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Editorial on the Research Topic

The application of artificial intelligence in brain-computer interface and

neural system rehabilitation

With the rapid growth of the global population, diseases related to motor dysfunction,

such as stroke and spinal cord injury (SCI), are becoming an increasing challenge to

public health. These diseases may lead to a series of functional declines such as cognitive

impairment and emotional instability in patients, which seriously affects people’s quality

of life, and even endangers people’s life and health, imposing heavy burdens on patients,

families, and society. However, the pathogenesis of motor dysfunction-related diseases

is complex, we currently lack effective and objective clinical diagnosis and intervention

strategies. Artificial intelligence (AI) technology is developing rapidly, furthermore, it is

attracting more attention from researchers and medical staff around the world in the

brain-computer interface (BCI) and the clinical rehabilitation of motor dysfunction.

This Research Topic provides 19 papers on the application of AI techniques in the

diagnosis and intervention of neurological diseases. The aim is to discover new algorithms,

models, systems and applications that will facilitate the intersection of AI and neuroscience

as well as promote the use of artificial intelligence in clinical medicine.

Innovations in classification recognition models and feature extraction methods

improve performance on BCI systems. Li et al. proposes partial maximum correntropy

regression (PMCR), a robust implementation of partial least squares regression (PLSR)

using the maximum correntropy criterion. PMCR achieves better prediction and decoding

performance compared to existing methods in noisy, inter-correlated, and high-dimensional

decoding tasks. It minimizes neurophysiological pattern deterioration and improves

electrocorticography decoding robustness for BCIs. Gao D-R. et al. introduces a novel

unsupervised domain adaptation (UDA) approach. Effective data augmentation techniques

are also explored. Experimental results demonstrate the superiority of the proposed method

over state-of-the-art UDA methods in accuracy and MF1-Score. Gao D. et al. proposes a

log-Mel spectrogram and convolution recurrent neural network (CRNN) model for fatigue

detection using electroencephalogram (EEG) signals. Experimental results demonstrate
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accurate and stable detection performance, outperforming existing

methods. This approach has potential for enhancing driver

safety and accident prevention. Du et al. presents a single-trial

P300 classification algorithm based on multi-person data fusion

convolutional neural networks (CNN) to improve the efficiency

and accuracy of P300 EEG signal classification. The algorithm

outperforms single-person CNN classification and achieves higher

accuracy with smaller models and fewer parameters. Zhang et al.

focuses on the recognition of motor imagery (MI) EEG signals

for the right upper limb and proposes a multi-branch fusion

convolutional neural network (MF-CNN) that combines raw EEG

signals and two-dimensional time-frequency maps. Compared

to single CNN branch algorithms, MF-CNN shows improved

decoding accuracy and has potential applications inmotor function

rehabilitation training after stroke. Wang et al. proposes an

approach that combines an improved lasso with relief-f for feature

extraction and selection in EEG signals. The method effectively

extracts wavelet packet entropy features and topological features

of brain function network, leading to high classification accuracy.

Experimental results on two public EEG datasets demonstrate

the effectiveness of this approach, and the average classification

accuracy aboves 90%. This technology has potential applications

in MI-BCI medical, rehabilitation, and other fields. Chen et al.

proposes a layered spindle detection algorithm that combines

the Morlet wavelet, root mean square (RMS) method, and an

improved k-means algorithm to improve the accuracy and speed of

detecting spindles during sleep. The algorithm demonstrates better

performance stability, achieving higher precision, recall, specificity,

accuracy, and F1-score compared to other methods. It provides

an effective tool for automatic spindle detection and improves

detection efficiency. Li et al. proposes a coherence-based graph

convolutional network (C-GCN) method for extracting features

and functional connectivity information from EEG signals in a MI-

BCI. The C-GCN method achieves reliable and stable classification

performance, with a maximum accuracy of 96.85%. The analysis

of EEG data from SCI patients and healthy subjects provides

an effective theoretical basis for the rehabilitation treatment of

SCI patients. Xu et al. proposes a method for analyzing EEG

signals during sleep stages using phase-locked value (PLV) to

construct a functional connection network and investigates brain

interaction. The α frequency band (8–13Hz) achieves the best

classification effect with an accuracy of 92.59%. The proposed

algorithm enhances sleep staging performance and promotes the

development of EEG sleep staging systems. Tang et al. presents

a modified sequential backward floating search (SBFS) approach

for channel selection in MI-BCIs. The proposed method improves

the time complexity of SBFS by selecting symmetrical channel

pairs based on the EEG channel map. Experimental results on

four BCI datasets demonstrate that the SBFS method achieves

higher classification accuracy compared to using all channels or

conventional MI channels, outperforming state-of-the-art selection

methods. Du et al. proposes a dual attentive fusion model (DAFM)

for EEG-based BCI classification. Experimental results on four

datasets demonstrate that the proposed method outperforms state-

of-the-art approaches, highlighting the effectiveness of the DAFM

in enhancing feature expression. Yang et al. explores effective EEG

features for recognizing different valence emotions. First-order

difference, second-order difference, high-frequency power, and

high-frequency differential entropy features performe well in

emotion recognition. These findings provide valuable guidance for

EEG-based emotion recognition feature extraction and selection.

Wen et al. proposes future directions for cross-task EEG signal

analysis research, including increasing sample size, exploring

feature extraction and classification simultaneously, subdividing

tasks, and investigating cross-task regression models. Conducting

research in these areas can advance cross-task EEG analysis to a

higher level.

In addition, the Research Topic is innovative in the motion

paradigm of BCIs. Liu et al. proposesmovement intention encoding

paradigm based on sequential finger movement, showing potential

for expanding the instruction set of MI-BCIs. Offline and online

experiments are conducted, demonstrating the feasibility of the

proposed paradigm. Xiao et al. presents a novel v-BCI paradigm

using weak and small stimuli to achieve nine instructions, and

demonstrates higher information transfer rate and feasibility

for widespread use. Huang et al. presents a wireless group-

synchronized neural recording system for real-time multi-subject

BCI analysis, achieves high signal correlation, low noise, and high

information transfer rate. Bai et al. presents a hybrid BCI system

combining P300 and steady-state visually evoked potential (SSVEP)

for improved spelling accuracy and speed. The implemented BCI

achieves 94.29% accuracy and 28.64 bit/min information transfer

rate (ITR) in online tests. Offline calibration tests demonstrate an

accuracy of 96.86%.

Moreover, ther e are studies to find physiological phenomena

in patients EEG. Zhu et al. explores effects of repetitive transcranial

magnetic stimulation (rTMS) on functional connectivity in chronic

insomnia disorder (CID) patients. Findings indicate potential

biomarkers for predicting clinical outcomes and suggest rTMS can

improve symptoms and optimize treatment. Promising evidence

for future clinical trials.

Finally, this Research Topic also includes a human-computer

interaction discourse paper. Zhao et al. suggest combining

cognitive psychology with AI to develop computers capable of

recognizing emotions, understanding human feelings, achieving

dialogue and empathy. Three examples highlight potential and

importance of AI in understanding human mental states:face

attraction, affective computing, and music emotion.

In summary, there are large varieties among the included

studies in this Research Topic. This Research Topic emphasizes the

importance of AI system combined with cognitive psychology to

the development of AI, and introduces potential and application

value of AI in understanding and identifying human psychological

state. These research results provide useful reference and

guidance for the development of BCI technology, sleep problem

diagnosis and management, emotion recognition, motor function

rehabilitation and other fields.
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Most of the current development of artificial intelligence is based on

brain cognition, however, this replication of biology cannot simulate the

subjective emotional and mental state changes of human beings. Due to the

imperfections of existing artificial intelligence, this manuscript summarizes

and clarifies that artificial intelligence system combined with cognitive

psychology is the research direction of artificial intelligence. It aims to

promote the development of artificial intelligence and give computers

human advanced cognitive abilities, so that computers can recognize

emotions, understand human feelings, and eventually achieve dialog and

empathy with humans and other artificial intelligence. This paper emphasizes

the development potential and importance of artificial intelligence to

understand, possess and discriminate human mental states, and argues its

application value with three typical application examples of human–computer

interaction: face attraction, affective computing, and music emotion, which is

conducive to the further and higher level of artificial intelligence research.

KEYWORDS

cognitive psychology, artificial intelligence, cognitive theory, behavioral science,
human–computer interaction

Introduction

At present, in the development of artificial intelligence (AI), the scientific
community is mostly based on brain cognition research (Nadji-Tehrani and Eslami,
2020), which is to reproduce the real physiological activities of our human brain
through computer software. This replication of the biology of the human brain cannot
well simulate the subjective psychological changes (Zador, 2019). For example, in
terms of memory, human memory forgetting is non-active, and the more we want to
forget the more memorable it becomes, while machine forgetting is an active deletion,
which deviates from our psychological expectations. In the process of promoting the
progress of artificial intelligence, psychology and its derived philosophy of mind play
an important role directly or indirectly, can be considered as one of the fundamental
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supporting theories of AI. For example: The current
reinforcement learning theory in AI is inspired by the
behaviorist theory in psychology, i.e., how an organism
gradually develops expectations of stimuli in response to
rewarding or punishing stimuli given by the environment,
resulting in habitual behavior that yields maximum benefit.
The current challenges faced by the artificial intelligence
community – the emotional response of artificial intelligence
machines, decision making in ambiguous states also need
to rely on breakthroughs in the corresponding fields of
psychology. Psychology and its derived philosophy of mind
can be considered as one of the fundamental support theories
for artificial intelligence (Miller, 2019). Cognitive psychology
is mainly a psychological science that studies the advanced
mental processes of human cognition, including the degree
of thinking, deciding, reasoning, motivation and emotion.
The most important feature that distinguishes humans from
machines is that humans process external input by feeding
back different attitudes toward things through our already
internalized knowledge units about the external world,
stimulating different subjective emotional orientations such as
satisfaction, dissatisfaction, love, dislike and so on. These labeled
emotional traits are generated by human cognitive psychology.
By measuring subjective emotional changes, the internal
knowledge structure is updated and the artificial intelligence
machine is guided to re-learn, so that human attitudes,
preferences and other subjective emotional experiences are
given in AI (Kriegeskorte and Douglas, 2018; Pradhan et al.,
2020).

Research on artificial intelligence is still in the
developmental stage in terms of simulating human memory,
attention, perception, knowledge representation, emotions,
intentions, desires, and other aspects (Shi and Li, 2018). As
the existing AI is not perfect, the AI system combined with
cognitive psychology is the research direction of AI: Promote
the development of artificial intelligence, endow the computer
with the ability to simulate the advanced cognition of human
beings, and carry out learning and thinking, so that computers
can recognize emotions, understand human feelings, and finally
achieve dialog and empathy with humans and other AI.

In terms of existing research results and methods,
artificial intelligence combines new theories and methods
such as psychology, brain science and computer science
to conduct artificial intelligence machine simulation on
people’s psychological activities, reproduce people’s psychology,
integrate and promote each other, and jointly create more
universal and autonomous artificial intelligence, which can
better realize human–computer interaction (Yang et al., 2018)
and further improve the level of social intelligence. At the
same time, with the development of psychology, the scope of
research and the choice of research objects are more extensive
and universal, making artificial intelligence products have the
conditions for rapid penetration into the field of psychology,

resulting in research products such as facial expression-based
emotion recognition system, public opinion analysis based on
big data analysis technology, intelligent medical image grading
or diagnosis, suicide early warning system and intelligent
surveillance management system, which in turn promotes the
development of psychology and shortens the research cycle of
psychology (Branch, 2019).

The review of artificial intelligence based on cognitive
psychology at this stage is not comprehensive enough.
This manuscript does the following: (a) introduce the
current situation and progress of artificial intelligence research
on cognitive psychology in recent years; (b) analyze the
experimental data on the application examples of cognitive
psychology in artificial intelligence; (c) summarize and outlook
the related development trend.

Research status

Research related to artificial intelligence in cognitive
psychology is trending in recent years. In the mid-1980s, the
term “Kansei Engineeirng” was introduced in the Japanese
science and technology community (Ali et al., 2020). They
interpret sensibility as human psychological characteristics,
study people’s perceptual needs with engineering methods,
and then conduct in-depth research on people’s perceptual
information, and the scope of their research is the human
psychological perceptual activities.

Professor Wang Zhiliang of University of Science and
Technology Beijing proposed the concept of “artificial
psychology” on this basis: The artificial psychological theory is
to use the method of information science to realize the more
comprehensive content of people’s psychological activities. He
broadened the range of psychological characteristics involved
in “Kansei Engineeirng,” including low-level psychological
activities and high-level processes of psychological activities.
It is the reflection of human brain on objective reality,
which makes artificial psychology have a new meaning and
broader content.

Minsky, one of the founders of artificial intelligence,
proposed the theory of “society of mind” in his 1985 monograph
“The Society of Mind” (Auxier, 2006), which attempts to
combine the approaches of developmental psychology, dynamic
psychology and cognitive psychology with the ideas of artificial
intelligence and computational theory. Since then, the research
on endowing the computer with emotional ability and enabling
the computer to understand and express emotions has set off an
upsurge in the computer field.

In 1978, deepmind team put forward the theory of mind
(Rabinowitz et al., 2018). In a broad sense, it refers to the
ability of human beings to understand the psychological state
of themselves and others, including expectations, beliefs and
intentions, and to predict and explain other people’s behaviors
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FIGURE 1

The evolution of artificial intelligence in cognitive psychology.

based on this. In 2017, in the case study of deepmind team,
the research team selected “shape preference” as the entry point
for detecting neural networks. It found that, like human beings,
the network’s perception of shape exceeded its preference for
color and material, which proved that neural networks also have
“shape preference” (Ritter et al., 2017). In 2018, the Deepmind
team open sourced the simulation psychology laboratory
Psychlab, which uses knowledge in cognitive psychology and
other fields to study the behavior of artificial agents in controlled
environments, thereby simulating human behavior (Leibo et al.,
2018).

In 2020, Taylor incorporated cognitive psychology into
the emerging field of explainable artificial intelligence (XAI)
with the aim of improving the interpretability, fairness, and
transparency of machine learning. Figure 1 shows the evolution
of AI in cognitive psychology (Taylor and Taylor, 2021).

Example of cognitive
psychological artificial intelligence
applications

Cognitive psychology has been very instructive for the
development of AI, and current AI design makes extensive
reference to human cognitive models. The process of human
mental activity is simulated in various aspects such as
attention, encoding, and memory. Cognitive psychological
artificial intelligence has been researched in many fields. In this
manuscript, we study the basic contents and latest progress of
psychology and brain science, and systematically analyze and

summarize three typical application scenarios: face attraction,
affective computing, and music emotion. These examples guide
the learning of AI through the higher mental processes of
human cognition, including subjective mental orientations such
as thinking and emotion. Artificial intelligence is trained to
recognize emotions, understand human feelings, and replicate
the human psyche, which in turn accelerates research in
cognitive psychology.

Face attraction

Different aesthetic judgments of human faces are one of
the most common manifestations of human visual psychology,
which is an important source of social emotion generation and
plays a role in human social interaction and communication
(Han et al., 2020). In daily life, most people think that beauty
is a subjective feeling, however, scientists have broken the long-
held belief that beauty lacks objectivity and found a high degree
of consistency in human perception of facial beauty across
race, age, gender, social class, and cultural background. This
observation also suggests that face attractiveness reflects to some
extent general human psychological commonalities.

SCUT-FBP5500, a database for face attractiveness
prediction, was collected and released by the Human–
Computer Interaction Laboratory of South China University
of Technology. The dataset has 5,500 face frontal photos with
different attributes (male/female, age and so on) and different
feature labels including face feature point coordinates, face
value score (1∼5), face value score distribution and so on.
These mental preference features were experimentally used as
training data to form mental state embeddings. Then different
computer models (AlexNet, ResNet-18, ResNeXt-50) were
used for classification, regression and ranking to form a deep
learning-based face attractiveness template (Huang, 2017).
Evaluate the benchmark according to various measurement
indicators, including Pearson correlation coefficient (PC),
maximum absolute error (MAE) and root mean square error
(RMSE) evaluation model. We used the five-fold method to
analyze the performance of the face attractiveness templates
under different computer models, and found that the Pearson
correlation coefficient was above 0.85, the maximum absolute
error was around 0.25, and the root mean square error was
between 0.3 and 0.4 (Liang et al., 2018).

Elham Vahdati proposes and evaluates a face facial
attractiveness prediction method using facial parts as well as a
multi-task learning scheme. First, face attractiveness prediction
is performed using a deep convolutional neural network (CNN)
pre-trained on a massive face dataset to automatically learn
advanced face representations. Next, the deep model is extended
to other facial attribute recognition tasks using a multi-
task learning scheme to learn the best shared features for
three related tasks (such as facial beauty assessment, gender
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recognition, and race recognition). To further improve the
accuracy of the attractiveness computation, specific regions of
the face image (such as left eye, nose, and mouth) as well
as the entire face are fed into a multi-stream CNN (such as
three dual-stream networks). Each dual-stream network uses
partial features of the face and the full face as input. Extensive
experiments were conducted on the SCUT-FBP5500 benchmark
dataset, with a significant improvement in accuracy (Vahdati
and Suen, 2021).

Irina Lebedeva, Fangli Ying learned a large number of
aesthetic preferences shared by many people during the meta-
training process. The model is then used on new individuals
with a small sample of rated images in the meta-testing phase.
These experiments were conducted on a facial beauty dataset
that included faces of different races, genders, and age groups
and were scored by hundreds of volunteers with different social
and cultural backgrounds. The results show that the proposed
method is effective in learning individual beauty preferences
from a limited number of annotated images and outperforms
existing techniques for predicting facial beauty in terms of
quantitative comparisons (Lebedeva et al., 2022).

We summarize the theoretical concepts of artificial
intelligence based on cognitive psychology, and do relevant
research on this basis. Since the database of face attractiveness
needs to be characterized by large samples, diversity and
universality, in 2016, we built a Chinese face database
containing different ethnicities of different genders. In 2017,
considering that the contour structure, geometric features
and texture features of faces change with age, in order to
study the impact of different face features on the evaluation
of face attractiveness under different age groups, we built
a middle-aged and elderly face database. In 2018, we used
migration learning to migrate the face feature point templates
of face recognition to the construction of face attractiveness
face templates, and constructed a geometric feature-based face
attractiveness evaluation model. In 2019, we established a face
database of Chinese males in different eras, and studied the
aesthetic characteristics and trends of Chinese males from the
perspective of era development. An 81-point face feature point
template for face attractiveness analysis was also proposed
through feature vector analysis of face image quantification
and light model. In 2020, a comprehensive facial attractiveness
evaluation system was proposed considering the combined
effects of face structure features, facial structure features, and
skin texture features on face attractiveness scores, and the
experimental results are shown in Table 1, when these three
features are integrated with each other, the Pearson correlation
coefficient reached the highest value of 0.806 (Zhao et al.,
2019a,b,c; Zhao et al., 2020).

Through years of research at the intersection of artificial
intelligence + face attractiveness, it is shown that although it
may be difficult to establish a clear, interpretable and accepted
set of rules to define face attractiveness. However, it is possible

to explore the relationship between ordinary faces and attractive
faces, and the qualitative study of face aesthetic preferences can
be described quantitatively by artificial intelligence. The results
highly fit contemporary aesthetic standards, demonstrating
that it is feasible for computers to simulate advanced human
cognitive abilities to recognize emotions and understand human
feelings, and that the development of artificial intelligence based
on cognitive psychology has potential and significance.

Affective computing

Emotion is a psychological state of positive or negative
attitude toward external things and objective reality, and can
be defined as a group of psychological phenomena expressed in
the form of emotions, feelings or passions. Emotions not only
refer to human emotions, but also refer to all human sensory,
physical, psychological and spiritual feelings. Damasio found
in his research that due to the defect of the channel between
the cerebral cortex (Cortex: control of logical reasoning) and
the limbic system (Limbic System: control of emotion), his
“patients” despite having normal or even supernormal rational
thinking and logical reasoning. However, their decision-making
ability has encountered serious obstacles (Bechara et al., 2000),
proving that human intelligence is not only manifested in
normal rational thinking and logical reasoning abilities, but also
in rich emotional abilities.

More than 40 years ago, Nobel Laureate Herbert Simon
emphasized in cognitive psychology that problem solving
should incorporate the influence of emotions (Simon, 1987). As
one of the founders of artificial intelligence, Professor Marvin
Minsky of the Massachusetts Institute of technology of the
United States first proposed the ability to make computers
have emotion. In his monograph the society of mind, he
emphasized that emotion is an indispensable and important
ability for machines to achieve intelligence. The concept of
affective computing was first introduced by Picard (1995), when
she stated that “affective computing is computing that can
measure and analyze and influence emotions in response to
human outward expressions” (Picard, 2003). This opened up
a new field of computer science, with the idea that computers
should have emotions and be able to recognize and express them
as humans do, thus making human–computer interaction more
natural.

As an important means of interpersonal communication,
emotion conveys the information of emotional state and
explains complex psychological activities and behavioral
motives through physiological indicators such as human
language text, intonation volume change, facial expression,
action posture and brain wave.

In, Ekman (1972) an American professor of psychology,
proposed a method for the expression of facial emotions
(Facial Motor Coding System FACS) (Buhari et al., 2020).
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TABLE 1 Performance of face attractiveness prediction with different features.

Predictive performance F S LBP F × S F × LBP S × LBP F × S × LBP

LR 0.502 0.616 0.658 0.683 0.654 0.637 0.722

KNN 0.619 0.672 0.694 0.753 0.771 0.782 0.794

SVM-LIN 0.649 0.738 0.712 0.768 0.732 0.724 0.797

SVM-RBF 0.702 0.713 0.741 0.763 0.754 0.781 0.806

TABLE 2 Emotion formula.

Expression Formula of AU

Happiness AU6 + AU12

Sadness AU1 + AU4 + AU15

Surprise AU1 + AU2 + AU5 + AU26

Fear AU1 + AU2 + AU4 + AU5 +
AU7 + AU20 + AU26

Anger AU4 + AU5 + AU7 + AU23

Disgust AU9 + AU15 + AU16

Contempt AU12 + AU14

By the combination of different coding and motor units,
complex expression changes can be formed on the face. Facial
motion coding system FACS can analyze emotions using deep
region and multi-label learning (DRML) architecture, using
feedforward functions to induce important facial regions, and
able to learn weights to capture structural information of
the face. The resulting network is end-to-end trainable and
converges faster than alternative models with better learning
of AU relationships (Zhao et al., 2016). The corresponding
emotion computation formula can be derived based on the facial
motion encoding, as Table 2 shown.

In the process of human information interaction, speech
is the most common way for people to communicate. As
the most basic audiovisual signal, speech cannot only identify
different vocalists, but also effectively distinguish different
emotional states. International research on emotional speech
focuses on the analysis of acoustic features of emotions, such as
rhythm, sound source, resonance peaks and spectrum and so on
(Albanie et al., 2018). In recent years, deep learning has been
widely studied and has many applications in speech emotion
computation. Dongdong Li proposed a bidirectional long short-
term memory network with directed self-attention (BLSTM-
DSA). Long Short Term Memory (LSTM) neural networks can
learn long-term dependencies from learned local features. In
addition, Bi-directional Long Short-Term Memory(Bi-LSTM)
can make the structure more robust through the direction
mechanism, and the direction analysis can better identify the
hidden emotions in sentences. Also, the autocorrelation of
speech frames can be used to deal with the problem of missing
information, thus introducing a self-attention mechanism in
Speech Emotion Recognition (SER). When evaluated on the
Interactive Emotional Binary Motion Capture (IEMOCAP)

database and the Berlin Emotional Speech Database (EMO-DB),
BLSTM-DSA achieves a recognition rate of over 70% for each
algorithm on the speech emotion recognition task (Li et al.,
2021).

Human posture often carries emotional information during
interaction. Researchers have combined human posture with
artificial intelligence to quantitatively assess the external
representation of a person’s mental state in the face of different
situations through a series of movement and body information
capture devices. For example, the intelligent seat is applied to the
driver’s seat of the vehicle to dynamically monitor the emotional
state of the driver and give timely warnings. Some scientists in
Italy also conduct automatic emotional analysis on office staff
through a series of posture analysis to design a more comfortable
office environment.

Electroencephalographic(EEG) is a graph obtained by
amplifying and recording the spontaneous biological potential
of the brain from the scalp through precise electronic
instruments. It has been widely used in the field of emotion
recognition. The DEAP dataset used to study human emotional
states (Luo et al., 2020), recording EEG and peripheral
physiological signals from 32 participants watching 40 one-
minute long music video clips. Participants rated each video
according to arousal, potency, like/dislike, dominance, and
familiarity. Correlations between EEG signal frequencies and
participants’ ratings were investigated by emotional label
retrieval, and decision fusion was performed on classification
results from different modalities. The experiments obtained an
average recognition rate of up to 84.2% and up to 98% by
identifying a single emotional state, while for two, three and four
emotions, the average recognition rate was up to 90.2, 84.2, and
80.9%, respectively. Table 3 shows the validated classification
accuracy of the DEAP dataset based on different recognition
models (Khateeb et al., 2021).

Our research group has also carried out relevant research
on multimodal affective computing, and has a patent for
automatic diagnosis of depression based on speech and facial
expression: By combining facial gesture features, we propose a
new double dictionary idea with gesture robustness. In 2016,
feature extraction and evaluation of depressed speech were
performed, and in the following year, we proposed to use
the change of expression of depressed patients as one of the
evaluation indicators to determine whether they suffer from
depression as well. Figures 2 and 3 shows the data.
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TABLE 3 Classification accuracy of deap dataset based on different
recognition models.

Stimulus Classifier Emotions Subjects Accuracy

Video GELM 4 32 69.67

Audio MLP 4 30 78.11

Video Nearest
neighbour

4 32 73.62

Video Domain-
adaptation

5 14 39.05

Video SVM Valence-
dominance

10 63.04

Video K-NN 2 30 69.50

FIGURE 2

Speech emotion recognition rate.

FIGURE 3

Face facial emotion recognition rate.

In 2018, a new automatic depression assistant
discrimination algorithm integrating speech and facial
expression was proposed. Firstly, the signal enhancement was
performed for depressed speech; the fundamental frequency

TABLE 4 The integration of voice and facial expression
recognition rate.

Speech
recognition
results (%)

Facial expression
recognition results

(%)

After fusion
recognition
results (%)

Before the
speech signal
enhancement

62.4 85.5 75.75

Enhanced
speech signal

78.8 85.5 82.29

and the first three resonance peaks features were extracted by
the inverse spectral method, and the energy, short-time average
amplitude and Mel-Frequency Ceptral Coefficients(MFCC)
features were extracted; the speech recognition model and the
facial expression recognition model were established to assist in
judging whether a person has depression; finally, the Adaboost
algorithm based on back propagation(BP) neural network was
proposed and validated in a practical situation for an automatic
depression-assisted detection system. As Table 4 shown, the
recognition rate of the depression detection algorithm based
on fused speech and facial emotion reached 81.14%. The
development of artificial intelligence provides a more objective
judgment basis for the diagnosis of depression in psychological
medical health, which has cutting-edge and application value
(Zhao et al., 2019d).

Affective computing is a combination of computational
science with physiology science, psychological science, cognitive
science and other disciplines. Based on the common cognition
and knowledge structure of human on different emotional
expressions, it studies the emotions in the process of human-
human interaction and human–computer interaction, and
guides the design of artificial intelligence with emotion
recognition and feedback functions, understands human
emotional intentions and makes appropriate responses to
achieve human–computer emotional interaction.

Music emotion

Extensive research on musical emotions suggests that
music can trigger emotional activity in listeners. Scientists
believe that when a person is in a beautiful and pleasant
musical environment, the body secretes an active substance
that is beneficial to health and helps eliminate psychological
factors that cause tension, anxiety, depression and other
adverse psychological states (Rahman et al., 2021). People’s
preference for different kinds of music is not without rules, after
psychological cognition and data test, there is a precise music
signal α value can measure the ear-pleasant degree. The closer
the music signal α is to the value 1, the better it sounds. The
value of α also can be obtained by artificial intelligence (Banerjee
et al., 2016). This shows that people’s psychological state toward
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FIGURE 4

The proposed affective brain-computer music interface
(aBCMI). The system consists of five key elements: (A). The user
of the system (B). The user’s physiological signal acquisition
module (including the electroencephalogram (EEG),
electrocardiogram (ECG) and respiration rate) (C). An emotional
state detection system for identifying a current emotional state
that a user is experiencing (D). A case-based reasoning system
that determines how a user moves from his current emotional
state to a new target emotional state (E). The music generator is
used to play music for the user. The case-based reasoning
system identifies the most appropriate emotional trajectory and
moves them to the target emotional state.

music can be judged by machines, and further research can be
based on this law to simulate good-sounding music in line with
public aesthetics and realize the interaction between emotions
and machines.

As Figure 4, a team of researchers from the University of
Reading and the University of Plymouth in the UK developed
and evaluated an affective brain-computer music interface
(aBCMI) for detecting a user’s current emotional state and
attempting to modulate it by playing music generated by a music
composition system based on specific emotional goals.

The affective state detection method achieved statistically
significant online single-trial classification accuracy in
classifying user potency in seven-eighths of participants
and in classifying user arousal in three-eighths of participants.
The mean accuracy for affective state detection was 53.96%
(chemotaxis) and 53.80% (arousal) (Daly et al., 2016). The
experimental data also demonstrate that the aBCMI system is
able to detect the emotional states of most of the participants
and generate music based on their emotional states to
achieve “happy” and “calm” mental states. By visualizing
abstract mental states, extracting features from changes in
emotional states, and quantifying different emotions in different
musical environments, the aBCMI system can effectively
characterize and provide feedback to regulate current emotional
states, realizing the combination of psychology and artificial
intelligence.

Musical emotion regulation aims to record physiological
indicators from users with a signal acquisition component
in order to capture the cognitive and physiological processes
associated with their current affective state. Features are
extracted from the physiological signals that most likely
correspond to changes in the user’s affective state. Then the case-
based reasoning system is used to determine the best method to
transfer them to the target emotional state, so as to move the
user to the target emotional state.

Dapeng Li and Xiaoguang Liu have also combined
incremental music teaching methods to assist therapy. The
combination of contextual teaching and artificial intelligence
attention theory makes the assisted treatment system more
targeted. The design of treatment content more fully takes
into account the patient’s actual situation. When designing the
music teaching-assisted treatment context, the physician will
fully consider various factors of the patient, from the perspective
of mobilizing the patient’s interest in the music learning work, to
achieve the full activity of brain neurons and more fully access
the pathological information around the lesion to promote
autoimmunity and subsequent treatment (Li and Liu, 2022).

The evocation of musical emotions is based on functional
connections between sensory, emotional and cognitive areas of
the brain, including subcortical reward networks common to
humans and other animals, such as the nucleus accumbens,
amygdala and dopaminergic systems, as well as the evolutionary
end of the cerebral cortex with complex cognitive functions.
Musical emotions regulate the activity of almost all limbic
and paralimbic structures of the brain. Music can induce
different emotions, and we can also use music emotions to guide
the development of artificial intelligence. Further research is
expected in such fields as music generation, education, medical
treatment and so on.

Summary and outlook

Through systematic analysis and application examples,
this manuscript points out that the artificial intelligence
system combined with cognitive psychology is the development
direction of artificial intelligence: to promote the development
of artificial intelligence, to give computers the ability to simulate
human’s advanced cognition, and to learn and think, so that
computers can recognize emotions and understand human
feelings, and finally realize dialog and empathy with human
beings and other artificial intelligence. Artificial intelligence
with human psychological cognition cannot only simulate the
rational thinking of “brain,” but also reproduce the perceptual
thinking of “heart,” and can realize the emotional interaction
between people and machines, machines and machines, similar
to human communication.

Nowadays, the theory of artificial intelligence based
on cognitive psychology also has imperfections: due to
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the differences in race, region and growth environment,
the evaluation criteria for each subject are not completely
consistent, and the random sampling difference is
even greater Moreover, mental activities are generally
ambiguous and chaotic.

The future interdisciplinary combination of AI and
psychology will focus on the following aspects: big data
medical, human–computer interaction, brain-computer
interface, general artificial intelligence and so on. Through
the combination of cognitive science in psychology and AI,
breakthroughs in many aspects will be achieved based on
multimodal data and extraction of high-dimensional data. The
two accomplish each other, complementing each other and
developing together.

This manuscript provides a research direction for the
development of artificial intelligence to simulate machines with
human emotions and to realize human–computer interaction. It
has the characteristics of cutting-edge science, which is not only
of great theoretical significance, but also has good development
potential and application prospects. It is hoped that it can
provide research basis for follow-up researchers.
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Recent studies have shown that the recognition and monitoring of different

valence emotions can effectively avoid the occurrence of human errors

due to the decline in cognitive ability. The quality of features directly

affects emotion recognition results, so this manuscript explores the effective

electroencephalography (EEG) features for the recognition of different

valence emotions. First, 110 EEG features were extracted from the time

domain, frequency domain, time-frequency domain, spatial domain, and brain

network, including all the current mainly used features. Then, the classification

performance, computing time, and important electrodes of each feature were

systematically compared and analyzed on the self-built dataset involving 40

subjects and the public dataset DEAP. The experimental results show that the

first-order difference, second-order difference, high-frequency power, and

high-frequency differential entropy features perform better in the recognition

of different valence emotions. Also, the time-domain features, especially the

first-order difference features and second-order difference features, have

less computing time, so they are suitable for real-time emotion recognition

applications. Besides, the features extracted from the frontal, temporal, and

occipital lobes are more effective than others for the recognition of different

valence emotions. Especially, when the number of electrodes is reduced by

3/4, the classification accuracy of using features from 16 electrodes located in

these brain regions is 91.8%, which is only about 2% lower than that of using all

electrodes. The study results can provide an important reference for feature

extraction and selection in emotion recognition based on EEG.
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Introduction

Emotions play an important role in our daily life because
they can affect people’s work efficiency, decision-making,
memory et al. Compared with neutral emotions, positive and
negative emotions tend to decline our cognitive ability (Qian
et al., 2015; Wang and Liu, 2020). If people’s cognitive abilities
for special jobs are affected by their emotions, there may be
serious consequences. Therefore, if the emotions that lead to
cognitive decline can be effectively identified and timely warned,
most of the adverse consequences caused by cognitive decline
can be avoided.

Almost everyone experienced the change from a positive
emotional state to a negative emotional state at some point.
According to the continuous emotion model proposed by Lang
et al. (2001), the change of positive emotion and negative
emotion indicates the variations of emotion valence. Previous
studies have pointed out that different valence emotions
have different effects on cognition performance. For example,
although an extremely negative emotional state may reduce
cognitive abilities significantly, a moderately negative emotional
state can enhance alertness and responsiveness (Chen et al.,
2013). Besides, people’s memory and judgment abilities tend
to be weakened in negative valence emotional states, which
makes it easier to make irrational decisions. Compared with
negative emotional states, most positive emotional states are
usually harmless and may even improve people’s cognitive
abilities. Blair et al. (2007) investigated the interaction between
positive, neutral, and negative valence emotions and goal-
directed processing tasks. They found that positive and negative
valence stimuli have a greater impact on goal-directed tasks than
neutral valence stimuli. Based on event-related potentials (ERP)
and functional magnetic resonance imaging (fMRI) research,
Li et al. (2006) found that negative valence emotion has a
greater impact on spatial working memory than on verbal
working memory. Yuan et al. (2007) explored people’s sensitivity
to valence differences in emotional stimuli by using different
valence pictures with no significant difference in arousal as
stimulus materials, and they found that people are more
sensitive to negative valence pictures. Meng et al. explored
the influence of attention on human sensitivity to valence
differences in emotional stimuli. They found that the ERP
amplitude of extremely negative valence pictures was greater
than that of moderately negative and neutral pictures within
150–250, 250–350, and 350–450 ms after the pictures were
presented (Meng et al., 2009). As described above, people have
different sensitivities to emotions with different valence, and
different valence emotions have different effects on people’s
cognitive performance. However, it is not enough to claim that
emotions with different valence have an impact on people’s
cognition. When people are in these emotional states, if early
warning can be given to ask them to stop working, serious

consequences may be avoided. The premise of early warning is
to accurately classify different valence emotions.

Electroencephalography has the advantages of non-
invasiveness, high time resolution, and good portability, and it
has been widely used in emotion recognition research (Hu et al.,
2019). Feature extraction is a key step in emotion recognition
based on EEG. The quality of features will directly affect the
accuracy of emotion recognition (Wang and Wang, 2021). EEG
features in emotion recognition can be mainly divided into time
domain (statistical features), frequency domain, time-frequency
domain, spatial asymmetry, and brain network features (Li
et al., 2016; Gonuguntla et al., 2020). Time-domain features
mainly include first-order difference, second-order difference,
fractal dimension, sample entropy, approximate entropy,
and standard deviation (Lan et al., 2016). Frequency-domain
features mainly include power spectral density and power
(An et al., 2021). Time-frequency domain features are mainly
features extracted based on the discrete Fourier transform or
Hilbert Huang transform (Khare and Bajaj, 2021). Differential
entropy is the most used time-frequency feature, which has
achieved the highest classification accuracy in multiple studies
(Nie et al., 2011; Zheng et al., 2019). Spatial asymmetry feature
refers to the difference or ratio of features from left and right
hemisphere electrodes (Zheng and Lu, 2015). Additionally,
the brain network feature including the connection between
electrodes is a new feature in recent years, which is increasingly
used in emotion recognition and has achieved good results.
Li et al. (2019) proposed to fuse local features extracted from
a single electrode with brain network features containing
global information, which improved the performance of
emotion classification. Our previous study also compared the
performance of EEG network features of different frequency
bands, and the results showed that the high gamma band brain
network features were more closely related to emotion (Yang
et al., 2020). Wu et al. (2022) pointed out that the brain network
features representing the relationship between different
electrodes have better classification performance than the
differential entropy extracted from a single electrode. Though
there are currently many types of features used in emotion
recognition, there is no agreement upon which features are most
appropriate. Since the computational complexity of multiple
feature extraction is high, and the extraction of some features
requires rich experience and professional knowledge, only a
few studies compared the performance of different features.
For example, Jenke et al. (2014) compared multiple features
on a self-recorded dataset of 16 subjects and five emotions. Li
et al. explored two set of features for cross-subject emotion
recognition, and the Hjorth parameter of mobility in the
beta rhythm achieved the best mean recognition. Moreover,
using multiple electrodes will need more preparation time and
lead to unfriendly user experience. Many studies have been
conducted on the electrode selection in emotion recognition.
For instance, Zheng and Lu (2015) explored the four most
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important electrodes on the SEED dataset, and they found FT7,
FT8, T7, and T8 are most important electrodes. Li et al. (2018)
explored the most important 10, 14, and 18 electrodes on the
DEAP dataset, and most of these electrodes are distributed in
the frontal brain region.

Previous studies have investigated feature extraction and
selection in emotion recognition, but a major limitation of
these studies is that they did not explore the effective features
for the recognition of different valence emotions. Meanwhile,
most studies rely on a different and usually small dataset.
This work aims to systematically explore effective features for
the recognition of different valence emotions. According to
previous studies, arousal has a nonspecific effect on valence
(Johnson, 1995; Carretié et al., 1997). Firstly, this study selected
five types of valence pictures from the Chinese Affective
Picture System (CAPS) (Bai et al., 2005), including extremely
negative, moderately negative, neutral, moderately positive, and
extremely positive, which have no significant difference in
arousal. Then, 110 features commonly used in other papers
are extracted from five feature domains of time domain,
frequency domain, time-frequency domain, spatial asymmetry,
and brain network. Finally, the classification performance,
calculation time, and important few electrodes of the features
are systematically compared and analyzed on the self-built big
dataset of 40 subjects and the public dataset DEAP (Koelstra,
2012).

Materials and methods

Participants

This experiment includes 40 healthy subjects (20 women)
of native college students, aged 18–28 years old (average age
22 years old), one of whom is double handed, and the rest
are right-handed. All subjects had no mental illness, did not
take drugs that affected their mental state, and all subjects
with normal mental state tested by Baker depression scale
(Jackson-Koku, 2016) and Baker anxiety scale (Wilson et al.,
1999), and all subjects’ with normal vision or corrected normal
vision. Before the experiment, each subject was informed of
the content and the purpose of the experiment and signed the
informed consent. After the experiment, subjects received a
certain amount experimental fee.

Experiment procedure

Emotion pictures are divided into five categories according
to valence: extremely negative (EN), moderately negative (MN),
neutral, moderately positive (MP), and extremely positive (EP),
and each category contains 30 pictures. The mean value and
standard deviation of valence degrees of the different categories

pictures are EN = 1.87/0.35, MN = 3.56/0.54, neutral = 5.6/0.49,
MP = 6.28/0.17, and EP = 6.81/0.16, and the arousal degrees
are EN = 5.54/0.16, MN = 5.5/0.2, neutral = 5.54/0.28,
MP = 5.49/0.19, and EP = 5.57/0.18. There are significant
differences between the valence degrees of the five categories
of pictures (P < 0.01), and there was no significant difference
(P > 0.05) between the arousal degrees.

The numbers in the digital picture are 2, 3, 4, 5, 6, 7, 8,
and the number of numbers varies from 3 to 6. The content of
the digital picture is 3∗3, and numbers or “∗” appear randomly
at 9 positions. The left and right numbers are not adjacent in
the picture, e.g., the left and right numbers will not be “2”
and “3.” There are two types of digital pictures: consistent and
inconsistent. The consistent situation is that there are more
numbers with large values or fewer numbers with small values,
while the inconsistent situation is that there are more numbers
with small values or fewer numbers with large values.

Each trial begins with a white “+” for 2–4 s in the center
of the screen with black background, then presents an emotion
picture for 2000 ms, then presents a digital picture for 1000 ms,
and then presents the valence and arousal rating pictures.
When the subjects see the digital picture, they need to press
the key quickly and accurately to determine which side of the
numbers on the left and right is larger. If the number on the
left is larger, the subjects should press the alphabet “Q” on the
keyboard with the left index finger; if the number on the right
is larger, they should press the number “0” on the keyboard
with the right index finger, and the key response should be
made within 1000 ms. The digital picture will disappear once
the subjects press the keyboard, and the valence rating picture
will be represented. If the key response is not made after
1000 ms, the valence rating picture will also be represented.
Valence and arousal ratings are achieved by pressing keys 1–
9 on the keyboard (Morris, 1995). The subjects take a 2-min
break between blocks to eliminate the emotional impact of the
previous block on the next block and alleviate the subjects’
mental fatigue. Five blocks are presented randomly, and 30 trials
in each block are presented in random order. The experimental
paradigm was conducted by Tobii Pro Lab software, and the
subjects’ key response values and time were recorded.

Data acquisition and preprocessing

This experiment was carried out in a professional
laboratory with electromagnetic shielding condition and
suitable temperature and light. In the experiment, the subjects
sat on a chair with adjustable height facing the screen, and
their eyes were about 65 cm away from the screen. EEG
signals were recoded with 64 channel G.HIamp system. During
the experiment, the impedance of each electrode was kept
below 10 K�, the electrodes were located according to the
international 10–20 standard system. Electrode AFz was used as
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the ground electrode, electrode Fz and right earlobe were used
as references, and the number of effective electrodes was 62. The
EEG data sampling rate is 600 Hz. Online 0.1–100 Hz band-pass
filtering and 48–52 Hz notch filtering are conducted during
EEG data acquisition. Meanwhile, eye gaze data is collected
by the Tobii Nano device with a sampling rate of 60 Hz. All
these multi-modal data compose the Emotion-Stroop dataset
(ESD). This paper only uses EEG data. In the pre-processing
procedure, the collected original EEG signals are segmented
first, and the data of 500 ms before picture presentation and
the data of 2000 ms during picture presentation are extracted.
The subsequent preprocessing mainly includes 0.1–80 Hz
filtering and performing the blind-source analysis algorithm
Fast-ICA (HyvRinen, 1999) to remove electrooculography
(EOG) artifacts, average reference, and baseline correction.

Feature extraction

This manuscript summarizes the commonly used EEG
features and extraction methods in recent years. Jenke et al.
have extensively studied feature extraction (Jenke et al., 2014),
and our study supplements some recently developed important
features on their basis. The features are roughly divided
into five feature domains: time domain, frequency domain,
time-frequency domain, spatial asymmetry, and brain network
features. In this paper, the total number of EEG electrodes
is denoted as ch, the number of time points per electrode is
denoted as N, and the EEG data of a certain electrode at a certain
time is denoted as x (n). The specific extraction methods of each
feature are as follows.

Time-domain features
The time-domain features extracted in this paper include

standard deviation, first-order difference, second-order
difference, normalized first-order difference, normalized
second-order difference, fractal dimension, sample
entropy, and approximate entropy. The specific calculation
methods are as follows.

• Standard deviation (Std)

δch =

√√√√√ 1
N

N∑
n=1

(
x(n)−

1
N

N∑
n=1

x(n)

)2

(1)

• First-order difference (Fir-dif)

first_diffch =
1

N − 1

N−1∑
n=1

|x(n+ 1)− x(n)| (2)

• Normalized first-order difference (N-fir-dif)

Nor_first_diffch =
first_diffch

δch
(3)

• Second-order difference (Sec-dif)

sec ond_diffch =
1

N − 2

N−2∑
n=1

|x(n+ 2)− x(n)| (4)

• Normalized second-order difference (N-sec-dif)

Nor_ sec ond_diffch =
sec ond_diffch

δch
(5)

• Fractal Dimension (FD)

Fractal dimension (FD) is a non-linear feature used to
measure the complexity of EEG signals. The commonly used
calculation methods of fractal dimension are box dimension
fractal and Higuchi fractal. In this manuscript, the Higuchi
fractal is used to calculate the fractal dimension (Lan et al.,
2016), and the specific calculation process is as follows:

Let the initial sequential EEG signal be X(1), X(2), . . . ,X(N).
The EEG signal sequence is sampled at every k points as follows:

Xm
k : X(m), X(m+ k), ..., X(m+ [N−m

k ] · k)
m = 1, 2, 3, ..., k

(6)

where m is the initial time of sampling, and k is the time
interval of sampling.

Define m sampling points as Lk(m):

Lk(m) =
1
k
·

(∑⌊ N−m
k
⌋

i=1
∣∣X (m+ ik

)
− X (m+ (i− 1)) k

∣∣) (N − 1)⌊N−m
k
⌋

k

 (7)

Denote the mean value of all the sampling points in Lk(m)

as L(k). FD is inversely proportional to L(k) as follows:

FD = − lim
k→∞

log
〈
L(k)

〉
log k

(8)

• Approximate Entropy (ApEn)

Approximate entropy (ApEn) reflects the possibility of new
information in time series. The larger the approximate entropy,
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the more complex the time series. Denote an integer as m and
a real number as r. Then, an m-dimensional vector x(1),x(2),
. . . x(N−m+ 1) can be constructed from the original EEG
signal, where x(i) = [X(1), X(2), ... X(i+M− 1))] counts the
number of vectors that meet the following conditions:

Cm
i (r) = (number of X(j) such that d[X(i), X(j)] ≤ r)/

(N −m+ 1) (9)

where d[X(i), X(j)] = max
∣∣X(i)− X(j)

∣∣,
8m(r) = (N −m+1)−1

N−m+1∑
i=1

log(Cm
i (r)) (10)

Then, the approximate entropy ApEn is defined as:

ApEn = 8m(r)−8m+1(r) (11)

• Sample Entropy (SamEn)

Sample entropy (SamEn) is improved based on approximate
entropy by eliminating the problem of approximate entropy self-
matching, which is equivalent to optimizing the approximate
entropy. In the calculation d[X(i), X(j)] = max

∣∣X(i)− X(j)
∣∣,

i 6= j

Cm(r) = (N −m+1)−1
N−m+1∑

i=1

(Cm
i (r)) (12)

Then, SamEn is defined as:

SampEn(m, r) = lim
N→∞
[− ln

Cm+1(r)
Cm(r)

] (13)

when n is a finite number. SamEn can be further expressed
as:

SampEn(m, r, N) = ln Cm(r)− ln Cm+1(r) (14)

Frequency domain features
• Power Spectral Density (PSD)

Power spectral density (PSD) is commonly used to measure
the frequency-domain information features of EEG signals. In
this manuscript, power spectral density uses the p-welch method
to calculate the frequency band power spectral density:

psd =
fu∑
fl

P(f )/(fu− fl) (15)

where P(f ) is the power spectral density at the frequency; fl
is and f u are the lowest and highest frequency of the band of
interest, respectively.

• Power (P)

Band power is based on short-time Fourier transform
(STFT),

STFTx,γ(n, f ) =
∫
+∞

−∞

x (τ) γ∗ (n− τ) e−j2πf τdτ =

∫
+∞

−∞

x (τ) γ∗n,f e−j2πf τ (16)

power =
fu∑
fl

∣∣S (n, f
)∣∣2 (17)

The power in six frequency bands is calculated for ESD
data, including delta (1–4 Hz), theta (4–8 Hz), alpha (8–
13 Hz), beta (13–30 Hz), gamma (30–50 Hz), and high
gamma (50–80 Hz). Meanwhile, the power in four frequency
bands is calculated for the DEAP dataset, including theta (4–
8 Hz), alpha (8–13 Hz), beta (13–30 Hz), and gamma (30–
50 Hz).

Time frequency domain features
• Different Entropy (DE)

The differential entropy (DE) feature is the most used
feature at present, and its calculation is based on STFT. It
calculates the differential entropy in six frequency bands of
delta (1–4 Hz), theta (4–8 Hz), alpha (8–13 Hz), beta (13–
30 Hz), gamma (30–50 Hz), and high gamma (50–80 Hz)
of the ESD datasets, and it calculates the differential entropy
in four frequency bands of theta (4–8 Hz), alpha (8–13 Hz),
beta (13–30 Hz), and gamma (30- 50 Hz) of the DEAP
datasets:

DE = log

 fu∑
fl

∣∣STFT
(
n, f

)∣∣2 (18)

Brain network features
The brain network connection matrix takes electrodes

as network nodes to calculate the relationship between the
data between electrodes, and the network can be mainly
divided into a directed network and an undirected network.
Here, only three commonly used undirected networks are
considered for calculation: Pearson correlation (Pea), coherence
(Coh), and phase lock value (PLV). Then, the clustering
coefficient (CC), characteristic path length (CPL), and local
efficiency (Le) are calculated based on the network connection
matrix, and the global efficiency (Ge) is characterized by four
commonly used network attributes (Van Straaten and Stam,
2013).
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• Pearson correlation coefficient (Pea)

pearson =
∑N

i=1(X(i)− X)(Y(i)− Y)√∑N
i=1(X(i)− X)2

√∑N
i=1(Y(i)− Y)2

(19)

where X(i), Y(i) indicating the EEG value of two
electrodes at time i.

• Coherence (Coh)

CXY
(
f
)
=

∣∣PXY
(
f
)∣∣2

PXX
(
f
)

PYY
(
f
) (20)

• Phase lock value (PLV)

PLV=

∣∣∣∣∣ 1
ch

N−1∑
i=0

ei(8x(it)−8y(it))

∣∣∣∣∣ (21)

Where ch is the total number of EEG electrodes, t is the
sampling period, 8x(it) and 8y(it) is the instantaneous phase
of two electrodes x(t) and y(t) at time point i.

The CC describes the tightness and clustering characteristic
of nodes in the brain network; the CPL is used to measure
the connectivity degree of the network, and it represents the
average length of the shortest path between any two nodes
in the network; the Le is used to measure the information
interaction ability in the local network, and the Ge describes the
information transmission efficiency of the whole brain network.
The definitions of the four network properties are given below,
where n represents the number of nodes; 2 represents a node
set; wij indicates the network connection value between nodes
i and j; dij represents the shortest path length between nodes
i and j.

CC =

∑
j,h∈2

(
wijwihwjh

)
∑

j∈2 wij

(∑
j∈2 wij − 1

) 1/3

(22)

CPL =
1
n

∑
i∈2

∑
i∈2,j6=i dij

n− 1
(23)

Le =

∑
j,h∈2,j6=i

(
wijwih[djh (2i)]

−1)∑
j∈2 wij

(∑
j∈2 wij − 1

) 1/3

(24)

Ge =
1
n

∑
i∈2

∑
j∈2,j6=i

(
dij
)

n− 1

−1

(25)

Spatial asymmetry features
Spatial asymmetry features are based on the asymmetry

characteristic of the brain reported in previous studies, mainly

including differential asymmetry (DA) and rational asymmetry
(RA) (Duan et al., 2012). The DA features represent the
subtraction values of the features from the left and right
hemisphere electrodes, and the RA features represent the ratio
of the features from the left and right hemisphere electrodes. DA
and RA are defined as follows:

• Differential Asymmetry (DA)

DA = feal − fear (26)

• Rational Asymmetry (RA)

RA = feal/fear (27)

Where feal and fear represent the features extracted by
the symmetrical position electrodes of the left and right
hemispheres, respectively. The asymmetry features of ESD data
include 27 pairs of electrodes, and the DEAP dataset includes 17
pairs of electrodes.

Feature selection

The purpose of feature selection is to find the key electrodes
for the recognition of different valence emotions and provide a
foundation for using a few electrodes for emotion recognition in
practical applications.

Currently, the commonly used feature selection methods
mainly include Relief (Jia et al., 2013), min redundancy max
relevance (mRMR) (Ding and Peng, 2005), and forward floating
search (Bhadra and Bandyopadhyay, 2021). Among them,
mRMR is the most famous feature selection algorithm and
has been applied in many emotion recognition studies. mRMR
exploits mutual information to characterize the performance of
feature subsets. This study also used the mRMR feature selection
algorithm to explore the key electrodes for emotion recognition.
This study attempted to find the most important 1, 4, 8, and
16 electrodes for the recognition of different valence emotions.
First, the most important 1, 4, 8, and 16 electrodes in each
subject’s classification are determined based on mRMR. Then,
the frequency of each electrode in 40 subjects is counted, the
most selected electrodes are taken as key electrodes, and the
electrodes’ location in the brain regions is also analyzed.

Classification settings

Classification is to match features with emotions to obtain
classification accuracy. Classifiers can be roughly divided into
two categories. The first category is the current popular
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classifiers based on the deep neural network (DNN). These
classifiers are mainly the convolution neural network (CNN)
(Santamaria-Vazquez et al., 2020), recurrent neural network
(RNN) (Lukosevicius and Jaeger, 2009), long and short-term
memory (LSTM) (Peng et al., 2016), and graph revolutionary
neural network (GCNN) (Zhong et al., 2020). In recent
years, most of these DNN classifiers have achieved excellent
classification results, and most of these DNN classifiers have re-
extracted the input features (Chen et al., 2019). However, due
to the “black box” characteristic of DNNs, the significance of re-
extracted features cannot be clearly explained (Zhou et al., 2016).
The other category is the traditional shallow classifiers, such as
support vector machine (SVM) (Chen et al., 2020), k-nearest
neighbor (KNN) (Keller et al., 2012), linear discriminate analysis
(LDA) (Saeedreza et al., 2009), extremely learning machine
(ELM) (Huang et al., 2006), random forest (RF) (Liaw and
Wiener, 2002), naive Bayes (NB) (Rish, 2001), discriminant
analysis classifier (DAC) (Alkan and Günay, 2012), and boosting
(Sun et al., 2007). Usually, the hyper-parameters in the DNN
need to be tuned (He et al., 2019), and this procedure will change
input features to unknown features (Saha and Fels, 2019), which
makes it difficult to objectively compare the performance of
different features. Most of the shallow classifiers do not need
to tune complex parameters. Therefore, this paper used the
six commonly used shallow classifiers (SVM, KNN, RF, NB,
DAC, and boosting) to compare the classification performance
of different features. Meanwhile, LibSVM (Chen et al., 2020)
was used with a linear kernel, and the parameter was set
to “−s 0−t 0.”

Two experiments were conducted on the classification of
the ESD dataset. The first is a two-category experiment that
separates EN valence emotions from other valence emotions.
In this experiment, 30 samples of EN valence emotions of each
subject are regarded as one category, and 120 samples of MN,
MP, EP, and neutral emotions are mixed as another category.
Because it is a mixture of 4 emotions, each subject is sampled
4 times, 5-fold cross-validation is used for classification, and the
average accuracy of 4∗5 times classification is taken as the final
accuracy of each subject. The second experiment is to classify
five types of valence emotions: EN, MN, MP, EP, and neutral.
Five-fold cross-validation is used in the classification, and the
average accuracy five times classification is used as the final
classification accuracy of each subject.

The DEAP dataset contains multimodal data such as EEG,
galvanic skin response and respiratory rate during 32 subjects
watching 40 1-min music videos with different valence and
arousal. The EEG signals are collected from 32 active electrodes
arranged according to the 10–20 international system. Only
EEG signals are used in this study. To determine the effective
features of different valence emotion classification in the DEAP
dataset, the samples with arousal ratings in the range of 3.5–
6 of each subject are selected, and then these selected samples
are divided into high valence emotion samples with valence

ratings greater than 5 and low valence emotion samples with
valence ratings less than 5. Since the two types of samples
of some subjects are unbalanced, this study calculates the
sample number of two categories and then randomly selects the
same number of samples as the fewer samples category from
the category with more samples. According to experimental
experience and previous research, emotion does not occur
immediately after the stimulus is presented, so only the last
30 s of data induced by each video in the DEAP dataset were
used in the experiment, and the data were divided into 5 s by
non-overlapping segmentation. The preprocessing method of
the EEG data in the DEAP dataset is consistent with that in the
original dataset.

Results

Behavior data

The mean reaction time (RT) of 40 subjects under five
different valence emotions is presented in Table 1. Compared
with neutral valence emotion, the other four valence emotions
all cause the subjects to react more slowly. This indicates
that different valence emotions can affect the subjects’ reaction
ability. When subjects are under an extremely negative valence
emotion, the reaction time is longer than that under other
valence emotions (p < 0.05), and the reaction time is the shortest
when the subjects are under natural emotions. Subjects respond
to trials involving MP and EP more slowly than to natural trials,
but it does not reach significance (P = 0.06). So, different valence
emotions can affect cognitive performance.

Classification performance of different
features

The classification performance of each feature for different
valence emotions was first compared on the ESD dataset and
DEAP dataset. Then, the highest classification accuracy of the
time domain, frequency domain, time-frequency domain, DA,
RA, and brain network features by using the classifiers of
KNN, RF, SVM, DAC, Bayes, and boosting were presented,

TABLE 1 Mean reaction time under different valence emotions.

Emotion RT (ms) Significance

EN 617.8 **

MN 599.6 *

Natural 585.0 –

MP 596.4 *

EP 581.7 –

**P < 0.05; *, in the edge of significance; -, no significance.
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respectively. Two-class and five-class classification experiments
were conducted on the ESD dataset, and high and low
valence two-class classification experiment was carried out on
the DEAP dataset.

Classification performance on the ESD dataset
As shown in Figure 1, all features achieved a classification

accuracy of no less than 70% in recognizing the EN emotion
from other valence emotions, and the highest classification
accuracy of 93.7% is achieved with the second-order difference
by the SVM classifier. According to the classification results,
time-domain features, first-order difference features, and
second-order difference features perform better. The
classification accuracy of first-order difference features
under the KNN classifier is 90.3%, and the classification
accuracy of second-order difference features under the SVM
classifier is 93.7%. High gamma (HG) band power achieved the
highest classification accuracy of 90% under the SVM classifier
among frequency-domain features. The high gamma band DE
obtained the highest accuracy in the time-frequency domain,
and the classification accuracy under the SVM classifier is
92.1%. For brain network features, the CPL of the high gamma
band coherence network performed the best and achieved
a classification accuracy of 71.4% under KNN. For spatial
asymmetric features, the DA feature extracted from second-
order difference features obtained the highest classification
accuracy of 89.7% under the SVM classifier, and the RA features
extracted from first-order difference features performed the best
and achieved a classification accuracy of 88.8% under the SVM
classifier. The results show that the performance of first-order
difference and second-order difference features in the time
domain can achieve higher accuracy than that of power and
differential entropy, which are mostly used in previous studies.
In addition, it can be found that frequency-domain features,
time-frequency domain features, and coherence network
features in higher frequency bands performed better than those
in lower frequency bands, and the high gamma band features
achieved the highest classification accuracy. By comparing the
performance of different classifiers, it can be found that the
SVM classifier performed better in binary classification on ESD
datasets.

As shown in Figure 2, for the classification of five-class
valence emotions on ESD datasets, the highest classification
accuracy of 89.9% is achieved by second-order difference
features under the SVM classifier and by FD features under
the DAC classifier. Among time-domain features, second-
order difference features and FD features achieved the best
performance. In the frequency domain, high gamma band
power performed best, and the classification accuracy achieved
by the SVM classifier was 84.6%. Among time-frequency
features, the high gamma band DE achieved the highest
classification accuracy of 87.5% under the SVM classifier. The
high gamma band CPL of the coherence network performed the

best among all brain network properties, and the classification
accuracy based on the DAC classifier is 60.6%. For spatial
asymmetric features, both the DA features and RA features
extracted from FD features achieved the highest classification
accuracy of 85.7% under the DAC classifier. When classifying
five kinds of valence emotions, it was also found that the
accuracy of features in higher frequency bands is higher than
that in lower frequency bands, and the high gamma band feature
obtained the highest classification accuracy. Comparing the
performance of different classifiers, it can be found that SVM
and DAC classifiers have better classification performance in the
classification of five-class valence emotions on ESD datasets.

Classification performance on the DEAP
dataset

As shown in Figure 3, on the DEAP dataset, the
classification accuracy of various features for high and low
valence emotions is not less than 50%, and the first-order
differential features achieved the highest classification accuracy
of 69.4% under the SVM classifier. Among the time-domain
features, the first-order differential features achieved the highest
classification accuracy of 69.4% under the SVM classifier. In
frequency-domain features, the classification performance of
gamma-band power features is the best, and the classification
accuracy is 66.3% under the RF classifier. In the time-frequency
domain, the gamma band differential entropy obtained the
highest classification accuracy of 67.6% under the SVM
classifier. Among the brain network properties, the gamma
band local efficiency extracted from the coherence network
achieved the highest classification accuracy of 62.7% under the
RF classifier. Among the DA features, the gamma band DE
obtained the highest classification accuracy of 66.4% under
the DAC classifier. The RA features extracted from gamma
band DE features performed the best and achieved the highest
classification accuracy of 66.8% under the DAC classifier. On
the DEAP dataset, it was also found that the features in higher
frequency bands performed better than those in lower frequency
bands, and the gamma band features achieved the highest
classification accuracy, which is consistent with the results
on the ESD dataset. Comparing the performance of different
classifiers, it can be found that SVM and DAC classifiers have
better classification performance.

To show the classification performance of different features
visually, this study selected one subject’s data and adopted the
t-SNE algorithm to map high-dimensional features to two-
dimensional space and compare the distribution of features
within and between classes. On the ESD dataset, six types of
features were selected, namely, first-order difference, second-
order difference, FD, high gamma power, high gamma
differential entropy, and high gamma band CPL of the
coherence network, to visualize by t-SNE. On the DEAP
dataset, first-order difference, second-order difference, FD,
gamma-band power, gamma band DE, and gamma band
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FIGURE 1

The highest two-class classification accuracy in each feature domain on the ESD. The block which including six bars of same color is the results
of same classifier and from left to right, it is the classification results by classifiers KNN, RF, SVM, DAC, NB, and Boosting, respectively.

FIGURE 2

The highest five-class classification accuracy in each feature domain on the ESD. The block which including six bars of same color is the results
of same classifier and from left to right, it is the classification results by classifiers KNN, RF, SVM, DAC, NB, and Boosting, respectively.

Le of the coherence network were selected to visualize by
t-SNE (Donahue et al., 2013). Figures 4, 5 show the feature
distribution maps of the ESD and DEAP dataset. The feature

distribution map shown in Figure 4 indicates that the second-
order difference, FD, high gamma power, and high gamma
DE, which obtained higher classification accuracy on the ESD
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FIGURE 3

The highest classification accuracy for high and low valence emotion in each feature domain on the DEAP. The block which including six bars of
same color is the results of same classifier and from left to right, it is the classification results by classifiers KNN, RF, SVM, DAC, NB, and Boosting,
respectively.

dataset have a small distance within the class and a large distance
between classes. From Figure 5, it can be seen that the first-
order difference, second-order difference, and gamma DE on
the DEAP dataset have a small distance within the class and a
large distance between classes. The feature visualization results
explain why the features performed better in the classification
of different valence emotions, i.e., features with a small intra-
class distance and a large inter-class distance can achieve higher
accuracy.

Important electrodes

From the classification results on both the ESD dataset
and the DEAP dataset, it can be found that the features with
better classification performance are the first-order difference,
the second-order difference in the time domain, the high-
frequency band power, and the high-frequency band DE
features. Based on these four features, this study adopted the
mRMR algorithm to reduce the feature dimension and find
the most important electrodes on the ESD dataset and the
DEAP dataset, respectively. On the ESD dataset, the most
important 1-dimension, 4-dimension, 8-dimension, and 16-
dimension features were selected from all 62 dimensions of each
feature, and on the DEAP dataset, the features were selected
from all 32 dimensions of each feature.

Figures 6, 7 show the most important 1, 4, 8, and 16
electrodes of the first-order difference, second-order difference,

high-frequency band power, and high-frequency band DE on
the ESD dataset and the DEAP dataset, respectively. The blue
rotundities in the figure represent the selected electrodes. From
the results in the table, it can be seen that the electrodes from
the prefrontal and temporal lobes are important for selecting the
most important 1-dimension and 4-dimension features, and the
features from the electrodes distributed in the occipital lobe are
also selected when choosing more features.

According to the above classification performance
comparison results, the first-order difference, second-order
difference, high-frequency band energy, and high-frequency
band DE show better classification performance. Then, this
study investigated the classification performance of the four
features extracted from the above-mentioned most important
1, 4, 8, 16 electrodes and all electrodes. Figures 8, 9 show the
classification results of the features extracted from different
numbers of electrodes on the ESD dataset and DEAP dataset,
respectively. It can be seen from the results that the more
electrodes are used, the higher the classification accuracy is. On
the ESD dataset, when the number of electrodes is reduced by
3/4, i.e., using 16 electrodes located in the frontal lobe, temporal
lobe, and occipital lobe, the classification accuracy is only 2%
lower than that using all 62 electrodes. On the DEAP dataset,
when only 1/2 of all electrodes are used, the gamma band
DE even achieved 0.8% higher accuracy than that of using all
32 electrodes, and the accuracies of the first-order difference,
second-order difference, and gamma band power decreased.
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FIGURE 4

Feature visualization map on ESD dataset. (A) Second-order difference; (B) first-order difference; (C) fractal dimension; (D) high gamma band
power; (E) high gamma band differential entropy; (F) high gamma band CPL of coherence network.

FIGURE 5

Feature visualization map on DEAP dataset. (A) Second-order difference; (B) first-order difference; (C) fractal dimension; (D) gamma band
power; (E) gamma band differential entropy; (F) gamma band CPL of coherence network.
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FIGURE 6

The distribution of the most important1, 4, 8, and 16 electrodes on the ESD dataset. Brown circles mark the most important 1 electrode, blue
circles mark the most important 4 electrodes, brown solid circles mark the most important 8 electrodes, and blue solid circles mark the most
important 16 electrodes. From top to bottom, each row corresponds to first-order difference, second-order difference, high gamma band
power, and high gamma band DE, respectively.

Computing time

In practical applications, the feature extraction time should
be as short as possible. In this paper, the computing time
of features in different feature domains was compared. The
computer used in this experiment is the AMAX server equipped
with two Intel (R) Xeon (R) Gold 5120 2.20GHz CPUs, 256 GB
RAM, and two NVIDIA Titan RTX GPUs, and running the 64-
bit windows10 operating system. The data processing of this
study was conducted on MATLAB 2018a. The feature extraction
time was compared based on one sample 62∗1200 (62 indicates
the electrode number, 1200 indicates the data length, and the
sampling rate is 600 Hz) in the ESD dataset, and the MATLAB
commands “tic” and “toc” were used to record the computing
time of different features. The calculation times of each feature
in different feature domains are presented in Table 2.

It can be seen from Table 2 that the features whose
calculation time is less than 0.1 s are FD, first-order difference,
second-order difference, normalized first-order difference,
normalized second-order difference, standard deviation, CC,
CPL, and Ge extracted from the Pearson correlation network.
The brain network features extracted from the coherence

network need a long computing time, and the computing time
is more than 50 s.

Discussion

Classification performance of features

Through the classification results on the ESD dataset and
DEAP dataset, it can be found that the four features, namely the
first-order difference, second-order difference, high-frequency
band power, and high-frequency band DE performed better
for the classification of different valence emotions. Specifically,
among the four features, the classification performance of time-
domain first-order difference and second-order difference under
the SVM classifier achieved higher accuracy than that of the
most used band power and differential entropy. Lan et al.
(2016) also reported that the time-domain features have better
classification performance than frequency features. Meanwhile,
the feature visualization results show that the first-order
difference and second-order difference have a large inter-class
distance and a small intra-class distance while characterizing
different valence emotions.
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FIGURE 7

The distribution of the most important 1, 4, 8, and 16 electrodes on the DEAP dataset. Brown circles mark the most important 1 electrode, blue
circles mark the most important 4 electrodes, brown solid circles mark the most important 8 electrodes, and blue solid circles mark the most
important 16 electrodes. From top to bottom, each row corresponds to first-order difference, second-order difference, high gamma band
power, and high gamma band DE, respectively.

FIGURE 8

The classification results of features from 1, 4, 8, 16, and all 62 electrodes on the ESD dataset.
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FIGURE 9

The classification results of features from 1, 4, 8, 16, and all 32 electrodes on the DEAP dataset.

From the above results, the feature that performed the
best in each feature domain while classifying different valence
emotions can be found. Among time-domain features, the first-
order difference and second-order difference achieved higher
accuracy than other features. In the frequency domain, the
high-frequency band power performed better than that in low-
frequency bands on both ESD and DEAP datasets. Moreover,
on the ESD dataset, the high gamma band power achieved the
highest accuracy among all frequency-domain features, and on
the DEAP dataset, the gamma band power obtained the highest
accuracy. For the time-frequency domain, high-frequency band
DE features perform better than those of the low-frequency
band, and the high gamma band and gamma band DE achieved
the highest accuracy on the ESD and DEAP dataset, respectively.
Both frequency domain and time-frequency domain features
show that a higher frequency band feature can achieve higher
classification accuracy in the classification of different valence
emotions. Many previous studies have also reported that high-
frequency EEG features have a better performance in emotion
recognition (Zheng and Lu, 2015; Zhuang et al., 2018). Our
previous studies also proved the effectiveness of high-frequency
features in emotion recognition (Yang et al., 2020). This
study also explored the performance of brain network features
that are widely used in recent years’ research. Three brain
network calculation methods were used in this study, and
then four network attributes were extracted as features. The
results showed that the network feature calculated based on
the Pearson correlation network had better performance, and
the classification performance of CPL shows that it is more

effective in characterizing different valence emotions. For DA
and RA features, it can be found that the performance of RA
features is slightly better than that of DA features. In addition,
the performance of spatial asymmetric features is related to
the original feature, i.e., if the classification performance of
the original feature is good, the classification performance
of the corresponding asymmetric feature is also good. This
may be because both RA and DA features are both simple
linear transformations of the original features. Through the
classification results of features in different domains, it can
be found that when classifying different valence emotions, the
commonly used frequency domain and time-frequency domain
features characterizing the rhythm features of EEG should be
considered, and more attention should be given to the time-
domain features that representing the time-varying information
of EEG signals. Overall, when classifying different valence
emotions with a first-order difference, second-order difference,
high-frequency band power, and high-frequency band DE can
achieve better classification results than other features.

Important electrodes

Figures 6, 7 show the most selected electrodes and their
distributions in the classification of different valence emotions.
The most important features are extracted from similar
electrodes of different features, and the results on ESD and
DEAP datasets are consistent. The features are mainly extracted
from the electrodes distributed at the frontal lobe, occipital lobe,
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TABLE 2 Calculation time of different features (s).

Time domain ApEn SamEn FD Fir-dif Sec-dif N-fir-dif N-sec-dif Std

3.053 6.650 0.029 0.003 0.004 0.006 0.006 0.005

Frequency/time-frequency PSD Power DE

0.602 0.208 0.118

PLV CC CPL Le Ge

0.464 0.442 2.926 0.435

Pearson CC CPL Le Ge

0.027 0.058 2.577 0.043

Coherence CC CPL Le Ge

54.338 58.726 56.025 52.621

and temporal lobe. Meanwhile, according to previous research,
the frontal lobe is the brain region that executes high-level
cognitive functions, including emotion processing and memory,
and the occipital lobe mainly processes visual information
related to emotions. Zheng et al. (2019) also pointed out that the
key brain regions for emotion recognition included the frontal
lobe, temporal lobe, and occipital lobe. Shuang et al. (2018) also
found that the electrodes of the frontal lobe, temporal lobe,
occipital lobe, and other brain regions are more important in
exploring key electrodes for emotion classification (Liu et al.,
2018). According to the results in this paper and previous
studies, it can be found that different valence emotions have
stable EEG patterns, and the prefrontal lobe, occipital lobe, and
temporal lobe play an important role in characterizing different
valence emotions. Additionally, the classification performance
of different dimensions features was compared in this study,
and it was found that the classification accuracy decreases with
the reduction in the number of feature dimensions. On the
ESD dataset, when the number of electrodes is reduced by
3/4, the classification accuracy is only about 2% lower than
that of using all 62 electrodes. On the DEAP dataset, the
accuracy of extracting the gamma band DE from only half of
all electrodes is higher than that of using all electrodes. These
classification results indicate that it is feasible to recognize
different valence emotions based on a few electrodes, which can
reduce computing complexity and is more convenient in actual
applications. Therefore, the designing of an EEG acquisition
device with a few electrodes or classifying different valence
emotions based on a few electrodes can refer to the electrodes
located in the frontal lobe, temporal lobe, and occipital lobe.

Calculation time of features

Feature computing time is also very important for emotion
recognition, especially in online emotion recognition because
it affects the result feedback of emotion recognition. This
study compared the calculation time of different features and
presented the features with less calculation time, which can be

used as a reference for other studies. Meanwhile, it was found
that most time-domain features can be extracted in a short
time. Especially, the first-order difference and second-order
difference features have low computational complexity, and they
are suitable for real-time emotion recognition situations.

Comparison of classifiers

In this study, six commonly used shallow classifiers are
used. As shown in the Figures 1–3, in each figure every block
which including six bars of same color is the classification
results of each classifier, and the same sequence location of each
block is the result of same feature domain. By comparing the
results of the same sequence location of each block in same
figure, it can be seen that when feature is fixed, classifiers has
different influence on classification results. The comparison
results show that the SVM classifier has better performance in
two-class classification tasks on both the ESD dataset and DEAP
dataset, and the highest classification accuracy of different
feature domains is mostly achieved by the SVM classifier. In
the classification of five valence emotions, both SVM and DAC
classifiers can obtain excellent results, and for some features, the
DAC classifier may obtain better results than the SVM classifier.
By comparing each block including six bars of same color, it can
be seen, when classifier is fixed, the classification is decided by
feature. And among all the features, the first-order difference,
the second-order difference, the high-frequency band power
and the high-frequency band differential entropy performed
better. Generally, if we want to achieve the highest classification
accuracy, we not only need to select feature but also need
to select classifiers, the optimal combination of classifier and
feature is required.

Limitations

The limitation of this study is that it only explored the
features for different valence emotions, but the effective features

Frontiers in Neuroscience 15 frontiersin.org

31

https://doi.org/10.3389/fnins.2022.1010951
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-16-1010951 October 17, 2022 Time: 10:2 # 16

Yang et al. 10.3389/fnins.2022.1010951

for different arousal emotions were ignored. Meanwhile, the
combination of different features can provide complementary
information and may contribute to better classification
performance, so feature fusion methods will be explored in
our future work.

Conclusion

This manuscript systematically evaluated the performance
of 110 features extracted from the time domain, frequency
domain, time-frequency domain, spatial domain, and brain
network on our self-built ESD dataset of 40 subjects and
the public dataset DEAP. Meanwhile, the classification
performance, computing time, and important electrodes of
each feature were systematically analyzed and compared. From
the experimental results, it can be seen that the first-order
difference, second-order difference, high-frequency power, and
high-frequency DE features outperform other features for the
recognition of different valence emotions. Also, most time-
domain features have less computing time than other features,
which are more suitable for online emotion recognition. Besides,
the electrodes in the frontal lobe, temporal lobe, and occipital
lobe are more important for the recognition of different valence
emotions, and when the number of electrodes is reduced by 3/4,
the classification accuracy of features from 16 electrodes located
in these brain regions is 91.8%, which is only about 2% lower
than that of using all electrodes. In addition, the SVM classifier
outperforms other shallow classifiers used in this study, and
most features can obtain the highest accuracy with SVM. In
the future, we will explore effective feature fusion methods in
emotion recognition.
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Brain-computer interfaces (BCIs) based on motor imagery (MI) utilizing

multi-channel electroencephalogram (EEG) data are commonly used to

improve motor function of people with motor disabilities. EEG channel

selection can enhance MI classification accuracy by selecting informative

channels, accordingly reducing redundant information. The sequential

backward floating search (SBFS) approach has been considered as one of

the best feature selection methods. In this paper, SBFS is first implemented

to select the optimal EEG channels in MI-BCI. Further, to reduce the time

complexity of SBFS, the modified SBFS is proposed and applied to left and

right hand MI tasks. In the modified SBFS, based on the map of EEG channels

at the scalp, the symmetrical channels are selected as channel pairs and

acceleration is thus realized by removing or adding multiple channels in

each iteration. Extensive experiments were conducted on four public BCI

datasets. Experimental results show that the SBFS achieves significantly higher

classification accuracy (p < 0.001) than using all channels and conventional MI

channels (i.e., C3, C4, and Cz). Moreover, the proposed method outperforms

the state-of-the-art selection methods.

KEYWORDS

electroencephalogram (EEG), channel selection, sequential backward floating search

(SBFS), motor imagery (MI), brain-computer interface (BCI)

1. Introduction

Brain-computer interface (BCI) refers to a complete system that processes signals

from human brain to control different communication devices (Gao et al., 2021).

With the advantages of non-invasiveness, portability, low cost, and high temporal

resolution, electroencephalogram (EEG) is widely used in BCI systems (Padfield

et al., 2019). Potential signals that are commonly used in EEG-based BCI system

mainly include P300 evoked potentials (Picton, 1992; Li et al., 2010), steady state

visually evoked potentials (SSVEP) (Wang et al., 2008; Zhang et al., 2018), and event-

related desynchronization/synchronization (ERD/ERS) (Pfurtscheller and Da Silva,

1999; Pfurtscheller and Neuper, 2006).
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Compared with stimuli-based BCI, the potential signals

for motor imagery (MI) (Ang and Guan, 2016; Yang et al.,

2020) can be easier acquired without external stimulus. MI

tasks can bring out cortical rhythm amplitude suppression

(ERD) and enhancement (ERS) over primary sensorimotor areas

(Taniguchi et al., 2000; Neuper et al., 2005). According to

ERD/ERS phenomenon, the corresponding imagery category

can be determined. Therefore, it is of great significance to

select brain area with active neural activities as signal sources to

improve the quality of EEG signals. Excessive channels not only

deteriorate the portability of BCI system, but also increase the

difficulty of signal analysis (Handiru and Prasad, 2016). Selecting

appropriate EEG channels for different subjects can improve the

performance of MI-based BCI system.

According to the prior knowledge of neurology, C3, C4,

and Cz electrodes and their surrounding channels contain

the most information related to MI, for which these specific

channels are commonly selected. Although the experience-

dependent artificial channel selection is easy for preparation

and implementation, it could be not sufficient for each subject.

The popular channel selection schemes (Alotaiby et al., 2015)

for MI can be mainly divided as embedded techniques,

filtering techniques (Baig et al., 2020), wrapper techniques, etc.

Embedded techniques integrate the channel selection processes

with the model training process, such as recursive channel

estimation with the training of support vector machine (SVM)

(Lal et al., 2004; Schröder et al., 2005). Filtering techniques are

usually based on EEG signal statistics such as common spatial

pattern (CSP) filter coefficients (Tam et al., 2011) and specific

criteria such as mutual information (Ang et al., 2012). Wrapper

techniques typically adopt wrapper approachs with complete

(Kamrunnahar et al., 2009), random (Wei and Wang, 2011) or

sequential (Qiu et al., 2016) search strategies for subset channel

selection (Arvaneh et al., 2010). In addition, neural network

genetic method (Yang et al., 2012) and bispectrum-based

method (Jin et al., 2020) were investigated for EEG channel

selection. Recently, neurophysiological approaches based on

correlation (Jin et al., 2019) and Granger causality (Varsehi and

Firoozabadi, 2021) have also been used in MI channel selection.

However, the EEG channel selection methods of existing studies

have either shown unsatisfactory performance or can only be

used for specific types of data (Varsehi and Firoozabadi, 2021).

Sequential backward floating search (SBFS) is a well-known

feature selection method which has been used to process various

physiological signals (Tork et al., 2013; Karnaukh et al., 2018;

Ahirwal, 2021) and to perform body state assessments (Dreißig

et al., 2020). In this paper, SBFS is utilized in EEG channel

selection for MI-based BCI. The main contributions of this

paper are as follows:

1) To the best of our knowledge, this is the first time SBFS

has been utilized for EEG channel selection.

2) The modified SBFS was proposed and applied to left and

right hand MI tasks to reduce the time complexity of SBFS.

3) Extensive experiments were conducted on four datasets to

confirm the effectiveness of the proposed method.

The remainder of this paper is detailed as follows. Section 2

describes the data used in this paper and the proposed methods.

Section 3 presents the results. The discussion is provided in

Section 4, and finally we conclude the paper in Section 5.

2. Materials and methods

2.1. Datasets

In this work, four common public datasets were used to

evaluate the proposed methods. All EEG data were collected

from the subjects’ brain through acquisition equipments rather

than artificially generated.

1) BCI Competition IV-dataset 1: This dataset recorded 59

channels of EEG signals from 7 healthy subjects (Tangermann

et al., 2012). We only used the data collected from subject a, b,

f, and g, since the other data were artificially generated. Each

subject participated in two classes (from the three classes left

hand, right hand, and foot) of MI tasks. Each data included two

runs, where each run contained 100 trials. In these two runs,

arrows pointing left, right or down were displayed on the screen

for visual cues. Cues were shown for a period of 4 s, during which

the subjects were asked to perform the MI task. After and before

the task, there were 2 s of blank and 2 s of display with a fixation

cross presented in the center of the screen. Namely, the fixation

cross was superimposed on the cues for 6 s. Each trial for the

EEG data acquisition is illustrated in Figure 1A. The EEG signals

were downsampled to 100 Hz.

2) BCI Competition III-dataset IIIa:The dataset was recorded

from 3 subjects (k3, k6, and l1) in 60 channels with a sampling

rate of 250 Hz (Blankertz et al., 2006). The subjects performed

imagery left hand, right hand, foot or tongue movements

according to a cue of random order. When a trial began, the

first 2 s were quiet black-screen. Then an acoustic stimulus and

a cross “+” were presented at t = 2 s. From t = 3 s an arrow

pointing to left, right, up or down was shown for 1 s. In the

meantime, the subjects imagined the movement corresponding

to the arrow until t = 7 s. Each trial for the EEG data acquisition

is shown in Figure 1B. The number of trials per class was 90 or

60 for different subjects. We only use the left and right hand MI

trials in this study.

3) BCI Competition III-dataset IVa: The dataset was recorded

from 5 healthy subjects (aa, al, av, aw, and ay) (Blankertz et al.,

2006). The subjects performed one of the left hand, right hand

and right foot MI within 3.5 s of the occurrence of the visual

cues. Target cues were presented at random intervals (1.75–2.25

s), during which subjects could relax. Each trial for the EEG data

acquisition is presented in Figure 1C. Each subject participated

in 280 trials. The EEG signals were recorded with 118 channels

and were downsampled at 100 Hz.
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FIGURE 1

Time interval of one trial. (A–D) is for dataset 1), 2), 3) and 4),

respectively.

4) BCI competition IV-dataset 2a: The dataset recorded

the EEG data of 9 subjects (A01–A09) who participated in

the 4-class (left hand, right hand, both feet, and tongue) MI

experiments (Tangermann et al., 2012). Raw data were collected

at 22 channels and 250Hz sampling rate. Each subject’s data were

recorded in 2 sessions, each session consisted of 6 runs, and each

run contained 48 trials. i.e., each session was composed of 288

trials in 4 classes, and each class contained 72 trials. We only

classified the trials of left hand and right hand in Session 1. The

timeline for a trial is about 7.5 s, as detailed in Figure 1D. At

the beginning (t = 0 s), a cross “+” appeared on the black screen.

After 2 s (t = 2 s), an arrow pointing either to the left, right, down

or up appeared and stayed on the screen for 1.25 s. The subjects

performed the desired MI tasks until t = 6 s. After a short break,

the screen went black again.

2.2. Data preprocessing

The acquired EEG data were refined in the preliminary

analysis prior to channel selection, feature extraction,

and classification. A portion of Figure 2 shows the

preprocessing procedure.

1) Filtering: A third-order butterworth filter was applied to

raw EEG data in the filtering part. The EEG data from each trial

were filtered between 8 and 30 Hz.

2) Segmentation: The filtered EEG data were segmented

by extracting data segments related to event types. MI events

mainly consist of two intervals: MI and other states (rest or black

screen). For dataset 1), 2), 3) and 4), we used fixed time windows

FIGURE 2

Block diagram of the proposed framework.

of 2–6 s, 3–6 s, 0–3 s, and 3–6 s, respectively. More details exhibit

in Figure 1.

2.3. Channel selection

2.3.1. SBFS-based channel selection

The purpose of channel selection is to identify important

channels and remove redundant and irrelevant channels. The

SBFS starts with a complete set, which is based on a top-down

approach (Pudil et al., 1994). We investigated the SBFS method

for EEG channel selection in MI classification. In this study,

Y denotes the entire channel set. Xk denotes the subset of

channels containing k channels. J(Xk) denotes the classification

performance of a subset Xk. The SBFS algorithm for channel

selection is given in Algorithm 1.

The advantage of applying the update strategy to SBFS in

EEG channel selection is the possibility to increase the value

of optimal accuracy or decrease the number of channels of

optimal accuracy. It is described as follows: the SBFS algorithm

pursues the maximum accuracy under the current number of

channels, and the intermediate (Inclusion) process of the later

channel selectionmay result in the increase of the accuracy of the

previous number of channels. Our update strategy is to replace

with the maximum accuracy each time.
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Input: the set of all channels, Y = {y1, y2, ..., yd}

• The SBFS algorithm takes the entire channel

as input.

Output: Xk = {xj|j = 1, 2, ..., k; xj ∈ Y}, where k = (0, 1, 2, ..., d)

• SBFS returns a subset of channels; the

number of selected channels k, where k < d.

Initialization: Xk = Y , k = d

• We initialize the algorithm with the given

channel set such that k = d.

Step 1(Exclusion):

x− = arg max J(Xk − x),where x ∈ Xk

Xk−1 = Xk − x−

k = k− 1

Go to Step 2

• In step 1, we remove a channel x− from the

channel subset Xk.

• x− is the channel that maximizes our

criterion function upon removal, that is, the

channel which is associated with the optimal

classification performance if it is removed from

Xk.

Step 2(Conditional Inclusion):

x+ = arg max J(Xk + x),where x ∈ Y − Xk

if J(Xk + x) > J(Xk+1) :

Xk+1 = Xk + x+

k = k+ 1

Go to Step 1

• In step 2, we search for channels that would

improve the classification performance when added

back to the channel subset. If such channels

exist, we add the channel x+ that maximizes

the performance improvement. If k = n or an

improvement cannot be made (i.e., such channel

x+ cannot be found), go back to step 1; else,

repeat the current step.

Termination: k = 2

• The channel subset of size k contains the

desired number of channels 2.

Algorithm 1. EEG channel selection using SBFS.

2.3.2. Reducing time complexity: Modified SBFS

Since SBFS is a search method, it makes sense to speed up

the search process without compromising accuracy. Considering

that mu (8–13 Hz bands) and beta (14–30 Hz bands) ERD/ERS

phenomenon are elicited during imagined hand movements

(Ramoser et al., 2000), depending on the location of the channels

in the cerebral cortex, left-right symmetrical channels can be

treated as a channel pair. As is shown in Figure 3, channels of the

same color are considered as a channel pair. For example, red C3

and C4, blue CP1 and CP2, and green FC1 and FC2 are channel

FIGURE 3

Location of EEG electrodes used for data acquisition, taking BCI

competition IV-dataset 1 as an example. Channels of the same

color are treated as a channel pair for selection.

pairs, respectively. Both of them are left-right symmetrical with

respect to the straight lines of CZ and CPZ. Thus, the whole set

contains fewer channel pairs and the modified SBFS can remove

or addmultiple channels at a time. Themain differences between

SBFS and modified SBFS methods are shown in Figure 4. One

can observe that the modified SBFS contains far fewer channel

pairs than before. The time spent on searching process can be

greatly reduced.

2.4. Feature extraction

CSP (Ramoser et al., 2000) is an efficient feature extraction

algorithm for binary classification tasks, which has been

extensively used in MI-based BCI (Dong et al., 2017; Chen B.

et al., 2018). It finds a spatial filter to maximize the differences in

variance between two classes of multi-channel EEG data. Let Ca

and Cb be the normalized covariance matrices of the two classes

of EEG signals which are averaged over trials. The composite

spatial covariance matrix is Cc = Ca + Cb. Decomposing Cc,

we can obtain Cc = UλUT, where λ is the eigenvalue and U is

the eigenvector. And the whitening transformation is

P =
√

λ−1UT (1)

Then the covariance matricesCa andCb can be transformed

into:

Sa = PCaP
T (2)
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FIGURE 4

Search chart of the SBFS and the modified SBFS.

Sb = PCbP
T (3)

It can be seen that Sa and Sb have the same eigenvector. Then

we have Sa + Sb = I. Any orthonormal matrix V satisfies the

following

VT(Sa + Sb)V = I (4)

Using the orthonormal matrix V, Sa and Sb can be

decomposed as follows:

Sa = V3aV
T (5)

Sb = V3bV
T (6)

and 3a + 3b = I. The projection matrix is

W = PTV (7)

W is called the CSP weight matrix. The optimal features can

be obtained in the least square case. Finally, the vector of the

features is expressed as:

f = log(var(Wx(t))) (8)

where, x(t) is EEG data.

2.5. Classification

SVM theory was proposed by Vapnik (1999). The

core idea of SVM is to separate the data from the two

classes by finding a hyperplane with the largest possible

margin. As one of the most commonly used BCI-based

MI classifiers, SVM (Subasi and Gursoy, 2010; Qin et al.,

2019) can effectively solve the classification problem of

two classes of EEG data. In this study, we used an SVM

with a radial basis function kernel to classify MI tasks

after feature extraction. The separation of training and test

data is realized by using 10-fold cross validation in the

classification part.

2.6. Framework overview

Firstly, the raw MI EEG data of each subject were

preprocessed. The SBFS and the modified SBFS method

were applied to the training data to obtain the selected

channels. The CSP spatial domain filter was applied

for training data to acquire weight matrices. Finally,

the SVM classifier was trained and the classification

performance with 10-fold cross validation was obtained.

The block diagram of our proposed framework is shown in

Figure 2.
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TABLE 1 Comparison of classification accuracy (%) with di�erent

methods on datasets 1), 2), 3).

Subject
Methods

All channels C3C4Cz SBFS

a 52.0 43.5 74.5

b 44.0 51.0 64.5

f 49.0 46.5 63.5

g 50.0 63.0 68.0

Mean± std 48.8± 3.4 49.3± 5.5 67.6± 5.0

k3 45.6 53.3 78.9

k6 46.7 41.7 76.7

l1 50.0 46.7 80.0

Mean± std 47.4± 2.3 47.2± 5.8 78.5± 1.7

aa 62.1 58.8 84.4

al 62.3 74.1 95.0

av 47.5 60.0 75.0

aw 75.6 68.0 100

ay 67.5 45.0 100

Mean± std 63.0± 10.3 61.2± 11.0 90.9± 10.9

P-value <0.0001 <0.0001 −

“−” Denotes the missing values. The optimal classification accuracies in each row are in

bold.

3. Results

3.1. Classification accuracy and
significance

The classification accuracies of all subjects from datasets

1), 2), 3) using different methods are shown in Table 1. The

classification accuracies of 14 subjects which participated left

and right handMI using different methods are shown in Table 2.

The optimal classification accuracy for each subject and mean

are in bold. The last row of Tables 1, 2 gives the paired t-

test results of the SBFS or the modified SBFS with the current

column method. The C3C4Cz method indicates that only EEG

data from these 3 channels are used in the classification of MI.

From Table 1, for each single subject, the highest classification

accuracy was obtained with SBFS. In particular, subjects aw

and ay achieved 100% classification accuracy. Compared with

all channels, the average performance improvement of the

SBFS method in datasets 1), 2), 3) was 18.8, 31.1, and 27.9%,

respectively. Meanwhile, the SBFS method improved by 18.3,

31.3, and 29.7%, respectively, compared with the C3C4Cz

method. From Table 2, the average accuracy of the SBFS and the

modified SBFS is improved by 21.4 and 20.4%, respectively. It is

shown that the accuracy of the SBFS is significantly better than

all channels and conventional MI channels (p < 0.0001). There

TABLE 2 Comparison of classification accuracy (%) with di�erent

methods on 14 subjects which participate in left and right hand MI

tasks.

Subject
Methods

All channels SBFS Modified SBFS

b 44.0 64.5 62.5

g 50.0 68.0 69.0

k3 45.6 78.9 74.4

k6 46.7 76.7 71.7

l1 50.0 80.0 81.7

A01 45.7 70.7 67.9

A02 51.4 66.4 65.7

A03 55.0 77.9 79.3

A04 46.4 62.9 63.6

A05 51.4 65.0 67.9

A06 49.3 63.6 61.4

A07 57.9 69.3 65.6

A08 60.7 87.1 87.1

A09 48.6 71.4 70.7

Mean± std 50.2± 4.8 71.6± 7.4 70.6± 7.6

P-value <0.0001 0.1522 −

“−” Denotes the missing values. The optimal classification accuracies in each row are in

bold.

is no significant difference (p = 0.1522) between the SBFS and

the modified SBFS.

3.2. Number of selected channels

The number of selected channels with optimal classification

accuracy is shown in Table 3. From Table 3, the number of

channels selected by the SBFS shows a substantial decrease

compared to all channels. In terms of averages, this is specifically

shown as 23 vs. 59, 12 vs. 60, 25 vs. 118, and 10 vs. 22. Overall,

the number of selected channels ranges from one-fifth to one-

half of the total number of usable channels. The number of

channels selected by the modified SBFS method is similar to that

of the SBFS.

3.3. Computation time

In order to compare the computation time between the

SBFS method and the modified SBFS method, the results of

14 subjects who participated in a left and right hand MI task

from datasets 1), 2), 4) were used. The two algorithms were

implemented and tested using MATLAB 20191 configured on

Windows 10 professional operating system and the experiments

1 MATLAB is a commercial mathematical software from MathWorks,

Inc. in the U.S. 2019a is the version number.
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TABLE 3 Comparison of the number of channels selected at the

highest accuracy.

Subject
Methods

All channels SBFS Modified SBFS

a 59 10 −

b 59 45 14

f 59 4 −

g 59 33 17

Average 59 23 −

k3 60 10 14

k6 60 19 20

l1 60 6 20

Average 60 12* 18

aa 118 40 −

al 118 31 −

av 118 37 −

aw 118 6 −

ay 118 13 −

Average 118 25* −

A01 22 7 9

A02 22 4 8

A03 22 13 17

A04 22 3 14

A05 22 7 13

A06 22 14 6

A07 22 19 19

A08 22 8 10

A09 22 15 9

Average 22 10 12*

“*” Denotes that the original number is not an integer. “−” Denotes the missing values.

were performed on an Intel (R) Core (TM) i5-8265U CPU @

1.60GHz, 8.00 GB RAM computer. As can be seen from Figure 5,

the modified SBFS method for channel selection is faster than

the SBFS method. It is precisely because more than one channel

were added or deleted each time that the number of iterations

was reduced, which greatly saved the time.

The computation time of the method is affected by several

factors, such as the number of all channels, the number of trials,

the length of trials, software and hardware configuration etc.

For example, using a parallel for loop (parfor) in Matlab to

speed up the algorithm, the iterations of the parfor loop can

run in parallel on multiple cores of the target hardware (our

computer has 4 cores), and speed of the algorithm obtained by

FIGURE 5

Computation time comparisons between SBFS and modified

SBFS.

testing is shown to be about 4 times faster. During the initial

sessions (also called the training sessions) in BCI experiments,

the desired parameters are adjusted offline according to the

signals collected from different subjects. Thus, the running speed

of the channel selection part is not a concern, even for the

SBFS method. In short, users have the flexibility to choose

the SBFS or the modified SBFS methods according to specific

practical situations.

3.4. Comparison with other selection
methods

We compared SBFS-based EEG channel selection method

with other algorithms in this field. For fairness of comparison,

the data preprocessing, feature extraction and classifier were

used identically.

CSP-rank (Tam et al., 2011) is a channel selection method in

MI-based BCI using CSP. The method is based on the sorting

of CSP filters. To be specific, we first rank the absolute values of

the filter coefficients in each filter respectively, and then take the

electrodes with the next largest coefficients from the two spatial

filters in turn.

Improved sequential floating forward selection (ISFFS) (Qiu

et al., 2016) combines the practical distribution of channels and

an intelligent selection algorithm to select EEG channels.
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TABLE 4 Comparison of classification accuracy (%) with di�erent

channel selection methods on BCI competition IV-dataset 1.

Subject
Methods

CSP-rank ISFFS CCS SBFS

a 62.0 64.5 57.5 74.5

b 57.5 61.5 58.0 64.5

f 53.5 63.5 55.0 63.5

g 61.5 63.5 63.0 68.0

Mean 58.6 63.3 58.4 67.6

The optimal classification accuracies in each row are in bold.

TABLE 5 Comparison of the number of selected channels with

di�erent channel selection methods on BCI competition IV-dataset 1.

Subject
Methods

CSP-rank ISFFS CCS SBFS

a 53 41 42 10

b 27 11 21 45

f 57 8 38 4

g 7 24 25 33

Average 36 21 32* 23

“*” Denotes that the original number is not an integer.

Correlation-based channel selection (CCS) (Jin et al., 2019)

assumes that there is a high correlation between task-related

channels, then the relevant channels are selected.

Tables 4, 5 presents the classification accuracy and the

number of channels at optimal accuracy for different methods,

respectively. The optimal classification accuracy for each subject

and mean are in bold. The SBFS method achieved the best

classification accuracy for both single subjects and mean values.

The SBFS and the ISFFS methods are similar in the number of

selected channels, less than the CSP-rank and the CCS method.

4. Discussion

4.1. Maps of the selected channels

We used MATLAB 2019 (see text footnote 1) with

the EEGLAB toolbox (Delorme and Makeig, 2004) to plot

topographic maps of subjects g, k3, and av from each of the

datasets 1), 2), 3), as shown in Figure 6. The map of the channels

selected by SBFS is shown in Figure 7.

The location of channels was compared with topographic

maps. On the whole, the channels selected by SBFS were

consistent with the corresponding ERD phenomena for all

channels. Channel C3, C4, and Cz or their surrounding channels

located in the motor area of the brain were selected multiple

FIGURE 6

Topographic maps under two channel settings of subjects g, k3

and av from datasets 1), 2), 3). For each topographic map, the

mean value of all trials in the training data is taken. The value of

the unselected channels in the second column maps is set to 0.

times. For dataset 1), Channel C4 and Cz were selected twice.

Also, some channels (C2, C5, CFC3, and CCP2) around C3 and

C4 were selected multiple times. Figure 6 shows that subject

g in the right hand MI task, the ERD phenomena occurred
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FIGURE 7

Maps of selected channels by SBFS for datasets 1), 2), 3). The

blue circles represent selected channels. Darker colors

(Continued)

FIGURE 7 (Continued)

indicate more selections. For dataset 1), channels selected more

than twice from four subjects are colored in the top map. For

dataset 2), channels selected more than once from three

subjects are colored in the middle map. For dataset 3), channels

selected more than twice from five subjects are colored in the

bottom map.

mainly in the left cerebral cortex. For dataset 2), Channel C3

was selected. Channel 32 and 40, located around channel Cz,

were also selected twice. In Figure 6, the ERD phenomena of

subject k3 mainly occurred in the right cerebral cortex during

left hand MI task. For dataset 3), all 5 subjects performed foot

and right handMI tasks. Channel C3 and Cz were selected twice.

They were surrounded by channel CCP3 and CCP4 which were

also selected multiple times. As shown in Figure 6, the ERD

phenomena appears in the left cerebral cortex when subject av

was performing a right hand MI task.

The SBFS method selected channels successively from

bottom (i.e., serial number is larger) to top (i.e., serial number is

smaller). This may lead to channels which are not related to MI

being selected as well. The irregular channel positions resulted

from an evaluation criterion by using cross-validation accuracy

method. Many selected channels were located in the posterior

part of the cerebral cortex. In the case of equal classification

accuracy, the channels with larger ordinal numbers, i.e., the

backward position, were retained, and the channels with smaller

ordinal numbers, i.e., the forward position, were removed.

The topographic maps plotted using the EEGLAB toolbox

under all channels and channels selected by the modified SBFS

for subject k6 are shown in Figure 8, respectively. From Figure 8,

it can also be seen that the topographic map of the channels

selected by the modified SBFS was basically consistent with

that of all channels. Specifically, clear ERD phenomenon can

be observed in the left hand and right hand topographic maps

under channels selected by modified SBFS.

4.2. Parameter sensitivity analysis

Figure 9 plots the variation of classification accuracy with

the number of selected channels by SBFS. With the increase

of the number of selected channels, the overall trend of

classification accuracy increases, then decreases. This may be

due to the fact that there are few channels containing available

information at the beginning and the initial accuracy is low. As

the number of channels increases, the useful information keeps

increasing and the accuracy is improved. With the sustainable

increase of the number of channels, the number of redundant

information channels increases as well, leading to the decrease of

accuracy. Specifically, the change in accuracy with the number

of channels is different for each subject. For example, the
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FIGURE 8

Topographic maps under two channel settings of subjects k6.

For each topographic map, the mean value of all trials in the

training data is taken. The value of the unselected channels in

the maps is set to 0.

classification accuracies of subjects a, b, k6 and av have a slight

decrease initially.

4.3. Future works

The SBFS method obviously outperforms other competing

channel selection algorithms. In the following study, the

proposed framework will be tested on datasets containing more

subjects, such as the Physionet dataset (Goldberger et al., 2000),

to strengthen sufficient persuasiveness. In addition, the SBFS

can be combined with other features to further improve the

classification performance in MI-based BCI. For example, for

small sample data, it might be combined with regularized CSP

feature (Lu et al., 2010).

In this paper, we studied the SBFS method for channel

selection of MI tasks. The idea of a feature selection algorithm

combined with task-related effective features can be extended

to other tasks, e.g., for the SSVEP task, a combination of the

SBFS and canonical correlation analysis (Lin et al., 2006) can be

used, and for the rapid serial visual presentation task (Xu et al.,

2021), a combination of the SBFS and hierarchical discriminant

component analysis (Parra et al., 2007) can be used. Moreover,

the proposed symmetrical strategy which is with respect to the

optimization time can also be extended to other tasks, such as

EEG-based emotion recognition (Chen T. et al., 2018; Gao et al.,

2020; Tang et al., 2022).

FIGURE 9

Classification accuracy of subjects from datasets 1), 2), 3) under

di�erent number of selected channels by SBFS.

Note that, ERD and ERS phenomenon are found not

only in EEG but also in magnetoencephalography (MEG)

recordings. As another non-invasive physiological signal, MEG-

based BCI often involves more sensors. The existing MEG

instrument based on superconducting quantum interference

device technology is typically composed of 275 (gradiometer) or

306 (204 gradiometer and 120magnetometer) sensors. Although

a large number of sensors can provide higher spatial-temporal

resolution for evaluating brain activity patterns, not all sensors

can significantly improve classification accuracy. In addition,

a larger number of channels implies a greater computation

complexity. Recently, Roy et al. (2019, 2020) assessd the effect

of channel selection using intelligent algorithms on MEG

decoding of MI for the first time. Therefore, the application

of the proposed method to MEG data can be explored in

the future.
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5. Conclusion

In this paper, the SBFS method is first applied to EEG

channel selection, combining CSP features and an SVM classifier

to form a new decoding framework. In order to reduce

the time complexity of SBFS, the modified SBFS method is

proposed, in which symmetrical channel pairs are removed

or added in each iteration depending on the location of EEG

channels at the scalp. Experimental results show that the

proposed method can significantly improve the classification

accuracy while reducing the number of EEG channels. The study

provides a new approach to improve the reliability of future

BCI systems.
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The classification based on Electroencephalogram (EEG) is a challenging task

in the brain-computer interface (BCI) field due to data with a low signal-

to-noise ratio. Most current deep learning based studies in this challenge

focus on designing a desired convolutional neural network (CNN) to learn and

classify the raw EEG signals. However, only CNN itself may not capture the

highly discriminative patterns of EEG due to a lack of exploration of attentive

spatial and temporal dynamics. To improve information utilization, this study

proposes a Dual Attentive Fusion Model (DAFM) for the EEG-based BCI. DAFM

is employed to capture the spatial and temporal information by modeling the

interdependencies between the features from the EEG signals. To our best

knowledge, our method is the first to fuse spatial and temporal dimensions in

an interactive attention module. This module improves the expression ability

of the extracted features. Extensive experiments implemented on four publicly

available datasets demonstrate that our method outperforms state-of-the-

art methods. Meanwhile, this work also indicates the e�ectiveness of Dual

Attentive Fusion Module.

KEYWORDS

brain-computer interface, electroencephalography, P300, motor imagery, dual

attentive fusion

1. Introduction

Brain-computer interface (BCI) is a system that aims to establish a non-muscular

communication pathway between humans and external devices via brain signals

(Wolpaw et al., 2002). With the advances in information and computer science,

various BCI paradigms have been developed and employed in many applications

(Leeb et al., 2007; Dal Seno et al., 2010). The motor imagery (MI) paradigm attracts

significant interest from researchers. It is the process of imagining movement in a

certain body part rather than actually moving it. This technology can help patients

with movement disorders manipulate external equipment such as artificial arms or

wheelchairs (Leeb et al., 2007). The P300 event-related potential (ERP) is also another

important paradigm in BCI. It is an evoked positive peak at around 300 ms after

the occurrence of a low-probability stimulus. This type of BCI has been utilized
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to assist individuals with severe neuromuscular diseases to

spell characters by using brain waves (Dal Seno et al., 2010).

Currently, electroencephalography (EEG) is one of the most

widely used techniques for brain signal acquisition in BCIs due

to its low cost, safety, and easy operation. The core of EEG-based

BCI is to analyze EEG signals for the purpose of understanding

human intentions. Therefore, improving the performance of

EEG-based BCIs is very important for the future development

of BCIs.

Generally, the classification based EEG first extracts

discriminative features from EEG signals and adopts classifiers

to classify the extracted features. However, it is not easy to

deploy these processes due to the low signal-to-noise ratio

(SNR) of EEG signals. Many previous methods rely on feature

engineering and traditional machine learning approaches. For

example, Rakotomamonjy and Guigue (2008) used a P300

detection model based on 896 hand-crafted features and an

ensemble of SVMs classifiers. Fazli et al. (2009) proposed to

combine feature extraction from the common spatial pattern

(CSP) of the EEG signals and linear discriminant analysis (LDA)

to classify the extracted features. The method developed by Li

et al. (2006) alternatively used independent component analysis

(ICA) to remove eye artifacts and selected a subset of electrodes

prior to the classification made by support vector machine

(SVM). Duan et al. (2013) first combined an SVM and K-nearest

neighbor (KNN) to extract and classify features from multi-

channel EEG data for emotion recognition. In Liu et al. (2005),

principal component analysis (PCA) and T-weight value sums

were applied for P300 classification. Although these attempts

have achieved partial improvements in performance, all these

methods only learn the features that the researchers focus on

while ignoring other important features due to the limited

abilities of hand-crafted features.

In addition, considerable effort has also been devoted to

developing deep learning (DL) based methods for EEG signal

classification (Zhang Y. et al., 2020; Huang et al., 2021), and they

have demonstrated superior performance over conventional

machine learning methods. Especially due to the temporal

dynamics of EEG signals, recurrent neural network (RNN) based

methods have been extensively applied to filter and classify EEG

signals (Alhagry et al., 2017; Ma et al., 2018; Michielli et al.,

2019). Alhagry et al. (2017) used an LSTM-RNN to learn and

classify EEG signals for emotion recognition. Ma et al. (2018)

proposed a pure RNNs-based parallel method to encode spatial

and temporal information of raw EEG signals for motor imagery

classification. Michielli et al. (2019) introduced a novel cascaded

RNN architecture based on long short-term memory (LSTM)

blocks for automated sleep stage classification.

Apart from RNN, convolutional neural network (CNN)

has been popularly used for analyzing EEG signals and has

gained much attention in recent years (Lawhern et al., 2018;

Sakhavi et al., 2018; Shan et al., 2018; Yang et al., 2018a;

Wu et al., 2019; Ding et al., 2021). Lawhern et al. (2018)

presented a compact neural network named EEGNet, which

can extract spatial and temporal features simultaneously. Wu

et al. (2019) proposed a parallel multi-scale filter bank CNN

architecture, generating temporal, and spatial features for

MI classification. Ding et al. (2021) proposed TSception, a

multi-scale CNN that learns discriminative in the time and

channel dimensions to recognize the BCI’s user emotion.

Convolutional recurrent neural network (C-RNN) (Yang et al.,

2018b; Zhang et al., 2018) was applied in EEG-based BCI and

attained satisfactory performance. For example, Zhang et al.

(2018) introduced cascade and parallel C-RNN models for

human intention recognition and effectively learned the spatial-

temporal representations of raw EEG signals. All these studies

show the information in spatial and temporal dimensions

carrying important information for BCI classification tasks.

However, previous architectures handle the information of the

EEG signal in temporal and spatial dimensions in either separate

or subsequent manner without interaction.

Corresponding to this gap, we propose a simple but effective

Dual Attentive Fusion Model (DAFM) for the EEG signal

classification tasks. It leverages an interactingmechanism, which

fuses spatial and temporal attention with a simple operation

to generate the spatial-temporal pattern of the EEG signals.

The main contributions of this paper can be summarized as

follows.

1. The proposed model uses an interactive attention module,

which can take both the spatial and temporal dimensions

into consideration, and it successfully derives distinguishable

features from EEG signals.

2. The proposed method is extensively evaluated on four widely

used BCI datasets regarding both motor imagery (MI) and

P300 tasks. Results exhibit that our approach has superior

performance to state-of-the-art and baseline methods.

The remaining of this paper is organized as follows. Related

works are described in Section 2. Section 3 presents the proposed

method. Section 4 provides the datasets used in this paper,

implementation details of our experiments and experimental

results. Finally, Section 5 concludes this study.

2. Related work

2.1. Convolutional neural network

In recent years, deep learning, especially Convolutional

Neural Networks (CNNs), has gained substantial interest in

the computer vision field (Krizhevsky et al., 2012; Simonyan

and Zisserman, 2014; He et al., 2016). In 2012, Krizhevsky

et al. (2012) proposed the AlexNet, which used a large,

deep convolutional neural network to classify images in the

ImageNet dataset and achieved considerably better results

than the previous state-of-the-art methods. Convolutional
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frameworks have become an essential medium in vision-related

fields. VGGNet proposed by Simonyan and Zisserman (2014)

has good transfer learning ability. Since then, the 3 × 3

convolution has become the standard configuration of the

subsequent convolutional neural network structures. In 2015,

He et al. (2016) noticed the gradient vanishing problem

caused by the deepening of the network, and proposed the

ResNet, which got rid of the troubles of the deep network

and made the network depth reach astonishing 152 layers.

Recently various CNN-based models are increasingly being used

for EEG-based BCI and gain excellent performance. Sakhavi

et al. (2018) introduced a new temporal representation of

the data and used a CNN architecture for MI classification.

Shan et al. (2018) proposed a novel and simple CNN, which

only used a convolutional layer, to effectively learn feature

representations from both temporal and spatial information

for accurate P300 detection. Yang et al. (2018a) proposed to

combine features of signals from different frequency bands

and used a continuous convolutional neural network to

make predictions.

2.2. Attention mechanism

It could be said that the attention mechanism has become

one of the hottest topics in the deep learning field. The attention

mechanism, which can selectively amplify valuable features

and suppress useless features based on global information, has

been employed in diverse domains. Fu et al. (2019) proposed

a novel Dual Attention Network (DANet) to capture feature

dependencies in the spatial and channel dimensions for scene

segmentation. Huang et al. (2019) proposed a novel Criss-Cross

Network (CCNet) to capture full-image contextual information

adaptively in a more efficient way for semantic segmentation.

Chen et al. (2019) proposed an Attentive but Diverse Network

(ABD-Net) to integrate attention mechanism into ABD-Net,

containing Channel Attention Module, and Position Attention

Module for person re-identification. The attention mechanism

is also used to transform the input into a more discriminative

representation in the brain-computer interface field. Kim and

Choi (2020) combined an attention mechanism and a long

short-term memory network to assign weights to different

emotional states based on importance and improved emotion

recognition accuracy. Tao et al. (2020) proposed an attention-

based convolutional recurrent neural network (ACRNN), which

integrated the channel-wise attention into CNN to extract

spatial information and extended self-attention into RNN to

extract temporal information. Zhang D. et al. (2020) proposed

a Graph-based Convolutional Recurrent Attention Model (G-

CRAM) to explore EEG features across different subjects for

motor imagery classification. Graph structure was employed

to enhance the discriminative ability of EEG channels in

this model.

3. Methods

In this section, we first present an overall framework of our

network, which contains two modules. Then, we describe the

details of Dual Attentive Fusion Module. Finally, we introduce

the Feature Classification Module. The overall architecture of

our model is shown in Figure 1.

3.1. Overview

Raw EEG signals contain spatial relationship among

different channels and temporal dependency among

different time points, which play an important role in

feature classification. However, many studies (Kim and Choi,

2020; Tao et al., 2020; Zhang D. et al., 2020) suggest that features

generated by traditional machine learning methods could

not extract this information well. In 2017, the Transformer

proposed by Vaswani et al. (2017) raised much attention in

the natural language processing field. A transformer model is

based on the self-attention module, which effectively focuses

on the distinct features by assigning attention score to each

feature and aggregating these scores. More and more work has

introduced attention mechanism into the computer science

field and achieved comparable performance. Recent work has

focused on designing proper attention modules to adaptively

explore attentive dynamics of EEG signals and focus on the

most valuable information in brain-computer interface fields.

Inspired by it, we propose a Dual Attentive Fusion Module

which can take spatial and temporal attention into consideration

in an interactive module. Our method can turn raw EEG signals

into more discriminative features. More importantly, our

method improves the accuracy of EEG signal classification.

First, a filtering process is conducted on all EEG signals by

implementing bandpass filter. Then, the proposed attention

module is used to recode the EEG signals considering the spatial

and temporal dimensions together. Finally, the features are

fed into a convolutional neural network to make classification,

and classification accuracy is considered as the final evaluation

metric. The Dual Attentive Fusion Module is illustrated in

Figure 2.

3.2. Dual attentive fusion module

As illustrated in Figure 1, an EEG signal A, is denoted as

A ∈RH×W , where H is the number of electrodes and W is the

number of time points. We first feed the data into a convolution

layer to generate a new feature map B, where B belongs to

R
H×W×C and C = 1 denotes the number of feature map.

Then, to learn the spatial features of multi-channel EEG

and explore the temporal features of different time points, we

employ a self-attention mechanism in the EEG signals. In the
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FIGURE 1

An overview of the Dual Attentive Fusion Model.

spatial dimension, a self-attention operation turns channels into

a probability distribution as weights and recodes the EEG signals

based on the weights. In this way, an important feature would

gain a higher weight than less important features. Therefore, we

compress B to feature map C by a convolution layer, where C

belong to R
H×1×C . A softmax activation function is applied to

C to obtain the attention map of the spatial dimension:

a1 =
exp(CT

i vi)
∑

exp(CTi vi)
, (1)

The attention vector vi∈R
H is randomly initialized and

tuned by the above function during the training procedure. The

softmax function makes sure the sum of weights is 1. The more

similar feature representation of the two channels devotes to a

more significant correlation between them.

Next, in the temporal dimension, to extract more

discriminative temporal information, we also employ a

self-attention operation to obtain a feature representation by

perceiving global temporal features and assigning the weights

according to the similarity of time points. Thus, a convolution

layer is applied to compress B as D, which belongs to R1×W×C .

A softmax activation function is also applied to D to obtain the

attention map of the temporal dimension:

a2 =
exp(DT

i wi)
∑

exp(DT
i wi)

, (2)

The attention vector wi∈R
W is randomly initialized and

tuned by the above function during the training procedure. This

attention map will focus on specific time points that are distinct

from others. To enable matrix multiplication between a1 and a2,

we reshape a1 and a2 as to R
H×C and R

C×W , respectively.

Finally, a matrix multiplication is employed to obtain the

spatial-temporal attention map a∈RH×W as:

a = aT1 · a2, (3)

where a1 and a2 are spatial and temporal attention map

of EEG signals, respectively. A dual attentive fusion feature

representation is further generated by considering the spatial-

temporal attention map as weights to recode EEG signals. Thus,

a is reshaped to R
H×W×C , and we perform an element-wise

matrix operation between a and B. The dual attentive fusion
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FIGURE 2

The detail of Dual Attentive Fusion Module.

feature extracted by the Dual Attentive Fusion Module can be

expressed as follows:

E =
∑

(ai · Bi), (4)

where E∈RH×W×C , ai denotes the spatial-temporal attention

map, and B represents the preprocessed EEG signals. In

addition, a residual block (He et al., 2016) is applied between E

and B to obtain the final dual attentive fusion feature as follows:

Z = W · E+ B, (5)

where W belongs to a learnable parameter, which is randomly

initialized and is gradually updated during the training

procedure. Equation (5) shows that the final feature of EEG

signals is a weighted sum of the spatial-temporal features and

original features.

3.3. Feature classification module

In this module, we employ a CNN, which is inherited

the architecture of the EEGNet (Lawhern et al., 2018), to

classify the features extracted from the previous module. A

2D convolution layer with a kernel size of (1, K1) is first

applied to Z to capture temporal information in each electrode.

Then, a depthwise convolution layer with a kernel size of (H,

1) is used for spatial feature extraction. An average pooling

operation is followed to generate a coarser feature. Next, the

separableConv2D with a kernel size of (1, K2) is used to

obtain deeper temporal patterns across all electrodes. An average

pooling operation is also followed to reduce dimension. It is

worth noting that batch normalization (Ioffe and Szegedy, 2015)

and exponential linear unit (Clevert et al., 2015) are followed

by some convolution operations for feature standardization and

nonlinear transformation. Finally, the deep feature extracted

by CNN is flattened as a vector by a flatten layer. For binary

classification, the output of dense layer is forwarded into

a sigmoid function. For multi-class classification, the output

of dense layer is forwarded into a softmax function. The

final prediction is based on conditional probability, which is

calculated by the loss function. The loss value guides the

gradient descent and the backpropagation for the whole neural

network. The structure of Feature Classification Module and its

parameters are shown in Tables 1, 2.

4. Experiments and results

In this section, we first describe the benchmark datasets used

in this paper. Then, we demonstrate the model implementation

details. Finally, we present the experimental results obtained by

our method and other comparable approaches.

4.1. Dataset description

In our experiment, we use four public BCI competition

datasets to evaluate the effectiveness of the proposed method.

Among them, BCI Competition IV-2a (Tangermann et al.,

2012) and BCI Competition IV-2b (Tangermann et al., 2012)

are used for motor imagery classification. BCI Competition II

Dataset IIb (Blankertz, 2010) and BCI Competition III Dataset II

(Blankertz et al., 2008) are used for P300 detection. The detailed

information of the four datasets is shown as follows.

4.1.1. The BCI competition IV-2a dataset

The BCI competition IV-2a dataset, provided by

Graz University, contains EEG signals from nine healthy

subjects(A01-A09) and two sessions on different days for each

subject. Each session consists of 288 trials of four different MI

classes: imagining the movement of the left hand, the right

hand, the feet, and the tongue. The signals are recorded by

Frontiers inNeuroscience 05 frontiersin.org

51

https://doi.org/10.3389/fnins.2022.1044631
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Du et al. 10.3389/fnins.2022.1044631

TABLE 1 Architecture of feature classification module.

Layer Input Filter Kernel Output

Conv2D (H, W, 1) F1 (1, K1) (H, W, F1)

BatchNorm (H, W, F1) (H, W, F1)

DepthwiseConv2D (H, W, F1) F1*D (H, 1) (1, W, F1*D)

BatchNorm (1, W, F1*D) (1, W, F1*D)

ELU activation (1, W, F1*D) (1, W, F1*D)

AveragePooling2D (1, W, F1*D) (1, P1) (1, W/P1 , F1*D)

SeparableConv2D (1, W/P1 , F1*D) F2 (1, K2) (1, W/P1 , F2)

BatchNorm (1, W/P1 , F2) (1, W/P1 , F2)

ELU activation (1, W/P1 , F2) (1, W/P1 , F2)

AveragePooling2D (1, W/P1 , F2) (1, P2) (1, W/(P1*P2), F2)

Flatten (1, W/(P1*P2), F2) (W*F2)/(P1*P2)

Dense (W*F2)/(P1*P2) N

TABLE 2 Hyperparameter setting.

Hyperparameter II III IV-2a IV-2b

H 10 10 22 3

W 144 144 1,000 1,000

F1 8 8 8 8

F2 16 16 16 16

K1 72 72 64 64

K2 16 16 16 16

P1 4 4 4 4

P2 8 8 8 8

D 2 2 2 2

N 2 2 4 2

22 electrodes at 250 Hz sampling frequency and bandpass

filtered between 0.5 and 100 Hz. In this paper, as the same

data division in the competition, we use the 288 trials of

the first session as training and the 288 trials of the second

session as testing. In each trial, we only use a 4 s temporal

segment in our model, each sample can be represented

as a 2D-matrix of 22 × 1, 000, in which 22 represents the

number of electrodes and 1,000 represents the number of

sample points.

4.1.2. The BCI competition IV-2b dataset

The BCI competition IV-2b dataset is also collected from

nine healthy people (B01–B09) at a sample rate of 250 Hz but

only recorded from three electrodes placed at positions C3,

Cz, and C4. For each subject, 720 trials from two MI tasks,

including left-hand and right-hand movement imagination, are

performed. There are five sessions for each individual. The

first three sessions are for training, and the remaining two

are for testing as the same data division in the competition.

FIGURE 3

P300 speller paradigm.

In this paper, The 4 s temporal segment of each trial is

used as a sample, which can be represented as a 2D-matrix

of 3× 1, 000.
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4.1.3. BCI competition II—dataset IIb and BCI
competition III—dataset II

Both datasets are offered by Wadsworth Center, New York

State Department of Health. BCI Competition II—Dataset

IIb is composed of a single subject data collected in three

sessions containing 42 training and 31 testing characters. In BCI

Competition III—Dataset II, there are two subjects: Subject A

and Subject B. For each subject, the EEG signals are divided into

a training set (85 characters) and a testing set (100 characters).

In the experiments, the subject was presented with a 6 ×

6 matrix of characters shown in Figure 3. In 1988, Farwell

and Donchin developed this type of P300 speller paradigm

(Farwell and Donchin, 1988). The user was asked to concentrate

on the characters of a given word (one character at one

time). All six rows and six columns randomly and successively

intensified at 5.7 Hz. One row and one column out of these 12

intensive flashings contained the desired character. The sets of

12 intensifications were repeated 15 times for each character.

The EEG data were bandpass filtered between 0.1 and 60 Hz

and digitized at 240 Hz from 64 channels. In this paper, we

choose 10 electrodes, including Fz, Cz, Pz, Oz, C3, C4, P3, P4,

PO7, and PO8, in which the P300 signals are mainly generated.

Due to a positive response around 300 ms after the onset of

the stimulus in P300 ERP, we extract a time window of 600 ms

after intensification onset as the input for each trial. With the

collected frequency of 240Hz, a trial can be denoted as a 10×144

data matrix.

4.2. Implementation details

In the motor imagery classification experiment, the model is

implemented with the Keras framework and trained on Google

online platform (Colab). The Adam optimizer (Kingma and Ba,

2014) with a learning rate of 0.001 is employed to minimize

the cross-entropy loss function. The mini-batch size is set to

TABLE 3 Classification accuracies (%) obtained with the dataset BCI competition IV-2a.

Methods Subject Average ± SD

A01 A02 A03 A04 A05 A06 A07 A08 A09

FBCSP 76.00 56.50 81.25 61.00 55.00 45.25 82.75 81.25 70.75 67.75± 13.73

CCSP 84.72 52.78 80.90 59.38 54.51 49.31 88.54 71.88 56.60 66.50± 15.13

BOTDA 80.43 55.83 80.90 57.64 55.39 62.79 70.23 81.92 80.68 69.38± 11.95

EEGNet 85.76 61.46 88.54 67.01 55.90 52.08 89.58 83.33 86.81 74.50± 15.23

ConNet 76.39 55.21 89.24 74.65 56.94 54.17 92.71 77.08 76.39 72.53± 14.24

DEI 81.85 53.71 81.25 66.67 57.97 63.72 84.48 79.70 79.92 72.14± 11.66

DRDA 83.19 55.14 87.43 75.28 62.29 57.15 86.18 83.61 82.00 74.70± 12.96

DAJAN 86.46 68.75 93.06 85.42 72.57 63.54 95.49 85.76 83.68 81.52± 10.94

FTF 83.27 57.24 91.94 66.67 76.45 66.51 86.28 83.39 82.58 77.15± 11.34

DAFM 86.83 72.43 96.70 74.56 81.52 64.65 91.69 85.60 84.84 82.09 ± 10.02

Highest values are highlighted in boldface.

TABLE 4 Classification accuracies (%) obtained with the dataset BCI competition IV-2b.

Methods Subject Average ± SD

B01 B02 B03 B04 B05 B06 B07 B08 B09

FBCSP 70.00 60.36 60.94 97.50 93.12 80.63 78.13 92.50 86.88 80.01± 13.85

CCSP 63.75 56.79 50.00 93.44 65.63 81.25 72.81 87.81 82.81 72.70± 14.72

BOTDA 61.40 55.92 54.78 88.93 92.67 73.71 71.98 86.35 79.18 73.88± 14.18

EEGNet 68.44 57.86 61.25 90.63 80.94 63.13 84.38 93.13 83.13 75.88± 13.33

ConNet 76.56 50.00 51.56 96.88 93.13 85.31 83.75 91.56 85.62 79.37± 17.25

DEI 70.18 62.04 71.74 90.23 86.08 75.70 89.66 87.39 85.71 79.86± 10.17

DRDA 81.37 62.86 63.63 95.94 93.56 88.19 85.00 95.25 90.00 83.98± 12.67

DAJAN 83.44 58.57 59.06 98.13 96.56 84.38 86.25 92.81 87.81 83.00± 14.64

FTF 78.07 68.16 73.04 96.74 95.24 84.86 92.67 92.17 85.71 85.18± 10.17

DAFM 70.18 71.84 89.56 99.02 100.00 73.71 94.40 95.65 88.98 87.04 ± 11.95

Highest values are highlighted in boldface.
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16, dropout regularization is 0.2, and the epoch is 1,000. Batch

normalization is adopted to get better performance.

In the P300 detection experiment, the model is constructed

with the Keras framework on Google online platform (Colab)

and trained from scratch. The training procedure is performed

by minimizing the binary cross-entropy loss function. It is

guided by Stochastic Gradient Descent with Adam optimizer

(Kingma and Ba, 2014). The learning rate is set as 0.001. The

batch size is set to be 150, and the epoch is 300. Dropout

regularization with 0.5 is applied in our model. Batch shuffling

is implemented for better generalization.

4.3. Results on motor imagery datasets

4.3.1. Comparison results

In order to evaluate the effectiveness of our proposed

method, we compare it with other state-of-the-art methods,

including FBCSP (Ang et al., 2012), CCSP (Kang et al., 2009),

BOTDA (Peterson et al., 2021), EEGNet (Lawhern et al., 2018),

ConNet (Zhang Y. et al., 2020), DEI (Zhang C. et al., 2021),

DRDA (Zhao et al., 2020), DAJAN (Hong et al., 2021), and

FTF (Zhang K. et al., 2021). Tables 3, 4 show the classification

accuracies of each subject and the average accuracies of different

methods on BCI IV-2a and IV-2b datasets, respectively.

We observe that the proposed method achieves the highest

average classification accuracies of 82.09 and 87.04% on BCI IV-

2a and IV-2b datasets, respectively. Regarding the experimental

results of every subject, our method achieves accuracy above

70% except the A06 subject on both datasets. The best

classification accuracy is obtained at the A03 and B05 subjects

on BCI IV-2a and IV-2b datasets, respectively. Moreover, the

standard deviation (SD) of our method is lower than that of

other approaches on the BCI IV-2a dataset. On the BCI IV-

2b dataset, the SD of our method is lower than that of other

approaches except DEI and FTF. Generally, ourmethod achieves

the best results and has good stability on both MI datasets. The

main reason that our method outperforms traditional methods

is its nonlinear modeling ability which is the advantage of deep

learning methods. Our method also has superior performance

over other deep learning methods due to our proposed DAFM.

Compared with the simple CNN models such as EEGNet

and ConNet without dual attention mechanism, the proposed

module improves the performance of the model by selectively

amplifying valuable features and suppressing useless features

based on the data-driven attentive scores.

To evaluate the capacity of our method, we perform the

classification experiments on BCI IV-2a and IV-2b datasets

under both without DAFM and with DAFM, respectively. The

classification accuracies on both datasets are shown in Figure 4.

On the BCI IV-2a dataset, DAFM has different influence

on the classification accuracy for all subjects. The classification

accuracies of eight subjects improve. Only the performance

FIGURE 4

Classification accuracies across subjects with or without DAFM.

(A) BCI IV-2a. (B) BCI IV-2b.

on subject A09 slightly decreases. As shown in Figure 4B, the

performance of DAFM has a better performance across all

subjects. These encouraging findings show that the DAFM is

beneficial to MI classification and generate more discriminative

feature regardless different individuals.

4.3.2. Result of the confusion matrices

In this part, we use confusionmatrices to show the predictive

outcome of our method in each class. Confusion matrices on

BCI IV-2a and IV-2b datasets are presented in Figures 5, 6,

respectively. The vertical axis represents the true label, and the

horizontal one represents the predicted label. We randomly

select two subjects on the BCI IV-2a dataset (i.e., A03 and A04)

and BCI IV-2b dataset (i.e., B01 and B02).

First, on the BCI IV-2a dataset, for subject A03, we could

observe that the left hand, right hand and foot are easier

to be recognized than the tongue. By comparison between

Figures 5A,B, in which Figure 5A does not use our method, we

discover the classification accuracies of the four categories have

improved significantly, which demonstrates that our proposed

attention module is beneficial to the MI classification. Moreover,

the gap between different classes has narrowed. For subject

A04, it is obvious that the right hand and foot are easier

to be recognized than the left hand and tongue. We could
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FIGURE 5

Confusion matrices of BCI competition IV-2a datasets. (A) A03 without our method. (B) A03 with our method. (C) A04 without our method. (D)

A04 with our method.

FIGURE 6

Confusion matrices of BCI competition IV-2b datasets. (A) B01 without our method. (B) B01 with our method. (C) B02 without our method. (D)

B02 with our method.
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TABLE 5 Classification accuracy (%) on BCI competition II dataset.

Method Accuracy

CNN1 89.70

CNN3 87.54

CNNR 89.52

BN3 88.26

OCLNN 87.37

EEGNet 91.49

DeepConvNet 91.49

ShallowConvNet 88.62

Ours 93.64

Highest values are highlighted in boldface.

TABLE 6 Classification accuracy (%) on BCI competition III dataset.

Method Subject Average accuracy

A B

CNN1 85.25 89.08 87.17

CNN3 83.92 86.92 85.42

CNNR 84.83 89.17 87.00

BN3 84.67 90.33 87.50

OCLNN 85.33 90.58 87.96

EEGNet 86.92 91.75 89.34

DeepConvNet 87.00 90.50 88.75

ShallowConvNet 83.50 86.50 85.00

Ours 87.50 92.50 90.00

Highest values are highlighted in boldface.

discover that the proposed method increases the classification

rate between each class except the foot. However, without

using our method, other categories are easily misclassified as

foot, and by using our method, the misclassification rate has

decreased a lot.

Then, we analyze the confusion matrices of the BCI IV-

2b dataset, which has two classes. For subject B01, we can

find that the left hand is much easier to be recognized than

the right hand. Except this, we can see that the classification

effect of the left hand significant improves though the right

hand’s classification rate decreases slightly. The comparison

of Figures 6C,D indicates that our method improves the

classification performance for subject B02 and reduces the

misclassification rate of both classes.

4.4. Results on P300 datasets

4.4.1. Comparison results

We perform a series of experiments on the BCI Competition

II dataset and BCI Competition III dataset to further validate

FIGURE 7

The two classes heatmap result of DAFM on the BCI

Competition II dataset. (A) P300 signal. (B) Non-P300 signal.

the effectiveness of our method. We compare the classification

accuracies for our method with other state-of-the-art methods,

including CNN1 (Cecotti and Graser, 2010), CNN3 (Cecotti

and Graser, 2010), CNNR (Manor and Geva, 2015), BN3 (Liu

et al., 2018), OCLNN (Shan et al., 2018), EEGNet (Lawhern

et al., 2018), DeepConvNet (Zhang Y. et al., 2020), and

ShallowConvNet (Zhang Y. et al., 2020). The experimental

results on both datasets are shown in Tables 5, 6, respectively.

We observe that the proposed method improves clearly

compared to other approaches, with around 2.15% better than

the second-best method on the BCI Competition II dataset.

Table 6 shows that our method outperforms all the comparable

methods, obtaining an average accuracy of 90.00% on the BCI

Competition III dataset. Thus, the proposed method can achieve

the best performance on both datasets. The experimental results

demonstrate that DAFM provides a more accurate classification

outcome for P300 detection task.

To better demonstrate the role of the proposed method,

we also exhibit the weighed features learned by our method.
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FIGURE 8

The training loss and testing accuracy of BCI Competition II dataset and BCI Competition III dataset. (A) BCI Competition II dataset. (B) Subject A

of BCI Competition III dataset. (C) Subject B of BCI Competition III dataset.

Figure 7 shows the two classes heatmap result of DAFM on the

BCI Competition II dataset.

As shown in Figure 7, DAFM focuses on different ranges

of EEG signals for P300 detection. The deeper the color is, the

more attention the model pays to the corresponding part of EEG

signals. When recognizing the P300 signal, the model has a high

degree of attention around 300 ms time points due to a positive

peak appearing after 300 ms of the stimulus in the P300 signal.

In contrast, the feature map of the non-P300 signals has a more

scattered appearance over time. It is illustrated that the proposed

attentionmodule can automatically learn the priority of different

temporal points, which contributes to better performance.

4.4.2. The training loss and testing accuracy of
our method

We analyze the training loss and the testing accuracy of our

method on the BCI Competition II dataset and BCI Competition

III dataset. As is shown in Figure 8, the number of training

epochs is 300. It can be observed that the testing accuracy

increases quickly during the first 50 epochs and the training loss

is generally stable after training about 100 epochs. Therefore,

Our model exhibits a stable performance during the training

procedure, and we observe that it converges quickly.

5. Conclusion

This study proposes a novel DAFM framework to effectively

extract discriminative features from the EEG signals for different

EEG-based classification tasks. It leverages an interactive

attention module to generate the informative spatial-temporal

features. The experimental results, conducted on four widely-

used datasets, demonstrate that our method achieves superior

performance to state-of-the-art and baseline methods. Our

ablation experiments also confirm the effectiveness of our

method. In summary, our method could be regarded as a

potential approach to improve the performance of EEG-based

BCI systems.
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Due to a large amount of noise and artifacts in EEG signals,

the proposed method can alleviate the interference of noise

to a certain extent by focusing on useful information and

ignoring useless information, but it cannot eliminate them. In

the future, we plan to explore the more stable patterns of EEG

signals using attention mechanism. Meanwhile, the proposed

attention module will be extended to other tasks, such as image

classification, semantic segmentation, etc.
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Background: Spinal cord injury (SCI) may lead to impaired motor function,

autonomic nervous system dysfunction, and other dysfunctions. Brain-computer

Interface (BCI) system based on motor imagery (MI) can provide more scientific and

effective treatment solutions for SCI patients.

Methods: According to the interaction between brain regions, a coherence-

based graph convolutional network (C-GCN) method is proposed to extract the

temporal-frequency-spatial features and functional connectivity information of EEG

signals. The proposed algorithm constructs multi-channel EEG features based on

coherence networks as graphical signals and then classifies MI tasks. Different from

the traditional graphical convolutional neural network (GCN), the C-GCN method

uses the coherence network of EEG signals to determine MI-related functional

connections, which are used to represent the intrinsic connections between EEG

channels in different rhythms and different MI tasks. EEG data of SCI patients and

healthy subjects have been analyzed, where healthy subjects served as the control

group.

Results: The experimental results show that the C-GCN method can achieve the

best classification performance with certain reliability and stability, the highest

classification accuracy is 96.85%.

Conclusion: The proposed framework can provide an effective theoretical basis for

the rehabilitation treatment of SCI patients.

KEYWORDS

electroencephalogram, motor imagery, brain-computer interface, coherence-based graph
convolutional network, spinal cord injury

1. Introduction

Spinal cord injury (SCI) is a catastrophic disease, which can lead to the loss of motor and
sensory functions. In severe cases, it can lead to the interruption of some routes connecting
the brain and limbs. Many SCI patients experience chronic pain that is difficult to treat (Jensen
et al., 2005; Cardenas and Jensen, 2006). There are more than 3.7 million SCI patients in China,
with an annual incidence of about 90,000 new patients per year, and the annual incidence rate
is 17.9 to 60.2 people/million people. The motor dysfunction caused by SCI not only brings
serious physical and psychological harm to the patients themselves but also imposes a huge
economic burden on society and families (Aguilar et al., 2010). To reduce the harm caused by
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SCI patients, researchers have explored the changes in the brain of
SCI patients after chronic injury. Studies have shown that chronic
pain associated with SCI may be related to changes in brain activity
reflected in the electroencephalogram (EEG) (López-Larraz et al.,
2012), the differences in EEG reflect some extent the experience of
pain. At present, the EEG studies after SCI have the following aspects,
the changes in event-related synchronization/desynchronization
(ERD/ERS) after SCI, the changes in power spectrum occurring after
SCI, the changes in network characteristics of brain networks after
SCI, the changes in performance of brain-computer interface (BCI)
systems after SCI.

In recent years, motor imagery (MI)-based BCI systems have
become the focus of attention in the field of rehabilitation medicine,
such as neuro-robotics and neuro-prosthetic device control (Iturrate
et al., 2009; Millán et al., 2010; Escolano et al., 2011). The MI-BCI
system aims to deliver MI task interventions for SCI patients and
to assist in the formulation of rehabilitation programs to alleviate
patient suffering. As shown in Figure 1, MI-based BCI systems
mainly consist of four parts, signal acquisition, signal processing,
application, and feedback, use brain signals to control external
assistive devices (Collinger et al., 2014). Traditional SCI rehabilitation
training, which lacks the active participation of the patient and the
reconstruction of neural pathways is slow, is mainly based on the
passive movement by a patient to achieve the recovery of muscle
strength and the reconstruction of neural pathways. BCI technology
for SCI rehabilitation takes into account the functional coupling
between the patient’s MI intentions and the actual motor effects.
It is more in line with the theoretical requirements of neurological
reconstruction and can promote faster and better motor recovery in
SCI patients. In the study of MI-based BCI systems for SCI patients,
Müller-Putz et al. (2014) achieved an average accuracy of 66.1% using
common spatial pattern (CSP) algorithms and linear discriminant
analysis (LDA) for classification. Xu et al. (2022b) proposed Modified
Graph Convolutional Neural Network (M-GCN) method, which
performs time-frequency processing of data by modified S-transform
(MST) to improve decoding performance.

MI refers to the procedure of imagining limb actions without
actual limb movements (Zhang et al., 2018). Related studies have
shown that the sensorimotor cortical areas of the brain stimulated
by MI are the same as those stimulated by actual limb movement
(Azab et al., 2019). MI is considered to be a process involving
multiple higher cognitive functions (Rimbert et al., 2019). The
brain is a complex network, the information related to MI is
both spatially independent and interconnected, and brain network
correlation methods can investigate the functional mechanisms of
MI. EEG coherence provides an important estimate of the functional
interactions between neural systems in each frequency band and
is often used to assess the functional connectivity of the human
cortex (Srinivasan et al., 2007). Due to its targeting of functional
mechanisms, more and more people have begun to pay attention to
coherence networks and have used them to decode relevant cognitive
functions. Benefiting from MI therapy, patients with cortical damage
have better performance in functional recovery, and BCI investigators
achieve higher classification accuracy (Weiskopf et al., 2004).

Hinton and Salakhutdinov (2006) published a paper in Science
on the dimensionality reduction of data with neural networks,
which attracted great attention. AlexNet performed brilliantly in
the ImageNet image recognition competition (Krizhevsky et al.,
2017), which started the boom of deep learning (DL). Relying

on advances in various aspects such as large data volume, non-
convex optimization, hardware computation, and network structure,
DL methods represented by convolutional neural networks (CNN),
recurrent neural networks (RNN), and generative adversarial
networks (GAN) achieved excellent results in the processing of
regular data such as images, audio, video, and text. Deep neural
networks have achieved great success in data processing, more and
more people have begun to apply them to BCI systems. In 2022, Roy
(2022) proposed a multi-scale CNN (MS-CNN) model with intrinsic
feature integration for motor image EEG subject classification in the
BCI system. Supakar et al. (2022) used the recurrent neural networks-
Long Short-Term Memory (CNN-LSTM) method to analyze EEG
signal data to diagnose schizophrenia. Xu et al. (2022a) applied
the deep convolution generative adversarial network (DCGAN) to
rehabilitation-based BCI systems.

Deep learning frameworks generally have large models and many
parameters. They need higher amounts of training and requirements
for computing conditions. How to extend DL methods to irregular
data structures is a current research hotspot in the field of neural
networks. Data processing based on graph structures mainly involves
the representation learning of graph nodes, classification of graph
nodes, prediction of edges in graphs, classification of graphs, and
so on. Irregular data represented by graphs, such as traffic flow
networks with cities as nodes, molecular structure networks with
various types of atoms as nodes, and EEG structure networks
with electrodes as nodes, are playing an increasingly important
role in the storage of data and the description of relationships
between entities. To efficiently extract space features on this data
structure, graph convolutional network (GCN) is proposed. Chen
et al. (2020) proposed the E-GCN method to deeply mine the
relationship between EEG channels and to use it for the detection
of epileptic EEG signals. Zeng et al. (2020) proposed the hierarchical
graph convolution (HGCN) network for classification tasks using
topological relationships between each electrode, where power
spectral density and continuous wavelet transform features from the
raw EEG signal are used as frequency domain inputs.

The above methods only consider EEG channel location
relationships and do not explore functional linkages. Considering
the working mechanism for the division of labor and cooperation
between brain regions, the spatial location relationships and
functional linkages of EEG channels do not maintain their
consistency (Wang et al., 2019). In this paper, the coherence network-
based graph convolution (C-GCN) method is proposed to analyze
MI-based EEG data, the main contributions are as follows,

(1) Due to the fact that traditional GCN can only analyze
the spatial relationship of channels but not describe the
connection of brain functions, the C-GCN algorithm is
proposed to represent the temporal-frequency-spatial domain
representation of EEG data.

(2) Compared with Support Vector Machine (SVM), CNN,
EEGNet, RNN, LSTM, traditional GCN, M-GCN, Graph
Attention Network (GAT), and ResGCN, the proposed C-GCN
algorithm can obtain the best performance of 96.85% for two-
class MI recognition.

(3) The coherence network of EEG data at different frequency
bands from SCI patients and healthy subjects is used to perform
functional analysis and to provide rehabilitation training
guidance for SCI patients.
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FIGURE 1

Block diagram of motor imagery (MI)-based brain-computer interface (BCI) system. The system consists of four main parts: signal acquisition, signal
processing, application, and feedback.

FIGURE 2

The procedure for one electroencephalogram (EEG) signal acquisition trial. The duration of one trial is 7 s, including 3 s of rest state and 4 s of MI state.

FIGURE 3

Schematic diagram of electrode position distribution. (A) Three-dimensional electrode position distribution. (B) Two-dimensional electrode position
distribution. (C) Experimentally selected electrode position distribution.
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The rest content is arranged as follows, section “2. Experimental
data and experimental paradigm” introduces the experimental data.
Section “3. Materials and methods” introduces the pre-processing
work and the C-GCN model. Section “4. Results and discussions”
shows the experimental results and discussions. Finally, section “4.
Conclusion” summarizes the whole paper.

2. Experimental data and
experimental paradigm

The EEG data used in the experiment were collected from
the Department of Physical Medicine and Rehabilitation,

Qilu Hospital, Shandong University, and the protocol of this
experiment was approved by the Medical Ethics Committee of
Qilu Medical College, Shandong University [No. KYLL-2020(KS)-
475]. Before the experiment, all subjects signed an informed
consent form and were free from habitual medication, alcohol
consumption, and cognitive impairment. Experiments were
carried out in a closed environment where subjects were
undisturbed and attentive, E-Prime software was used for MI
stimulation, and 64-lead EEG signal acquisition system was
used to capture the subject’s EEG signals. Twenty-five subjects
were recruited for the experiment, including 18 SCI patients
and 7 healthy subjects, the healthy subjects serving as controls
in the experiment.

FIGURE 4

Motor imagery (MI) pattern recognition framework based on the coherence-based graph convolutional network (C-GCN) model. (A) Pre-processing of
EEG. (B) Construction of graphical signals. (C) Specific GCN structure.
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FIGURE 5

Classification performance of the coherence-based graph convolutional network (C-GCN) model. (A) Accuracy distribution of the C-GCN model.
(B) Loss distribution of the C-GCN model.

During the MI experiment, the subjects sat in front of the
instruction screen. Before each imaginary movement, the screen was
blank, which was a rest period to prevent visually evoked potentials,
that is, the time interval between two imaginary movements. After
the left and right arrow prompts appeared, the MI tasks began.
During this time, subjects began to imagine themselves performing
left-hand or right-hand movements, and the duration of the imagined
movements was 4 s. The experimental paradigm is shown in Figure 2.
Each group of experiments consisted of 20 randomly occurring MI
tasks, and each subject performed four groups of experiments with a
90 s rest period between every two groups. Each subject performed
80 trials, 40 each of the left-hand MI tasks and the right-hand MI
tasks, and the emergence of the left-hand and right-hand MI tasks
was randomized.

3. Materials and methods

3.1. Pre-processing

Electroencephalogram data are pre-processed before being fed
into the C-GCN model. Zero-reference processing is performed by
the reference electrode normalization technique (REST) (Xu et al.,
2014) to obtain artifact-free data. EEG signals are filtered by a fifth-
order Butterworth filter with 8–30 Hz to remove noise. Channel
selection and data segmentation techniques are also involved in
pre-processing procedure.

MI-related information is generally concentrated in specific
frequency bands, therefore during the EEG data filtering process,
the EEG data are divided into multiple data bands (µ rhythm,
β rhythm, µ, and β rhythms). To reduce the effect of volume
conduction between network nodes, 21 electrodes of 64 electrodes
(“Fp1”, “Fp2”, “F7”, “F3”, “Fz”, “F4”, “F8”, “T7”, “Cz”, “C4”, “T8”,
“P7”, “P3”, “Pz”, “P4”, “P8”, “O1”, “O2”, and “Oz”) are selected
for subsequent processing (Li et al., 2016), and the electrode
positions select for the experiment are shown in Figure 3. Resting-
state EEG shows spontaneous brain activity in the idle state,
whereas MI-state EEG records the event-related activity during
the desired task. One trial consists of 3 s resting state and 4 s

MI state. The MI state of EEG is employed for the analysis of
coherence network.

3.2. Coherence

The pre-processed EEG data are employed for coherence network
construction. Coherence is the squared correlation coefficient (Zhang
et al., 2015), which characterizes the connectivity between the brain
network channels of the MI tasks. Coherence, which is the degree
of linear correlation between two EEG signals x(t) and y(t) at
specific frequencies, is used to measure the strength of the interaction
between each pair of electrodes (Weiss and Mueller, 2003; Murias
et al., 2007). High coherence between the two EEG electrodes
indicates the contribution of synchronized neuronal oscillations
to each electrode, indicating functional integration between neural
populations. Low coherence indicates functional separation. The
coherence coefficients of the EEG signals x(t) and y(t) are defined as,

Cxy =

∣∣Pxy(f )
∣∣2

Pxx(f )Pyy(f )
(1)

where Pxy(f ) is the cross-spectral density of x(t) and y(t), Pxx(f ) and
Pyy(f ) are the self-spectral densities of x(t) and y(t), respectively.
Cxy

(
f
)

is the coherence at frequency f .
After the coherence calculation, the coherence is averaged over

the corresponding frequency band to obtain the final strength of
the connection between the two nodes. The coherence coefficient
takes values in the range of 0–1. When the coherence coefficient
is closer to 1, the two signals are more coherent. The coherence
network has 21 nodes due to the selected 21 channels of the subject.
Therefore, the EEG coherence network is constructed by a 21 × 21
weighting matrix.

3.3. C-GCN

In traditional convolutional networks, convolution essentially
uses a filter with shared parameters to extract spatial features by
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TABLE 1 Parameters values and experimental results of the
coherence-based graph convolutional network (C-GCN) model.

Label Parameters Value

1 Num_epochs 100

2 Batch_size 512

3 Regularization 0.001

4 Dropout 0.50

5 Learning_rate 0.01

6 Accuracy 96.85%

7 Loss 0.23

8 F1-Score 96.78%

computing a weighted sum of the central pixel and neighboring
pixels. Convolution is an operation between signals on a regular grid.
With the production of discrete data in the spatial domain, a graphical
representation is proposed. The properties of graphs are studied using
the eigenvalues and eigenvectors of the Laplacian matrix of the graph,
extending DL techniques to the domain of graphs. The graph can be
defined as,

G = (V, E, A) (2)

where V is the set of nodes, E is the set of edges, and A is the adjacency
matrix of the graph.

Let vi ∈ V denote a node and eij/∈E denote an edge from vi to vj.
The neighborhood of node v is defined as,

N(v) = {u ∈ V |(v, u) ∈ E } (3)

The adjacency matrix A is the diagonal matrix n× n. The
Laplacian matrix of a graph is defined as,

L = D− A (4)

where L is the Laplacian matrix and D is the degree matrix of
the graph.

Since L is a symmetric matrix, it can be singular value
decomposed (SVD) (Spielman, 2007), as follow,

L = U ∧ UT (5)

where U = [u0, · · · , uN−1] ∈ RN×N is the eigenvector matrix,
∧ = diag([λ0, · · · , λN ]) is the diagonal matrix.

GCN can be divided into two types of convolution including
spectral convolution and spatial domain convolution. Spectral
convolution is to filter both the convolutional network and graphical
signals into the Fourier domain and then process them. Spatial
domain convolution is to connect the nodes of the graph in the spatial
domain, implement a hierarchy, and then perform convolution.

The spectral convolution of the graph signal is defined as,

gθ∗x = UgθUTx (6)

where x ∈ RN , the filter is defined as gθ = diag(θ), θ ∈ RN is
parameter in the Fourier domain. U is consist of the eigenvectors
from the normalized Laplacian matrix, U is defined as,

L = IN − D−
1
2 AD−

1
2 = U ∧ UT (7)

where ∧ is a diagonal matrix, which is consist of the eigenvalues of
the Laplace matrix, UT is the Fourier transform of the graph.

To locate the filter in space and reduce its computational
complexity, the filter is approximated using a truncated expansion

FIGURE 6

F1-Score of the coherence-based graph convolutional network (C-GCN) model.
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TABLE 2 Classification accuracy of spinal cord injury (SCI) patients in the
coherence-based graph convolutional network (C-GCN) model at
different rhythms.

Subjects Method Accuracy%

µ rhythm β rhythm µ and β
rhythms

SCI_1 C-GCN 96.45 96.68 97.33

SCI_2 C-GCN 96.63 93.75 97.58

SCI_3 C-GCN 95.15 97.23 96.75

SCI_4 C-GCN 95.33 96.50 97.15

SCI_5 C-GCN 97.43 96.65 98.08

SCI_6 C-GCN 96.38 96.25 96.50

SCI_7 C-GCN 96.65 98.00 97.25

SCI_8 C-GCN 96.50 96.33 96.88

SCI_9 C-GCN 96.00 97.75 98.23

SCI_10 C-GCN 97.15 98.00 97.78

SCI_11 C-GCN 96.75 97.78 97.75

SCI_12 C-GCN 93.88 92.15 98.50

SCI_13 C-GCN 96.23 97.63 97.00

SCI_14 C-GCN 91.50 92.78 93.63

SCI_15 C-GCN 96.78 97.50 97.25

SCI_16 C-GCN 90.33 92.00 95.08

SCI_17 C-GCN 93.45 96.43 97.63

SCI_18 C-GCN 95.78 97.08 97.78

Average C-GCN 95.47 96.14 97.12

Standard
deviation

C-GCN 1.91 1.96 1.13

of a K-order Chebyshev polynomial (Defferrard et al., 2016). The
Chebyshev polynomial is defined as,

Tk(x) = 2xTK−1(x)− TK−2(x) (8)

where T0(x) = 1, T1(x) = x. Then, the signal x is filtered by a
k-domain filter y, which is defined as,

y = gθ(L)∗x =
k∑

k=0

θkTk(L̃)x (9)

where L̃ = 2L/λmax − INλmax represents the largest eigenvalue of L.
C-GCN is a model that combine coherence network with

GCN. The framework consists of two main modules, including
the construction of coherence-based graphical signals and pattern
recognition for GCN. Before feeding into the C-GCN model, EEG
data are first pre-processed as shown in Figure 4A. The input graphic
signals of the C-GCN model integrate the temporal-frequency-spatial
features from EEG data as shown in Figure 4B graphic signals of EEG
data are implemented by formula (1) (9). After the graphic signals
are constructed, EEG feature data is performed through two graph
convolution layers, two Relu layers (Glorot et al., 2011), two graph
pooling layers (Ouhmich et al., 2019), and one fully connected layer
(Xu et al., 2022c) to complete the MI tasks classification as shown in
Figure 4C.

The input of the C-GCN model is the pre-processed EEG time
series. The X in Figure 4B represents the temporal-frequency features

of EEG, the vertices in Figure 4B represent the EEG channels, and the
edges connecting the vertices represent the coherence connectivity
between electrodes. The purpose of performing graph convolution
operations is to extract more discriminative EEG features. The graph
convolutional layer is the core layer of C-GCN. To increase the non-
linearity of the C-GCN model, the Relu function (Nair and Hinton,
2010) is used to mitigate the appearance of fitting problems. When
the strength of the information is greater than a certain threshold, the
valve is opened and the information is passed, otherwise, the valve is
closed and the information is discarded. Graph pooling is a necessary
module for GCN to perform classification, this module aggregates the
previous results to obtain a smaller-scale representation of the graph.
Graph pooling can be described as follows,

P : (G = (V, E, A), Y)→ (G′ = (V ′, E′, A′), Y ′) (10)

where the array of graph G and corresponding node feature matrix Y
are mapped to a smaller array of graph G′ and corresponding node
feature matrix Y′. In a multilayer GCN, the operation of the pooling
layer is correspondingly expressed as,

P : (Gl = (Vl, El, Al), H(l))

→ (Gl+1 = (Vl+1, El+1, Al+1), H(l+1)) (11)

Then, a fully connected (FC) output layer is employed for
integrating global information from the graphs of the previous
localization filters. Finally, the Softmax function (Han et al., 2018)
is used for classification and recognition. In the C-GCN model,
the cross-entropy loss function is used to optimize the network
parameters, and the cross-entropy loss is expressed as follows,

Loss = −
∑

x
(p(x) log q(x)+ (1− p(x)) log(1q(x)))+ λK(w) (12)

where p(x) denotes the true value of the training data, q(x) denotes
the predicted value of the training data, K(w) is used to evaluate
the model complexity and λK(w) is aimed at preventing over fitting
of the model. In summary, the EEG data based on the MI tasks
are trained and tested in C-GCN to obtain classification recognition
results. Algorithm 1 is a summary of the classification training steps
of the C-GCN model.

Require: the pre-processed EEG signals,

the class labels corresponding to the

EEG signals, the numbers of Chebyshev

polynomial order k;

Ensure: The desired model parameters of

C-GCN;

1: for pre-processed EEG signals do

2: Cxy =
|Pxy(f )|2

Pxx(f )Pyy(f )
3: end for

4: for graphical signals do

5: L = IN − D−
1
2 AD−

1
2

6: L̃ = 2L/λmax − INλmax

7: Tk(L̃)(k = 0, 1, · · · , K − 1)

8:
∑K−1

K=0 θkTk(L̃)x
9: end for

10: Calculate the results of convolution

after activation, FC layer, and Loss.

Algorithm 1. Training procedure of the C-GCN model.
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FIGURE 7

Classification performance of spinal cord injury electroencephalogram (SCI EEG) in the coherence-based graph convolutional network (C-GCN) model.
This includes the classification accuracy under µ rhythm, β rhythm, µ and β rhythms.

4. Results and discussions

4.1. C-GCN

The classification performance is an important measure of data
quality, and can also provide ideas for the rehabilitation of SCI
patients. In the experiment, EEG data of 18 SCI patients have been
trained and validated on the proposed C-GCN model with the cross-
validation method. The 90% of the data set have been employed for
training and the 10% of the data set have been used for validation.
The parameters of the model and the experimental results are shown
in Table 1. In the C-GCN model, the accuracy of SCI patients can
achieve 96.85%. The accuracy and Loss are shown in Figure 5, the
F1-Score is shown in Figure 6. The experimental results show that
the C-GCN model has a high signal-to-noise ratio, good adaptability,
and robustness to individual specificity. The model can guide the
rehabilitation training and subsequent treatment of SCI patients.

To verify the difference of EEG data in MI tasks at different
frequencies and the superiority of the C-GCN model, this paper also
conducted experiments on µ rhythm, β rhythm, µ and β rhythms of
18 SCI patients respectively, the experimental results are shown in
Table 2. In Figure 7, good classification accuracy can be obtained in
µ rhythm, β rhythm, µ and β rhythms. There are slight differences in
the classification results at different frequencies. In the vast majority
of these cases, the classification accuracy of the MI tasks under µ

and β rhythms is higher than that under µ or β rhythms alone,
and the classification results of the MI tasks under β rhythms are
higher than those under µ rhythms. This result indicates that the µ

and β rhythms contains more information on MI in SCI patients,
the MI information in the µ rhythm is less than that in the β

rhythm. The information contained in the µ and β rhythms is more
valuable for the rehabilitation research of SCI patients. The intra-
individual classification accuracy of SCI patients is not significantly

different from the overall classification accuracy. Table 2 indicates
that the proposed C-GCN model has very strong adaptability and can
mitigate the effects due to individual differences and the number of
data samples.

In the experiment, healthy subjects as the control group. The
classification accuracy of the EEG data under different rhythms
in the C-GCN model for healthy subjects in Table 3. To observe
the experimental results of the healthy subjects more visually, the
classification results are presented in the form of histograms. In
Figure 8, the experimental results of healthy subjects at different
rhythms have the same regularity as those of SCI patients. The highest
classification accuracy is obtained at the µ and β rhythms, followed
by the second highest classification accuracy at the β rhythm and

TABLE 3 Classification accuracy of healthy subjects in the
coherence-based graph convolutional network (C-GCN) model at
different rhythms.

Subjects Method Accuracy%

µ rhythm β rhythm µ and β
rhythms

Sub_1 C-GCN 88.33 90.78 94.63

Sub_2 C-GCN 94.00 96.33 97.50

Sub_3 C-GCN 93.88 95.43 95.75

Sub_4 C-GCN 96.23 97.67 98.38

Sub_5 C-GCN 96.67 97.38 97.63

Sub_6 C-GCN 91.68 94.50 95.25

Sub_7 C-GCN 96.15 96.88 97.63

Average C-GCN 93.85 95.57 96.68

Standard
deviation

C-GCN 2.78 2.21 1.34

Frontiers in Neuroscience 08 frontiersin.org67

https://doi.org/10.3389/fnins.2022.1097660
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-16-1097660 January 11, 2023 Time: 10:50 # 9

Li et al. 10.3389/fnins.2022.1097660

FIGURE 8

Classification performance of healthy subjects electroencephalogram (EEG) in the coherence-based graph convolutional network (C-GCN) model. This
includes the classification accuracies under µ rhythm, β rhythm, µ and β rhythms.

FIGURE 9

Classification performance of spinal cord injury electroencephalogram (SCI EEG) in different classification models. These include SVM, EEGNet, RNN,
LSTM, CNN, GCN, M-GCN, GAT, ResGCN, and C-GCN models.

the lowest at the µ rhythm. Analysis of the mean accuracies revealed
that the classification accuracy of SCI patients is slightly higher than
that of healthy subjects at either rhythm and that the difference in

accuracy between rhythms is lower in SCI patients than in healthy
subjects. Combined with the self-assessment form of the subjects’
EEG acquisition procedure and the SCI pathology analysis, it is found
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FIGURE 10

Coherence connectivity maps of motor imagery (MI) tasks in different frequency bands for spinal cord injury electroencephalogram (SCI EEG). These
include left-hand and right-hand coherence connections under µ rhythm, β rhythm, µ and β rhythms.

FIGURE 11

The Coherence connectivity maps of motor imagery (MI) tasks in different frequency bands for healthy subjects electroencephalogram (EEG). These
include left-hand and right-hand coherence connections under µ rhythm, β rhythm, µ and β rhythms.

that SCI is more focused during the EEG acquisition experiment
and the quality of the collected EEG data is higher. Whereas healthy
subjects have more active minds and are more easily influenced by
their surroundings.

To verify the high performance of the model, this paper
compares SVM (Kaper et al., 2004), EEGNet (Lawhern et al.,
2018), RNN (Patnaik et al., 2017), LSTM (Wang et al., 2018),
CNN (Zhou et al., 2018), M-GCN (Xu et al., 2022b), GAT (Demir
et al., 2022), traditional GCN, and ResGCN with C-GCN. 18 SCI
patients’ EEG data are involved in the training and testing of
the above models. SVM is a traditional machine learning method
whose classification performance may be affected by the extracted

features and configuration parameters. EEGNet uses deep separable
convolution to build EEG-specific models. RNNs memorize the
previous information and apply it to the computation of the current
output. LSTM is a special type of RNN that learns long-term
dependent information. CNN can improve performance, but cannot
effectively use the spatial information of EEG data. Traditional
GCN only considers the spatial location relationships of channels,
without considering the intrinsic connections of brain functions.
M-GCN and ResGCN are improve patterns based on the traditional
GCN. GAT, which helps to focus on the important information in
the data, is a combination of graph neural network and attention
layer. By selecting the optimal model parameters, the classification
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performance of each model can achieve the highest level. The
classification results of SCI patient EEG data for the MI tasks in the
SVM, EEGNet, RNN, LSTM, CNN, GCN, and C-GCN models are
shown in Figure 9. The highest classification accuracy of 96.85% can
been obtained from the C-GCN model. Compare with other models,
the C-GCN model is 29.50% higher than the lowest SVM model.

4.2. Coherence networks

Electroencephalogram coherence can generate network and
functional integration information across brain regions. Any pair
of EEG signals may be coherent in some frequency bands and
incoherent in others. In the experiment, EEG coherence under µ

rhythm, β rhythm, µ and β rhythms of SCI patients are analyzed
separately, and the results are shown in Figure 10. According
to the coherence network connectivity maps of SCI patients, it
is found that SCI patients appear more obviously lateralized as
well as long-range connections in the frontal-occipital lobe when
performing left-hand and right-hand MI tasks. During performing
the left-hand MI task, the connection between the frontal lobe
(F8) and the parietal lobe (C4) is stronger under µ rhythm. The
connection between F8 and C4 is weakened under β rhythm. In
the µ and β rhythms, in addition to a strong connection at C4,
the connection between the left frontal lobe (F7) and the right
brain region becomes stronger. For right-handed subjects, the left
brain also participates in processing relevant information during
the execution of left-hand MI tasks to ensure task completion.
When performing right-hand MI, the connectivity between the
F3 and the C3 is enhanced under µ and β rhythms. In µ

and β rhythms, the F3 and the C3 have a stronger connection.
Meanwhile, the connectivity between the F7 and the parietal and
occipital lobes is enhanced. In summary, C4 and its nearby electrode
connectivity are enhanced when performing left-hand MI. C3 and
its nearby electrode connectivity are enhanced when performing
right-hand MI.

The coherence networks of healthy subject’s EEG data under
µ rhythm, β rhythm, µ and β rhythms have shown in Figure 11.
Healthy subjects have shown more significant laterality when
performing the MI tasks. When performing left-hand MI, the
connectivity is stronger in the parietal lobe (C4), and some electrodes
in the left brain (e.g., F7) are also stronger connected to the right
brain. In particular, C4 connectivity is strongest within the µ and
β rhythms, followed by the β rhythm, and the µ rhythm is weakest
in comparison. When performing right-hand MI, the connectivity of
the parietal lobe (C3) and P7 is enhanced in the µ rhythm. The C3 is
enhanced and the P7 connection is weakened under β rhythm. The
connectivity of the C3 connection is strongest and the P7 connection
is also enhanced under µ and β rhythms. In summary, C4 and partial
electrode connectivity in the left brain is enhanced during the left-
hand MI. C3 connectivity is enhanced during the performance of
right-hand MI.

The coherence network in Figures 10, 11 have shown that the
connection density of each electrode in SCI patients is significantly
higher than healthy subjects. The connections are mainly existed
on the prefrontal and occipital lobes. The Fp1, Fpz, and Fp2 have
stronger connectivity than the other electrodes under µ rhythm,
β rhythm, µ and β rhythms. The F7 in the SCI patients show
higher connectivity density than in the healthy subjects under
µ and β rhythms. Between the prefrontal and occipital lobes,

the SCI patients have significantly more long-range connections
than the healthy subjects. It can be inferred that the motor
functional areas and sensory functional areas are damaged after
SCI. The long-range connections existing between the frontal
and occipital lobes of SCI patients are blocked. The cortical
functional reorganization, neural activity increases, and functional
compensation occurs in related brain areas. The differences of the
coherence network between SCI patients and healthy subjects can
be used to evaluate SCI, it is important for the clinical rehabilitation
of SCI.

5. Conclusion

Spinal cord injury brings a lot of inconvenience to patients’ life. It
is necessary to provide effective and scientific rehabilitation treatment
methods. MI-based BCI system plays an increasingly important role
in the rehabilitation treatment of SCI patients. The C-GCN model has
been proposed to be applied for MI-based BCI system, which mainly
consists of two parts, coherence network and GCN. The coherence
network can analyze the intrinsic functional connectivity of the
brain and fully exploit the relevant information between channels.
GCN can connect the graphical information based on the functional
connectivity of the brain to the fully connected layer and can learn the
information of the surrounding nodes in the graphical signals. The
C-GCN method combines the coherence network with GCN, retains
the advantages of the two networks, and provides a guarantee for the
classification and recognition of MI tasks in SCI patients. Specifically,
the proposed algorithm uses a coherence matrix to characterize the
relationship between channels, EEG features as graphical data and
finally performs MI tasks classification recognition. The experiments
are conducted in SCI patients and healthy subjects, the highest
classification accuracy for the MI tasks in SCI patients is 96.85%,
and the results are better than with six other classifiers. The average
individual accuracy under µ rhythm for the MI pattern recognition
in SCI patients is 95.47%, the average individual accuracy under
β rhythm is 96.14%, and the average individual accuracy under
µ and β rhythms is 97.12%. These experiments have proved that
the C-GCN approach is reliable and effective. Furthermore, the
C-GCN approach can provide a new strategy for the rehabilitation
of SCI patients.
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graph attention networks for classification of electroencephalogram (EEG) signals,” in
Proceeding of the 2022 44th annual international conference of the IEEE engineering
in medicine & biology society (EMBC), (IEEE), 30–35. doi: 10.1109/EMBC48229.2022.
9871984

Escolano, C., Antelis, J., and Minguez, J. (2011). A telepresence mobile robot controlled
with a noninvasive brain–computer interface. IEEE Trans Syst Man Cybern Part B
Cybern. 42, 793–804. doi: 10.1109/TSMCB.2011.2177968

Glorot, X., Bordes, A., and Bengio, Y. (2011). “Deep sparse rectifier neural networks,”
in Proceedings of the fourteenth international conference on artificial intelligence and
statistics, 315–323.

Han, Z., Liu, Z., Vong, C., Liu, Y., Bu, S., Han, J., et al. (2018). Deep spatiality:
unsupervised learning of spatially-enhanced global and local 3D features by deep neural
network with coupled softmax. IEEE Trans Image Proc. 27, 3049–3063. doi: 10.1109/TIP.
2018.2816821

Hinton, G., and Salakhutdinov, R. (2006). Reducing the dimensionality of data with
neural networks. Science. 313, 504–507. doi: 10.1126/science.1127647

Iturrate, I., Antelis, J., Kubler, A., and Minguez, J. (2009). A noninvasive
brain-actuated wheelchair based on a P300 neurophysiological protocol and
automated navigation. IEEE Trans Robot. 25, 614–627. doi: 10.1109/TRO.2009.202
0347

Jensen, M., Hoffman, A., and Cardenas, D. (2005). Chronic pain in individuals with
spinal cord injury: a survey and longitudinal study. Spinal Cord. 43, 704–712. doi: 10.
1038/sj.sc.3101777

Kaper, M., Meinicke, P., Grossekathoefer, U., Lingner, T., and Ritter, H. (2004). BCI
competition 2003-data set IIb: support vector machines for the P300 speller paradigm.
IEEE Trans Biomed Eng. 51, 1073–1076. doi: 10.1109/TBME.2004.826698

Krizhevsky, A., Sutskever, I., and Hinton, G. (2017). Imagenet classification with deep
convolutional neural networks. Commun ACM. 60, 84–90. doi: 10.1145/3065386

Lawhern, V., Solon, A., Waytowich, N., Gordon, S., Hung, C., and Lance, B. (2018).
EEGNet: a compact convolutional neural network for EEG-based brain–computer
interfaces. J Neural Eng. 15, 056013. doi: 10.1088/1741-2552/aace8c

Li, F., Chen, B., Li, H., Zhang, T., Wang, F., Jiang, Y., et al. (2016). The time-varying
networks in P300: a task-evoked EEG study. IEEE Trans Neural Syst Rehabil Eng. 24,
725–733. doi: 10.1109/TNSRE.2016.2523678

López-Larraz, E., Antelis, J., Montesano, L., Gil-Agudo, A., and Minguez, J. (2012).
“Continuous decoding of motor attempt and motor imagery from EEG activity in spinal
cord injury patients,” in Proceeding of the 2012 annual international conference of the IEEE
engineering in medicine and biology society, (IEEE), 1798–1801. doi: 10.1109/EMBC.2012.
6346299

Millán, J., Rupp, R., Mueller-Putz, G., Murray-Smith, R., Giugliemma, C., Tangermann,
T., et al. (2010). Combining brain–computer interfaces and assistive technologies: state-
of-the-art and challenges. Front Neurosci. 4:161. doi: 10.3389/fnins.2010.00161

Müller-Putz, G., Daly, I., and Kaiser, V. (2014). Motor imagery-induced EEG patterns
in individuals with spinal cord injury and their impact on brain–computer interface
accuracy. J Neural Eng. 11, 035011. doi: 10.1088/1741-2560/11/3/035011

Murias, M., Swanson, J., and Srinivasan, R. (2007). Functional connectivity of frontal
cortex in healthy and ADHD children reflected in EEG coherence. Cereb Cortex. 17,
1788–1799. doi: 10.1093/cercor/bhl089

Nair, V., and Hinton, G. (2010). “Rectified linear units improve restricted boltzmann
machines,” in Proceedings of the international conference on machine learning (ICML)
(Haifa: PMLR).

Ouhmich, F., Agnus, V., Noblet, V., Heitz, F., and Pessaux, P. (2019). Liver tissue
segmentation in multiphase CT scans using cascaded convolutional neural networks. Int
J Comput Assist Radiol Surg. 14, 1275–1284. doi: 10.1007/s11548-019-01989-z

Patnaik, S., Moharkar, L., and Chaudhari, A. (2017). “Deep RNN learning for EEG
based functional brain state inference,” in Proceeding of the 2017 international conference
on advances in computing, communication and control (ICAC3), (IEEE), 1–6.

Rimbert, S., Gayraud, N., Bougrain, L., Clerc, M., and Fleck, S. (2019). Can a subjective
questionnaire be used as brain-computer interface performance predictor? Front Hum
Neurosci. 12:529. doi: 10.3389/fnhum.2018.00529

Frontiers in Neuroscience 12 frontiersin.org71

https://doi.org/10.3389/fnins.2022.1097660
https://doi.org/10.1523/JNEUROSCI.0379-10.2010
https://doi.org/10.1109/TNSRE.2019.2923315
https://doi.org/10.1080/10790268.2006.11753864
https://doi.org/10.1080/10790268.2006.11753864
https://doi.org/10.1111/cts.12086
https://doi.org/10.1109/EMBC48229.2022.9871984
https://doi.org/10.1109/EMBC48229.2022.9871984
https://doi.org/10.1109/TSMCB.2011.2177968
https://doi.org/10.1109/TIP.2018.2816821
https://doi.org/10.1109/TIP.2018.2816821
https://doi.org/10.1126/science.1127647
https://doi.org/10.1109/TRO.2009.2020347
https://doi.org/10.1109/TRO.2009.2020347
https://doi.org/10.1038/sj.sc.3101777
https://doi.org/10.1038/sj.sc.3101777
https://doi.org/10.1109/TBME.2004.826698
https://doi.org/10.1145/3065386
https://doi.org/10.1088/1741-2552/aace8c
https://doi.org/10.1109/TNSRE.2016.2523678
https://doi.org/10.1109/EMBC.2012.6346299
https://doi.org/10.1109/EMBC.2012.6346299
https://doi.org/10.3389/fnins.2010.00161
https://doi.org/10.1088/1741-2560/11/3/035011
https://doi.org/10.1093/cercor/bhl089
https://doi.org/10.1007/s11548-019-01989-z
https://doi.org/10.3389/fnhum.2018.00529
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-16-1097660 January 11, 2023 Time: 10:50 # 13

Li et al. 10.3389/fnins.2022.1097660

Roy, A. (2022). An efficient multi-scale CNN model with intrinsic feature
integration for motor imagery EEG subject classification in brain-machine
interfaces. Biomed Signal Process Control. 74, 103496. doi: 10.1016/j.bspc.2022.
103496

Spielman, D. (2007). “Spectral graph theory and its applications,” in Proceeding of
the 48th annual IEEE symposium on foundations of computer science (FOCS’07), (IEEE),
29–38.

Srinivasan, R., Winter, W., Ding, J., and Nunez, P. (2007). EEG and MEG
coherence: measures of functional connectivity at distinct spatial scales of
neocortical dynamics. J Neurosci Methods. 166, 41–52. doi: 10.1016/j.jneumeth.2007.
06.026

Supakar, R., Satvaya, P., and Chakrabarti, P. (2022). A deep learning based model using
RNN-LSTM for the detection of schizophrenia from EEG data. Comput Biol Med. 2022,
106225. doi: 10.1016/j.compbiomed.2022.106225

Wang, P., Jiang, A., Liu, X., Shang, J., and Zhang, L. (2018). LSTM-based EEG
classification in motor imagery tasks. IEEE Trans. Neural Syst Rehabil Eng. 26, 2086–2095.
doi: 10.1109/TNSRE.2018.2876129

Wang, Z., Tong, Y., and Heng, X. (2019). Phase-locking value based graph
convolutional neural networks for emotion recognition. IEEE Access. 7, 93711–93722.
doi: 10.1109/ACCESS.2019.2927768

Weiskopf, N., Mathiak, K., Bock, S., Scharnowski, F., Veit, R., Grodd, W., et al. (2004).
Principles of a brain-computer interface (BCI) based on real-time functional magnetic
resonance imaging (fMRI). IEEE Trans Biomed Eng. 51, 966–970. doi: 10.1109/TBME.
2004.827063

Weiss, S., and Mueller, H. (2003). The contribution of EEG coherence to
the investigation of language. Brain Lang. 85, 325–343. doi: 10.1016/S0093-934X
00067-1

Xu, F., Dong, G., Li, J., Yang, Q., Wang, L., Zhao, Y., et al. (2022a). Deep convolution
generative adversarial network-based electroencephalogram data augmentation for
post-stroke rehabilitation with motor imagery. Int J Neural Syst. 32, 2250039. doi: 10.
1142/S0129065722500393

Xu, F., Li, J., Dong, G., Li, J., Chen, X., Zhu, J., et al. (2022b). EEG decoding method
based on multi-feature information fusion for spinal cord injury. Neural Netw. 156,
135–151. doi: 10.1016/j.neunet.2022.09.016

Xu, F., Xu, X., Sun, Y., Li, J., Dong, G., Wang, Y., et al. (2022c). A framework for
motor imagery with LSTM neural network. Comput Meth Prog Biomed. 218, 106692.
doi: 10.1016/j.cmpb.2022.106692

Xu, P., Xiong, X., Xue, Q., Li, P., Zhang, R., Wang, Z., et al. (2014). Differentiating
between psychogenic nonepileptic seizures and epilepsy based on common spatial
pattern of weighted EEG resting networks. IEEE Trans Biomed Eng. 61, 1747–1755.
doi: 10.1109/TBME.2014.2305159

Zeng, D., Huang, K., Xu, C., Shen, H., and Chen, Z. (2020). Hierarchy
graph convolution network and tree classification for epileptic detection on
electroencephalography signals. IEEE Trans Cogn Dev Syst. 13, 955–968. doi: 10.1109/
TCDS.2020.3012278

Zhang, R., Yao, D., Valdés-Sosa, P., Li, F., Li, P., Zhang, T., et al. (2015). Efficient
resting-state EEG network facilitates motor imagery performance. J Neural Eng. 12,
066024. doi: 10.1088/1741-2560/12/6/066024

Zhang, Y., Nam, C., Zhou, G., Jin, J., Wang, X., Cichocki, A., et al. (2018). Temporally
constrained sparse group spatial patterns for motor imagery BCI. IEEE Cybern. 49,
3322–3332. doi: 10.1109/TCYB.2018.2841847

Zhou, M., Tian, C., Cao, R., Wang, B., Niu, Y., Hu, T., et al. (2018). Epileptic seizure
detection based on EEG signals and CNN. Front Neuroinform. 12:95. doi: 10.3389/fninf.
2018.00095

Frontiers in Neuroscience 13 frontiersin.org72

https://doi.org/10.3389/fnins.2022.1097660
https://doi.org/10.1016/j.bspc.2022.103496
https://doi.org/10.1016/j.bspc.2022.103496
https://doi.org/10.1016/j.jneumeth.2007.06.026
https://doi.org/10.1016/j.jneumeth.2007.06.026
https://doi.org/10.1016/j.compbiomed.2022.106225
https://doi.org/10.1109/TNSRE.2018.2876129
https://doi.org/10.1109/ACCESS.2019.2927768
https://doi.org/10.1109/TBME.2004.827063
https://doi.org/10.1109/TBME.2004.827063
https://doi.org/10.1016/S0093-934X00067-1
https://doi.org/10.1016/S0093-934X00067-1
https://doi.org/10.1142/S0129065722500393
https://doi.org/10.1142/S0129065722500393
https://doi.org/10.1016/j.neunet.2022.09.016
https://doi.org/10.1016/j.cmpb.2022.106692
https://doi.org/10.1109/TBME.2014.2305159
https://doi.org/10.1109/TCDS.2020.3012278
https://doi.org/10.1109/TCDS.2020.3012278
https://doi.org/10.1088/1741-2560/12/6/066024
https://doi.org/10.1109/TCYB.2018.2841847
https://doi.org/10.3389/fninf.2018.00095
https://doi.org/10.3389/fninf.2018.00095
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-16-1088116 January 25, 2023 Time: 10:13 # 1

TYPE Original Research
PUBLISHED 25 January 2023
DOI 10.3389/fnins.2022.1088116

OPEN ACCESS

EDITED BY

Ernest N. Kamavuako,
King’s College London, United Kingdom

REVIEWED BY

Yajing Si,
Xinxiang Medical University, China
Lotfi Chaari,
Institut National Polytechnique de Toulouse,
France

*CORRESPONDENCE

Fangzhou Xu
xfz@qlu.edu.cn

Jiancai Leng
jiancaileng@qlu.edu.cn

Jiyou Tang
jytang001@sohu.com

Shanshan Lu
lushanshan819@163.com

SPECIALTY SECTION

This article was submitted to
Neuroprosthetics,
a section of the journal
Frontiers in Neuroscience

RECEIVED 03 November 2022
ACCEPTED 30 December 2022
PUBLISHED 25 January 2023

CITATION

Xu F, Zhao J, Liu M, Yu X, Wang C, Lou Y, Shi W,
Liu Y, Gao L, Yang Q, Zhang B, Lu S, Tang J and
Leng J (2023) Exploration of sleep function
connection and classification strategies based
on sub-period sleep stages.
Front. Neurosci. 16:1088116.
doi: 10.3389/fnins.2022.1088116

COPYRIGHT

© 2023 Xu, Zhao, Liu, Yu, Wang, Lou, Shi, Liu,
Gao, Yang, Zhang, Lu, Tang and Leng. This is an
open-access article distributed under the terms
of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in
other forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in this
journal is cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

Exploration of sleep function
connection and classification
strategies based on sub-period
sleep stages
Fangzhou Xu1*, Jinzhao Zhao1, Ming Liu1, Xin Yu1,
Chongfeng Wang1, Yitai Lou1, Weiyou Shi1, Yanbing Liu1,
Licai Gao1, Qingbo Yang2, Baokun Zhang3, Shanshan Lu3,4*,
Jiyou Tang3,4* and Jiancai Leng1*
1International School for Optoelectronic Engineering, Qilu University of Technology (Shandong Academy of
Sciences), Jinan, China, 2School of Mathematics and Statistics, Qilu University of Technology (Shandong
Academy of Sciences), Jinan, China, 3Department of Neurology, Shandong Institute of Neuroimmunology,
Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, The First Affliated Hospital of
Shandong First Medical University, Shandong Provincial Qianfoshan Hospital, Jinan, China, 4Department of
Neurology, Cheeloo College of Medicine, Shandong Qianfoshan Hospital, Shandong University, Jinan,
Shandong, China

Background: As a medium for developing brain-computer interface systems, EEG

signals are complex and difficult to identify due to their complexity, weakness,

and differences between subjects. At present, most of the current research on

sleep EEG signals are single-channel and dual-channel, ignoring the research on

the relationship between different brain regions. Brain functional connectivity is

considered to be closely related to brain activity and can be used to study the

interaction relationship between brain areas.

Methods: Phase-locked value (PLV) is used to construct a functional connection

network. The connection network is used to analyze the connection mechanism and

brain interaction in different sleep stages. Firstly, the entire EEG signal is divided into

multiple sub-periods. Secondly, Phase-locked value is used for feature extraction on

the sub-periods. Thirdly, the PLV of multiple sub-periods is used for feature fusion.

Fourthly, the classification performance optimization strategy is used to discuss the

impact of different frequency bands on sleep stage classification performance and

to find the optimal frequency band. Finally, the brain function network is constructed

by using the average value of the fusion features to analyze the interaction of brain

regions in different frequency bands during sleep stages.

Results: The experimental results have shown that when the number of sub-

periods is 30, the α (8–13 Hz) frequency band has the best classification effect, The

classification result after 10-fold cross-validation reaches 92.59%.

Conclusion: The proposed algorithm has good sleep staging performance, which

can effectively promote the development and application of an EEG sleep staging

system.
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1. Introduction

With the development of society, more and more people
have the problem with sleep disorders, and how to diagnose
and intervene in early sleep disorders is particularly important
(Miyata et al., 2007; Younes, 2017). Although electroencephalography
(EEG), electrocardiogram (ECG), electromyogram (EMG), and other
physiological signals can be used for sleep staging (Yan et al.,
2019), EEG signals contain more information and can better reflect
the overall information. Sleep staging is the basis of sleep quality
assessment. The traditional EEG sleep stage division still requires
sleep experts to manually divide according to special brain waves and
duration (Ronzhina et al., 2012). The procedure is time-consuming,
laborious, and subject to subjective errors (Chapotot and Becq, 2010).
The automatic sleep staging method plays an important role in the
early diagnosis and intervention of sleep disorders.

In 1968, R&K (Wolpert, 1969) divided sleep into awake, rapid eye
movement (REM), and non-rapid eye movement (NREM) stages, of
which NREM is further subdivided into four stages: S1, S2, S3, and S4.
Because the S3 and S4 stages are similar, the American Academy of
Sleep Medicine (AASM) (Berry et al., 2012a) modified the R&K rule,
which used N1, N2, and N3 to represent the different stages of NREM,
and merged S3 and S4 into the N3 stage. Most studies interpret sleep
stages sequentially according to the 30 s recording frame, and if the
30 s is divided into multiple segments, some unique features may be
found. In the study of Diykh and Li (2016), the authors divided the
EEG signal period of the 30 s into 75 sub-periods and then extracted
12 statistical features from each sub-period. This study achieved 92%
classification of 6 sleep stages. Seo et al. (2020) used a convolutional
neural network (CNN) to extract features from signal sub-bands
and used bi-directional long short-term memory (BiLSTM) to learn
the temporal context of representative features. The features learned
from continuous signal sub-bands in this study can represent the
temporal characteristics of EEG signals, but important sleep-related
events may only appear in some special sub-bands (Weber et al.,
2021), so it is also necessary to consider the temporal characteristics
of EEG signals. Characteristics of learning different brain activities
in signaling sub-bands. An et al. (2021) mapped multiple signal
wavelets to the amplitude axis and the time axis, respectively, and
extracted statistical classification features from the mapped feature
information, The accuracy of the classification of sleep stages 5 and 6
sleep stages reached 89.18 and 88.42%. In summary, the key to EEG
sleep staging is how to obtain effective classification features and find
optimal features from EEG signals in multiple sub-periods.

To obtain effective classification features, researchers have
proposed many traditional feature extraction methods, which are
divided into the following four types: (1) time domain features.
(2) frequency domain features. (3) time-frequency domain features.
(4) nonlinear features. (Gunnarsdottir et al., 2018) extracted time-
domain and frequency-domain features from PSG signals, using data
from healthy people, and using a decision table classifier to classify
the extracted attributes, with an overall classification accuracy of
80.70%. da Silveira et al. (2016) used discrete wavelet transform
techniques to analyze the changes in sleep behavior in different
frequency ranges, extracted skewness, kurtosis, and variance features
from the corresponding input channels, and evaluated the ability of
random forest classifiers to distinguish different sleep stages. Tests
were carried out and the results showed an overall accuracy of 90%.
Zhu et al. (2014) proposed a sleep stage classification method based

on the time and frequency domain features of single-channel EEG
signals. EEG signals were mapped onto visibility maps and level maps
to detect gait-related movements, and the nine features extracted
from the input signal were forwarded to the support vector machines
(SVM) classifier that considers multiple sleep stages. The method
achieved 87.50% accuracy for the two-state sleep stage classification
problem. Tabar et al. (2021) used a bootstrapping method guided by
mutual information to partition sleep stages into a low-dimensional
feature space and used fewer features to classify sleep stages. In recent
years, deep learning methods have been widely used in sleep stage
classification. Seo et al. (2020) proposed a deep learning model intra-
and inter-epoch temporal context network (IITNet), for learning
intra and inter-epoch temporal context from raw single-channel
EEG for automatic sleep scoring, this model has been tested on the
Sleep-EDF, Montreal Archive of Sleep Studies (MASS), and Sleep
Heart Health Study (SHHS) datasets and obtained the accuracies
of 83.9, 87.2, and 86.7%. Mousavi et al. (2019) proposed a network
architecture including 9 convolutional layers and 2 fully connected
layers to extract features from raw EEG signals, this automatic
identification method used single-channel EEG signals to classify 2–
6 sleep-like stages. Khalili and Asl (2021) used a CNN to extract
features and then employed a temporal convolutional neural network
to extract temporal features from the feature vector extracted by
CNN, respectively, in Sleep-EDF-2013 and Sleep-EDF-2018 two
datasets got 85.39 and 82.46% classification accuracy.

Most of the existing feature extraction methods extract features
from a single channel (Terzano et al., 2001; Tagliazucchi et al.,
2013; Tagliazucchi and Laufs, 2014; Lv et al., 2015; Desjardins
et al., 2017; Stevner et al., 2019; Fu et al., 2021), the calculation
is also performed separately on a single channel. The amount
of information obtained through a single channel does not fully
characterize the changes in brain activities during sleep, making
it difficult to explore sleep stage information from a global level.
Current research mainly uses functional magnetic resonance imaging
(fMRI) to analyze brain function in different brain regions. The
fMRI has confirmed that each sleep stage is associated with specific
functional connectivity patterns (Goldberger et al., 2000; Berry et al.,
2012b; Brignol et al., 2012). Brain functional network is a relatively
new measure to characterize the exchange of information between
brain regions by calculating the temporal correlation or coherence
between them (Baptista et al., 2010; Siettos and Starke, 2016;
Rattenborg et al., 2020). EEG-based brain functional connectivity
is increasingly being used in sleep studies to differentiate sleep
disorders from healthy individuals (Liu et al., 2010; Gao et al., 2015;
Guo et al., 2019). Functional connectivity is employed to explore
synchronization mechanisms between different brain regions and
sleep stage classification accuracy. At present, the common methods
to analyze brain functional connections are phase-locked value (PLV)
(Diykh et al., 2018), directional transfer function (DTF) (Brázdil
et al., 2009), coherence (Bortel and Sovka, 2006), granger causality
analysis (GCA) (Chen et al., 2019), and mutual information (MI)
(Caballero-Gaudes et al., 2013). PLV is a classical method to construct
a functional network. PLV is only sensitive to phase but not amplitude
and is often used to measure the phase synchronization between
two signals. Compared with other synchronization measures, PLV
is easy to operate and can keep the same information level as more
complex indicators. In this manuscript, PLV is used to construct brain
networks in different sleep stages.

The functional network is used to analyze the brain interaction
and connection mechanism in different sleep stages. In this
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manuscript, the methods of multi-sub-periods and different
frequency bands are proposed to decode EEG signals in different
sleep stages. The main contributions are as follows,

(1) The PLV method is used to find the optimal frequency band
and sub-period numbers. The experimental results have shown that
when the number of sub-periods is 30, the α (8–13 Hz) frequency
band has the best classification performance.

(2) The multiple sub-periods are used for feature fusion. The
classification performance optimization strategy is used to obtain an
accuracy of 92.59%.

(3) In the optimal frequency band, a functional connection
network is constructed to explore the brain interaction and
connection mechanism in different sleep stages. The specific process
is shown in Figure 1.

The rest of this study is organized as follows. Sections “2.
Materials” and “3. Methods” describe the materials and methods.
Section “4. Experimental results and analysis” shows all results.
Sections “5. Discussion” and “6. Conclusion” provide a discussion
and a summary of future work, respectively.

2. Materials

This manuscript uses the Cyclic Alternating Pattern (CAP) sleep
database (Diykh et al., 2016; Yüce and Yaslan, 2016), available on
the PhysioNet website. There are 108 different subjects of sleep
diseases and health in CAP database, including 92 sleep disorders
subjects and 16 healthy subjects. The dataset includes at least 3
EEG channels, EOG, EMG, bilateral anterior tibial EMG, respiratory
signal, and ECG. The sampling frequency is 512 Hz To better analyze
the relationship between sleep state and brain regions, the calculation
of functional brain network connectivity requires as many channels
as possible. According to the international 10–20 system, FP2-F4, C4-
P4, P4-O2, FP1- F3, C3-P3, P3-O1, and other 6 channels are analyzed.
Because some subjects have no polysomnography data and reduce the
influence of age on brain connectivity. Four healthy subjects and six
nocturnal patients with frontal lobe epilepsy are used for analysis.
These subjects are No. 3, No. 5, No. 10, and No. 11 in the healthy
group and No. 3, No. 6, No. 11, No. 15, No. 16, and No. 21 in the
nfle group. According to the latest sleep rules, S3 and S4 sleep stages
are combined into the N3 sleep stage. The basic information on these
subjects and epochs will be shown in Table 1.

3. Methods

3.1. Data preprocessing and channel
selection

During human sleep, the stages of sleep change gradually, and
there are no clear boundaries between different stages of sleep. This
manuscript uses the data of the CAP database to segment the EEG
into 30-s segments. For sleep stages, the adopted 30-s period comes
from the R&K and AASM rules (Diykh et al., 2018), and related
work has also revealed that 30-s period lengths are feasible for
characterizing intrinsic brain activities (Phan et al., 2018; Zhou et al.,
2020). The 30-s data is divided into 5-Sub (6 s), 10-Sub (3 s), 15-Sub
(2 s), 20-Sub (1.5 s) and 30-Sub (1 s) methods. In addition, the data

are filtered in five frequency bands, namely δ (0.5–4 Hz), θ (4–8 Hz),
α (8–13 Hz), β (13–30 Hz), and γ (30–40 Hz).

In this manuscript, the adaptive channel selection algorithm
in gradient boosting (GB) classifier has been proposed to achieve
the optimal channel selection. The data of 12 channels in the
CAP database have been connected in a one-to-one way. Different
thresholds in the matrix have been set to find channels with good
connectivity. Five different numbers of EEG channels, which include
12 channels, 10 channels, 8 channels, 6 channels, and 4 channels, have
been selected for comparison. The 10-fold cross validation has been
employed to verify the validation of the proposed algorithm.

3.2. Multi-subsegment strategy

It can be seen from Figure 2 that the specific steps of the
multi-sub-segment strategy are divided the 30-s signal into multiple
consecutive signal sub-periods, the divided multi-sub-periods do not
overlap. In addition, the divided sub-periods are divided into sub-
periods of the same length according to the sample size of the 30-s
signal, as shown in Figure 2.

Let L be a 30-s sleep EEG data sample with a length of (30∗512).
When the number of sub-periods is set to be long Ls, the length of the
divided sub-periods satisfies the following constraints:

L = Ls ∗ Ns (1)

Ns is the number of sub-periods divided by the sleep period. L is the
sub-period length. The sampling frequency in the CAP sleep database
is 512 Hz, and the length of the data sample is 30 s, so the specific
calculation of the length of the sub-period can be as follows,

Ls = L/Ns = (30 ∗ 512)/Ns = 15360/Ns (2)

According to the above formula, the number of sub-periods
Ns plays an important role in the experiment. By setting an
appropriate number of sub-periods, effective classification features
can be obtained from the divided sub-periods, and at the same time,
redundancy can be properly handled. In addition, the division of
multiple sub-periods is also related to the computational complexity
of feature extraction, the features extracted from consecutive sub-
periods have time-series features for analyzing sleep signals. 30-s data
has been divided into sub-period data. In general, 30-s data can be
divided into 30 sub-periods. The sleep stages of sub-periods have been
recognized by the proposed algorithm. 30 classification results can
be obtained from the 30 sub-periods. The final classification result
of a 30-s data can be obtained from the highest result from the sub-
periods. The classification is at this stage, and different numbers of
sub-segments are used for comparative experiments to improve the
overall classification results.

3.3. Phase lock value

For network analysis of sleep signals, the construction of the
brain network is the basis of research and is crucial for network
analysis. In this manuscript, the processed data are used to construct
the brain network of sleep signals. The nodes involved in the
brain network refer to the electrodes used in the data acquisition
procedure, the connection between the networks refers to the
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FIGURE 1

The flow diagram of the proposed framework.

TABLE 1 Basic information about each subject and period numbers of each stage.

Condition Age N1 N2 N3 R W All stage All time

Sub1 Healthy 35 49 347 279 188 136 999 499.5 min

Sub2 Healthy 35 49 413 303 232 10 1,007 503.5 min

Sub3 Healthy 23 2 261 308 215 67 853 426.5 min

Sub4 Healthy 28 6 266 344 380 56 1,052 526 min

Sub5 Nfle 29 72 419 209 261 136 1,097 548.5 min

Sub6 Nfle 32 37 323 236 190 24 810 405 min

Sub7 Nfle 31 28 320 366 279 27 1,020 510 min

Sub8 Nfle 29 19 417 274 227 97 1,034 517 min

Sub9 Nfle 30 9 398 131 152 109 799 399.5 min

Sub10 Nfle 27 31 209 257 254 78 801 400.5 min

FIGURE 2

Sub-period division method direct PLV feature fusion decision choice.

functional connection between any two nodes (this study mainly
considers the functional connection network). According to whether
the flow of information between nodes is concerned, the constructed
brain network can be divided into a directed network and an
undirected network. There are many ways to build a network. For
the construction of directed networks, the commonly used methods
mainly include directional transfer function, granger causality, partial

directional coherence, and so on. There are also many methods for
constructing undirected networks, such as correlation, coherence,
phase locking, and phase lag.

This manuscript adopts PLV to assess brain functional
connectivity (Lachaux et al., 1999). PLV is widely used to measure
the phase synchronization between each pair of electrodes. The
reason is that PLV is only sensitive to the phase. Compared with
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FIGURE 3

Schematic diagram of the classification strategy. (A) The original signal is directly subjected to PLV for classification. (B) Feature-level fusion for
classification. (C) Multi-sub-segment classification for decision selection.

FIGURE 4

Communication strength of all channels.
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TABLE 2 Selection of different channels and running time of
every 100 events.

Channel selection Acc (%) Time/100 events

C4-P4, P4-O2, C3-P3, P3-O1 79.8 1.62 s

Fp2-F4, C4-P4, P4-O2, Fp1-F3,
C3-P3, P3-O1

83.2 2.27 s

Fp2-F4, F4-C4, C4-P4, P4-O2, F8-T4,
Fp1-F3, C3-P3, P3-O1

81.7 3.11 s

Fp2-F4, F4-C4, C4-P4, P4-O2, F8-T4,
Fp1-F3, F3-C3, C3-P3, P3-O1, F7-T3

77.6 4.31 s

All channel 73.6 5.25 s

other methods, the PLV method is simple to operate. PLV is
the comparison between channel iand channel j. A high PLV
value indicates a strong coupling relationship between the pair of
electrodes (Quiroga et al., 2010). Therefore, PLV is used to construct
the corresponding brain network in this manuscript. The calculation
formula of PLV is defined as follows,

PLV =

∣∣∣∣∣∣ 1
N

N−1∑
j=0

ei18(t)

∣∣∣∣∣∣1φ(t) = φx(j1t)− φy(j1t) (3)

Among them, N represents the number of samples of the sleep
signal, and t represents the sampling period, the two-time series are
(x) t and

(
y
)
t, the two instantaneous phases are φx (t) and φy (t). Six

EEG channels are used in the experiment, and a 6∗6 PLV symmetric
matrix has been obtained from each period, and each value in the
matrix represented the coupling relationship of a pair of channels.
In addition, brain network analysis between sleep stages is compared
with the PLV matrix. The PLV matrices for each sleep stage are
averaged and brain networks are constructed based on thresholds.
The threshold is chosen from the maximum value that does not
appear outlier in the network.

3.4. Fusion strategy

For the assessment of brain functional connectivity in different
frequency bands and different numbers of sub-periods, three
strategies of feature processing are used to classify sleep stages.
The features mentioned here are the brain functional connectivity
features extracted from the processed data. The three methods are,
(1) Directly extract functional connectivity features from the 30-s
EEG data. (2) Stack the functional connectivity features extracted
from multiple sub-periods, and then input the features as a whole
into the classifier. (3) Directly analyze the functional connectivity
features of sub-periods Perform classification, and then take the mode
of the classification result as the result of the entire 30-s segment.
The specific description is shown in Figure 3. Divide the 30-s data
into 5, 10, 15, 20 and 30 segments according to Section “3.1. Data
preprocessing and channel selection.” The proposed three methods
are used to experiment with the segmented data.

Because method C may result in the same number of
classifications for certain two categories, a sub-classifier is designed
to re-extract the data with the same classification results, transfer it
to the sub-classifier, perform binary classification, and use the binary
classification result as the final classification result.

3.5. Classifier

This manuscript adopts a support vector machine (SVM)
with a Gaussian kernel function, which is implemented in
the LibSVM library (Cortes and Vapnik, 1995; Chang and
Lin, 2000). The way to achieve multi-class classification is
to use a one-to-one strategy. Classification performance is
evaluated from sleep stage accuracy for three strategies of
classification across frequency bands. 80% of the samples are
used for model training, the remaining 20% are used as test
data.

4. Experimental results and analysis

4.1. Channel selection and band
comparison

The channel selection proposed in Section “3.2. Multi-
subsegment strategy” has been tested. In Figure 4, the connectivity
coefficients of double channels and all combinations have been
separately calculated. In Table 2, the best performance has been
obtained when six channels are selected.

To reduce algorithm complexity, irrelevant channels or noisy
channels have been eliminated, the feature dimension has been
reduced. The calculation burden have been reduced. The algorithm
operation efficiency and algorithm performance have been improved.

To evaluate the effectiveness of the method proposed in this
manuscript, feature extraction is performed directly on the 30 s EEG
data using the feature extraction method described in Section “2.
Materials.” The results obtained by inputting the features into the
classifier can demonstrate the classification performance of the PLV
as a feature, and the classification results can be further compared
with the classification results of the proposed multi-sub feature
learning. In addition, the evaluation metrics used in this manuscript
include accuracy (Acc), sensitivity (Recall), positive predictive value
(Ppv), and F1 score (F1). Based on the experimental data in the
second part, the five frequency ranges of δ (0.5–4 Hz), θ (4–
8 Hz), α (8–13 Hz), β (13–30 Hz), and γ (30–40 Hz) are tested,
respectively. A 5-category sleep staging task is tested. The specific
classification results of these five frequency bands are shown in
Table 3.

According to the sleep staging results in Table 3, the overall
classification accuracy of the five frequency bands can be obtained
as 59.4, 72, 77.8, 70.3, and 69.4%, respectively. It can be seen that
the accuracy of the α (8–13 Hz) frequency band (Acc), sensitivity
(Recall), positive predictive value (Ppv), F1 score (F1), and other
evaluation indicators are better than other frequency bands. On
the test set, the α (8–13 Hz) frequency band has the highest
classification accuracy for EEG signals, which is 75%, and the δ

(0.5–4 Hz) frequency band has the lowest classification accuracy
for EEG signals, which is 59.4%. The specific situation is shown in
Figure 5.

The classification performance of these five frequency bands on
classification tasks is comprehensively analyzed. The classification
results of N1 in the θ (4–8 Hz) frequency bands are significantly
higher than other frequency bands. The classification accuracy is
better than other frequency bands.
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TABLE 3 The classification results of five types of sleep stages by directly
extracting features from 5-band EEG.

N1 N2 N3 W R

δ (0.5–4 Hz)

Recall 0.8 0.67 0.5 0.52 0.47

Ppv 0.72 0.56 0.51 0.66 0.5

F1 0.76 0.61 0.5 0.58 0.48

Acc (%) 59.4%

θ (4–8 Hz)

Recall 0.95 0.75 0.53 0.63 0.73

Ppv 0.9 0.66 0.73 0.76 0.59

F1 0.93 0.70 0.62 0.69 0.65

Acc (%) 72%

α (8–13 Hz)

Recall 0.71 0.82 0.78 0.75 0.83

Ppv 0.79 0.82 0.76 0.75 0.67

F1 0.66 0.82 0.77 0.75 0.74

Acc (%) 77.8%

β (13–30 Hz)

Recall 0.55 0.87 0.65 0.63 0.8

Ppv 0.61 0.70 0.78 0.79 0.65

F1 0.58 0.78 0.71 0.70 0.72

Acc (%) 70.3%

γ (30–40 Hz)

Recall 0.6 0.83 0.52 0.73 0.77

Ppv 0.9 0.71 0.61 0.76 0.57

F1 0.72 0.77 0.56 0.75 0.65

Acc (%) 69.4%

4.2. Sub-period feature fusion

Based on the abovefive classification tasks for PLV to realize
sleep signal, the features obtained by PLV in multiple sub-periods
are subjected to feature fusion and are compared with the features

TABLE 4 Accuracy of classification of sleep stages by five frequency bands
and five sub-periods under the sub-period feature fusion method.

δ (0.5–
4 Hz)

θ (4–
8 Hz)

α (8–
13 Hz)

β (13–
30 Hz)

γ (30–
40 Hz)

5-Sub 63.33% 69.04% 71.73% 70.59% 67.58%

10-Sub 71.67% 75.70% 78.77% 78.20% 72.97%

15-Sub 75.00% 80.59% 79.69% 76.89% 75.68%

20-Sub 78.33% 84.89% 87.00% 81.93% 83.10%

30-Sub 81.67% 86.81% 88.63% 83.82% 81.76%

extracted from the original signal. The raw EEG is divided into
multiple consecutive signal sub-periods that do not overlap, while
each piece of raw data uses a different wavelet number to obtain
different classification performances. The number of sub-periods is
5, 10, 15, 20, and 30 for five experiments, the number of segments is
not suitable for more than 30, because the duration of the K-complex
wave and spindle wave needs to be greater than 0.5 s.

The same classification model is used to divide the sleep stages
into five classifications, the optimal feature set can be selected for the
classification performance. According to the comparison results in
Section “3.1. Data preprocessing and channel selection,” the proposed
algorithm uses the sleep EEG signal in the α (8–13 Hz) frequency
band for experimental testing. The specific experimental results are
shown in Table 4.

As shown in Table 4, the accuracy of the multi-segment feature
fusion method is 10.83%. The multi-segment feature fusion method
can obtain higher classification performance than the method of
directly connecting the original signal through brain function. The
accuracy of the 30-segment method is the highest, and the accuracy
of sleep staging in the α-band reaches 88.63%.

FIGURE 5

The results of the 5-band EEG direct feature extraction for 5 types of sleep stages.
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TABLE 5 Accuracy of classification of sleep stages in five frequency bands
and five sub-periods under sub-period decision-making sleep stage
classification method.

δ (0.5–
4 Hz)

θ (4–
8 Hz)

α (8–
13 Hz)

β (13–
30 Hz)

γ (30–
40 Hz)

5-Sub 78.33% 84.59% 91.06% 92.02% 81.08%

10-Sub 83.33% 87.82% 91.42% 91.39% 89.19%

15-Sub 83.33% 92.00% 94.27% 92.65% 87.84%

20-Sub 85.00% 92.30% 94.84% 93.28% 90.54%

30-Sub 88.33% 93.04% 96.42% 94.12% 89.19%

4.3. Sub-period decision-making sleep
stage classification

The sub-period features are extracted according to the optimal
frequency band and the number of sub-periods is found in Section
“3.2. Multi-subsegment strategy,” the features extracted from sub-
periods are directly classified, because the result of the classification
is the result of the sub-period, and it cannot represent the category of
the original EEG. The divided data are recombined in chronological
order. In the combined classification results, the classification result
with the most categories is found. As shown in Table 5, it still shows
the best classification performance in the α band. The accuracy of 30
sub-period reaches 96.42%. During the experiment, there are cases
where the probability of belonging to two or more sleep stages is
the same. To solve this problem, the extracted features are input into
the binary classifier and the performance of the binary classification
is the best. Aiming at the problem of the same probability of sleep
stages, the extracted features are re-input to the proposed algorithm
to optimize the classification performance strategy and find the final
classification result. Figure 6 shows the combination of 5 types of
sleep stages, a total of 10 kinds of results, in which the abnormal

value appears in the case of N1 Vs W, the classification accuracy
is only 79.1%, the average classification accuracy of the remaining
9 combinations is 95.27%, multiple sub-classifiers has chosen to
handle this situation. Table 5 shows the classification results of the
functionally linked features for different sub-period numbers.

4.4. Contrast experiment

According to the optimal frequency band and the optimal
number of sub-periods found in Section “4.3. Sub-period decision-
making sleep stage classification,” a number of comparative tests
have been conducted. The comparison includes classification by
using various classifiers. The classifiers used in the classification are
LibSVM, GB, random forest, k-nearest neighbor (KNN), and CNN.
The specific classification results are shown in Figure 7. It can be seen
from Figure 7 that the classification effect of LibSVM is better than
the other three classifiers as a whole. The accuracy of the method
using CNN is low, probably because the extracted features are the
features between channels, and the convolution kernel destroys the
relative position relationship. Common brain network connection
methods include PLV, DTF, coherence, GCA, and MI. The optimal
frequency band and the optimal number of sub-periods are analyzed
under different connection modes. The concrete results are shown in
Figure 8, PLV connection method is better than other methods.

4.5. Cross-validation

According to the above experiments, direct PLV feature
extraction, multi-sub-period feature fusion, and multi-sub-period
decision-making methods are carried out, respectively, and finally,
30 sub-period features are found to have the best classification effect
for decision-making. The EEG signals of different subjects have

FIGURE 6

Pairwise classification results for sub-period data.
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FIGURE 7

Compare different classifiers.

FIGURE 8

Compare different connection methods.

TABLE 6 Sleep classification results after cross-validation.

N1 N2 N3 W R

Recall 0.96 0.85 0.89 0.96 0.96

Ppv 0.96 0.92 0.86 0.93 0.96

F1 0.96 0.88 0.87 0.95 0.96

Acc (%) 92.59%

individual differences, the generalization of the proposed algorithm
cannot be guaranteed. Therefore, the method needs to be further
evaluated for different subjects to test the performance of the method.
To demonstrate the effectiveness of the proposed method, the 10-
fold cross-validation experiments are conducted between subjects,
selecting one subject as the test data and the other subjects as
the training set. Since the training dataset and test dataset do not
contain EEG samples of the same subjects, cross-validation between
subjects can well reflect the generalization of the proposed in practical
applications. The α (8–13 Hz) frequency band is used for testing with
30 sub-periods, the final cross-validation results are shown in Table 6.
For the experimental results in Table 6, it is found that the final result
for the 5-class sleep stage classification is 92.59%, although this result
is lower than the result of the random division, the cross-validated
method can overcome the randomness of the data.

4.6. Brain network analysis of PLV

The PLV values in different stages of the α frequency band of
healthy people are combined in pairs. Figure 9 shows the comparison

FIGURE 9

Comparison of brain network connectivity in different sleep stages in
theα frequency band.

of connectivity in different sleep stages, where the red line represents
the former with high connectivity, the blue line is the opposite.

In Figure 9, each line represents the connectivity coefficient
between each pair of channels. It can be observed that the overall
connectivity of the N1 stage is greater than that of the REM stage, that
of the N2 stage is greater than that of the N3 stage, the connectivity of
the N3 and W stages is generally smaller than that of the REM stage.
The connectivity between the left and right brains in the N1 stage
is stronger than that in the N2 stage, but the connectivity between
the occipital, parietal, and frontal lobes is weaker than that in the
N2 stage. Compared with the N3 stage, the left and right brains of
the N1 stage are weaker The connectivity between them is stronger
than that in the N3 stage, but the direct connectivity between the
frontal and parietal lobes in different brain regions is also greater
than that in the N3 stage. For the comparison of N2, W, and REM
stages, the connectivity between the left and right brains in the N2
stage is smaller than that in the REM stage, and in the W stage, the
connectivity between different brain regions is stronger.

5. Discussion

The main purpose of this study is to study the performance
of multi-channel EEG signals on sleep staging, obtain effective
fusion features using multiple sub-periods, propose a classification
optimization strategy, and use the brain function network to analyze
the physiological phenomenon of sleep staging. Therefore, a feature
learning method of multi-sub-period brain functional network is
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TABLE 7 Comparison of automatic sleep stage classification algorithms.

References Description Performance (%)

Database: CAP

Signals: EEG

Sharma et al., 2021 Channel: F4-C4, C4-A1 Accuracy:

Classification: 6-class A: Balance data
B: Imbalance data

(A):92.8
(B):85.3

Features: wavelet decomposition

Classifier: EBT

Database: CAP

Signals: EEG

Tripathy et al., 2020 Channel: F4-C4, C4-P4, P4-O2, C4-A1

Classification: 6-class Accuracy: 71.68

Features: Dispersion entropy and Bubble entropy

Classifier: Hybrid classifier

Database: CAP

Zhao et al., 2022 Signals: EEG
Channel: C3-A2, C4-A1

Classification: 5-class [W vs. S1 vs. S2 vs. (S3 + S4) vs. REM] Accuracy: 78.8

Features: Convolution feature

Classifier: RNN

Database: CAP

Signals: EEG

Channel: FP2-F4,C4-P4,P4-O2,FP1-F3,C3-P3,P3-O1

Our method Classification: 5-class [W vs. S1 vs. S2 vs. (S3 + S4) vs. REM] Accuracy: 92.59

Features: Interval connectivity coefficient

Classifier: LibSVM

proposed, which can analyze the features of functional brain network
in time series. Comparing the multi-sub-segment and non-multi-
sub-segment classification results, the classification accuracy of 30-
Sub of 98.63% is significantly better than the original data, and at
the same time, it is higher than other classification performances
with different numbers of sub-segments. Setting a different number
of sub-segments will have different classification effects. For example,
in the case of 20-Sub, the classification of the REM stage is better
than the division of other sub-segments, which shows that the
features extracted in 20-Sub are more suitable for the classification
of the REM stage. Different sub-divisions have different classification
effects on feature learning, so the relationship between the optimal
number of sub-segments and features will be studied in future work.
This manuscript explores multi-Sub EEG feature learning for multi-
channel EEG sleep staging, which has important potential to improve
the application of sleep staging.

Through the analysis of different frequency bands, it is found that
the α frequency band has a good performance in classifying sleep
stages. For example, in the AASM standard for the classification of
sleep stages, the interpretation of the W stage is to record a series of
sinusoidal brain waves of 8–13 Hz in the occipital area. The amplitude
can be decreased when eyes are open. In addition, α activity may be
more pronounced in REM than in N1, the α frequency in REM is
usually 1–2 Hz slower than in W. At the same time, the related work
of others also have revealed the important role of the α frequency
band in sleep staging. Dkhil et al. (2017) proposed the importance of
the α band in the assessment of drowsiness. Knaut et al. (2019) found
that changes in α oscillations reflect different brain states associated

with different levels of wakefulness and thalamic activity. Figure 9
shows the differences in the brain connectivity of different sleep stages

in the α frequency band. For example, in stages N2 and N3, the overall

connectivity of N2 is greater than that of stage N3. This phenomenon

indicates that the connections between brain regions are relatively

close. The overall connectivity difference between the N1 and N2

stages is not very obvious, but there is a clear gap in the connectivity

between the left and right brain regions.

The proposed framework is compared with the state-of-the-art

in sleep stage classification studies, as shown in Table 7. Sharma

et al. (2021) recently used the CAP database to decompose EEG

epochs into sub-bands using a new class of optimized wavelet

filters, the norm features were computed from the six sub-bands

coefficients of the optimal wavelet filter bank, which were processed

by ensemble of bagged tree (EBT). The ensemble of classifiers

obtained 85.3% of unbalanced classification results and 92.8% of

balanced data. Tripathy et al. (2020) used 25 subjects for 6 sleep-like

stage classification. The CAP database was employed for processing

and obtained the classification of 71.68%. This database includes 6

healthy, 7 insomniacs, 1 brux, 1 breathing disorder, and 10 REM

behavior disorder patients. Zhao et al. (2022) used CNN to learn the

representative features of each sleep stage, feedback on these feature

sequences to recurrent neural network (RNN), and learn the context

information of sleep stages in chronological order.
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6. Conclusion

The framework of dividing sleep stages by multi-sub-segment
brain functional connectivity has been proposed. The original EEG
signal is filtered into different frequency bands, and the PLV is
calculated for the processed data, respectively. The PLV value
represents the connectivity coefficient between different channels,
the PLV matrix calculated in different sub-periods is used as
a feature to find the optimal frequency band according to the
performance of sleep stage classification. Then, the filtered data is
divided into different numbers of sub-periods, the PLV matrices
of the sub-periods are calculated, the features of different numbers
of sub-periods are feature-fused, the optimal number of sub-period
classifications is found by the classification performance after feature
fusion. Finally, the classification performance optimization strategy
is used for classification, the brain network is constructed by
PLV to explore the mechanism of brain functional connectivity.
Firstly, to test the proposed method, extensive experiments have
been performed on the sleep dataset CAP. The classification results
are tested and analyzed using two test methods, random data
partitioning and inter-subject cross-validation. The final results are
96.42 and 92.59%. These results have demonstrated the effectiveness
and robustness of the proposed multi-channel EEG sleep staging
algorithm. Secondly, the connectivity of N1 stage is larger than
that of REM stage, the N2 stage is larger than that of N3 stage,
the connectivity of N3 stage and W stage is smaller than that
of REM stage. For the comparison of N2, W, and REM stages,
the connectivity between the left and right brains in the N2
stage is smaller than that in the REM stage, and in the W
stage, the connectivity between different brain regions is stronger.
Finally, different numbers of sub-periods have different performances
for distinguishing sleep stages. The case of 30-Sub shows good
performance, but using 30-Sub in the α band has a higher error
rate between N1 and W stages. In the future, multi-channel
EEG signals in the CAP database will be planned to classify
different sleep disorders, such as insomnia and REM dyskinesia.
Furthermore, graph convolutional networks will be employed for
automatic sleep stage monitoring to develop an online brain-
computer interface system.
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Motor imagery (MI) electroencephalogram (EEG) signals have a low signal-to-noise

ratio, which brings challenges in feature extraction and feature selection with high

classification accuracy. In this study, we proposed an approach that combined an

improved lasso with relief-f to extract the wavelet packet entropy features and the

topological features of the brain function network. For signal denoising and channel

filtering, raw MI EEG was filtered based on an R2 map, and then the wavelet soft

threshold and one-to-one multi-class score common spatial pattern algorithms

were used. Subsequently, the relative wavelet packet entropy and corresponding

topological features of the brain network were extracted. After feature fusion,

mutcorLasso and the relief-f method were applied for feature selection, followed

by three classifiers and an ensemble classifier, respectively. The experiments were

conducted on two public EEG datasets (BCI Competition III dataset IIIa and BCI

Competition IV dataset IIa) to verify this proposed method. The results showed that

the brain network topology features and feature selection methods can retain the

information of EEG more e�ectively and reduce the computational complexity, and

the average classification accuracy for both public datasets was above 90%; hence,

this algorithms is suitable in MI-BCI and has potential applications in rehabilitation and

other fields.

KEYWORDS

motor imagery, brain function network, lasso, relief-f, brain-computer interface

1. Introduction

As a new interactive technology, brain-computer interface (BCI) combines biomedical and

computer fields to establish a connection between human brain and computer, and continuously

expand its application in recent years (Zhao et al., 2020). Among various BCI systems, motor

imagery (MI) BCI collects the brain electrical signals during imaginary limb movements of

subjects, which is proposed as a candidate approach in motor skill learning and medical

rehabilitation (Bigirimana et al., 2020). However, compared with other BCI systems such as P300

and steady-state visual-evoked potential BCI, MI BCI presents a poor performance (Park et al.,

2021).
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Previous classification tasks of motor imagery primarily focused

on improving the feature extraction algorithm. Owing to the

characteristics of electroencephalogram (EEG) signals, the common

spatial pattern (CSP) algorithm is often used to extract features

in the spatial domain (Sharma et al., 2018). In 2018, David et al.

proposed a regularized CSP method based on frequency bands and

sorted the mutual information between the frequency bands to

extract the features. Then they calculated the distance between the

feature and label using the second normal form, and performed

classification with the nearest neighbor (Park et al., 2018). Zhang

et al. proposed a CSP algorithm that optimized both the filter band

and the time window to extract features, and an accuracy rate of

88.5% was achieved on the BCI public four-category dataset with

a support vector machine (SVM) classification (Jiang et al., 2020).

In 2018, Vasilisa proposed a feature weighting and regularization

method to optimize the current CSP method to avoid loss of feature

information. After the minimumMahalanobis distance classification,

the accuracy of the four-class dataset reached 88.6% (Mishuhina and

Jiang, 2018). These mentioned improved CSP algorithm overcomes

some of the problems of the traditional CSP algorithm, it still exhibits

certain shortcomings, such as it is unsuitable for processingmulticlass

EEG data.

In addition to feature extraction, studies have been made to

improve the performance of feature selection and classification

algorithm. In Udhaya Kumar and Hannah Inbarani (2017), the

particle swarm optimization (PSO) algorithm combined with a rough

set was used to retain features which contribute to the classification

accuracy.With the neighborhood rough set classifier, the final average

classification accuracy rate in the IIa dataset in BCI competition IV

reached 73.1%. In Selim et al. (2018) selected the most distinctive

CSP features and optimized SVM parameters by applying a hybrid

attractor metagene algorithm and a bat optimization algorithm,

and obtained an average classification accuracy rate of 78.3% in

the same dataset as that mentioned above (Chu et al., 2018). At

this stage, owing to the rapid development of the Riemannian

geometry, researchers have used the Riemann minimum distance

for pattern classification of EEG signals. In 2019, Javier proposed

an improved contraction covariance matrix to handle small sample

data more effectively, and subsequently processed the IIa dataset

through the Riemann minimum mean distance classifier, and the

average classification accuracy rate reached 79.6% (Olias et al., 2019).

However, some problems persisted in Riemannian approaches, for

example, as the number of the dimension of the covariance matrix

rises, the worst the accuracy become (Yger et al., 2017).

To improve the accuracy of feature classification, a new algorithm

model based on improved lasso and relief-F was designed in this

study. During feature extraction, the relative wavelet packet energy

entropy feature of the EEG signal, as well as the variance and

mean of the multiclass score common spatial pattern (mSCSP) were

extracted. These three features can not only effectively extract the

time-frequency-spatial domain information of the signal, but also are

suitable for analyzing biological non-stationary signals. Subsequently,

feature fusion was performed on the obtained features to overcome

the problem of low classification accuracy caused by a single feature.

To address the redundancy and high computational complexity of

fusion features, a feature selection method based on mutcorLasso

and the relief-F algorithm was proposed to retain important features

and eliminate redundant ones. Finally, four different classifiers were

used to verify the effect of classification, including the K nearest

neighbor (KNN), contraction linear discriminant analysis (sLDA),

random forest (RF), and an ensemble classifier (Ensemble).

2. Materials and methods

In order to improve the MI EEG classification accuracy, a

recognition method based on brain network and improved lasso

was proposed in this paper. A flowchart of the proposed model is

shown in Figure 1, which includes data introduction, preprocessing,

feature extraction, feature selection, and classification. The feature

extraction algorithmmentioned is based on the brain network model

framework. The edge weight is set according to the relative wavelet

packet entropy, and the threshold selection is based on the global

network sparsity when the brain network is constructed. In addition,

a feature selection method based on lasso method and presents some

improvements to the traditional lasso was proposed. The mutual

information and correlation between features are considered for the

construction of the objective function of lasso, and then the relief-f

algorithm is added for further feature selection.

2.1. Data preprocessing

The first step of preprocessing is to remove bad channels with

low signal-to-noise ratio by interpolation or average. The next step

is band-pass filtering which significantly affect the classification

performance of EEG. In this study, the R2 map is calculated using

the power spectral density (PSD) to obtain the frequency band

that contains the largest amount of information for each dataset

(Choi et al., 2020). In addition, because the signal-to-noise ratio of

EEG is extremely low, the data must be denoised and the wavelet

soft threshold method was used to perform denoising. The above

three steps are serial processing to avoid confusion caused by the

entanglement of Midway data.

2.1.1. Wavelet soft threshold denoising algorithm
When the EEG signal undergoes a wavelet decomposition, the

amplitude of the wavelet coefficients of EEG is greater than the noise.

The noisy signal is decomposed by the orthogonal wavelet base at

various scales at a low resolution (Khoshnevis and Sankar, 2020). For

the decomposition value at high resolution, the wavelet coefficients

whose amplitude is below the threshold were set to zero, and the

wavelet coefficients above the threshold are reduced correspondingly

or directly retained. Finally, the wavelet coefficients obtained after

processing are reconstructed using the inverse wavelet technique, and

the denoised EEG is restored.

2.1.2. Multi-score common spatial pattern
The spatial filtering technique is suitable for processing the

multidimensional signals, such as EEG (Park et al., 2014). This

algorithm mainly improves the CSP algorithm to select EEG

channels. By calculating the score of the projection matrix for all the

channels, the channel with the highest score for each class is selected

and combined to obtain the optimal filter channels. The algorithm

not only maximizes the variance difference between classes but also

reduces the cost of computing resources.
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FIGURE 1

Algorithm model. The diagram consists of five main parts: data introduction, preprocessing, feature extraction, feature selection, and classification.

2.2. Feature extraction

In this paper, the wavelet packet method is used to extract the

detail and approximate coefficients of EEG. The energy entropy

values of these coefficients are calculated, and a brain function

network based on these energy entropy values is constructed to

extract the topological features. Because the mSCSP algorithm

in the previous step amplifies the variance of different samples,

the variance characteristics of each sample are also extracted.

Finally, the three parts of features are fused to obtain a higher-

dimensional matrix. However, the dimensions of the features

extracted by the above three different feature extraction algorithms

are different, resulting in the situation that some features with

large dimensions may have a great impact on the screening

results in the subsequent feature screening. Therefore, the feature

matrix is standardized and the features with different dimensions

are compressed to the range of [0,1] for subsequent processing.

The two main feature extraction methods used in this study are

as follows.

2.2.1. Relative wavelet packet entropy
Currently, relative wavelet packet entropy has been widely used

in processing EEG data. It can efficiently extract the time–frequency

domain information, and the low frequency of EEG can be reduced

by wavelet packet decomposition technology. Meanwhile, the high-

frequency information are extracted to reflect the time–frequency

domain information of this part of the EEG signal more effectively.

This wavelet packet decomposition method has no redundancy and

omissions, therefore, it can perform an efficient time–frequency

localization analysis on EEG that contain a large amount of medium

and high-frequency information.

In this study, the EEG signal is decomposed into three layers.

Therefore, the approximate and detail coefficients of the three layers

are obtained, which are Aj, j = 1, 2, 3 and Dj, j = 1, 2, 3 where

j represents the number of decomposition layers. The formula for

calculating the energy coefficient of each layer was as follows:

Ej = (Aj(k)+
∑

k

Dj(k)
2)/3 (1)
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where k represents the k-th channel, the approximation coefficients

Aj are averaged, and the detail coefficients Dj are used in the second

norm. Therefore, both the detail coefficients and approximation

coefficients are considered as the energy value of each layer.

Furthermore, because the approximation coefficient is more

important in the analysis of EEG signals, the original value of

the approximation coefficient is directly used, whereas the detail

coefficient is used as part of the energy coefficient. The formula to

calculate the total energy is as follows:

Et =
∑

j

E2j , (2)

where Et represents the total wavelet packet energy value

(Dimitrakopoulos et al., 2018). The relative wavelet energy value can

be obtained from the two formulas above, and the specific formula is

as follows:

Pj =
Ej

Et
(3)

where
∑

j Pj = 1, and the distribution of Pj can be used as an

important feature of the EEG time–frequency domain. Next, based

on the Shannon entropy theory, the wavelet packet energy entropy

was calculated (Li and Zhou, 2016). The specific formula is as follows:

Sm = −
∑

j

(Pj ln(Pj)), (4)

where Sm represents the relative wavelet packet energy entropy of

channel m. Based on the formula, the value between channels can be

calculated, which provide a foundation for building a brain function

network for each dataset.

2.2.2. Brain network
The method to construct a brain function network can be

primarily classified into following four steps:

Node definition: Each channel electrode after channel selection

is used as a node to construct the brain network.

Weight calculation: The weight value of the edge in this

experiment is the relative energy entropy of wavelet packet designed

in the previous section.

Threshold definition: The threshold selection criterion used in

this experiment is based on sparsity, which is determined as the 30%

sparsity standard to ensure that each node is not an isolated node

and that the network complexity is low. This is more suitable for

subsequent processing.

Topological feature extraction: It is primarily aimed at several

typical topological features of the constructed brain network,

including the degree of the node, clustering coefficient of the node,

global efficiency of the brain network, and characteristics of the first

and spectral norms of the brain network. The specific formulas are as

follows Lee et al. (2018):

The formula for node degree parameter is as follows:

ki =
∑

j∈N

(Rij)+
∑

j∈N

(Rji), (5)

where Rij and Rji indicate the edge from node i to node j and the

edge from node j to node i exist, respectively. The N represents the

total set of features extracted from the brain topology network, and ki
represents the degree of node i, which is calculated by the sum of the

outgoing and incoming paths of the node. After calculating the degree

of the node, it can be used to calculate the clustering coefficient of the

brain network. The specific formula for the calculation is as follows

Kakkos et al. (2019):

C =
t

ki ∗ (ki − 1)
(6)

where t represents the number of triangles around node i.

The clustering coefficient can reflect the universality of cluster

connections around a single node; therefore, it is often analyzed as

a feature of the brain function network (Horn et al., 2014). Another

feature is the global efficiency of the brain network, which can reflect

the degree of connectivity of the entire brain network. The specific

formula used for calculation is as follows:

E =
1/

∑

j∈N,j6=i dij

N − 1
, (7)

where dij represents the shortest distance from node i to node j.

The shortest distance was calculated using Dijkstra’s algorithm. The

starting point is taken as the center and expand outward layer by

layer (breadth first search idea) until it is extended to the end point.

The order of increasing length produces the shortest path used in

this algorithm. That is, after sorting the path lengths of all visible

points each time, this algorithm select the shortest path from the

corresponding vertex to the source point. Therefore, this algorithm

is more suitable for EEG than prim algorithm or Freud algorithm.

The nodes of brain network are defined by reconstructing

different node positions on the electrode cap and the corresponding

path is composed of the relative wavelet packet entropy coefficient.

Then the threshold is set to determine the sparsity of the brain

network construction to avoid high computational complexity and

feature redundancy. The topological characteristics of these three

parts of the brain network can fit the information of entire brain

network.

2.3. Feature selection

Owing to the higher dimension of the matrix after feature fusion,

a significant amount of computing resources is consumed. Therefore,

the lasso method based on mutual information and correlation

combined with the relief-f method is used for feature selection.

Finally, the feature matrix with smaller dimensions is selected,

which could reduce the computational complexity and ensure a

higher classification performance. The specific details of these two

algorithms are as follows:

2.3.1. mutcorLasso
During data training, hundreds or even thousands of variables

are involved. Therefore, there are possibilities of overfitting when the

dependent variable of the objective function ismeasured using several

variables. Lasso-based methods can be used to perform filtering more

efficiently by eliminating some nonessential variables. Therefore,

both discrete and continuous data can be processed. In this paper, we

propose a lassomethod based onmutual information and correlation,
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which is an improvement on the traditional lasso algorithm. It

considers the mutual information and correlation information of

features and labels followed by optimization. We modified the

objective function of the traditional lasso algorithm, and objective

function proposed is as follows:

min(‖y⊤ − w⊤X‖22 + α‖w‖1 + βw⊤Cw), (8)

where y and X are formula elements in the traditional Lasso

algorithm, y represents the label of the dataset, and X represents

the characteristic matrix calculated according to the least squares

method. C is the squared mutual information correlation matrix,

and w is the weight coefficient of each feature vector. α and β are

the learning rates that control the optimization speed of the entire

objective function. If the setting is extremely small, the local optimal

value can be obtained easily; if extremely large, the amplitude of result

fluctuates significantly, and the global optimal value can be obtained

easily. In this study, the initial value of α is set to 0.5 and β to 0.1,

the values are updated to get a better accuracy based on these two

parameter combinations. The formula to calculate matrix C is as

follows:

C = R⊙ R, (9)

where R is the coefficient matrix of the mutual information and

correlation, ⊙ represents the Hadamard product, and the formula to

calculate each element in the Rmatrix is as follows:

rkl =

∑n
i=1 xkixli

√

∑n
i=1 x

2
ki

√

∑n
i=1 x

2
li

+ |mutInf (xki, xli) |, (10)

wheremutInf represents themutual information between two feature

vectors. Using this formula, each coefficient of matrix R is obtained

and used as the basis for the optimization of subsequent objective

function. After the general feature is selected using the algorithm

above, the feature dimension is still large. Therefore, the experiment

will be proceeded using the relief-f algorithm, which is typically used

at this stage to perform further feature selection.

After feature filtering by the above method, the dimension of

feature vector is reduced from 120 to 20, and the relevant redundant

features are eliminated.

2.3.2. Relief-f
The basic principle of the algorithm is as follows: first, samples

R are randomly selected from training set D and the k nearest

neighbor samplesH are obtained from the same typeR. Subsequently,

the k nearest neighbor samples M are selected from samples of

different types from R. Finally, the feature weight is updated using

this formula.

In view of the overall dimensions of the dataset and information

from relevant studies, we set the k nearest neighbor samples to six.

To ensure that each sample type is randomly selected, we control the

random sampling rate required by the algorithm to be within 30–

40%. The distance function is marginally modified, and the distance

is set to the absolute value of the difference between elements in

two feature vectors, thereby reducing calculation complexity and

reflecting the difference between random and selected samples.

Finally, the statistics on the w value after traversal are obtained,

the w value of each feature vector is sorted, and feature matrix of

lower dimensions is selected. In this algorithm, the update formula

of feature weight w is as follows:

w = w−

k
∑

j=1

diff (A,R,H) /(mk)

+
∑

c∈class(R)

p(C)

1− p(class(R))

∑k
j=1 diff (A,R,H)

(mk)2

(11)

where diff () represents the difference between the R and H samples

on feature A, and mk represents the number of total samples.

According to the formula, the w coefficient can be continuously

updated.

After feature filtering by the above method, the dimension of

feature vector is reduced from 20 to 10, So it is better suitable for

classification tasks with low time complexity.

2.4. Classifier

The last component pertains to classification. Four classifiers

were used in the experiment, namely KNN, sLDA, RF, and the

Ensemble obtained by integrating the three classifiers. These four

classifiers can verify whether the proposed algorithm is universal.

KNN is determined by voting the unlabeled samples by the K

nearest neighbors (Bablani et al., 2018). sLDA is an improved version

of linear discriminant analysis, which is more applicable when the

number of training samples is less than the number of features

(Tjandrasa and Djanali, 2016). RF is an extension of the traditional

decision tree classification algorithm that adds knowledge in the

integrated learning field and performs decision classification based

on multiple decision trees (Lanata et al., 2020). After verifying the

classification accuracy for different number of decision tree on the

datasets, we set the number to 10 in the RF. Ensemble is integrated

according to the prediction labels finally obtained using the three

classifiers mentioned, and it uses the voting method to predict the

labels of final ensemble classifier.

The five components above are the specific description of the

algorithm model. The following sections focus on the new algorithm

proposed herein in feature extraction and feature selection. The

pseudo code of the feature selection algorithm above is shown below

Table 1.

2.5. Evaluating indicator

The evaluation indicators used in this experiment was accuracy.

It is the most important index in the entire classification system and

is obtained based on the confusion matrix. The specific formula to

calculate it as follows:

Accuracy =
Truenum

Totalnum
, (12)

where Truenum indicates the number of samples correctly classified,

and the Totalnum indicates the total number of samples. All the data

in the result tables are obtained through 10 fold cross validation.
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TABLE 1 The pseudo code of the feature selection algorithm.

Algorithm: Procedure of mutcorLasso+Relief-f

Input: Feature vector matrix X ∈ Rp∗n , corresponding label y∈ Rp ,

The maximum number of iterations iternum

mutcorLasso method:

1: For i from 1 to n do:

2: For j from 1 to n do:

3: Calculate mutual information and correlation using Equation (10)

4: end for

5: Construct matrix C based on the above coefficients

6: Calculate the Hadamard product following Equation (9)

7: Obtain the fixed matrix B:

8: B = X ∗ X⊤ + β ∗ C

9: Initialize the w coefficient to a random decimal between 0 and 10

10:While i < 1,000

11: temp = w

12: Calculate diagonal matrixM:

13: M(t) = diag(

√

w
(t)
1 ,

√

w
(t)
2 , ...,

√

w
(t)
p )

14: Update weight coefficient w:

15: wt+1 = Mt[MtBMt +
αIp
2
]−1MtXy

16: if t > iternum :

17: break

18: end if

19: According to the value of w, the features with w of 0 are eliminated

Relief-f method:

20: For i from 1 to 60:

21: Random select a sample

22: Find 6 neighbor samples from the same class as the sample

23: Find 6 neighbor samples that are different from the sample

24: Update w weight using Equation (11)

25: sort w

26: Select the first N-dimensional features according to the value of w

Output:feature matrix after selecting

3. Results

3.1. Data description

To demonstrate the effectiveness of the proposed method, we

conducted the following experiments on the dataset IIIa in BCI

competition III (Blankertz et al., 2006) and the dataset IIa in BCI

competition IV (Tangermann et al., 2012), as detailed in Table 2.

3.2. Experimental parameter settings

3.2.1. Setting of α and β in mutcorLasso algorithm
In the feature selection part, we adjusted two parameters, α

and β , used in the algorithm and used five-fold cross-validation to

TABLE 2 Data description.

Competition Subjects Train Test

Dataset IIIa, BCI-III K3b (45 Trials/task) 90 90

K6b (30 Trials/task) 60 60

L1b (30 Trials/task) 60 60

Dataset IIa, BCI-IV A01~A09 (9 Subjects) 144 144

Both datasets include four motor imagery tasks of left hand, right hand, foot or tongue

movement.

FIGURE 2

The e�ect of α and β parameters in mutcorLasso algorithm. As the

color is closer to yellow, the higher the accuracy of the classification is.

verify the results of RF classifier. Taken K3b dataset as example,

Figure 2 represented the learning rates α and β of mutcorLasso

algorithm, respectively. Although the parameters range between

0.1 and 1, which is relatively small, it affects the classification

accuracy very significantly. It could be seen when α was 0.5 and

β was 0.1, the accuracy of the K3b dataset was the best among all

these values. Similarly, in the other dataset, the adjacency matrix

graph was calculated to reflect a better accuracy based on different

parameter combinations in mutcorLasso algorithm, and then the best

combination of α and β was determined to improve accuracy.

3.2.2. Setting of bandpass filter parameter
We removed the artifacts from raw EEG data and then calculated

the PSD of each sample to construct the R2 chart that reflects

the information of different frequency bands. The three graphs in

Figure 3 show the bandpass filter for three datasets, in which the

ordinate indicates the number of channels, the x-axis indicates the

bandpass filter frequency band, and each square indicates the power

of each channel in different filter frequency bands. Based on them,

the filter band of the k3b dataset was set to 0.5–20, the k6b was set

to 3–30, and the l1b was set to 4–40. Similarly, in the IV2a dataset,

bandpass filtering was performed based on the relevant R2 map to

obtain more information.
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FIGURE 3

R
2 chart for three EEG datasets. The more information the frequency band contains, the closer is the color to yellow. Therefore, the bandpass filter

parameters of each dataset can be determined.

3.2.3. Setting of wavelet base in wavelet soft
threshold denoising

Because of the varied sampling numbers of the two competition

datasets, the wavelet bases for these datasets were different. In

this experiment, the wavelet soft threshold method was used to

perform denoising. It can be inferred from the Figure 4 that the

denoised signal can approximately retain the original value of

the original signal, and some high-frequency noise signals are

directly eliminated. For the 250 samples in the BCI3 IIIa four-class

dataset, db10 was selected as the wavelet base, and for the 1,125

samples in the BCI4 IIa four-class dataset, db20 wavelet base was

selected (Yang et al., 2018).

3.2.4. Setting of brain network sparsity parameter
The brain network parameter selection was verified based

on the k3b dataset. After constructing the entire brain network

model, we compared the effect of sparsity on the brain network

model, as shown in Figure 5. The brain network with the

sparsity of 10% contains isolated nodes, which could affect the

subsequent extraction of the brain network features. In addition,

the brain network with the sparsity of 50% shows an extremely

dense overall connection of the brain network, which rises the

calculation complexity. Thus, the brain network diagram with the

sparsity of 30% will be used to build a brain network and the

topological features.

3.3. Results of di�erent classifiers on two
datasets

3.3.1. Dataset IIIa (BCI-III)
The performance of the algorithm model was verified based

on the 50% cross-validation method. This experiment was repeated

20 times and the average accuracy of the entire algorithm model

was obtained. In Table 3, the classification accuracy of the existing

corresponding algorithms used for Dataset IIIa (BCI-III) is mostly

between 80 and 85%, and the accuracy of ensemble classifier exceeded

90% when the training set contained few samples.

3.3.2. Dataset IIa (BCI-IV)
Training set and test set were used at a ratio of 1:1 to verify the

algorithm model on dataset IIa. The experiment was repeated 20

times to obtain the variance value of the entire model. In Table 4, the

average accuracy of the nine datasets exceeded 80%, which is better

than the optimal average value of 80.9% obtained in the previous

paper. In particular, the average accuracy obtained by the RF classifier

was approximately 90%, which is a significant improvement.The

classification accuracy of the existing corresponding algorithms used

for Dataset IIa (BCI-IV) was mostly above 85%, suggesting the

algorithm model proposed in this paper can achieve good results on

this data set.

3.4. Results of fused feature extraction
algorithms

In the subsection, the classification accuracy of several feature

extraction algorithms mentioned were verified through the five-

fold cross-validation method. To avoid the influence of feature

selection, the extraction features were directly classified by the

RF classifier without feature selection. Table 5 shows that the

classification effect of the combination of any two feature extraction

methods is better than that of the single feature extraction algorithm

alone, and the classification effect obtained by combining the three

methods mentioned is the best, approximately 90%. What’s more, it’s

discovered that the variance features obtained by the SCSP facilitated

the classification to be the best, followed by the topological features

of the brain network.

3.5. Results of feature extraction algorithms

We compared the proposed feature extraction method with

other algorithms, including Sparse Filter Bank Common Spatial

Pattern (SFBCSP) (Zhang et al., 2015), Temporally Constrained

Sparse Group Spatial Pattern (TSGSP) (Yu et al., 2018) and Discrete

Wavelet Decomposition (DWT) (Khatun et al., 2016). We randomly

combined features extracted from these four methods with mSCSP

variance features, then performed feature selection by the relief

algorithm, finally obtained the average accuracy of the mentioned
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FIGURE 4

Wavelet soft threshold denoising results under di�erent competition datasets. The black line in the figure represents the original signal, and the red line

represents the result after the wavelet-based denoising.

FIGURE 5

Brain network results in di�erent sparsity situations, as 10, 30, and 50%, respectively.

TABLE 3 The classification accuracy of di�erent classifiers on dataset IIIa.

Data sLDA RF KNN Ensemble

K3b 93.32 89.25 92.62 91.83

K6b 93.71 93.13 91.82 92.19

L1b 92.83 93.19 94.46 93.95

classifiers after a five-fold cross-validation. As shown in the Table 6,

in datasets IV2a, the average accuracy exceeds 90% by the proposed

feature extraction method combining wavelet packet energy entropy

and brain network features.The results suggest that the feature

extraction method proposed is better than the other three feature

extraction methods.

TABLE 4 The classification accuracy of di�erent classifiers on dataset IIa.

Data sLDA RF KNN Ensemble

A01 86.42 89.03 91.06 90.55

A02 92.35 93.95 92.75 94.26

A03 72.26 88.89 85.74 86.41

A04 64.67 65.86 65.69 65.73

A05 95.81 99.11 97.94 97.94

A06 89.63 99.26 97.62 98.03

A07 90.36 98.33 98.36 97.88

A08 88.98 93.64 92.04 90.25

A09 66.01 77.18 66.35 73.14
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TABLE 5 The classification accuracy for di�erent feature extraction algorithms.

Data RWPEE BNTC mSCSP RWPEE+BNTC RWPEE+SCSP BNTC+SCSP Proposed

A01 56.16 70.16 79.93 76.96 80.51 85.54 88.65

A02 61.15 70.83 79.62 76.56 80.62 82.34 82.64

A03 63.84 81.94 84.61 82.24 88.91 84.64 92.52

A04 63.46 78.22 82.91 78.33 87.92 89.74 91.96

A05 64.04 84.86 83.36 84.85 81.81 85.84 85.84

A06 67.94 80.49 82.95 80.46 82.53 83.26 93.76

A07 68.46 73.12 83.46 73.24 82.13 84.04 93.59

A08 60.12 78.52 69.69 78.64 78.81 80.25 82.21

A09 67.56 74.43 86.38 75.31 82.21 84.65 94.53

Mean 63.61 76.91 81.43 78.35 82.86 84.45 89.55

RWPEE refers to relative wavelet packet energy entropy, BNTC refers to the brain network topological characteristics of brain network, mSCSP refers to the one-to-one scoring CSP algorithm

variance characteristics.

Bold values represent the highest value.

TABLE 6 The classification accuracy di�erent feature extraction algorithms.

Data TSGSP SFBCSP DWT Proposed

A01 86.03 82.73 74.83 88.63

A02 74.51 74.22 79.61 82.63

A03 91.75 88.55 87.71 92.51

A04 75.16 69.56 87.95 91.95

A05 81.91 76.34 83.15 83.66

A06 69.27 64.64 90.55 93.78

A07 89.89 86.88 94.51 93.51

A08 94.48 90.99 90.31 92.23

A09 81.95 72.84 89.91 94.50

Mean 82.75 78.55 86.73 90.33

Bold values represent the highest value.

TABLE 7 The classification accuracy for di�erent feature selection

algorithms on dataset IIIa.

Data Relief-f Lasso Lasso+Relief-f Proposed

K3b 87.84 82.21 89.05 91.97

K6b 88.57 82.15 90.25 92.63

l1b 86.74 83.33 88.75 91.55

Mean 87.75 82.53 89.35 92.05

Bold values represent the highest value.

3.6. Results of feature selection algorithms

Table 7 compared the proposed mutcorLasso method with relief-

f, lasso and the combination of these methods.The feature matrix

obtained before feature selection is guaranteed to be exactly the

same, but different features are adopted in the feature selection part.

The selection algorithm controls the features in 20 dimensions to

ensure that the feature dimensions selected using different feature

selection algorithms are the same. After 50% cross-validation, the

TABLE 8 The classification accuracy for feature selection and comparison

algorithms on dataset IV2a.

Data GBDT Pearson Pso+svm Proposed

A01 91.02 87.71 86.18 91.91

A02 84.30 83.42 76.19 84.83

A03 90.81 85.61 77.98 91.52

A04 95.22 88.74 87.41 90.36

A05 88.81 85.91 92.36 92.75

A06 93.92 90.15 91.68 93.74

A07 92.93 85.76 88.27 93.49

A08 85.51 82.88 81.02 86.48

A09 69.96 70.44 74.85 74.87

Mean 88.02 84.54 83.96 88.85

Bold values represent the highest value.

proposed algorithm achieved better accuracy of above 90% than

other algorithms.

In Table 8, three feature selection algorithms were compared,

including Gradient Boosting Decision Tree (GBDT) (Wang et al.,

2019), Pearson correlation coefficient (Pearson) (Xu and Deng, 2018)

and Particle swarm optimization (PSO) (Wang et al., 2020). These

three algorithms are widely used and representative feature selection

algorithms of different kinds. According to the results of these

datasets, the feature selection algorithm proposed herein yielded

better results on seven datasets, with an average accuracy rate of

88.8%, which is an improvement compared with other three feature

selection algorithms, 0.8, 4.3, and 4.9%.

4. Conclusion

The proposed model effectively integrates seven components:

bandpass filtering, wavelet denoising, channel filtering, feature

extraction, feature fusion, feature selection, and pattern classification.
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The main contributions of this study are as follows. Firstly, a complex

brain network feature extraction method based on wavelet packet

energy entropy was proposed, which not only extracts space–time

domain features but also extracts the topological features of the

brain network simultaneously, thereby retaining more EEG feature

information. Then, a lasso method based on mutual information and

correlation was proposed, and the subsequent relief-f algorithm was

combined with feature filtering to improve the selected features. The

proposed algorithm model can effectively mitigate the problem of

low accuracy caused by the scarcity of the training set and achieve

precise motion imaging classification. In the future, reducing the

computational complexity of the algorithm model and realizing

online analysis for a better application in medical rehabilitation will

be another research direction of our work.
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Motor imagery-based brain-computer interfaces (MI-BCI) have important

application values in the field of neurorehabilitation and robot control. At present,

MI-BCI mostly use bilateral upper limb motor tasks, but there are relatively few

studies on single upper limb MI tasks. In this work, we conducted studies on the

recognition of motor imagery EEG signals of the right upper limb and proposed

a multi-branch fusion convolutional neural network (MF-CNN) for learning the

features of the raw EEG signals as well as the two-dimensional time-frequency

maps at the same time. The dataset used in this study contained three types

of motor imagery tasks: extending the arm, rotating the wrist, and grasping the

object, 25 subjects were included. In the binary classification experiment between

the grasping object and the arm-extending tasks, MF-CNN achieved an average

classification accuracy of 78.52% and kappa value of 0.57. When all three tasks

were used for classification, the accuracy and kappa value were 57.06% and 0.36,

respectively. The comparison results showed that the classification performance

of MF-CNN is higher than that of single CNN branch algorithms in both binary-

class and three-class classification. In conclusion, MF-CNN makes full use of the

time-domain and frequency-domain features of EEG, can improve the decoding

accuracy of single limb motor imagery tasks, and it contributes to the application

of MI-BCI in motor function rehabilitation training after stroke.

KEYWORDS

single upper limb motor imagery, deep learning, brain-computer interface (BCI),
convolutional neural network (CNN), feature fusion

1. Introduction

The brain-computer interface (BCI) establishes a channel for information exchange
between the human brain and the outside world. It decodes the user’s intent through reading
and analyzing brain signals (Wolpaw et al., 2002), and has been linked to a wide range of
devices, including the use of spellers, wheelchairs, robotic arms and robotic exoskeletons
(Kaufmann and Kubler, 2014; Kwak et al., 2015; He et al., 2018; Kim et al., 2018; Penaloza
and Nishio, 2018; Yu et al., 2018; Jeong et al., 2019; Yao et al., 2022). Among the various
types of BCI paradigms, MI-BCI is one of the most important one because it has potential
clinical application value. MI is a mental process that mimics motor intention without
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actually eliciting motor behavior. It is an actively evoked EEG signal
that has high application values in the field of neurorehabilitation
because it can independently elicit potential activity in motor-
related brain regions without external stimulation (Pfurtscheller
and Neuper, 2001). The MI-BCI detects the user’s motor intentions
by capturing the potential changes, and the output command
could be used to control functional electrical stimulation (FES),
exoskeletons, or other rehabilitation assistive equipment (Biasiucci
et al., 2018; Zhao et al., 2022). Thus MI-BCI is valuable in the
medical rehabilitation pathway for patients with motor dysfunction
through the provision of active rehabilitation training (Jeong et al.,
2019; Romero-Laiseca et al., 2020). A large number of studies have
shown that the addition of MI-BCI helps to promote the recovery of
motor function and improve the quality of life of patients (Cervera
et al., 2018; Yuan et al., 2021).

The majority of current researches on motor imagery EEG
signal recognition focuses on movements of different body parts,
such as the tongue, hands, and feet. These studies have produced
excellent results, but it is uncommon to find studies on motor
imagery EEG signal recognition of tasks that involve the same
side of the limb. It is well known that limb motor dysfunction
caused by stroke is often unilateral. In BCI-based rehabilitation
training, motor imagery tasks using unilateral limbs are more
natural and intuitive than motor imagery tasks between different
body parts (Tavakolan et al., 2017; Ubeda et al., 2017). However,
the classification of single limb motor imagery is more difficult and
complex than that of different parts of the body, because similar
brain regions are activated when performing different motor tasks
for unilateral limbs (Bigdely-Shamlo et al., 2015; Jas et al., 2016;
Taulu and Larson, 2021). Considering the low spatial resolution of
EEG, it is not feasible to use the algorithms for multi-limb motor
imagery EEG recognition to identify unilateral limb motor imagery
EEG.

The issue of unilateral limb movement task recognition has
begun to be focused on by some researchers in recent years.
Edelman et al. (2016) reported that source space analysis can
improve the classification accuracy of wrist movements, four
different movements of the right hand (i.e., flexion and extension
of the arm; left and right rotation of the wrist) were recognized
with a classification accuracy of 81.4%. Ofner et al. (2017) encoded
motor imagery tasks for the right hand into the time domain of
low-frequency EEG signals to classify six different movements,
including elbow flexion/extension, forearm left/right rotation, and
hand opening/closing, and achieved an accuracy of 27%. A novel
classification strategy using the combination of EMG and EEG
signals was proposed by Li et al. (2017). They recognized a variety
of upper limb movements such as hand open/close and wrist
pronation/supination, and results showed that the classification
performance achieved by the fusion features of EMG and EEG
signals is significantly higher than that obtained by a single signal
source of either EMG or EEG across all subjects. Loopez-Larraz
et al. (2018) further used EMG activity as a complementary
information to EEG to detect the motor intention, and also found
that the fusion features achieved higher classification accuracy than
EEG or EMG-based methods.

The end-to-end deep learning techniques provide a new
development path for the recognition of motor imagery EEG.
Inspired by the filter bank common spatial pattern (FBCSP),
Schirrmeister et al. (2017) proposed three types of CNN-based

models for motor imagery classification based on the number
of layers. Jeong et al. (2020b) proposed a hierarchical flow
convolutional neural network model consisting of a two-stage
CNN for extracting relevant features for multi-class tasks and
decoding arm rotation tasks. Zhang X. et al. (2019) proposed a
network model CNN-LSTM, the motor imagery EEG data were
spatially filtered by the FBCSP algorithm to extract the spatial
domain feature information from the original data at first, then the
extracted feature were fed into the CNN, and the final classification
was performed by the LSTM. Cho et al. (2021) proposed a two-
stage network structure called NeuroGrasp, which used six different
CNN-BLSTM networks to implicitly map EEG signals to six muscle
synergy features based on EMG and generated kinematic images
corresponding to the EMG signals based on the extracted features.
In the second stage, the generated images and real EMG features
are used together as SiamNet network input to train the model, so
as to realize the classification of single upper limb motor imagery
tasks.

Most of the motor imagery EEG decoding methods based on
deep learning used a single type of feature, including raw EEG
signals, time-frequency maps, and power spectral density features.
However, a single feature input often cannot fully and effectively
mine the information related to motor imagery in EEG. Inspired
by multimodal classification models, we proposed a multi-branch
fusion convolutional network model (MF-CNN) for solving the
classification problem of a single upper limb movement imagery
task, which takes the EEG signals and the corresponding time-
frequency maps as inputs simultaneously to make full use of
the time-domain, frequency-domain and time-frequency-domain
features of the EEG signal. The original EEG signal has high-
resolution temporal information, and the discriminative features
can be extracted by spatio-temporal convolution, while the two-
dimensional time-frequency map contains rich time-frequency
domain and spatial information. In this work, we first extracted
the features of the above two inputs independently using two
CNNs and then performed fusion classification, and the test results
on the single upper limb motor imagery dataset showed that
the proposed model achieved higher classification accuracy than
single-input CNN.

2. Materials and methods

2.1. Datasets

The EEG data used in this work is the “Multimodal signal
dataset for 11 intuitive movement tasks from single upper extremity
during multiple recording sessions” from the Giga DB dataset
completed by Jeong et al. (2020a). The dataset included intuitive
upper limb movement data from 25 subjects, who were required
to perform three types of motor tasks in a total of 11 categories,
including 6 directions of arm extension movement (up, down,
left, right, front, back), 3 kinds of object grasping action (cup,
card, ball) and 2 kinds of wrist-twisting action (left rotation,
right rotation), each type of movement was randomly executed 50
times, corresponding to 11 movements designed to be associated
with each segmental movement of the arm, hand, and wrist,
rather than continuous limb movements. The dataset included
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not only EEG data but also magnetoencephalography (EMG) and
electrooculogram (EOG) data, which are collected simultaneously
in the same experimental setting while ensuring no interference
between them. The data were acquired using a 60-channel EEG,
7-channel EMG, and 4-channel EOG. In the current work, only
motor imagery EEG data were used, the EEG sensors were placed
according to the international 10–20 system, and the sampling rate
was set as 2,500 Hz. Our goal is to classify the motor imagery EEG
of the three types of actions, so we selected forward extension of the
arm, grasping the cup, and rotation of the wrist to the left from the
three types of actions for the following study.

2.2. Algorithm framework

The workflow of the algorithm was shown in Figure 1. The
time-frequency maps were firstly obtained by continuous wavelet
transform (CWT) method, then both the EEG signals and the
corresponding time-frequency maps were sent to the MF-CNN
model, which consisted of two CNN network branches. After the
process of convolution and pooling, the output features from the
two branches were fused and combined into a one-dimensional
vector. Finally, the one-dimensional feature vector was sent into a
classifier to obtain the prediction results.

2.3. EEG signal pre-processing

When subjects were preparing or performing motor tasks,
event-related desynchronization (ERD) and event-related
synchronization (ERS) can be observed in the sensorimotor
cortex of the brain (Pfurtscheller and da Silva, 1999; McFarland
et al., 2000). Therefore, we selected 20 EEG channels on the
sensorimotor cortex region to analyze (including FC1-6, C1-6,
CP1-6, CZ, and CPZ). The selected EEG data were band-pass
filtered within 8–30 Hz (Sreeja et al., 2017) and downsampled to
250 Hz. All the 4 s of EEG data during the motor task of a single
trial were intercepted for subsequent processing, thus the EEG
segment of each trial could be defined as a 20 × 1,000 matrix,
where 20 was the number of channels and 1,000 was the length of

the data. The preprocessed EEG signals were used as input for the
EEG-CNN branch and the time-frequency map conversion.

In terms of time-frequency map transformation, Tabar and
Halici (2017) proposed a method based on the short-time
Fourier transform (STFT) to extract time-frequency features
and constructed a three-channel stacked time-frequency map
for subsequent classification. However, the time window of the
STFT algorithm is fixed, so the time-frequency resolution is
also fixed, which causes the problem of incompatibility between
the time resolution and the spectral resolution. To solve this
problem, wavelet transform based time-frequency analysis methods
have been widely introduced to EEG signal feature extraction
(Zhang et al., 2021). The wavelet transform replaced the infinite-
length triangular function with a finite-length wavelet basis with
attenuation, which made the window width inconsistent and thus
enabled better local feature extraction. We chose Morlet wavelet
as the basis function for the wavelet transform. As a single-
frequency complex sinusoidal function under Gaussian envelope
Morlet wavelet is the most commonly used complex-valued
wavelet. Because it has a better local resolution in the time and
frequency domain, it is often used in the decomposition of complex
signals and time-frequency analysis (Lee and Choi, 2019). The
features extracted from EEG signals through CWT include time
and frequency information and are finally converted into two-
dimensional time-frequency maps. Figure 2 showed the example
time-frequency maps of the three channels C3, C4, and CZ.

Since the conversion of the time-frequency map is generated for
each channel individually, the 20 EEG channels we used could not
all be combined into one image. And if only a few channels were
selected, a lot of helpful information would be lost. To effectively
utilize the information of each channel, we preprocessed the data
to extract features and used CSP to filter the 20 channels of EEG
signals in the spatial domain to obtain “virtual channels,” and
then generated the time-frequency maps. The basic principle of
CSP is to find a set of optimal spatial filters for projection by
diagonalizing matrices so that the difference in variance values
between the two types of signals is maximized (Ramoser et al.,
2000). For the three classification tasks we used the “One vs. Rest”
strategy to extend the CSP to achieve multi-class CSP feature
extraction (Dornhege et al., 2004). The spatially filtered EEG can be

FIGURE 1

Workflow of the proposed algorithm.
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FIGURE 2

Time-frequency maps of the three kinds of tasks. (A) Left wrist rotation; (B) cup grasping; (C) forward arm extension. The abscissa denotes time
points, and the ordinate denotes frequency bands.

calculated as:
ZM × N = WM × MEM × N (1)

where W is the projection matrix of CSP, M is the number of
EEG data channels; N is the data length; E is the EEG data matrix;
Z is the obtained EEG on “virtual channels.”

The information of the feature matrix generated by the CSP
algorithm is not equivalent, and the feature information is mainly
concentrated in the head and tail of the feature matrix, while the
middle feature information is not obvious and can be ignored.
Therefore, the first m rows and the last m rows (2 m < M) of
ZM × N were usually selected. In this work, we chose m = 1, that
is, the first and the last row of ZM × N were selected to calculate the
time-frequency map. The CWT was applied to the spatially filtered
EEG data during the 4 s motor imagery to obtain time-frequency
maps, and the maps were then saved as images with a resolution
of 64 × 64. Such procedures were applied to all trials, and finally
the motor imagery time-frequency map dataset was obtained. An
example was shown in Figure 3.

2.4. Structure of MF-CNN

The classification of motor imagery EEG signals using deep
learning networks based on CNN has proven successful and has
good feature extraction capabilities (Lee and Kwon, 2016; Zhang
P. et al., 2019). The common CNN models include convolutional
layer, pooling layer, activation function, and fully connected layer.
The convolution in the network is a local operation that can extract
the deep features of the input signal through the kernel function,
then the feature information can be obtained by the operation
of each layer of the CNN model. In the convolution phase, the
network input is convolved with the convolution kernel, and then
the activation function f(a) is used to output the feature maps,
which can be expressed for each convolution layer as:

hk
ij = f (a) = f ((Wk

∗ x)ij + bk) (2)

where x represents the input data, Wkis the weight matrix of
the kth convolution kernel, bk corresponding to the deviation of
the convolution kernel k, i and j denote the number of adjacent
convolutional layers.

In the current work, the ReLU function was chosen as the
activation function (Clevert et al., 2015), and it was defined as
follows:

f (a) = ReLU(a) = ln(1+ ea) (3)

The main purpose of the fully connected layer in a CNN is
classification. To merge the features acquired from the previous
side, each node in the fully connected layer is connected to full
nodes in the preceding layer. After a number of prior convolutions,
it can combine the local information with category differentiation,
and the output of the final fully-connected layer is then sent to the
classifier to output the prediction result.

Figure 4 showed the network structures of MF-CNN proposed
in this study, it extracted the features of the raw EEG data and the
time-frequency map simultaneously by using two CNN branches,
and could obtain more comprehensive information hidden in the
motor imagery EEG.

The EEG-CNN branch extracted spatial and temporal features
from the raw EEG data, the dimensionality of the input EEG signal
was 20× 1,000 (channels× points). The input was successively fed
through a feature extraction module made up of two convolutional
layers and a maximum pooling layer in this branch. A one-
dimensional convolutional kernel along the horizontal axis was
used to extract the features of each channel to obtain the feature
map as the output of this layer. The size of the convolution kernel
was set to 3 × 1, and the step size was 1. After convolution, a
feature map of the form Nw × Nf could be obtained, where Nw
is the vector and Nf is the number of convolution kernels. Then,
the data from the convolutional layer was downsampled using the
pooling layer, which set a kernel size of 2 × 1 and a step size
of 2. Subsequently, the fully connected layer flattens the features
extracted through the convolutional layer.

The TF-CNN branch performed feature extraction on the input
time-frequency map, and the size of the time-frequency map was
64 × 64 × 3, which represented an RGB image of size 64 × 64.
VGG16 was used as the basic network framework in this branch
(Zhao-Hong et al., 2019), the main feature of which was the
inclusion of convolutional kernel computation and feedforward
structure. It contained 16 hidden layers (13 convolutional layers
and 3 fully connected layers), the convolutional part used a
convolutional kernel of size 3 × 3 with a step size of 1, and a max
pooling layer of size 2× 2 with a step size of 2.
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FIGURE 3

Time-frequency maps of the EEG on “virtual channel”. (A) Left wrist rotation; (B) cup grasping; (C) forward arm extension. The abscissa denotes time
points, and the ordinate denotes frequency bands.

FIGURE 4

Structure of multi-branch fusion convolutional neural network (MF-CNN) model.
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In the model training phase of the above two branches,
the parameters of each network layer were updated using the
Adam optimizer with β1 0.9 and β2 0.999, with an initial
learning rate of 0.01.

2.5. Feature fusion method

Generally, fusion methods can be applied in two different
ways: decision-level fusion and feature-level fusion. Decision-
level fusion first trains different modalities with different models
and then fuses the results of multiple model outputs. Feature-
level fusion combines two or more feature vectors to construct a
single feature vector to include more information (Zhang P. et al.,
2019; Hatipoglu Yilmaz and Kose, 2021). In this study, feature-
level fusion was selected. Before the feature fusion, the individual
feature vector must have sufficient relevant features in order to
provide a good classification model and achieve high classification
performance. In CNN, the fully connected layer can integrate local
information into global features for classification, which contains
enough information. In addition, the output dimension of the
last fully connected layer is consistent with the category of the
sample, and the obtained information has been compressed, so it
is not appropriate to serve as the final feature vector. Therefore,
we chose to use the penultimate fully connected layer of these two
branch networks as the fusion layer, and fused their outputs as
the extracted features. Suppose the output feature vector of the
EEG-CNN branch was A = {a1, · · · , am}, where m is the length
of A, the feature vector output from the TF-CNN branch was
B =

{
b1, · · · ,bn

}
, where n is the length of B. Then the fusion

feature vector could be defined as C =
{

a1, · · · ,am, b1, · · · ,bn
}

,
and it is fed into the support vector machine (SVM) to complete
the classification finally.

2.6. Performance evaluations

The classification accuracy was used as an evaluation criterion
to compare the model’s performance, which was calculated as

follows.
Accuracy =

TP + TN

TP + TN + FP + FN
(4)

where TP was the true-positives field in the confusion matrix,
TN was the true-negatives field, FP was the false-positives field in the
confusion matrix, FN was the false-negatives field. It indicates the
probability of correct prediction in all samples. In this paper, we
compared the accuracy of six algorithms, including our proposed
MF-CNN, the two single-branch CNNs (EEG-CNN and TF-CNN),
EEGNET (Lawhern et al., 2018), ALEXNET (Iandola et al., 2016),
and the classical CSP. EEG-CNN, EEGNET, and CSP used EEG
signals as inputs, which are pre-processed in the same procedures
as described in (section “2.3. EEG Signal pre-processing”). TF-
CNN and ALEXNET used time-frequency maps as input for image
classification.

In addition, we calculated kappa values (Tabar and Halici,
2017).

kappa =
P0 − Pe

1− Pe
(5)

where p0 represents the average classification accuracy and
perepresents the random classification accuracy for the n-class
classification task.

3. Results

In this work, three-class and binary-class classification (grasp
object vs. extend arm) test tasks were carried out separately to verify
the performance of the proposed algorithm. The classification
accuracies were calculated by using the five-fold cross-validation
strategy, each subject’s EEG data was divided into five equal subsets,
one of which was randomly chosen as the testing dataset and the
other subsets served as the training dataset. Such procedures were
repeated five times, and the average accuracy was determined as
the final classification accuracy. The three sessions for each subject
were tested separately.

In order to verify the advantages brought by the dual-branch
CNN, we compared the classification performance of MF-CNN

FIGURE 5

Comparison of the average classification results on the three sessions. (A) Binary-class classification experiment, (B) three-class classification
experiments. ∗Denotes p < 0.01 and ∗∗denotes p < 0.001 (paired t-test).
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model and single-branch CNN model. The single-branch CNN
model was set up as an EEG-CNN branch for processing raw EEG
signals and a TF-CNN branch for processing the time-frequency
maps. The network architectures of these two single-branch CNN
models were same as the EEG-CNN and TF-CNN branches in MF-
CNN.

Figure 5 showed the classification results of the 25 subjects,
the average classification accuracies of the single EEG-CNN
branch were 70.8 and 51.08% separately for the binary-class and
three-class classification experiments, while the single TF-CNN
branch achieved 68.4 and 50.24%, respectively. It indicated that
discriminative feature information can be extracted by the two
kinds of single CNN branches. The accuracy obtained was higher
than EEGNET and ALEXNET, but lower than CSP. After merging
the features obtained from the two branches, MF-CNN achieved
average accuracies of 78.52 and 57.06% for the two classification
experiments, both of which were higher than that of the single
CNN branch model, and also higher than CSP, EEGNET and
ALEXNET.

The statistical analysis was further performed between the four
algorithms using paired t-test. The results demonstrated that the
accuracies achieved by MF-CNN were significantly higher than that
of EEG-CNN and TF-CNN in all sessions. In addition, the accuracy
of MF-CNN is higher than that of the deep learning algorithms
EEGNET and ALEXNET used as comparisons.

The confusion matrix of the three deep learning network
models were obtained. As shown in Figures 6, 7, the
column represented the true label, and the row represented
the predicted label. It can be seen that the probability of

correct recognition of each motor imagery task by MF-
CNN is higher than that of EEG-CNN and TF-CNN,
and all the true positive values are greater than the true
negative and false negative values for the three deep learning
network models.

Finally, we calculated the kappa coefficient for each subject,
and the mean results were shown in Table 1. The binary-class
classification experiments obtained higher kappa values than the
three-class classification experiment for all three deep learning
models, and MF-CNN outperformed EEG-CNN and TF-CNN in
the two experiments.

4. Discussion

In this study, we performed feature fusion at the feature
level to recognize the single upper limb motor imagery tasks
by using deep learning approach. The dataset we used include
three different types of movements, including forward extension
of the arm, grasping the cup, and rotation of the wrist to
the left. These are complex movements of the upper limb
of the body and are commonly used in daily life. The
accurate classification on the motor imagery of these three
movements is of great significance in the application of BCI-
based upper limb motor rehabilitation training. In this paper,
the MF-CNN model was proposed to extract fusion features
from the original EEG signal and corresponding time-frequency
map. In the comparative experiment conducted on the single
upper limb motor imagery dataset, MF-CNN model achieved

FIGURE 6

Confusion matrix of the three-class classification experiment. (A) EEG-CNN, (B) TF-CNN, (C) MF-CNN.

FIGURE 7

Confusion matrix of the binary-class classification experiment. (A) EEG-CNN, (B) TF-CNN, (C) MF-CNN.
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TABLE 1 Kappa values of the three deep learning models.

EEG-CNN TF-CNN MF-CNN

Three-class
classification

0.2662± 0.01 0.2536± 0.03 0.3559± 0.04

Binary-class
classification

0.415± 0.04 0.3696± 0.02 0.5704± 0.02

better classification performance than two single CNN branches,
EEGNET, ALEXNET, and CSP.

The EEG signal is non-stationary and non-linear (Yang
et al., 2022). One of the most valuable methods for analyzing
EEG signals is to transform them from one-dimensional time-
domain signal to two-dimensional time-frequency map, which
can concurrently combine the frequency feature in the time-
domain and frequency-domain. The STFT and WT are the typical
approaches for time-frequency analysis (Tabar and Halici, 2017;
Yang et al., 2022). The STFT is obtained by adding a window
on the basis of the Fourier transform. It has the ability of
time-frequency analysis by using a fixed window function to
analyze the signal segment. However, there are some shortcomings
in the determination of the window function. If the window
function is too narrow, the frequency domain analysis will be
inaccurate; if it is too wide, the signal features in the time
domain will be imprecise, affecting the time resolution. The WT
is based on the Fourier transform but replacing the infinitely
long triangular function base with a finite length and decaying
wavelet base, and introduces scale and translation factors so
that the resolution of the window function can change with
the frequency characteristics. Compared with STFT, WT has
the ability to obtain the local characteristics of the signal in
both the time domain and the frequency domain (Khorrami
and Moavenian, 2010). CWT offers a greater time-frequency
resolution and can express the 3–5 s MI-EEG signal more precisely.
Therefore, the EEG signal is transformed into a two-dimensional
time-frequency map using the CWT method in the current
study.

Previous studies based on deep learning usually used multi-
channel stacked time-frequency maps as input to recognize
motor imagery EEG (Dai et al., 2019). We have also tried
this method, but could not obtain higher accuracy, only about
50% accuracy was achieved when using the time-frequency
maps of C3, CZ, and C4. The reason for this may be that
the aim of this study is to discriminative the motor imagery
EEG of unilateral upper limbs, rather than the recognition
of bilateral upper limb motor imagery in most studies. The
difference between different actions in the unilateral upper limb
motor imagery EEG is more minor (Ofner et al., 2017; Cho
et al., 2021), thus it is challenging to obtain discriminative
features with fewer channels. In order to make full use of
the hidden information in the unilateral limb motor imagery
EEG, we selected the EEG signals of 20 channels covering
the sensorimotor cortex of the brain for analysis. However,
it is not suitable to directly stack the 20-channel time-
frequency maps as the input of TF-CNN. To solve this
problem, we proposed to convert the time-frequency map
based on the virtual channel after CSP spatial filtering. CSP

could extract the spatial distribution components of each class
from the multi-channel EEG data (Ramoser et al., 2000),
and the virtual channel signal generated after spatial filtering
contained the discriminative information between classes. The
results shown in Figure 5 validated the effectiveness of this
approach.

There are many successful applications for EEG signal
classification using feature fusion methods of multi-modal signals.
For instance, the feature fusions of facial pictures or sound
signals with EEG signals have been proven to improve the
classification accuracy of emotion recognition (Wagner et al.,
2011; Xing et al., 2019). In the current study, the two-
dimensional time-frequency maps converted by raw EEG signals
were used as a supplement to the time-domain EEG signal.
Since the time-frequency maps were calculated from the original
EEG signals, this did not increase the complexity of the data
acquisition and was suitable for rehabilitation training scenarios.
In the processing of time-frequency images, TF-CNN was
carried out from the perspective of image processing, which is
quite different from the time-domain EEG signals processing
of EEG-CNN. The information extracted from the two CNN
branches were complementary, MF-CNN fused these information
to make them complement each other. The results shown in
Figure 6 validated that the classification accuracy of single upper
limb motor imagery EEG could be improved by such fusion
strategy.

5. Conclusion

In this study, we proposed a deep learning framework named
MF-CNN for classifying EEG signals associated with single upper
limb motor imagery. There are two branches in MF-CNN,
which can simultaneously extract features from the original EEG
signal and the two-dimensional time-frequency map, and fully
learn the time domain and time-frequency domain features of
the EEG signal. The binary-class and three-class classification
test results on the unilateral upper limb motor imagery dataset
demonstrated that the proposed MF-CNN can improve the
classification performance of unilateral upper limb motor imagery
EEG effectively.
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Introduction: Currently, it is still a challenge to detect single-trial P300 from

electroencephalography (EEG) signals. In this paper, to address the typical

problems faced by existing single-trial P300 classification, such as complex,

time-consuming and low accuracy processes, a single-trial P300 classification

algorithm based on multiplayer data fusion convolutional neural network (CNN)

is proposed to construct a centralized collaborative brain-computer interfaces

(cBCI) for fast and highly accurate classification of P300 EEG signals.

Methods: In this paper, two multi-person data fusion methods (parallel data

fusion and serial data fusion) are used in the data pre-processing stage to fuse

multi-person EEG information stimulated by the same task instructions, and then

the fused data is fed as input to the CNN for classification. In building the CNN

network for single-trial P300 classification, the Conv layer was first used to extract

the features of single-trial P300, and then the Maxpooling layer was used to

connect the Flatten layer for secondary feature extraction and dimensionality

reduction, thereby simplifying the computation. Finally batch normalisation is

used to train small batches of data in order to better generalize the network and

speed up single-trial P300 signal classification.

Results: In this paper, the above new algorithms were tested on the Kaggle

dataset and the Brain-Computer Interface (BCI) Competition III dataset, and

by analyzing the P300 waveform features and EEG topography and the four

standard evaluation metrics, namely Accuracy, Precision, Recall and F1-score,it

was demonstrated that the single-trial P300 classification algorithm after two

multi-person data fusion CNNs significantly outperformed other classification

algorithms.

Discussion: The results show that the single-trial P300 classification algorithm

after two multi-person data fusion CNNs significantly outperformed the single-

person model, and that the single-trial P300 classification algorithm with

two multi-person data fusion CNNs involves smaller models, fewer training

parameters, higher classification accuracy and improves the overall P300-cBCI

classification rate and actual performance more effectively with a small amount

of sample information compared to other algorithms.

KEYWORDS

convolutional neural networks, centralized collaborative BCI, multi-person data fusion,
single-trial, P300 classification
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Introduction

Brain-Computer Interface is a new way of human-computer
interaction, which provides a direct communication link between
the brain and a computer or other external devices (McFarland and
Wolpaw, 2011). The Event-Related potential (ERP) is a time-locked
measure of electrical activity of the cerebral surface representing a
distinct phase of cortical processing (Patel and Azzam, 2005), and
it is an endogenous potential linked to a person’s reaction to some
stimuli or specific events. Typical examples of ERP are N200 and
P300. P300 (Sutton et al., 1967), which is a positive peak waveform
displayed at about 300 ms after being evoked by a small probability
event, is one of the most studied, widely used and most prominent
components of ERP (David et al., 2020; Kirasirova et al., 2020).

P300 classification detection is the focus of P300-BCI research,
and fast and accurate recognition is crucial to improving the
performance of P300-BCI (Huang et al., 2022). The P300 usually
exhibits a low signal-to-noise ratio (SNR) (Zhang et al., 2022).
In order to highlight its time-locked component and minimize
the background noise, P300-BCI demands collecting, aggregating
and averaging data from multiple trials to obtain a reliable
output (Liu et al., 2018), which is time consuming and inefficient.
Therefore it is a great challenge to correctly classify P300 in
a single-trial. Up to now, the accuracy records of the single-
trial P300 classification algorithms are as follows: Krusienski’s
average classification accuracy using stepwise linear discriminant
analysis (SWLDA) is about 35%. Hoffmann’s average classification
accuracy using Bayesian Linear Discriminant Analysis (BLDA)
is about 60%. Blankertz applied Shrinking Linear Discriminant
Analysis (SKLDA) and achieved an average classification accuracy
of about 70%. Zhang adopted spatiotemporal discriminant analysis
(STDA) and attained an average classification accuracy of about
61%. The average classification accuracy of the support vector
machine (SVM) algorithm developed by Kaper reaches 64.56%.
And that value of discriminative canonical pattern matching
(DCPM) proposed by Xiao comes to 71.23%, demonstrating that
DCPM significantly outperformed other traditional methods in
single-trial P300 classification with smaller training sample (Xu
et al., 2018, 2021; Xiao et al., 2019a,b, 2021; Wang et al., 2020).
Ma et al. (2021) proposed a capsule network-based model that
improved the detection accuracy of single-trial P300, however,
the calculation became complicated due to the increase in size.
Zhang et al. (2022) filtered the data with xDAWN to improve
the signal-to-noise ratio of EEG signals, but the spatial filtering
method required manual selection of significant features after
feature extraction, and then classifying them. It is highly specific
to particular factors; however, the algorithm is often complex and
its accuracy is influenced by feature selection (Zhang et al., 2022).

Deep learning is end-to-end learning with a simple structure
that can be ported to a variety of tasks with high classification
accuracy but high requirements for sample data. Nowadays, deep
learning methods have made great progress in EEG-based target
detection technology (Li et al., 2021), and based on this, some
scholars have proposed other approaches for P300 classification,
such as transfer learning (Wei et al., 2020), EEG Data Fusion
(Panwar et al., 2020), Incep A-EEGNet (Xu et al., 2022), Combined
Classifier (Yu et al., 2021), Principal Component Analysis (PCA)
(Li et al., 2020) etc. At present, Daniela used CNN (Cecotti and

Graser, 2010) with a large number of training samples to obtain
an average accuracy of 78.19% for single-trial P300 (De Venuto and
Mezzina, 2021) classification; For multiple trial P300 classification,
Gao et al. (2021), proposed learning invariant patterns based on
a CNN and big EEG data with an average accuracy of 80%. Liu
et al. (2021) proposed a machine learning model based on one-
dimensional convolutional capsule network (1D CapsNet), which
attained a classification accuracy around 80%.

Currently, single-person BCI systems often fail to achieve the
desired results because of significant individual differences and
erratic execution due to the physical condition of the subjects. P300
usually has different temporal and spatial feature information, and
to solve the single-trial P300 detection problem, suitable signal
processing and classification algorithms are required to extract
discriminative information from single-trial data (Zheng et al.,
2020). Existing P300-BCI classification algorithms do not extract
sufficient spatial and temporal information at the data level in
feature extraction, and data must be collected from multiple trials
to obtain summary and average values. With the development
of complex BCI systems, the concept of multi-person cBCI has
been proposed to improve overall BCI performance by fusing
brain activity obtained from multiple subjects. Wang and Jung
(2011) demonstrated that cBCI can improve the performance
of single-trial P300 measurements by fusing brain activity from
multiple subjects. Zheng et al. (2020) introduced an cross-
session EEG dataset to improve the performance and utility of a
collaborative RSVP-based BCI system. Song et al. (2022) proposed
a Mutual Learning Domain Adaptation Network (MLDANet) cBCI
framework with information interaction, dynamic learning, and
individual transfer capabilities that exhibited superior population
detection performance. Li P. et al. (2022) applied migration
learning-based CNNs to steady-state visual evoked potentials
(SSVEP). Li C. et al. (2022) proposed a fourth-order cumulative
volume feature extraction method (CUM4-CSP) based on the
common spatial pattern (CSP) algorithm.

In terms of BCI systems, Tian and Wang (2019) developed
a multi-brain collaboration-based BCI music therapy system to
help people with disabilities enjoy music and receive rehabilitation
training services in the arts. Zhang et al. (2021) compared
different group sizes, variations in integration strategies and their
effects on group performance. Liu (2022) proposed a concrete
mapping model based on human perception of sound and aesthetic
transformation from sound to visual expression, forming a design
representation method for interactive sound visualization practice.
Currently, multi-person cBCI systems are not widely used in
interactive control (Miao et al., 2020). Therefore, the research in
this field can promote the development of BCI technology (Gu
et al., 2021; Zhang et al., 2021).

Current research divides cBCI into two paradigms, namely
distributed cBCI and centralized cBCI systems (Wang and Jung,
2011; Li P. et al., 2022). In distributed cBCI, the EEG information of
the subjects is collected separately through the corresponding BCI
subsystems for subsequent data pre-processing, feature extraction
and pattern recognition. The results corresponding to each subject
are then transmitted to the integrated classifier and the final
decision is generated through a voting mechanism at the decision
level, while in the centralized cBCI (Li P. et al., 2022), as shown in
Figure 1, subjects’ EEG information was collected individually for
data pre-processing. The pre-processed EEG data from all subjects
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FIGURE 1

Structure of centralized collaborative brain-computer interfaces (cBCI) system.

were fused together for CNN classification identification to make
the final decision for the group. The model used in this study
is a centralized cBCI system, which does not rely on the voting
mechanism of a distributed system, and classification is performed
by a CNN-based algorithm model.

A series of experiments (Wang and Jung, 2011; Li et al., 2020,
Li P. et al., 2022; Song et al., 2022) demonstrate that centralized
cBCI improves overall BCI performance by fusing data from
multiple subjects. To further improve the accuracy of single-trial
classification, this paper combines a combination of centralized
cBCI data fusion and CNN classification algorithm to identify
single-trial P300. The two centralized cBCI data fusions, namely
parallel data fusion and serial data fusion, can increase the effective
information on the temporal and spatial domains of single-trial
P300, and the CNN classification algorithm can effectively extract
features on P300, hence improving the total classification accuracy
and stability of P300-cBCI in the small sample case.

Materials and methods

Introduction to source datasets

Dataset I is derived from the Kaggle dataset, which includes
raw data collected by electrodes, row/column numbers flickering
as stimuli, and start and end time of flickers. The experimental
subjects were eight healthy participants of different ages and
genders, left-handed or right-handed. The experimental data
acquisition process used a standard 6 × 6 Donchin and
Farewell’s P300 speller matrix stimulation interface with an
interstimulus interval (ISI) of 0.125 ms. In the experiment,
the acquisition channel selected eight lead channels Fz, Cz,
P3, Pz, P4, PO7, PO8, Oz according to the international
standard 10–20 system electrode location, and 35 alphanumeric
characters were used for data acquisition. the stimulation went
as follows: each row and column flickered once in a random
order in one round of stimulation, so each stimulus includes 12
flickering rows/columns, and a subject was required to choose
the correct row number and column number corresponding
to a designated character, so as to produce 2 P300 signals.
The stimulation repeated 10 times for each character, so the
experimenter collected 4,200 (12∗10∗35) samples in total, among
which 700 (2∗10∗35) were target stimuli. All subjects performed
the same P300 stimulation evoked experiments. The stimulation

FIGURE 2

P300 speller matrix and corresponding row/column labels.

interface and numbered row/column of the dataset are shown in
Figure 2.

Dataset II is derived from BCI Competition III, including
50-min EEG recordings and speller matrix information of two
subjects (subject A and B). One round of flickering of all the
rows and columns is referred to as one trial, so each trial includes
12 row or column flickerings. Within each trial, the row or
column flickers for 100 ms, with 75 ms interval between two
flickering stimuli. The experiment repeats 15 times, producing 180
(12∗15) row/column flickerings. The stimuli interface adopts the
P300 speller matrix illustrated by Figure 2 and the corresponding
row/column labels.

Data preprocessing and fusion

The P300 EEG signal has a very low signal-to-noise ratio
and mainly lies within a specific frequency range of 0.5–
7.5 Hz. Collected EEG signals often include fundamental noises
in various frequencies, such as industrial frequency noise, or
random noise. To remove the impact of these invalid noises
and improve the signal-to-noise ratio of the P300 EEG signal,
an individual trial’s data extracted from a dataset are usually
filtered and preprocessed with a 50 Hz trap filter and a
(0.1–30 Hz) Butterworth bandpass filter. Besides the main
300 ms peak after stimulation, other peaks around it are
also important, so the EEG signal in Dataset I is divided
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into 1 s windows using 352 timestamps to better capture
key information.

Downsampling is applied on data to reduce the data
transmission rate and data size. Each element value is Xi,j, where
0 ≤ i ≤ Nelec, 0 ≤ j ≤ Nt . Nelec denotes the number of lead
channels, Nt denotes the sampling frequency, and the sampling
frequency used in the experiment is 240 Hz. The downsampling
begins with data dimensionality reduction, specifically the data
time domain sampling frequency is reduced from 240 Hz to
120 Hz. Then the data are normalized to prevent overfitting and
avoid different data performing nearly identically in the same
neural network. The calculation method is shown in formula (1).

Xi,j =
Xi,j − X

σi
(1)

In Formula (1), X represents the mean value of EEG signal
recorded by electrode i and σi represents the standard
deviation recorded by electrode i (Cecotti and Graser,
2010).

Two brain data fusion methods are proposed in this paper
to merge the preprocessed data information in spatial and
temporal domains. Specifically, both parallel data fusion and
serial data fusion are performed on the data evoked by repeated
identical experimental stimuli. As shown in Figure 3, n subjects
labeled Single 1 to Single n were fused in two ways, and (n-
2) sets of data were omitted from a total of n groups of
data. Parallel data fusion increases the spatial domain feature
information by fusing multi-person data stimulated by the
same task, thus improving the overall performance of BCI.
Serial data fusion can achieve the same goal by fusing multi-
person data stimulated by the same task and adding feature
information in the time domain without changing the number
of leads.

Characteristic analysis

Two individual subjects’ data was randomly selected from data
set I, which was evoked by the same stimulus experiment. Then
starting with the small probability stimulus moment, the wave
form during 0–500 ms after the filtered small probability stimulus
evoked response was drawn, and the single-trial P300 amplitude
features and EEG topographic map in single-person mode and two-
person centralized data fusion mode were analyzed and compared.
As shown in Figures 4, 5. In Figure 4, different colored curves
in each graph correspond to different lead signals. The position
of the leads is shown in the upper left corner of the diagram, the
upper right corner is the amplitude color scale measured in µv, the
horizontal axis represents the time and the vertical axis represents
the signal amplitude of each lead. Figures 4A,B represent the EEG
signals of each lead for both subjects in single-person mode. As
can be seen in Figure 4, the P300 EEG signal treated with the two
centralized data fusion has a more pronounced wave at around
300 ms. In this case, Figure 4C shows the centralized parallel data
fusion, as the international standard 10–20 lead system was used,
so by assigning the eight leads Fz, Cz, P3, Pz, P4, PO7, PO8, Oz
to the eight leads FCz, CPz, CP1, CP2, P5, P6, PO3, PO4, it was
possible to draw 16 lead waveforms. The increase in lead (spatial
domain) information by centralized parallel data fusion is evident
in Figure 4C. Figure 4D shows the centralized serial data fusion.
As the centralized serial data fusion is the information added in the
time domain, in terms of the lead wave crest characteristics, it is first
shown as the first one of the two fusion individuals.

Figure 5 illustrates the change in amplitude corresponding to
each lead position in the EEG topography in single-person mode
and two-person centralized data fusion mode, with Figures 5A,B
representing single-person mode, Figure 5C representing two-
person centralized parallel data fusion and Figure 5D representing

FIGURE 3

Schematic diagram of parallel data fusion and serial data fusion of multi-person data.
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FIGURE 4

P300 characteristic distribution. (A,B) Single-person model. (C) Centralized parallel data fusion. (D) Centralized serial data fusion.

FIGURE 5

Electroencephalographic topography. (A,B) Single-person model. (C) Centralized parallel data fusion. (D) Centralized serial data fusion.

two-person centralized serial data fusion. It can be seen from
Figures 4, 5 that this method is feasible.

CNN classification

In this paper, Dataset I was first used, referring to the
CNN structure proposed by Cecotti and Graser (2010), and

the network structure parameters were adjusted based on the
data characteristics of Dataset I. Taking two-person parallel data
fusion as an example, the 8-Lead data set is fused into 16
leads, which increases the characteristics of lead information and
spatial domain. The CNN structure is composed of Input layer,
Convolution layer, Dropout layer, Maxpooling layer, Flatten layer,
and Dense layer. In the CNN structure, the first and third layers
are the convolutional layers, and the convolutional operation can
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TABLE 1 Convolutional neural network (CNN) structure of two-person
parallel data fusion.

Layer Input Type Output #Parameters

L1 (None,351,16,1) Conv2D+ReLU (None,351,16,16) 1,040

L2 (None,351,16,16) Dropout (None,351,16,16) 0

L3 (None,351,16,16) Conv2D+ReLU (None,351,16,32) 18,464

L4 (None,351,16,32) MaxPooling2D (None,175,8,32) 0

L5 (None,175,8,32) Flatten (None,44800) 0

L6 (None,44800) Dense+ReLU (None,64) 2,867,264

L7 (None,64) Dense+ReLU (None,8) 520

L8 (None,8) Dense+softmax (None,2) 18

be regarded as the inner product of the input samples and the
convolutional kernel, as shown in the formula (2).

Y l
j = f (

∑
i∈Mj

Y l−1
i ∗ ωl

ij + Blj) (2)

In Formula (2), Y l
j is the j th characteristic map of the l th

convolution layer, f () represents the activation function, ReLU
activation function is used in this network, Mj represents all
input characteristic maps, ωl

ij represents the convolution kernel
matrix between i and j, Blj represents offset, and ∗ represents
convolution operation.

The Dropout layer is used after the first convolution layer
to prevent a decrease in sensitivity of the network model due
to overfitting. The Maxpooling layer is added after the second
Conv layer, which compresses the features obtained from the
preceding layer with a pooling function, and selects the maximum
value of all elements in each specific region of the feature map
as the feature value of that region. This procedure resembles a
secondary feature extraction process, retaining the main features
of the data while of the data while lowering the dimensionality
the dimensionality of the data, thus reducing the computational
effort (He et al., 2020). So Maxpooling can effectively reduce
the training parameters and over-fitting problems to form the
final features. The Flatten layer is then connected with the
Maxpooling layer to map the feature space calculated by the
previous layer (convolution, pooling, etc.) to the sample marker
space to produce the final classification result, and improve the
generalization ability of the model. The specific parameters are
shown in Table 1.

Also taking two-person serial data fusion as an example, the
preprocessed single-person data is fused without changing the
specific data of two person. Serial data fusion is mainly carried
out in the time domain. That is, the time domain information
can be greatly expanded without changing the number of leads.
When constructing the CNN structure of two-person serial data
fusion, in order to avoid errors caused by other reasons, only the
corresponding time domain parameters are changed. The CNN
structure and specific parameters of two-person serial data fusion
are shown in Table 2.

The ReLU function is used as the activation function of the
neurons in the CNN. This method can solve the gradient vanishing
problem with fast calculation speed and fast convergence speed. As
shown in formula (3), when the input x takes a negative value, the

TABLE 2 Convolutional neural network (CNN) structure of two-person
serial data fusion.

Layer Input Type Output #Parameters

L1 (None,702,8,1) Conv2D+ReLU (None,702,8,16) 1,040

L2 (None,702,8,16) Dropout (None,702,8,16) 0

L3 (None,702,8,16) Conv2D+ReLU (None,702,8,32) 18,464

L4 (None,702,8,32) MaxPooling2D (None,351,4,32) 0

L5 (None,351,4,32) Flatten (None,44928) 0

L6 (None,44928) Dense+ReLU (None,64) 2,875,456

L7 (None,64) Dense+ReLU (None,8) 520

L8 (None,8) Dense+softmax (None,2) 18

output is 0, and when it takes a positive value, the output remains
that value of x.

ReLU(x) = max(x, 0) (3)

The last layer of neurons uses the softmax function for binary
classification. The function is given in formula (4) as follows, where
xi is the input.

Softmax(x) =
exi∑
i exi

(4)

In this paper, the CNN adopts the most robust network optimizer
for the neural network. Adam, and the cross-entropy function as
the loss function. The learning rate is set at 0.001, the number
of trainings is set as 75, and the random mini-batch size gradient
descent is set to 32, which can enable the network to be well
generalized and achieve faster classification.

Results

In order to evaluate the performance of the P300 classification
algorithm, relevant evaluation criteria are considered. The standard
metric for evaluating the P300 classification algorithm usually is
the accuracy rate, and the formula for P300 recognition accuracy
rate is given in Equation (5), which includes True Positive (TP),
True Negative (TN), False Positive (FP), and False Negative (FN).
TP indicates the number of samples correctly identified as positive
in positive samples, TN indicates the number of samples correctly
identified as negative in negative samples, FP indicates the number
of samples misidentified as positive in negative samples, and
FN indicates the number of samples misidentified as negative
in positive samples (Cecotti and Graser, 2010; De Venuto and
Mezzina, 2021; Liu et al., 2021).

Accuracy =
TP + TN

TP + TN + FP + FN
(5)

The eight subjects contained in Dataset I were labeled in turn as
Subjects 1–8, and their data was divided into four sets marked as
C1, C2, C3, and C4, respectively, each including the data of two
subjects. Then the four sets of data were used for parallel data
fusion or serial data fusion. Table 3 lists the results of CNN’s single-
trial P300 classification of two centralized multi-person data fusion
methods and single-person mode, respectively.

As shown in Table 3, the classification accuracy of single-trial
P300 based on the fusion of two centralized multi-person data is
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TABLE 3 Results of convolutional neural network (CNN) single-trial P300 classification for centralized multi-person data fusion and
single-person mode.

CNN Subject 1 2 3 4 5 6 7 8 Average

Accuracy (%) 60.72 75.00 71.43 71.43 75.00 71.43 75.00 78.57 72.32

CNN+Parallel data fusion Subject C1 C2 C3 C4 Average

Accuracy (%) 78.57 82.14 85.71 85.67 83.03

CNN+Serial data fusion Subject C1 C2 C3 C4 Average

Accuracy (%) 71.43 78.57 78.57 85.71 78.57

FIGURE 6

Single-trial P300 classification results of a centralized multi-person
data fusion convolutional neural network (CNN) for groups with
different numbers of participants.

higher than that of single-trial P300 based on the single-person
mode. Specifically, the average accuracy of CNN for single-trial
P300 of single-person is 71.88%, while the average classification
accuracy of CNN with parallel data fusion reaches 83.03%, and that
value of CNN with serial data fusion reaches 78.57%.

Figure 6 compares the single-trial P300 classification results
of the two data fusion methods for two-person, three-person and
four-person groups and the counterpart results of the single-person
mode CNN. The dotted line 75% is the highest classification
accuracy of the single-trial P300 given by the single-person mode
CNN. It can be seen from Figure 6, as the number of participants in
the experiment increases, the average classification accuracy of the
centralized multi-person data fusion method for single-trial P300
keeps improving, and both of them exceed the dotted line 75%.
When the number of participants was four-person, the average
classification accuracy reached 89.13% for parallel data fusion and
82.14% for serial data fusion.

In addition to accuracy, some mainstream performance metrics
for binary classification problems, such as Recall, Precision, and
their summed average F1- score, are also considered relevant for
further feature recognition (Cecotti and Graser, 2010; De Venuto
and Mezzina, 2021; Liu et al., 2021). The calculation formula is
shown in (6), (7), and (8):

Recall =
TP

TP + FN
(6)

TABLE 4 Single-trial P300 classification results of a centralized
multi-person data fusion convolutional neural network (CNN) for
different numbers of participants.

Method N-
participants

Recall
(%)

Precision
(%)

F1- score
(%)

CNN 1 66.7 72.7 69.6

CNN+Parallel
data fusion

2 81.2 72.2 76.5

81.2 78.5 86.7

68.7 70.5 81.4

75.1 75.2 85.7

Average 76.5 74.1 82.5

3 75.3 85.7 83.3

62.5 71.4 66.7

66.7 75.6 75.0

Average 68.1 77.5 75.0

4 51.2 66.7 70.6

51.4 66.9 70.8

Average 51.3 66.8 70.7

CNN+Serial
data fusion

2 75.1 71.4 76.9

74.5 71.2 75.6

68.7 66.7 75.8

62.5 66.7 76.9

Average 70.2 69.0 76.3

3 75.2 85.7 76.9

62.5 83.3 71.4

66.7 75.6 75.0

Average 68.1 81.5 74.4

4 51.2 66.7 70.6

51.4 66.9 70.8

Average 51.3 66.8 70.7

Precision =
TP

TP + FP
(7)

F1− score = 2
Recall ∗ Precision
Recall+ Precision

(8)

Precision is the proportion of genuinely positive samples in all
(P300) samples that are identified as positive, and Recall is the
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TABLE 5 Results of centralized multi-person electroencephalography (EEG) data fusion convolutional neural network (CNN) and other
classification algorithms.

Method Subject Accuracy (%) Recall (%) Precision (%) F1- score (%)

ConvLSTM
(Joshi et al., 2018)

A 75.1 64.3 36.1 46.2

B 80.2 63.4 44.0 54.0

BN3
(Liu et al., 2018)

A 73.0 63.7 33.6 44.0

B 79.7 67.0 42.9 52.3

CNN-1
(Cecotti and Graser, 2010)

A 70.4 67.4 31.7 43.1

B 78.2 67.8 40.7 50.9

BN3(ns)+ConvLSTM
(De Venuto and Mezzina, 2021)

A 75.7 63.4 36.8 46.7

B 82.3 65.2 47.8 55.2

Autoencoded CNN
(De Venuto and Mezzina, 2021)

A 75.1 67.2 36.6 47.4

B 82.7 66.5 48.6 56.2

Autoencoded CNN no LBP
(De Venuto and Mezzina, 2021)

A 75.2 65.0 36.3 46.6

B 81.7 66.3 46.6 54.7

CNN+Parallel data fusion P(A+B) 82.4 71.1 56.6 66.7

CNN+Serial data fusion S(A+B) 81.4 75.1 44.4 53.3

proportion of positive samples that are detected from genuinely
positive samples, where Precision and Recall influence each other,
with both metrics being high if the detection algorithm is ideal.
However, usually it is difficult to optimize both of them, when one
is high the other will be low, so F1- score can be chosen as their
combined metric. In Table 4, the bold values represent the average
values of the three indicators in the single-person mode and the
average values of the three indicators in the two centralized multi-
person data fusion CNN for different participants. Since there are
eight individual data in the data set, data fusion was carried out
for four two-person groups, three three-person groups, and two
four-person groups. In three-person group case, only two people
were left for the last group, so one person was randomly selected
from the other two groups that were already fused so as to make up
three members. Then the single-trial P300 classification evaluation
indicators Precision, Recall and F1- score for the two data fusion
methods with two-person, three-person, and four-person groups
were calculated, and the average value after centralized data fusion
is taken in each case. The results are shown in Table 4. In Table 4,
N-participants represent the number of participants in a group for
centralized data fusion. In Table 4, N-participants represent the
number of people who have undergone centralized data fusion.
Since there are eight single persons in the data set, they are
divided into four groups when the number of people fused is two,
three groups when there are three, and two groups when there
are four, and the average value after centralized data fusion is
taken.

N-participants in Table 4 is 1, which represents the mean
classification of single-trial P300 by the CNN in single-person
mode. Although it can be seen from Figure 6 that the average
classification accuracy of the two centralized data fusions increases
as the number of participants increases, the three metrics Precision,
Recall and F1-score all decrease to varying degrees as the
number of participants increases. The reason behind this fact
is that P300 and non-P300 data in the EEG data is unevenly
distributed, even if all the recognition is made for non-P300

signals, the model can still achieve high accuracy, so the accuracy
alone is not enough to achieve a scientific and persuasive
evaluation, and all the four indicators should be considered
comprehensively.

It can be seen from Table 4 that when the number of group
member goes from 2 to 3 and 4, the recall of both centralized
data fusions The highest recall rates are achieved in two-person
group case with an average of 76.5% for parallel data fusion and
70.2% for serial data fusion. The F1- score averages for both
centralized data fusion CNNs also reach the highest value in
two-person group case, with parallel data fusion averaging 82.5%
and serial data fusion averaging 76.3%. In two-person or three-
person group cases, all the three metrics improved compared with
those for the single-trial P300 classification in single-person mode.
However, in four-person group case, the recall and precision of
both centralized data fusions are slightly lower than the mean in
the single-person mode, and the mean of F1- score is higher than
in the single-person mode. In summary, the centralized multi-
person data fusion classification algorithm has obvious advantages
over the single-person mode classification algorithm. When the
data of individual participants in the centralized data fusion is
divided into four two-person groups, the F1–score reaches the
highest when compared with the single-person mode and the
number of group members is three and four, Combining the two
indicators of Accuracy and F1-score, when the group members
of individual participants in centralized data fusion are two, the
classification single-trial P300 has the best effect. To explain the
better experimental results using a data fusion group size of two
compared with three and four, one possible reason could be the
over-fitting of multi-dimensional data; another reason could be
that the noisy nature of the EEG signal leads to saturation of
the classification performance, resulting in reduced accuracy. EEG
artifacts include electrode contact loosening, head movements,
eye movements and muscle activity. It is known that noise levels
may affect linear classification performance (Yun and Stoica,
2016).

Frontiers in Neuroscience 08 frontiersin.org114

https://doi.org/10.3389/fnins.2023.1132290
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-17-1132290 February 16, 2023 Time: 13:59 # 9

Du et al. 10.3389/fnins.2023.1132290

Validation of the model on dataset I indicates that the best
number of group members is two for the two centralized data
fusion CNNs in single-trial P300 classification. In order to test
the reproducibility of this method, this paper then applies the
algorithm to the data of Dataset II. Each subject’s single-trial
P300 information of 15 repeated experiments was extracted, and
two subjects’ single-trial data is fused with the above-mentioned
method to calculate the average classification accuracy after fusion.
For consistency, the results of other advanced single-trial P300
classification algorithms analyzing the same dataset and using the
same CNN structure were compared in terms of accuracy, recall,
precision and F1-score. As shown in Table 5. In Table 5, bold values
represent the highest two values of each column.

The comparison results in Table 5 show that the average
accuracy of the CNN based on centralized parallel data fusion
and serial data fusion in two-person group case reached 82.4 and
81.4%, respectively, both of which are slightly higher than that of
other advanced single-trial P300 recognition algorithms. And the
parallel data fusion always maintained the highest classification
accuracy. In terms of recall, both algorithms based on the two
centralized multi-person data fusion CNNs maintained a high
level, with serial data fusion reaching around 75%. Compared with
other methods, the proposed algorithms reached the higher level of
accuracy, although the data was imbalanced. The two centralized
brain data fusion CNNs also surpass the other algorithms in terms
of F1- score, with the F1- score for parallel data fusion also
maintaining the higher level. In summary, the method was shown
to be reproducible. Compared with other classification algorithms,
the spatial and temporal domain feature information of the single-
trial P300 data layer can be increased after fusion of multi-person
data, and the CNN constructed by connecting the Flatten layer with
the Conv layer and Maxpooling layer can better extract and classify
the features of the single-trial P300, which solves the problem of
complex and time consuming operation as well as low accuracy
in the process of recognizing the single-trial P300, thus achieving
better recognition results.

Discussion

The single-trial P300 classification algorithm based on
centralized multi-person data fusion CNN proposed in this paper
uses CNN to classify the single-trial P300 signal after centralized
parallel or serial fusion of multi-person EEG data. In the CNN
network structure, a Dropout layer is added after the first Conv
layer to prevent overfitting, and a Maxpooling layer is used after
the second Conv layer to connect the Flatten layer, extracting
the maximum of all elements in each region of the convolutional
layer feature map as the feature value of this region, preserving
the main features of the data while reducing the dimensionality
of the data. Batch Normalization is adopted to train the data in
small Batch, which makes it easier to generalize the network and
classify P300 signals faster. The purpose is to improve the existing
multi-trial P300 classification algorithm, which is time-consuming
and complex in calculation, and the single-trial P300 classification
algorithm which has low accuracy. This paper uses two centralized
multi-person data fusion CNN approaches to fuse the EEG data
of different number of participants ranging from 2 to 4 for P300
classification. The results are evaluated with four metrics, Accuracy,

Recall, Precision and F1- score, respectively, and compared with
those of single-person CNN model and other advanced single-
trial P300 classification algorithms, which are validated on the
available public dataset Kaggle dataset and BCI Competition III.
The experimental results demonstrate that the classification results
of both centralized multi-person data fusion CNNs outperform
the CNN classification results in single-person mode, and the four
metrics of Accuracy, Recall, Precision and F1-score for detecting
single-trial P300 are improved by different margins compared
with other classification algorithms, so the proposed approach can
achieve high accuracy in identifying single-trial P300. Comparison
among the results of fusing 2, 3, and 4 people’s data as a group
indicates that the best results are obtained for two-person groups.

Among the two data fusion methods used in this paper,
the centralized P300-cBCI with parallel data fusion is the better
choice in terms of applicability compared to the centralized P300-
cBCI with serial data fusion, as it involves a smaller model
and fewer training parameters. In summary, CNNs that undergo
centralized two-person parallel data fusion can be more effective
in improving the overall P300-cBCI classification accuracy and
practical performance at small amounts of sample information.
The single-trial P300 classification algorithm based on a centralized
multi-person data fusion CNN proposed in this paper can be
applied to online P300-cBCI systems, providing a new idea for
building a more efficient P300-cBCI system, but this requires
participating subjects to receive the same experimental stimuli
under the same experimental conditions, and the same pre-
processing of the data to be prepared for fusion. In the future,
online P300-cBCI systems are to be built to enable efficient, fast and
accurate classification of P300 for a number of applications, such as
helping patients with text communication. This will improve the
actual performance of the P300-cBCI system.
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1. Introduction

Research on cross-task EEG signals analysis methods has become a fast-growing research

hotspot. In recent years, more and more researchers applied the features, which were widely

used in EEG signal analysis to cross-task EEG signal analysis studies, including power

spectral density (PSD) features (Touryan et al., 2016; Adewale and Panoutsos, 2019), fusion

features (Kakkos et al., 2021), etc. The objective aimed to find ways to effectively deal

with the differences between tasks. At the same time, some researchers have explored the

classifiers which are more friendly to the differences between different tasks by comparing

with the traditional feature classification methods, including multi-layer perceptron neural

network (MLPNN) (Kamrud et al., 2021), domain adaptive methods (Zhou et al., 2022),

sliding-window support vector machine (SVM) (Boring et al., 2020), etc. On the other

hand, some new cross-task models based on deep learning models were proposed to narrow

the differences between tasks, such as convolutional neural networks (CNNs) (Mota et al.,

2021), recurrent neural networks (RNNs) (Gupta et al., 2021), metric-based methods (Jia

et al., 2023), combinations of CNNs and RNNs (Zhang et al., 2019; Zhou et al., 2019; Taori

et al., 2022), etc. However, there are still many unexplored areas in the field of cross-task

EEG signal analysis methods, such as: task segmentation and complexity design (Kamrud

et al., 2021), multi-source domain adaptive application (Zhou et al., 2022), multi-scale and

multi-directional filter research (Taori et al., 2022), considering both feature extraction and

feature classification, and increasing the amount of data. Furthermore, there are also some

interconnections between cross-task analysis and relatively common cross-subject studies.

This study will review the literature related to cross-task EEG signal analysis from

the perspective of feature extraction and feature classification, and discuss the relationship

between cross-task research and cross-subject research for EEG signal analysis, and finally

present the point of our original opinion in the purpose of providing useful suggestion for

the research field of cross-task EEG signal analysis.

2. Cross-task EEG signal analysis based on feature
extraction

With the development of EEG signal analysis methods, a series of studies on EEG signal

analysis has found that many EEG signal feature extractionmethods ignored the interference

of different tasks on EEG signal analysis (Xing et al., 2022). Therefore, in order to improve

cross-tasks results, more and more researchers are working to find features that perform

better on cross-task.
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2.1. Cross-task EEG signal analysis based
on classical features

In EEG signal analysis research, as PSD is one of the most

widely used features in EEG signal analysis, some cross-task studies

started from PSD features for in-depth exploration. Touryan et al.

used ICA to describe feature space, calculated PSD, and identified

independent component (IC) sets in spectral properties using

sequential forward floating selection (SFFS) (Touryan et al., 2016).

The results showed that common components of cross-task EEG

signals could be identified through this method. Furthermore,

Adewale et al. designed a signal processing and feature extraction

framework based on PSD (Adewale and Panoutsos, 2019), and

found that PSD could be used as an excellent feature for mental

workload estimation. Therefore, PSD features show excellent

performance in cross-task EEG signal analysis.

2.2. Cross-task EEG signal analysis based
on other features

In recent years, it has been found that cross-task EEG signal

analysis using PSD features alone does not achieve the best results

(Kakkos et al., 2021; Ke et al., 2021; Guan et al., 2022; Xing et al.,

2022). Therefore, some studies have begun to use some features

combined with PSD or propose new features.

(1) Research based on feature fusion. Kakkos et al. improved

the performance of cross-task classification by combining PSDwith

functional connectivity (FC) features (Kakkos et al., 2021) and

demonstrated that the use of brain feature fusion is more effective

in cross-task. Ke et al. verified that task-independent auditory

event-related potentials (tir-aERPs) have better adaptability than

PSD (Ke et al., 2021), and will work on tir-aERPs and PSD feature

fusion in their future studies.

(2) Research based on brain network features. Guan et al.

proposed a dynamic brain network analysis method based on EEG

microstates (Guan et al., 2022) and found that the use of dynamic

functional connectivity metrics was more suitable for cross-task.

(3) Research based on fuzzy entropy features. Xing et al. used

fuzzy entropy features for cross-task EEG signal analysis (Xing

et al., 2022) and found that fuzzy entropy features are more

adaptable to cross-tasks than other features.

In summary, the studies of cross-task EEG signals from the

perspectives of PSD-based feature fusion and exploration of new

features has garnered the attention of numerous researchers, yet

further investigation is still required in terms of effective feature

fusion and novel cross-task sharing features.

3. Cross-task EEG signal analysis based
on feature classification

From the perspective of feature classification, although the

differences between tasks corresponding to different EEG signals

limit the cross-task versatility of existing classification models

(Zhou et al., 2022), researchers are still committed to finding or

constructing some relatively general cross-task feature classification

models (Kamrud et al., 2021; Mota et al., 2021; Taori et al., 2022).

3.1. Cross-task EEG signal analysis based
on classical classification methods

Classical classification models in the field of EEG signal

analysis are emerging, but only a few methods exist in cross-task

research field.

(1) Neural network method. Kamrud et al. studied the

commonality of three different models in terms of cross-task:

MLPNN, temporal convolutional network (TCN), TCN auto

encoder (TCN-AE) (Kamrud et al., 2021), and the results showed

that the best model for cross-task classification was the MLPNN

frequency domain model.

(2) Domain adaptive method. Zhou et al. explored four domain

adaptation methods to bridge differences between tasks (Zhou

et al., 2022), and the results showed that the transfer joint matching

method not only performed best, but always achieved the best

performance compared to other methods.

(3) Support vector machine. Boring et al. compared the

cross-task classification performance of SVM, linear discriminant

analysis (LDA), and k-nearest neighbors (KNN) under sliding

window (Boring et al., 2020), and the results showed that

the performance of SVM was significantly better than that of

other models.

The above studies analyzed the performance of some classical

methods in the application of cross-task EEG signal analysis, and

there may be some classical methods with better performance in

the future that can be used for cross-task EEG signal analysis.

3.2. Cross-task EEG signal analysis based
on other classification methods

In addition to the above classical methods, the following

methods have also achieved excellent performance in cross-task

EEG signal analysis.

(1) CNN. Mota et al. proposed a cross-task classification

method based on CNN and compressed excitation blocks (Mota

et al., 2021), and the results showed that compressed excitation

blocks could be used to explore the dependence on EEG

signal pathways.

(2) RNN. Gupta et al. proposed a deep RNN model (Gupta

et al., 2021), which showed that the model could learn forward and

reverse temporal dynamics and had long-term memory ability.

(3) Multi-classifier combination. Zhou et al. proposed a cross-

task method for classification using raw data (Zhou et al., 2019),

and the results showed that the method had good adaptability. In

the same year,Wang et al. proposed a cascade structure (R3DCNN)

of a deep recurrent and three-dimensional convolutional neural

network (3DCNN) (Zhang et al., 2019), and the results showed that

3DCNN could be used to learn the spatial and spectral features of

EEG signals, and the use of RNN layers that can obtain temporal

representations improved the performance. Taori et al. proposed a

structural model built on RNN and attention mechanisms (Taori
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et al., 2022), and the results showed that the model could extract

effective cross-task features from the space-time domain.

(4) Metric-based method. Jia et al. proposed a metric-based

Spatial Filtering Transformer (MSFT) model, which used the angle

margin loss function (Jia et al., 2023), and the results showed that

the method had good application prospects in the field of cross-task

EEG signal analysis.

The abovemethods showed excellent performance in cross-task

research, and future research could tend to build new cross-task

classification models.

4. Study on cross-task and
cross-subject relationship for EEG
signal analysis

The significant variability of EEG signals between individuals

reduces the generalization ability of EEG analysis algorithms (Xu

et al., 2021). Since 2005 or even earlier, cross-subject EEG signals

analysis has flourished, a variety of cross-subject methods has

been designed, Tangermann et al. proved that recursive channel

elimination (RCE) can be used for cross-subject combinatorial

data analysis (Tangermann et al., 2005), and Dyson et al.

conducted cross-subject studies by sequential forward-floating

search algorithms (Dyson et al., 2010). On the other hand, cross-

task research has only been in its infancy in recent years, and the

current cross-task approach has a mutually reinforcing relationship

with the existing cross-scenario approach.

(1) Cross-subject methods are innovatively applied to cross-

task research. In 2012, Khalighi et al. proposed a cross-subject

method for unsupervised domain adaptation (Khalighi et al., 2012).

In 2021, Zhao et al. proposed an aligned multi-source domain

adaptation method for cross-subject (Zhao et al., 2021). Zhou

et al. proposed a cross-task domain adaptive method based on the

above (Zhou et al., 2022). In 2016, Hajinoroozi et al. proposed a

cross-subject method for channel convolutional neural networks

(Hajinoroozi et al., 2016), and 5 years later, Mota et al. proposed

a CNN-based cross-task method (Mota et al., 2021). Similarly, in

2019, Hang et al. achieved feature fusion of cross-subject EEG

signals (Hang et al., 2019), and 2 years later, Kakkos et al. also

explored feature fusion of cross-task EEG signals (Kakkos et al.,

2021).

(2) Cross-task methods are innovatively applied to cross-

subject research. In 2016, Touryan et al. studied the PSD features

of cross-task EEG signals (Touryan et al., 2016), and 2 years later,

Booth et al. carried out in-depth research on the PSD features of

cross-subject EEG signals (Booth et al., 2018).

In summary, there is a certain correlation between cross-

task and cross-individual research methods, and combining cross-

task and cross-subject research will make EEG analysis methods

more versatile.

5. Discussion

In this study, the cross-task EEG signal analysis method

was analyzed from three aspects: feature extraction, feature

classification, and the relationship between cross-task and cross-

subject methods. While these studies have yielded promising

results, more exploration is needed before confident conclusions

can be drawn. Therefore, this paper raises our own opinion on the

future research of cross-task EEG signal analysis.

(1) Increasing the sample size. In the future, more EEG data

can be collected or data augmentation techniques can be used to

increase the sample size in order to improve the generalization

performance of cross-task methods.

(2) Research from the perspectives of both feature extraction

and feature classification. At present, most cross-task researches

were carried out independently from the perspective of feature

extraction or feature classification, and it is a valuable practice to

find common ground from these two perspectives simultaneously

in the future, such as multi-source domain adaptation (Zhou et al.,

2022) andmulti-scale andmulti-directional filter (Taori et al., 2022)

used for the study of single cross-task EEG signals.

(3) Task subdivision. In the future, it is necessary to subdivide

different tasks to improve the practicability of cross-task research,

such as the corresponding EEG signal datasets can be analyzed

on tasks with the same cognitive domain but different cognitive

training content, or tasks with different cognitive domains and

different cognitive training content.

(4) The research of cross-task regression models can be

explored in depth. The study results of Ke et al. suggested

that regression models rather than classifiers should be used for

obtaining optimal results in some cross-task studies (Ke et al.,

2014). In the future, we can try to explore cross-task research on

other types of regression models.

In conclusion, this paper introduced some research trends in

the future. If cross-task research can continue to advance in these

areas, it will take this type of research to a higher level.
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Background: Sleep spindles are a vital sign implying that human beings have

entered the second stage of sleep. In addition, they can effectively reflect a

person’s learning and memory ability, and clinical research has shown that their

quantity and density are crucial markers of brain function. The “gold standard”

of spindle detection is based on expert experience; however, the detection cost

is high, and the detection time is long. Additionally, the accuracy of detection is

influenced by subjectivity.

Methods: To improve detection accuracy and speed, reduce the cost, and

improve efficiency, this paper proposes a layered spindle detection algorithm.

The first layer used the Morlet wavelet and RMS method to detect spindles, and

the second layer employed an improved k-means algorithm to improve spindle

detection efficiency. The fusion algorithm was compared with other spindle

detection algorithms to prove its effectiveness.

Results: The hierarchical fusion spindle detection algorithm showed good

performance stability, and the fluctuation range of detection accuracy was

minimal. The average value of precision was 91.6%, at least five percentage points

higher than other methods. The average value of recall could reach 89.1%, and the

average value of specificity was close to 95%. The mean values of accuracy and

F1-score in the subject sample data were 90.4 and 90.3%, respectively. Compared

with other methods, the method proposed in this paper achieved significant

improvement in terms of precision, recall, specificity, accuracy, and F1-score.

Conclusion: A spindle detection method with high steady-state accuracy and fast

detection speed is proposed, which combines the Morlet wavelet with window
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RMS and an improved k-means algorithm. This method provides a powerful tool

for the automatic detection of spindles and improves the efficiency of spindle

detection. Through simulation experiments, the sampled data were analyzed and

verified to prove the feasibility and effectiveness of this method.

KEYWORDS

sleep spindle detection, hierarchical fusion detection algorithm, EEG, Morlet wavelet,
SVM

1. Introduction

Sleep spindles refer to the recognizable 11–16 Hz sinusoidal
periodic pulse sequence on an electroencephalogram (EEG) during
sleep. According to the American Academy of Sleep Medicine
(AASM) (Iber et al., 2007), the spindles mainly occur in stage
two of Non-Rapid-Eye-Movement (NREM) sleep (Schilling et al.,
2018; Chriskos et al., 2019). Spindle detection plays a crucial role
in sleep staging research and clinical disease diagnosis (Dehnavi
et al., 2019; Zhang et al., 2020). Studies have found that the number
and density of spindles are associated with many diseases (Fogel
and Smith, 2011), such as Parkinson’s disease (Latreille et al.,
2015), Alzheimer’s disease, major depression, autism, insomnia,
and schizophrenia (Limoges et al., 2005; Keshavan et al., 2011;
Astori and Luthi, 2013; Davies et al., 2016; Spironelli et al., 2020).
In addition, the function of sleep spindles is associated with human
intelligence and sleep-dependent memory consolidation (Fogel
et al., 2007; Ujma et al., 2014). Notably, spindles are a reflecting
functional brain-state biomarker and have solid supplementary
diagnostic value (Zhao et al., 2017; Mensen et al., 2018).

Currently, in clinical diagnosis, spindle detection mainly
depends on the subjective experience of doctors, the so-called gold
standard of spindle detection (Dakun et al., 2015). Generally, the
manual detection of spindles allows many experts to select the
spindles simultaneously. It is challenging to detect sleep spindles
with this method due to the high detection cost and longer
detection time (Lacourse et al., 2019). Thus, Wamsley et al. (2012)
explored a method to detect spindles using the wavelet transform
automatically and found an overall number and density of 62.5%,
a result that was far from ideal. Athanasios and Clifford (2015) and
others proposed a probabilistic wavelet estimation algorithm based
on the wavelet algorithm for the automatic detection of spindles.
However, due to the spindles’ irregularities, the performance in
recall rate was not ideal, with a minimum of 14.4% and a maximum
of 83.2%. Hence, the stability of the recall rate was poor. Martin
(Martin et al., 2012) et al. used the window root mean square
(RMS) method to detect the spindle density of young and older
people by calculating the RMS value. The accuracy was only 72%,
but the recall rate was 83%. Furthermore, concerning age, it was
found that the density, duration, and amplitude of spindles in
young subjects were greater than those in older subjects, and age
factors affected the detection of spindles. Mporas et al. (2013)
proposed the hidden Markov model (HMM) and support vector
machine (SVM) to process EEG signals. Through the fusion of
HMM and SVM (HMM&SVM), the output recognition spindle
results were combined to extract the final sleep spindle detection

results. The average performance regarding precision was 88%, and
recall was 76%, but the process was complex, and the operation
was cumbersome, bringing great inconvenience to the experiment.
Lacourse et al. (2019) proposed a detection method for spindles,
also known as A7. The recall rate of this method reached 68%,
with no crucial change compared with the average value of 72.7%
within and between experts in sleep spindle detection (Devuyst
et al., 2006).

The performance index of the above algorithms is in the range
of 60–70%, and thus their performance is not ideal. Currently,
there is a shortage of public databases for spindle detection,
and the lack of databases has led to difficulties in validating the
stability of different detection algorithms (Wendt et al., 2015). The
performance of spindle detection can be further improved on the
original basis.

Herein, a new notion of hierarchical fusion algorithm is
proposed to improve the defects of expert manual detection and
the automatic detection of spindles. It addresses the advantages and
disadvantages of the automatic detection methods of sleep spindles
by combining the advantages of the spindle detection method
and overcoming the shortcomings of previous methods to detect
spindles. The Morlet wavelet and RMS algorithms are used as the
first layer of the basic algorithm. After fusing the results of the two
automatic detection methods, the k-means algorithm in the second
layer is used for clustering to get the final result. The Morlet wavelet
detection method, window RMS detection method, HMM&SVM
algorithm, and the newly proposed hierarchical fusion algorithm
are compared in the detection results. The data results optimized
by the hierarchical fusion algorithm substantially improve the
performance of spindle automatic detection. In order to improve
the efficiency and accuracy of spindle detection, we propose a new
spindle detection algorithm, which combines the Morlet wavelet
detection algorithm, RMS algorithms, and k-means algorithm. The
average accuracy of this method is 91.6%, at least five percentage
points higher than other methods.

2. Materials and methods

2.1. Data sources and methods

The experimental data came from the sleep monitoring room
of Beijing Xuanwu Hospital. This experiment was designed to
collect sleep data from 20 subjects with sleep disorders, all of whom
were between 20 and 40 years old in order to avoid the effect
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of age differences on the number of spindles. Their average age
was 31 years old, 11 participants were female, and they were all
recruited from the community. Twenty subjects were scored on
the Pittsburgh Sleep Quality Index before EEG acquisition. Those
with a score greater than or equal to 11 were patients with sleep
disorders. Table 1 shows the Pittsburgh Sleep Quality Index scores
of the 20 subjects in this paper. The higher the score, the worse the
sleep quality.

The data collection equipment adopted polysomnography
(PSG). The equipment could record many channels simultaneously
during the subjects’ sleep, such as EEG, ECG, EOG, EMG, airflow,
and oxygen saturation. As shown in Figure 1, the international
10 / 20 standard electrode placement system shows the electrode
positions of the relevant EEG signals collected in this paper. Based
on the relevant research on the brain regions with frequent spindles,
this study collected and analyzed the EEG signals collected from
only six channels. Thus, the EEG data of the left and right channels
collected in this experiment included F3 \F4 \C3 \C4 \O1 \O2. Here,
F3 and F4 are frontal brain regions, C3 and C4 are central brain
regions, and O1 and O2 represent the occipital regions. Spindles
appear most frequently at these positions, and C3/C4 have the most
spindle appearances. The sampling frequency of the EEG signal
acquisition equipment used in this experiment was 1,024 Hz.

The data collection for each subject lasted from 9:30 p.m.
to 6:30 a.m. The start and end times of the subjects entering
sleep were not wholly consistent. Thus, sleep EEG data of up
to 8 h from the first entering sleep stage were intercepted based
on the stage of sleep for research to facilitate and accurately
analyze the characteristic differences in individual and overall sleep
spindles in the later stages. Professional sleep researchers operated
and guided the monitor used in the sleep monitoring room. To
ensure the accuracy of the physiological signal collection, the
subjects were required to prohibit the intake of alcohol and the
consumption of caffeine, sedatives, hypnotics, and other relevant
drugs that could affect data collection 1 week before the sleep
monitoring. Before data acquisition, the subjects were required
to have taken a bath and cleaned their heads to ensure good
contact between the electrodes and the skin to assist the collecting
of data as much as possible. Furthermore, the subjects were
required to urinate in advance or place a disposable night pot
next to the hospital bed to avoid the disproportionate impact
of large-scale activities at night on data acquisition. Next, the
experimenter recorded the subject’s name, weight, gender, age,
and other essential information. The relevant electrode connection
points were wiped with a cleaning paste specifically used to
clean the electrodes before the electrodes were connected. When
the electrode was placed, the accuracy and firmness of the
electrode’s position could be secured, and the electrodes were
placed in a specified order. After the work preparation, before
collection was completed, the monitor was opened to record the
data collected by the software. During the acquisition process,
the cell phones of the subject and experimenter were turned
off to keep the environment quiet to avoid the interference of
external environmental sound on the experimental data. After
data collection in the morning, the experimenter turned off the
equipment and woke up the subject. At this point, the experimental
data collection was finished.

The sampling frequency of the experimental data was 1,024 Hz,
which was downsampled to 512 Hz during the pre-processing

for this paper. In this experiment, the bilateral mastoid was
used as the mean reference for re-referencing. The Morlet
wavelet-based and RMS automatic detection methods used in
this experiment both require band-pass filtering of the data
prior to spindle wave detection. The raw EEG signal was pre-
processed with band-pass filtering from 5 to 35 Hz prior to
automatic spindle wave detection using Morlet wavelets. Pre-
processing of the raw data with 11–16 Hz bandpass filtering was
conducted before using the RMS algorithm, where the frequency
band was chosen based on the standard definition of the spindle
frequency distribution.

2.2. Proposed algorithm

Figure 2 is the flowchart of the newly proposed hierarchical
fusion spindle automatic detection algorithm. Two single detection
algorithms, the Morlet wavelet and window RMS were used in the
fusion algorithm, merged with the improved k-means algorithm.

The specific steps of the hierarchical fusion algorithm were as
follows:

Firstly, the collected sleep EEG signal was pre-processed. The
resultant sleep signal was transmitted to the Morlet wavelet and
window RMS spindle automatic detector to judge the true and false
spindle of the two detectors’ output results.

The Morlet wavelet function was closer to the spindles and
more conducive to spindle detection. Spindle detection function
based on the Morlet wavelet was defined as:

f(x) = (πFB)−0.5 exp(2πiFCx) exp(−x2/FB) (1)

Where FB is the bandwidth of wavelet transform, FB = 2s2, and
s = n/2πFC. The value of FB depends on the magnitude of the values
of n and FC. The n represents the number of cycles of the Morlet
wavelet. FC is the center frequency. Here, set n = 7 is a typical default
value when balancing the time-frequency domain.

The Morlet wavelet function performed time-frequency
conversion on the pre-processed EEG signal, and a threshold
function was used to detect the spindle. After all pre-processing, the
threshold was defined as 4.5 times the average signal amplitude. The
average moving value was calculated using a 0.1 s sliding window to
extract the spindle in the frequency band. When the wavelet signal
exceeded the threshold and the duration was in the range of 0.5–3 s,
it was deemed a spindle. If the distance between the two spindles
was less than 1 s and the duration was less than 3 s, the spindle
was combined. This detection result was reserved for the fusion of
later experiments.

The window RMS algorithm used a linear phase finite impulse
response filter for 11–16 HZ band-pass filtering of the EEG original
signal in the NREM period of the C3 channel, doubling the order
of the filter. The filtered EEG signal was determined using a time
window of 0.25 s, and the threshold value was 0.95 times the mean
value. The spindle was identified as two consecutive root mean
squares calculated time points, exceeding the threshold and lasting
between 0.5 and 3 s. The RMS value was calculated every 5 s by
employing the following formula:

RMS− A =

√∑N
i=1 X2

i
N

(2)
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TABLE 1 Pittsburgh sleep quality index score.

Subject Age Sex Score Subject Age Sex Score

DS1 21 Male 14 DS11 24 Male 12

DS2 35 Male 17 DS12 40 Female 18

DS3 40 Female 19 DS13 31 Female 20

DS4 25 Male 16 DS14 22 Male 16

DS5 34 Female 16 DS15 30 Female 15

DS6 20 Female 18 DS16 37 Female 20

DS7 36 Female 11 DS17 25 Male 18

DS8 29 Male 13 DS18 33 Female 17

DS9 38 Female 16 DS19 34 Male 14

DS10 32 Male 14 DS20 29 Female 16

DS represents subjects with sleep disorders. Subjects with a score greater than or equal to 11 are subjects with sleep disorders.

FIGURE 1

International 10 / 20 standard electrode placement system.

RMS-A refers to the root mean square of the spindle wave
frequency band. Where Xi

2 is the square of the amplitude of the
sampling point i, and N is the number of sampling points within 5 s.

Let us repeat the spindle detection link. The spindle detected by
the Morlet wavelet and RMS method was divided into coincident
and non-coincident spindles. When the spindle detected using the
two methods overlapped in the time series, they were considered
coincident spindles. As can be seen in Figure 3A, the coincident
spindle was regarded as the effective result of the fusion algorithm
detection. When the spindle time did not repeat, it was considered
a non-coincident spindle, as can be seen in Figure 3B.

This study identified the coincident spindle as the same spindle
and directly classified it into the final automatic detection result
set. The non-coincident spindle set was treated as the sample of
clustering input. After cluster analysis, many non-spindle clusters
were removed, and the samples of the remaining clusters and the
coincident spindle set were taken as the final output result.

The non-coincident spindle needed to be further analysed
and processed by the K-means clustering method. The K-means
algorithm was relatively stable, and had a very smooth clustering

Sleep EEG 
acquisition

Signal 
preprocessing

Morlet wavelet spindle 
automatic detection

RMS spindle 
automatic detection

Phase I

Phase II Is it a coincident 
spindle

Spindle final 
output

Spindle K-means 
clustering

Yes

Valid result

No

FIGURE 2

Flowchart of the fusion algorithm.

effect. The K-means clustering algorithm needed to calculate the
distance between the points of each cluster. The distance metric
commonly used in the k-means algorithm is Euclidean distance.

Euclidean distance (L2):

d12 =

√
(x1 − x2)2 + (y1 − y2)2 (3)

The density was the distance between points to judge the
abnormal points. After removing the outliers, the data were put
into K-means clustering, improving the accuracy of clustering,
reducing the amount of clustering data, and enhancing data
processing speed.

The sum of squared errors (SSE) was used as the objective
function to evaluate the clustering effect so that the clustering
result can obtain the minimum SSE value (Klampanos et al., 2009).
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The local outlier factor detection method optimized K-means
clustering, addressing the detection problem of amplitude affecting
the spindle.

The amplitude of the spindles was in the range of 10–60 µV .
When clustering the non-coincident spindles, the amplitude was
used as the input. Five categories were clustered based on the
amplitude, and the maximum and minimum were removed. The
remaining three categories were used as data for further analysis.
After clustering, clusters with many non-spindles were discarded,
leaving the actual spindle clusters.

Finally, the final fusion result was the clustering and the
coincident spindle.

In this paper, when using the k-means algorithm for clustering,
the method of calculating the difference statistics was adopted to
select the k value.

2.3. Evaluation method

Twenty subjects were tested manually using the gold standard
of spindle detection to prove the reliability of the hierarchical
fusion spindle automatic detection method. The gold standard
adopted was three experts conducting the sample’s artificial spindle
detection. The intersection of the three experts’ detection results
were determined as spindles here, and the detection results not
within the intersection were regarded as non-spindle sets.

Then according to the confusion matrix and the gold standard
of spindle detection, the evaluation indexes, such as TPR (recall),
specificity, accuracy, precision, and F1-score, were calculated to
evaluate the detector’s performance.

The following was the meaning and relevant calculation
formula of these evaluation indicators:

recall = TP/(TP+ FN) (4)

precision = TP/(TP+ FP) (5)

specificity = TN/(TN + FP) (6)

accuracy = (TP+ TN)/(TP+ FP+ TN+ FN) (7)

F1 = 2 ∗
pression ∗ recall
pression+ recall

(8)

TP plus FN was the sample set of the actual spindles detected
by experts, and TP plus FP was the sample set predicted as actual
spindles by the detection algorithm. TP represents samples that
were actually true spindle waves and detected by the automatic
detection algorithm as true spindle waves; FP represents samples
that were non-spindle waves but detected as true spindle waves;
FN represents samples that were actually true spindle waves but
predicted by the detection algorithm as non-spindle waves; and
TN represents samples that are actually non-spindle waves and
predicted by the detection algorithm as non-spindle waves.

3. Analysis of experimental results

The spindle detector automatically detected the spindle and
contrasted it with the spindle detected by experts. R-spindles
represented the actual spindle in the automatically detected
spindles and A-spindles denoted all spindles automatically
detected by the algorithm. The E-spindles symbolized the
actual spindle detected by experts, and the intersections of the
three experts’ two or three detection results were considered
E-spindles.

Table 2 shows the number of spindle waves detected
by the Morlet wavelet, windowed RMS, HMM&SVM, and
hierarchical fusion algorithms compared to the real spindle
waves labeled by experts. In Table 2, A-spindle represents the
number of all spindle waves automatically detected by the
algorithm, R-spindle represents the number of true spindle
waves among the automatically detected spindle waves, and
E-spindle represents the true spindle waves detected by the
expert.

As shown in Table 2, the total number of spindles
automatically detected by the four methods differed for the
same data. The four methods detected the most spindles in
sample DS15, while the total spindles detected in sample
DS6 were the least. The number of samples detected by the
Morlet wavelet algorithm was small. Compared with the
wavelet algorithm, the RMS-based algorithm could detect
more spindles. The average number of R-spindles detected by
HMM&SVM was 712, higher than the Morlet wavelet and RMS

FIGURE 3

Spindle automatic detection results of the Morlet wavelet and root mean square (RMS). (A) Morlet wavelet and RMS detect the coincident spindle. (B)
Morlet wavelet and RMS detect non-coincident spindle.
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TABLE 2 Comparison of the results of different detection algorithms.

Subject Morlet wavelet algorithm RMS algorithm HMM-SVM algorithm Fusion algorithm E-spindle

A-spindle R-spindle A-spindle R-spindle A-spindle R-spindle A-spindle R-spindle

DS1 732 647 1409 998 1258 994 1124 1005 1136

DS2 467 424 831 602 802 685 725 668 730

DS3 263 229 518 383 617 527 511 472 551

DS4 231 204 589 406 523 436 456 429 493

DS5 439 376 977 747 821 765 792 763 848

DS6 184 160 632 491 635 532 530 487 590

DS7 702 605 1346 984 866 603 1063 994 1073

DS8 479 427 746 590 733 616 630 581 657

DS9 212 187 692 526 805 668 621 578 706

DS10 643 574 846 669 762 694 792 706 779

DS11 752 629 1415 1070 1238 1035 1248 1125 1265

DS12 525 481 968 708 774 688 834 761 819

DS13 596 528 724 571 729 605 634 583 676

DS14 381 334 898 639 880 763 759 702 798

DS15 1066 938 1635 1323 1458 1237 1507 1359 1491

DS16 539 456 736 608 664 503 687 643 736

DS17 551 492 939 712 875 756 835 765 839

DS18 572 489 929 674 802 701 790 688 763

DS19 360 324 727 598 768 654 689 640 702

DS20 736 635 965 763 1033 789 856 784 891

DS-average 521 457 926 703 852 712 804 737 827

algorithm, demonstrating that this algorithm could recall more
spindles.

Compared with the Morlet wavelet method, the R-spindle/A-
spindle ratio of the hierarchical fusion algorithm was higher,
reaching 91.67%, indicating that the hierarchical fusion algorithm
improved the recall rate. Compared with the RMS algorithm and
the HMM&SVM algorithm, the number of A-spindles of the
hierarchical fusion algorithm decreased by 122 and 48, respectively,
without a substantial change. The number of R-spindles did not
decrease but instead increased by 34 and 25, respectively, showing
that the accuracy of the newly proposed algorithm had been
substantially enhanced.

The A-spindle of the hierarchical fusion algorithm had
the recombined set of the two spindle detection results. After
clustering, they had the Morlet, the RMS, and the non-recombined
sets. The maximum number of spindles detected reached 1,507
in DS15 samples and 530 in DS6 samples, and the average
value was 804. However, the maximum value of R-spindles
reached 1,359 in DS15 samples, and the average value was 737.
The fusion algorithm was closest to the actual spindle value
detected by experts.

Figure 4 contrasts the hierarchical fusion algorithm with
the other three automatic detection algorithms by calculating
five performance evaluation indexes: Precision, Recall, Specificity,
Accuracy, and F1-score.

The fusion algorithm represented the newly proposed
hierarchical fusion algorithm, and Morlet wavelet, RMS, and
HMM&SVM represented the Morlet wavelet, window RMS, and
HMM and SVM, respectively. Figure 4 shows that the Precision
of the spindle detection based on the Wavelet algorithm could
meet the accuracy requirements under the current standard,
scoring more than 85%. However, a critical gap existed between
the maximum and minimum values of Recall, which had large
fluctuations, and its stability needs to be improved. Only the
evaluation index of Specificity of spindle automatic detection
based on the RMS algorithm reached more than 90%. Likewise,
the Specificity evaluation index of the HMM&SVM algorithm was
more than 90% but lower than the other three detection algorithms.
In the subject samples, the Recall index of the hierarchical fusion
algorithm reached 92.9% at its highest, 81.9% at its lowest, and
with an average of 89.1 ± 8.84%. In the performance of Precision,
the maximum value reached was 96.3%, the minimum value was
87.1%, and the average value was 91.6 ± 3.06%. This Precision
average value was better than those with the RMS and HMM&SVM
algorithms and slightly better than those with the Morlet wavelet
algorithm. The performances of Specificity, Accuracy, and F1-score
were also ideal, and the average values were higher than those of
the other three methods. The average values in the subject samples
were 96 ± 2.89, 90.4 ± 6.50, and 90.3 ± 2.49%, respectively. The
maximum, minimum, and average of each evaluation index of
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FIGURE 4

Performance comparison of detection algorithms based on subject data.

the hierarchical fusion algorithm were substantially improved
compared with the other three algorithms.

4. Discussion

As sleep spindles are a characteristic index to evaluate sleep
quality, the pursuit of the accurate detection of sleep spindles
is imperative. The fusion method proposed in this paper was
based on the Morlet wavelet and the Window RMS algorithm,
combined with the improved k-means algorithm, and then the
data results of algorithmic optimization. The fusion detection
spindle algorithm combined the advantages of the three algorithms.
Compared with previous research on spindle automatic detection,
it improved calculation and effectiveness. The spindle detection
results of the hierarchical fusion algorithm are shown in Figure 4,
demonstrating better consistency with the expert detection results
than the other methods. The detection rate of actual spindles
was critically improved compared with the previous detection
methods, effectively improving the accuracy and speed of the
automatic spindle detection. This proposed method improved
the shortcomings of the existing spindle detection methods and
effectively enhances the detection efficiency of doctors, and reduces
the visual inspection workload of sleep clinicians and the cost of
detection (Jiang et al., 2021).

In the study of Warby et al. (2014), the amplitude and duration
of the spindle decreased with age, probably damaging the spindle
recognition performance. Therefore, in this experiment, we also
paid attention to the interference of other unnecessary sample
factors. PSG equipment was used to experiment on 20 subjects,
and sleep data of 8 h were intercepted for research and analysis.

The age of the subjects was controlled between 20 and 40 years
old. The experimental data were truncated (Herrmann et al., 2016)
to ensure a specific length of sample time. The wavelet automatic
spindle detection method proposed by Wamsley et al. (2012) is
more hierarchical than the fusion algorithm. The wavelet automatic
detection algorithm needs much calculation and cumbersome
experiments. The hierarchical fusion algorithm simplified the
calculation, solving this problem. After completing the automatic
spindle detection, the outliers and misjudged spindles were first
eliminated. Then clustering processing was conducted to improve
the effectiveness of spindle detection and simplify the process.

The number of actual spindles detected by the Wavelet
algorithm proposed by Athanasios and Clifford (2015) was less
than that detected by experts, so it cannot replace expert detection
methods. This study used a sliding window to calculate the
corrected moving average of the signal for the threshold setting.
This method shortened the detection time and improved the
accuracy. The spindles detected by the Martin et al. (2012)
window root mean square method contained more false spindles.
The hierarchical fusion algorithm clustered the non-coincident
spindles automatically detected, improving the stability of spindle
detection. The hierarchical fusion algorithm combined the Morlet
wavelet and window RMS. It adopted the ideal accuracy of the
wavelet method and the ideal recall rate of the window RMS
detection method. Thus, the fusion algorithm realized both high
levels of precision and recall and could achieve high evaluation
indexes.

The HMM&SVM algorithm (Löfhede et al., 2008) also inspired
the improvement of the algorithm in this paper. The influence
of spindle amplitude on spindle detection was avoided, as the
fluctuation range is too large to be ideal for the stability of the
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accuracy of the HMM&SVM algorithm. The hierarchical fusion
algorithm advanced the experimental data to sample clustering,
improving the detection speed through iterative clustering (Ding
et al., 2018), and optimized the algorithm before clustering.

The figures reveal that the average Recall rate of the wavelet
fusion method was 91.4%. The average Recall rate of the Precision
method was 91.4%, which can be improved by 91.4% compared
with that of the previous method, and the average Recall rate of
the Precision method is improved by 90.4% compared with that of
the Precision method. It met the requirements of improving the
performance index and stability of the spindles.

Accurate and effective detection of sleep spindles is a
methodological challenge. The spindles have a necessary judgment
basis for diagnosing human diseases (Manoach et al., 2020). The
hierarchical fusion algorithm is a favorable and feasible method for
liberating the “gold standard” detection of experts, and reducing
the shortcomings of the cumbersome, expensive, and strongly
subjective spindle detection methods of the past (Parekh et al.,
2017). This method could be popularized for clinical disease
diagnosis instead of artificial spindle detection as it improves the
speed of disease diagnosis and enables patients to receive rapid
treatment (Imtiaz and Rodriguez-Villegas, 2014). At the same time,
according to this test, the study of spindles on human intelligence
and memory can save substantial experimental time (Wei et al.,
2020). Therefore, effective and rapid spindle detection method is
a common research direction.

The experiment mentioned in this paper only used the spindle
samples of 20 subjects for analysis due to the limitation of
the number and age of subjects and limited conditions; as a
sample base, this is insufficient. In future research, increasing
the sample base will improve the credibility of the results
further. In the spindle detection algorithm, the spindle detection
used in this paper was based on a single-channel C3, which
uses too few channels. We could use dual-channel or multi-
channels to detect the spindle automatically in future research.
Concurrently, we could combine more deep learning models to
classify the spindles and explore the prospects of deep learning in
spindle classification.
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Driver fatigue detection is one of the essential tools to reduce accidents and

improve tra�c safety. Its main challenge lies in the problem of how to identify

the driver’s fatigue state accurately. Existing detection methods include yawning

and blinking based on facial expressions and physiological signals. Still, lighting

and the environment a�ect the detection results based on facial expressions. In

contrast, the electroencephalographic (EEG) signal is a physiological signal that

directly responds to the human mental state, thus reducing the impact on the

detection results. This paper proposes a log-Mel spectrogram and Convolution

Recurrent Neural Network (CRNN) model based on EEG to implement driver

fatigue detection. This structure allows the advantages of the di�erent networks

to be exploited to overcome the disadvantages of using them individually. The

process is as follows: first, the original EEG signal is subjected to a one-dimensional

convolution method to achieve a Short Time Fourier Transform (STFT) and passed

through a Mel filter bank to obtain a logarithmic Mel spectrogram, and then the

resulting logarithmic Mel spectrogram is fed into a fatigue detection model to

complete the fatigue detection task for the EEG signals. The fatigue detection

model consists of a 6-layer convolutional neural network (CNN), bi-directional

recurrent neural networks (Bi-RNNs), and a classifier. In the modeling phase,

spectrogram features are transported to the 6-layer CNN to automatically learn

high-level features, thereby extracting temporal features in the bi-directional

RNN to obtain spectrogram-temporal information. Finally, the alert or fatigue

state is obtained by a classifier consisting of a fully connected layer, a ReLU

activation function, and a softmax function. Experiments were conducted on

publicly available datasets in this study. The results show that the method can

accurately distinguish between alert and fatigue states with high stability. In

addition, the performance of four existingmethods was compared with the results

of the proposed method, all of which showed that the proposed method could

achieve the best results so far.

KEYWORDS

driving fatigue detection, EEG, convolutional neural network, recurrent neural network,

log-Mel spectrogram
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1. Introduction

Mental fatigue is a psychobiological state caused by prolonged

and demanding cognitive activity (Van Cutsem et al., 2017). This

mental fatigue reduces a driver’s ability to concentrate and make

decisions, making it impossible to drive effectively. According to

data released by China’s National Bureau of Statistics, more than

60,000 people will die in traffic accidents nationwide in 2020 alone

(Bureau, 2021). Traffic accidents cause great harm and loss to

individuals, the country, and society. Therefore, fatigue detection

has become an effectivemeans of reducing accidents and improving

transport safety.

To date, several widely used indicators have been proposed

for detecting driving fatigue, such as monitoring fatigue-related

facial expressions, blinking, yawning (Wang Z. et al., 2020), muscle

(Zhang et al., 2021a), and measuring fatigue-related physiological

variables such as electrooculography (Zheng and Lu, 2017), heart

rate variability (Du et al., 2020a), and electroencephalography

(Zhang et al., 2020). Of the many fatigue detection indicators,

EEG signals are good mental indicators (Zhang Y. et al., 2022).

Because the EEG signal is closely related to brain activity (Zhang

X. et al., 2022). Therefore, this paper proposes a driving fatigue

detection task based on EEG signals. In fatigue detection tasks, the

mental state is usually classified into two categories of alertness and

fatigue, or three categories of alertness, fatigue, and drowsiness.

Several excellent research results have been presented to achieve

this goal (Tuncer et al., 2021). However, current research on

EEG driving fatigue detection is still at the point where only

complex preprocessed EEG signals can be used for fatigue detection

with good recognition results. Due to the instability of the EEG

signal, it is challenging to obtain good results if these models are

applied to different acquisition devices and scenarios. The task of

inputting raw signals for fatigue detection is more challenging than

preprocessed EEG models. The models should be better trained

than the raw signals with the noise and artifacts removed. Unlike

existing methods, the proposed approach in this paper focuses

on extracting features from the raw signal for the driving fatigue

detection task.

Traditional methods to implement EEG driving fatigue

detection are mostly shallow models. A shallow model provides

reasonable predictive power with minimal complexity. It consists

of a few layers and requires limited training data. However, it

requires predefined features with discriminative power. Artificial

neural networks (ANNs) with a hidden layer and support vector

machines (SVM) are well-known shallow models. Of these, ANNs

have been widely used in EEG fatigue detection systems (Chai

et al., 2014). In the literature (Vuckovic et al., 2002), to predict

fatigue status from EEG signal, time series of inter- and intra-

hemispheric cross-spectrogram densities of EEG signal are fed as

input to an ANN, which then classifies driver status as either fatigue

or alertness. In an alternative approach (King et al., 2006), the

time domain EEG data is converted into frequency bands, delta,

theta, alpha, and beta bands, and the frequency domain data is

then fed to the ANN for fatigue detection. The literature (He et al.,

2016) integrated multiple indicators of fatigue to build an ANN-

based driver fatigue assessment model, where the EEG indicators

were labeled as awake or fatigued. The average power spectrogram

ratio A(theta + alpha)/beta for the theta, alpha, and beta bands

was derived by fast Fourier transform and fed into the ANN for

classifying the driver status as awake or fatigued. Alternatively, a

Support VectorMachine (SVM) is specifically designed for the two-

class problem. SVM has been employed in many fatigue detection

systems to classify driver states according to different fatigue levels.

The literature (Mu et al., 2017) extracted the spectrogram entropy,

approximate entropy, sample entropy, and fuzzy entropy of EEG

signals and fused them as feature vectors to feed into the SVM to

classify driver fatigue states, and fusing the four feature entropies

obtained the best classification results. In the literature (Yeo et al.,

2009), the researcher trained the SVM for binary classification of

fatigue states, with significant beta wave activity representing the

alert EEG signals and a drop in the alpha wave representing the

fatigued EEG signals, and the method obtained better classification

results. However, the training set for shallow models is usually

small, and when the dataset is too large, the model needs help

building better classifiers and often relies on hand-extracted unique

features. Deep learning (DL) models are widely used in fatigue

driving detection to address this problem.

Recent research has shown that deep learning methods have

yielded better results (Ed-Doughmi et al., 2020; Zhang et al.,

2021b) and are widely used in various fields. Deep learning models

incorporate a learned representation of the data rather than a task-

specific approach. In contrast to shallow models, deep models can

extract features from training data. Convolutional Neural Networks

(CNN) (LeCun and Bengio, 1995) was the first deep model used

for driver fatigue detection. Among them, the literature (Wu et al.,

2021). The proposed 3DEEG signals-based CNN for driving fatigue

classification has achieved remarkable success by projecting the

3D brain topology and its corresponding fatigue features into 2D

space to form a brain fatigue topography fed into a coupled CNN-

LSTM structure for fatigue classification. Wang H. et al. (2020)

proposed an attention-based multiscale convolutional neural

network combined with a graph convolutional network for driving

fatigue classification, using a time-domain convolutional block

to learn the features of each channel and a graph convolutional

block network to learn the spatial filters. Finally, the features were

passed to a classifier consisting of a softmax layer and a fully

connected layer for fatigue classification of the EEG signal. Zeng

et al. (2018) proposed two convolutional neural network models,

EEG-Conv and EEG-Conv-R. The first model is a conventional

CNN. The second combines a CNN with a deep-learning residual

network for driver fatigue classification. The results show that both

network models outperform the classifier based on the support

vector machine. The convolutional neural network combined

with the residual network has better generalization capability.

Du et al. (2020b) developed a TK-type Convolution Recurrent

Fuzzy Network (TCRFN). This method uses convolutional neural

networks to deal with noise and improve fatigue classification,

in which the authors projected the three-dimensional coordinates

of electrodes of EEG and fatigue-related frequency bands theta,

alpha, pre-beta, post-beta, gamma onto a two-dimensional plane

so that the EEG data is converted into a series of images as

feature vectors, the literature concludes that convolutional neural

networks are effective in reducing the effect of noise on the model

TCRFN. However, due to the massive amount of EEG data, the
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current methods for extracting EEG signal features may overlook

various important information. To solve the above problems, this

paper proposes a model that combines spectrogram feature and

temporal feature information, which can effectively utilize time-

frequency information to improve the accuracy and precision of

fatigue detection. Due to the many hyperparameters and complex

structures involved, many DL structures often suffer from time-

consuming training processes. We adjust the hyperparameters and

model structure to achieve better results in terms of both training

time and classification results.

The main contributions of this paper are as follows. (1) In

the feature extraction stage, the traditional Fourier transform

calculation method is abandoned, and a one-dimensional (1D)

convolutional neural network is used to implement the short-

time Fourier transform, obtaining more discriminative features. (2)

Application of the speech signal technique log-Mel spectrogram

to EEG signals to extract the time-frequency characteristics of

EEG signals. (3) Combining convolutional neural networks and

bi-directional recurrent neural networks to learn the high-level

features of the signal, the implementation results show that adding

a bi-directional recurrent neural network to the model yields the

current optimal results.

The paper is structured as follows. Section 2 describes the

related work in this paper. In Section 3, introduce the driving

fatigue dataset. Section 4 describes the proposed method and

feature extraction. In Section 5, experimental results are given, and

the four existing methods are compared with the method proposed

in this paper. Finally, Section 6 concludes with a summary and an

outlook of the new model in practical driving applications.

2. Related work

This paper’s feature extraction of the proposed method

mainly involves the Short Time Fourier Transform and the

log-Mel spectrogram. Therefore, this section focuses on the

fatigue detection research work related to the short-time Fourier

transform and log-Mel spectrogram and the proposed method and

contributions.

Since EEG signals contain rich brain function information,

many research methods can analyze EEG signals with spectrum

technology. The literature (Kıymık et al., 2005) applied short-

time Fourier transform (STFT) and wavelet transform (WT) to

the EEG signal of normal children and children with epileptic

seizures. The results showed that STFT has a short processing

time and is more suitable for the real-time processing of EEG

signals. In the methods (Sparto et al., 2000), the authors used

STFT and wavelet transform to process surface EMG signals

from the medial, lateral, and latissimus dorsi sites of the erector

spinae. The results showed that both methods could detect and

quantify fatigue. In another paper (Hajinoroozi et al., 2016), the

authors used the fast Fourier transform (FFT) with a Hamming

window to obtain frequency features and associated eigenvectors.

Numerous advances in brain-computer interface (BCI) technology

have demonstrated the feasibility of classification methods based

on the short-time Fourier transform. Therefore, in this paper, we

will use the short-time Fourier transform to extract the spectrogram

features of EEG signals. Still, unlike traditional methods, we use a

novel one-dimensional convolutional neural network to implement

the Fourier transform work.

Another part of the extraction of features is the extraction of

the signal’s log-Mel spectrogram. Mel Spectrogram (Li et al., 2001)

was first applied to the research of speech recognition. Due to the

nonlinearity of the signal and the relationship between the time-

frequency domain, the Mel filter bank or Bark filter bank method is

usually used, and the extracted spectrogram can be used in speech

recognition. The Mel spectrogram can represent the frequency

energy independent of the input signal source. Other research areas

use log Mel spectrograms to extract features and for deep learning

classification tasks. In the literature (Dehzangi and Taherisadr,

2018), the authors proposed a system for detecting distracted

drivers based on galvanic skin response (GSR) detection, which

converts one-dimensional EEG signals into a two-dimensional

spectrogram feature map by extracting the Mel spectrogram of the

original GSR as a feature, and obtains good classification results.

The literature (Kumar et al., 2021) removes the Mel spectrogram,

STFT, and Croma of the emotional speech signal as input to the

model. The method experiments with each of the three features.

The experimental results show that the proposed model gets the

best results using the Mel spectrogram features. In the method

(Woo et al., 2022), sleep stage classification based on single-channel

EEG signals was studied using the frequency-domain feature

extraction method Mel Spectrum. Experiments show that using the

Mel spectrogram, the number of input samples will be significantly

reduced, the neural network training will be accelerated, and more

discriminative features will be obtained. In the literature (Meng

et al., 2019), an algorithm based on a 3D log Mel spectrogram

is proposed for speech emotion recognition. Experimental results

show a 4.58% improvement in recognition accuracy and processing

time, showing that log Mel spectrogram maps are practical

features for classification tasks. Therefore, we applied the log-Mel

spectrogram features to the EEG-based fatigue classification task.

The addition of the log-Mel spectrogram improved the accuracy

of fatigue detection. The relationship between the learned features

and fatigue information could be established through the fatigue

classification model once the feature extraction was completed.

3. The proposed model

3.1. Feature extraction

Feature extraction takes themost relevant information from the

original data and assigns that information to a lower dimensional

space. When the input data is too large and not informative, the

data is considered redundant. The input data is then transformed

into a simplified representation of the features, also known as a

feature vector. This conversion process is called feature extraction.

Classification is performed based on the selected features. The

classifier’s performance depends on the signal’s quality and the

soundness of the feature selection. As the EEG signal has significant

features in the time-frequency domain, to obtain the feature vector

set, this paper implements the STFT by using one-dimensional

convolution to get the signal’s spectrogram, then uses the Mel

filter bank to obtain the Mel spectrogram. A spectrogram is a

visual representation of a signal’s frequency spectrogram as a time
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function. The STFT can capture local features accurately, similar to

a convolutional filter. STFT is the essential operation for calculating

the Mel Spectrogram. To convert the STFT spectrogram to a Mel

Spectrogram, the spectrogram is multiplied by the Mel filter bank

kernel. We then explain using a 1D convolutional neural network

to compute the STFT and extract the Mel spectrogram using a Mel

filter bank.

3.1.1. STFT
We implement STFT using a 1D convolutional network, where

the convolutional kernel is initialized as the product of a DFT

matrix and a window function in a 1D convolutional operation.

The DFT matrix is an n*n matrix that the following equation can

express.

{

(F)nm = ω
−nm

ω = e2π i
1
N

(1)

Where nm is the matrix of the n columns. In this paper, we apply

the Hanning window function, which is calculated in the following

form:

ω (n) =
1

2

[

1− cos

(

2π (n− 1)

N

)]

, 0 ≤ n ≤ N − 1 (2)

Where n denotes the total length of the window function, and N

represents the effective length of the window function. The size of

the convolution kernel is equal to the transform size of the STFT,

and the step size is the hop length. The EEG signal is an actual

signal, so the real and imaginary parts obtained can be seen as the

result of the separate action of the real and imaginary parts of the

convolution kernel, expressed as:

{

YR = Conv1d
(

x, FRDFT ⊙ w, S
)

YI = Conv1d
(

x, FIDFT ⊙ w, S
) (3)

where x is the EEG input signal, w is the window function, and S is

the step size. A convolution operation is synthesized to obtain the

signal after STFT:

STFT (x) =
[

YR;YI
]

= Conv1d
(

x,
[

FRDFT; F
I
DFT

]T
⊙ w, S

)

(4)

At this point, the returned STFT is in the form of a full FFT. For

general feature extraction, only the first N/2 + 1 part of the DFT

matrix is taken when initializing the convolution kernel. To obtain

the spectrogram, the above equation also needs to be squared.

Spectrogram (x) =
[

YR
]2

+
[

YI
]2

(5)

There are two main advantages of using a short-time Fourier

transform based on a one-dimensional convolutional neural

network. First, it supports batch processing. Using a neural

network-based framework, we can enable tensor operations to

convert a tensor of EEG signal segments into a tensor of

spectrograms. Secondly, it is trainable. We will discuss how the

prediction accuracy of the model can be improved by adjusting

the number of convolution kernels of the one-dimensional

convolution.

3.1.2. Log-Mel spectrogram
In order to extract the unique perceptual features from the EEG

signal, this work further extracts the signal’s Mel spectrogram based

on the spectrogram for use in a deep learning system for fatigue

detection. The traditional frequency-to-Mel scale conversion is in

D. O’shaughnessy’s book (Douglas, 2000), as follows.

Mel
(

f
)

= 2595 log10

(

1+
f

700

)

(6)

Once the conversion from frequency to Mel scale has been

achieved, we can create the Mel filter bank. The equation to

implement the mth filter of the filter bank is expressed as:











0, k < fm−1andk > fm+1
k−fm−1

fm−fm−1
, fm−1 ≤ k ≤ fm

fm+1−k
fm+1−fm

, fm ≤ k ≤ fm+1

(7)

Where f is the Mel-scale frequency, and m is the total number

of filters in the band. These filter banks were multiplied with the

spectrograms of the results obtained by STFT above to obtain the

Mel-scale spectrograms, as follows.

MS (x) = Spectrogram (x) ⊙ Bm
(

k
)

(8)

We also need to convert the power spectrogram to dB units

by performing a logarithmic operation to obtain a log-Mel

spectrogram. The purpose of taking the logarithm is to have the

low-amplitude components pulled higher relative to the high-

amplitude components to observe periodic signals masked by low-

amplitude noise, as shown in the logarithm below:

LogMelSpec = 10 ∗ log10 (MS (x)) − 10 ∗ log10
(

ref
)

(9)

where ref is the reference value by which the amplitude MS(x) is

scaled relative to ref . The extracted log-Mel spectrogram features

are fed into the model for the next step of training. The details of

the model proposed in this paper are presented below.

3.2. Model description

CNN’s have been widely used in EEG-based classification, such

as driving fatigue detection (Wang H. et al., 2020; Wu et al., 2021).

A convolutional neural network consists of several blocks, with one

convolutional block composed of several layers of convolutional

layers. High-level local features are obtained from the input feature

vector. The log-Mel spectrogram features extracted above are used

as input to the CNN.

3.2.1. CNNs
The six-layer CNN proposed in this paper consists of three

convolutional blocks, derived from a VGG-like CNN (Simonyan

and Zisserman, 2015) perception. Each convolutional block

consists of two convolutional layers with a kernel size of 3 × 3, a

step size of 1 × 1, and a padding of 1 × 1. Batch normalization is

applied between each convolutional layer (Ioffe and Szegedy, 2015).
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The mathematical definition of continuous convolution is given in

Equation (12) and, in the discrete case, in Equation (13).

f ∗ g (n) =

∫ +∞

−∞

f (τ ) g (n− τ) dτ (10)

f ∗ g (n) =

+∞
∑

τ=−∞

f (τ ) g (n− τ) (11)

where f and g do convolution operations. Suppose the batch

normalization layer is not used. In that case, it will easily lead

to the model’s training to reach the activation function’s gradient

saturation zone. This is because when the network reaches a certain

depth and has a certain complexity, the accumulated changes in

the underlying network will affect the upper network, and the

normalization operation can make the input data of the activation

function fall in the gradient non-saturation zone and alleviate

the problem of gradient disappearance. Finally, a 2 ∗ 2 averaging

pooling layer is used for downsampling, and the literature (Kong

et al., 2019) demonstrates that 2 ∗ 2 averaging pooling is a better

choice than 2 ∗ 2 max pooling. A dropout is applied between each

convolutional block (Hinton et al., 2016) regularization technique,

which is mainly used to avoid complex mutual adaptation on the

training data to combat overfitting in the network, with probability

p set to 0.2, i.e., we drop neurons in the convolutional layer with

probability 0.2.

The signal of 17 channels will be applied with a sliding window

size of 1,600 to segment the data. After a small amount of trial and

error, the patch size in training is finally set to 200. Each segment

will get a sequence of eight small frames. Each frame will be input to

the CNNs after extracting the above log-Mel spectrogram features.

The next spliced output feature vector will be the extracted high-

level features X. X will be used as the input to the recurrent neural

network. The convolutional block model is shown in Figure 1.

3.2.2. LogMel-CRNN
In this work of extracting temporal features, we choose a

recurrent neural network that captures temporal relationships,

which is an end-to-end model that is good at processing time

series, such as the EEG signal or speech signal we use, that is, a

sample where the preceding and following inputs are correlated.

RNNs can be used to extract high-level features in the temporal

domain. Schuster and Paliwal (1997) proposed a bi-directional

RNN, which uses information from both ends of the sequence to

estimate the output since the current value of the sequence depends

not only on the information of the previous sequence but also on

the sequence at the future moment so that the RNN structure can

capture more of the long-term dependence of the sequence and

obtain more information about the sequence, which is beneficial

to the classification results. In this study, we constructed a two-

layer bi-directional RNN with 128 hidden cell counts to model

features in the time domain, with the aim of exploring the intrinsic

relationships between consecutive time sequences. The values of

forward and backward propagation determine the output values of

a bi-directional RNN. A deep bi-directional RNN is shown below,

denoted by i denoting the ith layer.
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(12)

Of these, theU, V ,W andU ′, V ′,W′ are both weight matrices, and

b, b′, c is the weight vector. st indicates that a forward calculation

is being performed, and s
′

t prime is the inverse calculation, and

ot is the value of the output layer. For deep bi-directional RNNs,

the more layers, the better the learning ability, but this requires

more training data. In summary, the features extracted by the

convolutional neural network are fed into the bi-directional RNN

to obtain time-frequency domain features, which then enter the

classifier, which consists of two fully connected layers and softmax

functions, with the final predictions defined as follows.

Prob = Softmax
(

Ws × F + bs
)

, Prob ∈ Rz (13)

Where Ws ∈ Rz×l is the weight matrix, and bs ∈ Rk is the bias

vector, l denotes the size of the fully connected layer, z is the number

of classifications in the model, and k represents the dimension of

the feature F.

Overall, in this paper, the extracted frequency domain features

are fed into a six-layer CNN to extract high-level features, which are

then provided into a two-layer bi-directional RNN. The resulting

temporal features are finally fed into a classifier consisting of a fully

connected layer, a ReLU activation function, and a softmax function

to produce the final classification prediction results. The schematic

diagram of the proposed model, LogMel-CRNN, is shown in

Figure 2.

4. Experiments and analysis of
experimental results

4.1. Datasets

Experimental paradigm: This study used the SEED-VIG (Zheng

and Lu, 2017) dataset from the Human Brain Computing and

Machine Intelligence Commons at Shanghai Jiao Tong University.

The experiments were based on EEG signals collected by a virtual

reality driving simulation system, in which each participant was

tested for∼2 h. Collect EEG signals: 21 EEG data sets were collected

from 23 volunteer participants. Twelve channels of EEG signals

were recorded from posterior sites (CP1, CPZ, CP2, P1, PZ, P2,

PO3, POZ, PO4, O1, OZ, and O2), and six channels of electrical

signals were recorded from temporal sites (FT7, FT8, T7, T8,

TP7, and TP8). One of the electrodes, CPZ, was the reference

electrode. Raw EEG signals were acquired from 18 channels at

a sampling rate of 1,000 Hz. Labeling: The SEED-VIG dataset

includes both EEG and EEG signals.Where the labels were obtained

using SensoMotoric Instruments (SMI) eye-tracking glasses, the
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FIGURE 1

Schematic diagram of the convolutional block model.

FIGURE 2

Schematic diagram of the whole model of the proposed LogMel-CRNN model.

data were labeled as the percentage of eyelids closed over the pupil

over some time, PERCLOS (Gao et al., 2015), which was calculated

as follows:

PERCLOS =
blink+ CLOS

interval
(14)

interval = blink+ fixation+ saccade+ CLOS (15)

Among them, blink is the blink time, fixation is the gaze time,

a saccade is the saccade time, and CLOS is the closed eye time.

PERCLOS values were classified into three categories: wakefulness,

fatigue, and somnolence, through thresholds of 0.35 and 0.7. The

smaller the PERCLOS value, the higher the driver’s alertness. In this

paper, two groups of experiments are done. One is that the binary

classification is divided into alertness and fatigue state through the

threshold of 0.35; the second is that the multi-class category is

divided into the state of alertness, fatigue, and sleepiness through

the thresholds of 0.35 and 0.7.

4.2. Experimental settings

During the initial training of the experiments, the Xavier

normal distribution was used to initialize the network weights.

LogMel-CRNN used the Adam optimizer and a learning rate set

to 1.0e-4. To perform a comprehensive evaluation of the model,

the leave-out validation method was used to obtain the model with

the highest accuracy. After disrupting the dataset, the ratio of the

training set to the test set was 8:2. Considering the training time of

the network, the batch size was set to 64 when training the network,

and 50 epochs were required. The cross-entropy function was the

model’s loss function and was calculated as follows.

CE =

K
∑

k=1

−Pk log
(

pk
)

(16)

Where P is the true distribution, which is a one-hot vector of

length K a one-hot vector of length Pk ∈ (0, 1), p is the

predictive distribution.

We applied four standard metrics to measure the performance

of our model from distinct perspectives: Accuracy indicates

the precision of the prediction results; Precision suggests the
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probability of correctly predicting a positive sample among the

samples predicted to be positive; Recall suggests the probability

of being correctly predicted as the last positive sample among the

positive samples of the original sample; F1- Score is the summed

average of precision and recall.

4.3. Model ablation

To study the utility of each component in our model, we

decomposed our proposed LogMel-CRNN model with a set of

variants, including the following:

1. Model 1: Fourier transforms and comparing Fourier transform

types

In order to explore the effect of frequency domain information

on feature extraction, in the model LogMel-CRNN basis,

the model with frequency domain information obtained by

the Fourier transform is compared with the model without

FT, and the results show that the performance indicators of

the former results are all greater than those of the latter.

And the comparison will be made with the extraction of

frequency domain information using the conventional STFT,

which performs less well than the STFT using one-dimensional

convolution, which is consistent with the previous (Kumar

et al., 2021) experimental results of extracting frequency domain

information to obtain better classification results that are

consistent. Figure 3 shows the results of the experimental

comparison of the average evaluation metric with and without

the Fourier transform and the experimental classification

evaluation results using the conventional short-time Fourier

transform. In Figures 3–6, the abscissa is the four classification

indicators, the ordinate is the evaluation result value, and the

results are averaged. The graph shows that the model using

the Fourier transform implemented using one-dimensional

convolution achieves the highest accuracy, with the remaining

three indicators being higher than the other two experiments.

2. Model 2: A Mel filter bank

The Mel filter bank converts frequencies to a Mel scale,

which results in a Mel spectrogram. The Mel scale relates the

perceived frequency of the original signal to the actual measured

frequency. Humans are much better at recognizing small pitch

changes at low frequencies than at high frequencies (Wu and

Cao, 2005). So the Mel scale makes the features much closer to

what humans perceive. In this model, we verified that extracting

the log Mel spectrogram plays a positive role in the model.

The model has better robustness when it is used compared

to the model without the Mel filter bank. Figure 4 shows the

results of the experimental classification evaluation of the model

with and without the Mel filter bank. The classification results

are much higher for the experiments with the model with the

addition of the Mel filter set than for the experiments without

it. In particular, the F1 score is even higher than 34.13%. This

shows that the Mel filter bank is able to extract significant

fatigue features.

3. Model 3: Bi-directional RNN

This experiment aims to determine whether the time domain

contains valuable information. In this study, a bi-directional

RNN was used to extract temporal features. The RNN has two

hidden layers, each with a hidden cell size of 128. We find a

relationship between temporal order and fatigue classification

as time changes. The experimental results show that using

RNNs to extract features and then feeding them into the

classifier achieves better classification results. Figure 5 shows

a plot of the evaluation results of the experimental results

of the model with and without the RNN. It can be seen

that adding the RNN module resulted in a 4.42% increase

in fatigue classification accuracy precisely because the RNN

can provide learning training using temporal information to

improve model performance.

4. Model 4: Increased attention mechanism

In this study, we also experimented with the use of attention

mechanisms after extracting temporal features. The attention

mechanism in deep learning borrows from the four-dimensional

approach to human attention and has been used in a variety

of different types of deep learning tasks, such as natural

language, image classification, and speech recognition, with

significant results. However, the experimental results did not

show satisfactory results, so the attention mechanism module

was not used in the model. Figure 6 shows the experimental

evaluation results of adding the attention mechanism to the

model versus not employing it. As seen in the table, the

classification results with the attention mechanism will be

slightly worse than the model without it. Therefore, the final

LogMel-CRNNmodel did not adopt the attention mechanism.

4.4. Influence of important parameters

In this section, we studied the influence of five parts: (1) The

number of STFT-1D convolutional kernel size. (2) The size of the

STFT-Hop length of our model. (3) The number of Mel filter banks.

(4) The sampling rate of Mel filter banks. (5) The patch size of

CNN model.

1. STFT-1D convolutional kernel size

In the STFT calculation, this is achieved by one-dimensional

convolution, in which the size of the convolution kernel is equal

to the size of the FT (n_fft). The experiments are performed

by adjusting the n_fft parameter to change the perceptual

field during the convolution. Therefore, this parameter directly

changes the output of the frequency spectrogram and is

an essential parameter for this experiment. Table 1 shows

the classification evaluation indicators after four parameter

adjustments. The first column of the table shows the size of the

set convolution kernel parameters. The first row shows the four

average evaluation indicators. Each row indicates the average

evaluation of the classification results at that convolution kernel

size. Obviously, in the four adjustment parameters, when the

size of the convolution kernel, that is, the size of the FT,
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FIGURE 3

Statistical graphs of the evaluation results of the model with the addition of FT vs. without FT.

FIGURE 4

Statistical graphs of the evaluation results of the model with the addition of Mel filter vs. without.

is 50, the model achieves better results, with an accuracy

rate of 88.39%. When the convolution kernel size is 100, the

accuracy rate also reaches 87.34%. The table shows that the

method of implementing the short-time Fourier transform using

one-dimensional convolution makes the short-time Fourier

transform trainable.

2. STFT-Hop length

Hop length is the second important parameter in the STFT

calculation. It is the distance that the windowmoves, also known

as the frameshift. The window size for this experiment was set

to 10 samples, and the window was changed to overlap or not by

adjusting the window shift distance.When the Hop length is five

samples, which is equal to one-half of the window size, there is

an overlap of five frames. Table 2 shows the average evaluation

indicators obtained after adjusting the hop length four times.

The first column of the table shows the set hop length, the

first row shows the four average evaluation indicators, and

each of the remaining rows shows the results of the evaluation

indicators for that hop length size. The table shows that the best
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FIGURE 5

Statistical graphs of the evaluation results of the model with the addition of RNN vs. without RNN.

FIGURE 6

Statistical graphs of the evaluation results of the model with the addition of attention mechanism vs. without.

classification accuracy was obtained when the Hop length size

was 1, while the F1 score got the best result of 86.37% when the

Hop length was 5.

3. Mel filter banks - number of filters

The final step in calculating the filter banks is to apply the

triangular filter on the Mel scale to the power spectrogram

to extract the frequency bands, mapping n_fft into the mel

bin. According to Equation (9), after the filter bank has been

created, the first filter bank will start at the first point, peak

at the second point, and then return to 0 at the third point.

The second filter bank will begin with the second point, reach

a maximum at the third point, then be 0 at the fourth point,

and so on. To obtain a Mel spectrogram plot with 12 mel

bins, we would need 12 Mel filter banks. Table 3 shows the

average evaluation indicators for the three different numbers of

Mel filter banks set up for this experiment. The first column

of the table shows the number of Mel filters set up, and

the first row shows the four different evaluation indicators.

It is clear from the table that the four evaluation indicators

for fatigue classification are much higher than the other two

groups when the number of Mel filters is 12. This shows that

the number of Mel filters is an essential parameter for the

model’s training.
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TABLE 1 Average performance results based on di�erences in the size of the convolution kernel for 1D convolution in the Fourier transform.

Kernel size Accuracy % Precision % Recall % F1 score %

10 85.91 84.66 84.86 84.73

20 86.99 86.73 84.29 85.28

50 88.39 86.62 85.87 86.22

100 87.34 86.13 86.05 86.07

In parameter experiments, bold values indicate the best classification results are obtained for the parameters at their current values.

TABLE 2 Table of average performance results generated by adjusting the parameter Hop Length model in the Fourier transform.

Hop-length Accuracy % Precision % Recall % F1 score %

1 88.39 86.62 85.87 86.22

5 88.47 86.49 86.26 86.37

10 86.66 85.69 85.38 85.53

20 86.56 85.67 84.89 85.25

In parameter experiments, bold values indicate the best classification results are obtained for the parameters at their current values.

TABLE 3 Table of average performance results generated by adjusting the parametric Mel filter number model.

N-filter Accuracy % Precision % Recall % F1 score %

6 82.44 82.47 80.10 80.49

12 88.39 86.62 85.87 86.22

24 82.98 82.55 79.66 80.71

In parameter experiments, bold values indicate the best classification results are obtained for the parameters at their current values.

TABLE 4 Table of average performance results generated by the sample rate model for adjusting the parametric Mel filter.

Sampling rate Accuracy % Precision % Recall % F1 score %

100 85.45 84.50 83.87 84.17

200 85.91 84.66 84.86 84.73

300 85.91 84.82 84.62 84.72

400 88.39 86.62 85.87 86.22

800 85.80 84.82 84.55 84.68

In parameter experiments, bold values indicate the best classification results are obtained for the parameters at their current values.

TABLE 5 Average performance results generated by patch size model in tuned parameter CNN.

Patch size Accuracy % Precision % Recall % F1 score %

100 84.02 83.72 83.10 83.39

200 88.39 86.62 85.87 86.22

400 86.67 84.70 84.33 84.54

In parameter experiments, bold values indicate the best classification results are obtained for the parameters at their current values.

4. Mel filter banks - sampling rate

The sampling rate parameter of the Mel filter bank, i.e., the

sampling rate of the input signal. The sampling rate of the

original EEG signal was 1,000 Hz, and the best input sampling

rate parameter was obtained by five experiments of adjusting

the input signal’s sampling rate. Table 4 shows the results of

the average evaluation metric for the five experiments. The first

column indicates the size of the set sampling rate, and the first

row shows the four different evaluation indicators. As can be

seen from the table, the four indicators for fatigue classification

are higher than the other four experiments when the input signal

has a sampling rate of 400 Hz.

5. CNN-Patch size

Patch size: Previous research has shown that using a larger

patch size in a CNN can result in better classification accuracy

because the CNN can capture more contextual information

to make decisions (Farabet et al., 2012; Li et al., 2014). This

is because CNNs can capture more contextual information

to make decisions. Therefore, testing a larger network and

increasing the patch size also requires changes to the network,

as some layers (e.g., fully connected layers) are, by definition,

required to have a fixed-size input. So, a patch size change also

implies a layered architecture change. Table 5 shows the results

of the average evaluation metric for three experiments with the
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TABLE 6 Table of optimal experimental parameters for the LogMel-CRNN

model proposed in this paper.

Experiment parameter

FT_kenel size 50

FT_Hop-Length 1

Mel-N-filter 12

Mel Sampling rate 400

CNN Patch size 200

TABLE 7 Four assessment indicators for classifying EEG signals into alert

and fatigue states.

Accuracy % Precision % Recall % F1 Score %

Two-class: Vigilance or fatigue

88.39 86.62 85.87 86.22

TABLE 8 Four assessment indicators for classifying EEG signals into three

states of alertness, fatigue, and drowsiness.

Accuracy % Precision % Recall % F1 Score %

Three-class: Vigilance, fatigue, or drowsiness

81.30 81.67 81.97 81.80

Patch size parameter adjusted. The first column of the table

sets the size of the patch size and the first row shows the four

average evaluation indicators for fatigue classification. From this

table, the best precision value of 86.62% was obtained for a

patch size of 200 in the convolutional neural network in this

experiment. The performance of the model was also improved

and the evaluation indicators of the model were optimized.

After five parameter tuning experiments, the best parameter

combinations for this study are summarized in Table 6, where

the left-hand side of the table indicates the names of the

different parameters, and the right-hand side shows the optimal

values for each parameter. Table 7 provides the results of the

average fatigue assessment metric for the two-classification

hybrid experiment of LogMel-CRNN, with an accuracy of

88.39%, a precision of 86.62%, recall of 85.87%, and an f1 score

of 86.22% for the two-classification. Table 8 shows the results

of the average assessment indicators for fatigue for the three-

classification mixed experiment of LogMel-CRNN. As seen in

this table, accuracy is 81.30%, precision is 81.67%, recall is

81.97%, and f1 score is 81.80%. The assessment indicators for

the three-classification experiment were much lower than those

for the two-classification because the EEG signals for fatigue

and drowsiness in the three-classification were very similar.

The model needed help to distinguish the significant difference

between the two.

4.5. Comparison with existing methods

This section mainly discusses the differences between the

proposed and related fatigue detection methods. Here, we have

selected four existing methods for comparison: (1) LSTM (Hefron

et al., 2017); (2) ESTCNN (Gao et al., 2019); (3) EEG_Conv (Zeng

et al., 2018); (4) EEG_Conv_R (Zeng et al., 2018).

LSTM: In the literature (Hefron et al., 2017), a long short-term

memory network, a particular type of RNNmodel, is proposed. The

network considers the temporal correlation between improving

features’ smoothness and solving the problem of gradient

disappearance and gradient explosion during backpropagation in

simple recurrent networks. LSTM provides algorithms with fine-

grained control over what is put into and removed from memory

in hidden layers called memory cells. It does this through a

combination of three gates: an input gate, a forgotten gate, and

an output gate. The forgot gate determines when inputs are

remembered or ignored in the hidden state through a dedicated

mechanism. The network is adequate for the task of “long-

term memory.” Driving fatigue detection is a type of long-term

memory task. We use this method to compare with the one

proposed in this paper, but also because it introduces a lot of

content, resulting in more parameters, which makes training much

more difficult.

ESTCNN: In this research (Gao et al., 2019) proposed

a Spatio-temporal convolutional neural network (ESTCNN)

based on EEG signals. The network introduces a core block

to extract temporal correlations from the EEG signal, which

consists of three convolutional blocks and a pooling layer.

The combination of the core block and the dense layer is

then used to learn valid information related to fatigue. The

model is a 14-layer network consisting of three core blocks,

two dense layers, and a softmax layer, respectively. The results

show that the Spatio-temporal structure of the framework

offers advantages in terms of computational efficiency and

reference time.

EEG_Conv: In the literature (Zeng et al., 2018) the authors

proposed two models for predicting the mental state of drivers

in EEG signals. EEG data were collected on a driving simulation

platform constructed themselves and applied to models EEG-

Conv and EEG-Conv-R, respectively. Where EEG-Conv has a total

of eight layers, consisting of an input layer, three convolutional

layers, a pooling layer, a local response normalization layer, a

fully connected layer, and an output layer. In the paper, the

prediction performance of the proposed classifier is investigated

for both within-subject and between-subject EEG data. Inter-

subject prediction refers to training and test data from the same

subject, while inter-subject prediction refers to training and test

data from different subjects. The results show that the proposed

method has better generality for detecting mental states from

various subjects.

EEG_Conv_R: In the literature (Zeng et al., 2018), in

order to further improve the classification accuracy based

on the model EEG-Conv, researchers have combined EEG-

Conv with residual learning and proposed the EEG-Conv-

R model. Residual learning explicitly re-represents layers as

learning residual functions concerning the layer inputs rather

than learning unreferenced functions. In other words, the

residual layer knows the changes in the perturbations. From

the experimental results, EEG-Conv-R converges faster than

EEG-Conv and takes less time to extract features in the

training phase.
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FIGURE 7

Experimental results compared with existing methods.

In Figure 7, the abscissa represents the four indicators of

fatigue predicted by the model, and the ordinate represents

the average value of each indicator. As seen in Figure 7, the

method proposed in this paper outperforms the other four

existing methods in all four indicators compared with the current

four methods.

5. Conclusion

This paper proposes using Convolutional Recurrent Neural

Network based on Log Mel Spectrogram (LogMel-CRNN) for

driver EEG fatigue detection. In particular, we use one-dimensional

convolution to compute STFT, which improves the accuracy

of extracting features by 5.12% compared to the traditional

STFT method. To build LogMel-CRNN, we investigated four

model structures and obtained different recognition results for

each of them, where the STFT of extracted EEG signals and

log Mel spectrograms as features input to the model got the

highest accuracy of 88.39%, the accuracy of 86.62%, recall

of 85.87%, and F1 score of 86.22%, thereby the EEG-based

fatigue detection model was thus finalized. The use of log-Mel

spectrogram features was shown to improve classification accuracy

and model performance in the tuning structure experiments.

We demonstrate that the model outperforms several previous

state-of-the-art methods through comparative experiments. In

practical driving applications, lightweight EEG signal acquisition

methods are an essential issue, as is noise handling for real-

time fatigue detection. In the future, we will further optimize

LogMel-CRNN to obtain better detection results for fatigue

triple classification, to be able to implement the algorithm

in practical applications as well as to extend it to more

recognition tasks.
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Objective: This study proposes a new hybrid brain-computer interface (BCI)

system to improve spelling accuracy and speed by stimulating P300 and steady-

state visually evoked potential (SSVEP) in electroencephalography (EEG) signals.

Methods: A frequency enhanced row and column (FERC) paradigm is proposed

to incorporate the frequency coding into the row and column (RC) paradigm so

that the P300 and SSVEP signals can be evoked simultaneously. A flicker (white-

black) with a specific frequency from 6.0 to 11.5 Hz with an interval of 0.5 Hz is

assigned to one row or column of a 6 × 6 layout, and the row/column flashes

are carried out in a pseudorandom sequence. A wavelet and support vector

machine (SVM) combination is adopted for P300 detection, an ensemble task-

related component analysis (TRCA) method is used for SSVEP detection, and the

two detection possibilities are fused using a weight control approach.

Results: The implemented BCI speller achieved an accuracy of 94.29% and an

information transfer rate (ITR) of 28.64 bit/min averaged across 10 subjects during

the online tests. An accuracy of 96.86% is obtained during the offline calibration

tests, higher than that of only using P300 (75.29%) or SSVEP (89.13%). The SVM

in P300 outperformed the previous linear discrimination classifier and its variants

(61.90–72.22%), and the ensemble TRCA in SSVEP outperformed the canonical

correlation analysis method (73.33%).

Conclusion: The proposed hybrid FERC stimulus paradigm can improve the

performance of the speller compared with the classical single stimulus paradigm.

The implemented speller can achieve comparable accuracy and ITR to its

state-of-the-art counterparts with advanced detection algorithms.

KEYWORDS

brain-computer interface, speller, electroencephalography, machine learning, Neural
decoding
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1. Introduction

The brain-computer interface (BCI) is a communication
system that does not rely on peripheral nerves and muscles to
send information and commands to the outside world (Wolpaw
et al., 2000). The BCI system can directly control and communicate
with other entities by reading and transducing brain signals. By
providing patients with conditions such as amyotrophic lateral
sclerosis (ALS) and locked-in syndrome (LIS) with a way to
restore their communication, the BCI system can help patients
restore certain motor functions, improve their quality of life, and
even enable them to enjoy life as healthy people do. Meanwhile,
electroencephalography (EEG) signals are secure, non-invasive,
easy to use, easy to collect, and time-resolving, making them ideal
for BCI systems. At present, various BCI systems based on EEG
have been developed, such as the speller systems (Farwell and
Donchin, 1988; Cecotti, 2010), wheelchair control systems (Li J.
et al., 2013; Li Y. et al., 2013; Li et al., 2014; Kaufmann et al., 2014),
prostheses, and mechanical arm control systems (Pfurtscheller
et al., 2010; Hochberg et al., 2012; Onose et al., 2012).

Electroencephalography-based BCI systems can be divided into
two types: spontaneous or evoked. A representative of spontaneous
BCI is Motor Imagery (MI), in which the user autonomously
controls their thought activity to form certain identifiable potential
information to control an external device (Jiang et al., 2020; Chen
et al., 2021; Pei et al., 2021). However, the user often needs
sufficient training to become proficient. The representatives of
evoked BCI systems are based on the event-related potential (ERP)
and steady-state visually evoked potential (SSVEP). These BCIs
are characterized by the need to rely on external stimuli to evoke
certain specific potential information in the human brain. However,
the advantage is that the evoked signals are often stable, and the
user generally only needs to know the basic operation process, so
evoked BCIs have received more attention, and their technology is
relatively mature.

Event-related potential is a transient characteristic potential
evoked by a small probability event (Squires et al., 1975), and the
most commonly detected potential is the P300 potential. This is
excited as a positive voltage approximately 300 ms after the onset
of the target stimulus (Picton, 1992; Luck and Kappenman, 2011).
In the “Oddball” paradigm, this component is evoked when a
rare stimulus (target stimulus) appears in between several relevant
stimuli (non-target stimulus). The task of the subjects was to focus
on the target stimulus and count its occurrences (Sur and Sinha,
2009). The P300-based speller systems have been proposed early on,
and most of them are based on the “Oddball” paradigm. The earliest
P300 speller system using the row and column (RC) paradigm was
proposed by Farwell and Donchin (1988), whose paradigm is in the
form of a 6 × 6 matrix. Rows and columns are blinked once in
each stimulus trial in a random order to induce the P300 signal,
and the system determines the user’s target character (intersection
of rows and columns) by determining which row and which column
triggered the P300 signal. Most previous studies have increased
their accuracy by superimposed averaging of EEG signals, but
resulting from the inefficiency, single-trail recognition of P300 has
become a hot topic.

Steady-state visually evoked potential is a periodic response
induced by a stimulus at a specific frequency. When the subject

looks at a target flashing at a specific frequency, the subject’s
EEG signal is significantly enhanced, and significant peaks can
be observed at the harmonics of the frequency after the time-to-
frequency conversion. Meanwhile, it was shown that the SSVEP
frequency located in the center of the visual field has the most
pronounced energy increase and gradually decays toward the
periphery in an approximately Gaussian distribution (Sutter, 1992)
so that the subject needs to gaze at the stimulus target constantly. In
addition to frequency, the phase can encode the stimulus frequency
(Chen et al., 2014) and the single-stage paradigm. This can present
many targets simultaneously and is applied in the design of
SSVEP-based spellers. However, in later studies, the Multi-stage
paradigm (Multi-stage) proved more prevalent and efficient (Kick
and Volosyak, 2014; Li et al., 2021). Cecotti (2010) proposed a
multilevel paradigm-based SSVEP speller system, while Nakanishi
et al. (2014) proposed a hybrid frequency and phase coding for
a frequency and phase-based SSVEP speller system. Chen et al.
(2014) proposed a stimulus paradigm with 40 target characters and
compared two frequency-phase mixing patterns.

Many studies have been performed to improve the performance
and create a hybrid BCI paradigm. Since both SSVEP and P300
are EEG signals and their detection regions are independent of
each other, that is, they come from the time and the frequency
domain, respectively, it is feasible to design hybrid triggered
systems combining P300 and SSVEP without additional data
acquisition equipment (Xu et al., 2016; Kundu and Ari, 2022).
Panicker et al. (2011) first introduced a hybrid P300/SSVEP BCI,
which uses a P300 signal for target detection and an SSVEP signal
for asynchronous spelling control, and only starts P300 spelling
when SSVEP reaches a certain threshold. Xu et al. (2013) developed
a hybrid BCI speller that, with the same target stimulus, evokes
P300 spelling in different ways to evoke both P300 and SSVEP
blocking (SSVEP-B). Yin et al. (2013) have developed a hybrid
BCI speller system that divides the conventional P300 speller into
six groups, each flashing at a different frequency, that combines
distinct features of P300 and SSVEP to reduce the number of errors
in the same row or column relative to the target errors that occur.
More recently, a few hybrid BCI speller systems were constructed
(Kapgate et al., 2020; Xu et al., 2020; Katyal and Singla, 2021; Han
et al., 2022). Han et al. (2023) even developed one high-speed
system with over 200 targets, greatly expanding the instruction set.

It is noted that there is a significant competing effect when P300
and SSVEP visual stimuli are presented simultaneously; SSVEP
stimuli will reduce the amplitude of the P300 signal, while P300
stimuli significantly reduce the band power of the SSVEP signal.
However, as reported in the previous study, this competing effect
will not result in a significant decrease in decoding accuracy
because the extracted features from the reduced signals are still able
to discriminate between target categories (Lee et al., 2018).

In this study, we designed and implemented a hybrid
BCI speller system with high compatibility and scalability. The
contributions are in four aspects. First, a frequency enhanced
row column (FERC) paradigm is proposed as a new hybrid
stimulus paradigm. Second, the frequency coding is incorporated
into the RC paradigm so that P300 and SSVEP signals can
be evoked simultaneously. Third, the new hybrid P300-SSVEP
speller outperforms that only using P300 or SSVEP. Fourth,
advanced detection algorithms of P300 and SSVEP and their
further fusion are done. The remainder of this work is organized
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as follows. Section “2. Experimental methods” describes our
methodology, the experimental dataset used in this work, and
the corresponding data processing methods. Section “3. Results”
describes the results. Section “4. Discussion” gives our conclusion
and provides a discussion.

2. Experimental methods

2.1. The P300/SSVEP hybrid stimulation
paradigm

A new P300/SSVEP hybrid stimulation paradigm is proposed
and named the FERC paradigm. Figure 1 shows that the
stimulation interface is divided into six rows and six columns of
36 characters or targets (A to Z, 0 to 9). Each symbol is displayed
equally spaced. To induce the P300 signal, the FERC paradigm
uses the same principle as the Oddball paradigm, where rows and
columns flash alternately in random order within a trial. Each row
or column will only flash once in the same trial.

Simultaneously, to induce the SSVEP signal, the rows and
columns were encoded with different frequencies of stimuli with
continuous flashing. The frequency ranged from 6.0 to 11.5 Hz
with an interval of 0.5 Hz, and there were 12 frequency groups.
Specifically, the frequency of columns is 6.0, 6.5, 7.0, 7.5, 8.0, and
8.5 Hz; the frequency of rows is 9.0, 9.5, 10.0, 10.5, 11.0, and
11.5 Hz. For any row or column, the flashing process lasts one
second. In this way, once the classifier recognizes the column and
row, the target can be determined. Although the information of two
stimuli is used, these stimuli are applied simultaneously in one trial.
Therefore, the FERC paradigm belongs to the one-stage rather than
the multi-stage paradigm.

In the stimulus interface, all characters are gray, and the
background is black when there is no target flashing. The font size
of characters will be enlarged by 16.67% (from 60 to 70), and their
background intensity will change according to the time when the
stimulus flashes appear.

Intensity =
Cos

(
2π × f × t

)
+ 1

2
(1)

where f is the frequency of the stimulus and t is the duration
of the visual stimulus. The reason for taking the cosine function
is to ensure that the background intensity of the target character
constantly changes periodically at any moment of the screen refresh
and is not subject to frame loss because of the phase difference
between the screen refresh and the operation.

2.2. Subjects

Eleven healthy volunteers (male, 19–24 years old, mean
20.7 years old) participated in our experiment, and data from 10
subjects were analyzed. All subjects provided written notification
permission. They had no history of eye problems or neurological
disorders, and nine subjects had no experience with the BCI
system. The Medical Ethics Committee of Northeastern University
approved this study. The participants provided their written
informed consent to participate in this study. Before the start of the

experiment, subjects were asked to minimize eye movements and
to sit comfortably in a chair facing the screen.

2.3. Data acquisition

In this study, an actiCHamp EEG signal amplifier from
Brainproducts (actiCHamp 32ch, Gilching, Germany), was used,
along with the accompanying EasyCap electrode cap, which has
an electrode setup in the cap corresponding to the internationally
accepted standard 64 leads and a signal sampling rate of 250 Hz. In
some other studies, only single-channel EEG signals have been used
for BCI detection (Gao et al., 2003), but we found that multichannel
data would not only yield better and more stable performance. The
multichannel method is convenient for BCI applications because all
users can use the same electrode cap (Bin et al., 2009).

In practice, 15 electrodes were used, including one ground
electrode and one reference electrode (Figure 2). The ground
electrode is located in the FPz of the international standard
electrode, and the reference electrode is located in TP10 of the
International standard electrode. The other electrodes were used
to collect EEG signals. Fz, Cz, P3, P4, PO7, PO8, Pz, and Oz were
used to collect P300 signals located in the parietal and occipital
regions. Nine electrodes, PO7, PO8, Pz, Oz, O1, O2, PO3, PO4, and
POz, were used to collect SSVEP signals in the occipital region. It is
known from previous studies that P300 signals are mostly collected
from the parietal and occipital regions (Luck and Kappenman,
2011) and SSVEP signals are mostly collected from the occipital
region (Allison et al., 2014). Therefore, we selected the most helpful
electrodes for the experimental results from the above regions and
finally determined the above 15 electrodes.

The stimulus is displayed on a 27-inch monitor with a refresh
rate of 240 Hz. All operational analysis is carried out in Matlab
2018b. After the collection, the data will be sent to Matlab software
in the data processing equipment through TCP/IP protocol by
the Remote Data Access (RDA) module, and the marked data
will be shunted.

2.4. Signal preprocessing

There are four main steps in the preprocessing stage of EEG
signals. Firstly, the raw EEG signal was filtered with a 60 Hz
notch filter in order to remove the effects of the industrial
frequency interference. Secondly, the filtered data were corrected
to the baseline by “Detrending.” Thirdly, the data were cut into
approximately 0–800 ms segments after stimulus onset. Finally, the
data were divided into two channels, P300 and SSVEP, and entered
into the next step of the experiment.

2.5. Feature extraction and classification

The data processing procedure for a single trial in our
speller system is given in Figure 3. The triaged P300 and
SSVEP data are passed into their respective data processing
modules and analyzed separately with different processing methods
to extract the feature vectors. The processed P300 data are
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FIGURE 1

The proposed frequency enhanced row and column stimulus paradigm. A flicker (white-black) with a specific frequency is assigned to one row or
column of a 6 × 6 layout, and the row/column flashes are carried out in a pseudorandom sequence. In this figure, Column 2 and Row 6 are
activated, and the target output is the number “5”.

FIGURE 2

Schematic diagram of arrangements of the 15 electrodes used in the experiment.

passed into the five support vector machine (SVM) classifiers
trained in advance, and then the classification results are fed
into the modified weight controller to derive the P300 score.

For SSVEP data, they are fed into the pre-trained task-related
component analysis (TRCA) model at the end of the pre-
processing procedure to derive the SSVEP score. The two scores
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FIGURE 3

The data processing process for a single trial in the hybrid speller system. The gray blocks in the data section indicate target stimuli, and the white
blocks indicate non-target stimuli. The two models and one weight controller are pre-trained by the calibration data.

are passed into the total weight controller to get the final
output.

2.5.1. P300 feature extraction and classification
The superimposed averaging helps to improve the signal-to-

noise ratio of P300 but often implies a more extended output
character period, which is very detrimental to the efficiency of
online systems. Therefore, a single detection of the P300 signal
is chosen to improve the overall efficiency. It is well known that
detecting single-trial P300 is a complex problem, so we used a
follow-up operation to improve the accuracy.

The pre-processed data were used for feature extraction by
wavelet transform. Since the frequency domain of the P300 signal
ranges from 0.3 to 15 Hz, which is a low-frequency signal, the
original signals are decomposed to a frequency scale of 0–12.5 Hz
by wavelet transform. Them low-frequency wavelet coefficients of n
channels are concatenated to form a feature vector of length m× n
as the features of P300 and fed into the classifier for classification.
Here, m and n are 13 and 8, respectively.

After the feature extraction, the SVM method is adopted to
detect the occurrence of P300 because of its better generalization
ability compared with other machine learning algorithms
(Theodoridis and Koutroumbas, 2006). The principle of SVM is to
find the hyperplane with the maximum distance that can separate
sample categories from the high-dimensional space after mapping
samples to the high-dimensional space. The Gaussian kernel is
selected as the kernel function of SVM, which mainly considers
the unique advantages in solving nonlinear problems when we are
uncertain whether the P300 single detection problem is linearly
separable.

Considering the single detection of the P300 signal, a weighted
ensemble SVM method is further proposed to counteract the
instability of the individual classifier to enhance the classification
accuracy. Determined by the proposed paradigm in this study, the
ratio of Target Stimulus Signal (TSS) samples containing the P300
signal to Non-target Stimulus Signal (NSS) samples in the collected
EEG data is 1:5. Therefore, an undersampling method similar to
the “EasyEnsemble” algorithm is adopted. Specifically, the NSS
samples are randomly and evenly divided into five parts, the TSS

samples are copied five times, and one part of NSS samples and
one copy of TSS samples are combined into a training set to train
one SVM classifier. In this way, the problem of sample imbalance is
transformed into a problem of combining five classifiers (SVM1,
SVM2, . . ., SVM5) with different training sets, which requires
ensemble learning techniques.

The core idea of ensemble learning is to combine multiple
individual learners to solve the same problem. A modified weighted
ensemble method is used based on the theory of ensemble learning
and the actual situation of the paradigm used in this study. It can
dynamically adjust the weights of the classifiers according to the
actual situation.

Suppose there are n trained classifiers (classifier1, classifier2, . . .
. . ., classifiern), where (n > 0) and their cross-validation accuracies
are (acc1, acc2, . . . . . ., accn), let their weights be (w1, w2, . . . . . .,
wn) respectively, and the sum of the weights is 1. To make the
weight of the classifiers with high accuracy greater, one can make
their weights proportional to the accuracy distribution.{

w1
acc1
=

w2
acc2
=

w3
acc3
= . . . = wn

accn∑n
i = 1 wi = 1

(2)

Then for any m ∈[1, n], the system of equations has the
following solutions.

wm =
accm∑i = 1
n acci

(3)

However, suppose weights are assigned directly according to
Equation 3. In that case, there is the problem that classifiers with
better performance do not receive higher weights, which may make
the result after integration inferior to using a single sub-classifier
with better performance and render the integration useless.
Therefore, this study improves on Equation 3 by introducing
a theoretical accuracy to correct the weights to ensure the
performance of the integration method.

Knowing the accuracy P of the classifier in the case of
completely random target selection, we can assume that the
classifier with classification accuracy acci > P plays a positive role.
The classifier with acci < P is ineffective and cannot play a role,
and the classifier with acci = P plays a negative role. Based on this
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conclusion, we improve the set of equations in Equation 2 and
obtain the following equation.{

w1
acc1−P =

w2
acc2−P =

w3
acc3−P = . . . = wn

accn−P∑n
i = 1 wi = 1

(4)

For any m∈[1, n], wm can be calculated by

wm =
accm − P∑i = 1

n (acci − P)
(5)

According to the modified assignment method, the weights
of those with higher classification accuracy are effectively scaled
up, which is more helpful in improving the minimum level of
the integrated classifier and saving it from being affected by the
classification performance of classifiers with low accuracy.

2.5.2. SSVEP feature extraction and classification
For the SSVEP data, the filter bank technique is utilized first.

The filtered data are input in the TRCA model pre-trained by the
calibration data. Ten sub-bands (Sub1–Sub10) are set as Sub(k):
[k × fa, 90] Hz, k = 1, 2,..., 10. To avoid distortion resulting
from bandpass filtering, each sub-band filter has an extra width
of 2 Hz on the low-frequency side, such as the actual sub-bands
have a lower frequency limit of (k × fa − 2) Hz. Subsequently,
a set of bandpass filters for these sub-bands are designed, and the
Chebyshev I-type bandpass filter is used. The filter bank processing
enhances the relative strength of the stimulus frequency harmonics,
improving its detection accuracy and making the harmonics of
the stimulus frequency much more usable for SSVEP detection.
This data up-dimensioning method can improve the accuracy
of recognition when the time required for calculation is not
much or not limited.

The TRCA has previously been used for the BCI speller by
Nakanishi et al. (2017). In our study, the calibration data of
stimulus “n” used to perform SSVEP detection are defined as
a four-dimension tensor x = (χ)njkh∈RNf × Nc × Ns × Nt, and its
corresponding test data or data to be detected are defined as a two-
dimensional matrix X∈Rc × Ns. Here n and Nf denote the identifier
and number of target stimuli, j and Nc denote the identifier and
number of channels, k and Ns denote the identifier and number of
sampling points, and h and Nt denote the identifier and number
of experimental trials. TRCA extracts task-relevant components by
spatially filtering the training data. The spatial filter ωf ∈RNc × 1

at the stimulus frequency f can be calculated by the following
equation.

argωf
max

ωT
f A

TAωf

ωT
f B

TBωf
(6)

where A ∈ RNs × Nc denotes the result of averaging over Nt blocks
at a frequency f in Z.

A =
1
Nt

Nt∑
i = 1

Zi,f (7)

B=[ZT
1,f ZT

2,f ZT
3,f . . . ZT

Nt,f]T
∈ RNt ×Ns × Nc, and

Zi,f ∈RNs × Nc denotes the multichannel EEG signal with
stimulation frequency f in block i. After calculating the spatial filter
ωf at frequency f, TRCA uses the Pearson correlation coefficient

between the averaged training data across trials for n-th visual
stimulus and the test signal X ∈ RNs × Nc as the final discriminant.

p′ = corr(Xωf ,Aωf ) (8)

The pre-trained TRCA model is a classifier with 12 categories.

2.6. Weight controller combining P300
with SSVEP

The probability of each category is obtained and represented as
the SSVEP score in the form of a 12× 1 vector. Similarly, the P300
score is also represented by a 12 × 1 vector. The weight controller
combines these two scores to yield the final prediction. The weights
in the controller are determined by Equations 9, 10.{

wP
accP−E =

wS
accS−E

wP+wS = 1
(9)

{
wP =

accP−E
accP+accS−2∗E

wS =
accS−E

accP+accS−2∗E
(10)

where accP and accS are the system’s recognition accuracy for
the P300 and SSVEP signal, respectively; wP and wS are the
weights of the kinds of signals; E is the accuracy of the completely
randomized system.

2.7. Experimental setup

The experimental procedure was divided into two phases for
each subject: offline calibration and online testing. In the first
phase, 11 epochs of data are collected, and the procedure is shown
in Figure 4. During the experiment, the subjects only need to
focus on their target and keep their eyes on the target location,
ignoring the rest of the stimuli. Each epoch consists of 12 trials
corresponding to a character input. Before each trial, two seconds
are given to the subject for identifying, locating, and gazing at
the target character. Each trial contains 12 flash stimuli (6 rows
and 6 columns). The order and flashing frequency of the flashing
stimulus were determined by the paradigm defined in section “2.1.
The P300/SSVEP hybrid stimulation paradigm.” The duration of
each visual stimulus flashing is 1 s, and the stimulus interval is
100 ms.

No feedback is given to subjects throughout the calibration
phase. For each subject, 1,584 trials (samples) were collected. Using
these samples, the two models (Pre-trained weighted ensemble
SVM model and Pre-trained TRCA model) and one weight
controller are trained and tested offline in a cross-validation
fashion. Specifically, 10 trials of data are used for training, and 1
trial of data is used for testing with 11 cross-validations.

The second phase of the test was divided into two parts: a
copy speller test and a free spelling test. In the copy speller test,
subjects are asked to type “BCISPELLER,” “HELLOWORLD,” and
“NEUBMIE” in sequence (27 characters in total). For each subject,
972 flashes (27 characters× 12 flashes× 3 repetitions) are collected.
The EEG signal of each flash collection is called a data sample and
is sequentially input to the trained models and weight controller
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FIGURE 4

The time sequence diagram of the offline calibration.

for real-time online judgment. In the free input test, subjects are
asked to spell any number of arbitrary characters and to inform
the experimenter of the characters in mind at the end of the
experiment, which the experimenter recorded.

During the test phase, at the end of each trial, as real-time
feedback, the characters identified from the EEG signal of that trial
will be displayed on the screen. In summary, the graphical user
interface used by the hybrid speller system is given in Figure 5.

In both the offline calibration and online testing phases,
subjects are given a 3–7 min break between each epoch of the test
to relieve visual fatigue and relax their mind to avoid the impact of
nervousness or excitement on the subsequent test, with the exact
duration of the break determined by the subject.

2.8. Evaluation and comparison

Two important metrics are usually used to evaluate the
performance of a BCI speller system: accuracy (ACC) and the
information transfer rate (ITR). These two metrics represent the
input accuracy and speed of the system, respectively. ACC is
defined as the ratio of the number of successful target selections
(X1) to the total number of system inputs (X)

ACC =
X1

X
× 100% (11)

The input speed and the number of characters should also be
considered, so Wolpaw introduced the metric ITR, which shows the
amount of information that can be transmitted in 1 min (Wolpaw,
2007)

ITR = {log2N + Plog2P + (1− P)log2
1− P
N − 1

}/T (12)

here N is the number of categories of output commands available
in the system, P is the probability of correctly selecting the target
option, and T denotes the time of each trial of experiments.

The performance of the weighted ensemble SVM model for
P300 and the ensemble TRCA model for SSVEP is compared
with that of its three counterparts. They are FLDA (Fisher Linear

Discriminant Analysis), BLDA (Bayesian Linear Discriminant
Analysis), and CCA (Canonical Correlation Analysis). FLDA
projects the data to lower dimensions, projects mean values of
classes far apart, and the diffusion of projected data has been used
for P300 detection (Panicker et al., 2011). BLDA uses regularization
to prevent the overfitting of noisy data sets. With Bayesian analysis,
the degree of regularization can be estimated automatically and
quickly from the training data without time-consuming cross-
validation (Hoffmann et al., 2008). CCA is a standard algorithm
in SSVEP BCI (Lin et al., 2006; Bin et al., 2009), a multivariate
statistical algorithm that attempts to reveal the correlation between
two data sets. Moreover, our hybrid speller is compared with some
state-of-the-art counterparts regarding the number of subjects,
detection algorithms, stimulus paradigms, ACC, and ITR.

3. Results

3.1. Performance of the hybrid speller in
the offline calibration tests

Table 1 presents the performance of the hybrid speller and its
counterparts in the offline calibration tests, the standard deviation
of ACC and ITR is also given for different classification methods.
Among the 10 subjects, the hybrid speller accuracy ranges from
93.89 to 99.31%, and the mean reaches 96.86%, much higher
than that only by P300 (75.29%) and only SSVEP (89.13%).
Meanwhile, the hybrid speller yields a mean ITR of 30.08 bits/min,
outperforming P300 only (19.36 bits/min) and SSVEP only
(25.83 bits/min). The speller by SSVEP alone outperforms P300
alone.

3.2. Performance of the hybrid speller in
the online tests

In the online tests, our hybrid speller achieves a mean accuracy
of 94.29% and a mean ITR of 28.64 bits/min (Table 2). One out of
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FIGURE 5

The graphical user interface used by the hybrid speller system. The area marked in red (A) is the visual stimulus interface; the area marked in yellow
(B) is the control panel; the area marked in blue (C) is the input target prompt text box, and the area marked in green (D) is the input text box.

TABLE 1 Performance of the hybrid speller and its counterparts in the
offline calibration tests.

Subject ACC (%) ITR (bits/min)

P300 SSVEP Hybrid P300 SSVEP Hybrid

S1 76.51 87.12 95.33 19.86 24.72 29.11

S2 75.00 95.83 98.33 19.23 29.41 31.01

S3 75.00 80.42 93.89 19.23 21.58 28.28

S4 74.31 87.50 98.03 18.94 24.91 30.81

S5 72.92 96.67 99.31 18.36 29.93 31.72

S6 75.00 87.50 95.14 19.23 24.91 29.00

S7 74.31 88.75 97.50 18.94 25.53 30.46

S8 79.17 89.17 96.53 21.02 25.75 29.84

S9 76.37 86.25 96.80 19.81 24.29 30.01

S10 74.31 92.08 97.78 18.94 27.28 30.64

Mean (SD) 75.29
(1.63)

89.13
(4.51)

96.86
(1.58)

19.36
(0.69)

25.83
(2.35)

30.08
(0.99)

10 subjects has an accuracy of 100% at an ITR of 32.31 bits/min,
and nine subjects have an accuracy higher than 90%. In addition,
all subjects had an ITR greater than 25 bits/min.

Figure 6 shows the accuracy of the hybrid speller with the
number of tests in the online testing phase. In the copy speller tests,
the accuracy increases with the number of tests, and the accuracy in
the copy speller test 3 (mean value, 96.48%) is significantly higher
than that in the copy speller test 1 (mean value, 89.07%). This
may indicate that most subjects become increasingly proficient in
using the hybrid speller system as the number of tests increases and

TABLE 2 Performance of the hybrid speller in the online tests.

Subject ACC (%) ITR (bits/min)

S1 88.89 25.61

S2 94.90 28.86

S3 90.74 26.56

S4 92.59 27.56

S5 100.00 32.31

S6 98.15 30.89

S7 93.75 28.20

S8 90.48 26.43

S9 95.31 29.10

S10 98.15 30.89

Mean (SD) 94.29 (3.51) 28.64 (2.08)

the learning and training have performance-enhancing effects for
speller users.

Interestingly, in a few cases, spelling the same character too
much caused a decrease in accuracy. For example, for S5, the
average accuracy of three copy speller tests is 100, 98.14, and
96.30%. The possible reason might be visual fatigue.

The free spelling test yields higher accuracy than the copy
speller test 1 (89.07 versus 95.69%, p< 0.05). There is no significant
difference between the free spelling test and the second and third
copy speller tests (p > 0.05). This situation may be related to
the subjects’ attention; specifically, too much input from the same
character causes inattention, and free input may encourage the
subjects to focus more actively on the target.
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FIGURE 6

The accuracy of the hybrid speller with the number of tests in the online tests. Asterisk represents a significant difference (p < 0.05), 1–3 are the
copy speller tests, and 4 is the free spelling test.

Many studies present the difference in the average accuracy and
average ITR between the online and offline experiments (Chang
et al., 2016; Katyal and Singla, 2021). In line with our results, the
online performance is worse than the offline. The reason for this
difference is unclear. We speculate that the performance might
be affected by the subjects’ emotional state at different times, the
wearing of soft electrode caps, and other issues. It is noted that the
differences are within acceptable limits.

Figure 7 shows the corresponding confusion matrix in the
online experiments to compare the recognition accuracy of
different targets. The diagonal line in this matrix shows the
accuracy when the predicted value is true. Because the rows and
columns are calculated separately, there are no elements in the
upper right and lower left parts of the confusion matrix. In
most cases (10/12), the wrong identification usually occurs at the
adjacent targets. Here is an example: the highest 3% error appears
in the adjacent column (the third column) while the real target is
located in the second column with a frequency of 6.5 Hz. There are
only two special cases (the first column and the third row) and the
highest error does not appear within two adjacent targets.

3.3. Results of the comparative
experiments and spellers

Using the same dataset collected in our calibration tests,
three comparative algorithms are compared with our SVM and

TRCA methods (Table 3). Our SVM method achieves higher ACC
compared with FLDA and BLDA in P300 detection (75.29 versus
72.22 and 61.90%) and higher ITR (19.36 versus 18.08 and 14.11).
Our TRCA outperforms CCA in SSVEP detection (ACC: 89.13
versus 73.33%; ITR: 25.83 versus 18.53).

Our hybrid speller is compared with eight counterparts
regarding the number of subjects, detection algorithms, stimulus
paradigms, ACC, and ITR (Table 4). The number of subjects
in previous studies ranged between three and twenty. The ACC
is between 79.17 and 9.90%, and ITR is between 19.8 and
164.00 bits/min. Our hybrid speller performs comparably to
the-state-of-art hybrid spellers (P300 and SSVEP). It is worth
mentioning that we use a single-trial P300 to increase ITR and
our counterparts use the method of superimposed averaging. Our
hybrid speller uses a one-stage paradigm similar to the other
four studies (Panicker et al., 2011; Yin et al., 2013; Xu et al.,
2014; Jalilpour et al., 2020), and the other four spellers use the
multi-stage paradigm (Yin et al., 2015; Chang et al., 2016; Xu
et al., 2020; Katyal and Singla, 2021). The one-stage paradigm
has the outstanding feature of high speed, while the multi-stage
paradigm can have a higher capacity of characters (Li et al.,
2021).

The FERC paradigm is proposed and implemented in our
speller. This paradigm differs from the four previous one-stage
paradigms (Panicker et al., 2011; Yin et al., 2013; Xu et al., 2014;
Jalilpour et al., 2020). To the best of our knowledge, this paradigm
has not been used for the speller though a similar paradigm has
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FIGURE 7

The confusion matrix in the online experiments to compare the recognition accuracy of different targets.

been used for the BCI for other purposes (Allison et al., 2014; Wang
et al., 2015).

Our work is different from previous studies mainly in two
aspects: (1) the stimulation paradigm; (2) the method of feature
extraction and classification of EEG signals. First, our paradigm
triggers both P300 and SSVEP signals simultaneously by the
flickers (white-black) of row/column with different frequencies. It
is different from the previous four one-stage paradigms (Panicker
et al., 2011; Yin et al., 2013; Xu et al., 2014; Jalilpour et al., 2020).
Despite belonging to the same category of paradigms, they have
significantly distinct features. In the paradigm of Panicker et al.
(2011), P300 and SSVEP signals have different roles and P300
spelling started only when SSVEP reached a certain threshold. Yin
et al. (2013) directly combined SSVEP and P300 signals triggered
by different stimuli (i.e., the flashing of row/column and orange
crosses, respectively). Xu et al. (2014) used the paradigm suitable
for capturing signals of P300 and SSVEP blocking, while Jalilpour
et al. (2020) specified the paradigm using the spatial characteristics
of the SSVEP signal response. Second, for the method of feature
extraction and classification of EEG signals, our work combined
SVM for P300 and TRCA for SSVEP with the more advanced
fusion algorithm. In previous studies, different linear discriminant
analysis (LDA) algorithms [e.g, FLDA, SWLDA (step-wise LDA),
RLAD (regularized LDA), BLAD] have been commonly utilized for
P300 signal (Panicker et al., 2011; Yin et al., 2013, 2015; Xu et al.,
2014; Chang et al., 2016; Jalilpour et al., 2020; Katyal and Singla,
2021). For SSVEP signals, the CCA method is usually adopted

TABLE 3 Performance comparison of the proposed algorithm and
its counterparts.

Performance P300 SSVEP

FLDA BLDA SVM
(our

method)

CCA TRCA
(our

method)

ACC [Mean (SD)] 72.22 (2.44) 61.90 (4.62) 75.29 (1.63) 73.33 (3.13) 89.13 (4.51)

ITR [Mean (SD)] 18.08 (1.14) 14.11 (2.89) 19.36 (0.69) 18.53 (1.87) 25.83 (2.35)

(Panicker et al., 2011; Yin et al., 2013, 2015; Xu et al., 2014; Chang
et al., 2016; Katyal and Singla, 2021) while SVM is also used
(Jalilpour et al., 2020).

4. Discussion

This article proposes a FERC as a new hybrid stimulus
paradigm, and a hybrid speller is implemented. The frequency
coding is incorporated into the RC paradigm so that P300 and
SSVEP signals can be evoked simultaneously. The new hybrid
P300-SSVEP speller outperforms that using P300 or SSVEP alone.
Advanced detection algorithms of P300 and SSVEP (such as the
weighted ensemble SVM model and the ensemble TRCA model)
and their further fusion by the weight controller are crucial. In
the end, the implemented hybrid speller presents a comparable
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TABLE 4 Comparison of our hybrid speller to the previous ones.

Study Key aspects Performance

Our method Subjects: 10; P300: SVM; SSVEP: ensemble TRCA
Our paradigm causes both P300 and SSVEP signals to be hybrid by weights.

ACC = 94.29%
ITR = 28.64

Panicker et al.,
2011

Subjects: 3; P300: FLDA; SSVEP: CCA
It uses a P300 signal for target detection and an SSVEP signal for asynchronous spelling control and only starts P300 spelling when
SSVEP reaches a certain threshold.

ACC = 97.00%
ITR = 20.13

Yin et al., 2013 Subjects: 12; P300: SWLDA; SSVEP: CCA
SSVEP is stimulated by flashing between white and black at different frequencies, and P300 is stimulated by highlighting rows and
columns using orange crosses.

ACC = 93.85%
ITR = 56.44

Xu et al., 2014 Subjects: 11; P300: SWLDA; SSVEP: CCA
P300 and SSVEP blocking were simultaneously evoked in different ways under the same target stimulus.

ACC = 87.80%
ITR = 54.00

Jalilpour et al.,
2020

Subjects: 6; P300: RLDA; SSVEP: SVM
The P300 signal determines the target symbol group, and the character position is determined by the spatial characteristics of the SSVEP
signal response.

ACC = 93.06%
ITR = 23.41

Yin et al., 2015 Subjects: 13; P300: SWLDA; SSVEP: CCA
In the multi-step SSVEP paradigm, the frequencies of SSVEP stimuli switch once midway through each selection, such as the first half of
the selection is for step one and the second half for step two.

ACC = 95.18%
ITR = 50.41

Chang et al.,
2016

Subjects: 10; P300: SWLDA; SSVEP: CCA
In the multi-stage paradigm, the flickering stimulus and periodic change of the character evoke dual-frequency SSVEP, while the oddball
stimulus of the target character evokes P300.

ACC = 93.00%
ITR = 31.80

Xu et al., 2020 Subjects: 10; ensemble TRCA
In the multi-stage paradigm, different sub-spellers use different frequencies and initial phases, and different characters blink at different
times.

ACC = 79.17%
ITR = 164.00

Katyal and
Singla, 2021

Subjects: 20; P300: BLDA; SSVEP: CCA
In the multi-stage paradigm, P300 estimates the tier of alpha-numeric symbol sets intended by the subject. The secondary selection
phase used a traditional SSVEP paradigm to elicit SSVEP markers.

ACC = 96.42%
ITR = 131.00

performance in terms of both ACC and ITR to the-state-of-art
hybrid spellers (P300 and SSVEP).

Although P300 spellers have been extensively studied and can
achieve good accuracy with multiple trials per symbol, using single-
trial spellings is still a challenging problem. In our study, the
hybrid system incorporating SSVEP achieved an online spelling
performance of 94.29% accuracy, ITR of 28.64 bits/min using a
single trial, and 96.8% accuracy after two training sessions. These
results show that our BCI speller is expected to enable fast spelling
in stimulus-driven BCI applications.

We used data acquisition in parallel with stimulus generation
and labeling for the system’s design to speed up the feedback.
For the choice of paradigm, we designed the FERC to incorporate
frequency coding into the RC paradigm to achieve the effect
of evoking P300 and SSVEP signals simultaneously. For the
selection of frequency, we chose a relatively low 6.0–11.5 Hz
with a spacing of 0.5 Hz to get the best possible classification
results while also considering the problem of visual fatigue
of the subjects. For the page layout, we used the classic
6 × 6 layout and finally simplified all the operations into a
few buttons, making it easy for people without professional
training to operate.

Simultaneously, the system is not dependent on existing
external platforms, so it is highly scalable and compatible,
supporting many different application scenarios, and can be used
within the system, in-text editing software, and social software. The
application of a virtual keyboard in the feedback control module
allows the system to support the input of text in various languages
using the input methods already installed on the computer, meeting
the user’s needs while ensuring that it is as consistent as possible

with the input habits of healthy people in their lives. In subsequent
performance tests, the system performed well.

The most likely explanation for the performance improvement
is three aspects. First, the clever design of the hybrid stimulus
mechanism can detect both signals without causing performance
degradation. Second, the modified weighted integrated SVM
method can classify P300 signals more efficiently compared with
the traditional SVM algorithm for processing EEG signal effects.
Third, the addition of the SSVEP component provides additional
information that helps predict targets versus non-targets. These
analyses conclude that our hybrid BCI method yields better
and more stable performance than the P300-only and SSVEP-
only methods.

One of the 11 subjects was discarded because of the low
accuracy (33.33%). By reviewing the literature, we identified a
phenomenon called “BCI Illiteracy,” which refers to the presence
of a proportion of people who cannot trigger the two signal-evoked
signals P300 or SSVEP, as well as the spontaneous signal MI (Lee
et al., 2019). However, there is still no standardized definition of
BCI blindness, so we believe this is a possible explanation.

We collected feedback from subjects after the experiment on
their feelings about using the system and their experience with the
experimental process and stimulation paradigm. The following two
main feedback comments are obtained. First, all subjects reported
significant visual fatigue during the overall length of data collection
in the first phase of the experiment, and some subjects would feel
annoyed or lose focus uncontrollably during the process. However,
from an experimental design perspective, if the number of training
sessions is reduced, it may lead to poor generalization of the model.
During model calibration, we found that the accuracy of model
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cross-validation improved with the increase in data. Second, several
volunteers reported that their attention was affected to some extent
by the flickering of adjacent characters while gazing at the target
characters, both during calibration and testing. They indicated that
they would unconsciously shift their eyes to gaze at or look at
these targets with their afterglow when the adjacent characters were
illuminated, and the low accuracy of some volunteers may have
been related to this factor.

Combined with the above feedback, the study of reducing the
collected training data is an important future research direction
in which the generated spurious data will supplement the missing
training data. In addition, to further improve the performance
of our BCI speller, in the future, we will conduct more research
with more advanced signal processing algorithms (Pei et al., 2022),
reduce the current electrode set, and select the optimal stimulus
onset asynchrony for the flash frequency.

5. Conclusion

A hybrid BCI speller system based on a single-trial P300
and SSVEP has been designed and implemented. The frequency
coding is incorporated into the RC paradigm so that the P300
and SSVEP signals can be evoked simultaneously. Advanced
detection algorithms of P300 (the weighted ensemble SVM) and
SSVEP (the ensemble TRCA) and their further fusion lead to
good performance (average 94.8%, maximum accuracy of 100%,
and ITR of 28.64 bits/min). The new hybrid P300-SSVEP speller
outperforms the P300 or SSVEP alone and shows comparable
performance to its state-of-the-art counterparts. These results
demonstrate that our speller system has specific application
prospects and practical value.
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The diagnosis and management of sleep problems depend heavily on sleep

staging. For autonomous sleep staging, many data-driven deep learning models

have been presented by trying to construct a large-labeled auxiliary sleep dataset

and test it by electroencephalograms on di�erent subjects. These approaches

su�er a significant setback cause it assumes the training and test data come from

the same or similar distribution. However, this is almost impossible in scenario

cross-dataset due to inherent domain shift between domains. Unsupervised

domain adaption was recently created to address the domain shift issue. However,

only a few customized UDA solutions for sleep staging due to two limitations in

previous UDA methods. First, the domain classifier does not consider boundaries

between classes. Second, they depend on a shared model to align the domain

that could miss the information of domains when extracting features. Given those

restrictions, we present a novel UDA approach that combines category decision

boundaries and domain discriminator to align the distributions of source and

target domains. Also, to keep the domain-specific features, we create an unshared

attention method. In addition, we investigated e�ective data augmentation in

cross-dataset sleep scenarios. The experimental results on three datasets validate

the e�cacy of our approach and show that the proposed method is superior to

state-of-the-art UDA methods on accuracy and MF1-Score.

KEYWORDS

unsupervised domain adaptation, automatic sleep staging, EEG data, adversarial training,

attention mechanism, data augment frontiers

1. Introduction

Sleep appears indispensable in all mammals, and many studies try to unravel the

regularity of sleep (Harding et al., 2019; Peng et al., 2020; Bowles et al., 2022). People

have been working on this research in the past decade, among which sleep staging has

significantly progressed. Sleep staging contributes to detecting sleep disorders, which are

usually collected through noninvasive brain-computer interface devices. It keeps track of

cerebral cortex activity using a polysomnogram (PSG), a collection of bio-signals including

an electrocardiogram (EEG), electromyogram, and an electroencephalogram. According to

the American Sleep Society (AASM) (Iber et al., 2007), sleep is divided into three stages:

wake (W), rapid eye movement (REM), and non-rapid eye movement (NREM), and N1, N2,
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and N3 are the three substages of NREM. In the clinical setting,

expert clinicians mainly interpret manually for sleep records.

It takes a lot of time and effort for professionals to check,

segment, and classify each segment 8–24 h multichannel signals

into continuous, fixed-length periods of 30 seconds’ epoch.

In recent years, the sleep staging problem has benefited from

improvements in machine learning methods (Supratak et al.,

2017; Sors et al., 2018; Phan et al., 2019a; Sun et al., 2019),

which processed EEG data using various network topologies and

properly trained classification models to function effectively in

testing. Those methods aim at automating the tedious process.

However, many sleep laboratories still rely on the manual scoring

of EEG data. There are two main reasons: First, automated sleep

staging algorithms still require a large number of labeled data

to train the models, which needs to be done manually by sleep

technicians or expert clinicians. In this context, attempting to

train a deep network on a large labeled source domain and

transfer it to the target domain is a good compromise. Yet,

this method gives lower performances than expected, which is

the second question. The data produced in sleep labs and the

publicly available training data differ significantly (Nasiri and

Clifford, 2020; Phan et al., 2020a). It can happen for several

reasons, including various measuring sites on the skull, different

sampling rates of measuring instruments (Azab et al., 2018), or

inherent variability between subjects. The training (source) and

the test (target) distributions are different, referred to as a domain

shift problem.

Unsupervised domain adaptation (UDA) (Ganin and

Lempitsky, 2015) has lately shown great potential in enhancing

deep learning models when labeled data is scarce. It can solve

the two problems above simultaneously. Firstly, it does not

need mass-labeled data cause it transfers knowledge from

the domain source with rich labels to the target domain with

imperfect labels. Secondly, it solves the problem of distribution

differences between source and target domains by aligning

the distribution of source features and targets. From Figure 1,

UDA uses both the labeled source domain and the unlabeled

target domain to train the model to perform well on both the

source and target domains. UDA is widely used in machine

vision (Wang and Deng, 2018) to reduce the discrepancy

between the source and the target distributions without

utilizing any labels from the target domain. Some research

has examined UDA’s role in classifying sleep stages thus far.

For instance, Chambon et al. (2018) improved the feature

transferability between source and target domains using the

best transport domain adaptation. Besides, Nasiri and Clifford

(2020) used adversarial-based domain adaptation to increase

feature transferability.

In UDA, a domain classifier (also known as a discriminator)

and a feature generator are used as two players to align

allocations in an adversarial way. However, applying these methods

to automatic sleep staging continues to have the following

drawbacks. First, they disregard the connection between the

decision border and the target samples when aligning distributions.

In other words, the main task of the generator is to match

the distribution between the source and the target. This theory

assumes that the classifier can correctly classify these target

features because they are consistent with the source samples.

So, they do not consider the relationship between the target

sample and the decision boundary for distribution alignment. As

shown on the right in Figure 1, because the generator is only

attempting to make the two distributions close rather than the

categorization boundary, it can yield ambiguous features close

to the boundary. Secondly, they rely entirely on a common

frame to extract features from the source and target domains.

This could result in the loss of source and target domain-

specific features, which is detrimental to classification tasks in the

target domain.

To overcome the challenges above, this article presents

a novel framework named Task-Domain Specific Adversarial

Network (TDSAN), composed of a feature generator, a domain

discriminator, and a dual classifier. It aims to align feature

distributions from the source and target domains by combining

the classifier’s output for the target data and the domain

discriminator’s output for the domain identifier. Second, we

create a domain-specific attention module to maintain source and

target-specific features.

Specifically, we train a domain discriminator to predict the

input domain and a dual classifier to predict task-specific class

labels. We use domain pseudo-labels (i.e., source domain as “1”

and target domain as “0”) as input. The domain discriminator

is trained until it cannot distinguish between the distributions

of its training and test domain examples. At the same time, the

dual classifier is used to correctly classify the source samples

while being trained to find target samples that are located far

from the source of support. Because they are not grouped into

any classes, samples far from the support do not have traits

that can be used to differentiate between them. That is to say.

While considering the classifier’s output to the target samples,

it is instructed to produce desired features close to the support

points simultaneously. Therefore, our approach uses a domain

discriminator to distinguish the features between samples drawn

from the source domain and drawn from the target domain by

predicting the domain label and a dual classifier to generate the

discriminative features of the target sample because it considers

how the decision boundary and the target data relate, and training

is adversarial. Additionally, we use domain-specific attention to

clean up the extracted features so that each domain keeps its

essential characteristics.

The contributions of our paper are summarized as follows:

a novel cross-dataset sleep classification framework is proposed

that simultaneously changes the categorization boundaries between

classes and the conditional distribution between domains. The

algorithm adopts a non-shared attention module to keep

critical features during adaptation, thereby improving adversarial

performance on the target domain. Aiming at the data imbalance

in sleep staging, we applied data augment to effectively improve the

impact of sample skew on the classification network. Numerous

tests show that our TDSAN delivers more excellent cross-domain

sleep stage classification performance compared to cutting-edge

UDA techniques.

The rest of this paper is organized as follows. Section 2

introduces related work of EEG sleep classification on domain

adaptation and describes the proposed model. In Section 3,
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FIGURE 1

Domain adversarial neural networks.

the experimental results are presented and debated. Section 4

concludes this study.

2. Materials and methods

2.1. Related work

The use of single-channel EEG for automated sleep staging

has received much attention in the literature. Specifically, deep

learning-based techniques (Sors et al., 2018; Kuo and Chen, 2020;

Fan et al., 2021; Lee et al., 2021) have made significant progress.

These approaches create various network structures to extract

characteristics from EEG data and capture temporal dependencies.

However, these methods often require enough labeled data to train

networks with thousands of parameters. Furthermore, all the above

scenarios assume that the training and test data distribution is

the same or very comparable, which frequently is not the case

because different psychological states or complex equipment noise

may cause changes in data distribution. Although these methods

have been successful in dealing with complex EEG data, they have

limited results in sleep stage classification across domains (Wu

et al., 2020) (e.g., cross-datasets and cross-devices) because of

domain shift. As a result, numerous studies were told to use transfer

learning techniques to address this problem.

There have been a few studies investigating the problem of

individual sleep staging using transfer learning (Mikkelsen and

De Vos, 2018; Phan et al., 2020b) to increase the specific subject’s

classification accuracy within a similar dataset. They exclude two

nights of test subjects for datasets with two nights of recordings per

subject and pretrain the model. Then, the data from the other night

is used for evaluation, while the data from the first night is used to

fine-tune the model.

The cross-dataset scenario, which involves training a model

on data from one dataset and evaluating it on another dataset,

has yet to receive much attention. Using a sizable source dataset

and another labeled but small target dataset, Phan et al. (2020a)

investigated the problem of data variability. Abou Jaoude et al.

(2020) also applied a similar transfer learning strategy for extended

scalp EEG recordings. They used the larger source dataset to train

their model and the smaller target dataset to refine it. Similar to the

problem scenario, Phan et al. (2019b) proposed using deep transfer

learning to overcome the channel mismatch between the two

domains. Abdollahpour et al. (2020) also used this idea to predict

sleep staging on fused features on pretrained models. Guillot and

Thorey (2021) composed eight heterogeneous sleep staging datasets

into a large corpus, which solved the problem of incompatible input

data shapes on tasks across datasets and improved the classification

accuracy in the target domain. Moreover, even though some

studies were not focused on sleep staging, they classify EEG/EMG

for fatigue or motor image research and provide some practical

examples. For example, Soroushmojdehi et al. (2022) proposes a

subject-transfer framework. It uses the information learned from

other subjects to make up for the data from the target subject. This

article is about a study of hand movement intention identification

based on EMG signals. Perry Fordson et al. (2022) also propose a

domain adaptation method. It tries to individually treat features

from auditory and visual brain regions, which successfully tackles

subject-to-subject variations.

Both a labeled target dataset and a sizable corpus of source

datasets are necessary for these techniques to fine-tune their

models. To solve these problems, UDA strategies that align the

traits from several domains with a few annotation data were

presented. These methods can be classified as discrepancy-based

approaches and adversarial-based approaches. Discrepancy-based

methods, such as Maximum Mean Difference (MMD) (Long et al.,

2015, 2016) and Correlation Alignment (CORAL) (Sun et al., 2016),

strive to reduce the distance measured between the source and

target distributions. On the other hand, adversarial-based methods

are like Generative Adversarial Networks (GAN) (Goodfellow et al.,

2014). This approach trains a domain classifier to predict the

input domain and a class classifier to predict task-specific class

labels. Both classifiers share the feature extraction layer. The two

layers are trained to predict the labels of the source samples

correctly as well as to fool the domain classifier. This method

is used in current sleep staging works. It was recommended by

Zhao et al. (2021) to employ adversarial UDA with a domain

discriminator and several classifiers fed from different feature
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extractor layers. Nasiri and Clifford (2020) employed adversarial

training and strategies for focusing local and global attention to

extract transferable personal information. Yoo et al. (2021) used

three discriminators for adversarial domain adaptation. One is the

global discriminator, and two are local discriminators. The local

discriminators will preserve the intrinsic structure of sleep data and

reduce local misalignment. Eldele et al. (2022) used a dual classifier

for the adversarial domain adaptation framework to improve the

accuracy of the decision boundary.

The distribution alignment approaches based on GAN or

MMDdo not consider the connection between decision boundaries

and target samples. Saito et al. (2018) presented an unsupervised

adaptation method on the bias of Maximum Classifier Difference

(MCD). The technique has a generator module to extract high-

level features from the source and target domains. MCD matches

distributions by producing representations within similar task-

specific boundaries. Dual classifiers are proposed following the

same structure. First, the annotated source data is trained to

obtain two different classifiers. Second, target samples that are

not supported by the source are found. Then, the L1 distance

of the probability output is employed to measure the difference

between the two classifiers. In this stage, the difference is maximal.

It will result in the separation of the two classification boundaries.

The generator will relocate the outliers within the target domain.

Third, the exact differences are then minimized. Due to the two

distributions widely overlapping in stage 2, the target domain is a

component of the source domain in this stage. Training deals with

the minmax issue bymaximizing the target variance and generating

a representation that minimizes features. Inspired by this, we

set two discriminators. The domain discriminators for domain

adaption and dual classifiers for classification boundaries adapting.

The classification boundaries are between classes. A generator for

generating the minimized differences features. Furthermore, we

improve the adversarial training process by maintaining domain-

specific features through domain-specific attention.

2.2. Proposed method

Section 2.2.1 briefly introduces the notations and definitions.

In Section 2.2.2, we outline the structure and the details. Finally,

the whole training process is described in Section 2.2.3.

The definition and notations of EEG-based sleep staging are

first briefly discussed in this section. We denote Xs =
{(

xis, y
i
s

)}ms

i=1

withms labeled source data and Xt =
{(

xit ,
)}ms

i=1
withmt unlabeled

samples. In the context of EEG data, xis and x
j
t ∈ R1∗T , since EEG

data is 2D time series data, symbol 1 means channels (electrodes)

and T means how many numbers of timesteps are in each 30-

second EEG epochs. Feature extractor F, receives Xs or Xt as input.

Domain attention module A receives the output of the feature

generator, dual classifier networks C1, C2, and domain classifier

D extract features from A and classify them. The dual classifier

networks classify the extracted features into K classes, i.e., output

a 5-dimensional logarithmic vector. The domain classifier classifies

them into two classes, which are set to be one if the data come from

the source domain and set to 0 otherwise. All the class probabilities

are obtained through the softmax function. Here, the softmax

function’s activation of the L1 distance between the probabilities

of the two classifiers serves as the discrepancy loss. Following the

experience of Saito et al. (2018), we denote the discrepancy loss

as follows:

d
(

p1, p2
)

=
1

K

K
∑

k=1

∣

∣p1k − p2k
∣

∣ (1)

where p1k and p2k represent the probability outputs of p1 and p2 of

k classes, respectively. We also have an adversarial loss, which tries

to deceive the domain classifier by confusing the two data domains.

We aim to acquire a feature generator that minimizes the

variance of the target samples.

2.2.1. Network framework
We propose the TDSAN model, which consists of a feature

extractor, a domain-specific attention module, a dual classifier,

and a domain classifier. The overall model of TDSAN is shown

in Figure 2. We first extract the shared feature to generate high-

level features representation using both source data and target data.

Then, domain-specific attention is put in charge of calculating the

relevance of the time sequence. It plays a crucial role in keeping

each domain’s useful features by fine-tuning the extracted features.

The feature extractor and the domain-specific attention together

form a generator module. The dual classifier has the following

two functions. First, complete the classification task. Second, it

is iteratively trained with the generator as a discriminator. It

tries to align the distribution on task-specific boundaries. The

domain classifier recognizes the domain ID to align domain

feature distribution.

2.2.1.1. Feature extractor

The feature extractor consists of three CNN-based convolution

blocks, each in 1 dimension. To speed up training and keep

CNN Network stable, we use a batch normalization layer. It can

reduce internal covariate shift (Perry Fordson et al., 2022). We use

leaky ReLU as an activation function and MaxPooling to reduce

information redundancy. Given an input source sample x ∈ R1·T ,

it generates source features through a feature extractor, that is,

F(x) = (fl, . . . , fl) ∈ R1·l where l is the length of the feature.

2.2.1.2. Domain-specific attention

After convolution, EEG data output is shorter 2D EEG data

usually contains the temporal dimension. We do not simply treat

the EEG series as a particular image. Based on such consideration,

we attempt to extract recessive temporal features from EEG

using temporal self-attention mechanisms. In addition, we get

shared features after feature extraction. However, different datasets

may have different temporal features. Therefore, we use a non-

shared attention module to extract domain-specific information.

Extracting different domain time temporal also plays a vital role

in fine-tuning features. The attention module computes a weighted

sum of the features at all locations with the bit of computational

cost for each location in the feature space. As a result, each site’s

features contain intricate details that correspond to fine details in

the feature’s distant sections.

Inspired by Zhang et al. (2019), as seen in Figure 2, we

use a convolutional attention method. The attention operation
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FIGURE 2

Overall architecture of the proposed TDSAN framework.

obtains a feature representation at each location based on two 1D

convolutions (e.g., M1 and M2). Particularly, psx, psy ∈ R
d are the

eigenvalues of positions x and y, which are transferred into Qsx =

M1

(

psx
)

and Qsy = M2

(

psy
)

. Note that the score is expressed as:

Wyx =
exp

(

Q⊤
sxQsy

)

∑l
k=1 exp

(

Q⊤
sk
Qsy

)

(2)

where Wyx represents the degree to which the y-th location pays

attention to the x-th position. The output is

osy =

l
∑

x=1

Wyxpsx (3)

Equations 1 and 2 refer to the attention process as A(·); therefore,

Os = As(F(xs)). The same procedure applies to the target domain

data stream to train At .

2.2.1.3. Dual classifier

The dual classifier consists of three fully connected layers. A

dual classifier has two tasks: acting as a classifier for the source data

and detecting the target samples outside the source support when

we combine two category classifiers. The dual classifiers C1 and

C2 first try to maximize the difference for a given target feature to

find the target samples away from classification boundaries. Then it

minimizes the discrepancy to make them close to the classification

boundary. By iterating this process repeatedly, we train a generator

that has rare differences with the classification Boundary of the

source domain.

2.2.1.4. Domain discriminator

It is widely used in UDA (Tzeng et al., 2017). The main

goal is to minimize and regularize the distance between the

empirical mapping distributions by training iteratively with the

generator. Specifically,We first introduce the domain discriminator

by using source samples and target samples with their domain

labels. Subsequently, we fix the domain discriminator and train

the generator to deceive the discriminator confusing the data

domain. We finally get the domain-invariant representations

through iterative training.

The details of these four modules are shown in Table 1.

2.2.2. Training steps and loss function
We described the four modules in detail in Section 2.2.1. This

section describes the training steps and loss functions to train the

entire network. First, the framework of the overall network is to

solve a maximize problem. It should be noted that the training is

iterative between the generator and the dual classifier and between

the generator and domain Discriminator. We solve this problem in

four steps.

2.2.2.1. Train the dual classifier

First, the CNN and the attention mechanism network extract

the high-level representation. Then we put them in the dual

classifier and train it to get two different decision boundaries with

source data. We use cross-entropy loss since the data is labeled. It

should be noted that C1 and C2 are initialized differently to obtain
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TABLE 1 Model parameters of the feature extractor and classifiers.

Modules Layers Kernel

Feature extractor

Conv1d 1x25,32

BatchNorm1d

MaxPool1d 1*2,stride 2

Conv1d 1x8,64

BatchNorm1d

MaxPool1d 1*3,stride 3

Conv1d 1x8,128

BatchNorm1d

MaxPool1d 1*3,stride 3

Domain attention / /

Dual classifier

FC 1,024

FC 512

FC 5

Domain discriminator

FC 1,024

FC 512

FC 2

two different decision boundaries.

min
G,c1 ,c2

L (Xs,Ys) (4)

L (Xs,Ys) = −E(xs ,ys)∼(Xs ,Ys)

K
∑

k=1

I[k=ys] log p
(

y | O (xs)
)

(5)

2.2.2.2. Fixed generator, training domain discriminator

In this step, the source domain ID is one, and the target

domain ID is 0. It aims to minimize the domain confusion loss

for source and target samples on a fixed G. This is a supervised

learning process.

L = −

N
∑

i=1

y(i) log ŷ(i) +
(

1− y(i)
)

log
(

1− ŷ(i)
)

(6)

2.2.2.3. Fixed generator, dual training classifier

In this step, we train classifiers C1 and C2 to minimize

discrepancy on target samples for a fixed generator G. They can

detect target samples far from source support and force them to

relocate to the corresponding category.

Ladv (Xt) = Ext∼Xt

[

d
(

p1
(

y | O (xt)
)

, p2
(

y | O (xt)
))]

(7)

2.2.2.4. Fixed dual classifier and domain discriminator,

training generator

In this step, we train generator G to maximize discrepancy

on target samples. It identifies the target samples that the source’s

support has eliminated.

max
c1,c2

Ladv (Xt) (8)

In our system, these three phases are repeated. Our primary

focus is on adversarially training classifiers and generators to

identify source samples and confusing domain distribution.

Algorithm 1 summarizes the complex algorithm of TDSAN.

Input: source data Xs,Ys, target data Xt

for epoch in maxepoch do

for each mini-batch do

pretrain C1, C2 with source Xs,Ys;

reduce O
(

fs
)

and O
(

ft
)

;

for p in F) do

train D for O
(

fs
)

and O
(

ft
)

;

end

train C1, C2 with source Xs,Ys;

maximize discrepancy using the class

probability of target ft;

reduce task-specific variance based on the

class probability of target ft;

end

end

Algorithm 1. Training Procedure for TDSAN

3. Results

3.1. Data

We evaluated the proposed framework on three datasets,

including two public and one private dataset, namely sleep-EDF-

SC (EDF), sleep-EDF-ST(ST), and self-collection datasets. Before

downsampling, a summary of the three datasets above is displayed

in Table 2.

3.1.1. Public datasets
The sleep-EDFx dataset (Goldberger et al., 2000) is made up of

42 subjects’ 61 polysomnographic (PSG) data and corresponding

hypnograms (annotations by sleep experts). European data format

(EDF) is used to store PSG records, while EDF+ is used to store

hypnograms. A horizontal EOG channel, a sub-mental chin EMG,

two EEG channels, Fpz-Cz and Pz-Oz, an event marker, and an

EOG channel are all included in each record. At 100 Hz, the EEG

signal is captured. The annotations for each stage of sleep in the

hypnogram file are W (wake), R (REM), 1 (N1), 2 (N2), 3 (N3),

4 (N4), M (movement time), and not scored (denoted as?). 42

participants from two separate groups—the Sleep Cassette (SC)

group and the Sleep Telemetry (ST) group—were employed in the

study. The ST group consists of the remaining 22 participants with

modest sleep problems. In contrast, the SC group consists of the

remaining 20 healthy subjects who are not taking any medicine.

Every SC subject in the EDFx dataset has two nights’ sleep records,

except one, which only has one. 22 sick participants were recorded

for one night of sleep by the ST group. Based on the experience of
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TABLE 2 A brief description about the datasets.

Dataset Subject Recordings Sample rate Channel Scoring

EDF 20 39 100 Fpz-Cz R&K

ST 22 44 100 Fpz-Cz R&K

self-collection 6 30 250 C4-A1 AASM

Supratak et al. (2017) and Eldele et al. (2021), we evaluate ourmodel

on the channel Fpz-Cz.

3.1.2. Self-collection datasets
This study conducted 30 nights of polysomnography trials

following clinical recommendations and the AASM guideline.

There are six subjects, each under observation for five nights. The

subjects were all young, healthy adults between the ages of 20

and 24, with a male-to-female ratio of 1:0.67. Each participant

voluntarily agreed to take part in this sleep study. They had to

bathe and do their hair before the investigation to keep their heads

tidy. The time ranged from 23:00 to 07:30, exceeding 8 h. All

participants ensured they were in good health, had no medical

history, and hadn’t done any strenuous exercise the hour before the

sleep experiment began. The 3-channel EEG, 2-channel EOG, 1-

channel EMG, and 1-channel ECG signals were accurately acquired

and stored. The system gain is 24, and the sampling rate is 250

Hz. In addition, conductive gel paste is applied to all the gold-

plated disc electrodes used in EEG electrodes for signal acquisition.

Patch electrodes are used in EOG, EMG, and ECG electrodes.

The subject’s dormitory bed served as the site for the entire sleep

experiment, and the AASM suggested all electrode implantation

settings. Three EEG channels, i.e., C4-A1, F4-A1, and O2-A1, were

combined to form the electrode title, which is now only C4, F4, and

O2. Then, EOG-R and EOG-L are combined to form REOG and

LEOG from the two EOG channels. We evaluated our model on

channel C4-A1.

3.2. Data preprocessing

In the 30 s/epoch time series, the filtered data were separated

into non-overlapping pieces according to the AASM staging

criteria.

• Epochs classified as being in motion, artifacts, or unknown

were eliminated.

• To meet the AASM norm, sleep stages S3 and S4 were

combined into a single N3 stage.

• Only the first and last 30 mins of wake time were included.

• Downsampling the data with a sampling frequency higher

than 100 Hz, and the length of a single epoch is 30 s × 100

Hz (T = 3,000).

• Cutoff frequency design: based on high-pass and low-pass

filters (0.3-35 Hz) to reduce the noise.

3.3. Experimental settings

We used the macro-averaged F1-score and the classification

accuracy (ACC) to assess the proposed performance. The metrics

are denoted as follows:

ACC =

∑K
i=1 TPi

M
(9)

MF1 =
1

K

K
∑

i=1

2× Precision i × Recall i

Precision i + Recall i
(10)

where Precision = TP
TP+FP , Recall = TP

TP+FN . TP, FP, TN,

and FN denote True Positive, False Positive, True Negative, and

False Negative, respectively. The whole sample number is M,

and the total class number is K. The experiment was model

initialized from various random seeds and repeated five times. The

average final result (ACC and MF1) was then presented with the

standard deviation.

We divide the experimental data into 80% and 20% for training

and testing. We do not disrupt the order of epochs of subjects

so that domain-attention-specific can capture the relationship

between different sleep stages. We employ the Adam optimizer

with a batch size of 128 and a learning rate of 1e−3. We

did not fine-tune these hyperparameters for a fair comparison.

Another hyperparameter is n, which represents the number of

times this operation is repeated for the same mini-batch. This value

represents the trade-off between the generator and the classifier. All

experiments are done by pytorch1.12 on an NVIDIA GeForce RTX

2080 Ti GPU.

3.4. Baselines

We analyze our suggested TDSAN by contrasting it with

different baselines. We started by including the Direct Transfer

(DT) findings from DeepSleepNet’s (Supratak et al., 2017) three

sleep stagingmethods. In addition, we adopted four state-of-the-art

baselines based on adversarial domain adaptation (DA). We briefly

describe these baselines:

• DANN (Eldele et al., 2021): It simultaneously trains a feature

extractor and a domain classifier using a gradient reversal layer

(GRL) to remove the gradient of the domain classifier.

• ADDA (Ganin et al., 2016): It accomplishes a comparable task

to DANN but reverses the labels.

• CDAN (Tzeng et al., 2017): Minimize the cross-covariance

between feature representations and classifier predictions.
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TABLE 3 Comparison of di�erent baselines on ACC. Bold: the best results; Underlined: the second best results.

Baselines EDF→ST EDF→SC ST→EDF ST→SC SC→EDF SC→ST ACC

DT DeepSleepNet 72.34 61.53 68.35 50.23 62.75 49.85 60.84

DA DANN 73.70 65.98 64.23 58.94 65.93 67.53 66.05

ADDA 73.72 77.40 64.14 65.93 58.43 68.65 68.71

CDAN 76.42 67.36 66.68 70.36 62.89 70.06 68.96

ADAST 72.85 70.41 71.23 70.06 68.41 69.88 70.47

TDSAN(ours) 73.97 79.32 73.90 70.89 65.12 68.19 71.89

TABLE 4 Comparison of di�erent baselines on MF1. Bold: the best results; Underlined: the second best results.

Baselines EDF→ST EDF→SC ST→EDF ST→SC SC→EDF SC→ST MF1

DT DeepSleepNet 56.58 45.88 53.86 44.83 55.32 40.30 50.12

DA

DANN 61.35 55.79 53.49 50.63 55.19 56.63 55.51

ADDA 59.69 55.5 55.69 54.79 48.89 63.86 56.40

CDAN 63.06 54.73 53.91 64.01 52.61 59.71 57.95

ADAST 59.86 61.89 60.72 64.29 56.65 60.33 60.62

TDSAN (ours) 60.00 60.66 59.91 58.95 53.29 55.30 58.01

• ADAST (Yoo et al., 2021): It uses dual classification on

top of domain obfuscation to consider class-conditional

distributions.

3.5. Results

Tables 3, 4 show the comparison results among various

methods. It suggested that the direct transfer results are usually

the worst. This result indicated that the domain shift issue has

a significant impact and needs to be handled independently. The

findings of the other 4 DA baselines confirm the need for domain

adaptation to overcome the domain shift issue.

It is important to emphasize that we use the proposed backbone

feature extractor on four baseline methods except DeepSleepNet

to ensure a fair comparison. In this setting, we note that

methods that consider class-conditional distributions: such as

CDAN and ADAST, outperform the globally aligned source and

target domains, namely DANN and ADDA. This shows that taking

class distribution into account is crucial to improving classification

performance on the target domain, mainly when dealing with

imbalanced sleep data. Our proposed TDSAN outperforms all

baselines in accuracy in four of the six cross-domain scenarios

and achieves the second-best average score among all baselines on

MF1-Score.

We consider possible reasons: First, by iteratively training

the generator and classifier, we obtain a feature extractor that

can extract the smallest difference between the source and

target domains. At the same time, the task-specific classifier

fully considers the relationship between the target task and

the decision boundary. Second, performance is enhanced by

TDSAN because it uses a non-shared attention module to preserve

domain-specific features.

In Tables 3, 4, we also find essential clues on different cross-

dataset situations. In SC→EDF and SC→ST, they are generally

lower than other scenarios in various cross-domain scenarios. This

may be because the dataset is too small, and the classification

performance of the classifier on the source domain data is poor,

which is insufficient to correct the do-main offset results. In

addition, we also observed that the transfer results of datasets

between SC and ST are relatively poor. We observed from the

characteristics of datasets that EDF and SC datasets are the sleep

EEG data of healthy people, while ST data sets are collected

from people with mild sleep disorders. In addition, the acquisition

channels and frequencies of ST and SC are different, so they are a

relatively remote domain from EDF and SC. These findings suggest

that adapting to distant domains is still exceedingly difficult.

3.6. Data augmentation

Each stage’s length varies for a sleep recording. Mainly, stage

N2 makes up between 45% and 55% of the entire sleep time and

contributes to the majority class. N1, on the other hand, only makes

up roughly 2%–5% [36]. Every sleep dataset that is accessible has

this problem, including public datasets we can retrieve and our self-

collection dataset. As mentioned in many studies (Tsinalis et al.,

2016a,b; Supratak et al., 2017; Sun et al., 2019), class imbalance

may hinder the classifier’s performance, limiting the improvement

of automatic sleep staging algorithms. Following the suggestion of

Ko et al. (2021), we use the sliding window method to augment

the N1 stage data. The window size is 30s, and the step size is

25s. We are also experimenting with six cross-domain scenarios

to see if augmentation affects the classification results. Table 5

shows the comparison before and after data augmentation on six

cross-domain scenarios with three indexes, precision, recall, and
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TABLE 5 Classification performance before and after data augment.

Cross-domain Slide windows Sleep score W (%) N1
(%)

N2
(%)

N3
(%)

REM
(%)

ACC (%) MF1 (%)

EDF→ST Before Precision 50.00 34.42 84.24 97.26 66.55 73.97 66.49

Recall 71.95 43.44 81.83 27.95 88.94 73.97 62.82

F1-score 59.00 38.41 83.02 43.43 76.13 73.97 60.00

Support 82 122 1156 254 434 73.97 2048

After Precision 80.17 60.00 94.36 96.19 61.70 75.12 68.10

Recall 96.04 28.68 95.81 55.04 73.32 75.12 53.03

F1-score 87.39 38.81 95.08 70.02 67 75.12 55.87

Support 82 205 1156 254 434 75.12 2131

EDF→SC Before Precision 37.25 15.79 87.32 92.53 62.46 79.32 59.07

Recall 66.67 11.11 84.22 82.29 78.60 79.32 64.58

F1-score 47.80 13.04 85.74 87.11 69.61 79.32 60.66

Support 323 191 925 201 408 79.32 2048

After

Precision 56.06 22.22 85.55 91.55 61.08 80.26 63.30

Recall 64.91 7.41 86.98 78.47 83.39 80.26 64.23

F1-score 60.16 11.11 86.26 84.51 70.51 80.26 62.51

Support 323 215 925 201 408 80.26 2072

ST→EDF Before Precision 62.18 38.24 88.77 68.77 58.63 73.90 64.92

Recall 30.03 6.81 86.27 97.51 85.29 73.90 61.18

F1-score 40.50 11.56 87.50 80.66 67.33 73.90 59.91

Support 101 77 1170 36 517 73.90 1901

After Precision 90.67 40.63 83.95 82.99 64.03 77.94 72.45

Recall 54.40 12.68 91.71 78.74 78.34 77.94 63.17

F1-score 68.00 19.33 87.66 80.81 70.47 77.94 65.25

Support 101 136 1170 36 517 77.94 1960

ST→SC Before Precision 62.18 38.24 88.77 68.77 61.63 70.90 61.92

Recall 30.03 6.81 86.27 97.51 85.29 70.90 61.18

F1-score 40.50 11.56 87.50 80.66 64.33 70.90 58.91

Support 323 191 925 201 408 70.90 2048

After Precision 55.93 47.83 83.86 98.85 47.87 75.42 64.25

Recall 76.74 8.21 91.21 80.54 94.07 75.42 60.83

F1-score 64.71 14.01 86.37 88.32 62.31 75.42 58.39

Support 323 215 925 201 408 75.42 2072

SC→EDF Before Precision 100.00 0.00 77.22 96.15 37.27 65.12 62.13

Recall 19.02 0.00 86.52 87.04 97.35 65.12 56.99

F1-score 30.59 0.00 81.60 91.37 53.91 65.12 53.29

Support 101 77 1170 36 517 65.12 1901

After Precision 97.59 4.35 80.87 96.15 49.28 72.28 65.65

Recall 43.67 1.95 92.30 91.88 90.00 72.28 63.96

F1-score 60.34 2.70 86.21 93.97 63.68 72.28 61.38

Support 101 136 1170 36 517 72.28 1960

SC→ST Before Precision 98.70 0.00 79.69 98.37 45.80 68.19 63.51

Recall 35.49 0.00 81.22 81.82 99.12 68.19 56.53

(Continued)
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TABLE 5 (Continued)

Cross-domain Slide windows Sleep score W (%) N1
(%)

N2
(%)

N3
(%)

REM
(%)

ACC (%) MF1 (%)

F1-score 37.93 0.00 80.45 89.33 58.80 68.19 55.30

Support 82 122 1156 254 434 68.19 2048

After Precision 81.82 0.00 92.94 47.39 68.54 73.44 58.14

Recall 21.95 0.00 72.84 100.00 89.86 73.44 56.93

F1-score 34.62 0.00 81.67 64.30 77.77 73.44 51.67

Support 82 205 1156 254 434 73.44 2131

FIGURE 3

Classification performance before and after data augment. (A)

Performances on ACC before and after sliding window. (B)

Performances on MF1 before and after sliding window.

MF1_score in detail. For easier reading, we use Figure 3 to present

these results.

The result suggested sample skew affects the performance of the

classification network. In domain adaption, data augmentation is

still optional when we can not get enough EEG data.

3.7. Feature visualization

Further, we use UMAP to visualize the feature representations

learned to make the Comparison more intuitive.

Initially, we investigate the alignment quality. Figure 4 shows

the alignment between the source and target domains in the

FIGURE 4

UMAP feature space visualization showing the source and target

domains alignment using, applied for the scenario EDF → ST. (A)

Before TDSAN. (B) After TDSAN.

EDF→ST scenario, where Figure 4A shows the feature distribution

of the source and target domains before training. Our TDSAN

framework alignment is shown in Figure 4B. The blue dots in these

pictures offer the target domain, whereas the red dots show the

source domain. The source and target domain feature distributions

have significant differences before alignment. After alignment, the

feature overlap between the source and target domains increases.

Additionally, after the alignment in Figure 4, we investigate

the target domain classification performance under the above

scenarios. In particular, Figure 5A is the class distribution of the

source and target domains before training, and Figure 5B is the

distribution after our alignment. The symbol (·) represents the
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FIGURE 5

UMAP feature space visualization showing the target domains

classification performance, applied for the scenario EDF → ST. (A)

Before TDSAN. (B) After TDSAN.

classification of the source domain data, and the emblem (×)

represents the classification of the target domain. We note that

Figure 5A shows that the type of source and target domains differs

considerably. And after training, the classification of the source and

target domains ismuch higher. This is achieved through an iterative

self-training strategy.

4. Conclusion

This paper proposes a novel UDA method, TDSAN, to address

the sleep EEG staging scores on unlabeled data. TDSAN is an

adversarial learning method that uses a specific classifier as a

discriminator whose target samples are remote from the source

support detected. To trick the classifier, the feature generator

masters to produce target features close to supports. The generator

will prevent creating target features close to class boundaries since

it incorporates feedback from task-specific classifiers. Meanwhile,

a non-shared attention mechanism preserves domain-specific

features, which can capture the relationship between different sleep

stages. Experiments show that we can achieve the same accuracy on

unlabeled sleep data as on labeled data.

Data availability statement

The original contributions presented in the study are included

in the article/supplementary material, further inquiries can be

directed to the corresponding author.

Author contributions

D-RG and JL: conceptualization and writing—review and

editing. JL: methodology, investigation, data curation, and

writing—original draft preparation. D-RG, JL, and M-QW:

visualization and validation. L-TW: formal analysis and resources.

Y-QZ: supervision and writing—review and editing. All authors

have read and approved the final draft of the manuscript.

Funding

This work is supported by the National Natural Science

Foundation of China under Grant No. 62272067, the

Sichuan Science and Technology Program under Grant Nos.

2023NSFSC0499 and 2023YFG0018, the LOST 2030 Brain Project

No. 2022ZD0208500, and the Scientific Research Foundation of

Chengdu University of Information Technology under Grant Nos.

KYQN202208 and KYQN202206.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

References

Abdollahpour, M., Rezaii, T. Y., Farzamnia, A., and Saad, I. (2020). Transfer
learning convolutional neural network for sleep stage classification using two-stage
data fusion framework. IEEE Access 8, 180618–180632. doi: 10.1109/ACCESS.2020.30
27289

Abou Jaoude, M., Sun, H., Pellerin, K. R., Pavlova, M., Sarkis, R. A.,
Cash, S. S., et al. (2020). Expert-level automated sleep staging of long-term
scalp electroencephalography recordings using deep learning. Sleep 43, zsaa112.
doi: 10.1093/sleep/zsaa112

Frontiers inNeuroscience 11 frontiersin.org168

https://doi.org/10.3389/fnins.2023.1143495
https://doi.org/10.1109/ACCESS.2020.3027289
https://doi.org/10.1093/sleep/zsaa112
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Gao et al. 10.3389/fnins.2023.1143495

Azab, A. M., Toth, J., Mihaylova, L. S., and Arvaneh, M. (2018). “A review on
transfer learning approaches in brain-computer interface,” in Processing and Machine
Learning for Brain-Machine Interfaces. p. 81–101. doi: 10.1049/PBCE114E_ch5

Bowles, N. P., Thosar, S. S., Butler, M. P., Clemons, N. A., Robinson, L. D., Ordaz,
O. H., et al. (2022). The circadian systemmodulates the cortisol awakening response in
humans. Front. Neurosci. 16, 995452. doi: 10.3389/fnins.2022.995452

Chambon, S., Galtier, M. N., and Gramfort, A. (2018). "Domain adaptation
with optimal transport improves eeg sleep stage classifiers," in 2018 International
Workshop on Pattern Recognition in Neuroimaging (PRNI), 1–4. IEEE.
doi: 10.1109/PRNI.2018.8423957

Eldele, E., Chen, Z., Liu, C.,Wu,M., Kwoh, C. -K., Li, X., et al. (2021). “An attention-
based deep learning approach for sleep stage classification with single-channel EEG,”
in IEEE Transactions on Neural Systems and Rehabilitation Engineering, Vol. 29 (IEEE),
809–818. doi: 10.1109/TNSRE.2021.3076234

Eldele, E., Ragab, M., Chen, Z., Wu, M., Kwoh, C.-K., Li, X., et al. (2022). Adast:
attentive cross-domain eeg-based sleep staging framework with iterative self-training.
IEEE Trans. Emerg. Topics Comput. Intell. doi: 10.1109/TETCI.2022.3189695

Fan, J., Sun, C., Long, M., Chen, C., and Chen, W. (2021). Eognet: a novel deep
learning model for sleep stage classification based on single-channel eog signal. Front.
Neurosci. 15, 573194. doi: 10.3389/fnins.2021.573194

Ganin, Y., and Lempitsky, V. (2015). "Unsupervised domain adaptation by
backpropagation," in International Conference on Machine Learning, 1180–1189.
PMLR.

Ganin, Y., Ustinova, E., Ajakan, H., Germain, P., Larochelle, H., Laviolette, F.,
et al. (2016). Domain-adversarial training of neural networks. J. Mach. Learn. Res. 17,
2096–2030. doi: 10.48550/arXiv.1409.7495

Goldberger, A. L., Amaral, L. A., Glass, L., Hausdorff, J. M., Ivanov, P. C.,
Mark, R. G., et al. (2000). Physiobank, physiotoolkit, and physionet: components
of a new research resource for complex physiologic signals. Circulation 101, e215.
doi: 10.1161/01.CIR.101.23.e215

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,
et al. (2014). Generative adversarial nets.Adv. Neural Inform. Process. Syst. 63, 139–144.
doi: 10.48550/arXiv.1406.2661

Guillot, A., and Thorey, V. (2021). Robustsleepnet: transfer learning for automated
sleep staging at scale. IEEE Trans. Neural Syst. Rehabil. Eng. 29, 1441–1451.
doi: 10.1109/TNSRE.2021.3098968

Harding, E. C., Franks, N. P., andWisden, W. (2019). The temperature dependence
of sleep. Front. Neurosci. 13, 336. doi: 10.3389/fnins.2019.00336

Iber, C., Ancoli-Israel, S., Chesson, A., and Quan, S. (2007). The AASM Manual
for the Scoring of Sleep and Associated Events: Rules, Terminology and Technical
Specifications. Westchester, IL: American Academy of Sleep Medicine.

Ko,W., Jeon, E., Jeong, S., Phyo, J., and Suk, H.-I. (2021). A survey on deep learning-
based short/zero-calibration approaches for eeg-based brain-computer interfaces.
Front. Human Neurosci. 15, 643386. doi: 10.3389/fnhum.2021.643386

Kuo, C.-E., and Chen, G.-T. (2020). Automatic sleep staging based on a hybrid
stacked lstm neural network: verification using large-scale dataset. IEEE Access 8,
111837–111849. doi: 10.1109/ACCESS.2020.3002548

Lee, C.-H., Kim, H.-J., Heo, J.-W., Kim, H., and Kim, D.-J. (2021). "Improving sleep
stage classification performance by single-channel eeg data augmentation via spectral
band blending," in 2021 9th International Winter Conference on Brain-Computer
Interface (BCI), 1–5. IEEE.

Long, M., Cao, Y., Wang, J., and Jordan, M. (2015). "Learning transferable features
with deep adaptation networks," in International Conference on Machine Learning,
97–105. PMLR.

Long, M., Zhu, H., Wang, J., and Jordan, M. I. (2016). "Unsupervised domain
adaptation with residual transfer networks," in Advances in Neural Information
Processing Systems 29 (NIPS 2016).

Mikkelsen, K., and De Vos, M. (2018). Personalizing deep learning models for
automatic sleep staging. arXiv [preprint] arXiv:1801.02645.

Nasiri, S., and Clifford, G. D. (2020). “Attentive adversarial network for large-scale
sleep staging,” inMachine Learning for Healthcare Conference, 457–478. PMLR.

Peng, Z., Dai, C., Ba, Y., Zhang, L., Shao, Y., and Tian, J. (2020). Effect of sleep
deprivation on the working memory-related n2-p3 components of the event-related
potential waveform. Front. Neurosci. 14, 469. doi: 10.3389/fnins.2020.00469

Perry Fordson, H., Xing, X., Guo, K., and Xu, X. (2022). Not all electrode channels
are needed: knowledge transfer from only stimulated brain regions for eeg emotion
recognition. Front. Neurosci. 16, 865201. doi: 10.3389/fnins.2022.865201

Phan, H., Andreotti, F., Cooray, N., Chén, O. Y., and De Vos, M. (2019a).
Seqsleepnet: end-to-end hierarchical recurrent neural network for sequence-to-
sequence automatic sleep staging. IEEE Trans. Neural Syst. Rehabil. Eng. 27, 400–410.
doi: 10.1109/TNSRE.2019.2896659

Phan, H., Chén, O. Y., Koch, P., Lu, Z., McLoughlin, I., Mertins, A., et al. (2020a).
Towards more accurate automatic sleep staging via deep transfer learning. IEEE Trans.
Biomed. Eng. 68, 1787–1798. doi: 10.1109/TBME.2020.3020381

Phan, H., Chén, O. Y., Koch, P., Mertins, A., and De Vos, M. (2019b). "Deep transfer
learning for single-channel automatic sleep staging with channel mismatch," in 2019
27th European Signal Processing Conference (EUSIPCO), 1–5. IEEE.

Phan, H., Mikkelsen, K., Chén, O. Y., Koch, P., Mertins, A., Kidmose, P., et al.
(2020b). Personalized automatic sleep staging with single-night data: a pilot study
with kullback-leibler divergence regularization. Physiol. Measurement 41, 064004.
doi: 10.1088/1361-6579/ab921e

Saito, K., Watanabe, K., Ushiku, Y., and Harada, T. (2018). "Maximum classifier
discrepancy for unsupervised domain adaptation," in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 3723–3732.

Soroushmojdehi, R., Javadzadeh, S., Pedrocchi, A., and Gandolla, M. (2022).
Transfer learning in hand movement intention detection based on surface
electromyography signals. Front. Neurosci. 16, 977328. doi: 10.3389/fnins.2022.977328

Sors, A., Bonnet, S., Mirek, S., Vercueil, L., and Payen, J.-F. (2018). A convolutional
neural network for sleep stage scoring from raw single-channel eeg. Biomed. Signal
Process. Control 42, 107–114. doi: 10.1016/j.bspc.2017.12.001

Sun, B., Feng, J., and Saenko, K. (2016). "Return of frustratingly easy domain
adaptation," in Proceedings of the AAAI Conference on Artificial Intelligence.
doi: 10.1609/aaai.v30i1.10306

Sun, C., Fan, J., Chen, C., Li, W., and Chen, W. (2019). A two-stage neural network
for sleep stage classification based on feature learning, sequence learning, and data
augmentation. IEEE Access 7, 109386–109397. doi: 10.1109/ACCESS.2019.2933814

Supratak, A., Dong, H., Wu, C., and Guo, Y. (2017). Deepsleepnet: a model for
automatic sleep stage scoring based on raw single-channel eeg. IEEE Trans. Neural Syst.
Rehabil. Eng. 25, 1998–2008. doi: 10.1109/TNSRE.2017.2721116

Tsinalis, O., Matthews, P. M., and Guo, Y. (2016a). Automatic sleep stage scoring
using time-frequency analysis and stacked sparse autoencoders. Ann. Biomed. Eng. 44,
1587–1597. doi: 10.1007/s10439-015-1444-y

Tsinalis, O., Matthews, P. M., Guo, Y., and Zafeiriou, S. (2016b). Automatic sleep
stage scoring with single-channel eeg using convolutional neural networks. arXiv
[preprint] arXiv:1610.01683.

Tzeng, E., Hoffman, J., Saenko, K., and Darrell, T. (2017). "Adversarial
discriminative domain adaptation," in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 7167–7176.

Wang, M., and Deng, W. (2018). Deep visual domain adaptation: a survey.
Neurocomputing 312, 135–153. doi: 10.1016/j.neucom.2018.05.083

Wu, D., Xu, Y., and Lu, B.-L. (2020). Transfer learning for EEG-based brain-
computer interfaces: a review of progress made since 2016. IEEE Trans. Cogn. Dev.
Syst. 14, 4–19. doi: 10.1109/TCDS.2020.3007453

Yoo, C., Lee, H. W., and Kang, J.-W. (2021). Transferring structured knowledge in
unsupervised domain adaptation of a sleep staging network. IEEE J. Biomed. Health
Inform. 26, 1273–1284. doi: 10.1109/JBHI.2021.3103614

Zhang, H., Goodfellow, I., Metaxas, D., and Odena, A. (2019). "Self-attention
generative adversarial networks," in International Conference on Machine Learning,
7354–7363. PMLR.

Zhao, R., Xia, Y., and Zhang, Y. (2021). Unsupervised sleep staging system
based on domain adaptation. Biomed. Signal Process. Control 69, 102937.
doi: 10.1016/j.bspc.2021.102937

Frontiers inNeuroscience 12 frontiersin.org169

https://doi.org/10.3389/fnins.2023.1143495
https://doi.org/10.1049/PBCE114E_ch5
https://doi.org/10.3389/fnins.2022.995452
https://doi.org/10.1109/PRNI.2018.8423957
https://doi.org/10.1109/TNSRE.2021.3076234
https://doi.org/10.1109/TETCI.2022.3189695
https://doi.org/10.3389/fnins.2021.573194
https://doi.org/10.48550/arXiv.1409.7495
https://doi.org/10.1161/01.CIR.101.23.e215
https://doi.org/10.48550/arXiv.1406.2661
https://doi.org/10.1109/TNSRE.2021.3098968
https://doi.org/10.3389/fnins.2019.00336
https://doi.org/10.3389/fnhum.2021.643386
https://doi.org/10.1109/ACCESS.2020.3002548
https://doi.org/10.3389/fnins.2020.00469
https://doi.org/10.3389/fnins.2022.865201
https://doi.org/10.1109/TNSRE.2019.2896659
https://doi.org/10.1109/TBME.2020.3020381
https://doi.org/10.1088/1361-6579/ab921e
https://doi.org/10.3389/fnins.2022.977328
https://doi.org/10.1016/j.bspc.2017.12.001
https://doi.org/10.1609/aaai.v30i1.10306
https://doi.org/10.1109/ACCESS.2019.2933814
https://doi.org/10.1109/TNSRE.2017.2721116
https://doi.org/10.1007/s10439-015-1444-y
https://doi.org/10.1016/j.neucom.2018.05.083
https://doi.org/10.1109/TCDS.2020.3007453
https://doi.org/10.1109/JBHI.2021.3103614
https://doi.org/10.1016/j.bspc.2021.102937
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Frontiers in Neuroscience 01 frontiersin.org

Functional connectivity changes 
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Background: Repetitive transcranial magnetic stimulation (rTMS) has been 
increasingly used as a treatment modality for chronic insomnia disorder (CID). 
However, our understanding of the mechanisms underlying the efficacy of rTMS 
is limited.

Objective: This study aimed to investigate rTMS-induced alterations in resting-
state functional connectivity and to find potential connectivity biomarkers for 
predicting and tracking clinical outcomes after rTMS.

Methods: Thirty-seven patients with CID received a 10-session low frequency 
rTMS treatment applied to the right dorsolateral prefrontal cortex. Before and 
after treatment, the patients underwent resting-state electroencephalography 
recordings and a sleep quality assessment using the Pittsburgh Sleep Quality 
Index (PSQI).

Results: After treatment, rTMS significantly increased the connectivity of 34 
connectomes in the lower alpha frequency band (8–10 Hz). Additionally, 
alterations in functional connectivity between the left insula and the left inferior 
eye junction, as well as between the left insula and medial prefrontal cortex, were 
associated with a decrease in PSQI score. Further, the correlation between the 
functional connectivity and PSQI persisted 1 month after the completion of rTMS 
as evidenced by subsequent electroencephalography (EEG) recordings and the 
PSQI assessment.

Conclusion: Based on these results, we  established a link between alterations 
in functional connectivity and clinical outcomes of rTMS, which suggested 
that EEG-derived functional connectivity changes were associated with clinical 
improvement of rTMS in treating CID. These findings provide preliminary evidence 
that rTMS may improve insomnia symptoms by modifying functional connectivity, 
which can be used to inform prospective clinical trials and potentially for treatment 
optimization.
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Introduction

Insomnia is the most prevalent sleep disorder and is associated 
with difficulties in initiating or maintaining sleep, as well as a decline 
in daytime performance and cognitive impairment, leading to many 
health issues (Spiegelhalder et  al., 2015). Hypnotics are often 
prescribed as a first-line treatment for acute insomnia (Glass et al., 
2005); however, the long-term use of hypnotics has adverse effects and 
may confer a risk of dependence. Cognitive behavioral therapy (CBT) 
is an alternative to chronic pharmacological insomnia treatment. 
Although there is evidence for long-lasting improvement in sleep after 
CBT, the strict time commitment and insufficient number of qualified 
clinicians to employ it, limit its use in clinical practice (Morin and 
Benca, 2012). Therefore, better treatment options for chronic 
insomnia, a long-term pattern of difficulty sleep, are urgently needed.

Insomnia is rarely an isolated psychobiological disorder and is 
associated with measurable aberration in functional brain mechanisms 
(Riemann et  al., 2010). Neuroimaging studies, such as 
electroencephalography (EEG) or functional magnetic resonance 
imaging (fMRI), showed that patients with insomnia have abnormal 
connectivity patterns in emotional circuits (Huang et  al., 2012), 
salience networks (Chen et al., 2014), and brain network topology in 
general (Li et al., 2018). Moreover, previous studies have suggested 
that increased cortical excitability was associated with chronic 
insomnia (Lanza et al., 2015; Ly et al., 2016).

Repetitive transcranial magnetic stimulation (rTMS) can 
noninvasively modulate cortical activity by delivering a sequence of 
magnetic pulses. Normally, low frequency (<1 Hz) is thought to inhibit, 
and high frequency (≥5 Hz) to facilitate motor cortical excitability 
(Fitzgerald et al., 2006). The inhibitory effect of low frequency (i.e., 
1 Hz) rTMS on cortical excitability has therefore led to it being 
increasingly considered for the treatment of insomnia disorders.

Stimulation site is another essential factor in the field of clinical 
application of rTMS. Dorsolateral prefrontal cortex (DLPFC) is the 
most widely used rTMS target for the treatment of neuropsychiatric 
disorders, including depression (Eshel et al., 2020). As a node of the 
frontoparietal network, it plays a critical role in integrating cognition 
and emotion (Mars and Grol, 2007; Gong et al., 2020). According to a 
previous neuroimaging study, the DLPFC of insomnia patients shows 
hyperexcitability compared with those who were well-slept 
(Spiegelhalder et al., 2013). As a result, low frequency DLPFC rTMS 
appears to be a reasonable strategy for the treatment of insomnia 
(Gong et al., 2020).

The efficacy of rTMS in treating insomnia has been investigated 
in several clinical studies. Most of them chose the DLPFC as the 
target. These studies found that 10 daily sessions of low frequency 
rTMS stimulation applied to the right or bilateral DLPFC resulted in 
a significant decrease in the Pittsburgh Sleep Quality Index (PSQI; 
lower index indicates better sleep) (Jiang et al., 2013; Feng et al., 2019; 
Shi et al., 2021). Only one study selected the right posterior parietal 
cortex as the stimulation site and reported similar results: 14 
consecutive low frequency rTMS sessions could lower down PSQI and 
Insomnia Severity Index significantly (Song et al., 2019).

However, despite the aforementioned clinical evidences, there are 
limited neurophysiological studies investigating the underlying 
mechanisms of low frequency DLPFC rTMS in patients with chronic 
insomnia. In this context, we conducted this single-arm, open-label, 
interventional study to determine the neural mechanisms of rTMS 

other than to demonstrate its clinical efficacy. We used the resting-
state electroencephalography (rsEEG) to assess the functional 
connectivity characteristics in patients with chronic insomnia disorder 
(CID) before, after and 1-month after 10 daily rTMS sessions. rsEEG 
is a promising paradigm for studying abnormal functional 
architectures in various disorders due to its task-independent 
properties (Zhang et al., 2021). The overarching goal was to investigate 
the alterations of functional connectivity induced by rTMS in patients 
with CID, which is critical for linking translationally relevant 
discoveries that can be applied in a clinical setting. The secondary aim 
of this study was to examine whether the clinical improvement 
observed 1 month after rTMS was related to any previously identified 
connectivity characteristics. We  hypothesized that rTMS would 
induce connectivity changes and that such changes would correlate 
significantly with symptom improvements.

Materials and methods

Participants

Participants with CID were recruited at the Neurology 
Department of Shenzhen People’s Hospital. A total of 47 patients were 
screened for eligibility, of whom 37 gave informed consent to 
participate in this study. All experimental details were approved by the 
Ethics Committee of Shenzhen People’s Hospital (see chictr.org.cn 
registration: ChiCTR1900026904). Nine patients dropped out during 
the 1-month follow-up period; therefore, only 28 patients were 
included in the statistical analysis of follow-up.

All patients were required to meet the diagnostic criteria for CID 
according to the International Classification of Sleep Disorders, Third 
Edition (ICSD-3). The inclusion criteria were as follows: (1) aged 
18–70 years, right-handed; (2) the sleep disturbances occur at least 
three times per week and present for the last 3 months; (3) PSQI ≥7 
(Buysse et al., 1989); (4) scored <25 on 24-item Hamilton Depression 
Rating Scale (HAMD); (5) no other sleep disorders like sleep apnea, 
etc.; and (6) failure of at least one adequate sleep medication trial. The 
exclusion criteria were: (1) any contraindication to TMS (history of 
seizures, metallic implants, etc.); and (2) prior history of neurological 
or psychiatric disorders.

In addition, 40 healthy controls (HC) without sleep problems 
participated in the baseline assessment, serving as a reference for 
changes in functional connectivity. HCs needed to meet the following 
criteria: (1) no history of sleep disorders; (2) PSQI <7; (3) HAMD ≤7 
and Hamilton Anxiety Rating Scale (HAMA) ≤7 (Matza et al., 2010; 
Zimmerman et  al., 2013); and (4) no neurological or 
psychiatric disorders.

During the study, patients were allowed to take concomitant 
medications, and were asked to remain constant throughout the 
clinical trial (see Supplementary Methods for details).

rTMS treatment

Stimulation was performed using a figure 8-shaped focal coil 
attached to a MagPro 100 magnetic stimulator (MagVenture, 
Copenhagen, Denmark). All patients received 1 Hz (10 s trains, 1 s 
inter-train interval, 1,360 pulses per session) rTMS treatment once 
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daily on weekdays for 2 consecutive weeks. rTMS was delivered over 
the right DLPFC (F4 electrode site according to the International 
10–20 EEG system) at 100% of the resting motor threshold (RMT) 
(Mir-Moghtadaei et  al., 2015). To determine the RMT, stimulus 
intensity was gradually increased until 5 out of 10 trials elicited 
motor evoked potentials with peak-to-peak amplitudes over 50 μV 
in the contralateral abductor pollicis brevis muscle (Rossini et al., 
2015). Adverse events attributed to rTMS were documented 
and reported.

Clinical assessment

All participants received a pre-treatment assessment with the 
PSQI, HAMA, and HAMD. We  used the PSQI to measure sleep 
quality, as well as HAMA and HAMD to assess participant’s anxious 
and depressive states. Likewise, the PSQI was measured post-
treatment (upon completion of the final treatment session) and at 
1-month follow-up. In order to determine the magnitude of the rTMS 
response, the percent reduction in PSQI from pre- to post-treatment, 
and from pre-treatment to follow-up, were calculated (see Figure 1 for 
the experimental design).

Electroencephalography

For the HC group, EEG data were recorded once at baseline. For 
the CID patients, EEG data were acquired at three time points 
concurrently with PSQI. Equipment setting and environment were 
uniform across all three acquisitions.

EEG recordings were acquired from 64 channels under 
closed-eye conditions for 8 min using a BrainAmp DC amplifier 
(Brain Products GmbH, Germany). During the recording, the 
participants were asked to relax on a comfortable chair in a metal-
shielded room. The data were referenced online to the FCz channel 
with the ground at AFz. Data were initially sampled at 5,000 Hz with 
impedances kept below 5KΩ throughout the data collection period. 
Participants were instructed to refrain from consuming any 
caffeinated (or energy) drinks within 24 h of the EEG 
recording sessions.

The details of the pre-processing and source localization are 
described in the Supplementary Methods. Based on previous findings, 
the resulting EEG data were filtered into five frequency bands: theta 
(4–8 Hz), low-alpha (8–10 Hz), high-alpha (10–13 Hz), beta 
(13–30 Hz), and gamma (30–45 Hz).

Estimating functional connectivity

All connectivity analyses were computed at the source level using 
3,003 vertices and then projected into 31 cortical regions of interest 
(ROI) using the Montreal Neurological Institute template (Chen et al., 
2013); (see Supplementary Table  1). Here, we  chose the debiased 
weighted phase-lag index (dwPLI) to represent the non-zero phase-lag 
statistical interdependencies between each pair of ROIs (Vinck et al., 
2011). dwPLI is an optimized phase lag index that minimizes the 
influence of volume conduction and field spread, which could affect 
the estimation even at the source level. The connectivity between each 
pair of regions was calculated by averaging the dwPLI values over all 
possible vertex pairs. Accordingly, we identified 465 edges representing 
each participant’s regional pairwise connectivity.

Statistical analysis

To compare the difference in clinical outcomes, we analyzed the 
PSQI of pre-, post-treatment and follow-up using a linear mixed 
model with a fixed effect of time and a random intercept.

The differences between pre- and post-functional connectivity 
matrices were analyzed using the Network-based Statistics (NBS) 
(Zalesky et al., 2010), a nonparametric statistical test to control for the 
family-wise error rate resulting from multiple comparisons. For each 
comparison, 5,000 random permutations were used.

To further investigate the association of functional connectivity 
changes with clinical outcomes, a multiple linear regression model 
was constructed between the pre- to post-network differences and 
the percentage PSQI change with age, sex, HAMA, and HAMD as 
covariates. Here, all edges that varied significantly (NBS-corrected, 
p < 0.01) between the pre- and post- functional connectivity 
matrices were treated as independent inputs. When implementing 
feature selection, we used the least absolute shrinkage and selection 
operator (LASSO) to define a low-dimensional representation of the 
selected connectivity features (Tibshirani, 1996). Correlation 
analysis between the estimated and the actual PSQI value of post-
treatment and follow-up were performed using Pearson’s correlation.

Results

Clinical results

The demographic and clinical characteristics of the two groups are 
summarized in Table 1. There were significant differences in the PSQI, 
HAMA, and HAMD scores (p < 0.05) between the HC and CID 
groups. No significant differences were found in age or sex. Among 
these characteristics, the PSQI global score correlated appreciably with 
HAMD score (p < 0.01, r = 0.447) but was not associated with the 
other measures.

FIGURE 1

Experimental protocol. Healthy controls (HC) and patients with 
chronic insomnia disorder (CID) participated in an EEG session 
before rTMS treatment, as well as clinical assessments. Afterwards, 
patients received a course of low frequency rTMS treatment 
targeting the right DLPFC. Subsequently, EEG data and PSQI were 
collected again after treatment, and at 1-month follow-up, 
respectively.
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All patients tolerated the rTMS well, and no adverse effects 
were reported. A mixed-effects model assessing PSQI differences 
revealed a significant main effect of rTMS treatment [F(1.84, 
57.88) = 12.38, p < 0.0001]. Post hoc comparisons indicated that 
rTMS facilitated a significant reduction in insomnia symptoms 
on the PSQI between pre- and post-treatment (delta-PSQI = 3.243, 
p = 0.0002, Cohen’s d = 0.857), and between scores pre- and 
1-month later (delta-PSQI = 3.911, p = 0.0003, Cohen’s d = 1.132) 
(see the Supplementary Figure 1).

rTMS-induced functional connectivity 
changes and association to clinical 
outcomes

There were no significant differences in the functional 
connectivity matrices between the pre- and post-treatment 
measures that survived multiple corrections at four frequency 
bands: theta (4–8 Hz), high-alpha (10–13 Hz), beta (13–30 Hz), 
and gamma (30–45 Hz). Instead, a comparison of the functional 
connectivity of low-alpha frequency band (8–10 Hz) identified 34 
edges that had been significantly changed at p < 0.01 level after 
NBS correction (Figure  2; also see Supplementary Table  2). 
Specifically, CID patients had a lower mean functional 
connectivity pre-treatment. On average, these rTMS-induced 
connectivity changes brought patients’ patterns aligned more 
closely with healthy controls. At follow-up, the strength of the 
connectivity matrix remained relatively stable (see Figure 2C). 
The most frequently occurring connectomes were located in the 
frontal lobe, preferentially involving the frontoparietal  
network (FPN), dorsal attention network (DAN), and  
ventral attention network (VAN) (see Figure 2D). Moreover, a 
dominant interhemispheric functional connectivity change was 
also notable.

Regression analyses were performed to identify connections that 
were significantly correlated with improvement in PSQI scores at the 
end of rTMS treatment. That is, the functional connectivity changes 
between pre- and post-treatment of these 34 identified edges were 
taken as independent variables (see Supplementary Table  3 for 
coefficients of regression model). Notably, two edges appeared to 
be significantly correlated with PSQI change (r = 0.62, p = 0.02) (see 
Figure 3B): the left inferior frontal junction to left insula (LIFJ-LINS) 
and the medial prefrontal cortex to left insula (MPFC-LINS) (see 
Figure 3A).

Analysis of connectivity changes and 
clinical outcomes at follow-up

EEG data acquired 1 month after treatment were used to validate 
the association between the connectomes obtained in the previous 
regression model and clinical measures. The connectivity changes of 
these two edges between the pre- and follow-up assessments were 
taken as independent inputs, including age, sex, HAMA, and HAMD 
at baseline, as covariates. The estimated PSQI score was significantly 
correlated with the actual PSQI score collected 1 month after rTMS 
completion (r = 0.41, p = 0.032) (Figure 3B).

Longitudinal connectivity analysis

To gain further insight into the rTMS-induced changes in LIFJ-
LINS and MPFC-LINS connectivity, we examined mean values at each 
time point for both HC and CID groups. Significant difference was 
observed between the HC and CID pre-treatment for both LIFJ-LINS 
(average 0.46 vs. 0.27) and MPFC-LINS (average 0.41 vs. 0.30) 
connections (see Figure 4). After rTMS, the connectivity of the LIFJ 
to the LINS increased significantly at post-treatment and follow-up. 
The trend of MPFC-LINS connectivity resembled a similar pattern, 
which increased significantly at follow-up compared to that at 
baseline. These active rTMS-induced changes shifted the CID patient 
profile closer to that of HCs (see pairwise statistics in the 
Figure 4 legend).

Discussion

To better understand the regulatory role of rTMS in patients with 
CID, we examined longitudinal changes in functional connectivity 
induced by low frequency rTMS of the right DLPFC. In agreement with 
previous studies, our results confirmed the efficacy of this low 
frequency rTMS protocol for treating clinical CID. We  found that 
rTMS to the right DLPFC was associated with widespread alterations 
in functional connectivity, which correlated with clinical outcomes, and 
this association persisted 1 month after the cessation of rTMS 
stimulation. These results offer promising preliminary evidence linking 
the altered brain function patterns observed in CID with clinical 
symptoms and expands on how changes in both aspects are associated.

Unlike other studies that focused only on a priori brain regions, 
we discovered connectivity biomarkers based directly on EEG data 
without making any assumptions. This data-driven approach allows 
us to account for uncertainties in the spatial distribution of 
connectivity changes correlated with clinical outcomes. Our findings 
suggest that the significant increase in connectivity is not confined to 
the ones within the stimulated network, but instead spreads across 
networks, involving the FPN, DAN, and VAN. Remote functional 
connections are impacted more than local ones, indicating that rTMS 
ultimately modulates insomnia-related connectivity (Castrillon et al., 
2020). Additionally, we  observed a dominant interhemispheric 
functional connectivity change, which is consistent with that reported 
in previous studies (Watanabe et  al., 2014). Of note, since all the 
significant edges show higher connectivity after rTMS than before it, 
this observation corroborates that rTMS treatment may rewire 
impaired intracortical connections.

TABLE 1 Demographic and clinical characteristics of the participants.

Variables HC (n = 40) CID (n = 37) p-value

Age, year 23–72, 46.1 ± 9.4 22–69, 48.9 ± 11.1 0.23

Sex (M/F) 18/22 15/22 0.69

PSQI 3.2 ± 1.6 15.1 ± 3.4 <0.001

HAMA 2.6 ± 1.8 13.6 ± 6.2 <0.001

HAMD 2.7 ± 1.8 13.3 ± 5.0 <0.001

RMT / 39.0 ± 12.5

Data are presented as mean ± SD. The p values were obtained by independent sample t-test 
and chi-square test (for sex only). HC, healthy control; CID, chronic insomnia disorder; 
PSQI, Pittsburgh Sleep Quality Index; HAMA, Hamilton Anxiety Rating Scale; HAMD, 
Hamilton Depression Rating Scale; RMT, resting motor threshold.

173

https://doi.org/10.3389/fnins.2023.1135995
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Zhu et al. 10.3389/fnins.2023.1135995

Frontiers in Neuroscience 05 frontiersin.org

Neuroplasticity describes the ability of the brain to change and adapt 
its organization as a result of external influences. The results of the 
longitudinal analysis suggest that rTMS has a long-lasting plastic effect; 
hence, decrease in clinical symptoms and increase in functional 
connectivity characteristics could persist even 1-month after the 
completion of rTMS (Ge et al., 2020). It also proves the robustness of 
these two indicators, LINS-MPFC, LINS-LIFJ, over a long period of time.

The insula is a key node in the salience network, and its 
abnormalities have been pointed out in many studies of insomnia 
(Motomura et al., 2021). An fMRI research demonstrated decreased 
connectivity between the amygdala and insula during resting states, 
indicating a possible neural mechanism responsible for the sleep-
related affective disorders and dysregulation of emotional control (Li 

et al., 2014). We found that patients with CID suffered significantly 
higher HAMA and HAMD than those with HCs, which reflects the 
true situation in real life. Our study reinforces earlier findings about 
the insula in CID and adds to the evidence that it plays a role in the 
disease’s pathophysiology. The MPFC and its ample connections with 
other regions, play critical roles in long-range, recent, and short-term 
memory over a wide range of activities (Euston et al., 2012). It has also 
been previously discussed regarding insomnia with the conclusion 
that circuit dysfunction involving the MPFC was associated with poor 
sleep quality as measured by the PSQI (Shao et al., 2020). The IFJ is 
part of the cognitive control network that co-activates with the 
DLPFC, ventrolateral prefrontal cortex, anterior insula, and posterior 
parietal cortex (Sundermann and Pfleiderer, 2012).

A B

C

D

FIGURE 2

Functional connectivity matrices in low alpha band (8–10 Hz) and 34 identified edges. (A) Connectivity matrices of pre-treatment EEG scan. 
(B) Connectivity matrices of post-treatment EEG scan. (C) Connectivity matrices of the follow-up EEG scan. (D) Significant functional connectivity 
changes between the pre- and post- EEG scans included 34 edges. Significance was determined by network-based statistics (NBS) correction at 
p < 0.01. List of the brain regions are presented in the Supplementary Table 1. List of the 34 pairs showed significant differences are presented in the 
Supplementary Table 3. DMN, default mode network; DAN, Dorsal attention network; VAN, Ventral attention network; SOM, somatosensory network; 
FPN, frontoparietal network.
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In light of our understanding of how alpha oscillations 
correlate with resting wakefulness, the therapeutic benefits of 
rTMS typically focus on alpha rhythms. The alpha rhythms 
promote coordination between cortical areas and between the 
cortex and subcortical structures, such as the thalamus (Buzsáki 
and Draguhn, 2004). A highly synchronized alpha rhythms can 
facilitate the coordination of brain regions in an event-related, 
synchronized readiness manner, prior to engaging in different type 
of tasks (Klimesch et  al., 2007). We  found that DLPFC-rTMS 
significantly enhanced the connectivity of low-frequency alpha 
rhythms (8–10 Hz), but not of the entire alpha band (8–13 Hz) (see 
Supplementary Figure  2). In the thalamo-cortical and cortico-
cortical loops, alpha rhythms carry out different functions; for 
example, low-frequency alpha rhythms execute inhibitory 

functions (Pfurtscheller and Lopes da Silva, 1999). Researchers 
have proposed that the lower alpha band diffusely regulates 
alertness and arousal in the brain (Klimesch et  al., 1998). Our 
results show that inhibitory 1 Hz rTMS stimulation of the DLPFC 
increases lower alpha synchronization in the resting state. This 
inhibitory synchronization state could facilitates recruitment of 
specific regions of the cortex to transmit and retrieve task 
information before preparing for subsequent tasks (Klimesch, 
2012). A previous study reported a similar phenomenon. rTMS 
targeting in the angular gyrus, core regions of the DAN, enhanced 
intrahemispheric alpha coherence of 8–10 Hz, suggesting the 
causal role of the angular gyrus in modulating of dominant 
low-frequency alpha rhythms under the resting conditions 
(Capotosto et al., 2014).

A B

FIGURE 3

(A) Edges that were significantly correlated with percentage PSQI change before and after treatment (LIFJ-LINS, p < 0.01, MPFC-LINS, p < 0.01). (B) The 
estimated PSQI at follow-up were significantly correlated with the actual score (r = 0.4056, p = 0.032), with age, gender, HAMA and HAMD at baseline as 
the nuisance covariates.

A B

FIGURE 4

Significant rTMS effect of group and time. (A) Changes of the mean functional connectivity between left inferior eye junction (LIFJ) and left insula 
(LINS). Mixed effect model revealed significant rTMS treatment effect in the functional connection [F(1.8, 55.83) = 7.256, p = 0.0022]. Post hoc 
comparison showed significant differences between pre- and post-treatment (p = 0.0236), and pre-treatment to follow-up (p = 0.0076). The functional 
connectivity of HC was significantly higher than CID patients at baseline (t = 3.641, p = 0.0005). (B) Changes of the mean functional connectivity 
between medial prefrontal cortex (MPFC) and left insula (LINS). Mixed effect model revealed significant rTMS treatment effect in the functional 
connection [F(1.92, 59.53) = 3.862, p = 0.028]. Post hoc comparison showed a significant difference between pre-treatment and follow-up (p = 0.0497). 
Independent t-test showed that CID patients had significantly lower functional connectivity at baseline than HCs (t = 2.016, p = 0.0474). Error-bars 
represents SEM. *p < 0.05, **p < 0.01, ***p < 0.001.

175

https://doi.org/10.3389/fnins.2023.1135995
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Zhu et al. 10.3389/fnins.2023.1135995

Frontiers in Neuroscience 07 frontiersin.org

CID appears to be  associated with altered cortico-thalamic 
connectivity, which is partly responsible for cognitive regulation and 
circadian processes (Zou et al., 2021). Indeed, the thalamus is the 
pacemaker of cortical alpha rhythms. Taken together, we infer that 
DLPFC-rTMS regulates altered alpha connectivity by top-down 
control of DLPFC to the thalamus. While path analysis indicates a 
causal relationship, our study cannot infer causality since no 
connectivity with subcortical regions was observed. These results 
should therefore, only be  considered as supportive. Further 
neuroimaging study is required to elucidate the potential involvement 
of the thalamus in the improvement of cortical alpha band 
connections following treatment. A previous study supports our 
hypothesis reporting that DLPFC-rTMS modulates the functional 
connectivity of the insula and thalamus in smokers (Li et al., 2017).

rTMS is a promising strategy for treating various neuropsychiatric 
disorders. The effects of rTMS depend on its intensity, frequency and 
stimulation site, in particular the stimulation site. However, there is 
no consensus on the optimal stimulation site for insomnia due to the 
prior lack of therapeutic mechanisms of rTMS. These findings offer 
implications for optimizing brain stimulation therapy, which should 
be examined in future clinical trials. Besides, as the optimal treatment 
parameters for insomnia have not yet been determined, the schedule 
implemented in this study is a commonly used protocol to ensure 
treatment adherence. It is essential to identify efficacious dosing 
parameters that are feasible for further studies.

This study has some limitations. First, the lack of a sham-control 
group prevents us from determining whether the results can be partly 
explained by placebo effects. In effect, the primary goal of this study was 
to determine the neural mechanism of rTMS rather than to demonstrate 
differential clinical outcome with active versus sham conditions. 
Second, chronic insomnia is quite a heterogenic disorder, often 
comorbid with other symptoms. To ensure the homogeneity of patients 
enrolled in the study, we strictly enrolled patients who had difficulties 
with sleep for over 3 months and had failed at least one medication trial. 
Another potential weakness of this study was that all patients were 
medicated. The drug itself affects EEG parameters. Ideally, the inclusion 
of medication-free patients would eliminate any potential confounding 
effect of medication; this is not an ethically viable option for patients 
with medication-resistant insomnia. It remains uncertain whether the 
functional connectomes found in the present study are general 
biomarkers of response across all treatments. Hence, these findings need 
to be replicated in equally large samples obtained from multiple sites.

Conclusion

Despite its high prevalence, there has been little progress in the 
treatment of CID. We found that low frequency rTMS treatment over 
the right DLPFC significantly increased the EEG-derived functional 
connectivity in patients with CID. Furthermore, changes in 
connections, particularly the LIFJ-LINS and MPFC-LINS, were 
significantly associated with clinical measures and could predict the 
PSQI in the subsequent assessment at 1-month follow-up. These 
results could be  very valuable in clinical treatment of insomnia, 
especially in patients that are resistant to medications or have a history 
of drug failure. These findings expand our understanding of neural 
response in patients with chronic insomnia treated with rTMS and lay 
the foundation for future studies. Further research using a rigorous 
design is required to address the aforementioned issues.
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A novel visual brain-computer 
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Introduction: Traditional visual Brain-Computer Interfaces (v-BCIs) usually use 
large-size stimuli to attract more attention from users and then elicit more distinct 
and robust EEG responses, which would cause visual fatigue and limit the length 
of use of the system. On the contrary, small-size stimuli always need multiple 
and repeated stimulus to code more instructions and increase separability among 
each code. These common v-BCIs paradigms can cause problems such as 
redundant coding, long calibration time, and visual fatigue.

Methods: To address these problems, this study presented a novel v-BCI 
paradigm using weak and small number of stimuli, and realized a nine-instruction 
v-BCI system that controlled by only three tiny stimuli. Each of these stimuli 
were located between instructions, occupied area with eccentricities subtended 
0.4°, and flashed in the row-column paradigm. The weak stimuli around each 
instruction would evoke specific evoked related potentials (ERPs), and a template-
matching method based on discriminative spatial pattern (DSP) was employed to 
recognize these ERPs containing the intention of users. Nine subjects participated 
in the offline and online experiments using this novel paradigm. 

Results: The average accuracy of the offline experiment was 93.46% and the 
online average information transfer rate (ITR) was 120.95 bits/min. Notably, the 
highest online ITR achieved 177.5 bits/min.

Discussion: These results demonstrate the feasibility of using a weak and small 
number of stimuli to implement a friendly v-BCI. Furthermore, the proposed novel 
paradigm achieved higher ITR than traditional ones using ERPs as the controlled 
signal, which showed its superior performance and may have great potential of 
being widely used in various fields.
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v-BCI, weak stimuli, evoked related potential, discriminative spatial patterns, 
information transfer rate
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1. Introduction

Brain-Computer Interfaces (BCIs), which provide a new 
communication pathway between humans and the outside world, 
and received great attention in recent years (Lebedev and Nicolelis, 
2006; Wolpaw, 2014). Among the various BCIs, the 
electroencephalogram (EEG) based BCI has become a popular 
solution in BCI research, which is considered non-invasiveness, 
low-cost, and more convenient to set up (Xu et al., 2013; Chen 
et  al., 2015). Notably, visual BCIs (v-BCIs) can achieve higher 
information transfer rate (ITR) than other EEG-BCIs, due to the 
high signal-noise rate (SNR) of visual evoked potentials (VEPs) 
(Nakanishi et al., 2017). However, although the current v-BCI has 
achieved superior performance (Han et  al., 2023), it is always 
applied in a laboratory environment. The weak friendliness of 
human-computer interaction is an important reason, which limits 
BCIs’ daily use in real life (Miao et al., 2020). For most traditional 
v-BCIs, the stimulus blocks and instructions are spatially 
overlapping. Therefore, they commonly need users to stare at the 
irritating flash stimulus to output commands, which inevitably 
brings out visual fatigue for users (Chen et al., 2015). In addition, 
most traditional v-BCIs commonly used large-size or a relatively 
large numbers of visual stimuli to attract users’ attention and elicit 
distinct EEG features (Xu et  al., 2018), which further brings a 
strong burden on users.

Recently, lateralized visual stimuli away from the central field 
of view has gained considerable interest in BCI studies because of 
the theory of retinotopic mapping (Yoshimura et al., 2011; Chen 
et  al., 2017). According to retina-cortical mapping, the spatial 
pattern of VEPs is closely related to the position of visual stimuli in 
the visual field (Wurtz and Kandel, 2000). That is, there is a spatial 
mapping relation between the position of visual stimuli and the 
gaze position. Therefore, retina-cortical-based BCIs always arrange 
lateralized visual stimuli spatially separated from instructions, 
which no longer request subjects to stare at the irritating flash 
stimulus and therefore reduce the visual burden on the users. 
However, stimuli away from instructions may evoke EEG responses 
with lower SNR and discriminability. To address this problem, 
current retina-cortical-based BCIs commonly increase the size or 
number of visual stimuli, which brings out visual burden on users. 
For instance, in 2018, Chen accomplished a four-instructions 
speller that identified by a single motion stimulus (Chen et  al., 
2018). The instructions were fixed around a vertical bar (6 0 32°× °.

), which appeared from left border of the central square and moved 
rightward. However, the size of the sliding stimuli had eccentricity 
with 6ϒ, even larger than the 4 4°× °  of the stimulation block in 
traditional v-BCIs (Chen et  al., 2015). In the same year, 
we developed a 32-command BCI system using very small lateral 
visual stimuli, and each stimuli only subtended 0 4. ϒ of the visual 
angle (Xu et al., 2018). The results of this study firstly demonstrated 
that the weak spatial evoked related potentials (ERPs) induced by 
small visual stimuli were also detectable for BCIs. For each 
command in this study, there was a set of left and right lateral visual 
stimuli flicking in different time sequences. That means two stimuli 
were used to code one command, which increased coding time and 
experimentation time. In 2021, we further designed a 16-command 
ERP-BCI with only one small visual stimulus. In this study, the 

spatial ERPs induced by a small visual stimulus was highly related 
to the distances and directions between the stimulus and the 16 
gazed positions (Zhou et  al., 2021). Inspired by these results, 
we believe that there is huge potential to design user-friendly and 
multi-instructions ERP-BCIs using tiny lateralized ERPs.

In this study, we designed a novel 3 3×  ERP-BCI paradigm using 
small and lateralized visual stimuli, and the weak stimuli located 
between instruction rows/columns flashed in a row-column 
paradigm. Each of the stimuli had a small size with 0.4° of visual 
angle. Meanwhile, this paradigm used only three visual stimuli to 
code nine instructions, which reduced intensity of single-round 
stimulation. Furthermore, we  conducted offline and online 
experiments with this novel paradigm, and used a template-matching 
method to recognize weak ERPs.

2. Method and materials

2.1. Participants

Nine healthy volunteers from Tianjin University (five males and 
four females, aged from 20 to 25 years) with normal or corrected-to-
normal vision participated in the offline and online experiments. 
They had read and signed informed consents which were approved 
by the Research Ethics Committee of Tianjin University before 
the experiment.

2.2. Experimental procedure

Before the experiment, subjects were seated 70 centimeters in 
front of the screen and they were told to try their best to avoid 
behavior such as blinking and body shaking during the experiment. 
The paradigm was presented on a 24-inch LCD computer monitor 
with a 1920 × 1080-pixel resolution and a 120 Hz refresh rate. During 
the experiment, the subjects were told only need to stare at the 
instruction rather than flickering stimuli, and their eyes were always 
at the same height as the center of the paradigm.

Four stimulus patterns of the offline experimental procedure 
are shown in the top panel of Figure 1. A 3 × 3 (each with a visual 
field of 1.64°× 1.64°) character matrix was presented in the center 
of the screen. Three small visual stimuli which only subtended 0.4ϒ 
of visual angle were located between instruction rows/columns and 
flashed in the row-column paradigm in the order of four stimulus 
patterns. Each of four kinds of stimulus patterns were composed 
of three stimuli, and were tagged with S1, S2, S3, and S4, 
respectively. These four patterns divided the character matrix into 
four areas (upper, lower, left and right) in the paradigm. The 
flowchart of the offline experiment is shown in the bottom panel 
of Figure 1. In this experiment, one session was divided into the 
stage of cue and the stage of flicker. Cueing duration lasted 500 ms 
for subjects to shift their point of view, subjects were told to stare 
at the characters cued with a specific symbol ‘∇’. Flashing process 
consisted of 5 trials in offline experiment. Each trial consisted of 4 
specific stimulus patterns which corresponded with the stimulus 
shown in the top panel of Figure 1. The stimulus onset asynchrony 
(SOA) between two consecutive stimulation was fixed at 100 ms, 
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including 30 ms presentation of stimulation and 70 ms blank 
without stimulus. Thus, one trial lasted 400 ms that consisted of 
four stimuli, and the process of flashing lasted 2 s that consisted of 
5 trials. In addition, the inter-session interval was fixed at 1 s, 
which allowed subjects’ activities such as blinking and avoided 
interference between each session.

In the offline experiment, data of 30 sessions were collected for 
each instruction which led to an experimental duration of 30 min 
for each subject. Subjects were told to take a short break to reduce 
visual fatigue between consecutive sessions. After the offline 
experiment, an online spelling task of randomly spelling nine 
characters twice was conducted to further evaluate the performance 
of the proposed ERP-BCI. All subjects were asked to make opinions 
on the comfort level of the proposed paradigm after completing 
character spelling.

2.3. Signal recording and pre-processing

In this study, the EEG data was recorded by the Neuroscan 
Synamps2 system with 64 electrodes. One referenced electrode was in 
the central area near Cz and one ground electrode was on the frontal 
lobe. The sampling rate of the system was set to 1,000 Hz and a 50 Hz 
notch filter was applied during the EEG acquisition. In the 
pre-processing, the EEG was firstly re-referenced to the average value 
of left and right mastoids M1, M2, and then filtered at 1–15 Hz by 
Chebyshev II filters. To make the data easy to calculate and store, the 
filtered EEG was down sampled at 500 Hz. This study used MetaBCI 
for realizing real-time high-speed data retrieving, data offline/online 
processing and output feedback. MetaBCI is a one-stop software for 
the construction of BCIs which was proposed as the first open-source 
software for BCIs in China.1

1 https://github.com/TBC-TJU/MetaBCI

2.4. Classify algorithm of 
character-by-character recognition

It has been demonstrated that Discriminative Spatial Pattern 
(DSP) could effectively identify the spatial feature of EEG evoked by 
very small stimuli (Xu et al., 2018; Zhou et al., 2021). Thus, this study 
used DSP for extracting and recognizing EEG features, which 
consisted of two major parts: (1) the construction of DSPs and (2) 
pattern matching. It is well known that DSP finds a projection matrix 
W, which extracts the spatial features and removes the common noise 
from EEG (Duda et  al., 2001). The projection matrix W can 
be obtained by maximizing the Fisher’s linear discriminant criterion 
as follows (Duda and Hart, 2006):

 

( )W
T

BB
TW W

W S WS
J

S W S W
= =

 (1)

where SB  indicates between-class scatter matrix and SW  
indicates within-class scatter matrix (Liao et  al., 2007). In the 
proposed paradigm, distinguishable neural response patterns 
could be elicited when gazing at each of nine instructions in each 
stimulus pattern. In other words, nine instructions could 
be  recognized in each of four stimulus patterns. Therefore, 
we calculated projection matrix W R i KK

i N NC C∈ = … = …( )×
1 4 1 9,   

of each stimulus patterns and then obtained training template 
C T

i N N
KX R ×∈ after filtering of noise removal, where WK

i  indicates 
the projection matrix of instruction K from stimulus pattern i and 

i
KX  is the average of training samples from the stimulus pattern 

i and instruction K, NC  is the number of channels and NT  is the 
number of time points.

In pattern matching, test sample Y RN NC T∈ ×  can be divided into 
four segments Yi according to the time windows of four stimulus 
patterns. Each segment data can be template-matched according to its 
stimulus pattern, then the decision value of specific characters ρK can 
be calculated by the W XK

i T
K

i


 and Y Wi K
i  as follows:

FIGURE 1

Stimulus patterns (top) and flowchart of experiment (bottom).
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And the predicted instruction of Y  is:

 { }max , 1,2,..,9Kk Kρ= =

  (3)

2.5. Information transfer rate

To further evaluate the performance of the proposed system, this 
study investigated the Information Transfer Rate (Wolpaw et  al., 
2000), which is defined as

 
( )2 2 2

1 60log log 1 log
1

PITR N P P P
N T
−   = + + − ×      −  (4)

where N  is the total number of system commands, P is the 
accuracy of target identification and T is the consuming time for each 
command outputting, which includes 500 ms for the subjects to shift 
their focus additionally.

3. Results and analysis

3.1. Analysis of ERPs with spatial specificity 
in the novel paradigm

Previous studies indicated that spatial features of ERPs commonly 
appeared at 100–200 ms after the presentation of stimuli (Chen et al., 
2018; Xu et al., 2018; Zhou et al., 2021). For one trial arranged in this 
paradigm, various stimuli presented at 0 ms, 100 ms, 200 ms, and 
300 ms corresponding to four stimulus patterns S1, S2, S3, and S4 
individually (Figure  1). Thus, timing windows of ERP responses, 

respectively, concentrated in 100–200 ms, 200–300 ms, 300–400 ms, 
and 400–500 ms corresponding to each of four stimulus patterns in 
one trial. In Figure 2, code ‘E’ among all characters was firstly chosen 
for analysis as its position which has an equal visual angle from all 
stimulus patterns. We  first investigated waveforms and typical 
topographies for code ‘E’ during 0–500 ms after the presentation of 
visual stimuli across nine subjects. ERP features at electrodes of PO7 
and PO8 were analyzed because of their stronger and more typical 
spatial responses than other electrodes (Chen et al., 2018). As shown 
in Figure 2, ERP responses reached the first wave crest around 120 ms 
that evoked by S1. Meanwhile, most signals in the central occipital 
region presented a positive amplitude in the topography at that 
moment, which is generally acknowledged as the responses evoked by 
stimulus located above the line of sight. Subsequently, during 
200–300 ms, potentials showed a negative variation, and obvious 
negative waves could be observed near 230 ms. Most signals in the 
central occipital region presented a negative amplitude in the 
topography at that moment. The polarities of most electrodes were 
observed inverted from 100–200  ms to 200–300 ms, which 
corresponded to ERP responses for S1 and S2, respectively. Then 
during 300–400 ms, ERP responses were concentrated in the right 
hemisphere of the brain in the view of the topography and the 
waveform at PO8. A laterally symmetric response could be found 
during 400–500 ms after S4, which were concentrated in the left 
hemisphere of the brain. The ERP responses with spatial specificity 
appeared after S3 and S4 showed contralateral maximal responses 
when the stimuli were located on the left of the visual field (stimulus 
pattern 3) and right of the visual field (stimulus pattern 4).

Furthermore, Figure  3 showed average waveforms across all 
subjects when gazing at each of nine instructions. For a clear 
presentation of results, the location of subgraphs in Figure 3 referenced 
the real position of the instruction in the character matrix in 
paradigm. It could be observed that the spatial features of ERPs at PO7 
and PO8 were similar when the subjects noted the specific characters 
in the same time window of S1 and S2. For characters A, B and C in 
the top row, stimuli were presented below the instruction in pattern 
of S1, and spatial responses concentrated during 100–200 ms after the 

FIGURE 2

Spatial response of character E in one trial, which contains four stimulus patterns S1, S2, S3, and S4. Four colors represent timing windows of spatial 
responses for four stimulus patterns.
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presentation of visual stimuli, meanwhile, electrodes of PO7 and PO8 
showed negative potentials and peaked around 170 ms. For characters 
D, E, F, G, H, and I  in the middle and bottom row, stimuli were 
presented above the instruction in pattern of S1, the polarities of PO7 
and PO8 were observed inverted in the same time window. These 
results were highly related to the position between instructions and 
visual stimuli. For stimulus pattern 1, visual stimuli divided the 
character matrix into upper and lower parts. Thus, visual stimuli were 
commonly located in the upper or lower visual field, which resulted 
in polarity-inverted when subjects gazed at some characters. Similarly, 
visual stimuli of stimulus pattern 2 also divided the character matrix 
into upper and lower parts. For responses of S2 during 200–300 ms, 
characters A, B, C, D, E and F in the top and middle row had similar 
waveform variation, which was different from characters G, H and 
I. For stimulus patterns 3 and 4 (EEG responses during 300–400 ms 
and 400–500 ms), visual stimuli divided the character matrix into left 
and right parts. Thus, visual stimuli were commonly located in the left 
or right visual field, which resulted in the lateralization spatial 
responses of the brain.

In order to indicate the characteristic of spatial responses for all 
instructions under four stimulus patterns, we further explored the brain 

topographies elicited by four stimulus patterns. Figure 4 showed the 
spatial responses at 120 ms and 170 ms after the stimulation of each 
stimulus pattern, because Figure 3 showed that the responses of those 
moments had stronger responses after one stimulation. For stimulus 
patterns 1 and 2, visual stimuli divided the character matrix into upper 
and lower parts, and the amplitude of most electrodes in the occipital 
region was reversed in polarity when subjects gazed at corresponding 
parts. The phenomenon was more significant at 120 ms but weak at 
170 ms after the presentation of stimulation. For stimulus patterns 3 and 
4, the visual stimuli divided instructions into left and right parts. When 
visual stimuli were presented to the left or right sides of instructions, 
maximum responses were elicited in the contralateral hemisphere, 
which could be  found at both 120 ms and 170 ms. At 120 ms, most 
electrodes of the occipital region performed lateralization of positive 
potentials, while at 170 ms, they performed negative potentials.

In addition, characters with similar positions around stimuli 
showed similar spatial responses. This was consistent with the 
performance of average waveforms shown in Figure 3. For example, 
in stimulus pattern 1 and stimulus pattern 2, which divided 
instructions into upper and lower parts, instructions D, E, and F 
performed similar spatial responses, as were located on the upper 

A B C

D E F

G H I

FIGURE 3

Average waveforms from electrodes of PO7 and PO8 when subjects gazed at nine instructions. Subfigures (A–I) correspond to real characters (A–I) 
respectively.

182

https://doi.org/10.3389/fnins.2023.1178283
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Xiao et al. 10.3389/fnins.2023.1178283

Frontiers in Neuroscience 06 frontiersin.org

(lower) side of the visual stimulus at the same time. While in stimulus 
pattern 3 and stimulus pattern 4, which divided instructions into left 
and right parts, characters B, E, and H showed similar spatial 
responses. In addition, it could be observed that the strength of spatial 
responses decreased with increasing distance between instructions 
and visual stimuli as shown in Figure 4.

Our analysis indicated that when gazing at different characters, 
ERPs with different spatial specificity could be evoked by four stimulus 
patterns which were composed of three tiny stimuli. Meanwhile, the 
characteristic of spatial response was mainly concentrated in the 
parietal and occipital region, which provided basic reference to 
electrode selection.

3.2. Classification results for different 
stimulus patterns

Based on the results of feature analysis in section 3.1, 21 electrodes 
(P1, P3, P5, P7, Pz, P2, P4, P6, P8, PO3, PO5, PO7, POz, PO4, PO6, 
PO8, O1, Oz, O2, CB1, CB2) in parietal and occipital region were 
selected for target identification. Figure 5 indicated the classification 
results for each of four stimulus patterns based on DSPs. The 
horizontal coordinate represents the repetition times of trials utilized 
in pattern matching. The nine-character classification accuracy 
increased with the repetition times for all stimulus patterns. 
Specifically, as shown in Figure 5A, the average accuracy of stimulus 
pattern 1 was 29.63%, 61.07%, 72.39%, 78.60%, 82.18% for 1 to 5 
repetitions, respectively. The highest individual accuracy achieved 
96.67% for Sub5 at 5 repetitions. In Figure 5B, the average accuracy of 
stimulus pattern 2, respectively, achieved 51.56%, 70.53%, 76.54%, 

80.49%, 83.25% for 1 to 5 repetitions with the highest individual 
accuracy of 95.19% for Sub7 at 5 repetitions. For Figures 5C,D, the 
average accuracy performed higher than the accuracy in Figures 5A,B, 
which achieved 89.42 and 84.49% after 5 repetitions, respectively. 
Overall, grand-accuracy of all stimulus patterns for 1 to 5 repetitions 
were higher than 11.11% (random level), which further demonstrated 
the divisibility of 9 characters in each of stimulus patterns.

3.3. Classification results for target 
identification in the novel paradigm

In pattern matching for target identification of nine-character 
matrix, classification results of four stimulus patterns in section 3.2 
were employed to joint determine the specific instruction. During 
the process of target character identification, we  constructed 
templates and spatial filters from training set for each of nine 
characters under each condition of four stimulus patterns, then 
used pattern matching to calculate the correlation between the 
template and test sample after spatial filtering, and lastly confirm 
the target character based on formula (2) and (3). Figure 6A showed 
the classification accuracies of all subjects in the offline experiment. 
The horizontal coordinate represents the repetition times of trials 
employed in classification, which corresponds to stimulus durations 
of 0.4 s, 0.8 s, 1.2 s, 1.6 s, and 2 s, respectively. It could be observed 
that the character accuracies increased with the repetition times, 
the average classification accuracies across nine participants were 
72.06%, 84.98%, 88.77%, 91.97%, and 93.46% for 1 (0.4 s stimulation 
duration) to 5 (2 s stimulation duration) repetition times. Most 
subjects performed well with accuracies between 60% and 100%, 

A

B

FIGURE 4

Spatial responses at 120 ms and 170 ms after stimulation of each stimulus patterns. Nine topographies correspond to nine instructions, and the red 
circles correspond to the stimulation locations. (A) Spatial responses at 120 ms. (B) Spatial responses at 170 ms.
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subject 5 reached the highest classification accuracy among all 
subjects of 83.7%, 95.19%, 97.78%, 98.89%, and 99.26% for 1 to 5 
repetition times. Seven of nine subjects could achieve accuracy over 
90% and four subjects achieved accuracy over 95%. Figure  6B 
showed offline character ITR for all subjects. The consuming time 
for each command outputting was composed of cue (0.5 s) and 
stimulus duration corresponding to repetition times. The average 
ITRs across nine subjects were 100.39 bits/min, 99.12 bits/min, 
83.31 bits/min, 73.11 bits/min, and 63.65 bits/min for 1 to 5 
repetition times. Among all subjects, the maximal ITR achieved 
135.97 bit/min for Sub5 for 1 repetition time. Notably, ITRs of four 
subjects out of nine achieved over 120 bits/min, which suggested 
the proposed v-BCI has the potential for high online performance.

To further evaluate the feasible of the proposed v-BCI, an online 
task of randomly spelling all characters was set up. For each subject, 
online repetition times were firstly determined according to the highest 
ITRs in the offline experiments. Then online test of randomly spelling 
all instructions twice was notified to each subject. Table 1 showed the 
performance of online test. It can be  illustrated that all subjects 
performed 1–2 repeated trials for one character selection. The average 
online ITR could achieve 120.95 bits/min, meanwhile, the highest ITR 
was 177.5 bits/min (Sub5) and the lowest ITR was 69.28 bits/min 
(Sub4) in the experiment. The online results were similar to that of the 
offline experiment. ITRs of five of nine subjects achieved over 100 bits/
min in the online test and all of the subjects achieved over 60 bits/min, 
which demonstrated the feasible of proposed v-BCI. These results 
demonstrated that this novel paradigm using small and few stimuli has 
the potential to achieve high performance BCI.

3.4. Fatigue level of subjects

Notably, we asked subjects for their opinions on the comfort level 
of the proposed paradigm. All of them considered the v-BCI 
performed friendly both in interaction comfort and performance. 
Table 2 showed the fatigue level (score: 1–5) by all subjects with an 
average score of 1.89. The highest fatigue score was 4 (Sub5) while the 
lowest score was 1 (Sub3, Sub4, and Sub6). These results demonstrated 
that the proposed paradigm has a friendly interaction mode. 
Compared with traditional v-BCI, the stimulus presented in our study 
was more natural for subjects to use, which made it possible to use out 
of the laboratory environment.

4. Discussion

Traditional v-BCIs such as P300-spellers (Farwell and Donchin, 
1988; Jin et al., 2011) and SSVEP-BCIs (Speller, 2015; Jiao et al., 2018) 
have achieved high ITR performance in previous studies. However, 
the unfriendly interactive mode of strong and complicated stimuli 
hinders their practical usage in real life. To address this problem, our 
study proposed a novel v-BCI which only used three weak stimuli to 
accomplish nine instructions controlling. The average classification 
accuracy and ITR in the online spelling test achieved 84.56% and 
120.95 bits/min across nine subjects, which suggested the proposed 
paradigm was a candidate for friendly v-BCI. From the perspective 
of practical application of the v-BCI, this study still exists something 
for improving the performance of the system.

A B

C D

FIGURE 5

Classification accuracy across all subjects of four stimulus patterns. (A) classification accuracy of stimulus pattern 1. (B) classification accuracy of 
stimulus pattern 2. (C) classification accuracy of stimulus pattern 3. (D) classification accuracy of stimulus pattern 4.
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On the one hand, paradigm designing was novel and effective, 
which could be  further optimized in future studies. We  have 
demonstrated the feasibility of character identification in each stimulus 
pattern and then employed these results for joint decisions. 
We  investigated the performance for four stimulus patterns at 5 
repetitions in Figure 5 and performed one-way repeated measures 
ANOVAs on classification accuracies among four stimulus patterns. As 
shown in Figure 7, the results manifested that there was a significant 
difference in character accuracy among different stimulus patterns (F 

(3, 24) =13.52, p < 0.0001). The accuracy of S3 was significantly higher 
than S1 (p < 0.0001), S2 (p < 0.001), and S4 (p < 0.01), meanwhile, 
among S1, S2, and S4, there was no significance of classification 
accuracy. According to these results, we could consider the superiority 
of stimulus pattern 3 in paradigm designing. Moreover, although there 
was no significance between S4 and the other patterns, the accuracy of 
it was still higher than S1 and S2. This may be  attributed to the 
difference between left and right hemispheres of the brain is higher 
than that between upper and lower hemispheres (Zhou et al., 2021).

On the other hand, the classification method aimed at this 
paradigm achieved high performance in online spelling. However, 
this method still has limitations when applied in complex 
environments. Specifically, when the number of system instructions 
becomes larger, the decoding strategy for each character in every 
situation has low efficiency because of constructing more templates 
and spatial filters. Thus, decreasing the number of decoding 
templates becomes significant. For this paradigm using 
characteristic of spatial features, the relative position and distance 

A

B

FIGURE 6

Performance for all subjects in offline experiment. (A) Character 
accuracy across all subjects. (B) ITR across all subjects.

TABLE 1 Performance of online spelling.

Repetition 
times

Accuracy % ITR bits/min

Sub1 2 (0.5 + 0.8 s) 83.33 92.41

Sub2 2 (0.5 + 0.8 s) 83.33 92.41

Sub3 2 (0.5 + 0.8 s) 94.44 122.88

Sub4 1 (0.5 + 0.4 s) 61.11 69.28

Sub5 1 (0.5 + 0.4 s) 94.44 177.5

Sub6 2 (0.5 + 0.8 s) 100 146.3

Sub7 1 (0.5 + 0.4 s) 88.89 156

Sub8 2 (0.5 + 0.8 s) 83.33 133.48

Sub9 1 (0.5 + 0.4 s) 72.22 98.29

Ave – 84.56 120.95

Std – 12.04 35.43

TABLE 2 Fatigue level of the proposed paradigm.

Subjects Fatigue level score

Sub1 2

Sub2 2

Sub3 1

Sub4 1

Sub5 4

Sub6 1

Sub7 2

Sub8 2

Sub9 2

Ave 1.89

Std 0.93

FIGURE 7

Classification accuracy of nine characters for four stimulus patterns 
at 5 repetitions. (****p < 0.0001, ***p < 0.001, **p < 0.01).
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between visual stimuli and the gazed character are two vital aspects 
of paradigm designing (Zhou et al., 2021). According to the analysis 
of spatial features in Figure 4, distinct spatial features of EEG were 
evoked by four stimulus patterns. The spatial responses of the gazed 
character located in rows or columns under four stimulus patterns 
were similar. Thus, we  could use some instructions to joint 
construct one template according to their relative position and 
distance between stimuli and instruction under different stimulus 
patterns. For stimulus pattern 1 and 2, the visual stimuli divided 
instructions into three rows (A, B, C), (D, E, F), and (G, H, I), which 
performed similar spatial responses in the analysis of spatial 
features. We tag these rows as R1, R2, and R3. For stimulus pattern 
3 and pattern 4, the visual stimuli divided instructions into three 
columns (A, D, G), (B, E, H) and (C, F, I), which were tagged as C1, 
C2, and C3. We first investigated the divisibility of row or column 
sequences under four stimulus patterns. As shown in Figure 8, the 
classification results showed variability between rows or between 
columns. For identification of rows in S1 and S2, R3 performed 
easily mixable with R1 and R2. This was possibly due to the position 
of the gazed character located underneath the stimuli, which was 

consistent with previous studies (Chen et  al., 2018; Zhou et  al., 
2021). For identification of columns in S3 and S4, the average 
accuracies were lower than rows, however, all identification 
accuracies of rows and columns were much higher than the random 
level for three-target classification (33%), which demonstrated the 
feasibility of employing row/column identification for one target 
recognition. Based on these results, each instruction of this 3 × 3 
character matrix could be determined by decoding rows or columns 
after four times of stimulus using four stimulus patterns, which was 
similar to the classical classification strategy used in P300-speller. 
The average accuracies across nine participants were 65.43%, 
77.08%, 82.67%, 86.26%, and 88.64% for 1 to 5 repetitions using this 
new algorithm. The highest accuracy was 97.78% for Sub5 and Sub7 
using 1 repetition of stimulus trial. To further evaluate the 
performance of this algorithm, Figure  9 shows the offline 
classification of two algorithms for recognition of each character 
(algorithm 1) vs. recognition of row-column (algorithm 1). 
One-way repeated measures ANOVAs were performed on 
classification accuracies between two algorithms. The results 
revealed that algorithm 1 performed better than algorithm 2 in each 

A B

C D

FIGURE 8

Confusion matrices of row-column classification at 5 repetitions for four stimulus patterns. (A) Confusion matrix for row identification (R1, R2, and R3) 
in stimulus pattern 1. (B) Confusion matrix for row identification (R1, R2, and R3) in stimulus pattern 2. (C) Confusion matrix for column identification 
(C1, C2, and C3) in stimulus pattern 3. (D) Confusion matrix for column identification (C1, C2, and C3) in stimulus pattern 4.
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repetition time (p < 0.001). However, although the classification of 
algorithm 2 was lower, it can also achieve 88.64% at 5 repetitions, 
which showed great performance as well. In addition, algorithm 2 
could significantly decrease the number of templates from 9 to 3, 
which showed great potential in a complex system with 
large instructions.

In addition to the advantages for above two aspects, this “weak” 
and “small amount” stimulus-based v-BCI also has a wider application 
prospect due to its friendliness of interaction, such as application of 
games based on BCIs. Meanwhile, the proposed BCI system could 
achieve high ITR performance in order to ensure that the game 
interaction is smooth.

5. Conclusion

This study proposed a novel v-BCI paradigm using weak and 
small number of stimuli to accomplish nine instructions controlling. 
The weak and few stimuli would reduce visual burden and 
experimental training time, meanwhile, it could also evoke ERPs with 
characteristics of both spatial and temporal features. A template-
matching method based on DSPs was employed to recognize ERPs 
containing the intention of users. Results of offline and online 
experiments across nine subjects showed that the average accuracy of 
offline experiment was 93.46% and the highest online ITR achieved 
177.5 bits/min, which demonstrated the feasibility to implement such 
a friendly v-BCI using this novel paradigm. Furthermore, the 
proposed paradigm achieved higher ITR than traditional ones using 

ERPs as the controlled signal, which showed its great potential of 
being widely used in various fields.
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The Partial Least Square Regression (PLSR) method has shown admirable

competence for predicting continuous variables from inter-correlated

electrocorticography signals in the brain-computer interface. However, PLSR is

essentially formulated with the least square criterion, thus, being considerably

prone to the performance deterioration caused by the brain recording noises. To

address this problem, this study aims to propose a new robust variant for PLSR.

To this end, the maximum correntropy criterion (MCC) is utilized to propose

a new robust implementation of PLSR, called Partial Maximum Correntropy

Regression (PMCR). The half-quadratic optimization is utilized to calculate the

robust projectors for the dimensionality reduction, and the regression coe�cients

are optimized by a fixed-point optimization method. The proposed PMCR is

evaluated with a synthetic example and a public electrocorticography dataset

under three performance indicators. For the synthetic example, PMCR realized

better prediction results compared with the other existing methods. PMCR could

also abstract valid information with a limited number of decomposition factors in

a noisy regression scenario. For the electrocorticography dataset, PMCR achieved

superior decoding performance in most cases, and also realized the minimal

neurophysiological pattern deterioration with the interference of the noises. The

experimental results demonstrate that, the proposed PMCR could outperform

the existing methods in a noisy, inter-correlated, and high-dimensional decoding

task. PMCR could alleviate the performance degradation caused by the adverse

noises and ameliorate the electrocorticography decoding robustness for the

brain-computer interface.

KEYWORDS

brain-computer interface, partial least square regression, maximum correntropy,

robustness, electrocorticography decoding

1. Introduction

Brain-computer interface (BCI) has been conceived as a promising technology that

translates cerebral recordings generated by cortical neurons into appropriate commands for

controlling neuroprosthetic devices (Wolpaw et al., 2002). The capability of BCI for repairing

or reproducing sensory-motor functions has been increasingly intensified by recent

scientific and technological advances (Donoghue, 2002; Mussa-Ivaldi and Miller, 2003;

Lebedev and Nicolelis, 2006). The non-invasive recordings, especially electroencephalogram

(EEG) and magnetoencephalogram (MEG), are widely exploited to structure BCI systems
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due to their ease of use and satisfactory temporal resolution,

whereas the non-invasive BCI systems could be limited in their

capabilities and customarily require considerable training (Amiri

et al., 2013). Invasive single-unit activities and local field potentials

commonly provide better decoding performance, which suffer

pessimistic long-term stability, however, due to capriciousness

in the recorded neuronal-ensembles (Chestek et al., 2007). A

sophisticated alternative which exhibits higher signal amplitudes

than EEG while presents superior long-term stability compared

with invasive modalities, is the semi-invasive electrocorticography

(ECoG) (Buzsáki et al., 2012). Numerous studies in recent years

have investigated the potentials of ECoG signal for decoding

motions (Levine et al., 2000; Leuthardt et al., 2004; Chin et al., 2007;

Pistohl et al., 2008; Ball et al., 2009b; Chao et al., 2010; Shimoda

et al., 2012). The serviceability of ECoG signal for online practice

have also been demonstrated in Leuthardt et al. (2004, 2006), Schalk

et al. (2008).

To accomplish the inter-correlated and potentially high-

dimensional ECoG decoding tasks, the partial least square

regression (PLSR) algorithm has been widely utilized to predict

continuous variables from ECoG signals as well as various

improved versions in the last decade (Chao et al., 2010; Eliseyev

et al., 2011, 2012, 2017; Shimoda et al., 2012; Zhao et al., 2012,

2013; Eliseyev and Aksenova, 2016; Foodeh et al., 2020). Chao et al.

(2010) successfully predicted the three-dimensional continuous

hand trajectories of two monkeys during asynchronous food-

reaching tasks from time-frequency features of subdural ECoG

signals by PLSR algorithm. They further showed the admirable

prediction capability of PLSR in an epidural ECoG study (Shimoda

et al., 2012). Recently, different strategies have been investigated to

improve the decoding performance of PLSR. For instance, multi-

way PLSR algorithms have been proposed as a generalization for

tensor analysis in the ECoG decoding tasks (Bro, 1996; Shimoda

et al., 2012; Zhao et al., 2013; Eliseyev et al., 2017). Moreover,

regularization technique has been used to penalize the objective

function with an extra regularization term to achieve desirable

prediction (Eliseyev et al., 2012; Eliseyev and Aksenova, 2016;

Foodeh et al., 2020). Although the PLSR algorithm was initially

developed for econometrics and chemometrics (Wold, 1966), it has

emerged as a popular method for neural imaging and decoding

(Krishnan et al., 2011; Zhao et al., 2014).

PLSR solves a regression problem primarily with

dimensionality reduction on both explanatory matrix (input)

and response matrix (output), in which the dimensionality-

reduced samples (commonly called as latent variables) for

respective sets exhibit maximal correlation, thus structuring

association from input variables to output variables. Nevertheless,

the conventional PLSR and most existing variants are in essence

formulated by the least square criterion, which assigns superfluous

importance to the deviated noises. On the other hand, although

ECoG signal usually exhibits a relatively higher signal-to-noise

ratio (SNR) than the non-invasive EEG recording, previous studies

have revealed that ECoG is also prone to be contaminated by

physiological artifacts with pronounced amplitudes (Otsubo

et al., 2008; Ball et al., 2009a). As a result, PLSR could be

incompetent for noisy ECoG decoding tasks due to subnormal

robustness.

The present study aims to propose a novel robust version

for PLSR through introducing the maximum correntropy criterion

(MCC) to replace the conventional least square criterion, which

was proposed in the information theoretic learning (ITL) (Principe,

2010), and has achieved the state-of-the-art robust approaches

in different tasks, including regression (Liu et al., 2007; Chen

and Príncipe, 2012; Feng et al., 2015), classification (Singh et al.,

2014; Ren and Yang, 2018), principal component analysis (He

et al., 2011), and feature extraction (Dong et al., 2017). Recently,

a rudimentary implementation of the MCC in the PLSR algorithm

has been investigated in Mou et al. (2018), where MCC was

employed in the process of dimensionality reduction. However,

the proposed algorithm in Mou et al. (2018) may be limited in

some respects. First, except for the MCC-based dimensionality

reduction, it remains acquiring the regression relations under the

least square criterion. Second, it only considers the dimensionality

reduction for the explanatory matrix. Consequently, one has to

calculate the regression coefficients separately for each dimension

of the response matrix, which means it could be inadequate for

multivariate response prediction.

By comparison, the present study aims to realize a more

comprehensive implementation of the MCC framework in PLSR.

The main contributions of this study are summarized as follows.

1) We reformulate PLSR thoroughly with the MCC framework,

that not only the dimensionality reduction, but also the

regression relations between the different variables are

established by the MCC framework.

2) Both the explanatory matrix (input) and the response

matrix (output) are treated with MCC-based dimensionality

reduction. As a result, the proposed algorithm is adequate for

multivariate response prediction.

3) We utilize Gaussian kernel functions with individual kernel

bandwidths for different reconstruction errors and prediction

errors. In addition, each kernel bandwidth value could be

calculated from the corresponding set of errors directly.

The remainder of this paper is organized as follows. Section 2

introduces the conventional PLSRmethod as well as the regularized

versions. Section 3 gives a brief introduction about MCC and

the rudimentary MCC-based PLSR algorithm. Section 4 presents

the reformulation of PLSR with the MCC framework, proposing

the partial maximum correntropy regression (PMCR) algorithm.

Section 5 evaluates the proposed method on synthetic and real

ECoG datasets, respectively. Some discussions about the proposed

method are given in Section 6. Finally, this paper is concluded in

Section 7. To facilitate the presentation of this paper, the main

notations are listed in Table 1.

2. Partial least square regression

2.1. Conventional PLSR

Consider the data set with the explanatory matrix X ∈

R
L×N and the response matrix Y ∈ R

L×M , in which N and

M denote the respective numbers of dimension, while L is the
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TABLE 1 Main notations.

Notation Description

L Number of observations/samples

N Dimension of explanatory matrix (input)

M Dimension of response matrix (output)

S Optimal number of decomposition factors

s Current index of decomposition factor

X Original explanatory matrix (input)

Y Original response matrix (output)

Ŷ Prediction of response matrix

Xs Residual matrix of X in s-th factor

Ys Residual matrix of Y in s-th factor

xls l-th observation in Xs

yls l-th observation in Ys

ws Dimensionality-reduction projector for Xs

cs Dimensionality-reduction projector for Ys

ts Input latent variables in s-th factor

us Output latent variables in s-th factor

ps Loading vector in s-th factor

bs Regression coefficient between ts and us

gσ (·) Gaussian kernel function with kernel bandwidth σ

number of observations. PLSR is an iterative regression method

which implements dimensionality reduction and decomposition on

explanatory and response matrices simultaneously for S iterations,

so that they could be expressed by

X = TPT , Y = TBCT (1)

where T = [t1, .., tS] ∈ R
L×S and P = [p1, .., pS] ∈ R

N×S

are the latent variables and loading vectors for X, respectively.

C = [c1, .., cS] ∈ R
M×S is the loading vectors of Y, and B =

diag(b1, .., bS) ∈ R
S×S is a diagonal matrix. For dimensionality

reduction, in the s-th iteration with residual matricesXs and Ys, the

covariance between the latent variables ts = Xsws and us = Yscs

are maximized by

max
‖ws‖2=‖cs‖2=1

tTs us = wT
s X

T
s Yscs (2)

in which ws ∈ R
N and cs ∈ R

M are utilized for dimensionality

reduction on Xs and Ys, respectively. us is the latent variable for

Ys. ‖·‖2 denotes the L2-norm. After obtaining the latent variables ts
and us, the loading vector ps and the relation from ts to us with the

scalar bs are founded by the least square criterion

min
ps

‖Xs − tsp
T
s ‖

2
2 ⇒ ps = XT

s ts/(t
T
s ts) (3)

min
bs

‖us − tsbs‖
2
2 ⇒ bs = uTs ts/(t

T
s ts) (4)

The residual matrices are updated byXs+1 = Xs− tsp
T
s and Ys+1 =

Ys − bstsc
T
s . S is usually selected by cross validation. Eventually, the

prediction from X to Y is structured by

Ŷ = XH (5)

where H = PT+BCT ∈ R
N×M , and PT+ is the pseudo-inverse of

PT . Ŷ denotes the prediction for Y.

Maximizing the covariance between latent variables Eq. (2)

could be rewritten as (Barker and Rayens, 2003).

min
‖ws‖2=‖cs‖2=1

L
∑

l=1







‖xls − xlswsw
T
s ‖

2

+‖yls − ylscsc
T
s ‖

2

+‖xlsws − ylscs‖
2






(6)

where xls and yls denote the l-th samples in Xs and Ys, respectively.

One can observe that, PLSR employs the least square criterion not

only to obtain the regression relations in Eqs. (3, 4), but for the

projectors ws and cs as well. In Eq. (6), the first and second terms

are the reconstruction errors for input and output, respectively. The

third term denotes the prediction error for the l-th latent variables.

Since each step for PLSR is based on the least square criterion, the

prediction from input to output could be seriously deteriorated by

noises.

2.2. Regularized PLSR

Regularization technique has been popularly employed to

ameliorate the decoding performance of the PLSR algorithm. For

example, L1-regularization on the projectors was employed so

as to acquire sparse projectors, conducting the feature selection

simultaneously (Eliseyev et al., 2012). The authors further extended

their study in Eliseyev and Aksenova (2016), in which Sobolev-

norm and polynomial penalization were introduced into PLSR

algorithm to strengthen the smoothness of the predicted response.

Recently, the state-of-the-art regularized PLSR was proposed by

utilizing L2-regularization to find the regression relation between

the latent variables ts and us, so as to reduce the over-fitting risk of

each latent variable on the desired response (Foodeh et al., 2020). In

particular, for each decomposition factor, the scalar bs is acquired

with an individual regularization parameter λs as

min
bs

‖us − tsbs‖
2
2 + λsb

2
s ⇒ bs = uTs ts/(t

T
s ts + λs) (7)

Experimental results in Foodeh et al. (2020) showed that, the

regularization technique in Eq. (7) can achieve better ECoG

decoding performance than regularizing the projectors.

Nevertheless, the regularized PLSR variants remain formulated

based on the non-robust least square criterion, as a result, being

still prone to suffering the performance deterioration caused by the

adverse noises.

3. Maximum correntropy criterion

3.1. Maximum correntropy criterion

The correntropy concept was developed in the field of

ITL as a generalized correlation function of random processes
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(Santamaría et al., 2006), which measures the similarity and

interaction between two vectors in a kernel space. Correntropy

associates with the information potential of quadratic Renyi’s

entropy (Liu et al., 2007), where the data’s probability density

function (PDF) is estimated by the Parzen’s window method

(Parzen, 1962; Silverman, 1986). The correntropy which evaluates

the similarity between two arbitrary variables A and B, is defined by

V(A,B) = E[k(A− B)] (8)

in which k(·) is a kernel function satisfying the Mercer’s theory

and E[·] is the expectation operator. In the practical application,

one calculates the correntropy with L observations by the following

empirical estimation

V̂(A,B) =
1

L

L
∑

l=1

k(al − bl) (9)

where the Gaussian kernel function gσ (x) , exp(−x2/2σ 2) with

kernel bandwidth σ is widely used for the kernel function k(·), thus

leading to

V̂(A,B) =
1

L

L
∑

l=1

gσ (al − bl) =
1

L

L
∑

l=1

exp(−
(al − bl)

2

2σ 2
) (10)

Maximizing the correntropy Eq. (10), called as the maximum

correntropy criterion (MCC), exhibits numerous advantages.

Correntropy is essentially a local similarity measure, which

is chiefly determined along A = B, i.e. zero-value error.

Consequently, the effect of large error caused by adverse

noise is alleviated, leading to superior robustness. Additionally,

correntropy could extract sufficient information from observations,

since it considers all the even moments of errors (Liu et al., 2007).

It also relates closely to them-estimation, which can be regarded as

a robust formulation of Welschm-estimator (Huber, 2004).

3.2. MCC-PLSR

Recently, a rudimentary MCC-based PLSR variant has been

investigated in Mou et al. (2018), named as MCC-PLSR. For

a univariate output, according to Mou et al. (2018), the

dimensionality reduction Eq. (2) could be rewritten as

max
‖ws‖2=1

wT
s X

T
s YsY

T
s Xsws (11)

which aims to maximize the quadratic covariance. Mou et al.

(2018) utilized a similar proposition as in the MCC-based principal

component analysis (He et al., 2011), proposing the following

objective function

max
‖ws‖2=1

L
∑

l=1

gσ (

√

ylTs xlsx
lT
s yls − ylTs xlswswT

s x
lT
s yls) (12)

from which one can calculate the robust projector ws. Then, one

obtains the latent variables by ts = Xsws, and acquires other model

parameters similarly as in Eqs. (3-5).

Despite the robust implementation of the projector ws in

Eq. (12), the above-described MCC-PLSR algorithm could be

inadequate for the following reasons. First, except for the

calculation of ws, the other model parameters are still acquired

under the least square criterion. Second, dimensionality reduction

is not considered for the output matrix. As a result, the prediction

performance for multivariate response could be limited. In

addition, MCC-PLSR is prone to suffering excessive computation

time, since one has to obtain the prediction model Ŷ = XH for

each dimension of the response matrix separately.

4. Partial maximum correntropy
regression

In this section, we present a comprehensive reformulation of

PLSRwith theMCC framework. Compared with the existingMCC-

PLSR, our proposed method aims to acquire each model parameter

under the MCC. In addition, the generalization for multivariate

response prediction is taken into account in this study. The detailed

mathematical derivations of the proposed method are given as

follows, in which the subscript s denoting the s-th decomposition

factor is omitted for the purpose of simplicity.

Substituting the least quadratic reconstruction errors and

prediction errors in the conventional PLSR Eq. (6) with the

maximum correntropy yields

max
‖w‖2=‖c‖2=1

L
∑

l=1







gσx (x
l − xlwwT)

+gσy (y
l − ylccT)

+gσr (x
lw− ylc)






(13)

where σx, σy, and σr denote the Gaussian kernel bandwidths for X-

reconstruction errors, Y-reconstruction errors, and the prediction

errors, respectively.

Then, one can transform the vectors (xl − xlwwT) and (yl −

ylccT) into scalars, provided that the two projectors w and c are

unit-length vectors, i.e. wTw = cTc = 1,

√

‖xl − xlwwT‖2 =
√

xlxlT − xlwwTxlT

√

‖yl − ylccT‖2 =

√

ylylT − ylccTylT
(14)

Subsequently, one obtains the following optimization problem to

acquire the projectors

max
‖w‖2=‖c‖2=1

L
∑

l=1







gσx (
√

xlxlT − xlwwTxlT)

+gσy (
√

ylylT − ylccTylT)

+gσr (x
lw− ylc)






(15)

After obtaining w and c, one could calculate the latent variables

as in the conventional PLSR by t = Xw and u = Yc. We then

calculate the loading vector p and the regression coefficient b under

the MCC by

max
p

L
∑

l=1

gσp (x
l − tlpT) (16)

max
b

L
∑

l=1

gσb (u
l − tlb) (17)

Frontiers inNeuroscience 04 frontiersin.org192

https://doi.org/10.3389/fnins.2023.1213035
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Li et al. 10.3389/fnins.2023.1213035

in which tl and ul denote the l-th elements for the latent

variables t and u, respectively. σp and σb denote the corresponding

Gaussian kernel bandwidths. The residual matrices are then

updated similarly as PLSR.

One repeats such procedures for the optimal number of factors

and collects the acquired vectors from each iteration to organize

the matrices T, P, B, and C, as in the original PLSR. Ultimately,

the predicted response Ŷ can be obtained from X by the regression

relationship Eq. (5). The above-mentioned PLSR variant which

is comprehensively reformulated based on the MCC, is named

as partial maximum correntropy regression (PMCR). In what

follows, we discuss in detail about the optimization, convergence

analysis, and determination of hyper-parameters with regard to the

proposed PMCR algorithm.

4.1. Optimization

Three optimization problems Eqs. (15, 16, 17) need to be

addressed in PMCR. We first consider Eq. (15) for the calculation

of the projectors w and c. Based on the half-quadratic (HQ)

optimization method (Ren and Yang, 2018), Eq. (15) could be

rewritten as

max
‖w‖2 =

‖c‖2 = 1

L
∑

l=1











sup{αl
xlxlT−xlwwTxlT

2σ 2
x

− ϕ(αl)}

+ sup{βl
ylylT−ylccTylT

2σ 2
y

− ϕ(βl)}

+ sup{γl
(xlw−ylc)2

2σ 2
r

− ϕ(γl)}











(18)

where ϕ(·) is a convex conjugated function of g(·), and {αl}
L
l=1

,

{βl}
L
l=1

, and {γl}
L
l=1

denote three sets of introduced auxiliaries,

respectively. Thus, we can conclude that optimizing Eq. (15) is

equivalent to updating (αl,βl, γl) and (w, c) alternately by

max
‖w‖2 =

‖c‖2 = 1,

αl,βl, γl

J ,

L
∑

l=1











αl
xlxlT−xlwwTxlT

2σ 2
x

− ϕ(αl)

+βl
ylylT−ylccTylT

2σ 2
y

− ϕ(βl)

+γl
(xlw−ylc)2

2σ 2
r

− ϕ(γl)











(19)

Since the HQ optimization is an iterative process, we denote the

k-th HQ iteration with the subscript k. First, according to the HQ

technique (Ren and Yang, 2018), we update the auxiliaries with the

current projectors (wk, ck) by

αl,k+1 = − exp(−
xlxlT − xlwkw

T
k
xlT

2σ 2
x

)

βl,k+1 = − exp(−
ylylT − ylckc

T
k
ylT

2σ 2
y

)

γl,k+1 = − exp(−
(xlwk − ylck)

2

2σ 2
r

)

(l = 1, .., L)

(20)

Then, to optimize the projectors, we rewrite Eq. (19) by collecting

the terms of projectors and omitting the auxiliaries as

max
‖w‖2 =

‖c‖2 = 1

Jp ,

L
∑

l=1









( γl

2σ 2
r
−

αl

2σ 2
x
)xlwwTxlT

+(
γl

2σ 2
r
−

βl

2σ 2
y
)ylccTylT

−
γl

σ 2
r
xlwcTylT







 (21)

which is a quadratic optimization issue constrained by nonlinear

conditions. To accomplish Eq. (21), there exist enormous solutions

in the literature, such as the sequential quadratic programming

(SQP) which has been widely utilized for nonlinear programming

problems (Fletcher, 2013).

After one obtains the projectorsw and c, the latent variables are

computed by t = Xw and u = Yc. Then, Eqs. (16, 17) can be solved

by the following iterative fixed-point optimizationmethod with fast

convergence (Chen et al., 2015).

p = XT
9pt/(t

T
9pt) (22)

b = uT9bt/(t
T
9bt) (23)

where 9p and 9b are L × L diagonal matrices with the diagonal

elements (9p)l,l = gσp (x
l − tlpT) and (9b)l,l = gσb (u

l − tlb),

respectively. Since 9p and 9b are dependent on the current

solutions p and b, the updates in Eqs. (22, 23) are fixed-point

equations which will require multiple iterations (Chen et al., 2015).

The comprehensive procedures for PMCR are summarized in

Algorithm 1.

1: Input: matrices of explanation X and response Y;

number of factors S; a small positive value ς

2: Output: prediction model Ŷ = XH

3: initialize X1 = X and Y1 = Y;

4: for s = 1, 2, .., S do

5: initialize the projectors by the conventional

PLSR;

6: initialize converged = FALSE;

7: repeat

8: auxiliary-step: update (αl ,βl , γl) with (20);

9: projector-step: update (ws, cs) with (21);

10: if the difference of the objective function

(15) is smaller than ς then

11: converged = TRUE

12: end if

13: until converged == TRUE

14: compute latent variables ts = Xsws and us = Yscs;

15: compute ps and bs by the fixed-point method

(22)(23);

16: update the residual matrices Xs+1 = Xs − tsp
T
s and

Ys+1 = Ys − bstsc
T
s ;

17: end for

18: organize the matrices T = [t1, .., tS], P = [p1, .., pS], B =

diag(b1, .., bS), and C = [c1, .., cS];

19: compute H = PT+BCT

Algorithm 1. Partial maximum correntropy regression
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4.2. Convergence analysis

For the regression relations p and b, one could find the detailed

convergence analysis in Chen et al. (2015). We mainly consider the

convergence of the projectors w and c in the optimization problem

(15). Because correntropy is in nature an m-estimator (Liu et al.,

2007), the local optimums of Eq. (15) will be close sufficiently to

the global optimum, which has been proved in a recent theoretical

study (Loh and Wainwright, 2015). Therefore, we prove that Eq.

(15) will converge to a local optimum with the HQ optimization

method.

Proposition 1. If we have Jp(wk, ck) 6 Jp(wk+1, ck+1) by fixing

(αl,βl, γl) = (αl,k+1,βl,k+1, γl,k+1), the optimization problem (Eq.

15) will converge to a local optimum.

Proof: The convergence is proved as

J(wk, ck,αl,k,βl,k, γl,k)

6J(wk, ck,αl,k+1,βl,k+1, γl,k+1)

6J(wk+1, ck+1,αl,k+1,βl,k+1, γl,k+1)

(24)

in which the first inequality is guaranteed by the HQ mechanism

(Ren and Yang, 2018), and the second inequality arises from the

assumption of the present proposition.

One can observe that, to guarantee the convergence of Eq.

(15), it is unnecessary to attain the strict maximum of Eq. (21)

at each projector-step in Algorithm 1. On the contrary, so long

as the updated projectors lead to a larger objective function Jp at

each projector-step, Eq. (15) will converge to a local optimum. This

reveals great convenience in practice, that one only needs a few

SQP iterations for projector-step. One could finish the projector-

step once confirming the increase on Jp, thus accelerating the

convergence.

4.3. Hyper-parameter determination

There exist five Gaussian kernel bandwidths σx, σy, σr , σp, and

σb, respectively, to be determined in practice. In the literature,

an effective method to estimate a proper kernel bandwidth for

probability density estimation, named as Silverman’s rule, was

proposed in Silverman (1986). Denoting the current set of errors

as E with L observations, the kernel bandwidth is computed

σ
2 = 1.06×min{σE,

R

1.34
} × (L)−1/5 (25)

in which σE is the standard deviation of the L errors, and R denotes

the interquartile range.

5. Experiments

In this section, we assessed the proposed PMCR algorithm

on a synthetic dataset and a real ECoG dataset, respectively,

comparing it with the existing PLSR methods. Specifically, we

compared PMCR to the followingmethods: the conventional PLSR,

the state-of-the-art regularized PLSR (RPLSR) (Foodeh et al., 2020)

described in Eq. (7), and the rudimentary MCC-PLSR (Mou et al.,

2018) described in Section 3.2. For a evenhanded comparison,

each algorithm used an identical number of factors, which was

selected by the conventional PLSR in five-fold cross-validation. The

maximal number of factors was set as 100.

Considering the performance indicators for the evaluation,

we used three typical measures in regression tasks: i) Pearson’s

correlation coefficient (r)

r =
Cov(Ŷ,Y)

√

Var(Ŷ)Var(Y)

(26)

where Cov(·, ·) and Var(·) denote the covariance and variance,

respectively, and ii) root mean squared error (RMSE) which is

computed by

RMSE =

√

√

√

√

1

L

L
∑

l=1

‖ŷl − yl‖
2 (27)

in which ŷl and yl denote the l-th observations for the prediction Ŷ

and the target Y, respectively, and iii) mean absolute error (MAE)

which represents the average L1-norm distance

MAE =
1

L

L
∑

l=1

‖ŷl − yl‖ (28)

To compare the robustness between different algorithms,

only contaminating the training samples by noises with isolating

testing data from contamination is an extensively approved and

implemented method in the literature, as advised in Zhu and Wu

(2004). Accordingly, only the training sample would suffer the

adverse contamination in the following experiments.

5.1. Synthetic dataset

5.1.1. Dataset description
First, we considered an inter-correlated, high-dimensional, and

noisy synthetic example, in which various PLSR methods were

assessed with different levels of contamination. Randomly, we

generated 300 i.i.d.1 latent variables t ∼ U(0, 1) for training, and

300 i.i.d. latent variables t ∼ U(0, 1) for testing, in whichU denotes

the uniform distribution, and the dimension of t was set as 20. We

generated the hypothesis from the latent variable to the explanatory

and response matrices then. Specifically, we randomly generated

the transformation matrices with arbitrary values, which were

subject to the standard normal distribution. The latent variables t

were multiplied with a 20×500 transformation matrix, resulting in

a 300×500 explanatory matrix for input. Similarly, we used a 20×3

transformation matrix to acquire a 300 × 3 response matrix for

output. Accordingly, we predicted the multivariate responses from

500-dimensional explanatory variables with 300 training samples,

and evaluated the prediction performance on the other 300 testing

samples.

Considering the contamination for the synthetic dataset, we

supposed the explanatory matrix to be contaminated, because the

1 Independent and identically distributed.
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FIGURE 1

Regression performance indicators of the inter-correlated, high-dimensional, and contaminated synthetic dataset under di�erent noise standard

deviations with noise levels from 0 to 1.0. (A) Noise standard deviation = 30, (B) noise standard deviation = 100, and (C) noise standard deviation

= 300. The performance indicators were acquired from 100 Monte-Carlo repetitive trials and averaged across three dimensions of the output. The

proposed PMCR algorithm realized better performance than the existing PLSR algorithms consistently for r, RMSE, and MAE, in particular when the

training set was contaminated considerably.

adverse noises mainly happen to the brain recordings, which are

usually used as the explanatory in the BCI system. Therefore, a

certain proportion (from 0 to 1.0 with a step 0.05) of training

samples were randomly selected with equal probability, the inputs

of which were then replaced by noises with large amplitude. For

the distribution of the noise, we utilized a zero-mean Gaussian

distribution with large standard deviation to imitate outliers, where

30, 100, and 300 were used, respectively.

5.1.2. Results
We evaluated the various PLSRmethods with 100Monte-Carlo

repetitive trials, and present the results in Figure 1, where the results

were averaged across three dimensions of the output. One could

observe from Figure 1 that, for all the three different noise standard

deviations, the proposed PMCR algorithm achieved superior

prediction performance compared with the other existing methods

consistently for r, RMSE, andMAE, respectively, in particular when

the training set suffered considerable contamination.

The number of factors S plays a vital role in PLSR methods,

representing the iteration numbers to decompose the input and

output matrices. Since it usually causes a notable effect on the

results, additionally, we evaluated the performance with respect to

the number of factors for each method. To this end, we utilized the

noise standard deviation 100 under three different noise levels, 0.2,

0.5, and 0.8, respectively. The prediction results for each method

are presented in Figure 2 with 100 repetitive trials, with respect to

the number of decomposition factors. One could perceive that, not

only the proposed PMCR eventually achieved superior regression

performance with the optimal number of factors, but also it realized

rather commendable performance with a small number of factors.

For example, when the noise level was equal to 0.5, the proposed

PMCR achieved its optimal performance with no more than 20

factors. By comparison, for the other methods, when the number of

factors was larger than 20, their performances remained promoting

significantly. One can also observe a similar result in the other two

noise levels. This suggests that, PMCR could abstract substantial

information with a rather small number of factors from training

samples in a noisy regression task.

5.2. ECoG dataset

To further demonstrate the superior robustness of the PMCR

algorithm, we evaluated the various PLSR algorithms with the

following practical brain decoding task. In this subsection, we

used the publicly available Neurotycho ECoG dataset2 which was

initially proposed in Shimoda et al. (2012).

2 Available online at http://neurotycho.org/epidural-ecog-food-tracking-

task.
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FIGURE 2

Regression performance indicators of the synthetic dataset with noise standard deviation being 100 under three di�erent noise levels with the

number of factors increasing from 1 to 100. (A) Noise level = 0.2, (B) noise level = 0.5, and (C) noise level = 0.8. The performance indicators were

obtained from 100 repetitive trials and averaged across three dimensions of the output. The proposed PMCR algorithm not only acquired better

prediction results than the other algorithms ultimately with the optimal number of factors, but also achieved admirable regression performance with

a small number of factors.

5.2.1. Dataset description
Two Japanese macaques, denoted by Monkey B and C,

respectively, were commanded to track foods with the right

hands, during which the continuous three-dimensional trajectories

of right hands with a sampling rate of 120 Hz were recorded

by an optical motion capture instrument. For both Monkey

B and C, ten recording sessions were performed, where

each recording session lasted 15 minutes. The two macaques

were in advance implanted with customized 64-channel ECoG

electrodes on the contralateral (left) hemisphere, which covered

the regions from the prefrontal cortex to the parietal cortex.

ECoG signals were recorded simultaneously during each session

with a sampling rate of 1,000 Hz. In accordance with Shimoda

et al. (2012), for each recording session, the data of the first

ten minutes was used to train a prediction model, while the

data of the remaining five minutes was used to evaluate the

prediction performance of the trained model. The schemes of the

experiments and ECoG electrodes are shown in Figures 3A, B,

respectively.

5.2.2. Decoding paradigm
For the feature extraction, we used an identical offline decoding

paradigm as in Shimoda et al. (2012). Initially, ECoG signals

were preprocessed with a tenth-order Butterworth bandpass filter

with cutoff frequencies from 1 to 400 Hz, and then re-referenced

by the common average referencing (CAR) method. The three-

dimensional trajectories of the right wrist were down-sampled to

10 Hz, thus, leading to 9,000 samples in one session (10 Hz ×

60 sec × 15 min). The three-dimensional position of time t was

predicted from the ECoG signals during the previous one second.

To extract the features of ECoG signals, we utilized the time-

frequency representation. For the time t, the ECoG signals at each

electrode from t - 1.1 s to t were processed by Morlet wavelet

transformation. Ten center frequencies ranging from 10 to 120

Hz with equal spacing on the logarithmic scale were considered

for the wavelet transformation, overlaying the frequency bands

which are most relevant to motion tasks (Shimoda et al., 2012).

The time- frequency scalogram was then resampled at ten temporal

lags with a 0.1 s gap (t - 1 s, t - 0.9 s,..., t - 0.1 s). Thus, the input

of each sample exhibited a 6,400-dimensional vector (64 channels

× 10 frequencies × 10 temporal lags), and the output was the

three-dimensional position of the right hand. Hence, we trained

a regression model with 6,000 samples (the first ten minutes) to

predict the three-dimensional output from the 6,400-dimensional

input, and evaluated the algorithms with other 3,000 testing

samples (the remaining five minutes). The illustrative diagrams for

ECoG decoding are summarized in Figure 3C.
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FIGURE 3

Experimental protocol of the Neurotycho ECoG dataset and decoding paradigm to evaluate the robustness of the di�erent PLSR algorithms. (A) The

macaque retrieved foods in a three-dimensional random location, during which the body-centered coordinates of the right wrists and the ECoG

signals were recorded simultaneously. (B) Both Monkey B and C were implanted with 64-channel epidural ECoG electrodes on the contralateral (left)

hemisphere, overlaying the regions from the prefrontal cortex to the parietal cortex. Ps: principal sulcus, As: arcuate sulcus, Cs: central sulcus, IPs:

intraparietal sulcus. (A, B) Were reproduced from Shimoda et al. (2012), which provides the details of this public dataset. (C) Decoding diagram from

ECoG signals to three-dimensional trajectories. The training ECoG signals are contaminated to assess the robustness of di�erent algorithms.

5.2.3. Contamination
To evaluate the robustness of different algorithms in the

practical ECoG decoding task, the ECoG signals were artificially

contaminated by outlier to simulate the detrimental artifact. To

be specific, we stochastically selected three certain proportions,

0 (no contamination), 10−3, and 10−2, of the training ECoG

samplings and corrupted them with outliers which were subject

to the zero-mean Gaussian distribution with the variance 50 times

that of the signals for the corresponding channel. As stated in Ball

et al. (2009a), the blink-related artifacts were remarkably found in

ECoG signal that exhibited much larger amplitudes than a normal

ECoG recording. Hence, we used the above-mentioned approach

to artificially generate adverse artifacts, so as to contaminate the

ECoG signals. This method has been widely utilized in the literature

to deteriorate the brain signals for evaluating the robustness of

different algorithms (Wang et al., 2011; Chen et al., 2018).

Note that, for this ECoG dataset, the ‘Noise Level’ signifies

the ratio of the contaminated ECoG samplings in the entirety

which is different from the ratio of the deteriorated samples in

the 6,000 training samples. The ratio of the affected training

samples can be evidently larger than the indicated noise level, since

one contaminated ECoG sampling could deteriorate several time

windows in feature extraction. For example, when the noise level

is denoted as 10−3, the deteriorated proportion of the training

set is (0.6645 ± 0.0089). Furthermore, we illustrate how the noise

would influence the time-frequency feature in Figure 4. One could

obviously perceive the heavy-tailed characteristic on the feature

noises, which is in particular intractable for the least square

criterion. In addition, the effects of high-frequency band are more

prominent, due to the property of impulsive noise.

5.2.4. Spatio-spectro-temporal pattern
Studying how the spatio-spectro-temporal weights in the

regression model contribute to the entirety can help investigate the

neurophysiological pattern. The element of the trained prediction

model H can be denoted by hch,freq,temp, which corresponds to

the ECoG electrode “ch,” the frequency “freq,” and the temporal

lag “temp.” Thus, one could calculate the spatio-spectro-temporal

contributions by the ratio between the summation of absolute

values of each domain and the summation of absolute values of the

entire model

Wc(ch) =

∑

freq

∑

temp |hch,freq,temp|
∑

ch

∑

freq

∑

temp |hch,freq,temp|
(29)
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FIGURE 4

Distributions and scalograms of the time-frequency feature noises resulting from the ECoG sampling contamination. (A) Noise level = 10−3 (the

deteriorated proportion of training set = 0.6645± 0.0089), (B) Noise level = 10−2 (the deteriorated proportion of training set ≈ 1). The time-frequency

feature noises were calculated by subtracting the training datasets which were obtained from acoustic and contaminated ECoG signals, respectively.

The distributions were averaged by 20 sessions of Monkey B and C, while the scalograms were averaged across all electrodes. The peaks of

distributions are truncated to emphasize the heavy-tailed characteristic.

Wf (freq) =

∑

ch

∑

temp |hch,freq,temp|
∑

ch

∑

freq

∑

temp |hch,freq,temp|
(30)

Wt(temp) =

∑

ch

∑

freq |hch,freq,temp|
∑

ch

∑

freq

∑

temp |hch,freq,temp|
(31)

whereWc(ch),Wf (freq), andWt(temp) denote the contributions of

the ECoG electrode “ch,” the frequency “freq,” and the temporal lag

“temp,” respectively.

5.2.5. Results
First, we assessed the different algorithms with the

uncontaminated ECoG signals. Accordingly, when the noise

level was zero, the average performance indicators were obtained

by the acoustic 20 sessions (Monkey B and C). Then we

contaminated each session with 5 repetitive trials. Hence, for every

noise level, each algorithm was evaluated for 100 times (20 sessions

× 5 repetitive trials). In Table 2, we present the performance

indicators for each algorithm with the noise levels 0, 10−3, and

10−2, respectively. In each row of a specific condition, the optimal

result is marked in bold. Moreover, the other results are marked

with (∗) if there exists statistically significant difference between

the current result and the optimal result under each condition. One

observes in Table 2 that, the proposed PMCR realized the optimal

prediction results consistently, except for the Y-axis under noise

level 0. In most cases, PMCR outperformed the other methods

with statistically significant difference. One can observe that,

when the noise level was 0, PMCR achieved better results than

the other algorithms for X-axis and Z-axis. One major reason is,

in the acoustic sessions, the motion-related artifacts have been

considerably found in the ECoG signals (Shimoda et al., 2012),

which further demonstrates the necessity of utilizing PMCR in the

practical ECoG decoding tasks.

Furthermore, we studied how the neurophysiological patterns

for different algorithms were influenced by the sampling noises.
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TABLE 2 Performance indicators of each algorithm on the Neurotycho ECoG dataset under three noise levels 0, 10−3, and 10−2, respectively.

X-position

Algorithm PLSR RPLSR MCC-PLSR PMCR

Noise

Level

0

r 0.4378± 0.0933∗ 0.4550± 0.0925∗ 0.4598± 0.0942∗ 0.4679 ± 0.0947

RMSE 0.9287± 0.0810∗ 0.9037± 0.0653∗ 0.8954± 0.0809∗ 0.8835 ± 0.0786

MAE 0.7026± 0.0640∗ 0.6872± 0.0530∗ 0.6749± 0.0628∗ 0.6658 ± 0.0651

10−3

r 0.3334± 0.1165∗ 0.3558± 0.1132∗ 0.3684± 0.1127∗ 0.3873 ± 0.1274

RMSE 0.9729± 0.0652∗ 0.9543± 0.0648∗ 0.9397± 0.0728∗ 0.9276 ± 0.0705

MAE 0.7291± 0.0756∗ 0.7174± 0.0689∗ 0.7092± 0.0786∗ 0.6987 ± 0.0759

10−2

r 0.1524± 0.1399∗ 0.1713± 0.1353∗ 0.1926± 0.1342∗ 0.2238 ± 0.1382

RMSE 1.0249± 0.1105∗ 1.0022± 0.1097∗ 0.9845± 0.1129∗ 0.9681 ± 0.1094

MAE 0.7655± 0.1428∗ 0.7485± 0.1383∗ 0.7396± 0.1392∗ 0.7246 ± 0.1397

Y-position

Algorithm PLSR RPLSR MCC-PLSR PMCR

Noise

Level

0

r 0.5426± 0.1019∗ 0.5582 ± 0.1026 0.5547± 0.1017 0.5549± 0.1022

RMSE 0.8483± 0.0969∗ 0.8198 ± 0.0951 0.8246± 0.0948 0.8233± 0.0952

MAE 0.6487± 0.0762∗ 0.6304 ± 0.0796 0.6362± 0.0744 0.6358± 0.0759

10−3

r 0.4114± 0.1309 ∗ 0.4284± 0.1285∗ 0.4425± 0.1302∗ 0.4602 ± 0.1296

RMSE 0.9188± 0.0963 ∗ 0.8962± 0.0958∗ 0.8795± 0.0979∗ 0.8608 ± 0.1002

MAE 0.6960± 0.1007∗ 0.6849± 0.1014∗ 0.6631± 0.0983∗ 0.6539 ± 0.1021

10−2

r 0.2084± 0.1514∗ 0.2206± 0.1489∗ 0.2593± 0.1502∗ 0.2723 ± 0.1537

RMSE 0.9781± 0.1143∗ 0.9542± 0.1117∗ 0.9306± 0.1159 0.9294 ± 0.1146

MAE 0.7354± 0.1028∗ 0.7173± 0.1077∗ 0.7086± 0.1105 0.7043 ± 0.1042

Z-position

Algorithm PLSR RPLSR MCC-PLSR PMCR

Noise

Level

0

r 0.6320± 0.0324∗ 0.6395± 0.0328∗ 0.6482± 0.0359 0.6504 ± 0.0372

RMSE 0.7968± 0.0281∗ 0.7814± 0.0293∗ 0.7747± 0.0296∗ 0.7628 ± 0.0275

MAE 0.6181± 0.0222∗ 0.6102± 0.0280∗ 0.6055± 0.0241 0.5989 ± 0.0265

10−3

r 0.4875± 0.0708∗ 0.4935± 0.0701∗ 0.5158± 0.0857∗ 0.5259 ± 0.0814

RMSE 0.9272± 0.0712∗ 0.9129± 0.0682∗ 0.8958± 0.0742∗ 0.8834 ± 0.0738

MAE 0.6932± 0.0800∗ 0.6894± 0.0814∗ 0.6804± 0.0852∗ 0.6645 ± 0.0782

10−2

r 0.2399± 0.1185∗ 0.2456± 0.1173∗ 0.2615± 0.1148∗ 0.2803 ± 0.1186

RMSE 1.0168± 0.0804∗ 0.9917± 0.0785∗ 0.9605± 0.0842∗ 0.9485 ± 0.0809

MAE 0.7532± 0.0883∗ 0.7429± 0.0892∗ 0.7208± 0.0893 0.7146 ± 0.0887

The results are given in mean ± deviation, where the optimal results under each condition are marked in bold. The proposed PMCR realized the optimal results consistently, except for the

Y-position under the noise level 0. For each result, ∗is marked if there exists statistically significant difference between the indicated one and the optimal result in the corresponding condition,

according to a paired t-test (p < 0.05).

We show the differences between the spatial, the spectral,

and the temporal contributions which were acquired from

the acoustic and the contaminated sessions (under the noise

level 10−3), respectively, in Figure 5. The regression model

concerning Monkey B’s Z-position was used here. We also

quantified the effects by computing the summation of the

absolute values of the difference between the patterns that

were attained from the acoustic and the contaminated sessions,

respectively. To be specific, we illustrate
∑

|Wc(ch)−W′
c(ch)|,

∑

|Wf (freq)−W′
f
(freq)|, and

∑

|Wt(temp)−W′
t(temp)| for the

spatial, the spectral, and the temporal patterns, respectively.

Wc(ch), Wf (freq), and Wt(temp) were obtained by the acoustic

sessions, while W′
c(ch), W

′
f
(freq), and W′

t(temp) were obtained

from the contaminated sessions. One can observe from Figure 5

that, the proposed PMCR algorithm realized the minimal

deterioration for the pattern of each domain. This further

demonstrates the robustness of PMCR in noisy ECoG decoding

tasks.
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FIGURE 5

Spatio-spectro-temporal contributions of the prediction model for Monkey B’s Z-position under noise levels 0 and 10−3. (A) Spatial patterns, (B)

spectral patterns, and (C) temporal patterns. For each domain, the quantitative deterioration is calculated by the absolute value summation of the

di�erence between the original and the deteriorated patterns. The original patterns Wc(ch), Wf (freq), and Wt(temp) were averaged across the 10

acoustic sessions of Monkey B, while the deteriorated patterns W′
c(ch), W

′
f (freq), and W′

t(temp) were averaged across 50 trials (10 sessions of Monkey

B × 5 repetitive trials). The proposed PMCR achieved the minimal deterioration for each domain.

6. Discussion

6.1. Proposed method

In the present study, we aimed to propose a new robust version

for PLSR using the MCC framework, which is named as PMCR.

Similarly as the existing PLSR methods, the proposed PMCR

decomposes the explanatory matrix (input) and the response

matrix (output) iteratively for S decomposition factors. The crucial

differences of the proposed PMCR are stated in what follows.

First, the objective function regarding the projectors ws and cs in

Eq. (15) could be considered as a generalized formulation of the

conventional PLSR (Eq. 6), and would be closely related to the

calculation in MCC-PLSR (Eq. 12) under specific conditions. As

has been proved in Liu et al. (2007), maximizing the correntropy

between two variables, when the kernel bandwidth tends to infinity,
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FIGURE 6

The connection between PMCR and MCC-PLSR for a univariate response.

is equal to minimizing their quadratic Euclidean distance. Hence, if

we suppose σx, σy, σr → ∞, the projector calculation of PMCR

will degenerate to the conventional PLSR. Then, we consider the

differences between MCC-PLSR and the proposed PMCR. For a

univariate response, the projector c for dimensionality reduction

regarding the response could be ignored. Thus, we can rewrite the

dimensionality reduction in PMCR (Eq. 15) as

max
‖w‖2=1

L
∑

l=1

(

gσx (
√

xlxlT − xlwwTxlT)+ gσr (x
lw− yl)

)

(32)

which could be regarded as a generalized form for the quadratic

error minimization (Liu et al., 2007).

min
‖w‖2=1

L
∑

l=1

(

‖xl − xlwwT‖2 + ‖xlw− yl‖2
)

⇔ max
‖w‖2=1

wTXTY

(33)

which is essentially equal to the conventional PLSR for univariate

output. By comparison, MCC-PLSR adopts the MCC framework

for the quadratic covariance (Eq. 11), which can be written as Mou

et al. (2018)

min
‖w‖2=1

L
∑

l=1

‖ylTxl − ylTxlwwT‖2 ⇔ max
‖w‖2=1

wTXTYYTXw (34)

which is the special case of MCC-PLSR when the kernel bandwidth

in Eq. (12) tends to infinity. Thus, the connection between PMCR

(Eq. 15) and MCC-PLSR (Eq. 12) could be illustrated as in

Figure 6. One can observe that, the starting points of PMCR

and MCC-PLSR are different. The proposed PMCR begins from

the original covariance maximization, whereas MCC-PLSR was

proposed from the quadratic covariance. Therefore, we argue that

our proposed PMCR is a more rational robust implementation for

PLSR. Moreover, note that we give the above discussion under

the premise of a univariate output, which is only a special case

of degradation for our proposed PMCR. One the other hand,

considering the calculations of the loading vector ps and the

regression coefficient bs, the proposed PMCR employs the MCC

(Eq. 16, 17), whereas the conventional PLSR andMCC-PLSR utilize

the least square criterion. As mentioned above, Eqs. (16, 17) can be

also regarded as generalized forms of square error minimization.

In summary, the proposed PMCR is more generalized than the

conventional PLSR and MCC-PLSR.

In addition, we would like to discuss the advantages and

disadvantages of the proposed PMCR algorithm. The essential

benefit of utilizing the PMCR algorithm in a noisy ECoG decoding

task is the conspicuous robustness with respect to the noises, which

was demonstrated with extensive experiments in Section 5. Further,

mathematically, the proposed PMCR algorithm is more generalized

than the conventional PLSR and MCC-PLSR. As was mentioned

above, the conventional PLSR and MCC-PLSR could be regarded

as special cases of the proposed PMCR under specific conditions

concerning the kernel bandwidths. In particular, compared

with MCC-PLSR, the proposed PMCR takes into account the

dimensionality reduction for the response matrix. As a result,

PMCR could realize better prediction performance for multivariate

response. Moreover, PMCR could be further implemented with

regularization techniques and extended to the multi-way scenario,

which would be discussed in the following subsections. However,

PMCR might suffer the performance degradation resulting from

inadequate kernel bandwidths that are calculated by the Silverman’s

rule (Eq. 25). Although the experimental results in this study

verified empirically that, the proposed PMCR could perform

efficiently with the kernel bandwidths acquired by Eq. (25), it

may be difficult to guarantee that the Silverman’s rule can always

provide adequate kernel bandwidths. Hence, we would like to

investigate a better way to determine the kernel bandwidths with

solid theoretical guarantees in our future works. In addition, our

proposed PMCR is effective to deal with outliers, while it may

be inadequate for multi-modal-distributed noise because MCC

utilizes only one kernel function for each reconstruction error. To

address this issue, it is promising to use minimum error entropy
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(MEE) to reformulate PLSR, another popular learning criterion

in ITL (Principe, 2010). MEE employs multiple kernel functions

for each reconstruction error, so that it can realize satisfactory

robustness with respect to multi-modal-distributed noise, which

has realized robust neural decoding algorithms (Chen et al., 2018;

Li et al., 2021).

6.2. PMCR with regularization

One should additionally note that, the PMCR was proposed

by reformulating the conventional PLSR algorithm with using the

robust MCC, instead of the mediocre least square criterion. Hence,

the proposed PMCR exhibits the supplementary potential for

further performance improvements with regularization techniques,

as well as in the existing regularized PLSR methods. For example,

L1-regularization could be utilized in Eq. (15) to encourage

sparse and robust projectors. In addition, if one requires better

smoothness on the predicted output, polynomial or Sobolev-

norm penalization could be utilized in PMCR. Moreover, L2-

regularization could be utilized for Eq. (17) to decrease the over-

fitting risk considering the regression scalar bs, similarly as Eq. (7)

(Foodeh et al., 2020). In the literature, MCC-based algorithms with

regularization have been widely investigated. For instance, a robust

version of sparse representation classifier (SRC) for face recognition

was developed by employing L1-regularization on the MCC-based

SRC objective function (He et al., 2010).

6.3. Extension to multi-way application

The multi-way PLSR establishes the regression relationship

between tensor variables with dimensionality reduction by tensor

factorization technique. In the literature, the multi-way PLSR was

usually reported to achieve better decoding capability than the

generic PLSR algorithm in the brain decoding task, where the

spatio-spectro-temporal feature is organized with the tensor form.

Essentially, the multi-way PLSR decomposes the input and output

under the least square criterion by minimizing the Frobenius-

norm (Kolda and Bader, 2009). Therefore, the multi-way PLSR

is prone to the performance deterioration caused by noises

as well.

The proposed PMCR method treats the regression

problem of matrix, i.e. two-way variable. Extending the

PMCR algorithm to multi-way application could probably

improve the prediction performance further, which would be

investigated in our future works. Promisingly, MCC has been

demonstrated effective for tensor variable analysis in a recent study

(Zhang et al., 2016).

7. Conclusion

This paper proposed a new robust variant for the PLSR

algorithm by reformulating the non-robust least square criterion

with the sophisticated MCC framework. The proposed robust

objective functions can be effectively optimized by half-

quadratic and fixed-point optimization methods. Extensive

experimental results with the synthetic dataset and Neurotycho

epidural ECoG dataset demonstrate that, the proposed PMCR

can outperform the existing PLSR algorithms, revealing

promising robustness for high-dimensional and noisy ECoG

decoding tasks.
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Objective: The multi-subject brain–computer interface (mBCI) is becoming a key

tool for the analysis of group behaviors. It is necessary to adopt a neural recording

system for collaborative brain signal acquisition, which is usually in the form of a

fixed wire.

Approach: In this study, we designed a wireless group-synchronized neural

recording system that supports real-time mBCI and event-related potential (ERP)

analysis. This system uses a wireless synchronizer to broadcast events to multiple

wearable EEG amplifiers. The simultaneously received broadcast signals are

marked in data packets to achieve real-time event correlation analysis of multiple

targets in a group.

Main results: To evaluate the performance of the proposed real-time

group-synchronized neural recording system, we conducted collaborative signal

sampling on 10 wireless mBCI devices. The average signal correlation reached

99.8%, the amplitude of average noise was 0.87 µV, and the average common

mode rejection ratio (CMRR) reached 109.02 dB. The minimum synchronization

error is 237 µs. We also tested the system in real-time processing of the

steady-state visual-evoked potential (SSVEP) ranging from 8 to 15.8Hz. Under

40 target stimulators, with 2 s data length, the average information transfer rate

(ITR) reached 150 ± 20 bits/min, and the highest reached 260 bits/min, which

was comparable to the marketing leading EEG system (the average: 150 ± 15

bits/min; the highest: 280 bits/min). The accuracy of target recognition in 2 s was

98%, similar to that of the Synamps2 (99%), but a higher signal-to-noise ratio (SNR)

of 5.08 dBwas achieved. We designed a group EEG cognitive experiment; to verify,

this system can be used in noisy settings.

Significance: The evaluation results revealed that the proposed real-time

group-synchronized neural recording system is a high-performance tool for

real-time mBCI research. It is an enabler for a wide range of future applications

in collaborative intelligence, cognitive neurology, and rehabilitation.

KEYWORDS

group-synchronized, collaborative intelligence, multi-subject brain–computer interface,

hyperscanning, wearable, real-time group-synchronized, real-time
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1. Introduction

In recent years, mBCI and collaborative intelligence have

gained great attention in the field of brain science (Czeszumski

et al., 2020; Gao et al., 2021). Moreover, implementing a

collaborative acquisition system, as a key tool for collaborative

intelligence, is a fundamental problem in generalized BCI (Babiloni

and Astolfi, 2014; Perdikis et al., 2020; Zhang et al., 2020;

Bhattacharyya et al., 2021). Collaborative adaptive learning of

AI requires human–human and human–machine collaboration in

a synchronous manner with real-time access to relevant event

information (Shenoy et al., 2014). Therefore, humans andmachines

can cooperate in an adaptive (Müller et al., 2017) and dynamic and

effective way (van den Bosch et al., 2019). There are many examples

of how the multi-brain works, for example, studies on predicting

marital relationships through neural synchronization in multiple

brains (Li et al., 2022) and effective interaction between teachers

and students (Maksimenko et al., 2018). These investigations assist

researchers in comprehending social cognition (Konvalinka and

Roepstorff, 2012) and exploring the concept of the “Social Brain”

(Minagawa et al., 2018). In addition, some collaborative approaches

have demonstrated an mBCI that fused event-related potential

(ERP) data for collective decision-making (Wang and Jung, 2011).

To support the development of collaborative mBCI

applications, there is an increasing demand for an integrated

system that encompasses multiple-target signal acquisition,

synchronized triggering, and user-friendly configuration. When

designing this system, we should consider the following: First, in

non-laboratory mBCI experiments, external noise can interfere

with the acquisition of system data, leading to a reduction in the

signal-to-noise ratio (SNR) of EEG data and a decrease in data

reliability. The desired mBCI system should provide high-quality

EEG signals to guarantee its reliability and robustness when facing

diverse ambient noise. Second, the traditional fixed-linked EEG

devices are connected by cables to form a multi-subject acquisition

system (Barraza et al., 2019). This fixed-linked system imposes

limitations on subjects’ range ofmotion and activities, consequently

affecting their overall user experience and restricting the wider

application of mBCI. Therefore, wireless-connected mBCI systems

will be more favorable and offer significant advantages in future

applications. Third, event-triggered synchronous signal acquisition

is crucial for mBCI systems, as EEG signals gathered from different

BCI devices require strict synchronization for further correlation

analysis. For example, hybrid EEG and EMG synchronous

acquisition (Artoni et al., 2018) and event-related potential (ERP)

mechanisms with up to 100 classifications (Xu et al., 2020) have

been implemented. This research highly requires low latency,

synchronized phase (Xu et al., 2018), and time alignment of

the EEG data. Time-space synchronization necessitates a few

milliseconds or even <1ms (Luck, 2014). Moreover, asynchronism

may lead to incorrect estimates, such as time-domain correlation

(Bowyer, 2016) and imaginary part correlation (Ayrolles et al.,

2020). Traditional synchronization methods employ a wired

trigger box as an event source for distributing synchronization

signals, and some methods employ multi-device timestamps.

Typically, there are two common synchronization methods:

wired hardware synchronization and software synchronization.

Hardware synchronization involves inputting a synchronization

signal into a digital port (David Hairston et al., 2014). Pulse signals

are typically generated by serial/parallel ports or sensors. For

instance, audio signals are employed for synchronization (Pérez

et al., 2021), and clock signals are sent to two wired acquisition

devices (Chuang et al., 2021). On the other hand, software

synchronization relies on programs that do offline calibration by

aligning the data from multiple sources with timestamps in some

protocols, such as the LSL (lab streaming layer) framework (Reis

et al., 2014) or video frame synchronization (Raghavan et al., 2018).

In this study, we developed a wearable real-time group-

synchronized EEG acquisition system to overcome the

aforementioned challenges of an mBCI system. The proposed

system integrates a light-based event trigger, wireless EEG

acquisition devices, an analysis system, and an ERP stimuli

system. Up to 10 wireless EEG acquisition devices can be group-

synchronized by the event trigger, freeing the limitations of

subjects’ range of motion and activities. In addition, we optimized

the wireless communication channels and the data packet protocol.

The EEG acquisition subsystem achieved an average noise

amplitude of 0.87 µV, a CMRR of 109.02 dB, a higher SNR,

and a comparable ITR with the Synamps2 EEG system from the

market-leading company Neuroscan. Finally, the effectiveness

of the proposed mBCI system was verified in a multi-subject

cognitive experiment, demonstrating its potential in research on

social interaction and decision-making in cognitive neurology.

2. Materials

2.1. System architecture

The architecture of the proposed mBCI system is illustrated

in Figure 1. The mBCI hardware system features a wireless trigger

for data synchronization, a Wi-Fi router for wireless network

connectivity, 10 wearable compact wireless amplifiers (A1–A10)

at a 1 kHz sampling rate and a host computer for recording and

analysis purposes. The system utilizes the light as the trigger source

to send events simultaneously to all the wireless EEG amplifiers.

EEG Ag/AgCl electrodes (PO6, PO4, POz, PO3, PO5, O1, Oz, and

O2), along with one reference and one ground, are linked to the

forehead area, as shown in Figure 1. Furthermore, we designed

a group EEG cognitive experiment to verify that this system is

effective and can be used in noisy settings.

The stimulus display shows real-time calculation results,

stimulus signals, and optical synchronization signals, which are

generated by a steady stimulus-producing host computer. A light

sensor trigger is employed instead of alternative sensors, such as

audio, to reduce latency and efficiency. The synchronizer processes

the trigger signal and uses a dedicated 2.4G channel to transmit the

output to the amplifiers, which differs from the channel between

the recorder analysis server and the client Ax. The interference

may occur due to adjacent channel interference from the neighbor’s

wireless local area network channels in the 802.11 band devices.

To ensure minimal interference between different channel signals,

we processed the individual channels. The protocol of each device

enables simultaneous marking of the received trigger signals (to

Frontiers inNeuroscience 02 frontiersin.org206

https://doi.org/10.3389/fnins.2023.1176344
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Huang et al. 10.3389/fnins.2023.1176344

FIGURE 1

The proposed mBCI system implemented on 10 amplifiers.

indicate different events or sequences), as shown in Figure 2A(a)

red box.

Raw EEG data packed together with the synchronized

trigger event are wirelessly sent to the recording host computer

(acquisition server) via TCP/IP socket. The host computer receives

data packets from the devices and parses them according to

the predefined data protocol. The recorder and analysis perform

processing functions, such as filtering, data saving, and real-

time decoding.

2.2. Software architecture

The software architecture is divided into four parts: trigger,

recorder, analysis, and display of stimuli. The trigger is independent

of the acquisition system and does not require an added

hardware trigger box for connectivity. To ensure complete data are

transmitted wirelessly, a TCP connection links the acquisition and

recording software. Different algorithmic microservices acquire

potential data from different devices over different ports when

the data need to be simultaneously analyzed. TCP is used where

reliable transmission is necessary at the transport layer, whereas

UDP is used for communication where high-speed transmission

and real-time performance are required. Because the quantity of

data is minimal and resides under wired local area networks or

local hosts, we used a UDP connection between display and analysis

software. The UDP packet header is 8 bytes, with relatively low

overhead compared with the 20-byte packet header in TCP. In

addition, using UDP packets allow for lower connection latency

and network traffic by reducing the three-way handshake. In this

way, the results can be timely feedback to the display. Using

a 40ms packet transfer (35 bytes/ms, 1,400 bytes per packet),

we maintained each maximum packet size within the maximum

transmission unit (MTU) range of 1,500 bytes, thereby facilitating

optimal TCP and UDP transfers. In brief, TCP is more intricate,

with a higher volume of header data, which guarantees wireless

communication reliability. Conversely, UDP saves network traffic

by eliminating the requirement for packet loss retransmission,

resulting in improved real-time performance.

We designed the application layer protocol, as shown in

Figure 2A(a). A frame header (48 59 3C, 3 bytes) is used to locate

different nodes. An index (from 00 00 to FF, 2 bytes) is used by the

node to verify the data integrity. Each channel of EEG data consists

of 3 bytes, while an additional 3 bytes are allocated for trigger data,
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FIGURE 2

The mBCI system software architecture and processing flow. (A) Software featured with individual connection, run-time configuration and custom

protocol. (B) The software processing flow.

which serves as event number for different events. Similarly, 3 bytes

are assigned for battery information. Each packet contains 35 bytes,

with a transmission rate of 1,400 bytes every 40ms. The entire

system can be run-time configured by updating the JSON file that

defines the IP, port, channel, sample rate, and other variables. This

feature allows for easy configuration updates while the system is

running. In addition, the server and client Ax can be configured

and updated by internet users, allowing upload data or reporting of

results to some network infrastructure, as shown in Figure 2A(b).

Based on the task design and stimulation software, the stimulus

with trigger can be light, audio, button, serial/parallel port, and so

on, as shown in Figure 2A(c).

According to the software processing flow (refer to

Figure 2B), we prioritized server and client operations to

secure efficient acquisition and recording. We designed the

recording part as a TCP server. Once turned on, each device

(client Ax) automatically connects with the server, registers,

and awaits the start acquisition command. Upon receiving

the command, the client Ax sends the EEG data to the

server. To further enhance data reliability, the recording unit

opens an additional server port, awaiting a TCP connection

from the analysis component. Once initiated, the analysis

unit connects with the recording unit and establishes a

UDP connection with the stimulus display. Additionally,
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the analysis part can operate independently without any

online requirements.

To efficiently synchronize data, the display stimulus unit emits

light. When detecting a sudden flash, the light trigger sends the

synchronization signals to the devices through an independent

channel. The synchronization signals can be marked in the data

protocol packets of each device. Client Ax sends data/trigger to

the recording TCP server every 1ms. The recording TCP server

sends to the analysis unit after packetizing every 40ms. This

process is repeated in subsequent rounds based on the experimental

paradigm design.

3. Methods and experiments

We used a three-step method to evaluate the system’s

performance. The first step involved evaluation of hardware

performance, the second involved evaluating ERP signal qualities,

and the last involved conducting group cognition experiments.

3.1. Evaluation of hardware performance

We evaluated the hardware’s performance based on three key

parameters: data correlation coefficient, CMRR, and noise. In noisy

settings, external industrial frequency and wireless interferences

often cause common mode noise, which can disturb the acquired

device data. In cases where physiological signals are weak, CMRR

serves as a critical metric for demonstrating the ability to suppress

common mode signals.

3.1.1. Synchronization test
We used Pearson’s correlation coefficient, as described by

Rodgers and Nicewander (1988), to estimate the correlation

between two waves in our study. The coefficient is defined

as the quotient of covariance and standard deviation between

two variables:

ρX,Y =
cov(X,Y)

σXσY
=

E [(X − µX) (Y − µY )]

σXσY
(1)

The abovementioned equation defines the overall correlation

coefficient. For multi-channel data, we established the mutual

covariance matrix using this equation.

A light-trigger method was applied to test synchronization

strategies by employing a signal generator and wireless trigger unit.

Specifically, the signal generator sent out a stimulus signal, 10-Hz

sine with 10 mVpp, as shown in Figure 3A. The signals were sent

to each amplifier using a high-performance cable and lasted for

120min. Throughout the continuous operation, we recorded and

monitored the stability of signals using GUI software and inspected

the output waveform of 10 devices every half an hour from an

oscilloscope. Furthermore, the spacing between trigger occurrences

was measured.

The trigger-sender contains an optical sensor. The wireless

trigger-sender simultaneously sends the signal to the trigger-

receiver of each EEG device, as shown in Figure 3A. In the

experiment, the signal source and the 10 devices were positioned

on opposite sides.

Time differences were measured to estimate interference

caused by the spatial transmission between the trigger

sender and receiver unit, as well as to examine time delays

between each transceiver protocol. The end-to-end delay is

the delay between the two probes, as shown in Figure 3B,

including the static delay and the dynamic delay. We

defined two types of delays, as shown in Figure 3C. The

minimum synchronization error is the minimum value

of the dynamic delay among the values obtained from

repeated experiments.

3.1.2. CMRR test
The CMRR indicates the rejection ability of the common

mode signal in the differential amplifier. The calculation method

is as follows:

CMRR = 10× log10

(

Vd

Vcm

)2

= 20× log10

(

Vd

Vcm

)

(2)

where Vd represents the voltage amplification factor of

the differential mode signal and Vcm represents the voltage

amplification factor of the common mode signal. To measure the

root mean square of the input noise, we short-circuited each input

channel with the reference electrode. We employed this approach

in the following experiments of hardware evaluation. To carry out

the CMRR test, we connected all input channels and REF port to the

positive output of the waveform generators, while connecting GND

to the negative output. The waveform generators transmitted a 10-

Hz sine wave with 500 mVpp through high-performance cable. We

calculated the noise by shorting each input channel and the REF

port with no signal.

We proposed the novel mBCI system, each wearable compact

amplifier weighs 56 ± 4 g, and the size is 59.3 × 47.4 ×

22.7mm. The average noise amplitude is 0.87 µVrms @2–

45Hz, and the average CMRR of all the tested devices except

abnormal A4 is 109.03 dB @10Hz, as shown in Figure 4. This

wearable compact system allows a 10m distance between users

by hardware-based synchronization among 10 users. The receiver

in each amplifier receives triggers/markers from the wireless

trigger sender.

Typically, the noise evaluated in such cases is the input

reference noise (Bolatkale et al., 2014). To overcome the motion

and the high-frequency thermal noise of the components, we

applied a filter that allowed signals from 2 to 45Hz. One of the

devices (A4) had a negligible deficit.

3.2. Functionality evaluation

For the functionality of the system, we selected the

SSVEP method as the key indicator. SSVEP is capable of

detecting the periodic synchronization of the brain with

an external flickering visual stimulus delivered at a fixed

frequency, making it an ideal tool for assessing synchronization
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FIGURE 3

The mBCI system synchronization test. (A) The architecture of synchronization test. (B) The test of end-to-end delay. (C) The process of

synchronization test and two types of the delays defined.

FIGURE 4

The device CMRR (dB) @10Hz; noise (µVrms) @2–45Hz. In this study, based on the mBCI 10 devices (A1–A10), the bandpass filters (2–45Hz) for

noise calculation from original EEG signals were in Chebyshev type I filter order. Evaluations were performed at 1 KHz sampling rates.

accuracy and reliability. We assessed both the phase and

frequency accuracy of EEG data recorded at the millisecond

level. To compare the proposed system with the Synamps2

EEG system from the market-leading company Neuroscan,

Inc., we designed both forty-targets and single-target SSVEP

spelling experiments.

3.2.1. SSVEP method
The method was previously described for visual spellers using

the sampled sinusoidal stimulus method in a monitor stimulus

(Manyakov et al., 2013; Chen et al., 2014). The modulation of the

screen brightness represents a stimulus sequence corresponding to

the frequency f .
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s(f , i) =
1

2
×

{

1+ sin
[

2π f
(

i/Refresh Rate
)]}

(3)

where sin() generates a sine wave and i represents the frame

index in the stimulus sequence. represents the Refresh Rate of the

screen (the monitor or display).

We followed the method (Chen et al., 2015a,b; Wong et al.,

2020) and applied filter bank canonical correlation analysis

(FBCCA). This method is widely used to detect the frequency of

SSVEP. The SNR and classification analysis can be used to evaluate

SSVEP data (Chen et al., 2015a,b; Liu et al., 2020; Ladouce et al.,

2022). In this paper, the SNR can be defined as follows:

SNR = 20 log10
y(f )

1
2n ·

n=4
∑

k=1

y(f − 1f · k)+ y(f + 1f · k)

(4)

where y(f ) represents the spectrum calculated by fast Fourier

transform, and 1f represents the frequency resolution.

The recognition accuracy and ITR were defined (Chen et al.,

2015a,b; Wang et al., 2017). The ITR represents the output

information per second or minute. The calculation formula is

as follows:

ITR = 60 ·

(

log2N+ Plog2P + (1− P)log2
1− P

N − 1

)

/T (5)

TheN is defined as the number of commands that can be output

by the system. The accuracy of target recognition (P) affects the

feasibility and reliability of the BCI communication system. Single-

target selection time (T) is often defined as the time required for the

BCI system to output a single command. This study refers to visual

gaze duration in SSVEP experiments.

3.2.2. SSVEP experiments
During SSVEP experimentation, recordings of data were

independently conducted using both the proposed device and

Synamps2 in separate sessions. Initially, subjects wore a wet

electrode EEG cap and the impedance was ensured <20 k. The

experiment sequence was as follows: initial preparation -> System

A -> System B -> Rest -> System B -> System A -> End. In the

crossover experiment, we randomly selected the first system. To

ensure that the participants remained in a good state throughout

the experiment, the total duration could not exceed 90min. The

same stimulation screen, stimulus unit, EEG cap, and trigger sender

shown in Figure 5 were used during data acquisition, while different

systems were switched via a hardware connector.

In the forty-targets and single-target SSVEP spelling test,

EEG data were recorded at a 1,000Hz sampling rate, using the

reference electrode, the ground electrode at the position shown

in Figure 5. The Synamps2 amplifier sends raw data/trigger to the

recording unit (another host computer) using a wire connection.

The BLueBCI amplifier wirelessly sends it to the recording unit

via TCP/IP socket. The device in the proposed system is named

as BLueBCI.

3.2.2.1. Forty-targets SSVEP online analysis

Wedesigned a forty-targets SSVEP spelling board scenario with

a display frequency ranging from 8–15.8Hz, as shown in Figure 6.

The scheme of SSVEP trail is shown in Figure 7.

The frequency value of each character in the matrix can

be represented:

f (kx, ky) = f0 + 1f × [(ky − 1)+ (kx − 1)× 10],

kx ∈ [1 4], ky ∈ [1 10]
(6)

where kx and ky represents the row index and column index,

respectively. In this study, f0 was 8Hz and 1f was 0.2 Hz.

We collected all forty-targets SSVEP data from seven healthy

subjects (four males and three females, aged 27 ± 5 years).

All participants were either students or staff members from the

university and were situated 100 cm away from a monitor during

the experiment. The participants had a normal or corrected-to-

normal vision and had signed consent papers.

3.2.2.2. Single-target SSVEP o	ine analysis

The forty-targets SSVEP experiment features certain

limitations. First, peripheral scintillations are aliased, which

affects the subjects’ vision and reduces the SNR. This may lead

to inaccuracies in the SNR measurements. Second, the low

scintillation frequency results in insufficient response at high

frequencies. These factors constrain the extent to which the

system’s performance can be fully evaluated.

A supplementary experiment was carried out. We designed

a single-target SSVEP spelling board scenario with frequencies

of 12Hz and 30Hz. The experimental procedure was similar to

the forty-targets experiment. The target was set in a circular area

positioned at the center of the screen. As there was only one target,

we removed the cue period from each trail. Blocks spanned 75 s

and comprised 15 trials, with each trial lasting 4 s of stimulation

followed by 1 s of rest.

All single-target SSVEP data were acquired from nine healthy

subjects (one male and eight females with an age of 26 ± 1 years).

All participants were either students or staff members from the

university and were situated 100 cm from the monitor during

the experiment. Participants had a normal or corrected-to-normal

vision and had signed consent papers.

3.3. System evaluation in group cognition
task

Mental fatigue was associated with increased power in theta

(θ) and parietal alpha (α) EEG rhythms. Sleepiness is typically

characterized by an increase in theta and alpha activity, with a

decrease in the beta band (Balandong et al., 2018).

In cognitive science, frequency domain features are widely used

to assess mental fatigue or sleepiness (Eoh et al., 2005). Brain

rhythms are generally divided into five sub-bands: δ : 0.5–4Hz; θ

: 4–8Hz; α : 8–13Hz; β : 13–25Hz; and γ : 25–40Hz. One of the

classic formulas is as follows:

F1 =
Eθ + Eα

Eβ

(7)

where the total frequency band power:

E =

NFFT
∑

n=1

(

F(n)

NFFT

)2

(8)
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FIGURE 5

The comparison scheme between BLueBCI and Synamps2 amplifier.

FIGURE 6

Forty targets of BCI spelling board. (A) A board layout with 26 letters, 10 numbers, and four non-alphanumeric keys (space, comma, dot, and

backspace) arranged in four rows and 10 columns. The upper is used to display the input characters. (B) Encoding the frequency and initial phase of

each target using joint frequency and phase modulation (Chen et al., 2014).

where F(n) denotes the results of the signal X(n) at frequency n.

Quick and reliable signal acquisition is vital for large-scale

applications, especially for the classroom cognitive application. To

achieve this, we used dry electrodes to collect EEG data from the

occipital area in noisy settings. In this group cognition test, the data

were acquired from 10 healthy subjects, consisting of nine students

and one teacher. The mBCI scenario is shown in Figure 8.

Estimating the mBCI application test was constructed. The

teaching process was divided into four parts. This process was as

follows: Initially, all subjects prepared EEG cap for 10min before

class, Period 1 (Guide 2min), Period 2 (Online teaching 27min),

and Period 3 (Offline teaching 49min), as shown in Figure 8. There

was no break from 10:00 to 11:20 AM. Before the online teaching,

2min of guide (1-0-Contrast-G) was used as the control group.

During Period 2, the process included closing the eyes for 2min

(1-1-close), opening the eyes for 2min (1-1-open), playing the

teaching video at 1x speed for 10min (1-1-oT10), playing the video

at 2x speed for 5min (1-2-oT20), playing the video at 1.5x speed

for 6min (1-3-oT15), and then playing the video at 1x speed for

2min (1-4-oT10). During Period 3, the process included opening

the eyes for 2min (2-0-open), closing the eyes for 2min (2-0-close),

followed by offline teaching for 45 min (2-1-1).
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FIGURE 7

The scheme of SSVEP trail. (A) Each block consisted of 40 trails. Each trial was divided into three periods: cue, stimulus, and idle period. The cue was

given 1 s (a red box around the target). The subjects followed the cue target, and then, all the targets started flashing at the same time for 4 s. At the

end of each trial, the participants had a 1-s idle period. (B) Trigger started at the end of the cue and the beginning of the stimulus. During the 4-s

flashing, subjects were asked to avoid eye-blinking while flashing. The real-time SSVEP EEG data were analyzed. During the 1-s idle period, the EEG

feedback was analyzed using the FBCCA method, and then, the updating result was presented in the input field above, and then, the next trial was

followed.

FIGURE 8

The mBCI scenario for education application.

4. Results and discussion

4.1. Comparison of synchronization
performance

We delivered a light input from an optical sensor and used an

oscilloscope to detect two types of delays. One oscilloscope probe is

used to test the output of the optical sensor, and the other probe

is used to test the TTL signal output from the trigger-receiver

unit before entering the microcontroller unit IO port, as shown in

Figure 3B.

We measured the time difference between the probes using an

oscilloscope. We found a static delay of∼4ms and a dynamic delay

of roughly 0.9ms over the course of the 30-min recording period,

as shown in Figure 3B. The static delay and dynamic delay observed

at the edges of the square wave indicated that time drifted from

synchronous sampling, as shown in Figure 3B.

This result suggests that the data recorded by the 10 amplifiers

were not precisely aligned. The static delay variation is <1 µs,

which is almost constant over time. The static delay can be

subtracted from the recorded data, while the dynamic delays can

potentially lead to errors in the analysis of brain activity below the

1 ms level.

Furthermore, to assess the synchronization performance, we

conducted an experiment to calculate the dynamic delay between

the signals. We took the last 50,000 points (1,000Hz by 50 s)

with the trigger and used the Butterworth 50Hz notch filter. After

aligning the trigger, we analyzed the correlation of 40,000 points
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FIGURE 9

Estimating dynamic delay and correlation. (A) The plot of 80 consecutive segments of A1 first channel. (B) The plot of eight-channel signals from 10

devices. (C) The mutual covariances of each device’s first channel.

data. To assess the cumulative phase error of individual device,

we have analyzed the signals of one channel. We split the 40,000

points of A1 first channel into 80 consecutive segments (one

segment every five cycles, 1 k sample rate, 100 points per cycle).

These 80 segments’ points are drawn in Figure 9A. The enlarged

part of the figure shows that the deviation is in the range of

0.5 ms. To evaluate the phase shift between multiple devices, the

signals from 8 channels of 10 devices were analyzed. The signals

of 8 channels from 10 devices were plotted simultaneously in

Figure 9B. This showed the waves are well synchronized and have

a 0.5 ms dynamic delay. The mutual covariances of each device’s

first channel were shown in Figure 9C. The average correlation

reached 99.93%.

After 30 repeated experiments, the minimum synchronization

error was 237 µs and the average was 0.9ms. The causes of the

minimum synchronization error would refer to the cumulative

“time delay” of the electronic system in the wireless transceiver

process, including the baseband protocol resolution time delay, the

crystal clock difference of all the subsystems, and micro-control-

unit command sequence time difference.

Among all EEG systems, Emotiv is the most commonly used

wearable system in research studies (Roy et al., 2019), whereas Brain

Products, EGI, BIOSEMI, and g.Tec are the most frequently used

desktop systems in hyperscanning studies (Barraza et al., 2019).

In particular, for hyperscanning setup types, a wireless wearable

system can overcome limitations on subjects’ range of motion

and adapt to the experimental paradigm design (Xu et al.,

2021). While a wired fixed-linked system is widely used, it can

be quite inconvenient and time-consuming when conducting

hyperscanning experiments. In addition, it is complicated to

acquire simultaneous data with multiple devices. It suggests that

wireless wearable setups with a moderate number of channels

(8/16/32) can be the most suitable for the mBCI system.

According to our literature review, some related work

for the mBCI application are listed in Table 1. Several wired

trigger boxes are able to distribute a SYNC signal to different

devices simultaneously, performing a hardware-based trigger

synchronization method, such as, g.TRIGbox (by g.Tec), USB2

Receiver (by BIOSEMI), and Clock Sync box (by EGI). The systems

from Brain Products, EGI and BIOSEMI adopt parallel interfaces

of the host computer for hardware-based trigger synchronization

since the hardware interrupt level of the parallel interface has a

high priority. This can result in a faster response of processing, such

as the device from g.Tec, which reaches a synchronization delay of

51.22 ms. Synchronization delay of a wireless system from Emotive

adopting audio/video data is 162.69, while the proposed system

achieves a far smaller synchronization delay of<1 ms by exploiting

light signal and customized data protocol.
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TABLE 1 Comparison between the proposed and other commercial EEG acquisition system.

Devices Brain
productsa

EGIa BIOSEMIa g.Tec

g.USBampb,c
Emotiv
EPOCc,d

The
proposed

Hyperscanning

setup types

Fixed-linked Fixed-linked Fixed-linked Fixed-linked Wireless wearable Wireless wearable

Channels number 32/64 128 64 16 14 8/16/32

Device number 2 2 2 4 9 10

Synchronization

delay

Not mentioned Not mentioned Not mentioned 51.22ms 162.69ms <1 ms

Trigger

synchronization

method

Wired TTL

Software: LSL

protocol

Wired TTL

Clock Sync box

Wired USB receiver Wired USB

(g.TRIGbox)

Software: LSL

protocol

Wireless

audio/video data

Software: LSL

protocol

Wireless light signal

Software:

customized data

protocol

aBy Barraza et al. (2019).
bBy Bilucaglia et al. (2020).
cBy Wang et al. (2019).
dBy Poulsen et al. (2017).

FIGURE 10

Key performance comparison in the online forty-targets SSVEP experiments. (A) Spectrum diagram. (B) SNR based on the FBCCA method. The

asterisks indicate significant di�erence by paired t-tests (*p < 0.8, **p < 0.6, ***p < 0.4). (C) Classification accuracy. (D) ITR. We estimated by data

lengths ranging from 0.2 to 4 s, with 0.2-s intervals.

4.2. SSVEP performance comparisons

In this section, we present a comparative result of the mBCI

devices with temporal and spatial analyses. Each participant had

individual REF and GND channels. The channels were connected

to the individual amplifiers. In the acquisition software, the EEG

data with the triggers can be viewed separately and stored in

different files.

The raw SSVEP data underwent several filtering steps. Firstly,

we extracted the 4-s stimulated data by the trigger event (the
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FIGURE 11

Typical temporal and spatial characteristics. (A) Temporal analysis at 250 points per second. (B) Unary linear fitting graph of similarity and 1,000

sampling points. (C) Spectral analysis, left: fundamental (12Hz) to fifth harmonic (24, 36, 48, and 60Hz), right: fundamental (30Hz) to second

harmonic (60Hz). (D) SNR analysis for single-target SSVEP.

FIGURE 12

Typical fatigue cognition characteristics. (A) Temporal, spatial diagram. (B) Each subject F1 During 1-1-oT10 to 2-1-1. (C) F1 diagram During

1-0-Contrast-G to 2-1-1, the black line represents the collaborative result. (D) During 1-3-oT15, the F1 value with the interval 1min.
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sampling rate of both devices was 1,000Hz, and 4-s data were 4,000

points per trial). Secondly, any trail data with an amplitude of

>100 µV were removed, after which the data were downsampled

to 250Hz. Thirdly, the data were processed by Chebyshev type

I bandpass filter, which has a stopband of 3–6Hz, a passband

of 6–65Hz, and a stopband of 65–75Hz. This was to eliminate

environmental noise. Following data preprocessing, the EEG signal

was stored as three-dimensional data with channel × time points

× blocks.

4.2.1. Forty-targets SSVEP
In the forty-targets SSVEP experiment, we focused on the

data resulting from the stimulus frequencies of 8, 9, 10, 11, 12,

13, 14, and 15Hz. The comparison spectrum diagram plot was

drawn between the two devices, as shown in Figure 10A. The

comparison data between one device of the mBCI system and the

Synamps2 device showed obvious SSVEP fundamental frequency

and harmonic response.

We compared 11 sets of BLueBCI data and 13 sets of Synamps2

data by analyzing frequencies of 8, 9, 10, 11, 12, 13, 14, and 15Hz.

Paired t-tests showed that there was no significant difference in

classification accuracy and ITR between the mBCI system device

and the Synamps2 device (p = 0.820 and 0.656, respectively).

However, t-tests of SNR showed there was some difference between

them, as depicted by the asterisks in Figure 10B.

The results show that the average SNR of BLueBCI (5.08± 2.03

dB) is higher than that of Synamps2 (4.66 ± 1.76 dB), as shown in

Figure 10B. Based on the 0.2-2 s data, the resulting peak accuracy

for BLueBCI is slightly lower than that for Synamps2. With 2 s data

length, the accuracy of target recognition was 98%, similar to that

of Synamps2 (99%), as shown in Figure 10C. Based on the 0.2-2.2 s

data, the ITR of BLueBCI was lower than that of Synamps2. But the

ITR performance of the BLueBCI and the Synamps2 tends to be

identical after 2.2 s. With 2 s data length, the average ITR reached

150 ± 20 bits/min, and the highest reached 260 bits/min (data

length: 1 s), which was comparable to Synamps2 (the average: 150

± 15 bits/min, the highest: 280 bits/min), as shown in Figure 10D.

4.2.2. Single-target SSVEP
In the single-target SSVEP experiment, we obtained averaged

data for each device at each frequency from all subjects to eliminate

time-space and phase differences caused by multiple subjects.

The averaged data were plotted in Figure 11A. Linear fitting

was conducted to evaluate the similarity and sampling points as

shown in Figure 11B. Firstly, in terms of 12Hz, the similarity

remained nearly constant with an average of 86% as sampling

points increased. Secondly, in terms of 30Hz, the similarity showed

a significant negative correlation with the increase in sampling

points. This observation suggests that the similarity gradually

decreased with increasing frequency, possibly due to insufficient

data or multi-subject inconsistent time-space and phase response

to a high-frequency stimulus. Our results imply that this approach

can be useful for screening individuals for efficient interaction and

remain a potential area for further study.

Among the nine subjects, 20 sets of 12 Hz-target and 21 sets

of 30 Hz-target were collected by Synamps2; 19 sets of 12 Hz-

target and 19 sets of 30 Hz-target were collected by BLueBCI.

In Figure 11C, the data by BLueBCI (green line) and Synamps2

(blue line) showed obvious fundamental frequency and harmonic

responses, among which the 4th and 5th harmonic responses in

Synamps2 12-Hz stimulation were obvious, while the BLueBCI

exhibited better performance. However, in the 12-Hz stimulus,

the fundamental and second harmonic responses for BLueBCI

were higher than that for Synamps2. In the 30-Hz stimulus, the

fundamental frequency and second harmonic frequency were lower

than that of Synamps2. We compared frequency responses SNR of

12Hz and 30Hz, respectively, as shown in Figure 11D. The 12Hz

and 24Hz SNR of BLueBCI were higher (p = 0.230 and 0.847,

respectively) than Synamps2. There was no significant difference

in the fifth frequency (60Hz, p = 0.856). However, for the 36Hz

and 48Hz SNR for BLueBCI were significantly lower (p = 0.048

and 0.009, respectively) than Synamps2. For the 30-Hz stimulus,

the fundamental frequency and the second harmonic response

(60Hz) SNR for Synamps2 were higher (p = 0.137 and 0.065,

respectively) than those of BLueBCI. This implied that there were

some minor defects in acquisition and processing. Simulated IIR

filtering was carried out (notch 50Hz) on the raw Synamps2 data,

which revealed a gap in the 36–60Hz region of the spectrum,

confirming the same phenomenon detected in the BLueBCI data.

This approach can be amethod for assessing hardware performance

and be a guide for further optimization and system design.

4.3. Group cognition result and discussion

The contrast group data were obtained from the following

periods: 1-0-Contrast-G, 1-1-close, and 2-0-close. Both FFT and

temporal characteristics were evident in periods 1-1-close and

2-0-close, as depicted in Figure 12A, indicating the validity of

the raw data from the quick and simple wearable mBCI system.

During the 1-0-Contrast-G period, the fatigue value was used in

the performance comparison between online and offline teaching.

The data collected by the A4 and A9 amplifiers were removed

due to hardware defects during the evaluation. The data were

then downsampled to 250Hz and filtered by a 50-Hz notch and

Chebyshev type I bandpass filter with a passband from 6 to 65Hz.

First, in the hardware performance results, we found that the

CMRR was abnormally low and the noise was higher than other

devices, as shown in Figure 4 (the device CMRR). Second, due to

the abnormal movement of the caps during the experiment, the low

and abnormal high-frequency data were filtered.

As shown in Figure 12D, the overall F1 score increased over the

6-min period, indicating a rise in fatigue cognition. Additionally,

during the 1-1-oT10 to 2-2-1 stage, there were variations in

fatigue levels among subjects, as depicted in Figure 12B. Paired t-

tests revealed that subjects A1, A5, and A10 showed a significant

difference (p < 0.03) in fatigue levels compared with the

collaborative result, while the fatigue levels of subjects A2, A3,

and A8 were consistent (p > 0.22) with the collaborative result.

Moreover, there was a significant difference between 1-1-oT10 and

2-1-1 periods (p = 0.04). The collaborative results showed that the
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fatigue level decreased during the initial stage of 1-1-open to 1-1-

oT20 but subsequently increased from 1-1-oT20 to 2-2-1, as shown

in Figure 12C. It revealed an apparent trend of increasing the

fatigue level across multiple subjects with personality differences.

These outcomes were consistent with the previous fatigue detection

research (Eoh et al., 2005).

In future, this wearable mBCI system can be utilized for real-

time and rapid multi-subject EEG recording with synchronous

collaborative computing. As demonstrated in this multi-subject

experiment, it serves as a basic tool for exploring cognitive

neuroscience or other multi-subject applications.

5. Conclusion

The mBCI system forms the basis for group-cognitive

applications. When acquiring brain signals from multiple subjects,

it is essential to deploy a wearable, user-friendly, reliable, and

sturdy neural recording system with high-performance and

synchronization abilities. This cutting-edge wearable mBCI system

combines inputs from up to 10 users. First, in terms of

SSVEP performance, it results in a higher SNR than NeuroScan

Synamps2, with comparable ITR and accuracy. Second, it

leverages millisecond-parallel neuro-recording and offers superior

portability than other hyperscanning systems. Moreover, the mBCI

signal correlation attains 99.8%, with minimal synchronization

errors (237 µs). Regarding hardware performance, the average

noise amplitude is 0.87 µV, and the average CMRR reaches

109.02 dB. Each wearable compact device weighs just 56 ± 4 g

and measures a mere 59.3 × 47.4 × 22.7mm. In evaluating

its suitability for multi-subject teaching applications, preparation

required <10min. Group-cognitive assessment findings not only

reveal individual variations but also offer insights into group EEG

fatigue cognitive neurology.

Evaluation results indicate that the proposed mBCI system is

a highly efficient tool for real-time research and the system will

facilitate various applications in the fields of swarm intelligence and

cognitive neurology.
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Objective: In recent years, motor imagery-based brain–computer interfaces 
(MI-BCIs) have developed rapidly due to their great potential in neurological 
rehabilitation. However, the controllable instruction set limits its application in 
daily life. To extend the instruction set, we proposed a novel movement-intention 
encoding paradigm based on sequential finger movement.

Approach: Ten subjects participated in the offline experiment. During the 
experiment, they were required to press a key sequentially [i.e., Left→Left (LL), 
Right→Right (RR), Left→Right (LR), and Right→Left (RL)] using the left or right index 
finger at about 1  s intervals under an auditory prompt of 1  Hz. The movement-
related cortical potential (MRCP) and event-related desynchronization (ERD) 
features were used to investigate the electroencephalography (EEG) variation 
induced by the sequential finger movement tasks. Twelve subjects participated in 
an online experiment to verify the feasibility of the proposed paradigm.

Main results: As a result, both the MRCP and ERD features showed the specific 
temporal–spatial EEG patterns of different sequential finger movement tasks. 
For the offline experiment, the average classification accuracy of the four tasks 
was 71.69%, with the highest accuracy of 79.26%. For the online experiment, the 
average accuracies were 83.33% and 82.71% for LL-versus-RR and LR-versus-RL, 
respectively.

Significance: This paper demonstrated the feasibility of the proposed sequential 
finger movement paradigm through offline and online experiments. This study would 
be helpful for optimizing the encoding method of motor-related EEG information and 
providing a promising approach to extending the instruction set of the movement 
intention-based BCIs.

KEYWORDS

electroencephalography, sequential finger movements, movement related cortical 
potentials, event-related desynchronization, brain-computer interface

1. Introduction

Brain-computer interfaces (BCIs) are the direct communication pathways through which 
users can interact with the external world utilizing brain activities (Wolpaw et  al., 2002; 
Chaudhary et al., 2016; Coogan and He, 2018; Xu et al., 2021). Over the last few decades, advances 
in disciplines such as neuroscience and engineering have introduced the BCI as a promising tool 
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for neurorehabilitation and neurophysiology research (Robinson and 
Vinod, 2016). The BCIs based on decoding motor-related neural 
activities can be  used to drive functional electrical stimulation, 
intelligent prosthesis, or mechanical exoskeletons, which have 
important research value for the rehabilitation, replacement, and 
enhancement of motor functions (Birbaumer et al., 2008; Sebastian-
Romagosa et al., 2021; Hernandez-Rojas et al., 2022; Ju et al., 2022; 
Wang et al., 2022). The motor-related neural activity of the brain can 
be induced by actual movement or motor imagery (MI). In the existing 
research, MI-based BCI is the most commonly used research paradigm 
(Pfurtscheller and Neuper, 2001; Wolpaw et al., 2002).

Currently, electroencephalography (EEG) has become the most 
widely used monitoring means of BCI due to its non-invasiveness, 
relatively low cost, and high time resolution (Park et al., 2012; Xu et al., 
2018; Meng et al., 2020; He et al., 2022). Movement-related cortical 
potentials (MRCP) and sensorimotor oscillatory EEG activity (event-
related desynchronization/synchronization—ERD/ERS) provide 
complementary information on the associated motor activity (Savić 
et al., 2020). Many studies have focused on detecting the pre-motor 
state of the upper limbs using EEG correlates such as MRCP or ERD 
(Sburlea et  al., 2015). ERD/ERS is a particular time-locked EEG 
feature for MI tasks, which represents decreases and increases of 
power in alpha or beta bands. The alpha and beta frequency bands of 
ERD can be found over the corresponding sensorimotor areas of the 
brain when people imagine the movements of their limbs (Kosei et al., 
2014; Peng et al., 2020; Dai et al., 2022). Jackson et al. found that 
motor execution shared similar mechanisms with MI. Motor 
execution can also induce the ERD/ERS features as MI tasks. In 
addition, movement-related cortical potentials (MRCPs) can be found 
during the processes of movement. MRCP is one kind of event-related 
potential (ERP), which is a time and phase-locked feature. Actual 
movement can evoke more significant MRCP features than MI tasks. 
Based on the similarity of neural oscillatory patterns of MI and motor 
execution, we  could develop new paradigms and algorithms for 
movement-intention decoding through actual movement experiments 
(Jackson et al., 2003; Sochůrková et al., 2006; Katsumata et al., 2009; 
Sandhya et al., 2014).

Great progress has been made with the MI-BCI technique in 
recent years, but it still faces many research challenges. The quantity 
and classification accuracy of controllable instruction sets cannot 
meet the needs of users to complete most daily life actions (Qiu et al., 
2021). So far, most studies have involved only four simple body MI 
tasks (i.e., left hand, right hand, foot, and tongue movements), with 
limited alternative paradigms (Townsend et al., 2006; Yang et al., 2009; 
Xygonakis et al., 2018). To solve the limitations of the instruction sets 
of MI-BCI, there have been studies on the decoding of complex limb 
and sequential limb-movement imagination tasks (Zhou et al., 2010; 
Doud et al., 2011; Yi et al., 2013). Hsu et al. designed a MI normal 
form of left and right leg steps and proposed a filter bank common 
space pattern (FBCSP) combined with fuzzy support vector machine 
type-II method, which achieved 86.25% recognition accuracy on eight 
subjects (Hsu et al., 2017). However, the existing MI tasks not only 
increase the operational complexity of the experiment but also make 
the output time of a single instruction longer, which reduces the 
decoding efficiency to a certain extent. Therefore, it is necessary to 
propose a new movement intention encoding paradigm to shorten the 
time of single instructions and ensure good classification performance 
at the same time.

As mentioned above, both ERD and MRCP are time-locked 
features. In addition, they have specific spatial distribution patterns 
for different limb movements or imagination tasks. Hence, the 
sequential limb movement paradigms can effectively combine the 
time-frequency and spatial domains’ movement-related information, 
which are promising methods to extend the BCI instruction set and 
enhance the specificity of different task-induced EEG features. Yi et al. 
designed a sequential compound limb MI paradigm with a mean 
classification accuracy of 74.14%, while the time of one trial was 6 s 
(Weibo et al., 2016). Many studies have analyzed the brain activation 
mechanism of imagining movements of a single limb sequence. It has 
been found that the effect of learning movement sequences by 
imagining movements is similar to that of performing the same 
movement sequences, and the changes in brain activity between the 
two are consistent (Zhang et al., 2011; Hardwick et al., 2018; Wang 
et al., 2019; Zhang Q. et al., 2019). Recently, we investigated how data 
length affected the classification of repeated keystroke tasks with the 
index finger and found that single-trial EEG induced by the repeated 
finger movements had good separability (Zhang S, et al., 2019).

Therefore, we proposed a sequential finger movement paradigm 
for BCI, which was expected to expand the instruction set and shorten 
the time of single instructions. From the perspective of the time-
frequency-spatial domain, this paper analyzed the neural oscillations 
patterns induced by sequential movement tasks. MRCP and ERD 
features were extracted effectively based on the common spatial 
filtering algorithm, such as discriminative canonical pattern matching 
(DCPM) (Xu et al., 2018; Wang et al., 2020) and filter bank common 
spatial pattern (FBCSP) (Chin et al., 2008; Ang et al., 2011; Sun et al., 
2022). Mutual information analysis was used to select features. Both 
an offline and an online experiment were carried out to verify the 
feasibility of the proposed paradigm.

2. Materials and methods

2.1. Participants

A total of twenty-two subjects (eight males and fourteen females, 
aged 22–24 years old, all right-handed) participated in the experiments 
of this study. Among them, ten healthy subjects participated in the 
offline experiment to analyze the EEG features of sequential finger 
movement, and twelve subjects participated in the online experiment 
to evaluate the effectiveness of the proposed paradigm. None of the 
subjects had a history of neurological disease or movement disorders. 
The subjects were informed of the experimental procedure and 
received a letter of acceptance before the study. The study was approved 
by the ethical committee of Tianjin University.

2.2. Design of the experimental paradigm

2.2.1. Offline experiment
During the experiments, the subjects sat quietly in front of a monitor. 

Their arms were flat on the table and their left and right index fingers were 
on the keyboard “Z” and “1,” respectively. The display background color 
was gray to avoid visual stimulation caused by a screen refresh. We tried 
to make the prompts as small as possible to help subjects focus on the 
middle of the screen, thus minimizing the eye movement artifacts of 
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subjects during the recording. Before the formal experiments, the subjects 
were required to practice pressing keys at one-second intervals under an 
auditory prompt of 1 Hz. The 1 Hz-auditory cues were always present in 
formal experiments as background sounds.

The flow chart of a single experiment trial is shown in Figure 1A. At 
the beginning of each trial, a white circle appeared in the center of the 
screen for 1 s to inform the subject that the trial was about to start. After 
the white circle disappeared, a text prompt appeared. Participants were 
asked to press the key using the corresponding [i.e., Left→Left (LL), 
Right→Right (RR), Left→Right (LR), or Right→Left (RL)] index finger 
in their own time. Subjects were not required to respond immediately to 
the text prompt. They could decide when to press the button for the first 
time. For example, if ‘Right → Left’ appeared, the subjects were reminded 
to press the right-hand key first, and then press the left-hand index finger 
after an interval of 1 s. There was a 2 s rest period after the subjects 
completed the keystrokes. During this time, the text prompt remained 
unchanged. Each participant performed 10 blocks of experiments and 
each session included 60 trials. Each sequential finger movement task 
occurred 15 times at random. For each subject, a total of 600 trials (150 
trials for each task) were recorded. Trials with wrong key presses or key 
presses separated by more than 2 s were discarded.

2.2.2. Online experiment
To verify the feasibility of the left and right sequential finger 

movement paradigm, we performed the online experiment. The online 
experiment consisted of eight blocks. The procedure of blocks 1 ~ 6 was 
the same as that of the offline experiment. For each subject, a total of 360 
trials (90 trials for each task) were recorded. Two two-class classifiers, i.e., 
LL-versus-RR and LR-versus-RL, were built using the data from the 
blocks 1 ~ 6. Session 7 contained 40 trials (20 trials of LL and 20 trials of 
RR, randomly sorted). The timeline of one trial of session 7 was the same 
as the offline experiment. During session 7, voice feedback containing the 
classification result was presented to the subject after the second keystroke 
of each trial. Session 8 also included 40 trials and had voice feedback 
following finger movement during each trial. Compared with session 7, 
session 8 performed 20 trials of LR and 20 trials of RL randomly.

The SVM classifier used in the online experiments was obtained 
based on offline data training. During the online experiments, each 
data segment was input to the SVM classifier for classification after 
pre-processing to extract feature values. The output of the SVM 
classifier included the predicted category label and its probability 
score, and we directly used the predicted label as the result output to 
control the corresponding speech feedback.

2.3. Signal recording

In this study, we used a Neuroscan SynAmps2 amplifier to obtain the 
original EEG signal. The EEG acquisition and amplification device used 
in this study, manufactured by Compumedics Neuroscan, included a 
64-lead EEG cap, a SynAmps2 amplifier, and scan 4.5 software. Sixty Ag/
AgCl scalp electrodes were placed according to the international 10–20 
system (Figure 1B). The acquisition system referenced the data to the 
nose, and the prefrontal lobe served as ground. Some skin preparation 
was required before measurement. If there was dirt or excessive hair on 
the skin where the electrode was to be  placed, the skin should 
be pre-cleaned or shaved. The sampling rate of EEG signal was 1,000 Hz 
and the notch filter of 50 Hz was used to eliminate the power frequency 

interference. We fully checked for bad channels and bad trials (incorrect 
keystrokes and keystrokes with more than 2 s between them). Bad 
channels and bad trials were removed if they existed.

2.4. Data processing and analysis

Independent component analysis (ICA) is a common blind source 
separation method in the case of multiple source signals and unknown 
transmission channel parameters.    It functions by observing the signal 
to estimate the source signal, so as to recover the source signal.    
Observed signal X (t) = {x1 (t), x2 (t), …, xn (t)} by the source signal S 
(t) = {s1 (t), s2 (t), …, sn (t)} is obtained by an unknown mixed matrix 
A, namely, X= AS.ICA is to solve the mixing matrix W when S and A 
are unknown. At the same time, the estimate Y of the source signal S is 
separated from the observed signal by W. The prerequisite for ICA is 
that the number of observed signals is not less than the number of 
source signals (Song et al., 2022). In this experiment, the influence of 
eye movement can be seen according to the EMG signal. Therefore, 
we conducted the ICA process. We used EEGLAB to perform ICA 
processing on the EEG data and eliminate various artifacts, such as eye 
movements and blinking. We chose the Runica algorithm for ICA 
processing. In addition, each subject’s data underwent different bad 
segment removal operations. To ensure the validity of the ICA 
processing, we visually inspected each subject’s data and determined 
the components to be  removed based on the EEG waveform and 
timeline. The number of components removed for each subject was not 
fixed, but generally ranged from 5 to 10.

In this study, we mainly analyzed MRCPs and ERD features to 
compare the differences among four different sequence movement-
induced patterns of the offline experiment. Since the MRCP potential 
is a low frequency time-domain waveform signal, we down-sampled 
the raw EEG data to 16 Hz. Then the data were low-pass filtered at 
0–3 Hz using a 4th-order zero-phase Butterworth filter to preserve the 
low-frequency components of the EEG signal. Common average 
reference (CAR) was used to improve the signal-to-noise ratio. In this 
study, we defined the moment of the first keystroke as 0 s and epoched 
the data from-2 s ~ 3 s for MRCP analysis. The paired t-test was used 
for statistical analysis of whole subjects between two different 
sequential finger movement tasks across all time points. To observe 
the spatial patterns of the four tasks, we  calculated the averaged 
amplitude of all subjects on-150 ms and 850 ms at each channel and 
plotted the mean topographical distribution across all subjects.

For the ERD analysis, the original signal was down-sampled to 
200 Hz and CAR was also applied to it. Then, the signal was bandpass 
filtered to 4 ~ 30 Hz. The short-time Fourier transform (STFT) of the 
Hanning window, which has 256 sampling points, was used to 
calculate the event-related spectral perturbation ERSP between the 
time range of −1.5 s to 2.5 s for each movement task. We also defined 
the moment of the first keystroke as 0 and the baseline was the mean 
of the data ranging from −1.5 s to −1 s. We used the mean ERSP values 
of all subjects from electrodes C3, Cz, and C4 to compare the time-
frequency variation among the four sequential finger movement tasks. 
Additionally, the averaged alpha band ERSP values of each keystroke 
in one trial were calculated to analyze the topographical distribution 
of ERD features. The calculation formula is as follows:

ERSP = ERSPoriginal − ERSPbaseline
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To obtain a higher classification accuracy for single EEG 
recognition, we needed to utilize some spatial filtering methods to 
extract both MRCP and ERD features induced by the sequential 
finger movements. MRCP is a low-frequency waveform feature. 
Our previous work showed discriminative canonical pattern 
matching (DCPM) has superiority for MRCP feature extraction. 
DCPM consists of three major parts: (1) the construction of 
discriminative spatial patterns (DSPs); (2) the construction of CCA 
patterns; and (3) pattern matching (Xu et al., 2018). Canonical 
correlation analysis (CCA) is a multivariate statistical analysis 
method that uses the correlation between synthetic variable pairs 
to reflect the overall correlation between two groups of indicators. 
The CCA algorithm can be used to project the spatially filtered data 
into a new space and calculate the correlation to reflect the overall 
correlation of the two groups of indicators (Ma et al., 2022). In 
addition,  other effective feature extraction methods for 
low-frequency waveform features should also be investigated,  such 
as task-related component analysis (TRCA) (Birbaumer et  al., 
2008; Nakanishi et al., 2018; Sun et  al., 2021), a spatial filtering 
method for task-dependent component analysis,  where the weight 
coefficients are optimized to maximize the inter-trial covariance of 
time-locked data.  The goal of  TRCA is to take task-related 
constituent parts out from multiple time series that are linearly 
weighted (Tanaka et al., 2013). For ERD patterns, the filter bank 
common spatial pattern (FBCSP) was intended to independently 

select the appropriate frequency bands for feature extracting, 
which is a popular and effective method (Ang et al., 2012; Chu et al., 
2021). The FBCSP method is the optimization of classical spatial 
filtering in the frequency domain. The effects of different feature 
selection methods are studied, and the best individual features 
based on mutual information are used to obtain the selection 
method with relatively higher classification accuracy (Yong and 
Wonz, 2019). Hence, we used DCPM and TRCA to extract the 
MRCP features and used FBCSP to extract the ERD features. Then, 
we  selected the features based on mutual information (Zhang 
S. et al., 2019).

Before feature extraction, we  down-sampled the raw data to 
200 Hz first. For each keystroke, we epoched data from 0.5 s ahead of 
the key stroke and 1.5 s after the key stroke to process, i.e., −0.5 ~ 1.5 s. 
Different band-pass filters were used for MRCPs and ERD 
characterization. For MRCPs, we used a band-pass filter (1 to 8 Hz) 
to filter the data, and then used DCPM and TRCA, respectively, to 
extract the features. For the ERD features extraction, three crucial 
characteristic frequency bands, 4 ~ 8 Hz (theta band), 8 ~ 13 Hz (alpha 
band), and 13 ~ 30 Hz (beta band), were selected for band-pass 
filtering, and CSP features were extracted, respectively. As the 
eigenvectors of spatial filters are in descending orders, we selected the 
first two dimensions for DCPM and the first three dimensions for 
TRCA and FBCSP. After spatial filtering, we obtained 56 features (16 
of DCPM, 4 of TRCA, and 36 of FBCSP) for each trial. In the FBCSP 

FIGURE 1

(A) The timeline of one trial of the experimental paradigm. (B) Locations of the electrodes.

223

https://doi.org/10.3389/fnins.2023.1180471
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Liu et al. 10.3389/fnins.2023.1180471

Frontiers in Neuroscience 05 frontiersin.org

method, the three-dimensional eigenvectors of each CSP filter were 
selected in three frequency bands for CSP spatial filtering. Therefore, 
the FBCSP characteristic dimension of the four classifications was 
4*3*3 = 36. Furthermore, in order to reduce the characteristic 
dimension, the mutual information between features and labels was 
calculated, and pattern recognition was carried out by combining the 
optimal selection features. The data from the training set was used for 
feature selection (Aldehim and Wang, 2015). A linear support vector 
machine (SVM) was used to build the classifier with the help of the 
famous software package LIBSVM (Yang et al., 2015; Bhatnagar et al., 
2016; Dhiman and Priyanka Saini, 2018). We selected the default 
SVM type and set the penalty factor C to 1. For the offline experiment, 
we  used 10-fold cross-validation to calculate the classification 
accuracies. For the online experiment, the DCPM, TRCA, and CSP 
spatial filters were established using EEG data from blocks 1 to 6. 
We selected 10 features using the mutual information analysis for 
each subject. Then the online linear SVM classification models were 
built. All programs were compiled and run on the MATLAB (Matlab 
used the 2022Rb version of MathWorks) platform. The LL-versus-RR 
and LR-versus-RL classifiers were applied in the online experiment, 
respectively. During the online experiment, the EEG data was 
continuously transmitted to the MATLAB data processing module in 
real time. The program continuously detected the labels, and then 
analyzed and processed the data according to the labels. We provided 
visual feedback during the 2 s break after the second keystroke of each 
trial, which allowed participants to receive immediate information 
on their performance. The speech feedback was performed in each 
trial of the post-processing phase of the data processing program for 
each trial phase executed, which lasted 100 ms. Finally, the 
recognition results were fed back to the subjects through 
voice feedback.

3. Results

3.1. EEG patterns of sequential finger 
movement

We first analyzed the MRCP and ERD patterns induced by 
sequential finger movement from the offline experiment. The top of 
Figure  2 shows the average waveforms of MRCPs across all 
participants of four sequential finger movements at channels C3 and 
C4. It is obvious that the potentials decreased before the movement 
onset for both the left and right finger movements, especially for the 
initial finger. We found that the initial tasks with the left finger, i.e., LL 
and LR, induced more negative potential on channel C4. On the 
contrary, right-hand initial finger movement tasks induced more 
negative potential on C3. This phenomenon also coincided with the 
contralateral activation of the cortical activity in hand functional 
areas. For the second sub-action, only the LR and RL tasks showed 
similar MRCP patterns. In addition, the negative potential peak of the 
initial keystroke action was lower than that of the non-initial 
keystroke action.

The bottom of the Figure 2 shows the topography of the average 
MRCP at −150 ms and 850 ms of the 60 channels. We observed that 
the channels with the negative waveforms were distributed over the 
primary motor area and the supplementary motor area. The 
phenomenon of contralateral dominance could be clearly observed 

from the topography. MRCP-related negativity induced by the 
different sub-action tasks (LR and RL) was more pronounced than the 
repeated sub-action tasks (LL and RR). For the LR and RL tasks, there 
were completely opposite spatial distributions at −150 ms and 850 ms. 
Thus, the time-spatial differences of MRCP could be  used 
for classification.

To further investigate the differences between the different 
sub-action tasks (LR and RL) and the repeated sub-action tasks (LL 
and RR), the average MRCP potentials between the different 
sub-actions and the repeated sub-action tasks were, respectively, 
drawn and analyzed using the paired t-test, as shown in Figure 3. The 
grey area is the time period with significant difference between the 
two types of sequential finger movements-induced potential 
amplitudes. As can be seen from the figure, when the initial sub-action 
was left finger movement, Bereitschaftspotential (BP) induced by LR 
and RL tasks were significantly more obvious than those induced by 
LL task on C3 and C4 channels. Similarly, it could be seen that BP 
amplitudes before LR and RL tasks were significantly larger than those 
before RR tasks except RR-versus-RL at C3. These results showed that, 
compared with simple sequential movement, complex sequential 
movement might induce stronger MRCP patterns.

Figure 4A shows the average time-frequency graph of four types of 
index finger sequence movements of 10 subjects in the offline experiment 
at key channels C3, Cz, and C4. In the figure, it can be observed that all 
the four movement tasks could induce obvious ERD phenomena in the 
theta, alpha, and beta bands. Notably, the intensity of ERD patterns varied 
over time. The ERD phenomenon in theta and alpha bands mainly 
occurred within 1 s before keystroke, which was of high intensity and 
involved a wide range. However, there was no significant difference 
among the three channels. For the repeated sub-action tasks (LR and RL), 
we found distinct contralateral hemispheric dominance, which was not 
obvious for the different sub-action tasks (LR and RL). Figure 4B shows 
the mean alpha band EEG power topography among four different finger 
movement tasks. It can be seen from the brain topographic map that the 
LL and RR tasks could activate the motor functional areas of both hands, 
which showed obvious contralateral dominance. In addition, the ERD 
intensity induced by the initial sub-action was greater than that of the 
second sub-action.

3.2. Classification performance of offline 
experiment

For the classification of the data in the offline experiment, the 
optimal filter dimension and characteristic dimension were selected. 
Figure  5A shows the classification accuracy results of the four 
sequential finger movement tasks. The mean classification accuracy of 
the four classes was 71.69%, which was much higher than the random 
level of 25%. The highest accuracy was 79.26% and the lowest accuracy 
was 54.91%.

We also calculated the confusion matrix under the optimal feature 
dimension of the four categories, as shown in Figure 5B. Each row 
represents the true label and each column represents the output result. 
The figure shows the proportion of each type of task divided into four 
different results by the classifier. It shows that the percentage of 
classification errors varied from task to task. The distribution of the 
four action task features in the classifier was not irregular but a regular 
distribution in a certain projection direction. At the same time, it can 
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FIGURE 2

The average MRCPs across all participants of the four sequential finger movements displayed for channels C3 and C4. Time 0 corresponds to the time 
of the first keystroke. At the bottom of the figure is the spatial distribution of the average MRCP at −150  ms and 850  ms of the 60 channels 
corresponding to the four-movement tasks. LL (Left→Left), RR (Right→Right), LR (Left→Right), and RL (Right→Left) are used to depict the four tasks, 
respectively.

FIGURE 3

Average MRCP between the different sub-action tasks (LL and RR) and repeated sub-action tasks (LR and RL) at channel C3 and C4. The gray area is 
the time period with significant difference between the potential amplitudes induced by the two movement tasks (p  <  0.05, paired t-test).
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be seen that the four types of sequential finger movement tasks had 
different classification difficulties. The two types of tasks with two 
different sub-actions were easier to distinguish than the sequences with 
the same sub-actions. When subjects performed RL or LR tasks, the 
false recognition of RR had a higher occurrence rate than the LL task.

3.3. Classification performance of online 
experiment

The online experimental results of 12 subjects are shown in Figure 6 
and Table 1. The online recognition accuracies were 83.33 and 82.71% for 
LL-versus-RR and LR-versus-RL, respectively. The classification results of 
S4, S6, and S11 in the two types of online experiments all reached more 
than 90%, which proved the feasibility of the sequential finger movement 
paradigm proposed in this study. However, the classification accuracies of 
S2, S5, S7, S9, and S10 decreased significantly compared with the offline 
model. This was caused by the overfitting of the model. Due to the 
non-stationarity of MI-EEG signals, there may be significant differences 
in EEG features between the training and testing datasets. Therefore, a 

classification model constructed through the training set may not adapt 
well to the testing set.

4. Discussion

This paper explored expanding the instruction set for movement 
intention-related BCIs. This paper showed that the sequential 
movement of the left and right fingers could induce the distinguishable 
MRCP and ERD features containing time-frequency-spatial 
movement-related information. In our previous study, we combined 
the MRCP and ERD to decode the pre-movement EEG patterns of left 
and right finger movement and obtained a satisfactory performance 
(Wang et al., 2020). However, that study could only be used for binary 
classification. In this study, the cortical activation of the left and right 
index finger keystrokes were predominated contralateral, which was 
consistent with the results of some other studies (Zang et al., 2003; 
Francesco et al., 2005; Bian et al., 2022). In addition, we also found the 
EEG spatial patterns were rhythmically changed with the rhythmically 
sequential tasks (Figures 2, 4). Hence, sequential finger movement 

FIGURE 4

(A) Average time-frequency maps of the four finger movement tasks at channels C3, Cz, and C4. Time 0 corresponds to the time of the first keystroke. 
Blue is ERD, and red is ERS. (B) The average 8–13  Hz ERSP topography of the four movement tasks. Among them, −0.5  ~  0.5  s and 0.5  ~  1.5  s 
correspond to the first and second sub-actions, respectively.
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adds information encoding in the time domain, which is meaningful 
to extend the instruction of movement intentions.

In Figure 2, we can see the negative potential peak of the initial 
keystroke action was obviously lower than that of the non-initial 
keystroke action, especially for the repeated sub-action tasks (LL and 
RR). The reasons for this phenomenon might come from two aspects. 
On the one hand, we epoched all trials using the label of the first 
keystroke. Although we set a 1 Hz background sound cue during the 
experiment, the time between the second keystroke and the first 
keystroke had a certain error compared with 1 s. Hence, for the 
non-initial keystroke, the negative potential may not be  so 
pronounced after calculating the mean wave because the data were 
not perfectly aligned. On the other hand, compared with the different 
sub-action tasks (LR and RL), the subjects were more familiar with 

the non-initial keystroke action due to it being the same as the initial 
action for the repeated sub-action tasks, which might have resulted 
in less activation of the brain cortex. Jancke et  al. showed that 
repeated practice of an action has an effect on motor cortex activation, 
and familiar action-induced ERD features were reduced (Jancke et al., 
2006). This phenomenon may be similar to the repetitive inhibitory 
effect of steady-state visual-evoked potentials (Xu et al., 2022).

In Figure 4, the onset time of ERD in the alpha band is earlier 
than that in the beta band. Some studies indicated that the 
amplitude of alpha-band oscillations significantly decreased over 
the motor regions that began in the motor preparation stage, 
which implied that the alpha rhythm was more relevant to motor 
planning/programming (Kajihara et al., 2015). The rhythmically 
sequential movement we  proposed in this paper is the more 

FIGURE 5

(A) Ten-fold classification accuracies (%) for all subjects of the offline experiment. (B) Confusion matrix of the average recognition accuracies of the 
four kinds of sequence finger movements of all subjects. Each row represents the true label and each column represents the predicted label.

FIGURE 6

The offline and online experimental classification accuracies (%) of all subjects.
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sophisticated motor control. Hence, the cortex associated with 
motor planning and related advanced cognitive activities would 
be active before movement.

We conducted behavioral analysis. The time difference between 
the two keystrokes was analyzed statistically. The results showed that 
there was no significant difference between the two keystrokes under 
different tasks. The results are shown in Figure 7.

The classification results showed that the LL-versus-RR and 
LR-versus-RL are the two classification models with better 
performance. This is mainly due to the difference between the 
preceding sub-actions and the following sub-actions of the above two 
models. Secondly, we found that the classification models with the 
different initial sub-action (LL-versus-RL or RR-versus-LR) had 
better performance than that with different non-initial sub-actions 
(LL-versus-LR or RR-versus-RL). This indicated that the initial 

sub-action can provide more classification information than the 
non-initial sub-action in the sequential movement paradigm. In this 
paper, although the mean four-classification accuracy of the offline 
experiment has shown divisibility, it still does not meet the needs of 
external device control for everyday BCIs. Therefore, the online 
experiment mainly focused on the two best-performing binary 
models. The existing work is still in the preliminary stage. In the 
future, the classification algorithm should be further optimized and 
improved to realize the high classification accuracy meeting everyday 
BCI use with a large instruction set. Considering the similarity in 
EEG patterns between MI and real movement, how to transfer the 
sequential movement paradigm to sequential MI is also a problem 
worth exploring in the future.

The difference between the results of the online and offline 
experiments may be  due to the non-linear and non-stationary 
characteristics of the EEG signals. The offline results were obtained by 
10-fold cross validation calculation, and the training data were close 
to the test data so that it had a high similarity. In the online experiment, 
the training data used to build the classification model were completely 
separated from the test data. Consequently, the online experimental 
classification effect of subjects whose EEG signals changed greatly over 
time was poor.

The experimental paradigm we  are using now is the motor 
execution of the subject performing a real action. Subsequently, 
we will use transfer learning to make subjects realize brain-computer 
interactive control through motor imagination. For the subsequent 
application of motor imagination, it can be used to help patients with 
rehabilitation, assistance, etc.

However, when we  switch from motor execution to motor 
imagination, the EEG signal might be weakened. In addition, there 
could be some problems such as inaccurate time labels. Wu et al. 
studied the problems of applying transfer learning to brain-computer 
interfaces and how to solve them (Wu et al., 2022).

5. Conclusion

This paper demonstrated the feasibility of the proposed 
sequential finger movement paradigm, which had a satisfactory 
performance on recognition. The spatial distributions of both 
MRCPs and ERD were varied regularly with the different finger 
movements. In general, this study proposed a promising encoding 
method of movement intention to improve the discriminated 
information dimension of EEG patterns, which might provide a 
new idea and theoretical basis for effectively expanding the 
command set of movement intention-related BCIs.
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TABLE 1 Offline and online classification results of two types of 
keystrokes of 12 subjects (%).

Subject L→L versus R→R L→R versus R→L

Off-line On-line Off-line On-line

S1 93.30 87.50 93.73 80.00

S2 95.00 77.50 93.89 62.50

S3 95.00 97.50 97.78 87.50

S4 94.97 90.00 96.11 90.00
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S9 97.65 75.00 98.89 87.50
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Mean 95.17 83.33 95.24 82.71

Std. 1.72 8.56 1.99 13.48
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