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Editorial on the Research Topic

Metabolic barriers in cancer and cancer therapy
Cancer is a complex and heterogeneous disease with various entities originating from

multiple tissues/sites with different genetic backgrounds. However, all types of tumors are

characterized by a dysregulated cellular metabolism. This not only fuels tumorigenesis but also

confers growth advantages and resistance to immune cells and (immune-based) therapy.

Outstanding research efforts over the past 20–30 years have led to the emergence of three major

concepts in the field of cancer immunometabolism: 1) metabolic competition, 2) secretion of

regulatory (onco-)metabolites, and 3) induction and recruitment of tolerogenic innate and

adaptive immune cells by providing a metabolically favorable microenvironment for these cell

types. In terms of metabolic competition, tumor cells have often undergone metabolic rewiring

that allows them to consume available metabolites, such as glucose, fatty acids, and amino acids,

more efficiently and abundantly than their attacking immune cells. This gives them an

advantage in growth and proliferation while disarming the immune cells and hindering their

ability to mount an effective anti-tumor immune response (1, 2). At the same time, this

metabolic rewiring leads to the secretion of large amounts of metabolic by-products, such as

lactate, kynurenine, or reactive oxygen species. While malignant cells have evolved mechanisms

to cope with this overabundance of metabolites, many immune effector cells, including T and

NK cells and tumorigenic macrophages, are detrimentally inhibited in their function (3–5). The

altered metabolic microenvironment leads to the accumulation of tolerogenic immune cells,

such as Tregs andmyeloid-derived suppressor cells (6, 7). The latter cell types are more resistant

to the ‘toxic’ metabolites secreted and do not rely on metabolic pathways/substrates that are

primarily used and depleted by tumor cells. The metabolic status of malignant cells can create

metabolic barriers for immune cells and immune-based therapies at multiple levels. Therefore,

understanding the underlyingmechanisms is a crucial goal of current research. This will provide

more precise targets for therapeutic intervention.

The current Research Topic frames recent developments in this context and

summarizes current knowledge.
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The articles by Aizaz et al. and Jantz-Naeem et al. focus on the

interplay between the tumor microenvironment (TME) and immune

checkpoints as metabolic regulatory circuits. Macrophages,

particularly tumor-associated macrophages (TAMs), undergo

metabolic reprogramming in response to the tumor milieu,

promoting tumor growth and immune evasion. These alterations in

macrophage metabolism contribute to the immunosuppressive TME.

These pathways represent promising targets for cancer therapy. The

CD47 protein, recognized as a “don’t eat me” signal on cancer cells, is

involved in metabolic crosstalk between tumor cells and

macrophages, influencing immune evasion and tumor progression.

Targeting CD47 and other metabolism-directed strategies offers new

avenues for cancer treatment by disrupting metabolic interactions

within the TME and enhancing anti-tumor immune responses. In

addition, immune checkpoint molecules such as TIGIT, PD-1, and

CTLA-4 exert regulatory effects on immune cell metabolism within

the TME. TIGIT, for example, not only modulates T cell exhaustion

but also affects cellular metabolism, potentially altering the balance

between pro- and anti-tumor immune responses. Understanding the

metabolic regulation of immune checkpoints provides insights into

novel therapeutic strategies for cancer treatment, particularly those

targeting metabolic vulnerabilities in the TME.

In addition, the manuscripts by Mentoor et al. and Drury et al.

highlight the special role of fatty acid metabolism as a critical

determinant of cancer progression and response to therapy. Breast

cancer cells exhibit a pronounced ability to modulate lipid metabolism,

a process that is intricately linked to tumor growth and inflammation

within the TME, particularly under conditions of diet-induced obesity

(DIO). In addition, dysregulated fatty acid synthase (FASN), a key

enzyme in de novo lipogenesis, represents a promising therapeutic

target. Inhibition of FASN triggers metabolic rewiring in cancer cells,

leading to compensatory upregulation of the fatty acid transporter

CD36. This upregulation promotes tumor growth and survival,

underscoring the importance of fatty acid metabolism in breast

cancer progression, particularly in obese individuals. Obesity-induced

alterations in lipid metabolism also affect the efficacy of chemotherapy,

highlighting the importance of understanding the interplay between

fatty acid metabolism and treatment outcomes. Modulation of fatty

acid metabolism provides an avenue for the development of targeted

therapeutic strategies aimed at disrupting the metabolic dependencies

of breast cancer cells and enhancing treatment efficacy. By elucidating

the intricate mechanisms governing fatty acid metabolism in breast

cancer, novel interventions can be developed to overcome therapeutic

resistance and improve patient outcomes.

Themanuscripts by Escalona et al., Farsani and Verma, andWetzel

et al. focus on the role of specific pathways and their metabolites in the

regulation of cancer progression and persistence. On the one hand, the

Warburg effect, characterized by enhanced glycolysis even in the

presence of oxygen, underscores the metabolic adaptations of cancer

cells. Glucose-derived lactate, a hallmark of the Warburg effect, not

only fuels tumor growth but also influences immune cell function

within the TME. This glucose-lactate-mediated crosstalk between

tumor and immune cells poses a challenge to the efficacy of

immunotherapy, highlighting the importance of metabolic

intervention in improving treatment outcomes. On the other hand,

amino acid metabolism, particularly arginine, glutamine, and
Frontiers in Oncology 025
branched-chain amino acids (BCAAs), plays a pivotal role in

supporting cancer cell growth and immune evasion within the TME.

Cancer cells exploit metabolic flexibility to outcompete infiltrating

immune cells for essential nutrients, thereby promoting tumor

progression and immune suppression. Targeting amino acid

metabolism represents a promising therapeutic approach to disrupt

the metabolic symbiosis between cancer and immune cells, thereby

enhancing immune-mediated tumor control.

Finally, the manuscript by Yi et al. provides insight into the utility

of metabolomics as a diagnostic tool, specifically in colorectal cancer

(CRC). The metabolomic analysis distinguishes CRC patients from

healthy individuals and identifies potential biomarkers associated

with disease progression. Monitoring changes in serum metabolites

after surgery provides valuable insights into treatment response and

disease recurrence. Serum metabolomics offers a comprehensive

approach to CRC screening and monitoring, improving early

detection and personalized treatment strategies.

In summary, understanding the complex interplay between

tumor cells, immune cells, and the TME, as well as metabolic

alterations in cancer cells is critical for developing effective cancer

therapies and improving patient outcomes.
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Acid Profiles in Breast Tumors From
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and Anna-Mart Engelbrecht 1*
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Breast cancer cells modulate lipid and fatty acid metabolism to sustain proliferation.

The role of adipocytes in cancer treatment efficacy remains, however, to be fully

elucidated. We investigated whether diet-induced obesity (DIO) affects the efficacy of

doxorubicin treatment in a breast tumor-bearing mouse model. Female C57BL6 mice

were fed a high fat or low fat diet for the full duration of the study (12 weeks). After

8 weeks, mice were inoculated with E0771 triple-negative breast cancer cells in the

fourth mammary gland to develop breast tumor allographs. Tumor-bearing mice received

either vehicle (Hank’s balanced salt solution) or doxorubicin (chemotherapy). Plasma

inflammatory markers, tumor, and mammary adipose tissue fatty acid composition, as

well as protein expression of lipid metabolism markers were determined. The high fat

diet (HFD) attenuated the treatment efficacy of doxorubicin. Both leptin and resistin

concentrations were significantly increased in the HFD group treated with doxorubicin.

Suppressed lipogenesis (decreased stearoyl CoA-desaturase-1) and lipolysis (decreased

hormone-sensitive lipase) were observed in mammary adipose tissue of the DIO animals,

whereas increased expression was observed in the tumor tissue of doxorubicin treated

HFD mice. Obesogenic conditions induced altered tissue fatty acid (FA) compositions,

which reduced doxorubicin’s treatment efficacy. In mammary adipose tissue breast

cancer cells suppressed the storage of FAs, thereby increasing the availability of free

FAs and favored inflammation under obesogenic conditions.

Keywords: obesity, breast cancer, adipose tissue, fatty acids, treatment efficacy

INTRODUCTION

The incidence of lifestyle associated conditions including obesity is a rising epidemic (1), this
is especially alarming since breast cancer remains a major health risk for women globally (2).
Obesity is identified as a casual factor in both the development as well as the progression of breast
carcinogenesis (3, 4), and is characterized by rapid adipose tissue remodeling (hypertrophy and
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hyperplasia) (5), increased synthesis of several adipokines such as
leptin, resistin, tumor necrosis factor-alpha (TNF-α), interleukin
(IL)-1β, IL-6, macrophage chemoattractant protein-1 (MCP-
1), and immune cell infiltration, all of which lead to a state
of sustained low-grade inflammation. Mammary adipose tissue
serves as a exogenous source of energy metabolites which
favors the proliferation demand of breast cells in the tumor
microenvironment (6, 7). On the other hand, breast cancer cells
can also modulate lipid metabolism by altering both de novo
fatty acid (FA) synthesis as well as the catabolic break down
of triacylglycerol’s (TAGs) a process known as lipolysis. This
subsequently results in the release of free fatty acids (FFAs) which
become available metabolic substrates for the benefit of breast
cancer cell survival, either by storage in the form of lipid droplets,
membrane lipids or energy production via β-oxidation supplying
energy to these proliferating breast cancer cells (6, 8).

The role of FAs in cancer progression and treatment resistance
implicates various physiological functions of FAs in relation to
both dietary intake and de novo synthesized FAs. It is proposed
to be achieved by (i) alterations in cell membrane composition,
(ii) the biosynthesis of lipid-signaling molecules, and (iii) its role
in metabolic reprogramming as an energy source [reviewed in
(9, 10)]. Both SFAs and MUFAs are implicated in alterations
within cancer cell membrane composition known as membrane
lipid saturation. These FA classes are more resistant to lipid
peroxidation, which in turn protects cancerous cells against
oxidative stress induced by therapies (11, 12). The role of omega-
6 (n-6) PUFAs in breast cancer development, progression as
well as treatment resistance, includes n-6 PUFAs exhibiting
pro-inflammatory effects mediated by lipid-derived bioactive
mediators i.e., eicosanoids, prostaglandins and leukotrienes
(13, 14). These lipid-derived bioactive mediators upregulate
signaling pathways that are involved in inflammation, which

Abbreviations: Σ MUFAs, Total Monounsaturated fatty acids; Σ n-3 PUFA,
Total omega-3 polyunsaturated fatty acids; Σ n-6 PUFAs, Total omega-6
polyunsaturated fatty acids; Σ PUFAs, Total polyunsaturated fatty acids; Σ

SFAs, Total saturated fatty acids; AA (C20:4n-6), Arachidonic Acid; ACC,
Acetyl-CoA carboxylase; ADA (C22:4n-6), Adrenic Acid; ALA (C18:3n-3), α-
Linolenic Acid; ARA (C20:0), Arachidic Acid; ATGL, Adipose triglyceride lipase;
CMS, Chloroform:Methanol:Saline; DGLA (C20:3n-6), Dihomo-γ-Linolenic Acid;
DHA (C22:6n-3), Docosahexaenoic Acid; DIO, Diet-induced obesity; Dox-
H, Tumor doxorubicin-HFD; Dox-L, Tumor doxorubicin-LFD; DPA (C22:5n-
6), Docosapentaenoic Acid; EA (C22:1 n-9), Erucic Acid; ECL, Enhanced
chemiluminescence; EDA (C20:2n-6), Eicosadienoic Acid; EPA (C20:5n-3),
Eicosapentaenoic Acid; FABP4, Fatty acid binding protein 4; FAMEs, Fatty acid
methyl esters; GA (C20:1n-9), Gondoic Acid; GLC, Gas-liquid chromatography;
HBSS, Hanks Balanced Salt Solution; HFD, High-fat diet; HSL, Hormone-sensitive
lipase; IL, Interleukin; LA (C18:2n-6), Linoleic Acid; γ-LA (C18:3n-6), γ-Linolenic
Acid; LFD, Low-fat diet; MA (C14:0), Myristic Acid; MCP-1, Macrophage
chemoattractant protein-1; MGA (C17:0), Margaric Acid; n-3, Omega-3; n-6,
Omega-6; NA (C24:1n-9), Nervonic Acid; NFκB, Nuclear factor kappa B; OA
(C18:1n-9), Oleic Acid; PA (C16:0), Palmitic Acid; PAI-1, Plasminogen activator
inhibitor-1; PenStrep, Penicillin Streptomycin; PI3K, Phosphoinositide-3-kinase;
PTA (C16:1n-7), Palmitoleic Acid; PVDF, Polyvinylidene fluoride; RIPA, Radio-
immunoprecipitation assay buffer; SA (C18:0), Stearic Acid; SCD-1, Stearoyl CoA-
desaturase-1; SFAs, Saturated fatty acids; SEM, Standard error of the mean; TAG,
triacylglycerols; TBS-T, Tris Buffered Saline-Tween 20; TNF-α, Tumor necrosis
factor-alpha; TPL, Total phospholipid; VA (C18:1n-7), cis-Vaccenic Acid; VEGF,
Vascular endothelial growth factor; Vehicle-H, Tumor vehicle-HFD; Vehicle-L,
Tumor vehicle-LFD.

exacerbate angiogenesis, cell-proliferation and inflammation
(15), to contribute to an ideal microenvironment favoring
mammary carcinogenesis.

Recently, findings from cell culture and animal models
identified obesity as a main contributing factor in the underlying
pathophysiology implicated in the development of breast cancer
chemotherapeutic drug resistance (16, 17). Patients suffering
from obesity and breast cancer presented with poor clinical
outcomes when treated with first line adjuvant regimens such
as doxorubicin (18, 19). Despite doxorubicin’s high efficacy
in killing cancer cells, its’ clinical efficacy is hindered by the
development of various cellular toxicities which contributes
to the development of chemotherapeutic drug resistance (20).
Doxorubicin treatment is also associated with cellular toxicities
in adipose tissue (primary storage site for FAs) which in turn
leads to dysfunctional lipid/FA storage (21, 22). Therefore,
FA tissue composition may also be significantly altered by
chemotherapeutic agents.

A lack of evidence highlighting the role of FAs in breast
cancer treatment efficacy, as well as an incomplete understanding
of cellular mechanisms whereby obesity affects chemotherapy
outcomes, necessitates further investigation. We therefore aimed
to determine whether diet-induced obesity (DIO) affects the
efficacy of doxorubicin treatment in a breast tumor-bearing
mouse model and to explore possible mechanisms of action.

METHODS

Female C57BL6 mice were fed a low fat diet (LFD) or a
high fat diet (HFD) for 12 weeks. After developing the DIO
phenotype, syngeneic breast tumors were induced, followed by
respective treatments.

Animals and Handling
Animal handling and interventions were carried out under
the supervision of a registered small animal handling expert
at the Stellenbosch University. Ethical clearance was obtained
from Stellenbosch University animal research committee
(SU-ACUM13-00015). All protocols strictly adhered to the
standard care guidelines of laboratory animals implemented
at Stellenbosch University and according to the South African
National Standards 10386:2008 for the use of animals in research
and teaching.

Three-week-old female C57BL6 mice (n = 40) were
maintained in the animal research facility at the University of
Stellenbosch in static micro-isolation sterilized cages (n = 5 per
cage) with filtered air. The mice were provided with chow and
water ad libitum in a regular 12:12 h light-dark cycle. All animals
were acclimated for 1 week followed by the assignment to either
HFD or LFD groups. The general welfare of all animals were
monitored daily.

Diet Regimens
A HFD was used to induce obesity since reported evidence
showed that genetic models of obesity (i.e., ob/ob, db/db, and
leptin/ leptin receptor-deficient mice) demonstrated resistance in
developing mammary cancer (23). C57BL6 mice are particularly
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FIGURE 1 | Representative summary of the in vivo model and respective experimental groups.

sensitive to DIO (24). Forty mice (n = 40) were randomly
assigned into two equal groups (n= 20) and allocated one of two
respective diets for 12 weeks (Figure 1). The energy content of the
HFD (D12492, Research diet Inc., New Jersey, USA) consisted of
60% energy from fat, 20% energy from protein, and 20% energy
from carbohydrates, compared to the LFD (D12450J, Research
diet Inc., New Jersey, USA), containing 10% energy from fat,
20% energy from protein, and 70% energy from carbohydrates
(Table 1). The dietary FA composition of the respective diets
is summarized in Supplementary Table 1. Body weight was
monitored weekly over the study period and the DIO phenotype
was confirmed after 8 weeks followed by tumor induction.

Tumor Induction
Cell Culture
An aggressive triple-negative breast cancer cell line with
metastatic capabilities (E0771) that originated from a tumor
after a spontaneous mutation in a C57BL6 mouse, was used
in this in vivo model. The cells were cultured in T75 flasks
(75 cm2, SPL Life Sciences, Pocheon-si, South Korea) with
Dulbecco’s Modified Eagle’s medium (DMEM, Gibco R©,
ThermoFisher Scientific, Massachusetts, United States)
under standard incubation conditions (37◦C and 5% CO2

humidity), supplemented with 10% fetal bovine serum (FBS,
Capricorn Scientific, Germany) and 1% Penicillin Streptomycin
(PenStrep Gibco, ThermoFisher Scientific, Massachusetts,
United States). Growth media was replaced every 2 day.
Regular sub-culturing was performed once cultures reached
70–80% confluency.

Inoculation of Tumors
E0771 cells were prepared for each mouse. The mice were
anesthetized under 3% (v/v) isoflurane (Isofor, Safeline
Pharmaceuticals, Johannesburg, South Africa) in an anesthetic
chamber. Mice were inoculated subcutaneously (using a 23-
gauge needle syringe) in the fourth left mammary fat pad with
1.2 × 105 E0771 triple-negative breast cancer cells suspended
in Hanks Balanced Salt Solution (HBSS) (Sigma Chemical Co.,
St Louis, MO, USA) as illustrated in Figure 1.

Drug Administration
Once tumors became palpable (200–300mm2), LFD and HFD
mice were randomly assigned to the respective treatment groups
(Figure 1). The treatment groups included: (1) vehicle control
(isovolumetric intra-peritoneal injection of HBSS), and (2)
doxorubicin treatment (D5794, LKT R© laboratories, Minnesota,
USA). Mice were restrained and treated with three dosages
of 4 mg/kg doxorubicin (cumulative dosage of 12 mg/kg) via
intraperitoneal injection. The dosage of 12 mg/kg doxorubicin
is equivalent to 36 mg/m2 in humans which is within the
clinically relevant dosage range of doxorubicin treatment (15–
90mg/m2) (25).

The experimental groups were assigned as follows: (i) tumor
vehicle-LFD (vehicle-L), (ii) tumor vehicle-HFD (vehicle-H), (iii)
tumor doxorubicin-LFD (Dox-L), and (iv) tumor doxorubicin-
HFD (Dox-H). Humane endpoints were implemented when
tumor growth influenced the general welfare or restricted
mobility of the mice, or when the mice began to bite their
tumors and exhibit changes in posture and facial expression,
as determined by the grimace scale. The final sample size per
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TABLE 1 | Dietary composition of low fat diet and high fat diet.

Low Fat Diet (LFD) High Fat Diet (HFD)

Research diet D12450J Research diet D12492

gram% kcal% gram% kcal%

Protein 19.2 20 26.2 20

Carbohydrates 67.3 70 26.3 20

Fat 4.3 10 34.9 60

Total 100 100

Kcal/gm 3.85 5.24

INGREDIENTS gram kcal gram kcal

Casein, 30 Mesh 200 200 800 200 800

L-Cystine 3 12 3 12

Corn starch 506.2 2024.8 0 0

Maltodextrin 10 125 500 125 500

Sucrose 68.8 275.2 68.8 275.2

Cellulose BW200 50 0 50 0

Soybean oil 25 225 25 225

Lard 20 180 245 2,205

Mineral mix S10026 10 0 10 0

Dicalcium phosphate 13 0 13 0

Calcium carbonate 5.5 0 5.5 0

Potassium citrate, 1 H2O 6.5 0 6.5 0

Vitamin mix V10001 10 40 10 40

Choline bitartrate 2 0 2 0

FD&C yellow dye #5 0.04 0

FD&C blue dye #1 0.01 0 0.05 0

TOTAL 1055.1 4,057 773.9 4057.0

Cholesterol (mg)/4057 kcal – 54.4 – 216.4

Cholesterol (mg)/kg – 51.6 – 279.6

As per manufacturer product data sheet (Research diet Inc., New Jersey, USA).

experimental group were as follows: vehicle-L (n = 8), vehicle-H
(n= 9), Dox-L (n= 10), and Dox-H (n= 9).

Measurements, Blood Collection, and Tumor- and Fat

Tissue Excision
Every second day, animals were weighed and tumor location and
volume were recorded. The absolute body weight was calculated
after subtracting tumor weight. Tumor growth was measured
using a Harpenden caliper (in mm) to determine tumor volume
using the following equation:

Tumour Volume
(

mm3
)

=
1

2
(

length×width2
) (26)

Animals were euthanised 72 h after the last scheduled
doxorubicin administration. Mice were anesthetized under
3% isoflurane and sacrificed by cervical dislocation after a deep
sleep was confirmed by the absence of pedal reflex. Whole blood
was immediately collected into pediatric EDTA tubes (Lasec,
Cape Town, South Africa) from the thoracic cavity. Collected
blood samples were placed on ice and centrifuged (1,000 RCF
(g), 10min), to collect and aliquot plasma which was stored at
−80◦C for subsequent analysis. Mammary adipose tissue was

collected from the third and fourth quadrant of the mice and
tumor tissue were dissected, weighed, snap-frozen with liquid
nitrogen and stored at −80◦C or stored in formalin at room
temperature for immunohistochemistry analysis.

Blood Analysis
Plasma samples were used to quantify TNF-α, IL-6, IL-10, leptin
(PPX-04-MXCE327, Thermo Fisher Scientific, United States),
IL-1β and vascular endothelial growth factor (VEGF-A) (PPX-
02-MXFVKXT, Thermo Fisher Scientific, United States) using a
custom ProcartaPlex panel and matched mouse Luminex kits. A
Milliplex mouse adipokine magnetic bead panel MAP kit was
used to quantify MCP-1, insulin, total plasminogen activator
inhibitor-1 (PAI-1) and resistin (MADKMAG-71K, Burlington,
Massachusetts, United States). All analyses were performed
according to the manufacturers’ protocols and specifications.
Analytes were measured simultaneously using aMAGPIX system
plate reader (APX1042, Bio-Rad, California, United States) and
data (expressed in pg/ml) was processed on Bioplex Software 6.1
(Bio-Rad, California, United States).

Determination of Tissue Fatty Acid Profiles
For tumor tissue, FA composition of the total phospholipid
(TPL) and the FFA fractions were determined, whereas for
the mammary adipose tissue, the total lipid FA composition
was determined. Frozen tumor tissue and mammary adipose
tissue were allowed to thaw at room temperature. Approximately
100mg of tumor tissue and 30mg of adipose tissue were weighed
for lipid extraction using chloroform:methanol (C:M; 2:1; v:v;
Sigma-Aldrich, St. Louis, Missouri, United States) according to
a method adapted from Folch et al. (27) as previously described
by Hon et al. (28). The extraction solvent contained 0.01%
butylated hydroxytoluene (Sigma-Aldrich, St. Louis, Missouri,
United States), acting as an antioxidant.

Briefly, lipids of tumor tissue were extracted with 9mL of C:M
(2:1; v:v) by homogenisation for 1min using a Polytron R© PT-
MR 3100D homogeniser (Kinematica, Luzern, Switzerland). The
homogenate was filtered through a sintered glass funnel with
the filter pad lined with a glass microfiber filter disk (GF/A,
Whatman, England) into a round bottom flask. The Polytron R©

shaft was rinsed with another 7mL of the extracting solvent
and filtered, collecting the rinse into a round bottom flask.
The microfiber filter disk containing the homogenized tissue
was removed and placed into an extraction tube and extracted
again with 10mL C:M (2:1; v:v) by 20-min shaking and a
filtering step (repeated twice). The combined extraction phases
containing the lipids were concentrated to dryness through
rotary evaporation in a 37◦C water bath (BÜCHI Labortechnik,
Postfach, Switzerland). Lipids were transferred from the round
bottom flask to a 12mL glass tube with screw cap using 5 ×

2mL chloroform:methanol:saline (CMS; 86:14:1; v:v:v; Sigma-
Aldrich) transfer volumes. Saline saturated with CMS (1mL)
was added, mixed and centrifuged, and the top saline layer was
completely removed in order to concentrate the bottom phase to
dryness under nitrogen gas flow in a 37◦C water bath.

Neutral lipids were separated from the TPL fraction using
thin-layer chromatography (TLC) silica gel 60 plates (10× 10 cm;
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No. 1.05626.0001; Merck, Darmstadt, Germany) and eluted with
the solvent system petroleum ether (B&M Scientific, Cape Town,
South Africa):diethyl ether (Merck):acetic acid (Merck) (90:30:1;
v:v:v). The lipid bands containing the TPL and FFA fractions
were demarcated by visualization under long-wave UV light after

plates were sprayed with C:M (1:1; v:v) containing 2,5-bis-(5
′
-

tert-butylbenzoxazolyl-[2′]) thiophene (10mg/100mL; Sigma-
Aldrich). These lipid bands were scraped off the plates into
glass tubes with screw caps. The lipids were trans-esterified
through trans-methylation with 2mL methanol:sulphuric acid
(H2SO4; BDH Chemicals, Poole, England) (95:5; v:v) at 70◦C
for 2 h to yield FA methyl esters (FAMEs). After cooling, the
FAMEs were extracted with distilled water (1mL) and n-hexane
(3mL) (Sigma-Aldrich). The upper hexane layer containing the
FAMEs was collected and evaporated to dryness for subsequent
gas-liquid chromatography (GLC) analysis.

Total lipids were extracted frommammary adipose tissue with
9mL C:M (2:1; v:v) by shaking for 20min with a mechanical
shaker. Subsequently, 1.8mL saline saturated with CMS was
added, mixed and centrifuged at 60 RCF (g) for 10min at 4◦C.
The bottom phase was collected and transferred to a 12mL glass
tube with a screw cap and the lipid extract evaporated to dryness
under nitrogen gas flow using a 37◦C water bath. The dried lipids
were re-dissolved in 3mL C:M (2:1; v:v) of which a 50 µL aliquot
was transferred to a clean 12mL glass tube and the lipid aliquot
was evaporated to dryness as described before. These lipids were
trans-methylated with 2mL methanol:sulphuric acid (70◦C for
2 h) with subsequent sample FAME isolation for GLC analysis as
described above.

All FAMEs were re-dissolved in n-hexane and analyzed
(sample injection volume 1 µl) by GLC on a Finnigan Focus
Gas Chromatograph (Thermo Electron Corporation, Austin, TX,
USA) equipped with a flame-ionization detector and a 30m
capillary column of 0.32mm internal diameter (BPX70 0.25µm;
SGE International, Ringwood, Victoria, Australia). Gas flow
rates were: N2 (make up gas), 25 mL/min; synthetic air, 250
mL/min; and H2 (carrier gas), 25 mL/min, with a 20:1 split ratio.
Oven temperature programming was linear at 4.5◦C/min, initial
temperature 140◦C (hold-time 1min), final temperature 220◦C
(hold-time 5min), injector temperature 220◦C, and detector
temperature 250◦C [as previously described (29)].

All sample FAMEs were subsequently identified by analyzing
and comparing sample retention times with those a known
standard FAME mixture (27 FAMEs, NuChek Prep, Elysian,
MN, USA). Relative percentages of each individual FAME was
calculated by determining the area count of a specific FAME as a
percentage of the total area count of all FAMEs identified in the
sample. Estimated desaturase indexes were estimated by product
to precursor FA ratios which included stearoyl CoA-desaturase-
1 (SCD1)-16 calculated as the ratio of palmitoleic acid (PTA) to
palmitic acid (PA) and SCD1-18 calculated as the ratio of oleic
acid (OA) to stearic acid (SA) (30, 31).

Protein Analysis and Western Blot Analysis
Mammary adipose tissue and tumor tissue samples were
placed on ice and allowed to thaw at 4◦C. Total protein
extraction was performed where samples were suspended in
300µl of cold modified radio-immunoprecipitation (RIPA) assay

buffer containing protease and phosphatase inhibitors (2.5mM
Tris-HCL, 0.1mM phenylmethylsulfonyl fluoride, 10 mg/ml
leupeptin, 1mM EDTA, 1mM benzamidine, 50mM sodium
fluoride, 1mM dithiothreitol, 4 mg/ml soybean trypsin inhibitor,
0.1% sodium dodecyl sulfate (SDS), 0.5% sodium deoxycholate,
and 1% NP-40, pH 7.4). Samples were homogenized on ice
under sterile conditions to prevent protein cross-contamination.
Next, all samples were centrifuged (35,000 RCF (g), 60min,
4◦C), to yield distinct layers. The supernatant layer was
removed using a sterile 23-gauge needle and syringe and
transferred into sterile Eppendorf tubes, followed by another
centrifugation step (35,000 RCF (g), 30min, 4◦C). The process
of removing the supernatant was repeated and samples were
run through Amicon R© Ultra 0.5mL filters (Merck, Darmstadt,
Germany) for protein purification and concentration and
stored at −80◦C, until protein quantification using a Direct
Detect R© infrared spectrometer (DDHW00010-WW, Merck).
This was followed by preparation of protein aliquots containing
20–50 µg protein diluted with Laemmli sample buffer and
boiled for 5min (to denature proteins) before being loaded
into 4–15% polyacrylamide fast cast gels (mini-PROTEAN R©

TGXTM Gels, Bio-Rad) for separation by sodium dodecyl sulfate
polyacrylamide gel electrophoresis (SDS-PAGE). Gels were run at
100V (constant) and 400mA for approximately 60min (Power
Pac 300, BioRad). The electro-transfer of proteins from the gel
to prepared polyvinylidene fluoride (PVDF) membranes was
achieved using a semi-dry electro-transfer system (TransBlot R©

TurboTM v1.02, BioRad) for 30min at 25V and 1.0A. Transfer
efficiency was evaluated using the stain-free blot protocol
provided on a Chemi-DocTM MP (BioRad) system. Subsequently,
all membranes were washed with 0.1% Tris Buffered Saline-
Tween 20 (TBS-T) and blocked for 60min in 5% (w/v) non-
fat milk and TBS-T at room temperature to prevent non-
specific binding. The PVDF membranes were then incubated
overnight in primary antibody solutions (1:1,000, diluted in
5% w/v BSA, 1X TBS-T, refer to Supplementary Table 2) at
4◦C. The following day, membranes were washed three times
for 5min each with TBS-T, prior to incubation with an
anti-rabbit IgG horseradish peroxidase conjugated secondary
antibody (1:10,000) (Cell Signaling Technologies, Massachusetts,
United States), for 60 min at room temperature. A wash
step followed, using TBS-T (five times for 5min each), before
specific bands were visualized and detected using the enhanced
chemiluminescence (ECL) western blotting substrate detection
kit (Pierce R©, Thermo Scientific) and ImageLab 4.0 software
on a Chemi-DocTM MP (BioRad) imaging system. Protein
quantification of samples were normalized to total protein
signal in each lane present on the same membrane after
blotting (ImageLab 4.0 software, Biorad USA), as determined
by the Stain-FreeTM (ImageLab 4.0 software, Biorad USA)
properties of the blot and is expressed as a percentage of
the control.

Haematoxylin and Eosin Stained Tumor
Tissue
Sectioning, deparaffinization and rehydration of tumor
tissue samples was performed as previously described
(32). Tumor tissue samples were stained for histological
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changes using haemotoxylin and eosin (H&E) staining.
Staining was achieved by using an automated tissue
stainer (Leica Biosystems, ST4020), during which section
slides where dipped into haemotoxylin. This was followed
by various subsequent 2-min dipping steps in distilled
water, scott’s tap water, distilled water, eosin and distilled
water followed by coverslips being mounted using DPX
mounting media.

Statistical Analysis
Statistical analyses were performed using Statistica version 13.3
(TIBCO Software, California, United States). Normality was
assessed using the Shapiro-Wilk test and results were reported
as mean ± standard error of the mean (SEM). To describe
differences between two groups, t-tests were used, and to
describe differences between the three/more groups two- or
three-way ANOVA were used, followed by the Fisher’s LSD
post-hoc test. Pearson’s correlations were used on selected
parameters in each group and 2D scatter plots were drawn
up in GraphPad Prism version 7 (GraphPad Software, San
Diego, United States). Statistical significance was accepted
at p < 0.05.

RESULTS

A High Fat Diet Increased Body Weight and
Mammary Adipose Tissue Weight
Body Weight and Food Consumption
During the DIO period, mice that were fed the HFD showed
significantly higher body weights at week 6 (p < 0.01), week 7
(p< 0.001) and week 8 (p< 0.0001), compared to the LFD group
(Figure 2A), therefore DIO was established after 8 weeks. It was
also observed that mice fed a HFD showed significantly lower
food consumption per cage at week 2 (p < 0.001), 3 (p < 0.01)
and 4 (p < 0.05) compared to the LFD group (Figure 2B).

Following tumor induction, mice in the vehicle-H group
showed significantly higher body weight compared to vehicle-L
mice during week 8–12 (all p< 0.001) (Figure 3A). A similar and
statistically significant observation was made for body weight of
mice in the Dox-H group, when compared to Dox-Lmice at week
8–12 (all p < 0.01) (Figure 3A). The Dox-H mice also showed
significantly lower food consumption compared to the vehicle-H
mice at week 8 (p < 0.0001), 9 (p < 0.0001), 10 (p < 0.001), 11
(p < 0.001), and 12 (p < 0.0001) (Figure 3B). Lastly, the Dox-
H mice revealed significantly lower food consumption than the

FIGURE 2 | Difference in (A) body weight and (B) food consumption in mice (n = 5 per cage) on the LFD and HFD for 8 weeks. Results are presented as mean ±

SEM (n = 20 per group). T-tests were used for comparison between the LFD and the HFD mice for all weeks and p < 0.05 was considered as statistically significant.

*p < 0.05, **p < 0.01, ***p < 0.001 and ****p < 0.0001.

FIGURE 3 | (A) Mean body weight, and (B) food consumption of mice (n = 5 per cage) receiving vehicle-or doxorubicin treatment while on the LFD control compared

to the HFD. Results are presented as mean ± SEM (n = 10 per group). Three-way ANOVA with Fisher’s LSD post hoc correction was applied and p < 0.05 was

considered as statistically significant. ***p < 0.001 and ****p < 0.0001. #p < 0.05, ##p < 0.01, ####p < 0.0001, $$$p < 0.001 and $$$$p < 0.0001. *Vehicle-L

vs. Vehicle-H, #Dox-L vs. Dox-H, and $Vehicle-H vs. Dox-H.
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Dox-L mice at week 8 (p < 0.05), 9 (p < 0.01), 10 (p < 0.05), 11
(p < 0.01), and 12 (p < 0.0001) (Figure 3B).

Mammary Adipose- and Tumor Tissue
Weight
The vehicle-H mice showed significantly higher mammary
adipose tissue weight (p < 0.01) and tumor weight (p < 0.05)
in comparison to the vehicle-L mice (Figures 4A,B). Mice in
the Dox-H group presented with significantly higher mammary
adipose tissue weight (p < 0.05) as well as tumor weight (p <

0.01) compared to Dox-L mice (Figures 4A,B).

Diet-Induced Obesity Decreased
Doxorubicin Treatment Efficacy in Breast
Tumors
Mice in the vehicle-H group showed significantly higher tumor
volume compared to corresponding vehicle-L mice at day 18 (p
< 0.05), 19 (p< 0.05), 20 (p< 0.01), 21 (p< 0.001), 22 (p< 0.01),

23 (p < 0.01), 24 (p < 0.05), 25 (p < 0.01), 26 (p < 0.0001), and
27 (p < 0.0001), as illustrated in Figure 5.

Similarly, mice in the Dox-H group showed significantly
higher tumor volume compared to corresponding mice from the
Dox-L group, at day 21 (p < 0.05), 23 (p < 0.05), 24 (p < 0.001),
25 (p < 0.01), 26 (p < 0.0001), and 27 (p < 0.0001) (Figure 5).
Dox-L mice also had significantly lower tumor volumes at day 27
compared to vehicle-L mice (p < 0.01), and Dox-H mice yielded
significantly lower tumor volume at day 26 (p < 0.05) and 27 (p
< 0.01) compared to the vehicle-H mice (Figure 5).

Diet-Induced Obesity Induced Systemic
Inflammation and Local Inflammatory
Signaling in Mammary Adipose Tissue of
Obese Mice Treated With Doxorubicin
A trend toward significance was observed for IL-6 in Dox-H
mice compared to vehicle-H mice (p= 0.067, Figure 6A). Leptin

FIGURE 4 | Differences in (A) mammary adipose tissue weight, and (B) tumor weight of vehicle- and doxorubicin-treated groups on LFD control compared to HFD.

Results are presented as mean ± SEM (n = 9–10 per group). Two-way ANOVA with Fisher’s LSD post hoc correction were applied. *p < 0.05, **p < 0.01.

FIGURE 5 | Differences in tumor volume for the vehicle control and doxorubicin treatment groups on LFD and HFD. Results are presented as mean ± SEM (n = 10

per group). Three-way ANOVA with Fisher’s LSD post hoc correction was applied and p < 0.05 was considered as statistically significant. *p < 0.05, **p < 0.01,

***p < 0.001, and ****p < 0.0001. #p < 0.05, ##p < 0.01, ###p < 0.001, and ####p < 0.0001, $p < 0.05. *Vehicle-L vs. Vehicle-H, #Dox-L vs. Dox-H,
@Vehicle-L vs. Dox-L, $Vehicle-H vs. Dox-H. @@p < 0.01, $$p < 0.01.
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FIGURE 6 | Mean inflammatory marker concentrations for vehicle control and doxorubicin treatment groups on LFD and HFD. (A), IL-6 (B) Leptin, (C) Resistin, (D)

VEGF-A, (E) TNF-α, (F) MCP-1, (G) PAI-1, and (H) Insulin. Results are presented as mean ± SEM (n = 6–9). Two-way ANOVA with Fisher’s LSD post hoc correction

was employed and p < 0.05 was considered as statistically significant. *p < 0.05.

levels were significantly higher in vehicle-H compared to vehicle-
L mice (p < 0.05, Figure 6B) and Dox-H compared to Dox-L
mice (p < 0.05, Figure 6B), respectively. Mice in the Dox-H
group showed significantly higher resistin (p < 0.05, Figure 6C)
and decreased VEGF-A levels (p< 0.05, Figure 6D) compared to
Dox-L mice. No significant differences were reported for TNF-α
(Figure 6E), MCP-1 (Figure 6F), PAI-1 (Figure 6G), and insulin
(Figure 6H) between any of the respective experimental groups.
Interleukin-10 and IL-1β were undetectable within all samples of
all the experimental groups.

Pearson’s correlation analysis revealed some positive
correlations between leptin and mammary adipose tissue
weight (Supplementary Figure 1). Significant strong positive
correlations were only observed for the doxorubicin treatment
groups (Dox-L, r = 0.78, p < 0.01, and Dox-H, r = 0.92, p =

0.001; Supplementary Figures 1C,D).
Lastly, Dox-H mice showed significantly higher protein

expression of nuclear factor kappa B (NFκB-p65) compared
to both Vehicle-H (p < 0.01) and Dox-L (p < 0.05) mice,
respectively (Figure 7A).
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FIGURE 7 | Western blot analysis of lipid metabolism marker protein expression in mammary adipose tissue of vehicle control and doxorubicin treatment groups on

LFD and HFD; (A) NFκB-p65, (B) FAS, (C) SCD-1, (D) HSL, (E) ATGL, and (F) FABP4. Results are presented as mean ± SEM (n = 6–8). Two-way ANOVA with

Fisher’s LSD post hoc correction was employed and p < 0.05 was considered as statistically significant. *p < 0.05, **p < 0.01.

Diet-Induced Obesity and Doxorubicin
Treatment Suppressed De novo

Lipogenesis and Lipolysis in Mammary
Adipose Tissue
Fatty acid synthase (FAS) and sterol CoA-desaturase-1 (SCD-
1) were found to be significantly decreased in the vehicle-H
mice, compared to vehicle-L mice (FAS, p < 0.01 and SCD-1,
p < 0.01 Figures 7B,C) and Dox-H mice compared to Dox-
L mice (FAS, p < 0.01, and SCD-1, p < 0.01 Figures 7B,C),
respectively. Moreover, hormone-sensitive lipase (HSL) was
significantly decreased in Dox-H compared to both vehicle-H
(p < 0.05, Figure 7D) and Dox-L mice (p < 0.05, Figure 7D).
No significant differences were observed for adipose triglyceride
lipase (ATGL) (Figure 7E) and fatty acid binding protein 4
(FABP4) (Figure 7F), between any of the respective experimental
groups (p > 0.05).

Diet-Induced Obesity Increased De novo

Lipogenesis and Lipolysis in Breast
Tumors Treated With Doxorubicin
Dox-H mice showed a significant increase in the protein
expression of SCD-1 and ATGL compared to vehicle-H

(SCD-1, p < 0.05 and ATGL, p < 0.01) and Dox-L
mice (SCD-1, p < 0.05 and ATGL, p < 0.01), in tumor
tissue (Figures 8A,B). Pearson’s correlation analysis showed
a significantly strong negative correlation between mammary
adipose tissue HSL protein expression and plasma resistin
concentration in the Dox-H group (r = −0.73, p < 0.05;
Supplementary Figure 2D).

Mammary Adipose- and Tumor Tissue
Fatty Acid Composition
Fatty acids for both mammary adipose (total lipid) and tumor
tissue (TPL) are summarized in Supplementary Tables 3, 4,
and a select few FAs are presented in graphs. The predominant
FA classes in mammary adipose tissue were monounsaturated
FAs (MUFAs) ranging from 43 to 51%, followed by SFAs
(27–30%) and polyunsaturated FAs (PUFAs; 21–27%) in
the treatment groups (Supplementary Figure 3). In the
tumor tissue TPL fraction the predominant FA classes
were SFAs ranging from 40 to 43%, followed by PUFAs
(32–38%) and MUFAs (19–28%) in all the experimental
groups (Supplementary Figure 4).
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FIGURE 8 | Western blot analysis of lipid metabolism protein expression in tumor tissue of vehicle control and doxorubicin treatment groups on LFD and HFD; (A)

SCD-1 (n = 5) and (B) ATGL (n = 4). Results are presented as mean ± SEM. Two-way ANOVA with Fisher’s LSD post hoc correction was applied and p < 0.05 was

considered as statistically significant. *p < 0.05, **p < 0.01.

Diet-Induced Obesity and Doxorubicin
Differentially Altered Saturated Fatty Acids
in the Tumor Microenvironment
Total SFAs (Σ SFAs) present in the tumor phospholipid fraction
was significantly higher in vehicle-H compared to vehicle-L
mice (p < 0.0001) and higher in Dox-H compared to Dox-
L mice (p < 0.0001) (Figure 9A). In mammary adipose tissue,
myristic acid (MA, C14:0) was significantly lower in the vehicle-
H mice compared to vehicle-L (p < 0.0001) and lower in
vehicle-L compared to Dox-L mice (p < 0.001), respectively
(Figure 9B).Myristic acid was also significantly lower in theDox-
H mice compared to Dox-L mice in tumor tissue (p < 0.05;
Figure 9B). Stearic acid (SA, C18:0) was significantly higher in
vehicle-H mice compared to vehicle-L (p < 0.0001) in mammary
adipose tissue. In addition, SA was also found to be significantly
higher in the Dox-H mice compared to Dox-L mice (p <

0.0001; Figure 9C). The tumor tissue SA percentage was also
higher in vehicle-H compared to vehicle-L mice (p < 0.0001)
and higher in Dox-H compared to Dox-L mice (p < 0.0001),
respectively (Figure 9C).

Diet-Induced Obesity and Doxorubicin
Suppressed Monounsaturated Fatty Acids
in the Tumor and in Surrounding Mammary
Fat
A similar and significant trend was observed for various MUFAs
in both mammary adipose tissue and tumor phospholipid

FAs. The total MUFAs (Σ MUFAs) and palmitoleic acid
(PTA, C16:1n-7) were significantly lower in vehicle-H
compared to vehicle-L mice and significantly lower in
Dox-H compared to Dox-L mice, respectively (all p <

0.0001, Figures 10A,B). In tumor tissue, oleic acid (OA,
C18:1n-9) was significantly lower in vehicle-H vs. vehicle-
L and Dox-H vs. Dox-L mice, respectively (p < 0.0001,
Figure 10C).

Diet-Induced Obesity and Doxorubicin
Selectively Increased Polyunsaturated
Fatty Acids in the Tumor Microenvironment
The total n-6 PUFAs (Σ n-6 PUFAs), linoleic acid (LA, C18:2n-
6) and eicosadienoic acid (EDA, C20:2n-6), were significantly
higher in the mammary adipose tissue of vehicle-H compared to
vehicle-L mice (Σ PUFAs, p < 0.0001, LA, p < 0.0001, EDA, p
< 0.0001), and higher in Dox-H than Dox-L mice, respectively
(Σ n-6 PUFAs, p < 0.0001, LA, p < 0.0001, EDA, p < 0.0001;
Figure 11). Similar results were observed in the tumor tissue total
phospholipid FA fraction i.e., higherΣ n-6 PUFAs, LA, EDA and
adrenic acid (ADA, C22:4n-6) levels in vehicle-H compared to
vehicle-L mice (Σ n-6 PUFAs, p < 0.0001, LA, p < 0.0001, EDA,
p < 0.0001, and ADA, p < 0.0001) as well as higher percentages
of these FAs in Dox-H compared to Dox-L mice (Figure 11).

Haematoxylin and Eosin Stained Tumors
Necrotic regions were detected in the tumor sections from
the vehicle-L mice. Necrosis was identified by cells with pale
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FIGURE 9 | Saturated fatty acid composition; (A) Total SFA, (B) Myristic Acid, and (C) Stearic Acid of mammary adipose- and tumor tissue of mice fed a LFD or HFD

with either vehicle control or doxorubicin treatment. Results are presented as mean ± SEM (n = 5). Two-way ANOVA with Fisher’s LSD post hoc correction was

applied and p < 0.05 was considered as statistically significant. *p < 0.05, **p < 0.01, ***p < 0.001 and ****p < 0.0001.

pink cytoplasm and areas of karyorrhectic debris (Figure 12A).
Necrosis was also detected in the tumors from the HFD vehicle
treated mice. Viable tumor cells demonstrated hyperchromatic
nuclei with coarse chromatin (Figure 12B). Tumors from both
the LFD and HFD vehicle mice demonstrated hyper- and
hypocellular regions and central areas of necrosis. Tumor
sections from the Dox-L mice resembled those of the vehicle-L
treated mice. In addition, multinucleated tumor cells were also
noted (Figure 12C). Sections from Dox-H mice had a similar
appearance (Figure 12D).

DISCUSSION

Diet-Induced Obesity Significantly
Decreased Doxorubicin Treatment Efficacy
in Breast Tumors
Similar to previous findings (33–35) we successfully establish
weight gain in our animal model. Body weight of animals
in the HFD group was significantly higher than those in the
LFD group, before (Figure 2A) and after tumor induction
irrespective of treatment (Figure 3A), which was corroborated
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FIGURE 10 | Monounsaturated fatty acid composition; (A) Total MUFAs, (B) Palmitoleic Acid and (C) Oleic acid of mammary adipose- and tumor tissue of mice fed a

LFD or HFD diet with either vehicle control or doxorubicin treatment. Results are presented as mean ± SEM (n = 5). Two-way ANOVA with Fisher’s LSD post hoc

correction was applied and p < 0.05 was considered as statistically significant. ****p < 0.0001.

by mammary adipose tissue weight. As expected, the Dox-
H mice had significantly lower food consumption compared
to vehicle-H mice (Figure 3B), which can be as a result of a
well-known side-effect of doxorubicin treatment (36), however
while the loss of appetite was visible, this had no effect on
body weight. Furthermore, we reported a significantly higher

volume (Figure 5) and weight (Figure 4B) of tumors in the
vehicle-H mice and in the Dox-H mice. This is in agreement
with previous studies reporting that DIO promoted tumor
growth. For example, Lautenbach et al. (37), observed that
female obese Sprague Dawley rats (HFD, 60% energy from fat
for 8 weeks) were more susceptible to tumor induction by
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FIGURE 11 | Polyunsaturated fatty acid composition; (A) Total n-6 PUFAs, (B) Linoleic Acid, (C) Eicosadienoic Acid, and (D) Adrenic Acid of mammary

adipose-and-tumor tissue of mice fed a LFD or HFD with either vehicle control or doxorubicin treatment. Results are presented as mean ± SEM (n = 5). Two-way

ANOVA with Fisher’s LSD post hoc correction was applied and p < 0.05 was considered as statistically significant. *p < 0.05, **p < 0.01, ***p < 0.001 and

****p < 0.0001.

dimethylbenzathracene and also showed increased tumor growth
compared to controls. This was corroborated by Khalid et al.
(38), who found that a HFD (45% energy from fat) significantly
increased body weight and fat mass compared to mice on a
LFD (10% energy from fat) in a MMTV-HER2/Neu transgenic
breast cancer model, and that obesity promoted tumor growth,
reflected by an increase in tumor size. Additionally, Cowen et al.
(39) reported a higher body weight in female MMTV-PyMT
mice on a HFD (35.7% energy from fat) compared to mice on
a LFD (10% energy from fat), even after adjusting for tumor
weight and tumor volume. Others reported that DIO promotes
tumor growth, progression, and metastasis in animal models
(40, 41), specifically in breast cancer (16, 17, 33). In addition,
poor treatment outcomes are also reported in overweight and
obese breast cancer patients evident by larger tumor sizes and
poor clinical outcomes (7, 18, 42, 43) especially those treated with
doxorubicin (42, 44). It was also reported that DIO decreased
the efficacy of breast cancer treatment protocols in pre-clinical
animal models (33, 45).

Inflammatory Markers: Diet-Induced
Obesity Induces Systemic and Mammary
Fat Inflammation
Leptin was significantly increased in both the vehicle-H
and Dox-H groups compared to the respective control

LFD groups (Figure 6C). Leptin concentrations also
correlated positively with mammary adipose tissue weight
(Supplementary Figure 1). These results indirectly implicate
mammary adipose tissue, specifically adipocytes in the tumor
microenvironment as a source of leptin secretion in obese
mice, which also showed greater mammary adipose weight
(Figure 4A). Since E0771 breast cancer cells have been
shown not to produce leptin, even when co-cultured with
adipocytes, it therefore does not significantly contribute
to increased leptin levels (34). The increased mammary
adipose tissue weight as a result of the HFD could possibly
be one of the primary sources of leptin in our study.
We also reported that the resistin concentrations were
significantly increased in Dox-H compared to Dox-L mice
(Figure 6D).

Obesity is well-known to increase various pro-inflammatory
adipokine concentrations in serum and plasma as well as
adipose tissue (34, 46), whereas mRNA expression levels showed
that adipocytes co-cultivated with breast cancer cells also had
significantly higher IL-6, IL-1β, and TNF-α levels (7). It has
previously been shown that these elevated circulating cytokines
(i.e., IL-6 and IL-8) exerted effects at distant sites (47, 48),
this favors the progression of breast cancer by upregulating the
secretion of pro-inflammatory adipokines as well as exacerbates
immune cell infiltration, which in turn promoted cancer
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FIGURE 12 | Representative images of H&E stained tumor sections of the experimental treatment groups (A) vehicle-LFD, (B) vehicle-HFD, (C) Dox-L, (D) Dox-H,

Magnification = 4 and 20 x. Scale = 500µm.

progression through cellular proliferation, angiogenesis and the
inhibition of apoptosis (38, 39, 49). Evidence also supports the
role of obesity-induced inflammation (IL-6, TNF-α, and leptin)
in Tamoxifen R© and anti-VEGF acquired breast cancer drug
resistance (33, 50).

Leptin and resistin are well-known adipokines linked to
breast cancer (51). Both are secreted primarily by adipose

tissue, increase with higher degrees of adiposity, and has
been implicated for their role in obesity, inflammation, and
breast tumorigenesis (51–53). Breast cancer patients are
characterized by high serum leptin concentrations as well
as increased leptin receptor expression especially in higher
pathological grade tumor tissues and patients who develop
resistance to anti-cancer treatments (54, 55). Both leptin and
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resistin exacerbates an inflammatory microenvironment by
favoring the secretion of other pro-inflammatory adipokines.
Additionally, leptin favors breast cancer progression by
inducing cellular proliferation by binding to its receptor
followed by downstream signaling through NFκB, STAT3,
ERK1/ERK2, and phosphoinositide-3-kinase (PI3K) pathways
(56, 57). Both elevated leptin and resistin concentrations
was associated with the promotion of cancer stem cell
survival and the promotion of invasion and migration
via epithelial to mesenchymal transition in breast cancer
cells (55, 56, 58), which contributes to the development of
treatment resistance.

High concentrations of leptin and resistin favor cancer
cell proliferation and have recently been reported to
be casual factors in acquired breast cancer treatment
resistance (59). A well-known mechanism of developing
breast cancer treatment resistance includes the evasion
of apoptotic pathways (60, 61). Adipocytes attenuated
Doxorubicin-induced apoptosis in cancer cells by increasing
the protein expression of anti-apoptotic marker blc-2 as
well as increasing the synthesis of resistin (59, 61). Resistin
has also been identified as a causal factor for acquiring
resistance to doxorubicin treatment in both MCF-7 and
MDA-MB-231 breast cancer cells through the induction of
autophagy (59).

Furthermore, we also determined the protein expression
levels of NFκB, an important transcription factor regulating
inflammation, in mammary adipose tissue to confirm local
inflammation, and observed significantly higher levels of NFκB-
p65 protein expression in Dox-H compared to both the Vehicle-
H and Dox-L mice (Figure 7A). Mammary adipose tissue in
the tumor microenvironment displays persistent inflammation
and harbors crown like structures, which are well-known
inflammatory foci (62). We therefore propose that mammary
adipose tissue displays local inflammation (as a result of DIO)
similar to what is observed in visceral adipose tissue of obese
individuals (52, 63) and as a result may play a significant
role in obesity-induced breast cancer treatment resistance. It
is speculated that treatment resistance may be the result of
inflammation found in the mammary adipose tissue as a result
of the HFD and doxorubicin treatment. This is confirmed by
the fact that doxorubicin treatment induces inflammation in
metabolic tissues (64).

We, therefore conclude that inflammation as a result
of adipokine dysfunction was observed in obese vehicle-
treated mice and to a greater extent in doxorubicin treated
mice. We propose that obesity drives both systemic and
local inflammation in mammary adipose tissue and thereby
induce downstream signaling pathways regulating cell growth,
inhibition of apoptosis, and invasion, to ultimately contribute
to the development of breast cancer treatment resistance.
Therefore, it is plausible that DIO plays a key role as a
causal factor in the underlying pathophysiology linked to
the decreased efficacy of Doxorubicin treatment, involving
systemic and local mammary fat inflammation as underlying
molecular mechanisms.

Diet-Induced Obesity Distinctly Alters Lipid
Metabolism in the Tumor
Microenvironment Leading to Changes in
Fatty Acid Composition in Mammary
Adipose- and Tumor Tissue
We found that tumor tissue Σ SFA was increased in both
vehicle-H and Dox-H (HFD) mice compared to LFD mice
(Figure 9A). Stearic acid (SA) was also found to be increased
in mammary adipose tissue and tumor tissue of Dox-H mice
compared to Dox-Lmice (Figure 9C). Furthermore, we observed
decreased percentages of various MUFAs (PTA, OA, and VA)
in both mammary adipose and tumor tissue of mice on the
HFD, and even more profound decreases in doxorubicin-treated
mice (Figure 10).

Clinical and experimental animal model evidence on tumor
and adjacent adipose tissue induced FA composition alterations
within the tumor microenvironment are lacking specifically
under obesogenic conditions. Our results are in agreement with
Maillard et al. (65), who showed that the most abundant FAs
present in breast cancer tumors were OA, PA, SA, as well as
LA, compared to controls. de Bree et al. (66), reported that
breast cancer cases showed significantly higherΣ MUFA content
in tumor tissue as well as lower Σ PUFAs and n-6 PUFAs
content in breast adipose tissue, when compared to benign
cases. Mohammadzadeh et al. (67), confirmed increased OA,
arachidonic acid (AA) and MUFA:SFA ratio in breast tumors,
compared to adjacent tissue.

Due to the abundance and close proximity of mammary
adipose tissue (source of FAs) to breast cancer tumors, breast
tumors rely on lipid metabolism to favor survival by increasing
the expression of various proteins regulating lipid metabolism
(68, 69). This is evident by an upregulation of various enzymes
catalyzing de novo FA synthesis in breast cancer cells i.e., Acetyl-
CoA carboxylase (ACC), FAS and SCD-1 (13, 70, 71). Supporting
evidence includes increased exogenous lipid utilization, where
breast cancer cells induce adipocytes to release FFA via activation
of lipolysis (increased expression of ATGL and HSL) and
inhibition of adipogenesis (through decreased expression of
peroxisome proliferator-activated receptor-γ) (6, 8). Adipocyte-
derived FFAs favor the proliferative nature of breast tumor cells
in the tumor microenvironment (8), by serving as available
metabolic substrates for energy production via β-oxidation or
storage in the form of lipid droplets for later utilization. In
contrast, microscopically, regions with varying cellularity were
observed in tumor sections of both vehicle treated groups
irrespective of diet (Figures 12A,B). Hyper-cellular regions also
showed darker staining on low-power magnification, indicative
of increased cell proliferation. Sections of the Dox-Lmice showed
mostly hyper-cellular regions (Figure 12C), whereas the tumor
sections of the Dox-H mice were less cellular (Figure 12D). This
may indicate a decrease in cellular proliferation in response to
Doxorubicin treatment among the HFD fed mice. Therefore,
it may also be plausible that adipocyte-derived FFAs can
induce survival via other mechanisms of action other that
proliferation. A recent report showed that lipid accumulation
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(adipocyte derived FFA) leads to uncoupled FA oxidation, which
favored invasion due to epithelial-mesenchymal-transition, but
not proliferation (72).

Additionally, adipocyte-derived FFAs can also be
incorporated into phospholipids and esterified with cholesterol
to produce cholesteryl esters in cell membranes (73, 74) to
induce lipid-saturated membranes. This is further supported by
the increased amount and size of lipid droplets found in breast
cancer tumors, specifically more aggressive phenotypes (6, 73).
Therefore, it may also be plausible that the increased tumor
volume in the HFD fed groups maybe be as a result of membrane
lipid saturation and lipid droplet deposition within tumor tissue.
In fact, tumors enriched with lipid droplets (TAGs and sterol
esters) were found to be more resistant toward chemotherapeutic
agents (75).

Fatty acids are essential components of cell membrane
organization (phosphoglycerides) and fluidity (degree of carbon
chain unsaturation), and it is known that the type of
FA (i.e., increased saturated FAs characteristic of obesity)
derived from the diet, affects phospholipid FA composition
(densely-packed membranes) and physical-chemical properties
(decreased transmembrane permeability) in cancer cells. This
metabolic behavior protects breast cancer cells from oxidative
damage induced by chemotherapeutic drugs by decreasing
lipid peroxidation, ultimately leading to acquired treatment
resistance (11, 76).

The decreased SFA and MUFA profiles observed in mammary
adipose tissue could possibly be as a result of alterations in
the expression of enzymes regulating lipogenesis, since PA can
be elongated into SA, as well as desaturated (catalyzed by
SCD-1) to produce PTA (77). We found a decrease in FAS
(Figure 7B) and SCD-1 protein expression (Figure 7C) in HFD
mice (both vehicle- and doxorubicin-treated) within mammary
adipose tissue, which translate to a decrease in lipogenic activity
in mammary adipose tissue of the HFD (obese) animals.
This was further supported by decreased estimated activity
of SCD1-16 and SCD1-18 (desaturation indexes) observed in
HFD compared to LFD animals in mammary adipose tissue
FA composition, specifically in the doxorubicin-treated mice
(Supplementary Table 3). Our findings can be explained by the
high dietary carbohydrate content of the LFD i.e., 70% energy
from carbohydrates, which might partially explain why SCD-1
and FAS expression was higher in the LFD mice, irrespective of
treatments, as dietary carbohydrates are substrates for de novo
FA synthesis. Our results are in agreement with Liu et al. (78),
who showed that rats fed a HFD (60% energy from fat) compared
to a control diet (10% energy from fat), showed decreased SCD-
1 estimated activity derived from FA composition in adipose
tissue TAG and serum FFA fractions. Additionally, it may also
be possible that a HFD suppresses SCD-1 expression to prevent
adipose tissue storage of FAs in order to promote β-oxidation.
This could have implications for tumor-cell survival since an
increase in β-oxidation is linked to increased energy production
which breast cancer cells utilize for survival, and/or to evade
the toxic effects of cancer treatments. This provides a plausible
explanation for the HFD-induced decreased lipogenic/lipolytic
activity in mammary adipose tissue to increase the FFA “pool”

by preventing fat storage (TAGs), which is also exacerbated
by doxorubicin treatment—all of which may contribute to the
attenuation of breast cancer treatment efficacy. We propose that
the excess lipid “availability” in mammary adipose tissue of obese
patients could explain the resistance to treatment protocols found
in breast cancer patients, especially since dysfunctional adipose
tissue (obesity) is implicated in breast cancer progression (79)
and because “obese” adipocytes provide higher concentrations of
FFAs to breast cancer cells to sustain survival and migration (8).

However, the increased SCD-1 expression observed in Dox-
H compared to Dox-L mice in tumor tissue (Figure 8A) does
not account for the decreased MUFAs found in the tumor
tissue of Dox-H mice (Figure 10). Firstly, the decreased MUFA
profile may be as a result of increased lipolysis of lipid
droplets within the tumor itself, as evident by the increased
expression of ATGL in the tumor tissue of the HFD mice
(Figure 8B). Additionally, it could also be the result of breast
tumor cells utilizing these MUFAs to decrease treatment efficacy,
by increasing the release of MUFAs from the cell membrane.
This is supported, by the decreased MUFAs observed within
the tumor tissue FFA fraction, including PTA, VA, gondoic
acid (GA), and nervonic acid (NA), in the Dox-H compared
to Dox-L groups (Supplementary Table 5). Lastly, the decreased
MUFAs found in tumor tissue TPL and FFA fractions can also
be explained by the preferential release and low re-uptake of
MUFAs in specific tissues, as well as the selective preference of
SFAs compared to MUFAs, or the selective decrease of MUFAs-
containing phosphatidylethanolamines and phosphatidylcholine
lipids present in tumors under obesogenic conditions. Taken
together, the HFD (obesity) induced both de novo FA synthesis
and lipolysis in the tumor, which was exacerbated by the
doxorubicin treatment itself and might therefore confer to
the attenuation of breast cancer treatment efficacy under
obesogenic conditions.

Furthermore, a dysregulation of cytokines (i.e., increased IL-
6, TNF-α, and IL-1β) and adipokines, such as increased leptin
and decreased adiponectin (80–83) has been shown to induces
transcriptional changes. For example leptin has been shown to
inhibit lipogenesis by altering the expression of transcription
factors involved in lipid metabolism (7, 45). The outcome is
altered adipocyte endocrine functionality which can favor tumor
cells to produce more adipokines (83).

We observed increased leptin and resistin levels in Dox-H
compared to Dox-L mice (Figures 6C,D). Previously, elevated
TNF-α levels have been shown to inhibit adipocyte lipolysis
(84) and high leptin levels have been shown to decrease
adipose tissue SCD-1 expression (85). We believe that obesity-
induced inflammation (increased resistin levels) may lead to
lipolysis inhibition (decreased HSL in Dox-H vs. Dox-L mice) in
mammary adipose tissue (Figure 7D). In agreement, we found
a significant negative correlation between resistin concentration
and HSL protein expression in mammary adipose tissue in
the Dox-H mice (Supplementary Figure 2), which is supported
by previous studies showing that high SFA levels induce the
secretion of pro-inflammatory mediators via the NFκB signaling
pathway, via the TLR-4 on macrophages (86, 87), which might in
turn inhibit lipolysis (decreased HSL). This is also in agreement
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with our results, since we found higher levels of NFκB protein
expression in mammary adipose tissue of Dox-H compared Dox-
L mice (Figure 7); all of which further promotes inflammation
in the mammary adipose tissue environment, favoring breast
cancer cell survival and thereby decreasing treatment efficacy in
a paracrine manner.

Furthermore, both mammary adipose tissue and tumor tissue
showed significant increases in various n-6 PUFAs (LA, EDA,
and ADA) in vehicle-H and Dox-H mice compared to LFD mice
(Figure 11). Linoleic acid and ALA are essential FAs derived
from the diet (88). These FAs are desaturated (FA desaturases)
and elongated (Elovl2 and Elovl5) to form their respective long-
chain polyunsaturated products such as AA and eicosapentaenoic
acid (EPA) (88). Both the low-fat and high-fat experimental diets
in our study contained soybean oil, which is rich in both LA
and ALA. Therefore, the increase in PUFAs found in both the
mammary adipose tissue and the tumor tissue of the HFD mice
may be reflective of the higher total fat content (and therefore
PUFA content) of the HFD (60% energy from fat).

The proportions of FAs within the two respective diets differed
significantly. Linoleic acid and AA accounted for the elevation of
n-6 PUFAs in both mammary and tumor tissue of HFD-fed mice,
suggesting an increased inflammatory profile, specifically in the
obese doxorubicin-treated mice. The pro-inflammatory effects
of n-6-PUFA is as a result of lipid-derived bioactive eicosanoid
mediators, such as prostaglandins and leukotrienes (14, 89).
These bioactive lipids are implicated in breast cancer progression

by favoring angiogenesis, cellular proliferation and survival, cell
migration, metastasis, as well as exacerbating inflammation (15,
90), in the breast tumor microenvironment possibly promoting
acquired cancer resistance to anti-cancer treatment agents.

More importantly, doxorubicin treatment causes adipose
tissue and/or adipocyte dysfunction, by altering lipogenesis
(decreased FAS) and lipolysis (increased HSL) (20–22, 64,
91), which participate toward the disruption of adipose tissue
homeostasis. The consequence here is an increase in FFA
release that disrupts lipid storage (22). Doxorubicin-induced
FFA release may further exacerbate the bioavailability of
FFA, which cancer cells can utilize favorably for its survival
and proliferation demands, and thereby indirectly promote
breast cancer treatment resistance. Recently, Ebadi et al.
(92), showed that chemotherapy treatment (5-fluorouracil and
Irinotecan) in a colorectal cancer model diminished peri-
uterine adipose tissues’ function to store lipids by significantly
downregulating the expression of ACC, FAS, and HSL, as
well as markers of β-oxidation (i.e., CPT-2), compared to
treatment-naïve rats. Additionally, they also showed that
SFAs (PA) and MUFAs (PTA) were significantly decreased in
chemotherapy-treated groups. However, the authors explained
that it is still unknown whether the suppression of adipose
tissue lipid storage capacity induced by chemotherapy is a
result of decreased HSL expression, or due to mitochondrial
dysfunction induced by the chemotherapy (92). Mehdizadeh
et al. (93) showed that doxorubicin and 5-fluorouracil have

FIGURE 13 | Summary of findings. DIO selectively supresses de novo FA synthesis and lipolysis in mammary adipose tissue, but increased lipogenesis and lipolysis in

tumor tissue. Exogenous dietary lipids can alter the energy metabolism of triple-negative breast cancer tumors in this current in vivo model. Alterations in FAs

composition in both mammary adipose and tumor tissue could be a mechanism by which FAs composition can be altered in response to DIO within the tumor

microenvironment and thereby contributing to the decreased efficacy of breast cancer treatment agent within our current model.
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the ability to induce cancer cell invasion and metastasis by
increasing lipid accumulation and membrane fluidity, by altering
lipid metabolism. For example, doxorubicin and 5-fluorouracil
treatment significantly increased the number of lipid droplets
within HepG2 cancer cells. They also reported a significant
increase in SFAs (PA) and PUFAs and a significant decrease
in MUFAs (OA and PTA) following chemotherapy treatments
in the phospholipid fractions of the membranes of cancer
cells (93).

To summarize, evidence on FA profiles within the tumor
microenvironment has not yet been explored in an obese breast
cancer animal model to specifically illustrate its role in breast
cancer treatment efficacy. We provide evidence that diet-induced
obesity altered the FA profile of both the tumor tissue and its
adjacent surrounding mammary adipose tissue. The expression
of lipid metabolism enzymes in this study were also differentially
altered by diet-induced obesity and it is very likely that the altered
FA composition observed in both mammary adipose tissue and
tumor tissue are as a result of alterations in lipogenesis and/or
lipolysis, which may be a causal factor in decreasing the efficacy
of doxorubicin a well-known breast cancer treatment agent. We
acknowledge that the fat content used in the HFD (60% energy
from fat) of the in vivo model is high in comparison to human
consumption. However, Ervin et al. (94) suggested that although
the total fat content is high, the proportion of specific FA classes
(SFAs, MUFAs, and PUFAs) consumed in humans is similar to
the HFD we used (94).

CONCLUSION

Diet-induced obesity significantly decreased the treatment
efficacy of doxorubicin on triple-negative breast cancer tumors.
Suppression of both de novo FA synthesis and lipolysis in
mammary adipose tissue lead to the inhibition of FA storage
(decreased MUFAs and increased PUFAs), exacerbating
local inflammation in mammary adipose tissue which can
enhance breast cancer cell survival in a paracrine manner, as
illustrated in Figure 13. De novo FA synthesis and lipolysis
were increased in breast tumor tissue. The incorporation of
dietary FAs into phospholipid membranes of breast tumor
cells suggests that exogenous dietary lipids can alter the energy
metabolism of E0771 breast cancer cells. These selective
alterations in lipid metabolism markers and FA composition
in both mammary adipose and tumor tissue could be a
novel mechanism by which FA composition can be altered
in response to DIO within the tumor microenvironment and
thereby contributing to the development of breast cancer

treatment resistance. When doxorubicin is administered
as a treatment in an obesogenic context, the treatment
efficacy of this breast cancer treatment agent is decreased
by conferring to a more lipid saturated cell membrane,
known to protect cancer cells from the cytotoxic effects of
chemotherapeutic agents.
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NUAK1 is an AMPK-related kinase located in the cytosol and the nucleus, whose

expression associates with tumor malignancy and poor patient prognosis in several

cancers. Accordingly, NUAK1 was associated with metastasis because it promotes

cell migration and invasion in different cancer cells. Besides, NUAK1 supports cancer

cell survival under metabolic stress and maintains ATP levels in hepatocarcinoma cells,

suggesting a role in energy metabolism in cancer. However, the underlying mechanism

for this metabolic function, as well as its link to NUAK1 subcellular localization, is

unclear. We demonstrated that cytosolic NUAK1 increases ATP levels, which associates

with increased mitochondrial respiration, supporting that cytosolic NUAK1 is involved in

mitochondrial function regulation in cancer cells. NUAK1 inhibition led to the formation

of “donut-like” structures, providing evidence of NUAK1-dependent mitochondrial

morphology regulation. Additionally, our results indicated that cytosolic NUAK1 increases

the glycolytic capacity of cancer cells under mitochondrial inhibition. Nuclear NUAK1

seems to be involved in the metabolic switch to glycolysis. Altogether, our results suggest

that cytosolic NUAK1 participates in mitochondrial ATP production and the maintenance

of proper glycolysis in cancer cells. Our current studies support the role of NUAK1 in

bioenergetics, mitochondrial homeostasis, glycolysis and metabolic capacities. They

suggest different metabolic outcomes depending on its subcellular localization. The

identified roles of NUAK1 in cancer metabolism provide a potential mechanism relevant

for tumor progression and its association with poor patient prognosis in several cancers.

Further studies could shed light on the molecular mechanisms involved in the identified

metabolic NUAK1 functions.

Keywords: NUAK1, cancer metabolism, cell bioenergetic, oxidative cells, glycolytic switch, seahorse assay,

mitochondrial donut
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INTRODUCTION

Cancer metabolism has become a trending topic in cancer
research because it participates in tumorigenesis and cancer
progression. Tumor cells are continuously exposed to wide
metabolic changes, such as nutrient starvation, hypoxia,
and microenvironment acidification (1, 2). Thus, tumor
progression success depends on the capacity of cancer
cells to adapt and surpass this metabolic challenge (2).
Understanding the mechanisms and proteins involved in
cancer cell’s metabolic changes is critical for the development of
new therapies.

NUAK1 is a serine/threonine kinase related by sequence
homology to the catalytic α-subunits of the metabolic regulator
AMPK (3). Multiple cancers overexpress NUAK1, such as
hepatocarcinoma (4), colon cancer (5), glioma (6), and
breast cancer within others (7, 8). NUAK1 shows stage-
dependent expression in cancer tissues and associates with tumor
malignancy and poor patient prognosis (6, 9–11). According
to its association with cancer, NUAK1 plays a role in several
processes related to tumor progression, including cell migration
(12), invasion, and metastasis (13).

Additionally, NUAK1 plays a role in the survival of cancer
cells (14, 15), protecting them from cell death induced by
oxidative or metabolic stress. NUAK1 protected from metabolic
stress through maintaining energy balance in MYC-driven
cancer cells, which were unable to balance ATP levels, and
mitochondrial function in the absence of NUAK1 (16). Also
downstream of MYC, Calcium/PKCα-dependent activation of
NUAK1 supported cell survival by engaging the AMPK-
mTORC1 metabolic checkpoint (17). NUAK1 association with
metabolism and survival seems to be independent of p53, the
most frequently mutated and inactivated gene in cancer (18).
Although there is a report suggesting that NUAK1 can regulate
the p53 transcription factor, knock-down of NUAK1 provoked
loss of ATP and cell death in p53-null hepatoma cells (16).
Thus, NUAK1 might also be relevant in metabolism and tumor
progression in a p53-independent context.

We recently showed that NUAK1 has nuclear and cytosolic
subcellular locations regulated by active nuclear transport (19).
Others and our studies indicate that NUAK1 distribution is
cell- and context-specific, and might be associated with the
clinical stage of cancer, displaying a cytosolic accumulation in
late-stages histopathological samples (6, 10). Thus, NUAK1 may
have specific functions according its subcellular localization.
Consistent with a nuclear-associated function, NUAK1 was
recently involved in promoting spliceosome activity (20). In
association with its effect on cell migration, the cytosolic
NUAK1 phosphorylates the myosin phosphatase targeting-1
(MYPT1), promoting cell detachment (12). However, it is
unknown how NUAK1’s effect on metabolism associates with its
subcellular localization.

Here, we show that cytosolic NUAK1 increases the cellular
bioenergetic state, mainly associated with mitochondrial
respiration maintenance. Additionally, perturbations on NUAK1
function affect mitochondrial morphology. NUAK1 also shows
a role in glycolysis, particularly in its nuclear localization. Our

work suggests that the subcellular localization of NUAK1 is
relevant to its specific metabolic effects.

MATERIALS AND METHODS

Cell Culture
Cancer cells lines HCT116 p53 null, kindly provided by
Dr. B. Vogelstein (Johns Hopkins Medicine, USA) (21), and
HeLa (ATCC R© CCL-2TM, Manassas, VA) were cultured in
Dulbecco’s modified Eagles’s medium (DMEM) containing 4.5
g/l glucose, 2mM L-glutamine, and 1mM sodium pyruvate
(Corning, New York, USA). MDA-MB-231 cells (ATCC R© HTB-
26) were cultured in DMEM containing 1 g/l glucose, 2mM
L-glutamine and 1mM sodium pyruvate (HyClone, Logan, UT,
USA) and MCF-7 cells (ATCC R© HTB-22) were maintained in
Minimal Essential Medium (MEM) with Earle’s Balanced Salt
Solution (EBSS) containing 1 g/l glucose, 2mM L-glutamine
and 1mM sodium pyruvate (HyClone). All culture mediums
were supplemented with 100 ug/ml streptomycin (HyClone), 100
U/ml penicillin (HyClone), 2.5 ug/ml Plasmocin (InvivoGen, San
Diego, CA, USA), 10% fetal bovine serum (Biological Industries)
and incubated at 37 ◦C in 5% CO2. Mycoplasma-free cultures
were frequently tested with EZ-PCR Mycoplasma Kit (Biological
Industries, CT, USA). The hypoxic environment (1% O2) was
generated in a hypoxia chamber (STEMCELL Technologies,
Vancouver, Canada).

Cell Transfection
Cells were transfected using Lipofectamine 3000 (ThermoFisher,
Waltham, MA, USA) or Lipofectamine 2000 (for HeLa cells). For
the overexpression of wild type NUAK1 and a nuclear-deficient
NUAK1 mutant (19), we used pCMV-FLAG-hNUAK1 and
pCMV-FLAG-hNUAK1-KR43/70AA (NUAK1cyt) plasmids,
respectively, and the pCMV-2-FLAG plasmid as control. The
pLKO system was used to silence NUAK1 expression (22). The
shRNA for NUAK1: 5′- TGGCCGAGTGGTTGCTATAAA-3′

was purchased from Sigma-Aldrich (St. Louis, MO, USA).

Chemicals and Antibodies
Protease inhibitor and Phosphate inhibitor cocktails,
2-Deoxy-D-glucose, Oligomycin A, Carbonyl cyanide 4-
(trifluoromethoxy)phenylhydrazone, Antimycin A and
Rotenone were purchased from Sigma-Aldrich. HTH-01-
015, a potent and selective NUAK1 inhibitor (23) was from
Tocris (Bristol, UK). Fluorophores Tetramethylrhodamine
Ethyl Ester, Perchlorate (TMRE), MitoTrackerTM Green FM,
and Hoechst 33,342 were from ThermoFisher. AccuRuler RGB
plus protein ladder was purchased from MaestroGen Inc.
(Hsinchu City, Taiwan). Anti-NUAK1 antibody (#4458) was
from Cell Signaling (Danvers, MA, USA), and the anti-FLAG
(M2) was from Sigma-Aldrich. Antibodies against β-Actin
(AC-15), ATP5B (E-1), and TOM20 (F-10) were purchased from
Santa Cruz Biotechnology (Dallas, TX, USA). Total OXPHOS
Rodent WB Antibody Cocktail (ab110413) was from Abcam
(Cambridge, United Kingdom). Goat Secondary antibodies
anti-mouse IgG-HRP and anti-rabbit IgG-HRP conjugates were
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purchased from Bio-Rad (Hercules, CA, USA). The anti-mouse
Alexa-488 antibody (A11001) was from ThermoFisher.

Immunoblotting
Cell lines were lysed with modified NP-40 buffer (1%, NP-
40, 25mM Tris/HCl pH 7.4, 2.2mM MgCl2, 1mM EDTA,
NaCl 150mM, 5% Glycerol). Total proteins from lysates were
fractionated by SDS–polyacrylamide gel electrophoresis and
transferred to PDVF membranes. Finally, membranes were
incubated 3min with ECL Western Blotting Detection Reagent
(GE Healthcare, Amersham, UK). Immunolabeled proteins were
visualized in Syngene PXi6 Documentation System (Frederick,
MD, USA).

Immunofluorescence Microscopy
Cells grown on coverslips were prepared as previously described
(19). After incubation with the FLAG and the secondary anti-
mouse Alexa-488 antibodies, images were obtained with an LMS
780 spectral confocal system (Zeiss, Jena, Germany).

ATP Measurement
An equal number of cells were seeded in 96-well plates and
16 h later transfected. Twenty-four hours post-transfection of
cells, ATP was measured by using the ATP Determination
Kit (Invitrogen) according to the manufacturer’s protocol. ATP
levels were expressed as the percentage of their control group
(arbitrary set to 100%) and normalized to the corresponding
protein concentration.

Oxygen Consumption Rate (OCR) and
Extracellular Acidification Rate (ECAR)
The mitochondrial respiratory activity and glycolysis status
of live cells were measured by detection of cellular oxygen
consumption rate (OCR) and extracellular acidification rate
(ECAR), using a Seahorse XF24 (Agilent, Santa Clara, CA,
USA). Briefly, 3 x 104 MCF-7 or MDA-MB-231 cells per well
were plated on the XF24 culture plate and incubated at 37◦C
in 5% CO2. The following day, the cells were incubated 1 h
at 37 ◦C without CO2 and washed 3 times with seahorse
medium containing phenol red-free DMEM base (D5030, Sigma-
Aldrich), 2mM L-glutamine, and 1mM pyruvate. The XF24
culture plate plus the cartridge pre-incubated with Seahorse
XF Calibrant Solution (103059-000, Agilent) were mounted in
the analyzer. OCR was recorded as pmolO2/min, and ECAR
was recorded as mpH/min. On the course of the assay, four
sequential injections were performed after three readings in
order to analyze OXPHOS and glycolytic parameters. For
MCF-7 cells, it was sequentially injected to final concentration
5.5mM glucose, 1.2µMOligomycin A, 0.5µMFCCP, and finally
2µM Rotenone with 2µM Antimycin A. For MDA-MB-231
cells, it was used 5.5mM glucose, 1µM Oligomycin A, 1µM
FCCP, 1µM Rotenone, and 1µM Antimycin A. Right after
the assay is ended, OCR and ECAR from each sample were
normalized to the corresponding total protein concentration
before calculation of metabolic parameters. Briefly, cells were
lysed with SDS Lysis Buffer containing 20mM HEPES, 2mM
EDTA, 0.5% Triton X-100, 0.1% SDS and 1mM PMSF at 4◦C.

Proteins concentration was quantified by Bradford method.
For OXPHOS parameters, we used normalized OCR and set
the Non-Mitochondrial Oxygen Consumption (Non-MOC) as
the minimum rate after Rotenone/antimycin A injection. Basal
respiration was the last rate after glucose injection minus the
Non-MOC; Maximal respiration was the maximum rate after
FCCP injection minus the non-MOC; Proton Leak was the
minimum rate after oligomycin injection minus the Non-MOC.
ATP Production Coupled Respiration was the last rate before
oligomycin injection minus the minimum rate after oligomycin
injection, and Spare Respiratory Capacity was the maximal
respiration minus the basal respiration. To analyze glycolysis, we
used normalized ECAR. Glycolysis parameter was the maximum
rate before oligomycin injection minus the last rate before
glucose injection. Glycolytic capacity was the maximum rate
after oligomycin injection minus the last rate before glucose
injection, and glycolytic reserve was the glycolytic capacity minus
the glycolysis parameter. All assays were done in triplicate and
repeated three times.

Lactate Measurement
HCT116 p53-null cells (3.5 x 105) were plated in a 24-well
plate and incubated overnight at 37 ◦C in 5% CO2. The
medium was replaced for phenol red-free medium, and cells
were treated for 24 h. For recovering extracellular lactate, the
supernatant was mixed with trichloroacetic acid 0.6N in 1:2
proportion in ice, mixed for 30 s, incubated at 4◦C for 5min
and interfering proteins were precipitated and removed by
centrifugation at 1500xG. Extracellular lactate concentration
was calculated by measurement of NADH product obtained
by a coupled-enzymatic method using L-lactate dehydrogenase
(Sigma). NADH was detected by absorbance at 340 nm.
Simultaneously, the cells were lysed with SDS Lysis Buffer,
and protein concentration was measured by Bradford method.
Results were expressed as µM lactate/µg protein. All assays were
done in triplicate.

In vivo Microscopy
Cells were plated in a 35mm imaging dish and incubated
overnight at 37 ◦C in 5% CO2. For the nuclear andmitochondrial
staining, the cells were incubated with 200 nM Mitotracker
Green and 5µg/ml Hoechst 33,342 for 30min in PBS at 37
◦C in 5% CO2. After washed the cells twice with PBS, 10mM
TMRE was added in a fresh culture medium. For the in vivo
microscopy, the cells were maintained in the Chamlide chamber
(Lice cell instrument, Seoul, Korea) and images were capture
using Olympus FV1000 microscopy (Center Valley, PA, USA).
The Z-stack was transformed into maximal intensity projection.
The image analysis was performed using ImageJ software (24).

Statistical Analysis
Statistical analysis and graphics were performed with GraphPad
Prism 6. Statistical significance was determined by unpaired
Student’s t-test or two-way ANOVAwith Holm-Sidak correction.
Differences were considered statistically significant if p < 0.05.
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RESULTS

Cytosolic NUAK1 Enhances Cellular ATP in
Cancer Cells
We have previously found that endogenous NUAK1 has a diverse
subcellular localization depending on the cancer cell line, mostly
located in the nucleus or the cytoplasm, or with an equilibrated
distribution (19). From these previous studies, we choose
cancer cells with high nuclear NUAK1 expression (HeLa and
HCT116 p53-null cells) or with high cytosolic expression (MCF-
7 cells). To initially investigate whether the metabolic function of
NUAK1 associates with a specific subcellular location, we used a
previously characterized nuclear-deficient NUAK1 mutant, from
now on cytosolic NUAK1. Like the endogenous NUAK1 (19),
immunocytochemistry assay showed that overexpressed wild
type NUAK1 was mainly in the nucleus of HeLa cells, while
the cytosolic NUAK1 showed the expected location (Figure 1A).
Both wild type and cytosolic NUAK1 significantly increased ATP
levels in HeLa cells; however, the cytosolic NUAK1 induced
a higher ATP increment (Figure 1B). We found that only the
cytosolic NUAK1 increases ATP levels in the colon HCT 116 p53-
null cancer cells (Figure 1C), where endogenous NUAK1 is not
detected in the cytoplasm (19). Although MFC-7 cells have high
endogenous cytosolic NUAK1 expression (19), the expression
of the cytosolic NUAK1 mutant could further increase the ATP
levels, although to a lesser extent (Figure 1D). Altogether, our
results suggest that the cytosolic NUAK1 associated with cancer
cell bioenergetics.

NUAK1 Affects Mitochondrial Respiration
Parameters and Mitochondrial Membrane
Potential
The increase in cellular ATP could be due to alterations
on either ATP consumption or ATP production. To discern
between these two processes, we examined the mitochondrial
responses by measuring the OCR under normal conditions or
stimulation with pharmacological mitochondrial modulators.
According to the above results, for these assays, we used MCF-
7 cancer cells because they depend more on mitochondrial
function for their bioenergetics demands (25). In addition,
MCF-7 cells have high cytosolic NUAK1 expression, which is
suitable to infer the role of the endogenous NUAK1. We used
10µM HTH-01-015, a selective NUAK1 kinase inhibitor (23,
26). We found that NUAK1 inhibition significantly decreased
maximal respiration (FCCP-stimulated) in MCF-7 cells; still,
HTH-01-015 affected mitochondrial spare respiratory capacity,
but no other mitochondrial respiration parameters (Figure 2A).
The decrease in maximal respiration by NUAK1 inhibition
was not accompanied by changes in mitochondrial protein
expression (Figure 2B). Supporting that NUAK1 activity affects
mitochondrial function, HTH-01-015 treatment (Figure 2C)
and shRNA-mediated knock-down of NUAK1 expression
(Figure 2D) significantly increased the mitochondrial membrane
potential (mt19).

Then, we analyzed the association of the increase of cellular
ATP by the cytosolic NUAK1 in MCF-7 cells with mitochondrial

respiration. According to the above results, the cytosolic NUAK1
increased maximal respiration (Figure 3A) and significantly
decreased the mt19 (Figures 3B,C), indicating that cytosolic
NUAK1 induces ATP synthase activity (oligomycin-insensitive
respiration showed no NUAK1-induced leaking). Besides, no
significant changes in mitochondrial volume were observed
(Figure 3D). To further confirm the role of the cytosolic NUAK1
in breast cancer cells, we usedMDA-MB-231 cells, where NUAK1
only detected in the cytosolic fraction (19). Accordingly, we also
found that NUAK1 inhibition significantly decreases maximal
mitochondrial respiration and spare mitochondrial capacities
(Figure 3E). In agreement with an exclusive cytosolic location
of NUAK1 in MDA-MB-231 cells, the maximal respiration
parameter wasmuch higher than inMCF-7 cells and was strongly
affected by NUAK1 inhibition. Altogether, our data suggest that
the cytosolic NUAK1 enhances breast cancer cell bioenergetics by
increasing the mitochondrial respiratory capacity.

The Downregulation of NUAK1 Induces
Mitochondrial Morphology Alterations
Mitochondria are dynamic organelles, and their structures
frequently reflect bioenergetics state or dysfunctions. Thus,
to understand the NUAK1 function on mitochondria, we
additionally investigated whether it affects mitochondria
morphology, identifying networked, tubular, fragmented, and
large and round mitochondria (Figure 4A). We observed that
HTH-01-015 treatment drastically changed the mitochondria
morphology of MCF-7 cells, from mainly networked and tubular
to large and round mitochondrial structure (Figures 4B,C).
Interestingly, mitotracker green images showed a mitochondrial
structure known as “donut” rather than the typical punctate
mitochondrion (Figure 4B). To validate that our morphological
observations were specifically associated with the inhibition
of NUAK1, we knocked-down NUAK1 in MCF-7 cells and
performed mitochondria morphology analysis. The knock-down
of NUAK1 also changed the mitochondrial morphology from
networked to large and round shape (Figures 4D,E), but we
observed less “donut” structures than the treatment with the
inhibitor (Figure 4D). On the other hand, the overexpression
of the cytosolic NUAK1 showed no significant impact on
mitochondrial morphology (Figure 2B). These data suggest
that NUAK1 activity maintains a suitable mitochondrial
morphology. Interestingly, NUAK1 inhibition by HTH-01-
015 showed a significant increase in mitochondrial volume
(Figure 4F), whereas the NUAK1 knock-down showed no
significant differences between groups (Figure 4G). This
apparent discrepancy may be related to differences in the
time points for the volume evaluation, measured at 4 h after
HTH-01-015 treatment or at 24 h in NUAK1 knock-down cells.
Summarizing, our data showed that NUAK1 is necessary for
maintaining proper mitochondrial morphology in MCF-7 cells.

NUAK1 Is Involved in Glycolytic Capacity
Regulation
Alterations in mitochondrial metabolism are usually
accompanied by glycolysis regulation, allowing energy balance
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FIGURE 1 | Cytosolic NUAK1 increases cellular ATP in cancer cells. (A) Immunocytochemistry images of NUAK1 location in HeLa cells expressing FLAG-NUAK1 WT

or FLAG-hNUAK1-KR43/70AA (NUAK1cyt) mutant. Cells were stained with FLAG-antibody, 630X zoom. ATP levels in (B) HeLa, (C) HCT116 p53-null and (D) MCF-7

cells 24 h post-transfection with FLAG-NUAK1 WT (gray bar) or FLAG-NUAK1cyt mutant vector (dark gray bar). Empty vector was used as control (white bar) and

results were expressed as a percentage relative to the control group. The results are representative of three independent experiments (n = 3). Each bar represents the

mean ± S.D, *p < 0.05. On the right, immunoblots showing NUAK1 expression. NUAK1 was detected with FLAG antibody or a specific antibody against NUAK1.

Actin was used as the loading control.

(27). To test this, we measured ECAR, which reflects the rate of
lactic acid production by glycolysis. We found that the cytosolic
NUAK1 did not significantly affect the glycolytic rate in MCF-7
cells (Figure 5A). However, NUAK1 inhibition significantly
decreased their glycolytic capacity (Figure 5B). Although there
was a small reproducible effect on the glycolytic rate, it was
not significant. To confirm the cytosolic NUAK1 involvement
in the glycolytic capacity, we evaluated it in MDA-MB-231
cells. We also found that NUAK1 inhibition significantly
decreases glycolytic capacity (Figure 5C), suggesting that the
cytosolic NUAK1 maintains these metabolic capacities. Since
NUAK1 inhibition affected both mitochondrial and glycolytic
capacity, we evaluated whether the ATP level remains balance in
NUAK1-inhibited cells. We found that NUAK1 inhibition did
not affect ATP in MCF-7 cells under normal conditions, where
neither mitochondrial nor glycolytic functions were challenged
(Figure 5D). To redirect cellular metabolism to glycolysis, we
inhibited the mitochondria with oligomycin. Figure 5D shows
that under this condition, HTH-01-015 significantly decreased
cellular ATP, without affecting cell viability (data are not shown).
Thus, associated with the decrease of glycolytic capacity, NUAK1
inhibition decreases cell energy in a condition of metabolic
redirection from OXPHOS to glycolysis. Thereby, our findings
suggest that cytosolic NUAK1 keeps ATP balance by maintaining
the glycolytic capacity.

Nuclear NUAK1 Plays a Role in the
Glycolytic Switch
Because of the low nuclear expression of NUAK1 in MCF7 cells,
we could not discard that this nuclear NUAK1 is responsible
for the small reproducible but not significant effect on the
glycolytic rate in these cells (see Figure 5B). To evaluate it, we
analyzed cells with high nuclear NUAK1 expression. Between the
HeLa and the HCT116 p53-null cells, we choose the HCT116
p53-null cells because endogenous NUAK1 is only detected
in the nucleus (19). In addition, we used the HCT116 p53-
null cell model because NUAK1’s role in cell survival has been
related to the regulation of the p53 transcription factor (28),
which is known to affect glycolysis (29). According to a p53-
independent effect, shRNA-mediated knock-down of NUAK1
inhibitedHCT116 p53-null cell survival under serum deprivation
(data not shown). To directly evaluate an effect on glycolysis, we
analyzed NUAK1-dependent lactate production. We found that
NUAK1 knock-down (Figure 6A) decreased lactate production
in HCT116 p53-null cells under basal conditions (Figure 6B) and
blocked their metabolic switch to glycolysis under mitochondrial
inhibition (Figure 6B). These results suggested that cells required
nuclear NUAK1 for lactate production and glycolytic switch.
Accordingly, wild type NUAK1, but not the cytosolic NUAK1,
significantly increased lactate production under condition of
mitochondrial inhibition by hypoxia or the oligomycin inhibitor
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FIGURE 2 | NUAK1 allows proper mitochondrial function in breast cancer cells. (A,Left) Oxygen consumption rates of MCF-7 cells after 4 h incubation with 5µM (pink

curve) or 10µM (red curve) HTH-01-015, or DMSO used as vehicle (blue curve), measured using the Seahorse XF24. At the times indicated, glucose, oligomycin (OL),

FCCP, and Rotenone (Rot) with Antimycin A (Ant) were injected as described in the Methods section. (Right) Respiration parameters from the experiments on the left.

Graph shows respiration parameters from MCF-7 cells with 5µM (pink bar) or 10µM (red bar) HTH-01-015, or DMSO (blue bar). All values were normalized to the

corresponding protein concentration. OCR average ± SD from three independent experiments, *P < 0.05. (B) Western blot showing OXPHOS complex proteins from

MCF-7 cells after 4 h incubation with 5µM HTH-01-015 or DMSO. TOM20 was used as the loading control. (C) Quantification of TMRE mean intensity from in vivo

microscopy of MCF-7 cells treated for 4 h with 5µM HTH-01-015 or vehicle (n = 80), *P < 0.05. (D) Quantification of TMRE mean intensity from in vivo microscopy of

NUAK1-silenced MCF-7 cells and control group (n = 80), *p < 0.05.

in HCT116 p53-null cells (Figure 6C). Thus, nuclear NUAK1
increases glycolysis and is essential for the success of the
glycolytic switch.

DISCUSSION

Our studies indicate that NUAK1 plays a role in the maintenance
of glycolytic and respiratory capacities of cancer cells, suggesting
that it affects the metabolic state and adaptation of tumors
during cancer progression. Also, they suggest that the metabolic
outcome depends on the NUAK1 subcellular distribution.

Constant ATP supply is essential for almost all cellular
processes, including biomolecules synthesis, cytoskeleton
remodeling or signaling phosphorylation (30). In this work,
we found that the cytosolic NUAK1 upregulates mitochondrial
ATP production, likely by inducing ATP synthase activity.
Complete glucose oxidation coupled to TCA cycle and oxidative
phosphorylation defines cancer cells susceptibility to apoptosis
(31). Accordingly, NUAK1 promoted cell survival and inhibited
apoptosis (14, 15); therefore, NUAK1’s role in complete
glucose oxidation by increased mitochondrial activity could
also contribute to tumor viability. However, NUAK1 could

also promote cancer cell survival under glucose deprivation
(15). Other pathways than glucose oxidation could generate
mitochondrial ATP, such as lactate metabolism, glutaminolysis,
or fatty acid oxidation (30). Thus, NUAK1 may exert a more
integrative regulation for the use of available substrates.

Our data also showed that cytosolic NUAK1 maintains and
increases maximal mitochondrial respiration, suggesting that it
increases the working capacity of the respiratory chain. Levels
of expression of the respiratory complexes are usually associated
with the working capacity of the respiratory chain. Because
we could not detect any NUAK1-dependent increase in the
respiratory complexes nor mitochondrial volumen, NUAK1’s
effect may be due to increased substrate availability. Nevertheless,
we could not discard that NUAK1-dependent phosphorylation
of respiratory complexes is responsible for an increase in
the respiratory chain activity. Many kinases localize in the
mitochondria and affect the mitochondrial function (32). By
bioinformatics analysis, NUAK1 does not contain a typical
mitochondrial localization signal. However, as reported for other
kinases, NUAK1 may form part of a protein complex for
translocation into the mitochondrial matrix space (32). This
possibility deserves future studies.
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FIGURE 3 | Cytosolic NUAK1 expression is involved in mitochondrial function regulation in breast cancer cells. (A, Left) Oxygen consumption rates of MCF-7 cells

24 h post-transfection with FLAG-NUAK1cyt mutant (red curve) or empty vector (blue curve), measured using the Seahorse XF24. At the times indicated, glucose,

oligomycin (OL), FCCP, and Rotenone (Rot) with Antimycin A (Ant) were injected as described in the Methods section. (Right) Respiration parameters from the

experiments on the left. Graph shows respiration parameters from MCF-7 cells transfected with FLAG-NUAK1cyt mutant (red bar) or empty vector (blue bar). All

values were normalized to the corresponding protein concentration. OCR average ± SD from 3 independent experiments, *p < 0.05. (B) in vivo microscopy images of

MCF-7 cells expressing FLAG-NUAK1cyt mutant or empty vector stained with mitotracker green (green), TMRE and Hoechst for nuclei (blue). Fluorescence intensity

of TMRE is represented in pseudo color scale (“Rainbow RGB” in ImageJ software). 600X optical zoom plus 3X digital zoom. (C) Quantification of mitotracker green

integrated density (n = 90). *p < 0.05. (D) Plots of TMRE mean intensity quantification (n = 90). *p < 0.05. (E) Same as in (A) for MDA-MB-231 cells. (Left) Oxygen

consumption rates of MDA-MB-231 cells with 5µM (pink curve) or 10µM (red curve) HTH-01-015, or DMSO (blue curve). (Right) Respiration parameters from the

experiments on the left. Graph shows respiration parameters from MDA-MB-231 cells with 5µM (pink bar) or 10µM (red bar) HTH-01-015, or DMSO (blue bar). All

values were normalized to the corresponding protein concentration. OCR average ± SD from three independent experiments, *p < 0.05.

Oxidative cells have high anabolic metabolism due to
high protein and nucleotide biosynthesis, maintaining high
mitochondrial biomass and activity (33). We were unable to find
NUAK1 overexpression-induced changes in the mitochondrial
volume; however, we cannot exclude that sustained NUAK1
overexpression, common in many cancers, could affect it. Studies
have shown that within the heterogeneous cell population of a
tumor, oxidative intratumoral cells are the most proliferative,
invasive and resistant to chemotherapy and radiotherapy
(34, 35). Thus, NUAK1-dependent metabolic effects may
explain the aggressiveness of cancers associated with abnormal
NUAK1 expression.

Cell energy remains balanced after mitochondrial inhibition
due to the increase in glycolysis (27). When the mitochondria
activity was pharmacologically inhibited, NUAK1-inhibited cells
were unable to maintain ATP levels, indicating that NUAK1
maintains glycolytic ATP levels. However, we cannot discard
some contribution from the glutaminolysis pathway. Because
glutamine was present in all our experimental conditions, it is
possible that this substrate is used as an alternative energy source,
compensating for defects in OXPHOS through mitochondrial
substrate-level phosphorylation (mSLP) (36–38).

Previous research showed that NUAK1 suppresses glucose
uptake by negatively regulating insulin signaling and glycogen
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FIGURE 4 | Downregulation of N UAK1 function induces mitochondrial morphology alterations in MCF-7 cells. (A) in vivo microscopy of MCF-7 cells treated for 4 h

with 5µM HTH-01-015 or vehicle, stained with TMRE (red) and mitotracker green (green). Scale bar equal to 10µm. 600X optical zoom plus 5X digital zoom.

(B) Quantification of mitotracker green integrated density of MCF-7 cells treated with 5µM HTH-01-015 or vehicle (n = 80), *p < 0.05. (C) Representative image used

for mitochondrial morphology quantification. Mitochondria were classified in networked, tubular, fragmented and swollen from two quadrants. (D) Mitochondrial

morphology quantification of MCF-7 cells treated for 4 h with 5µM HTH-01-015 and control cells. (E) in vivo microscopy of NUAK1 depleted MCF-7 cells and control

group stained with TMRE (red) and mitotracker green (green). Scale bar equal to 10µm. 600X optical zoom plus 5X digital zoom. (F) Quantification of mitotracker

green integrated density of NUAK1 depleted MCF-7 cells and control cells (n = 80), *p < 0.05. (G) Mitochondrial morphology quantification of NUAK1 depleted

MCF-7 cells and control cells (n = 80), *p < 0.05.

storage in the normal oxidative muscle (39). On the contrary,
our data propose that the cytosolic NUAK1 maintains glycolytic
capacity and the glycolysis-associated cell energy in the
abnormal genetic and metabolic context of cancer. Glycolytic
capacity may reflect increased activity of enzymes and more
efficient expression of alternative isozymes, allowing cells to
confront harsh conditions, such as hypoxia (27, 40). The
four key points that raise the glycolysis rate are glucose
import, hexokinase, phosphofructokinase, and lactate export
(40). Several reports describe an increase in the expression
of glycolytic enzymes in cancers. In particular, at least one
isozyme catalyzing each of the four key points is elevated
in human tumors (40). Our studies suggested that nuclear
NUAK1 is necessary for the cellular glycolytic switch and
the increase of extracellular lactate in a p53-null context.
It was recently demonstrated that nuclear NUAK1 promotes
spliceosome activity and regulates RNA synthesis (20). Thus,

nuclear NUAK1 may transcriptionally affect the expression
of enzymes controlling key points of glycolysis. Whether
the effect of nuclear NUAK1 changes when p53 is present
remains undefined.

It was shown that NUAK1 downregulation dramatically
declines HEPG2 cells’ tolerance to glucose starvation-
induced hypoxia (41). Because metabolic changes in
cancer cells are balanced between glycolysis and oxidative
metabolism (27), the study indicated that NUAK1 keeps
cells metabolically prepared to face microenvironmental
energetic adversities. Accordingly, our studies suggest
that NUAK1 promotes and maintains both the glycolytic
and the oxidative phenotypes. Cytosolic NUAK1 affected
both, the maximum rate of glycolysis and mitochondrial
respiration. The maximum rate referred to the “metabolic
capacity” of cells to respond to an acute increase in energy
demand (27).
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FIGURE 5 | Cytosolic NUAK1 plays a role in the regulation of glycolysis in breast cancer cells. (A, Left) Kinetic of extracellular acidification from MCF-7 cells 24 h

post-transfection with FLAG-NUAK1cyt mutant (red curve) or empty vector (blue curve), measured using the Seahorse XF24. At the times indicated, glucose,

oligomycin (OL), FCCP, and Rotenone (Rot) with Antimycin A (Ant) were injected as described in the Methods section. (Right) Glycolytic parameters evaluation from the

experiments on the left. Graph shows MCF-7 cells with FLAG-NUAK1cyt mutant (red bar) or empty vector (blue bar). (B) Same as in (A, Left). Kinetic of extracellular

acidification from MCF-7 cells after 4 h of treatment with 5µM HTH-01-015 (pink curve), 10µM HTH-01-015 (red curve) or vehicle (blue curve). Right. Glycolytic

parameters evaluation from the experiments on the left. Graph shows cells with 5µM HTH-01-015 (pink bar), 10µM HTH-01-015 (red bar) or vehicle (blue bar). (C)

Same as in (B) for MDA-MD-231 cells. (Left) Kinetic of extracellular acidification from cells with 5µM HTH-01-015 (pink curve), 10µM HTH-01-015 (red curve) or

vehicle (blue curve). (Right) Glycolytic parameters evaluation from the experiments on the left. Graph shows cells with 5µM HTH-01-015 (pink bar), 10µM

HTH-01-015 (red bar) or vehicle (blue bar). All values were normalized to the corresponding protein concentration. (A–C) ECAR average ± SD from three independent

experiments, *p < 0.05. (D) ATP levels from MCF-7 cells treated 4 h with 5µM HTH-01-015 (pink bar), 10µM HTH-01-015 (red bar) or vehicle (blue bar). Also, all

groups were incubated with 1 ug/ml oligomycin A. Results were expressed as a percentage relative to the control group. The results are representative of two

independent experiments (n = 3). Each bar represents the mean ± S.D, *p < 0.05.
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FIGURE 6 | Nuclear NUAK1 allows glycolysis switch in HCT116 p53 null

cancer cells. (A) Lactate production evaluation in HCT116p53null cells

transfected with shRNA NUAK1 (gray bar) and shRNA scramble as control

(white bar). Extracellular lactate was evaluated under normal and 1 ug/ml

oligomycin treatment conditions. The results were normalized to the

corresponding protein concentration and each bar represents the mean ± S.D

(n = 3), *p < 0.05. (B) Western blot showing the NUAK1 silencing efficiency.

Actin was used as the loading control. (C) Lactate production evaluation in

HCT116p53null cells expressing FLAG-NUAK1 WT (gray bar) or

FLAG-NUAK1cyt mutant (dark gray bar). Empty vector was used as the

control group (white bar). Extracellular lactate was evaluated under normal

condition, after 24 h of hypoxia or 24 h of 1 ug/ml oligomycin treatment. The

results were normalized to the corresponding protein concentration and each

bar represents the mean ± S.D (n = 3), *p < 0.05.

We found that NUAK1 downregulation disrupts
mitochondrial morphology. The ring-shaped mitochondria
structures induced by NUAK1 inhibition are consistent with
those known as “donut” shaped. Donut morphology appears
after inhibition of respiratory chain function and under chemical
uncoupling (42, 43) and involves the increase of mitochondrial
calcium capture and mitochondrial ROS (mtROS) (43) and have
pathophysiological significance (44). NUAK1 has been proposed
as a key facilitator of the adaptive antioxidant response in colon
cancer, playing a protective role against high oxidative stress
(26). We have previously reported that oxidative stress retains
NUAK1 in the cytosol (19). Although additional studies are
needed, the increase of oxidative stress under NUAK1 inhibition
may be responsible for the donut-shaped mitochondria.

Liu et al. (16) showed that NUAK1 expression was essential
for the development of oncogenic MYC processes, such as
maintaining ATP levels, glucose metabolism, TCA cycle, and
oxidative phosphorylation. Some of our findings could be due to
an effect of NUAK1 downstream of an oncogenic MYC context;
however, addressing this possibility requires a detailed molecular

study. Still, because NUAK1 protected cells from oncogenic
MYC-induced metabolic stress and energy collapse, NUAK1 is
also likely downstream of other oncogenes-induced metabolic
stress, the hallmark of any cancer.

In summary, our findings show an association between
metabolic NUAK1 functions and its subcellular distribution.
We associated nuclear NUAK1 with the promotion of
glycolysis. NUAK1 has been described as a predominantly
nuclear protein in some cancer cells, where it promotes
spliceosome activity and regulates RNA synthesis (20). Thus,
glycolysis alterations could be an outcome of those NUAK1
nuclear functions. On the other hand, we associated the
cytosolic NUAK1 with the maintenance of cellular ATP levels,
suggesting that it increases ATPmitochondrial production under
normal conditions. However, it can still maintain ATP from
glycolysis source under mitochondrial dysfunction, without
discarding some potential contribution of mSLP. NUAK1
showed different cell distribution in cancer samples, where
cytosolic NUAK1 seems to be relevant in late-stages of cancer
(6, 8, 10). Thereby, NUAK1 cell location could be relevant for
metabolic adaptation along with tumor progression. Therefore,
screening NUAK1 cell distribution in cancer tissues could
help elucidate the metabolic state of tumors. Further studies
could shed light on the molecular mechanisms associated
with the identified metabolic NUAK1 functions and their
implications on cancer cell metabolic adaptation during
tumor progression.
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James Drury 1, Piotr G. Rychahou 2,3, Daheng He 2, Naser Jafari 1, Chi Wang 2, Eun Y. Lee 4,

Heidi L. Weiss 2, Bernard Mark Evers 2,3 and Yekaterina Y. Zaytseva 1,2*
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Fatty acid synthase, a key enzyme of de novo lipogenesis, is an attractive therapeutic

target in cancer. The novel fatty acid synthase inhibitor, TVB-3664, shows anti-cancer

activity in multiple cancers including colorectal cancer; however, it is unclear whether

uptake of exogeneous fatty acids can compensate for the effect of fatty acid synthase

inhibition. This study demonstrates that inhibition of fatty acid synthase selectively

upregulates fatty acid translocase (CD36), a fatty acid transporter, in multiple colorectal

cancer models including colorectal cancer cells with shRNA mediated knockdown

of fatty acid synthase and genetically modified mouse tissues with heterozygous

and homozygous deletion of fatty acid synthase. Furthermore, human colorectal

cancer tissues treated with TVB-3664 show a significant and selective upregulation

of CD36 mRNA. shRNA-mediated knockdown of CD36 and inhibition of CD36 via

sulfosuccinimidyl oleate, a chemical inhibitor of CD36, decreased cell proliferation in vitro

and reduced tumor growth in subcutaneous xenograft models. Isogenic cell populations

established from patient derived xenografts and expressing high levels of CD36 show a

significantly increased ability to grow tumors in vivo. The tumor-promoting effect of CD36

is associated with an increase in the levels of pAkt and survivin. Importantly, combinatorial

treatment of primary and established colorectal cancer cells with TVB-3664 and

sulfosuccinimidyl oleate shows a synergistic effect on cell proliferation. In summary, our

study demonstrates that upregulation of CD36 expression is a potential compensatory

mechanism for fatty acid synthase inhibition and that inhibition of CD36 can improve the

efficacy of fatty acid synthase-targeted therapy.
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INTRODUCTION

Colorectal cancer (CRC) is the leading cause of non-smoking
related cancer deaths in the world (1). Altered fatty acid
metabolism is a hallmark of cancer and a potential target for
therapeutic intervention (2–4).

Fatty Acid Synthase (FASN), a key enzyme of de novo
lipogenesis, is significantly upregulated in CRC and promotes
tumor growth and metastasis (5–7). Novel FASN inhibitors
developed by Sagimet Biosciences show anti-cancer activity in
lung, prostate, ovarian, and colon cancer models in vitro and
in vivo (8–10), and are currently being tested in phase I/II
clinical trials (11–13). Our studies show anti-tumor activity of
TVB inhibitors in primary CRC cells and CRC patient-derived
xenograft (PDX) models (10, 14).

While most tumors exhibit a shift toward FA synthesis,
they can also scavenge lipids from their environment (4). Fatty
Acid Translocase (CD36), a multifunctional glycoprotein, has
an important role in fatty acid metabolism as a fatty acid
receptor and transporter (15, 16). CD36 translocates to the
plasma membrane, where an extracellular domain of the protein
binds low density lipoproteins and transports them across the
plasma membrane into the cytosol, thus playing a critical role in
metabolism of extracellular fatty acids (15–17). CD36 is subject to
various types of post-translational modifications. Glycosylation,
ubiquitination, and palmitoylation are involved in regulating
CD36 stability and the rate of fatty acid uptake (18). Recent
studies have shown that CD36 is highly expressed and enhances
the progression of solid malignancies such as breast, ovarian,
gastric, and glioblastoma cancers (19–22). Silencing CD36 in
human prostate cancer cells reduces fatty acid uptake and cellular
proliferation (23). Furthermore, the presence of CD36 positive
metastasis initiating cells correlates with a poorer prognosis in
glioblastoma and oral carcinoma (21, 24). The contribution of
CD36 to CRC progression has not yet been investigated.

Since cancer cells utilize both endogenously-synthesized lipids
and exogeneous fatty acids (25), and our published data indicate
that an enhanced uptake of dietary fatty acids may be a potential
mechanism of resistance to FASN inhibitors (10), the goal of
this study was to evaluate the interconnection between these
two pathways.

We found that CD36 is significantly overexpressed in CRC
and that there is a correlation between expression of FASN
and CD36 in primary human CRC specimens. We demonstrate
that a decrease in FASN expression is associated with selective
induction of CD36 and that this phenomenon is consistent
among multiple cancer models. Pharmacological and shRNA-
mediated inhibition of CD36 decreases proliferation of primary
CRC cells in vitro and inhibits tumor growth in vivo. We also
show that CD36 overexpression is associated with upregulation
of survivin, a protein linked to apoptosis resistance, metastasis,
bypass of cell cycle checkpoints, and resistance to therapy (26,
27). Consistent with our in vitro data, we show that CD36high-
expressing cells, isolated from CRC PDXs, have a significantly
higher level of survivin as compared to CD36low-expressing
cells from the same tumor. Our results also demonstrate that
combined inhibition of FASN and CD36 has a synergetic effect on

inhibition of cellular proliferation suggesting that combination
treatment may be a potential therapeutic strategy for CRC.

Together, our findings demonstrate the tightly regulated
interconnection between de novo lipid synthesis and CD36-
mediated lipid uptake in CRC progression during targeted
inhibition of FASN, suggesting that inhibition of CD36 may be
necessary to improve the efficacy of FASN-targeted therapy.

MATERIALS AND METHODS

CRC Cell Lines
Established cell lines HCT116, HT29, and HT29LuM3 were
maintained in McCoy’s 5A medium supplemented with 10%
FBS (Sigma-Aldrich, St. Louis, MO) and 1% penicillin–
streptomycin. Primary colon cancer patient Pt 93 and Pt 130
cultures were isolated and established from PDX tumors as
previously described (1). Cells were maintained as monolayer
culture in DMEM supplemented with 10% FBS (Sigma-Aldrich,
St. Louis, MO) and 1% penicillin–streptomycin. Primary
Pt 93 and Pt 130 colon cancer cells were authenticated as
unique human cell lines (Genetica). Established CRC cell
lines were authenticated using STR DNA profiling (Genetica,
Cincinnati, OH). Stable CD36 knockdown HCT116, HT29, and
HT29LuM3 cell lines were established using CD36 shRNAs
from Sigma-Aldrich (TRCN000005699, TRCN0000057000,
and TRCN0000057001). Cells were selected with 10 mg/mL
puromycin. Knockdown was confirmed via quantitative real-
time PCR (qRT-PCR) after cell selection and prior performing
animal experiments. Overexpression cell lines were established
by transfecting HCT116 cells with either pCMV-Spark-CD36
(Sino Biological Inc., NM 001001547.2), td-Tomato-CD36
(Addgene, Plasmid #58077).

Tissue Microarray
Analysis—Immunohistochemistry
Immunoreactivity scores of CD36 (antibody sc-7309, Santa
Cruz Biotechnology) and FASN (antibody #3180, Cell signaling)
expression were analyzed in matched normal colon mucosa and
tumor tissues from patients diagnosed with Stage I–IV CRC
who had surgery at UK Chandler Medical Center (TMA ID
BH15991A, n = 56) by a GI pathologist (EYL) blinded as to
tumor stage. The final immunoreactivity score was determined
by multiplication of the values for staining intensity (0, no
staining; 1, weak; 2, moderate; 3, strong staining) and the values
for percentage of positive tumor cells (0, no positive cells; 1,
0–10%; 2, 11–50%; 3, 51–100% positive).

Tissue Collection
Tissues were obtained from consented patients with Stage II–IV
CRC who had undergone surgery at UK Medical Center (IRB
#16-0439-P2H). 6–8-week-old NSG mice (NOD.Cg-Prkdc Il2rg
/SzJ) from The Jackson Laboratory (Bar Harbor, ME) were used
for PDX models. All procedures were performed using protocols
approved by the UK Animal Care and Use Committee. Briefly,
CRC tissues (2–5mm) obtained from CRC patients of both
sexes were implanted subcutaneously into their flanks in a small
pocket surgically created under the skin. Established tumors
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were designated as generation 0 (G0). Tumor tissues from G0
were minced and mixed with Matrigel to ensure homogeneous
distribution of tissues among mice and allow implantation of
an equal volume of tumor tissues into the flank. Tumor tissues
were resected when they reached an appropriate size and digested
as previously described (1). For evaluation of CD36 expression
in PDX models, we utilized tissue samples from Pt 2402 PDX
model established from a patient diagnosed with metastatic
adenocarcinoma (lung) consistent with colon primary tumor (1).
Pt 2402 PDX tumors were grown to∼200 mm3 then tissues were
collected and lysed for analysis via western blot.

Flow Cytometry
Individual cells from PDX model Pt 2402 were stained for CD36
with fluorescent antibody (Abcam ab23680). Stained cells were
sorted via flow cytometry and the top 10% of GFP positive
CD36 expressing cells (CD36high) and the bottom 10% of GFP
negative cells (CD36low) were sorted separately from the rest of
the tumor cell population. CD36high and CD36low were mixed
with 100 µL of 30% Matrigel and subcutaneously injected into
NSG mice. Tumor growth was monitored for three months.
Samples were taken from subsequent tumors for western blot
analysis and immunohistochemistry and the remaining tumor
tissue was re-sorted for CD36.

Fatty Acid Uptake
HCT116, NTC, and FASN shRNA cells were plated at 10,000
cells/well on an 8-well coverslip u-slide (Ibidi #80826) and treated
with CD36 neutralizing antibody (Cayman Chemical #1009893)
for 24 h. After incubation with neutralizing antibody, cells were
then treated with fluorescent FA analog BODIPY FL (Thermo
Fisher #D3822) for 10min in serum free McCoy’s 5A medium
supplemented with 10% fatty acid free BSA. Cells were washed
twice with PBS and fixed with PBS containing 5% formalin for
20min at 37◦C. Cell were then imaged via confocal microscopy
using a Nikon A1 Confocal Microscope.

Cell Proliferation Assay
CRC cell lines were plated onto 24 well-plates at a concentration
of 30,000 cells per well. Cells were given DMEM medium for
Pt 93 and Pt 130 and McCoy’s 5A medium for HCT116 with
and without FBS to simulate starvation conditions. Cells were
also treated with or without 100 µM SSO (Cayman Chemical) or
0.2 µM TVB-3664 or both. TVB-3664 was provided by Sagimet
Biosciences (Menlo Park, CA). SSO was purchased from Cayman
Chemical (Ann Arbor, MI). Cells were incubated at 37◦C for
6 days. After the incubation period, cells were trypsinized, and
collected individually based on well and condition of treatment.
Cells were counted using a Vi-Cell XR Cell Viability Analyzer
(Beckman Coulter). HCT116, NTC, and CD36 shRNA(#2 and
#4), cells were plated onto 24 well-plates at a concentration of
30,000 cells per well. Cells were cultured in McCoy’s 5A medium
with and without fetal bovine serum for 72 h and counted as
described above.

Quantitative Real-Time PCR
Total RNA was isolated using a RNeasy mini kit (QIAGEN).
cDNA was synthesized using a high capacity cDNA reverse
transcription kit (Applied Biosystems). QRT-PCR was carried
out using a TaqMan Gene Expression Master Mix (#4369016)
according to manufacture protocol and TaqMan probes
for human CD36 (ID Hs00354519 m1), human FASN (ID
Hs01005622 m1), human FATP3 (ID Hs00354519 m1), human
FATP4 (Hs00192700 m1), and human GAPDH (#4333764F;
Applied Biosystems).

Subcutaneous Xenografts
NU/NU mice were injected subcutaneously with 1.0 × 106 cells
of HCT116 NTC (non-targeted control, n = 7), shCD36 #2 (n
= 6), or shCD36 #4 (n = 7) in 100 µL PBS and tumor growth
was monitored. Tumor size was measured via calipers every 3
days and tumor volume was calculated using the formula: TV =

width2 × length/0.52. When NTC tumor growth reached ∼200
mm3, all mice were sacrificed, and tumor weight was taken via
digital scale. NU/NUmice were injected subcutaneously with 2.0
× 106 cells of NTC (n= 5) and shCD36 #4 (n= 5) in 100µL PBS
for HT29 and HT29 LuM3 xenografts experiments.

Genetically Modified Mice
C57BL/6J mice with LoxP-flanked FASN alleles were obtained
from Clay Semenkovich, MD at Washington University, and
FASN/VillinCre and FASN/Apc/VillinCre mouse colonies were
established by mating these mice with C57BL/6J Villin/Cre and
C57BL/6J Apc/Cre mice in Dr. Zaytseva’s laboratory.

RESULTS

CD36 Protein Is Overexpressed in CRC
Upregulation of lipid metabolism is a common characteristic
of many solid malignancies, and frequently, enhanced de novo
lipogenesis occurs concomitantly with enhanced import of lipids
from the extracellular space (3, 28). In our previously published
study we showed that FASN is significantly overexpressed in
primary tumor tissues as compared to matched normal colon
mucosa using tissue microarray analysis (TMA) (29). Using
the same TMA, we assessed the expression of CD36 levels
in tumor tissues and found that expression was significantly
higher as compared to normal colon mucosa as determined by
statistical evaluation of immunoreactivity scores. We noted that
the expression of CD36 is predominantly cytosolic in primary
CRC tumors (Figures 1A,B). Interestingly, statistical analysis via
Spearman Correlation showed a positive correlation between
expression of CD36 and FASN in primary CRC tumor tissues,
but it was not statistically significant (Spearman r = 0.21743, n=
56). We have also detected an increase in expression of CD36 in
CRC metastasis to liver and lung (Figure 1C).

Using The Cancer Genome Atlas (TCGA) data, we also
analyze FASN and CD36 mRNA expression. Consistent with
protein data, the level of FASN mRNA is significantly
higher in tumor tissues as compared to normal mucosa
(Supplementary Figure 1A). In contrast, we found that the
level of CD36 mRNA is significantly lower in cancer tissues
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FIGURE 1 | CD36 is overexpressed in human CRC. (A,B) Immunoreactivity score of CD36 expression was analyzed in matched normal colon mucosa and tumor

tissues from patients diagnosed with Stage I–IV CRC (TMA: n = 56, *p < 0.001 vs. normal tissue). (C) CD36 staining in matched normal colon mucosa, primary CRC,

and CRC metastasis to liver and lung [representative images are shown; liver (n = 12) and lung metastasis (n = 5)]. (D) Correlations between FASN and CD36 was

determined based on RNASeq data of CRC patient samples (n = 22 of normal tissues and n = 215 of tumors) from The Cancer Genome Atlas. (E) Expression of

FASN and CD36 in human normal colon mucosa and tumor tissues. N, normal mucosa; T, primary tumor; L, normal liver tissue; M, liver metastasis.
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as compared to normal tissues (Supplementary Figure 1B).
Interestingly, according to data analysis from The Human
Protein Atlas, the high mRNA expression of CD36 (n = 131) is
associated with poor prognosis in CRC with 5-year survival of
53% of patients as compared to 5-year survival of 64% of patients
with low CD36 mRNA expression (n = 466) (30). Statistical
analysis of correlation between FASN and CD36 revealed a
significant negative correlation between FASN and CD36 mRNA
levels in tumor tissues, but not in normal tissues (Figure 1D).

To further delineate the association between expression of
FASN and CD36, we analyzed the expression of these proteins
in fresh human normal colon mucosa, primary CRC tissues,
and metastasis (Figure 1E). The predicted molecular mass of
CD36 protein is 53kD. However, due to the post-transcriptional
modifications including extensive protein glycosylation, it is
widely reported as ∼80–88 kD protein (16, 18, 31). This size will
be shown for all in vitro and in vivo data in this manuscript. In the
analyzed tissues sample set, the expression of FASN is higher in
primary tumors as compared to normal mucosa in most cases.
Due to FASN being expressed in healthy liver tissue, it is not
suprizing to see that its expression is higher in the normal liver
as compared to liver metastasis. CD36 expression seems to be
higher or the same in primary tumors as compared to normal
colon mucosa. However, expression of CD36, particularly in its
glycosylated form, is much higher in liver metastasis as compared
to normal liver or normal colon mucosa (Figure 1E).

To further analyze CD36 in CRC we analyzed tissues
from PDX models, which retain the intratumorally clonal
heterogeneity and tumor microenvironment of the parent tumor
through passages in mice (10, 32). We analyzed the expression of
CD36 in nine PDXs established from primary tumors and CRC
metastasis (10), and found that CD36 (88kD) is mostly associated
with PDX established from metastatic tumors with the exception
of Pt 2568, which was established from primary CRC tumor (10)
(Supplementary Figure 1C).

Together, these data demonstrate that CD36 is upregulated
and exhibits multiple post-translational modificatios in CRC
and that a significant inverse correlation exists between mRNA
expression of FASN and CD36 in primary human CRC.

FASN Selectively Regulates Expression of
CD36
To test whether alterations in FASN expression affect FA uptake,
we assessed the expression of major FA transporters (FATPs and
CD36) in HCT116 NTC and FASN shRNA CRC cells and found
that FASN selectively upregulates mRNA expression of CD36,
but not other FAs transporters (Figure 2A). To confirm that
FASN selectively upregulates CD36, we treated fresh CRC human
tissue slices with TVB-3664 and assessed the expression of FA
transporters, including CD36. Consistent with our in vitro data,
in all three CRC cases (Supplementary Table 1), we observed
that CD36 mRNA expression increased at least two-fold and as
much as four-fold when tissues were treated with TVB-3664. No
changes were observed in expression of the other FA transporters
tested (Figure 2B).

To further elucidate whether the level of endogenous
fatty acid synthesis affects the expression of CD36, we next
treated primary CRC cells from Pt 93 and Pt 130 with

TVB-3664 for six days at a concentration of 0.2 µM as
previously described (10). Inhibition of FASN led to an
increase in CD36 mRNA and protein expression in both cell
lines (Figure 2C). Consistently, shRNA-mediated knockdown of
FASN in HCT116 and HT29 cell lines led to an increase in
CD36 expression in normal and hypoxic conditions in both
cell lines (Figure 2D, Supplementary Figure 2A). Interestingly,
shRNA-mediated knockdown of CD36 does not affect FASN
expression, suggesting a one-dimensional relationship between
the two proteins (Supplementary Figure 2B).

The adenomatous polyposis coli (APC) gene product is
mutated in the vast majority of human CRC and deletion of
the APC gene leads to intestinal tumor formation in mice
(33). In agreement with in vitro data, the analysis of intestinal
tumors from mice with hetero- and homozygous deletions of
FASN on C57BL/6-Apc/Cre background showed that deletion of
FASN significantly upregulates CD36 expression (Figures 2E,F).
Collectively, these data suggest that inhibition of FASN leads to
selective upregulation of CD36 expression.

Inhibition of FASN Leads to CD36
Translocation to Plasma Membrane
Confocal imaging of primary Pt 93 CRC cells, control, and
treated with TVB-3664, shows that CD36 protein expression is
upregulated and primarily localized to the plasma membrane
when FASN is inhibited by TVB-3664 (Figure 2G). To confirm
these data, primary CRC cells from Pt 93 and Pt 130 were
treated with 0.2 µM TVB-3664 for 6 days in normal or serum-
starved conditions and labeled with CD36-FITC antibody. Flow
cytometry analysis was performed; the results confirmed that
inhibition of FASN activity by TVB-3664 led to an increase
in membrane-associated CD36 when compared to control cells
in both cell lines in normal and serum-starved conditions
(Figure 2H).

To confirm that this upregulation and translocation of CD36
to the plasma membrane was related to FA metabolism, a FA
uptake assay was performed. HCT116, NTC, and FASN shRNA
cells were plated and treated with BODIPY FL and imaged
using confocal microscopy. We observed that FASN knockdown
increases FA uptake as indicated by an increase in BODIPY FL
staining (Figure 2I). Furthermore, to test that this increase in FAs
within the cell was due to CD36 upregulation, we treated NTC
and FASN shRNA cells with neutralizing antibody for CD36.
As shown in Figure 2I, blocking CD36 has a minimum effect
in NTC cells, but significantly decreases BODIPY FL uptake in
FASN shRNA cells, further confirming that inhibition of FASN
increases FA uptake via upregulation of CD36.

Inhibition of CD36 Reduces CRC Cell
Proliferation in vitro
We have previously shown that stable knockdown and
pharmacological inhibition of FASN are associated with a
decrease in cellular proliferation and tumor growth (7, 10).
However, the observed effects in vivo were not as prominent
as the effects in vitro, suggesting the potential compensatory
effects of diet and exogeneous FA uptake on tumor growth
(7, 10). To test whether blocking fatty-acid uptake via CD36
has an effect on CRC cell proliferation, primary CRC cells,
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FIGURE 2 | Expression of CD36 is selectively regulated by the level of de novo fatty acid synthesis in CRC. (A) shRNA-mediated knockdown of FASN leads to

upregulation of CD36 mRNA expression in HCT116 cells (*p < 0.05). (B) TVB-3664 treatment of CRC tissue slices (18 h) selectively upregulates CD36 mRNA

expression (*p < 0.05). (C) TVB-3664 treatment of Pt 93 and Pt 130 primary CRC cells increases CD36 mRNA and protein expression. (D) shRNA mediated

knockdown of FASN increases CD36 protein expression in HCT116 and HT29 cells. (E) Relative mRNA expression of FASN and CD36 in intestinal tumors collected

from APC/Cre and FASN+/−/APC/Cre mice. (F) FASN and CD36 protein expression in intestinal mucosa collected from Apc/Cre and Apc/Cre mice with hetero- and

homo-zygous deletion of FASN. (G,H) Inhibition of FASN increases membrane-associated expression of CD36. (G) Confocal images of FASN and CD36 in control and

0.2µM TVB-3664 treated (6 days) Pt 93 primary CRC cells. (H) Flow cytometry analysis of Pt 93 and Pt 130 primary CRC cells treated with 0.2µM TVB-3664 (6 days)

in normal and serum free media conditions. Mean fluorescence for CD36 is shown for representative data from three different experiments (**p < 0.01, *p < 0.05). (I)

FA uptake in HCT116, NTC, and FASN shRNA. Cells were pre-treated with anti-CD36 antibody or vehicle for 24 h and then treated with BODIPY FL for 10min.
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FIGURE 3 | Inhibition of CD36 is associated with decreased cellular proliferation. (A) Primary Pt 93 and Pt 130 CRC cells treated with 100µM SSO for 6 days. Cellular

proliferation assays were performed via cell count. Representative data from three experiments is shown (*p < 0.05). (B) Confocal images of FASN and CD36 in Pt 93

cells in normal and serum free media (6 days). (C) Expression of proteins associated with apoptosis and survival in HCT116 transfected with CD36 shRNAs and

analyzed via western blot. (D) Cellular proliferation assay with HCT116, NTC, and CD36 shRNA (*p < 0.05 for normal medium, #p < for SFM). (E) qRT-PCR

confirmation of CD36 knockdown using CD36 shRNA #2 (73%) and CD36 shRNA #4 (67%).

Pt 93 and Pt 130, were treated with the chemical CD36
inhibitor sulfosuccinimidyl oleate (SSO), which binds to
CD36 via Lys164 in the hydrophobic cavity thereby impairing
CD36-mediated fatty acid uptake (18, 34), at 100 µM in both
normal and serum free medium (SFM) conditions. Under
both conditions, primary CRC cells treated with SSO exhibited
decreased cellular proliferation. Interestingly, sensitivity of
both cell lines to SSO increased in SFM (Figure 3A). To
evaluate differences in CD36 expression in normal and
SFM, we performed confocal microscopy on Pt 93 cells
cultured in normal and SFM conditions. We found that
starvation of CRC cells leads to upregulation of CD36, which
could explain an increase in sensitivity to SSO treatment
(Figure 3B).

To assess the effect of CD36 overexpression on apoptotic
markers we performed an Apoptosis Antibody Array.
Data showed that overexpression of CD36 decreased
caspase-3 cleavage and increased expression of survivin, a
protein overexpressed in most transformed cell lines and
malignancies and associated with poor clinical outcome
(Supplementary Figure 3A) (27, 35). Consistently, western
blot analysis of control and SSO-treated Pt 130 and Pt 93
primary CRC cells showed an increase in cleaved caspase-3
in both cell lines. A decrease in expression of survivin was

observed in Pt 130 cells only (Supplementary Figure 3B).
Consistent with pharmacological inhibition of CD36, shRNA-
mediated knockdown of CD36 lead to a significant decrease in
cellular proliferation and expression of survivin and pAkt in
HCT116 cells (Figures 3C–E). Furthermore, shRNA-mediated
knockdown of CD36 inhibits colony formation in the HT29
cell line (Supplementary Figure 3C). Together, these data
demonstrate that CD36 promotes cellular proliferation
in CRC.

Inhibition and Knockdown of CD36
Reduces Xenograft Tumor Growth in vivo
To further investigate the role of CD36 in CRC tumor growth,
HCT116 subcutaneous xenografts were treated with vehicle
or SSO daily for 5 weeks. SSO treatment lead to significant
decreases in tumor volume compared to vehicle control with no
observable SSO toxicity as indicated by unchanged animal weight
(Figure 4A). Furthermore, consistent with in vitro data, analysis
of tumor tissues treated with SSO show a decrease in survivin
mRNA (Figure 4B). FASN mRNA expression does not change
with inhibition of CD36, further supporting the notion of a one
directional relationship between the two proteins. Interestingly,
SSO treatment led to an increase in CD36 mRNA suggesting that
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FIGURE 4 | SSO treatment and CD36 knockdown inhibit tumor growth in vivo. (A) Tumor volume, tumor weight, and mouse weight of control and SSO treated (20

mg/kg) mice are shown. SSO was dissolved in 10% PEG and administered in 200 µl dosages via oral gavage daily. 1.0 × 106 cells were injected into NU/NU mice.

Treatment was initiated when tumors reached ∼100 mm3 (day 0). (B) RT-PCR analysis of HCT116 tumors showing the effect of SSO treatment on CD36, FASN, and

survivin mRNA expression. (C) Tumor volume of HCT116 NTC and CD36 shRNA #2 and #4 xenografts is shown. 1.0 × 106 cells were injected into NU/NU mice and

tumor growth was measured every 3 days. (D) H&E and Ki67 staining of HCT116 NTC and CD36 shRNA tumors. (E) Tumor volume and tumor weight of HT29 LuM3

NTC and CD36 shRNA #4 xenografts are shown. (F) mRNA expression of survivin in HT29 LuM3 xenografts (analysis of tumors from 2 mice per group is show).

the potential compensation for the lack of functional CD36 was
due to antagonistic action of SSO (Figure 4B).

To further investigate the role of CD36 in CRC tumor growth,
the CRC cell lines, HCT116, HT29, and HT29 LuM3 [an HT29
cell line that was trained to efficiently metastasize to lung via
in vivo selection process (36)], were established as subcutaneous
xenografts. Interestingly, in vivo selection led to an increase
in CD36 expression in HT29 LuM3 as compared to parental
HT29 cells (Supplementary Figure 4A). HCT116, HT29, and
HT29 LuM3 cells (NTC and shRNA-mediated CD36 knockdown
cell lines) were injected subcutaneously into Nu/Nu mice and
tumor growth was measured. Knockdown of CD36 in HCT116
cells markedly attenuated the growth of xenograft tumors
compared to NTC (Figure 4C, Supplementary Figure 4B). In

the case of CD36 shRNA #2 and CD36 shRNA #4 cells, we
were able to identify microtumors at the site of injections.
Tumor tissues were stained for Ki67, a known marker for
tumor cell proliferation and growth (37). Ki67 expression was
greatly reduced in CD36 knockdown tumors as compared
to control (Figure 4D). In contrast to HCT116 cells, CD36
knockdown in HT29 did not significantly affect tumor growth,
suggesting that this cell line may not be dependent on CD36
due to considerably lower CD36 expression as compared
to HCT116 cells (Supplementary Figures 4A,C,D). However,
CD36 knockdown using CD36 shRNA #4 in HT29 LuM3 cells,
which have higher levels of CD36 expression as well as higher
metastatic potential (36) (Supplementary Figure 4A), lead to a
more prominent inhibition of tumor growth and a decrease in
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FIGURE 5 | High expression of CD36 is associated with an increase in pAkt and survivin in CRC. (A) Diagram of Pt 2402 propagation after flow cytometry sorting for

CD36high and CD36low cells. (B) Numbers of CD36high and CD36low Pt 2402 cells for first and second flow cytometry sorts. (C) Protein expression levels of FASN,

CD36, and survivin in CD36high and CD36low Pt 2402 primary cells from first flow cytometry sort. (D) IHC staining for Ki67 in Pt 2402 CD36high and CD36low tumors.

(E) Protein expression levels of FASN, CD36, pAkt, cleaved PARP, and survivin in HCT116 CRC cells, control, and CD36 overexpression.

tumor weight (Figure 4E). Moreover, consistent with our in vitro
data, qRT-PCR analysis of tumor tissues demonstrates a decrease
in survivin expression when CD36 is knocked down in HT29
LuM3 tumors (Figure 4F). Thus, these data further support the
role of CD36 in promoting CRC tumor growth.

High Expression of CD36 Is Associated
With an Increase in Survivin in CRC
To further establish that CD36 promotes cellular proliferation via
upregulation of pro-survival pathways, we utilized a PDX tumor
model, Pt 2402, which was established from a CRC metastasis
to the lung (10) and is positive for CD36 expression (see
Supplementary Figure 1C). Tumor tissue from first generation
Pt 2402 PDX was inoculated into NOD/SCID mice and grown to
∼1 cm3 volume. The tumor was excised, digested as previously
described to a single cell suspension (29), stained with CD36-
FITC and sorted via flow cytometry. The top 10% of the brightest
green fluorescent protein (GFP) positive cells (117,000 cells),
designated CD36high, and the bottom 10% of GFP negative cells
(3,120,000 cells), designated CD36low, were sorted separately,
placed in Matrigel, and sequentially implanted into NOD/SCID
mice and allowed to grow. The tumor established from CD36high

cells grew much larger compared to the CD36low tumor (tumor
volume 2,419.64 vs. 53.57mm3, respectively; Figures 5A,B).
Western blot analysis of tumor tissues from CD36high and
CD36low cells showed an increase in survivin expression in
the CD36high tumors in comparison to the CD36low tumors
(Figure 5C). Interestingly, similar to our data obtained from
TMA analysis, we observed that FASN was higher in CD36high

cells as compared to CD36low cells, further supporting a potential
interconnection between these two proteins (Figure 5C). Ki67
staining of Pt 2402 CD36high and CD36low tumors showed a
significant reduction in Ki67 expression in the CD36low tumors
compared to CD36high (Figure 5D).

To confirm that an increase in CD36 expression is associated
with an increase in survivin expression, we overexpressed CD36
in the established HCT116 CRC cell line. Western blot analysis
of HCT116 cells demonstrated CD36 overexpression leads to
an increase in expression of survivin and activation of Akt, an
upstream translational regulator of survivin in CRC (38), as
well as a decrease in cleaved-PARP (Figure 5E). Therefore, taken
together, our data suggest that upregulation of pAkt and survivin
are potential mechanisms by which CD36 promotes CRC cell
proliferation and tumor growth.
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FIGURE 6 | Inhibition of CD36 and FASN have a synergetic effect in reducing cell proliferation. (A) Pt 93, Pt 130, and HCT116 cells were treated with SSO and

TVB-3664 alone or in combination for 6 days and cell number was counted. Representative data from three experiments is shown (*p < 0.05). (B) Western blot

analysis of cells treated with TVB-3664, SSO, or TVB-3664 and SSO in combination.

Inhibition of FASN and CD36 in
Combination Reduce Primary CRC Cell
Proliferation in vitro
Both de novo synthesized and exogenous FA play important roles
in carcinogenesis (28, 39), To extend our findings that FASN
inhibition upregulates the expression of CD36 and to further test
whether inhibition of CD36 can improve the efficacy of TVB-
3664, primary CRC cells from Pt 93 and Pt 130 were treated with
CD36 inhibitor SSO and FASN inhibitor TVB-3664, alone or in
combination, in both normal and serum-starved media. Cellular
proliferation was significantly reduced in both SSO- and TVB-
3664-treated cells and was further significantly reduced in cells
that received combination treatment (Figure 6A). Western blot
analysis of CRC cells treated with a combination of TVB-3664
and SSO shows that combination treatment significantly reduces
expression of survivin in Pt 130 and HCT116 cell lines but not in
Pt 93 cell line as compared to control or single agent treatment
alone (Figure 6B). Combination treatment was also associated
with reduced expression of cyclin D1 in Pt 93 and HCT116 cell
lines. Interestingly, cyclin D1 in Pt 130 cells increased expression

in combination treatments. This suggests a different mode of
action and sensitivity to SSO and TVB-3664 in Pt 130 when
compared to other CRC cell lines. Collectively, these data suggest
that inhibition of both FA synthesis and FA uptake may be a
potential therapeutic strategy for CRC. However, further studies
are necessary to evaluate the effect of combinational treatment
in vivo.

DISCUSSION

Our previous studies demonstrate that the effect of FASN
inhibition on cellular proliferation in vitro does not always
translate to the same effect on tumor growth in vivo (7, 10).
Despite a significant decrease in cellular proliferation in primary
CRC cell lines treated with TVB-3664, the efficacy of TVB-
3664 in PDX models was much lower, suggesting a potential
compensatory impact of diet on the effect of FASN inhibitors
(10, 14). Therefore, the goal of this study was to delineate the
effect of FASN inhibition on exogeneous FA uptake and elucidate
the effect of FA uptake on sustaining cellular proliferation.
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Here, for the first time, we report that inhibition of FASN
leads to a selective upregulation of CD36 expression. CD36
enhances FA uptake and FA oxidation, and plays a critical
role in cancer cell growth and metastasis (20, 21, 24, 40, 41).
Consistent with reports that CD36 is upregulated in breast
cancer and glioblastoma (42), we found that CD36 is highly
expressed in CRC as compared to normal mucosa. Tumor
stroma is deficient in CD36 expression (43). High stromal
content in fresh primary CRC tumors can potentially explain
why fresh CRC tissue analysis shows inconsistent results for
CD36 expression in primary CRC as compare to normal colon.
Based on tissue analysis, we found that high expression of
CD36 is primarily associated with CRC metastasis, suggesting
that metastatic tumors are more dependent on FA uptake as
compared to primary CRC. Our findings are supported by
multiple studies showing the involvement of CD36 in metastatic
disease (24, 44, 45). Interestingly, even though we have identified
a positive correlation between the protein expression of FASN
and CD36 using TMA analysis, based on TCGA data, there is
a significant inverse correlation between these two proteins at
the mRNA levels. Indeed, we found that inhibition of FASN
selectively upregulates CD36 mRNA and protein expression,
but not expression of other FA transporters in multiple models
including CRC cells, tumor xenografts, genetically modified
mice and in human tissues. Interestingly, we did not note any
significant changes in FASN expression when the expression of
CD36 was altered, suggesting that the level of de novo lipid
synthesis is not regulated by FA uptake via CD36 in our modes.
Current understanding of the regulation of CD36 expression
is rather limited (46), and how CD36 expression is regulated
in cancer, and in particular in CRC, is not known. Several
transcriptional activators have been implicated in regulation
of CD36 expression including peroxisome proliferator-activated
receptors (PPARs), CCAAT/enhancer-binding protein, and HIF-
1 (16). Ongoing studies in our laboratory are investigating CD36
expression in different cell types in primary and metastatic CRC
and potential mechanisms of CD36 regulation by FASN.

It has been reported that siRNA-mediated inhibition of CD36
decreases cellular proliferation in MCF-7 breast cancer cells
(19). Additionally, CD36 has pro-tumorigenic and progression
properties in glioblastoma stem cells (21). In agreement with
these data, our study shows that chemical inhibition and stable
knockdown of CD36 via shRNA in established and primary
CRC cells decrease cellular proliferation. Consistent with data
using a specific small molecule CD36 inhibitor, 2-methylthio-
1,4-napthoquinone (MTN), in glioblastoma stem cells (21),
inhibition of CD36 with SSO is associated with a decrease in
activation of pAkt. We have also showed that CD36 regulates
survivin, a member of the inhibitor of apoptosis (IAP) family
that is highly expressed inmost cancer and associated with a poor
prognosis (47). The pro-survival role of CD36 in CRC is further
supported by data showing that Pt 2402 CD36high cells have a
much higher propensity to establish xenograft tumors, which
grow significantly faster and express higher levels of survivin, in
comparison to CD36low cells.

Interestingly, in a previously published study in oral
carcinoma, the effect of CD36 inhibition was associated with
inhibition of metastasis, but not with growth of primary oral

cancers (24). In contrast to these findings, our study suggests a
critical role of CD36 in CRC proliferation and tumor growth in
vivo with both chemical inhibition via SSO as well as shRNA-
mediated knockdown of CD36 in xenografts using multiple
established cell lines.

Novel FASN inhibitors, TVBs, have demonstrated anticancer
activity in multiple preclinical models (3), and TVB-2640
is currently in a number of clinical trials, including one
at the University of Kentucky’s Markey Cancer Center
(https://www.cancer.gov/about-cancer/treatment/clinical-trials/
search/v?id=NCI-2016-01710&r=1). Thus, it is crucial to identify
and understand potential resistance mechanisms to FASN-
targeted therapy. The current study demonstrates that inhibition
of FASN leads to upregulation of CD36 expression and its
translocation to the plasma membrane. One of the primary roles
of CD36, when located within the cell membrane, is the transport
of FAs (15, 16). Therefore, this upregulation of membrane
bound CD36 and, consequently, an increase in FA uptake, could
be a potential mechanism of resistance to FASN inhibition.
Importantly, our data demonstrate that the combined inhibition
of CD36 and FASN has a synergistic effect on inhibition of
cellular proliferation as well as survivin and cyclin D1, further
suggests that targeting FA uptake may be a potential therapeutic
approach to increase the efficacy of FASN inhibitors.

We previously reported that the level of FASN expression
determines the sensitivity of tumors to TVBs compounds (10).
Consistently throughout this study, we observed that the higher
expression of CD36 in HT29 LuM3 cells (36) as compared
to parental HT29 cells, makes these cells more sensitive to
CD36 inhibition via CD36 shRNA and inhibits xenograft tumor
growth to a higher extent as compared to HT29 xenografts.
Furthermore, the mutational and metabolic profiles of tumors
determine tumor cell response to multiple therapies including
metabolic inhibitors (48, 49). Different genetic profiles and
metabolic features can explain the varying levels of response
of cell lines to FASN and CD36 inhibition. Pt 93 and Pt 130
cells have KRAS and V600E BRAF mutations. The Pt 130 cell
line also carries an FGFR mutation (10). The HCT116 cell line
is a KRAS mutant, but BRAF wild type as compared to HT29
which has a V600E BRAF mutation but KRAS wild type (50).
In addition, TVB-3664 seems to have more efficacy in activating
PARP cleavage as compared to SSO, suggesting that inhibition of
lipid synthesis leads to activation of apoptosis through distinct
pathways other than those related to the inhibition of FA uptake.
Our ongoing studies in the laboratory are focused on identifying
the mutational and metabolic features of tumors that would
determine their sensitivity to lipid metabolism targeted therapies.

Multiple studies suggest that fatty acid metabolism in adipose
tissue is a major contributor to the etiology of obesity and
diabetes (51). Obesity is associated with chronic elevation of free
fatty acids, which promote insulin resistance and contribute to
the development of systemic hyperglycemia (52). Interestingly,
FASN expression is directly linked to obesity and type 2 diabetes
(53) and CD36 protein expression is upregulated in both obese
patients and type 2 diabetics (54). Therefore, the findings from
this study support the idea that targeting both FASN and CD36
in combinationmay have therapeutic potential not only in cancer
but also in metabolic disorders such as obesity and diabetes.
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This report is the first to describe the functional importance of
CD36 and its indolent role in fatty acid metabolism in the setting
of CRC. It is also the first to describe the interconnection between
FASN and CD36 and provides a strong rationale for further
investigation into the interconnection of de novo lipogenesis and
FA uptake that could potentially lead to the development of new
therapeutic strategies for CRC and other solid malignancies, and
potentially some metabolic disorders as well.
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Carlos Pérez-Plasencia,
National Autonomous University of Mexico,
Mexico

REVIEWED BY

Bernd Heinrich,
National Institutes of Health (NIH),
United States
Mohamed S. Abdel-Hakeem,
Emory University, United States

*CORRESPONDENCE

Sascha Kahlfuss

sascha.kahlfuss@med.ovgu.de

Dimitrios Mougiakakos

dimitrios.mougiakakos@med.ovgu.de

SPECIALTY SECTION

This article was submitted to
Cancer Metabolism,
a section of the journal
Frontiers in Oncology

RECEIVED 02 October 2022

ACCEPTED 11 January 2023

PUBLISHED 17 February 2023

CITATION

Jantz-Naeem N, Böttcher-Loschinski R,
Borucki K, Mitchell-Flack M, Böttcher M,
Schraven B, Mougiakakos D and Kahlfuss S
(2023) TIGIT signaling and its influence on
T cell metabolism and immune cell
function in the tumor microenvironment.
Front. Oncol. 13:1060112.
doi: 10.3389/fonc.2023.1060112

COPYRIGHT

© 2023 Jantz-Naeem, Böttcher-Loschinski,
Borucki, Mitchell-Flack, Böttcher, Schraven,
Mougiakakos and Kahlfuss. This is an open-
access article distributed under the terms of
the Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that
the original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

TYPE Review

PUBLISHED 17 February 2023

DOI 10.3389/fonc.2023.1060112
TIGIT signaling and its influence
on T cell metabolism and
immune cell function in the
tumor microenvironment

Nouria Jantz-Naeem1, Romy Böttcher-Loschinski2,
Katrin Borucki3, Marisa Mitchell-Flack4, Martin Böttcher2,5,
Burkhart Schraven1,5, Dimitrios Mougiakakos2,5*

and Sascha Kahlfuss1,5,6,7*

1Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University
Magdeburg, Magdeburg, Germany, 2Department of Hematology and Oncology, University Hospital
Magdeburg, Otto-von-Guericke University Magdeburg, Magdeburg, Germany, 3Institute of Clinical
Chemistry, Department of Pathobiochemistry, Medical Faculty, Otto-von-Guericke University
Magdeburg, Magdeburg, Germany, 4Department of Oncology, The Bloomberg~Kimmel Institute for
Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, United States,
5Health Campus Immunology, Infectiology and Inflammation (GCI), Medical Faculty, Otto-von-Guericke
University Magdeburg, Magdeburg, Germany, 6Institute of Medical Microbiology and Hospital Hygiene,
Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany, 7Center for Health
and Medical Prevention (CHaMP), Otto-von-Guericke-University, Magdeburg, Germany
One of the key challenges for successful cancer therapy is the capacity of tumors

to evade immune surveillance. Tumor immune evasion can be accomplished

through the induction of T cell exhaustion via the activation of various immune

checkpoint molecules. The most prominent examples of immune checkpoints are

PD-1 and CTLA-4. Meanwhile, several other immune checkpoint molecules have

since been identified. One of these is the T cell immunoglobulin and ITIM domain

(TIGIT), which was first described in 2009. Interestingly, many studies have

established a synergistic reciprocity between TIGIT and PD-1. TIGIT has also

been described to interfere with the energy metabolism of T cells and thereby

affect adaptive anti-tumor immunity. In this context, recent studies have reported a

link between TIGIT and the hypoxia-inducible factor 1-a (HIF1-a), a master

transcription factor sensing hypoxia in several tissues including tumors that

among others regulates the expression of metabolically relevant genes.

Furthermore, distinct cancer types were shown to inhibit glucose uptake and

effector function by inducing TIGIT expression in CD8+ T cells, resulting in an

impaired anti-tumor immunity. In addition, TIGIT was associated with adenosine

receptor signaling in T cells and the kynurenine pathway in tumor cells, both

altering the tumor microenvironment and T cell-mediated immunity against

tumors. Here, we review the most recent literature on the reciprocal interaction

of TIGIT and T cell metabolism and specifically how TIGIT affects anti-tumor

immunity. We believe understanding this interaction may pave the way for

improved immunotherapy to treat cancer.
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1 Introduction

1.1 Reciprocal metabolic interaction
of tumor cells and T cells within the
tumor microenvironment

Tumors are notorious for evading surveillance of the immune

system via T cell hyporesponsiveness and dysfunction (1, 2). In

particular, limited nutrient availability, in particular the scarcity of

glucose (3) and tryptophan (4, 5) which are required for normal cell

functionality, in the tumor microenvironment (TME) due to

competition can impair CD8+ cytotoxic T cells (CTL) proliferation,

survival, and effector function (4–6). In this context, tumor cells have

been shown to express the enzyme indoleamine 2,3-dioxygenase

(IDO), which on the one hand depletes tryptophan, a critical amino

acid needed for T cell proliferation (4, 5), and on the other hand

produces kynurenine, a T cell suppressive metabolic ‘waste’ product

(7). It is noteworthy that the role of effector CD4+ T cells during anti-

tumor immunity is not as well resolved as it is for CD8+ T cells (8). In

addition, hypoxia within the TME can diminish anti-tumor activity

directly by inhibiting NK cell-mediated killing (9), or by inducing T

cell apoptosis through inhibition of CCR7 expression via the A2A

receptor signaling pathway (10). Hypoxia has also been demonstrated

to upregulate immune checkpoint proteins such as PD-L1 on tumor

cells (11–13). Additionally, metabolites produced by tumor cells can

promote tumor immune evasion. In this regard, adenosine, a

byproduct of the enzymatic breakdown of adenosine 5 ’-

triphosphate (ATP) via the ectonucleotidases CD39 and CD73,

promotes tumor growth, survival, and metastasis and also impairs

CD8+ T cell signaling and function (14–18). Furthermore,

acidification of the TME through the generation of lactic acid by

the tumor itself impairs respiration, chemotaxis, and cytokine

production of CTLs (6, 19). Altogether, the TME is a unique

metabolic niche that consists of several mechanisms to escape

immune surveillance by impairing T cell metabolism and

effector function.
1.2 The role of T cell and tumor cell
metabolism for anti-tumor immunity

For T cells to be able to undergo essential processes such as

proliferation, growth and differentiation, they need to metabolically

adapt to their new requirements, a process also referred to as

metabolic reprogramming (20, 21). Naïve T cells mainly make use

of fatty acid oxidation, while activated T cells tend to shift from the

energetically more favorable oxidative phosphorylation (OXPHOS) to

the Warburg metabolism (22–24) to fulfill their need for various

metabolic resources. In order to facilitate this kind of metabolic

reprogramming during T cell activation, several different signaling

cascades and transcription factors come into play. IL-2, a classical

growth factor cytokine, and the ligation of costimulatory proteins will

enable the metabolic transition to glycolysis by increasing the

expression of nutrient transporters and activation of mTOR, a key

metabolic regulator (25–27). Together with c-Myc, a protein that

activates the transcription of metabolic genes essential for T cell
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activation (28), mTOR induces the increased expression of glucose

transporter 1 (GLUT1) and CD98, a protein responsible for

transporting amino acids into the cell (29). To summarize, it can be

stated that the metabolic profile of T cells will determine their

functional state.

There is increasing appreciation for the fact that a metabolic

interplay between tumor and immune cells exists in the TME (30, 31).

Further, there is evidence that immune checkpoint proteins

themselves have an effect on T cell metabolism, reviewed

comprehensively by Lim et al. (32). Kleffel et al. (33) have

demonstrated that melanoma cell intrinsically expressed PD-1

upregulates the Akt/mTOR signaling pathway in cancer cells. In

another study by Chang et al. (31), tumor PD-L1 expression

promoted glycolysis and the activation of Akt/mTOR in tumor

cells, while simultaneously suppressing the activity of mTOR in T

cells by competing for glucose. The blocking of PD-L1, PD-1 and

CTLA-4 resulted in altered concentrations of extracellular glucose

(31). This is noteworthy as acidosis in the TME can limit the anti-

tumor activity of CTL, as well as suppress their proliferation and

cytokine production (34). It is plausible to assume that several

immune checkpoint proteins can promote glycolysis in tumor cells,

therefore creating a nutrient competitive scenario between tumor cells

and immune cells within the TME.
1.3 Immune checkpoints in T cell immunity

To elicit a successful immune response against tumors, T cells

need to become fully activated. This activation depends on two

distinct signals. The first signal represents the engagement of the T

cell receptor (TCR) by cognate peptide:MHC class I or II complexes

(pMHC) presented by antigen presenting cells (APCs) (35). The

second signal involves the co-stimulation via B7 proteins on APCs

that interact with cluster of differentiation (CD)28 expressed on the

surface of T cells (36, 37). Unchecked and/or persistent activation of T

cells could lead to aberrant inflammation causing severe damage to

host tissue. Because of this, it is necessary that T cell activation is

closely regulated by co-stimulatory and co-inhibitory proteins,

referred to as immune checkpoints (38).

In the past 10 years, the development of novel immunotherapies

has been enormously successful especially within the areas of

chimeric antigen receptor (CAR) T cells (39), bispecific antibodies

capable of binding two targets simultaneously (40), and immune

checkpoint inhibitors (ICI) (41). However, despite the enormous

success of ICIs, many patients show or acquire resistance to

treatment with ICIs (42). Consequently, the latter has resulted in a

need for the identification of novel immune checkpoints such as

lymphocyte activation gene-3 (LAG3) (43), V-domain Ig suppressor

of T cell activation (VISTA) (44), B and T cell attenuator (BTLA) (45),

B7 homolog 3 protein (B7-H3) (46), T cell immunoglobulin and

mucin-domain containing-3 (TIM3) (47) and T cell immunoglobulin

and ITIM domain (TIGIT) (48). These proteins each have distinct

ligands and suppress T cell function through several mechanisms to

ensure there is proper regulation of the T cell response. In the

following paragraphs, we will briefly introduce several immune

checkpoints by structure and function. Figure 1 details these
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structural differences and similarities between the different

immune checkpoints.

1.3.1 PD-1
Programmed Death-1 (PD-1) is a type I transmembrane protein

that is expressed in several immune cells, such as T, B, and NK cells.

Structurally, it is composed of an extracellular immunoglobulin-like

binding domain, a transmembrane region and a cytoplasmic domain

containing an immunoreceptor tyrosine-based inhibitory motif

(ITIM) and an immunoreceptor tyrosine-base switch motif (ITSM)

(49). Engagement of PD-L1 with its receptor results in T cell

dysfunction, exhaustion, and production of the immunosuppressive

cytokine IL10 within the tumor (50). With the FDA approval for

Nivolumab and Pembrolizumab, the potential of blocking PD-1 was

realized and successfully applied to improve patient outcomes.

1.3.2 CTLA-4
Cytotoxic T lymphocyte antigen 4 (CTLA-4), also known as

CD152, and CD28 are homologous receptors expressed on T cells.

While structurally similar, they mediate opposing functions in T cell

activation (51–54). Blockade of CTLA-4, such as with Ipilimumab

(55), results in the amelioration of the immune response

against tumors.

1.3.3 LAG3
LAG3 and CD4 share very similar structures in that they both

have four extracellular Ig-like domains (56, 57). Interestingly, LAG3

has a 100-fold higher binding affinity with MHC class II (MHCII)

compared to CD4, which is why MHCII is presumed to be the ligand

for LAG3 (43) and why LAG3 may be a negative competitor of CD4

(58–62).
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1.3.4 TIM3
Contrary to other immune checkpoint proteins, TIM3 does not

consist of classical inhibitory signaling motifs such as ITIMS, but

instead contains five conserved tyrosine residues (47). Two of these

residues can be phosphorylated by Src kinases and are essential for

downstream signal transduction (63, 64). Thus far, four distinct

ligands, both soluble and surface-bound, have been found to

interact with the IgV domain of TIM3 (phosphatidylserine

(PtdSer), high-mobility group box-1 protein (HMGB1),

carcinoembryonic antigen-related cell adhesion molecule 1

(CAECAM-1) and galectin-9 (Gal-9)) (65). It is noteworthy to

mention that PD-1 and TIM-3 can share ligands, as is the case with

Gal-9 (66). Tumor-infiltrating dendritic cells (DC) highly express

TIM3, which can compete with nucleic acid binding to its ligand

high-mobility group protein B1 (HMGB1), reducing anti-tumor

immunity otherwise mediated by nucleic acids (67). TIM3 also

works to inhibit T cells via interaction with the ligand Caecam1 (68).
1.3.5 TIGIT
T cell immunoglobulin and ITIM domain (TIGIT) was first

identified in 2009 as an inhibitory immune checkpoint by Yu et al.

(48). TIGIT has an extracellular immunoglobulin variable region, a

transmembrane domain, as well as a cytoplasmic portion that

contains an ITIM and an immunoglobulin tail tyrosine (ITT)-like

phosphorylation motif (48), by which it delivers its inhibitory signals.

TIGIT expression is restricted to lymphocyte and is found mainly on

memory T cells and regulatory T cells (Tregs) as well as on NK cells

(48, 69). Niebel et al. (70) have suggested that the expression of TIGIT

mRNA is regulated via the methylation of the TIGIT gene. TIGIT

binds to poliovirus receptor (PVR), also known as CD155 (71) with

the highest binding affinity, as well as PVR ligand (PVRL) 2, also
FIGURE 1

Structure of different immune checkpoints. Immune checkpoints and their structure expressed on T cells (bottom) and their respective ligands expressed
on APCs (top). Depicted here are CTLA-4, PD-1, TIGIT, TIM-3 and LAG3. APC, antigen presenting cell; CTLA-4, Cytotoxic T lymphocyte antigen 4;
PD-1, Programmed Death-1; TIGIT, T cell immunoglobulin and ITIM domain; TIM-3, T cell immunoglobulin domain and mucin domain 3; LAG3,
lymphocyte activation gene-3.
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known as CD112 or Nectin-2 and PVRL3, also known as CD113 or

Nectin-3 with lower affinity (71). Similar to CTLA-4/B7/CD28

pathway (72), TIGIT achieves its inhibitory effects by competing

with other ligands such as CD266 or CD96 (73). The hypothesis that

TIGIT inhibits T cell proliferation has been tested by several groups

(74–76) and they reported a direct inhibitory effect.

Concerning the immunosuppressive effect of TIGIT, several

mechanisms may explain its function. Among them, TIGIT

signaling has been shown to inhibit NK cell degranulation and

cytotoxicity (69, 77), where Stanietsky et al. (69) have demonstrated

that this inhibitory effect is mediated directly via the ITIM of TIGIT.

Additionally, TIGIT prevents CD226 signaling in T cells by

preventing the homodimerization of the protein (78). CD226

transmits an activating signal and consequently induces the

aggregation of LFA-1, an important integrin involved in T cell

migration as well as cytotoxicity (79), where aggregation of

integrins affects their conformation and the interaction with their

ligand (80). The Treg response has also been reported to be

modulated by TIGIT (78, 81). In these studies, TIGIT+ Tregs

express higher levels of classical Treg genes, such as the

transcription factor forkhead box P3 (FoxP3), and the surface

molecules CD25 and CTLA-4. The engagement of TIGIT further

leads to the secretion of IL10, a hallmark immunosuppressive

cytokine, which selectively dampens T helper (Th)1 and Th17

immune responses (78). In certain types of cancer such as follicular

lymphoma, TIGIT is strongly expressed by intratumoral Tregs as well

as memory CD8+ T cells. Here, high numbers of TIGIT-expressing

tumor infiltrating lymphocytes have been correlated with a poor

survival rate (82). As such, TIGIT may in the future be used as a

prognostic marker, since elevated expression in T and NK cells

predicts negative clinical outcomes (83–90). Based on these

findings, TIGIT has become the subject of increased research as a

target for cancer therapy, especially in combination with other ICIs,

such as PD-1 inhibitors (91).

We here set out to review the literature of the past 20 years on the

reciprocal interaction of TIGIT and the T cell metabolism, how it

affects anti-tumor immunity, and how a better understanding of this

interaction can pave the way for improved immunotherapy to

treat cancer.
2 Main review

2.1 Interaction of TIGIT and the
metabolic TME

2.1.1 Inhibition of glucose metabolism in T cells
A recent study by Shao et al. (92) focused on the role of TIGIT in

patients with colorectal cancer and revealed that upregulated TIGIT

expression in CD3+ T cells correlated with poor survival. In this study

the authors found that T cells expressing TIGIT had impaired

proliferation, cytokine production, glucose uptake, and glycolytic

function. Investigations by He et al. (86) demonstrated that TIGIT+

CD8+ T cells are impaired in their effector function, allowing for the

hypothesis that immune escape in gastric cancer is at least in part

mediated by the upregulation of TIGIT. These TIGIT+ CD8+ T cells

had significantly reduced expression of glycolysis genes, including
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GLUT1 as well as (hexokinase) HK1 and HK2, which resulted in

impaired glucose uptake and glycolysis (Figure 2). Aside from cancer,

another study by Calvet-Mirabent et al. (93) has shown the relevance

of the connection between glucose metabolism and TIGIT as an

immune checkpoint in HIV infection. In their study, the authors

utilized dual blockade of PD-1 and TIGIT, as well as employed the

pro-glycolytic drug Metformin, and investigated the functional

properties of CD8+ T cells from HIV-1 patients. Significant positive

correlations were observed between the increase in maximum

glycolytic activity after TCR activation and the percentages of

single-positive TIGIT cells, while co-expression of PD-1 and TIGIT

resulted in lower glycolysis rates. Further, treatment with Metformin

together with dual blockade of the two checkpoints restored cytotoxic

activity of CD8+ T cells (93). Thus, TIGIT seems to be capable to alter

T cell function via the inhibition of glycolysis.

2.1.2 Hypoxia
Hypoxia is widely accepted to be a critical mechanism responsible

for the resistance of tumor cells to radio-, chemo-, and

immunotherapy (94–97). As the volume of a tumor increases,

increasing numbers of cells need to be supplied with blood and

oxygen, which requires additional vascularization of the tumor tissue.

Without this additional supply of blood and oxygen, a state of

hypoxia sets in (98). It is well established that the transcription

factor hypoxia-inducible factor 1a (HIF-1a) regulates the

expression of immune checkpoint proteins such as PD-L1 and

CD73 (99, 100). HIF-1a is a master regulator of the cell’s response

to hypoxia (101). Under normoxic conditions, the activity of HIF-1a
is repressed by proteasomal degradation via the oxygen-dependent

prolyl hydroxylase domain (PHD) and the von Hippel-Lindau (VHL)

protein (102). During tumor development, HIF-1a is pivotal to the

cells’ metabolic adaptation to their surroundings, as growth success

under metabolic duress strongly depends upon the cell’s ability to

shift from oxidative phosphorylation (OXPHOS) to the more

inefficient glycolytic metabolism for ATP generation. This is

accomplished by HIF-1a-regulated genes encoding enzymes for

glycolysis, such as the glucose transporters GLUT1 and GLUT3,

HK1, and HK2 as well as phosphoglycerate kinase 1 (PGK1) (103).

HIF-1a further regulates the expression of vascular endothelial

growth factor (VEGF) (104), which enables neovascularization

of tumors.

So far, one study has recently addressed the synergy between

TIGIT and HIF-1a (105). In this study, Fathi et al. demonstrated that

simultaneous blocking of both TIGIT and HIF-1a results in a

significant reduction of tumor cell invasion, decreased colony

formation, and inhibited angiogenesis (105). Both matrix

metalloproteinases (MMP) 2 and MMP9 as well as VEGF mRNA

expression levels were decreased under the dual blockade.

Additionally, expression of the anti-apoptotic protein B-cell

lymphoma (BCL)2 was downregulated, whereas mRNA expression

of the pro-apoptotic protein Bcl-2-associated X protein (BAX) was

upregulated. What remains unclear is if and how, precisely, these two

proteins interact with one another. Since a correlation between TIGIT

and HIF1a was demonstrated by Fathi et al., further research is

required to unravel the precise mechanisms of relation of the two

proteins in T cells, especially when considering that HIF1a increases

the expression of other immune checkpoints such as PD-L1 (11–13).
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2.1.3 Adenosine
Originally, adenosine receptors (ARs) were categorized into A1 or

A2 ARs, depending on whether they have an inhibitory or stimulatory

effect on cyclic adenosine monophosphate (cAMP) in the brain (106).

Currently, ARs are categorized into four subtypes, A1, A2A, A2B and A3

(107). Themajority of A2ARs are distributed in organs of the respiratory

system, heart and lung, as well as in the central nervous system (CNS),

and the immune system (108, 109). The adenosine receptor A2A

(ADORA2) plays an important role in protecting tissues from

immune-mediated damage following noninfectious inflammation, as

well as in regulating the accumulation of CD8+ T cells and NK cells (110,

111). An altered metabolism, increased expression of CD73 as well as

hypoxia (112) in the tumor can lead to higher adenosine levels in the

TME (111, 113) via signaling through the A2A adenosine receptors

(114). In this context, Ohta et al. (111) investigated the effect of A2A

receptor deficiency on anti-tumor immunity mediated by CD8+ T cells

and observed that genetic deletion of the A2A receptor results in tumor

rejection in mice. Additionally, A2A receptor antagonists considerably

delayed tumor growth via anti-tumor CD8+ T cells. Ohta et al. (115)

have shown that immunosuppressive Tregs were induced by increased

levels of extracellular adenosine, as mediated via A2AR stimulation. As

of yet, only very few studies (116, 117) have investigated in detail the
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correlation between the A2A receptor and TIGIT so far. Brauneck et al.

(116) investigated the correlation between the A2A receptor and TIGIT

on NK cells and showed that NK-cell mediated killing of acute myeloid

leukemia (AML) cells could be ameliorated by co-blockade of TIGIT

and A2AR, or of TIGIT and CD39, indicating a link between the two

proteins. Another study by Muhammad et al. (117) revealed that the

stimulation of the A2A receptor is necessary for the emergence of

TIGIT-positive Tregs in mice and that this axis is impaired in uveitis

patients. This study appears to have identified a subset of TIGIT+ Tregs

that are functionally dependent on the expression of the A2A receptor.

2.1.4 IDO
IDO1 plays a pivotal role in the conversion of tryptophan to

kynurenine (118). IDO1 is highly expressed in tumor cells and

contributes to the establishment of a local immunosuppressive TME

by enabling immune tolerance (119). It has been demonstrated that

IDO1 inhibition induced a robust anti-tumor immune response in a

mouse model when employed both as a single agent (120–127), or in

combination with chemotherapeutic drugs (121, 128), highlighting the

potential of IDO1 as a therapeutic target.

A recent study by Robertson et al. (129) has shown that CD8+ T

cell tumor infiltrates from uveal melanoma (UM) overexpress the genes
FIGURE 2

Reciprocal interaction of TIGIT signaling and T cell metabolism. I: Effect of TIGIT on glucose metabolism. Cancer cells inhibit T cell metabolism via
enhancing the upregulation of TIGIT, resulting in impaired glycolysis gene expression of GLUT1 and HK1/2, glucose uptake and glycolysis, and reduced
proliferation. II: Effect of TIGIT on hypoxia and hypoxia sensing. HIF1-a regulates the expression of immune checkpoints and the expression of VEGF,
which mediates tumor neovascularization. Simultaneous blocking of HIF1-a and TIGIT results in reduced tumor invasion and colony formation, as well as
impaired angiogenesis and reduced MMP2/9 expression. Dual blockade leads to induction of pro-apoptotic BAX. III: Interaction of TIGIT and adenosine
signaling and IDO. A2AR regulates the accumulation of CD8+ T cells and Tregs. Altered metabolism and hypoxia result in increased adenosine in the
TME. Deletion of A2AR leads to tumor rejection in mice. IDO is highly expressed by tumor cells and generates an immunosuppressive TME. Many cancer
cells overexpress IDO1 and TIGIT simultaneously. IV: Interaction of chemotherapy and senescence and TIGIT. Chemotherapy regimens can result in the
upregulation of TIGIT. A2AR is increased on the surface of senescent cells, with simultaneous upregulation of TIGIT. TIGIT, T cell immunoglobulin and
ITIM domain; HK, hexokinase; GLUT1, glucose transporter 1; HIF1-a; hypoxia-inducible factor 1 alpha; MMP, matrix metalloproteinase; BAX, Bcl-2-
associated X protein; IDO, indoleamine-pyrrole 2,3-dioxygenase; TME, tumor microenvironment.
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encoding for both IDO1 and TIGIT. As previously mentioned, IDO is

known to limit T cell function and induce mechanisms of tolerance

(130, 131). Stålhammer et al. (83) have demonstrated that not only the

number of IDO+ cells in tumor tissues of UM appear higher than in

normal choroid tissues, but that the same is true for TIGIT+ cells.

Importantly, the number of IDO+ cells correlated with the number of

TIGIT+ cells in tumor cores and full tumor sections (83). The

association of TIGIT expression with IDO and PD-L1 has also been

observed in the tumor core of glioblastoma (GBM) (132), underlining

the necessity to further study the correlation between these proteins.

2.1.5 Chemotherapy and senescence
TIGIT has recently been described as a marker for senescence due

to its higher expression in aged T cells (133). The blocking of TIGIT

results in improved functional capacity of senescent T cells as

demonstrated by Song et al. (133), Chew et al. (134) and Kong

et al. (84). The latter study also demonstrated that TIGIT expression

on CD8+ T cells is not only elevated in acute myeloid leukemia (AML)

patients, but that high TIGIT levels also correlate with primary

refractory disease, as well as leukemia relapse following allogenic

stem cell transplantation. TIGIT-high CD8+ T cells presented as

functionally impaired and exhausted, whereas TIGIT blockade

rescued functionality and anti-tumor response, highlighting TIGIT

blockade as a potential therapeutic approach for leukemia.

Cancer treatment options in terms of chemotherapy are varied and

often rely on combinatorial therapies. Some common agents used for

different types of cancer are 5-Fluorouracil, an antimetabolite, DNA

intercalators such as oxaliplatin and taxanes that target microtubules

(135). A recent study by Davern et al. (136) revealed certain

chemotherapy regimens give rise to an immune-resistant phenotype

via the upregulation of inhibitory immune checkpoint ligands, among

them TIGIT, in oesophageal adenocarcinoma (OAC). The study aimed

to elucidate the effect of OAC chemotherapy approaches on the

induction of a senescent-like state in cancer cells as senescent cancer

cells are involved in conferring treatment resistance and promoting a

microenvironment conducive to tumor growth via secretion of several

pro-inflammatory markers, referred to as senescence-associated

phenotype (SASP) (136).Using ß-galactosidase (ß-gal), an enzyme

involved in the process of producing galactosylated proteins, as a

marker for senescence, the authors demonstrated that the number of

senescent-like cells increased significantly following chemotherapy,

prompting the question whether immune checkpoints were expressed

on these senescent cells or even upregulated following the treatment. The

immune checkpoint TIM-3 was significantly upregulated in OE33 cells,

whereas TIGIT was significantly upregulated in the SK-GT-4 cells. We

know that immune checkpoints are essential for immune evasion, and if

these immune checkpoints are present on senescent OAC cells, this may

represent a drugable target for future therapies. Returning to another

protein already addressed in this review, the adenosine receptor A2A was

significantly increased on the surface of senescent-like SK-GT-4 cells,

which were also shown to have increased TIGIT expression following a

chemotherapy regimen. While senescent cells do have an activated

glucose metabolism, they at the same time display an unbalanced lipid

metabolism, which results in an altered expression of lipid metabolic

enzymes, ultimately culminating in senescence induction and thereby

limited functionality (137). Senescent T cells also demonstrate loss of cell

surface CD28 (138–140), a protein required for lipid raft formation, IL-2
Frontiers in Oncology 0658
gene transcription and T cell activation. Since CD28 has also been linked

to metabolic fitness of a T cell (141), the loss of this protein due to

senescence can dramatically affect T cell functionality (142). Liu et al.

(137) have demonstrated that the prevention of T cell senescence resulted

in enhanced anti-tumor immunity, therefore maybe providing another

point of potential therapeutic application.

Interestingly, TIGIT has also been shown to be intrinsically

expressed in murine colorectal cell lines (143). To elucidate the

functional effect of this intrinsic TIGIT, Zhou et al. (143) deleted

the protein using CRISPR/Cas9 and observed that knockout resulted

in significantly impaired tumor growth, together with increased IFNy

secretion and cytotoxicity by NK cells, indicating that tumor cell-

intrinsic TIGIT has a considerable effect on tumor growth and may

present a potential therapeutic target.
2.2 Current status of anti-TIGIT therapeutics
in clinical studies

As of August 2021, several anti-TIGIT antibodies were registered in

preclinical and active clinical trials (clinicaltrials.org, anti-TIGIT). For

example, two antibodies had progressed to the Phase III status

(Tiragolumab (144), Ociperlimab (145)) and two were active in

Phase II trials Vibostolimab, Domvanalimab) (146, 147), all of which

also in combination with Atelizumab (anti-PD-L1), Pembrolizumab

(anti-PD-1) and other agents. Additionally, a bispecific antibody

targeting both PD-1 and TIGIT (HLX301, NCT05102214)

simultaneously is under current clinical review. As discussed, TIGIT

expression has been observed, among others, with PD-L1 in the tumor

core (132), hinting at some kind of link between these two proteins.

Currently, an anti-TIGIT candidate in combination with an anti-PD-1

antibody is being evaluated for the application for recurrent

glioblastoma (148). Furthermore, increased levels of extracellular

adenosine, as mediated by A2AR stimulation (114), have been shown

to have a detrimental effect on anti-tumor activity (111, 115–117).

Etrumadenant, an A2AR antagonist, is currently being investigated in a

clinical trial in combination with Domvanalimab and Zimbrelimab

(anti-PD-1) (149). It is noteworthy that the majority of the anti-TIGIT

antibodies in clinical trials currently are fully human and demonstrate

good tolerance by patients, also in combination with anti-PD-1 and

anti-PD-L1 antibodies (150). As previously discussed in this review,

TIGIT monotherapy does not result in significantly altered disease

outcomes, underlining this as a potential caveat of TIGIT as a

therapeutic target and highlighting the necessity for a combinatorial

approach with other agents. Immune checkpoint therapy using

Ipilimumab and Nivolumab as the most prominent agents has

proved successful, and, taken together with the low efficacy of anti-

TIGIT monotherapy, prompts the question which cohort of patients

could additionally benefit from either a monotherapy or a

combinatorial treatment.
2.3 The potential of PD-1, CTLA-4 and other
negative regulators as biomarkers

Predictive biomarkers are essential to evaluate the outcome of

therapeutic approaches, or at least, to provide an indication before
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commencement of the therapy regimen. Especially in the case of

highly multifactorial diseases such as cancer and autoimmunity, such

biomarkers should ideally indicate whether a monotherapy or a

combinatorial approach is necessary. Here, the induction of

negative regulators results in the suppression of, among other

mediators, cell death mechanisms (151). Specifically these negative

regulators of cell death signaling, such as heat shock proteins (HSP)

(152), the Bcl-2 family (153), the PI3K/Akt/mTOR pathway (154) and

others, as reviewed in detail by Razaghi et al. in (155), have found

clinical application as prognostic biomarkers. In summary, negative

regulators of cell death signaling appear to have great potential and

present clinical application as prognostic biomarkers, raising the

question whether this is also the case for the immune checkpoint

proteins. When considering anti-PD-1 or anti-PD-L1 therapy, using

(over-)expression of PD-L1 as biomarker appears plausible. In this

context, Teng et al. (156) came up with a classification that describes

PD-L1 positive tumors with infiltrating lymphocytes as a type 1 TME,

proposing it to be the most likely to respond to immune checkpoint

blockade. However, also PD-L1 negative tumors have been shown to

be able to respond positively to antibodies targeting the PD-1/PD-L1

axis (157, 158). This consequently raises the concern that the

predictive value of PD-1 and PD-L1 as biomarkers may not be

optimal and universally valid across all patients, as intrapatient and

even intratumor heterogeneity has been observed (159).

Other studies have hinted at the possible prognostic power of

CLTA-4 expression. Here, Liu et al. (160) have demonstrated that, in

some cancers, patients with higher CTLA-4 expression had a shorter

overall survival than those with lower expression. However, an

association between the expression levels of PD-1 and CTLA-4 and

tumor-infiltrating cells exists (160). Liu et al. point out that the

expression of these two immune checkpoint proteins varies across

different cancers and that many cancer types demonstrate PD-1 and

CTLA-4 mutations, leading to their abnormal expression, which may

be used as a prognostic biomarker.

Whether TIGIT can be used in a similar manner remains to be

investigated and demonstrated. Since TIGIT in its effects appears to

be functionally and mechanistically tethered to other negative

immune regulators such as PD-1, TIGIT alone may not prove a

reliable and unambiguous prognostic biomarker. To assess the

protein’s capacity of serving as a prognostic factor, large amounts

of correlation data from different kinds of cancers, across different

genders, ages and perhaps even ethnicities are necessary, providing

information on its function and mechanistics on its own and together

with other proteins that TIGIT is known to interact with. It may well

be possible that a combination of factors, such as presence of PD-1,

TIGIT and senescence markers will be able to form a prognostic unit

of response to and success of immunotherapy in different cancers.
3 Discussion

While the exact role of TIGIT within the TME is still not fully

elucidated, the apparent synergy between TIGIT and HIF-1a as well

as PD-1 (161) does allow for the assumption that this protein does not

simply have a redundant role. Based upon the literature reviewed

here, blockade or targeting of TIGIT alone does not appear to have a

major effect on either the progression or even curative approaches in
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different oncologic diseases. It is rather the combination of TIGIT

blockade together with blocking of another checkpoint, such as PD-1.

The fact that a synergy exists between the two is well documented and

accepted to the point that several clinical trials aiming to block both

proteins simultaneously are currently ongoing (162). The challenge of

such a therapy, even if successful, lies in the fact that not all cancers

are PD-L1 positive, thereby restricting the potential applications from

the beginning. Another potential caveat is that the precise mechanism

of the synergistic effects observed between the two checkpoint

proteins is not fully understood, and as such it may prove difficult

to design effective and individualized therapies without fully

understanding the mechanistic foundations of the observed effects.

In terms of metabolism, it can be hypothesized that presence or

overexpression of TIGIT poses a metabolic barrier to T cell function.

Data by Gilmour et al. (163) suggest that the co-expression of TIGIT

with VISTA may lead to an altered metabolic phenotype of CTL. It

was been detailed in the introductory section of this review that

several other immune checkpoint proteins, such as

PD-1 and CTLA-4 appear to have an effect on glycolysis of tumor

cells, and thereby on the ability of immune cells to perform glycolysis

due to nutrient competition within the TME. Limited nutrient ability,

such as the scarcity of glucose, will lead to impaired T cell function

and therefore an impaired anti-tumor response of those T cells. It is

therefore crucial to further investigate the potential direct and indirect

effects of TIGIT on the metabolism of T cells and other immune cells

in the context of anti-tumor immunity.

It is well-known that hypoxia plays a major role in creating hostile

microenvironments that are toxic to immune cells yet conducive to

tumor growth. So far, only one study has investigated the direct

interaction between HIF-1a and TIGIT. It remains an open question

whether a potential three-way synergy might exist between blocking

not only TIGIT and PD-1, but also HIF-1a. Along this line, it would
be important to assess whether a co-blockade of TIGIT and HIF-1a is

as effective as the blockade of TIGIT and PD-1 as a therapeutic

possibility for those cancers which are not PD-L1 positive.

The interplay between TIGIT and adenosine as well as the A2A

receptor makes for another interesting point of further investigation.

The genetic deletion of the A2A receptor in mice resulted in tumor

rejection (162), allowing for the hypothesis that some connection may

also exist between these proteins. Additionally, it is known that

hypoxia leads to higher adenosine levels in the TME, prompting the

question whether the TIGIT-A2AR-HIF-1a axis could provide

another possible three-way blockade for therapeutic purposes. The

A2A receptor was additionally observed to be upregulated on the

surface senescent cancer cells, which at the same time showed

increased TIGIT expression following some chemotherapy regimens.

The potential of TIGIT expression as a biomarker has been

suggested, although for this, larger association studies are needed.

Future experiments should aim to elucidate the connection between

TIGIT and other immune checkpoints, particularly those involved in

the immune response against cancers which do not express PD-L1, as

well as the interplay with HIF-1a and the A2A receptor. Perhaps this

will lead to a better understanding of the exact mechanisms governing

the synergistic inhibitory effects of combination treatments. Taken

together, TIGIT appears to have a therapeutic potential, especially in

the context of combinatorial therapies and alleviating the metabolic

barrier that immune checkpoint proteins are able to pose, that should
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not be overlooked and disregarded for further research, both of basic

and translational nature.
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MN, United States
Metabolism is central to energy generation and cell signaling in all life forms.

Cancer cells rely heavily on glucose metabolism wherein glucose is primarily

converted to lactate even in adequate oxygen conditions, a process famously

known as “the Warburg effect.” In addition to cancer cells, Warburg effect was

found to be operational in other cell types, including actively proliferating

immune cells. According to current dogma, pyruvate is the end product of

glycolysis that is converted into lactate in normal cells, particularly under hypoxic

conditions. However, several recent observations suggest that the final product

of glycolysis may be lactate, which is produced irrespective of oxygen

concentrations. Traditionally, glucose-derived lactate can have three fates: it

can be used as a fuel in the TCA cycle or lipid synthesis; it can be converted back

into pyruvate in the cytosol that feeds into themitochondrial TCA; or, at very high

concentrations, accumulated lactate in the cytosol may be released from cells

that act as an oncometabolite. In immune cells as well, glucose-derived lactate

seems to play a major role in metabolism and cell signaling. However, immune

cells are much more sensitive to lactate concentrations, as higher lactate levels

have been found to inhibit immune cell function. Thus, tumor cell-derived

lactate may serve as a major player in deciding the response and resistance to

immune cell-directed therapies. In the current review, we will provide a

comprehensive overview of the glycolytic process in eukaryotic cells with a

special focus on the fate of pyruvate and lactate in tumor and immune cells. We

will also review the evidence supporting the idea that lactate, not pyruvate, is the

end product of glycolysis. In addition, we will discuss the impact of glucose-

lactate-mediated cross-talk between tumor and immune cells on the

therapeutic outcomes after immunotherapy.

KEYWORDS

Warburg effect, cancer, lactate, glycolysis, immunotherapy, metabolism, TCA
cycle, mitochondria
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Introduction

Animal cells, particularly the actively dividing cancer cells rely

heavily on glucose as a source of energy for their survival and for

generation of macromolecules required for their proliferation (1).

Similarly, the fate of immune cells, their ability to get activated and

their effector functions are tightly coupled with the glucose

metabolism, especially during the acute phase of antigen mediated

activation (2). Because cancer and immune cells rely on similar fuel

types for their proliferation and activation, there is an acute

competition between the two cell types for nutrients (3).

Ultimately, the nutrient availability, optimal utilization of

available nutrients, and presence of appropriate metabolic

machinery to support the nutrient utilization decides the

outcomes of cel l metabolism (4). Hence, a thorough

understanding of the regulators of metabolism in cancer and

immune cells, especially in the context of complex environment

of tumors is important for generation of appropriate immune

functions and for institution of adequate anti-cancer therapies.
Continuum of metabolism as the
driver of cell functions

The term life refers to the ability of an organism or a cell to

grow, reproduce, and demonstrate functional activity and

continued change preceding death (5). These life processes are

supported by the sum of chemical changes termed metabolism

that take place inside an organism at cell and molecular levels,

leading to generation of energy or building blocks required for

sustenance of life (6). Metabolism not only provides the energy

and building blocks for cellular growth but also ensures protection

against stress factors such as osmotic changes, xenobiotics, and

oxidative stress (7). Metabolism has evolved to support cell

function and activity by either generating or breaking down the

building blocks, based on which the metabolism can be

respectively termed anabolic or catabolic. In anabolic

metabolism, utilizing simpler building blocks such as glucose,

free fatty acids and amino acids, cells synthesize complex

molecules such as glycogen, fatty acids, and proteins which are

required for generation of cellular building blocks (8). On the

contrary, catabolism refers to the breakdown of complex cellular

molecules into their simpler forms. Hence, anabolism and

catabolism represent two opposite ends of the metabolic

spectrum (9). In particular, the central carbon metabolism that

represents the six carbon fixation pathways, ensures conversion of

carbon and energy sources such as sugars into precursor of

metabolism which are used to generate entire biomass of the

cells in addition to the generation of free energy, redox power, and

precursor metabolites required for biosynthesis (Figure 1).

Depending upon the cellular/organismal complexity, the amount

of cell’s genetic and proteomic machinery involved in regulating

metabolism varies. Metabolism is usually the largest constituent of

the proteome with approximately 50% of the proteome being

allocated to metabolism in yeast. In humans the fraction of
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proteome associated with cell metabolism is lower as a larger

fraction of the proteome is allocated to cell signaling, cytoskeleton

proteins, chaperones, and the spliceosome (10). However,

consistently within the metabolic spectrum, the glycolytic

enzymes are allocated a larger fraction of the proteome than the

TCA cycle (10) with about 15-20% being allocated alone to

glycolysis in humans (11). The high catalytic efficiency, small

size, and high abundance of enzymes in the central carbon

metabolism are consistent with the central role this part of

metabolism plays in ensuring constant provision of energy,

primarily in the form of ATP, in handling electron flows by

balancing the co-factors NADH and NADPH, and in providing

precursors for cellular growth (12). Thus, the flux through the

central carbon metabolism typically exceeds the flux through

other metabolic pathways by a factor of 10 or more. With these

multiple roles, the central carbon metabolism must be highly

connected with the other parts of metabolism (12). This implies

that a perturbation of almost any part of metabolism results in a

global response in which a large number of enzymes have to alter

their function in order to maintain homeostasis or generate a

particular cell function such as effector functions in T cells (13).

This explains why almost any change in cellular physiology has a

metabolic fingerprint, i.e., changes in a certain part of metabolism.

Thus, it is safe to say that metabolic perturbations have a global

impact on cell function and physiology (13). In this review, we

critically analyze the intricately associated central carbon

metabolism in cancer and immune cells with special reference

to glycolysis and lactate metabolism. We provide evidence that

glucose derived lactate may be a significant driver of

mitochondrial metabolism in CD8 T cells and that lactate

driven cross talk between tumor and immune cells shapes the

response to therapies. We also discuss the potential of targeting

central carbon metabolism as an avenue for enhancement of anti-

cancer therapies.

Regulation of glycolysis

Central carbon metabolism plays an important role in

metabolic networking and is composed of the flow of carbon

from nutrients into biomass. Central carbon metabolism is

composed of the glycolytic pathway, the citric acid cycle, the

pentose phosphate pathway (PPP), and six known carbon fixation

pathways (14). Of these, carbon fixation pathways are the most

fundamental pathways that take place inside the mesophyll cells of

plants that help to bring CO2 into the anabolic phase of cell

metabolism (15). Sugars, primarily glucose, fuels the glycolytic

pathway in animal cells whereby through a series of enzymatic

reactions these sugars are broken down into pyruvate which is then

either fed into the mitochondrial TCA cycle for electron reduction

and ATP generation or is converted into lactate in the cytoplasm.

The PPP shunts carbons back into the glycolytic or gluconeogenic

pathways and is a major regulator of the cellular reduction-

oxidation (redox), homeostasis and biosynthesis. Glycolysis and

citric acid cycle (also called tricarboxylic acid (TCA) cycle) are the

most intricately associated and well-defined energy generating

pathways in eukaryotic cells. In glycolysis glucose, through a
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multistep reaction is converted into pyruvate which is then

transformed either into lactate that is secreted to outside of the

cell or gets converted into oxaloacetate (OAA) or acetyl-CoA that

feeds into TCA cycle inside the cell (Figure 1). In the presence of

adequate amounts of oxygen, cytoplasmic glycolysis is connected to

the mitochondrial respiratory chain that enables oxidative

phosphorylation (OXPHOS) by transport of electrons through the

proteins of the respiratory chain (16). This electron transport

generates a proton gradient which is necessary for ATP synthesis.

Ideally, when glycolysis and OXPHOS are coupled, one mole of

glucose produces up to 36 moles of ATP. However, under the

conditions of limited oxygen availability, OXPHOS reactions are

impaired, and there is a compensatory upregulation in the glycolytic

activity that helps to fulfill the increased energy demands (17). Even

if the oxygen concentrations are high, if the demand for ATP

increases suddenly, such as under acute cell expansion phase after

antigenic stimulation of immune cells, aerobic glycolysis is

enhanced rapidly since mitochondrial activity is not sufficient to

supply the required amount of ATP. Moreover, intermediate

metabolites of glycolysis are precursors for the biosynthesis of

pentose phosphates, hexosamines, glycerophospholipids and

amino acids, so that glycolysis can fuel various anabolic pathways

whenever required. Hence, an upregulated glycolytic pathway not

only supplies ATP under acute energy shortage conditions, but also

provides intermediates for cell biomass synthesis.
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Glycolysis is regulated at three points, each serving a different

function. Hexokinase (HK), phosphofructokinase (PFK) and

pyruvate kinase (PK) are the three rate-limiting enzymes

regulating the glycolytic flux. HK controls the entry of glucose

into the glycolytic pathway by producing glucose-6-phosphate

(G6P), which also acts as an allosteric inhibitor of HK. HK exists

in 4 isoenzyme types (HK1-4) with HK1 and HK3 being

ubiquitously expressed while HK4 being restricted to liver and

pancreas. HK1-3 are associated with the outer mitochondrial

membrane and are shown to play a critical role in maintaining

aerobic glycolysis in cancer cells. High affinity HK2 is mainly

expressed in tissues with high energy demand such as tumors. In

particular, HK2 has been shown to act as a bridge between cell

metabolism and cellular longevity primarily by preventing the

mitochondrial death pathways (18). Surprisingly, HK2 has been

found to be dispensable for T cell based immunity (19) thus

pitching HK2 as a putative differential target in tumor cells that

heavily rely on HK2 for their energy and biosynthetic demands (20).

High expression of HK2 in tumor and associated mesenchymal

stromal cells inhibit glucose uptake in T cells preventing their

activation. The second point of glycolysis regulation is the entry

point of fructose-6-phosphate into glycolytic cycle by

phosphofructokinase (PFK). PFK exists as a tetramer and has two

isoforms, PFK1 and PFK2. PFK1 catalyzes the conversion of

fructose-6-phosphate to fructose-1,6-bisphosphate while PFK2
FIGURE 1

Continuum of energy flow. Central carbon metabolism is responsible to lead carbon from nutrients into biomass. The first source of carbon is
atmospheric CO2. Plants utilize sunlight, CO2 and H2O to trigger chloroplast factory. In the chloroplast sunlight dependent reactions prepare NADPH
and ATP for Calvin cycle which finally produces comestible source of carbons including sucrose, sugar and starch. These food sources would be broken
down to glucose in the body. Cells uptake glucose and metabolize it in glycolysis pathway which prepare energy and various metabolites for nucleotide
synthesis, lipid biosynthesis, amino acid biosynthesis and mitochondrial TCA cycle for electron reduction and energy generation. After death decay,
nutrients be recycled for plants in the soil. (DPGA: Diphosphoglycerate, FBP: Fructose 1,6-bisphosphate, 3PG: 3-Phosphoglyceric acid, Gal3P:
Glyceraldehyde-3-phosphate, PEP: Phosphoenolpyruvate, PGA: Phosphoglyceric acid, RuBP: Ribulose 1,5-biphosphate, Ru5P: Ribulose-5-phosphate).
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catalyzes the conversion of fructose-6-phosphate to fructose-2,6-

bisphosphate. Fructose-2,6-bisphosphate is a stimulator of PFK1 by

its ability to increase the affinity of PFK1 for fructose-6-phosphate

and to decrease the ability of ATP to inhibit the reaction (21). When

the rate of PFK1 is slowed, G6P accumulates and is routed toward

glycogen synthesis or the pentose phosphate pathway (PPP). PFK-1

is allosterically regulated by effectors such as fructose-2,6-

biphosphate (FBP) or adenosine monophosphate (AMP).

Oncogene activation including Ras and Src leads to reduced

regulation of PFK1 activity by elevated levels of FBP that acts as a

natural activator of PFK1 (22, 23) leading to enhanced glucose

uptake and its conversion into downstream substrates, preferably

lactate that can be shunted into various biosynthetic pathways.

There is limited evidence regarding the role of PFK in immune cells.

In CD4 T-helper cells from rheumatoid arthritis patients, deficiency

of PFK was found to impair the ATP generation and autophagy,

making the cells prone to apoptosis and senescence (24). In

addition, PFK seems to have a significant role in regulatory T

cells, as calcium regulated protein kinase-4 (CaMK4) controlled

PFK-platelet type (PFKP) was found to enhance the regulatory role

of these cells (25). Finally, in an irreversible reaction pyruvate kinase

(PK) controls the conversion of phosphoenol pyruvate (PEP) into

pyruvate or to gluconeogenesis. Pyruvate kinase exists in four

isozyme forms: PKL (liver), PKR (red blood cells), PKM1 (muscle

and brain) and PKM2 (early fetal tissue and actively growing cells

such as tumor cells and immune cells). PKM2 can exist in two

isozyme forms, the tetrameric and the dimeric form, both of which

are constituted of the same monomeric units. Tetrameric PKM2

(tet-PKM2) localizes in the cytoplasm and is the enzymatically

active form while the dimeric PKM2 (di-PKM2) localizes in the

nucleus and is transcriptionally active form. There are several

allosteric stimulators that induce tetrameric form including F1,6-

BP that help to prevent a metabolic roadblock when upstream PFK

is active. In fasting conditions, pyruvate kinase is allosterically

inhibited by ATP and alanine (mostly mobilized from muscle)

decreasing the concentrations of tet-PKM2 that prevents PEP that is

needed for gluconeogenesis from being converted directly back to

pyruvate. The role of PKM2 in immune cells is not well defined and

only recently has started to be appreciated. Angiari et al. show that

the tetramerization of PKM2 prevents CD4 T cell activation. Most

effect was on generation of Tregs and Th17 cells thus preventing the

induction of autoimmune diseases (26). Similarly, PKM2 in

macrophages has been shown to prevent generation of

proinflammatory phenotype thus helping in prevention of

autoimmune disorders (27). However, the role of PKM2 in

cytotoxic CD8 T cells is still under debate.

Pyruvate generated as a result of glycolysis can have multiple

fates in the cytoplasm. Pyruvate can be effluxed from the cell, or is

converted into alanine by alanine aminotransferase, or by the

process of gluconeogenesis reactions is converted into

oxaloacetate or malate, or may be transported into the

mitochondria where it is converted to acetyl-CoA for its

utilization in the TCA cycle. Interestingly, none of these steps

occur at a rate that can match the conversion of pyruvate into

lactate, making lactate the inevitable and ultimate metabolite of

glycolytic pathway (Figure 2). Pyruvate is the precursor of lactate
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and under certain conditions can exclusively be the source of energy

inside the cells. Pyruvate is transported into mitochondria by MPC1

and MPC2 heterodimers (28, 29). In the inter-mitochondrial

membrane, it gets converted into acetyl-CoA that is funneled into

TCA cycle. Pyruvate alters epigenome in CD4 T cells during

activation by altering the cell genome (30). In the same line,

inhibition of mitochondrial transfer of pyruvate by blocking

MPC1 and MPC2 has been shown to mold the CD8 T cells into

memory phenotype thus supporting the observation that enhanced

availability of pyruvate and its oxidation through mitochondria

supports effector functions (31). Moreover, pyruvate metabolism

may support antitumor signaling in CD8 T Cells by upregulating

succinate uptake through its receptor (32).

Pyruvate is converted into lactate by lactate-dehydrogenase

(LDH). LDH is a tetrameric enzyme composed of two protein

subunits. The tetramer can be assembled by combination of the M

(muscle) form (encoded from Ldh-A gene) or the H (heart) form

(product of the Ldh-B gene) producing five separate isozymes:

M4 (LDH5), M3H1 (LDH4), M2H2 (LDH3), M1H3 (LDH2), and

H4 (LDH1) (33). These isozymes have different kinetic properties

with respect to substrate affinity and inhibition among these

isozymes. LDH activity depends on the metabolic switch to

anaerobic respiration. LDH is modulated by three types of

regulations, namely, allosteric modulation (34), substrate-level

regulation (35), and transcriptional regulation (36). The relative

availability and concentration of substrates regulate the activity of

LDH. The enzyme becomes more active during high availability of

its substrates. The demand for ATP compared to aerobic ATP

supply causes the accumulation of ADP, AMP, and free phosphates

(Pi). Glycolytic flux leads to the production of pyruvate that exceeds

the metabolic capacity of pyruvate dehydrogenase and other shuttle

enzymes that metabolize pyruvate. This process channelizes the flux

of pyruvate and NAD+ through LDH, subsequently generating

lactate and NADH (37).
The anecdote of Warburg effect

The ability of pyruvate to get converted into lactate even under

aerobic conditions has been established as a universal phenomenon.

Importantly, aerobic glycolysis was traditionally considered to be a

negative cellular phenomenon that contributed to cell exhaustion

partly by nutrient depletion and partly by accumulation of acidic

byproduct such as lactate (38). Pyruvate can be converted into

lactate quickly by lactate dehydrogenase (LDH) and lactate is the

final product of glycolysis that was thought to be produced as a

waste material by the tumor or the tumor associated stromal cells

(39). However, over a period of time several published reports

demonstrate that lactate can serve as a significant source of energy

inside cells. In fact, in CD8 cells, lactate has been shown to be the

preferred substrate albeit in a narrow range of concentrations.

Importantly, tumor infiltrating cytotoxic CD8 T cells have been

shown to be dependent on lactate metabolism to sustain their

antitumor function (40). It has bene shown that mitochondria are

capable of transporting lactate across the inner membrane and

oxidizing it (41). Lactate transport into the mitochondrial matrix
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would simultaneously deliver both pyruvate and cytosolic reducing

equivalents from the cytosol into the mitochondrial matrix (42).

There are some other evidences suggesting that LDH and

monocarboxylate transporter (MCT)1 are colocalized in the inner

mitochondrial membrane facilitating the transport of lactate into

the mitochondria (43). Excessive lactate production and rapid

lactate transport in cancer cells depend primarily on the

upregulation of hypoxia-inducible factor-1a (HIF-1a) and c-Myc

(44, 45). Continuous activation of HIF-1a and c-Myc causes

aberrant expression of multiple glycolytic enzymes and

monocarboxylate transporters (MCTs), including lactate

dehydrogenase A (LDHA), MCT1, and MCT4 (46). Lactate in the

TME not only induces lactic acidosis, but also shuttles among cell

populations, including cancer cells, tumor-associated stromal cells,

tumor-associated macrophages (TAMs), and tumor-infiltrating

lymphocytes (TILs) (47, 48). Cancer cells export lactate to the

extracellular space via MCTs (49) that makes many unpleasant

consequences in tumor microenvironment (TME) (38). High level

of lactate decreases pH in TME which triggers increase of
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angiogenesis, proteolytic activity, metastatic, and resistance to

anti-cancer therapies (50). High lactate in TME also makes cancer

prognosis more difficult (48). Recently, in breast cancer cells lactate

has been shown to regulate malignancy by reprogramming energy

metabolism and by altering cell signaling via binding of lactate to G-

protein-coupled receptor 81 (GPR81) (51). In addition to its effect

in cancer cells, an indirect effect of interaction between lactate and

GPR81 is to reduce the expression of MHCII on APCs in the TME

that tend to mitigate the generation of immune response and

promote immune escape (52). The use of lactate or alternate

molecules such as glutamine as an energy source may not only

depend upon the activation of various signaling pathways but also

on the anatomical location of tumor cells. For example, tumor cells

located deep in the TME away from blood supply may use

glutamine as a source of energy for glycolysis and produce huge

amount of lactate, whereas cancer cells near blood vessels (in

normoxic condition), such as in lung tumor, prefer to oxidize

lactate and obtain energy by TCA cycle (53). The presence of

various physiologic carbon sources (PCSs) such as lactate, acetate,
FIGURE 2

The fate of pyruvate and Lactate in the cells. Cells uptake glucose molecules via GLT and use them in glycolysis pathway. Glycolysis prepares ATP
and some other intermediate metabolites for cells. Pyruvate derived from glycolysis has several fates including: (1) Conversion pyruvate to lactate via
LDHa enzyme quickly. This reaction is reversible by LDHb. (2) Exporting pyruvate from cells by MCT transporter, which is located in plasma
membrane, to extracellular space. (3) Generation of alanine amino acid from pyruvate via Ala-amino-transferase enzyme. (4) Conversion of pyruvate
to oxaloacetate by pyruvate carboxylase enzyme. (5) Generation of Malate from pyruvate in a reaction mediated by malic enzyme. (6) Transporting
of pyruvate into mitochondria by VDAC in the mitochondrial outer membrane and MPC transporter in the mitochondrial inner membrane. Pyruvate
in mitochondria is converted to Ace.CoA by PDH and used in TCA cycle. TCA cycle generates NADH and FADH2 for mitochondria respiration
process in the inner membrane of mitochondria that produces more ATP for cells. Lactate derived from glycolysis has also various fates including:
(7) Releasing lactate from cells into extracellular space by MCT transporters (MCT1 and MCT4). (8) Transporting lactate into Intermembrane space, by
VDAC channel, where lactate can be converted to pyruvate by LDHa. (9) Entering lactate into the mitochondrial matrix where lactate can be
converted to pyruvate by LDHa. (10) Lactate can be converted into lactyl-CoA and is involved in the lactylation of histones in the nucleus. (11)
Lactate is converted to glucose through gluconeogenesis and glucose goes back to glycolysis. (Ace. CoA: Acetyl coenzyme A, GLT: Glucose
transporter, LDH: Lactate dehydrogenase, MCT: Monocarboxylate transporter, MPC: Mitochondrial pyruvate carrier, PDH: Pyruvate dehydrogenase,
PEP: phosphoenolpyruvate, PEPS: phosphoenolpyruvate synthetase, TCA cycle: Tricarboxylic acid cycle, VDAC: Voltage-dependent anion channel).
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glutamate, citrate, and pyruvate in extracellular environment

strongly impact the uptake and utilization of glucose by CD8 T

cells. Enough amount of PCSs in the cell culture media decreases

glucose contribution to the TCA cycle and interestingly, enhances

effector function, such as production of IFN-g (40). The role of

glutamine mediated cell metabolism is intriguing in this regard.

Glutamine participates in TCA cycle and in the synthesis of

nucleotides, glutathione, and other non-essential amino acids. In

fact, despite being a non-essential amino acid, it is considered

essential for tumor cell metabolism as its deprivation suppresses

tumor cell growth and induces cell killing. Interestingly, glutamine

supports mitochondrial metabolism when glucose derived pyruvate

is converted into lactate. However, in the current review, we are

going to limit our discussion to the effect of lactate metabolism in

immune cells and its impact on immune mediated anti-

cancer responses.
Effect of lactate in different immune
cell populations

Glycolytic pathway, through the active or passive participation

of its metabolites controls the function of various immune cells.

Active participation refers to direct effect of various metabolites on

the cell function and physiology while passive control is by relative

abundance, or lack of thereof, of various metabolites, particularly

the glucose and lactate which may be required for energy generation

or cell signaling. In this section we discuss the implications of

metabolite alterations, especially increased lactate concentrations

on various immune cell populations.
Lymphocytes

T cells in the TME have been found to lose their antitumor

activity because of either glucose deprivation (54), or presence of

high levels of lactate. The presence of high levels of lactate (which is

mostly tumor derived) disrupts the transmembrane concentration

gradients thus preventing the secretion of intracellular lactate by

activated and proliferating immune cells. This leads to decreased

intracellular pH and shutting down of the homeostasis cell

machinery tipping the balance towards cell dysfunctionality.

Accumulation of lactate in T cells is mediated by the high

expression of MCT1 lactate transporters after TCR engagement

that increases lactate uptake into the cells (48). In the tumor-

immune microenvironment, the effect of lactate on immune cells

can be highly complex and hard to decipher, which is further

confounded by acidic protons, a co-product of glycolysis. In one

study, Mendler et al. showed that lactate acidosis impaired the TCR-

triggered induction of p38/JNK signaling required for IFNg
production but not the MEK1/ERK signaling required for granule

movement (55). In another study, lactate has been shown to reduce

pyruvate carboxylase mediated replenishment of TCA cycle

intermediates leading to inhibition of anaplerotic pathways (32).

In yet another study, inhibition of lactate dehydrogenase, in
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combination with IL-21 was found to reduce the lactate

concentrations while increasing the stemness and anti-tumor

ability of CD8 T cells (56). In contrast to these studies, lactate has

been shown to increase the stemness of CD8 T cells leading to

augmentation of anti-tumor immunity (57). In this study, using

mouse models of colon cancer, subcutaneous administration of

lactate but not glucose was found to inhibit tumor growth in a

CD8 T cell-dependent manner. This reduction in tumor growth was

associated with an increased proportion of TFC1+CD8 T cells, as

revealed by single cel l transcriptomics analysis (57).

Mechanistically, lactate inhibits histone deacetylase activity, which

results in an increased acetylation at H3K27 of the Tcf7 super

enhancer locus, leading to increased Tcf7 gene expression. In

addition, in vitro, lactate pre-treated CD8+ T cells were also

found to efficiently inhibit tumor growth upon adoptive transfer

to tumor-bearing mice. However, one limitation of in-vitro studies

is the exposure of immune cells to super-physiological conditions

where nutrients are available in excess compared to physiological

conditions (58) that may alter the outcomes of cell activation.

Indeed, CD8 T cells activated under in vivo conditions were

found to utilize glucose though oxidative metabolism with flow of

glucose derived carbon into anabolic phase compared to in vitro

activation that showed hallmarks of aerobic glycolysis (59). Hence,

the observations from various studies should be analyzed with

caution as metabolite utilization and cell activation events may be

highly context dependent.
Regulatory T cells

The effects of lactate on Treg cells in TME are also in favor of

cancer progression. It has been shown that lactate can preserve Treg

cell immune-suppressive functions by upregulation of FOXP3 (60),

and MCT1 (61). In a recent study, Gu et al. showed that tumor

derived lactate regulates Tregs by lactylation of MOESIN at Lys72

residue enhancing the TGBb mediated signaling via TGFb-RI (62).
The more the expression of FOXP3, the more OXPHOS, NAD+

oxidation and adaptation of Treg cells to low-glucose and high-

lactate conditions (60). Additionally, MCT1 mediated lactate influx

and intracellular lactate metabolism are important for tumor-

infiltrating Treg cells to sustain their suppressive activity (63),

while high glucose levels dampen their function and stability (64).

A summary of the effects of glycolysis, lactate and OXPHOS on

cancer and immune cells are described in Figure 3.
Natural killer cells

In addition to T cells, NK cell activity is also directly and

indirectly affected by high level of lactate (65). Lactate acidosis

restricts the cytolytic functions of natural killer (NK) cells by

inhibition of nuclear factor of activated T cells (NFAT), reducing

IFNg production and downregulation of peroxisome proliferator-

activated receptor g (PPARg) (66).Tumor derived lactate has also

been shown to inhibit cytotoxic NK cell activity by inhibiting the
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production of perforin and granzyme or indirectly by enhancing the

numbers of myeloid derived suppressor cells that suppress the

functionality of NK cells (67). Interestingly, tissue resident NK

cells from liver have been found to have increased sensitivity to

lactate that impairs the mitochondrial functions leading to cell

apoptosis (65). Hence, lactate in NK cells seems to have a

multipronged strategy all culminating in suppression of NK

cell activity.
Monocytes, dendritic cells
and macrophages

There are two different reports about the effect of lactic acidosis

on monocytes: Lactate induces monocyte differentiation to

immunosuppressive dendritic cells or macrophages (68, 69), but

huge amount of lactate may also delays the differentiation of

monocytes into dendritic cells (70). Lactate also indirectly can be

sensed by G-protein-coupled receptor 81 (GPR81, also termed

hydroxycarboxylic acid receptor 1 or HCAR1) on the surface of

plasmacytoid dendritic cells (pDCs). This interaction triggers

calcineurin phosphatase signaling, leading to enhancement of free
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cytosolic Ca2+ and deduction of pDC function (71). Additionally,

MCT1-mediated lactate influx partially contributes to the inhibition

of pDC activation (72). Tumor derived lactate also increases M2

macrophage polarization mediated by ERK-STAT3 signaling

pathway (73), HIF-1a stabilization (74), and G-protein-coupled

receptor 132 (GPR132) activity (75). Lactate binding to the

surface GPR132 in macrophages leads to induction of cyclic AMP

(cAMP) and cAMP early repressor (ICER), thus increasing the

expression of arginine-metabolizing enzyme arginase 1 (ARG1),

VEGF (76), and HIF-1a (77), and the production of pro-angiogenic

phenotype of macrophages (78). Lactate acidosis also reduces the

function of M1 macrophages by downregulation of IL-6, iNOS, and

CCL2 (79). Epigenetic modification mediated by high levels of

intracellular lactate are also demonstrated in macrophages. Lactate

inhibits NAD+-independent histone deacetylase and enhances

histone lysine residue lactylation in macrophages (80). Histone

lactylation level has been shown to have a direct correlation with

oncogenic factors generation in M2 macrophages (81). In addition

to its signaling effects, lactate acts as a direct Carbon source in

tumor associated macrophages (TAMs), directly derogating the

MHCIIhi TAM subset thus stimulating the T cell suppression by

transcriptionally stabilizing the MHCIIlo TAM subset (82).
FIGURE 3

The functions of glycolysis and OXPHOS pathways and, lactate and pyruvate metabolites in cancer and immune cells.
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Targeting glycolysis in solid tumors
for therapy enhancement

Given the central role of glucose mediated metabolism in cancer

and immune cells (3), to use glycolysis inhibitors to impede the

growth and spread of cancer cells, which could potentially help to

improve the efficacy of cancer immunotherapy treatments are being

developed (83, 84). Both, the process of glucose utilization and the

production of lactate through glycolysis are high in cancer cells,

resulting in higher turnaround of the proteins, enzymes, and

metabolites passing through the pathway, thus making these

proteins lucrative targets for the diagnosis and treatment of various

cancers (85). There are various drugs which target glucose

transferase1 (GLUT1) such as BAY-876, ritonavir, genistein, STF-

31 and WZB117. These drugs inhibit glucose uptake into cancer cells

and lead to cell death. After uptake of glucose, it is phosphorylated in

a rate limiting reaction by hexokinase (HK), making HK another

target for cancer therapy. Several drugs have been developed for

inhibition of this enzyme, such as 2-deoxy-D-glucose (2-DG) and 3-

BrPA. Another glycolytic enzyme with potential for targeting in

cancer treatment is PFK which creates fructose-1,6-bisphosphate

from substrate fructose-6-phosphate. The main PFK inhibitors

include 3-(3-pyridinyl)-1-(4-pyridinyl)-2-propen-1-one (3PO), 1-(4-

pyridinyl)-3-(2-quinolinyl)-2-propen-1-one (PFK15), PFK158, YN1,

and N4A. Since lactate has important effects in favor of tumor growth

including acidification of tumor microenvironment and triggering
Frontiers in Oncology 0871
immune suppressive signals, various inhibitor compounds targeting

LDH such as galloflavin (86), FX-11, gossypol (87, 88), NCI-006 (89),

N-hydroxyindole-based inhibitors (90) and pyrazole based inhibitors

(91)have been developed (Figure 4). However, recent demonstration

of solid tumors downregulating the energetically expensive tissue

specific functions such as glycolysis to allow uncontrolled growth

despite a limited supply of ATP (92) should add a word of caution

while choosing the drug targets. Moreover, targeting of lactate

transporters with drugs such as cinnamate and AZD3965 can stop

cancer cell proliferation (93, 94).

As explained before, lactate transporter inhibition diminishes

cancer cells proliferation. On the other hand, inhibiting MCT

protects immune cells from the risk of intracellular lactate

accumulation. It has also been shown that knockout of MCT1

represses the function of immunosuppressive Treg cells and make

the tumor environment conducive for antitumor immunity (61).

In addition to lactate, the accumulation of succinate is detected

in the tumor microenvironment of some tumors. Tumor derived

succinate impedes degranulation and cytokine (such as interferon-g
(IFN-g)) secretion in both CD4 and CD8 T cells. In this situation T

cells uptake more succinate (partly by MCT1) and accumulation of

succinate into the cells inhibits succinyl coenzyme A synthetase

activity and consequently, glucose flux through the tricarboxylic

acid cycle is disturbed (95).

There are only a few studies that explored the combination of

glycolysis metabolism targeted therapy with cancer immunotherapy.
FIGURE 4

Targeting glucose transporter, critical glycolytic enzymes, and lactate transporter in cancer therapy. GLUT can be targeted via various components
such as Ritonavir, Apigenin, Metformin, Tamoxifen, Genistein, Resveratrol, STF-31, and WZB117. HK enzyme can be inhibited by 2-DG, 3-BrPA,
Euxanthone, SMI-4a, Metformin, Lonidamine. PFK enzyme is targeted by 3PO, PFK15, PFK158, Clotrimazole, Shikonin, Vit K3/K5 YN1, and N4A. PK
enzyme can be inhibited by Shikonin, Vit K3/K5, 5FU, and Lapatinib. LDH enzyme is targeted by Gossypol, Oxamate, FX II, Galloflavin, NCI-006, N-
hydroxyindole-based inhibitors, Pyrazole-based inhibitors and MCT transporter can be inhibited by Quercetin, Cinnamate, AZD3965, and Ionidamine.
There are a few combination therapy with metabolism targeting and immunotherapy that are shown by green (anti-CTLA-4) and orange (anti-PD1)
(2-DG: 2-Deoxy- d-glucose, 3-BrPA: 3-bromopyruvate, 5FU: Fluorouracil, GLUT: Glucose Transporter, GPI: Glucose-6-phosphate isomerase, HK:
Hexokinase, LDH: Lactate dehydrogenase, MCT: Monocarboxylate Transporter, PEP: Phosphoenolpyruvate, PFK: phosphofructokinase, PK: Pyruvate
kinase, Vit K: Vitamin K).
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Genetic inhibition of glycolysis in tumor cells has been found to

augment checkpoint blocker therapy (96). Accordingly, combination

of 2-DG, BAY-876, and chloroquine and a glycolysis inhibitor nano-

drug (D/B/CQ@ZIF-8@CS) has been shown to improve anti-CTLA-

4 immunotherapy by reducing Treg metabolic fitness (97).

Combination of Lonidamine, with anti-PD-1 therapy also has been

shown to improve the therapeutic outcomes in glioblastoma mice

model (98). The efficiency of anti-PD-1/PD-L1 therapy is also

increased in pancreatic ductal adenocarcinoma cells (PDAC) which

have deletion of PKM2 (99) implying strategies downregulating

PKM2 in PDAC may synergize with ICI using anti-PD1/PD-L1.

Various therapeutic interventions may have differential effects

on the ability of immune cells, particularly the effector T cells to

migrate, infiltrate, and kill the tumor cells (96). Application of

inhibitors of glycolysis or transport molecules such as MCT and

GLUT may result in decreased lactate levels in the TME that would

tend to alleviate the lactate mediated immune suppression and may

also enhance immune cell infiltration (100). However, given the

complexity of the TME and presence of tumor and immune cells in

close proximation, it will be important to devise strategies for

differential targeting of tumor and immune cells. One alternate

can be ex-vivo treatment of immune cells for increasing the efficacy

of adoptive cell therapy or CAR-T cell therapy. For example,

culturing cytotoxic T cells or CAR-T cells under hypoxic

conditions (101), or reducing culture conditions (102), or in the

presence of appropriate inhibitors such as adenosine receptor

inhibitors (103) seem to enhance the anti-tumor potential of

these cells.
Conclusion

Glycolysis is central to cell metabolism. However, its role goes

far beyond the energy channel of cells. Various metabolites passing

through the glycolytic pathway not only help in ATP synthesis but

also in generation of reducing powers such as NAD. These reducing

powers and other intermediates generated during the process of

glycolysis are involved in cell signaling. Interestingly, these

intermediates seem to be utilized differentially in tumor and

immune cells. Thus, a thorough understanding of the regulatory

factors that control a continued flow of energy and of various

metabolites in cancer and immune cells will be helpful in devising

differential targeting strategies. Such differential targeting strategies

will be especially important in complex tumor microenvironment
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wherein tumor and immune cells reside in close contact, and it is

difficult to target one cell type over the other. For example, lactate

has been traditionally recognized as a tumor cell derived waste

product and an oncometabolite that contributes to suppression of

immune functions. However, it has become amply clear that in

addition to being an immune suppressant, lactate also functions as

an energy source in immune cells as at low concentrations, lactate

can fuel the TCA cycle and can be used preferentially through TCA

cycle. Hence, the role of metabolites of the glycolytic pathway,

particularly the lactate is highly context dependent and may

potentially be used for enhancement of the efficiency of

cancer immunotherapy.
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Crosstalk between arginine,
glutamine, and the branched
chain amino acid metabolism in
the tumor microenvironment
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Leighton M. Wheeler and Elitsa A. Ananieva*

Ananieva Laboratory, Biochemistry and Nutrition Department, Des Moines University, Des Moines,
IA, United States
Arginine, glutamine, and the branched chain amino acids (BCAAs) are a focus of

increased interest in the field of oncology due to their importance in the metabolic

reprogramming of cancer cells. In the tumor microenvironment (TME), these amino

acids serve to support the elevated biosynthetic and energy demands of cancer cells,

while simultaneously maintaining the growth, homeostasis, and effector function of

tumor-infiltrating immune cells. To escape immune destruction, cancer cells utilize

a variety of mechanisms to suppress the cytotoxic activity of effector T cells,

facilitating T cell exhaustion. One such mechanism is the ability of cancer cells to

overexpress metabolic enzymes specializing in the catabolism of arginine,

glutamine, and the BCAAs in the TME. The action of such enzymes supplies

cancer cells with metabolic intermediates that feed into the TCA cycle, supporting

energy generation, or providing precursors for purine, pyrimidine, and polyamine

biosynthesis. Armedwith substantial metabolic flexibility, cancer cells redirect amino

acids from the TME for their own advantage and growth, while leaving the local

infiltrating effector T cells deprived of essential nutrients. This review addresses the

metabolic pressure that cancer cells exert over immune cells in the TME by up-

regulating amino acid metabolism, while discussing opportunities for targeting

amino acid metabolism for therapeutic intervention. Special emphasis is given to

the crosstalk between arginine, glutamine, and BCAAmetabolism in affording cancer

cells with metabolic dominance in the TME.

KEYWORDS

glutamine, arginine, leucine, isoleucine, valine, TME, metabolism
1 Introduction

Recent advances in our understanding of the interactions between cancer and immune

cells strongly suggest the outcome of the anti-tumor T cell response is dictated by the

nutrient availability and the flexibility of cancer and T cell metabolism (1–3). Cancer cells

remodel their metabolism to escape immune surveillance in the TME creating nutrient-
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depleted TME with dysfunctional and exhausted T cells (4, 5).

Amino acid deprivation is one of the signatures of nutrient-

deprived TME.

Arginine, glutamine, and the BCAAs are needed to support the

increased biosynthetic and bioenergetic demands of the growing

tumor and the incoming tumor infiltrating lymphocytes (TILs) (6–

8). These amino acids interconnect at several metabolic steps.

Breakdown of BCAAs to branched chain keto acids (BCKAs)

releases glutamate, which is the precursor for glutamine (9).

Glutamine is converted into ornithine, which is the precursor of

arginine (10). Arginine and ornithine are precursors for polyamine

synthesis, which is upregulated in cancer and immune cells (11).

The depletion of glutamine, arginine or the BCAAs in the TME,

alone or in combination, may impact the ability of TILs to eliminate

cancer cells. However, TILs and cancer cells share similar

requirements for these amino acids, creating a practical

conundrum regarding nutrient-based cancer treatments (12, 13).

This review provides an overview of glutamine, arginine and the

BCAAs based on recent discoveries in the context of TME and the

challenges associated with future therapeutic approaches.
2 Overview of arginine

2.1 Arginine uptake and metabolism in
mammalian cells

Dietary intake and protein degradation are the main sources of

arginine for growing children. Postnatally, humans synthesize

arginine via the intestinal-renal axis. This interorgan process

includes the synthesis of citrulline by the small intestines and its

absorption by the kidneys where citrulline is converted to arginine

by argininosuccinate synthase 1 (ASS1) and lyase (ASL) (14). Once

released in the circulation, arginine enters cells preferentially via

cationic amino acid transporters (CATs) existing in eight different

isoforms, each with different tissue distribution (Figure 1) (15).

Inside the cells, arginine is incorporated into new protein, or used

for polyamine and collagen synthesis, or as an activator of the

mammalian target of rapamycin (mTOR) (Figure 1) (16). Thus,

arginine availability is crucial for maintaining physiological

cell function.

Arginine catabolism includes the urea cycle and nitric oxide

(NO) production. The urea cycle comprises five enzymatic

reactions that occur within the liver. Carbamoyl phosphate

synthetase 1 (CPS1) incorporates ammonia into carbamoyl

phosphate followed by formation of citrulline by ornithine

transcarbamoylase (OTC), and argininosuccinate by ASS1.

Arginine is then produced by ASL followed by hydrolysis by

arginase 1 (Arg1) to urea and ornithine (16). Arg1 is a cytosolic

enzyme expressed in the liver; however, humans express

mitochondrial arginase, Arg2, in most tissues (17). During NO

synthesis, nitric oxide synthases (NOS) catalyze the oxidation of

arginine to NO and citrulline (Figure 1) (18). Mammals have three

NOS isoforms, NOS1-3. NOS2 is the inducible and prevalent

isoform in immune cells (iNOS) (19). The mononuclear myeloid-

derived suppressor cells (M-MDSCs) rely on iNOS to drive
Frontiers in Oncology 0276
immunosuppression (20). High expression of iNOS in M-MDSCs

cells releases NO, which is converted into reactive oxygen species

(ROS) causing DNA damage and promoting tumor growth (21).
2.2 Cancer and immune cells have high
demands for arginine

Arginine is conditionally essential in patients with severe

trauma, compromised immune system, or cancer cachexia. Under

these disease states, the demand for arginine exceeds its endogenous

production (22, 23).

Defective arginine synthesis (arginine auxotrophy) is a common

occurrence in cancer cells. It primarily associates with a deficiency in

ASS1 (24). To persist in the TME, CD4+ and CD8+ T cells must

maintain adequate arginine concentrations. Arg2-deficient CD8+ T

cells display enhanced cytotoxic activity against murine melanoma

B16-OVA and colon adenocarcinoma MC38-OVA (25). The Arg2-

deficent CD8+ T cells have improved effector function as seen by

increased perforin, granzyme, IFN-g and IL-2 (25). Alternatively,

Arg2-specific human CD8+ T cells recognize Arg2-expressing

regulatory T cells (Tregs), suggesting a naturally existing

immunomodulatory potential of CD8+ T cells to remove immune

suppression by targeting Tregs with high Arg2 expression (26).

Similarly, Arg1-specific T cells target Arg1-expressing myeloid cells

(27). In another study, bonemarrow derived dendritic cells (BMDCs)

and peritoneal macrophages synthesize arginine via ASL and ASS1

and supply CD4+ T cells with arginine (28). Studies with colorectal

cancer patients failed to support the hypothesis that supplementation

with arginine reduces the frequency of immunosuppressive M-

MDSCs and polymorphonuclear myeloid-derived suppressor cells

(PMN-MDSCs) but increases the frequency of CD4+ T cells. Thus,

while arginine deficiency contributes to immunosuppression,

systemic arginine supplementation alone does not restore immune

system activity (29).

The rest of the urea cycle enzymes, CPS1 and OTC are studied to

a lesser extent in cancer and immune cells (30). Cancer cells

upregulate CPS1 to prevent ammonia buildup. A small-molecule

inhibitor of CPS1 (H3B-120) that blocks CPS1 activity in human

hepatocytes might be valuable for future therapeutic approaches (31).

In contrast to CPS1, OTC is downregulated in cancer cells leading to

accumulation of ammonia. Cancer cells can recycle ammonia for

amino and nucleic acid synthesis (32). Lastly, a virus-induced

metabolic reprogramming of mouse liver, results in transcriptional

repression of the OTC and ASS1 genes leading to decreased arginine

but increased ornithine concentrations in the circulation, which in

turn suppresses virus-specific CD8+ T cells (33).
3 Overview of glutamine

3.1 Glutamine metabolism and transport in
mammalian cells

Glutamine is the most abundant non-essential amino acid

within human plasma. It contributes to nucleic acid (34) and
frontiersin.org

https://doi.org/10.3389/fonc.2023.1186539
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Wetzel et al. 10.3389/fonc.2023.1186539
protein synthesis (35), cellular response to ROS (36), and energy

production through the TCA cycle (37). It is conditionally essential

for proliferating cells during high demand, where endogenous

synthesis is insufficient to support cellular homeostasis (38).

Glutamine synthase (GS) generates glutamine from glutamate and

ammonia (34). This reaction facilitates interorgan ammonium and

glutamate transport, prevents toxic encephalopathy and blood

acidification (35). Glutamine hydrolysis to glutamate and

ammonia is facilitated, in part, by glutaminase-1 (GLS-1) in the

kidney and glutaminase-2 (GLS-2) in the liver. Different transport

systems specialize in assisting glutamine import and export by the

cells. Among them are the sodium-dependent transporter ASCT2

(Solute Carrier 1a5, Slc1a5) and the sodium-independent antiporter

Slc3a2 that work together with Slc7a5 (also known as L-type amino

acid transporter 1, LAT1) to exchange glutamine for leucine

(Figure 1). These transporters have vast tissue distribution, but

most notably they are overexpressed in immune and cancer cells

(12, 36, 37).
3.2 Cancer and immune cells
reliance on glutamine

Cancer reliance on glutamine is established in tumors

throughout the body, including pancreatic (39), prostate (40),

breast (41), and liver (42) cancers. Increased expression of ASCT2

and GLS are found in squamous cell carcinoma, adenocarcinoma,

and neuroendocrine lung tumors (43). Such increases in the
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expression of ASCT2 and GLS are linked to tumors with aberrant

oncogene c-MYC (40, 44). With a growing dependence on

exogenous glutamine, tumor cells exhibit “glutamine addiction”.

Glutamine addiction prevents cells from relying on endogenous

glutamine synthesis and leads to cell death in glutamine free

environments (45).

Similarly, immune cells rely on glutamine to sustain

homeostasis and execute proper functions. A blockage of

glutamine metabolism by DON (6-diazo-5-oxy-L-norleucine), or

its modified prodrug JHU-083, causes a shift of CD8+ T cells

towards a long-lived memory state and increases their tumor

infiltration potential and survival in the TME (46–48). A loss of

GLS halts Th17 differentiation but promotes the expression of

Tbet and stimulates Th1 and CD8+ T cells. A long-term loss of

GLS correlates with an impaired Th17 immune response, yet a

transient loss of GLS promotes Th17, but restricts Th1 and CD8+

T cell effector differentiation (49). In a glutamine-depleted

environment, activated CD8+ T cells produce significantly less

IFN-g and TNF-a (50). Selective GLS inhibition by CB-839,

Telaglenastat, impairs the clonal expansion and activation of

CD8+ T cells in the context of combinatorial anti-PD-1

treatment (51). In glutamine-addicted clear cell renal cell

carcinoma (ccRCC), tumor-associated macrophages (TAMs)

shift to M2 (immunosuppressive phenotype) promoting a pro-

tumor environment. Such TAMs produce IL-23 in the context of

hypoxia (HIF-a activation), activating Tregs (52). Taken together,

glutamine metabolism plays an important role in T cell activation

and function.
FIGURE 1

Simplified schematics of glutamine, arginine and BCAA metabolic interconnections in cancer and immune cells. Left to right: Arginine
transportation is assisted by CAT. Arginine can be converted into ornithine, polyamines, collagen, or nitric oxide (NO). Glutamine enters the
cells via ASCT2 and is converted into glutamate, glutathione, arginine, or nucleotides (not shown) or it may exit the cells via LAT1, which
transfers leucine in exchange for glutamine. Leucine is converted into its corresponding BCKA in the cytosol or in the mitochondria. Arginine
and glutamine (not shown) can be also synthesized in mitochondria. Glutamine and the BCAAs contribute to energy production by feeding
into the TCA cycle. The metabolism of BCAAs is illustrated with leucine. The enzyme names are given in red. arginine, Arg, glutamine; Gln,
glutamate; Glu, glutamine synthase; GS, glutaminase; GLS, arginosuccinate synthase 1; ASS1, arginosuccinate lyase; ASL, inducible nitric
oxide synthase; iNOS, arginase 2; Arg2, leucine; Leu, a-ketoglutarate; aKG, cytosolic and mitochondrial branched chain aminotransferase
BCATc and BCATm, branched chain keto acids; BCKAs, reactive oxygen species; ROS.
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4 Overview of the branched chain
amino acids

4.1 BCAA metabolism and transport in
mammalian cells

The BCAAs (leucine, isoleucine, and valine) are supplemented

through the diet to mammalian cells. BCAAs make up ~35% of the

essential amino acids in the blood (53). The BCAAs are important

nutrients under physiological and pathological conditions (54).

They are nitrogen donors to glutamate and alanine and stimulate

protein synthesis in the muscle (55). In the brain, the BCAAs

maintain the glutamate-glutamine interconversions by engaging in

“glutamate-BCAA” cycles between neurons and astrocytes (56).

BCAAs trigger insulin release from the pancreatic b-islets; however,
chronically elevated plasma BCAAs are a common clinical finding

in patients with Type 2 Diabetes and Cardiovascular Disease

(56, 57).

BCAAs travel across the plasma membranes utilizing the

heterodimeric transporter Slc7a5/Slc3a2. As stated earlier, this

transporter works in antiport with Slc1a5 where glutamine efflux

proceeds BCAA influx (6, 58). Once inside the cells, BCAAs are

incorporated into protein or subjected to degradation by the

cytosolic branched chain aminotransferase, BCATc (6).

Alternately, the BCAAs enter the mitochondria, assisted by the

Scl24a44 transporter, to become subjected to degradation by the

mitochondrial BCATm (59). BCATc and BCATm catalyze the

reversible transamination of the BCAAs to their corresponding

BCKAs, which are subjected to irreversible oxidative

decarboxylation by the mitochondrial branched chain alpha-

ketoacid dehydrogenase complex (BCKDC). Following this step,

each BCAA commits to their unique degradation pathways

releasing propionyl-CoA, acetoacetate, or acetyl-CoA that feed

into the TCA cycle or other pathways (Figure 1) (60).
4.2 BCAAs support cancer growth
but they are also essential for proper
immune function

BCAAs are important for sustainable tumor growth. The

growing tumor obtains BCAAs from the circulation or the tissues

surrounding it. Positive association between elevated plasma

BCAAs and the risk of colorectal adenoma and pancreatic

adenocarcinoma are reported in human patients but controversial

in animal studies (61–65). High plasma concentrations of BCAAs,

due to disruption in BCAAmetabolism, or dietary supplementation

with BCAAs, are associated with delayed onset of lymphoma, or

suppression of breast cancer in mice (63, 64). In contrast, mice

subjected to a diet high in BCAAs, have increased incidences of

pancreatic ductal adenocarcinoma (PDAC) (66). Elevated BCAA

metabolism at the BCAT step is implicated in the onset of many

cancers including glioblastoma (53) myeloid leukemia (54)

lymphoma (50) lung (55), gastric (56), pancreatic (57) and breast

cancers (58).
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To a lesser extent, BCAAs and their metabolism are studied in

immune cells. Leucine is indispensable for T cell activation as

insufficient leucine prevents clonal expansion to Th1, Th17 and

CD8+ T cells (37). Mice deficient of Slc3a2 in Foxp3+ Tregs,

generate a low number of Foxp3+ Tregs and fail to suppress

intestinal inflammation (67). CD4+ T cells, deficient in BCATc or

BCATm, have higher glycolytic capacity, improved oxygen

consumption and increased capacity to secrete IFNg (6, 68).

Studies with BCATc in human macrophages identified a non-

catalytic role for BCATc in the metabolic events associated with

fragmented TCA cycle (69, 70). It remains to be further established

whether the non-enzymatic function of BCATc represents a

universal mechanism to regulate cellular metabolism.
5 Discussion

5.1 The interconnected network between
arginine, glutamine and the BCAAs in TME

Rapidly dividing cancer cells are forced to reprogram their

metabolism to ensure long term survival and metastatic growth.

Their major opponents, the effector Th1 and CD8+ T cells, must

also reprogram metabolism to embrace the harsh TME. However,

these functionally unrelated cells have similar demands for

nutrients, including amino acids (71, 72).

Numerous reports have demonstrated uptake of glutamine,

arginine, and the BCAAs is upregulated in cancer and activated

Th1 and CD8+ T cells (6, 73–75). There is a high redundancy in

transport preference for these amino acids, making current

approaches to target amino acid uptake particularly challenging

(6, 76). Ovarian cancer cells, CD4+ and CD8+ memory T cells, and

M0 macrophages overexpress the arginine CAT1 transporter.

Silencing CAT1 in the ovarian cancer cells significantly reduces

the concentration of arginine but lowers the concentrations of

BCAAs (77). The uptake of glutamine by human breast HCC1806

cancer cells, deficient in ASCT2, is sensitive to the inhibition of

leucine uptake when LAT1 is targeted by JPH203 (78). This suggests

that LAT1 plays a role as a rescue transporter for glutamine. In

breast cancer biopsies, high LAT1 expression is associated with

invasive breast cancer where LAT1 overexpression positively

correlates with the expression of the estrogen receptor (ER) and

the programmed death ligand-1 (PD-L1) (79). LAT1 is highly

expressed in malignant skin lesions (80) and in cells from

patients with skin disorders (81). Increased LAT1 expression is

observed in keratinocytes and dermal infiltrating lymphocytes of

patients with psoriasis, where LAT1 expression is upregulated by

IL-23 and IL-1b (81). Thus, scientific evidence exists to support the

notion of high reliance of malignant and non-malignant cells on

amino acid transporters specializing in the uptake of arginine,

glutamine, and the BCAAs. Because these transporters exert

overlapping functions, their targeting may impact the uptake of

more than one amino acid in clinical trials.

Most of arginine, glutamine and the BCAAs are delivered to the

TME for incorporation in new protein. However, 20-25% are
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degraded or used to stimulate signal transduction cascades, such as

mTOR pathway (72). Such distribution is necessary to supply the

cells with fuel and precursor metabolites for purine, pyrimidine, or

polyamine biosynthesis (Figure 2) (82–85). The intracellular

concentrations of these amino acids, however, fluctuate based on

shared metabolic precursors and enzymatic reactions. A global

deletion of BCATm leads to a reduction in lymphoma burden,

which correlates with elevated concentrations of BCAAs, but

reduced concentrations of glutamine (64). In a non-small cell

lung carcinoma (NSCLC), nitrogen derived from BCAA

transamination supports glutamine and nucleotide synthesis via

the glutamine-purine-pyrimidine axis. However, such reliance on

nitrogen from BCAAs is not observed in PDAC (86). In contrast,

BCATc selective inhibition, but not changes in the BCAAs, results

in upregulation of genes involved in the transport of glutamate and

the conversion of glutamate into glutathione in human

macrophages (70). Similarly, mouse embryonic fibroblasts, grown

in a glutamine-depleted environment, show a significant increase in

arginine, but not in BCAAs. The arginine levels balance off, while

the levels of BCAAs increase when TP53 is deleted. The authors

thus identified the tumor suppressor p53 as an important

transcriptional regulator of arginine uptake during a pro-survival

response to glutamine-induced metabolic stress (87). In the TME,

restricting glutamine or glutamine-dependent purine and

pyrimidine synthesis shifts CD4+ T cells toward Tregs but this

shift is abolished if GS is inhibited. GS is described as de-repressed

under low glutamine, or nucleotide starvation (88). Arginine is a

precursor of polyamines and targeting enzymes such as Arg1, can

impact the synthesis of polyamines in the TME. Polyamines exert

immunosuppressive effects, promoting tumor growth (83). Arg1 is
Frontiers in Oncology 0579
overexpressed in dendritic cells and represents one of the immune

checkpoints in the TME (11). Dendritic cells may deprive the TME

of arginine causing T cell exhaustion (83).

Lastly, arginine, glutamine and the BCAAs activate complex 1

of mTOR in cancer and immune cells. Nutrient sensing via mTOR

is essential for growth and survival; however, in the context of TME,

this is yet another mechanism cancer and immune cells exploit to

compete for nutrients (Figure 2). mTOR signaling is dysregulated in

cancer cells, while T cell function requires upregulation of mTOR

(89–91). While leucine is the most potent activator of mTOR as

reviewed in (6), glutamine and arginine are other stimulators of

mTOR signaling. mTOR sensing may occur via Rag-GTPase-

dependent and independent pathways and may engage different

protein targets (92, 93). Leucine-driven activation of mTOR

includes GATOR1-2, Sestrin2, and SAR1B and follows the Rag-

GTPase dependent mechanism (94, 95). Arginine cannot bind

Sestrin 2 or SAR1B but requires a lysosomal membrane protein

SLC38A9 (96). Glutamine synergizes asparagine to activate mTOR

signaling via Rag-GTPase independent mechanism (93). In

summary, cancer and immune cells co-exist in the TME in a

bidirectional metabolic relationship, influenced by the fluctuations

in arginine, glutamine and the BCAAs.
5.2 Targeting arginine, glutamine and the
BCAAs for cancer therapy

Because arginine, glutamine and the BCAAs are required for

growth of cancer and immune cells, targeted deprivation or

supplementation of these amino acids may lead to undesirable
FIGURE 2

Cancer cells exert metabolic dominance over immune cells within the TME to avoid detection and destruction. In a nutrient-depleted TME, cancer
cells preferentially uptake arginine, glutamine, and BCAAs, which undergo vast, interconnected metabolic pathways to produce essential
biosynthetic precursors to support rapid cancer growth, as well as activate mTOR signaling. Oppositely, reduced nutrient uptake of arginine,
glutamine, and the BCAAs voids CD4+ and CD8+ T cells of essential nutrients and diminishes mTOR signaling leading to impaired effector function
and aberrant lineage commitment. As a result, immune cells, such as M2 macrophages and Tregs cells, are generated, which in turn release
immunosuppressive cytokines, promoting an environment for cancer growth. Arg, arginine; Gln, glutamine; BCAAs Branched chain amino acids.
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therapeutic effects (97). Selectively limiting the availability of these

amino acids in tumor cells while supplying them to immune cells

may help overcome this obstacle. Indeed, pharmacological

inhibition of glutamine uptake by the ASCT2 inhibitor, V-9302,

blocks glutamine uptake in triple negative breast cancer cells but not

in CD8+ T cells. The CD8+ T cells adapt by upregulating a Na+/Cl-

dependent neutral and cationic amino acid transporter ATB0,+ (98).

A similar approach is used in keratinocytes from patients with

psoriasis, where deleting LAT1 controls skin inflammation, while

CD4+ T cells use alternative amino acid transporters (LAT2 and

LAT3) (81). Lastly, pro-drugs, such as DRP104, target GLS-1 in

tumors and cause CD8+ T cell-dependent tumor regression (94)

Such approaches could potentially unleash the immune cells in

destroying cancer cells in the TME.

The endurance of the chimeric antigen receptor T (CAR-T)

cells in hematological and solid malignancies can be affected by

amino-acid depleted TME. Induced expression of ASS1 in re-

engineered CAR-T cells increases their proliferation without

compromising their function (99).

A combinatorial therapy including multivesicular liposome

technology, designed to supply arginine to melanoma tumors,

and selective suppression of the CAT2 transporter, leads to

arginine starvation of tumor cells but promotes the infiltration of

CD8+ T cells in the TME (100). Similarly, a local therapy using

nanoparticles to deliver poly(L-arginine) and hyaluronic acid to

tumor-associated macrophages successfully induces tumor-

suppressive M1 phenotype and leads to an increased iNOS

expression in these cells (101).

Although still in their infancy, nanomaterials or liposome-based

technologies could be expanded to deliver glutamine and BCAAs to

CD8+ and CD4+T cells in the TME. In addition, new generations of

CAR-T cells could be designed to competitively intake arginine,

glutamine and BCAAs from the TME. Under such a scenario,
Frontiers in Oncology 0680
systemic side effects should be minimal and can address the low

therapeutic efficacy of the conventional cancer therapies.
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81. Cibrian D, Castillo-González R, Fernández-Gallego N, de la Fuente H, Jorge I,
Saiz ML, et al. Targeting l-type amino acid transporter 1 in innate and adaptive T cells
efficiently controls skin inflammation. J Allergy Clin Immunol (2020) 145(1):199–
214.e11. doi: 10.1016/j.jaci.2019.09.025

82. Yang L, Venneti S, Nagrath D. Glutaminolysis: a hallmark of cancer metabolism.
Annu Rev BioMed Eng. (2017) 19:163–94. doi: 10.1146/annurev-bioeng-071516-044546

83. Lian J, Liang Y, Zhang H, Lan M, Ye Z, Lin B, et al. The role of polyamine
metabolism in remodeling immune responses and blocking therapy within the tumor
immune microenvironment. Front Immunol (2022) 13:912279. doi: 10.3389/
fimmu.2022.912279

84. Kuo MT, Chen HHW, Feun LG, Savaraj N. Targeting the proline-Glutamine-
Asparagine-Arginine metabolic axis in amino acid starvation cancer therapy.
Pharmaceuticals (2021) 14(1):72. doi: 10.3390/ph14010072
Frontiers in Oncology 0882
85. Kurmi K, Haigis MC. Nitrogen metabolism in cancer and immunity. Trends Cell
Biol (2020) 30(5):408–24. doi: 10.1016/j.tcb.2020.02.005

86. Mayers JR, Torrence ME, Danai LV, Papagiannakopoulos T, Davidson SM,
Bauer MR, et al. Tissue of origin dictates branched-chain amino acid metabolism in
mutant kras-driven cancers. Science. (2016) 353(6304):1161–5. doi: 10.1126/
science.aaf5171

87. Lowman XH, Hanse EA, Yang Y, Ishak Gabra MB, Tran TQ, Li H, et al. p53
promotes cancer cell adaptation to glutamine deprivation by upregulating Slc7a3 to
increase arginine uptake. Cell Rep (2019) 26(11):3051–60.e4. doi: 10.1016/
j.celrep.2019.02.037

88. Metzler B, Gfeller P, Guinet E. Restricting glutamine or glutamine-dependent
purine and pyrimidine syntheses promotes human T cells with high FOXP3 expression
and regulatory properties. J Immunol (2016) 196(9):3618–30. doi: 10.4049/
jimmunol.1501756

89. Chen CL, Hsu SC, Ann DK, Yen Y, Kung HJ. Arginine signaling and cancer
metabolism. Cancers (Basel). (2021) 13(14):3541. doi: 10.3390/cancers13143541

90. Kim J, Guan KL. mTOR as a central hub of nutrient signalling and cell growth.
Nat Cell Biol (2019) 21(1):63–71. doi: 10.1038/s41556-018-0205-1

91. Waickman AT, Powell JD. mTOR, metabolism, and the regulation of T-cell
differentiation and function. Immunol Rev (2012) 249(1):43–58. doi: 10.1111/j.1600-
065X.2012.01152.x
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Glossary

BCAA Branched chain amino acids

TME Tumor microenvironment

TILs Tumor infiltrating lymphocytes

BCKA Branched chain keto acid

ASS1 Arginosuccinate synthase 1

ASL Arginosuccinate lyase

CAT Cationic amino acid transporter

NO Nitric oxide

mTOR Mammalian target of rapamycin

Arg1 Arginase 1

Arg2 Arginase 2

NOS Nitric oxide synthase

M-MDSCs Mononuclear myeloid-derived suppressor cells

BMDCs Bone marrow derived dendritic cells

PMN-
MDSCs

Polymorphonuclear myeloid derived suppressor cells

GS Glutamine synthase

GLS-1 Glutaminase-1

GLS-2 Glutaminase-2

ASCT2 Alanine/Serine/Cysteine transporter

SLC Sodium dependent transporter

LAT1 L-type amino acid transporter 1

L-DON 6-diazo-5-oxo-L-norleucine

NK cells Natural killer cells

TAMs Tumor associated macrophages

Treg Regulatory T cells

HIF1a Hypoxia inducible factor 1 a

BCATc Cytosolic branched chain aminotransferase

BCATm Mitochondrial branched chain aminotransferase

BCKDC Mitochondrial branched chain alpha-keto acid dehydrogenase
complex

PDAC Pancreatic ductal adenocarcinoma

ER Estrogen receptor

PD-L1 Programed death receptor ligand-1

NSCLC Non-small cell lung carcinoma

CAR-T Chimeric antigen receptor T cells

ccRCC Clear cell renal cell carcinoma
F
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LC–MS-based serum
metabolomics analysis for
the screening and monitoring
of colorectal cancer
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Xu Lian1, Chongxu Han1* and Wei Sun2*

1Department of Laboratory Medicine, Northern Jiangsu People’s Hospital Affiliated to Yangzhou
University, Yangzhou, Jiangsu, China, 2Institute of Basic Medical Sciences, Chinese Academy of
Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
Background: Colorectal Cancer (CRC) is a prevalent digestive system tumour

with significant mortality and recurrence rates. Serum metabolomics, with its

high sensitivity and high throughput, has shown potential as a tool to discover

biomarkers for clinical screening and monitoring of the CRC patients.

Methods: Serummetabolites of 61 sex and age-matched healthy controls and 62

CRC patients (before and after surgical intervention) were analyzed using a ultra-

performance liquid chromatography-high resolution mass spectrometer (UPLC-

MS). Statistical methods and pathway enrichment analysis were used to identify

potential biomarkers and altered metabolic pathways.

Results: Our analysis revealed a clear distinction in the serum metabolic profile

between CRC patients and healthy controls (HCs). Pathway analysis indicated a

significant association with arginine biosynthesis, pyrimidine metabolism,

pantothenate, and CoA biosynthesis. Univariate and multivariate statistical

analysis showed that 9 metabolites had significant diagnostic value for CRC,

among them, Guanosine with Area Under the Curve (AUC) values of 0.951 for the

training group and0.998 for the validation group. Furthermore, analysis of four

specific metabolites (N-Phenylacetylasparticacid, Tyrosyl-Gamma-glutamate,

Tyr-Ser and Sphingosine) in serum samples of CRC patients before and after

surgery indicated a return to healthy levels after an intervention.

Conclusion: Our results suggest that serum metabolomics may be a valuable

tool for the screening and monitoring of CRC patients.

KEYWORDS

colorectal cancer, serum metabolomics, liquid chromatography-mass spectrometer,

biomarkers, screening, monitoring
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Introduction

Colorectal cancer (CRC) is currently the third most prevalent

malignant tumour and the second leading cause of cancer death

worldwide (1).Early detection and treatment are critical in

enhancing the 5-year survival rate. Currently, stage I and II

patients have a cure rate of approximately 90% (2). Therefore,

early screening for CRC is essential for improving patients’ cure and

survival rates. Carcinoembryonic antigen (CEA) and faecal occult

blood tests are currently the main non-invasive early screening

methods, but their clinical value is limited due to their low

sensitivity and specificity (3). Endoscopy combined with

pathological examination is the gold standard for diagnosing

CRC, allowing for an initial evaluation of tumour shape, size,

depth of invasion, and pathological classification. However, as an

invasive and expensive procedure, it cannot be used for large-scale

population screening. Thus, there is an urgent need to develop

novel, accurate, and non-invasive techniques for detecting CRC.

Metabolomics is a rapidly developing field that studies the

composition, distribution, and regulation of small molecular

metabolites. By detecting the metabolic spectrum of biological

fluids or tissues and monitoring the effects of different

disturbance factors on the body’s metabolic profile (4), it has

become a powerful tool for identifying biomarkers for diseases,

including cancer. In recent years, metabolomics has been widely

applied to the biomarker discovery and pathway analysis of CRC. In

2012, by comparing the area under the receiver operating

characteristic curve (AUROC) analysis of 11 amino acids, Leichtle

AB et al. found that the model consisting of carcinoembryonic

antigen, glycine, and tyrosine had better differentiation for CRC

compared to carcinoembryonic antigen alone, with an AUROC of

0.878 (5). Nishiumietal. analyzed serum samples using gas-

chromatography/mass-spectrometry (GC/MS) and generated a

metabolite panel for CRC detection with an AUC of 0.91 (6).

There is an increasing focus on exploring changes in CRC

pathways. In 2021, Zhu et al. analyzed the tissue and serum

metabonomic profiles of 48 CRC patients using non-targeted GC-

MS and found that the most important pathways affecting CRC

were phosphate inositol metabolism, primary bile acid biosynthesis,

and linoleic acid metabolism pathway (7). Shen et al. applied LC-

MS to perform tissue metabolomics for 10 paired CRC tissues and

adjacent normal tissues and found alterations in levels of

glutathione metabolism, fatty acid metabolism, and amino acid

intermediates (8). These studies demonstrate the potential of

metabolomics as a promising tool for improving CRC diagnosis

and understanding the underlying disease mechanisms.

Metabolomics research of cancer typically relies on biological

body fluid samples, withblood and urine being the primary fluids of

interest. Blood samples offer a rich source of biological information,

with changes in metabolite levels reflecting various pathological

changes caused by cancer. Consequently, serum metabolomics has

emerged as a promising approach for identifying CRC biomarkers

(5, 6). Most studies have focused on identifying markers for the

diagnosis of CRC comparing the metabolite profiles of cancer and

healthy subjects,demonstrating the potential to distinguish between
Frontiers in Oncology 0285
different stages of cancer based on differential serum metabolite

profiles. However, few studies have examined changes in metabolite

levels in postoperative patients. Thus, there is an urgent need for

further metabolomics research on CRC to fill this gap in knowledge.

In this study, we conducted a non-targeted analysis of human

serum using liquid chromatography-high resolution mass

spectrometry (LC-HRMS) metabolomics. Specifically, we

measured serum metabolites in both newly diagnosed CRC

patients and healthy subjects and compared the differential

metabolite levels in preoperative and postoperative CRC patients.

The objective of this study was to identify potential biomarkers for

CRC screening and monitoring and to make a meaningful

contribution to clinical research in this area.
Materials and methods

Sample collection

All samples were collected from January to August in 2022,

according to a standardized sample collection scheme. Specifically,

62 patients with CRC were diagnosed pathologically by the

pathology department of Northern Jiangsu People’s Hospital and

were not subjected to surgery, chemotherapy, or radiotherapy. The

admission criteria of CRC patients included (1): age between 30 and

89 years old (2). clear preoperative diagnosis with complete

pathological examination and various examination data (3).

absence of other metabolic or immune system diseases, such as

diabetes, rheumatoid arthritis, etc. (4) normal laboratory tests

including liver function, renal function, and blood routine (5).

absence of primary tumours in other parts (6). no prior treatment

or medication. Post-operative serum samples were collected one

week after the operation.

All samples were collected using a serum collection tube with inert

separation gel after an 8-hour overnight fast in the morning. After

collection, serum samples were obtained by centrifugation at 3000rpm

for 10 minutes and stored at -80 °C for subsequent analysis.

This study was approved by the Ethics Committee of Northern

Jiangsu People’s Hospital Affiliated with Yangzhou University

(approval number: 2022ky134), and all subjects gave informed

consent before participating in this study.
Sample pre-processing

50 ml serum was mixed with 150 ml acetonitrile and vortexed for
30 seconds, followed by centrifugation at 15,000 × g for 10 minutes.

The supernatant was then dried in a vacuum and stored at -80 °C.

Before analysis, the dry powder was resuspended in 100 ml 2%
acetonitrile, vortexed till it was completely dissolved, and

centrifuged at 15,000 × g for 10 minutes. Quality control (QC)

samples were combined 5 ml serum samples prepared by mixing the

40 samples randomly from the healthy group, CRC group and the

the post-operative group.
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LC-MS/MS analysis

The samples were analysed by Waters ACQUITY H class LC

system (Waters, USA) and LTQ Orbitrap Fusion Lumos mass

spectrometer (Thermo Fisher, Scientific, MA, USA). The serum

metabolites were separated by running a gradient at a flow rate of

0.5 ml/min for 8 minutes on a Waters Acquity UPLC HSS T3

column (100 mm × 3.0 mm, 1.8 mm). The mobile phase A was a

0.1% formic acid aqueous solution, and the mobile phase B was

acetonitrile. The gradient elution procedure is as follows: 0-1.0 min,

2%B;1-3 min, 2%-55% B; 3-8min, 55%-100% B.The washing

gradient procedure is as follows: 0-3.0 min, 100%B; 3.0-3.1 min,

100-2% B; 3.1-5.0 min, 2% B. The column temperature was set at

40°C, and the injection volume was 20 ml. The electrospray ion

source (ESI source), the sheath gas was 40 arb, and the spray voltage

was 3.20 kV (positive ion). The range of quality scanning was from

100 to 1000 m/z. The data acquisition mode was set to Full Scan +

ddMS2. The goal of MS2 automatic gain control (AGC) was 5 × 105,

and the maximum injection time (IT) was 100 ms. High energy

collision dissociation (HCD) pyrolysis mode for dissociation has the

best collision energy of 20, 35, and 60.
Data analysis

The original MS data were imported into Progenesis QI (Waters,

USA) software for peak alignment, peak picking, and peak recognition.

The annotation of metabolites was determined from the accurate mass

composition, the isotope goodness-of-fit of the predicted molecular

formula and the MS/MS fragments matching with the databases

(HMDB, METLIN, and in-house standard libraries). The metabolite

score was calculated using the sum of three similarity metrics including

mass similarity, isotope similarity, and fragmentation score. The score
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was used to assess reliability of each metabolite. A CSV file containing

sample information, retention time, peak area, score and other data sets

was obtained. The CSV file was then imported into MetaboAnalyst5.0

(https://www.metaboanalyst.ca/) for data processing. For following

statistical analysis the peak area in each sample were firstly

performed normalization to the total compound. Then the missing

variables were removed frommore than 50% of the samples for further

statistical analysis. Student’s t-test was used to evaluate the significance

between groups, and a value was set to 0.05. Principal component

analysis (PCA) and orthogonal partial least square discriminant

analysis (OPLS-DA) were performed using SIMCA14.1 (Umetrics,

Sweden) software. The differential metabolites was defined as follows

(1): P-value < 0.05 (2); fold change > 1.5 and < 0.67. We used the

“pathway analysis” module in MetaboAnalyst 5.0 to analyse the

differential metabolites and the “biomarker discovery” module for

ROC analysis. In addition, we performed box chart analysis using

the R software package (version 3.6.3) to show individual metabolite

differences between different groups.
Results

Subjects

The methodology of this study is illustrated in (Figure 1). Our

study enrolled a total of 123 subjects, including 61 healthy controls and

62 CRC patients diagnosed pathologically. The samples were randomly

divided into a discovery group and a validation group in a 2:1 ratio,

with age and sex-matched between the two groups. Differential

metabolites were identified through the comparative analysis in 41

age-and sex-matched CRC patients and 41 healthy controls, using a

selection criterion of p-value < 0.05 and fold change (FC) >1.5. The

identified differential metabolites were subjected to functional
FIGURE 1

Study workflow. CRC, colorectal cancer; HC, healthy control.
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annotation and pathway analysis. Moreover, potential biomarkers for

CRC diagnosis were discovered through receiver operating

characteristic curve (ROC) analysis, which was then validated using

an independent set of 21 CRC and 20 healthy control samples. In

addition, we collected serum samples from 62 patients one week after

the operation and compared the changes in differential metabolites

before and after the operation, aiming to identify biomarkers for

monitoring prognosis.The details of all study participants are

provided in Table 1 and Table S1.
Quality control

In this study, sample analysis was performed in random order. We

evaluated the repeatability of the instrument analysis according to QC

correlation. QC sample were randomly run during the sample analysis

process. A total of 9 QC samples were injected. The Pearson correlation

coefficient analysis was calculated between pairwise pairs of QC results

(9). ‘Wu Kong’ platform (https://www.omicsolution.com/wkomics/

main/) was used for relative Pearson correlation coefficient analysis

of QC samples. The QC chart (Figure S1) revealed that the r values

(correlation coefficient) were close to 1, indicating the good correlation

between QC samples and the LC/MS system stability. This suggested

that the observed differences between groups were primarily due to

metabolic variations among the samples, rather than any other

confounding factors. Moreover, a serum chromatogram of QC

sample was provided in Figure S2.
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Distinguishing CRC patients from healthy
controls using serum metabolomics

In this study, we conducted unsupervised PCA analysis to

identify potential biomarkers distinguishing between CRC

patients and healthy controls (Figure S3A). We then used

supervised pattern recognition with an OPLS-DA model, which

showed better separation between the two groups (Figure 2A). To

ensure the reliability and stability of the supervisory model, we

performed 100 permutation tests (Figure S3B).

We selected 240 metabolic molecules with statistical differences

based on criteria of P-value < 0.05, fold change > 1.5 and < 0.67 (Table

S2). Of these, 145 metabolites were up-regulated and 95 were down-

regulated in the CRC group (Figure 2B). Pathway analysis revealed

significant disruptions in amino acid metabolism, energy metabolism,

and nucleotide metabolism in colon cancer (Figure 2C, Table 2).We

used ROC curve analysis to evaluate the predictive ability of potential

biomarkers in distinguishing CRC from healthy controls (Table S3).

Our results identified 9 metabolites with potential diagnostic value, all

of which had AUC higher than 0.9 in the discovery group. In the

validation group, the AUC values for these 9 differential metabolites

were all above 0.8, indicating good diagnostic value (Table 3). Notably,

three metabolites- Tyrosyl-Gamma-glutamate, Tyr Ser,and N-

Phenylacetylaspartic acid-had AUC values of 0.945, 0.931and 0.916,

respectively, in the discovery group (Figure 2D), and AUC values of

0.993, 0.981 and 0.986, respectively, in the validation group (Figure 2E).

Furthermore, mass spectrum of the 9 metabolites were in Figure S4.
TABLE 1 Basic clinical information of samples.

Discovery group Validation group

CRC HC CRC HC

Cases 41 41 21 20

Age 66.7 ± 11.0 67.7 ± 7.8 66.4 ± 10.5 61.8 ± 8.3

Sex(M/F) 27/14 27/14 13/9 15/5

Tumour site

colon 32 14

rectum 9 7

AJCC

I 6 4

II 15 10

III 17 7

IV 3 0

Lymphatic metastasis 20 7

Distant metastasis 3 0
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Discovery of metabolic markers for
postoperative monitoring of CRC

In this study, postoperative specimens from CRC patients were

analyzed to evaluate the association of the identified differential

metabolites with tumour load. These metabolites may serve as
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potential biomarkers for monitoring CRC after surgery.

Therefore, we collected serum samples about a week after the

operation from 62 cases and examined the changing trend of the

9 metabolites identified earlier in preoperative and postoperative

cases to evaluate the biological correlation between the potential

biomarkers and CRC tumour load. We analyzed the mean intensity
TABLE 2 Pathway analysis results in the MetaboAnalyst 5.0.

Pathway name Match status p FDR Impact

Arginine biosynthesis 2/14 0.01579 0.59693 0.22843

Pyrimidine metabolism 3/39 0.016295 0.59693 0.08289

Retinol metabolism 2/17 0.022998 0.59693 0.15464

Pantothenate and CoA biosynthesis 2/19 0.028425 0.59693 0.06429

Purine metabolism 3/65 0.061347 0.98789 0.02939

D-Glutamine and D-glutamate metabolism 1/6 0.082324 0.98789 0
A

B

D E

C

FIGURE 2

Analysis of metabolic profiling of CRC and HC. (A) Metabolic score plot of OPLS-DA. (B) Volcano analysis of the metabolites of CRC group and HC
group in the discovery group. (C) Altered metabolic pathways in colorectal cancer. (D) AUC value of three metabolites in the discovery group. (E)
AUC value of three metabolites in the validation group.
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heatmap (Figure 3A) and serum levels of the 9 specific metabolites

before and after the operation (Figure 3B, Figure S5, Table 4).

The intensity heatmap showed that seven metabolites were

remarkably up-regulated in CRC and decreased after operation.

These metabolites were related to amino acid metabolism and

purine metabolism. Several studies have reported that the up-

regulation of amino acids and purine metabolism was to promote

the proliferation of cancer cells (10, 11). And the rest two down-

regulated metabolites, 3-Hydroxypimelyl-CoA and Sphingosine,

were involved in lipid metabolism. Lipid metabolism was

associated with tumor progression and metastasis, which was to

maintain high energy demand and division of cancer cells (12, 13).

Moreover, previous research reported that the changes of lipidomic

signatures could be served as promising potential biomarkers

(12, 14).

The results showed significant differences in the levels of the 9

specific metabolites in preoperative and postoperative cases. Among

these, 3-Hydroxypimelyl-CoA and Sphingosine were higher in

heal thy controls than in CRC, whi le Guanosine , 2-

Hydroxyadenine, Tyrosyl-Gamma-glutamate, Tyrs Ser,

Lyciumoside VI, N-Phenylacetylasparticacid, and Val Arg were

higher in CRC. Four of the 9 specific metabolites, including N-

Phenylacetylasparticacid, Tyrosyl-Gamma-glutamate,Tyr Ser and

Sphingosine returned to normal levels, and there was no

significant difference between post-operation and healthy controls

(Figure 3B). These metabolites may be related to tumour load and

can be used to monitor the treatment of CRC after surgery. These

results further confirm the biological correlation of these

metabolites in CRC and highlight their potential value for the

screening and monitoringof CRC. The remaining five metabolites

exhibited statistical differences between preoperative CRC samples

and healthy controls and tended to return to normal levels after the

operation. However, further validation may be required to confirm

this (Figure S5).

Moreover, we explored whether these 9 metabolites were

statistically significant in different genders, tumor locations, AJCC

stage and TNM classification. There was no statistical significance
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among different groups (Table S4). Only Val Arg was statistically

different (P<0.05) in the comparison of left and right-sided

colorectal cancer. However, the specific mechanism is still unclear

and needs to be further investigated.
Discussion

Serum metabolomics analysis using mass spectrometry offers

high-throughput and high-sensitivity advantages for the screening

of CRC. In this study, we comprehensively characterized the serum

metabolomic profiles of healthy controls, preoperative CRC patients

andpostoperative CRC patients. We identified 9specific differential

metabolites that exhibit good discriminatory power for

distinguishing CRC patients from healthy controls. Moreover, the

9 metabolites exhibited significant differences between preoperative

and one-week post-operative samples, with four metabolites

including N-Phenylacetylasparticacid, Tyrosyl-Gamma-glutamate,

Tyr Ser and Sphingosine returning to normal levels and displaying

no significant difference compared to healthy controls after surgery.

Thus, these four metabolites may serve as potential biomarkers for

monitoring CRC.

In this study, we observed changes in several metabolic

pathways, including arginine biosynthesis, purine metabolism,

and pantothenate and CoA biosynthesisin patients with CRC

group. These metabolic changes are typical of tumour cells, which

must adapt to the nutrition-deficient environment, and obtain the

necessary nutrients to support their rapid proliferation and the

establishment of a new biological microenvironment (10). Our

findings indicated that Guanosine, an intermediate metabolite in

the purine pathway and a common precursor of DNA, was

significantly increased in the CRC group compared to the control

group. This up-regulated metabolite change suggested that purine

metabolism was upregulated in CRC. Consistent with our results,

previous metabolomics analyses of CRC tissues have reported

upregulation of urea cycle intermediates, purines, and most

amino acids (15). Abnormal proliferation of cancer cells is one of
TABLE 3 Differential metabolites for colorectal cancer distinction in the discovery group and validation group.

Compounds Discovery Group Validation group

AUC Sensitivity Specificity AUC Sensitivity Specificity

Guanosine 0.951 0.840 0.913 0.998 0.956 0.958

2-Hydroxyadenine 0.950 0.946 0.856 0.998 0.956 0.958

Tyrosyl-Gamma-glutamate 0.945 0.867 0.878 0.993 0.944 0.958

Tyr Ser 0.931 0.883 0.878 0.981 0.944 0.910

Lyciumoside VI 0.919 0.818 0.832 0.958 1 0.905

3-Hydroxypimelyl-CoA 0.919 0.797 0.889 0.882 0.750 0.952

N-Phenylacetylaspartic acid 0.916 0.892 0.821 0.986 1 0.952

Sphingosine 0.914 0.878 0.818 0.843 0.789 0.836

Val Arg 0.908 0.805 0.878 0.840 0.878 0.683
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A
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FIGURE 3

Heat map of 9 CRC-related differential metabolites in CRC,healthy control and post-surgery group. “*” marked the four metabolites which returned to
normal levels (A). The box plots of these 4 metabolites of healthy controls, CRC group and the post-surgery group (B). “ns” p >0.05; “***”p < 0.001.
TABLE 4 The intensity changes of differential metabolites before and after operation.

Compounds HC CRC PO

Mean SD Mean SD Mean SD

Guanosine 557.31 763.49 8005.65 8798.36 2462.23 3680.06

2-Hydroxyadenine 923.64 602.04 5929.21 5268.45 2405.23 2514.34

Tyrosyl-Gamma-glutamate* 306.35 397.89 2589.12 1772.56 548.71 934.24

Tyr Ser* 945.63 809.55 4695.36 2886.14 1388.29 1526.21

Lyciumoside VI 1664.32 3882.26 29353.63 37950.91 6065.67 7345.01

3-Hydroxypimelyl-CoA 52332.62 35776.92 7681.90 8146.51 40996.07 44496.98

N-Phenylacetylaspartic acid* 4490.92 1612.21 12460.65 5980.75 4975.19 3143.40

Sphingosine* 72805.68 27915.05 36202.03 21451.68 67715.09 52913.39

Val Arg 1484.90 2532.48 6160.23 6194.21 2523.44 3256.98
F
rontiers in Oncology
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70
CRC, colorectal cancer; HC, healthy control; PO, post-surgery group.”*” refer to four metabolites which returned to normal levels.
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the hallmarks of cancer, and purine is one of the basic nucleotides

needed for cell proliferation, underscoring the close relationship

between purine metabolism and cancer (11). Furthermore,

increased purine levels are also considered an indicator of

enhanced DNA synthesis (16). In 2017, Tian et al. examined the

expression level of a rate-limiting enzyme gene in the purine

synthesis pathway in different cancers and found that purine

metabolism was significantly upregulated in colorectal

adenocarcinoma, bladder cancer, breast cancer, and other cancers

(17). The decrease in guanosine levels after surgery in our study

further confirmed that solid tumour resection led to the cessation of

abnormal cancer cell proliferation and that purine metabolism

gradually returned to normal.

Amino acids are known to be essential for cell proliferation, and

certain cancer cells rely on specific amino acids as their primary

energy sources (18). Hirayama A et al. conducted a study

comparing the metabolites of colon cancer and normal tissues

and observed significantly higher levels of most amino acids and

their primary derivatives in tumours compared to normal colon

tissues (10). Arginine biosynthesis, a critical pathway upregulated in

CRC compared with healthy controls, is of particular interest. Two

intermediates involved in this pathway, L-citrulline and L-

glutamine were found to exhibit contrasting changes in the CRC

group. While L-citrulline decreased, L-glutamine increased in the

CRC group. L-citrulline is mainly produced in the small intestine

and converted to arginine through the actions of arginine succinate

synthase (ASS) and arginine succinate lyase (ASL) (19). Glutamine,

on the other hand, is the most abundant free amino acid in serum

(20), and serves as an essential energy source for cancer cell

proliferation (21). It also acts as a nitrogen donor, necessary for

de novo synthesis of purines and pyrimidines, promoting nucleotide

production during cancer cell proliferation (22). Within cells,

glutamine is synthesized from glutamate and ammonia by

glutamine synthetase (Glutamine synthetase, GS), which is highly

expressed in hepatocellular carcinoma (HCC) and glioblastoma (23,

24). Extracellular glutamine can act as a signal transducer,

activating transcriptional activator 3 (STAT3) to promote cancer

cell proliferation (21). Arginine is one of the essential amino acids in

the human body, and it plays a vital role in the ornithine cycle and

promotes the formation of urea. The ammonia produced in the

human body is converted into urea through the ornithine cycle and

excreted through the urine. Arginine is the precursor of nitric oxide

(NO) synthesis, and NO is an important signal molecule involved in

immune and vascular tone regulation (25). Previous studies have

shown that the potential link between arginine and colorectal

cancer is the regulation of the immune system by arginine

through nitric oxide (25, 26). Whereas low concentrations of NO

amplify the Ras signal by inducing conformational changes of

membrane-bound Ras protein to promote cancer cell

proliferation (27). high concentrations of NO may lead to

apoptosis, invasion, and metastasis (28). Catabolic disease states

(such as sepsis, injury, and cancer) can lead to increased arginine

utilization, resulting in increased arginine synthesis. Arginine is the

precursor of proline, which is necessary for the synthesis of

collagen. Moreover, it produces polyamines under the action of

ornithine decarboxylase to promote the occurrence of CRC and cell
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proliferation (29, 30). As the arginine metabolic pathway is highly

active in colorectal cancer, multiple molecules or enzymes involved

in this pathway may be promising targets for targeted therapy for

colorectal cancer (31). It has been found that tumour-infiltrating

dendritic cells inhibit the proliferation and activation of CD8 cells

through L-arginine metabolism (32). In addition, the expression of

enzymes involved in arginine metabolism is increased in CRC

tumour cells, and increasing research is focusing on potential

ways to interfere with the regulatory mechanism of the L-arginine

pathway by targeting transporters (10).

In this study, we also observed disruption of the pantothenate

and CoA biosynthesis pathways in the CRC group. Currently, there

are very few reports on the status of pantothenate and CoA

biosynthesis pathways in cancer. Pantothenate, also known as

vitamin B5, is one of the components of coenzyme A. Coenzyme

A(CoA) plays a key role in energy and lipid synthesis (16). The

increased concentration of coenzyme A in the body promotes the

transition from glucose oxidation to fatty acid oxidation, thus

stimulating gluconeogenesis (33). Recent studies have found that

TC22 cells in CD8+-effector T cells highly express the

pantothenate-CoA pathway, and CoA enhances the anti-tumour

ability of TC22 by promoting oxidative phosphorylation (34, 35).

These results suggest that the disruption of this pathway may be

partly caused by the limited energy supply and deficiency of anti-

tumour effector T cells in patients with CRC.

Tyrosyl-Gamma-glutamate is a dipeptide synthesized by

tyrosine and g-glutamate, and was significantly increased in the

CRC group (AUC>0.9 in both the discovery group and validation

group) and returned to normal levels after the operation. Therefore,

it can have utility as a metabolic marker for detection and

postoperative monitoring. When tyrosine is phosphorylated by

tyrosine kinase, it regulates the signal transduction pathway and

activates pyruvate dehydrogenase kinase 1 (PDHK1), which

promotes solid tumour growth and Warburg metabolism (36, 37).

Glutamine is deaminated to glutamic acid under the catalysis of

glutaminase (GLS), which is then deaminated by glutamate

dehydrogenase (GDH) to form a-ketoglutarate, which enters the

TCA cycle and serves as a precursor for the synthesis of certain

amino acids (38). In a previous study, analysis of levels of

intracellular ROS in different cancers revealed a strong positive

correlation between the estimated change in ROS levels in cancer

and the change in levels of glutamate metabolism (r = 0.655, P =

0.029) (17). This may be related to the synthesis of glutathione by

glutamate (39). Previous studies found that the increase of

glutamate and glutathione levels is an important signal for

oxidative stress, which may be due to the metabolism of rapidly

proliferating CRC cells and glutathione metabolism is upregulated

to combat the oxidative stress (8). Tyrosine and g-glutamate, which

are involved in dipeptide synthesis, are directly or indirectly

implicated in colorectal tumours. The increased protein

catabolism in CRC patients results in elevated levels of Tyrosyl-

Gamma-glutamate in the serum. The observed decrease in the levels

of Tyrosyl-Gamma-glutamate after the surgical removal of the

tumour may be due to the decrease in energy metabolism and

oxidative stress, which could result in a gradual shift toward normal

levels of protein metabolism. However, currently, there is a lack of
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literature on the regulation/transformation mechanism of

dipeptides in colorectal tissues.

N-Phenylacetylaspartic acid belongs to a class of aspartic

acidderivatives. Aspartic acid is produced by oxaloacetic acid, an

intermediate product involved in the tricarboxylic acid cycle (TCA).

TCA disorders are related to the occurrence and development of

colon cancer (10, 16). Aspartic acid also reacts with citrulline to

form arginine, which enters the urea cycle. In this study, we found

that the level of serum N-Phenylacetylasparticacid in CRC patients

was higher than that in healthy controls. This may be because

aspartic acid is also utilized by cells for nucleotide biosynthesis,

which is very important for cancer cell proliferation and is often up-

regulated in tumors (40). Through comparing metabolite profiles at

various stages of CRC, previous studies have found that serum

aspartic acid and other amino acids peak significantly enhanced in

patients with stage 3-4 CRC (6). Consistent with our findings,the

level of N-Phenylacetylasparticacid decreases after the operation,

which can be attributed to the decrease or absence of cancer cell

proliferation, which would bring nucleotide metabolism back to

normal. Therefore, N-Phenylacetylasparticacid may be an effective

biomarker for monitoring patients’metabolism patterns before and

after surgery.

Our results confirmed that Sphingosine reduced in the CRC

group and returned to normal levels in the post-operative group.

Sphingosine is the major component of sphingolipids, which

belongs to cell membrane lipids. Phosphorylate Sphingosine

forms the bioactive lipid sphingosine 1-phosphate (S1P),

catalyzed by sphingosine kinase1 (Sphk1) (41). Several studies

have revealed that the SIP/Sphk1 signaling plays oncogenic roles

and it is overexpressed in colon cancer tissue which is correlated

with poor survival (41–43). Therefore, decreased Sphingosine levels

in CRC group may be due to increased utilization of lipids or

enhanced SIP synthesis, which is needed for increased membrane

synthesis or tumour development.
Conclusion

In conclusion, we performed LC-MS-based comparative

metabolomics to evaluate the serum metabolite profiles of healthy

controls and preoperative and postoperative CRC patients. 9

metabolites were identified as potential biomarkers of CRC. Of

these, N-Phenylacetylasparticacid, Tyrosyl-Gamma-glutamate,

Tyr-Ser and Sphingosine, showed similar levels in healthy

controls and post-operative CRC patients, which indicates their

potential value in screening and postoperative monitoring of CRC.

Nonetheless, further detailed studies are required to validate our

findings. There are several ways in which this could be achieved.

First, in this pilot study, we tentatively explored CRC-associated

serum metabolite changes and potential biomarkers. We provided

some clues for functional analysis and subsequent study. Due to the

small sample size, our analysis is preliminary. In the future, larger

sample cohorts from multicenter analyses should be analyzed and

standards validation will be necessary. Second, a grouping study of
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inflammatory bowel disease should be included, which could reveal

deeper mechanisms of CRC development. Third, patients with

infections and metabolic diseases were not enrolled in this study,

which may limit the application of our conclusions. We will include

these patients in future analysis for a more comprehensive

validation. Forth, in this study, we collected post-operative serum

samples only once, one week after the operation. However, we did

not subsequently perform a follow-up analysis on postoperative

patient samples.Therefore, future studies could include an analysis

of samples collected over longer periods after the surgery, which

could be useful in dynamically monitoring the preoperative and

postoperative metabolic changes. Additionally, among the 9

potential biomarkers, three did not have standard secondary mass

spectra. Further studies will be done for the validation of the

3 metabolites.
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The cross-talk between
macrophages and tumor cells
as a target for cancer treatment

Muhammad Aizaz1, Aakif Khan2, Faisal Khan2, Maria Khan3,
Ebraheem Abdu Musad Saleh4, Maryum Nisar5

and Natalia Baran6*

1Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences,
Shandong Normal University, Jinan, China, 2Centre of Excellence in Molecular Biology, University of
the Punjab, Lahore, Pakistan, 3Center of Biotechnology and Microbiology, University of Peshawar,
Peshawar, Pakistan, 4Department of Chemistry, College of Arts & Science, Prince Sattam Bin Abdulaziz
University, Alkharj, Saudi Arabia, 5School of Interdisciplinary Engineering & Sciences, National University
of Sciences and Technology, Islamabad, Pakistan, 6Department of Leukemia, The University of Texas
MD Anderson Cancer Center, Houston, TX, United States
Macrophages represent an important component of the innate immune system.

Under physiological conditions, macrophages, which are essential phagocytes,

maintain a proinflammatory response and repair damaged tissue. However,

these processes are often impaired upon tumorigenesis, in which tumor-

associated macrophages (TAMs) protect and support the growth, proliferation,

and invasion of tumor cells and promote suppression of antitumor immunity.

TAM abundance is closely associated with poor outcome of cancer, with

impediment of chemotherapy effectiveness and ultimately a dismal therapy

response and inferior overall survival. Thus, cross-talk between cancer cells

and TAMs is an important target for immune checkpoint therapies and metabolic

interventions, spurring interest in it as a therapeutic vulnerability for both

hematological cancers and solid tumors. Furthermore, targeting of this cross-

talk has emerged as a promising strategy for cancer treatment with the antibody

against CD47 protein, a critical macrophage checkpoint recognized as the “don’t

eat me” signal, as well as other metabolism-focused strategies. Therapies

targeting CD47 constitute an important milestone in the advancement of

anticancer research and have had promising effects on not only phagocytosis

activation but also innate and adaptive immune system activation, effectively

counteracting tumor cells’ evasion of therapy as shown in the context of myeloid

cancers. Targeting of CD47 signaling is only one of several possibilities to reverse

the immunosuppressive and tumor-protective tumor environment with the aim

of enhancing the antitumor response. Several preclinical studies identified

signaling pathways that regulate the recruitment, polarization, or metabolism

of TAMs. In this review, we summarize the current understanding of the role of

macrophages in cancer progression and the mechanisms by which they

communicate with tumor cells. Additionally, we dissect various therapeutic

strategies developed to target macrophage–tumor cell cross-talk, including

modulation of macrophage polarization, blockade of signaling pathways, and
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disruption of physical interactions between leukemia cells and macrophages.

Finally, we highlight the challenges associated with tumor hypoxia and acidosis

as barriers to effective cancer therapy and discuss opportunities for future

research in this field.
KEYWORDS

macrophages, TAMs, tumor cells, cross-talk, hematological malignancies,
cancer progression
1 Introduction

The tumor microenvironment (TME), the environment

surrounding cancer cells, is crucial to cancer development,

providing a stage for several hallmarks of cancer like tumor

growth, uncontrolled tumor cell proliferation, evasion of growth

suppression, immune system evasion, angiogenesis, tumor

migration and invasion, tumor progression, metastasis, or

emergence of treatment resistance to occur (1, 2). The TME

consists of diverse cellular and extracellular components (3, 4).

The cellular compartment of the TME consists of stromal cells,

including cancer-associated fibroblasts (CAFs), endothelial cells

(ECs), pericytes, and mesenchymal stem cells, as well as diverse

immune cells, which typically include tumor-infiltrating

lymphocytes, microglia, macrophages, and dendritic cells (DCs)

(5, 6). This compartment of the TME can be divided further into

two functional subcategories of cells: immune-stimulating cells,

which facilitate the anticancer immune response, and

immunosuppressive cells, which inhibit the anticancer immune

response to promote tumor progression (7). The ongoing

interaction between these elements and tumor cells creates a

dynamic network that promotes tumorigenesis (5). These

interactions among different cell types occur within a unique

environment for each cancer type and cancer stage noncellular

component of the TME. The non-cellular TME consists of the

extracellular matrix (ECM), mainly including structural proteins

(e.g., collagen, elastin, and tenascin), glycosaminoglycans (e.g.,

hyaluronic acid), proteoglycans (e.g., chondroitin sulfate,

dermatan sulfate, heparin sulfate, heparan sulfate, and keratan

sulfate), matricellular proteins (e.g., osteonectin, osteopontin, and

thrombospondin), adhesion proteins (e.g., fibronectin and laminin),

and a variety of signaling chemicals (e.g., cytokines, chemokines,

and growth factors) (5, 6, 8).

TME composition, both cellular and extracellular, may change

depending on the stage of tumor progression and undergoes

continuous reorganization via several intrinsic and extrinsic

processes (9, 10). The key intrinsic factors influencing the risk of

tumor development and progression are genetic alterations,

whereas extrinsic contributors to TME remodeling are hypoxia,

acidosis, and inflammation, which impact the final composition of

both the cellular construction of TME and the extracellular TME

matrix (5).
0296
Although the specific composition of a TME may depend on the

tissue origin of the tumor, independent of cancer type, increased

infiltration of tumor-associated macrophages (TAMs), monocytes,

and DCs is common to protumorigenic TMEs (11). Also,

protumorigenic TMEs are frequently accompanied by T helper 2

(Th2) cells, myeloid-derived suppressor cells (MDSCs), neutrophils

(particularly of type N2), tolerogenic DCs (with immunosuppressive

properties, priming the immune system into a tolerogenic state against

various antigens, causing clonal T-cell deletion and anergy, suppressing

memory and effector T-cell responses, and producing and activating

regulatory T cells [Tregs]), and other Tregs (5, 12) as shown in Table 1.

In comparison, antitumorigenic TMEs are often enriched in CD8+

cytotoxic T lymphocytes, Th1 cells, classically activated M1

macrophages, neutrophils, and natural killer (NK) cells.

These differences in cellular tumor composition, particularly in

the nature, density, immune functional orientation, and

distribution of immune cells within a tumor, became a further

basis for identifying immune tumor profiles associated with distinct

responses to treatment with immune checkpoint inhibitors and

therefore distinct survival and patient outcomes (3, 4, 9, 10). This

stratification of patients with solid tumors according to
TABLE 1 The components of antitumorigenic and protumorigenic TMEs
[adapted from Hourani et al. (6)].

TME

Component Antitumorigenic Protumorigenic

Macrophages M1 (CD86, TLR4) M2 (CD163, CD206)

Th cells Th1 cells Th2 cells

DCs Mature DCs Tolerogenic DCs
(CD80low, CD86low)

T cells Cytotoxic CD8+ T cells Tregs

Other cells NK cells MDSCs

Cytokines IL-2, IL-12, IFN-g IL-4, IL-6, IL-10, TGF-b,
IFN-g

Growth/angiogenic
factors

GM-CSF GM-CSF, EGF, HGF, FGF,
VEGF

Chemokines CXCL9, CXCL10 CCL2
Tolerogenic DCs consist of a heterogeneous pool of DCs with immunosuppressive properties
that prime the immune system into a tolerogenic state in response to various antigens.
GM-CSF, granulocyte-macrophage colony-stimulating factor; HGF, hepatocyte growth factor.
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composition of immune environment demonstrated the central role

of the immune system in guiding therapeutic decisions and enables

one to distinguish four types of tumors: hot, cold, altered-excluded,

and altered-immunosuppressed tumors (9, 10, 13, 14).

Hot tumors are attributed to infiltration of TMEs mostly by T

cells (15–17). They intensify the immune response, engaging it to

recognize and attack tumor cells and produce a good response to

immunotherapy, including that with immune checkpoint inhibitors

(17). Cold tumors, on the other hand, are characterized by deficient

immune cell infiltration in the TME, resulting in evasion of immune

detection and responses to immune effector cells via several

mechanisms, such as immunosuppressive growth factors and

cytokines produced by tumor cells. A hot TME is generally seen as

more favorable than cold TME in the context of cancer treatment

because it suggests that the immune system is aggressively combating

the tumor (15). Furthermore, an altered-excluded tumor is

characterized by TME infiltration of CD8+T cells located at the

edge of the invasive margin of the tumor dominated by an

abnormal vasculature (and consequent hypoxia) and a dense

stroma, while altered-immunosuppressed tumors are characterized

by the presence of a low degree of immune infiltration and an

immunosuppressive, often hypoxic TME that limits further

recruitment of immune cells and promotes an expansion of tumor

(9, 10, 13–17).

Besides differences in the cellular composition of TME,

distinctions in cytokines and secreted growth factors can also be

found in TME, which help in the identification and characterization

(8, 16–19). Most common in the latter milieu are growth factors

associated with inflammation, such as granulocyte-macrophage

colony-stimulating factor, epidermal growth factor (EGF),

hepatocyte growth factor, and fibroblast growth factor (FGF)

which are accompanied by vascular endothelial growth factor

(VEGF) and stimulate angiogenesis (3, 5, 7, 8, 12, 20, 21). A

protumorigenic TME is saturated with several supporting tumor

growth cytokines like interleukin (IL)-4, IL-6, and IL-10 as well as

transforming growth factor (TGF)-b, interferon (IFN)-g, and

chemokines such as chemokine (C-C motif) ligand 2 (CCL2) (3,

5, 7, 8, 12, 20, 21). Conversely, an antitumorigenic TME is

frequently enriched in IL-2 and IL-12 along with IFN-g,
granulocyte macrophage-stimulating factor, and chemokines like

C-X-C motif chemokine ligand 9 (CXCL9) and CXCL10 (22).

However, the role of specific cell populations and signaling

molecules in TME depends on many other factors, such as the

presence of programmed death-ligand 1 (PD-L1) receptors that are

often upregulated in tumor tissue and, through cooperation with

IFN-g, can induce tumor growth-promoting properties (23–26).

Like IFN-g, granulocyte macrophage-stimulating factor is known to

effectively elicit anticancer immune responses, but it can also trigger

tumor development and metastasis, demonstrating its context-

dependent mechanism of action (27, 28).

Remodeling of the ECM and lymphatic and blood vessels

caused by autocrine and paracrine signaling between the TME

and cancer cells may control invasion of the cells (29). CAFs and

TAMs are the two crucial cell populations impacting and

modulating the maturation and modulation of the TME,

remodeling of the ECM, and modulation of metabolism and
Frontiers in Oncology 0397
angiogenesis as well as cross-talk between tumor cells and tumor-

infiltrating immune cells via the production of growth factors,

cytokines, and chemokines (30). Upon interaction with tumor

cells, CAFs secrete or shed diverse proteins such as collagens,

glycoproteins, and proteoglycans. They can also transmit

autocrine and paracrine signals, including cytokines/chemokines,

growth factors, mRNAs, microRNAs, and other proteins like

enzymes. Through secretion of these signals, CAFs can establish

the physical barrier surrounding cancer cells and thus directly

supporting cancer progression via immune cell polarization,

leading to a protumoral, immunosuppressive status (21, 31–33).

Depending on the stage of tumor progression, CAFs contribute to

the characteristics of the TME including the ECM through direct

humoral interaction with TAMs (34). They remodel the ECM via

qualitative and quantitative changes in the production of collagen,

laminins, or fibronectins or tenascins through reorganization of

protein synthesis and structure (12, 21). CAFs and cancer cells

cooperate with each other through secretion of proteolytic enzymes

such as matrix metalloproteinases (MMPs) that destroy the ECM

and control the modification and cross-talk linking of ECM

proteins (e.g., lysyl oxidases), leading to increased stiffness of

ECM and its altered composition (21, 30, 35–38). This induces

desmoplasia and fibrosis, establishing a physical barrier between

tumor cells and therapeutic drugs as well as immune cells and

enabling cancer cells to invade and metastasize (39).

CAFs may increase monocyte recruitment through secretion of

monocyte chemoattractant protein-1 and stromal cell-derived factor

1 (SDF-1) and differentiation into TAMs, particularly M2 cells (35,

38). CAFs can promote tumor development by maintaining

monocyte chemotactic protein-1-mediated macrophage infiltration

and chronic inflammation and have been associated with infiltration

of CD204+ TAMs (40, 41). CAFs and M2 macrophages were

demonstrated to cooperate with each other during cancer

progression, and they are able to alter each other’s functions

through constant cross-talk (37, 42–45).

Finally, the TME restricts the entry of any cytotoxic antitumor

substance or antitumor immune cells to the tumor cells by establishing

cellular and noncellular barriers around the malignant cells (29, 36).

Together with the vascular network, the ECM, and necrotic tissues,

CAFs may shield tumor cells from outside signaling, completing the

TME framework. Table 1 lists different components of antitumorigenic

and protumorigenic microenvironments. A remodeled TME with

rewired macrophage function is considered one of the key

mechanisms of resistance to chemotherapy and immune checkpoint

inhibitors, which we characterize and discuss below.
2 Types of macrophages and
their characteristics and
impact on tumorigenesis

Macrophages and other myeloid cells constitute more than 50%

of a tumor mass and are crucial to its development (31, 46). The

significant infiltration of macrophages in tumor metastases has

been recognized as an independent biomarker of poor prognosis (3,
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11, 13, 14, 47–50). Although macrophages exhibit high

heterogeneity, three main populations of macrophages can be

distinguished: TAMs, tissue-resident macrophages, and MDSCs

(51). Among these populations, TAMs are the most abundant

infiltrating cells in the TME (52). Because of their extreme

plasticity and ability to adapt to external stimuli, macrophages

can differentiate into specific subpopulations in response to

environmental changes, in a process known as polarization, and

perform functions dictated by the environment (51–53).

The two main types of macrophages commonly recognized are

M1, also referred to as classically activated macrophages, and M2,

alternatively activated macrophages (53). Despite the considerable

plasticity of macrophages and their capacity to differentiate through

polarization, researchers have proposed using various markers to

characterize and distinguish between M1 and M2 morphology (54,

55). The utilization of these markers has demonstrated that M1

macrophages are often characterized by the presence of CD68 and

CD80 and exhibit high expression of the MHC-II complex (56),

whereas M2 macrophages are characterized by high expression of

CD23 [the low-affinity receptor for immunoglobulin (Ig)E], CD163

(hemoglobin scavenger receptor), CD204 (class A macrophage

scavenger receptor, SR), or CD206 (mannose receptor, C type 1,

MR); a low expression of the MHC-II complex; and expression of

arginase 1 (21, 35, 36, 57).

In terms of their function, M1 macrophages are involved in

immune defense against external pathogens and promoting
Frontiers in Oncology 0498
antitumor immunity (2, 53). They exert their immunostimulatory

and tumoricidal effects through the release of various chemicals and

molecules, including lipopolysaccharides, IFN-g, tumor necrosis

factor (TNF)-a, IL-12, IL-18, reactive nitrogen and oxygen

species, inducible nitric oxide synthase, CXCL9, CXCL10, and

major histocompatibility complex (MHC)-II. Additionally, they

participate in the process of antigen presentation (20, 58).

On the other hand, M2 macrophages, which naturally occur in

normal physiological conditions, are involved in Th2-mediated

immune response, particularly in humoral immunity, wound

healing, and tissue remodeling (52). However, in the presence of

tumor cells, alternatively activated M2 macrophages assume an

immunosuppressive and tumor-promoting role (52). The

characteristics of tumor-associated M2 macrophages are

orchestrated by the action of IL-4, IL-10, IL-13, macrophage

colony-stimulating factor 1 (CSF-1), CCL2, or VEGF-A (2, 22, 51,

53, 59) (Figure 1).

The specific polarization state of TAMs can be influenced by

certain chemokines and other substances secreted by tumors. The

expression pattern of surface markers in M2 macrophages is heavily

influenced by the presence of IL-4, -10, and -13 or MMPs such as

MMP-1, MMP-3, MMP-10, and MMP-14, which are secreted by

the tumor. The levels of these factors can vary among organs and

types of tumors (2, 51–53) (Figure 1). Further distinctions between

M1 and M2 macrophages can be made based on the quality and

quantity of secreted cytokines and chemokines. Upon exposure to
FIGURE 1

The role of M2 TAMs and their impact on tumorigenesis and immune system evasion. TAMs engage in several phases of tumorigenesis by secreting
growth factors, chemokines, cytokines, and TGF-b (51, 60–63). These cells can foster a susceptible to modulation microenvironment by polarizing
CD25+ T cells to Th2 and Treg phenotypes. They can also restrict the antitumor ability of NK cells and cytotoxic T cells (CD8+ T cells) by generating
TGF-b (64). Additionally, TAMs may promote the invasion of cancer cells by producing EGF and CCL2 in the TME (65).
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inflammatory signals, M1 macrophages secrete IL-1b, IL-6, IL-12,
IL-23, CXCL9, CXCL10, TNF-a, nitric oxide, and reactive oxygen

species (52, 53, 55). In contrast, in response to secretion of cytokines

by tumor cells, M2 macrophages may release hepatocyte growth

factor, TGF-b, VEGF-A, FGF-2, platelet-derived growth factors,

placental growth factor, insulin-like growth factor-1, IL-1, IL-10, IL-

8, CCL17, CCL22, SDF-1 (CXCL12), PD-L1, PD-L2, arginase, and

prostaglandin E2 (22, 48, 59, 66–68). Additionally, M2

macrophages can synthesize and release MMP-2, MMP-7, MMP-

9, MMP-13, cathepsin B and S, and serine proteolytic enzymes that

break down the ECM as well as secrete growth factors necessary for

EC proliferation and microvessel development (48), as shown

in Figure 1.

Notably, researchers have shown M1 and M2 macrophages to

have distinct angiogenic potential in vitro, with the M2 phenotype

expressing more proangiogenic cytokines and other growth factors

than does the M1 phenotype, which is discussed below in detail

(48). Furthermore, M1 and M2 macrophages can be distinguished

by their metabolic state. M2 macrophages mainly have a

preponderance of glycolysis, fatty acid synthesis, and the pentose

phosphate pathway, whereas M2 macrophages largely depend on

oxidative phosphorylation (OXPHOS) for their biosynthetic and

bioenergetic needs (69). TAMs are closely involved in angiogenesis,

suppression of the immune system, impairment of the other

immune cells’ function, and support of tumor-cell metastasis.

TAMs consist mostly of M2 macrophages and are thus thought
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to resemble M2 macrophages with their wide array of secreted

cytokines, chemokines, and enzymes, and Th2 immune response

(22, 70); therefore for the purpose of simplicity, we will further refer

to TAMs or tumor-associated M2 macrophages equally. Figure 1

provides an overview of the various roles of M2 TAMs in

tumorigenesis, including an immune system inactivation, which is

discussed in detail in the next section.
3 The role of TAMs in suppression of
immune responses

Immune surveillance against cancer involves immune cells such

as CD4+ Th cells, CD8+ cytotoxic T cells, NK cells, and DCs

(Figure 2). TAMs disrupt the function of these cells via secretion

of specific cytokines. TGF-b is one of the key regulators of

immunosuppression that may prevent the production of

cytotoxicity-promoting receptors like natural cytotoxicity

triggering receptor 3 (also known as NKp30) and NK group 2

member D protein upon binding of its receptors on the surface of

NK cells (71). TGF-b may also affect T cells by impairing their

ability to express lysing genes like granzyme A and B together with

IFN-g and FAS ligand, thus inhibiting their cytotoxic function.

TGF-b also may induce expression of FOXP3 in CD4+CD25+ T

cells, contributing to recruitment and an increase in the pool of

Tregs in the TME (72), which can weaken the immune functions of
FIGURE 2

The effects of TAMs on tumor cells include promotion of tumor growth, angiogenesis, induction of tumor infiltration and immune suppression by
Tregs, metabolic deprivation of T cells, inactivation of T cells, induction of growth and proliferation of cancer stem cells, EMT, invasion, migration,
and metastasis. TAMs encourage the growth of tumors by secreting certain substances and expressing specific proteins. MMPs, CSF-1, and EGF
produced by TAMs promote tumor invasion and migration. Moreover, TAMs release VEGF and platelet-derived growth factor, which encourage
angiogenesis and tumor growth.
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CD4+ and CD8+ T cells (73). Thymus-derived CD4+CD25+FOXP3+

Tregs may increase the pool of CD206+CD163+ macrophages that

differentiate from monocytes and upregulate CCL18 and IL-1Ra

produced by macrophages (74).

By triggering CD4+ T cells to differentiate into the Th2

phenotype, TGF-b and its receptor in DCs decrease adaptive

immune responses through apoptosis induction and reduction of

antigen-presentation ability. Thus, TGF-b changes the balance

between Th1 and Th2 cells in favor of Th2 cells and enhances the

immunosuppressive structure of the TME (63, 75, 76). In addition

to interacting with local immune cells in an inflammatory TME,

secreted TGF-b may stimulate tumor cells and MDSCs to release

IL-10. The latter could be further enhanced by synergistic

interaction of IL-10 with TGF-b and prostaglandin E2 via EP2

and EP4 receptors, which direct TAMs to further sustain the

secretion of IL-10 (77). This cascade continues to transform naïve

T cells into Tregs and inhibit the antitumor immunity maintained

by NK cells (78).

IL-10 may decrease the production of proinflammatory

cytokines such as IL-6, TNF-a, and IFN-g and thus promote

polarization of macrophages toward the protumorigenic M2

phenotype and thus ultimately enable tumor cells to evade

immune surveillance (79). IL-10 may also inhibit or downregulate

macrophage IL-2 production and thus induce macrophage

polarization into the M2 phenotype (79). Furthermore, secreted

IL-10 may induce release of PD-L1 and cytotoxic T-lymphocyte-

associated antigen-4 as well as expression and activation of the

corresponding receptors to further reduce the antitumor activity of

T cells. The binding of PD-L1, followed by its activation of

programmed cell death protein 1 (PD-1; CD279), or receptors

B7-1 (CD80), and B7-2 (CD86) on the surface of TAMs, DCs,

and B cells, triggers inhibitory signals, leading to a state of

immunological tolerance and negative regulation of T-cell

immune response, including apoptosis, anergy, and exhaustion

(80–82). PD-L1’s activation of CD80/CD86 and CD28 receptors

also causes decreased proliferation, cytokine production, and T-cell

anergy (80–82). Thus, to reactivate the immune response and

enhance antitumor results of anti-PD1 therapy, blocking or

reversing these interactions among T cells and macrophages is

crucial. This immunosuppression mechanism plays a crucial role in

tumor immune evasion.

TAMs also subvert immune surveillance by expressing cell surface

proteins or releasing other soluble factors such as arginase 1, indoleamine

2,3-dioxygnease, and inducible nitric oxide synthase, which are oxygen

and nitrogen radicals that harbor immunosuppressive functions and

inhibit proliferation of NK and T cells (83, 84). TAMs restrained T-cell-

specific response and crippled CD8+ T-cell proliferation and killing

activity via the release of extracellular vesicles (EVs), which led to tumor

immune evasion (85, 86). Investigators showed that T-cell exhaustion

was induced by leukemia-cell-derived EVs transporting the microRNA

miR-21-5p. EVs harboring miR-21-5p also enhanced CD8+ T-cell

exhaustion in mice with primary hepatocellular carcinoma by

targeting of YOD1 and activating the YAP/b-catenin signaling

pathway (87).

To induce macrophage polarization toward the M2 phenotype,

renal cell carcinoma (RCC)-derived EVs containing lncARSR
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delivered to macrophages acted as competing endogenous RNA

for the microRNAs miR-34/miR-449, thus increasing signal

transducer and activator of transcription 3 (STAT3) expression as

the primary type of signaling of macrophage polarization (88). In

addition, glioblastoma-derived EVs reprogram M1 macrophages to

become TAMs and enhance protumor functions of the M2

macrophages (89). Similarly, M2-polarized TAM-derived EVs

showed an activity to influence proliferation, migration, invasion,

and tumorigenesis of meningioma tumors through activation of

TGF-b signaling, and with delivery of oncomiR-21 and AKT,

STAT3, MTOR, and ACTB mRNA expression showed to support

progression, migration, tumor sphere generation, and cisplatin

resistance of bladder cancer (52, 90). Furthermore, TAM-derived

exosomes promote the migration, growth, and proliferation of

glioblastoma cells (50). Finally, EC-derived EVs in the TME were

shown to recruit macrophages to tumors, resulting in transferring

microRNAs via EVs to M2-like macrophages and causing an

immunomodulatory phenotype that permits tumor growth (91).

In summary, TAMs govern immunosuppression by inducing

phenotypic changes in other immune cells, recruitment and

migration of myeloid DCs, stimulation of immunosuppressive cells,

and production of chemokines and cytokines that regulate both the

function of immunosuppressive cells and promotion of tumor-cell

growth, thus impairing the effectiveness of chemotherapy and

contributing to chemotherapy and immunotherapy resistance.

Hence, targeting TAMs may enhance chemotherapy and immune

therapy responses of tumor cells by boosting the immune system.
4 The roles of TAMs in tumor cell
initiation, growth, and progression

Tumorigenesis is strongly associated with inflammation. In the

process of establishing an inflammatory environment, TAMs play

an essential role (53, 73) by producing mediators that remodel the

TME or directly support tumor cell proliferation, protect tumor

cells from apoptosis, and modulate tissue composition to favor cell

migration, invasion, and metastasis. Investigators demonstrated

these functions of TAMs in solid tumors such as colon and

gastric cancer (73, 92, 93), in which underlying chronic

inflammation or activation of specific oncogenes may cause

activation and expression of proinflammatory transcription

factors. The most examined transcription factors associated with

inflammation include nuclear factor (NF)-kB, STAT3, hypoxia-
inducible factor (HIF)-1a, and HIF-2 (73). Activation of these

signaling pathways in cancer cells leads to a cascade of events

with the release of cytokines and chemokines such as TNF-a and

IL-6, which authors reported led to the recruitment, migration, and

polarization of MDSCs and monocytes; differentiation of

monocytes to macrophages; and ultimately the polarization of

macrophages toward the M2 phenotype (56, 73, 79).

Macrophages might initially produce several proinflammatory

mediators (IL-6, TNF-a, and IFN-g), growth factors (EGF and

Wnt), enzymes like proteases, and free radicals. This cocktail of

substances, chemokines, and growth factors boosts the creation of a

mutagenic microenvironment that favors and facilitates cancer
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initiation, and in consequence macrophage polarization toward M2

phenotype (81, 94). TAMs may also release other ILs such as IL-6,

IL-17, and IL-23 that can support tumor growth and progression as

shown in models of colon cancer and hepatocellular carcinoma, in

which tumor progression was associated with activation of the

STAT3 signaling pathway (95, 96). In summary, as depicted in

Figures 1, 2, the impact of TAMs on the initiation of tumorigenesis

involves secretion of diverse factors and chemokines that lead to an

accelerated tumor expansion and spread, which is discussed in the

next section.
5 The role of TAMs in angiogenesis
and lymphangiogenesis

In addition to tumor initiation and growth-supporting

activities, TAMs can promote neovascularization to maintain the

supply of nutrients and growth factors necessary for increasing the

energy and biosynthesis demands of tumor cells required for

expansion, invasion, and metastasis. In this context, angiogenesis

and lymphangiogenesis are often discussed in association with

factors like hypoxia, acidosis, and hyperosmotic pressure that,

together with angiogenic factors such as VEGF-A (97–100), TGF-

b (63), cyclooxygenase-2, placental growth factor, FGF-2 (62), EGF,

platelet-derived growth factor, insulin-like growth factor-1,

angiotensin-1, and chemokines like SDF-1, stimulate these

processes (Figure 1) (48, 66, 68, 92, 101–104). The precise

mechanism underlying cell-to-cell contacts between ECs and

macrophage subsets as well as that underlying macrophage-

stimulated angiogenesis has yet to be fully determined. However,

TAMs may contribute to these processes by controlling responses to

inflammatory stimuli through the release of angiogenesis- and

lymphangiogenesis-stimulating factors such as VEGF-C and

VEGF-D (62, 105–108). VEGF-C-mediated lymphangiogenesis

may also result from a process associated with overexpression of

MMP-2, MMP-3, and MMP-9 or MMP-13 that degrades the ECM

and thereby indirectly facilitates angiogenic invasion, linking

neovascularization with TME and matrix remodeling (48, 62, 68,

104, 109, 110). Production of proangiogenic factors such as VEGF

and FGF-2 is commonly increased in hypoxic areas and has been

linked to elevated expression of HIF-1a, a transcription factor that

plays a central role in regulating the activation of genes in response

to decreased/low oxygen levels in cells (91, 111, 112). Under

elevated hypoxic conditions, due to the uncontrolled cell growth

and tumor expansion especially in the middle of the tumor mass,

HIF-1a was shown to interact with the transcriptional co-factor

p300/CBP, activating a wide range of genes, upregulating

expression of the SLC2A1/GLUT1 receptor, and increasing

glycolytic activity (46, 111–114). This in consequence leads to

increasing distance between blood vessels and individual cells

within the tumor mass, reducing an intratumoral oxygen level,

and thus deepening further the level of hypoxia within the tumor

due to limitations in oxygen diffusion and oxygen availability for

selected cells (115). Increased hypoxia together with elevated

glycolytic activity as shown for most of solid tumors, increased

the production and secretion of VEGFs, thereby promoting
Frontiers in Oncology 07101
neovascularization and finally increasing the release of TGF-a/b
to induce angiogenesis and impediment of immune cells’ tumor

growth–inhibitory properties (59, 116) as shown in Figures 1, 3 (92,

119, 120).

Researchers also demonstrated upregulated expression of VEGF-A

in tyrosine kinase with immunoglobulin and EGF homology domain 2

(Tie2)-positive macrophages. VEGF-A secreted by Tie-2-expressing

macrophages (TEMs) induced proliferation of ECs, which led to

tumor angiogenesis (121). Furthermore, Tie2 on TEMs binds to

angiopoietins 1–4, which initiates vascular development or

neoangiogenesis (122, 123) and is a homing mechanism for ECs and

vessel development (122, 123). Of note, Tie2 is frequently co-expressed

with CXCR4, a chemokine receptor for SDF-1 linked to cell migration

(124, 125). SDF-1 is a membrane-bound or released chemoattractant

cytokine that promotes inflammation, thereby primarily attracting

leukocytes, hematopoietic stem cells from adult bone marrow, and

macrophages (126). SDF-1 is predominantly expressed by ECs (127),

and its expression and secretion results in consistent recruitment of

CD11b+ monocytes/macrophages and retention of these cells in the

tumor environment (128). Besides the presence of Tie2 (109), CXCR4 or

CD11b (CD18/MAC-1) TAMs express and secrete angiogenic cytokines

like MMP-9 and MMP-13 (50) stimulating further the process of

neovascularization (129). Of note, during brain vascularization, yolk-

sac-derived macrophages expressing Tie2 make up most of tissue

macrophages and work with the endothelial tip cells to enhance

vascular anastomosis following VEGF-mediated tip-cell proliferation

and sprout formation (50). Also, EGF secretion by TAMs may activate

EGFR on tumor cells, further upregulate VEGF/VEGFR signaling, and

thus increase cancer cell proliferation and invasion (130). TAMs may

also promote angiogenesis by increasing the secretion of TGF-b and IL-
10, resulting in the proliferation of vessel ECs (131). Stimulation of ECs

by Wnt family ligand 7B (WNT7B) aberrantly expressed in TAMs,

which regulates the Wnt/b-catenin signaling pathway and VEGF

production, and thereby triggers angiogenesis, tumor progression,

growth, tumor cell invasion, and metastasis, was demonstrated in

models of luminal breast cancer (73, 132, 133). Furthermore, myeloid

Wnt7b caused an overexpression of VEGF-A in ECs, leading to

angiogenic switching and tumor neovascularization (132).

In summary, the contribution of TAMs to tumor

neovascularization provides solid evidence that TAM targeting may

diminish or reduce tumor progression and metastasis directly by

reducing TAM abundance and indirectly by impairing the release of

angiogenesis-stimulating factors. Combinatorial approaches to

targeting tumor cells such as classical chemotherapy together with

strategies aimed at targeting TAMs and neoangiogenesis may be

superior to chemotherapy or immunotherapy alone. Alternatively,

approaches targeting TAMs combined with immunotherapy

targeting EGFR or VEGFR and/or HIF-1/2 may warrant preclinical

and clinical testing and inhibit tumor expansion.
6 The role of TAMs in tumor
metastasis and invasion

The migration of tumor cells to ectopic sites requires both

angiogenesis and lymphangiogenesis (134, 135). In line with TAMs’
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involvement in angiogenesis, a plethora of evidence has emphasized the

importance of TAMs to tumor invasion and metastasis (136). For

example, neovascularization is essential for metastasis, enabling cancer

cells to spread from the primary tumor to distant sites. It enables cancer

cells to enter blood or lymphatic vessels, allowing them to adhere to

vessel’s walls, penetrate barriers, and establish secondary tumors. The

tumor vasculature’s permeability and angiogenesis create a supportive

microenvironment for cancer cell survival and growth. Given that

metastasis is the main cause of death in cancer patients, targeting

tumors at this stage is an urgent need. A common feature of cancer cells

is their ability to move and release digestive enzymes that enable escape

from the primary tumor and to break into the vascular and lymphoid

systems to further colonize distant sites (85, 93, 133, 137).

Invasion and metastasis can also be conferred via initiation of

epithelial-to-mesenchymal transition (EMT), a process enabling

epithelial cells to acquire mesenchymal features (138). EMT is a

crucial biological process in cancer development in which epithelial

cells become more motile and invasive mesenchymal-like cells. This

process facilitates invasion, metastasis, and therapeutic resistance of

cancer cells. Cancer cells thus lose adhesion, become more motile,

and resist apoptosis. EMT also aids in angiogenesis and immune

evasion, making tumors more resistant to various treatments. EMT is

linked to resistance to various treatments, including chemotherapies

and targeted therapies. Understanding and targeting EMT in cancer

research may lead to potential techniques for reducing metastasis,

increasing therapy responses, and improving outcomes. Recent

studies demonstrated that EMT is regulated by TAMs, further

facilitating metastasis (132, 139).
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TAMs interact with cancer cells, promoting EMT-related

genetic alterations and facilitating cell migration and invasion.

They also contribute to ECM remodeling and promote an

immunosuppressive milieu, supporting EMT indirectly by

suppressing immune responses. This interaction creates an EMT-

friendly microenvironment, enabling cancer cells to penetrate

tissues, enter the circulation, and metastasize to other organs.

EGF production by tumor-infiltrating M2 TAMs within the TME

can stimulate the NF-kB, STAT3, EGFR, and extracellular signal-

regulated kinase signaling axes in tumor cells, promoting their

invasive traits (140, 141). For instance, TAMs increase cancer cell

invasion and capability for metastasis through induction of EMT by

interfering with JAK2/STAT3/miR-506-3p/FoxQ1 regulation of

colorectal cancer development (139). Additionally, EGF may

prevent expression of the long noncoding RNA LIMIT, increasing

the capacity for cancer cells to move (142).

The expression of EGF by TAMs may be adversely affected by

CSF-1 synthesized by tumor cells, which may enhance the

metastatic potential of tumor cells (143). EGF secreted by TAMs

activates the EGFR/extracellular signal-regulated kinase 1/2 signal

pathway in some types of cancer cells, which results in the

promotion of EMT (144). Additionally, authors suggested that

TGF-b generated by these TAMs in lung cancers boosts the

expression of SOX9 and triggers EMT, thereby causing tumor cell

migration (145). TAMs also support tumor metastasis through

increased expression and release of MMPs such as MMP-2 and

MMP-9 (143). MMPs together with VEGF-C, activates the CCL2/

CCR2 signaling pathway and attracts circulating monocytes into the
FIGURE 3

Effects of hypoxia and acidosis on TAMs. The TME is influenced by hypoxia and acidosis, which significantly impact TAMs. Hypoxia induces an M2-
like phenotype, supporting tumor growth, whereas acidosis shifts TAMs toward immunosuppression and reduces proinflammatory cytokine output.
These factors contribute to tissue remodeling, ECM disintegration, and angiogenesis (92, 117–119). Together, hypoxia and acidosis shape TAM
activities, promoting tumor growth, blood vessel formation, and immune system evasion (119).
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TME, thereby promoting tumor growth, expansion, and metastasis

(132, 137, 146). These infiltrating monocytes may facilitate tumor

growth, expansion, and metastasis by releasing tumor-promoting

factors. For example, monocytes can secrete growth factors such as

VEGF-C, which induce angiogenesis and lymphangiogenesis,

resulting in the creation of new blood vessels that deliver oxygen

and nutrients to tumors. These cells can also produce cytokines and

chemokines, which attract additional immune cells to the TME,

where they dampen the immune response and promote tumor

growth. Furthermore, monocytes can develop into TAMs, which

are already demonstrated to enhance tumor progression by

releasing a variety of substances that encourage tumor cell

proliferation, invasion, and metastasis (147).

Activation of the JAK2/STAT3/miR-506-3p/FoxQ1 axis may also

result in the generation of CCL2 and thereby facilitate the

recruitment of macrophages (139). Furthermore, increased CCL2

expression in the TME is accompanied by increased CCR2 expression

on TAMs and by the polarization of macrophages toward the M2

phenotype, whereas CCL2 overexpression and high TCF4 expression

correlate with cancer metastasis to lymph nodes and have been linked

to poor prognosis because the TCF4/CCL2/CCR2 regulation axis

regulated TAM polarization (146). Of note, preclinical studies

demonstrated M2 macrophages’ potent induction of an invasive

phenotype in previously healthy epithelial cells through the release

of CCL2 and upregulation of endoplasmic reticulum oxidoreductase

1a as well as MMP-9, leading to acquisition of an invasive EMT

phenotype (101, 148–151). TAMs may also release CCL5, which,

through activation of the b-catenin/STAT3 signaling pathway,

significantly promoted invasion, metastasis, and EMT in studies

using prostate cancer cells (24, 86, 146, 150–152). Of note, CCL5,

which is released by malignant phyllodes tumors, can trigger

recruitment and repolarization of TAMs through activation of the

CCR5 receptor and the AKT signaling pathway.

Furthermore, TAM-secreted CCL18 can bind to the membrane-

associated phosphatidylinositol transfer protein 3 receptor, which

further facilitates differentiation and invasion of myofibroblasts (83).

Infiltration of TAMs and invasion and metastasis of colorectal cancer

cells were promoted by the phosphatase of regenerating liver-3

(PRL3)-stimulated upregulation of cytokine CCL26 and activation

of CCR3 receptor (85). Whereas EMT and metastasis induction in a

model of non-small cell lung cancer (NSCLC) were facilitated by

upregulation of ab-crystallin upon co-culture of TAMs with cancer

cells (153), phosphorylated STAT3 with upregulation of

cyclooxygenase-2 and MMP-9 led to EMT induction, invasion, and

metastasis in animal models of osteosarcoma (154).

Taken together, these findings demonstrate that TAMs can

express and release a variety of factors to induce EMT. Therefore,

targeting TAMs, even in advanced stages of cancer development,

may have life-extending benefits for patients.
7 The role of TAMs in
chemoresistance

Depending on the tumor type, most cancer treatments consist

of a combination of chemotherapy, immune therapy, hormonal
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therapy, immune checkpoint blockade (ICB), and/or radiotherapy.

Acquired resistance to treatment is the most common reason for

treatment failure, and researchers have extensively investigated the

contribution of TMEs including TAMs to treatment resistance.

Macrophages can be prompted by their environment to adopt

multiple phenotypes, and most TAMs are commonly polarized

toward a cancer-promoting phenotype, which confers treatment

resistance (102, 152). Treatment resistance may either reduce or

completely impair the effectiveness of therapy. Investigators have

identified several mechanisms of resistance conferred by TAMs.

Changes in the profiles of secreted cytokines, expression of different

receptors, activation of transcription factors and signaling pathways

mostly associated with inflammation or hypoxia, changes in

polarization of TAMs, rewiring of metabolism, and initiation of

dynamic changes in the microvasculature are only some of the

resistance mechanisms (Figure 4). Overall, TAMs limit the

effectiveness of cancer therapies, triggering detrimental reactive

responses to tumor-induced tissue damage cues and rapidly

reprogramming the TME toward a proremodeling state (53, 56,

120, 158). For instance, in prostate cancer models, secretion of

CCL5, activation of STAT3, and upregulation of the transcription

factor Nanog resulted in chemotherapeutic drug resistance, whereas

secretion of CXCL12 and activation of CXCR4 by TAMs occurred

following combined docetaxel/androgen deprivation therapy in

cases of castration-resistant prostate cancer tumors with poor

response (84, 103, 159).

Researchers found markedly greater TAM abundance in patients

with NSCLC who experienced progressive disease upon treatment

with an EGFR tyrosine kinase inhibitor (137) than in those with

nonprogressive disease. Moreover, as described previously, high

TAM counts were significantly associated with poor progression-

free and overall survival, suggesting that TAMs are related to

reduced treatment responsiveness after administration of not only

EGFR tyrosine kinase inhibitors but also several commonly

used treatment combinations (159) and mediate resistance to

antiangiogenic therapies via compensatory pathways such as

cathepsin B and angiopoietin-2. Also, TAMs are key players in the

antitumor activity of selected monoclonal antibodies (mAbs) such as

rituximab (anti-CD20), trastuzumab (anti-HER2), cetuximab (anti-

EGFR), and daratumumab (anti-CD38), as they express FcgR to

perform tumor-cell killing and phagocytosis (127, 160). However,

functional polymorphisms in human FcgRIIIA that affect the killing

ability of macrophages correlate with low rates of response to

treatment with mAbs in patients with lymphoma, breast cancer, or

myeloma (127, 160).

In addition, the effects of hormonal therapy on disease

progression and survival are impacted by inflammatory pathways

orchestrated by macrophages. Inflammatory cytokines such as IL-1

and IL-6 can activate estrogen or androgen receptor signaling on

tumor cells, linking inflammation to tumor growth and endocrine

resistance (159). A new level of therapeutic intervention was

introduced with the development of ICB. However, shortly after

its introduction into the therapeutic armament, authors reported

new resistance mechanisms mainly driven by macrophages. For

instance, as key cell types participating in tumor-extrinsic pathways

of primary and adaptive resistance, macrophages express several
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immunosuppressive molecules, including checkpoint ligands such

as PD-L1, PD-L2, poliovirus receptor (CD155), and TIGIT ligands.

Researchers showed these and other molecules to be overexpressed

and to impede the efficacy of ICB for NSCLC and other types of

cancer (83, 84, 151). Also, whereas PD-L1 expression in tumor-

infiltrating immune cells but not macrophages correlated with

positive response to anti-PD-L1/2 therapy, expression of PD-1 in

macrophages was negatively correlated with their ability to

phagocytose tumor cells (58, 81, 161, 162). Another inhibitory

receptor found on macrophages is VISTA, which cooperates with

negative regulators of T and NK cells such as P-selectin

glycoprotein ligand 1 and acts as a T-cell checkpoint-inhibitory

ligand. Thus, targeting VISTA with mAbs led to transcriptional and

functional changes that produced increased antigen presentation,

activation, and migration (22, 163). Another aspect of resistance to

ICB is the cellular composition of tumors. The presence of tumor-

infiltrating neutrophils together with tumor-infiltrating

macrophages accompanied by T-cell elimination/depletion has

contributed to the lack of response of liver cancer cells to ICB

(164). For instance, abundant M2 macrophages in renal cell cancer

were associated with resistance to ICB. In particular, the presence of

a macrophage subpopulation expressing TIM4 suppressed CD8+ T-

cell responses, impairing the efficacy of ICB. However, ICB efficacy
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may be restored by targeting TIM4+ macrophages via anti-TIM4

antibody-mediated blockade (165).

Additionally, a new dimension of complexity in the

effectiveness of and resistance to immunotherapies was revealed

by studies of the microbiome, suggesting that the specific

composition of the microbiome shapes the components of

the TEM and thus enhances or impairs therapy response. The

composition of the microbiota and the cellular composition of

the TEM may result from complex cross-talk and exchange of

cytokines and oncometabolites among the microbiota, tumor cells,

and cellular immune environment. For instance, abundant and

diverse gut bacteria enriched for Bacteroides species, shaped tumor

myeloid infiltration, and thus increased the effectiveness of anti-

cytotoxic T-lymphocyte-associated antigen and anti-PD-1 therapy

for melanoma (166). Taken together, these findings suggest that

macrophages, particularly TAMs, have an important influence on

the activity of chemotherapy, radiotherapy, antiangiogenic agents,

hormonal therapy, and ICB. Their role is complex, as they

frequently serve as inhibitors of antineoplastic activity. Despite

progress in dissecting the role of macrophages in conventional

antineoplastic treatment modalities, the actual translation of these

findings into more effective cancer treatments remains challenging.

Depletion of macrophages can potentiate various chemotherapeutic
FIGURE 4

The Hypoxia pathway. Overactivated STAT3 and NF-kB activate the transcription of HIF-1a, which has resulted in the overexpression of HIF-1a (116).
In combination with HIF-1b, HIF-1a triggers the transcription of TGF-a and TGF-b. Moreover, HIF-1a indirectly activates VEGF, leading to
angiogenesis via overactivation of TGF-a. HIF is a transcription factor that plays a central role in regulating the activation of genes in response to low
oxygen levels in cells. HIF-dependent mechanisms influence gene expression by affecting epigenetic factors such as DNA methylation and histone
acetylation (155). HIF binds to DNA and associates with distinct nuclear co-factors under low-oxygen conditions. Oxygen depletion causes HIF-a to
interact with the transcriptional co-factor p300/CBP. This association activates a wide range of genes, initiating diverse adaptive processes such as
glycolysis (SLC2A1/GULT1), angiogenesis (VEGF-A), and angiogenesis and loss of growth-inhibitory effects (TGFa/b) (156, 157).
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and immunotherapeutic strategies. Several preclinical and clinical

trials combining different therapeutic strategies, such as immune

checkpoint inhibitors and anti-CSF-1R antibodies or other TAM-

centered therapeutic strategies in combination with chemotherapy,

are currently under way and are discussed below.
8 TAM-targeted therapies

Macrophages, the most prevalent immune cells within the

TME, have a dual function in immunomodulation (19, 51). As

discussed above, macrophages in cancer patients are an

incredibly diverse mixture ranging from tumor suppressors (M1

phenotype) to tumor protectors (M2 phenotype) (19). Via

sequestration of the release of proinflammatory cytokines and

display of more than immunostimulatory markers, classically

activated macrophages (M1 phenotype) support anticancer

immunity (6, 19, 51). In contrast, M2 macrophages, which

constitute most of TAMs, have a low antigen-presenting

capacity and strong immunosuppressive features and produce

higher numbers of proangiogenic cytokines than M1

macrophages (103, 167). Thus, limiting the number of TAMs or

switching TAMs within the TME to the M1 phenotype is essential

for cancer therapy because TAMs’ overall activity promotes tumor

development and metastasis (19, 51). Figure 5 summarizes

selected therapeutic strategies targeting TAMs.
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8.1 Blockade of TAMs migration/depletion
of TAMs from the TME

8.1.1 The CCL2/CCR2 axis
Blocking the CCL2 or CCR2 signaling pathway, an axis that

draws circulating monocytes into the TME and induces their

differentiation into macrophages, is one way to eliminate TAMs

from the TME (101, 148–151). CCL2 blockade can stop tumor

spread, angiogenesis, and growth, and researchers have

demonstrated CCL2 restriction in animal studies to increase the

antitumor effects of cytotoxic T lymphocytes and decrease the

number of TAMs in the TME (168). Additionally, a CCR2

antagonist has exhibited tumor-burden-reducing efficacy in

animal models of adenoid cystic carcinoma of the salivary glands

by reducing the number of infiltrated TAMs (168). Studies

demonstrated that targeting the CCL2/CCR2 axis with the

antibody carlumab (CNTO 888) as well as with a specific

inhibitor of the CCR2 receptor (PF-04136309) specifically blocks

the CCL2-mediated activation and migration of macrophages into

tumors and tumor’s infiltration by macrophages in patients with

diverse types of cancers (149).

8.1.2 CSF-1 and CSF-1R
Another valuable target for the removal of TAMs from the TME

is CSF-1R. CSF-1 is a cytokine that is essential for the survival,

proliferation, and differentiation of mononuclear phagocytes (84,
FIGURE 5

TAM-targeting strategies. These treatment approaches aim to either activate the antitumor behavior of TAMs or limit macrophage infiltration,
survival, and protumoral actions. Identification of therapeutic antibodies using Fc receptors (FcRs) on TAMs is a key step in the macrophage-
mediated antibody-dependent cellular cytotoxicity process. The CD47/SIRPa axis and CD24/SIGLEC10 pathway are both parts of the don’t eat me
signal for tumor cells. Activating macrophage-mediated antibody-dependent cellular cytotoxicity phagocytosis is possible with antibodies against the
CD47/SIRPa and CD24/SIGLEC10 pathways (antibody-dependent cellular phagocytosis). Don’t eat me signal pathways, repolarization, limiting and
reducing the infiltration and survival of tumor cells, and ICB with antibodies are just a few of the major therapeutic approaches used to target TAMs.
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159, 169). CSF-1R is a tyrosine kinase transmembrane receptor that

belongs to the CSF-1/platelet-derived growth factor receptor family

of protein tyrosine kinases. It has an important role in the formation

and maintenance of microglia in the brain (84, 159, 169, 170). CSF-

1R promotes myeloid cell survival when activated by two ligands,

CSF-1 and IL-34. Inhibiting CSF-1/CSF-1R prevented murine M2

macrophages from differentiating, proliferating, and surviving in

one study (169). In addition, blockade of the CSF-1/CSF-1R axis

with the specific CSF-1R inhibitors PLX3397, BLZ945, and

GW2580 direct ly impacted macrophage viabi l i ty and

differentiation, improving their function as well as antigen

presentation ability. Furthermore, CSF-1R inhibitors induced

repolarization of macrophages toward the M1 phenotype and

thereby boosted the antitumor T-cell response (84, 171). In an

animal model of glioblastoma, CSF-1R blockade demonstrated

significant potential to reduce tumor growth, suggesting that CSF-

1R inhibitors can block TAM-mediated immunosuppression and

make tumor cells more susceptible to chemotherapeutics (120). For

instance, treatment with PLX3397 prevented the differentiation of

myeloid monocytes into TAMs and improved the response of

glioblastoma to ionizing radiotherapy, which delayed the

recurrence of glioblastoma (152, 172). Authors reported that the

number of TAMs and polymorphonuclear MDSCs in the TME

were successfully reduced by the co-targeting of CSF-1R and

CXCR2 inhibitors. Importantly, in diverse animal models of

cancer, this drug combination reduced tumor burdens and

inhibited tumor growth (54, 168, 173).

Also, antibodies against CSF-1 and CSF-1R are used to target

macrophages by inhibiting their recruitment and depleting and re-

educating them. Given promising results in preclinical data,

investigators are further evaluating this combinatorial approach

in the setting of breast cancer and other solid tumors in ongoing

clinical studies (172). Even though CSF-1R inhibition enhances

TAMs’ ability to present antigens in animal models of aggressive

pancreatic ductal adenocarcinoma, it may cause exhausted

phenotypes of cytotoxic T cells, highlighting the importance of

combining immune checkpoint inhibitors and CSF-1R inhibitors in

treating these tumors (172).
8.2 Polarization of M2 TAMs into tumor-
suppressive macrophages

Given the fact that protumor macrophages (M2 phenotype)

create an immune-resistant TME whereas antitumor macrophages

(M1 phenotype) stop or slow down cancer growth and metastasis,

potential strategies for cancer therapy include switching M2

macrophages to the M1 phenotype (120, 162, 173, 174). This

change in phenotype may be helpful for cancer treatment because

M1 macrophages create an immune-vulnerable microenvironment

for cancer cells. Additionally, changing the phenotype of M2

macrophages may stop cancer cells from growing and forming

metastases (173, 175). Various substances and modalities to change

the state of TAMs within the TEM were investigated including T-

cell immunoglobulin and mucin domain 3 and 4 blockade and

treatment with macrophage receptor with collagenous structure
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(MARCO) or Toll-like receptor (TLR) agonists (145, 176–178).

TIMs are phosphatidylserine receptors mainly expressed on antigen

−presenting cells that are involved in the recognition and

efferocytosis of apoptotic cells. They are expressed in immune

cells such as NK, T, B, and mast cells and participate in multiple

aspects of immune regulation but are also abnormally expressed in

cancer cells, contributing to immunosuppression (64, 179, 180).

Studies demonstrated that blockade of TIMs improved the

anticancer effectiveness of T-cell responses in cancer patients and

enhanced the immune cells’ stimulatory properties (64, 180).

Investigators achieved similar effects by targeting the scavenger

receptor MARCO, which reversed the immunosuppressive effects of

TAMs and reduced tumor progression in several murine models of

solid tumors (181–183).

Also, use of phosphoinositide 3-kinase g (PI3Kg) inhibitors such
as IPI-549, mammalian target of rapamycin inhibitors, CD40

agonists, TLR agonists, and class IIa histone deacetylase (HDAC)

inhibitors helps repolarize TAMs toward the proinflammatory M1

state (171). Specifically, HDAC inhibitors improved the

effectiveness of both chemotherapeutic drugs and immune

checkpoint inhibitors in breast cancer treatment by inducing M1

polarization of TAMs (81, 184). The phenotype switch toward M1

was also achieved through PI3Kg suppression in pancreatic ductal

adenocarcinoma, a tactic used to modify the TAM phenotype in

solid tumors like melanoma, pancreatic cancer, and lung cancer.

They also observed that blocking the PI3Kg/Akt signaling pathway
could decrease the recruitment of integrin a4-dependent MDSCs,

increase the recruitment of mature DCs, impede macrophage

polarization toward the M2 phenotype, and strengthen T-cell

anticancer defenses (185). BKM120 and IPI-549 are two highly

effective PI3K inhibitors with direct modifying effects on

macrophages and anticancer effectiveness alone or in combination

with immune checkpoint inhibitors (83, 90).

Use of TLR agonists has also produced positive results in

reversing TAM polarization toward the M1 phenotype. For

instance, TLR3 stimulation enhanced the production of MHC-II

and other co-stimulatory elements on macrophages by activating the

IFN-a/b signaling pathway, exhibited M2/M1 polarization-changing

properties, and switched M2 macrophages to the M1 phenotype

(186). Also, TLR4 and IFN-g receptors on macrophages are

commonly involved in M1 activation. The major signals associated

with M1 macrophage polarization are STAT1 and NF-kB.
Immunomodulatory compounds such as Lachnum polysaccharide

and glycocalyx-mimicking nanoparticles can interact with TLRs,

influencing TAMs to release IL-12, exhibit the M1 phenotype, or

reverse the M2 phenotype (158, 187). Of note, glycocalyx-mimicking

nanoparticles are internalized by TAMs via lectin receptors,

stimulating production of IL-12 and inhibiting production of IL-10,

arginase 1, and CCL22 to activate macrophages’ antitumor responses

(187, 188). This macrophage phenotype reversion was further

controlled by suppressing STAT6 and activating NF-kB
phosphorylation (187). Furthermore, glycocalyx effectively reduced

tumor burdens in in vivo studies and had positive synergistic effects

when combined with anti-PD-L1 therapy (145, 187).

Additional targeted nanocarriers have demonstrated efficacy by

conveying mRNA-encoding transcription factors responsible for M1
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polarization to the M2 phenotype (189, 190). In addition, nanoparticle

injections prepared with mRNAs expressing IFN-regulatory factor 5

along with IKKb switched M2 subsets to antitumor M1 macrophages

in animal studies of ovarian cancer, melanoma, and glioblastoma (142).

Lately, targeted delivery of chlorogenic acid (CHA) encapsulated in

mannosylated liposomes can reduce the immune-suppressive effects of

the TME on glioblastoma cells by causing TAMs with the M2

phenotype to adopt an M1 state (191). Remodeling of the TAM

phenotype was also caused by infusion of IL-12 in hepatocellular

carcinoma models. IL-12 injection lowered the expression of STAT3

and c-Myc, which led to induction of the M1 phenotype in

macrophages (192). In another study of hepatocellular carcinoma,

IL-37 converted M2 TAMs into M1 cells by inhibiting the IL-6/STAT3

signaling pathway (163). Also, studies using ureido tetrahydrocarbazole

derivatives confirmed the potent transformation ofM2macrophages to

the M1 phenotype to instill antitumor activity both in vitro and in vivo.

According to Pei et al. (193), the ureido tetrahydrocarbazole derivatives

were effective at slowing the growth of tumors in tumor-bearing mouse

models and had effective results when combined with anti-PD-1

antibodies. Considering all of these data, altering the phenotype of

TAMs to become M1 cells appears to be an effective tactic for

increasing the sensitivity of tumor cells to both chemotherapeutic

drugs and immunotherapies.
8.3 Checkpoints for macrophage-
induced phagocytosis

Investigators have identified several tumor-phagocytosis-related

checkpoints, including the CD47/signal regulatory protein a (SIRPa)
axis, the PD-1/PD-L1 axis, the MHC-I/leukocyte immunoglobulin-

like receptor subfamily B (LILRB1) axis, and the CD24/SIGLEC10

axis. This was followed by the development of several mAbs or

protein fusions directed against these checkpoints, with some of them

exhibiting promising effectiveness in ongoing clinical trials.

8.3.1 CD47/SIRPa checkpoint
The first checkpoint to be connected to tumor phagocytosis was

CD47/SIRP cross-talk, commonly referred to as the don’t eat me

signal (123). CD47 was first described as a membrane protein in

healthy red blood cells (123). Previous studies revealed that

senescent red blood cells with reduced CD47 expression are

swiftly removed by the macrophages residing in the splenic red

pulp, liver tissue, or bone marrow erythroblastic island (6, 72, 194–

196). However, in normal erythroid cells, CD47 expression prevents

clearance by attaching to the macrophage inhibitory receptor SIRPa
(128, 176, 197–199). Recent reports pointed to SIRPa as a

membrane protein belonging to the immunoglobulin superfamily

that is primarily expressed by myeloid cells like macrophages and

other DCs (54). The mechanism behind inhibition of phagocytosis

by macrophages was further dissected with the discovery that

macrophages and SIRPa interact with CD47 expressed on nearby

cells, causing the SIRPa cytoplasmic immunoreceptor to

phosphorylate its tyrosine-based inhibitory motif. Src homology 1

and 2 phosphatases are subsequently recruited because of this

mechanism (200).
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Inhibition of phagocytosis results from the downstream signaling

cascade’s prevention of myosin-IIA aggregation at the phagocytic

synapse (200). As a result, the CD47/SIRPa axis is mainly thought

of as a don’t eat me signal that enables CD47-expressing cells to avoid

being phagocytosed by macrophages (200). In contrast, cells lacking

CD47 are quickly destroyed by wild-type macrophages (201). Thus,

most cell types, including erythroblasts, platelets, and hematopoietic

stem cells, express CD47 on their surfaces to avoid being phagocytosed

by macrophages (200). However, a similar mechanism of elevating the

expression of CD47, and thereby inhibiting macrophage phagocytosis,

was found in numerous hematological and solid tumors (129, 198,

202–206). These findings demonstrate that CD47/SIRPa cross-talk acts

as a protective immunological checkpoint associated with phagocytosis.

Furthermore, authors documented a substantial positive connection

between high CD47 expression and poor prognosis for cancer (125,

203, 207–209), leading to several approaches aimed at blockade of this

signaling axis. CD47-targeting approaches include the anti-CD47

antibodies Hu5F9-G4 (NCT02216409), SRF231 (NCT035123), and

IBI188 (NCT03763149) and the anti-SIRPa antibody BI-765063

(NCT03990233). The anti-CD47 mAb Magrolimab is reported to be

the first therapeutic drug to target macrophages (54). These findings

demonstrate that suppression of CD47/SIRP cross-talk may indeed

improve antitumor activity of macrophages and that using this

approach in combination with other therapies may further improve

results of immunotherapy (127, 128). Furthermore, clinical studies

demonstrated the significance of blocking the CD47/SIRP interaction

in animals bearing xenograft models with a variety of hematological

cancers, such as acute myeloid leukemia, myelodysplastic syndrome,

and refractory non-Hodgkin lymphoma (47, 97, 124, 177, 200, 210).

The results of the studies described above demonstrated that anti-

CD47 antibodies facilitate tumor-cell detection and phagocytosis by

macrophages (211). Furthermore, macrophage removal reversed

tumor development following CD47 blockage, demonstrating that

macrophages are essential for suppressing the proliferation of cancer

cells after CD47 dampening. Targeting cancer cells with CD47

blockage is carried out using four major strategies (54, 126, 127,

208). (1) Direct killing of cancerous cells. Anti-CD47 mAbs cause

tumor cells to die via a process unrelated to caspases (212). (2)

Macrophage-regulated antibody-dependent cellular phagocytosis. The

use of anti-CD47 mAbs reduces CD47/SIRPa cross-talk, thereby

causing macrophages to phagocytose tumor cells (213). Furthermore,

inhibiting CD47/SIRPa cross-talk causes tumor cells to be

phagocytosed by all macrophage populations, particularly M1 and

M2c macrophages (214–216). That study also demonstrated that

preventing CD47/SIRPa cross-talk causes a variety of polarized

macrophages to engulf tumor cells and that this action is necessary

for producing FcgRs (217). This suggests that inhibiting CD47

efficiently causes the diverse macrophage population seen in in vivo

studies to start destroying tumor cells. Enhancement of antigen

presentation ability and CD8+ T-cell proliferation in vitro are

primarily caused by increased cancer cell phagocytosis brought on by

the interruption of CD47/SIRPa cross-talk. (3) T-cell-induced

immunological responses and DC-mediated antigen presentation.

Studies demonstrated that anti-CD47 mAbs stimulate DCs to

phagocytose tumor cells, which is followed by antigen presentation

to CD8+ T cells to trigger an anticancer adaptive immune response
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(217). (4) NK-cell-modulated antibody-dependent cellular cytotoxicity

and complement-dependent cytotoxicity. SIRPa is a notable

suppressor of NK-cell-modulated cytotoxicity, whereas anti-CD47

mAbs kill cancerous cells via the antibody-dependent cellular

cytotoxicity and complement-dependent cytotoxicity pathways (197).

Consequently, preventing CD47/SIRPa cross-talk stimulates the innate

and adaptive immune responses, resulting in tumor-cell apoptosis.

Table 2 includes a list of potential targets and the phases of clinical

trials of cancer treatments using these targets performed thus far. Also,

in several preclinical studies, researchers have investigated potential

therapeutic approaches combining anti-CD47 strategies with anti-

CD20 strategies for lymphoma, anti-HER2 strategies for breast

cancer, and anti-EGFR strategies for colorectal cancer. The results of

these studies indicated that the mechanisms of action of these tumor-

opsonizing mAbs can be greatly potentiated by anti-CD47 strategies

(240–245). Concerns related to CD47 expression in healthy platelets

and red blood cells led to the development of antibodies with weaker

anti-CD47 properties and selective SIRPa inhibitors. Several anti-

CD47 agents, such as TTI-621 (NCT03530683), TTI-622

(NCT02890368), and ALX148 (NCT04675333), have undergone

clinical trial evaluation. In addition to the use of immunomodulatory

agents, targeting immune checkpoint pathways could constitute an

additional approach. A series of bispecific antibodies combining anti-

CD47 specificity with anti-PD-L1, -EGFR, -CD19, or -CD20 activity

may preserve tumor-specific phagocytosis-stimulating activities while

sparing the host cells that do not express the tumor antigen, thus

limiting toxicity. As discussed above, M2 TAMs may possess only low

capacity for phagocytosis or the ability to present antigens to cytotoxic

T lymphocytes, and thus showing impaired immunological activity.

Treatment with antibodies targeting CD47 may be a tactic to help

TAMs regain their immunological characteristics. By blocking the

connection between CD47 and SIRPa, anti-CD47 antibodies may

improve macrophages’ ability to fight tumors (246, 247). Blocking the

CD47/SIRPa pathway had promising results in treatment of several

solid tumors and hematological cancers such as glioblastoma,

lymphoma, and breast cancer and may compel TAMs to

phagocytose tumor cells (246, 248–255). Other strategies for

harnessing or restoring antitumor properties of macrophages are

discussed below.

8.3.2 Other checkpoint signaling pathways
Additional don’t eat me signals have been identified, such as

SIGLEC1 (CD169), the PD-1/PD-L1 axis (161), LILRB, and

targeting scavenger antigens. SIGLEC1 (sialoadhesin/CD169) is a

membrane protein that binds to sialic acid and mediates cell–cell

interactions. CD169 is expressed by a fraction of macrophages that

undergo M2 polarization and is upregulated in human cancer cells.

As observed with CD47, expression of CD169 correlates with a

dismal prognosis in cancer patients (126, 256). Depletion of

CD169+ TAMs was effective in reducing tumor burdens and

metastasis in mouse models of breast cancer, whereas targeting of

SIGLEC7 and SIGLEC9 led to a significant reduction in tumor

burdens in transgenic mice expressing the human transgenes for

SIGLEC7 and SIGLEC9 but lacking expression of the murine

homolog Siglec-E that were transplanted with murine B16 and

B16-FUT3 lung cancer cells (257). SIGLEC proteins contain
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immunoreceptor tyrosine-based inhibitory motifs in the

cytoplasmic tail, which, through their inhibitory and suppressive

activation signals, regulate the functions of several immune cells

(51). Another molecule that is frequently overexpressed by diverse

tumor types is CD24. Binding of CD24 to SIGLEC10, which is

overexpressed by TAMs, leads to phagocytosis inhibition (256).

Experimental targeting of SIGLEC10 with mAb against SIGLEC10

restored the phagocytosis properties of macrophages in preclinical

models of ovarian cancer (51).

Another approach to stimulating macrophages to regain their

antitumor activity may be inhibition of LILRB, a receptor that

engages with MHC-I protein (256). Suppression of MHC-I

molecules is one of the best-known mechanisms cancer cells use to

circumvent recognition by T cells (51, 258). The expression of MHC-I

protein by tumor cells was shown to correlate with the level of tumor

resistance to anti-CD47 therapy. Of note, like SIGLECs and CD24,

LILRB was shown to contain an immunoreceptor tyrosine-based

inhibitory motif that exerts an inhibitory activity on immune cells

and to be widely expressed by immune cells and enriched in TAMs.

Anti-CD47 therapy resistance of tumor cells may be restored by

treatment with an LILRB1-blocking antibody. Furthermore, LILRB

antagonists such as MK-4830 (NCT03564691), a humanmAb directed

against LILRB2, in conjunction with IL-4 or macrophage colony-

stimulating factor, may alter the ECM composition, limit the

recruitment of Tregs to the TME, inhibit the function of MDSCs,

and enhance proinflammatory activation and phagocytic activity of

macrophages (30, 256, 258, 259). In phase 1 dose-escalation studies in

patients with advanced solid tumors, treatment withMK-4830 alone or

in combination with anti-PD-1 therapy produced durable responses

that correlated with enhanced cytotoxic T-lymphocyte-mediated

antitumor immune response. Therapeutic approaches are also

targeting LILRB4, and blockade of it had potent activity in reshaping

tumor-infiltrating T cells and reversing the M2-suppressive phenotype

of TAMs (258).

Other molecules abundantly expressed in TAMs include several

types of scavenging receptors. These receptors not only identify

specific types of TAMs but also are apparent therapeutic targets

with the aim of potentiation of a proinflammatory switch toward

the M1 phenotype. Specifically, researchers observed significant

correlation between expression of CD163 and progression of several

types of solid tumors (139, 167, 260). CD163 enables macrophages

to remove erythrocyte debris by binding to haptoglobin. Of note,

depletion of CD163+ TAMs resulted in tumor regression in a mouse

model of anti-PD-1-resistant melanoma (261–264). Furthermore,

depletion of CD163+ TAMs led to restoration of cytotoxic T-cell

and inflammatory monocyte activity, leading to resensitization of

tumor cells to anti-PD-1 therapy (265).

Other receptors highly expressed on TAMs, related to the M2

phenotype, are mannose receptor 1 (CD206) and MARCO (181–

183). CD206 is a macrophage scavenger receptor that binds to

several endogenous ligands in addition to pathogen moieties such as

tumor mucins (186, 213). CD206 engages on macrophages

maintaining the endocytosis and phagocytosis, and thus immune

homeostasis by scavenging unwanted mannoglycoproteins;

however, through their interactions with tumor mucins or upon

an agonist anti-mannose receptor mAbs, they induced an
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immunosuppressive phenotype with increased production of

cytokines such IL-10 by TAMs (74, 94). Treatment with RP-182

peptide, which binds to CD206/mannose receptor 1 and induces a

conformational switch of the receptor, partially depletes CD206+

macrophages and reprograms the remaining TAMs into antitumor

M1-like effectors with increased inflammatory cytokine production

and the ability to phagocytose cancer cells (6, 266). In murine

cancer models, RP-182 suppressed tumor growth, extended

survival, and synergized with combined immunotherapy (266). Of
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note, targeting MARCO with mAbs induced mainly an antitumor

immune response through reprogramming of TAMs (267).

Immunosuppressive M2-like macrophages also express the

receptor Clever-1 (stabilin-1), an adhesion and scavenger receptor.

Clever-1 binds to several ligands, primarily lipoproteins and

carbohydrates, mediating endocytosis of scavenged material and its

delivery to the endosomal compartment, ultimately resulting in

suppression of macrophages and impaired activation of Th1

lymphocytes (268, 269). Antibody blockade of Clever-1 with FP-1305
TABLE 2 Clinical trials of macrophage-targeting therapies for cancer.

Target Treatment Phase Cancer Type
Trial
Status Reference

CSF-1R Emactuzumab 2 Breast cancer Closed (18, 172)

JNJ-40346527 3 Tenosynovial solid tumors Closed (18, 218, 219)

Cabiralizumab 1 Pancreatic cancer Open (18)

Cabiralizumab + APX005 + nivolumab 1 Melanoma, non-small cell lung cancer, renal cell
carcinoma

Active (18)

Cabiralizumab (FPA008) + nivolumab
(Opdivo)

1/2 Advanced solid tumors Closed (18)

Cabiralizumab (FPA008) + nivolumab
(Opdivo)

2 Head and neck tumors Active (18)

Cabiralizumab (FPA008) + nivolumab
(Opdivo)

2 Lymphoma Active (18)

Emactuzumab + PD-L1 inhibitor
(atezolizumab)

1/2 Advanced solid tumors Open (18)

CD47/
SIRPa

Hu5F9-G4 1 Solid tumors Closed (220)

Magrolimab 1/2 Acute myeloid leukemia Closed (88)

CD40/
CD40L

APX005M 1/2 Pancreatic cancer Closed (221, 222)

Selicrelumab 1/2 Melanoma, pancreatic cancer Open (49, 223, 224)

CD68 ADG116 1/2 Solid tumors, melanoma, head and neck cancer Closed (57, 225–228)

CCR2 PF-04136309 1 Pancreatic cancer Closed (57, 98, 146, 149–
151)

CCX872 1/2 Solid tumors Closed (57, 98, 146, 149–
151)

TLR7/8/9 GSK2831781 1 Solid tumors Closed (57, 98, 146, 149–
151)

IMO-2125 1/2 Melanoma, head and neck cancer Closed (57, 98, 146, 149–
151)

CD206 ANG4043 1 Solid tumors Closed (229)

ATM/TTK AZD1390 1/2 Solid tumors Closed (230, 231)

CFI-402257 1/2 Advanced solid tumors Closed (232–234)

CD47 TTI-621 1/2 Solid tumors and hematological cancers Open (198)

AO-176 1 Solid tumors Closed (235)

CC-90002 + nivolumab (Opdivo) 1b/2 Advanced solid tumors Open (236)

Hu5F9-G4 + rituximab 1 Non-Hodgkin lymphoma Open (237, 238) (220)

CD115/
CSF1R

LY3022855 1 Solid tumors Closed (18, 84, 159, 169)

PD-1/PD-L1 Lenvatinib and pembrolizumab 1 Solid tumors Closed (239)
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caused a phenotypic switch in TAMs from immunosuppressive to

proinflammatory and activation of T-cell responses and delayed tumor

growth in preclinical studies (269–272). These preclinical results led to

a phase 1 trial to determine the safety and preliminary effectiveness of

FP-1305, a humanized anti-Clever-1 antibody administered to heavily

pretreated patients with metastatic solid tumors (269). Encouraging

results of this trial indicated a proinflammatory switch of monocytes,

enhanced capability of macrophages to cross-present scavenged

antigens, and activation of T cells (270). TAMs also express PD-1,

which inhibits phagocytosis and tumor immunity, impairing the PD-1/

PD-L1 axis in macrophages. Of note, PD-L1 expression in cancer cells

may concomitantly enable evasion from not only T-cell cytotoxicity

but also macrophage-mediated phagocytosis (273–275). Therefore,

blockade of the PD-1/PD-L1 axis may enhance an antitumor

immunity of both adaptive and innate mechanisms.

Of note, the receptors PD-1, LILRB1, and SIRPa all contain an

immunoreceptor tyrosine-based inhibitory motif domain, which

may be instrumental for downstream signals that inhibit

phagocytosis (258, 259, 274, 276, 277). Based on this, in studies

aimed at monitoring response in patients with cancer undergoing

treatment with immune checkpoint inhibitors, researchers should

consider the myeloid compartment as a potential target and

predictive biomarker (104, 160). TAMs were also shown to

upregulate triggering receptor expressed on myeloid cells 2 (104,

237, 274, 278). This protein scavenges large molecules like

lipoproteins and phospholipids as well as cell debris. Targeting of

triggering receptor expressed on myeloid cells+ TAMs led to

restricted tumor growth and resensitization to anti-PD-1 therapy.

Investigators recently evaluated PY414, a humanized mAb targeting

triggering receptor expressed on myeloid cells 2+ macrophages, in a

phase 1 clinical trial in patients with advanced solid tumors

(NCT04691375) (237, 278). Finally, another ligand strongly

upregulated in M2 macrophages and expressed in TAMs is P-

selectin glycoprotein ligand-1 (279). This protein has high affinity

for VISTA (B7-H5 and PD-1H) and selectins, and upon activation,

it contributes to T-cell dysfunction in cancer patients (280).

Targeting of P-selectin glycoprotein ligand-1 should be a subject

of further investigation.
8.4 Targeting epigenetic and metabolic
changes in TAMs

Therapy resistance may be a consequence of metabolic rewiring

in both tumor cells and cellular immune compartment of TME.

Downstream metabolic rewiring of macrophage function following

polarization changes involves complex changes in amino acid, lipid,

and iron metabolism (19, 69, 134, 196, 281, 282). This complex

series of events provides potential targets to rewire macrophage

function at the metabolic level. One of the promising approaches to

harnessing the antitumor potential of macrophages is epigenetic

regulation by class IIa HDACs. TMP195, a selective class IIa HDAC

inhibitor, exhibited the ability to effectively modify the transcription

profile of macrophages, resulting in macrophage-mediated

reduction of tumor growth in a breast cancer model (81, 184).

Another HDAC inhibitor, tefinostat (CHR-2845), is cleaved to an
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active acid form CHR-2847 via nonspecific esterase liver

carboxylesterase 1, an enzyme selectively present only in

monocytoid-lineage cells and some hepatocytes. Because of this

feature, tefinostat has been successfully tested in a phase 1 clinical

trial in patients with advanced hematological cancers such as

myelodysplastic syndrome and chronic myeloid leukemia

(NCT00820508). Also, carboxylesterase 1 may be used as an

elegant tool for developing drugs with macrophage-selective

targeting features.

Also, hypoxia and acidosis (Figures 3, 4) play a crucial role in

the TME and can modulate the function of TAMs. For instance, the

oxygen demand of initially fast-proliferating tumor cells may

enhance the hypoxic gradient across tumor tissue, forcing both

tumor cells and immune cells to adapt to new conditions. Metabolic

wiring may therefore promote nonoxidative pathways of energy

generation, which leads to increased tumor acidification. Hypoxia

can trigger the expression of genes like TNF-a, IL-18, and H1F-1 in

TAMs, which may cause inflammation, angiogenesis, and tumor

growth. Both hypoxia and acidification were shown to promote

polarization of macrophages toward the M2 phenotype and

therefore may consolidate the protumorigenic milieu. Therapeutic

interventions impeding hypoxia or hypoxia-inducible changes such

as blockade of HIF-2 with belzutifan in renal cell cancer cells and

use of hypoxia-activated prodrugs may constitute an important

backbone of macrophage-targeted therapies (111, 116, 283).

Another opportunity for targeting TAMs and antitumor

therapy may be blockade of other metabolic pathways, such as

OXPHOS. Given the fact that M2 macrophages and some subsets of

hematological cancers and stem cell populations in solid tumors

rely more on OXPHOS than other metabolic pathways for

biosynthetic and bioenergetic demands, selective blockade of

OXPHOS (281, 284) may be synergistic together with anti-CD47

therapy, in both achieving direct eradication of OXPHOS-

dependent tumor cells and reshaping the TME through

elimination of protumorigenic, OXPHOS-dependent M2

macrophages. Along this line, treatment with the respiratory

complex I inhibitor metformin, an antidiabetic agent, reduced the

density of TAMs, remodulated their function in the TME, and

increased their phagocytic function, and its antitumor efficacy has

been tested in several clinical trials for the treatment of diverse types

of cancer (260).

M2 TAMs are often characterized by increased consumption of

glutamine, which is essential for biosynthetic processes and redox

balance. Thus, combined small-molecule inhibitors such as CB-839

and DON downstream from glutamine receptors may be

therapeutic options for modulation of myelosuppressive cells

(285). Another amino acid of great interest in macrophage

targeting is tryptophan. Increased consumption of tryptophan by

TAMs owing to elevated expression of the enzyme indoleamine 2,3-

dioxygenase 1 results in reduced tryptophan access for T cells and

accumulation of kynurenine, leading to severe impairment of

cytotoxic T-cell function, and inhibits T lymphocytes division and

favors T-cell differentiation toward Treg generation (286). Whereas

some results of ongoing clinical trials testing indoleamine 2,3-

dioxygenase 1 inhibitors alone or combined with other agents

such as pembrolizumab have been negative, results for other
frontiersin.org

https://doi.org/10.3389/fonc.2023.1259034
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Aizaz et al. 10.3389/fonc.2023.1259034
combinations using anti-PD-1 agents are pending (190, 239,

287–292).

Another metabolic vulnerability of TAMs is lipid metabolism.

Researchers showed that TAMs possess a defective mechanism of lipid

utilization that is most likely linked to activation of immunosuppressive

pathways and mediated by the oxysterol receptor and transcription

factor LXR (293). Strategies targeting LXR such as exposure to LXR

agonists have induced anti-inflammatory actions and reduced the pool

of macrophages in affected lesions. Another group of lipid derivatives,

prostaglandins, particularly tumor-derived prostaglandin E2, blocked

early activation of NK cells and inflammatory activation of myeloid

cells, consolidating the immune-suppressive phenotypes of the TME

(77). Furthermore, altered prostaglandin pathways have negatively

impacted the effectiveness of ICB, which could be reversed and

enhanced by use of prostaglandin G/H synthase 2 (cyclooxygenase-

2) inhibitors or antagonists of the prostaglandin E2 receptors EP1 and

EP2 (51, 77).

Another metabolic factor facilitating cancer therapy resistance

is acidosis, particularly lactic acidosis. Lactic acid produced by

tumor cells as a by-product of glycolysis can lead to upregulation

of the CD206 and CD163 genes in TAMs, which is linked to M2

polarization and immunosuppression. Lactate functionally

polarizes macrophages toward an M2-like phenotype and leads to

elevated expression of arginase 1 (294) (Figure 4), suggesting that

targeting glycolysis in general or lactate flux inhibition in particular

positively influences TAM polarization and activity. Other

synergistic effects of metabolic interventions that may impair

acidosis-driven TAM polarization toward the M2 phenotype or

reuse of lactate in solid tumors can be achieved via selective

blockade of lactate transporters such as monocarboxylate

transporters 1–4 (MCT1–4) (295) or inhibition of glycolysis

pathways, for which novel MCT receptor family inhibitors

warrant further investigation on their efficacy to inhibit lactate

release into TME. Recently, authors discussed the role of metabolic

reprogramming in the context of ICB failure. Therefore, combined

metabolic and immune interventions may be novel, promising

solutions for counteracting the ICB resistance (282).

Moreover, hypoxia and acidosis can negatively impact the

secretion of cytokines such as IL-10 by TAMs, which can hinder the

immune response and promote tumor survival. Overall, the effects of

hypoxia and acidosis on TAMs are multifaceted and rely on specific

genes and cytokines. Comprehending these effects can provide valuable

insight into the mechanisms of tumor immune evasion and may open

doors for developing innovative immunotherapeutic strategies for

cancer as summarized in Figures 3–5.
8.5 Chimeric antigen receptor
macrophages

As described above, TAMs can make up almost half of the

cellular mass of a tumor (31, 46). However, the TAM pool

undergoes continuous restructuring through the recruitment of

new circulating monocytes (35, 74, 82). Compared with

hematological cancers, which are effectively targeted in many

cases by chimeric antigen receptor (CAR) T cells, treatment of
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solid tumors with CAR-T therapy owing to vascular remodeling,

hypoxia, and acidosis is often less effective (7, 57, 80, 120, 129, 177).

Given the constant trafficking of monocytes into tumors,

macrophage-based cell therapies may constitute a feasible

alternative to overcome obstacles to treat solid tumors, associated

with the use of CAR T cells (15, 57, 80, 120, 129, 177). Thus,

engineering macrophages to deliver cytokines or nanoparticles to

the TME or equipping them with specific receptors may be a

promising therapeutic approach. Researchers have looked at using

monocytes replenished with drug-loaded nanoparticles or capable

of delivering IFN-a to a tumor site and consequently activating an

immune response in preclinical studies. They subjected

hematopoietic progenitors under the Tie2 promoter to IFNA1

gene transduction. Tie2-expressing monocytes, which have a high

level of tumor-homing ability, successfully migrated to tumors and

delivered IFN-a to the TME, triggering the activation of immune

cells and inhibiting tumor growth and angiogenesis (108, 145, 177).

Furthermore, studies using soft particles as “backpacks”

containing cytokines demonstrated that backpacks were stuck on

macrophage surfaces, causing acquisition of the M1 phenotype

regardless of the presence of an immunosuppressive TME and

leading to significant reduction of tumor growth and metastatic

burdens (296). Another approach to modify macrophages was

genetic engineering of myeloid cells to express IL-12. This

approach elicited a type 1 immune response and reduced

metastasis and primary tumor growth (51, 297).

Although transducing human macrophages remains a challenge

in developing mononuclear-phagocyte-based cellular therapies for

cancer, investigators recently developed several innovative therapies

to overcome this obstacle. New-generation CAR macrophages

armed with receptors recognizing carcinoembryonic antigen-

related cell adhesion molecule 5, CD19, CD22, HER2, and CD5

to improve macrophage’s detection and clearance in patients with

hematological malignancies and solid tumors are undergoing

preclinical and clinical evaluation (80, 105–108, 145, 177). Despite

first promising results, there is still an unmet need to enhance CAR-

macrophage-mediated phagocytosis of tumor cells and to provide a

solution on maintaining the M1 shape and functions in a stable way

regardless of tumor environment together with improving the

trafficking of CAR-M into primary and metastatic tumors that

should be further investigated.
9 Future recommendations
and conclusions

The cross-talk between macrophages and tumor cells plays a

critical role in cancer progression and represents a promising target

for cancer treatment. However, further research is needed to

understand the molecular mechanisms underlying this complex

cell–cell communication. Modulation of macrophage polarization,

blockade of signaling pathways, and disruption of physical

interactions among macrophages and tumor cells are strategies

developed to target this cross-talk. The preclinical and clinical

evidence supporting the effectiveness of these strategies is

promising. To provide better, more targeted, safe, effective cell-
frontiersin.org

https://doi.org/10.3389/fonc.2023.1259034
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Aizaz et al. 10.3389/fonc.2023.1259034
specific therapeutic strategies, more research is warranted to fully

understand the molecular mechanisms of these processes. In fact,

combinatorial therapies that target multiple aspects of the

macrophage–tumor cell cross-talk may be more effective than

single-agent therapies, such as modulation of macrophage

polarization, blockade of signaling pathways, and disruption of

physical interactions. In addition, development of imaging

techniques together with in vitro and in vivo studies of potential

biomarkers to monitor the presence, activation state, and function

of macrophages in tumors will aid in selecting patients who could

benefit from macrophage-targeted therapies. Preclinical and clinical

studies of TAMs in cancer should focus on the specific roles of

macrophages in different types of tumors to identify the most

promising tumor-type-specific targets for therapy. Development

of in vitro and in vivo models that accurately recapitulate the

complex interactions between macrophages and tumor cells will

be essential to further our understanding of this cross-talk and test

new therapeutic strategies. Finally, further study is needed to

understand the potential side effects and toxicity of macrophage-

targeted therapy, mainly when combined with other cancer

treatments. Careful monitoring of potential side and toxic effects

therefore is essential when developing macrophage-targeted

therapies, particularly in combination with other cancer treatments.
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Oropharyngeal cancer (OPC) poses a complex therapeutic dilemma for patients

and oncologists alike, made worse by the epidemic increase in new cases

associated with the oncogenic human papil lomavirus (HPV). In a

counterintuitive manner, the very thing which gives patients hope, the high

response rate of HPV-associated OPC to conventional chemo-radiation

strategies, has become one of the biggest challenges for the field as a whole.

It has now become clear that for ~30-40% of patients, treatment intensity could

be reduced without losing therapeutic efficacy, yet substantially diminishing the

acute and lifelong morbidity resulting from conventional chemotherapy and

radiation. At the same time, conventional approaches to de-escalation at a

population (selected or unselected) level are hampered by a simple fact: we

lack patient-specific information from individual tumors that can predict

responsiveness. This results in a problematic tradeoff between the deleterious

impact of de-escalation on patients with aggressive, treatment-refractory

disease and the beneficial reduction in treatment-related morbidity for patients

with treatment-responsive disease. True precision oncology approaches require

a constant, iterative interrogation of solid tumors prior to and especially during

cancer treatment in order to tailor treatment intensity to tumor biology. Whereas

this approach can be deployed in hematologic diseases with some success, our

ability to extend it to solid cancers with regional metastasis has been extremely

limited in the curative intent setting. New developments in metabolic imaging

and quantitative interrogation of circulating DNA, tumor exosomes and whole

circulating tumor cells, however, provide renewed opportunities to adapt and

individualize even conventional chemo-radiation strategies to diseases with

highly variable biology such as OPC. In this review, we discuss opportunities to

deploy developing technologies in the context of institutional and cooperative

group clinical trials over the coming decade.
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Introduction

OPC incidence is increasing

With more than 63,000 cases annually in the US, head and neck

cancer (HNC) represents a significant health burden (1). The

epidemic increase in human papillomavirus (HPV)-associated

HNC will dramatically increase this burden over the coming

decades. Given the epidemiologic shift toward HPV-mediated

diseases and lagging vaccination rates, the rise in HNC incidence

is projected to not begin to abate until the 2050s. The US healthcare

system will need to accommodate medical conditions related to

HNC and HNC treatment for well over 4 million patients projected

to be diagnosed between 2000 and 2060 (2). Previously a relatively

rare entity, HNC was primarily attributable to tobacco and alcohol

exposure and was predominantly a disease of elderly male patients

(3, 4). The rise in HPV-associated HNC (3, 5) affects most age

groups and crosses gender and racial/ethnic barriers (6). Long

known to be a cause of cervical, penile, and anal cancer (7–9),

HPV has been shown to be the primary driver of the increase in

HNC diagnoses particularly for the oropharynx site (OPC).

Preclinical and clinical studies have now conclusively linked HPV

to OPC tumorigenesis in a majority of new diagnoses in the United

States, with an increasing incidence across much of the world

(10–19).
Survival is highly variable

The shift toward HPV-associated disease was accompanied by

the first significant improvements in HNC treatment response and

survival in the last 50 years of clinical research and medicine. First

brought to light by the landmark retrospective analysis of RTOG

0129 by Ang et al. (10), HPV-associated OPC demonstrates a

drastically improved survival compared to its HPV-independent

counterpart. At a population level, younger OPC patients, without a

history of tobacco exposure and early T-stage tumors were shown to

have a significantly improved survival in the early 2000s compared

to the previous half century (3). Despite these promising shifts in

survival, the same analysis showed that a subset of OPC patients

continues to demonstrate poor disease free and overall survival,

consistent with historical data, despite application of new

therapeutic strategies (3, 10).

Following a decade of clinical trial and retrospective data

analysis, the AJCC Staging Manual received a significant update

in its 8th Edition, with a dichotomization of OPC into HPV-

associated and HPV-independent disease, and a concomitant

reduction in stage in the context of HPV-associated OPC meant

to more accurately reflect the improved survival of patients with

what in the past would have been considered Stage II-III and even

Stage IV disease (20). The newest large scale clinical trials

conducted in OPC, including RTOG1016 and De-ESCALaTE

confirmed that the survival parameters for HPV-associated OPC

had indeed shifted critically compared to historical data (21, 22).
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This improvement in survival, predicated on an excellent

response to conventional radiation and chemotherapy strategies

in a large subset of HPV-associated OPC has given hope to patients

and clinicians alike, given the prevailing failures to improve HNC

survival over previous decades. Yet at the same time, the same

improvement in survival has drastically complicated the clinical

management of the disease, at a time when its increasing incidence

is exacerbating potential errors in an exponential fashion. Although

as a group, HPV-associated OPC patients do well compared to their

HPV-independent OPC counterparts, this effect is not uniform.

There remains considerable heterogeneity in HPV-associated OPC

response to treatment. Among Veterans with high rates of heavy

tobacco exposure, survival for HPV-associated OPC remains lower

compared to non-smokers by approximately 20% (4, 23) in line

with the Ang et al. intermediate-risk rates (4, 24). These

characteristics are conserved in both white and black patients,

resulting in similar disease behavior and oncologic outcomes (25).

Re-analyzed data from RTOG 0129 and RTOG 0522 demonstrated

that the overall (OS) and progression free survival (PFS) rates for

low-, intermediate- and high-risk OPC patients persisted with a

difference in PFS between low- and intermediate- risk groups of

over 15% (26). Our recent analysis of over 600 OPC patients treated

in the modern era showed that heavy tobacco exposure reduced

survival by the same amount as a shift in disease stage of 1 (e.g.,

stage I migrated to stage II) (27), in line with data published earlier

by Vawda et al. (28).

Whereas some risk factors (e.g., tobacco) portend inferior

survival in a subset of HPV-associated OPC patients, there is

increasing evidence that a subset of HPV-associated OPC patients

demonstrates excellent response to chemo-radiation. A recent

analysis of over 1000 HPV-associated OPC patients showed that

low levels of multinucleation identified on analysis of pre-treatment

biopsy specimens were associated with dramatic improvements in

overall, disease free and distant metastasis free survival, with hazard

ratios ranging from 1.78 to 1.94 (29). In parallel, even when the

analysis is restricted by stage, as was done by our collaborative

group in a cohort of 439 stage I patients, infiltrative lymphocyte

levels can drive further stratification of survival with hazard ratios

>2.0 (30).

Together these data indicate that new HPV-associated OPC

patients cannot be expected to demonstrate uniform response to

chemo-radiation and thus equivalent survival. Furthermore, there is

no evidence that this divergent survival is likely to change over the

coming decades due to significant shifts in treatment paradigms.

Surgery has not replaced radiation for most patients and there is no

evidence that post-treatment function will be better with surgery

(31–33). Targeted agents are inferior to conventional chemotherapy

and no less toxic (21, 22). Immunotherapy has not yet

demonstrated utility in the definitive, frontline setting for HNC

and thus will be unlikely to replace conventional chemotherapy as a

radiosensitizer in the near future (34). The only viable option to

achieve a precision oncology approach that appropriately balances

treatment effectiveness and toxicity is to maximize separation of

patients into high-risk and low-risk groups.
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Limitations to conventional
risk stratification

Although largely self-evident, it remains important to

understand why it is critical that we accurately risk-stratify OPC

patients. Standard NCCN guidelines for OPC treatment include

definitive external beam radiation (EBRT) regimens (66-70Gy) or

surgical resection followed by adjuvant EBRT with a slight

reduction in dose based on pathologic features of the disease and

conventional chemotherapy with cisplatin being the current

standard of care (21, 22). As indicated above, these conventional

approaches are extremely effective in a majority of HPV-associated

OPC patients but they carry significant acute toxicity and the

potential for life-long debilitating morbidity (e.g., chronic renal

insufficiency, peripheral neurotoxicity, chronic aspiration, lower

cranial nerve neuropathies) (35–43). There is currently no

definitive evidence that we can safely shift away from current

NCCN guidelines for HPV-associated OPC disease as a whole.

Omission of cisplatin has not been shown to be safe at a population

level prospectively (HN002) (44) and direct replacement of cisplatin

with cetuximab has failed in 2 prospective clinical trials (21, 22).

Replacement of cisplatin with immune checkpoint inhibitors does

not appear to be on the horizon for at least another decade based on

the most recent negative clinical trial data (34). Altered

fractionation regimens designed to reduce EBRT toxicity have

been investigated for over 3 decades without a significant impact,

although IMRT has indeed greatly reduced toxicity over previous

EBRT delivery approaches (35). Dose de-escalation appears

promising in very select patients, but has not yet been shown to

be safe across the broader HPV-associated OPC population in large

randomized clinical trials. Incorporation of surgery into treatment

paradigms for OPC has shown promise as it relates to risk

stratification and tailoring adjuvant treatment to disease burden.

In EA3311, investigators were able to show that patients deemed

intermediate-risk based on surgical pathologic parameters could

receive a reduced dose of adjuvant radiation of 50Gy without a clear

decrease in treatment efficacy as measured using progression free

survival (PFS) (45).

Recurrence from HPV-associated OPC is deadly; no less so

compared to that from HPV-independent disease. Salvage with

surgery, re-irradiation or systemic treatment fails in >60% of

recurrent disease patients (46–49). Taken together, the severe

toxicity from current treatment regimens and the nearly uniform

fatality of recurrent disease create a Hobson’s choice for patients

and a difficult balancing act for oncologists. Reducing treatment

intensity at a population level will undoubtedly result in more

recurrences yet failure to reduce treatment intensity will result in

overtreatment and unnecessary toxicity in a large fraction of the

OPC population. Importantly, some of this toxicity will translate

into treatment related mortality (e.g., aspiration), making the need

for accurate risk-stratification of OPC patients critical.

Conventional risk stratification has been standard for HNC ever

since the first introduction of TNM classification and has continued

throughout the 8 editions of the AJCC Staging Manual. That

conventional risk stratification is clinically useful is evidenced by

the significant divergence of survival by disease stage across tens of
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thousands of treated patients; that incorporation of HPV status into

OPC staging has been impactful is similarly made plain by both

prospective and retrospective datasets (10, 11, 21, 27, 46, 50). Yet at

the same time, conventional risk stratification has had a modest

impact on our ability to develop treatment regimens better tailored

to disease biology. Whereas positive margins and extra-nodal

extension (ENE) were shown to be useful in assigning patients to

treatment escalation with the addition of conventional

chemotherapy in the adjuvant setting, their utility in the setting

of HPV-associated disease may be more limited (47). For aggressive,

advanced-stage disease, attempted escalation with induction

chemotherapy failed to improve survival in the PARADIGM and

DECIDE trials (51, 52), and in a recent in-depth retrospective

analysis appeared to be associated with reduced survival in OPC

patients (53). As mentioned above, changing from cisplatin to

cetuximab, a drug assumed to be more tolerable and thus better

suited for the lower risk HPV-associated OPC population failed to

maintain adequate survival in both RTOG1016 (which included

intermediate-risk OPC) and De-ESCALaTE (which included

exclusively low-risk OPC) trials (21). HN002 concluded that

although a modest reduction in EBRT dose was safe, the omission

of cisplatin could not be deemed safe even in non-smokers with

HPV-associated OPC (low-risk OPC) (44).

One limitation of conventional risk stratification is that it

requires very large signals (difference in survival), very large

cohorts or both. An excellent example of this is the initial Ang

et al. study in which HPV-associated OPC demonstrated ~75%

survival at 2 years compared to HPV-independent OPC patients

which demonstrated ~30% survival at 2 years, with HPV-associated

smokers essentially in the middle (10). These very large differences

have persisted in retrospective analysis across multiple cohorts and

are reproduced in the aggregate when data from RTOG1016 and

De-ESCALaTE are analyzed head to head. Despite decades of

investigation, no other biological variable in HNC has

demonstrated such dramatic stratifying effects (e.g., TP53) across

multiple prospective and retrospective cohorts and thus, no other

biological variables are included in the AJCC staging or considered

in NCCN guidelines for HNC treatment generally. Effect sizes from

shifts in treatment are similarly small. When averaged over tens of

thousands of patients, the effect size for adding conventional

chemotherapy to radiation in the definitive setting results in

merely a 7-8% improvement in survival in the latest MACH-NC

analysis, yet its elimination in the setting of low risk disease has not

been shown to be safe (54). For decades, nodal metastasis was

considered one of the most compelling predictors of survival in

HNC, and indeed for HPV-independent disease it remains so as was

recently show in oral cavity disease (47). In contrast, HPV-

associated OPC demonstrates excellent survival even when nodal

metastasis is present, which resulted in the substantial down-staging

of tumors with significant nodal disease in the 8th edition of the

AJCC Staging Manual (20).

A second limitation of conventional risk stratification is a

fundamental lack of knowledge - we simply don’t know what we

don’t know. Decades were required to properly observe the

presence of, measure the impact for, and develop risk

stratification based on, HPV status alone in OPC. More recent
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work from us and others has now identified other potential

stratifiers for treatment response and survival, including

multinucleation, infiltration of tumors by cytotoxic immunocytes,

the presence of complex immune frameworks in a subset of OPC

tumors and differential tumor mutational burden (30, 46, 55, 56).

Yet none of these potential risk-stratification markers are fully

proven, and it is unlikely that they would be incorporated into

staging and used for treatment de-intensification without extensive

prospective testing.

One critical limitation to incorporating biologically specific

biomarkers into risk stratification algorithms stems from the

potential for false negative findings. Many individual genomic

events (e.g., TP53 mutation, KEAP1 mutation) can be quite rare

depending on the subtype of OPC and thus most retrospective and

prospective institutional datasets and even cooperative group trial

cohorts will be underpowered to truly examine their risk

stratification potential. The need to develop large cohorts, with

comprehensive clinical data and appropriate matching tissue has

now been recognized by investigators and funding agencies alike

(e.g., National Institute of Dental and Craniofacial Research).
Risk-stratification and therapeutic
response drivers

Many aspects of tumor biology can confer “risk” as manifested

by reduced survival. However, only those biological events which

drive treatment response can really inform our ability to modulate

existing therapeutic strategies in a meaningful way to reduce

toxicity or improve overall response. In breast cancer and

prostate cancer, hormonal receptor status is utilized to

characterize the disease because it fundamentally influences

response to hormonal blockade (57, 58). In melanoma and to a

lesser degree in thyroid carcinoma, BRAF mutational status is a

critical biomarker because it predicts response to a specific

treatment, namely BRAF +/- MEK inhibition. Unlike in these

diseases, and multiple other examples in adjacent solid tumors

(e.g., lung cancer) (59, 60), HNC broadly and OPC in particular

manifests few, if any, examples of biologically consistent drivers of

response to chemotherapy and radiation which can be used to

mechanistically inform modulation of therapy, especially de-

escalation strategies.

Even within the context of HPV-driven disease, the superior

response of disease to conventional chemotherapy and radiation

remains unclear. Some speculate that maintenance of a wild-type

TP53 status allows for activation of the tumor suppressor under

oxidative stress conditions (e.g., during treatment) and may explain

the improved response rate (61). Others, including us, believe that an

improved tumor immune micro-environment (i.e., enriched for

functional immunocytes) may somehow result in an improved

response, although this is somewhat mechanistically unclear since

HPV-associated tumors do not demonstrate a substantially better

response to immune checkpoint inhibitors compared to their HPV-

independent counterparts (46, 62, 63). Another subset of

investigators suggest that higher levels of oncogene-driven
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replication stress in HPV-associated tumors allows them to more

easily activate programmed cell death pathways (61) or that non-

canonical p16 signalingmay be key to enhanced radiation response in

this disease subset (64). The fact that we cannot consistently explain

WHY HPV-associated OPC responds better to radiation (with or

without chemotherapy) provides a clear impediment to a logical

escalation or de-escalation strategy for this patient population.

Whereas HPV oncogenic infections and their downstream impact

on intra-cellular tumor suppressors and signaling cascades have been

studied for years, some of the more recent pathomic and radiomic

features correlated with improved survival in HPV-associated disease

have never been mechanistically explored and thus are highly

unlikely to really impact treatment intensity decisions for the near

future without extensive preclinical and clinical investigation.

This limitation also applies to what many consider the

treatment of the future, namely immunotherapy in the form of

immune checkpoint inhibitors (ICIs). Starting with CheckMate141

and followed by Keynote048, ICIs have now demonstrated

meaningful activity in HNC broadly and OPC specifically in the

recurrent metastatic disease setting (63, 65). However, their use has

encountered some of the same difficulties experienced when trying

to improve upon the radiation vs surgery +/- conventional

chemotherapy approach with targeted agents (e.g., cetuximab) or

conventional induction chemotherapy in previous decades:

treatment optimization. Combinatorial therapy studies have failed

in the definitive upfront setting to date (e.g., JAVELIN Head and

Neck 100) (34). In part, this is likely driven by the same limitation

we face with conventional treatment. We have no predictive

biomarker of ICI response in HNC or OPC specifically. PDL1

status although utilized, is far from being informative enough to

further optimize utilization beyond the dichotomous chemotherapy

versus no chemotherapy decision point. More sophisticated

transcriptomic approaches published in recent years (e.g., TGEP)

or our pathomic approaches (MuNI, OP-TIL) remain far from

being prospectively validated and even with validation they remain

poorly linked mechanistically to ICI effects (29, 30, 66, 67). It is also

important to note, that immunotherapy in the form of existing ICIs,

is not quite as benign as was initially hoped. Significant levels of

immunotherapy-related adverse events (irAEs) have been reported

in non-small cell lung cancer (NSCLC) (68, 69), melanoma (70) and

HNSCC (71) especially when multiple ICIs are combined.

Particularly problematic is the consistent observation that ICI

toxicity and effectiveness are extremely correlated suggesting a

substantial hurdle to ICI deployment for HNSCC particularly

when combined with other toxic regimens/treatments.
Adaptive risk stratification

In the second half of the last century, John Boyd introduced

the OODA (observe, orient, decide, act) loop concept, first in the

context of military conflict and then more generally in the context

of human behavior and interaction. Conventional risk stratification

for cancers has optimized the utilization of the OODA concept,

even more so with the revolution in genomic, transcriptomic and
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proteomic characterization of tumors. However, a key component

of Boyd’s approach to action was the loop itself, the iterative and

ever informative nature of a repetitive cycle. Modern risk

stratification runs the loop once; after the decision to act is made,

no further information is easily available to the oncologist until the

complete course of chemo-radiation runs its course. This approach

violates basic principles of biology, which is adaptive in the setting

of exogenous stress (particularly in highly flexible cancer cells) in

addition to reducing the proven benefits of the loop. Oncologists are

not to blame for this failure. The failure stems from the difficulties

of obtaining new information from solid tumors that are

meaningful, actionable, and timely. Yet new techniques are being

increasingly deployed which may make this a reality in the not-too-

distant future.

In addition to the difficulties associated with conventional risk

stratification outlined above, conventional risk-stratification suffers

from a fatal flaw. It is static; it ignores the effect of the treatment itself

which can manifest in many ways. Radiation can impact ICI response

through local destruction of immunocytes. Chemotherapy can

impact ICI effectiveness through systemic myelosuppression. Both

can generate significant shifts in tumor biology which may be anti-

immunogenic (72). Conversely, these interactions can occur in a

positive feedback loop through damage-associated molecular patterns

(DAMPs) or generation of mutational or more commonly

expression-based neoantigens (73, 74). Unlike other solid cancers,

truly ingrained events such as BRAF, ALK and EGFR mutations

simply do not exist in OPC or even HNC with sufficient frequency to

drive treatment selection on the basis of predicted response. As a

result, all biological shifts during treatment, small and subtle as they

may be, can greatly impact the effectiveness of the chosen treatment

and affect the predictive potential of any risk stratification schema

(Figure 1). This limitation applies to ICIs as well which still lack a
Frontiers in Oncology 05123
robustly informative biomarker of response in OPC and to some

degree in many other solid tumors.
Leveraging tumor shedding for adaptive
risk stratification

While hematopoietic malignancies have an intrinsic circulating

component, solid tumors are highly anatomically restricted and

defined (even in the metastatic setting). However, the presence of

solid tumors can be detected at a systemic level through a multitude

of circulating markers, including viral DNA (for oncogenic viruses

such as EBV and HPV), tumor exosomes, cell free DNA (cfDNA),

and even fully viable circulating tumor cells. These markers provide

a compelling avenue to indirectly interrogate events in solid tumors

to inform treatment selection and make clinical decisions in an

iterative fashion for an individual patient.

Plasma EBV DNA levels have been capable of detecting a prior

infection and associated malignancies for over 2 decades (75, 76).

Nearly 80% of patients with active nasopharyngeal cancer mediated

by EBV shed detectable EBV DNA prior to treatment and EBV

remains systemically detectable in the post-treatment setting when

patients presented with initially higher stage disease (77). In

contrast to serology, circulating DNA levels can be at least

partially correlated to relative tumor burden generating a more

useful biomarker of relative tumor burden in the post treatment

setting (78). Recent studies have extended this approach to the HPV

counterpart of EBV leveraging the fact that both are oncogenic

viruses with a direct link to the biological genesis of the underlying

disease. Oncogenic HPV infection can be detected at a single-cell

level in basal keratinocytes suggestive of potential for a mechanistic

biomarker with a high sensitivity albeit likely a low specificity for

development of cancer in the short term (79). HPV viral loads have

been correlated with survival in patients with OPC (80) in both

retrospective and prospective series. The ability to detect

measurable changes in circulating tumor tissue modified viral

DNA (TTMV) during treatment holds some potential to inform

de-escalation strategies for patients with HPV-associated OPC.

Although the accuracy of such a biomarker would need to be

extremely high, a more proximate application of this approach is as

early biomarker of recurrence. TTMV has been utilized in large

series (81) of patients (>1000) to track recurrence post-treatment

with an overall positive predictive value for recurrent disease of 95%

and a point-in-time negative predictive value is 95% (with the

caveat that some patients with a one-time negative test did go on to

develop recurrence). Detection of EBV and HPV can thus be useful

but is not currently actionable as it does not reflect events

downstream from the individual viral oncogenes and thus cannot

inform how chemotherapy, radiation or ICIs might interact with an

individual tumor’s biological features.

Whereas viral DNA can be useful in the setting of virally

mediated HNC, circulating tumor DNA (ctDNA) can be broadly

utilized regardless of underlying tumor pathogenesis. We and

others have previously deployed ctDNA to detect actionable

oncogenic events in solid tumors including melanoma and

anaplastic thyroid carcinoma such as the V600E BRAF mutation
FIGURE 1

Dynamic Adaptive Risk Stratification. Treatment decisions for our
patients balance maximizing disease response and minimizing
treatment-related toxicity. There is currently a scarcity of clear
biologically consistent drivers of response to therapy which can be
used to mechanistically inform modulation of therapy, especially de-
escalation strategies. Dynamic assessment of treatment response
may allow therapeutic modification to balance disease control with
toxicity. Tumor shedding creates a multitude of circulating
biomarkers (e.g., viral DNA, tumor exosomes, viable circulating
tumor cells) that provide high biological resolution regarding
response to therapy, while imaging-based parameters may afford
high spatiotemporal resolution reflective of tumor heterogeneity in
response to treatment.
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(82). Other investigators (83) have used ctDNA and phylogenetic

analysis to track the evolution of lung cancer and development of

chemotherapy resistance. In contrast to HNC and NSCLC, in SCLC

high rates of hematogenous spread are commonly encountered

resulting in rapid and widespread distant metastasis. In this setting

ctDNA is thought to be particularly informative and representative

of the intrinsic tumor biology (84) as was shown via paired analysis

of primary tumors and ctDNA of variant allele frequency of clonal

mutations. Simply put, shifts in ctDNA during and post-treatment

can reflect, albeit with caveats, similar shifts within the primary and

metastatic tumor sites which may be indicative of cure or

recurrence as a function of clonal expansion and/extinction.

Recent work by Cao et al. highlighted the utility of a combined

ctDNA/imaging-based approach to early detection of treatment

response in AJCC (8th edition) stage III OPC patients and

demonstrate significant correlation with freedom from disease

progression (85). Similarly, Chera et al. showed that rapid

clearance of HPV ctDNA (defined as a favorable clearance

profile) achieved cure with conventional chemo-radiation in

contrast to patients with an unfavorable clearance profile (86).

A broader biological approach is to assess exosomes (87), sub-

micrometer tumor cell vesicles, which can be stable in body fluids

and contain not just DNA, but also RNA, tumor proteins, lipids,

and metabolites. In some cases, proteins can be particularly

informative as in the case of PDL1 (88) which has been

correlated to HNC disease progression as compared to non-

exosomal plasma PDL1 levels. Exosomes and their counterpart

microvesicles (89) can be used in a largely agnostic fashion to

characterize data from both tumor and viral DNA as well as

associated proteins and metabolites, forming a biologically rich

dataset and providing increased stability for macromolecules in

inhospitable fluid environments such as saliva which can be of

critical importance to HNC. At the extreme end of the spectrum,

the entire biological landscape of a subset of tumor clones can be

captured in the form of whole, viable circulating tumor cells (CTCs)

(90). In HNC, a pooled survival analysis of 22 studies eligible for

systematic review found that presence of CTCs was associated with

shorter disease-free survival (DFS, HR 4.62, 95% CI 2.51-8.52) with

a very high overall specificity but low sensitivity. An important

limitation to circulating biomarkers is that their actionability

remains in question at this time in the context of OPSCC. All

existing systemic treatments inclusive of ICIs incur significant

toxicity for limited survival benefit and almost none for lasting

cure. As such, treatment in the recurrent/metastatic setting is

reserved for either imaging identifiable lesions (e.g. radiation

based treatment of oligometastasis, surgical resection of isolated

regional recurrence) or for symptomatic disease (e.g. palliative

intent chemotherapy and/or chemo-ICIs). Since there is limited

evidence that earlier initiation of treatment is either feasible, in the

setting of imaging invisible disease, or beneficial, in the setting of

disseminated disease, the utility of early detection of recurrence/

metastasis for this particular disease site remains unclear,

particularly since it often precedes conventionally detectable

disease by only several weeks to months. As such, utility may be
Frontiers in Oncology 06124
initially limited to early detection of response to primary treatment

that could assist escalation/de-escalation decision making.
Leveraging metabolic imaging for adaptive
risk stratification

Whereas ctDNA, CTCs and exosomes can provide high biologic

resolution and identify a multitude of genomic, transcriptomic, and

proteomic events related to tumorigenesis and evolution prior to

and during treatment delivery, spatial resolution is absent.

Although a signal may be detected, we have no idea where that

signal is coming from (i.e., primary tumor, regional or distant

metastases, etc). In contrast, imaging can provide outstanding

spatial resolution, but significantly lower biological resolution. It

is not the goal of this review to summarize the massive literature on

the subject of biologic imaging of solid tumors, but rather to

highlight some recent advances in imaging which may be

applicable to dynamic or adaptive risk stratification strategies

for OPC.

Starting with extensive work using F-labeled fluoromisonidazole

(F-FMISO) (91), pre-treatment measurements of tumor hypoxia

have long been utilized to ascertain potential radio-sensitivity/

radio-resistance of whole tumors or individual tumor voxels given

the known correlation between tumor hypoxia and radiation

responsiveness. The counterpart of hypoxia, namely vascularity can

be ascertained with fairly high sensitivity and specificity using

dynamic contrast-enhanced MRI (DCE-MRI). DCE-MRI can be

deployed in translationally relevant settings particularly when

utilizing anti-angiogenic agents where imaging parameters may be

altered prior to clinical effect (92). By capturing vascular parameters

throughout the entire treatment field (tumor and adjacent normal

tissue) DCE-MRI has the additional potential to be a real-time

biomarker of normal tissue toxicity driven by shifts in vascularity.

One such application pioneered by our group is the use of DCE-MRI

for early detection of subclinical osteoradionecrosis (ORN) and

identification of patients at high risk for severe ORN (93–95).

Extension of this work using multi-parametric (MRI) (96) has

been used to predict complete response (CR) in patients with OPC

prior to treatment completion in a manner suitable for potential

treatment de-escalation in responders. Although additional work

will be required to optimize multi-parametric and even DCE-MRI

to fully capture biological data from the primary tumor and

associated cervical lymphadenopathy common to OPC,

preliminary findings are promising (97). This is particularly true

since the approach appears to be scalable across institutions as

shown in a comprehensive analysis (98) of the accuracy of diffusion-

weighted imaging (DWI) for predicting locoregional failure of

chemo-radiation in HNC across 9 studies and 421 patients, with

a sensitivity of 82%, specificity of 70% and an area under the sROC

curve of 84%.

While tumor vascularity, cellularity and hypoxia are transient

on a slow scale (days-weeks), tumor metabolism is a continuously

changing biological variable that has extremely high temporal
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resolution (minutes-hours), and when interrogated via metabolic

imaging can be analyzed with an equally high spatial resolution.

Over the last 2 decades, both FDG-PET and hyperpolarized

magnetic resonance imaging (HP-MRI) techniques have been

used to assess the aggressiveness of solid tumors including HNC

and have been explored as tools to predict treatment response in

preclinical models and patients (99–109). Although FDG-PET is

available in clinical settings, prospective clinical trial data suggest

that measurement of mid-therapy glucose uptake does not allow for

adaptive reduction in tumor volumes (110–115). Furthermore,

glucose uptake does not correlate with radiation response and

provides no information on intracellular metabolic fluxes (116–

118). In contrast HP-MRI of labeled pyruvate and lactate provides a

unique opportunity to obtain real-time metabolic information from

within solid tumors. Its ability to detect differential metabolic

activity in tumor tissue has been established (99, 109). Substantial

work from other groups has advanced the development of HP-MRI

into a clinically viable tool for characterization of intrinsic tumor

aggressiveness (prostate) and towards deployment of HP-MRI as a

tool to measure treatment response (e.g., breast cancer) (101, 103,

119–121). HNC sensitivity to genotoxic agents is a function of

multiple discrete biological events, such as activation of pathways

associated with the human papillomavirus (HPV) or mutation of

tumor suppressors such as TP53.Unfortunately, we and others have

shown that individual patient responses are not completely uniform

across patient groups (e.g., HPV-associated vs. HPV-independent,

wildtype vs. mutant TP53), and this may be due in large part to the

heterogenous activation of acquired resistance pathways once

treatment starts (3, 4, 10, 122–127). Therefore, even if genomic

biomarkers such as TP53 and HPV start to be used in treatment-

selection decisions at baseline, tailoring treatment intensity to

individual patients in the face of acquired resistance potentially

based upon changes in metabolic response will still be required for

true precision oncology approaches and personalized

cancer treatment.

In 2014, we were the first to show that kPL measured with

noninvasive HP [1- (13)C]-pyruvate MRI is decreased under

conditions of depleted REDOX following genotoxic stress in

animal models of HNC and other tumors (128). We have

developed a multi-compartment model of intracellular kPL which

increases the fidelity of our measurements (129). In 2020, for the

first time, we measured these metabolic changes in a patient during

treatment. This first-in-human assessment of metabolic response to

treatment serves as a critical proof-of-principle and demonstrates

our technical capability to execute the proposed studies. On the

basis of these robust preliminary data, we propose to test the

potential of metabolic interrogation as a clinical tool that can (1)

predict treatment response and (2) be used to develop treatment

strategies tailored to individual tumor biology. Our innovative

approach is supported by (1) studies that link reducing potential

to genotoxic stress (127, 130–136); (2) clinical and preclinical data

that link lactate to tumor progression and treatment response (137–

139); and (3) studies that confirm the excellent spatiotemporal

resolution of HP [1- (13)C]-pyruvate MRI (128, 140–143).

The biologically rich data from anatomic and metabolic studies

can be enhanced by nearly an order of magnitude when combined
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Utilization of machine learning approaches (144) can generate

meaningful data even from relatively data poor CECT studies to

identify radiomic features which when combined can distinguish

invasive cancer from more benign solid tumors. This approach has

also been deployed (145) to generate combined radiomic risk scores

which can predict disease free and overall survival in the

context of either conventional treatment or in the presence of

immunomodulatory combinatorial strategies.
A path toward clinical translation

Conventional and adaptive risk stratification are not mutually

exclusive. They represent 2 aspects of a combined approach

designed to deliver maximal anti-tumor activity, using the most

appropriate agents, at the lowest possible dose that will achieve a

durable cure. In order to maximize the therapeutic index of both

conventional and targeted strategies the most effective future

algorithms will start with conventional risk stratification that

combines biological data with clinical risk factors. Upon this

baseline approach, treatment algorithms will then incorporate a

complex adaptive risk stratification strategy that combines feasible

aspects of biological interrogation using circulating and imaging

tumor markers (Figure 1). Critically, this second layer of data will be

truly personalized, specific not only to the individual tumor, but

also to the interaction between the individual tumor and the chosen

treatment regimen. Successful implementation of such an approach

will require a rigorous process, outlined by Pepe et al. nearly 2

decades ago (146), whose key ingredients include carefully defining

the target population (carefully selected based on clinically relevant

criteria and relevant disease biology) and the expected outcome for

each individual biomarker (e.g. impact on local recurrence vs

distant metastasis rates), testing in populations large enough to

reduce the number of false negative studies, and a priori definitions

of expected effect size and clinical impact. For solid tumors, which

present challenges to repetitive interrogation with high biological

and spatial resolution (see above), an “n of 1” precision oncology

algorithm is somewhat unlikely using existing approaches and

technologies, however, careful integrated of layered biomarkers

can provide a significant advantage over current clinical

paradigms for OPC. For widespread clinical translation it is

critical to identify circulating markers (high biological resolution)

and imaging modalities (high temporal and spatial resolution)

which can be rapidly deployed and relatively cost-effective.

Finally, the entire platform and associated algorithms must be

readily replicated across institutions and healthcare delivery

systems. Our patients deserve no less.
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