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Editorial on the Research Topic
Sustainable catalytic production of bio-based heteroatom-containing
compounds Volume III

Heteroatom-containing compounds are core scaffolds in a variety of medicines, and
important building blocks for the synthesis of fine chemicals (Li et al., 2016; Meng et al.,
2022; Wang et al., 2023a). As a promising alternative to fossil fuels, biomass sources rich in
oxygen species can be used as versatile feedstocks for producing both biofuels and task-
specific molecules (Li et al., 2018; Wang et al., 2023b; Huang et al., 2023; Meng et al., 2023).
For the sustainable conversion processes developed for biomass upgrading, the used catalytic
pathways and strategies are key to regulating product distribution. Also, increasing attention
has been paid to investigating the reaction mechanisms using advanced or in situ
characterization techniques and theoretical calculations. Moreover, environmental and
energy issues (e.g., the greenhouse effect and energy depletion) encountered in the
conventional use of fossil resources have arisen more concerns in the exploration of
renewable biomass and waste CO2 for the manufacture of carbon-based functional
materials/substances employing well-tailored catalysts or catalytic systems.

This Research Topic is Volume III of a series, and here we present a Research Topic of
original research and review articles (12 papers in total) with topics on green and sustainable
chemistry, including catalytic production of biodiesel (Zhang et al., and Pan et al.), catalytic
upgrading of biomass derivatives (Wang et al., Li et al., Zheng et al., and Huang et al.),
selective hydrogenation of CO2 to CH4 (Xiang et al.), bioactive assessment of natural
products (Qu et al.), and environmental issues involved in the biomass utilization processes
(Liu et al., Yang et al., Yang et al., and Yang et al.).

A research paper by Wang et al. reports the preparation of Pt-WOx catalysts supported
on TiO2 with different crystal forms and WOx loadings for catalytic performance in the
hydrogenolysis of glycerol to 1,3-propanediol. The anatase-type TiO2-supported catalyst (Pt/
W/A-Ti) with higher stability shows superior catalytic performance to the rutile-type TiO2

catalyst (Pt/W/R-Ti). Also, the catalytic mechanisms are investigated by in situ
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characterization techniques, manifesting that glycerol is first
transformed into 3-hydroxypropanal over Pt/W/A-Ti, followed
by succeeding conversion steps to give 1,3-propanediol. Xiang
et al. detailedly study the formation process of methane (up to
100% selectivity) from catalytic hydrogenation of CO2 at 280°C over
a Ni-based ETS-10 zeolite catalyst, which is prepared by in situ
doping and impregnation. Intensive characterizations and
measurements are conducted to get insights into the catalyst
promotional mechanisms, with attention to the impact of
different Ni incorporation methods on the catalyst stability. In
addition, the antifungal activities of the Allium mongolicum Regel
leaf (Qu et al.), and the health risks of heavy metals in soils and food
crops (Liu et al.) are assessed, as well.

This Research Topic also features several Mini reviews with varying
scopes (Zhang et al., Pan et al., Li et al., Zheng et al., Huang et al., Yang
et al., Yang et al., and Yang et al.). Zhang et al. summarize recent
advances in the development of magnetic catalytic materials for
producing biodiesel, with a focus on the catalyst physicochemical
properties, performance, and recyclability. The involved catalytic
mechanisms and reaction conditions in biodiesel production are
discussed, and attention is also paid to the limitations and
challenges for future research. Viewing that ionic liquid-
functionalized materials have the unique characteristics of both
homogeneous and heterogeneous catalysts, they are recently
considered as one of the promising alternatives to conventional
homogeneous acid/base catalysts for biodiesel production.
Accordingly, a review on the topic of developing supported acid/
base ionic liquids as heterogeneous catalysts for producing biodiesel
is presented (Pan et al.). Themerits and demerits of various supports (e.
g., mesoporous silica, porous polymers, carbonaceous materials, metal-
organic frameworks, and ferromagnetic materials) in biodiesel
production are collected, and their performance in immobilization
of ionic liquids is compared, with emphasis on the developed
methods effective for immobilizing ionic liquids onto solid supports
to prepare the functional ionic liquids. The ionic liquid-based solid
catalysts are also reported to be efficient for the pretreatment of
lignocellulosic biomass, and the obtained cellulose and hemicellulose
components can be further converted to 5-hydroxymethylfurfural in
the presence of the tailored acidic ionic liquids (Li et al.).

Instead of chemocatalysis, Zheng et al. make a brief introduction
to the classification, source and application of alginate lyases in the
biocatalytic degradation of carbohydrates, which primarily
concentrates on screening of strains, mining of genes, and
analysis of degradation substrate and product structure. In

addition to the comprehensive utilization of saccharides, Huang
et al. introduce the development of a variety of anodes (e.g., Pt, Pb,
Ir, Ni, and Co) for electro-oxidative degradation of lignin, with
emphasis on the product distribution caused by different electrodes,
as well as the involved reaction pathways and catalytic mechanisms.
For the construction of ecological civilization and the goal of carbon
peak and carbon neutralization, several reviews regarding carbon
effect calculation and upgrading strategy (Yang et al.), improvement
of rural soil properties and states by biomass carbon (Yang et al.),
and rural resilience research from the perspective of the ecosystem
(Yang et al.) are also showcased.

We wish this Research Topic enlightens more sustainable and
eco-friendly conversion pathways, sheds light on reaction
mechanisms, and develops novel catalytic strategies for producing
biofuels and high-value chemicals. Enjoy its reading!
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Taking plant metabolites as material to develop new biological fungicides is still

an important mission for pesticide development, and the preliminary study

confirmed that Allium mongolicum showed a certain inhibitory effect on plant

pathogens. In this study, the antifungal activity of extracts of A.mongolicumwas

studied and the compounds were isolated, purified, and identified by HPLC,

NMR, and ESI-MS. The methanol extract of A. mongolicum exhibited certain

inhibitory activity against almost all nine tested pathogens at concentration of

0.5 mg/ml. Sixteen compounds were isolated and purified from the extract,

which were identified as nine flavonoids, six phenolic acids, and an amino acid.

Among them, cinnamic acid derivatives 1, 2, and 3 and flavonoids 7, 8, 9, and 13

were separated in A. mongolicum for the first time.

KEYWORDS

Allium mongolicum, antifungal activity, flavonoids, phenolic acids, tryptophan

1 Introduction

Food and Agriculture Organization of the United Nations (FAO) estimates that about

25% of the world’s crops are affected by plant diseases every year (Xing, 2018), which lead to

the yield losses as well as reduced quality of crop production (Gao et al., 2016; Liu and

Wang, 2016) and secrete a variety of toxins and harmful metabolites (Guo et al., 2021). As is

reported, 70%–80% of the plant diseases are caused by plant phytopathogenic fungi, such as

Magnaporthe oryzae, Fusarium graminearum, Valsa mali, and Botrytis cinerea, which are

hard to control (Qin et al., 2013). For a long time, chemical antimicrobial agents play an

important role in inhibiting plant-pathogenic fungi and promoting agricultural production.

However, the long-term use of chemical agents has gradually been limited by the problems

of food safety, environmental pollution, and the tendency of pathogenic microorganisms to

develop resistance to them (Kim and Hwang, 2007; Akhter et al., 2015; Zhang et al., 2018).

Therefore, development of new compounds with effectively inhibiting activity is still an

important mission (Kang, 2010). Alliaceae has become an important source for finding

useful compounds due to its significant and extensive antifungal activity, some of which
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have been used for agricultural diseases (Ma et al., 2014). As

representative plants of Alliaceae, Allium sativum and Allium cepa

gained more attention and significantly inhibited many kinds of

microorganisms (Nicastro et al., 2015; Martins et al., 2016; Chen

et al., 2017). Especially, the fungicides with garlic oil and ethylicin

as the main effective components were successfully used for

control of agricultural fungal and bacterial diseases.

As a kind of characteristic xerophytic plant of Allium, A.

mongolicum is widely distributed in the desert regions of

northwest China and its leaves are used as a high-quality forage

plant as well as a natural green uncontaminated food (Zhang et al.,

2017). However, for a long time, studies of A. mongolicum have

focused only on itsmorphology and geographic distribution, artificial

cultivation and nutritional value, seed germination characteristics,

and genetic diversity (Yang et al., 2008; Zhang, et al., 2014; Hu et al.,

2017). Recent studies have found that A. mongolicum has broad-

spectrum antimicrobial activity. The aqueous and ethanol extracts of

A. mongolicum exhibited certain inhibitory effects on Staphylococcus

aureus and Escherichia coli and showed greater tolerance to

ultraviolet light and temperature. In the course of studying the

effect of A. mongolicum on mutton quality, it found that volatile

oil, polysaccharide, and flavonoids showed an inhibitory effect on

animal-related foodborne pathogens (Sa et al., 2014; Muqier et al.,

2017). As an important material for finding antimicrobial

compounds, some monomeric compounds of flavonoid and ethyl

cinnamate, dibutyl oxalate, and 2-hexenal from the essential oil of A.

mongolicum were gained in recent years (Wang et al., 2012; Dong

et al., 2015; Dong et al., 2020). However, the antimicrobial activity

compounds of A. mongolicum have not been systematically explored

at present. Therefore, comparatively systematic research about the

inhibitory effect of extracts of A. mongolicum on common plant-

pathogenic fungi was made based on the above in this article, and

monomeric compound of extracts of A. mongolicum were isolated,

purified, and identified, which would lay a foundation for the

research and development of new botanical pesticides.

2 Materials and methods

2.1 Materials

A. mongolicum were collected from Luanjingtan in Alxa

Zuoqi, Inner Mongolia in July (E 105°23′46.12″, N

37°51′36.42″, altitude 1,430 m). Healthy plants were selected,

and aboveground parts were collected to be taken back to the

laboratory. Tested plant pathogenic fungi: Fusarium oxysporum,

Exserohilum turcicum, Valsa mali, Fusarium graminearum,

Botrytis cinerea, Alternaria solani, and Fusarium sulphureum

were provided by Northwest A&F University; Fusarium solani

and Corynespora cassiicola were preserved and provided by

Ningxia Key Laboratory of Microbial Resources Development

and Applications in Special Environment.

2.2 Preparation of extracts of A.
mongolicum

Plant extracts were prepared by solvent extraction with some

modification (Prashith et al., 2015). The leaves of A. mongolicum

were cut into small pieces and dried under shade for 7 days at

32–35°C, then powdered in a blender and stored in a sealed fresh-

storage bottle away from light. Dry powder was separately extracted

by soaking in 10times the volume of petroleum ether,

dichloromethane, ethyl acetate, and methanol for 48 h. The

extract was filtered out, and the same process is repeated three

times. The filtrates were combined and concentrated to paste at

45–50°C by a rotary evaporator and stored in a refrigerator at 4°C for

later used.

2.3 Antifungal activity assays of extracts of
A. mongolicum

Antifungal activity of petroleum ether, dichloromethane,

ethyl acetate, and methanol extracts was evaluated by the

poisoned food technique (Liu et al., 2017). The extracts were

prepared using acetone as the initial solvent carrier followed by

dilution with PDA (at about 60°C) to produce the desired

concentrations of 0.5 mg/ml, then poured into a sterile petri

dish (9 cm in diameter) to make a medium-filled plate. After the

medium was solidified, a mycelial disk (with a diameter of 4 mm)

containing tested pathogenic fungi was placed in each medium

plane. The PDA plates were incubated in the light-dark cycle at

28 ± 1°C for 5 days. PDA plates treated with an equal quantity of

acetone were used as control. Each treatment was treated using

three biological replicates. The mycelial growth inhibition was

calculated by the formula.

Inhibition rate(%) � (C − T)/(C − 4) × 100

where C is the mycelial diameter (mm) of the control and T is the

mycelial diameter (mm) under extract solution treatment.

2.4 Isolation, purification, and structure
identification of compounds from A.
mongolicum

A. mongolicum powder (6.4 kg) was extracted with methanol-

water (4:1, v/v) for 1 h three times by using ultrasonic treatment. The

extracts were combined and centrifuged, then discard precipitation;

the filtrate was concentrated to paste at 45°C, dispersed in appropriate

amount of water. The aqueous phase was extracted with petroleum

ether and ethyl acetate in turn three times. The petroleum ether phase

was discarded, and the ethyl acetate and water phase were retained.

The ethyl acetate phase was concentrated under reduced

pressure at 45°C to obtain crude extract. The extract was isolated
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by normal-phase silica gel chromatography and then eluted with

petroleum ether-ethyl acetate-methanol, ethyl acetate, and

methanol-ethyl acetate fractions were collected. Ethyl acetate

fraction was concentrated and dissolved in methanol, and

separated based on high-performance liquid chromatography

to gain the compounds of 1 (100 mg), 2 (90 mg), and 3 (125 mg).

Methanol-ethyl acetate (5:1, v/v) fraction was concentrated and

dissolved in methanol, separated using high-performance liquid

chromatography (HPLC) to gain the compounds of 4 (240 mg)

and 5 (40 mg). Methanol-ethyl acetate (1:1, v/v) fraction was

concentrated and dissolved in methanol and separated using

HPLC to gain the compounds of 6 (210 mg).

The aqueous phase was separated by AB-8 macroporous

resin column chromatography with methanol-water as a

mobile phase for gradient elution. Methanol-water (7:3, v/

v) phase was collected, evaporated by rotary evaporator and

dissolved in methanol for HPLC separation to gain 1, 2, 3, 4,

and 5 fractions, fractions (1, 2, 3, 4, and 5) were further

isolated through HPLC. Fraction 1 was eluted with methanol-

water and acetonitrile-water to obtain compounds numbered

7 (60 mg), 8 (40 mg), 9 (30 mg), 10 (200 mg). Fraction 2 was

eluted with methanol-water and acetonitrile-water to obtain

compounds numbered 11 (10 mg), 12 (20 mg), 13 (40 mg).

Fraction 3 was concentrated to remove some solvents and the

compound 14 (1,500 mg) separated out with standing for

24 h. Fraction 5 was eluted with methanol-water and

acetonitrile-water to obtain compounds numbered 15

(60 mg), 6 (905 mg), and 16(70 mg).

2.5 Compound structure identification

The mass spectrum, 1H-NMR (400 MHz), and 13C-NMR

(100 MHz) spectra of the compounds were determined. The

chemical structure of the compounds was identified according

to spectroscopic data.

3 Results and discussion

3.1 Results

3.1.1 Toxicity determination of extracts of A.
mongolicum

The extract of A. mongolicum showed different degrees of

inhibition on the mycelial growth of nine different plant-

pathogenic fungi (Table 1). Among them, the inhibitory

effects of all tested extracts on Fusarium solani and Fusarium

graminearum were better, and the inhibition rate was about over

30%. Generally, the inhibitory effects of petroleum ether extract

and methanol extract were higher than that of dichloromethane

extract and ethyl acetate extract, and petroleum ether extract and

methanol extract almost showed inhibitory activity on all tested

pathogens. Based on the former results, the methanol extract

with the yield of 23.31% was much higher than that of petroleum

ether extract (4.27%), as well as, petroleum ether extract

contained more pigment. Considering the polarity of the

solvent, the methanol extract is richer in types of compounds

compared with petroleum ether extract. Therefore, methanol was

selected as the solvent in the subsequent extract experiment.

3.1.2 Chemical structure identification of
compounds from A. mongolicum

Data for compound 1: gray powder, m. p. 212–213°C; ESI-

MS: Calcd for C17H17NO3 ([M + H]+), 284.16; 1H NMR

(400 MHz, Methanol-d4) δ: 7.44 (d, J = 15.7 Hz, 1H, H-7),

7.39 (d, J = 8.6 Hz, 2H, H-2, 6), 7.09–7.02 (m, 2H, H-2′, 6′),
6.82–6.76 (m, 2H, H-3, 5), 6.75–6.66 (m, 2H, H-3′, 5′), 6.38

TABLE 1 Toxicity test results of extracts of A. mongolicum against nine plant-pathogenic fungi at a concentration of 0.5 mg/ml (96 h of incubation).

Plant-pathogenic fungi Inhibition rate (%; mean ± SD; N = 3)a

Petroleum ether extract Dichloromethane extract Ethyl acetate extract Methanol extract

Fusarium solani 36.61 ± 0.23 36.96 ± 0.11 34.46 ± 0.04 30.36 ± 0.20

Valsa mali 42.63 ± 0.20 20.59 ± 0.12 30.88 ± 0.13 32.35 ± 0.18

Fusarium oxysporum 44.77 ± 0.18 15.95 ± 0.12 12.95 ± 0.13 43.55 ± 0.25

Fusarium sulphureum 47.94 ± 0.19 5.39 ± 0.12 17.41 ± 0.12 19.21 ± 0.21

Botrytis cinerea 47.33 ± 0.23 22.81 ± 0.25 11.25 ± 0.15 38.73 ± 0.35

Alternaria solani 26.67 ± 0.13 10.00 ± 0.42 6.67 ± 0.12 33.33 ± 0.20

Fusarium graminearum 27.16 ± 0.16 45.31 ± 0.16 37.04 ± 0.12 33.70 ± 0.18

Exserohilum turcicum 3.45 ± 0.43 13.79 ± 0.24 25.29 ± 0.08 11.49 ± 0.16

Corynespora cassiicola 48.70 ± 0.17 5.44 ± 0.20 42.55 ± 0.15 13.24 ± 0.09

CK 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

aValues are the mean ± SE of three replicates.
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(d, J = 15.7 Hz, 1H,H-8), 3.46 (t, J = 7.4 Hz, 2H, H-8′), 2.75 (t,
J = 7.4 Hz, 2H, H-7′); 13C NMR (100 MHz, Methanol-d4) δ:

169.25 (C-9), 160.49 (C-4), 156.91 (C-4′), 141.77 (C-7),

131.33 (C-1′), 130.72 (C-2′, 6′), 130.54 (C-2, 6), 127.75 (C-

1), 118.47 (C-8), 116.72 (C-3′, 5′), 116.27 (C-3, 5), 42.53 (C-

8′), and 35.80 (C-7′). According to the abovementioned data

and literature (Kim and Lee, 2003), compound 1 was

identified as trans-N-p-coumaroyl tyramine and its

molecular formula is shown in Figure 1. MS diagrams and
1H-NMR and 13C-NMR spectra were shown in

Supplementary Figures S1–S3, respectively.

Data for compound 2: white powder, m. p. 123–125°C; ESI-

MS: Calcd for C18H19NO4([M + H]+), 314.16; 1H NMR

(400 MHz, Methanol-d4) δ: 7.47–7.40 (m, 1H, H-7), 7.11 (d,

J = 1.9 Hz, 1H, H-2), 7.07–7.04 (m, 2H, H-2′, 6′), 7.02 (dd, J = 8.2,

2.0 Hz, 1H, H-6), 6.81 (s, 1H, H-5), 6.74–6.70 (m, 2H, H-3′, 5′),
6.40 (d, J = 15.7 Hz, 1H, H-8), 3.88 (s, 3H, H-3), 3.47 (dd, J = 8.0,

6.7 Hz, 2H, H-8′), 2.75 (t, J = 7.3 Hz, 2H, H-7′); 13C NMR

(100 MHz, Methanol-d4) δ: 169.18 (C-9), 156.92 (C-4′), 149.82
(C-3), 149.29 (C-4), 142.01 (C-7), 131.32 (C-1′), 130.72 (C-2′,
6′), 128.31 (C-1), 123.22 (C-6), 118.80 (C-8), 116.47 (C-3′, 5′),
116.28 (C-5), 111.59 (C-2), 56.41 (OCH3-3), 42.52 (C-8′), and
35.79 (C-7′). According to the abovementioned data and

literature (Jiang and Ying, 2017), compound 2 was identified

as N-trans-feruloyl tyramine and its molecular formula is shown

in Figure 1. MS diagrams and 1H-NMR and 13C-NMR spectra

were shown in Supplementary Figures S4–S6, respectively.

Data for compound 3: steel gray solid, m. p. 132–134°C; ESI-

MS: Calcd for C19H21NO5([M + H]+), 344.19; 1H NMR

(400 MHz, Methanol-d4) δ: 7.44 (d, J = 15.7 Hz, 1H, H-7),

7.11 (d, J = 1.9 Hz, 1H, H-6), 7.02 (dd, J = 8.2, 2.0 Hz, 1H, H-

2), 6.84–6.74 (m, 2H,H-2′, 6′), 6.72 (d, J = 8.0 Hz, 1H, H-3), 6.66

(dd, J = 8.0, 1.9 Hz, 1H), 6.41 (d, J = 15.7 Hz, 1H, H-8), 3.87 (s,

3H, H-5), 3.82 (s, 3H, H-3′), 3.49 (dd, J = 8.0, 6.7 Hz, 2H, H-8′),
2.77 (t, J = 7.3 Hz, 2H, H-7′); 13C NMR (100 MHz, Methanol-d4)

δ: 169.19 (C-9), 149.84 (C-4), 149.29 (C-3), 148.95 (C-3′), 146.05
(C-4′), 142.02 (C-7), 132.05 (C-1′), 128.29 (C-1), 123.19 (C-6),

122.26 (C-6′), 118.80 (C-8), 116.48 (C-5), 116.21 (C-5′), 113.49
(C-2′), 111.59 (C-2), 56.40 (OCH3-3), 56.37 (OCH3-3′), 42.46
(C-8′), and 36.20 (C-7′). According to the abovementioned data

and literature (Jiang and Ying, 2017), compound 3 was identified

as N-trans-feruloyl-3-methoxy tyramine and its molecular

formula is shown in Figure 1. MS diagrams and 1H-NMR and
13C-NMR spectra were shown in Supplementary Figures S7–S9,

respectively.

Data for compound 4: pale yellow powder, m. p. 179–182°C;

ESI-MS: Calcd for C21H20O12 ([M + H]+), 465.12; 1H NMR

(400 MHz, DMSO-d6) δ: 12.63 (s, 1H, H-5), 10.91 (s, 1H,H-4′),

FIGURE 1
Chemical structure of compounds 1, 2, and 3

FIGURE 2
Chemical structure of compounds 4 and 5
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9.72 (s, 1H, H-7), 9.21 (s, 1H, H-3′), 7.62–7.52 (m, 2H, H-2′, 6′),
6.89–6.76 (m, 1H, H-5′), 6.42 (d, J = 2.1 Hz, 1H, H-8), 6.21 (d, J =

2.0 Hz, 1H, H-6), 5.46 (d, J = 7.4 Hz, 1H, H-1″), 5.27 (d, J =

3.8 Hz, 1H), 5.07–5.02 (m, 1H), 4.94 (d, J = 3.6 Hz, 1H), 4.24 (t,

J = 5.7 Hz, 1H), 3.59 (dd, J = 11.5, 4.4 Hz, 1H), 3.30–3.20 (m, 3H),

3.20–3.05 (m, 2H, H-6″); 13C NMR (100 MHz, DMSO-d6) δ:

177.45 (C-4), 164.15 (C-7), 161.24 (C-5), 156.32 (C-9), 156.20

(C-2), 148.47 (C-4′), 144.82 (C-3′), 133.35 (C-3), 121.60 (C-6′),
121.16 (C-1′), 116.21 (C-2′), 115.22 (C-5′), 103.98 (C-10), 100.91
(C-1″), 98.67 (C-6), 93.51 (C-8), 77.55 (C-3″), 76.52 (C-5″),
74.10 (C-2″), 69.95 (C-4″), and 60.98 (C-6″). According to the

abovementioned data and literature (Dong et al., 2016),

compound 4 was identified as Isoquercitrin and its molecular

formula is shown in Figure 2. MS diagrams and 1H-NMR and
13C-NMR spectra were shown in Supplementary Figures

S10–S12, respectively.

Data for compound 5: pale yellow powder, m.

p. 196–198°C; ESI-MS: Calcd for C21H20O11([M + H]+),

449.14; 1H NMR (400 MHz, DMSO-d6) δ: 12.61 (s, 1H, H-

5), 10.89 (s, 1H, H-4′), 10.18 (s, 1H, H-7), 8.08–8.00 (m, 2H, H-

2′, 6′), 6.97–6.85 (m, 2H, H-3′, 5′), 6.44 (d, J = 2.1 Hz, 1H, H-

8), 6.22 (d, J = 2.1 Hz, 1H, H-6), 5.45 (d, J = 7.3 Hz, 1H, H-1″),
5.31 (d, J = 4.3 Hz, 1H), 5.02 (d, J = 4.4 Hz, 1H), 4.92 (d, J =

3.7 Hz, 1H), 4.23 (t, J = 5.6 Hz, 1H), 3.57 (dd, J = 11.6, 5.0 Hz,

1H), 3.28–3.15 (m, 3H), 3.14–3.04 (m, 2H, H-6″); 13C NMR

(100 MHz, DMSO-d6) δ: 177.47 (C-4), 164.15 (C-7), 161.21

(C-5), 159.96 (C-4′), 156.38 (C-2), 156.26 (C-9), 133.21 (C-3),
130.86 (C-2′, C-6′), 120.88 (C-1′), 115.10 (C-3′, 5′), 104.00 (C-
10), 100.91 (C-1″), 98.69 (C-6), 93.64 (C-8), 77.47 (C-3″),
76.44 (C-5″), 74.21 (C-2″), 69.91 (C-4″), and 60.85 (C-6″).
According to the abovementioned data and combined with the

literature (Dong et al., 2015), compound 5 was identified as

Kaempferol-3-O-glucoside and its molecular formula is shown

in Figure 2. MS diagrams and 1H-NMR and 13C-NMR spectra

were shown in Supplementary Figures S13–S15, respectively.

Data for compound 6: pale yellow powder, m. p. 175–177°C;

ESI-MS: Calcd for C27H30O16 ([M + H]+), 611.19; 1H NMR

(400 MHz, DMSO-d6) δ: 12.59 (s, 1H, H-5), 10.81 (s, 1H,H-4′),
9.61 (s, 1H, H-7), 9.16 (s, 1H, H-3′), 7.54 (d, J = 7.5 Hz, 2H, H-2′,
6′), 6.85–6.84 (m, 1H, H-5′), 6.39 (d, J = 2.1 Hz, 1H, H-8), 6.20 (d,

J = 2.1 Hz, 1H,H-6), 5.39–5.30 (m, 1H, 1″), 5.2 (s, 1H), 5.05 (s,

1H), 4.39 (d, J = 1.6 Hz, 2H), 4.34 (s, 1H), 3.71 (d, J = 10.6 Hz,

1H), 3.40 (dd, J = 3.5, 1.6 Hz, 1H), 3.31–3.20 (m, 7H), 3.08 (t, J =

9.2 Hz, 3H), 1.00 (d, J = 6.2 Hz, 3H, H-6‴); 13C NMR (100 MHz,

DMSO-d6) δ: 177.35 (C-4), 164.07 (C-7), 161.20 (C-5), 156.57

(C-9), 156.40 (C-2), 148.39 (C-4′), 144.73 (C-3′), 133.30 (C-3),

121.56 (C-6′), 121.16 (C-1′), 116.25 (C-2′), 115.21 (C-5′), 103.94
(C-10), 101.18 (C-1″), 100.72 (C-1‴), 98.65 (C-6), 93.55 (C-8),

76.45 (C-3″), 75.90 (C-5″), 74.06 (C-2″), 71.84 (C-4‴), 70.55 (C-
3‴), 70.35 (C-2‴), 69.99 (C-4″), 68.21 (C-5‴), 66.97 (C-6″), and
17.70 (C-6‴). According to the abovementioned data and

literature (Dong et al., 2016), compound 6 was identified as

Rutin and its molecular formula is shown in Figure 3. MS

diagrams and 1H-NMR and 13C-NMR spectra were shown in

Supplementary Figures S16–S18, respectively.

Data for compound 7: pale yellow powder, m. p. 187–189°C;

ESI-MS: Calcd for C33H38O23([M + H]+), 803.05; 1H NMR

(400 MHz, DMSO-d6) δ: 12.56 (s, 1H, H-5), 8.93 (s, 1H, H-

3′), 7.68 (d, J = 2.2 Hz, 1H, H-2′), 7.64 (dd, J = 8.6, 2.3 Hz, 1H, H-

6′), 7.23 (d, J = 8.7 Hz, 1H, H-5′), 6.85 (d, J = 2.1 Hz, 1H, H-8),

6.46 (d, J = 2.1 Hz, 1H, H-6), 5.56–5.44 (m, 4H), 5.30 (t, J =

2.4 Hz, 1H), 5.23 (d, J = 7.3 Hz, 2H), 5.09 (s, 3H), 4.97 (s, 1H),

4.87 (d, J = 7.1 Hz, 1H, H-1‴), 4.63 (t, J = 5.7 Hz, 1H), 4.31 (t, J =

5.8 Hz, 1H), 3.92 (d, J = 7.9 Hz, 1H), 3.77–3.70 (m, 2H), 3.59 (dd,

J = 11.3, 5.0 Hz, 2H), 3.49 (d, J = 6.1 Hz, 2H), 3.26–3.15 (m, 7H),

3.10 (d, J = 4.1 Hz, 3H); 13C NMR (100 MHz, DMSO-d6) δ:

FIGURE 3
Chemical structure of compounds 6 and 16.
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FIGURE 4
Chemical structure of compounds 7 and 8

FIGURE 5
Chemical structure of compound 9.

FIGURE 6
Chemical structure of compound 10.
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FIGURE 7
Chemical structure of compound 11.

FIGURE 8
Chemical structure of compound 12.

FIGURE 9
Chemical structure of compound 13.
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177.75 (C-4), 172.00 (C-6‴’), 162.68 (C-7), 160.85 (C-5), 156.07
(C-2), 156.07 (C-9), 147.67 (C-4′), 146.19 (C-3′), 134.16 (C-3),

124.33 (C-1′), 121.06 (C-6′), 116.64 (C-2′), 115.45 (C-5′), 105.81
(C-10), 101.48 (C-1‴), 100.65 (C-1″), 99.35 (C-1‴’), 99.20 (C-6),
94.33 (C-8),77.69 (C-5″), 77.26 (C-5‴), 76.50 (C-3″), 75.94 (C-

3‴’), 75.83 (C-3‴), 74.85 (C-5‴’), 74.12 (C-2″), 73.26 (C-2‴),
72.80 (C-2‴’), 71.49 (C-4‴’), 70.00 (C-4″), 69.78 (C-4‴), 60.97
(C-6″), and 60.72 (C-6‴). According to the abovementioned data

and literature (Fossen et al., 2006; Dong et al., 2020), compound 7

was identified as Quercetin-3,7-O-diglucoside-4′-O-glucuronide
and its molecular formula is shown in Figure 4. MS diagrams and
1H-NMR and 13C-NMR spectra were shown in Supplementary

Figures S19–S21, respectively.

Data for compound 8: pale yellow powder, m. p. 185–187°C;

ESI-MS: Calcd for C33H38O22 ([M + H]+), 787.29; 1H NMR

(400 MHz, DMSO-d6) δ:12.56 (s, 1H, H-5), 8.15 (d, J = 8.9 Hz,

2H, H-2′, 6′), 7.18 (d, J = 8.9 Hz, 2H, H-3′, 5′), 6.87 (d, J =

2.2 Hz, 1H, H-8), 6.47 (d, J = 2.2 Hz, 1H, H-6), 5.52 (d, J =

4.7 Hz, 1H), 5.48 (d, J = 7.3 Hz, 1H, H-1″), 5.35 (dd, J = 11.6,

4.5 Hz, 2H), 5.28 (d, J = 6.7 Hz, 2H), 5.12 (s, 1H), 5.09–5.01 (m,

3H), 4.97 (d, J = 4.2 Hz, 1H), 4.65–4.52 (m, 1H), 4.31 (t, J =

5.8 Hz, 1H), 4.02 (d, J = 9.3 Hz, 1H), 3.71 (dd, J = 11.5, 4.7 Hz,

1H), 3.57 (dd, J = 11.7, 5.7 Hz, 2H), 3.52–3.47 (m, 3H),

3.30–3.05 (m, 11H);13C NMR (100 MHz, DMSO-d6) δ:

177.77 (C-4), 170.23 (C-6‴’), 162.54 (C-7), 160.91 (C-5),

159.38 (C-4′), 156.24 (C-9), 156.13 (C-2), 134.07 (C-3),

130.66 (C-2′, 6′), 123.58 (C-1′), 115.85 (C-3′, 5′), 105.91 (C-

10), 100.76 (C-1″), 99.97 (C-1‴), 99.33 (C-6), 99.11 (C-1‴’),
94.39 (C-8), 77.62 (C-5″), 77.11 (C-5‴), 76.55 (C-3‴), 76.45 (C-
3″), 75.73 (C-3‴’), 75.27 (C-5‴’), 74.20 (C-2″), 73.23 (C-2‴),
72.77 (C-2‴’), 71.28 (C-4‴’), 69.94 (C-4″), 69.66 (C-4‴), 60.88
(C-6″), and 60.66 (C-6‴). According to the abovementioned

data and literature (Dong et al., 2020), compound 8 was

identified as Kaempferol-3,7-O-diglucoside-4′-O-glucuronide
and its molecular formula is shown in Figure 4. MS

diagrams and 1H-NMR and 13C-NMR spectra were shown in

Supplementary Figures S22–S24, respectively.

Data for compound 9: pale yellow powder, m.

p. 181–182°C; ESI-MS: Calcd for C39H48O27([M + H]+),

949.52; 1H NMR (400 MHz, DMSO-d6) δ: 12.54 (s, 1H, H-

5), 8.18–8.06 (m, 2H, H-2′, 6′), 7.22–7.12 (m, 2H, H-3′, 5′),
6.86 (d, J = 2.1 Hz, 1H, H-8), 6.47 (d, J = 2.1 Hz, 1H, H-6),

5.57–5.42 (m, 4H), 5.36 (d, J = 4.6 Hz, 1H), 5.22 (dd, J = 12.1,

6.0 Hz, 4H), 5.12 (s, 1H, H-1‴’’), 5.08–4.96 (m, 5H), 4.76 (d,

FIGURE 10
Chemical structure of compound 14.

FIGURE 11
Chemical structure of compound 15.
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J = 1.9 Hz, 1H), 4.64–4.55 (m, 2H), 4.40 (t, J = 5.8 Hz, 1H), 4.27

(d, J = 7.8 Hz, 1H, H-1‴), 3.93 (d, J = 8.6 Hz, 1H), 3.76–3.68

(m, 3H), 3.67–3.59 (m, 2H), 3.58–3.43 (m, 5H), 3.26–3.11 (m,

7H), 3.07 (d, J = 9.5 Hz, 1H), 3.06–2.99 (m, 2H); 13C NMR

(100 MHz, DMSO-d6) δ: 177.67 (C-4), 170.87 (C-6‴’’), 162.69
(C-7), 160.86 (C-5), 159.39 (C-4′), 156.29 (C-2), 156.11 (C-9),
134.00 (C-3), 130.64 (C-2′, 6′), 123.50 (C-1′), 115.87 (C-3′, 5′),
105.84 (C-10), 103.09 (C-1‴), 100.51 (C-1″), 99.95 (C-1‴’’),
99.40 (6), 99.21 (C-1‴’), 94.45 (C-8), 80.05 (C-4″), 77.09 (C-

5‴’), 76.78 (C-5‴), 76.53 (C-3‴’), 76.44 (C-3‴),75.89 (C-

3‴’’), 75.50 (C-5″),74.74 (C-3″), 73.93 (C-5‴’’), 73.26 (C-

2‴, C-2‴’), 73.22 (C-2″), 72.80 (C-2‴’’), 71.43 (C-4‴’’), 70.03
(C-4‴), 69.64 (C-4‴’), 61.01 (C-6‴), 60.66 (C-6‴’), and 60.16

(C-6″). According to the abovementioned data and literature

(Dong et al., 2020), compound 9 was identified as Kaempferol-

3-O-gentiobiose-7-O-glucose-4′-O-glucuronide and its

molecular formula is shown in Figure 5. MS diagrams and
1H-NMR and 13C-NMR spectra were shown in Supplementary

Figures S25–S27, respectively.

Data for compound 10: pale yellow crystal solid, m.

p. 140–145°C; ESI-MS: Calcd forC21H28O14 ([M-H]-), 503.20;
1H NMR (400 MHz, DMSO-d6) δ: 7.55 (d, J = 15.9 Hz, 1H, H-

7), 7.40 (d, J = 15.9 Hz, 1H, H-7), 7.06 (d, J = 2.1 Hz, 1H, H-2),

7.07–7.00 (m, 1H, H-2), 7.04–6.98 (m, 1H, H-6), 6.95 (dd, J =

8.2, 2.1 Hz, 1H, H-6), 6.76 (dd, J = 8.2, 6.0 Hz, 2H, H-5), 6.27 (d,

J = 15.9 Hz, 1H, H-8), 6.16 (d, J = 15.9 Hz, 1H, H-8), 5.60–5.52

(m, 1H, H-3′), 5.15 (d, J = 3.4 Hz, 1H), 5.16–4.35 (m, 16H),

3.70–3.32 (m, 15H), 3.25–2.85 (m, 13H), 2.06 (s, 1H); 13C NMR

(100 MHz, DMSO-d6) δ: 167.83 (C-9), 164.95 (C-9), 148.58 (C-

4), 148.11 (C-4), 146.17 (C-7), 145.54 (C-3), 144.54 (C-3),

125.68 (C-1), 125.56 (C-1), 121.58 (C-6), 121.09 (C-6),

115.73 (C-5), 115.09 (C-5), 114.88 (C-2), 114.61 (C-2),

113.53 (C-8), 105.09 (C-1″), 104.56 (C-1″), 92.46 (C-1′),
91.44 (C-1′), 82.22 (C-2′), 81.66 (C-2′), 77.63 (C-5″), 76.83
(C-3″), 76.72 (C-3″), 76.38 (C-5′), 76.18 (C-5′), 75.75 (C-4′),
74.56 (C-3′), 73.87 (C-3′), 71.83 (C-2″), 71.68 (C-2″), 70.18 (C-
2′), 70.08 (C-2′), 69.46 (C-4″), 69.17 (C-4″), 61.20 (C-6′), 61.11
(C-6″), 60.46 (C-6′), and 60.41 (C-6″). According to the

abovementioned data and literature (Duan, et al., 2012;

Dong et al., 2020), compound 10 was identified as 1-Caffeoyl

gentiobioside (two kinds of sugar configurations: α and β) and

its molecular formula is shown in Figure 6. MS diagrams and
1H-NMR and 13C-NMR spectra were shown in Supplementary

Figures S27–S30, respectively.

Data for compound 11: white powder, m. p. 142–144°C;

ESI-MS: Calcd for C15H18O9([M-H]-), 341.17; 1H NMR

(400 MHz, DMSO-d6) δ: 7.55 (d, J = 15.8 Hz, 1H, H-7), 7.08

(d, J = 2.1 Hz, 1H, H-2), 7.01 (dd, J = 8.2, 2.0 Hz, 1H, H-6), 6.78

(d, J = 8.2 Hz, 1H, H-5), 6.26 (d, J = 15.9 Hz, 1H,H-8), 5.45 (d,

J = 7.9 Hz, 1H), 5.28 (s, 1H), 5.06 (s, 2H,H-6′), 4.58 (s, 1H),

3.69–3.62 (m, 2H), 3.31–3.10 (m, 6H); 13C NMR (100 MHz,

DMSO-d6) δ: 165.39 (C-9), 148.81 (C-4), 146.47 (C-7), 145.70

(C-3), 125.42 (C-1), 121.74 (C-6), 115.86 (C-5), 114.91 (C-8),

113.41 (C-2), 94.31 (C-1′), 77.86 (C-5′), 76.52 (C-3′), 72.56 (C-
2′), 69.60 (C-4′), and 60.67 (C-6′). According to the

abovementioned data and literature (Dong et al., 2020),

compound 11 was identified as 1-Caffeoyl glucoside and its

molecular formula is shown in Figure 7. MS diagrams and
1H-NMR and 13C-NMR spectra were shown in Supplementary

Figures S31–S33, respectively.

Data for compound 12: pale yellow crystal solid, m.

p. 118–119°C; ESI-MS: Calcd for C21H28O13 ([M-H]-),

487.21; 1H NMR (400 MHz, DMSO-d6) δ: 10.06 (s, 1H, H-

4), 7.63 (d, J = 15.9 Hz, 1H, H-7), 7.59–7.54 (m, 2H,H-2, 6),

6.84–6.74 (m, 2H, H-3, 5), 6.40 (d, J = 16.0 Hz, 1H, H-8),

5.61–5.51 (m, 1H), 5.42 (s, 1H), 5.14 (s, 2H), 4.84 (s, 2H), 4.59

(s, 1H), 4.43 (d, J = 7.8 Hz, 1H), 3.67 (dd, J = 12.1, 2.0 Hz, 1H),

3.59–3.43 (m, 5H), 3.25–3.13 (m, 3H), 3.13–3.06 (m, 3H), 2.95

(dd, J = 8.9, 7.8 Hz, 1H); 13C NMR (100 MHz, DMSO-d6) δ:

165.01 (C-9), 160.00 (C-4), 145.74 (C-7), 130.40 (C-2), 130.04

(C-6), 125.13 (C-1), 115.78 (C-3), 11 5.31 (C-5), 113.76 (C-8),

104.57 (C-1″), 92.46 (C-1′), 81.67 (C-2′), 77.65 (C-5′), 76.76
(C-5″), 76.19 (C-3″), 75.77 (C-3′), 74.55 (C-2″), 69.52 (C-4″),
69.18 (C-4′), 60.50 (C-6″), and 60.41 (C-6′). According to the

abovementioned data and literature (Dong et al., 2020),

compound 12 was identified as 1-p-Coumaroyl

gentiobioside and its molecular formula is shown in

Figure 8. MS diagrams and 1H-NMR and 13C-NMR spectra

were shown in Supplementary Figures S34–S36, respectively.

Data for compound 13: pale yellow powder, m.

p. 207–210°C; ESI-MS: Calcd for C33H38O22 ([M + H]+),

787.26; 1H NMR (400 MHz, DMSO-d6) δ: 12.62 (s, 1H, H-5),

9.74 (s, 1H, H-4′), 9.19 (s, 1H, H-3′),7.60–7.52 (m, 2H, H-2′, 6′),
6.86 (d, J = 8.2 Hz, 1H, H-5′), 6.74 (d, J = 2.1 Hz, 1H, H-8), 6.45

(d, J = 2.1 Hz, 1H, H-6), 5.48 (s, 1H, H-1′), 5.35 (d, J = 7.1 Hz,

1H), 5.25 (dd, J = 10.5, 5.6 Hz, 2H), 5.12–5.03 (m, 2H), 4.39 (d,

J = 1.6 Hz, 1H), 3.94 (d, J = 8.8 Hz, 1H), 3.71 (d, J = 10.1 Hz,

1H), 3.36–3.21 (m, 15H), 3.17 (s, 1H), 3.12–3.03 (m, 2H, H-6‴),
0.98 (d, J = 6.2 Hz, 3H, H-6″); 13C NMR (100 MHz, DMSO-d6)

δ: 177.51 (C-4), 170.68 (C-6‴’), 162.45 (C-7), 160.84 (C-5),

157.31 (C-2), 156.06 (C-9), 148.61 (C-4′), 144.77 (C-3′), 133.55
(C-3), 121.65 (C-1′), 121.03 (C-6′), 116.47 (C-2′), 115.21 (C-5′),
105.71 (C-10), 101.05 (C-1‴’), 100.83 (C-1″), 99.23 (C-6, 1‴),
94.45 (C-8), 76.44 (C-3‴), 75.94 (C-5‴), 75.81 (C-5‴’), 74.93
(C-3‴’), 74.02 (C-2‴), 72.85 (C-2‴’), 71.82 (C-4‴’), 71.41 (C-

4″), 70.66 (C-2″), 70.35 (C-3″), 70.14 (C-4‴), 68.19 (C-5″),
67.23 (C-6‴), and 17.70 (C-6″). According to the

abovementioned data and literature (Dong et al., 2020),

compound 13 was identified as Quercetin-3-O-glucose-7-

O-glucose (1→6)-O-glucuronide and its molecular formula is

shown in Figure 9. MS diagrams and 1H-NMR and 13C-NMR

spectra were shown in Supplementary Figures S37–S39,

respectively.

Data for compound 14: white powder, m. p. 211–213°C; ESI-

MS: Calcd for C11H12N2O2 ([M + H]+), 205.15; 1H NMR

(400 MHz, DMSO-d6) δ: 11.04 (d, J = 2.5 Hz, 1H, H-3), 7.57
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(d, J = 7.9 Hz, 1H, H-8′), 7.35 (d, J = 8.1 Hz, 1H, H-5′), 7.25 (d, J =
2.5 Hz, 1H, H-6′), 7.10–7.01 (m, 1H, H-1′), 7.01–6.92 (m, 1H, H-

7′), 3.51–3.47 (m, 1H), 3.32 (dd, J = 15.1, 4.2 Hz, 1H), 3.02 (dd,

J = 15.1, 8.6 Hz, 1H); 13C NMR (100 MHz, DMSO-d6) δ: 170.48

(C-3), 136.34 (C-4′), 127.30 (C-3′), 124.12 (C-1′), 120.79 (C-7′),
118.34 (C-6′), 118.20 (C-8′), 111.32 (C-5′), 109.56 (C-2′), 54.74
(C-2), and 27.11 (C-1). According to the abovementioned data,

compound 14 was identified as tryptophan and its molecular

formula is shown in Figure 10. MS diagrams and 1H-NMR and
13C-NMR spectra were shown in Supplementary Figures

S40–S42, respectively.

Data for compound 15: pale yellow powder, m.

p. 179–181°C; ESI-MS: Calcd for C27H30O16 ([M + H]+),

611.19; 1H NMR (400 MHz, DMSO-d6) δ: 12.56 (s, 1H, H-

5), 10.93 (s, 1H,H-4′), 8.16–8.08 (m, 2H, H-2′, 6′), 7.20–7.12
(m, 2H, H-3′, 5′), 6.47 (d, J = 2.1 Hz, 1H, H-8), 6.23 (d, J =

2.1 Hz, 1H, H-6), 5.47 (d, J = 7.4 Hz, 1H, 1″), 5.33 (dd, J = 14.0,

4.7 Hz, 2H), 5.12–5.00 (m, 4H), 4.93 (d, J = 4.2 Hz, 1H), 4.57 (t,

J = 5.7 Hz, 1H), 4.29 (t, J = 5.6 Hz, 1H), 3.71–3.62 (m, 1H), 3.58

(dd, J = 11.3, 5.4 Hz, 1H), 3.49–3.39 (m, 1H), 3.40–3.37 (m, 1H),

3.32–3.15 (m, 6H), 3.09–3.01 (m, 2H, H-6″); 13C NMR

(100 MHz, DMSO-d6) δ: 177.54 (C-4), 164.27 (C-7), 161.22

(C-5), 159.23 (C-4′), 156.45 (C-9), 155.60 (C-2), 133.73 (C-3),

130.57 (C-2′, 6′), 123.70 (C-1′), 115.81 (C-3′, 5′), 104.11 (C-10),
100.85 (C-1″), 100.00 (C-1‴), 98.76 (C-6), 93.73 (C-8), 77.56

(C-5″), 77.08 (C-5‴), 76.52 (C-3″), 76.43 (C-3‴), 74.18 (C-2″),
73.21 (C-2‴), 69.92 (C-4″), 69.61 (C-4‴), 60.87 (C-6″), and
60.63 (C-6‴). According to the abovementioned data and

literature (Shan et al., 2020), compound 15 was identified as

Kaempferol-3,7-O-diglucoside and its molecular formula is

shown in Figure 11. MS diagrams and 1H-NMR and
13C-NMR spectra were shown in Supplementary Figures

S43–S45, respectively.

Data for compound 16: pale yellow powder, m. p. 166–168°C;

ESI-MS: Calcd for C27H30O15([M + H]+), 595.15; 1H NMR

(400 MHz, DMSO-d6) δ:12.56 (s, 1H, H-5), 10.86 (s, 1H, H-

4′), 10.12 (s, 1H, H-7), 8.03–7.93 (m, 2H, H-2′, 6′), 6.92–6.84 (m,

2H, H-3′, 5′), 6.42 (d, J = 2.1 Hz, 1H, H-8), 6.21 (d, J = 2.1 Hz, 1H,

H-6), 5.32 (d, J = 7.4 Hz, 1H, 1″), 4.38 (d, J = 1.6 Hz, 1H, H-1‴),
4.03 (s, 2H), 3.75–3.64 (m, 1H), 3.42 (dd, J = 3.4, 1.6 Hz, 1H),

3.32–3.25 (m, 4H), 3.69 (d, J = 9.8 Hz, 1H), 3.16–3.01 (m, 2H, H-

6″), 0.99 (d, J = 6.2 Hz, 3H, H-6‴); 13C NMR (100 MHz, DMSO-

d6) δ: 177.38 (C-4), 164.11 (C-7), 161.18 (C-5), 159.88 (C-4′),
156.82 (C-2), 156.48 (C-9), 133.22 (C-3), 130.84 (C-2′, 6′), 120.87
(C-1′), 115.08 (C-3′, 5′), 103.98 (C-10), 101.33 (C-1″), 100.74 (C-
1‴), 98.70 (C-6), 93.72 (C-8), 76.37 (C-3″),75.75 (C-5″), 74.16
(C-2″), 71.82 (C-4‴), 70.60 (C-3‴), 70.33 (C-2‴), 69.93 (C-4″),
68.22 (C-5‴), 66.88 (C-6″), and 17.69 (C-6‴). According to the

abovementioned data and literature (Dong et al., 2015),

compound 16 was identified as Kaempferol-3-O-rutinoside

and its molecular formula is shown in Figure 3. MS diagrams

and 1H-NMR and 13C-NMR spectra were shown in

Supplementary Figures S46–S48, respectively.

3.2 Disscusion

As a plant found in the desert of the Inner Mongolia,

Ningxia, Gansu Region, A. mongolicum belongs to the genus

Allium of the Liliaceae family (Wang et al., 2013; Wang et al.,

2019). A. mongolicum was taken as a vegetable with local

characteristics for cuisine and seasoning due to its unique

flavor and high nutritional value, which can improve the

cooking quality of mutton (Dong et al., 2020). There are a

few reports about the extract of A. mongolicum to control some

foodborne microorganism pathogens. The ethanol extract and

aqueous extract of A. mongolicum showed antimicrobial

activity against Staphylococcus aureus, Escherichia coli,

Saccharomyces cerevisiae, and so on (Li and Luo, 2008;

Liang et al., 2014). There have been some reports that

essential oil, polysaccharides, and flavonoids of A.

mongolicum exhibited good inhibitory activity against

foodborne microorganism pathogens such as Staphylococcus

aureus, Escherichia coli, and Salmonella enteritidi (Wu, et al.,

2011; Sa, et al., 2014; Muqier et al., 2017). In this study, the

effects of different extracts of A. mongolicum on agricultural

pathogenic fungi were studied. It was found that methanol

extract and petroleum ether extract of A. mongolicum showed

a certain inhibitory effect on tested pathogenic fungi such as

Fusarium oxysporum and Botrytis cinerea. Therefore, the

extract of A. mongolicum has potential value as a botanical

fungicide for the further study.

The chemical composition of A. mongolicum is diverse. So far,

different chemical compositions of extracts of A. mongolicum have

been discovered based on the reference and the related reports.

Thirty-one flavonoids and phenolic acids were obtained and

identified in the study of the effect of A. mongolicum to improve

gastrointestinal function (Dong et al., 2020). The essential oils of A.

mongolicum were analyzed and identified by gas chromatography-

mass spectrometry and NIST Ms Search 2.0 database to identify

37 compounds, most of which were sulfur compounds such as three

dimethyl sulfide, diallyl disulphide, and so on (Wu, et al., 2011). In

this study, the chemical composition of methanol extract of A.

mongolicum were separated and identified by the mass spectrum,

HPLC, 1H NMR, and 13C NMR spectra to gain sixteen compounds,

which include nine flavonoids and six phenolic acids (cinnamic acid

derivatives 1, 2, 3, and 12; caffeic acid derivatives 10 and 11) and

tryptophan. Some of the flavonoids here have been reported in A.

mongolicum (compounds 4, 5, 6, 15, and 16), and those compounds

are secondary metabolites, which are found in most Allium plants

such as Allium cepa L., Allium fistulosum L., and Allium sativum L.

and exert multiple biological activities such as antioxidant and

gastrointestinal motility effect improvement. Three phenolic acids

(cinnamic acid derivatives 1, 2, and 3) were separated in A.

mongolicum for the first time. Cinnamic acid is organic acid

occurring naturally in plants (Sova, 2012; Merlani et al., 2019).

They have been reported to have antibacterial and antifungal

activities and are considered promising lead compounds for
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structural modification to discover bioactive compounds with

significant activity (Guzman, 2014; Khan et al., 2021). Based on

the existing reports about the antimicrobial activity of cinnamic acid

and its derivatives, therefor it is presumed that the antifungal activity

of crude extract of A. mongolicum may be partly due to the three

phenolic acids (1, 2, and 3), which antimicrobial activity is worth

further studying. In subsequent experiments, we can take cinnamic

acid as a lead compound to synthesize a series of cinnamic acid

derivatives with similar structures reported in this article and make a

systematic study on their antimicrobial activity. Among the nine

isolated flavonoids, there are four new compounds (flavonoids 7, 8, 9,

and 13) found in A. mongolicum. As is known, natural flavonoids

exist in the formof its glycosides. Comparedwith flavonoids that have

been reported, the four new compounds here are different mainly on

the position and number of glucosyl of flavanone glycosides. This

study laid a foundation for the further development and utilization of

extracts of A. mongolicum as botanical fungicides.

4 Conclusion

In this article, based on the certain inhibitory activity against nine

tested pathogens of extracts of A. mongolicum, 16compounds were

isolated and identified by HPLC, NMR, and ESI-MS, and seven

compounds including cinnamic acid derivatives and flavonoids were

gained from A. mongolicum for the first time. According to our

knowledge, the antimicrobial research of A. mongolicum almost

focused on controlling some foodborne microorganism pathogens.

Therefore, this study laid a foundation for the systematic research on

the inhibitory effect of compounds of A. mongolicum on common

plant-pathogenic fungi also provides good guidance for further study

to discover potential antifungal agents. The follow-up study is in

process, and more interesting results deserve attention.
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Health risk assessment of heavy
metals in soils and food crops
from a coexist area of heavily
industrialized and intensively
cropping in the Chengdu Plain,
Sichuan, China

Qing Liu1, Xiaohui Li2 and Lei He2*
1School of Chemistry and Chemical Engineering, Anshun University, Anshun, China, 2College of Life
Science, Sichuan Normal University, Chengdu, China

Environmental pollution caused by rapid industrial activities are becoming

increasingly drastic, particularly its impact on soil and plant health. The

present study was conducted to investigate the heavy metal (loid) (As, Cd,

Cu, Hg, Pb, and Zn) concentrations in soils and food biomass crops and estimate

the potential health risks of metals to humans via consumption of contaminated

food biomass crops from Shifang, a periurban agricultural areas in the Chengdu

Plain, Sichuan, China. Results revealed that the soils have been experiencing a

substantial accumulation of heavy metals, especially for Cd, with a mean of

0.84 mg kg−1, about six times higher than the background values, of which 98%

exceeded the pollution warning threshold of the China Soil Environmental

Quality Standards. A total of 78% of all the grain part failed the national food

standard for Cd. No significantly positive relationships between metal levels in

food biomass crops and in the corresponding soils, indicated metals

enrichment in soils were not entirely reflected to crops contaminant

burdens. Estimated daily intake (EDI) of all the metals except for Pb,

exceeded the oral reference dose (RfD) or the minimal risk levels

recommended by USEPA and ATSDR. Target hazard quotients (THQs) of all

themetals except for Cdwas less than one indicated that potential health risk to

the local inhabitant originated mainly from Cd exposure via cereals

consumption. Mitigation strategies to curtail Cd-contaminated soils and

crops Cd burdens need careful tailoring to meet the needs of health and

safety in this region.
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1 Introduction

Nowadays, environmental pollution and the greenhouse

effect are becoming increasingly drastic. Among them,

potential environmental and human risks of exposure to

heavy metals through diet become an important issue of

public health concern, but such information remains still

fragmentary and scattered in an area of intensively cropping

and heavily industrialized coexist (Masindi and Muedi, 2018;

Briffa et al., 2020). Heavy metals are ubiquitous in the

environment, with either natural or anthropogenic origin (Wu

et al., 2016). Anthropogenic activities, such as mining, solid waste

disposal, sludge applications, and industrial processing are the

main sources of heavy metals soil contamination (Sodango et al.,

2018; Timothy and TaguiWilliams, 2019; Sharma et al., 2021). In

addition, excessive use of pesticides and fertilizers, and

wastewater irrigation also play an important role in the

contamination of foodstuffs by heavy metals (Loutfy et al.,

2012; Zwolak et al., 2019; Qin et al., 2021). Toxic heavy

metals released by anthropogenic activities into ecosystems

may lead to geo-accumulation, bio-accumulation, and

biomagnification. In agricultural ecosystems, excessive

accumulation of heavy metals in agricultural soils leads to

elevated heavy metals uptake by food biomass crops, which is

of great concern because of potential health risk to humans (Ali

et al., 2019; Afonne and Ifediba, 2020; Hasan et al., 2020).

Consumption of food biomass crops contaminated with heavy

metals is a major food chain route for human exposure. Recently,

there have been increasing interests in human health risk caused

by consuming heavy metal contaminated food (Sall et al., 2020;

Zheng et al., 2020; Ahmad et al., 2021; Alengebawy et al., 2021).

The Food and Agricultural Organization of the United Nations

(FAO), World Health Organization (WHO), United States

Environmental Protection Agency (USEPA), the Agency for

Toxic Substances and Disease Registry (ATSDR), and other

regulatory bodies of various countries have established

maximum permissible limits (MPL) of heavy metals in

foodstuffs and offered some methods for health risk

assessment. Based on these methods, numerous studies have

been conducted on potential health risk assessment of heavy

metals contaminated in soils and crops in different regions (Saha

et al., 2016; Ishtiaq et al., 2018; Bello et al., 2019; Lien et al., 2021;

Setia et al., 2021; Udom et al., 2022). But such information from

an intensively cultivated areas remains still fragmentary (Bhatti

et al., 2018; Zheng et al., 2020).

The Chengdu Plain, the“Land of Abundance” in China, is an

important agricultural region and has also experiencing rapid

change of socio-economic structur e changes. Urbanization,

industrialization, and agricultural intensification have caused

an increase of large amounts of metal-contained

agrochemicals, wastes, and sewages in the agricultural

environment. Previous studies in the Chengdu Plain reveal an

obvious increase of heavy metals, especially cadmium (Cd) and

mercury (Hg) in soils in the past decades (Qin et al., 2013; Wang

et al., 2017; Deng et al., 2019; Wang et al., 2019). Increased heavy

metals in soil results not only in soil quality deteriorating but may

also affect agricultural product safety. There is a probable

accumulation of heavy metals in crops grown in this region.

However, studies have suggested that the knowledge of total

concentration of metals alone is not sufficient to evaluate

phytotoxic risk and human health risk (Yuswir et al., 2015;

Tapia-Gatica et al., 2020); Huang et al. (2018) suggest that

exposure to heavy metals through rice intake was the most

important single health risk contributor. Dietary intake

through contaminated foods has become the main route of

heavy metal intake by humans (Chen et al., 2018). Therefore,

the risk assessment of exposure to heavy metals through diet

becomes an important health issue.

The coexist area of heavily industrialized and intensively

cropping occupied a considerable proportion in the Chengdu

Plain. Many previous studies only considered the levels of heavy

metals in the soils and/or vegetables (Liu et al., 2004; Jin et al.,

2008; Qin et al., 2013) and no studies have investigated the bio-

accumulation of heavy metals in food crops from the soils in the

coexist area. On the one hand, there are a large number of

industrial pollution sources from such as the chemical industry,

metal smelting, and cement production in the coexist areas,

pollutants enter into farmland are inevitable through

atmospheric deposition, wastewater, and solid waste discharge.

On the other hand, highly intensive farming systems also bring a

certain amount of heavy metals to the agricultural environment

through the application of chemical fertilizers and pesticides.

Health consequences of these pollution to local residents need to

understand assessment, which has certain implications for

changes in local planting structures and risk mitigation

strategies or the safe usage of farmlands.

In order to enable the development of appropriate

environmental and/or health guidelines, it is essential to have

an understanding of the universal range of heavy metals

concentrations in crops on the intensively cultivated area.

Such data are also important to assist in assessing any

potential risk to the environment or human health. The

purpose of this study is to 1) identify the concentration of

heavy metals in soils, rice, and maize; 2) evaluate the potential

health risk associated with heavy metals through consumption of

rice and maize using estimated daily intake (EDI) and target

hazard quotient (THQ).

2 Materials and methods

2.1 Study area

The research area is composed of the whole flat area of

Shifang city and parts of Guanghan city and Mianzhu city,

situating at the northwest of the Chengdu Plain, Sichuan
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province, southwestern China (103°58′–104°22′E,
30°58′–31°23′N) (Figure 1). Climate is subtropical humid

climate, with mean annual temperature of −16°C and mean

annual rainfall of 940 mm. Parent materials of soils are

mainly alluvial of the Min River. Major soil types are Hapli-

Stagnic Anthrosols and Gleyi-Stagnic Anthrosols in the Chinese

Soil Taxonomy (Gong and Li, 2001).As a heavily industrial

activities and intensively farming coexist area, the study area

has diverse industrial clusters, including food, metallurgical,

construction materials, pharmaceutical, chemical, and leather

industry in the flat part, whereas the mountainous/hill part being

phosphorus ore, coal, and limestone mining.

Rice is cultivated on 90% of the total arable lands, rest be used

for maize, wheat, vegetable, andmushroom cultivating (WangM.

et al., 2016). Agriculture depends on agrochemicals. It is a typical

area that intensive crop farming mingled with heavily industrial

operations in the Chengdu Plain.

2.2 Sample collection

The systematic random sampling method was used to

collect samples. A sampling grid overlay on the study region

(Figure 1), then the samples were collected at the node areas

of a regular grid of about 3 km × 3 km. At each sampling site,

a clean plastic shovel was used to collect 5–7 randomly

subsamples at the 0–20 cm depth to form one

representative composite sample of at least 500 g by the

quartering method and put in a cleaned zip-lock plastic

bag for the laboratory analysis. At each soil sampling sites,

3–5 subsamples of the edible part of maize mature seeds and/

or the ear of rice were collected at random, and a composite

sample at least 300 g was made for each crop. In total, the

samples of 40 paddy soils, 10 dryland soils, 40 rice, and

10 maize were collected.

2.3 Analyses of samples

Soil samples were screened of debris and stones, air-dried,

and crushed to pass through a 2-mm sieve. Each sample was

homogeneized and quartered, representative subsamples

of ≤2 mm size fraction were grounded in an agate mortar to

pass a 0.149-mm sieve and prepared for chemical analysis.

Samples of rice and maize were washed with deionized water

to remove all visible soil particles or dusts, oven-dried at 60°C.

After rice husks were removed, rice grains were grounded in a

stainless steel mill to a fine powder and stored in plastic bags for

further chemical analysis. Corn kernels were also prepared in the

same way as analytical samples.

Soil pH was measured by a pH meter with soil/H2O ratio of

1:2.5 (soil:solution, dry w/v). The organic matter content was

determined by the Walkley-Black procedure. Cation exchange

capacity (CEC) was determined using NH4OAc at pH 7.0, the

leaching method of the Soil Survey Staff (1996). Soil samples

were digested by concentrated acid mixture (HNO3, HClO4,

and HF), and food crop samples were digested with HNO3 and

HClO4 in a 5:1 ratio. The acid digested soil and crop samples

were filtered and diluted with distilled water to 50 and 10 ml,

respectively. Concentration of total Pb, Cd, Cu, and Zn in the

digests was measured using an atomic absorption

spectrophotometer (Analyst 800 P.E.) equipped with a

heated graphite furnace system (THGA-800 P.E.), while As

and Hg were determined by atomic fluorescence spectrometer

(AFS-830a).

2.4 Quality control and assurance

To ensure the quality of metals analysis, certified reference

material (CRM) (from the National Research Center for

Standards in China, Beijing) including Sichuan basin soil

(GBW07428) and Sichuan rice flour (GBW10044) was used to

validate the analysis. The average rice flour CRM recoveries

ranged from 91 to 101%, 94 to 100%, 96 to 101%, 98 to

101%, 96 to 103%, and 90 to 105% for Cd, As, Pb, Cu, Zn,

and Hg, respectively. The mean recoveries for soil CRM’s ranged

from 89 to 100%, 97 to 104%, 98 to 102%, 97 to 100%, 98 to 101%,

and 95 to 103% for Cd, As, Pb, Cu, Zn, and Hg.

FIGURE 1
Schematic map of sampling sites in the study area, Sichuan
province (southwest China).
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2.5 Data analysis

2.5.1 Bio-accumulation factor
Metal concentrations of soils and grains were calculated on

the basis of dry weight. The bio-accumulation factor (BAF), a

ratio of the contaminant in food crops to the concentration in the

soil substrate, was calculated using the following equation:

BAF � Cplant

Csoil
,

where Cplant and Csoil represent the heavy metal (loid)

concentration in the edible part of food crops and soils on

dry weight basis, respectively.

2.5.2 Estimated daily intake of metals
The estimated daily intake (EDI) of the specific metal

depended on both the metal concentration in the edible part

of food crops and the amount of consumption of the respective

food. The EDI was determined by the following equation:

EDI � Cmetal × CF × Wfood

BW
,

where Cmetal (mg kg−1, on dry weight basis) is the concentration

of metals in contaminated crops; CF denotes the conversion

factor, the Cmetal of both rice and maize were converted with a

factor of 0.86 because home-stored rice and maize commonly

contain water under 14% (w/w); Wfood represents the daily

average consumption of food crops in the study area; and BW

is the average body weight. According to the dietary intake

surveyed by Zhu et al. (2000), the local inhabitants had an

average consumption per person (average 65 kg in body

weight) of 363 and 45 g/day for rice and maize, respectively,

for children (average 30 kg in body weight), estimated intake

account for about 60% of consumption for adults.

2.5.3 Target hazard quotient
Health risks for locals through the consumption of

contaminated rice and maize was assessed based on the target

hazard quotient (THQ). The THQ is a ratio of determined dose

of a pollutant to a reference dose level. If the ratio is less than one,

the exposed population is assumed to be safe (USEPA, 2012);

THQ is described by the following equation:

THQ � EF × ED × FIR × C

RfD × BW × TA
× 10−3,

where EF is the exposure frequency (365 days/year); ED is the

exposure duration (70 years), equivalent to the average lifetime;

FIR is the food ingestion rate (for adults, rice: 363 g/person/day,

maize: 45 g/person/day; for children, rice: 218 g/person/day and

maize: 27 g/person/day) (Zhu et al., 2000); C is the metal (loid)

concentration in food (μg g−1); RfD is the oral reference dose

(As = 0.3 μg kg−1 d−1, Hg = 0.16 μg kg−1 d−1, Cd = 1 μg kg−1 d−1,

Pb = 4 μg kg−1 d−1, Cu = 10 μg kg−1 d−1, Zn = 300 μg kg−1 d−1)

(USEPA, 2008; USEPA, 2013; ATSDR, 2013); BW is the average

body weight (65 kg), and TA is the averaging exposure time for

non-carcinogens (365 days/year ×ED).

2.5.4 Statistical analysis
Data were statistically analyzed using a statistical package

SPSS 20. Shapiro–Wilk test is used to determine whether sample

data have been drawn from a normally distributed population.

When the assumption of normality was met, the mean was

selected to test the statistical significance of the data,

including comparison the mean of two and multiple groups

and analysis of variance (ANOVA), with a significance level of

p < 0.05, and the figures also presented with the mean values and

standard errors. When the assumption of normality was violated,

the median was selected to do Mann–Whitney test for two

groups and Kruskal–Wallis test for multiple groups, and

Spearman’s correlation analysis was used to test the

correlation assumption.

3 Results

3.1 Heavy metals in soils

Basic soil characteristics and the concentrations of As, Cd,

Hg, Pb, Cu, and Zn in soils are presented in Table 1. Soil is

generally slightly acidic (mean pH 6.48), with a range of acidic

(pH 4.54) to slightly alkaline (pH 7.99), in which pH value of

36 soil samples was less than seven, accounting for 72%. Soil

organic matter (SOM) ranged between 54 and 112 g kg−1, with a

mean of 101 g kg−1. Cation exchange capacity (CEC) varied

considerably from 2.35 to 21.16 cmol kg−1, a difference of

approximately nine times. The pH value in the rainfed lands

that maize cultivated soils were not markedly different,

comparing with the paddy fields that rice cultivated soils

(p = 0.919). There was also no obvious difference in SOM

between rainfed lands and paddy fields (p = 0.422). CEC in the

paddy land was significantly lower than that in rainfed lands

(p = 0.049).

Mean concentrations of As, Cd, Hg, Pb, Cu, and Zn in soils

were 8.01, 0.84, 0.19, 24.49, 25.72, and 80.12 mg kg−1, respectively

(Table 1). Except for Cd, all other metals were below the risk

control standard for soil contamination of agricultural land

(Ministry of Ecology and Environment of the PRC, 2018)

(Table 1). A considerable buildup for all the metals in the

soils were observed when comparison with the background

values, indicating that soils in the study area had a

considerably contaminated by heavy metals, especially Cd and

As. Concentration of metals was higher in rainfed soil than in

paddy soil (Figure 2), with As (p = 0.001), Cd (p = 0.027), and Cu

(p = 0.028) significantly higher in rainfed soil than paddy soil,

and the rest [Pb (p = 0.156), Hg (p = 0.174), Zn (p = 0.47)]

insignificantly different.
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TABLE 1 Characteristics and metal levels of the soils collected from the study area (matters content on dry weight basis).

Property Range Mean (n =50) SEa Background valueb SEPA RSVc

(pH = 6.5–7.5)

pH (H2O) 4.54–7.99 6.48 0.85 — —

SOM(g kg−1) 54.04–112.23 101.04 20.31 — —

CEC (cmol kg−1) 2.35–21.16 7.04 0.45 - -

As (mg kg−1) 3.81–33.18 8.01 0.75 3.77 30

Cd (mg kg−1) 0.51–1.90 0.84 0.04 0.14 0.30

Hg (mg kg−1) 0.12–0.33 0.18 0.03 0.14 0.30

Pb (mg kg−1) 8.05–80.33 24.49 1.69 20.70 250

Cu (mg kg−1) 16.66–70.57 25.72 1.42 23.01 50

Zn (mg kg−1) 53.58–159.59 80.21 3.19 65.12 200

aSE denote standard error.
bBackground value from Yao (1987).
cRisk-based screening values (RSV) of soil environmental quality risk control standard for soil contamination of agricultural land (GB 15618-2018) (Ministry of Ecology and Environment

of the PRC, 2018).

FIGURE 2
Metal concentrations (dry weight basis) in the soils from different types of farming in the study area. Data are mean ± 1SE, n = 40 for paddy soils
and n = 10 for dryland soils. For each element, means with the same letter are not significantly (p > 0.05) different.

TABLE 2 Metals concentrations (on dry weight basis) in the edible parts of food crops collected from the study area.

Metal Rice (n =40) Maize (n =10)

Range Mean ± SE Range Mean ± SE MLsa

As (mg kg−1) 0.04–0.17 0.07 ± 0.01 0.04–0.13 0.06 ± 0.01 0.15 (0.2)b

Cd (mg kg−1) 0.09–1.78 0.46 ± 0.06 0.05–0.77 0.26 ± 0.08 0.2 (0.1)

Hg (mg kg−1) 0.002–0.21 0.01 ± 0.01 0.002–0.02 0.01 ± 0.01 0.02

Pb (mg kg−1) 0.06–0.58 0.30 ± 0.02 0.02–0.50 0.29 ± 0.05 0.2

Cu (mg kg−1) 1.48–6.33 4.14 ± 0.17 1.21–5.30 2.73 ± 0.48 10

Zn (mg kg−1) 27.49–53.54 39.55 ± 0.83 35.58–49.13 41.72 ± 1.48 50

aMaximum levels of contaminants in foods (GB 2762-2017) (Ministry of Health of the PRC, 2017).
bNumber in parenthesis indicate maximum levels of metals in food grains other than rice.
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3.2 Heavy metals in food crops

The average concentrations and ranges of heavy metals (on

dry weight basis) in the edible portions of food crops grown in the

investigated soils are given in Table 2. The average

concentrations of Cd in rice and maize were 0.46 and

0.26 mg kg−1, respectively (Table 2), 78% of crop samples

exceeded the MPL for Cd of Chinese standard (Ministry of

Health of the PRC, 2017). Mean content of Pb in rice and

maize was 0.30 and 0.29 mg kg−1, respectively, also overtaking

the MPL. The results indicated that both rice and maize in the

study area exhibited a conspicuous Cd and Pb pollution. But As,

Hg, Cu, and Zn concentrations were substantially lower than the

MPL in rice and maize grown in the soils of the research area

(Table 2). All the metal contents except for Cu (p = 0.001) and Cd

(p =0.05) are insignificantly different between rice and maize, but

the trends of heavy metal accumulations, in general, was in the

order of rice > maize (Table 2).

3.3 Heavy metal transfer from soil to food
crop

The bio-accumulation factor (BAF) for heavy metal

transferring from soils to food crops tended to be in the order

of Cd > Zn > Cu > Pb > Hg > As, and there was significantly

difference in BAF values among metals (p < 0.001) (Figure 3). As,

Cd, and Cu in the edible parts of rice were markedly higher than

that of maize (Figure 3, all p < 0.05), whereas Hg, Pb, and Zn

buildup in the corresponding parts of crops had no obvious

difference. Correlation analysis reveals no significant correlation

between metal concentrations in soils and in the edible parts of

the plants except for Cu (p = 0.026), indicating that the metals

content in plant does not fully reflect the total metal level in soils.

3.4 Daily intake of metals through food
consumption and human health risks

Daily intake of heavy metal was estimated based on the

average food consumption in the study area. The estimated daily

intake (EDI) via consumption of rice and maize for adults and

children is given in Table 3. EDI of Hg, As, Pb, Cd, Cu, and Zn for

adults was 0.11, 0.44, 1.62, 2.43, 21.52, and 214.83, respectively,

whereas for children it was 0.31, 0.55, 2.11, 3.12, 38.02, and

379.52, respectively. According to the oral reference dose (RfD)

recommended by USEPA, ASTDR and Cal EPA, EDI of As, Cd,

and Cu for adults had exceeded the reference dose (Table 3),

while EDI, except for that of Pb, for children, surpassed the

recommended limit. Moreover, EDIs through the consumption

of rice were significantly higher than through the consumption of

maize because the dietary habits of local inhabitant are centered

on rice. In particular, EDI values to the local children tended to be

higher over adults, indicating that the children had a relatively

significant health risks via the consumption of metals

contaminated foods.

Target hazard quotient (THQ) of metals through the

ingestion of rice and maize for adults and children is shown

in Figure 4. While THQ of As, Hg, Pb, Zn, and Cu for adults was

below one, indicating health risk was low, THQ of Cd was close

to one, suggesting a potential health threat. Analogously, THQ

of As, Hg, Pb, and Zn for children from consumption of rice

and maize was below one, which suggested that health risk was

insignificant. Conversely, THQ of Cd and Cu was bigger than

FIGURE 3
Bio-accumulation factors (BAF) for different metals, a ratio of heavy metals concentration in the edible part of maize and rice to that in the
corresponding soil at the study area. Data are mean ± 1SE. For each element, means with the same letter are not significantly (p > 0.05) different.
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one, indicating that health risk these two metals was of a

concern.

4 Discussion

4.1 Heavy metals in soils and crops

Increasing evidence (Ren et al., 2006; Tang et al., 2007; Jin

et al., 2008; Qin et al., 2013) indicate that high Cd concentration

in paddy soil and rice in the Chengdu Plain is a problem. All the

metal concentrations except for Cd, although were still below the

Grade II of the EQSS (SEPA, 2018), a substantial accumulation of

metals in the soils was found when compared with the

background values (Yao, 1987), on average concentrations of

As, Hg, Pb, Cu, and Zn increasing up to 112, 30, 18, 12, and 23%,

respectively (Table 1). These results agreed with the findings of

previous studies in the Chengdu Plain (Qin et al., 2013; Wang

et al., 2017; Deng et al., 2019). Cd concentrations in 49 soils were

above the pollution warning threshold of the EQSS, accounting

for about 98%, indicating that soils suffered generally from Cd

contamination. This may have been due to the fact that diversity

industries embedded in an intensively cultivated area, such as

phosphorus chemicals, leather chemicals, old or currently active

mining or ore processing facilities, with mine waste runoff or

overspill tainted irrigation water, atmospheric deposition

resulting from ore smelting, and application of agrochemicals,

all may contribute to Cd contamination and others metals

buildup in soils (Qin et al., 2013). Many previous studies

suggested that long-term wastewater irrigation led to elevated

levels of heavy metals in soils (Elbana et al., 2013; Christou et al.,

2014; Meng et al., 2016; Abuzaid and Fadl, 2018) and revealed

that the heavy metals content in soils were markedly influenced

by stationary sources such as non-ferrous metal smelter, coal-

fired power plant (Reza et al., 2015; Yang et al., 2017; Semenov

et al., 2019; Wang et al., 2020), and non-point sources as use of

fertilizers, pesticides, and bactericides (Ouyang et al., 2016;

Zhang et al., 2021). These activities are inevitable in an

intensively farming and heavily industrial activities coexist area.

Concentrations of Cd, As, and Cu in rainfed soils are

significantly different from that in paddy soils (Figure 2),

suggesting that different farming styles may potentially impact

on metal concentrations in soil. It is a fact that rainfed lands are

commonly used to cultivate vegetables, with a high ratio of

rotation and increasing the input of agrochemicals, and more

potential metals of anthropic sources being added to rainfed soils

in compare to paddy soils. Metal elements may have different

behaviors such as bioavailability, leachability, and mobility in

various environments. An extractable form by DTPA is

TABLE 3 Estimated daily intake (EDI) of metals by consumption of rice andmaize at the investigation area (the EDI values based on the body weight of
65 and 30kg for the adults and children, respectively).

Groups Type
of food

DIa

(g d−1)
As Hg Cd Pb Cu Zn

µg kg−1 d−1

Adults Rice 363 0.43 0.11 2.21 1.43 19.91 190.02

Maize 45 0.04 0.01 0.22 0.21 1.62 24.81

Total 0.47e 0.11 2.43 1.62 21.52 214.83

Children Rice 218 0.51 0.33 2.92 1.91 25.92 247.22

Maize 27 0.05 0.01 0.21 0.23 2.13 32.33

Total 0.55 0.31 3.12 2.11 38.02 379.52

RfDb 0.3 0.16c 1 4 10d 300

aDI represents dietary intake (Zhu et al., 2000).
bOral reference dose base on USEPA (2013).
cOral reference exposure level (REL) recommended by OEHHA at CalEPA (2013).
dMinimal risk levels (MRLs) recommended by Agency for Toxic Substances and Disease Registry ATSDR (2013).
eData in bold represents exceeding the RfD recommended by USEPA, indicating a potential health risk.

FIGURE 4
THQ values ofmetals through consumption of rice andmaize
grown at the sampling sites of the study area (a histogram above
the reference line may be subjected to potentially higher health
risk).
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commonly applied to evaluate availability in previous many

studies (Kim et al., 2015; Zahedifar et al., 2017; Kaninga et al.,

2020). It was reported that Cd and Cu were readily extracted by

DTPA compared to Pb and Zn (Singh et al., 1998), suggesting

that Cd and Cu have more bioavailability in the same field

condition, and therefore it should be possible to incur more

leachability and/or mobility in a wet–dry cropping rotation due

to the function of water. The mobile behavior of As in soils was

affected by many factors such as pH and amorphous Al and Fe

contents (Violante et al., 2010; Álvarez-Ayuso et al., 2016),

especially, reduction condition possibly facilitates As releasing

from soil because of reducing As (Ⅴ) to As (Ⅲ) (Pigna et al., 2015;

Guénet et al., 2017). These behaviors would show why that As

levels was different between rainfed soils and paddy soils.

Heavy metal accumulation in crops is a serious concern due

to potential public health implications. The data from present

study indicated that the average concentration of Cd in rice and

maize was 2.3 and 2.6-fold higher than the MPL (Table 2),

respectively. Similarly, Pb contents in rice and maize also

surpassed the MPL by about1.5 times (Table 2). The

concentration of Cd in rice from the Chengdu Plain was in

balance with the findings of previous studies in a mining-

affected area of Hunan province (Du et al., 2013; Chen et al.,

2016; Wang X. et al., 2016) but lower than those in the

Dabaoshan mine area in Guangdong province (Zhuang et al.,

2009). While the Cd level in corn grains was beyond that of the

corn grown at Qingchengzi Pb/Zn mine soil in Liaoning

province (Li et al., 2014). On average buildup of Pb in the

edible part of both rice and maize reached up to about

0.30 mg kg−1, ranging from 0.06 to 0.58 mg kg−1 for rice and

0.02–0.50 mg kg−1 for maize (Table 2), which was less than

those in mining-affected areas (Zhuang et al., 2009). Analysis

showed that no strong positive relationship between metals in

the soils and in the crops. Conversely, a negative relationship

between soil metal contents and crops for Cu, in addition to Cd

were observed. Such inverse relationships were also reported by

Khan et al. (2008) for vegetables. This may suggest that

knowing total metal levels in soils use to assess health risk is

inappropriate.

Soil-to-plant transfer is one of key pathways of human

exposure to metals through food chain (Loutfy et al., 2006).

Our results showed that BAF differ significantly among metals

(p < 0.001) or between crops (Figure 3). Seemingly, Cd, As, and

Cu transfer from soil to rice were easier than to maize (all p <
0.05), but the rest of the metals did not like such trend.

However, the Cd, As, and Cu levels in rainfed soils where

maize was cultivated, on the whole, are higher than those in

paddy soils where rice was cultivated (Figure 2), suggesting that

the accumulation effect depends not only on the crop’s

physiological properties but also on mobility and availability

of metals in soils, it does not appear to be entirely associated

with the total element concentrations in the soils. Some studies

found that leafy vegetables can generally accumulate Pb and Cd

to a higher extent than non-leafy vegetables (Zhuang et al.,

2009; Nabulo et al., 2010; Chang et al., 2014; Gebeyehu and

Bayissa, 2020). Cd is usually considered a highly mobile heavy

metal in regard to moving from soil-to-plant and is of primary

concern in soil and food contamination, particularly in rice

cropping systems (Kim et al., 2015; Zhao et al., 2015). A high

average BAF for Cd in rice correspond to a lower mean content

of total Cd in paddy soils (Figures 2, 3). Gu et al. (2018)

investigated the BAF of rice for Cd, Cu, Pb, and Zn, the

results indicated that Cd and Zn showed stronger bio-

accumulation and mobility capability. These findings

demonstrate that Cd accumulation in rice is mainly

influenced by its availability, rather than total amount in

soils, which support the conclusions of many previous

studies (Du et al., 2013; Jing et al., 2020).

4.2 Health risk assessment

An important aspect in assessing risk to human health

from potentially harmful chemicals in food is the knowledge

of the dietary intake of such substances. Based on average

concentration of metals in the edible part of each food crops

and the respective consumption rate (Zhu et al., 2000), EDIs of

As, Cd, and Cu by consumption of rice and corn grains for the

local adults were 0.44, 0.24, and 21.52 μg kg−1 d−1, and for the

local children were 0.55, 0.31, and 38.02 μg kg−1 d−1,

respectively (Table 3). These EDIs are far below those in

the mining-affected areas (Zhuang et al., 2009; Du et al.,

2013), but exceed the oral reference dose (RfD)

recommended by USEPA (2013) and ATSDR (2013).

Analogously, EDIs of Hg and Pb for the local children

exceed also the RfD limits, but not for adults (Table 3).

The EDIs through consumption of rice were significantly

higher than that of maize due to rice as staple crop of local

inhabitant. Thus, adverse health effects induced by ingesting

contaminated food crops arise largely from rice consumption.

Moreover, the local children intakes of metals by consumption

of contaminated food crops was about 1.25–2.8 times higher

than those of the local adults due to children consumption

1.3 times more food than adults relative to their body weight

(Table 3). A similar phenomenon was also reported by Kim

et al. (2013), they found that the mean intakes of Cd at ages

1–2 were the highest in different age groups of Korea through

the intake of various agricultural products grown in

greenhouse. Ding et al. (2018) investigated trace elements

in soils and selected agricultural plants in the Tongling mining

area of China, their findings revealed that EDI of the trace

elements, except Cd, were generally below the maximum

tolerable daily intake. These estimates were also consistent

with the long-term dietary intake assessment on other

contaminants performed by the FAO/WHO (FAO/WHO,

2005). Therefore, children as a susceptible group have a
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higher health risk through consuming the same contaminated

foodstuff than adults.

The estimation of target hazard quotient (THQ) offers an

indication of the risk level due to pollutant exposure (USEPA,

2017; Shaheen et al., 2016; Miranzadeh Mahabadi et al., 2020).

Estimated THQs of As, Hg, Pb, Zn, and Cu through

consumption of rice and maize were below one for adults,

while this value for Cd approached one. Concerning children,

THQs of As, Hg, Pb, and Zn were also less than one, but for Cd

and Cu were beyond one, suggesting that Cd and Cu exposure

through daily intakes of rice and corn grains locally produced

have posed a severe health risk to the local residents (Figure 4),

in agreement with the conclusion of Jin et al. (2009). Although

the ingested dose of heavy metals from cereals is not equal to

the absorbed pollutant dose in reality due to a fraction of intake

heavy metals being excreted (Balkhair and Ashraf, 2016;

Yaradua et al., 2020), if considering dietary intakes from the

locally produced non-cereal foods consumption such as

vegetables, meat, eggs, and milk, THQ of metals, especially

Cd, is certainly higher and the health risk even more severe.

Consequently, effective mitigation measures are necessary to

cure Cd-contaminated soils and to reduce the metal

transferring from soil to crops in this region.

5 Conclusion

The soils from a heavily industrialized and intensively

cultivated area in the Chengdu Plain have been experiencing a

considerable accumulation of heavy metals comparison with the

background values. These enrichments are not entirely reflected

to crops metals burdens due to difference in bioavailability and/

or mobility among metals and/or in physiological properties

between crops. Health risk identified by the estimated daily

intake (EDI) and target hazard quotients (THQ) suggest that

potential health risk to the local inhabitant is mainly from Cd

exposure, resulting from rice consumption. Mitigation strategies

to curtail Cd-contaminated soils and crops Cd burdens need

careful tailoring to meet the needs of health and safety in this

region in the future.
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Alginate is a water-soluble and acidic polysaccharide derived from the cell wall

and intercellular substance of brown algae. It is widely distributed in brown

algae, such as Laminaria, Sargassum, and Macrocystis, etc. Alginate lyase can

catalytically degrade alginate in a β-eliminating manner, and its degradation

product-alginate oligosaccharide (AOS) has been widely used in agriculture,

medicine, cosmetics and other fields due to its wide range of biological

activities. This article is mainly to make a brief introduction to the

classification, source and application of alginate lyase. We hope this

minireview can provide some inspirations for its development and utilization.

KEYWORDS

alginate lyase, Brown algae, AOS, agriculture, biological activity

Introduction

Alginate is the most abundant linear polysaccharide in brown algae (about 40% of dry

weight). It is composed of two uronic acid monomers, β-D-mannuronic acid and C5-

epimer α-L-guluronic acid, through α/β-1,4 glycosidic bonds in different combinations of

poly-guluronic acid (poly-G), poly-mannuronic acid (poly-M), and hybrid fragments of

random polymerization of G and M (poly-GM). (Gacesa, 1992; Lee and Mooney, 2012;

Kurakake et al., 2017).

At present, the preparation of algal oligosaccharides mainly adopts three kinds of

degradation methods: chemical, physical and biological. Chemical methods include acid

hydrolysis, alkaline hydrolysis and oxidative degradation, and physical methods mainly

include hydrothermal method, ultrasonic method and radiation method, but these two

methods have many drawbacks, which are not conducive to large-scale production.

Biological methods mainly use microbial fermentation or the action of enzymes to

degrade the prepared enzymes. It has the advantages of mild conditions, easy control, and

strong product specificity, which has attracted people’s attention, it may be an important

direction of industrial production. (Guo et al., 2016).
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Introduction and application of
alginate lyase

Classification of alginate lyases

The alginate oligosaccharide produced by the enzymatic

hydrolysis of alginate lyase has an unsaturated double bond

between the C4 and C5 positions of the uronic acid unit at

the non-reducing end, and it has a characteristic absorption peak

at a specific wavelength of 235 nm. Alginate lyases can be divided

into three groups based on substrate specificity, namely poly-G

lyase (EC: 4.2.2.11), poly-M lyase (EC: 4.2.2.3), and displays both

poly-G and poly-M lyase (Figure 1). In terms of the mode of

action, alginate lyase can be divided into endonuclease and

exonuclease (Wong et al., 2000). Endonuclease cleaves

glycosidic bonds in algin and releases unsaturated

oligosaccharides (disaccharides, trisaccharides and

tetrasaccharides, etc.), while exonuclease can further degrade

oligosaccharides into oligosaccharides. Monomer (Kim et al.,

2012; Jagtap et al., 2014). Based on the amino acid sequence

alignment, alginate lyases can be classified into different

polysaccharide lyase (PL) families including PL5, PL6, PL7,

PL8, PL14, PL15, PL17, PL18, PL31, PL32, PL34, PL36, PL39,

and PL41 families, which are listed in the Carbohydrate-Active

enzymes (CAZy) database (http://www.cazy.org/) (Barzkar et al.,

2022).

Source of alginate lyase

The sources of alginate lyase are extensive, and it has been

reported that the production of alginate lyase mainly comes from

marine algae, marine mollusks and microorganisms (including

bacteria, fungi and some viruses). Among them, there are the

most reports on the source of microorganisms, including

(Pseudoalteromonas sp.) (Ma et al., 2008) (Vibrio sp.),

(Kawamoto et al., 2006) (Flavobacterium sp.) (An et al., 2009)

(Paenibacillus sp.) (Zhu et al., 2020; Huang et al., 2022).

Application of alginate lyase

Alginate lyase is an important marine biological enzyme.

AOS has various biological activities due to the differences in

degradation mode, G content of degradation products (G/M

ratio), molecular weight and spatial conformation. As an

excellent natural antioxidant, alginate oligosaccharide has

great application potential in the fields of human, animals and

plants health (Yokose et al., 2009; Tondervik et al., 2014; Saberi

Riseh, 2022). It can promote growth, improve stress resistance,

increase yield, and inhibit fungal growth. With the

implementation of the national strategy of regulating the use

of chemical fertilizers and pesticides, it may become an

environment-friendly bio-fertilizer and bio-pesticide in the

future.

Alginate lyase is not only widely used in agriculture, but also

in the fields of medicine and food. It can be used as a growth

promoter for therapeutics such as antioxidants and tumor

suppressors (Tusi et al., 2011; Hu et al., 2004), and can also

induce cytokine production, regulate blood sugar and lipids

(Iwamoto et al., 2005), which are widely used in the food and

pharmaceutical industries. For example, Pseudomonas

aeruginosa is one of the main pathogens of many chronic

infectious diseases, such as chronic lung infection and urinary

FIGURE 1
Degradation mode and site of alginate lyase.
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tract infection (Jain and Ohman, 2005). The study found that

algin is an important component of Pseudomonas aeruginosa

biofilm, and Albrecht used lyase as an adjunct therapeutic agent

together with antibiotics, which made the antibiotics come into

direct contact with pathogenic bacteria to achieve the therapeutic

effect (Albrecht and Schiller, 2005). This shows that the enzyme

has great potential in the bactericidal application of biofilm

pathogens.

Due to fuel consumption, researchers have begun to pay

attention to the production of biofuel. At present, although

chemical catalysis has high efficiency, its high cost, complex

synthesis process, and high energy consumption under synthetic

conditions limit its industrial application to a certain extent (Pan

et al., 2022a; Pan et al., 2022b). Seaweed is considered an ideal

source for bioethanol production due to its advantages of not

occupying arable land and being non-polluting. According to

reports, Wargacki et al. (2012) transformed Escherichia coli to

establish a system for directly fermenting brown algae to produce

ethanol. However, Escherichia coli has insufficient tolerance to

ethanol, making it impossible for large-scale production. Sasaki

et al. (2018) developed a co-cultivation platform for bioethanol

production from brown algae, consisting of engineered yeast

AM1 and CDY strains, which produced 2.1 g/L of ethanol when

the brown algae Ecklonia kurome was used as the sole carbon

source. This research has made significant progress in the

biotechnology of brown algae to bioethanol, but it is still

insufficient for industrial production. Studies have shown that

the synergistic effect of multiple microorganisms on the ethanol

fermentation system of macroalgae will be the trend of future

research.

Conclusion and outlook

Alginate lyase has attracted the attention of researchers

because of its unique properties and has great potential for

application in various fields. At present, the related research

on alginate lyase mainly focuses on the screening of strains, the

mining of genes, and the analysis of the degradation substrate

and product structure. With the continuous advancement of

science and technology, people have gradually deepened the

research on the analysis of alginate lyase protein crystal

analysis, the catalytic mechanism of the active center and the

transformation strategy. This will likely improve the problems of

low enzyme-producing strains, low tolerance, and unstable

properties in the large-scale industrial production process, and

has great application potential in agricultural protection, biofuel

production, and environmental protection.
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Lignin, which is an important component of biomass in nature and is constantly

produced in industry, becomes potential raw material for sustainable

production of fine chemicals and biofuels. Electrocatalysis has been

extensively involved in the activation of simple molecules and cleavage-

recasting of complex scaffolds in an elegant environment. As such,

electrocatalytic cleavage of C−C(O) in β-O-4 model molecules of lignin to

value-added chemicals has received much attention in recent years. This mini-

review introduces various anodes (e.g., Pb, Pt, Ni, Co., and Ir) developed for

electro-oxidative lignin degradation (EOLD) under mild conditions. Attention

was placed to understand the conversion pathways and involved reaction

mechanisms during EOLD, with emphasis on the product distribution caused

by different electrodes.

KEYWORDS

biomass conversion, lignin, biofuels, electrocatalysis, green chemistry

Introduction

Lignin, which is a large amount of biomass in nature and is constantly produced in

industry, becomes potential raw material for sustainable production of fine chemicals,

biofuels and functional materials, considering its polyphenolic structure and carbon-rich

properties (Pardini et al., 2002; Li et al., 2019;Wu et al., 2021; Huang et al., 2022; Jian et al.,

2022). Especially, catalytic cleavage of C−C(O) in β- O-4 model molecules has received

much attention (Sun et al., 2018; Yu et al., 2022). Traditional β- O-4 model molecule

degradation methods, including pyrolysis, catalytic hydrodeoxygenation, liquefaction,

and oxidative cracking (Jia et al., 2018; Valle et al., 2013), can efficiently convert lignin into

value-added fine chemicals (Figure 1A). Definitely, those methods have many areas to be

improved, such as harsh conditions and non-specific selectivity. Alternatively, electro-

oxidative lignin degradation (EOLD) is a mild and sustainable method that featured

selective cleavage of the C−C bond (Cα−Cβ bond and β- O-4 ether cleavage) using user-

friendly electron while retaining the inherent aromatic structure (Figure 1B) (Liu et al.,

2019; Di Fidio et al., 2021).

In 1946, Bailey and Brooks firstly illustrated that the metal materials (e.g., Pb, Cd, Pt,

and Ag) serving as anodes for the electrocatalytic oxidation of alkali lignin or methylated

butanol lignin could successfully furnish methyl ethyl ketone, acetone, and acetic acid
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(Figueiredo et al., 2017). Since then, a growing number of

researchers utilized metals such as Pb, Pt and Ni as anodes to

conduct EOLD. The following sections are a detailed

introduction to the classification of these anodic materials.

Lead/lead oxide electrodes

Lead/lead oxide electrodes are extensively used as anode

materials for EOLD due to their superior chemical stability in

aggressive media, high overpotentials in oxygen evolution

reactions (competitive reactions), and low prices (Quiroz

et al., 2005). In the presence of (+) (Pb/PbO2)/SS (−) with an

increased specific surface area, 4-methylanisole was mainly

generated by the electrooxidation of lignin through Cα−Cβ

bond breaking with a free radical (·OH). When the current

density was 50 mA/cm2 at 50°C, the yield of product 4-

methylanisole is the highest (Wang et al., 2015). It is worth

noting that a high temperature will lead to the inactivation of the

catalytic reaction free radical. In the same device, the cyclic

voltammetry and cathodic polarization indicated that the

copper electrode could reduce the hydrogenation rate and

electrocatalytic hydrogenation rate of the hydrogen atom

electrochemical solution (Liu et al., 2017). The yield of

syringaldehyde was 57.30 g (kg-lignin)−1, which is higher than

that of vanillin and p-coumaric acid at a lower current density

(20 mA/cm2) and temperature (40°C). The same device could

also be used to oxidize alkaline lignin to butyl hydroxytoluene

(BHT) (Zhang et al., 2014). For the degradation process,

electrochemical impedance spectroscopy and cyclic

voltammetry show that the phenolic hydroxyl monomolecular

structure in lignin is combined with sodium ions in the

electrolyte to form sodium phenolate, and then the aromatic

ring of the C−C bond was highly induced and selectively cleaved

with superoxide anion radical (O2
•−) on the anodic surface of Pb/

PbO2, thus generating lignin superoxide anion radical. Finally,

the branched chain of the benzene is cleaved, and then the

intermediate is deoxygenated by cathodic protons. It was

further converted into BHT by the electrophilic attack of tert-

butyl carbophenyl ammonium ion with a final separation yield of

7.01% under constant current conditions (25 mA/cm2), and the

concentration of BHT was negatively correlated with the current

FIGURE 1
Schematic of the structure and bond cleavage position (A), and fracture mode (B) of lignin..
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density. When using Ti/PbO2 and Ti/Sb-SnO2 as electrocatalysts

in the pre-degradation of sodium lignosulfonate solution

(2000 ppm) (Shao et al., 2014), quinone and short-chain

carboxylic acid are essential intermediates and primary

products, respectively. The results showed that Ti/Sb-SnO2

and Ti/PbO2 had different advantages in their UV-visible

absorption reduction, chemical oxygen demand (COD)

removal capacity, and biodegradability. In the same device,

the Ti/SnO2-Sb2O3/α-Pb O 2/β-Pb O 2 electrode was prepared

by further modification of Ti/Sb-SnO2 and Ti/PbO2 electrodes,

and Ir or Ti-doped Ti/Cu/Sn electrode as a cathode. Interestingly,

the products could be oriented toward aromatic ketone,

aldehyde, or acid when Ti/Cu/Sn was used as the cathodic

material, proving that cathodic materials with different

titanium-based materials had important effects on the process

and products of EOLD.

The lead oxide coating prepared by the conventional method

is easy to peel off from the surface of the substrate owing to its

relatively high interfacial resistance (Hao et al., 2015). This

problem can be improved by photoelectrical deposition of

lead oxide onto TiO2 nanotubes (NTs) arrays. The NTs can

increase the available surface area of the electrode, thus

improving the load capacity of lead oxide (Pan et al., 2012).

The prepared Ti/TiO2NT/PbO2 electrode showed a high

electrochemical response and lasting stability, which was

active for the crack of the Cα−Cβ bonds of kraft lignin to give

vanillin and vanillin acid. The [Fe(CN)6]3− modified lead oxide

electrode prepared by deposition method has a wider central

active surface area, resulting in the formation of more OH

radicals and their adsorption sites, closely correlated with

significantly increased active sites (Hao et al., 2015). It is

worth noting that implantation of [Fe(CN)6]
3− anion into the

lead oxide matrix is beneficial to the growth of lead oxide crystals,

thus optimizing the size and load capacity of lead oxide

electrodes. Overall, the [Fe(CN)6]
3−-modified lead oxide

electrode can effectively reduce interfacial resistance and thus

effectively prevent stripping. The accelerated life test data showed

that the life of the modified PbO2 electrode was 0.8 times longer

than that of the bare PbO2 electrode, and the degradation rate

constant significantly increased from 0.00419 to 0.00609 min−1,

but the product category is not specified in this literature.

Platinum electrodes

Pt was usually developed as a hydrolysis catalyst and anodic

electrode material to catalyze the electrically oxidative fracture of

the Cα−Cβ bond in the degradation and utilization of lignin (Liu

et al., 2019). One-pot degradation of lignin by using hydrogen

peroxide tert-butyl (t-BuOOH, 70%) as an oxidant, Pt as

electrode material, where Cα−Cβ bonds were cleaved

specifically into functional aromatic hydrocarbons (e.g., 3-

methoxy-benzaldehyde in 81% yield and phenol in 43% yield)

(Ma et al., 2021). Mechanism studies show that the reaction

pathway undergoes through forming in situ Cβ-centered free

radicals to produce peroxide intermediates and further inducing

oxidative cleavage of Cα−Cβ bond to give 3-methoxy-

benzaldehyde. For highly dispersed single-atom Pt−N3C1

nanotubes, the increase in single-atom unsaturated

coordination number results in the increase of the active sites,

while the high degree of dispersion can improve the atomic

utilization, thereby increasing the activity and yield per unit

catalyst. The results of electrical experiments show that Pt1/

N-CNTs have high selectivity and activity for activating

Cα−Cβ bonds in lignin. Density functional theory (DFT)

calculation proves that the C-center free-radical intermediate

is formed in the degradation process, and the unstable Cβ-radical

undergoes a cross-coupling reaction to generate the peroxide

intermediate. After the reaction, electron transfer results in

Cα−Cβ bond-breaking to provide benzaldehyde (81% yield)

(Cui et al., 2021).

Nickel−, cobalt−, and
nickel–cobalt−based electrodes

Ni-electrode has excellent chemical resistance and is widely

used in EOLD. Ni is used as an anode and flow reactor (FM01)

device to prepare vanillin (Masoumi et al., 2016). Control

experiments showed that optimizing current density and

adjusting the initial concentration of lignosulfonate can

obviously improve the yield of vanillin, in which Ni as anode

has two competitive reactions in lignin degradation. The reaction

is oxidized by nickel (II) to the oxygen-containing nickel (III)

species (Ni(III)OOH). A maximum vanillin yield of 7.4% w/w

could be obtained from 1.5% w/v lignin at 130°C and 1.9 mA/

cm2. Unsatisfactorily, the complexity of the experimental device

and the conditions of high temperature and high pressure hinder

the development of this method. Instead, changing the simple

device can make the reaction easy to operate, and the new device

“Swiss coil” electrochemical reactor and Ni (foam) electrode

using water as an electrolyte are applied to EOLD (Di Marino

et al., 2019). Starting from lignin, the C−C bond is initially

destroyed to form a carboxylic acid compound and then broken

into a low molecular compound, such as vanillin. Free radicals

can be reduced and generated by oxygen transfer from the anode

to the cathode, which can promote the decrease of the average

molecular weight of lignin to obtain value-added products. Di-

and mono-carboxylic acids (e.g., ethanedioic acid, vinegar acid,

and formic acid) have high reactivity, with the formic acid yield

of 26.8%, which was higher than oxalic acid and acetic acid.

In the unstable electrochemical depolymerization process, a

dynamic model was constructed to predict the formula weight

change of the EOLD in the reaction device, and the simulation of

the reaction (chain break, random recombination, and random

fracture) is high similarity (Bawareth et al., 2018). After
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introducing a contributor to the overall reaction, the model

predicts the function of lignin degradation and product

formation simultaneously, and the effect of the three major

reactions is similar to the experimental data. It is further

indicated that the reaction rate coefficient is linearly related to

the initial multispecies and mean molecular weight of lignin.

Also, a membrane reactor was applied to EOLD. The obtained

results showed that when the membrane pore size was 1 nm, the

aromatic hydrocarbon yield in the batch reactor could be

increased from 0.01% to 11% (Bawareth et al., 2018). In

general, the Ni-electrode is stable and does not fall off, but

the activity is not ideal, which limits the application range of

the Ni-based electrodes.

Cobalt oxide (CoOx) electrodes show outstanding activity in

EOLD and can significantly improve the yield of vanillin, but are

easily detached from the electrolyte to lose the function of

transferring electrons, which blocks its industrial applications.

The stable Co. core/Pt shell structure is not only conducive to

electron transport, but also effectively avoids the problem of easy

shedding of exposed Co., and it was successfully prepared by the

polyol method and applied for EOLD (Movil-Cabrera et al.,

2016). The main products are heptane and apocynin, although

the type and yield of the product vary with the electrode

potential. Other oxidative products (e.g., 1,3-bis(1,1-

dimethylethyl)-benzene and 1,4-di-tert-butyl phenol) may

participate in the oxidative decomposition initiated by free

radicals in an alkaline medium.

It has been shown that a variety of metal doping and multi-

metal alloy electrode materials can not only avoid the inherent

defects of the single metal itself, but also show the advantages of

their respective metals (Cai et al., 2014). For example, Ni-Co co-

based materials exhibited outstanding activity and excellent

corrosion resistance. Waldvogel (Schmitt et al., 2015) and

Zirbesl (Cai et al., 2014) both added a Co-based anode to a

Ni-based anode for EOLD to improve the yield of vanillin. The

former forms an electrochemically active NiOOH coating in situ,

and the electrolysis conditions are optimized when the reaction

temperature is lower than 100°C (Schmitt et al., 2015). The use of

strongly basic anion exchange resin can selectively remove the

low molecular weight of phenol in the strongly basic electrolyte,

so it is unnecessary to acidify and precipitate the remaining

lignin. Dissimilarly, Zirbes et al. (2019) electrochemically

activated the electrode in black liquor, which was

demonstrated to significantly increase the electrocatalytic

activity and the Ni(foam)-electrode could be reused 6-times

(Garedew et al., 2020). It was found that diaminotoluene was

the main product in the adsorption layer, indicating that the

compound was involved in the activation process to a certain

extent. Else, the deposited organic surface layer can not only

increase the lipophilicity of the electrode surface but also further

promote the adsorption and oxidative degradation of lignin, thus

obtaining a good yield (0.9 wt%) of vanillin. The mechanism of

both sets of experiments was that in an alkaline electrolyte, an

electrocatalytically active NiOOH layer was formed on the

surface of the anode Ni (Schutyser et al., 2018), in which

EOLD enhanced the oxidative activity of the electrode, while

helping to avoid further peroxidation of the formed monomers

(Smith et al., 2010), and thereby significantly increasing yield.

Different from platinum and other expensive metal or large

pieces of the metal electrode (e.g., large, and flat electrode),

nanoparticle catalysts potentially show increased activity in

electrically catalytic degradation of lignin, owing to a higher

utilization rate of metal, which can promote the quality of the

reactants and products through optimizing the structure of

electrode materials.

Iridium oxide electrodes

The unexpected electrocatalytic selectivity and corrosion

resistance of iridium oxide electrodes have attracted the wide

attention of investigators (Trasatti, 2000). Different IrO2-based

electrodes (e.g., Ti/MO-IrO2, MO = SnO2, RuO2, Ta2O5, and

TiO2) were prepared and applied to the EOLD (Tolba et al.,

2010). The cyclic voltammetry curves show that the

electrochemically active surface areas of the four metal/oxide

species modified IrO2 electrodes exhibit the following sequence:

Ti/Ta2O5-IrO2 > Ti/TiO2-IrO2 > Ti/SnO2-IrO2 > Ti/RuO2-

IrO2. The good stability and highest reaction rate constant

(apparent activation energy of electrochemical oxidation: 20 kJ/

mol) indicate that the resulting hydroxyl radicals are

advantageous for the break of the C−C bond in lignin. At

60°C, the optimum current density was 500 mA cm−2, and the

yield of vanilla and vanillic acid reached the maximum value

(500 ppm lignin). A binary mixed metal oxide (MMO)

(Ru0.4Ir0.6Ox) electrode derived from ruthenium and osmium

oxide was successfully prepared and found to show good

activity in electrocatalytic degradation of lignin to produce

diaphylin (Zhu et al., 2014), but the decomposition of

electrolyte causes electrochemical windows very narrow.

Also, by using transition metals to modify the binary

Ru0.4Ir0.6Ox-electrode for the preparation of three-membered

MMO electrodes (Ru0.2M0.2Ir0.6Ox; M =Mn, Pd, V, and Ti), the

activity of Ru0.2M0.2Ir0.6Ox-electrodes is higher than binary

Ru0.4Ir0.6Ox-electrode, for example, the Ru0.2Mn0.2Ir0.6Ox has

the highest electrocatalytic activity (11.5% yield) (Rauber et al.,

2018). Moreover, the composition of the electrode also changes

the number of cracking products and the selectivity of the break

button. The reaction was carried out in ionic liquids ([Et3NH]

[MeSO3]) considering that [Et3NH][MeSO3] has quantitative

turnover and no side reaction (Achinivu et al., 2014), as well as

does not produce any contaminant, and shows high

electrochemical windows through some synergy, such as the

hydrophilicity of ILs and the hydrophobicity of the aromatic

pyrolysis products allow the product to be separated from the

untreated lignin. Lignin can be oxidized directly at the anode or
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the cathode (Garedew et al., 2020). In a nondiaphragm

cylindrical electrolytic cell, the graphite cathode is on the

inside, and the RuO2-IrO2/Ti net anode is depolymerized in

an alkaline aqueous solution on the outside. The by-product O2

on the anode can be effectively reduced to H2O2 on the cathode.

Also, ·OH, ·O2
− and OOH are decomposed into H2O2 (Moodley

et al., 2012). As such, lignin is broken by these free radicals and

the C−C bonds are anodized to produce aromatic products in

different low molecular weights.

Lignin can directly form aromatic compounds by breaking

the C−C bond. Some types of lignin can be oxidized into

intermediates such as acids and ketones first, followed by

decomposition of the C−C bond to generate vanillin

(Schutyser et al., 2018), benzaldehyde, and other products.

This class of lignin typically contains two hydroxyl groups at

the β- O-4 position (Bosque et al., 2017), benzyl alcohol on Cα

and aliphatic alcohol on Cγ. Such structures have a high degree of

specificity of electron receptors, making the structure prone to

highly selective rupture of the Cα−Cβ bond (Karkas et al., 2016).

Overall, the single alcohol in β- O-4 lignin can undergo highly

selective oxidation to furnish oxidative intermediates, and these

intermediates could proceed through C−C and/or C−O bonds

cleavage to obtain single aromatic products.

Conclusion

In summary, a variety of electrode materials prepared with

different advantages (e.g., high activity, good stability, easy

availability, and high selectivity to C−C bonds break, and

electrodes with multiple metals) are demonstrated to show

unexpected comprehensive effects. Different reaction devices

are also illustrated to have an impact on the product

distribution and yield in the electrocatalytic degradation of

lignin. The reaction mechanisms involve the generation of free

radicals (e.g., O2·−, andOH), and the formation of MOOH to

induce the C−C bond breakage. The combination and

development of the already well-established electrocatalytic

cleavage technology and the much-touted biomass conversion

are desired to usher another industrial renaissance in the domain

of chemical synthesis.
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Biodiesel is considered a potential substitute for fossil diesel because of its

unique environmentally friendly and renewable advantages. The efficient and

durable heterogeneous catalysts are vital to greenly and efficiently drive the

biodiesel production process. The ionic liquid-functionalized materials,

possessing the characteristics of both homogeneous and heterogeneous

catalysts, are one of the promising substitutions for conventional

homogeneous acid/base catalysts for producing biodiesel. This mini-review

focuses on recent advances in supported acid/base ionic liquids to synthesize

ionic liquid-functionalized materials for producing biodiesel. The methods of

immobilizing ionic liquids on supports were summarized. The merits and

demerits of various supports were discussed. The catalytic activities of the

ionic liquid-functionalized materials for biodiesel production were reviewed.

Finally, we proposed the challenges and future development direction in

this area.

KEYWORDS

renewable oil, biodiesel production, heterogeneous catalysis, ionic liquid-
functionalized material, solid acid/base catalyst

Introduction

The excessive consumption of fossil resources has brought a series of energy shortages

and environmental pollution problems (Dong et al., 2019; Guo et al., 2022). It is desired to

develop renewable and environmentally friendly alternatives to fossil fuels (Mao et al.,

2022). Biodiesel is a well-known alternative to fossil diesel on account of its unique

advantages, such as its renewability and environment-friendly nature. Biodiesel is mainly

composed of long-chain fatty acid methyl esters. It is well known that biodiesel is mainly

produced from renewable oil (e.g., vegetable oils and animal fats) through

transesterification of triglycerides in oil and esterification of long-chain fatty acids in

oil (Figure 1) (Pan et al., 2020). In this process, a catalyst plays a key role in influencing

reaction conditions, the production efficiency of biodiesel, and biodiesel cost (Mukhtar

et al., 2022). Ionic liquids (ILs), as a class of novel materials, are defined as organic salts
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with melting points below 100°C composed of anions and cations

(Cheng et al., 2022). ILs utilized as catalysts have obtained

enormous attention in the conversion of renewable oil to

biodiesel, owing to their outstanding properties, such as

ignored vapor pressure, strong solubility, wide liquid

temperature, thermal and chemical stability, and low toxicity

(Panchal et al., 2022). Meanwhile, physicochemical properties

and functions of ILs can be designed and adjusted via changing

the structure of anions and cations in ILs. Owing to these

outstanding advantages of ILs, they have been employed for

biodiesel production. For instance, SO3H-functionalized ILs

exhibited remarkable catalytic activity in the esterification of

fatty acids to biodiesel (Han et al., 2022), and basic ILs afforded

prominent catalytic performance in the transesterification of

triglycerides to biodiesel (Panchal et al., 2022). However, ILs

are usually soluble in polar solvents, resulting in their recycling

difficulty in the process of biodiesel production. ILs also have a

severe shortcoming of high viscosity, causing inconvenient

operation. These deficiencies need to be solved to expand the

application of ILs in the industrial production of biodiesel.

To deal with the aforementioned issues, the immobilization

of ILs on solid supports to synthesize IL functionalized materials

is a viable strategy. Ionic liquid-functionalized materials inherit

the merits of ILs and supports, combining advantages of both

homogeneous and heterogeneous catalysts; the former

homogeneous characteristics come from highly soluble ILs on

the support surface, and the latter heterogeneous characteristics

originate from the solid support. Moreover, IL-functionalized

materials are suitable for the continuous production of biodiesel

on fixed-bed reactors. Therefore, various IL-functionalized

materials have been developed for the catalytic synthesis of

biodiesel production through immobilization of ILs on the

supports, where various supports are utilized, including silica,

magnetic nanomaterials, polymers, nitrogen-doped carbon, and

metal–organic frameworks (MOFs) (Pan et al., 2016).

Although many high-quality reviews on ILs as catalysts or

solvents for the synthesis of biodiesel have been published (Ong

et al., 2021), a recent review focusing on heterogenization of ILs

via immobilization of ILs on solid supports for biodiesel

production is still required. Hence, we categorized and

summarized recent developments in synthesizing IL-

functionalized materials for producing biodiesel. The methods

of immobilizing ILs onto various carriers, including silica,

magnetic nanomaterials, polymers, nitrogen-doped carbon,

and MOFs, are reviewed. The merits and demerits of various

supports are discussed. The catalytic activities of the ionic liquid

functionalized materials for biodiesel production are presented.

Finally, the prospects and challenges of utilizing IL-

functionalized materials as catalysts for biodiesel production

are proposed.

Ionic liquid-functionalized silica

Silica materials are widely used catalyst carriers due to their

distinct merits, such as low cost, thermal stability, and chemical

inertness. Among them, mesoporous silica such as SBA-15 is the

most popular, owing to its remarkable structural properties,

FIGURE 1
Biodiesel production cycle from renewable bio-oils via transesterification and esterification catalyzed by the supported acid/base ionic liquids.
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including high surface area, uniform hexagonal pores, large pore

volume, and tailorable pore diameter (Ziarani et al., 2021). More

importantly, abundant silanol groups on its surface enable

grafting ILs via a covalent bond. For instance,

phosphotungstic acid-based IL-functionalized SBA-15 was

synthesized by post-modification of SBA-15 using the

sulfhydryl reagent through the Si-O-Si- covalent bond,

followed by grafting the acidic IL via the thiol-ene reaction

(Wang et al., 2018). The acidic IL-functionalized SBA-15 was

evaluated by esterification of palmitic acid to biodiesel

production and exhibited an 88.1% yield using methanol to

an acid molar ratio of 9:1 and 15 wt% catalyst dosage at 65°C

for 9 h. The catalyst exhibited about 80% yield after being reused

five times (Table 1, in supporting information).

To improve the acidity of the catalyst, Fe-incorporated SBA-

15 (Fe-SBA-15) was utilized as a carrier for grafting sulfonic acid-

functionalized IL. The acid catalyst (IL/Fe-SBA-15) is

synthesized by immobilizing the sulfonic acid-functionalized

IL on Fe-SBA-15 via a silylation reaction between alkoxy

groups of IL and silanol groups of the support (Zhang et al.,

2012). IL/Fe-SBA-15 showed 87.7% conversion of oleic acid

using a catalyst amount of 5 wt% and methanol to an oleic

acid molar ratio of 9:1 at 90°C for 3 h, which was ascribed to the

synergistic effect of Lewis and Brønsted acidic sites. In addition to

the loading acidic ILs, SBA-15 is also used to load basic ILs for

producing biodiesel via transesterification. A series of basic

catalysts were synthesized by immobilizing silane-based basic

ILs on SBA-15 via a silylation reaction between alkoxy groups of

silane-based basic ILs and silanol groups of SBA-15. The

tetraalkylammonium hydroxides immobilized onto SBA-15

were fabricated and utilized for the conversion of soybean oil

to biodiesel through transesterification (Xie and Fan., 2014). The

basic catalyst exhibited a 99.8% yield with good reusability.

Although various acid or base ILs have been successfully

immobilized onto mesoporous silica for the production of

biodiesel, the following problems still need to be solved: 1)

organosilicon reagents used to load ILs are usually expensive;

2) the -Si-O-Si- bond used to link ILs to mesoporous silica is

unstable in the acidic or basic media; 3) the hydrophilicity of

silica is not conducive to the contact between the substrate oil and

catalyst and also easily causes catalyst deactivation by adsorption

of by-products (water and glycerol) on the surface of the catalyst.

Ionic liquid-functionalized porous
polymers

Porous polymers, featured with nanopore structures, large

specific surface areas, high pore volumes, flexible chemical

tenability, tunable wettability, and outstanding chemical

stability, are remarkable carrier candidates for supported ILs

(Mohamed et al., 2022). Porous polymers are mainly synthesized

by the hard template method, soft template method, and

template-free methods and functionalized with ILs using

various methods, including self-polymerization of ILs,

copolymerization of ILs with skeleton molecules, and post-

modification (Zhang et al., 2022).

The acidic poly (ionic liquid) was synthesized by self-

polymerization of the acidic IL monomer with the double

bond group for esterification of palmitic acid to biodiesel with

a 91.6% yield at 65°C for 8 h (Wang et al., 2019). The acidic ionic

liquid polymer catalyst synthesized by self-polymerization

usually exhibits low specific surface area and poor

hydrophobicity. To improve the specific surface area and

hydrophobicity of acidic ionic liquid polymers,

copolymerization of the acid ionic liquid monomer and

divinyl benzene (DVB) is a feasible synthetic method. The

effect of DVB content in the catalyst on its specific surface

area and hydrophobicity was investigated by Liang et al. (Li

et al., 2016). The increase of the DVB content improves the

hydrophobicity and specific surface area of the catalyst but

reduces the acid density of the catalyst. Therefore, the

physicochemical properties of the catalyst can be regulated by

adjusting the content of DVB. Various ionic liquid polymers were

TABLE 1 Summary of carbon-supported metal oxides for biodiesel production.

Catalyst Oil source Reaction condition Yield (%) Reusability (time) Reference

SBA- IL-3 Palmitic acid 9:1, 65°C, 15%, 8 h 88.1 80 (5) Wang et al. (2018)

IL/Fe-SBA-15 Oleic acid 6:1, 90°C, 5%, 3 h 87.7a 80.8a (6) Zhang et al. (2012)

PIL-3 Palmitic acid 6:1, 65°C, 3%,8 h 91.6 75 (5) Wang et al. (2019)

P(VB-VS)HSO4 Soapberry oil 29.1:1, 150°C, 8.7%, 8 h 95.2 90.9 (6) Feng et al. (2017)

MIL-101(Cr)@ MBIAILs Oleic acid 10:1, 67°C, 11%, 4 h 91.0 82.1 (6) Han et al. (2018)

Fe3O4@HKUST-1 Soybean oil 30:1, 65°C, 1.2%, 3 h 92.3a About 82a (5) Xie and Wan, (2018)

AILs/HPW/UiO-66-2COOH Acidic oil 35:1, 110°C, 10%, 6 h 95.8a About 80a (5) Xie and Wan., (2019)

FS-B-L-IL Koelreuteria integrifolia oil 40:1, 160°C, 10%, 10 h 93.7 77.5 (5) Zhang et al. (2017a)

CoFe2O4/MIL-88B(Fe)-NH2/(Py-Ps)PMo Acidic oil 30:1, 140°C, 8%, 8 h 95.6a 85.2 (5) Xie and Wang., (2020)

aConversion.
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developed by copolymerization of various acidic ionic liquid

monomers and DVB for biodiesel production. The poly (ionic

liquid) was fabricated by copolymerization of the sulfonic acid

ionic liquid monomer and DVB and possessed high surface areas

with 100.1 m2/g, rich meso-macropores, and acid density of

1.64 mmol/g (Feng et al., 2017). A 95.2% biodiesel yield was

obtained from soapberry oil using a 29.1 methanol to oil molar

ratio and an 8.7 wt% catalyst amount at 150°C for 8 h.

Condensation is also a method to synthesize acidic ionic

liquid polymers. The poly ionic liquid was synthesized by

phenolic condensation and exhibited high acidity with

4.5 mmol/g (Bian et al., 2019). Post-modification is a

frequently used method to prepare acidic ionic liquid

polymers. The mesoporous melamine-formaldehyde polymer

was developed under solvothermal conditions using the soft

template method (Pan et al., 2019). The nitrogen-rich

polymer was used for immobilization of ILs through the

chemical post-modification method. The resulting functional

polymer exhibited multiple remarkable properties, including a

rich mesoporous structure with a specific surface area of

283.0 m2/g, high density (2.2 mmol/g), and strong acidity.

These properties endowed high catalytic activity with 95%

biodiesel yield from oleic acid. In addition, zirconium

phosphonate and 2D-layered montmorillonite were also used

to support acidic poly ILs for the synthesis of an acid catalyst (Liu

et al., 2019; Pan et al., 2022). Polymers can also be used to

synthesize basic catalysts for producing biodiesel. The basic poly

(ionic liquid) was developed by copolymerization of the ionic

liquid and subsequent ion exchange. The basic poly (ionic liquid)

exhibited superhydrophobicity and porous structure with

103 m2/g and 96.3% biodiesel yield from the conversion of

soybean oil with methanol via transesterification (Jiang et al.,

2017). Ionic liquid-functionalized porous polymers are potential

catalysts for catalytic conversion of oils to biodiesel. However, its

high cost and limited thermal stability should be paid close

attention.

Ionic liquid-functionalized carbon

Owing to their obvious merits, including excellent thermal and

chemical stability, controllable surface wettability, cheapness,

availability, and no toxicity, carbonaceous materials offer

promising supports for the synthesis of highly efficient and

reusable catalysts (Dhawane et al., 2018). In particular, N-rich

porous carbon contains a large number of N active sites, which

can support ILs through chemical post-modification (Sun et al.,

2019). In addition, N-rich porous carbon exhibits a high specific

surface area, which promotes the reaction between active sites of

carbon–nitrogenmaterial and substrates, resulting in high IL loading.

Porous carbon nitrogen materials are mainly prepared using

nitrogen-containing organic compounds (e.g., cyanamide,

melamine, urea, etc.) or polymers (e.g., polypyrrole) as nitrogen

and carbon sources. Meanwhile, doping fructose as a carbon

source in nitrogenous organic compounds can adjust the

carbon content in carbon–nitrogen materials. Carbonization

and the solvothermal method are the main methods to convert

organic compounds or polymers into carbon–nitrogen materials

(Tang et al., 2018). To enhance the specific surface area of

carbon–nitrogen materials, the template method is an effective

technique for forming pore structures in carbon–nitrogen

materials (Zhang et al., 2020). Common templates include

potassium hydroxide (KOH), zinc chloride (ZnCl2), and silicon

dioxide (SiO2). Porous structures of the materials are formed by

removing the templates after carbonization, KOH and ZnCl2 can

be removed by washing, and SiO2 is eliminated via corrosion using

a strong base or hydrofluoric acid.

Ionic liquids’ functional carbons were synthesized by quaternary

ammonization of carbon–nitrogen materials with diverse

quaternary ammonization reagents including iodomethane, 1,3-

propane sultone, and 1,4-butanesultone, followed by strong acid

treatment using acids such as H3PW12O40, HSO3CF3, and H2SO4

(Liu et al., 2016). For instance, acid IL functional carbon was

fabricated by quaternary ammonization of nanoporous carbon

with 1,3-propanesultone and subsequent ion exchanging with

HSO3CF3, where the nanoporous carbon was prepared from

melamine and glucose through carbonization at 800°C. The

resulting acid IL functional carbon exhibited 88.5% biodiesel

yield via transesterification of tripalmitin with methanol at 65°C

for 14 h (Liu et al., 2015). To reduce catalyst costs, waste cowmanure

was employed for the synthesis of N-rich nanoporous carbon

through carbonization in the presence of ZnCl2 and FeCl3
templates. Subsequently, acid IL-functionalized carbon was

developed by treating the N-rich nanoporous carbon with 1,4-

butanesultone, followed by HSO3CF3 treatment. The resultant

acid catalyst showed 88.5% biodiesel yield from tripalmitin at

65°C for 14 h, which even overmatched those of homogeneous

H3PW12O40 (Noshadi et al., 2016).

Ionic liquid-functionalized
metal–organic frameworks

Metal–organic frameworks (MOFs) as a kind of

inorganic–organic hybrid materials are constructed by

coordination of metal ions or metal clusters with organic

ligands (Zhang et al., 2019). MOFs have attracted tremendous

interest in the immobilization of ILs for the synthesis of catalysts,

owing to their remarkable advantages, including crystalline

frameworks, high specific surface area, ordered pore structure,

and uniform adjustable pore size (Cong et al., 2021). Meanwhile,

compared with other porous materials, MOFs exhibit uniform

porous structures with large specific surface areas, regular and

adjustable pore, and versatile architecture (Wang et al., 2022).

Various IL-functionalized MOFs have been fabricated for the

synthesis of catalysts. The IL-functionalized MOFs are synthesized
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mainly through immobilization and encapsulation methods. The

immobilization method mainly utilizes MOF as the carrier to load

IL onto MOF through post-modification. For instance, the acidic

IL-functionalized UiO-66 solid acids were synthesized by

quaternization of the amino group originating from UiO-66 with

1,3-propane sultone, followed by an ion exchange with HSO3CF3, or

H2SO4 (Peng et al., 2020). The prepared solid acids possessed high

acid densities (3.27–3.33 mmol/g) and super acidity sites, where

acidic ILs were immobilized onMOF via a covalent bond. The solid

acids showed biodiesel yield of above 80% via transesterification of

sunflower oil, which was superior to Amberlyst-15, Nafion NR50,

and the homogeneous acid ionic liquid.

The acid–base interaction is another method of immobilizing

ILs, in which acidic ILs are immobilized on MOF by the acid and

base reaction between acidic IL and the amino group of MOF

through the ionic bond. For example, the acidic IL-functionalized

NH2-UiO-66 was fabricated by the acid and base reaction

between a sulfonic group from IL and an amino group from

NH2-UiO-66 (Lu et al., 2022). NH2-UiO-66 and sulfonic acid IL

are used as a carrier and catalytic active species, respectively. The

obtained catalyst showed above 90% conversion of oleic acid and

above 80% yield via transesterification of triglycerides. Using the

same methods, the Brønsted IL was grafted in NH2-MIL-88B

(Fe) to synthesize the acid catalyst (Wu et al., 2016). The

synthesized acid catalyst, exhibiting a specific surface area of

103.6 m2/g and acidity of 1.76 mmol H+ g−1, showed 93.2%

conversion using the ethanol to oil molar ratio of 10.5:1 and

8.5 wt% catalyst amount at 90°C for 4.5 h.

Except for MOF ligands, as bridge-supported ILs, unsaturated

metal sites in MOF can also support ionic liquids via the

coordination bond. MIL-101(Cr), as a stable MOF with

1809.1 m2 g−1 surface area, was constituted by the

interconnection of trimetric chromium and benzene-1,4-

dicarboxylates via the coordination bond, possessing massive

coordinatively unsaturated Cr (z) sites, which provides active

sites for electron-rich group coordination. The thiol-functionalized

ionic liquids were loaded on MIL-101(Cr) via coordination of

electron-rich -SH groups from ILs and the unsaturated metal Cr

sites (Han et al., 2018). MIL-101(Cr)@MBIAILs exhibited a 91.0%

conversion of oleic acid using the molar ratio of oleic acid to

methanol 1:10 and 11 wt% catalyst amount at 67°C for 4 h. This

method is also feasible for the synthesis of base catalysts. The

amino-functional basic IL was attached to the Fe3O4@HKUST-

1 carrier through coordination of the amino groups in the basic IL

and unsaturated metal Cu2+ sites in HKUST-1, where HKUST-1

was synthesized from divalent copper and benzene-1,3,5-

tricarboxylic acid by the solvothermal method (Xie and Wan.,

2018). The solid base catalyst is used to produce biodiesel through

transesterification of soybean oil and showed oil conversion of

92.3% under reaction conditions of 1.2 wt% catalyst dosage and a

methanol/oil molar ratio of 30:1 at 65°C for 3 h.

Encapsulation is a novel strategy for heterogeneous ILs,

where active species are physically accommodated in highly

porous materials (Zheng et al., 2022). Compared with the

immobilization method in which the active sites of the

catalyst are fixed on the support, the active sites of the

catalyst synthesized by the encapsulation strategy are flowable

and free, which can promote the activity of the catalyst (Kong

et al., 2016). The sulfonic acid IL is encapsulated into UiO-66-

2COOH through the following two steps: 1) 12-

tungstophosphoric acid (HPW) was encapsulated into UiO-

66-2COOH via the in situ preparation strategy; 2) then, the

sulfonic acid IL was encapsulated into HPW/UiO-66-2COOH

via pairing PW anions with the sulfonic acid IL cations (Xie and

Wan., 2019). The resultant acid catalyst with 3.40 mol/g acid

density and 8.63 m2/g specific surface area was used for the

transformation of acidic vegetable oils into biodiesel through

simultaneous esterification and transesterification, and 95.27%

conversion was obtained using the methanol to oil molar ratio of

35:1 and catalyst amount of 10 wt% at 110°C for 6 h. Utilizing the

same encapsulation strategy, sulfonic acid functionalized-IL was

encapsulated within the cages of MIL-100 with a 0.83 mmol g−1

loading amount (Wan et al., 2015). The obtained acid catalyst

with a surface area of 167 m2 g−1 was used for catalytic

esterification of oleic acid with ethanol to produce biodiesel.

Conversion of 94.55 was realized using a 11:1 M ratio of ethanol

to oleic acid and 15 wt% at 111°C for 5 h.

Ionic liquid-functionalized magnetic
composites

Efficient recovery and reuse of catalysts are extremely important

for industrial production of biodiesel because they can reduce the

production cost of biodiesel and is environmentally friendly.

Filtration and centrifugation are currently the main methods of

separating catalysts from the reaction mixture (Li et al., 2020).

Filtration is time-consuming and inefficient, especially for the

separation of nano-catalysts (Krishnan et al., 2021). Meanwhile,

for nano-catalysts with a very small size, filtration may be ineffective

because they can pass through the filter paper during the filtration

process. Centrifugation, as another separation method, helps

overcome the defects of the filtration method and effectively

separates nano-catalysts. Nevertheless, centrifugation is complex,

energy consuming, and uneconomical, which limits its application

in the industry (Quah et al., 2019).

Magnetic separation enables separation of catalysts simply and

effectively from the reaction mixture by an external magnetic field,

which offers a promising way to improve catalyst recovery (Chen

et al., 2019). Various ionic liquid-functionalizedmagnetic composites

were fabricated by immobilizing the functionalized ionic liquid on

ferromagnetic materials including Fe3O4, γ-Fe2O3, Fe, Co, and Ni

through post-modification. Among them, Fe3O4 nanoparticles are

the most commonly used magnetic carrier, owing to their unique

merits including small size, convenient synthesis, strong magnetism,

and good dispersion (Wang et al., 2020). Fe3O4 nanoparticles are
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mainly synthesized from divalent and trivalent iron salts by

coprecipitation, hydrothermal, and reduction methods.

Nevertheless, Fe3O4 nanoparticles are usually unstable and easily

oxidized or hydrolyzed, especially in the presence of oxygen or acid,

respectively. In addition, Fe3O4 nanoparticles are very easily

agglomerated resulting in the formation of large particles, which

greatly reduce their performance as a support. To overcome the

aforementioned problems, coating Fe3O4 nanoparticles using organic

or inorganic substrates is an effective and feasible strategy. Common

coatings are silicon dioxide (SiO2), polymers, and MOFs. For

example, the Brønsted–Lewis acidic ionic liquid was supported on

the carrier Fe3O4@SiO2 to synthesize the magnetic acid catalyst for

the one-pot transformation ofKoelreuteria integrifolia oil with a high

acid value into biodiesel (Zhang et al., 2017a). The obtained acid

catalyst showed a core–shell structure and Fe3O4 as the core was

coated with a 12–20 nm-thick SiO2 shell through a Fe-O-Si bond.

The acidic ionic liquid was immobilized on Fe3O4@SiO2 via post-

modification using an organosilicon reagent through the Si-O-Si-

covalent bond. A 93.7% biodiesel yield was realized using a 10 wt%

catalyst amount and 40:1 M ratio ofmethanol to oil at 160°C for 10 h.

The catalyst could be quickly separated by magnetic force and was

still able to maintain a 77.5% yield in the fifth run. Utilizing the same

strategy, various acid or basic polyionic liquids have been

immobilized on core–shell-structured Fe3O4@SiO2 composites to

synthesize magnetic acid or base catalysts for biodiesel production,

where organosilicon reagents with double bond functional groups

were the bridge between linking polyionic liquids and the Fe3O4@

SiO2 carrier (Zhang et al., 2017b;Ding et al., 2021).MOFs are another

coating that enable encapsulation of Fe3O4 nanoparticles, playing a

role in the isolation of nanoparticles. For instance, the magnetic

support CoFe2O4/MIL-88B(Fe)-NH2 was fabricated by

encapsulation of magnetic CoFe2O4 particles in a cage of MIL-

88B(Fe)-NH2 with the amine functional group (Xie and Wang.,

2020). Then, the acidic ionic liquid was immobilized on CoFe2O4/

MIL-88B(Fe)-NH2 by the acid and base reaction between the sulfonic

acid functional group of the acidic ionic liquid and the amino group

of MIL-88B(Fe)-NH2 through the ionic bond. The obtained acid

catalyst with an acid capacity of 4.37 mmol g−1 and a specific surface

area of 35.44 m2 g−1 exhibited oil conversion of 95.6% via

transesterification under the condition of the methanol to oil

molar ratio of 30:1 and catalyst amount of 8 wt% at 140°C for 8 h.

Summary and future perspectives

Acidic or basic ionic liquids (especially, sulfonic acid- and

heteropoly acid-functionalized ionic liquids and quaternary

ammonium hydroxide-based basic ionic liquids) have been proven

to have excellent catalytic activity in the production of biodiesel.

Nevertheless, shortcomings of ionic liquids, such as high cost, high

viscosity, and recycling difficulty, limit their industrial application. To

overcome the aforementioned shortcomings, immobilization of the

ionic liquid on support is an effective strategy for the heterogeneous

ionic liquid. Thus, this review primarily focuses on supported acid/base

ionic liquids as catalysts for biodiesel production. The merits and

demerits of various supports, including mesoporous silica, porous

polymers, carbonaceousmaterials,MOFs, and ferromagneticmaterials,

are compared to immobilize ionic liquids for the production of

biodiesel. The methods of immobilizing ionic liquids on supports

were described for the synthesis of ionic liquid-functionalizedmaterials.

Based on the green and efficient production of biodiesel, the

following guidelines for the synthesis of efficient, stable, and low-

cost ionic liquid-functionalized materials may still need to be

taken into consideration:

(1) The support with excellent thermal and chemical stability

would be highly desirable to improve the stability of ionic

liquid-functionalized material. The reported supports such

as mesoporous silica, MOFs, and ferromagnetic materials

exhibit limited chemical stability. Specifically, in the presence

of strong acid and base media, they are unstable. The

polymer support exhibits excellent chemical stability, but

its thermal stability is mediocre. Enormous effort should be

devoted to develop suitable material with remarkable

thermal and chemical stabilities for supporting ionic liquids.

(2) Compared with the immobilization of the ionic liquid on the

support, encapsulation of the ionic liquid in the cage of the porous

support is a superior strategy for the synthesis of ionic liquid-

functionalizedmaterial with an outstanding catalytic activity. The

active sites of the catalyst synthesized by encapsulation strategy

are free and easily accessible to the substrate, which is beneficial to

improve the catalytic activity of the catalyst.

(3) Although various ionic liquid-functionalized materials have

been fabricated for the catalytic transformation of oil into

biodiesel, their complex synthesis process and expensive raw

materials inevitably lead to high catalyst costs. Hence, it is

desirable to develop a simple method for the synthesis of

ionic liquid-functionalized materials using cheap biomass.
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The selective hydrogenolysis of glycerol to 1,3-propanediol (1,3-PDO) with high

added value is attraction but challenging. Pt-WOx-based catalysts have been

extensively studied in the selective hydrogenolysis of glycerol. The catalyst

support and the physicochemical state of WOx play important roles on this

reaction. In this paper, Pt-WOx catalysts supported on TiO2 with different crystal

forms were prepared and studied for their catalytic performance in

hydrogenolysis of glycerol. It was observed that the catalytic performance of

anatase-type (A-type) TiO2-supported catalyst (Pt/W/A-Ti) is much better than

that of the rutile-type (R-type) TiO2 catalyst (Pt/W/R-Ti) due to its higher

stability. Furthermore, the influence of W loading amount and state were

thoroughly investigated for the Pt/W/A-Ti catalysts, and Pt/W/A-TiO2 with

5 wt% loading of WOx achieved the best catalytic performance (100%

conversion of glycerol and 41% yield of 1,3-PDO under the optimal reaction

conditions), owing to the suitable WOx domains and high dispersion of W

species, as evidenced by XRD patterns and TEM images. Mechanism study by in-

situ DRIFTS experiments indicated that glycerol was first converted to 3-

hydroxypropanal and then converted to 1,3-PDO through subsequent

reactions.

KEYWORDS

glycerol, hydrogenolysis, 1,3-propanediol, Pt-WO x based catalyst, TiO 2, crystal phase

Introduction

Biomass energy is currently receiving immense attention as a renewable energy source

(ArthurRagauskas et al., 2006) (Pan et al., 2022). The production of glycerol is primarily

associated with the process of biodiesel refining. Biodiesel refining of approximately

10 tons results in the production of approximately 1 ton of glycerol (Xu et al., 2021).

Conversion of excess glycerol to value-added chemicals such as 1, 2- Propanediol

(Dieuzeide et al., 2016), 1, 3- Propanediol (1,3-PDO) (Cheng et al., 2021),

dihydroxyacetone (M. Walgode et al., 2021), acrolein (Talebian-Kiakalaieh & Amin,
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2017) and lactic acid (Arcanjo et al., 2019) has attracted extensive

attention in recent years (Tadahiro Kurosaka et al., 2008).

Among them, 1,3-PDO is an important bulk chemical

feedstock which is industrially used to synthesize

polytrimethylene terephthalate (PTT), polyurethanes, and

cyclic compounds (Alvise Perosa, 2005). Besides, 1,3-PDO

imparts various properties such as light stability, improved

elasticity, and biodegradability to polymers (Julien Chaminand

et al., 2004).

Efficient conversion of glycerol to 1,3-PDO through selective

hydrogenolysis is attraction but challenging. Among the

numerous catalysts studied so far, Ir-Re (Yoshinao Nakagawa

et al., 2010) (Yasushi Amada et al., 2011) (Deng et al., 2015) (Liu

et al., 2019) and Pt-W (Shi et al., 2018) (Jarauta-Córdoba et al.,

2021) (Zhu et al., 2015) (Liu et al., 2020) bifunctional catalysts

have been reported to exhibit the most promising performance.

In particular, Pt-W-based catalysts are more durable and cost-

competitive than Ir-Re-based catalysts. These catalysts have

potential practical applications. Nonetheless, the activity and

selectivity of the Pt-W catalysts seem to be lower than those

of the Ir-Re catalysts, so there is an urgent need for the

development of modification methods to improve the

productivity of 1,3-PDO. In most modification studies, it is

quite common to change the support to obtain highly active

catalysts. Common supports such as ZrO2 (Zhou et al., 2016),

Al2O3 (Jarauta-Córdoba et al., 2021), SiO2 (Zhou et al., 2020),

TiO2 (Zhang et al., 2013), etc., have been used to conduct the

experiments. These supports can improve the activity of the Pt-

W catalyst to a certain extent.

Among the above carriers, TiO2 has become an excellent

catalyst carrier attracting much attention due to its excellent

chemical stability, non-toxicity and low cost (Xiaojie Zhang

et al., 2017). Therefore, we introduced TiO2 as a support into

a Pt/W-based catalyst for the hydrogenolysis of glycerol.

Before us, Zhang et al. (2013) prepared a Pt/Wn-Ti(100-n)
catalyst using evaporation-induced self-assembly (EISA)

strategy for hydrogenolysis of glycerol to 1,3-PDO, and

14.9% yield of 1,3-PDO was obtained. Herein, we prepared

two TiO2-supported Pt-WOx catalysts with different crystal

phases (anatase type and rutile type) and WOx loading, and

studied the effects of TiO2 crystal phases and WOx loading on

the selective hydrogenolysis of glycerol to 1,3-PDO. A better

1,3-PDO yields (41% of anatase type Pt/W/Ti and 48% rutile

type Pt/W/Ti) were obtained. It is found that the anatase-type

Pt/W/A-Ti catalyst not only offer high catalytic activity with

high 1,3-PDO yield (41%), but also exhibit excellent stability

and can still maintain good catalytic activity after 5 cycles.

However, the catalytic stability of rutile-type Pt/W/R-Ti is

poor. Furthermore, for Pt/W/A-Ti catalysts, appropriate

WOx loading is also an important factor for the high

catalytic selectivity of 1,3-PDO, and Pt/W/A-TiO2 with

5 wt% loading of WOx achieved the best catalytic

performance, owing to the suitable WOx domains and high

dispersion of W species. At last, the reaction mechanism of

the catalytic reaction was studied by the In-situ DRIFT

technique.

Experimental

Chemicals and materials

[(NH4)6(H2W12O40) nH2O], (aladdin, ≥ 99.5%), TiO2 (Rutile

and Anatase, aladdin, ≥ 99.5%, Shanghai, China), Pt (NO3)2
(Xi’an Kaili new materials Co., Ltd., China, 0.15 g/ml Pt). All

other chemicals and solvents (analytical grade) were

purchased from Sinopharm Chemical Reagent Co., Ltd.,

China, SCRC.

Table of Content
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Catalyst preparation

All catalysts with different WOx loadings were prepared

using a step-wise impregnation method, and the loading of Pt

was 2 wt% unless otherwise specified. Take the preparation of Pt/

2W/R-TiO2 (R-TiO2 refers to rutile TiO2) as an example: Weigh

0.044 g of ammonium metatungstate (NH4)6(H2W12O40)·nH2O,

(aladdin, ≥ 99.5%) into a 10 ml small beaker, add an appropriate

amount of ultrapure water to dissolve, and weigh 1.92 g rutile-

type TiO2 (aladdin, ≥ 99.5%) was slowly added to the above small

beaker, stirred until the mixture was initially wet, and themixture

was dried in a 110°C oven for 12 h. After drying, the powder was

poured into a crucible and calcined in a muffle furnace. The

calcination temperature and time were 450°C, 4 h, respectively.

The sample obtained after calcination was named W/R-TiO2.

Then pipetting 133 μl of Pt (NO3)2 (0.15 g/ml Pt) solution into a

5 ml small beaker, add an appropriate amount of ultrapure water,

weigh 0.98 g W/R-TiO2 and slowly add it to the small beaker

After stirring to the initial wet state, it was placed in an oven and

dried at 110°C for 12 h. After calcination, the target catalyst Pt/

2W/R-TiO2 is finally obtained. For brevity, Pt/W/A-Ti and Pt/

W/R-Ti are used to represent the anatase and rutile TiO2

supported Pt-W series catalysts, respectively. The loadings of

Pt and W appearing in the text are calculated according to the

mass of Pt and WO3, respectively.

Catalyst characterization

The specific surface area of the catalysts and support were

measured by a Quantachrome Quadrosorb evo apparatus. The

XRD patterns of the catalysts were recorded on a Bruker D8A

A25 X-ray diffractometer with Cu Kα radiation source (λ =

0.15406 nm). The voltage was 40 kV, and the tube current used

FIGURE 1
Catalytic results of glycerol hydrogenolysis at different reaction temperature (A) and different reaction time (B) over 5W/Pt/A-Ti catalyst;
Catalytic results of glycerol hydrogenolysis over different catalysts at 140°C (C) and 100°C (D). Reaction conditions: 0.3 g of catalyst (Support: A-Ti,
WOx: 5wt%) and 4.0 g of 10 wt% glycerol aqueous solution, 6 MPa H2, (B,C) 140°C, 6 h (Pt/W/Ti means that Wwas loaded first, W/Pt/Ti means that Pt
was loaded first and Pt-W/Ti means that Pt and W were loaded together).
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was 40 mA. Ultraviolet-visible diffuse reflectance spectra (UV-vis

DRS) were collected by a Cary 5000 UV-Vis-NIR

spectrophotometer (Agilent, United States). The detector was a

R928 PMT detector, the collection wavelength range was

200–800 nm, and the collection rate was 100 nm/min. The TEM

and elemental mapping were obtained by a field emission electron

microscope of the Talos F200S model from Thermo Fisher

Scientific. The contents of W on the catalysts were determined

using a Agilent 720/730 ICP-AES. The operating procedures of H2-

TPD test, NH3-TPD test, CO-DRIFT absorption are shown in the

experimental operation part of the Supplementary information.

In-situ DRIFT was performed on the same instrument for CO-

DRIFT. The catalyst (50 mg) was milled and placed in the sample

cell. Prior to the test, the catalyst was purged at 200°C for 1 h under

He atmosphere, and the background was collected, and then

reduced by introducing 10% H2/He for 1 h. After the reduction,

switch to He, cool down to room temperature, invoke the

background, add glycerol dropwise, and quickly heat up to

200°C, and collect the adsorption state spectrum. Switch to 10%

H2/He to acquire reactive state spectra.

Catalytic tests

A stainless autoclave reactor (with a lining capacity of 25 ml)

was used for the hydrogenolysis of glycerol. For a typical run,

0.3 g of catalyst and 4.0 g of 10 wt% glycerol aqueous solution

were added into the reactor, sealed and purged with H2 (3 MPa)

for 4 times to exhaust the air in the autoclave, and then reacted at

6 MPa H2 and 140°C for 6 h with 700 rpm magnetic stirring.

After the reaction, the solid-liquid mixture in the lining of the

reactor was taken out and weighed, and then a certain amount of

1,4-butanediol was added as an internal standard. Then the

mixture was centrifuged to remove the catalyst for product

analysis. The liquid product was analyzed by an Agilent

7890B gas chromatograph equipped with an HP-INNO Wax

column (30 m × 0.32 mm × 0.50 μm) and a flame ionization

detector (FID). The conversion (Conv.) of glycerol and the

selectivity (Sel.) of each product are defined as follows:

Conv. (%) = (moles of glycerol converted)/(moles of glycerol

input) ×100% (1)

Sel. (%) = (moles of a specific product)/(moles of glycerol

converted) ×100% (2)

Results and discussion

Effects of reaction conditions and
impregnation order of Pt and WOx

The effect of reaction temperature was firstly investigated to

determine the optimal reaction condition for glycerol

hydrogenolysis with 5W/Pt/A-Ti as a probe catalyst. As the

results shown in Figure 1A, it can be seen that the conversion

of glycerol increased, while the selectivity of 1,3-PDO decreased

with the increase of the reaction temperature. This result was in

line with expectations because higher temperature speeds up the

reaction rate for both glycerol hydrogenolysis to 1,3-PDO and

further hydrogenolysis of 1,3-PDO to n-propanol (n-PO). Then,

the reaction conducted for different reaction time at 140°C and

6 MPa shows that the conversion of glycerol reached 100% after

reaction for 6 h (Figure 1B). It can be clearly seen that the

selectivity of 1,3-PDO gradually declined and the selectivity of

n-PO gradually increased as the reaction progress, while the

selectivity of the other two by-products (1,2-PDO and i-PO)

maintain almost unchanged. These results indicated that 1,3-

PDO can further goes on hydrogenolysis to n-PO and therefore a

proper reaction time is important.

We then explored the effects of impregnation order of Pt and

WOx on the glycerol hydrogenolysis and the results are displayed

in Figures 1C,D. Here Pt/W/Ti means that W was loaded first,

W/Pt/Ti means that Pt was loaded first and Pt-W/Ti means that

Pt and W were loaded together. It can be seen that although all

three catalysts achieved the full conversion of glycerol at 140°C,

the selectivity of products were totally different. The Pt/W/Ti

catalyst gave the highest yield (41%) of 1,3-PDO and Pt-W/Ti

gave the lowest yield (21%) of 1,3-PDO. Since all three catalysts

achieved the full conversion of glycerol and it is unreliable to

compare the activity and selectivity at such a high conversion.

We reduced the temperature to 100°C to lower the reaction rate

and compare their activity and selectivity at a lower glycerol

conversion (Figure 1D). It can be clearly seen that Pt/W/Ti

offered the highest selectivity (58%) of 1,3-PDO, although the

conversion of glycerol was slightly lower. Nevertheless, Pt/W/Ti

catalyst gave the highest yield of 1,3-PDO. These results suggest

that the impregnation order of Pt and WOx has a great influence

on the catalytic performance for glycerol hydrogenolysis,

probably because different impregnation order of Pt and WOx

on TiO2 surface gives the different Pt-W interface.

Effects of different crystal phases of TiO2

We then explored the effects of different crystal phases of

TiO2 on the catalytic performance of glycerol hydrogenolysis. As

shown in Figures 2A,B, we compared the catalytic performances

of glycerol hydrogenolysis over two types of catalysts (i.e., Pt/W/

A-Ti and Pt/W/R-Ti) with three different W loadings (i.e., 2%,

5%, and 10%). It is found that the initial activities of Pt/W/R-Ti

catalysts were obviously better than the Pt/W/A-Ti catalysts for

all 3 W loadings. Specifically, the yield of 1,3-PDO for Pt/5W/

R-Ti (48%) was slightly higher than that for Pt/5W/A-Ti (41%)

when the W loading was 5 wt%. However, the stability of Pt/5W/

A-Ti catalyst was much better than that of the Pt/5W/R-Ti

catalyst, as shown in Figures 2C,D, the Pt/5W/A-Ti maintain
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a very good catalytic activity after 5 cycles while Pt/5W/R-Ti

almost completely lost its activity for the second run. The rapid

deactivation of Pt/5W/R-Ti catalyst can be attributed to the

severe leaching of the WOx species, as we can visually see

from Supplementary Figure S1 that the reaction solution

became dark blue after reaction over Pt/5W/R-Ti, while the

solution maintains colorless and transparent after reaction

over Pt/5W/A-Ti. The severe leaching of WOx species was

also confirmed by ICP-AES measurements and results are

shown in Supplementary Table S1. In addition, we also tried

to change the durability of TiO2 (R-type) by changing the

calcination temperature during catalyst preparation. However,

as shown in Supplementary Figure S2, the reaction results show

that increasing the calcination temperature in the catalyst

preparation process leads to lower catalytic activity.

To further compare the difference between these two types of

catalysts, NH3-TPD was used to investigate the acid strength and

acidity of the two catalysts. Figure 2E reveals that the NH3-TPD

profile of 5W/A-Ti sample presents a desorption peak at 224°C,

corresponding to weak acid site. NH3-TPD profile of Pt/A-Ti

FIGURE 2
Comparative results obtained for the Pt/W/A-Ti (A) and Pt/W/R-Ti (B) fabricated under conditions of varying WOx loadings. The cycle stability
tests of Pt/5W/A-Ti (C) and Pt/5W/R-Ti (D). NH3-TPD profiles recorded for the catalysts and support A-Ti (E) and R-Ti (F). Reaction conditions: 0.3 g
of catalyst and 4.0 g of 10 wt% glycerol aqueous solution, 6 MPa H2, 140°C, 6 h.
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presents two desorption peaks in the range of 300°C–350°C,

corresponding to the medium acid sites (Zhou et al., 2020) (Zhou

et al., 2019) (Zhao et al., 2021). Compared to the peaks

corresponding to 5W/A-Ti and Pt/A-Ti, the desorption peaks

corresponding to the Pt/5W/A-Ti catalysts shifted toward the

high-temperature region, indicating that the interaction between

Pt, W, and Ti increased the acid strength of the catalyst. The

information present in the NH3-TPD profile of R-Ti type

samples (Figure 2F) is different from the information present

in A-Ti type samples (Figure 2E). The desorption peak at 616°C

of Pt/R-Ti is shifted to 525°C in the profile recorded for Pt/5W/

R-Ti. This can be potentially attributed to the interaction of Pt,

W, and R-TiO2 in Pt/5W/R-Ti catalyst. However, it can be seen

that the acid strength of Pt/5W/R-Ti is higher than that of Pt/

5W/A-Ti, and this can explain the higher initial activity of Pt/

5W/R-Ti for glycerol hydrogenlysis to 1,3-PDO (Feng et al.,

2019).

In order to better compare the difference of total acid amount

among different samples, we used the integral peak area ratio (the

5W/R-Ti sample with the smallest integral peak area was taken as

the benchmark, and the integral peak area of the NH3-TPD curve

desorption peak of other samples was compared with the integral

peak area of the 5W/R-Ti sample) for semi-quantitative

processing of the total acid content of each sample. The

results were listed in Supplementary Table S2. Overall, the

total acid content in A-Ti and the samples loaded with active

components was higher than the total acid content recorded for

the R-Ti counterparts. The effect of Pt on the acid content of the

carrier is greater than the effect of W species, indicating that the

presence of Pt results in the generation of additional acidic sites

FIGURE 3
TEM image of the freshly reduced Pt/5W/A-Ti (A,B), elemental mapping images of the freshly reduced Pt/5W/A-Ti (C–F). Raman spectral
profiles recorded for Pt/W/A-Ti (G). DRIFTs of CO adsorption on the Pt/W/A-Ti catalysts prepared under conditions of varying W loadings (H). H2-
TPD curves recorded for the Pt/W/A-Ti series catalysts (I).
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on the TiO2 support. From the acid content results of the two

catalysts, it can be seen that the total acid amount of Pt/5W/A-Ti

is higher than that of Pt/5W/R-Ti, but the initial yield of 1,3-PDO

of Pt/5W/A-Ti is lower. This may suggest that only strong acid

sites are responsible for glycerol hydrogenolysis of glycerol to 1,3-

PDO. However, although the initial activity of Pt/5W/A-Ti is

slightly lower, it has better application potential due to its ultra-

high stability.

Effects of WOx loading and chemical state

The catalytic results of the catalysts indicated that the

appropriate loading of WOx species is a key factor for the

catalytic performance. Therefore, we further investigated the

loading of WOx on the Pt/5W/A-Ti catalyst. From the TEM

and elemental mapping images, it can be concluded that the

distribution of Pt and WOx on the Pt/5W/A-Ti catalyst is highly

uniform (Figures 3A–F). Texture analysis of the catalysts

revealed that with an increase of the W loading, the specific

surface area and pore volume of the Pt/W/A-Ti catalyst

decreased, while the mean pore size remained constant

(Supplementary Table S3). This is attributed to that W species

is primarily loaded onto the pores of the TiO2 support (García-

Fernández et al., 2017). Raman spectroscopy was used to

investigate the effect of W species on the catalyst. As shown

in Figure 3G, the vibration peaks appearing at 144, 194, 391, 506,

and 630 cm−1 were attributed to the anatase TiO2 units. The

peaks appearing at 391, 506, and 630 cm−1 correspond to the

symmetrical bending vibration, antisymmetric bending

vibration, and symmetrical stretching vibration of the O-Ti-O

unit on the TiO2 surface, respectively (Zhou et al., 2019) (He

et al., 2018) (Xu et al., 2012) (Wachs, 2007) (Balta & Simsek,

2020) (Jia et al., 2021). Peak at 795 cm−1 was observed in the

Raman spectral profile recorded for the Pt/10W/A-Ti catalyst.

This peak can be attributed to the stretching vibration mode of

W-O in bulkWO3. In general, when theW content in the catalyst

is > 5 wt%, vibration peaks attributable to bulkWO3 are observed

in the Raman spectral profiles recorded for the Pt/W/A-Ti

catalysts. These results indicate that when the loading of W is

higher than 5 wt%, bulkWO3 is formed, resulting in a decrease in

the catalytic activity. This is consistent with the results from XRD

pattern (Supplementary Figures S3A, B). However, decreasing

the W laoding to 2 wt% as Pt/2W/A-Ti catalyst results in the lack

of WOx active species. These results show that 5 wt% is the best

WOx loading for Pt/W/A-Ti catalyst, consistent with the catalytic

reaction results shown in Figure 2A. Analysis of Supplementary

Table S4 and Supplementary Figure S4 revealed that the W

species in these three different W supported catalysts are

likely to exist in the form of W12 clusters because their

spectral information and Eg values are similar with

ammonium metatungstate (AMT) which exists as W12 clusters

structure (Zhao et al., 2021) (Yang et al., 2022) (Xu et al., 2021).

To further explore the effect of WOx loading on the

chemical state of Pt, we used CO as a probe molecule to

characterize a series of catalysts with different W contents.

As shown in Figure 3H, the peaks in the range of

2000–2,100 cm−1 are attributed to the linear adsorption of

CO on the Pt site, and the peak at 1838 cm−1 is attributed to

the bridge adsorption of CO on the metallic Pt unit (Xin et al.,

2021) (Zhou et al., 2021) (Botao Qiao et al., 2011). The profiles

recorded for Pt/A-Ti and Pt/2W/A-Ti reveal the presence of a

shoulder peak at 2093 cm−1, which is attributed to the linear

adsorption of CO on the surface of the PtOx species. The molar

ratio of CO to PtOx is 1:1 in this case (Zhao et al., 2020).

However, this peak was absent in the profiles recorded for the

Pt/5W/A-Ti and Pt/10W/A-Ti samples, indicating that the

PtOx content in the catalysts fabricated under conditions of

high WOx loading was higher than the PtOx content in the

samples devoid of tungsten and fabricated under conditions of

low WOx content. The species are more easily reduced to Pt0.

The peaks at 2047 cm−1 and 2080 cm−1 in Figure 3H are

attributed to the bonding of CO with the coordinatively

unsaturated and coordinatively saturated Pt sites,

respectively. The former appears in the spectral lines of the

Pt/A-Ti and Pt/2W/A-Ti samples. The results reveal that with

an increase in the W loading, the number of unsaturated Pt sites

in the catalyst decrease. This can be explained by the

coordination effect between the coordination-unsaturated Pt

and W, which results in the conversion of these sites to

coordination saturated sites. In addition, the peaks

corresponding to CO adsorption on the coordination

saturated Pt sites blue-shifted with an increase in the W

loading. This indicated electron transfer (Pt→W) between Pt

andW (Yang et al., 2018). More importantly, the strength of the

CO bridge adsorption peaks corresponding to the three

W-loaded samples was weaker than the strength of the peaks

corresponding to the W-free Pt/A-Ti units. This indicates that

W does interact with Pt to cover Pt to a certain extent. The

number of adjacent Pt sites decreases, and among the three

samples containing W, the bridge adsorption peak in Pt/5W/

A-Ti is observed to be the weakest. This proves our finding that

Pt/5W/A-Ti is the best catalyst as it is characterized by the

maximum area of the Pt/WOx interface, which is consistent

with the catalyst characterization and catalytic reaction results.

Figure 3I presents the H2-TPD diagram of the Pt/W/A-Ti

series catalysts. Two desorption regions are observed in the

H2-TPD curves recorded for the catalysts prepared when the

W loadings were 2 wt%, 5 wt%, and 10 wt%. Unlike the case of

the 5W/A-Ti sample devoid of Pt, the desorption peak at

higher temperature regions can be attributed to W/Ti, and the

desorption peak at the lower temperature regions can be

attributed to Pt-H. The desorption peak temperature

corresponding to Pt/5W/A-Ti is higher than that of the

samples corresponding to 2 wt% W and 10 wt% W,

indicating that the strength of adsorption of H species on
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the surface of Pt/5W/A-Ti is the strongest (Kuang et al., 2020)

(He et al., 2018).

Reaction mechanism study

There are many studies on the mechanism of glycerol

hydrogenolysis to produce 1,3-PDO (Cheng et al., 2021) (Feng

et al., 2019) (García-Fernández et al., 2017). However, we

traced the reaction path by in-situ DRIFT and found that

glycerol was first converted to enol form and then further

converted to 1,3-propanediol. As shown in Figure 4A which is

the adsorption state infrared spectrum of glycerol, an

absorption peak appears at 1750 cm−1, corresponding to the

vibration of the C=O bond (García-Fernández et al., 2017),

indicating that glycerol is converted to an enol-isomer when

adsorbed on the catalyst which corresponds to step 1 and 2.

Figures 4A–D all reveals the presence of two absorption peaks

at 2,939 cm−1 and 2,882 cm−1. These peaks correspond to the

symmetric, and asymmetric vibrations of the C-H units

present in glycerol, respectively (Juan del Pozo et al., 2017).

The peak appearing in the range of 2,400–2000 cm−1 may

FIGURE 4
In-situ DRIFT profiles recorded for the adsorption of glycerol on Pt/5W/A-Ti studied within the investigated region (A), and the adsorption state
in the (C–H), 3,000–2,700 cm−1, and (C–O), 1,150–950 cm−1, regions (B). Reactive state of glycerol on Pt/5W/A-Ti studied within the investigated
region (C) and reactive state in the (C–H), 3,000–2,700 cm−1, and (C–O), 1,150–950 cm−1, regions (D). Schematic diagram of the reaction
mechanism (Step 1–4).
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correspond to the absorption peak of CO2 (García-Fernández

et al., 2017). Peaks were also detected at 1,108 cm−1 and

1,049 cm−1. These peaks corresponded to the (C-O) unit of the

2◦ and 1◦OH groups in glycerol, respectively (JohnCopeland et al.,

2013). Analysis of Figure 4C which is reaction state infrared

spectrum of glycerol reveals that the peak at 1750 cm−1 is weak,

indicating that enol glycerol is converted to 1,3-PDO following the

passage of H2. The strength of the absorption peak observed in

Figure 4D is less than the strength of the absorption peak at

1,108 cm−1 appearing in Figure 4Bwhich corresponds to step 3 and

4. This indicated that glycerol was successfully converted to

1,3-PDO.

Conclusion

In summary, Pt-WOx catalysts supported on TiO2 with

different crystal forms and WOx loadings were prepared and

studied for their catalytic performance in hydrogenolysis of

glycerol. The Pt-WOx catalysts supported by different

crystalline phases of TiO2 exhibit completely different catalytic

activities and catalytic stability. The Pt/W/A-Ti catalysts exhibit

slightly lower initial catalytic activity than the Pt/W/R-Ti

catalysts, but possess much higher stability owing to their

excellent anti-leaching ability. Moreover, WOx loading

significantly influenced the catalytic performance and catalysts

with moderate WOx loading (5 wt%) exhibited the best catalytic

performance. The results obtained using the CO DRIFT

technique revealed the presence of special types of interactions

between Pt andWOx. WOx covers Pt to a certain extent, and 5 wt

% loading of WOx at the Pt/WOx interface help achieve the

maximum catalytic activity for glycerol hydrogenolysis. The

reaction mechanism associated with the conversion of glycerol

on Pt/5W/A-Ti was discussed using the in-situDRIFT technique,

and the reaction path for the conversion of glycerol to 1,3-PDO

was proposed.
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Under the background of promoting the construction of ecological civilization

and the goal of carbon peak and carbon neutralization, it is of great significance

to explore the measurement method and improvement strategy of the carbon

effect of agricultural land consolidation. Based on a quantitative analysis and the

whole life cycle of land consolidation, this study constructed a carbon effect

accounting and analysis framework of agricultural land consolidation project

from three stages of project initiation and design, project implementation, and

operation management. Taking the agricultural land consolidation project in

the Shiyan town on the urban edge of the Three Gorges Reservoir Area as a

case, this study made empirical analysis and calculation and analyzed the

carbon effect and influencing factors in different consolidation stages. The

results showed that the overall carbon effect in the project area was a carbon

source. The net carbon emission generated by the project construction was

8358t, which wasmainly fromworkers input and concrete carbon emission; the

carbon storage brought about by the adjustment of land use structure was

2,378.20t, which mainly came from the carbon storage increment of newly

cultivated land; the carbon storage generated by the agricultural ecosystemwas

1,100.04t, which was mainly based on the increase of cultivated land and the

improvement of cultivated land quality; the carbon emission from agricultural

production activities was 18.18t. Research conclusions: ① the carbon source

effect of engineering construction is obvious. Artificial input and concrete are

the main carbon sources in the hilly area at the edge of the metropolis; ② the

adjustment of land use structure is manifested as a carbon sink effect, which

mainly comes from the contribution of carbon storage of newly increased

cultivated land;③ the carbon effect of project operation andmanagement may

be a carbon source in the short term, and the long-term effect should be

exerted; and④ based on the concept of whole life cycle, promoting ecological

land consolidation, optimizing project design, reasonably arranging

consolidation projects, and strengthening operation management are

OPEN ACCESS

EDITED BY

Hu Li,
Guizhou University, China

REVIEWED BY

Peng Zheng,
Chongqing City Management College,
China
Wei Hongbin,
Ministry of Natural Resources of the
People’s Republic of China, China

*CORRESPONDENCE

Wei Yang,
yangwei0928@163.com
Yutao Zhang,
zyt0516@126.com

SPECIALTY SECTION

This article was submitted to Green and
Sustainable Chemistry,
a section of the journal
Frontiers in Chemistry

RECEIVED 18 August 2022
ACCEPTED 29 August 2022
PUBLISHED 29 September 2022

CITATION

YangW, Li X, Li W, Zhang Y, Zhang H and
Ran Y (2022), Carbon effect calculation
and upgrading strategy of agricultural
land consolidation project in urban edge
of Three Gorges Reservoir Area.
Front. Chem. 10:1022644.
doi: 10.3389/fchem.2022.1022644

COPYRIGHT

© 2022 Yang, Li, Li, Zhang, Zhang and
Ran. This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

Frontiers in Chemistry frontiersin.org01

TYPE Original Research
PUBLISHED 29 September 2022
DOI 10.3389/fchem.2022.1022644

58

https://www.frontiersin.org/articles/10.3389/fchem.2022.1022644/full
https://www.frontiersin.org/articles/10.3389/fchem.2022.1022644/full
https://www.frontiersin.org/articles/10.3389/fchem.2022.1022644/full
https://www.frontiersin.org/articles/10.3389/fchem.2022.1022644/full
https://www.frontiersin.org/articles/10.3389/fchem.2022.1022644/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fchem.2022.1022644&domain=pdf&date_stamp=2022-09-29
mailto:yangwei0928@163.com
mailto:zyt0516@126.com
https://doi.org/10.3389/fchem.2022.1022644
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org/journals/chemistry#editorial-board
https://www.frontiersin.org/journals/chemistry#editorial-board
https://doi.org/10.3389/fchem.2022.1022644


effective measures to improve the carbon effect of land consolidation projects,

which are conducive to the realization of the “double carbon” goal.

KEYWORDS

agricultural land consolidation, ecosystem biomass, biomass carbon, carbon effect
accounting, Shiyan town

1 Introduction

Global warming has led to a series of ecological and

environmental problems, which have brought severe

challenges to human survival and development. Greenhouse

gas emission reduction has become a global issue (Dong et al.,

2008). Under the goal of carbon peak and carbon neutrality,

the implementation of carbon reduction is an important

strategy for China’s economy and society to achieve green

and low-carbon development. The assessment report of the

Intergovernmental Panel on Climate Change (IPCC) pointed

out that the main cause of global warming was the greenhouse

gas emissions from burning fossil fuels and land use by human

activities (IPCC, 2001). According to the data released by the

World Resources Research Institute and Climate Watch in

2016, 73.2% of global greenhouse gases came from energy

consumption and 18.4% from agriculture, forestry, and land

use (Wu et al., 2021). Some scholars estimated that the carbon

emissions from land use and change, from 1850 to 1998,

accounted for 1/3 of the total carbon emissions from

human activities in the same period (Watson et al., 2000;

Houghton et al., 2012); from 1850 to 2000, the net emission of

CO2 to the atmosphere due to land use change reached 156pg,

of which 87% came from deforestation (Houghton et al., 1999;

Watson et al., 2000). The impact of land use/land cover change

(LUCC) on the carbon balance of terrestrial ecosystems has

become the focus of research on global change and terrestrial

carbon cycle (Gregorich et al., 1998). The carbon effect of land

use and emission reduction measures are important ways to

deal with global climate warming, which are of great concern

to governments and scholars (Zhang et al., 2018).

Agricultural land consolidation is the reorganization of

agricultural land use structure and ecosystem (Gao, 2003). It

is an important way to coordinate the relationship between

people and land, and one of the largest human activities to

change the land use pattern and affect the terrestrial ecosystem in

China (Zhang T et al., 2014; Wang et al., 2018), which directly

affects the carbon cycle of the ecosystem. On the one hand, the

strong disturbance of soil and the destruction of biomass caused

by the project construction will directly affect the ecosystem in

the project area. Meanwhile, the input of materials such as

cement, steel and the consumption of energy such as gasoline

and diesel will affect the carbon pool balance of the regional

ecosystem.

China’s rural land consolidation is developing rapidly and

on a large scale, which has a prominent impact on the rural

ecological environment, ecosystem biomass, and carbon

emissions. According to the National Land Consolidation

Plan (2016–2020), during the 13th Five-Year Plan period,

1.3333 million hm2 of cultivated land will be replenished,

13.3333 million hm2 of low and medium cultivated land will

be transformed, and 400,000 hm2 of rural construction land

will be consolidated (The Ministry of Land and Resources of

PRC The National Development and Reform Commission,

2017). Under the background of ecological civilization

construction, the country has made great investment and

continued promotion, which has made rural land

consolidation a focus in the field of land resources

management, and will continue to affect rural economic

and social development and ecological environment

construction.

At present, the planning, design, and construction practice of

the agricultural land consolidation project pay more attention to

the regional landscape pattern, soil erosion, and environmental

pollution and pay less attention to the carbon effect of project

implementation.

Domestic and foreign scholars have studied the carbon

effect of agricultural land consolidation; one is to directly

study the relationship between land use and carbon

emissions, and the other is to indirectly study the carbon

emissions caused by land use changes (Han et al., 2016),

focusing on soil carbon content changes, energy, and material

consumption, ecological compensation policies, and other

contents (Tan et al., 2011; Guo et al., 2016; Zhang et al., 2016).

Some scholars have also analyzed land consolidation types

from the perspective of geomorphology types (Jin et al.,

2013). In general, most of the existing studies are

qualitative discussions and few quantitative calculations.

The research on carbon emissions in different

implementation stages of land consolidation projects and

after the implementation of land consolidation projects is

not enough. In addition, from the research area, there are few

studies on the carbon effect of land consolidation in the Three

Gorges Reservoir area, especially in the urban fringe.

Therefore, this study reasonably absorbs the existing

research results, takes the rural land consolidation project

of the Shiyan town on the edge of the metropolitan area of the

Three Gorges Reservoir Area in Chongqing as a case, adopts

the quantitative method, and calculates the carbon effect and

influencing factors at different stages based on the life cycle of

agricultural land consolidation, so as to provide reference for

the ecological transformation and development of agricultural
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land consolidation in the metropolitan area edge. It provides a

basis for the formulation of measures to reduce carbon

emission and improve carbon effect in land consolidation

regions, helps achieve the goal of carbon peak and carbon

neutrality, and further enriches the theory and methods of low

carbon and ecological land consolidation.

2 Overview of study area

The project area is located in Shiyan Town, Changshou

District, Chongqing City, between 107°10′45″–107°14′08″E
and 30°03′35″– 30°05′45″N, involving three villages

including Muer, Zaojue, and Jianxin. The project area is

located in the south of the parallel ridge Valley Liangping

Syncline in the east of Sichuan Basin, mainly developed in

the middle hilly terrain, and the micro landform is shallow

hilly zone dam landform, with a relative height difference of

50–160 m and an average elevation of 370m; Longxi River in

the area, with an average annual flow of 54 m3/S; The

groundwater has pressure bearing capacity and modulus is

27,000 m3/km2. It belongs to subtropical humid monsoon

climate. The annual average temperature is 17.45°C, annual

accumulated temperature of ≥0 °C is 6,423.7°C, annual

accumulated temperature of ≥10°C is 5,783.75°C, frost free

period is 331 days, average annual sunshine duration is

1,245.1 h, and average rainfall is 1117 mm, which is

conducive to the growth of a variety of crops; the

vegetation is mainly subtropical evergreen broad-leaved

forest, with 184 tree species and 56 cultivated plants. The

grain crops are mainly rice, corn, wheat, and sweet potato,

and cash crops are mainly rapeseed and vegetables. The soil

is brown purple soil and neutral purple mud paddy soil, with

pH value of slightly acidic to slightly alkaline, and the

thickness of soil layer ≥40 cm. Corn, sweet potato, and

wheat can be planted in dry land three times a year;

single cropping rice in the dam paddy field is mainly

planted; and rice and wheat or rice and rapeseed planted

in paddy fields in slope valley are mainly double cropping.

The soil has high natural fertility, wide suitability for

cultivation, and wide suitability for planting. The total

area is 553.83 h m2, population is 5,443, agricultural land

is528.14 h m2, unused land is 25.69 h m2, and land

reclamation rate is 64.63%. Land consolidation projects

include land leveling, irrigation, drainage, field roads,

farmland shelter forests, and other projects. The artificial

leveling earthwork is 416,500 m3, artificial tamping Earth

barrier is 123,302 m3, dry block stone sill 10090 m3, new field

road is 5 km, maintenance field road is 10.34 km, roads for

production is 32.14 km, drainage and irrigation ditch are

28.083 km, new irrigation channel is 28.36 km, impounding

reservoir is 67, desilting basin is 32,970, and shelter forest

belt is 111.21 km.

3 Data sources and processing

3.1 Data sources

It mainly comes from the design report of the land

consolidation project in Shiyan Town, Changshou District;

the budget book of the land consolidation project in Shiyan

Town, Changshou District; China Energy Statistics

Yearbook; 2006 IPCC national greenhouse gas inventory

Guide (IPCC, 2006); the budget quota of Chongqing land

development and consolidation project; Changshou District

Statistics Yearbook; the second national land survey data;

and the relevant research literature on the carbon effect

calculation of land consolidation projects.

3.2 Data processing

The material data of the consolidation project adopts the

quantities and machine shifts in the project design report; energy

consumption is obtained by conversion of the project budget

quota standard. The carbon emission coefficients of different

materials, energy, agricultural production inputs, and so on are

modified based on relevant research results and combined with

the actual situation of the study area. The carbon density

parameters of soil and vegetation refer to the relevant data of

similar remediation areas in the existing studies. The basic data

such as crop yield are the average grain yield in the project area in

the beginning year and 1 year after the completion and

implementation of the agricultural land consolidation project.

4 Method

4.1 Logical framework of carbon effect
accounting for agricultural land
consolidation projects

Agricultural land consolidation has a profound impact on the

carbon cycle and carbon storage in the project area, and the

carbon effect is obvious. Based on the analysis of the whole life

cycle, the agricultural land consolidation project has gone

through such links as application, project approval, planning

and design, engineering construction, completion acceptance,

and operation. This study is simplified into three stages: project

approval and design, project implementation, and operation and

management. Agricultural land consolidation has an impact on

biomass carbon, carbon cycle, and carbon pool reserves in the

project area through disturbance of land and biomass, input of

different materials, and use of mechanical fuel. The basic logic of

three-stage carbon effect accounting was analyzed in the order of

project life cycle (Figure 1): first, the carbon effect of land use

structure change: the expected and actual land use structure
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change at the project approval and design stage and after

completion and acceptance will lead to the change of the type

and quantity of regional biomass and the disturbance of biomass

carbon, resulting in the change of vegetation and soil carbon

storage. Second, the carbon effect of project construction: the

carbon cycle and carbon balance in the project area will be

affected due to the disturbance of soil, biomass, and biomass

carbon during the project construction and the disturbance of

carbon balance in the project area caused by the input of a large

amount of engineering materials, diesel and other fuels, and the

CO2 emissions of personnel. The third, the carbon effect of

farmland operation and management: after the completion of the

project, the change of agricultural production and ecosystem

operation management and protection mode, such as the change

of farming activities and farmland ecosystem on the type and

quantity of biomass and biomass carbon in the project area will

have an impact on the soil and vegetation carbon pool.

4.2 Accounting method for carbon effect
of agricultural land consolidation projects

4.2.1 Calculation method of carbon effect in
engineering construction

The engineering construction has the strongest disturbance

on the soil, biomass and biomass carbon in the project area and

the most direct impact on the carbon balance. One is to influence

the carbon cycle in the project area by changing the land use

structure and land use mode; Second, during the construction

process, cement, stone, steel, concrete and other materials are put

into use, diesel, electricity and other energy are consumed, and a

large number of personnel are put into production, which will

cause CO2 emissions and affect the carbon balance of the project

area. The use of gasoline, diesel and other energy sources directly

generates CO2 emissions; CO2 emission of cement and other

materials comes from the energy consumption in the production

process; CO2 emission of personnel input is generated from

various production and construction activities. The influence of

material transportation, wood and mortar plastering on carbon

cycle is ignored in the carbon effect calculation, and river sand

and water are partially reflected in concrete. According to this,

the carbon emission during the construction of the project is the

sum of the product of energy, materials, labor and its emission

coefficient, the calculation model is as follows:

CeC � ∑
n

i�1Ei × f ie +Mi × f im+Pi × f ip, (1)

where CeC is the total amount of carbon emissions from the

construction of agricultural land consolidation projects; Ei, Mi,

and Pi are the input amount of the ith energy, material, and

personnel during construction; f ie, f im, and f ip are the carbon

emission coefficients corresponding to the ith energy, material,

and personnel consumption, respectively. The existing research

results (IPCC, 2006; Zhang et al., 2016; Cheng 2020; Zhai, 2017;

He et al., 2018; Zhang et al., 2018) and the actual situation of the

project area determine the carbon emission coefficient of each

input material (Table 1).

4.2.2 Calculation method of carbon effect of
land use structure change

The carbon effect of land use structure change is measured

by the carbon storage change of the corresponding land use type

before and after the consolidation. The implementation of

agricultural land consolidation project will further develop

and utilize some low-efficiency land such as bare land,

grassland and ridge, merge small fields into large fields, level

FIGURE 1
Logical framework of carbon effect accounting for agricultural land consolidation project.
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sloping farmland, build and maintain rural roads and irrigation

and drainage channels, so as to adjust the land use structure and

lay out of the project area, change the biomass type and

production capacity, and CO2 emissions of the ecosystem.

Referring to the research results of scholars (Zhang et al.,

2016; He et al., 2018; Zhang et al., 2018), the change of

carbon storage of land use types is estimated by soil carbon

storage and vegetation carbon storage, that is, the change area

of each land use type in the project area is multiplied by the soil

carbon density and vegetation carbon density per unit area of

land. The calculation model is a follows:

CSls � CSlb−CSlf � ∑
n

i�1Sci × CDvi,+,CDsi( ), (2)

where CSls is the total carbon storage change before and after the

consolidation in the project area, CSlb and CSlf are the carbon

storge after and before the consolidation, Sci is the area change of

the ith land use type, CDvi and CDsi are the vegetation carbon

density and soil carbon density of the ith land use type. The

determination of relevant parameters (Li et al., 2003; Chuai et al.,

2012; Zhang et al., 2013; Guo et al., 2015; Cheng, 2020; Chen

et al., 2021; Xiang et al., 2022) is shown in Table 2.

4.2.3 Calculation method of carbon effect of
project operation and management

The carbon effect of project operation and management is

mainly reflected in the carbon storage of the farmland ecosystem

and the carbon emission generated by the transformation of the

farmland farming and management after consolidation. The

carbon storage effect of farmland ecosystem lies in the

increase of cultivated land area and the improvement of

quality after the consolidation, which leads to the

improvement of land utilization rate, crop yield, and the

increase of biomass quantity and biomass carbon of crops and

protective trees. The carbon sequestration capacity is calculated

based on the average water content, economic coefficient, carbon

absorption rate, and economic output of crops through crop

biomass quantity and biochar (Zhang et al., 2016; Cheng, 2020).

The calculation model of carbon absorption per unit output of

crops is as follows:

TABLE 1 Carbon emission parameters of main materials/energy of agricultural land consolidation project in the project area.

Material type Unit of measurement Carbon emission coefficient Data reference

Energy Diesel oil kg/kg 0.5927 IPCC (2006)

Gasoline kg/kg 0.5538 IPCC (2006); Cheng (2020)

Electricity kg/kw.h 0.9310 Cheng (2020)

Materials Steel products kg/kg 1.0600 Zhang et al. (2016); He et al. (2018)

Cement kg/kg 0.4598 Zhai (2017)

Concrete kg/m3 231.50 He et al. (2018)

Block stone kg/m3 2.3900 He et al. (2018)

Other Workers kg/人.d 18.9000 Zhang et al. (2018)

Protection forest kg/株.a −23.6600 Zhang et al. (2016)

TABLE 2 Vegetation and soil carbon density parameters of different land types in the project area.

Land use
type

Land type
in the
project area

Unit of
measurement

Vegetation
carbon
density

Soil
carbon
density

Data reference

Cultivated land Dry land and paddy
field

t/hm2 14.30 90.8 Chuai et al. (2012); Zhang et al.
(2013)

Garden plot Orchard garden t/hm2 25.10 84.3 Li et al. (2003)

Woodland Protective forest land t/hm2 23.00 113.5 Zhang et al. (2013); Li et al. (2003)

Grassland Other grassland t/hm2 10.31 109.39 Chen et al. (2021)

Land for transportation Rural roads t/hm2 2.05 33.99 Xiang et al. (2022)

Land for water and water conservancy
facilities

Pond surface and
channel

t/hm2 6.64 40.64 Cheng (2020)

Other agricultural land Ridge of field t/hm2 1.59 62.95 Guo et al. (2015)

Unused land Bare land t/hm2 1.50 55.45 Guo et al. (2015)
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CUa � ∑
n

i�1Cia � ∑[(1 −Wi) × 1
Hi

× f ia], (3)

where CUa is the carbon uptake of crops per unit output

(kg/kg), Cia is the carbon uptake per unit crop of class i

(kg/kg), Wi and Hi is the average water content of crops

(kg/kg) and economic coefficient, and f ia is the carbon uptake

rate (%) of class i crops. Based on the research results of

scholars (Zhao and Qin 2007; Zhang Z et al., 2014; Zhang

et al., 2016; Cheng, 2020; Zhang et al., 2018) and the actual

situation of the project area, the relevant parameters of carbon

emission are determined (Table 3).

During the operation and management of the project,

various agricultural production activities will inevitably

produce CO2 emissions. First, the carbon emissions from

agricultural production links, such as the CO2 emissions

from energy consumption of farming machinery, crop

irrigation and drainage, and the use of fertilizers and

pesticides. The second is the emission of greenhouse gases

from farmland ecosystems, such as soil respiration and CH4

emissions from paddy fields. In practice, material balance

algorithm and farmland greenhouse gas flux are usually

used to estimate (Cheng (2020); Song, 2017). The

calculation formula is as follows:

CE � ∑
n

i�1CEi � ∑
n

i�1Ei
× γi, (4)

where CE is the total amount of carbon emissions from

agricultural cultivation in the project area, CEi is the carbon

emission of agricultural farming activities or agricultural inputs

of type i, Ei is the amount of agricultural activities or agricultural

inputs of type i, and γi is the carbon emission coefficient of

different agricultural activities. The corresponding carbon

emission coefficient is determined according to the research of

scholars (Zhang T et al., 2014; Zhao and Qin (2007); Song, 2017;

Duan et al., 2011; Wu et al., 2007) and the actual situation of the

project area (Table 4).

5 Results and analysis

5.1 Carbon effect of project construction

The calculation results showed that the carbon emission of

the project construction was 10,493.5t, and the carbon sink is

2135t, On the whole, it was shown as carbon source, and the net

carbon emission was 8358t (Table 5). The emission of energy was

72.06t, accounting for 0.69% of the total carbon emission,

gasoline 4.82t, diesel 19.27t, and electricity 47.97t, accounting

for relatively low. The emission of materials was 2,410.87t,

accounting for 22.97%, steel 25.20t, cement 344.98t, concrete

1,598.8t, block stone 441.89t, concrete was the most. Other

categories: first, artificial emission of 8010.6T, accounting for

76.34% of the total, which is the main body of carbon emission.

The second is the shelter forest project, which stores 2135t

carbon, which can offset 20.35% of the total carbon emission.

In terms of project type, the carbon emission from land leveling is

TABLE 3 Carbon emission and absorption parameters of crops per unit yield in the project area.

Crops Mean water
Content/Wi

Economic coefficient
of Crops/Hi

Carbon uptake
rate of
Crops/fia

Carbon uptake
per unit
of crop
Yield/Cia

Data reference

Paddy 0.14 0.45 0.41 0.783 Zhao and Qin, (2007); Zhang et al. (2018)

Corn 0.13 0.40 0.47 1.065 Cheng (2020); Zhang et al. (2018)

Wheat 0.13 0.40 0.49 1.066 Zhang et al. (2016); Zhang et al. (2018)

Rapeseed 0.09 0.25 0.45 1.638 Cheng (2020); Zhang T et al. (2014)

TABLE 4 Main carbon emission parameters of agricultural production activities in the project area.

Agricultural
production activities

Carbon emission coefficient Unit of measurement Data reference

Agricultural irrigation 266.48 kg/hm2 Duan et al. (2011); Zhao and Qin, (2007)

Land cultivation 218.82 kg/km2 Zhang et al. (2018); Wu et al. (2007)

Fertilizer application 0.8956 kg/kg Zhang T et al. (2014); Zhang et al. (2018)

Pesticide spraying 4.9341 kg/kg Zhang Z et al. (2014); Zhang et al. (2018)

Agricultural film mulching 5.18 kg/kg Zhang Z et al. (2014); Zhang et al. (2018)
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6249t, accounting for 59.55% of the total carbon emission;

Irrigation and water conservancy 2170t, accounting for

20.68%; and field road 2074t, accounting for 19.77%.

Farmland protection works are carbon sinks (Figure 2). If the

impact of artificial carbon emission is not included, the total

carbon emission is 2,481.97t, including 1,491.36t for farmland

water conservancy projects, 749.23t for field road projects and

241.38t for land leveling projects (Figure 3).

The project area is located in the hilly area on the edge of the

metropolitan area of the Three Gorges Reservoir area. The

project construction involves a lot of labor, with a total of

423,800 people per day, and less machinery. Therefore,

different from many existing scholars, this study fully

considered artificial carbon emission during construction. At

the same time, the farmland protection project will be included in

the carbon effect accounting of the project construction stage,

and the carbon sink function will be played through the

accumulation of biomass quantity and biomass carbon.

5.2 Carbon effect of land use structure
change

After renovation, the cultivated land in the project area has

increased by 54.15 h m2, including 37.05 h m2 of dry land,

2.36 h m2 of paddy field, 2.36 h m2 of garden land, 4.28 h m2

of rural road land, the water surface of pit pond remains

unchanged, 1.36 h m2 of ditch, 0.48 h m2 of other grassland,

and 36.94 h m2 and 25.69 h m2 of ridge and bare land

(Table 6). Rural residential areas, roads and woodlands are

not included in the project area.

The calculation results showed that the carbon storage increment

generated by the change of land use structure was 2,378.20t, which

was a carbon sink in general. On the change of carbon storage of

different land use types, the carbon storage of cultivated land

increased by 5,691.17 t (3,893.96 t for dry land and 1797.21 t for

paddy field), 258.19 t for garden land, 154.25 t for rural roads, 64.30 t

for irrigation and drainage ditches, 57.46 t for grassland. The carbon

storage of the ridge offield is reduced by 2384t, and the unused land is

reduced by 1463t (Table 6). Increase of carbon reserves in the project

area is mainly due to the increase of land use types such as dry land,

paddy field, garden land and rural roads due to the improvement of

other agricultural land and the development of unused land, thus

increasing the biomass production, soil organic matter and biomass

charcoal in the project area.

5.3 Carbon effect of project operation and
management

5.3.1 Carbon sink effect of farmland ecosystem
The main grain crops in the project area are paddy, wheat

and corn, and the major cash crops are rapeseed and someT
A
B
LE

5
C
o
n
st
ru
ct
io
n
m
at
e
ri
al
s,

e
n
e
rg
y
in
p
u
t,
an

d
ca

rb
o
n
e
m
is
si
o
n
re
su

lt
s
o
f
th
e
p
ro

je
ct

ar
e
a.

M
at
er
ia
l
ty
pe

La
n
d
le
ve
li
n
g

Ir
ri
ga
ti
on

an
d
dr
ai
n
ag
e

Fi
el
d
ro
ad

Fa
rm

la
n
d
pr
ot
ec
ti
on

T
ot
al

C
on

su
m
pt
io
n

C
ar
bo

n
em

is
si
on

C
on

su
m
pt
io
n

C
ar
bo

n
em

is
si
on

C
on

su
m
pt
io
n

C
ar
bo

n
em

is
si
on

C
on

su
m
pt
io
n

C
ar
bo

n
em

is
si
on

C
on

su
m
pt
io
n

C
ar
bo

n
em

is
si
on

E
ne
rg
y

D
ie
se
l
oi
l

0.
40

0.
24

9.
86

5.
84

22
.2
6

13
.1
9

0.
00

0.
00

32
.5
2

19
.2
7

G
as
ol
in
e

0.
00

0.
00

7.
31

4.
05

1.
39

0.
77

0.
00

0.
00

8.
70

4.
82

E
le
ct
ri
ci
ty

0.
00

0.
00

26
.4
7

24
.6
4

25
.0
5

23
.3
2

0.
00

0.
00

51
.5
2

47
.9
7

M
at
er
ia
ls

St
ee
l
pr
od

uc
ts

0.
00

0.
00

23
.7
7

25
.2
0

0.
00

0.
00

0.
00

0.
00

23
.7
7

25
.2
0

C
em

en
t

0.
00

0.
00

49
5.
0

22
7.
6

25
5.
3

11
7.
4

0.
00

0.
00

75
0.
3

34
4.
98

C
on

cr
et
e

0.
00

0.
00

4,
97
4

1,
15
1

19
28

44
6

0.
00

0.
00

6,
90
2

1,
59
8.
8

B
lo
ck

st
on

e
10
0.
9

24
1

22
.0
1

52
.6
1

61
.9
9

14
8.
1

0.
00

0.
00

18
4.
9

44
1.
89

O
th
er

W
or
ke
r

31
.7
8

6,
00
7

3.
59

67
8.
9

7.
01

1,
32
5

0.
00

0.
00

42
.3
8

80
10
.6

P
ro
te
ct
io
n
fo
re
st

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

90
,2
30

−
2,
13
5

90
,2
30

−
2,
13
5

小
计

6,
24
9

2,
17
0

20
74

−
2,
13
5

83
58

U
ni
t
of

m
ea
su
re
m
en
t:
E
le
ct
ri
ci
ty

10
00
K
w
.h
,
co
nc
re
te

bl
oc
k
st
on

e
10
00
m

3 ,
w
or
ke
r/
10
00
0,

sh
el
te
rb
el
t/
pl
an
t,
st
ee
l
pr
od

uc
ts
,d

ie
se
l
oi
l,
ga
so
lin

e,
ce
m
en
t,
ca
rb
on

em
is
si
on

/t
.

Frontiers in Chemistry frontiersin.org07

Yang et al. 10.3389/fchem.2022.1022644

64

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2022.1022644


vegetables. In agricultural production, the rotation of corn

and wheat is adopted in dry land, and paddy and rapeseed are

rotated in paddy field. After the implementation of the project,

firstly, the increase of the amount of arable land leads to the

increase of grain output; secondly, the improvement of the

medium and low yield fields leads to the improvement of the

quality of arable land and the increase of crop output. Both of

them work together to increase the overall biomass, biomass

carbon and carbon reserves in the project area due to the

increase of grain output. According to the calculation results,

the newly increased cultivated land and grain yield: paddy

field 17.1 h m2, dry land 37.5 h m2, rice 128.76t, rapeseed

38.48t, corn 161.17t, wheat 84.47t, a total of 412.88t;

Arranging medium and low yield fields and increasing

FIGURE 2
Carbon effect structure of different land consolidation projects (including personnel).

FIGURE 3
Carbon effect structure of different remediation projects (excluding personnel).
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grain yield: arranging 180.32 h m2 of dry land and 177.76 h m2

of paddy fields, increasing the yield of rice by 213.3t, rapeseed

by 259.41t, corn by 143.76t and wheat by 148.76t, totaling

625.13t (Table 7).

The results showed that the increase of crop biomass

production in the project area increased the total carbon

storage by 1,100.04t, including 267.70t of rice, 259.41t of

rapeseed, 324.31t of corn and 248.62t of wheat. In general, the

proportion of carbon storage increase caused by the

consolidation of medium and low yield fields in the project

area was larger (Table 7), and the carbon sink effect of

agricultural ecosystem was obvious.

5.3.2 Carbon source effect of agricultural
production activities

After the implementation of the consolidation in the project

area, the amount of fertilizer, pesticide, agricultural film and

other materials invested in agricultural farming activities is

adjusted every year, and the area of agricultural irrigation and

land cultivation is increased, resulting in the change of carbon

balance in the project area. The results showed that the

agricultural irrigation area increased by 46.33 h m2, the land

plowing increased by 0.57 km2, the use of agricultural film

increased by 4.49t, and the carbon emission increased by

12.35 t, 0.12 t and 23.26 t respectively in 1 year; The amount

of pesticide application was reduced by 0.55t and the amount of

fertilizer was reduced by 16.56t. The annual carbon emissions in

the project area are reduced by 2.71t and 14.83 T respectively. In

general, the annual net carbon emission of agricultural

production activities in the project area after consolidation

was 18.18t, which was shown as carbon source effect (Table 8).

5.4 Carbon effect balance analysis in the
project area

The carbon effect of the three stages of the agricultural

land consolidation project is different. During the

TABLE 6 Carbon storage change for land use structure adjustment in the project area.

Land type Before
consolidation

After
consolidation

Land type
change

Carbon storage change

Soil Vegetation Subtotal

Cultivated land Dry land 180.32 217.37 37.05 3,364.14 529.82 3,893.96

Paddy field 177.61 194.71 17.10 1,552.68 244.53 1797.21

Garden plot Orchard
garden

0.00 2.36 2.36 198.95 59.24 258.19

Land for transportation Rural roads 5.29 9.57 4.28 145.48 8.77 154.25

Land for water and water
conservancy facilities

Pond surface 1.72 1.72 0.00 0.00 0.00 0.00

Channel 0.51 1.87 1.36 55.27 9.03 64.30

Grassland Other
grassland

0.00 0.48 0.48 52.51 4.95 57.46

Other agricultural land Ridge of field 162.69 125.75 −36.94 −2,325 −58.73 −2,384

Unused land Bare land 25.69 0.00 −25.69 −1,424 −38.53 −1,463

Total 553.83 553.83 0.00 1,619.14 −59.06 2,378.20

Unit of measurement: land type/hm2, soil, and vegetation carbon storage/t.

TABLE 7 Change of crop yield and carbon storage after consolidation in the project area.

Crops Grain output of newly increased
cultivated land

Increase grain yield by arranging medium and low
yield fields

Carbon storage

Cultivated land area Grain yield Renovation area Grain production increase

Paddy 17.1 128.76 177.61 213.13 267.70

Rapeseed 38.48 119.89 259.41

Corn 37.05 161.17 180.32 143.35 324.31

Wheat 84.47 148.76 248.62

合计 54.15 412.88 357.93 625.13 1,100.04

Unit of measurement: area/hm2, grain yield, grain production increase, and carbon storage/t.
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implementation stage of the agricultural land improvement

project, due to various materials input, machinery use, energy

consumption, labor input and other reasons, the ecosystem,

biomass production and biomass carbon in the project area

are destroyed, resulting in a large amount of carbon

emissions, affecting the regional carbon cycle and carbon

balance. The carbon emission in this stage is short-term and

one-time, and the project area is a carbon source; In the stage

of operation management and conservation, due to the

increase of cultivated land area, quality improvement,

biomass production of crops and biomass carbon, it is

manifested as a carbon sink, which is a long-term carbon

effect with an annual cycle. At the same time, in the stage of

operation and management, agricultural production

activities increased, and the overall carbon emissions

increased accordingly. In this cycle, after a certain period

of operation, the carbon emissions from the project

construction will be gradually digested by the agricultural

ecosystem to achieve carbon balance. The time to achieve

carbon balance is determined by the carbon emission of

project construction, the carbon storage of land use

structure adjustment, the carbon storage of agroecosystem

and the carbon emission of agricultural production activities.

The calculation formula is as follows:

Tcb � CeC − CSls
CUa − CE

, (5)

where Tcb is the time to achieve carbon effect balance in the

project area, CeC is the total amount of carbon emissions from the

construction of agricultural land consolidation project, CSls is the

total carbon storage change before and after the consolidation in

the project area, CUa is the carbon uptake of crops per unit

output, and CE is the total amount of carbon emissions from

agricultural cultivation in the project area.

The carbon emissions of the project construction are 8358t,

the carbon reserves of land use structure adjustment are

2,378.20t, the carbon reserves of agricultural ecosystem in the

project area are 1,100.04t, and the carbon emissions of

agricultural production activities are 18.18t. It is estimated

that the time to achieve carbon balance is 5.53 years.

6 Conclusion and discussion

6.1 Conclusion

Based on the historical background of promoting the

construction of ecological civilization and achieving the goal

of carbon peak and carbon neutralization, this study took the life

cycle of agricultural land consolidation project as the clue, and

adopted quantitative analysis method to construct the carbon

effect accounting and analysis framework of agricultural land

consolidation project from three stages of project approval

design, project implementation and operation and

management. Taking the agricultural land consolidation

project in Shiyan town on the edge of the Three Gorges

Reservoir Area as the research case, this study made empirical

analysis and calculation, and explored the influencing factors of

carbon storage in different life cycle stages. The main conclusions

were as follows:

(1) The overall carbon effect of the project area was measured as

the carbon source state. The net carbon emissions generated

by the project construction were 8358t, the carbon reserved

generated by the land use structure adjustment were

2,378.20t, the carbon reserved generated by the

agricultural ecosystem were 1,100.04t, and the carbon

emissions from agricultural production activities were

18.18t.

(2) The project area was located in the hilly area on the edge of

the metropolitan area of the Three Gorges Reservoir area,

and the carbon source effect of the project construction was

obvious. Among them, the carbon emission of artificial input

was 8010.6t, and the land leveling project in the project

category was 6249t, accounting for 59.55% of the total

carbon emission; excluding the carbon emission of

artificial input, the total carbon emission was 2,481.97t, of

which 1,598.8t was from concrete, accounting for 64.42%,

followed by 441.89t from block stone and 344.98t from

cement. In the project category, 1491.36t was from

farmland water conservancy, 749.23t was from field roads

and 241.38t was from land leveling. The farmland shelter

TABLE 8 Agricultural production activities and carbon emissions after consolidation in the project area.

Agricultural production
activities

Unit of
measurement

Before consolidation After consolidation Quantity change Carbon Emissions/t.a

Agricultural irrigation hm2 221.63 267.96 46.33 12.35

Land cultivation km2 3.57 4.14 0.57 0.12

Fertilizer application t 268.45 251.89 −16.56 −14.83

Pesticide spraying t 3.98 3.43 −0.55 −2.71

Agricultural film mulching t 20.4 24.89 4.49 23.26

Total 518.03 552.31 34.28 18.18
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forests were carbon sinks, increasing carbon reserves by

2135t.

(3) The carbon effect of land use structure adjustment was

generally shown as carbon sink. Among them, the newly

increased cultivated land in the project area increases the

carbon reserved by 5,691.17t, which was themain body of the

increase in carbon reserves; As the area of ridge of field and

bare land decreases, the carbon reserves were reduced by

2384t and 1463t.

(4) The calculation results of the carbon protection effect of the

project operation and management were generally shown as

carbon sinks. The carbon reserved of farmland ecosystem

increased by 1,100.04t due to the increase of cultivated land

area and the improvement of cultivated land quality, and the

carbon reserved increased more due to the improvement of

cultivated land quality. The total carbon emission from

agricultural production activities was 18.18t.

6.2 Discussion and suggestions

Under the background of vigorously promoting the

construction of ecological civilization, rural land consolidation

will pay more and more attention to the goal of low carbon

emission and high carbon sink. Rural land consolidation will

certainly have a certain reverse effect on ecosystem structure and

carbon sequestration effect in the project area. Therefore, it is

inevitable to explore and promote low carbon and ecological land

consolidation.

(1) Ecological land consolidation is an important means to

promote the construction of ecological civilization and the

realization of the “double carbon” goal. The research shows

that the different stages of agricultural land consolidation,

especially the engineering construction, have strong

disturbance on the soil and vegetation in the project area,

and great influence on the biomass production of the

ecosystem, which directly affects the regional carbon cycle

and carbon balance. Therefore, exploring and promoting

ecological land consolidation with low carbon emission and

high carbon sink is an important carrier to achieve the

“double carbon” goal and an important means to promote

the construction of ecological civilization.

(2) Based on the concept of life cycle, optimizing project design,

reasonably arranging consolidation projects and

strengthening operation management and protection are

effective measures to improve the carbon effect of land

consolidation projects.

Project approval and design stage: revise the policy standards for

land consolidation project approval, and take the potential of carbon

sequestration and sink increase as an important indicator for project

approval and storage. In the operation, the change of carbon storage

in vegetation and soil and carbon effect accounting of the project

area before and after the consolidation are taken as the necessary

contents of the project feasibility study, and the projects with good

carbon effect and strong implement ability are preferentially selected

for storage and filing.

Construction stage of the project: ecological engineering

materials such as ecological bricks are mostly selected. The

layout of the project is adapted to local conditions to reduce

unnecessary or small projects. The projects that are unreasonable

or have a great impact on the ecological environment of the

project area are canceled according to the actual situation. The

terrain and landform of the project area are mostly kept, and the

demolition and construction are not large, so as to reduce the

engineering disturbance to the project area.

Project operation and management stage: establish and

adjust the acceptance and assessment standards for

agricultural land consolidation projects, and take the

achievement degree and stability of carbon reduction and sink

increase of newly added cultivated land, farmland water

conservancy projects, field road projects and farmland shelter

forest projects before and after the implementation of the project

as important indicators. Regional standards and incentives for

farmland cultivation, seed selection, irrigation and drainage,

fertilizer and pesticide application should be established to

reduce carbon emission and increase carbon storage, so as to

improve the carbon storage and carbon effect of the project area

through a perfect operation management and conservation

policy system.
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The activation and conversion of the CO2 molecule have always been the most

vexing challenge due to its chemical inertness. Developing highly active

catalysts, which could overcome dynamic limitations, has emerged as a

provable and effective method to promote CO2 activation–conversion.

Herein, ETS-10 zeolite–based catalysts, with active nickel species introduced

by in situ doping and impregnation, have been employed for CO2 methanation.

Conspicuous CO2 conversion (39.7%) and perfect CH4 selectivity (100%) were

achieved over the Ni-doped ETS-10 zeolite catalyst at 280°C. Comprehensive

analysis, which include X-ray diffraction, N2 adsorption–desorption, SEM, TEM,

H2 chemisorption, CO2 temperature programmed desorption, and X-ray

photoelectron spectroscopy, was performed. Also, the results indicated that

the resultant hierarchical structure, high metal dispersion, and excellent CO2

adsorption–activation capacity of theNi-doped ETS-10 zeolite catalyst played a

dominant role in promoting CO2 conversion and product selectivity.

KEYWORDS

CO2 hydrogenation, methane, ETS-10 zeolite, in situ doping, Ni-based catalyst

1 Introduction

As one of the major greenhouse gases, CO2 has commanded the attention of the whole

world due to its increasing emission that results in a series of critical environmental

problems (Saeidi et al., 2021). While being not blamed for the ecological concern, CO2 is

in fact quite an important C1 source to produce high value–added chemicals, such as CH4,

CH3OH, HCOOH, CH3CH2OH, and other C2+ products (Wang et al., 2021; Zhu et al.,

2022). Hence, extensive and continuous efforts have been made to reduce CO2 emissions,

among which catalytic hydrogenation has been proved to be an attractive and promising

process in which the required hydrogen is produced renewably by water electrolysis

(Meng et al., 2022). In particular, the hydrogenation of CO2 into methane has been

identified as one of the most important and economically feasible strategies, during which
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the produced simplest C-H molecule has high gravimetric/

volumetric energy density and is easily liquefied and safely

transported by means of the existing natural gas infrastructure

(Zhao et al., 2022). However, due to the chemical inertness of the

CO2molecule, its activation and conversion have always been the

most vexing challenges. The current solutions cannot be divorced

from the use of high energy consumption and an efficient

catalyst. Therefore, a wide range of studies have been focused

on developing highly active catalysts that are conducive in

overcoming dynamic limitations and promoting CO2

activation–transformation (Gao et al., 2022; Liu et al., 2022;

Song et al., 2022).

Bifunctional catalysts, consisting of active metal components

and supports, are the most widely employed and investigated for

CO2 methanation. Among these catalysts, the Ni-based catalytic

system has been proven to be the most prominent because of the

corresponding extraordinary activities and selectivity, as well as

the relative lower costs (Gonçalves et al., 2022; Italiano et al.,

2022; Ren et al., 2022; Xie et al., 2022). Nevertheless, the

agglomeration of Ni metallic particles at a high temperature

that inevitably results in catalyst deactivation has always been the

bottleneck. Besides, at a low temperature, thermal sintering can

also take place by reason of the interactions between Ni and CO,

leading to the formation of nickel carbonyls followed by an

increase in deactivation. Furthermore, there is a general

consensus that the Ni-based catalysts are actually unfit for

low-temperature hydrogenation reactions. However, for CO2

hydrogenation to methane, the process is in fact highly

exothermic and profoundly affected by pressure and

temperature, giving rise to contradictory requirements of

reaction conditions for achieving both high CO2 conversion

and methane selectivity (Boukha et al., 2022; Makdee et al.,

2022; Pu et al., 2022). Consequently, in order to effectively

keep from the thermodynamics and kinetics equilibrium

limitations, a breakthrough in design and development of Ni-

based catalysts with a conspicuous catalytic performance and

robust stability at a low temperature is necessary and much

awaited. Strategies with an eye on active metal, supports, and

catalyst preparation methods have been frequently reported and

have mainly included metal doping, encapsulation and alloying,

metal–support interaction regulation, support design,

modification, and morphology engineering, among which

supports have carried considerable weightage in catalyst

construction and fabrication, maximizing the corresponding

catalytic performances and anti-sintering abilities without

doubt (Yang et al., 2021). Oxide supports, for example, Al2O3,

TiO2, SiO2, MgO, CeO2, ZrO2, and Nb2O5, have been widely

investigated and proved to be very active because of their

characteristics, such as enhanced Ni dispersion, stable

anchoring sites, suitable acid/basic properties, and an

appropriate amount of structural defects (Zhou et al., 2016;

Wang L. et al., 2020; Wang L. X. et al., 2020; Hu et al., 2021;

Wang Z. M. et al., 2022; Zafar et al., 2022). Even though these

advantages have indeed made contributions in regulating and

controlling the compositions and structures of catalysts, the

resulting catalytic activities and thermal stabilities can only be

promoted to a limited extent. Thus, it is still highly desirable to

keep digging into fairly promising Ni-based catalysts so as to

boost the corresponding CO2 methanation activities and

stabilities.

As one of the most popular supports for metal-based

catalysts, zeolites with high specific surface areas,

hydrothermal stabilities, regular channels, and typical ion-

exchange and adsorption properties are of great academic and

practical importance in catalysis (Wang X. Y. et al., 2022). For

CO2 methanation reactions, certain kinds of zeolites have been

reported, which include ZSM-5, USY, BEA, and MCM-41

adopted zeolites (Graca¸ et al., 2014; Gac et al., 2021; Hussain

et al., 2021; Uttamaprakrom et al., 2021; Cui et al., 2022), in

which a series of transition metals have been incorporated by

means of co-crystallization, recrystallization, inter-zeolite

transformation, encapsulation, and two-step post-synthesis

preparation methods (Franken et al., 2020; Ra et al., 2020;

Fan and Tahir, 2021; Frei et al., 2021; Hwang et al., 2021;

Skrypnik et al., 2022). According to the encouraging results,

the use of zeolite support for CO2 hydrogenation to methane did

improve metal dispersion, metal–support interactions, and CO2

adsorption activations, resulting in promoted low-temperature

kinetics and remarkable methane selectivity (Azzolina-Jury et al.,

2017; Upasen et al., 2022). However, the evaluated zeolite

catalysts were mostly treated with surface modifications, and

their catalytic promotion have always been backed with other

additives and metal promoters (Kosinov and Hensen, 2020; Liu

et al., 2020; Zhang et al., 2020; Yang et al., 2021). Hence, there is

plenty of scope for the development of zeolite-based catalysts

with the inherent framework and physicochemical properties

that are useful in and highly compatible with CO2 methanation

processes.

ETS-10 zeolite, different from other widely used

aluminosilicate zeolites such as MFI, FAU, and LTA, is a

titanosilicate zeolite that is characterized by the unique three-

dimensional 12-membered ring network and intrinsic Lewis

basicity, which is derived from the specific corner sharing

TiO6
2− octahedra with two negative charges (Xiang and Wu,

2019a; Chen et al., 2022). Besides, the interconnected channels of

ETS-10 present a free entrance of about 0.8 × 0.5 nm, enabling

the easy adsorption and diffusion of small molecules such as CO2,

CO, CH4, H2, and H2O (Fu et al., 2018). As a result, due to the

peculiar framework architectures and chemical compositions, as

well as the relatively wide pore dimensions, ETS-10 has gained

more and more attention and acquitted itself admirably in

adsorption, ion exchange, and shape-selective catalysis.

Actually, in previously published reports, the Ni-based ETS-10

catalyst has been employed for a hydrogenation process and

proved to be conspicuously catalytically active with excellent

selectivity and extraordinary stability in heterogeneous catalysis
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(Chen et al., 2016). Furthermore, considering the electron

acceptor characteristics and geometric construction of the

CO2 molecule, the typical structural unit of the -Ti-O-Ti-

chain in ETS-10 that is characterized by extraordinary and

strong electron donor capability deserves to place great

expectations on boosting CO2 activation and conversion.

Hence, the main goal of this work was to construct catalysts

made up of Ni active phased and structurally unique ETS-10

zeolite that is a self-contained Lewis base and can be highly

envisioned to make an indispensable contribution to the selective

conversion of CO2 into methane. Specifically, when compared to

previously reported studies on the popular USY, ZSM-5, and beta

zeolite-based catalysts, as well as those well-reviewed rare earth

oxides catalysts, the prepared ETS-10 zeolite catalyst herein has

been proven to be more potential in adsorption and activation of

CO2. To account for this, intensive characterizations and

measurements were carried out, which further helped to get

deep insights into the corresponding catalysis promotion

mechanisms. Furthermore, the impact of different Ni

incorporation methods on catalyst stabilities has also been

evaluated by relevant techniques.

2 Experimental

2.1 Catalyst preparation

A hydrothermal method was used with a molar composition

of 1.0 TiO2: 7.1 SiO2: 4.4 Na2O: 1.9 K2O: 0.4 NiO: 160.0 H2O

according to our previous studies (Xiang and Wu, 2019a).

Typically, 6.0 ml of 6.67 mol/L aqueous NaOH was added into

10.0 ml aqueous water glass solution [SiO2/Na2O (molar ratio):

3.67] under vigorous stirring. Afterward, the mixed solution

composed of 0.5 g nickel (II) nitrate hexahydrate and 7.0 g of

TiCl3 solution (17 wt% in HCl) was introduced by slow dropwise

addition. Then, 7.6 ml of 3.62 mol/L KF aqueous solution was

added, followed by continuous stirring for 1.5 h. The obtained gel

was subsequently transferred into a Teflon-coated stainless steel

autoclave for crystallization (230°C, 64 h). The resulting product

was then filtered, washed, and dried at 100°C overnight before

being calcined in air at 450°C for 5 h. For comparison, incipient

wetness impregnation was also performed with the ETS-10

zeolite prepared in the same way as abovementioned and by

using parallel amounts of nitrate precursor. The resulting catalyst

sample was named Ni/ETS-10. Other ETS-10-based catalysts

with various metal species introduced by the doping method

were also prepared and named M-ETS-10 (M refers to metal

species).

Besides, a series of common zeolite supports was used to

prepare Ni-based catalysts, which included Ni-ZSM-5, Ni-beta,

Ni-SAPO-56, Ni-Y, and Ni-X. They were all prepared by the

same method mentioned above, among which the ZSM-5, beta,

Y, and X zeolite support were synthesized following previous

works (Xiang et al., 2017; Vosoughi et al., 2021; Yu et al., 2022).

For the Ni-SAPO-56 catalyst sample, its zeolite support was

synthesized with a molar composition of 0.8 Al2O3: 0.9 SiO2:

1.0 P2O5: 40 H2O: 2.0 TMHD (template: N,N,N′,N′-tetramethyl-

1,6-hexanediamine). The pseudoboehmite, phosphoric acid

solution (85 wt%), and fumed silica were adopted as the

aluminum, phosphorous, and silicon sources, respectively. Ni/

SiO2 and Ni/Al2O3 were prepared by an incipient-impregnation

method using parallel amounts of nitrate precursor.

2.2 Catalyst characterization

Powder X-ray diffraction (XRD) measurements were performed

on a Rigaku powder X-ray diffractometer using Cu Kα radiation (λ =
0.1542 nm), and the scan range was from 5° to 45°. The actual Ni

contents were determined by inductively coupled plasma optical

emission spectrometry (ICP-OES) on a PerkinElmer 3300 DV

emission spectrometer. N2 adsorption–desorption experiments

were conducted on a Micromeritics ASAP 2020 M apparatus

at −196°C. The samples were degassed at 300°C for at least 8 h

prior to characterization. The specific surface areawas calculated from

the adsorption data using the Brunauer–Emmett–Teller (BET)

equation. The pore size distribution was also obtained by using

adsorption data and calculated according to the

Barrett–Joyner–Halenda (BJH) model. The scanning electron

microscopy (SEM) method was performed using an FEI Inspect

F50. Transmission electron microscope (TEM) images were collected

using a JEM-2100F.

The basicity of the catalysts was measured using

temperature-programmed desorption of carbon dioxide

(CO2-TPD) on a Micromeritics ASAP 2920 instrument, by

which the corresponding CO2 adsorption capacity was also

evaluated. A 200 mg sample was placed in a quartz tube and

pretreated in a helium stream at 450°C for 2 h, and then cooled

to 100°C to allow the CO2 gas to be passed over for 30 min. After

the physically adsorbed CO2 was removed by flowing helium for

2 h at 100°C, the total flow rate of the gas was fixed at 10 m3/min,

and the spectra were recorded from 100 to 650°C at a heating

rate of 10°C/min. Similarly, H2-TPR measurements were also

taken on this chemical adsorption instrument with the sample

first being pretreated under Ar gas flow at 120°C for 1 h before

being cooled down to room temperature. Then, a reducing gas of

10 vol% H2 in Ar reducing gas was introduced into the system,

and the sample was heated to 600°C at a heating rate of 10°C/

min. For the CO chemisorption experiment, the pretreatment

process was carried out at 400°C in an H2 atmosphere for 2 h,

after which He was purged and maintained for 1 h before the

system was cooled to room temperature. Subsequently, a 10 vol

% CO-He pulse was introduced and the corresponding CO

uptake was measured by a TCD detector based on which the

metal dispersion (D) was calculated using a previously reported

equation (Xiang and Wu, 2019b).
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Quasi in situ X-ray photoelectron spectroscopy (XPS)

experiments were performed under vacuum on a Thermo

Scientific ESCALAB 250Xi spectrometer with an Al Kα X-ray

resource (hν = 1,486.6 ev). To avoid oxidization, a pretreatment

with hydrogen at 400°C for all the samples in the reaction

chamber was employed.

2.3 CO2 hydrogenation to methane

The catalytic performance evaluation of ETS-10–based catalysts

for CO2 hydrogenation to methane was evaluated in a fixed bed

reactor at atmospheric pressure. Before the reaction, the catalyst was

reduced in situ in the H2 flow at 450°C for 3 h, after which the

activated catalyst was exposed to the mixed reactant gas (CO2:H2:

N2 = 1:4:1, molar ratio). The gas hourly space velocity (GHSV) was

kept at 7,500 ml•gcat−1•h−1. The products were analyzed online by a
GC-2060 gas chromatograph equipped with a flame ionization

detector (FID) and a thermal conductivity detector (TCD). N2

was used as the internal standard for quantitative analysis. The

CO2 conversion (XCO2) was calculated by using Eq 1:

XCO2 �
nCO2in − nCO2out

nCO2in

× 100%, (1)

where nCO2in and nCO2out are the moles of CO2 at the inlet and

outlet, respectively. Also, the selectivity of CH4, CH3OH, and CO

were calculated by the internal standard method based on

Eqs 2–4:

SCH3OH � nCH3OHout

nCO2in − nCO2out

× 100%, (2)

SCH4 �
nCH4out

nCO2in − nCO2out

× 100%, (3)

SCO � nCOout

nCO2in − nCO2out

× 100%, (4)

where nCH3OHout, nCH4out, and nCOout refer to moles of CH3OH,

CH4, and CO at the outlet, respectively.

The space–time yield (STY) of CH4 was expressed as grams of

CH4 per hour and per gram of metal. The STYCH4 was calculated

by the following equation:

STYCH4 � nCO2in × XCO2 × SCH4 × MCH4

mNi × t
, (5)

where mNi is the mass of the Ni-based catalyst.

3 Results and discussion

3.1 Structure characteristics of ETS-
10–based catalyst

As can be seen from Figure 1A, the XRD patterns of Ni-ETS-

10 and Ni/ETS-10 display well-resolved peaks associated with the

ETS structure in the range of 5°–45°, which is similar to that of the

pristine ETS-10 sample but obviously with lower peak intensities.

Indeed, by combining these results with N2

adsorption–desorption analysis data (Table 1), the decreased

BET-specific area further confirms that the introduction of

nickel species did threaten the framework integrity, leading to

material crystallinity being reduced to different degrees.

However, it is worth noting that the Ni particles were not

presented in the XRD patterns for the two Ni-based ETS-10

catalyst samples, while according to the ICP analysis, the actual

Ni contents were 3.7 wt% and 4.2 wt%, respectively, indicating

the high dispersion of Ni species. Moreover, based on the CO-

TPD results, the calculated dispersion of nickel species for Ni-

ETS-10 and Ni/ETS-10 is 37.4% and 27.2%, which is no worse

than that widely reported for Ni-based catalysts. Besides, when

comparing Ni-ETS-10 with Ni/ETS-10, although both the

calculated crystallinity and BET surface area were at a

disadvantage, the introduced mesopores with a pore size

distribution centered at 10 nm (Figure 1B) prove that they

deserve the attention.

Figure 1C shows the SEM image of Ni-ETS-10 with smooth

spherical particles of uniform size (17–21 μm). In addition, the

obvious surface defect gives a visual illustration that the direct

doping of Ni species influences the structural integrity of ETS-10

zeolite, leading to apparently declined crystallinity and BET-

specific area, but with the hierarchical pores being formed. The

high-magnification TEM image of the thin-sectioned Ni-ETS-

10 is shown in Figure 1D. As can be seen, the numerous light

areas strongly evidence the presence of abundant hierarchical

pores, and the corresponding size range is also visibly uniform

and in line with the pore size distribution resulting from N2

adsorption–desorption. On the other hand, the lattice fringes of

Ni-ETS-10 crystals are basically intact, indicating that the native

microporous structure delightfully survived the ravages of

forming hierarchical pores.

The basic properties of ETS-10, Ni-ETS-10, and Ni/ETS-

10 were explored by CO2-TPD, and the results are shown in

Figure 2A and Table 2. For all the three samples, even though the

peak intensities were relatively weak, there is a non-negligible

peak in the temperature range of 100°C and 150°C, which has

resulted from the interactions between CO2 and the weak basic

surface hydroxyl groups on ETS-10 zeolite-based samples. When

comparing the results of ETS-10 and Ni/ETS-10, the significant

difference was the dramatic shift of base strength distribution to

high temperature rather than the modestly increased CO2

adsorption capacity, demonstrating that there are more high-

strength basic sites in Ni/ETS-10 than that in the pristine ETS-10

sample. When it comes to the catalyst with nickel species

introduced by in situ doping, not only did the total CO2

adsorption rise sharply to 1.29 mmol/g but it also presents

mainly strong basic sites with the CO2 desorption being

concentrated in the temperature range higher than 500°C.

This corresponds well to our previous study that shows, other
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than the structure and pore topology, the presence of transition

metal species and their composition, as well as the interaction

with the zeolite support, all make significant contributions to

enhance the basicity of ETS-10 zeolite–based catalysts (Xiang and

Wu, 2018). Moreover, according to the comparison between Ni/

ETS-10 and Ni-ETS-10, though with the samemetal active phase,

a definite edge in CO2 adsorption for the latter exists, especially in

the high-temperature region, that further confirms the resultant

hierarchical structure, the optimized metal dispersion (37.4% vs.

27.2%), and the interactions with zeolite supports which

definitely endow Ni-ETS-10 with a great potential for CO2

methanation. In particular, the hierarchical structure existing

in the zeolite channel system had long been considered as a

promoter for exposing more catalytic active sites and offering

easy access for metal species to zeolite supports. Thus, it is fair to

say that the significantly improved basic strength of Ni-ETS-

10 herein owed much to the introduced hierarchical structure.

The X-ray photoelectron spectroscopy (XPS) spectra were

collected to investigate the surface composition and chemical

bonding states of the active sites on the reduced Ni-based

catalysts. As shown in Figure 2B, there are six characteristic

peaks from the Ni 2p XPS spectra of both Ni-ETS-10 and Ni/

FIGURE 1
(A) XRD patterns and (B) N2 adsorption–desorption isotherm and pore size distribution (insert, calculated using desorption branch) of ETS-
10–based samples; (C) and (D) SEM and TEM images of the Ni-ETS-10 sample.

Frontiers in Chemistry frontiersin.org05

Xiang et al. 10.3389/fchem.2022.1041843

74

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2022.1041843


ETS-10 catalysts. The peaks around 868.7 and 851.6 eV can be

assigned to Ni0 2p1/2 and 2p3/2 phases, respectively. The peaks

appearing near 855.2 and 872.8 eV can be attributed to the

presence of Ni2+ species at the zeolite exchange sites that

strongly interacted with support. The other two multi-split

peaks at ~860.5 and 879.2 eV fell to the shake-up satellite

peaks, which further indicate the location of Ni2+ species at

the zeolite exchange sites. Besides, according to the Ni0/Ni2+

ratio of the summarized XPS results, Ni-ETS-

10 unquestionably contained more Ni0 (26.1%) than Ni/ETS-

10 (3.8%), indicating the presence of stronger metal–support

interactions.

H2-TPR was used to further explore the behavior of surface

Ni species and their interactions with the ETS-10 zeolite support.

TABLE 1 Physicochemical properties of ETS-10–based samples.

Sample Ni contentsa Cb SBETc Smic
d Sexte Vmicro

f Vmeso
g Dh di

ETS-10 — 98.2 337 291 46 0.12 0.01 4 -

Ni/ETS-10 4.2 91.9 312 280 32 0.11 0.02 4 27.2

Ni-ETS-10 3.7 83.6 287 204 83 0.10 0.10 10 37.4

aThe actual Ni contents detected by ICP (wt%).
bCrystallinity calculated by the Scherrer equation (%).
cBET, surface area (m2/g).
dMicroporous surface area (m2/g).
eExternal surface area, obtained from the t-plot method (m2/g).
fMicroporous pore volume, obtained from the t-plot method (cm3/g).
gMesoporous pore volume, obtained from BJH adsorption cumulative volume of pores between 1.7 and 300 nm in diameter (cm3/g).
hMean pore diameter (nm).
iDispersion of supported metal particles (%).

FIGURE 2
(A)CO2-TPD profiles of ETS-10, Ni-ETS-10, and Ni/ETS-10 samples; (B) XPS spectra of Ni 2p for Ni-ETS-10 and Ni/ETS-10 samples; (C)H2-TPR
profiles of Ni-METS-10 and Ni/ETS-10 samples.

TABLE 2 Basic properties of the ETS-10 zeolite samples.

Sample Temperature of peak (oC) CO2 adsorption (mmol/g)

ETS-10 68 129 478 540 0.76

Ni/ETS-10 109 469 644 0.86

Ni-ETS-10 106 506 562 677 1.29
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According to the H2-TPR results, there were three salient peaks

around 327°C, 414°C, and 489°C for Ni-ETS-10, with a total H2

consumption of 0.69 mmol/g (Figure 2C). As reported

previously, the reduction took place at relatively low

temperatures, which can be assigned to those NiO species on

the surface of ETS-10 being reduced to metallic Ni, illustrating

their weak interactions with the zeolite support (Vosoughi et al.,

2021). The peaks near 400°C were due to the moderately reduced

NiO species deposited inside the porous structure of the ETS-10

zeolites. The peaks at higher reduction temperatures may be

related to Ni2+ species that strongly interacted with the zeolite

support. While for Ni/ETS-10, the reduction peak shifted to a

higher temperature of 580°C with the onset temperature of 410°C

with a total H2 consumption of 0.26 mmol/g, indicating its

poorer reducibility and declined hydrogen dissociation ability.

As a result, it can be concluded that doping can benefit the

reducibility of nickel species, which is in line with the results

obtained from the XPS spectra.

3.2 Catalytic activity

Three catalysts, ETS-10, Ni-ETS-10, and Ni/ETS-10, were

first tested, and the results are listed in Table 3. Besides, a blank

experiment with no presence of any catalyst was also conducted.

The results showed that it failed to convert CO2 to methane

under certain reaction conditions. When it came to those

catalytic runs, it was obvious that the existence of catalysts

did play a part in promoting CO2 activation and conversion.

Furthermore, it seemed that except for the desired product

methane, CO and methanol were the main interferential

factors that went against the improvement of selectivity.

Compared with the pristine ETS-10 catalyst sample, the

introduction of Ni species was definitely beneficial to both

CO2 conversion and product selectivity. Meanwhile, according

to the comparison between Ni-ETS-10 and Ni/ETS-10, the

superiority of Ni-ETS-10 in facilitating CO2 transformation

and methane production was noticeable, which can be

attributed to the enhanced molecule transfer, exposure of

active sites, and metal dispersion that resulted from the

hierarchical structures. Thus, Ni-ETS-10 was chosen for

further investigating the processes of CO2 hydrogenation to

methane in the following experiments.

Figure 3 shows the CO2 conversion, product selectivity, and

STY value as a function of reaction pressure, temperature, and

catalyst dosage and types. Considering that hydrogenation of

CO2 to methane is in fact a molecule-reducing reaction,

increasing the pressure is theoretically in favor of CO2

conversion. Indeed, based on the experimental data shown in

Figure 3A, not only CO2 conversion but also methane selectivity

increased with the increase of pressure. When the pressure was

increased to 3.0 Mpa, the conversion of CO2 went up to 6.21%,

and the selectivity of methane rose to 16.44%, after which a

deceleration of growth took place. Consequently, as the reaction

pressure continued to be increased to 3.5°Mpa, only 0.46% more

CO2 conversion and 0.79% more methane selectivity were

obtained. That is to say, when the pressure is over 3.0°MPa,

further optimization is conducive but makes little sense in

practice, especially taking the security and cost requirements

into account.

As a typical exothermic reaction, the hydrogenation of CO2

to methane deservedly benefits from elevated temperature, which

can contribute to the activation of those molecules with low

energy. Thus, effective collision and bonding among reactant

molecules can be greatly enhanced, giving rise to an accelerated

reaction rate. It can be seen from Figure 3B that the

transformation of CO2 to methane could be markedly boosted

with a higher temperature. And notably, when it rose to 280°C,

CO2 was transformed to methane completely, leading to the

desired selectivity of 100%. More importantly, the selectivity is

maintained at 100% when the reaction temperature is raised to

300°C and then to 320°C. Meanwhile, the continuous growth of

both CO2 conversion and space–time yield of CH4 are observed

in the temperature range of 200°C–320°C. However, considering

the actual energy consumption required for a high operating

temperature, a comparatively low temperature (<300°C) seems to

be more suitable. Thus, the following experiments were carried

out under 280°C.

It is well known that the amount of catalyst definitely plays a

part in improving the catalytic performance by adjusting its

active sites. Typically, the more the catalysts are added, the more

the active sites become available for reactants’ adsorption. As

shown in Figure 3C, increasing the catalyst dosage from 0.05 to

0.20 g can bring about a growth leap in CO2 conversion and

STYCH4, after which the rising tendency begins to level off. This

can be demonstrated as access to more and more indispensable

active sites that significantly promotes the activation of CO2 and

facilitates subsequent combinations between the activated-CO2

intermediates and the adsorbed-dissociated H2, and then

accelerates the formation of methane. Despite being conducive

to enhancing catalytic activities, there appears no need to blindly

increase the quantity of catalysts once it has reached up to 0.2 g,

where the catalytic active sites in the reaction system are

TABLE 3 Hydrogenation of CO2 on different catalystsa.

Catalyst Cb (%) SCH4
c (%) SCO

d(%) Smethanol
e(%)

Blank 0 0 0 0

ETS-10 1.48 1.33 95.14 3.53

Ni/ETS-10 5.19 12.36 74.79 12.85

Ni-ETS-10 6.21 16.44 70.66 12.90

aReaction conditions: 0.2 g catalyst, 200°C, 3 h, CO2:H2:N2 = 1:4:1 (molar ratio),

3.0 MPa, and GHSV = 7,500 ml•gcat−1•h−1.
bConversion of CO2.
c,d,eSelectivity of CH4, CO and methanol, respectively.
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saturated. What is noteworthy is that no matter how the catalyst

quality is regulated, the resulting methane selectivity remains

stable at 100% under the current reaction conditions.

The impact of the catalyst types involving different supports

and active metal species on CO2 conversion and methane

selectivity was also taken into consideration and explored

under the reaction conditions of 280°C, 3 MPa,

7,500 ml•gcat−1•h−1, 3 h, and 0.2 g catalyst. According to the

comparison between the Ni-ETS-10 and other catalysts

(Figure 3D), the superiority in CO2 conversion (39.7%) and

methane selectivity (100%) was distinct. For Cu-ETS-10, though

it gave good results in CO2 activation and transformation, the

moderate H2 adsorption–dissociation capacity of copper species

resulted in a relatively strong appetite for methanol formation.

On the contrary, both Fe-ETS-10 and Mn-ETS-10 catalysts were

highly enthusiastic about producing methane but failed to

effectively promote the transformation of CO2. For the

remaining two ETS-10 zeolite–based catalysts, Co-ETS-10 and

Zn-ETS-10, their catalytic performances were too common to be

on par with others. Apart from the reactivity discrepancies

caused by various active metals, the differences caused by

diverse catalyst supports, such as ZSM-5, beta, SAPO-56, X,

Y, Al2O3, and SiO2 that have been widely reported and used for

CO2 conversion were investigated. Ni-ZSM-5 and Ni/Al2O3 were

undoubtedly two of the best for CO2 activation, which shows

comparative CO2 conversion with Ni-ETS-10. However, there

was still an obvious imperfection of product selectivity, which

appeared in the intensive formation of CO and methanol. Ni-X

was better in obtaining target product methane with a higher

selectivity of 90.2%, but unfortunately, it could not activate CO2

effectively. Also for the Ni-Y catalyst, the corresponding catalytic

performance was a middle case with the CO2 conversion

FIGURE 3
Activity of CO2 hydrogenation into methane over Ni-ETS-10 as a function of (A) pressure, (B) temperature, (C) catalyst quality, and (D) the
activity of different catalysts for CO2 methanation (reaction conditions: 280°C, 3 MPa, 7,500 ml•gcat−1•h−1, 3 h, and 0.2 g catalyst).
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approaching 30% (29.8%) andmethane selectivity just above 80%

(82.0%). Even though Ni-beta and Ni-SAPO-56 did not seem

good for the catalytic conversion of CO2 to methane, they were

still superior to Ni/SiO2, over which only a small amount of CO2

(13.8%) was converted and the main product was CO. So, there

are reasons to believe that the employment of a suitable catalyst

support is of great importance for CO2 activation and oriented

conversion. The three most common aluminosilicate zeolite

catalysts, ZSM-5, beta, and Y, which are characterized by

strong surface Brønsted acidity/basicity, have been widely used

in various catalytic reactions, especially hydrogenation reactions.

However, precisely because of this typical feature, product

selectivity is always the key bottleneck for further applications.

As for the two representative commercial catalysts, Ni/Al2O3

clearly outperforms Ni/SiO2 due to the presence of abundant

surface Lewis acid that endows it with excellent capability for

CO2 adsorption and activation. Being different from those

conventional silicon aluminum zeolites, X zeolite with

inherent basicity is more prone to methane formation.

However, the base strength is far from enough for high

efficiency. Thus, it follows that the ability and method of CO2

adsorption–activation are the determinants for the succeeding

hydrogenation process and producing methane, which are

closely linked to the physicochemical properties and structure

of the catalyst supports. Besides, the active metal species and their

composition, dispersion, and corresponding interaction with the

support all dominated the catalytic performance. Herein, Ni-

ETS-10 is, of course, the most outstanding catalyst for the

hydrogenation of CO2 to methane. This can be due to the

unique 3D pore structure and framework of ETS-10 zeolite,

especially the peculiar structure unit of the -Ti-O-Ti- chain

that is characterized by extraordinary and strong donor

capability. Furthermore, the constructed multiple catalytic

active centers those resulted from the desired interactions

between the Ni species and ETS-10 framework do meet the

demands of CO2 activation, which in fact can be promoted by

SCHEME 1
Possible reaction mechanism for CO2 hydrogenation into methane over Ni-ETS-10.

FIGURE 4
Stability of Ni-ETS-10 catalyst (reaction conditions: 280°C,
3 MPa, 7,500 ml•gcat−1•h−1, 3 h, and 0.2 g catalyst).
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making full use of its electron acceptor characteristic and

geometric construction (Scheme 1).

3.3 Catalyst stability

Catalyst stability is an important basis for practical

applications. Hence, the stability of the Ni-ETS-10 catalyst

after 100 h of reaction under the desired conditions was

evaluated. As revealed in Figure 4, Ni-ETS-10 is proven to be

reasonably stable at 280°C for 100 h with less than 5% decline in

CO2 conversion and STY. More importantly, the methane

selectivity can be sustained at a consistent level of 100%

throughout the process under the optimized reaction conditions.

4 Conclusion

In conclusion, ETS-10 zeolite–based catalysts were used to

investigate the process of methane formation from CO2

hydrogenation in detail. For comparison, different metal

species and supports were studied, among which the Ni-

ETS-10 catalyst prepared by the in situ doping method

presented obvious advantages in both CO2 conversion and

methane selectivity. This can be due to the exposure of more

basic sites and the absence of porous blockage and structural

damage by metal incorporation to a great extent, which is

because of the introduced hierarchical pores. More

importantly, the presence of more highly dispersed Ni0

species is vital for accelerating the access of reactants to the

Lewis basic sites (TiO6
2−). As a result, the reduced Ni-ETS-

10 with better metal dispersion, advantageous hierarchical

structure, and stronger Lewis basic strength has been

proven to be highly reactive among the studied catalysts for

CO2 hydrogenation, giving a 39.7% CO2 conversion and 100%

methane selectivity under mild conditions. Last but not least,

the catalytic performance of Ni-ETS-10 that was maintained at

280°C for 100 h with only less than 5% decline in CO2

conversion and STY indicated its excellent stability and

reusability.
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Research hotspots and evolution
trends of rural resilience in the
perspective of biodiversity
—Based on citeSpace’s visual
analysis of bibliometrics

Yuchi Yang*

College of Architecture and Urban Planning, Tongji University, Shanghai, China

Strengthening the construction of rural resilience and improving the rural

ecotope and biodiversity are of great significance to improving the

governance’s abilities of rural areas to resist external disturbances and

various crises. Based on the 1786 documents which are associated with the

research topics collected in the “Web of Science” database from 1992 to 2022,

this study uses the visualization analysismethod of the “CiteSpace document” to

focus on the rural resilience from the ecosystem perspective, sort out the

hotspots of rural resilience construction research, and study and judge the

future development tendencies. It pertinently put forward the research

evolution trends of “bottom–up ecological restoration” and “top–down

planning improvement.” The research results are beneficial to provide useful

references and direction enlightenment for the sustainable research of rural

resilience and the formulation of planning strategies from the perspectives of

biodiversity.

KEYWORDS

rural resilience, biodiversity, ecosystem biomass, CiteSpace, sustainable development

1 Introduction

The continuous advancement of industrialization and urbanization has led to the

overall reconstruction of rural areas and has been facing a series of problems such as

industrial decline, population decline, and ecological decline. The instability and

fragility of rural areas have become increasingly prominent and inhibited the

sustainable development of rural areas (McManus P et al., 2012; Modica M et al.,

2015; Pandey R et al., 2017). How to strengthen the rural resilience construction,

improve the governance abilities of rural areas to resist natural disasters, instability,

and various crises caused by external disturbances, improve the quality of the rural

ecological environment (Qiu et al., 2021), and promote the high-quality development

of rural areas remains unclear. It has been highly valued by the countries over the

world and has also attracted extensive attention from the academic communities

(Center and Garden,2009; Chaigneau, T et al., 2022; Ekblom et al., 2020; Li et al.,
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2022). Regarding the cognition of resilience theory, Western

scholars have two perspectives: one is the equilibrium theory

based on engineering resilience and ecological resilience (Rigg

et al., 2015; Roberts et al., 2017), and the other is the evolution

theory based on evolutionary resilience (Chen, 2007;Chen

et al., 2017; Hennebry, 2020; Huang, et al., 2020; Li et al.,

2014; Li et al., 2020). Following this logic, the academic

research has been deepened gradually, and the concept and

connotation of resilience have been evolving and developing

from focusing on the resilience of research objects to focusing

on biological and ecological sustainability (Wang et al., 2021;

Li Y,2022) and then to long-term adaptability; it has been

constantly evolving and developing.

Wilson took the lead in introducing resilience theory into

the research on rural multi-functional transformation, which

has better explained many problems faced in rural

transformation and development (Wilson, 2012; Li, 2020).

Scholars have found that rural resilience is mainly reflected in

the rural disturbance and instability caused by natural

disasters (Cutter et al., 2016), climate change, sustainable

utilization of biomass energy (Emmanuel et al., 2012), and

social–economic changes (Tebboth et al., 2019; Yang, et al.,

2020). At present, the research on rural resilience mainly

focuses on the prevention and control of rural natural

disasters (M.F.MFirdhous et al., 2018; Mohamed et al.,

2014; Babulo et al., 2008), community construction and

governance (Philp, 2008; Bjorna and Aarseether., 2009;

Marsden and Sonnino., 2008), farmers’ livelihood (M.F.

MFirdhous et al., 2018), infrastructure construction

(Elisabeth et al., 2017; Nguyen et al., 2017), and resilience

evaluation (Mazur et al., 2018; Wilson et al., 2018; Scott, 2013).

With the connotation of resilience becoming an important

aspect of biological sustainability, rural resilience is widely

understood as the ability of rural systems to cope with changes

(Kilkenny, et al., 2008; Koning, et al., 2021), adapt, and

continue to develop in the uncertain environment of

unexpected shocks and challenges (Folke et al., 2010; Pain

and Levine, 2012; Brown, 2017; Folke, et al., 2016). The

concept and connotation of rural resilience have also

gradually shifted from the equilibrium theory to evolution

theory (Scott, 2013; Qiu et al., 2021; Wang et al., 2021).

Over the years, the research on resilience theory mainly

focuses on urban areas, while the research on rural

biodiversity (especially rural biodiversity) is not enough

and systematic. The unbalanced development between

urban and rural areas has made the rural infrastructure

backward and the flood control and drought relief

facilities weak, thus reducing the ability of disaster

prevention (Cutter et al., 2010) and risk resistance in

rural areas (Mazur et al., 2018), and the living

environment in rural areas has become increasingly worse.

In this research, resilience is defined as the ability of the rural

regional system to maintain relative stability through

comprehensive means such as social, economic, and

ecological relative stability (Holladay and Power., 2013). It

realizes the transition from the original equilibrium state to a

new equilibrium state and emphasizes the characteristics of

the system by actively adapting and maintaining sustainable

development (Heijman Hagelaar, 2007; Li et al., 2021).

Therefore, it is significant and necessary to gradually

analyze the research results of rural resilience, promote

the construction of rural resilience, improve the ability of

rural areas to cope with various crises (Al-Zubaidy.,2015),

and promote the construction of the beautiful ecological

environment (Huang X, et al., 2019), biodiversity, and

sustainable development in rural areas (McManus et al.,

2012; Dai Qi., 2015). Based on the “Web of Science”

database and utilizing CiteSpace document visualization

analysis software, this study focuses on the research on

rural resilience from the ecosystem perspective, discusses

and analyzes the hotspots of rural resilience construction

research, and studies and judges the future development and

evolution trend, thus guiding the direction for further

research on it. The innovation lies in focusing on the

rural resilience research from the perspective of the

ecosystem, discussing and analyzing the hotspots of rural

resilience construction research, with judging the future

development trend from the perspective of biodiversity, so

as to guide the direction for further research on rural

resilience. Literature visualization software helps sort out

the salience time, salience intensity, and the important

literature of various keywords and is more beneficial to

understand the research progress.

2 Research data and analysis methods

2.1 Research data

The research data are obtained from the “Web of Science”

literature database. Here, “rural resilience” and “rural

resilience” are selected as the main topic words,

respectively, and they are set as TS = (“rural resilience”) or

TS = (“rural-resilience”) through the advanced search of the

WOS database; time expand = “1992–2022.” The conference

contributions, the opening remarks of the volume, and

introduction of personal academic achievements in the

search results were deleted completely, and the duplicate

literature was eliminated, and 1786 relevant literature

reports were finally determined. Through the function of

year per slices via “CiteSpace,” all the literature studies are

departed to a cycle of 3 years. Among them, the number of

relevant literature has increased significantly year by year, with

only two literature studies from 1992 to 1994, 72 literature

studies from 2007 to 2009, and 249 literature studies from

2019 to 2021.
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2.2 Analysis method

“CiteSpace bibliometric visualization analysis” describes the

main content of the literature, analyzes, and builds the

correlation relationship between knowledge with the help of

statistical methods, which can effectively provide important

technical support for mining-related research progress (Chen

et al., 2009; Hu et al., 2018). It is extensively used in the research

and analysis of the existing literature (LI Jie et al., 2016; Yue,

2009). Therefore, this research adopted CiteSpace software

analysis, combined with association analysis and cluster

analysis, to import the literature data retrieved and sorted out

from 1992 to 2022 into “CiteSpace 6.1.” Through debugging the

setting of relevant parameters, the keyword co-occurrence

network graph and subject salient word graph are drawn

completely.

3 Research hotspots and evolution
analysis

The research is based on the time zone function of the

CiteSpace 6.1 software platform to search for mutant words

and analyze mutant words through literature keywords,

aiming to explore the current top keywords with the

strongest citation bursts. A burstness model was used to

calculate words and sudden mutation in the rural

resilience–related literature. The burstness model is used to

calculate the mutant words and literature in the related

research of rural resilience. The mutant detection algorithm

of the computing party thinks that the emerging and

rising mutant literature are frontier and timely in revealing

the new tendency in the scientific field. In order to ensure the

number of mutant words in the calculation, the threshold

value was adjusted from 1 to 0.8, and 20 mutant words

were detected with the help of software, among which the

highest intensity was “Africa, biodiversity, environment,

support,” etc.

3.1 Research on mutation words and their
evolution

The academic research on rural resilience has a wide range

of perspectives and methods. The evolution analysis graph of

rural resilience subject words in the Wos database (Figure 1)

reveals that 20 mutant words have appeared in the past

30 years. In terms of the mutant words’ intensity, the

highest value is “Africa,” and the frequency intensity is

4.4869, which appeared in 2007 and ended in 2015 with a

moderate occurrence cycle. The second is “biodiversity” with a

frequency intensity of 4.3301, which appeared in 2001 and

ended in 2015, and the occurrence cycle was relatively long.

From the point of view of the intensity of the mutant word, the

highest value was “Africa” and the frequency intensity was

4.4869, which appeared in 2007 and ended in 2015, and the

occurrence cycle was moderate. The high-frequency literature

mainly researches the persistence and resistance to human

FIGURE 1
Evolution analysis of theme words of rural resilience in the Wos database.
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disturbance of rainforest birds in plantations and primary

forests of Peninsular Malaysia (Kelvin, 2005).

The high-frequency word from 2010 to 2015 was the social

ecological system (SES), with a frequency intensity of 3.6702. It

mainly includes a social ecological system framework proposed

by Ostrom, which is mainly used in ecological restoration

projects, biomass energy, ecological vulnerability assessment,

etc. From 2010 to 2015, the high-frequency word was “Social

Ecological System (SES)” with a frequency intensity of 3.6702. It

mainly includes a social ecological system framework proposed

by Ostrom, which is mainly used in ecological restoration

projects, biomass energy, ecological vulnerability assessment,

etc. The high-frequency literature mainly researches the

resilience and vulnerability of remote rural communities to

global climate and ecological environment changes (Scott

et al., 2013; Bailey et al., 2016; Douglas et al., 2019; Peng

et al., 2017). The frequency intensity of the mutant word

“adaptivity” was 3.0606, which appeared in 2013 and ended in

FIGURE 2
Clustering diagram of rural resilience keywords in the Wos database.
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2018. It is mostly used for resilience and adaptability to cope with

biomass and biodiversity changes. The high-frequency literature

mainly researches the adaptability and resilience of rural

households to cope with climate changes and carbon dioxide

emission reduction (Angeler et al., 2018).

The mutant words mainly indicate the concern about

biomass energy, biodiversity, climate change, and ecological

environment in the research topics of rural resilience. In part,

vulnerability assessment, optimal utilization of resources,

ecological planning, and other methods are widely used to

improve the level of rural resilience. For the resilience

measurement in the ecosystem, the quantitative measurement

and diversity characteristics are reflected in the landscape

heterogeneity (Liu et al., 2015), landscape diversity (Yang

et al., 2021), and biodiversity (Schwarz et al., 2011).

The biomass content can further reflect the threshold level of

numerous elements of the rural ecosystem and can explain the

motivations and influencing factors in the evolution of the

ecosystem.

3.2 Research keywords and evolution

The clustering nodes are set as keywords by CiteSpace

5.8 software, and the keyword co-occurrence relationship

graph based on the Wos database is obtained after eliminating

the words with low relevance and low frequency to the subject

words (Figure 2). It reveals that the research topics of “rural

resilience” are relatively concentrated, and the keywords are

closely connected. Among them, the keywords with high

frequency are “region resilience,” “climate change,” “land use

change,” “natural disaster,” “carbon sequestration,” “traditional

forest margins,” “rural health,” “precarity,” and “ecological

footprint.” The analysis shows that the impact of climate

change is being felt globally. To a large extent, climate change

is regarded as the greatest threat to people’s lives. It is expected

that the impact of climate change will be greater in the future

(IPCC, 2014). According to the World Bank (2010), the total loss

caused by all disasters during 1970–2008 was about $230 billion.

Some highly cited keywords revealed in the figure indicate the

concern about climate changes, natural disasters, biological

sustainability, carbon storage, etc., emphasizing the ability

level of the rural social–ecological system to maintain a

relatively stable state and sustainable development.

The results obtained by keyword cluster analysis show that

the research topic pays attention to external factors such as

“climate change,” “natural disaster,” and “ecological footprint”

that affect the resilience and stability of rural ecosystems.

Meanwhile, it combines the internal elements of the system

such as “land use change,” “carbon sequestration,” and “rural

health.” Numerous research studies have been conducted on the

external and internal factors that affect the stability of the system

and cope with changes. From the research on internal and

external systems, influencing factors to the rural human

settlement environment, we pay attention to the living

conditions, environmental quality, and climate conditions of

rural residents. The biomass content not only affects the

stability and diversity of the rural social–ecological system but

also directly or indirectly affects various physiological and

psychological states of people in the system and the threshold

level and evolution trend of some elements.

4 Main research contents

The theory of rural resilience has a pluralistic essence,

highlighting the interaction between elements, the form,

coupling structure, and the non-equilibrium evolution path of

rural material elements (Li et al., 2019). Rural transformation in

the new period often adopts a new development mode to improve

its ability to resist the impact and maintain a stable state.

Combined with the sorting and quantitative analysis of the

high-frequency mutation words and keywords in the research

on rural resilience, it is found that the research content of rural

resilience based on the perspective of biodiversity focuses on the

biodiversity and external climate change in the rural ecosystem

and their interaction modes and conditions on rural resilience.

Scholars believe that the spatial promotion of rural resilience

through social spatial reproduction (Westlund H, 2006) can

improve the biomass content in rural ecosystems and enrich

the organizational structure to maintain relative stability.

4.1 Resilience and biodiversity

Biodiversity can reflect the multiple characteristics of rural

resilience, and the influencing factors are relatively complex and

comprehensive. Scholars at home and abroad have carried out a

series of studies on this issue. For example, Nivaldo Peroni et al.

(2002) put forward a theoretical model focusing on biodiversity

and resource resilience to explain the impact factors of

biodiversity decline: the rural population outflow, increase in

tourism, and changes in production and lifestyle, aiming at the

interspecific and intraspecific diversity of cultivated crops. Kelvin

S.H (2005) studied the composition and structure of virgin

forests, artificial forests, and birds in rural areas, proposed

that the abundance of material resources and factors closely

related to forest disturbance affect biodiversity, and explored

resilience of rural areas from the perspective of ecosystem

stability and sustainability. Peng et al. (2017) quantitatively

analyzed the internal relationship between regional ecosystem

health assessment, biodiversity, and rural land use and land cover

change through quantitative indicators and explored the mutual

relationship between the model and process and rural resilience.

Marleen Schouten (2013) explained the interrelation between

biodiversity and rural resilience at the landscape level through the
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theoretical construction and scheme experiment of the rural

environmental agency model and proposed that the top–down

government investment aimed at improving the public value of

the rural society ecosystem and improving rural resilience.

M.G.Sorice (2012) studied the land ownership patterns in

three counties in central Texas. Through interviews with

767 owners and questionnaire data, he found that changes in

land owners and their ideas may bring about changes in the land

cover, thus affecting ecological diversity and resilience.

Biodiversity assessment is the ecological basis for assessing

the resilience level of rural areas. How to conduct rural scale

assessment requires comprehensive consideration of the land

cover, landscape vegetation, biological composition and

structure, and other factors. As for the rural

“social–ecology–economic” system, existing research mainly

focuses on landscape diversity, landscape fragmentation

degree, coverage, etc., without comprehensive and systematic

consideration of rural social–ecology–economic factors. In recent

years, with the rise of spatial quantitative analysis and the

improvement of the availability of remote sensing data in

villages, many scholars have paid attention to the quantitative

measurement of biodiversity and ecosystem assessment. Future

research needs to pay attention to the soil carbon content,

biomass carbon dioxide, etc., and effectively link up with the

double carbon targets of carbon neutralization and carbon peak.

4.2 Resilience and climate change

Climate changes affect various elements of the rural

ecosystem and their relationships at the macro scale. For

example, drought can easily lead to the loss of rural crops and

the reduction of biomass in soil. Soil and water loss affect the

content of soil biomass and the spatial pattern of soil and water.

The research by Elisabeth Simelton (2009) shows that the size of

rural population and the amount of agricultural input are

negatively correlated with drought vulnerability, and the

vulnerability is negatively correlated with land abundance.

Loring and Gerlach (2009) addressed the complex ecological

environment and climate change by studying rural food security

and sustainable development of food resources. Nguyen et al.,

(2017) researched the rural land-use decision-making factors

represented by land-use selection decisions and crop diversity.

He found that they are closely associated with the ability to cope

with the impact of climate change, economic life expectations,

and living environment characteristics and discussed the rural

resilience shown by coping with climate change and measures on

how to improve rural resilience.

In the background of urban sprawl, population expansion,

and climate change, Kristine Lien Skog (2016) researched the

conversion of the rural arable land and the protection of the

arable land by quantitative measures. Taking Norway as an

example, he discussed the influence mode and mechanism of

soil attachments on rural resilience from the perspective of

conversion of the arable land to a construction land. Barrett,

C (2015) researched the correlation between rural economic

conditions and soil quality and proposed the importance of

soil fertility for rural resilience and resistance to climate

change. As the spatial carrier of biomass coverage and

bearing, the land provides material conditions for rural

adaptation to climate change, and the level of the land itself

has a positive impact on resilience. In his speech on the

International Year of Soil in 2015, the UN Secretary-General

Ban Ki Moon believed that “A healthy life is not possible without

healthy soils.”

In summary, the richness and quality of the land, the

rationality of spatial distribution, the content of soil biomass,

artificial agricultural production, and non-agricultural behavior

play a decisive role in rural resilience under the background of

climate change. Climate changes have a direct impact on the rural

ecological environment, affect the stability of the rural

social–economic system, and play a role in its ability to cope

with occasional shocks and complex risk changes.

5 Development trend of rural
resilience research

5.1 Research results

Based on the perspective of biodiversity, this study adopted

the CiteSpace document visualization analysis method to analyze

the mutation words, keywords, and evolution trend of rural

resilience research from 1992 to 2022 using the knowledge

map. The main conclusions are as follows: first, more and

more attention is paid to rural resilience; second, the high-

frequency mutation words in rural resilience research mainly

include “Africa, biodiversity, social ecological system and

adaptability,” which reflect that biomass energy, biodiversity,

climate change, and ecological environment have received high

attention in the study of rural resilience. The high-frequency

keywords mainly include “region resilience, climate change, land

use change, natural disaster, carbon sequestration,” etc.,

indicating the concern about climate change, natural disasters,

biological sustainability, carbon storage, etc. Third, the research

content mainly focuses on resilience and biodiversity, and

resilience and climate change; the fourth conclusion is made

to analyze and judge the development trend of promoting the

research and construction of rural resilience from the aspects of

ecological restoration and rural planning.

5.2 Development trend

In combination with the main research contents, relevant

research progress, and the two main research hotspots
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mentioned earlier, the author made the following prediction and

conclusion on the development trend of the interdisciplinary

research on the combination of rural resilience and biodiversity:

1) with the in-depth implementation of the strategies such as

“beautiful countryside, carbon peak, and carbon neutralization,”

the importance of rural ecological environment protection and

biomass diversity protection will become more and more

prominent in rural resilience construction and research. 2)

Carrying out bottom–up ecological restoration and top–down

planning improvement will be an important development trend

and research direction for the future development of rural

resilience construction. This point will be emphatically

discussed later.

5.2.1 Bottom–up ecological restoration
In response to biodiversity changes, rural resilience

emphasizes the mode, extent, and direction of adaptation

formed by resisting external environmental changes, which are

affected by natural, economic, social, and other factors. Rural

resilience from the perspective of biodiversity needs to consider

the rural regional ecosystem and its evolution process from the

perspective of spatial–temporal changes and factor transmission,

and accurately recognize and evaluate the resilience level and

capacity of the rural system from a dynamic perspective. It is

proposed that the bottom–up ecological restoration mode is a

path of self-restoration and improvement based on the evolution

and coordination perspective with rural space as the carrier and

the land as the cell under the existing framework of rural

resilience identification, measurement, and research. It can

effectively promote the richness of land biomass, sustainable

development of the rural spatial system, realize the goal of

individual cognition, network social association, human–earth

system co-existence, and improve biodiversity in practice. In

further research, we should pay attention to the combination of

theory and empirical cases.

5.2.2 Top–down planning improvement
In response to global climate change, rural resilience

emphasizes on coping with complex change scenarios and

optimizing sustainable development paths. Based on the

perspective of climate adaptation and climate change, it is

necessary to emphasize the top–down planning promotion

path. From the perspective of a more macroscopic spatial

scale and time evolution, it is necessary to systematically sort

out and think about the whole elements of the land space in the

village and propose planning strategies, planning paths, and

spatial layout optimization methods. Starting from the

complex relationship and interaction between various related

elements of rural resilience, it is considered to dock territorial

space planning, construct village territorial space planning,

optimize the layout of the village territorial space from the

top to the bottom, and promote the integration and

improvement of biological resources. Dynamic monitoring

and follow-up are carried out according to the evolution trend

of rural resilience, and new spatial adjustments are constantly

made to optimize the rural social–economic–ecological system so

as to better improve the biomass content of land resources and

carry rural production and life. Scholars should pay attention to

the applicability of planning improvement in different spatial

scales and time conditions in further research studies.
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Improvement of rural soil
properties and states by biomass
carbon under the concept of
sustainability: A research
progress

Yuchi Yang*

College of Architecture and Urban Planning, Tongji University, Shanghai, China

Biomass carbon is a highly aromatic carbonaceous solid obtained by

thermochemical reaction of biomass raw materials. It is frequently used in

the research and application of soil properties and states improvement. Biomass

carbon has abundant porous structure, high specific surface area and surface

functional groups. After being applied to the soil, it has a significant impact on

manipulating the physichemical properties of the soil, enhancing the microbial

environment and remediating soil pollutants, which is conducive to the

resource utilization of agricultural wastes and the long-term preservation of

the environment. Based on 328 moderately to highly relevant literatures on

biomass carbon and rural soil property improvement since 2010, this paper

reviewed the contemporary research progress of biomass carbon application in

soil property improvements utilizing the concept of sustainable development.

In order to provide beneficial illumination for the complete implementation of

biomass carbon in improving rural soil properties, this paper primarily evaluated

the principle as well as mechanism of promoting sustainable soil properties. It

tends to prospect the application and development aspirations of biomass

carbon in soil ecological restoration, crop growth, development.

KEYWORDS

biomass carbon, soil properties and states improvement, soil pollution, rural
sustainable development, research progress

1 Introduction

In recent years, the research on the application of biomass carbon in soil properties

and states improvement has attracted much attention from the academic community.

Recent increases in industrialization and urbanization have resulted in significant CO2

emissions, global warming, sewage and other pollutants. As more than just a result,

enormous rural regions have unavoidably become the emission receptors for numerous

pollutants. Rural soil has become the first place to absorb some heavy metals and toxic

chemical elements, so point pollution and non-point source pollution flowing one after

another. The rural soil ecological environment has become increasingly worse as a result,
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which has aroused widespread concern and high attention from

the government and academics. Over the years, rural soil has

been carrying the important mission of increasing biomass

carbon production, absorbing CO2 and other carbon

containing substances. Improvement of rural soil properties,

research and application of sustainable development of soil

ecosystems have recently become hot topics in the academic

community due to the crisis of heavy metals, toxic chemical

element accumulation, as well as changes in soil physichemical

structure. The biomass carbon rich in organic carbon has

naturally entered the public’s consciousness due to its effective

soil improvement performance.

The Amazon basin is where American Indians first applied

black carbon to soil to produce fertile black soil known as “Terra

Preta” and this is where the phrase “biomass carbon” first appeared

(Goldberg, 1985; Lehmann et al., 2003; Lehmann et al., 2008).

According to Jiang et al. (2017) and Kong et al. (2015), biomass

carbon is the carbonaceous solid product of the high-temperature

pyrolysis and carbonization from organic biomass materials

including wood, straw, fruit shells in an atmosphere with little to

no oxygen. At a relatively modest preparation temperature

(<700°C), biomass carbon might well be pyrolyzed to produce

valuable carbon-containing compounds (Ahmad et al., 2014;

Wang et al., 2022). The characteristics of biomass carbon include

high pH, adsorption capacity, abundant nutritional content, large

specific surface area, pore structure, stable physichemical properties,

and abundant surface functional groups, etc.It may enhance soil,

promote soil fertility, encourage crop development and increase soil

nitrogen on the impact of chemical circulation because of its unique

physichemical properties (Wang et al., 2019; He et al., 2021). High

pH, nutritional content, pollutant adsorption ability, rich pore

structure, large specific surface area, stable physichemical

properties, and a richness of surface functional groups are all

features of biomass carbon. When applied to farmland, its

unique physical and chemical characteristics can enhance soil,

increase soil fertility, encourage crop development, and influence

the chemical cycle of soil nitrogen (Wang et al., 2019; Raza et al.,

2022).

TABLE 1 Research Frontiers of biomass carbon application in soil improvement.

Research topics Research contents Researchers Key words

Biochars’ influence on soil reclaimarion Research status of biochar for soil improvement and
outstanding advantages of carbonization technology

Wang et al.
(2014)

biochar; soil reclaimarion; soil ecosystem

Slow-release property and soil remediation
mechanism of biochar-based fertilizers

Slow release mechanism and influencing factors of biomass
carbon based fertilizer

Zhao et al. (2021) biochar-based fertilizers; slow-release
property; soil improvement

Biochar on transport of inorganic pollutants
in soil

the basic characteristics, carbon content and structure of
biomass carbon are affected by the properties of source
materials

Zhang et al.
(2021)

Biochar; adsorbent; Heavy metals; Soil;
repair

Soil Physiochemical Properties and
Nitrogen Transformation

Changes and response mechanism of nitrogen cycle,
nitrogen fixation reaction, ammonification reaction and
nitrification reaction driven by soil microorganism

Wang et al.
(2019)

Soil physical properties; Soil chemical
properties; Microorganism

Effect of biochar on soil physical
characteristics improvement

Effect of biochar addition on soil physical characteristics, the
best application rate of biochar

Deng et al. (2020) land consolidation; fertility betterment

Effects of biochar on remediation of heavy
metal containeated soil

Application of biochar in remediation of heavy metal
contaminated soil

Yang et al. (2020) Soil heavy metal; mechanism; remediation
effect

Remediation of As and Cd contamination
by calcium-based magnetic biochar

Solution to the problem of remediation of As and Cd
contaminated soil

Wu (2020) calcium-based magnetic biochar; Cd As
co-contamination; bioavailability; paddy
soil

Effects of biochar on remediation of heavy
metal containeated soil

Application of biochar in remediation of heavy metal
contaminated soil

Yang et al. 2020 Soil heavy metal; mechanism; remediation
effect

Biochar Behavior in Soil Environment Behavior of biochar in soil environment and effects of
biochar improvement on soilphysihemical properties and
crop growth

Zhang et al.
(2021)

biochar; soil; environmental behavior;
pollutants

Heavy metal contaminated soil using
modified biochar

Preparation and properties of biochar and effects of
different modification methods on the structural
characteristics of biochar

Zhang et al.
(2021)

Soil, heavy metals; modified biochar;
adsorption

Biochar remediation of petroleum
contaminated soil

Physicochemical properties of biochar and biochar
remediation of petroleum contaminated soil

Song et al. (2021) petroleum pollution; remediation
technology; soil

Biochar from constructed wetland biomass
waste

Characteristics of wetland plant derived biochar, and its
utilization in soil improvement, carbon sequestration

Cui et al. (2022) Aquatic plant Carbon sequestration
Sorption Soil improvement

Characteristics of biochar and its effects and
mechanism on soil properties

The role of biochar addition in improving soil structure, soil
fertility, adjusting soil pH, repairing contaminated soil

Chen F et al.
(2022)

biochar; soil properties; influence
mechanism; remediation

Effects of biochar addition on nutrient levels
and its components in dry farmland soils

The application of biomass carbon in soil improvement and
fertility improvement in dry farming areas of the Loess
Plateau

Pan et al. (2022) Loess Plateau; soil nutrient; organic carbon
fraction; humic substance
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According to research, biomass carbon improves soil’s

physical structure and physichemical properties, which can be

utilized as an organic remediation agent in soil systems for

carbon sequestration and emission reduction (Wang et al.,

2019; Chen F et al., 2022), making it a suitable substance for

water and soil remediation (Beesley et al., 2011; Dey et al., 2014;

Wu, 2020). According to Spokas et al. (2012), enhancing soil

fertility and carbon sequestration, recovering reclaimed land and

lowering greenhouse gas emissions from farms are all potential

applications for biomass carbon in terrestrial ecosystems (Harter

et al., 2014; Troy et al., 2013; Cayuela et al., 2014). Research by

academics indicates that biomass carbon can effectively promote

the improvement of agricultural soil, the growth and

development of crops (Table 1). The expense of preparation is

also significantly lower than that of activated carbon, which

mostly consumes wood and coal as raw materials. At the

same time, its preparation materials originate from a wide

range of sources. The application of biomass carbon to

enhance soil characteristics will definitely become the primary

concern of upcoming researches as a consequence of the

progressively severe soil pollution situation.

This paper is based on the concept of sustainable

development and does use the literature research method. It

typically analyzes 328 highly relevant literatures on the topics of

biomass carbon and rural soil property improvement since 2010,

including 181 Chinese journal literatures in CNKI database and

147 English review journal literatures in WOS database. The

production of raw materials, fundamental characteristics,

preparation factors, principle and mechanism of biomass

carbon to improve rural soil properties are almost all reviewed

and analyzed in this paper. The findings are summarized in

Table 1 in conjunction with the great potential applications and

future development direction of biomass carbon in soil ecological

restoration, crop growth and development, research

development trend.

2 Summary of research progress

The scholars’ research on the improvement of rural soil

properties by biomass carbon mainly concentrated on the

production of raw materials, basic properties, influencing

factors of preparation, the principle and mechanism of

biomass carbon to improve rural soil properties and states by

sorting out the results of the existing internal and external

research.

2.1 Raw materials and basic properties of
biomass carbon

There are a wide range of raw materials for biomass carbon

preparation, such as straw, manure, grass, wood, etc. (Jiang et al.,

2017; Liu et al., 2009; Cantrell et al., 2012). Generally, they can be

divided into traditional (such as agricultural, forestry wastes and

urban wastes) and non-traditional biomass carbon (Zhang et al.,

2021; Hossain et al., 2011). There are apparent differences in

composition, structure and element types, etc. (Rego et al., 2019;

Cao et al., 2022). The physicochemical properties of biomass

carbons produced from different rawmaterials or under different

preparation environmental conditions have significant

differences and diversity (Aller, 2016), so the impact on crop

growth is also very different (Liu et al., 2013; Jeffery et al., 2011).

The chemical effects of the same kind of biomass carbons at

different temperatures are also different. The differences in

specific surface area, cation exchange capacity, the proportions

and contents of biomass carbon with different degrees of

dissolution of biomass carbon prepared at the same time

show significant differences in physical and chemical properties.

Biomass carbon is an important measure for the resource

utilization of soil biomass waste and the realization of farmland

carbon management. Biomass carbon contains a large number of

nutrient elements such as N, P, and K, as well as medium and

micronutrient elements such as Ca, S, Fe, and Si, which are used

to reduce pests, diseases and ensure the normal growth of soil

crops (Zhang, 2017). Researches have shown that biomass carbon

is mainly composed of aromatic hydrocarbons, elemental carbon

or carbon combinations with graphite-like structure (Chen et al.,

2013). Its surface physical and chemical characteristics are of

great significance for its potential production and application,

which are mainly affected by the temperature of the thermal

reaction and raw materials (Chen Y et al., 2022).

Biomass carbon is a solid substance with rich carbon content

generated from the pyrolysis of agricultural wastes such as straw

(Zhang, 2017). Its carbon fixation and emission reduction effect

in farmland soil are mainly due to its high carbon content and

highly stable structure (Keiluweit and Johnson 2010). The

characterization of biomass carbon is of great significance for

its potential applications. Its physical and chemical properties are

mainly affected by the thermal treatment temperature and raw

materials. Biomass carbon applied to soil can increase soil carbon

storage and slow down the carbon cycle process of terrestrial

ecosystem (Lehmann et al., 2006; Lehmann et al., 2008; Weng

et al., 2017; Zhang, 2017).

2.2 Factors affecting the preparation of
biomass carbon

Biomass carbon is rich in organic carbon, which is often

compared with activated carbon. Activated carbon is mainly

made from coal, wood and other materials through high-

temperature carbonization reaction, activation and

condensation by various preparation methods (Wu et al.,

2014; Ahmed et al., 2019). The preparation of raw materials is

relatively simple and the source is relatively limited. Biomass
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carbon is prepared by pyrolysis reaction at low temperature. Its

raw materials come from a wide range of sources, such as cheap

and rich traditional agricultural wastes (Zhou et al., 2021) and

non-traditional biomass (Inyang et al., 2016), such as straw, fruit

shells, peanut shells, walnut shells, poultry manure, etc. The

preparation cost of biomass carbon is significantly lower than

that of activated carbon.

Biomass carbon is a carbon rich solid mixture formed by

pyrolysis of biomass wastes such as straw under the condition of

oxygen limitation, with an obvious aromatic structure

(Raveendran et al.,1995; Brodowski et al., 2005). The

constituent elements of biomass carbon are closely related to

the preparation temperature in the carbon production process.

Specifically, with the increase of carbonization reaction

temperature within a certain controllable range, the hydrogen

and oxygen content decreases while the carbon and ash contents

increase significantly, (Schmidt and Noack 2000; Chen et al.,

2013). It is mainly used for recycling agricultural and forestry

waste resources or improving farmland soil properties (Liu et al.,

2020; Zhang et al., 2021).

2.3 Principle and mechanism of improving
rural soil properties and states by biomass
carbon

2.3.1 Effects of biomass carbon on soil
physicochemical properties

The improvement of soil properties by biomass carbon has

widely aroused extensive research in academia. The principle of

improving soil physical and chemical properties is mainly to

affect the soil nitrogen cycle, promote soil carbon sequestration

and emission reduction, reduce soil nutrient loss, affect the

distribution of soil components and other direct or indirect

ways of action. Due to its high pH value, loose porous

structure, available carbon nutrient content, biomass carbon

plays an important role in mitigating soil acidification,

reducing nutrient loss, promoting carbon fixation and

emission reduction (Ogura and Date 2016; Ali et al., 2017).

Most of the existing researches focus on the overall changes of

soil caused by the uniform mixing of biomass carbon and soil,

ignoring the spatial heterogeneity and variability of the impact of

biomass carbon on the distribution of soil components (Yu and

Meng 2019; Wang et al., 2019). Akhtar et al. (2014) finds that

biomass carbon is beneficial from improving chlorophyll

content, photosynthesis rate (Pn), stomatal conductance (Gs),

relative water content (Rwc) and photosynthesis efficiency of

tomato leaves. Shafaqat et al. (2017) reveals that the physical and

biological characteristics of soil strengthened by biomass carbon

under drought conditions improved water conservation capacity,

regulated stomatal conductance, plant hormone content,

specifically decreased Na+, K+ absorption of plants. The

surface cationic adsorption capacity of biomass carbon can

improve the soil cationic exchange capacity. Wang et al.

(2019) reveals the different porosity and structure of different

soil components are important reasons for the variation of soil

water content, rich porous structure, large specific surface area

(SSA) and particle mechanical strength could affect the soil water

permeability. Biomass carbon is a stable inert substance, which

mainly depends on its highly carbonized and aromatic molecular

structure (Yu and Meng 2019; Yu, 2021). However, instability

phenomena such as aging and decomposition of biomass carbon

may occur as time goes by.

Biomass carbon can improve soil by affecting nitrogen

transformation. The application of biomass carbon to soil

changes the N element cycle, adsorbs and retains N element

to a greater extent through its porous characteristics or affects the

microbial environment (biodiversity, richness and vitality) in the

process of N element cycle. It cannot directly increase the content

of N element in soil and mineral N element which are conducive

to crop growth and development. Instead, it affects the cycling

process of N elements (Wu et al., 2014). Asada et al. (2002) finds

that the higher temperature of biomass carbon preparation, the

lower number of acid functional groups attached to the surface,

and the ability to react to NH3 or NH4
+ will be weakened. At the

same time, the addition of biomass carbon to the soil will increase

the abundance of ammonia oxidizing bacteria, promote the

conversion of NH4
+ into NO3

− in soil (Nelissen et al., 2012),

or adsorb phenolic compounds that inhibit nitrification

indirectly promoting nitrification (Deluca et al., 2006).

Taghizadeh Toosi et al. (2012) focuses on the isotope labeling

experiment of N element, the results shows that N element are

stable and non-volatile in air, and it could be used by plants after

being applied to soil, which reduces the loss of N elements and

improves the utilization efficiency. Biomass carbon actually

enhanced the nitrogen fixation capacity of soil and enhanced

the nitrogen cycle process in soil.

2.3.2 Effects of biomass carbon on soil microbial
environment

Biomass carbon improves the soil microecosystem. Its

principle is to indirectly promote crop governors by

optimizing microbial growth conditions, increasing microbial

content, enriching microbial community structure or affecting

soil physichemical properties. The uniform and dense pores of

biomass carbon can be retained in the soil and form a large

number of micropores, which provides a suitable material carrier

for the reproduction of microorganisms and the enrichment of

community structure.Within a certain range, with the increase of

biomass carbon application rate, the number and activity of soil

microorganisms significantly increased (Steiner et al., 2007;

Simone et al., 2009). Microbial growth requires certain water

and temperature conditions, such as drought stress conditions

that have a negative impact on crop growth and nutrient

absorption (Robertso and Thorbum 2006). These

microorganisms can adapt to environmental changes and
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produce enzymes that decompose soil exogenous substances to

promote degradation or transformation of pollutants (Song et al.,

2021).

The effects of biomass carbon on soil physichemical

properties and states can be divided into direct effects on the

growth and development of microorganisms or indirect

enhancement of the microbial carrier material richness of

physichemical reactions. The influence of biomass carbon on

the physichemical properties and states of soil will directly affect

the growth and development of microorganisms, which are also

important catalysts for soil physichemical reactions and

complement to each other. Yu (2021) researches the

migration and distribution of biomass carbon in soil, carbon

effect, soil microbial diversity and community structure

characteristics, nitrogen transformation functional

microorganisms in the intercarboniferous microdomain. Yu

(2021) researches the effects of biomass carbon on the

chemical properties, microbial richness, community structure,

soil fertility, crop growth and nitrification of acidified soil, effects

on nitrification of acidified soil. Zhang (2017) researches the

impact of biomass carbon on agricultural crop productivity, land

carbon fixation, emission reduction in different ecosystems, and

the impact of biomass carbon application on soil nutrient

element rotation (turnover of P, C, and N elements). Zhao

et al. (2021) finds that the effect of biomass carbon on crop

productivity i significantly different under different soil

conditions.

2.3.3 Ecological remediation effect of biomass
carbon on soil pollution

Biomass carbon can be used as a functional adsorption

material and mixed into soil as a remediation agent. There are

many articles on remediation of petroleum soil pollution and

heavy metal pollution (Zhang et al., 2021; Erin et al., 2017; El

Rasafi and Haddioui 2020). The pollutants are mainly removed

through chemical reaction and physical adsorption. Methods

used for soil pollution remediation include chemical

precipitation, ion exchange, redox and adsorption methods

(Xu et al., 2020; Zhang et al., 2021; Wang et al., 2020).

Compared with other methods, adsorption method is

widely used due to its simple operation, high efficiency, low

cost, etc. The research of Bird et al. (1999) and Dai et al. (2005)

reveals that under the long-term effect, biomass carbon can

physically migrate or decompose to a certain extent,

redistribute in the vertical direction of soil and better

adsorb pollutants. Xiao et al. (2021) suggest that wetland

plant biomass carbon has strong adsorption capacity for

various inorganic, organic pollutants and significant effect

on soil improvement. Kambo et al. (2015) researches and

recognizes the physichemical properties of plant biomass

carbon, such as high water content, low calorific value, high

volatile components which greatly limits its further

application in soil remediation.

The potential toxic substances in soil such as heavy metal

ions and polycyclic aromatic hydrocarbons are important

material to which need to be paid attention. Biomass carbon

can enhance the ability of soil microorganisms to metabolize

organic matter, complete the overall adsorption process in order

to realize the interaction of all aspects of remediation. At the

same time, pollutants may be degraded autonomously in soil as

time goes by which also affects the growth and development of

soil microorganisms.

3 Research conclusion and prospects

In recent years, biomass carbon has become a soil

improvement material of great concern. Meanwhile, the

widespread application of biomass energy will contribute to a

reduction in the consumption of fossil fuels and environmental

pollution. It does have valuable characteristics such a potent

ability for adsorption, simple preparation requirements, low

pollution risk and sustainable utility. The resource utilization

of agricultural production wastes can be accomplished through

the production from several forms of biomass carbon. Regarding

soil improvement and restoration, current research primarily

concentrates on improving the physichemical characteristics of

rural soil, increasing soil fertility and enriching soil microbial

communities. The preparation of different types of biomass

carbon can realize the resource utilization of agricultural

production wastes. Existing researches mainly focus on the

improvement of physichemical properties of rural soil, the

improvement of soil fertility and the enrichment of soil

microbial communities to achieve soil improvement and

restoration. Despite the existence of multiple breakthroughs

when field experiments are combined with biomass carbon,

there are still many issues that need to be resolved before

biomass carbon could be extensively used for rural soil

improvement, remediation, and establishing standardized

approaches. During the long-term application process in

actual agricultural production, it is critical to take the

environment’s dangers into account as well as the biomass

carbon’s appropriate environment. Following is an extensive

description of the crucial challenges and emerging trends in

research on enhancing rural soil properties by biomass carbon

based on an analysis of academics’ research results and

contemporary development demands (Figure 1).

3.1 Research defects

Biomass carbon can not only improve rural soil environment,

but also be used as slow release pesticide and growth fertilizer in

agricultural production process. Existing researches are deficient

in the following aspects. The existing researches are insufficient

in the following aspects: 1) How to standardize the combined
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application of biomass carbon with different content, type,

proportion to cope with specific soil improvement process

and take enduring effect quickly. 2) How does the biomass

carbon cope with the soil improvement process under

different climate, temperature, humidity conditions, realize the

long-term carbon fixation and emission reduction of farmland.

3) During the standardized preparation of biomass carbon, we

should pay attention to the process conditions, original sources

and relatively stable components to minimize the potential

environmental risks of biomass carbon as much as possible. 4)

When biomass carbon was applied to soil, unknown organic

matter would be released during the aging process, and its long-

term harmfulness to the environment needs further attention in a

long time. 5) The biomass carbon to soil pollutants should be

repair for single contaminant to compound pollutants, from a

single biomass carbon to a variety of biomass carbon synergy

mechanism researches and an extensive experiment. 6) Biomass

carbon can not only be used as soil improvement and pollution

remediation, but also as slow release pesticide and fertilizer

application in the fields together. 7) From the macroscopic

action process of biomass carbon to the microscopic in-depth

research process of biomass carbon. To research the free radicals

on the surface of biomass carbon material, the functional

structure of molecules, the efficiency of action, effectiveness,

etc. At the same time, it should be shifted from the research

of short-term effects to the comprehensive application and in-

depth tracking research of long-term environmental benefits. 8)

Biomass carbon has a broad development prospect in the future,

1 combination is further broaden its applications such as in the

village planning, such as in village planning, rural community

construction, regional carbon reduction and emission reduction,

and rural revitalization. So as to continue to expand its research

and attention to environmental protection and economic

applications.

3.2 Research prospects

The focus as well as objectives of economic and social

development in the new era are always to prevent global

warming, reduce CO2 and other greenhouse gas emissions,

develop circular and sustainable agriculture, construct green

and low-carbon communities, implement rural revitalization

strategies, encourage sustainable land spatial patterns, and

create ecological civilizations. The capacity to guarantee food

security and maintain sustainable development of rural soil are

both important goals. Additional researches will concentrate on

the potential of biomass carbon for crop growth and

development as well as its application to the ecological

rehabilitation of rural soil. How to batch and modularize the

preparation of different kinds of biomass carbon, and actively

invest in the process of rural soil environmental restoration.

How to determine appropriate means and pathway of

improving soil with biomass carbon according to different

types of pollutants, so as to maintain a more stable

remediation niche. In the process of further research and

FIGURE 1
Research progress on improving rural soil properties by biomass carbon.
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practice, more stable application of multiple biomass carbon in

rural soil remediation such as content needs to be emphatically

considered in the future application.

3.2.1 Methods and efficiency of biomass carbon
for ecological restoration of rural soil

Biomass carbon remediation of organically polluted soil is

mainly achieved through adsorption, and the adsorption

mechanism mainly includes three ways such as distribution,

surface adsorption, pore interception. Due to the increase in

the types and quantities of organic pollutants in recent years,

the remediation process of soil ecological restoration has

become more complex, and the adsorption of pollutants is

more difficult. So it is necessary to pay attention to the joint

application of multiple adsorption methods. Single biomass

carbon is difficult to effectively solve the problem of soil

ecological restoration, which needs to be used together with

other remediation measures such as organic fertilizer.

According to the systematic principle, different types,

dosage and ratio of biomass carbon combined use,

application conditions, environment and other relevant

reference standards for future applications need to be

referred to in the future. Biomass carbon which has

emerged in recent years shows great adsorption

performance for heavy metals due to its rich functional

groups and high specific surface area, which can effectively

reduce the bioavailability and mobility of heavy metals in soil.

For different types of pollutants, how to determine the most

appropriate way to improve biomass carbon needs further

research, and the adsorption efficiency and action intensity of

different types of biomass carbon need to be concerned. It is

necessary to turn short-term laboratory experiments into

long-term integrated field experiments, systematically

consider the remediation and application effects of biomass

carbon in different soil types, establish long-term location

tracking experiments or isotope experiments. Focusing on the

advantages of modified biomass carbon, we need to be

cautious about its negative effects in the repair process.

During the repair process, potential hazardous substances

may be released and there is a risk of secondary pollution

at the same time. Under the concept of sustainable

development, it is necessary to fully consider the safety of

biomass carbon and give full attention to the biomass charcoal

degradation ability of soil pollutants, which is of great

practical significance to improve the functional

characteristics of biomass carbon.

3.2.2 Effects of biomass carbon on crop growth
and yield

Biomass carbon affects plant growth and photosynthetic

efficiency by improving soil phychemical properties and

increasing plant water content. The influence of biomass

carbon on soil water retention rate is different due to the

content, source, application amount of biomass carbon and

other pertinent factors. The activity and retention efficiency of

biomass carbon are affected by the preparation method and

process. The external surface of biomass carbon has oxidation

capacity and can adsorb more metal cations such as Al3+, H+. It

contains Ca2+, K+, Mg2+, Na+ and other salt ions, which can

improve the exchange capacity and frequency of cations in

soil. The research found that the effects of biomass carbon on

crop growth, development and yield are mainly focused on as

follows: Biomass carbon by improving soil phychemical

properties and states, increase water content of plants to

affect plant growth, photosynthesis efficiency. Biomass

carbon to soil water retention effect because of factors such

as biomass carbon content, source and find the differences.

The influence of biomass carbon on soil water retention rate is

different due to the content, source and application amount of

biomass carbon. The activity and retention efficiency of

biomass carbon are affected by the preparation method and

process. The outer surface of biomass carbon has oxidation

ability, which can absorb more metal cations such as Al3+ and

H+. It contains Ca2+, K+, Mg2+, Na+ and other salt ions, which

can improve the exchange capacity and frequency of cations in

soil. This research actually finds that the effects of biomass

carbon on crop growth, development and yield are mainly

concerned as follows: 1) The multi-microporous structure of

biomass carbon provides the content of bacteria in the soil

which is conducive to growth and enriches the growth

environment. 2) Enhancing soil available nutrients content

such as porosity, water retention, pH, salinity, electrical

conductivity (EC), cation exchange capacity (CEC) and

other physicochemical properties. 3) Biomass carbon

contains rich trace elements such as N, P, K which can

effectively exchange with metal cations in the soil to

provide more growth elements, etc. 4) Impact on soil

carbon cycle, carbon sequestration and emission reduction:

carbon sequestration and storage in soil can improve soil

structure, nutrient content and reduce greenhouse gas

emissions such as CO2. 5) To promote the growth of seed

germination plants and increase crop yield. It is noteworthy

that the porous structure and alkalinity of biomass carbon

play an important role in improving the properties of acid soil

and increasing crop yield. However, biomass carbon with high

soil pH value will lead to poor crop growth. Tar and resin

which are generated in the preparation process will inhibit

crop growth. In further research, the focus should be on the

pollution recovery of large-scale application of biomass

carbon in the ecosystem, the adsorption and transport of

natural organic matter on biomass carbon. How to

maintain the same growth efficiency and improve crop

yield in soil crops with different environmental conditions

such as pH, temperature, etc.

In summary, in order to better comprehend how biomass

carbon affects soil quality, several large-scale and long-term
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field application research involving biomass carbon should be

undertaken in the future. It must emphasize the breadth,

depth, or application of development. Pay sincere attention to

how it is used in the processes of improving the soil and

eradicating pollution, as well as the long-term, short-term

effects (both positive and negative effects). The latest research

results will be widely used in crop practice.
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Ionic liquids have attracted attention due to their excellent properties and

potential for use as co-solvents, solvents, co-catalysts, catalysts, and as other

chemical reagents. This mini-review focuses on the properties and structures of

ionic liquids, the pretreatment of lignocellulosic biomass, and the development

of novel ionic liquid-based solid catalysts for cellulose and hemicellulose

derived HMF production.
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Introduction

As reported, lignocellulosic biomass is abundant (Zabed et al., 2017), has

carbon–neutral properties, and is a sustainable and non-edible green feedstock

(Hoang et al., 2021) that is a potential source material for the production of valuable

biofuels and chemicals. The percentage of each constituent is determined by the wood/

plant species, but, in general, is composed of cellulose (40%–50%), hemicellulose (25%–

30%), and lignin (15%–20%), as well as small amounts of pectin, nitrogen compounds,

and inorganic compounds (Kumar A. A. et al., 2020). The compound 5-

hydroxymethylfurfural (HMF) is known as the “sleeping giant” of renewable

intermediate chemicals, with derivatives that can be used in applications such as

pesticides, medicines, and biofuel chemistry (Osatiashtiani et al., 2015; Le et al., 2022;

Nasrollahzadeh et al., 2022). With current energy shortages and environmental pollution,

it is critical that we seek green, sustainable, and alternative solutions.
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Properties and structures of ionic
liquids

Ethyl ammonium nitrate, which is a liquid at ambient

temperature and pressure, was the first described ionic liquid

(IL) in 1914 (Walden, 1914; Angell et al., 2012). ILs have been

widely identified as green substitutes for organic solvents based

on their near-zero vapor pressures, high thermal stability and

devisable polarity, hydrophobicity, and excellent capacity as

solvents through modification of cations and anions (Zhang

et al., 2014; Amarasekara, 2016). To the best of our

knowledge, whether ILs can be recognized as green depends

on approaches to synthesis and internal physico-chemical

properties.

An IL can also be regarded as a salt, depending on whether its

melting point is below 100°C, as salts consist of large and

asymmetrical ions that typically have lower melting points

(Berthod et al., 2017). Generally, the melting temperature,

Tm, decreases with increased size, anisotropy, and internal

flexibility of the ions; however, Tm increases with enhanced

alkyl chain interaction (Weingärtner, 2008). Viscosity is one of

the most significant material properties of ILs. High values for

viscosity limit applications of ILs in various areas, since it reduces

rate of reaction and molecule diffusion by forming a circulation

barrier (Weingärtner, 2008). Tests of the thermal stability of ILs

have shown that decomposition happens slowly at nearly 200°C

(Berthod et al., 2017) in a process that hinges on the unique

cation and corresponding anion association. The thermal

stability of the imidazolium salts, along with the growth of the

number of alkyl substitutions, has been demonstrated (Ngo et al.,

2000). ILs involving linear side chains are more thermally stable

than comparable branched monocationic ones (Xue et al., 2016).

Halide anions can also decrease thermal stability to a certain

extent. Generally, cations account for viscosity, melting point,

and electrochemical stability, whereas anions are responsible for

hydrogen bonding and miscibility with other solvents or water

(Puripat et al., 2016).

The first-generation ILs defined dialkylimidazolium and

alkylpyridinium as cations and metal halide (FeCl4
− and

Al2Cl7
−) as anions sensitive to water and air. Cations of

quaternary ammonium and phosphonium containing

dialkylimidazolium, alkylpyridinium, ammonium, and

phosphonium, along with the classic anions tetrafluoroborate

(BF4
−) and hexafluorophosphate (PF6

−) made up the second

generation of ILs, which are not sensitive to either water or

air. Unfortunately, slow hydrolysis of these anions with increased

temperature leads to the production of hazardous and ecotoxic

hydrogen fluoride (HF). From a green, sustainability perspective,

second-generation ILs also show poor biodegradability, and are

neither cost-effective nor green (Deetlefs and Seddon, 2010).

Third-generation ILs are biodegradable cations and anions, and

natural compounds containing choline, amino acids, or

carbohydrates have been developed for IL production

(Egorova et al., 2017). Widespread commercial application of

ILs in various fields has been studied on account of these

attributes (Figure 1).

Because of the above-mentioned characteristics, ILs have

been identified as excellent solvents and catalysts for the

synthesis of HMF from biomass and associated derivatives

(Jiang et al., 2016; Li et al., 2018). Among IL cations, the

mono-imidazole type has exhibited excellent performance. To

facilitate the interaction between ILs and biomass or

carbohydrates, di-/tri-cationic ILs with higher density and

more hydrogen bonding were developed (Marullo et al., 2019;

Rathod et al., 2019; Prasad et al., 2021).

Catalytic transformation of
lignocellulosic biomass in IL-based
catalysts

Lignocellulosic biomass pretreatment is a significant process

in the production of biofuels and value-added chemicals, the

degradation of which is hindered by chemical properties,

chemical structure, and microscopic complexity. Therefore,

new approaches and reaction parameters are determined by

attributes such as the degree of crystallization and

polymerization of cellulose and the percentage of

hemicellulose and lignin (Mood et al., 2013; Abraham et al.,

2020) (Figure 2). Various ILs have been investigated to determine

their effectiveness in lignocellulose dissolution and degradation

to main compounds (Bian et al., 2014), although without the

desired target HMF yield due to the multiple steps necessary to

isolate HMF from raw materials.

Kahani et al. (2017) synthesized N-allyl-N-methylmorpholinium

acetate ([AMMorph][Ac]) and successfully introduced it for the

pretreatment of rice straw. Compared to the most efficient solvent

imidazolium liquids, the morpholinium liquids are less toxic and less

expensive, while providing glucose yields of 98.4 ± 1.3% using

mixtures of [AMMorph][Ac]-DMSO (70:30, v/v) and

N-methylmorpholine-N-oxide (NMMO), [Bmim][Ac], and

NaOH at 120°C. Furthermore, using DMSO as a co-solvent could

minimize IL usage and enhance pretreatment efficiency by reducing

viscosity (Kahani et al., 2017).

Use of a novel integrated –SO3H functionalized IL catalyst [IL-

SO3H][Cl] and nickel sulfate (NiSO4.6H2O) co-catalyst resulted in a

maximum glucose conversion of 99.92%, with 21.80% HMF yield

when incubated at 175°C for 1.5 h in the aqueous phase (Kumar K.

et al., 2020). According to the pseudo-first-order kinetic equations,

the activation energy (Ea) and pre-exponential factor (A) was

confirmed to be 47.45 kJ/mol and 7.9 × 103 min−1, respectively,

for conversion of glucose into HMF. The research demonstrated an

effective synergistic effect of the IL catalyst and Lewis acidic co-

catalyst in clean synthesis of HMF from waste biomass derived

glucose, providing a promising pathway for the preparation of vital

platform chemicals and renewable fuels.
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Conversion of cellulose with IL-based
catalysts

The synthesis of HMF derived from cellulose involves several

steps: depolymerization, hydrolysis, isomerization and,

ultimately, dehydration (Tyufekchiev et al., 2018; Zhang et al.,

2018a; Zhang et al., 2018b; Naz et al., 2021). For different

processes, catalyst properties vary depending on the reactions.

Excessive Brønsted acid or Lewis acid can accelerate the side

reactions that produce by-products. Therefore, the “tailor-made”

development of satisfactory catalyst processing with the

appropriate ratio of Lewis acid to Brønsted acid is crucial for

increasing HMF yield. In addition, allylimidazole-type ILs have

strong advantages in cellulose dissolution (Liu et al., 2012).

At the beginning of the instantiation phase, metallic ILs

(i.e., Cr([PSMIM]HSO4)3 and CuCr([PSMIM]SO4)5) were

designed and applied to the cellulose-HMF system (Zhou et al.,

2013). Cr([PSMIM]HSO4)3 demonstrated higher catalytic

performance in the production of HMF, with 53% yield ascribed

to the bifunctionality and higher Brønsted acidity at 120°C.

Liu et al. (2022) prepared a series of reactions with different

proportions of Brønsted acid and Lewis acid ILs for the

degradation of cellulose to produce HMF. Among these,

[(HSO3-P)2im]Cl·ZnCl2 exhibited excellent catalytic

performance, with an HMF yield of 65.66% at 140°C for 3 h.

This study facilitated directional optimization of the catalyst. The

quantum chemical calculation method for molecular design was

used to predict the catalytic effect (different ratios of Brønsted

acid to Lewis acid) and investigate the catalytic mechanism.

Therefore, the solvation model density (SMD) model was

proposed in combination with Frontier orbital theory. In

addition, cellulose degradation experiments were performed to

verify the simulation results and inform discussion of the

catalytic mechanism (Liu et al., 2022).

FIGURE 1
Commonly used cations and anions for ionic liquid combination.

FIGURE 2
Different components of lignocellulosic biomass and the degradations.
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Conversion of hemicellulose by IL-
based catalysts

As the second most predominant component of

lignocellulosic biomass, hemicellulose is composed of pentoses

like xylose, arabinose, and hexose, including glucose, mannose,

galactose, and the amorphous polymer xylan (Ruiz et al., 2013).

There are few developments in the production of HMF derived

from mannose and galactose. Researchers demonstrated that

mannose is predominantly isomerized to fructose, which can

be efficiently converted into HMF, while galactose primarily

isomerizes to tagatose, which is the C-4 epimer of fructose

and weaker than fructose in yielding HMF (van Putten et al.,

2013).

When lignocellulosic biomass was employed as raw material,

cellulose with higher HMF yield than hemicellulose was

preferentially chosen for the synthesis of HMF, as the

research was aimed at improving the conversion efficiency of

cellulose (Menegazzo et al., 2018). Considering the complex

components involved, the conversion conditions for HMF are

difficult to control.

Conclusion and outlook

HMF yield close to 100% will eventually be achieved by

adjusting the approach to isolation of the compound from

feedstock and optimizing IL-based catalyst reaction

conditions. This cost-effective, green, sustainable catalyst

system, which inhibits by-products, is easily functionalized,

and has no adverse environmental impact, will lead to

significant advances in future industrial-scale HMF

production. Density functional theory (DFT) and molecular

dynamics should be applied in biomass conversion to aid in

the development of reliable reaction pathways.
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In this study, we summarize recent advances in the synthesis of magnetic

catalysts utilized for biodiesel production, particularly focusing on the

physicochemical properties, activity, and reusability of magnetic mixed metal

oxides, supported magnetic catalysts, ionic acid-functionalized magnetic

catalysts, heteropolyacid-based magnetic catalysts, and metal–organic

framework-based magnetic catalysts. The prevailing reaction conditions in

the production of biodiesel are also discussed. Lastly, the current limitations

and challenges for future research needs in the magnetic catalyst field are

presented.

KEYWORDS

magnetic, heterogeneous catalysis, reusability, esterification, transesterification,
biodiesel

1 Introduction

With the rapidly expanding economy and high energy demand, the over-

consumption of fossil fuels and fossil fuel usage has led to severe effects on the

environment (e.g., global warming), creating wide attention among researchers (Li

et al., 2023; Pan et al., 2022a; Zhang et al., 2022a; Pan et al., 2022b). Thus, seeking a

sustainable energy resource is a high priority. To date, various types of biofuels, such as

biodiesel, bioethanol, and aviation biofuels, have been considered as fossil fuel

replacements. Among them, biodiesel (fatty acid alkyl ester, FAME) has been getting

significant interest as an alternative fuel because of its safety, biodegradability, and

carbon-neutrality (Zhang et al., 2020; Hoang et al., 2021). Currently, biodiesel is

synthesized from free fatty acids (FFAs) and various oils mixed with short-chain

alcohols, using homogeneous, heterogeneous, or enzymatic catalysts to promote the

reaction (Figure 1) (Zhang et al., 2023). However, the homogeneous catalysis system

exhibits numerous disadvantages, such as the fact that homogeneous catalysts (e.g.,

NaOH, KOH, H2SO4, etc.) are non-recyclable and cause pollution (Zhang et al., 2021; Liu

et al., 2022). In contrast, heterogeneous catalysts (e.g., zeolites, heteropolyacids, metal
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oxides, etc.) have attracted growing interest owing to their low

pollution and easy recovery (Woo et al., 2021; Zhang et al., 2022b;

Paiva et al., 2022; Ul Islam et al., 2022). However, high-efficiency

separation of the catalyst from the liquid phase and reduction of

catalyst loss remain challenges. The use of magnetic separation

techniques is an interesting approach to solving these problems

(Chen et al., 2022).

In recent times, magnetic solid acid/base catalysts have been

widely applied for esterification and transesterification reactions

as compared to other heterogeneous catalysts because they are

environmentally friendly and cheap, and their highly magnetic

nature allows efficient separation with an external magnetic field

(Shylesh et al., 2010; Zhang et al., 2014). The present work

reviews recent applications of different types of magnetic

catalysts and their functionalized magnetic composites

employed in biodiesel production, including magnetic mixed

metal oxides, supported magnetic catalysts, ionic acid-

functionalized magnetic catalysts, heteropolyacid-based

magnetic catalysts, and MOF-based magnetic catalysts, among

others. The physicochemical properties, activity, and reusability

of these magnetic catalysts are evaluated and discussed. Lastly, a

brief conclusion and summary on the outlook for designing

magnetic catalysts with high catalytic activity is presented.

2 Magnetic catalysts

In general, Fe-, Co-, and Ni-based catalysts exhibit

permanent magnetism and can be used as magnetic materials;

Fe-based catalysts have been especially widely studied. According

to their characteristics, magnetic catalysts can be roughly

classified into five types, namely, magnetic mixed metal

oxides, supported magnetic catalysts, ionic acid-functionalized

magnetic catalysts, heteropolyacid-based magnetic catalysts, and

MOF-based magnetic catalysts.

2.1 Magnetic mixed metal oxides

Recently, spinel ferrites, MFe2O4 (where M indicates a

transition metal atom of Cu, Zn, Mo, Co, or Mn) have been

widely researched for applications as heterogeneous catalysts due

to their thermal stability and ease of separation by using an

external magnet. Luadthong et al. (2016) investigated the

transesterification of palm oil using a copper ferrite spinel

oxide (CuFe2O4) catalyst. The characterization results revealed

that the major active species of CuFe2O4 were the Cu
2+ and Fe2+.

Optimal reaction conditions of 220°C, 1 g of catalyst, a methanol:

oil molar ratio of 1:18, and a high FAME content of >90% were

determined. A similar study was conducted by Ali et al. (2020), in

which a cuprospinel CuFe2O4 catalyst was used for the

transesterification of waste frying oil with methanol at 60°C,

giving a 90.24% yield. Kinetic results showed that the

transesterification reaction followed pseudo-first-order

kinetics, and the activation energy was found to be 37.64 kJ/

mol. AlKahlaway et al. (2021) prepared ferric molybdate,

Fe2(MoO4)3, nanoparticles for biodiesel synthesis and the

catalytic conversion of oleic acid was 90.5%.

In addition, some magnetic mixed metal oxides including

MoO3/SrFe2O4 (Gonçalves et al., 2021), MnFe2O4/GO (Bai et al.,

2021), MgFe2O4@OA@CRL (Iuliano et al., 2020), NaFeTiO4/

Fe2O3–FeTiO3 (Gutierrez-Lopez et al., 2021), Mg2+-doped

FIGURE 1
Classification of catalysts for biodiesel production.
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ZnFe2O4 (Ashok et al., 2021), and waste chalk/CoFe2O4/K2CO3

(Foroutan et al., 2022) have been explored for their application

largely due to their unique magnetism. Gonçalves et al. (2021)

prepared a magnetic catalyst, MoO3/SrFe2O4, for the

transesterification of waste cooking oil, and results confirmed

the success of MoO3 anchorage of the SrFe2O4 material. The

activity test showed that a biodiesel yield of 95.4% was obtained

in 4 h at 164°C. The MoO3/SrFe2O4 catalyst could be easily

separated by a permanent magnet and showed high stability

with a yield of 84% after five cycles. Bai et al. (2021) investigated

the catalytic performance of a MnFe2O4/graphene oxide catalyst

for biodiesel production from waste edible oil. The MnFe2O4/

graphene oxide catalyst had a high basicity of 3978.6 mmol/g,

and in transesterification reactions, a high biodiesel yield of

96.47% was achieved. Moreover, the physical properties of the

synthetic biodiesel were within the ASTM D6751 and EN

14214 standard range. A K2CO3 modification to the waste

chalk/CoFe2O4 was developed by Foroutan et al. (2022), and

the characterization results showed that the composite catalyst

had a lower surface area due to the introduction of K2CO3. The

highest biodiesel yield of 98.87% was obtained under optimized

conditions, and the activation energy and frequency factor of the

reaction system was found to be 11.8 kJ/mol and 0.78 min−1,

respectively.

Rezania et al. (2021) synthesized a heterogeneous magnetic

MGO@MMO nanocatalyst via the ultra-sonication procedure

for biodiesel production from waste frying oil. From the results, a

high biodiesel yield of 94% was achieved with a 1.5 h reaction at

60°C; the catalyst could be separated and recycled four times,

achieving an 86% biodiesel yield. However, after the eighth cycle,

the biodiesel yield decreased significantly, possibly due to

leaching of the active components or active site blocking. In a

more recent study by Hanif et al. (2022), a magnetic Fe/SnO

nanocatalyst supported on feldspar was synthesized for the

transesterification of various non-edible oils. The magnetic

catalyst exhibited a high catalytic activity with more than 97%

yield for all the tested non-edible oils. A highly active bifunctional

Na–Fe–Ca nanocatalyst was developed by Wang et al. (2022).

The catalytic activity of the magnetic Na–Fe–Ca nanocatalyst in

biodiesel production was evaluated at low temperatures.

Interestingly, with a 500°C calcination temperature, the

catalyst reached a 95.84% biodiesel yield with 16 cycles via

magnetic separation. In conclusion, magnetic mixed metal

oxides have been used successfully as acid/base catalysts or

supports in the catalysis industry, and the design and

composition of cheap, magnetic composite nanocatalysts is a

highly desirable goal in the future.

2.2 Supported magnetic catalysts

Apart from magnetic spinel ferrite catalysts, supported

magnetic acid/base catalysts have also attracted significant

interest for biofuels production in recent years. At present,

Fe3O4 magnetic particles do not commonly exhibit good

catalytic activity, although they are easily separated and

reused. Magnetic Fe3O4 is often used as a carrier, and the

catalytic system is cost-effective and environment-friendly.

Joorasty et al. (2021) prepared NaOH/clinoptilolite–Fe3O4 for

the transesterification reaction of Amygdalus scoparia oil, and the

highest biodiesel yield by the catalyst was 91%. The kinetics of

NaOH/clinoptilolite–Fe3O4-catalyzed transesterification were

also explored, and the activation energy was determined to be

9.21 kJ/mol. Xia et al. (2022) prepared bifunctional Co-doped

Fe2O3–CaO nanocatalysts (Co/Fe2O3–CaO) and studied their

catalytic performance in soybean oil transesterification. It was

reported that the Co/Fe2O3–CaO catalyst had good

ferromagnetism (26.2 emu/g) after the Co doping, and could

be efficiently separated. In another study by Nizam et al. (2022),

magnetic Fe2O3 immobilized on microporous molecular sieves

(Fe2O3/MS) was developed using a plant extract-mediated

method. In the catalytic reaction, the Fe2O3/MS catalyst

exhibited excellent applicability in the esterification,

transesterification, and photodegradation reactions. Mohamed

et al. (2020) and Mohamed and El-Faramawy. (2021) used a

newly developed α-Fe2O3/AlOOH(γ-Al2O3) nanocatalyst to

produce biodiesel from waste oil. The α-Fe2O3/AlOOH(γ-
Al2O3) catalyst presented the highest FAME yield and

recyclability due to its large surface area of 323.3 m2/g, high

acidity of 0.45 mmol/g, and exposed active site planes.

Furthermore, thermal analyses showed that the catalytic

reaction system was endothermic.

In a study conducted by Changmai et al. (2021a), a

recoverable Fe3O4@SiO2–SO3H core@shell magnetic catalyst

was successfully prepared by a stepwise co-precipitation,

coating, and functionalization method. The obtained magnetic

Fe3O4@SiO2-SO3H had a magnetic saturation of 30.94 emu/g, a

relatively large surface area of 32.88 m2/g, and a high acidity of

0.76 mmol/g. The Fe3O4@SiO2–SO3H catalyst achieved a high

conversion of Jatropha curcas oil of 98 ± 1% under optimal

reaction conditions. Mohammadpour and Safaei (2022)

developed a novel sulfonated carbon-coated magnetic catalyst

(Fe3O4@C@OSO3H), which was used for the Pechmann

condensation of phenol derivatives and β-ketoesters. The

resulting yield values were as high as 98%, and the catalyst

could be reused fifteen times with no significant loss in

activity. Table 1 shows a summary of supported magnetic

catalysts utilized for the synthesis of biodiesel.

2.3 Magnetic catalysts functionalized with
ionic liquids (ILs)

Recently, due to their highly tunable nature, low volatility,

and strong chemical and thermal stability, ionic liquids (ILs)

have been widely reported for use in the catalysis field (Sharma
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TABLE 1 Recent findings on green biodiesel production using supported magnetic catalysts.

Entry Feedstock/oil Catalyst Conditions (time,
temperature, catalyst

amount, and molar ratio
of acid or oil to alcohol

Yield (Y/%) or
conversion(C/

%)

Times
catalyst
reused;
yield

Ea
(KJ/
mol)

Reference

1 Jatropha oil +
methanol

CaSO4/Fe2O3–SiO2 4 h, 120°C, 12%, 1:9 Y = 94% 9 cycles;
Y = 83%

\ Teo et al. (2019)

2 Rapeseed oil +
methanol

Fe3O4-CeO2-25K 2 h, 65°C, 4.5%, 1:7 Y = 96.13% 5 cycles; Y =
80.94%

\ Ambat et al. (2019)

3 Amygdalus
scoparia oil +
methanol

NaOH/
clinoptilolite–Fe3O4

2.5 h, 65°C, 0.5%, 1:10.43 Y = 91% 4 cycles;
Y = 82%

9.21 Joorasty et al.
(2021)

4 Fat + methanol Fe3O4/Cs2O 5 h, 65°C, 7%, 1:21 Y = 97.1% 9 cycles;
Y = 78%

43.8 Booramurthy et al.
(2020)

5 Pongamia pinnata
raw oil +
methanol

CES-Fe3O4 2 h, 65°C, 2%, 1:12 Y = 98% 7 cycles;
Y = 98%

\ Chingakham et al.
(2023)

6 Chlorella vulgaris
oil + ethanol

KF/KOH-Fe3O4 6 h, 25°C, 1.5%, 1:6 Y = 80% Not reported \ Farrokheh et al.
(2021)

7 Used cooking oil
+ methanol

CaO-ZSM-5/Fe3O4 4 h, 65°C, 3%, 1:5 C = 83% 4 cycles;
Y = 85%

\ Lani and Nagi,
(2022)

8 Soybean oil +
methanol

Co/Fe2O3-CaO 2.5 h, 70°C, 3%, 1:16 Y = 98.2% 5 cycles;
Y = 78.8%

\ Xia et al. (2022)

9 Waste cooking oil
+ methanol

KOH/Fe3O4@
MCM-41

3 h, 65°C, 8%, 1:40 Y = 93.95% 3 cycles;
C>80%

115.79 Khakestarian et al.
(2022)

10 Soybean oil +
methanol

Na2CO3·H2O@BFD 2 h, 65°C, 7%, 1:15 Y = 100.0% 12 cycles; Y =
92.56%

\ Wang et al.
(2022b)

11 Sunflower oil +
methanol

Fe2O3/MS 4 h, 70°C, 0.03 g, 1:10(volume) Y = 84.5% Not reported \ Nizam et al. (2022)

12 Glyceryl trioleate
+ methanol

Sulfamic acid-
functionalized Fe/

Fe3O4

20 h, 100°C, —, — C = 100% 5 cycles;
C = 95%

\ Wang et al. (2015)

13 Adipic acid +
n-butanol

Sulfonated magnetic
SiO2

4 h, 105°C, 2.95%, 1:3 C = 99% 6 cycles; C =
85.61%

\ Ke et al. (2019)

14 Acetic acid +
methanol

Fe2O3–MCM-48–SO4 4.5 h, 60°C, 15 g/L, 1:10 C = 90% 5 cycles;
C = 44.4%

29.077 Sharma et al.
(2019)

15 Waste cooking oil
+ methanol

CSPA@Fe3O4 3 h, 65°C, 6%, 1:6 Y = 98% 9 cycles;
Y = 91%

34.41 Changmai et al.
(2021b)

16 Oleic acid +
methanol

EFB-MCC/γ-Fe2O3 2 h, 60°C, 9%, 1:12 Y = 92.1% 5 cycles;
Y = 77.6%

\ Krishnan et al.
(2022)

17 Yeast oil +
methanol

Fe3O4@SiO2-CHO 10 h, 55°C, 2.5 g, — Y = 98.12% 10 cycles;
Y = 90%

\ Cao et al. (2021)

18 Cottonseed oil +
methanol

α-Fe2O3/AlOOH(γ-
Al2O3)

3 h, 60°C, 3%, 1:6 Y = 100% 3 cycles;
Y = 95%

57.4 Mohamed et al.
(2020)

19 Waste cooking oil
+ methanol

α-Fe2O3/AlOOH 3 h, 60°C, 3%, 1:6 Y = 95% 4 cycles;
Y = 91.3%

51.54 Mohamed and
El-Faramawy,

(2021)

20 Soybean oil +
methanol

Fe3O4-poly(GMA-co-
MAA)@ lipase

60 h, 40°C, 20%, 1:4 Y = 92.8% 5 cycles;
Y = 79.4%

\ Xie and Huang,
(2020)

21 Soybean oil +
methanol

Fe3O4-poly(AGE-
DVB-GMA)

8 h, 65°C, 7%, 1:20 Y = 92.6% 4 cycles; no
significant
decrease

\ Xie et al. (2021a)

(Continued on following page)

Frontiers in Chemistry frontiersin.org04

Zhang et al. 10.3389/fchem.2022.1106426

108

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2022.1106426


et al., 2022). Among these, many IL-functionalized magnetic

catalysts have been tested for the production of biodiesel because

of their unique properties and commercial availability. Fauzi

et al. (2014) used oleic acid as raw material and 1-butyl-3-

methylimidazolium tetrachloroferrate ([BMIM][FeCl4]) as a

magnetic catalyst to prepare biodiesel by esterification, with a

yield of methyl oleate of 83.4% under optimum conditions. In

addition, the [BMIM][FeCl4] catalyst was reused for six runs with

little loss; the activation energy of the esterification system was

17.97 kJ/mol.

A novel IL-functionalized magnetic catalyst was fabricated

by covalent bonding of [SO3H-PIM-TMSP]HSO4 ILs onto

mesoporous silica-modified Fe3O4 nanoparticles (FSS–IL)

(Wu et al., 2014; Wan et al., 2015). The characterization

results revealed that the FSS–IL catalyst possessed a

uniform core–shell structure and high specific surface area.

In the process of preparing biodiesel, the conversion was

93.5% after 4 h using oleic acid as a raw material. More

importantly, this FSS–IL catalytic system remained active

for six cycles. In another study, magnetically hydrophobic

acidic polymeric ionic liquids (FnmS-PILs) were prepared and

exhibited good activity and reusability (Zhang et al., 2018). Xie

and Wang. (2020a) prepared a magnetic Fe3O4/SiO2-

supported polymeric sulfonated ionic liquid (Fe3O4/SiO2-

PIL) for simultaneous transesterification and esterification

of low-cost oils, and the highest conversion obtained under

optimal conditions was 93.3%. Additionally, the reusability

study showed that the Fe3O4/SiO2-PIL could be recycled and

reused five times. The higher activity and excellent reusability

were attributed to the polymeric acidic ILs and porous

magnetic nanoparticles. An immobilized dual acidic-ionic

liquid on core–shell-structured magnetic silica was also

prepared, and the as-prepared magnetic acid catalyst

exhibited a large surface acidity of 3.93 meq H+/g, a strong

magnetism of 27.5 emu/g, and achieved the highest

conversion of biodiesel at 94.2%. The catalyst was reused

for five runs, and the conversion still reached 86% (Xie

et al., 2021).

Similar catalysts [NiFe2O4@BMSI]Br, Fe3O4@GO@PBIL,

Fe3O4@SiO2@[C4mim]HSO4, Fe3O4@SiO2@PIL, and

[BSO3HMIm][HSO4]@IRMOF-3 were also studied (Ding

et al., 2021; Naushad et al., 2021; Yu et al., 2021; Zhao et al.,

2021; Cheng et al., 2022). Among them, the magnetic [NiFe2O4@

BMSI]Br catalyst was synthesized by an ion-exchange process,

and the resulting catalyst had a BET surface area of 89.21 m2/g.

Moreover, the [NiFe2O4@BMSI]Br catalyst attained a maximum

yield of 86.4% for the transesterification of palm oil, and the

catalytic activity was retained up to six cycles without obvious

loss of yield (Naushad et al., 2021). Based on recent literature

projections, ILs are expected to develop as potential acid

materials for the synthesis of functionalized composite

magnetic catalysts in the future.

2.4 Magnetic catalysts based on
heteropolyacids

Heteropolyacids are inorganic compounds with a Keggin

structure that acts as a strong Brønsted acid. Heteropolyacids

have a low surface area and easily dissolve in polar solvents, so

researchers bonded them tomagnetic supports to overcome these

problems. Wu et al. (2016a) investigated the application of

magnetic material grafted onto a poly(phosphotungstate)-

based acidic ionic liquid as a heterogeneous catalyst for the

esterification of oleic acid. Under optimal conditions, the

conversion of oleic acid reached 93.4%. More specifically, the

catalyst exhibited good reusability after six runs using an external

magnetic field.

As reported by Helmi et al. (2021), phosphomolybdic acid

was supported on clinoptilolite–Fe3O4, and the prepared catalyst

showed excellent activity (80% yield in 8 h at 75°C) and

reusability in the production of biodiesel from Salvia

mirzayanii oil. The HPA/clinoptilolite–Fe3O4 catalyst was able

to recycle up to four times with minimal loss in activity. A

magnetic heteropolyanion-based ionic liquid (MNP@HPAIL)

was synthesized by Dadhania et al. (2021), and was evaluated

TABLE 1 (Continued) Recent findings on green biodiesel production using supported magnetic catalysts.

Entry Feedstock/oil Catalyst Conditions (time,
temperature, catalyst

amount, and molar ratio
of acid or oil to alcohol

Yield (Y/%) or
conversion(C/

%)

Times
catalyst
reused;
yield

Ea
(KJ/
mol)

Reference

22 Jatropha oil +
methanol

Fe3O4@SiO2–SO3H 3.5 h, 80°C, 8%, 1:9 C = 98% 9 cycles;
C = 81%

37.0 Changmai, et al.
(2021a)

23 Oleic acid +
methanol

SC-F-Plg-3 4 h, 65°C, 0.02 g, 1:55 C = 88.69% 5 cycles; C =
70.31%

\ Wu et al. (2022)

24 Cooking oil +
methanol

Fe3O4@SiO2-APTES-
LAE-MoVIO2

0.75 h, RT, 0.04 g, 1:3 C = 99% 12 cycles;
C = 92%

\ Mohammadpour
and Safaei, (2022)
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for the esterification of oleic acid under ultrasonic irradiation.

The maximum oleic acid conversion of 58% was reached, and the

catalyst could be reused for six consecutive cycles.

On the same note, Zhang et al. (2021) immobilized a 12-

tungstophosphoric acid (HPW)-based magnetic catalyst

(Fe3O4@SBA-15@HPW and Fe3O4@SBA-15-NH2-HPW) for

the production of biodiesel from palm oil with methanol. The

synthesized magnetic catalysts have a high content of Brønsted

acid sites due to the induction of HPW. In particular, the Fe3O4@

SBA-15-NH2-HPW exhibited a high biodiesel yield of 91% under

optimal reaction conditions, and also exhibited high reusability.

Ghasemzadeh et al. (2022) adapted a cotton/Fe3O4@SiO2@

H3PW12O40 magnetic nanocomposite to catalyze the

transesterification of sunflower oil. The catalyst had an

excellent magnetism of 45 emu/g and demonstrated a high

FAME yield of 95.3% under optimum conditions. After four

cycles of transesterification, the FAME yield was still relatively

high at 85.5%. In addition, the physical properties of the synthetic

biodiesel meet the ASTM and EU standards. According to the

reported literature, heteropolyacids grafted onto magnetic

supports can be an effective solution to overcome the loss of

heteropolyacids.

2.5 MOF-based magnetic catalysts

Recently, metal–organic frameworks (MOFs), as a newly

emergent type of stable and tunable material, have become

promising magnetic catalysts and supports, and MOF

derivatives have been used for heterogeneous catalysis. Wu

et al. (2016b) investigated the ability of the Fe3O4@NH2-MIL-

88B(Fe) catalyst to perform the esterification of oleic acid with

ethanol. The Fe3O4@NH2-MIL-88B(Fe) catalyst had an acidity of

1.76 mmol/g and achieved a high yield of 93.2% at 90°C.

Moreover, the Fe3O4@NH2-MIL-88B(Fe) catalyst could be

recycled six times without significant loss of activity.

Xie’s group (Xie and Wan, 2018; Xie and Huang, 2019; Xie

and Wang, 2020; Xie et al., 2021b) has studied biodiesel

production from soybean oil and low-quality oils using

magnetic Fe3O4@HKUST-1-ABILs, Fe3O4@MIL-100(Fe)/

Candida rugosa lipase, CoFe2O4/MIL-88B(Fe)-NH2/(Py-Ps)

PMo, and H6PV3MoW8O40/Fe3O4/ZIF-8 catalysts. Their

results revealed that all magnetic catalysts exhibited good

catalytic performance and excellent reusability. Thus, these

MOF-based magnetic catalysts comprise an excellent potential

alternative for processing low-quality oils into biofuels. In

another study by Zhou’s group (Zhou et al., 2019; Zhou et al.,

2023), a MIL-100(Fe) was embedded in magnetic Fe3O4

nanoparticles (Fe3O4/MIL-100(Fe), and the Fe3O4/MIL-

100(Fe) composite exhibited unexpectedly high catalytic

activity with a rosin conversion of 94.8% at 240°C.

Furthermore, the Fe3O4/MIL-100(Fe) composite showed good

stability and recyclability over six cycles. An annealed Fe3O4/

MOF-5 was also synthesized and used to catalyze rosin

esterification with glycerol. The highest conversion of 94.1%

was attained in 2.5 h at 240°C, and the annealed catalyst

showed excellent reusability.

A novel TiO2-decorated magnetic ZIF-8 nanocomposite

(Fe3O4@ZIF-8/TiO2) was synthesized by Sabzevar et al.

(2021). The as-prepared nanocomposite demonstrated

excellent performance in the esterification of oleic acid

(92.25% yield), which was mainly attributed to its acidic

properties and large surface area. After five cycles, the yield of

biodiesel was still 77.22%. Abdelmigeed et al. (2021a),

Abdelmigeed et al. (2021b) prepared NaOH/magnetized ZIF-8

catalysts for the production of high-quality biodiesel from a

blend of sunflower and soybean oil with ethanol. The

transesterification reaction with the blended oil produced 70%

biodiesel in 1.5 h at 75°C. The ethanolysis reaction followed a

pseudo-second-order kinetic model, and the activation energy

was calculated as 77.27 kJ/mol.

In another important area of catalyst research, MOFs were

pyrolized at various temperatures to act as self-sacrificial templates

for the synthesis of structured nanoporous metal oxides (Reddy et al.,

2020). Li et al. (2019), Li et al. (2020), Li et al. (2021) reported on a

series of magnetic catalysts based on MOF derivatives (MM–SrO,

magnetic CaO-based catalyst, carbonized MIL-100(Fe) supporting

ammonium sulfate), and the physical, chemical, and thermal

properties of the MOF-derived magnetic catalysts were evaluated.

The researchers discovered that these catalysts exhibited strong

magnetism and excellent catalytic activity and could be easily

separated by an external magnetic field after each cycle. In another

study, a bifunctional magnetic catalyst with various coordination

states of Co and non-coordinated N sites was developed by Guo et al.

(2022). The prepared bifunctional magnetic catalyst (550–30) was

evaluated for biodiesel production from microalgal lipids. It had a

high conversion efficiency of 96.0%, owing to the generated structural

defects that formed a mesopore-dominated structure in the

bifunctional magnetic catalyst. Also, the catalyst could be

magnetically separated and reused for six cycles with a conversion

efficiency of 89.7%.

3 Summary and outlook

In the field of catalysis, magnetic catalysts promote catalytic

reactions efficiently and their strong magnetic properties allow

them to be easily reused, which make magnetic catalysts more

cost-effective and efficient when used in industrial catalysis. The

current mini-review highlights recent applications of magnetic

catalysts and their functionalized magnetic materials utilized for

biodiesel production. Although remarkable progress has been

achieved in the area of magnetic catalyst research, there are still

some limitations that need to be overcome by continuing design

improvements. The catalytic mechanisms and deactivation

processes are not well understood, supported magnetic

Frontiers in Chemistry frontiersin.org06

Zhang et al. 10.3389/fchem.2022.1106426

110

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2022.1106426


catalysts show weak interactions between active ingredients and

magnetic supports, and the complex synthesis processes for some

magnetic catalysts need to be simplified. Thus, future

investigation into the preparation methods, performance,

mechanisms, and economics of the magnetic catalyst is

essential to correct the present issues. In light of the current

evidence, however, we strongly believe that the integrated

development of novel magnetic catalysts will play a key role

in further developing a cost-effective biorefinery industry.
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