5. Finally, the
parameters η and ζ were scaled up by a factor of 20. It is important to
note that these parameters were determined through a trial and error
process since the study was computational in nature.

FIGURE 5
Steady-state patterns of developmental cellular arrangements in a multiple signaling field. The figures depict the patterns obtained using
Algorithm 1, with each pattern governed by the dynamics of Equations 1, 2. The inline patterns, shown alongside, correspond to the signaling patterns
predicted by Algorithm 2. By understanding the distribution of stimulating signals for stem cells, Algorithm 1 can determine the final cellular
developmental pattern. Conversely, the inline patterns are generated according to the guidelines outlined in Algorithm 2 by analyzing the steady-
state cellular pattern in each element as input. The color code reflects the cell types.
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2.3 Patterns at the population level

In this section, we introduce a position-dependent procedure based
on the Gillespie algorithm to simulate the development of differentiated
cells in a population, as illustrated in Figure 4. The Gillespie algorithm is
widely used for modeling systems with a small number of determinants
or chemicals, taking into account inherent fluctuations. Previous studies
have mainly focused on understanding the decision-making
mechanism of a single type of stem cell. However, in this study, we
extend our analysis to include multiple types of stem cells and various
signaling stimulants in the system.

Consider a system comprising two types of stem cells, namely, SC1

and SC2. These stem cells possess the capability to undergo self-renewal
and differentiate into their specialized cells. The differentiation process is
regulated by the presence of signaling agents s1 and s2. SC1 is capable of
differentiating into A and B phenotypes, whereas SC2 is competent to
develop into C and D offspring; see Figure 1B. s1 and s2 independently
propagate on the substrate via the reaction–diffusion dynamics of
Equations 1, 2. The objective is to track the potential fate of stem cells
at each location on a two-dimensional grid based on their exposure to two
types of signals, s1 and s2. To achieve higher accuracy, the signal levels are
scaled up to a range of 0–5. For each present cell type, a 6 × 6 lookup

table is created at the start of the simulation, where each element in the
table represents the potential number of cells of the corresponding cell
type after division, assuming that a specific combination of s1 and s2
signals (s1, s2) exists at the mother cell’s location.

The cell cycle span represents the average time interval in which
each stem cell reaches the domain of one of its possible attractors: the
stem cell itself or its differentiated offspring. Through trial and error, it
has been determined that approximately 100 steps are necessary for the
cells to reach a state of homeostasis. During this period, the values of
intercellular signaling agents and intracellular determinants are updated
using the Gillespie algorithm. Table 1 contains the list of reactions for
these variants along with their corresponding propensity functions.
Once this period is completed, the cells are ready to undergo division. At
this point, we record the probable number of each possible fate based on
the values of the signals and determinants. These numbers serve as the
“virtual” destination of the stem cells and are recorded in their
respective 6 × 6 look-up tables, as shown in Figure 4. The value
6 represents the resolution of the signal considered by the
simulation for each cell. Consequently, the range of signal variations
has been divided into six equal intervals. The selection of the element to
enter the number of each probable fate in the table is directly dependent
on the specific subinterval within which the values of s1 and s2 reside.

FIGURE 6
Comparison of cellular patterns for multiple pairs of signaling patterns simulated using the proposed algorithm. Panel (A) illustrates the signaling
patterns pairs at the top of each column, while Panel (B) shows five independent simulated cellular patterns for each pair. The apparent similarity of the
cellular patterns demonstrates the reproducibility of the method. Refer to Figure 7 for an analytical measure of the pattern similarity.
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The process then repeats for another cell cycle duration, which is
typically 100 steps. After collecting enough data in the look-up tables,
for example after 1,000 steps, we can estimate the probability (Pb) of
each of the six cell types being born. This is done by referring to the
look-up tables and calculating the probability as the number of that
particular cell type in the table divided by the total population size.

The entire process continues until the difference between two
successive Pb values becomes smaller than a predefined tiny value,
denoted as ϵ. This signifies that there is no significant change in the
probability value and indicates the steady state of the pattern. The
final pattern is constructed using the probabilities of creating each
phenotype at the very last step.

To simulate the dynamic of the pattern formation through the
division process provoked by the positional chemical information,
we perform the following steps recurrently on a substrate of size
sz � 100, on which SC1 and SC2 have been distributed randomly
(Figure 4, panel of initial population arrangement).

1. For an adequate duration, such as 100 successive steps, let the
dynamic of Equations 3, 4, upon which the number of determinant
agents evolves, proceed. Here, we reckon that the signaling patterns
of s1 and s2 simultaneously evolve based on Equations 1, 2 and
provoke the stem cells toward a possible destiny.

2. Follow up the “potential” destiny of the stem cell located at each
grid on the plane. Allocate a 6 × 6 look-up table for each of the
present cell types (just once at the very first iteration). We scale up
the amounts of signals to the range of (0, 5). This is the variation
interval of the reverse spot signals. The rows of each table
represent the number of subintervals that correspond to
changes in s1, while the columns represent the number of
subintervals that correspond to changes in s2. Next, we need
to count the number of “virtual” offspring and renewed stem cells
and categorize them based on the current amount of s1 and s2 in
each location. Then, we insert the numbers into the row and
column that correspond to the subinterval where they reside in the
respective cell type; see Figure 4. It is crucial to highlight that, at
this point, the fate of the cells is not determined. Instead, an
assessment of their potential fate can be derived by taking into
account the spatiotemporal value of (s1, s2).

3. Repeat the two previous steps 1,000 times, and record the
corresponding classified data according to the above-mentioned
method. In this way, one collects more data and, in consequence,
the final predicted fate of the cells is closer to that of a real system.

4. Once every 1000 steps, assess the amount of s1 and s2 on every
single grid of the main substrate and find out the corresponding
number of the potential fate of the cell types on each of the six

FIGURE 7
Box plot illustrating the normalized score values for the cellular patterns depicted in Figure 6. The score valuemeasures the similarity of each pattern
to a reference deterministic pattern created from their extreme signaling value pairs.
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look-up tables. Then, compute the probability of the virtual
emergence of each cell type simply as the number which is
associated with it in the look-up table, divided by the number
of the whole population. After calculating the probability of all
possible outcomes of the cell-fate random variable, we compare
them with the same quantities for the 1,000 steps ahead and
replace their maximum difference in the d variable, which is taken
as an arbitrarily large value that guarantees that we will have
enough repetitions in our simulations. Repeat the above sequence
of instructions until the amount of d is less than that of
e � 0.0025, which is adopted as an arbitrary and constant limit
for the acceptable error in our simulations.

5. Finally, substitute the initial distribution of mother cells SC1 and
SC2 on the substrate with the final pattern of daughter cells of each
type based on their come-up probability. At this stage, every single
grid of the main substrate is implanted with the cell type that is
more likely conformed with the influence of the signal agent pair
(s1, s2) on the internal switch of determinants; see Figure 4. For a
summary of the ordered process, see Algorithm 1.

In a population of stem cells, the number of dividing cells remains
constant. An alternative explanation for the above algorithm can be
described as follows: once the mother cells reach a state of homeostasis
after 100 steps, they divide. However, the algorithm disregards the
differentiated cells as the algorithm focuses on studying the internal
switch of the stem cells at this stage. Thus, we assume that only the stem
cell daughter cells remain at each grid point. In the next iteration, the
offspring stem cells explore the phase space of (xi, yi) by updating the
values of xi and yi using the Gillespie algorithm. Then, these cells are
absorbed into one of the three stable states of the internal switch: the stem
cell itself or its differentiated offspring. As a result, the cells divide, and the
results are recorded in the look-up tables. Again, the differentiated cells
are disregarded, and the process is repeated for the stem cell offspring
across the entire grid. The algorithm continues until completion.

The only additional assumption in this description is that every
division always yields a stem cell as its daughter cell. The difference
between the two descriptions lies in the fact that the first description
defines potential cell fates, while the latter assumes that the divisions
are real. Both descriptions aim to gather more data, resulting in a
final predicted fate of the cells that are closer to that of a real system.

3 Results

3.1 Our signal-dependent tri-stable
switch works

Figure 1D illustrates the solutions of Equations 3, 4 in the
presence of variant pairs of (s1, s2). From different columns of
the figure, it is evident that when the stem cells are exposed to
different pairs of (s1, s2), the following fate of cell differentiation
differs. The stem cells’ response to the presence of signals, which is
implemented via Equations 5, 6, depends on the amount of both s1
and s2. In other words, there are pair combinations of (s1, s2) that
influence SC1, while SC2 remains neutral; e.g., column 1 to 4 and vice
versa (.e.g., column 5–8). On the other hand, every single stem cell
differentiates into one of its potential offspring based on the amount
of (s1, s2) to which it has been exposed. The first row of the tabular

Figure 1D displays the final course of action of SC1 in the presence of
variant combinations of (s1, s2). As it is seen in this row, in the
presence of (s1, s2) � (0, 0), B cell type is superior. The same trend is
seen when (s1, s2) � (2, 2) but with less difference between A and B
production. In the presence of (s1, s2) � (3, 3), the process is
reversed, and A production becomes prior to that of B cells.
When SC1 experiences (s1, s2) � (5, 5) pair signals, the A cell
type becomes superior. The corresponding signal pairs of the last
four columns have no impact on the preceding one of the cell types.
Similarly, the second row illustrates the behavior of SC2 in the
presence of different pairs of (s1, s2). It is seen that the first four rows
have no specific influence on altering production probabilities of C
and D. Although in the presence of (s1, s2) � (0, 5), the production
rate of C is higher, the process becomes reversed when the (s1, s2)
pair reaches (3,2). When s2 vanishes and s1 is on its highest value,
i.e., 5, the production probability of D(C) is the
maximum (minimum).

ϵ ← 0.0025. % a predefined small value.

d ← 10000. % the difference in emerging probabilities of

the six cell types between the successive steps.

To ensure a sufficient number of iterations, the

initial value of d is set as a large number.

co ← 0. % a dummy counter.

sz ← 100. % the number of grids on the plane.

pbold[6][sz][sz] ← 0.

Construct the medium and plant stem cells, SC1 and SC2.

Form signal patterns s1 and s2.

while d≥ ϵ do

co ← co + 1.

for i � 1 TO 100 do

Update the system.

end

Let the stem cells be divided potentially, observe the

offspring, and collect the data.

if co%1000 �� 0 then

pbnew ←Compute the probability of the birth of each

6 cell types based on the s1 and s2 values in their

mother cells’ grid.

d ← Maximum value of |pbnew − pbold|.
pbold ← pbnew.

end

end

Design the corresponding medium based on the

collected data

Algorithm 1. The sequential instruction to form a complex cellular pattern

based on a given signaling blueprint.

3.2 Individual cellular decisions lead to
collective cellular patterns under the
influence of combined signals

Figure 5 depicts the arrangement of the final developed cellular
patterns induced as a result of variant possible combinations of
signaling patterns governed by Eqs 1, 2. The color bar represents
different cell types. Purple and green stand for SC1 and SC2,
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respectively. Blue and cyan colors render phenotypes A and B,
respectively, while yellow and red colors refer to C and D
phenotypes, respectively. Each array of this arrangement
corresponds to the combination of two members of the solution
family of Eqs 1, 2, which are depicted inline in each case; see next
paragraph. According to Figure 3, the solution family of these
equations has three members: spot (left panel), reverse spot
(middle panel), and stripe (right panel). From Figure 5, it is
evident that the combination of these signaling patterns leads to
a diverse collection of distinctive cellular pattern.

3.3 One can recognize the signal patterns
from the final cellular arrangement,
provided that the prior assumption of the
pattern is given

sz ← 100.

pMat[sz][sz] ← the matrix corresponding to the

population pattern, and the color code for different

cell types.

s1[sz][sz] ← 0. %si[sz][sz], i ∈ {1,2} is the corresponding

matrix of si on the plane.

s2[sz][sz] ← 0.

for i � 1 TO sz do

for j � 1 TO sz do

if pMat[i][j] �� 1 then

s1[sz][sz] ← 0.5.

s2[sz][sz] ← 0.5.

end

if pMat[i][j] �� 2 then

s1[sz][sz] ← 1.

s2[sz][sz] ← 1.

end

if pMat[i][j] �� 3 then

s1[sz][sz] ← 0.

s2[sz][sz] ← 0.

end

if pMat[i][j] �� 4 then

s1[sz][sz] ← 0.5.

s2[sz][sz] ← 0.5.

end

if pMat[i][j] �� 5 then

s1[sz][sz] ← 0.

s2[sz][sz] ← 1.

end

if pMat[i][j] �� 6 then

s1[sz][sz] ← 1.

s2[sz][sz] ← 0.

end

end

end

Algorithm 2. The sequential instructions for determining the form of

triggering signaling patterns (spot, reverse spot, or stripe) associated

with the final cellular arrangement in a system of two reproducing stem

cells (SC1 and SC2) under the influence of two independent signals (s1 and

s2) in the environment. The signals are generated through a Turing process

with Equations 1, 2.

Figure 5 depicts the ultimate configurations of cellular
arrangements resulting from different combinations of signaling
patterns generated by Eqs 1, 2. The two corresponding acquired
signaling patterns are displayed at the bottom right of each array.
The key point here is that there is a dual relationship between the
signal distribution and cell growth pattern. By understanding the
distribution of signals that stimulate stem cells, algorithm 1 can be
utilized to ascertain the final cell growth pattern. Conversely, by
knowing the specific types of signals present, algorithm 2 can be
employed to determine the parameters associated with the signal
pattern based on the final cellular arrangement. In other words, if we
are provided with a snapshot of the steady state of a developed
cellular pattern and we assume that this pattern is influenced by two
independent signals (s1 and s2) generated through a Turing process
with Eqs 1, 2, algorithm 2 can predict the shape of each signal
(spot, reverse spot, or stripe) based on the observed final cellular
pattern. Recognition of signal patterns is a directional process.
Algorithm 2: first, it is necessary to consider two blank planes, each
of which is in accord with one of the signals to project its
corresponding pattern onto it. Next, we go through every single
pixel of the cellular pattern. Then, based on the color of the pixel,
we map the projection of this color onto the signal planes. Let us
assume that the color of a pixel is blue, meaning that this pixel is
occupied with a cell of phenotype A. According to the relations
(Eqs 5, 6) as well as Figure 4, this implies that at this spot, the
concentration of both signals is approximately at its own summit.
As a result, the projection of every blue pixel of the cellular pattern
on both signal planes is a white point. Similarly, the cyan color in
the cellular pattern corresponds to the B phenotype, whose
occurrence is highly probable when the concentration of both
signals is low. Accordingly, the map of each cyan pixel matches a
corresponding black color on both signal planes. Likewise, the
yellow (red) color represents the C phenotype (D phenotype),
whose production rate is high when the concentration of s1 is low
(high), while that of s2 is high (low). As a consequence, the
projection of each yellow (red) pixel onto the corresponding point
on the first signal plane is white (black), while its projection onto the
similar point on the second signal plane is black (white). For a
summary of the ordered process, see Algorithm 2.

4 Discussion

The positional stimuli have been emerging as key regulators of
transcription and gene expression in diverse physiological contexts
(Rulands et al., 2018). These environmental drivers engage in the
phenotypic diversity and proliferation/differentiation balance of
stem cells (Balázsi et al., 2011; Rulands and Simons, 2016; Blake
et al., 2006). The regulation process of non-genetic diversity involves
the interplay of intracellular and intercellular components to
interpret positional cues (Çağatay et al., 2009; Acar et al., 2008).
In a competing arena in which various chemical stimulants vie for
affecting a cell’s fate more, the process demands more robust and
complex mechanisms. In order to specify and extend their offspring
territory, the stem cells utilize a signaling process to communicate
and collaborate with each other. This process ends in collective self-
organized forms on length scales that are much larger than those of
the individual units Chhabra et al. (2019).
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In this study, first, we investigated the impact of multiple passive
external signals on intracellular switches of a single stem cell. This
provides us with a direct inspection of the connection between
intracellular and extracellular dynamics. By mapping the
environmental signaling patterns to the probability of the
emergence of differentiated cell types, this model is capable of
capturing any desired complex pattern, whether passive or active.
The sort of models that recapitulates signaling dynamics and
predicts cell fate patterning upon chemical perturbations
precedingly has been investigated in non-competitive
environments (Khorasani and Sadeghi, 2022; Khorasani et al.,
2020; Sharifi-Zarchi et al., 2015; Chambers et al., 2007; Kalmar
et al., 2009; Chen et al., 2010; Bergsmedh et al., 2011). Here, we
focused on the behavior of each cell in the interaction with multiple
signals. Figure 2 illustrates the resulting phenotypic cellular patterns
of different combinations of two typical signal profiles of Gaussian
and sinusoidal blueprints.

The environmental signals influence the fate of each stem cell,
SCi (i = 1,2), by means of biasing the regulation of our tri-stable
switch; see Equations 3, 4. Based on the definition of α(1)j and α(2)j in
Equations 5, 6, it is evident that the pairs of (s1, s2) are relevant in
controlling the decisions of this switch. This definition is
advantageous in various aspects: first, it directs each stem cell’s
fate to the symmetric phase space of Figure 1C, where each of the
patches correspond to one of the resulting phenotypes and there is
no dominant domain between them. In addition, the representative
patches are far enough apart to lead to distinctive outcomes in the
occurring cellular pattern field. The narrow cruciform band, i.e., the
gray area in Figure 1C between these four patches, is where the fate
of each cell is determined stochastically. From Figure 1D, it is
evident that the regulatory switch plays either an active role or a
neutral one based on the amount of existing signals (s1, s2) in each
point, i.e., combinations of (s1, s2), which effectively lead to
offspring A or B from SC1, have nothing to do with SC2 and
vice versa. In consequence, there is a smooth transition from left
to right in each row of Figure 1D.

After investigating the impact of static environmental
stimulants on the internal switch, we dealt with the active
signaling between the sources that produce variant
phenotypes. We took advantage of confined Turing models for
two different signals secreted from each of stem cells (Shoji et al.,
2003). The dynamic includes linear reaction terms and additional
constraints that confine the two variables within a finite range.
The resulting patterns of this dynamic are either stationary
striped patterns or spotted patterns. The second pattern, in
turn, consists of two forms: spotted and reverse spotted
patterns. Here, the tuning parameter upon which the pattern
type is specified is the maximum concentration of the activator
s(i)u , where i ∈ 1, 2 (Shoji et al., 2003); see Figure 3. Based on this
prior dynamic, nine distinct mutual patterns are generated by the
two signals s(1)u and s(2)u .

Stochasticity has been proven to be a non-genetic diversifying
resource of variation in nature (Delbrück, 1940; McEntire et al.,
2021; Acar et al., 2008; Kepler and Elston, 2001; Wu and
Tzanakakis, 2012; Perez-Carrasco et al., 2016). It has been
shown that controlled amount of randomness ends in
phenotypic variation and, as a result, population heterogeneity
(Losick and Desplan, 2008; Greulich and Simons, 2016;

Khorasani et al., 2020). In this study, to reflect the non-
deterministic portion of the signaling system, we implemented
the Gillespie algorithm (Gillespie et al., 2007) by stepping in time
to successive molecular reaction events according to the premises
of the model of Shoji et al. (2003); see Equations 1, 2. Another
aspect of incorporating randomness in our reductionist insight is
simulating the emergence of every cell type in the look-up table
based on the calculation of its corresponding probability; see
Figure 4. Stochastic algorithms generally provide the chance to
explore multiple solutions and potentially uncover a better one
compared to a deterministic method, which may get stuck in a
local minimum (Gillespie et al., 2007). Additionally, these
algorithms can be easily tailored to different problems and
constraints, making them adaptable for solving more complex
issues. By utilizing stochastic methods, we can account for the
inherent randomness and fluctuations present in natural systems.
This strategy allows for controlled noise to be introduced into the
system. As long as the level of randomness is controllable, the
system’s behavior remains predictable, and the resultant patterns
are statistically reproducible.

In our algorithm, we evaluate the similarity between cellular
patterns exposed to different pairs of signaling patterns by
comparing them numerically to a cellular pattern constructed
through a deterministic process while being exposed to the same
pair of signaling patterns. This measure of similarity serves as an
indicator of the reproducibility of cellular patterns using the
algorithm proposed. To accomplish this, we first create two new
100 × 100 matrices, each corresponding to one of the signaling
patterns. The size of the matrices corresponds to the plane on
which the signals are distributed, with each element indicating
the quantity of a specific signal at each grid location. The
elements of these newly constructed matrices are either zero
or the maximum value of that signal based on the corresponding
elements in the original signaling matrices. If the original signal
matrix element is less than half of its maximum number, the
element in the new matrix is set to zero. If the element is greater
than or equal to half of its maximum number, it is replaced by the
maximum value of that signal. For example, when two reverse-
spot type signaling patterns are distributed in the medium, each
with a maximum value of 5, there are four possible pairs of
extreme signals: (0,0),(0,5),(5,0), and (5,5). From Figure 1, it is
evident that these pairs of signals lead to the emergence of A, C,
D, and B types of cells, respectively.

By using these extreme signaling patterns, we can determine the
fate of each stem cell in the medium and create a deterministic
cellular pattern accordingly. We now have a reference pattern to
assess the reproducibility of our algorithm and measure the
resemblance of different patterns exposed to similar pairs of
signaling patterns. Figure 6 illustrates five different realizations
for various pairs of signaling patterns. The signaling patterns are
shown above each column, and the resulting cellular population
realizations are displayed below them in each column. We can
compare each realization with its corresponding deterministic
pattern, pixel by pixel. If the cell types in a pixel are identical,
we assign a score of +1 for the resemblance of the pattern to the
deterministic reference pattern. The normalized score function,
which quantifies the resemblance, is the sum of all these +1’s
divided by the population size. Figure 7 shows the box plot of the
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score variable for the cellular patterns in Figure 6 with respect to
the different signaling pattern pairs. It is observed that for all the
pairs, the median of the scores is above 0.6. We see that the
synthesis of the signaling arrangement with the switch in the
presence of controlled noise creates rich and highly
reproducible organizations of differentiated cells. Figure 5
depicts the resulting patterns of the differentiated cells that
have been exposed to various combinations of active signaling
lay-outs of Figure 3. The procedure we dealt with in this study is
one of the various known roots to construct an organized
arrangement of cells. Mobility of cells (Gallagher et al., 2022),
modulation of the physical and geometrical environment (Valet
et al., 2022), and priming with chemical signals (Shahbazi et al.,
2019) are among other intrinsic capacities of stem cells to make
patterns. In practice, a combination of all these methods is
incorporated to form an organization (Omid-Shafiei et al.,
2023). Nevertheless, it is seen that solely following chemical
environmental cues leads to the production of a rich and wide
range of patterns.

In conclusion, this study demonstrates that the signal-
dependent tri-stable switch can serve as a useful tool to bridge
intracellular dynamics with intercellular structures. In this scenario,
although the stem cells do not directly interact with each other, their
reproduction rates are influenced by external signals in their
environment through the switch mechanism within each cell. By
studying individual cellular decisions and the influence of multiple
signals, we observe how complex cellular patterns emerge. Although
the algorithm utilized in this study simplifies certain aspects, such as
considering the dynamic environment during cell division,
apoptosis, and cell movement, the presented systematic approach
allows for the simulation of complex cellular organizations based on
fundamental biophysical processes, resulting in reproducible
outcomes. Moreover, for any given complex cellular pattern, for
which merely the prior class of signal patterns is known, the
provided method closely concludes the signaling profile that sets
off the cellular pattern. Overall, these findings highlight the potential
of using signal-dependent switches for better comprehension and
regulation of cellular behaviors in diverse scenarios.
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