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Editorial on the Research Topic
Advances and applications of artificial intelligence in geoscience and
remote sensing

The Earth is the space that human beings depend on. Earth observation and remote sensing
technology use modern information technology to carry out disaster and threat early warning,
mineral and resource detection, climate change and other real-time monitoring, prediction and
distribution law exploration of adjacent space, surface and internal structure of the Earth. It has
been widely used in military, civil, energy and other fields, and has become an indispensable
information technology means for the development of human society.

In recent years, with the continuous development of Earth Science and remote sensing
technology, especially the continuous emergence of different detection sensors and new
detection systems, and the continuous accumulation of historical data and samples, it is
possible to use artificial intelligence (AI) for big data analysis, and it has become a research
hotspot in this field.

In the field of oil and gas seismic exploration, technologies such as seismic data
processing and reservoir prediction have shifted from classic signal processing methods
to data-driven artificial intelligence methods, specifically including: 1) seismic data
processing. In this Research Topic, newly developed artificial intelligence models are
utilized to solve seismic denoising (He et al.), velocity analysis (Wang D. et al.), data
reconstruction, etc., in order to minimize the negative impact of perceived factors as
much as possible. 2) Reservoir parameter inversion and oil and gas prediction,
automatic fault tracking shear wave velocity prediction (Wang H. et al.), logging
modeling, seismic wave field forward modeling, seismic impedance inversion(), rock
fracture detection, etc.

For remote sensing super-resolution image restoration and reconstruction,
authors proposed a novel Auto-weighted low-rank Tensor Ring Factorization with
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Hybrid Smoothness regularization (ATRFHS) for mixed noise
removal in HIS (Wang Z. et al.).

For Remote sensing target detection and recognition, authors
presented a system which uses multiple sensors and a convolutional
neural network (CNN) architecture to test cross-sensor object
detection resiliency (Mohan and Simske, 2023).

In the future fields of Earth science and remote sensing, artificial
intelligence may play a more important role and have greater
development space. Especially artificial intelligence models driven
by sufficient knowledge, which do not rely on the neural network
structure of large models and targeted interpretable networks, are
worthy of attention.

A total of 20 submissions were received for the advances and
applications of artificial intelligence in geoscience and remote
sensing, and after peer review, 13 manuscripts were accepted,
involving 55 authors.

Thanks all authors for sharing their latest achievements and
contributions to promoting the application of artificial
intelligence technology in the field of geoscience and remote
sensing.
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Hyperspectral image restoration
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Restoration of hyperspectral images (HSI) is a crucial step in many potential

applications as a preprocessing step. Recently, low-rank tensor ring

factorization was applied for HSI reconstruction, which has high-order

tensors’ powerful and generalized representation ability. Although low-rank

TR-based approaches with nuclear norm regularization achieved successful

results for restoring hyperspectral images, there is still room for improved

tensor low-rank approximation. In this article, we propose a novel Auto-

weighted low-rank Tensor Ring Factorization with Hybrid Smoothness

regularization (ATRFHS) for mixed noise removal in HSI. Nonlocal Cuboid

Tensorization (NCT) is leveraged to transform HSI data into high-order

tensors. TR factorization using latent factors rank minimization removes the

mixed noise in HSI data. To highlight nuclear norms of factor tensors differently

effective, an auto-weighted strategy is employed to reduce the more

prominent factors while shrinking the smaller ones. A hybrid regularization

combining total variation (TV) and phase congruency (PC) is incorporated into a

low-rank tensor ring factorization model for the HSI noise removal problem.

This efficient combination yields sharper edge preservation and resolves this

weakness of existing pure TV regularization. Moreover, we develop an efficient

algorithm for solving the resulting optimization problemusing the framework of

alternating minimization. Extensive experimental results demonstrate that our

proposed method can significantly outperform existing approaches for mixed

noise removal in HSI. The proposed algorithm is validated on synthetic and

natural HSI data.

KEYWORDS

mixed noise removal, low-rank tensor ring, auto-weighted strategy, hybrid
smoothness regularization, hyperspectral (H) image
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1 Introduction

Hyperspectral imaging is acquired by employing specialized

sensors to capture data at numerous narrow wavelengths,

ranging from 400 nm to 2500 nm in the same region. It is

generally represented as a three-dimension image in which

each image represents one of the tens or hundreds of narrow

wavelength ranges or spectral bands. However, HSIs are

frequently contaminated by various noises during the capture

and transmission process, including Gaussian noise, stripes,

deadlines, impulse noise, and hybrids (Bioucas-Dias et al.,

2013), making further analysis and use of HSIs challenging.

Therefore, the noise removal from HSI is an essential task as

a preprocessing step and attracted lots of attention (Dabov et al.,

2007; Zhang et al., 2013; Chen et al., 2017; Wu et al., 2017;

Aggarwal and Majumdar, 2016; Wang et al., 2017; Zhang et al.,

2014; Huang et al., 2017; Fan et al., 2017; Chen et al., 2018; Liu

et al., 2012)).

Because a high-dimensional HSI is composed of hundreds of

separate images banded together, each band of HSIs is regarded

as a two-dimensional image. Then, traditional image restoration

methods are applied to remove noise band-by-band, such as

BM3D (Dabov et al., 2007) and low-rank matrix approximation

(Zhang et al., 2013; Zhang et al., 2014; Chen et al., 2017). The

matrix-based denoising approach uses conventional two-

dimensional image denoising methods and unfolds the three-

dimensional tensor into a matrix or treats each band

independently. Traditional HSIs denoising algorithms can

only evaluate the structural properties of each pixel or band

separately, neglecting the significant relationships between all

spectral bands and global structure information. Various

improved approaches have been developed to compensate for

the shortcomings by considering the correlation between all

spectral bands.

An HSI is a three-dimensional image stack having two

spatial dimensions and one spectral dimension. Therefore,

tensors are realistic representations of HSIs data. For the

past few years, to fully capture the spatial-spectral

correlation of the HSIs, many researchers have employed

tensor decompositions to analyze HSI, such as the low-rank

tensor method with total variation regularization (Wu et al.,

2017), tensor completion with three-layer transform via

sparsity prior (Xue et al., 2019a) and Laplacian scale mixture

(Xue et al., 2021; Xue et al., 2022), missing data recovery (Liu

et al., 2014; Yokota et al., 2016), hyperspectral image super-

resolution (Dian et al., 2019; Dian and Li, 2019), hyperspectral

image restoration with low-rank tensor factorization (Zeng

et al., 2020; Xiong et al., 2019; Chen et al., 2019a; He et al.,

2022), and hyperspectral image denoising (Chen et al., 2022a;

Chen et al., 2022b). These tensor decomposition approaches

have the advantage of simultaneously investigating the spatial-

spectral correlation between the HSIs inside all bands and better

preserving the image’s spatial-spectral structure. Nevertheless,

they fail to capture HSI’s intrinsic high-order low-rank

structure and cannot keep a sharper edge.

Many studies have demonstrated the advantages of low-rank

tensor approximation techniques in dealing with high-order

tensor data. Recently, tensor-ring (TR) (Zhao et al., 2016;

Huang et al., 2020) was developed to describe a high-order

tensor as a sequence of cyclically contracted third-order

tensors, which is the extensional version of tensor train (TT)

(Oseledets, 2011). Due to its ability to promise to represent

complex interactions within high-dimensional data, TR has

received increasing attention. It was utilized in many high-

dimensional incomplete data recovery applications, such as

HSI CS reconstruction (Chen et al., 2020; He et al., 2019),

tensor ring networks (Wang et al., 2018), tensor completion

(Yuan et al., 2020; Ding et al., 2022), missing data recovery in

high-dimensional images (Wang et al., 2021), and HSI denoising

(Chen et al., 2019b; Xue et al., 2019b; Xuegang et al., 2022).

Compared to traditional tensor decomposition, TR

decomposition imposed on the tensor approximation has two

superiorities. First, the TR factor can be rotated equivalently and

circularly in the trace operation, but the traditional tensor

decomposition technique cannot turn the core tensor. Second,

Since TR provides a tensor-by-tensor representation

architecture, the original data structure can be better maintained.

Two representative works on the TR low-rankness

characterization are low-rank TR decomposition (LTRD) and

TR rankminimization (TRRM) (He et al., 2019). introduced a TR

decomposition and total-variation regularized method for the

missing information reconstruction of remote sensing images

(Chen et al., 2020). described a nonlocal TR Decomposition for

HSI denoising. Although the TRD-based approaches have shown

good denoising results, TR rank parameter estimation is an NP-

hard problem.

The TRRM-based methods, based on the nuclear norm, are a

biased approximation to the TR rank and do not need to choose

the optimal TR rank. It is more efficient than the former (Wang

et al., 2021). presented a weighted TR decomposition model with

TR factors nuclear norms and total variation regularization for

missing data recovery in high-dimensional optical RS images

(Chen et al., 2018). introduced the sum of nuclear norms of all

unfolding matrices by the mode-k matricization as the convex

surrogate of tensor Tucker rank for the tensor completion

problem. To explore the latent features of the whole HSI data,

a TRRMmodel with TR nuclear norm minimization is proposed

by (Yuan et al., 2020) and elaborated by a convex surrogate of TR

rank of circularly unfolding matrices for high-order missing data

completion (Yu et al., 2019). proposed a TRRM-based method

with nuclear norm regularization on the latent TR factors by

exploiting the rank relationship between the tensor and the TR

latent space. An improved version (Ding et al., 2022) by

penalizing the logdet function onto TR unfolding matrices is

proposed as remedies. However, these approaches are predicated

on the convex relaxation by weight nuclear norm of the
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unbalanced TR unfolding matrices, which need manually choose

the optimal weight values, resulting in poor solutions in

execution. Furthermore, the conventional TR-based methods

are inadequate to directly exploit the characteristics of low-

rank by the original data and still have much room for

improvement.

Due to the unfolding matrix with a much higher rank and

larger size, the SVD operators of the rank minimization

framework on the unfolding matrix in the TRRM-based

methods are time-consuming (Wang et al., 2021). has

employed three low-dimensional tensor factors of TR

decomposition as a convex surrogate of TR rank for more

convenient calculation. The SVD computation is considerably

decreased due to the low dimension of TR factors. A better low-

rank representation can be efficiently exploited by transforming

lower-order tensors into higher-order tensors. As a result,

TRRM-based approaches that leveraged low-rank and edge

preservation on the original data were insufficient.

Inspired by the high effectiveness of rank minimization on

TR latent factor for tensor completion, in this paper, to effectively

promote the low-rankness of the solution, we introduce an auto-

weight TR factors nuclear norm minimization with hybrid

smoothness regularization by total variation (TV) and phase

congruency (PC) to restore HSI image, which can more

accurately approximate the TR rank and sharper promote

edge preservation.

Contributions to this article are as follows.

1) To fully exploit the high-dimensional structure information

and the low-rankness of HSI, an auto-weight TR nuclear

norm, based on the convex relaxation by penalizing the

weighted sum of nuclear norm of TR factors unfolding

matrices, is proposed to recover the clean HSI part.

2) To highlight TR unfolding matrices differently effectively, an

auto-weighted strategy is utilized to shrink the larger matrices

while shrinking the smaller ones. By jointly regularizing TV

and PC to promote local smoothness, this efficient

combination yields sharper edge preservation and resolves

this weakness of existing pure TV regularization.

3) An optimization algorithm with an alternating minimization

framework is developed to solve the proposed approach

efficiently. Experiments demonstrate that the proposed

approach can effectively deal with gauss, strip, and mixed

noise and outperform the state-of-the-art competitors in

evaluation index and visual assessment.

This paper is organized as follows. To facilitate our

presentation, we first introduce some notations, TR

decomposition, tensor augmentation, and phase congruency

regularization in Section 2. In Section 3, our proposed model

is presented. We then develop an efficient framework of

alternating minimization for solving the proposed model. In

Section 4, extensive experiments on both simulated and real

datasets were carried out to illustrate the merits of our model. We

finally conclude this paper with some discussions on future

research in Section 5.

2 Preliminaries

2.1 Background and notations

We deploy lowercase letters to denote scalars, e.g., m ∈ R.

And vectors are denoted by boldface lowercase letters, e.g., y. The
upper case letters are represented for matrices, e.g., Y. An Nth-

order tensor is given by lowercase letters calligraphic letters

FIGURE 1
Illustration of TR representation of an Nth-order tensor Y ∈ RI1×I2 ...×IN .
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throughout this paper, e.g., Y ∈ RI1×I2 ...×IN where Ij is the

dimension of mode j and j=1,2 . . . , N. The (i1, i2, . . . , in)

entry of tensor Y is given by Y(i1, i2, . . . , iN). A tensor sequence

is defined by the set {Y(k)}Nk�1: � {Y(1),Y(2), ...,Y(N)}, where
Y(k) is the kth tensor of the sequence. diag(Y) denoted a

column vector consisting of the diagonal elements of Y. We

use E to represent an identity matrix. The Frobenius norm of Y is

defined as ‖Y‖F2 � ������
〈Y ,Y〉

√
. The nuclear norm ‖Y‖* is the sum of

singular values of a matrix Y.

2.2 Tensor ring low-rank factors

Tensor ring (TR) decomposition is briefly introduced in this

subsection. TR representation is to decompose a tensor of higher

order into a sequence of latent tensors. As shown in Figure 1, a

linear tensor network can graphically represent the TR

representation by circular multilinear products over a series of

third-order tensors. The number of edges denotes the order of a

tensor (which includes matrix and vector). The size of each mode

is indicated by the number beside the edges (or dimension). A

multilinear product operator between two tensors in a specific

manner, also known as tensor contraction, corresponds to the

summation over the indices of that mode when two nodes are

connected.

For i=1, . . . , N, the TR factors are denoted by a third-order

tensor U(i) ∈ Rri−1×Ri×ri . The syntax {R1, R2, . . . , RN, RN+1}is

indicated by the TR rank, which controls the model complexity of

TR decomposition and satisfies the R1= RN+1. Then, Y can be

estimated by tensor with TR format, as

M([U]) � <U(1),U(2), . . . ,U(N) > . Therefore, the element-

wise form can be expressed by Y(i1, i2, . . . , iN) � Trace(U(1)

(r1, i1, r2),U(2)(r2, i2, r3), . . . ,U(N)(rN, iN, r1)). Trace(Y) is the

matrix trace operation. Y(n) denotes the standard mode-n

unfolding of tensor Y.
The relationship between the tensor rank and the

corresponding core tensor rank is elaborated, which can be

explained by the following theorem. For the nth core tensor

U(n), according to the work of (Yuan et al., 2020; Chen et al.,

2020), we define the Y< n> is another mode-n unfolding of tensor

Y used in TR operations denoted by Y< n> ∈ RIn×In+1...INI1I2...In−1 .

Thus, we have Y< n> � U(n)
(2)(U(≠≠n)

< 2> )T, where U(≠n)
< 2> is a matrix

FIGURE 2
Illustration of the procedure to construct a high-order tensor by spatial and spectral similarities of HSI.

FIGURE 3
Comparison of the denoising results with TV regularization and PC regularization. (A) Noisy image from HYDICE urban HSI data, (B) Gradient
magnitudemaps, (C) PC featuremaps,(D)Restored by themodel with TV regularization [PSNR:33.58dB; SSIM:0.9345],(E) Restored by themodel with
PC regularization [PSNR:33.41dB; SSIM:0.9541] (F) Restored by the model with hybrid smoothness regularization combining TV and PC [PSNR:
34.27dB; SSIM:0.9741].
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by the second unfolding along mode-2 by sequentially merging

all core tensors except the nth one and U(n)
(i) ∈ RRi×In−1In is the

mode-i unfolding of the nth core tensor. The relation of tensor

ring rank and the corresponding factors rank have the following

inequality for all n = 1, . . . , N.

Rank(Y(n))≤Rank(U(n)
(2)) (1)

The detailed proof is available in (Yuan et al., 2020; Chen

et al., 2020). The rank of the mode-n unfolding of the tensor Y is

upper bounded by the rank of the dimension-mode unfolding of

the corresponding core tensor U(n), allowing us to impose a low-

rank constraint on [U] to investigate the underlying tensor’s

more low-rank structure.

2.3 Nonlocal cuboid tensorization for HSI
augmentation

Tensor augmentation is an essential preprocessing step for

exploiting the local structures and low-rank characteristics since

higher-order tensors provide more significant image structure

via TR decomposition. There are three main ways to transform a

tensor into a higher-order one, namely the Reshape Operation

(RO) (Yuan et al., 2019), high-order Hankelization (Yokota et al.,

2018), and Ket Augmentation (KA) (Yuan et al., 2019). However,

the recovered tensors applied RO and KA often have apparent

blocking artifacts, while the data were permuted and rearranged

without exploiting any neighborhood information. Patch

Multiway Delay Embedding Transform (Yokota et al., 2018) is

a high-order Hankelization approach, which provides a patch-

wise procedure to extract more local information. But this

technology increases the amount of HSI data, which makes

high computational complexity. An augmented scheme called

Nonlocal Cuboid Tensorization (NCT) (Xuegang et al., 2022) can

represent HSI data into a high-order one for exploiting low-rank

structure representation preferably, simultaneously exploring the

nonlocal self-similarity and the spatial-spectral correlation.

Therefore, our proposed ATRFHS approach leverages NCT to

build HSI augmentation by grouping nonlocal similar cuboids

in HSI.

Subsequently, we present the principle of the NCT method.

For the recovery processing of an HSI image, T ∈ Rx×y×b and

X ∈ Rx×y×b with x×y spatial size and b spectral bands denote the

observed and recovered images, respectively. Firstly, for

exhibiting rich redundancy in spectra, all cuboid patches Ci
with the size of s×s×p across full bands C ∈ Rs×s×b of HSI in

the same spatial locations along the spectral direction with the

interval p2 are extracted, we search for its k2-1 nearest neighbors

patches in a local window by Euclidean distance in the same

spectra band for each cuboid patch. The k2-1 similar cuboid

patches are stacked into a third-order tensorN ∈ Rsk×sk×p. There

are (2bp − 1) cuboid patches in the same spatial locations with

different spectra bands. Thus, as shown in Figure 2, they are

grouped into a four-order tensor Mi ∈ Rsk×sk×p×h where

h � (2bp − 1).The part HSI with the size of x×y×p is divided

into T � xy
S2 cuboid patches with the size of s×s×p.

2.4 Phase congruency regularization

The regularization term can be regarded as the prior

knowledge from underlying properties on recovered HS

images. Total variation (TV) (Wang et al., 2017) is one of the

prevalent regularization approaches applied for image

restoration. TV regularization has long been acknowledged as

a practical approach for improving image processing

smoothness. For third-order hyperspectral data T , the total

variation of HSI is denoted by

‖T ‖TV � ∑
x,y,b

(∣∣∣∣T x,y,b − T x−1,y,b
∣∣∣∣ + ∣∣∣∣T x,y,b − T x,y−1,b

∣∣∣∣
+ ∣∣∣∣T x,y,b − T x,y,b−1

∣∣∣∣) (2)

The TV model can effectively remove noise while

simultaneously preserving the fine details of the image’s edge.

However, it is prone to misdiagnose the noises as the edge when

the image edge is substantially contaminated by noise and cannot

disentangle the noises from the edge. Furthermore, an edge-

preserving regularization with gradient magnitudes diffusing

along the edges rather than across them results in a staircase

(blocky) effect.

To alleviate this shortcoming, phase congruency features are

employed in this research to accurately preserve edge

information and improve region structure smoothness from a

noisy image. Since phase congruency (Morrone and Owens,

1987) is compatible with the properties of signals from

corresponding points, it can adequately detect image features.

Figure 3 compared the denoising results with TV regular and PC

regular. We can see the discrepancy from Figure 3 that high-

order information with PC feature maps from Figure 3C is more

affluent than the first-order information with horizontal and

vertical gradients from Compared to Figure 3D and Figure 3E,

restored results in Figure 3F using hybrid smoothness regular

combing TV and PC regularization can preserve more details of

original images.

Monogenic Phase Congruency (MPC) (Luo et al., 2015; Yuan

et al., 2019) has recently increased the precision of feature

localization and demonstrated superior computational

efficiency and accuracy compared to standard phase

congruency. At any specific point x in an image, MPC can be

mathematically formulated as

C(x) � E(x)⌊1 − ξ × acos(W′(x)
B′(x))⌋ ⌊W′(x) −M⌋

B′(x) + η
(3)
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where E(x) is a weighting function constructed by applying a

sigmoid function to the filter response spread value, which is

given by (Luo et al., 2015) in detail. Both ξ and η are gain

factors approximately from 1 to 2, which sharpen the edge

response. M compensates for the influence of noise. W′(x) is
local energy information. Similarly, B′(x) is the local amplitude

at point x. MPC is capable of retaining both the irregular

structure and being impervious to impulse noise. The l1-norm

with phase congruency regularization is generally employed in

the fidelity term for impulse noise, similar to total variation

regularization.

MPC feature maps are calculated by Eq. 3. Then, monogenic

phase congruency regular is obtained by

‖P(T )‖PC � ∑b

i�1C(T (: , : , i)) (4)

FIGURE 4
Illustration of the proposed ATRFHS for HSI Denoising.

FIGURE 5
The distribution of the singular values of unfolding matrixes.
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3 Proposed model and optimization
solution

In this section, we propose a new model for HSI

denoising based on weighted low-rank TR factorization

using latent factors rank minimization with TV and PC

regularization. Then, we introduce an auto-weighted

mechanism to establish a tensor completion model and

develop the corresponding algorithm based on an

alternating minimization framework to solve the model.

Figure 4 illustrates the proposed ATRFHS for HSI

denoising.

TABLE 1 Quantitative results of all the methods under different noise cases FOR WDC and urban DATASETs.

Noise
case

Datasets Index QRNN3D LRTF-
L0

LRTDGS SBNTRD L1-2
SSTV

ANTRRM OURS

Case 1 WDC mall MPSNR(dB) 37.58 37.92 37.68 38.03 37.12 38.12 38.24

MSSIM 0.9234 0.9108 0.9242 0.9524 0.9085 0.9417 0.9534

MFSIM 0.9785 0.9692 0.9741 0.9793 0.9764 0.9742 0.9798

ERGAS 152.79 98.48 164.64 108.48 292.47 102.47 91.47

Indian pines MPSNR(dB) 34.57 33.98 33.806 34.27 33.48 33.12 33.78

MSSIM 0.9019 0.8918 0.8906 0.9130 0.9067 0.9078 0.9192

MFSIM 0.9729 0.9701 0.9736 0.9430 0.9741 0.9712 0.9781

ERGAS 134.17 76.58 89.47 78.98 80.55 80.24 74.12

Case 2 WDC mall MPSNR(dB) 32.78 33.78 34.89 34.87 34.89 35.02 35.19

MSSIM 0.9262 0.9235 0.9115 0.9231 0.9320 0.9312 0.9387

MFSIM 0.9818 0.9788 0.9784 0.9797 0.9872 0.9789 0.9814

ERGAS 282.16 78.98 88.83 74.43 70.27 71.48 68.69

Indian pines MPSNR(dB) 29.47 30.24 31.98 32.12 31.34 32.74 33.12

MSSIM 0.7914 0.8645 0.8947 0.9014 0.9124 0.9014 0.9145

MFSIM 0.9691 0.9147 0.9657 0.9678 0.9665 0.9602 0.9624

ERGAS 424.75 142.19 325.18 213.79 87.93 132.47 121.97

Case 3 WDC mall MPSNR(dB) 29.67 30.47 30.65 31.21 30.84 31.02 31.47

MSSIM 0.8701 0.8963 0.8837 0.8947 0.8667 0.8941 0.9024

MFSIM 0.9258 0.9247 0.9347 0.9419 0.9513 0.9284 0.9258

ERGAS 146.9 169.4 164.5 174.9 161.8 145.9 124.3

Indian pines MPSNR(dB) 33.47 33.12 34.85 34.67 35.31 35.04 35.42

MSSIM 0.9047 0.8987 0.9102 0.9147 0.9204 0.9147 0.9194

MFSIM 0.9541 0.9412 0.9567 0.9641 0.9678 0.9412 0.9524

ERGAS 247.6 183.4 194.7 357.6 368.6 143.7 134.7

Case 4 WDC mall MPSNR(dB) 31.68 31.83 31.20 31.87 30.89 32.11 32.24

MSSIM 0.8762 0.8635 0.8615 0.8831 0.8320 0.9014 0.9087

MFSIM 0.9714 0.9678 0.9745 0.9743 0.9578 0.9618 0.9724

ERGAS 124.47 104.75 135.71 89.65 90.67 88.65 83.37

Indian pines MPSNR(dB) 28.98 29.47 30.67 30.25 28.04 30.27 30.96

MSSIM 0.8114 0.8997 0.8974 0.8914 0.8378 0.8914 0.8987

MFSIM 0.9214 0.9404 0.9374 0.9378 0.9375 0.9289 0.9345

ERGAS 187.63 104.19 125.18 113.79 286.78 114.64 102.32

Case 5 WDC mall MPSNR(dB) 29.78 31.45 31.86 30.89 31.32 32.11 32.53

MSSIM 0.8867 0.9017 0.8947 0.8897 0.9220 0.9314 0.9337

MFSIM 0.9145 0.9457 0.9378 0.9401 0.9591 0.9498 0.9507

ERGAS 286.3 186.7 157.8 148.6 178.3 133.8 101.5

Indian pines MPSNR(dB) 31.58 33.38 33.57 33.75 34.08 35.01 35.47

MSSIM 0.8979 0.9378 0.9378 0.9265 0.9304 0.9527 0.9574

MFSIM 0.9970 0.9577 0.9687 0.9555 0.9654 0.9504 0.9542

ERGAS 245.8 189.6 201.5 347.7 147.6 134.5 114.5

The best results for each quality index are shown in bold.
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3.1 The proposed algorithm

To facilitate the presentation, for recovering a clean HSI from

an observed HSI, by imposing the nuclear norm regularizations

on the TR factors, we first review that a high-order tensor is

decomposed into a sequence of 3-order tensors using the TR

model to find the TR cores of an uncompleted tensor (Yuan et al.,

2020), formulated as:

min
L,{U(n)}1: N

∑N

n�1Rank(L(n)) + 1
2
‖Y − L‖2F

s.t. L � M({U(n)}Nn�1)
(5)

Where Y � D(T ) is a high-order tensor of the observed data T
transformed by NCT, L is the reconstruction component and

L(n) is the standardmode-n unfolding of tensorL. The model can

identify the data’s low-rank structure and approximate the

recovered tensor. But the problem of determining the tensor

rank is NP-hard. ANTRRM in (Xuegang et al., 2022) is based on

mode-{d, l} unfolding with nuclear norm regularization via

nonlocal tensor ring. Whereas, the local smoothness and

consistency of the HSI in this approach is missed and the

time-consuming of SVD computation of mode-{d, l}

unfolding matrixes is more expensive than unfolding matrixes

of low-rank TR factors.

To solve the above issue (Wang et al., 2021), enforced weight

low-rankness on each TR factor. The optimization model can be

reformulated as follows,

min
L,{U(n)}1: N

∑N

n�1∑3

i�1
����U(n)

(i)
����
p
+ 1
2
‖Y − L‖2F

s.t. L � M({U(n)}Nn�1)
(6)

Where U(n)
(i) is the mode-i unfolding matrix of the nth core tensor

of {U(n)}n�1: N.
Model (6) can significantly reduce computational complexity

compared to model (5). But as the decay distributions of singular

values of the unfoldings of the TR factors along mode-n diverge.

Appropriate weights should be constructed to determine the

contributions of different nuclear norms in unfolding the TR

tensor components. Therefore, the approach described above still

has space for improvement because exploring low-rankness prior

is rarely adequate to extract the underlying data by unreasonable

weights. Furthermore, smoothness is another important prior

that can be found in high-dimensional HSI data.

From Figure 5, the distribution of singular values

significantly differs in the different unfolding matrixes.

Weights for different unfolding parts should be treated

differently. To reflect different contributions, the weight

parameters w play an essential role and need to tread

FIGURE 6
Restored results of all comparison methods for band 68 of WDC HSI data under Case 5: (A) Noisy, (B) L1-2 SSTV, (C) QRNN3D, (D) LRTDGS,
(E) SBNTRD, (F) LRTF-L0, (G) ANTRRM, (H) OURS.
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carefully. To adapt the TR ranks of different modes, auto-

weighted parameter optimization is utilized to measure the

importance of different singular values voluntarily, thus

minimizing the burden of failure caused by unreasonable

weights.

Inspired by this nature, combining the auto-weighted

strategy and hybrid smoothness regularization in our work,

we can rewrite problem Eq. 6 as the following problem.

min
L,w,{U(n)}1: N

∑N

n�1wn∑3

i�1
����U(n)

(i)
����
p
+ 1
2
‖Y − L‖2F + γ‖w‖2F

+λTV
����D−1

 (L)����TV + λPC
����P(D−1

 (L))����PC s.t.L � M({U(n)}Nn�1)
(7)

Where γ, λTV and λPC are regularization parameters, {wn}Nn�1
are the weight of the nth norm satisfying wn ≥ 0 and∑N

n�1wn � 1.

To solve the above problem, auxiliary variables M, Z and

{G(n)
(i) }

3

i�1 are introduced, and the equivalent minimization

problem is rewritten as

min
L,w,M,Z,{U(n)}1: N

∑N

n�1wn∑3

i�1
����U(n)

(i)
����
p
+ 1
2
‖Y − L‖2F

+γ‖w‖2F + λTV‖M‖TV + λPC‖Z‖PC
s.t. L � M({U(n)}n�1: N),D−1

 (L) � M,P(D−1
 (L)) � Z

(8)

The abovementioned problem (8) is divided into two blocks

for updating the variables L,w,G, M,Z, {U(n)}1: N. The first

block is w, which is as follows the problem Eq. 9.

min
w

∑N

n�1
⎛⎝∑3

i�1
����U(n)

(i)
����
p
⎞⎠wn + γ‖w‖2F

s.t. wT1 � 1, wn ≥ 0

(9)

Then, the second block is the others (such as L and {U(n)}1: N),
which is as follows the problem Eq. 10.

min
L,M,Z,{U(n)}1: N

∑N

n�1wn∑3

i�1
����G(n)

(i)
����
p
+ 1
2
‖Y − L‖2F

+λTV‖M‖TV + λPC‖Z‖PC
s.t.L � M({U(n)}Nn�1),D−1

 (L) � M,

P(D−1
 (L)) � Z andU(n)

(i) � G(n)
(i)

(10)

3.2 Optimization for solving the proposed
ATRFHS model

3.2.1 Auto-weighted mechanism
Through the problem solver (8), an auto-weighted

mechanism can voluntarily balance the importance of

different nuclear norms of TR factor matrices. The block

FIGURE 7
Restored results of all comparison methods for band 96 of INDIAN PINES data under Case 3: (A)Noisy, (B) L1-2 SSTV, (C)QRNN3D, (D) LRTDGS,
(E) SBNTRD, (F) LRTF-L0, (G) ANTRRM, (H)OURS.
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coordinate descent (BCD) optimization framework can optimize

the problem Eq. 9. When the variables {U(n)}1: N are fixed, the

nuclear norms {∑3
i�1‖U(n)

(i) ‖*}
N

n�1 are invariant. Namely, the

indicator vector η � [∑3
i�1‖U(1)

(i) ‖*,∑3
i�1‖U(2)

(i) ‖*, ...,∑3
i�1‖U(n)

(i) ‖*]T
is fixed. Then, the problem (9) for updating weighting

coefficients w, automatically weighing the importance of the

TR nuclear norm, can be defined as

F(w) � ∑N

k�1ηkwk + γ‖w‖2F − μ(wT1 − 1) − σTw (11)

where μ≥ 0 and σ � [σ1, σ2/σN]T ≥ 0 are the Lagrangian

multipliers. It is a convex Quadratic Programming (QP)

problem with equality and non-equality requirements that any

QP solver can solve. By taking the derivatives of Eq. 12 to w
and setting it as 0, zwF � η + 2γw − μ − σ � 0, we can get

wi � μ+σ i−ηi
2γ , The optimal solution w satisfies the KKT

condition. It can be discussed separately in three cases (Chen

et al., 2021).

1) if ηi − μ> 0, since σ i > 0, from the condition w*
iσ i � 0 and

σ i � 0, then wi � μ−ηi
2γ

2) if ηi − μ � 0, thenwi � σi
2γ. Sincew

*
iσ i � 0, so σ i � 0 andwi � 0

can be inferred

3) if ηi − μ< 0 and σ i > 0, we can find the positive integer h �
argmax

i
(ηi − μ> 0) satisfies the nonnegative constraint of wi

Therefore, the optimal solution to the problem in Eq. 11 is

given by

w+i �
⎧⎪⎨⎪⎩

μ − ηi
2γ

, ηi > μ

0 , ηi ≤ μ
(12)

Where μ � ∑N

i�1ηi−2γ
h .

3.2.2 Alternating minimization optimization
framework

Problem Eq. 10 is transformed into the following

unconstrained augmented Lagrangian function:

F(W) � ∑N

n�1wn(∑3

i�1
����G(n)

(i)
����
p
+ 〈A(n) ,G(n)

(i) − U(n)
(i) 〉 +

β

2

����G(n)
(i) − U(n)

(i)
����2
F
)

+1
2

�����Y −M({U(n)}Nn�1)�����2F + λTV‖M‖1 + β

2

����D−1
 (L) −M

����2F+
〈B,D−1

 (L) −M〉 + λPC‖Z‖1 + β

2

����P(D−1
 (L)) − Z

����2F + 〈C,P(D−1
 (L)) − Z〉

(13)

Where W � {L, M, {G(n)}Nn�1,Z, {U(n)}Nn�1, {A(n)}Nn�1, B, C},
{A(n)}Nn�1, B, {G(n)}Nn�1 and C are auxiliary variables. Based on

the framework of alternating minimization, the updates of

L, M, {G(n)}Nn�1,Z, {U(n)}Nn�1, {A(n)}Nn�1, B, C are given

respectively as follows.

Step 1: Update {U(n)}Nn�1 and L with fixing other variables, the

U(n) sub-problem is rewritten as

F(U(n)) � ∑3
i�1

β

2

��������G(n,i) − U(n,i) + 1
β
A(n)

��������
2

F

+ 1
2

����Y −M({U(n)}n�1: N)����2F
This is a least-squares problem. So for n = 1, . . . , N, U(n) can

be updated by

U(n)
+ � fold2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
∑3

i�1(βG(n,i)
(2) + A(n,i)

(2) ) + T< n>U
(≠n)
< 2>

U(≠≠n)
< 2> TU

(≠n)
< 2> + 3E

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (14)

where E is an identity matrix.

By updated TR factors {U(n)}Nn�1 for every iteration, then L is

updated as

L+ � M({U(n)
+ }Nn�1) (15)

Step 2: Update G(n) with fixing other variables, by simplifying

(13), for i = 1, 2, 3, the augmented Lagrangian functions w.r.t. [G]
is expressed as

F(G(n)) � wn∑3
i�1

����G(n)
(i)
����
p
+ β

2

��������G(n) − (U(n) − 1
β
A(n))��������

2

F

Solving G(n)
(i) is a nuclear norm model and has led to a closed

form. So for n = 1, . . . , N, G(n) can be updated by

G(n)
+ � fold(i)(S wn

β
(U(n) − 1

β
A(n))) (16)

where S wn
β
represents the thresholding SVD operation (Chen

et al., 2018).

Step 3: Update M by fixing other variables. The optimization

model can be rewritten as

F(M) � λTV‖M‖1 + β

2

����M − (D−1
 (L) − B)����2F (17)

Optimizing (18) can be easily solved by a soft-thresholding

operator.

M+ � Ψ λTV
β
(D−1

 (L) − B) (18)

where Ψv is defined by Ψv(x) � sgn(x).*max(|x| − v, 0).

Step 4: Fixing other variables to update Z, the optimization

model can be rewritten as

F(Z) � λPC‖Z‖1 + β

2

����Z − (P(D−1
 (L)) − C)����2F (19)

Similarly, the closed-form solution is
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Z+ � Ψ λPC
β
(P(D−1

 (L)) − C) (20)

Step 5: Update {A(n)}Nn�1, B, C: When the (t+1)-th

iteration begins, the Lagrange multipliers are updated by the

following

⎧⎪⎨⎪⎩
A(n)

t+1 � A(n)
t + β(G(n)

t+1 − U(n)
t+1)

Bt+1 � Bt + β(Mt+1 −D−1
 (Lt+1))

Ct+1 � Ct + β(Zt+1 − P(D−1
 (Lt+1))) (21)

The specific process of the ADMM-based solver for the

ATRFHS HSI reconstruction model and BCD-based solver for

auto-weighting is introduced in Algorithm 1.

FIGURE 8
The comparative performance of different methods in terms of PSNR, SSIM, and FSIM under Case 2 on WDC Mall. (A) PSNR, (B) SSIM, (C) FSIM.

FIGURE 9
The comparative performance of different methods in terms of PSNR, SSIM, and FSIM under Case 4 on INDIAN PINES. (A) PSNR, (B) SSIM,
(C) FSIM.

TABLE 2 Quantitative comparison of all competing methods on the two GF-5 datasets (time unit: second).

Datasets L1-2
SSTV

LRTF-L0 LRTDGS SBNTRD QRNN3D ANTRRM OURS

ENL GF-5 (Shanghai) 84.27 83.98 84.57 85.31 85.37 85.47 85.98

EPI 0.9142 0.8934 0.9214 0.9298 0.9276 0.9317 0.9389

Time 102.4 253.7 534.1 492.7 590.6 357.9 303.4

ENL GF-5 (Baoqing) 87.45 86.72 85.96 86.74 87.14 87.74 87.98

EPI 0.9245 0.9167 0.9047 0.9204 0.9247 0.9278 0.9327

Time 110.7 196.7 573.1 684.7 610.3 348.7 312.4

The best results for each quality index are shown in bold.
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Input: observed HSI T ∈ Rx×y×b, TR rank {R1,R2, . . . RN},

λTV, λPC, β

Initialization: {A(n)}Nn�1 � 0,M � Z � B � C � 0 ,t=0,

β � 0.01, σ � 1.05, β max � 5 × 102,max_it=100,ter=1e-5,

w � {wj}Nj�1 � 1
N, Grouping nonlocal similar cuboids by

NCT to form tensor Y � D(T ); From n = 1 to N,

randomly initialize for core tensors U(n); Compute

L(0) � Φ{U(1) , . . . ,U(K)}. Calculation MPC by C(T (: , : , i)) via
(5) i=1, . . . ,b. While t ≤max_it and || Y -L last||2 < ter

Update {wj}Nj�1 by Eq. 12 Update {U(n)}Nn�1 by Eq. 14; UpdateL
by Eq. 15; Update {G(n)}Nn�1 by Eq. 16; Update M and Z by

Eqs 18, 20; Update {A(n)}Nn�1, B, C by (21), and the penalty

parameter update β � min(σβ, βmax); t=t+1; End Transform

L into a three-order tensor X � D−1
 (L)

return: restored HSI X.

Algorithm 1 The whole procedure of the ATRFHS algorithm.

3.3 Computational complexity

The computational complexity of our ATRFHS method is

analyzed as follows. For simplicity, we assume to transform HSI

data into a high tensor D ∈ RI×I,...,×I from by NCT and TR-rank

with R1 = R2 = · · · = RN = R. The updating of {wj}Nj�1, {U(n)}Nn�1,
and {G(n)}Nn�1 have closed-form solutions, as shown in Algorithm

1. It is obvious to observe that the most time-consuming parts are

updating {U(n)}Nn�1 and SVD operation of {G(n)}Nn�1. Then the

computational complexities of updating {U(n)}Nn�1 and {G(n)}Nn�1
are O(NINR2) and O(NINR3). The computational complexity

of updating weighting {wj}Nj�1 is O(3TN). Thus, the overall

complexity of our proposed algorithm can be written as

O(TNINR2(1 + R) + 3TN), where T is the number of iterations.

4 Experiments

Two simulated and two real datasets are utilized in the

experiments to demonstrate the efficacy of the proposed

algorithm with the auto-weight TR rank minimization

regular on HSI restoration. Six representative state-of-the-art

methods are considered for quantitative and visual comparison;

namely, L1-2 SSTV (Zeng et al., 2020) based on 3-D L1-2 spatial-

spectral total variation low-rank tensor recovery, LRTF-L0
(Xiong et al., 2019) based on a spectral-spatial L0 gradient

regularized low-rank tensor factorization, LRTDGS (Chen

et al., 2019a) based on weighted group sparsity-regularized

low-rank tensor decomposition, SBNTRD (Chen et al., 2020;

Oseledets, 2011) based on subspace nonlocal TR

decomposition-based method, ANTRRM(Xuegang et al.,

2022) based on nonlocal tensor ring rank minimization

(Xuegang et al., 2022) and QRNN3D based on 3D Quasi-

Recurrent RNN(Wei et al., 2020). All of our experiments are

conducted on a Desktop computer with 16 GB of DDR4 RAM

FIGURE 10
Restored results of GF-5 HSI data of Shanghai City: (A)Noisy, (B) L1-2 SSTV, (C)QRNN3D, (D) LRTDGS, (E) SBNTRD, (F) LRTF-L0, (G) ANTRRM, (H)
OURS.
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and a 3.2 GHz Intel Core i7-7700K CPU running MATLAB

R2018b. All of the competitors’ parameters are adjusted

following the literature’s guidelines.

4.1 Synthetic HSI experiments

Because the ground-truth HSI is provided for the simulated

experiments, four quantitative quality indices: peak signal-to-noise

ratio (PSNR), structure similarity (SSIM), feature similarity (FSIM),

erreur relative global adimensionnelle de synthèse (ERGAS) (Chen

et al., 2018) are adopted for validating the performance of the

proposed model on two synthetic experiment datasets, namely, the

Washington DC Mall and Indian Pines datasets. The MPSNR,

MSSIM, and MFSIM, computed by taking the average of all bands,

are used to evaluate performance.

The four indices evaluate spatial and spectral information

retention, and the PSNR, SSIM, and FSIM values are generated

by averaging all bands. The higher the PSNR, SSIM, and FSIM,

the lower the ERGAS, and the better the HSI denoising outcome.

1) TheWDCMall dataset: TheWashington DCMall dataset was

collected by the Hyperspectral Digital Imagery Collection

Experiment (HYDICE) with the permission of the Spectral

Information Technology Application Center of Virginia. The

original size is 1208×307×210. A sub-image of

256×256×128 from this data set is extracted for our

experiment.

2) The Indian Pines dataset: The Indian Pines dataset was

collected by AVIRIS sensor over the Indian Pines test site

in North-western Indiana. It contains 145×145 pixels and

224 spectral reflectance bands with wavelengths ranging from

0.4 to 2.5× 10−6 m. The Indian Pines dataset comprises

220 bands with a spatial size of 145×145 pixels. A sub-

image of 145×145×128 from this data set is extracted for

our experiment.

As for parameter settings, we empirically set the

regularization parameter λTV � 0.02, λPC � 0.05, β � 0.03. In

NCT, we set s=5, k=7, and p=32. Five different types of noise

cases were added to these two clean HSI datasets to simulate

FIGURE 11
Restored results of GF-5 HSI data of Baoqing: (A) Noisy, (B) L1-2 SSTV, (C) QRNN3D, (D) LRTDGS, (E) SBNTRD, (F) LRTF-L0, (G) ANTRRM, (H)
OURS. Please zoom in for better viewing.

TABLE 3 No-Reference Hyperspectral Image Quality Assessment on the GF-5 Baoqing image.

Approach L1-2 SSTV LRTF-L0 LRTDGS SBNTRD QRNN3D ANTRRM Ours

Score 17.68 16.85 16.35 17.98 16.98 16.74 15.31

Frontiers in Earth Science frontiersin.org13

Luo et al. 10.3389/feart.2022.1022874

19

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.1022874


complicated noise cases in a real scene. The following is a detailed

description of these cases.

Case 1. (i.i.d. Gaussian Noise): Entries in all bands were

corrupted by zero-mean i.i.d. Gaussian noise N(0, σ2) with

σ=0.05.

Case 2. (Non-i.i.d. Gaussian Noise): Entries in all bands were

tainted by zero-mean Gaussian noise of different intensities. Each

band’s signal noise ratio (SNR) is generated by a uniform

distribution with a value between (Fan et al., 2017; Yokota

et al., 2018)dB.

Case 3. (Gaussian+Stripe Noise): Based on Case 2, some stripes

randomly selected from 20 to 75 are added from band 10 to band

98 in WDC Mall and Indian Pines datasets.

Case 4. (Gaussian+Deadline Noise): Based on Case 2, deadlines

are added from band 76 to band 106 in WDC and Indian Pines

datasets.

Case 5. (Gaussian+Impulse Noise): Based on Case 2, fifty bands

in WDC and Indian Pines datasets were randomly chosen to add

impulse noise with different intensities, and the percentage of

impulse is from 30% to 60%.

Table 1 displays the quantitative results of all comparable

approaches in theWashington DCMall and HYDICE urban data

on various cases. The best results for each quality index are

shown in bold. From Table 1, it is clear that our proposed

approach and SBNTRD obtain the best results over the other

compared methods in all cases, confirming our proposed

method’s advantage over others. It is worth noting that

SBNTRD fully exploits the spatial information by nonlocal prior

and TR decomposition. Due to the considerations of auto-weight

LR properties and efficiently exploiting the structure information

of HSI by NCT in our proposed method, the proposed method

obtains the best results over the other compared methods except

for a small number of indicator cases.

Regarding visual quality, Figure 6 and Figure 7 show the

denoised results by seven different methods under Case 5 in the

WDC dataset and Case 3 in the Indian Pines dataset, respectively.

As shown in the white square from the enlarged red areas of

restored images in Figure 6 and Figure 7C, QRNN3D methods

can remove noises but fail to retain structure information.

Moreover, it is clear to see that low-rank tensor recovery with

prior information regularization methods L1-2 SSTV, LRTDGS,

SBNTRD LRTF-L0, and ANTRRM can effectively remove random

noise and stripe noise in Figure 5 and Figures 6B,D–G, but the

image details cannot be preserved well shown in the enlarged box

of Figure 6 and Figure 7. The proposed ATRFHS method, in

contrast, can effectively remove all of the mixture noise and

preserve more edges and details, as shown in Figure 6 and

Figure7H. Because ATRFHS not only considers the more

FIGURE 12
Sensitivity analysis of regularization parameter.

FIGURE 13
Sensitivity analysis of spectral band length P

Frontiers in Earth Science frontiersin.org14

Luo et al. 10.3389/feart.2022.1022874

20

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.1022874


reasonable LR with auto-weight TR rank minimization for

Gaussian noise and random noise in the HSI restoration task

but the deadlines and stripe noise can be removed shown in

Figure 6 and Figure7H by exploring high-order tensors structure,

as a higher-order tensor makes it more efficient to exploit the

local structures in transformed tensor. The our proposed

approach outperforms all the evaluated methods in terms of

four quantitative quality indices, eliminating all of the hybrid

noise while keeping the detailed edges and texture information in

the restored HSI. We further calculate the PSNR, SSIM, and

FSIM values of different bands in all simulated data cases and

show the curves of evaluation indices.

Figure 8 and Figure 9 show the curves of PSNR and SSIM

evaluation indices of each band on WDC Mall under Case 2 and

INDIAN PINES under Case 4, respectively. As displayed in

Figure 8A and Figure 9A, it is observed that the proposed

method performs higher PSNR values than other methods for

almost all bands in WDC Mall data and INDIAN PINES. For

SSIM indices, the proposed method can outperform other

methods in most bands, as demonstrated in Figure 8B and

Figure 9B. From Figure 8C and Figure 9C, it can be seen that

the proposed ATRFHSmethod achieves higher FSIM values than

other methods in almost all bands, which verifies the robustness

of the proposed method using the auto-weighted strategy of low-

rank approximation and also demonstrates the superiority of the

hybrid regularization compared with others. Our proposed

method has obtained the best restoration performance among

all competing methods, as evidenced by the distribution of

evaluating index of the restoration image in Figures 8 and

Figure 9.

In conclusion, the proposed method outperforms the other

methods in terms of visual quality and quantitative indices.

4.2 Real data experiments

The two GF-5 real-world hyperspectral data sets acquired by

the GaoFen-5 satellite: Shanghai City and Baoqing (available

URL: http://hipag.whu.edu.cn/resourcesdownload.html), were

used in the real HSI data experiments. GaoFen-5 satellite was

developed by the Chinese Aerospace Science and Technology

Corporation and launched in 2018. The original size of the GF-5

dataset is 2100 × 2048 × 180, and 25 bands are miss information.

This dataset is seriously degraded by the mixture of Gaussian,

stripes, and deadlines noises.

The selected GF-5 Shanghai City image is 307 × 307 pixels in

size and has 210 bands. The GF-5 Baoqing sub-image has a size of

300×300×305, with some abnormal bands removed. Both GF-5

images are extensively polluted by various stripes, including wide

stripe noise that emerges at the same position on the continuous

bands as dense stripe noise of varying widths. Furthermore,

several of the bands have much-mixed noise. Before

denoising, the gray values of authentic HSIs were band-by-

band normalized to [0, 1]. After removing the miss bands and

extracting a small region, a sub-HSI with the size of 300×

300×156 is chosen for experiments.

Both Equivalent Number of Looks (ENL) (Anfinsen et al.,

2009)and Edge Preserving Index (EPI) (Sattar et al., 1997) were

employed for performance evaluation. The larger the ENL and

EPI values, the better the quality of the restored images.

The quantitative assessment indices ENL and EPI values and

the running time of all competing methods are provided in Table 2

on the two GF-5 datasets. The best outcomes for each quality

indicator are highlighted in bold. From the table, it is clear that our

proposed approach achieves a significantly improved performance

in both the ENL and EPI indexes, as compared with other

competing methods. Because high-dimension tensor

decomposition can capture the global correlation in the spatial-

spectral dimensions, ATRFHS obtained better results than the

other tensor-based format methods by combining auto-weighted

low-rank tensor ring decomposition with total variation and phase

congruency regularization. Meanwhile, the effectiveness of the

suggested auto-weight TR nuclear standard is shown.

It can be observed from Table 2 that the L1-2 SSTV method is

the fastest method among all the compared methods. However,

as the previous experimental work demonstrated, it cannot

achieve good repair outcomes. Due to the use of updating U
and SVD operation of G for higher-order data computation, the

computational cost of the proposed ATRFHS is relatively higher

than L1-2 SSTV, QRNN3D including traning phase and LRTF-L0
methods but significantly lower than other methods, namely,

LRTDGS, ANTRRM and SBNTRD.

TABLE 4 Empirical analysis of each regularizer of the ATRFHS model.

Datasets Index ATRFHS No-PC No-TV No-TV-PC

WDC mall MPSNR (dB) 31.89 31.26 31.11 30.37

MSSIM 0.9217 0.9104 0.9198 0.9031

MFSIM 0.9674 0.9201 0.9314 0.9178

Indian pines MPSNR (dB) 34.58 34.14 34.01 33.41

MSSIM 0.9784 0.9587 0.9647 0.9247

MFSIM 0.9814 0.9714 0.9624 0.9431
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The restorations of band 96 in Shanghai City of GF-5 are

presented in Figure 10. To clearly illustrate the visualization of the

restoration results, a demarcated area in the subfigure is enlarged

in the bottom right corner. Figure 10A shows that the image suffers

from a mixture of Gaussian and sparse noise. It is straightforward

to observe that L1-2 SSTV, QRNN3D, and LRTDGS cannot

efficiently maintain edge information to a certain extent. The

approaches based on the low-rank prior perform more

effectively than other competing methods, as seen in Figure 10.

By combining the total variation and phase congruency into a

unified TV regularization and utilizing the auto-weighted low-

rank tensor ring decomposition to encode the global structure

correlation, our proposed ATRFHS method can better remove the

complex mixed noise. In particular, compared to other competing

methods, our proposed method preserves the most significant

detail edge, texture information, and image fidelity.

Figure 11 displays the restoration results of band 109 in

Baoqing data of GF-5. From Figure 11A, one can see that the

image is wholly contaminated by various noises, including

Gaussian, random noise, and heavy structure noise, including

stripes and deadlines. After denoising using the different HSI

restoration methods, the noise is removed. As shown in Figures

11C,D, the QRNN3D and LRTDGS methods cannot eliminate the

stripes in the results, as observed in the enlarged box on the image.

The L1-2 SSTV and SBNTRD can obtain a better visual result

than the othermethods, but some intrinsic information such as the

local smoothness underlying the HSI cube, was not exploited, as

shown in Figures 11B,E,F. LRTF-L0 and the proposed method can

remove much noise compared to the TV mentioned above, but

LRTF-L0doesnotpreserveedgesandlocaldetail information,aswell

asourproposedATRFHSmethod.Moredetailedvisual comparison

results can be seen in such red boxes. To summarize, the proposed

ATRFHS can still achieve the best performance for removing such

heavy mixed noise from this dataset.

To further investigate the effect of our method, we provide a

no-reference image quality assessment, as presented in (Yang

et al., 2017), to evaluate the real-world hyperspectral data before

and after denoising. The quality scores are presented in Table 3.

A lower no-reference image quality assessment score indicates

better denoising quality. The table shows that our proposed

ATRFHS method has the lowest score, demonstrating

ATRFHS’s superiority.

4.3 The impact of parameters

Three parameters in Eq. 9 need to be discussed, including two

regularization parameters λTV and λPC, and the penalty

parameter β .

1) The impact of parameters λTV , λPC and β:

TV and PC multichannel images have been widely exploited

for their edge-preserving characteristics.Toprevent theoverfitting

of the sharper edge of ourproposed approach from influencing the

experimental results, we present the MPSNR and MSSIM values

FIGURE 14
Convergence analysis of the algorithm in terms of (A) relative error, (B) the MPSNR values, and (C) the MSSIM values.

TABLE 5 Washington DC Mall-Classification accuracies obtained by different restoration approaches before using RF.

Index HSI L1-2 SSTV LRTF-L0 LRTDGS SBNTRD QRNN3D Ours

OA 67.54 78.69 80.47 86.74 85.36 86.39 90.58

AA 69.50 84.58 86.78 81.25 84.25 84.12 95.14
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achievedbyafunctionofλTV andλPC for theWDCdataset inCase1

asanexample toidentify thebestparametervalues.Figure12shows

the change inMPSNR values for the proposed algorithm for these

two regularization parameters λTV and λPC. It is evident that when

λTV is equal to 0.02 and λPC is set to 0.05, and the proposedmethod

can reach the peak of MPSNR.

2) The impact of parameters spectral band length P:

Furthermore, P also is an important parameter for taking

advantage of the spectral local low-rankness properties. As

shown from Figure 13 in the simulated WDC data

experiments, when P is equal to 32, the MPSNR value tends

to be stable. Thus, we suggest the use of p=32.

4.4 effectiveness of hybrid smoothness
regularization terms

The proposed ATRFHS is a tensor ring-based method

combining TV and PC priors. To verify the effectiveness of

the two priors in our model, we further compare our approach

with a simplified version of our model without the TV and PC

regularization terms, that is, set the parameters λTV � 0 and

λPC � 0 in our model (9). The test is conducted on two simulated

datasets by the MPSNR, MFSIM, and MSSIM evaluation indices

in Case 3 with a mixture noise. Experimental results are shown in

Table 4. ATRFHS is our proposed method, and No-PC is a

method using only TV prior without PC prior by λPC � 0, No-TV

is a method using only PC prior without TV prior by λTV � 0 and

No-TV-PC is the original weighted tensor ring-based method by

λTV � 0 and λPC � 0. The metric scores listed in Table 3 obtained

by ATRFHS are the highest among all the techniques. Hybrid

smoothness regularization with TV and PC priors is more

suitable for recovering HSIs with more texture information

than pure TV methods. The performance of the ATRFHS

method demonstrates the effectiveness of hybrid smoothness

regularization terms.

4.5 Empirical analysis for convergence of
the ATRFHS solver

The convergence behavior of the proposed algorithm is

discussed. We present an empirical analysis of the proposed

restoration approach convergence on the simulated WDC Mall

data set. We offer a numerical experiment to show the

convergence behavior in terms of relative error, the MPSNR

values, and the MSSIM values. In Figure 14, we can observe that

the curves of all assessment indexes come to a stable value when

the algorithm reaches a relatively high iteration number,

indicating that the proposed algorithm empirically

converges well.

4.6 Classification application

In this sub-section, we examine the impact of HSI noise

removal procedures as a preprocessing step for HSI classification.

We employed Random Forest (RF) classifier (Athey et al., 2019)

to make a comparison of the effectiveness of different restoration

approaches. The main idea of the RF classifier is to classify an

input vector by running down each decision tree in the forest.

Each tree outcomes in a unit vote for a specific class, and the

forest selects the final classification label based on the most votes.

Classification accuracy is utilized to evaluate the effectiveness of

different restoration approaches. Two metrics have been applied:

Overall Accuracy (OA) and Average accuracy (AA). The

percentage value of AA and OA is shown in Table 5. The

metrics AA and OA are reported in percentage. Table 5

shows that denoising approaches improve the performance of

the subsequent classification technique compared to directly

using the raw data after the denoising procedure. The

proposed ATRFHS approach achieves the highest OA and AA

values among all the classification results achieved by the seven

restoration approaches, indicating the best performance in HSI

restoration.

5 Conclusion

This article presents an auto-weighted low-rank Tensor Ring

Factorization with Hybrid Smoothness regularization (ATRFHS)

for HSI restoration. The global spatial structure correlation of

HSI was efficiently depicted by the low-rank factorization of TR,

which can embody the advantages of both rank approximations

and high-dimension structures. An auto-weighted measure of

factors rank minimization of TR factorization can more

accurately approximate the TR rank and better promote the

low-rankness of the solution. Moreover, we employed a hybrid

regularization incorporating total variation and phase

congruency to smooth the factor and preserve HSI’s spatial

piecewise constant structure. A well-known alternating

minimization framework was developed to solve the ATRFHS

model efficiently. Both simulated and real-world datasets were

used to demonstrate the performance and superiority of the

proposed methods over state-of-the-art HSI denoising methods.

In the future, we will try to incorporate more appropriate

regularization and nonconvex tensor ring factor rank

minimization into our tensor ring model to enhance its HSI

restoration capability further.
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Shear wave velocity prediction
based on deep neural network
and theoretical rock physics
modeling
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1Research Institute of Petroleum Exploration and Development-Northwest (NWGI), PetroChina,
Lanzhou, China, 2China University of Petroleum, Beijing, China

Shear wave velocity plays an important role in both reservoir prediction and pre-

stack inversion. However, the current deep learning-based shear wave velocity

predictionmethods have certain limitations, including lack of training dataset, poor

model generalization, andpoor physical interpretability. In this study, the theoretical

rock physicsmodels are introduced into the construction of the labeled dataset for

deep learning algorithms, and a forward simulation of the theoretical rock physics

models is utilized to supplement the dataset that incorporates geological and

geophysical knowledge. This markedly increases the physical interpretability of the

deep learning algorithm. Theoretical rock physicsmodels for two different types of

reservoirs, i.e., conventional sandstone and tight sandstone reservoirs, are first

established. Then, a full-sample labeled dataset is constructed using these two

types of theoretical rock physics models to traverse the elasticity parameter space

of the two types of reservoirs through random variation and combination of

parameters in the theoretical models. Finally, based on the constructed full-

sample labeled dataset, four parameters (P-wave velocity, clay content, porosity,

and density) that are highly correlatedwith the shearwave velocity are selected and

combined with a deep neural network to build a deep shear wave velocity

prediction network with good generalization and robustness, which can be

directly applied to field data. The errors between the predicted shear wave

velocity using the deep neural network and the measured shear wave velocity

data in the laboratory and the logging data in three real fieldwork areas are less than

5%,which aremuch smaller than the errors predicted by bothHan’s andCastagna’s

empirical formula. Furthermore, the prediction accuracy and generalization

performance are better than those of these two common empirical formulas.

The forward simulation based on theoretical models supplements the training

dataset andprovides high-quality labels formachine learning. This can considerably

improve the interpretability and generalization of models in real applications of a

machine learning algorithm.

KEYWORDS

deep neural network, rock physics modeling, theoretical rock physics model, full-
sample labeled dataset, shear wave velocity prediction, empirical formula
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1 Introduction

Shear wave (S-wave) velocity plays an important role in

reservoir prediction (Du, 2014). S-wave velocity data are

required for pre-stack inversion and pre-stack attribute

analysis. However, in real field work areas, especially in old

wells, the high cost of acquiring shear wave velocity data leads to

lack of S-wave velocity data (Bagheripour et al., 2015). Therefore,

predicting the S-wave velocity in wells where these values has not

been measured is essential. The conventional S-wave velocity

prediction methods can be divided into three categories,

empirical formula method, theoretical rock physics model

method and machine learning prediction method.

The empirical formula method utilizes the existing logging

data from the target area to statistically analyze the relationship

between these data and the S-wave velocity. The formula is

generally obtained by fitting data point pairs based on some

kind of mathematical expression. There is no need to have a

complete theoretical derivation process, and this method is only

applicable to specific geological environments (Castagna et al.,

1985; Han et al., 1986; Eberhart-Phillips et al., 1989; Ameen et al.,

2009). The rock physics model prediction method is to establish

the relationship between elastic parameters and reservoir

parameters based on theoretical models. Therefore, the S-wave

velocity prediction is often more accurate than the empirical

formula (Gassmann, 1951; Biot, 1956; Xu andWhite, 1995, 1996;

Xu and Payne, 2009; Sun et al., 2012). Theoretically, the rock

physical model is not specifically limited to a particular region,

but there is a lot of noise in the real field data, and the predicted

results have great uncertainty. In addition, the application of the

rock physics model to predict S-wave velocity needs to consider

the influence of skeleton composition, fluid distribution and pore

shape, which make the application of the rock physics model to

predict shear wave velocity difficult since there parameters are

not easily accessible.

Neural networks have great advantages in dealing with

nonlinear problems, and S-wave velocity prediction is a

typical nonlinear problem. In recent years, S-wave velocity

prediction using well log data and back-propagation neural

network (BPNN) has been widely applied in practical field

areas (Eskandari et al., 2004; Alimoradi et al., 2011; Maleki

et al., 2014). Each hidden layer of the recurrent neural

networks (RNNs) has a feedback to a previous layer, and the

subsequent behavior can be shaped by the response of the

previous layer. Thus, RNNs are well suited for processing

sequential data, and since logging data are connected in-

depth, RNNs and their variants long short-term memory

(LSTM) networks and gated recurrent units (GRU) networks

have been introduced into the S-wave velocity prediction

(Mehrgini et al., 2017; Zhang et al., 2020) and other rock

parameters (Yuan et al., 2022). Moreover, convolutional

neural networks (CNNs) have tremendous advantages in

feature extraction, thus the CNNs were widely developed and

applied in many research fields (Yuan et al., 2018; Hu et al., 2020;

Hu et al., 2021), and a combination of RNNs and CNNs for

S-wave velocity prediction has been proposed recently (Wang

et al., 2022; Zhang et al., 2022). However, the neural network-

based S-wave velocity prediction method has poor generalization

and limited labels for establishing S-wave velocity prediction

networks, which brings many difficulties to real applications.

To overcome these limitations, we combine theoretical rock

physics models and deep neural networks (DNNs) for S-wave

velocity prediction. Synthetic datasets can be used when building

labeled datasets, if the synthetic datasets are sufficiently

complicated, that is, if the most important factors are

considered when generating the datasets, the trained network

may be able to process realistic datasets directly (Wu et al., 2019;

Yu and Ma, 2021; Gao et al., 2022). Therefore, a rich and

complete labeled dataset is first constructed using the

theoretical rock physics models, and then a deep S-wave

velocity prediction network is established using the DNN and

the data, such as the P-wave velocity and porosity in the full-

sample labeled dataset. Instead of using the data of a certain area

to train the neural network, the data generated by the theoretical

rock physics models are used for the training, and then the

established network is directly applied to the real target work area

for S-wave velocity prediction.

2 Theoretical rock physics modeling
for multi-type reservoirs

The rock physics model can link the elastic parameters to

physical parameters, fluid and lithology (Guo et al., 2022), and

specific theoretical rock physic model needs to be established for

different types of reservoirs due to different composition, texture

and pore microstructure of the reservoir rocks.

2.1 Theoretical rock physics modeling of
conventional sandstone reservoir

The porosity and permeability of the conventional sandstone

are quite high with relatively simple pore geometry, so the

conventional sandstone reservoir is high-quality reservoir. In

this study, the Voigt-Ruess-Hill (VRH; Hill, 1952) model is used

to calculate the moduli of the rock matrix, and then the Kuster-

Toksöz model (Kuster and Toksőz, 1974) is utilized to add stiff

and compliant pores to the rock matrix to calculate the moduli of

the dry skeleton, which are expressed as follows:

(KKT
* − Km) Km + 4μm/3

KKT
* + 4μm/3 � ∑N

i�1
xi(Ki − Km)Pmi (1)

(μKT
* − μm) μm + ζm

μKT
* + ζm

� ∑N
i�1
xi(μi − μm)Qmi (2)
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where xi denotes the volume concentration for eachinclusion;

Km and μm are the bulk modulus and shear modulus of the rock

matrix; KKT
* and μKT

* are the bulk modulus and shear modulus of

the dry skeleton, The coefficients Pmi and Qmi describe the effect

of the inclusion material i in the background medium m.

Then theWood model is utilized to calculate the bulk moduli

of the mixed fluid, and finally, the Gassmann equation

(Gassmann, 1951) is used to calculate the saturated rock moduli.

Ksat

Ksat −Km
� KKT

*

KKT
* − Km

+ Kfl

ϕ(Kfl −Km) (3)

μsat � μKT
* (4)

where Ksat and μsat are the bulk modulus and shear modulus of

the saturated rock.

2.2 Theoretical rock physics modeling of
tight sandstone reservoir

For tight sandstone reservoirs, the heterogeneity,

microscopic pore structure and pore fluid distribution of

rocks are quite complex (Guo et al., 2021). When saturated

with different fluids, the fluid flow caused by wave

propagation makes the overall elastic responses of rocks

more complex. For tight sandstone reservoirs, firstly, the

moduli of the rock skeleton are also calculated using the

VRH model and the Kuster-Toksöz model, and then the

squirt flow effect is considered to account for the velocity

dispersion and attenuation (White, 1975; Dvorkin et al.,

1995). A simple squirt flow model (Gurevich et al., 2010)

can be used to characterize the wave-induced flow effects

occurring at microscopic scales in tight sandstones. The idea

of a simple squirt flow model is to modify the dry skeleton of

the rock as if the compliant pores are saturated with fluid and

the stiff pores remain dry, which are expressed as follows:

1
Kmf(P,ω) �

1
Kh

+ 1

1
1

Kdry(P)−
1
Kh

+ ( 1
K*
f
(P,ω) − 1

Km
)ϕc(P)

(5)

1
μmf(P,ω)

� 1
μdry(P)

− 4
15

( 1
Kdry(P) −

1
Kmf(P,ω)) (6)

where Kmf is the bulk modulus of the modified skeleton at

different frequency and pressures. μmf is the shear modulus of

the corresponding modified skeleton. Kh is the bulk modulus of

dry rock under high effective pressure, which can be estimated

with the Kuster-Toksöz model, Kdry and μdry are the bulk

modulus and shear modulus in the dry condition, Km is the

bulk modulus of the rock matrix, ϕc is the compliant porosity and

K*
f is the modified fluid bulk modulus.

After obtaining the modified dry skeleton moduli, the

saturated rock elastic moduli are calculated by the Gassmann

fluid substitution equations (Han et al., 2021) as follows:

TABLE 1 Sampling range of conventional sandstone model parameters.

Parameter Lower bound Upper bound Description

Fluid saturation (oil,gas,water) 0 1 the sum of the three is 1

Feldspar, calcite content 0 0.1

Clay content 0 1 with the sum of other three minerals is 1

Quartz content 0 1 with the sum of other three minerals is 1

Porosity 0 0.3 greater than compliant porosity

Compliant porosity 0.0001 0.01 less than porosity

Compliant porosity aspect ratio 0.0001 0.001

TABLE 2 Sampling range of tight sandstone model parameters.

Parameter Lower bound Upper bound Description

Fluid saturation (gas,water) 0 1 the sum of the two is 1

Feldspar, calcite content 0 0.1

Clay content 0 0.4

Quartz content 0.4 1 with the sum of other three minerals is 1

Porosity 0 0.1 greater than compliant porosity

compliant porosity 0.0001 0.01 less than porosity

compliant porosity aspect ratio 0.0001 0.001
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Ksat

Ksat − Km
� Kmf

Kmf −Km
+ Kfl

ϕs(Kfl −Km) (7)

μsat � μmf (8)

where Ksat and μsat are the bulk modulus and shear modulus of

the saturated rock.

According to the established theoretical rock physics models,

the bulk moduli, the shear moduli can be obtained, and the

FIGURE 1
Correlation between reservoir parameters and S-wave velocity. (A) Porosity versus S-wave velocity. (B)Density versus S-wave velocity. (C) Clay
content versus S-wave velocity. (D) P-wave velocity versus S-wave velocity.

FIGURE 2
The structure of the deep S-wave velocity prediction
network.

FIGURE 3
Learning curve of neural network.
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P-wave velocity and S-wave velocity are calculated using the

relationship between moduli and density (Eqs 9, 10) as follows:

Vp �
���������������(Ksat + 4μsat/3)/ρ√

(9)
Vs �

�����
μsat/ρ√

(10)

where Ksat and μsat are the bulk modulus and shear modulus of

the saturated rock.

3 S-wave velocity prediction method

In this study, a combination of DNNs and rock physics

model is used for S-wave velocity prediction.

3.1 Data preparation

Two types of theoretical rock physics models from the

previous section are used to generate 128,000 synthetic data.

To ensure the generality and richness of the synthetic data, the

sampling ranges of these model parameters cover all possible

values, as shown in Tables 1, 2, and the sampling range of the

parameters is determined from the real field areas and

experimental measurements. Random values in the

parameter’s sampling space and random combinations of

different parameters are used to obtain corresponding S-wave

velocity dataset.

Since real field data normally contain noise from the data

acquisition, processing and interpretation procedures, we

add 10% Gaussian noise to the synthetic data to construct

a full-sample labeled dataset that mimics the real data, which

helps enhance the robustness of the neural network.

3.2 Feature parameter selection

The reservoir parameters reflect the characteristics of the

reservoir, and there is a certain connection between them and

the S-wave velocity. Since the trained neural network is to be

directly applied to the real field work area, four reservoir

parameters, such as porosity, density, clay content and P-wave

velocity, which are easily accessible in real field areas, are

selected. The correlation between the four parameters and the

S-wave velocity is as follows (see Figure 1), where R is the

correlation coefficient.

According to the correlation analysis in Figure 1, it can be

found that these four parameters have a good correlation with the

S-wave velocity. The P-wave velocity and density are positively

correlated with the S-wave velocity, and the porosity and clay

content are negatively correlated with the S-wave velocity, among

which the P-wave velocity has the strongest correlation with the

S-wave velocity, and the absolute values of the four correlation

coefficients are greater than 0.4. Thus, these four parameters will

be used as the input features of the S-wave velocity prediction

network.

3.3 Feature parameter normalization

Feature normalization is an important step in deep

learning. Since different features always have different

amplitudes, units, and ranges, the features with high

magnitudes will impose higher impact on networks. If the

data is not processed to the same range, the network may not

converge when it is trained, and the training time is long,

giving more weight to features with larger values, which will

limit the prediction accuracy of the regression equation. In

order to eliminate this effect, it is necessary to normalize the

FIGURE 4
Test results of 500 synthetic data. (A) Test results. (B) Relative errors.
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features to the same scale. This study uses the min-max

method to normalize the features, and the normalized data

are all between 0 and 1, the expressions are as follows:

Xnorm � X −X min

X max −X min
(11)

whereXnorm is the normalized value, X is the original value,Xmax

is the maximum value of the features,Xmin is the minimum value

of the features.

3.4 Deep shear wave velocity prediction
network building and training

In this study, a fully connected neural network with three

hidden layers (the number of hidden layer neurons is 10),

four inputs and one output is constructed using the P-wave

velocity, density, porosity and clay content as input features

and the S-wave velocity as the label (see Figure 2). The neural

TABLE 3 petrophysical parameters of five tight sandstone samples.

Sample Density (g/cm3) Porosity (percent) Permeability (md) Clay (percent) Quartz (percent)

S1 2.65 2.37 0.014 3 41

S2 2.64 3.77 0.023 5 40

S3 2.50 6.48 0.023 5.7 58.8

S4 2.47 6.71 0.069 5.5 68.6

S5 2.41 7.22 0.131 4.7 65.2

FIGURE 5
P- and S-wave velocities of samples from published
literatures. (A) Han et al. (2021). (B) Li et al. (2018).

FIGURE 6
Comparison of S-wave velocity measured in laboratory with
predicted value of DNN. (A) Prediction results. (B) Relative errors.
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network minimizes the mean square error between the label

and the output by back propagation using the gradient

descent method. The activation function chosen for this

network is the Rectified linear unit (ReLU) function to

increase the nonlinear characterization ability of the neural

network, the optimization algorithm is Adam, and the loss

function is the mean square error (MSE) function.

We use the full-sample labeled dataset constructed in

Section 3.1 to train the deep shear velocity prediction

network. Firstly, all the input features are normalized by

the max-min method so that all the features fall between

0 and 1. Then 80% of the labeled dataset is used for training,

10% for validation and 10% for testing. As shown in Figure 3,

the training and validation losses decrease simultaneously

and converge to relatively low values after 14 epochs of

training, which means that the neural network has been

fitted well. The validation loss reaches a global minimum

after 25 epochs and is as low as the training loss, indicating

that the network has been completely fitted and the trained

neural network can be generalized to new data for S-wave

velocity prediction.

For the trained network, the synthetic data with noise were

first tested, and the test results are shown in Figure 4. From

Figure 4A, it can be seen that the predicted S-wave velocity

using the neural network can match the real S-wave velocity

well both in terms of variation trend and values, except for

individual data points where the error can reach more than

10%, the error in all other data points is below 5% (see

Figure 4B).

4 Deep S-wave velocity prediction
network application

In this section we present the results of applying the neural

network to laboratory data and real field data.

4.1 Application to the laboratory data

We obtained the clay content, porosity, density, P-wave

velocity and S-wave velocity (dry conditions) of five tight

FIGURE 7
Comparison of three S-wave velocity prediction methods. (A) Prediction results. (B) Relative errors.
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sandstone samples from the published literature (Li et al.,

2018; Han et al., 2021). The physical parameters of the five

sandstone samples are shown in Table 3, and the P- and

S-wave velocities are shown in Figure 5. Four features data

from the published literature are introduced into the

previously trained network and then output the predicted

S-wave velocities.

As shown in Figure 6A, the data are concentrated around

the line y = x. The coefficient of certainty R2 of the prediction

results is above 0.85, and the root mean square error (RMSE)

is 0.12, indicating that the predicted S-wave velocities of the

neural network are in strong agreement with the laboratory

measurements. Most of the relative errors between the

predicted results and experimental measurements are

within 5% (see Figure 6B), which also indicates that the

constructed deep S-wave velocity prediction network has a

very good prediction performance, while the large deviation

of individual points may be due to some errors generated by

the experimental measurement process, resulting in low or

high measured values.

To illustrate the superiority of the constructed deep S-wave

velocity prediction network, the predicted results of the network

were compared with those predicted by the empirical formula

proposed by Han et al. (1986), Eq. 12 and by Castagna et al.

(1985), Eq. 13.

Vs � 0.794Vp − 0.787 (12)
Vs � 0.862Vp − 1.172 (13)

FIGURE 8
Data information of well 1 and S-wave velocity prediction results (Vs-label is the logging S-wave velocity, xx-predict indicates the result
predicted using a certain method, and xx-error indicates the corresponding relative error).
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The comparison results and the average relative errors are

shown in Figure 7. Figure 7A shows the two-dimensional

intersection of the S-wave velocities predicted by the three

methods and the laboratory measured S-wave velocities, and

Figure 7B shows the relative errors. From Figure 7A, we can

see that the intersection analysis results of the predicted and

true values of the three methods are all distributed around the

line y = x, which indicates that the prediction results have

certain accuracy. However, the value predicted by the deep

S-wave velocity prediction network is closer to the line y = x,

which indicates that the network is the most accurate among

the three methods. The errors between the predicted and true

values of the network are the smallest, as can be seen in

Figure 7B, which also confirm this conclusion. Also, it can be

found from the figure that Han’s empirical formula is more

applicable than Castagna’s empirical formula at the ultrasonic

frequency band in the laboratory.

For tight sandstone, the P-wave velocity increases with

increasing water saturation under high pressure conditions,

and the S-wave velocity basically does not change, while both

P-wave velocity and S-wave velocity increase with increasing

water saturation under low pressure conditions (Li et al., 2018).

FIGURE 9
Data information of well 2 and S-wave velocity prediction results (Vs-label is the logging S-wave velocity, xx-predict indicates the result
predicted using a certain method, and xx-error indicates the corresponding relative error).
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FIGURE 10
Data information of well 3 and S-wave velocity prediction results (Vs-label is the logging S-wave velocity, xx-predict indicates the result
predicted using a certain method, and xx-error indicates the corresponding relative error).

TABLE 4 Average relative error of the three S-wave velocity prediction methods in different wells.

Well DNN-average relative error
(%)

Han-average relative error
(%)

Castagna-average relative error
(%)

Well 1 2.24 6.68 2.86

Well 2 3.33 4.48 3.73

Well 3 4.62 8.24 7.33

Sandstone1&2 of well 3 2.56 4.24 3.47
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Han’s empirical formula is obtained by fitting the saturated water

sandstone data, while the data obtained in this study are

measured under dry conditions, therefore, Han’s empirical

formula results in a large prediction of the S-wave velocity

under high pressure conditions (Figure 7A), while the

prediction results of the S-wave velocity under low pressure

conditions are very close to the true values.

4.2 Application to the field well log data

The trained neural network was applied to the well log

data from three real field areas for S-wave velocity prediction,

where well 1 and well 2 were tight sandstone reservoirs and

conventional sandstone reservoirs, while well 3 included both

sandstone reservoirs and mudstone layers, and the results

predicted by the deep S-wave velocity prediction neural

network were compared with the real well log data and the

results predicted by empirical formulas. The prediction

results are shown in Figures 8–10, which show the logging

data used in the prediction task as well as the prediction

results and relative errors for the three methods. In Figures

8–10, Vs-label indicates real log shear wave velocity (black

line), DNN-predict indicates the DNN prediction result (red

line), Han-predict indicates the prediction result of Han’s

empirical formula (blue line), Castagna-predict indicates the

prediction result of Castagna’s empirical formula (yellow

line), and Table 4 shows the average relative errors of the

prediction results.

From Figures 8, 9 and Table 4, we can see that for both Well

one andWell 2, the S-wave velocity prediction results of the deep

neural network and the real log data have the same general trend

and small error, which has a good match. Compared with the

other two prediction methods, the error of the DNN prediction

results is smaller (2.24%, 3.33%) and the trend is closer to the real

S-wave velocity, which indicates that the established deep S-wave

velocity prediction network has good application in the real field

work areas.

For well 3, the deep neural network prediction results are

relatively poor, but from Figure 10 and Table 4, we can see that

the deep neural network still performs well in the two sandstone

reservoir sections (2.56%), while the prediction results of the

mudstone section deviate greatly from the true values. This is

owing to the fact that the rock physic responses of mudstone are

different from that of both tight sandstone and conventional

sandstone, and the labeled dataset constructed by the sandstone

model is less applicable tomudstone, so there exists a large prediction

error. In addition, the prediction accuracy of the deep neural network

FIGURE 11
Absolute error curve of S-wave velocity predicted by DNN. (A) Well 1. (B) Well 2. (C) Well 3.
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is also superior to the two empirical formulations, the same as the

results of wells 1 and 2, because this high clay content is taken into

account in the sandstonemodeling process. Figures 8–10 and Table 4

also show that Castagna’s empirical formula is more applicable than

Han’s empirical formula at the well-logging frequency band.

Figure 11 shows the absolute error (the absolute value of

the difference between the measured and predicted S-wave

velocities) of the S-wave velocities predicted based on the

deep neural network for the three wells. As can be seen from

the figure, the absolute error is basically below 0.15 km/s for

well 1, and below 0.2 km/s for well 2 as well as the sandstone

section of well 3, which indicates that the practicality of the

method proposed in this study is fairly good.

From the application of the laboratory data and the well log data,

the prediction accuracy of the deep S-wave velocity prediction

network established in this study is higher than the common

empirical formulas. Han’s empirical formula is more applicable to

the ultrasonic frequency band, while Castagna’s proposed empirical

formula is more applicable to the well-logging frequency band, which

may be because Han’s empirical formula is statistically based on the

data at ultrasonic frequency band, while Castagna’s empirical

formula is based on the well-logging data. Compared with the

two empirical formulations, the deep S-wave velocity prediction

network proposed in this study is applicable to the full frequency

band S-wave velocity prediction and has better generalization.

5 Conclusion

In this study, we proposed a shear wave velocity prediction

method based on DNNs and rock physics modeling. We have

applied the established deep S-wave velocity prediction network

to real field data directly. Theoretical rock physics models are

developed for the properties of conventional and tight sandstone

reservoirs. The geological and geophysical knowledge is

incorporated into the data set of the deep neural network by

means of forwarding simulation of the theoretical rock physics

models to construct a full-sample labeled dataset that traverses

the entire S-wave velocity space. A robust and generalizable deep

S-wave velocity prediction network without multiple training is

built by combining the full-sample labeled dataset and the deep

neural network. When the established network is applied to the

real field data, the errors of S-wave velocity prediction are very

small, all within 200 m/s, and the average relative errors are

below 5%. In addition, the prediction errors of the deep S-wave

velocity prediction network constructed in this study applied to

laboratory data (3.32%) and well log data (2.24, 3.33, and 4.62%)

are much smaller than that of Han’s empirical formula (10.30,

6.68, 4.48, and 8.24%) and Castagna’s empirical formula (11.40,

2.86, 3.73, and 7.33%). Compared with the two common

empirical formulations, the deep S-wave velocity prediction

network established has better prediction ability and

generalization ability. The network is applicable to the S-wave

velocity prediction in the full frequency band of sandstone

reservoirs, and can provide S-wave velocity information for

reservoir prediction work. The use of theoretical model

forward simulation supplements the training dataset for

machine learning, improving the interpretability of machine

learning algorithms and generalization of models in real

applications. Furthermore, we provide a new idea for the

construction of labeled datasets in machine learning tasks.
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Intelligent velocity picking
considering an expert experience
based on the Chan–Vese model
and mean-shift clustering
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The velocity of seismic data can initially be established by identifying energy clusters
on velocity spectra at different moments, which is crucial to the migration imaging
and the stacking of commonmidpoint (CMP) gathers in the seismic data processing.
However, the identification of energy clusters currently relies on manual work, with
low efficiency and different standards. With the increasing application of wide-
frequency, wide-azimuth, and high-density seismic exploration technology, the
amount of seismic data has increased significantly, greatly increasing the cost of
manual labor and time. In this paper, an intelligent velocity picking method based on
the Chan–Vese (CV)model andmean-shift clustering algorithmwas proposed. It can
be divided into three steps. First, a velocity trend band is set up on the velocity
spectrum by experts to avoid multiples and other noises. Then, the velocity trend
band is applied to the Chan–Vese model as the initial time condition to segment the
velocity spectrum and obtain the velocity candidate region. Finally, mean-shift
clustering is adopted to cluster the useful energy clusters retained in the
candidate region derived from the Chan–Vese model. When implementing the
mean-shift clustering algorithm, the Gaussian kernel function and the energy of
the velocity spectrum are utilized to control the efficiency and accuracy of the
cluster. The tests of the model and real data prove that the proposed method can
dramatically improve the accuracy and efficiency of velocity picking compared with
the K-means and manual picking method.

KEYWORDS

velocity spectrum, intelligent velocity picking, Chan–Vese, mean-shift clustering, expert
experience constraint

1 Introduction

Velocity analysis of a seismic wave is a critical step in seismic data processing and also the
basis for subsequent data processing procedures and interpretation. For example, the normal
moveout (NMO) correction relies on stacking velocity (Wang et al., 2021a), the migration
imaging relies on migration velocity (Jones et al., 1998; Nemeth et al., 1999; Hou & Marfurt,
2002), and time–depth conversion relies on time-domain velocity (Cameron et al., 2008). If the
velocity field is accurate, the seismic profiles obtained by migration can reflect the underground
structure more clearly. Currently, the velocity is mainly obtained by manually picking the
velocity energy clusters. Although manual picking makes full use of expert experience, it is
labor-intensive and repetitive. Moreover, the manual way is generally of low density in the
picking of a velocity spectrum and has different views on the characterization of complex
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geological structures. Therefore, it is imperative to establish an
efficient automatic velocity picking method to relieve the labor and
improve the accuracy of velocity imaging in structures, following the
main principle of the manual method and making full use of expert
knowledge, especially with the increase in seismic data.

In order to improve efficiency and accuracy, in the early days,
model-driven automatic velocity picking algorithms were developed
rapidly. From the fundamentals, considering the mathematical and
physical relationship between velocity and seismic data is the main
thought behind these model-driven algorithms. A large number of
scholars used an iterative optimization method to search for the
optimal velocity by establishing an objective function that could
represent waveform consistency or stacked energy. Toldi (1989)
was the first to suggest the automatic velocity picking method. He
designed an objective function by maximizing the sum of stacked
energy, and the optimal velocity is obtained by iterative updating.
However, this method assumes that the model is linear but not in
practice, and this brings about inapplicability in low signal-to-noise
seismic data. Moreover, this method considers a lot of constraints and
complicates the model, which makes the practical performance of the
method very poor. Zhang et al. (2015) established a non-linear
objective function by analyzing the selected velocity distribution
rules, which can achieve automatic velocity picking; however, this
still does not solve the large computational effort and low noise
immunity of the model-driven approach. Moreover, Wilson and
Gross (2019) used a particle swarm optimization method to find
the optimal time difference to flatten the hyperbolic curve which solves
the local minimum problems partially. Velis (2021) gave a non-
hyperbolic and anisotropic velocity analysis algorithm. The
objective function of non-hyperbolic energy involved the
anisotropy parameters, and the velocity was established by the
simulated annealing-based iterative search. In this method, static
and dynamic boundaries were used to avoid multiple noises. In
addition, Yuan et al. (2019) proposed that full waveform inversion
can also retrieve the background velocity structure, and the low-
frequency full-waveform inversion result was considered as an a priori
model, which can be applied to reservoir prediction. However, the full
waveform inversion is a strong non-linear inversion. When the
accuracy of the initial velocity model is not enough, there will be
cycle jumps and it will result in failure. All in all, the model-driven
method requires the hypothesis that the mathematical physical model
used can accurately express the relationship between seismic data and
velocity, causing the problems of local minima and large costs of
computation.

In recent years, due to the significant improvement in computer
performance, machine learning has been applied to various fields, such
as tumor and liver segmentation in CT images (Aghamohammadi
et al., 2021), brain tumor segmentation (Ranjbarzadeh et al., 2021),
and breast tumor segmentation in mammograms (Ranjbarzadeh et al.,
2022). Also, for geophysics, underground structure segmentation,
automatic velocity picking can be achieved by deep learning
methods or unsupervised clustering methods.

Compared to traditional model-driven methods, deep learning
can be regarded as a data-driven method, which can establish an
optimal non-linear mapping relationship between seismic data (e.g.,
common middle point gathers, velocity spectra, or shot gathers) and
velocity. The deep learning method updates the network parameters
mainly through a certain depth of neural network model and a back-
propagation algorithm (Rumelhart et al., 1986), as well as

automatically learning the effective features in data and the
establishment of multi-domain mapping (LeCun et al., 2015;
Goodfellow et al., 2016). Park and Sacchi (2020) proposed the
velocity automatic picking method based on the convolutional
neural network (CNN); this class of methods transforms the
identification of energy clusters on a velocity spectrum into a
classification problem in the field of image recognition; hence, this
method requires a high signal-to-noise ratio of the velocity spectrum.
Biswas et al. (2019) and Zhang et al. (2019) proposed the recurrent
neural network (RNN)-based automatic velocity picking method,
which considers the temporal order of seismic data and treats the
velocity picking as a normalization problem, resulting in higher
accuracy. In addition, Fabien-Ouellet and Sarkar (2020) combined
the CNN and long- and short-term memory (LSTM) network to
estimate the root mean square velocity and interval velocity of seismic
data. The combination of these two networks can simultaneously learn
the characteristics of CMP gathers and velocity spectra to more
accurately predict the velocity. Wang et al. (2020) contrasted the
velocity picking algorithms of the regression-based neural network
and the classification-based neural network and claimed that both
methods could reasonably predict the velocity field. Then, Yuan et al.
(2022) proposed a double-scale gated recurrent unit neural network
method, which uses data-driven methods to learn forward, and
inversion simulations to establish the non-linear relationship
between post-stack data and velocity or impedance; this method
recovers the low-frequency impedance so as to make the velocity
field more accurate, and geological laws and blind wells can verify its
rationality. Recently, Cao et al. (2022) proposed a seismic velocity
inversion method based on the CNN-LSTM fusion deep neural
network, which can simultaneously estimate the root mean square
velocity and interval velocity from the CMP gather. In the proposed
method, a CNN encoder and two LSTMs are used to extract spatial
and temporal features from seismic data, and a CNN decoder is used
to recover the velocity, improving the accuracy of imaging. As a whole,
all the deep learning methods mentioned above that get rid of the ill-
posed inverse problem of the traditional model-driven method use
artificial neural networks to establish a non-linear mapping
relationship between seismic data or a velocity spectrum (input)
and a velocity model (output). However, such supervised neural
network intelligent velocity picking methods require professionals
to manually pick up a rich and large amount of labeled data for
training, which is time-consuming and has weak generalization ability.
When predicting seismic data with different features, the labeled data
need to be reconstructed with a retrained network. In addition, it is
impossible to interpret the process of training since the prediction
process of seismic data is a huge composite function.

For the attractive unsupervised clusteringmethod, it can search for
energy cluster features of velocity without constantly establishing
labels and training according to different data. This type of
intelligent picking method groups the energy clusters of velocity
with the same features used to obtain the approximate distribution
of the data. It has a simple algorithm and is easy to implement. In
addition, it is highly interpretable and generalizable, adapting to
seismic data of any features. Therefore, it is more extensible in
industrial applications. Agudelo et al. (2017) and Araya-Polo et al.
(2017) use the K-means clustering algorithm that uses the distance of
samples as a similarity indicator to process the seismic data, and the
class center is regarded as the picking location. However, it poorly
clusters non-spherical energy clusters of velocity, and the K values
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need to be fixed manually. Chen et al. (2018) proposed a bottom-up
strategy, considering the problem of different K values for different
velocity spectra, which solves the drawback of fixed K values to some
extent. Waheed et al. (2019) also applied the density clustering method
to pick up the energy clusters of velocity to achieve automatic velocity
picking, which avoids the problem of choosing K values manually in
K-means clustering. In addition, Wang et al. (2021b) proposed an
approach based on adaptive threshold-constrained K-means; this
method can improve the identification of the energy cluster of
velocity which was weak on the velocity spectrum. Wang et al.
(2022) also suggested a Gaussian mixture clustering method to
achieve automatic velocity picking, as an extreme case of the
Gaussian mixture model, and K-means is difficult to characterize
velocity energy clusters with low focus ability, while the Gaussian
mixture model can accurately fit and provide uncertainty analysis at
the same time. These unsupervised clustering algorithms, however,
only consider the ability to identify energy clusters of the velocity,
without taking into account the complexity of the actual seismic data
and expert experiences, resulting in the velocity picking methods
affected by the multiples and some other noises on the velocity
spectrum.

In this article, we proposed an automatic velocity picking method
based on the Chan–Vese (CV) model and mean-shift clustering
algorithm, which can effectively improve the accuracy and
efficiency of velocity picking and solve the interference of
multiples. Meanwhile, the method we proposed can also reduce the
manual labor and improve the adaptability of unsupervised clustering
methods in actual seismic data. First, a velocity trend band is set up on
the velocity spectrum by experts to avoid multiples and noises. Then,
the velocity trend band is applied to the CV model as the initial time
condition to segment the valid energy clusters of velocity on the
velocity spectrum. Finally, the mean-shift clustering algorithm is
adopted to cluster the valid energy clusters in the candidate region
derived from the CV model. In order to improve the accuracy and

efficiency of mean-shift clustering, the Gaussian kernel function and
the energy value of velocity are applied for weighting, which allows the
identification of not only the isolated and highly focused energy
clusters of velocity but also the interconnected energy clusters.

2 Methods

We started with a brief analysis of how seismic data processors
perform velocity picking. After obtaining a CMP velocity spectrum,
the processor first analyzes the trend and range of velocity for that
CMP using empirical and geological knowledge; then, the energy
clusters of effective reflected waves within the correct trend are
identified with the naked eye and cluster centers are picked up as
the velocity for that location. The entire picking is the process by
which processors translate geophysical and geological theories into the
geometry of energy clusters on the velocity spectrum (Wang et al.,
2022). Our method follows this process to achieve automatic velocity
picking. Corresponding to the first step of manual picking, the valid
velocity trend and range are identified using the CVmodel with expert
experience constraints, and the second step of manual picking is
replaced by the mean-shift clustering method.

The main body of our method in this article can be divided into
three parts, as shown in Figure 1. The first step is the pre-processing of
the velocity spectrum, including the size regularization of the velocity
spectrum and the random noise filtering. The size regularization of the
velocity spectrum is to make the time dimension of each velocity
spectrum consistent so as to ensure that the velocity curve picked up in
every velocity spectrum, subsequently, has the same sampling time for
stacking; generally, this time dimension is consistent with the seismic
records. Random noise filtering is used to filter some salt-and-pepper
noises on the velocity spectrum by using the median filtering method
so as to improve the accuracy of energy cluster identification of the
subsequent CV model. The second step is the output of the effective

FIGURE 1
Intelligent velocity picking workflow.
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candidate region of velocity by the CV model, the expert experience
constraints, and the grayscale based on velocity spectrum energy,
which is the normalization of velocity spectrum energy that is
performed in this step. The third step is the use of the mean-shift
clustering method to pick up the centers of the effective reflected
energy clusters, and the Gaussian kernel function and energy
weighting constraints are applied in this step. These steps are
discussed in the following sections in detail.

2.1 CV model in velocity spectrum
segmentation

Image segmentation is an important image analysis and
processing technology that has been widely used in medical image
analysis, intelligent traffic management, remote sensing image
processing, and other fields (Li et al., 2021). Image segmentation
methods include threshold segmentation, region segmentation, edge
segmentation, and the active contour model and level set methods
(Osher & Sethian, 1988). Getreuer (2012) shows that based on level set
methods, Chan and Vese proposed the CV model which solves the
problem of computational difficulty caused by the primary length term
and the secondary area term in the expression. Keegan et al. (2017)
proposed that the CV model be the basis of multi-phase image
segmentation, and the model does not need to define the boundary
by gradient, which significantly reduces the complexity and improves
the efficiency of segmentation.

2.1.1 Theory of the CV model
The differences in location, size, and shape of velocity spectrum

energy clusters make the level-set-based CVmodel more effective. The
energy function of the CV model can be expressed as follows:

E C( ) � μLength C( ) + υArea C( ) + λ1E1 C( ) + λ2E2 C( ), (1)
where the first term of E(C) is the length constraint of the
evolution curve, in which the curve (C) is originally provided
by an effective velocity trend band on the velocity spectrum; the
second term is the shape constraint of C; and the third and fourth
terms are the pixel losses based on the grayscale map of the
velocity spectrum inside and outside C, respectively, which are
calculated by Eqs 2, 3. μ, υ, λ1, and λ2 are the constant coefficients,
which are generally taken as 1.

E1 C( ) � ∫
inside C( )

I0 x, y( ) − C1

∣∣∣∣ ∣∣∣∣2dxdy, (2)

E2 C( ) � ∫
outside C( )

I0 x, y( ) − C2

∣∣∣∣ ∣∣∣∣2dxdy, (3)

where I0(x, y) denotes each pixel value of the inner region and outer
region of the evolution curve C. C1 and C2 are the average of the pixels
in the inner and outer regions of curve C, respectively. E1(C) and
E2(C) are minimized when the evolution curve C can correctly
partition the effective reflected energy clusters of the velocity
spectrum.

To correctly solve the evolution of C, the CV model uses the level
set method when the energy function is minimized, and the level set
method replaces the evolution of C with the evolution of a curved
surface ϕ(x, y). The specific programs are as follows:

C � zω � x, y( ) ∈ Ω: ϕ x, y( ) � 0{ }
inside C( ) � ω � x, y( ) ∈ Ω: ϕ x, y( )> 0{ }
outside C( ) � Ω\�ω � x, y( ) ∈ Ω: ϕ x, y( )< 0{ }

⎧⎪⎨⎪⎩ . (4)

C is denoted by ϕ(x, y) � 0. The inner region of C is denoted by
ϕ(x, y)> 0, and the outer region of C is denoted by ϕ(x, y)< 0. Then,
we define a step function and its derivative as

H z( ) � 1, z> 0,
0, z< 0,

{ (5)

δ0 z( ) � d

dz
H z( ). (6)

Substituting Eqs 4–6 into Eq 1, the energy function of the curved
surface based on the level set is obtained as follows:

E(ϕ(x, y)) � μ∫
Ω

∇H ϕ x, y( )( )∣∣∣∣ ∣∣∣∣dxdy + ]∫
Ω

H(ϕ(x, y))dxdy
+λ1∫

Ω

I0 x, y( ) − C1

∣∣∣∣ ∣∣∣∣2H ϕ x, y( )( )dxdy
+λ2∫

Ω

I0 x, y( ) − C2

∣∣∣∣ ∣∣∣∣2(1 −H(ϕ(x, y))dxdy

. (7)

Using the energy function E and its corresponding
Euler–Lagrange to minimize Eq 7, the result is

zϕ

zt
� δ0 ϕ( ) μdiv

∇ϕ

∇ϕ
∣∣∣∣ ∣∣∣∣( ) − ] − λ1 I − C1( )2 + λ2 I − C2( )2[ ], (8)

C1 �
∫
Ω
I0 x, y( )H ϕ x, y( )( )dxdy
∫
Ω
H ϕ x, y( )( )dxdy , (9)

C2 �
∫
Ω
I0(x, y)(1 −H(ϕ(x, y))dxdy
∫
Ω

1 −H(ϕ(x, y))dxdy( . (10)

Therefore, the final evolution partial differential equation of the
CV model is

zϕ

zt
� δ0 ϕ( ) μdiv

∇ϕ

∇ϕ
∣∣∣∣ ∣∣∣∣( ) − ] − λ1 I − C1( )2 + λ2 I − C2( )2[ ]

ϕ|t�0 � u x, y( )
⎧⎪⎪⎨⎪⎪⎩ , (11)

where u(x,y) denotes C at the initial moment of the evolution equation.
In our method, to obtain faster and more accurate segmentation results,
experts are required to combine geophysical and geological theories to
give the original range of velocity, which is treated as u(x,y), and the
energy clusters outside the u(x,y) are not involved in the subsequent
clustering. Then, the following advantages can be obtained:

1) The curve evolution speed can be accelerated
2) The interference of multiples and other noises can be avoided
3) The valid velocity candidate region can be provided for mean-shift

clustering

Also, the process of segmenting the velocity spectrum using the
CV model can be summarized as follows:

1) Size regularization and random noise filtering for the velocity
spectrum

2) Energy-oriented grayscale of the velocity spectrum
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3) Provide an initial evolutionary curve by experts
4) Evolve segmentation curves to obtain an effective velocity

candidate region for mean-shift clustering

2.1.2 Velocity spectrum segmentation examples
Our aim is that the CV model can segment the velocity energy

clusters that are truly effective as shown in Figure 2 and Figure 3, just
as the manual pickup of energy clusters. We applied the CV model
with expert constraints previously to the velocity spectra of one
synthetic data and one real data. Depending on the lateral
variation of the velocity, the expert constraint bands were
implemented at intervals of 10 and 500 velocity spectra. Figure 2
shows the segmentation result of the 40th velocity spectrum of the
Marmuosi model (Martin et al., 2006). For high signal-to-noise ratio
synthetic data, the CV model can well identify the effective energy
clusters of the velocity. Figure 3 shows the segmentation results of the
3900th velocity spectrum of the real data, which develops multiples in
6–9 s. The energy clusters of multiples velocity are interference signals,
which generally appear in the high-time low-velocity region in the
velocity spectrum as shown in Figure 3, and the CV model can avoid
the effect of multiples energy clusters after the expert experience
constraint and just obtaining the valid energy clusters of the velocity.

2.2 Mean-shift clustering for energy cluster
picking

Mean-shift clustering based on density does not need to artificially
determine the number of clusters and the initial cluster center

locations like other algorithms, such as K-means. It can
automatically select the number of clusters based on the density
distribution of the data (Wang et al., 2018). Therefore, mean-shift
clustering can be well adapted to a case of a continuous distribution of
energy clusters on the velocity spectrum. At the same time, mean-shift
clustering is less computational, faster, and more stable, so we use
mean-shift clustering to improve efficiency.

2.2.1 Theory of mean-shift clustering
The mean-shift algorithm (Comaniciu and Meer, 2002) is an

iterative process in which the mean value position of the energy
cluster is calculated. In each iteration, the mean value position is
updated and then the updated position is used as a new start to
calculate the shift value until it reaches the threshold. The calculation
of the shift value can be expressed as

Mh � 1
k

∑
xi∈Dh

xi − x( ), (12)

where x is themean value position of the circleDh with x as the center and
h as the radius, and xi is the position of every energy point withinDh. k is
the number of energy points within Dh. Then, the x is updated by

x* � x +Mh. (13)
Eqs 12, 13 allow the mean value position to continuously move

toward the center of energy clusters, and the update stops when the
shift value Mh is less than the threshold value.

As shown in Eq. 12, the contribution of energy points within Dh

are the same when calculating the shift value; however, the energy of

FIGURE 2
(A) 40th velocity spectrum with a high signal-to-noise ratio of the Marmuosi model, (B) expert experience constraint band, and (C) segmentation result.
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each point on the velocity spectrum is different, leading to different
contributions. The larger the energy, the more the contributions will
be. Therefore, we applied an improved calculation of the shift value
based on energy weighting to improve the accuracy of energy cluster
picking:

Mh �
∑n

i�1G
xi−x
h

���� ����2( )ω xi( ) xi − x( )
∑n

i�1G
xi−x
h

���� ����2( )ω xi( )
, (14)

where G is the Gaussian kernel function, h denotes the radius of the
region Dh, and ω(xi) is the energy of xi within the region Dh.
Substituting Eq. 14 into Eq. 13 to obtain the new update equation,
we get

x* � ∑n
i�1G

xi−x
h

���� ����2( )ω xi( )xi
∑n

i�1G
xi−x
h

���� ����2( )ω xi( )
. (15)

Eq. 15 is used to iterate the mean value position of the energy
cluster, until x* moves to the position where the energy of the cluster is
maximum, which is regarded as the picking position.

2.2.2 Examples of velocity picking using mean-shift
clustering

We applied the mean-shift clustering method proposed previously
to identify the segmentation results of the CV model in subsection 2.2.
Due to the constraints of expert experience, the CV model only selects
the valid energy clusters of the velocity of effective reflection seismic
waves and abandons the incorrect energy clusters of the velocity of
disturbing multiples in deep regions. In fact, the most classic manual

method is based on personal experience to roughly pick up the valid
velocity energy clusters, while there is no valid energy cluster in the deep
region of a velocity spectrum, and they obtain the velocity by using
velocity curve fitting. So, when using the mean-shift clustering method,
only the energy clusters segmented by the CV model several times are
picked up. At other sampling times without valid energy clusters, we
obtain the velocity by fitting the velocity curve according to the expert
experience trend and accurate velocity obtained intelligently. To
illustrate the correctness of our proposed method more intuitively,
we place the real velocity of the Marmousi model and most classic
manual picking results of real data in Figure 4 and Figure 5 for
comparison, respectively. Furthermore, Figure 4 shows the picking
results of the 40th velocity spectrum of the Marmuosi model, and
Figure 5 shows the picking results of the 3900th velocity spectrum of the
real data. These tests show whether the velocity spectrum has a high
signal-to-noise ratio or interfering multiples development, and the
intelligent picking results we proposed in this article always conform
to the manual picking result; this means that our automatic picking
method can replace manual picking for high accuracy and efficiency,
with each velocity spectrum being picked up in just 1 s.

3 Examples

3.1 Synthetic data

To test the feasibility of the proposed method, we tested the 2D
Marmousi model shown in Figure 6A with 60 velocity spectra

FIGURE 3
(A) 3900th velocity spectrum with multiple developments in 6–9 s of real data, (B) expert experience constraint band, and (C) segmentation result.
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FIGURE 4
40th velocity spectrum of the Marmuosi model. (A) Segmentation result, (B) intelligent picking result by using themethod proposed, and (C) real velocity
curve.

FIGURE 5
3900th velocity spectrum with multiple developments in 6–9 s of real data. (A) Segmentation result, (B) intelligent picking result by using the method
proposed, and (C) manual picking result by semblance analysis.
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FIGURE 6
(A) True interval velocity field, (B) 40th CMP seismic records of synthetic data without noise, and (C) 40th velocity spectrum of synthetic data without
noise.

FIGURE 7
Stacking velocity field of synthetic data without noise. (A) True velocity, (B) K-means intelligent picking velocity, and (C) intelligent picking velocity by the
method proposed.
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responding to 60 CMPs, while the distribution of energy clusters of
velocity is different for each velocity spectrum. We selected a
representative part of P-wave velocity in the Marmousi model and
directly replaced the depth domain with the time domain. Through
Dix’s equation, we calculated the stacking velocity as a reference, as
shown in Figure 7A. It has a complex structure, in which the lateral
velocity changes sharply and the fault dip angle is large. There are
60 velocity spectra (CMPs) in the horizontal direction and 749 time
sampling points in the vertical direction, and the time interval is 2 ms.
All the velocity curves picked up on the 60 velocity spectra form a

complete two-dimensional velocity field. In fact, every velocity
spectrum is produced from seismic records through a series of
mathematical calculations; hence, the signal-to-noise ratio of the
seismic record determines the signal-to-noise ratio of the
corresponding velocity spectrum. First, we tested the velocity
spectra without noise which come from the seismic records, as
shown in Figure 6B and Figure 6C.

Figure 7B and Figure 7C show the two-dimensional stacking
velocity of traditional K-means and the method we proposed,
respectively, which are combined with the 60 picked curves of the

FIGURE 8
Stacking profiles of synthetic data without noise. (A) True velocity, (B) velocity of K-means, and (C) velocity of the method proposed.

FIGURE 9
(A) 40th CMP seismic records of synthetic data with random noise. (B) 40th velocity spectrum of synthetic data with random noise and strong energy
regular noise.
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FIGURE 10
Stacking velocity field of synthetic data with random noise and strong energy regular noise. (A) True velocity, (B) K-means intelligent picking velocity, and
(C) intelligent picking velocity by the method proposed.

FIGURE 11
Stacking profiles of synthetic data with random noise and strong energy regular noise. (A) True velocity, (B) velocity of K-means, and (C) velocity of the
method proposed.
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FIGURE 12
Velocity function of the 3500th velocity spectrum obtained by (A) manual, (B) K-means, and (C) the method proposed.

FIGURE 13
Velocity function of the 4300th velocity spectrum obtained by (A) manual, (B) K-means, and (C) the method proposed.
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60 velocity spectra. Every 10 velocity spectra are constrained by an
expert experience. In general, the two-dimensional stacking velocity
field obtained by our method is basically consistent with the real

velocity field shown in Figure 7A on the tectonic trend, while the one
with K-means contains a lot of background noise and incorrect
construction. Compared to the two-dimensional stacking velocity

FIGURE 14
Velocity function of the 100th velocity spectrum obtained by (A) manual, (B) K-means, and (C) the method proposed.

FIGURE 15
Velocity field of a 2D real data established by (A) manual, (B) K-means, and (C) the method proposed.
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field of K-means, our method is more continuous and stable, since
almost all the velocity spectra energy clusters are picked correctly just
like the real velocity spectra. In detail, local structures such as a deep
high-velocity body and shallow weak reflection interface in the
velocity field are also well portrayed by using our method. In
seismic data processing, the higher the accuracy of the velocity
field, the more realistic the stacked tectonic profile obtained is, and
then the subsurface structure is reflected more accurately. In addition,
we made an NMO stack using seismic records and the three velocity
fields in Figure 7 for further comparison in the tectonic profile, and the
stacked tectonic profiles are shown in Figure 8. Compared to the
K-means profile, the profile obtained by our method is closer to the
real structure shown in Figure 8A, and hence both the shallow and
deep structures’ imaging accuracy of our method is higher than the
K-means. With regards to efficiency, compared to the time required
for manual picking, our method is very efficient. It takes only
approximately 1 s to pick up one velocity spectrum, which
significantly improves the efficiency similar to the K-means
method, but our method has a highly accurate structure imaging
result.

In order to test the noise immunity of our proposed method, we
tested the 2D Marmousi model, from which the seismic records have
30% random noise, and the velocity spectra from the seismic records
had 30% random noise and, additionally, strong energy regular noise

rotated by valid energy clusters, as shown in Figure 9A, B. Compared
to the velocity field of K-means, as shown in Figure 10B, the velocity
field obtained by our method shown in Figure 10C is more consistent
with the real velocity shown in Figure 10A on the overall trend;
therefore, we can see that the K-means velocity has a large error both
in the shallow and deep regions of the velocity field. In addition, we
made an NMO stack using seismic records and the three velocity fields
of Figure 10 for further comparison from the tectonic profile. As
shown in Figure 11, the stack profile obtained by our method still has a
higher accuracy in structure imaging than the K-means, especially for
the deep region. The test results show that our method could obtain
better noise immunity. This means that our method is better adapted
to real noise-bearing seismic data in the field.

3.2 Real data

To further verify the applicability of the method we proposed, 2D
land data with 4,880 velocity spectra (CMPs) were first picked up
manually and then picked up intelligently by using K-means and our
method. There are often many energy clusters in the CMP velocity
spectrum of seismic data. In fact, these energy clusters are generated by
effective primary reflection seismic waves and interference multiple
reflection waves, each energy cluster corresponding to one velocity

FIGURE 16
Stacking profiles of (A) manual, (B) method proposed, and (C) K-means.
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value at that time. Compared to the energy clusters of primary
reflection waves, the interference energy clusters generated by these
multiple waves are often located at a lower velocity (near the left side of
the velocity spectrum). In the process of manual velocity picking by
the processors, it is necessary to identify and discard the energy
clusters generated by multiple reflection waves to avoid false
structures in the subsequent velocity field and stack profile.
Compared to traditional unsupervised clustering methods, such as
K-means, our method introduces expert experience to evade the
energy clusters in the deep region of the velocity spectrum
generated by the multiples in the real data so as to achieve the
accuracy of manual picking, while the K-means incorrectly picks
up the energy clusters of multiples and makes some false structures
on the subsequent velocity field and stack tectonic profile. The 3900th
velocity spectrum with multiples developing at 6–9 s shown in
Figure 4A is one of the 4,880 velocity spectra. In fact, after the
3500th velocity spectrum, this real data has obvious multiple
interference signals. Expert experience constraints are performed
every 500 velocity spectrums when we performed the intelligent
velocity picking method we proposed.

As shown in Figure 12 and Figure 13, the 3500th and 4300th
velocity spectrum of the land data are processed by experts, the
K-means method, and the method we proposed. Obviously, our
method can effectively avoid the interference of multiples, which
conforms to the trend of manual picking, while the K-means
regard the multiples as effective signals to be picked up. Figure 14
shows the picking results of the 100th velocity spectrum (CMP). The
signal-to-noise ratio of the velocity spectrum is low, and it is difficult to

see effective energy clusters. However, our method can maintain
consistency with the trend of manual results, as shown in
Figure 14A, due to the expert experience constraints, while the
K-means results are abnormal. Figure 15 shows the velocity field of
this 2D real data constructed by manual picking, K-means, and our
method. It is found that the velocity field established by K-means is
significantly different from the manual velocity field, and its accuracy
is seriously affected by the interference multiples. However, the
velocity field established by our method has the same trend and
structure as the manual one both in the shallow and deep regions,
and at the same time, the efficiency of our method is much faster than
that of manual picking, as it only takes about 1 s to pick up one velocity
spectrum while manual picking takes at least 30 s. As a whole,
compared to unsupervised clustering methods, such as K-means,
our method can better replace experts to pick up the velocity
spectrum, which improves efficiency and frees manpower, while
meeting the picking accuracy.

In addition, for a more intuitive comparison, we made an NMO
stack with the three velocity fields in Figure 15 for further
comparison in the tectonic profile, and as shown in Figure 16C,
the subsurface structure imaging profile of K-means has fuzzy
structures in the shallow red frame and false structures caused
by multiples in the deep red frame. However, the profiles of our
method and manual are the same as each other, both in the shallow
and mid-deep layers, and the subsurface imaging results of them
can provide references for subsequent geological understanding.
Moreover, since our method can pick up velocity spectra one by
one owing to the significantly decreased picking time, the profile of

FIGURE 17
Local enlarged stacking profiles of (A) manual, (B) method proposed, and (C) K-means.

Frontiers in Earth Science frontiersin.org14

Wang et al. 10.3389/feart.2023.1039683

52

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2023.1039683


our method even has a better imaging performance in the local
positions than the manual one at the red arrows in Figure 17A, B,
where the weak reflection events are strengthened and are more
continuous. For the K-means, its stack tectonic profile loses some
important structures, especially in the deep region, as shown in the
red frame of Figure 17C. All in all, from the tectonic profile, our
method has better image results than those of the manual and
K-means; hence, the method we proposed improves efficiency,
frees up manpower, and can better replace experts to pick up
the velocity spectrum automatically.

4 Conclusion

Up to now, manual velocity picking in seismic data processing was
the primary way; however, it is labor-intensive and repetitive. An
intelligent velocity picking method considering the expert experience
based on the Chan–Vese model and mean-shift clustering is proposed
by imitating the process of manual velocity picking so as to improve
efficiency and free up manpower. In our method, the valid velocity
energy clusters are identified by using the CV model with expert
experience constraints, which corresponds to the first step of manual
picking. Meanwhile, the clustering of the valid energy clusters
corresponds to the second step of manual picking by using the
mean-shift clustering method. These two steps translate geophysical
and geological theories into the geometry of energy clusters on the
velocity spectrum. The theoretical model and actual data test prove
that our method has several advantages as can be seen in the following
paragraph.

Compared to the manual and K-means, the method we proposed
can obtain a highly accurate velocity field and subsurface tectonic
imaging profile, which can provide a better reference for subsequent
geological understanding, while the K-means method always falls into
the wrong picking result. In terms of efficiency, our method takes only
approximately 1s to pick up one velocity spectrum similar to other
automatic methods such as K-means, while manual picking takes at
least 30 s. All in all, our method can replace manual velocity picking by
experts, which improves efficiency, frees up manpower, and enhances
picking accuracy.
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Self-adaptive seismic data
reconstruction and denoising
using dictionary learning based
on morphological component
analysis
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Data reconstruction and data denoising are two critical preliminary steps in

seismic data processing. Compressed Sensing states that a signal can be

recovered by a series of solving algorithms if it is sparse in a transform

domain, and has been well applied in the field of reconstruction, when,

sparse representation of seismic data is the key point. Considering the

complexity and diversity of seismic data, a single mathematical

transformation will lead to incomplete sparse expression and bad restoration

effects. Morphological Component Analysis (MCA) decomposes a signal into

several components with outstanding morphological features to approximate

the complex internal data structure. However, the representation ability of

combined dictionaries is constrained by the number of dictionaries, and cannot

be self-adaptively matched with the data features. Dictionary learning

overcomes the limitation of fixed base function by training dictionaries that

are fully suitable for processed data, but requires huge amount of time and

considerable hardware cost. To solve the above problems, a new dictionary

library (K-Singluar Value Decomposition learning dictionary and Discrete

Cosine Transform dictionary) is hereby proposed based on the efficiency of

fixed base dictionary and the high precision of learning dictionary. The self-

adaptive sparse representation is achieved under the Morphological

Component Analysis framework and is successfully applied to the

reconstruction and denoising of seismic data. Real data tests have proved

that the proposed method performs better than single mathematical

transformation and other combined dictionaries.

KEYWORDS

compressed sensing, dictionary learning, morphological component analysis, seismic
data reconstruction, seismic data denoising
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1 Introduction

The data required for seismic exploration are large and

complex, and limited by terrain conditions and the economic

cost, seismic data are often irregularly sampled, which may be

caused by the complex terrain constraints, including

buildings, lakes and forbidden areas for land acquisition

(Sun et al., 2021). The inadequate excitation of the artificial

source may also result in bad traces, thereby leading to

irregular, incomplete and alias frequency of seismic data

(Zhang et al., 2019). In order to meet the higher

requirements for seismic data quality in subsequent

processing, the most direct and effective method is to

supplement acquisition and encryption of missing seismic

traces (Huo et al., 2013; Zhang et al., 2017). However,

restricted by economic cost, it is difficult to re-collect data.

Therefore, it is necessary to use effective seismic data

reconstruction methods to reconstruct the missing seismic

traces in the later period. On the other hand, with the

development of seismic exploration to more complex areas

and deeper layers, the high elevation difference of topographic

relief or the lateral change of near-surface velocity lead to shot

excitation and poor receiver conditions, and the random noise

interference in the collected single shot records is very strong.

If these noises cannot be effectively removed, the migration

imaging quality and reservoir prediction accuracy will be

affected.

There are four main types of seismic data reconstruction

methods. One is the filter-based method (Zhang and Tong,

2003), which using interpolation filtering. However, it usually

treats the non-uniform grid sampling data as regular data, which

leads to large errors. The second is wave field continuation

method (Naghizadeh, 2010), which makes full use of

underground information. However, the unknown prior

information such as underground structure limits the

application of this method. Third, the fast rank reduction

method (Gao et al., 2013; Ma et al., 2013), which regards

interpolation as an image filling problem, has fast calculation

speed and simple parameter setting, but it still has limitations in

the reconstruction of irregular missing channels under non-

uniform grid sampling and its anti-aliasing ability. The fourth

method is the Compressed Sensing (CS) method, which can

reconstruct regular and irregular missing seismic traces without

any prior information such as underground structures, and has

high calculation speed and accuracy. Compressed sensing theory

is considered a key method for dealing with the problem of data

loss, and the three key factors of CS data recovery are data

sparsity, random sampling and optimal reconstruction algorithm

(Jiang et al., 2019). Since seismic data are not sparse, it is vital to

find suitable sparse dictionaries, so that the coefficients of the

signal in the dictionary can remain sparse. Indeed, there are

many mathematical transformations used for CS, such as Radon

transform (Xue et al., 2014; Tang et al., 2020), Fourier transform

(Luo et al., 2015; Wen et al., 2018), Wavelet transform (Cui et al.,

2003), Curvelet transform (Zhang et al., 2013; Han et al., 2018;

Wang et al., 2018), Seislet transform (Liu et al.,. 2013), etc. (Wang

et al., 2021). Seismic data are usually composed of different waves

and cannot be fully and effectively represented by a single

transformation (Wang et al., 2021). Li et al. proposed the

application of Morphological Component Analysis (MCA) to

seismic data reconstruction, which separates signals mainly by

virtue of the difference between components of different signals

(Li et al., 2012). MCA was first proposed to image denoising or

restoration and achieved good results. At present, it is widely

used in signal denoising, reconstruction, separation, repair and

fusion and other fields. Zhou et al. quantitatively evaluated the

data reconstruction effect of different sparse dictionary

combinations under the framework of MCA, and found that

the combination of discrete cosine transform (DCT) and curvelet

dictionary is provided with the highest reconstruction accuracy

(Zhou et al., 2015). Zhang et al. proposed the combination of the

Shearlet and DCT dictionary that can represent seismic data

more fully and guarantee more accurate reconstruction data

(Zhang et al., 2019). In addition to MCA, many more

advanced algorithms have been applied to seismic data

processing. In 2014, the Variational Mode Decomposition

(VMD) algorithm was first proposed and made a significant

achievement in the field of signal decomposition. The VMD is an

iterative search for the optimal solution of the variational model

to determine what we know about the modes and their

corresponding center frequencies and bandwidths. Each mode

is a finite bandwidth with a central frequency, and the sum of all

modes is the source signal (Dragomiretskiy and Zosso, 2014).

Subsequently, many experts and scholars have applied the other

decomposition methods to seismic data processing. In 2019, Liu

et al. proposed an improved EWT (IEWT) to decompose a non-

stationary seismic signal into several IMFs and describe its

frequency features. Finally, an adaptive spectrum

segmentation using detected boundaries based on the SSR is

obtained (Liu et al., 2019). They also first identify the major

components of the ground roll adopting the multichannel

variational mode decomposition (MVMD), which shows

significant improvements compared to the conventional

single-channel VMD. Next, separating ground roll and

reflections on the selected low-frequency IMFs through a

curvelet based blockcoordinate relaxation method (Liu et al.,

2021). However, the limitations of the mathematical dictionary

remain unchanged. Dictionary learning (DL) is a new

representative of interdisciplinary research field, which

integrates the theoretical ideas of sparse representation,

machine learning, image application and compressed sensing,

and is mainly used to solve the problem of dictionary design of

sparse representation model. Dictionary learning trains the

dictionary according to the characteristics of the processed

data, and can get the most adequate dictionary (Wang et al.,

2021). K-means algorithm, also known as the clustering
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algorithm, is considered the simplest dictionary learning method,

and detects clusters in the sense of least square error by

continuously classifying and updating center points. The

K-SVD algorithm (SVD: Singluar Value Decomposition) is an

extension of the K-means algorithm, which is also carried out by

continuously updating the base and classification (Aharon,

2006). Compared with fixed basis functions, dictionary

learning is self-adaptive and can achieve better reconstruction

and denoising quality, but its application demands huge time cost

and hardware requirements. Yu et al. has made important

contributions to the development of dictionary learning, and

has successively proposed learning by tight frame, Monte Carlo

data driven tight frame, fast rank reduction algorithm, etc., which

has improved the efficiency and effect of dictionary learning (Yu

et al., 2015; Jia et al., 2016; Yu et al., 2016; Yu et al., 2018). In

addition to compressed sensing, machine learning has also been

well applied to seismic data reconstruction. SegNet network

enables first-arrival picking at the same time as seismic data

reconstruction, and forges a solid foundation for the

development of data reconstruction and first-arrival picking

(Yuan et al., 2022). Liu et al. propose propose a wavelet-based

residual DL (WRDL) network to reconstruct the incomplete

seismic data. It considers not only features in the time

domain but also frequency features of seismic data, which

obtains good reconstruction results in real data (Liu et al., 2022).

Compressive sensing usually transforms seismic data into

sparse domain by some mathematical transformation

method, and then designs a filter in the sparse domain for

threshold processing, and then performs mathematical

inverse transformation, and finally achieves the purpose of

effectively removing noise in seismic data. In the case of the

denoising method of seismic data, various theoretical

methods have been academically proposed to filter out

different types of noise. For regular noise, multiple waves

can be removed by Radon transform (Shan et al., 2009), side

waves by K-L filtering, and surface waves by least square

filtering (Vaidyanathan, 1987). The theoretical basis of these

methods is the difference between the effective signal and the

regular noise in the characteristics such as frequency and

propagation direction. Meanwhile, commonly used

algorithms for random noise include frequency domain

filtering based on Fourier transform, f-x domain

prediction denoising (Spitz, 2012), wavelet transform (Jin

et al., 2005), etc. Filtering based on Fourier transform can

only filter out the random noise of the lowest and the highest

frequency band at both ends; the noise will also be enhanced

when the effective signal is enhanced in f-x domain

prediction denoising (Spitz, 2012); the wavelet transform

performs poorly in expressing the edge information of the

curve, and is subject to certain limitations in expressing the

hyperbolic features. Liu et al. proposed an EWT-based

denoising method in 2020 and effectively suppressed

noise. Synthetic data and 3D feld data examples also prove

the validity and efectiveness of the TFPF-EWT for both

attenuating random noise and preserving valid seismic

amplitude (Liu et al., 2020). In this case, as with

reconstruction, MCA and dictionary learning are also well

applied to the field of denoising. Olshausenp et al. proposed

the concept of learned dictionary in 1997, and applied

overcomplete dictionary to image denoising. As an

advanced and effective signal decomposition method,

VMD is also well applied to seismic data denoising. Zhang

et al. proposed a multi-channel scheme which is referred as

the multi-channel variational mode decomposition (MVMD)

based on multi-channel singular spectrum analysis (MSSA),

to efficiently and effectively separate and attenuate seismic

random noises. This method leverage the MSSA for each

decomposed IMF to separate and attenuate random noises

(Zhang et al., 2021). Lian et al. took the matching pursuit

method as a continuation technique of sparse representation

method, and obtained good progress (Lian et al., 2015).

Subsequently, Chen proposed the basis tracing method to

solve the sparse optimization problem (Chen et al.,. 2001),

and Olshausen et al. proposed the self-adaptive learning

complete dictionary (Olshausen et al., 2000). Tang et al.

first applied the learning complete dictionary to the

seismic data denoising. After many times of learning and

training of the input signal, the dictionary was updated and

the sparse representation coefficient was obtained, which

achieved better denoising effect than the traditional

method. However, the complexity of the seismic data led

to long operation time (Tang et al., 2012). Xu proposed to

FIGURE 1
Schematic diagram of DFT and DCT. (A)DCT; (B) DCT.
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FIGURE 2
Training Set. (A) A seismic image; (B) Examples of non-flat patches.

FIGURE 3
Partial dictionary images in different iterations. (A) Partial dictionary images in 5th iterations (E � 17.57); (B) Partial dictionary images in 10th
iterations (E � 15.85); (C) Partial dictionary image in 15th iterations (E � 14.16); (D) Partial dictionary images in 20th iterations (E � 10.23); (E) Partial
dictionary images in 25th iterations (E � 6.89); (F) Partial dictionary images in 30th iterations (E � 3.82); (G) Partial dictionary images in 35th iterations
(E � 1.22); (H) Partial dictionary images in 40th iterations (E � 0.53).
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replace MOD algorithm in K-SVD algorithm with StOMP

(Stagewise Orthogonal Matching Pursuit) algorithm, which

not only overcomes the over-matching phenomenon caused

by orthogonal matching pursuit (OMP) algorithm, but also

significantly improves the convergence speed (Xu et al.,

2016). With the development of learning methods,

Artificial Intelligence (AI) has been gradually applied to

seismic data denoising. Zhang et al. proposed a full

convolution denoising network based on residual learning,

which can remove various noises at the same time (Zhang

et al., 2017). Mao et al. proposed a full convolution network,

which uses convolution layer to encode to extract features,

and deconvolution layer to decode to recover clean data. In

recent years, DCNNs has also achieved good results in

suppressing random noise (Sang, 2021).

Aiming at the limitations of dictionary combination and the

inefficiency of dictionary learning, this paper comes up with a

new dictionary library (K-SVD+DCT) and realizes the self-

adaptive reconstruction and denoising of seismic data under

the MCA framework. In addition, we can also simultaneously

reconstruct and denoise to process missing noisy data. Tests of

real data have proved the effectiveness and applicability of the

proposed method.

FIGURE 4
Workflow of the proposed method.

FIGURE 5
Original image and sampled image. (A) Original image; (B) 50% missing data (SNR=3.03 dB PSNR=19.38 dB).
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FIGURE 6
Result via DCT+K-SVD. (A) Result via DCT+K-SVD (SNR=12.1 dB PSNR=28.45 dB); (B) Absolute error via DCT+K-SVD; (C) Reconstruction
component via K-SVD; (D) Reconstruction component via DCT.
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2 Theory

2.1 Morphological component
analysis (MCA)

Morphological Component Analysis (MCA) uses the

individual matching of sparse dictionaries to signal features to

achieve signal decomposition. A signal Y consists of K

morphological components xn:

Y � ∑K
k�1

Xn � ∑K
k�1

Dkαk (1)

where, αk is the sparse coefficient; Dk represents the sparse

dictionary. Due to the incoherence between the various

morphological components, the solution can be solved by Eq. 2:

αk � argmin
α

α‖ ‖0 s. t Xk � Dkα (2)

Feature selection on data using multiple dictionaries:

α1, ..., αk{ } � argmin
α1 ,L,αk{ }

∑K
k�1

α‖ ‖1 s. t Y � ∑K
k�1

Dkαk. (3)

To facilitate the solution, we convert Eq. 3 as Eq. 4:

α1, ..., αk{ } � argmin
α1 ,L,αk{ }

∑K
k�1

αk‖ ‖1 + λ Y −∑K
k�1

Dkαk

���������
���������
2

2

. (4)

Considering the purpose of decomposing the signal, the

vector α1, ..., αk{ } is transformed into X1, ..., Xk{ }, representing
that the signal contains K morphological components, and each

component of the signal is obtained by solving Eq. 5:

X1, ..., Xk{ } � argmin
X1 ,L,Xk{ }

∑K
k�1

D−1
k Xk

���� ����1 + λ Y −∑K
k�1

Xk

���������
���������
2

2

(5)

2.2 The theory of reconstruction based
on MCA

MCA believes that a combined dictionary has the sum of the

sparse representation capabilities of its combined components.

For example, the combined dictionary of Fourier and Wavelet

can well describe signals that contain both stationary and

localized features. This is more conducive to the full

expression of the data and the improvement of the

reconstruction quality. The compressed sensing reconstruction

process based on MCA is as follows:

A 2D signal X contains K components of different shapes,

which is as Eq. 1. The reconstruction of seismic data can be

expressed as follows:

Y � RX (6)

FIGURE 7
Result via K-SVD. (A) Result via K-SVD (SNR=15.88 dB PSNR=33.23 dB); (B) Absolute error via K-SVD.
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FIGURE 8
Result via Curvelet+DCT. (A) Result via Curvelet+DCT (SNR=11.45 dB PSNR=27.79 dB); (B) Absolute error via Curvelet+DCT; (C)
Reconstruction component via Curvelet; (D) Reconstruction component via DCT.

Frontiers in Earth Science frontiersin.org08

Wang et al. 10.3389/feart.2022.1037877

62

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.1037877


where,X stands for ideal complete seismic data; Y represents the

collected data with missing traces; R represents the sampling

matrix. In the MCA framework, Eq. 1 can be expressed as:

Y � RX � R∑K
k�1

Xk � R∑K
k�1

Dkαk (7)

Above is reformulated as an unconstrained optimization

problem:

αk � arg min αk‖ ‖1 + λ Y − R∑K
k�1

Dkαk

���������
���������
2

, (8)

Where, λ is the Lagrange multiplier is used to measure the

proportion of ℓ1 norm and ℓ2 norm.

The reconstruction algorithm’s solution, combined with the

BCR (Block Coordinate Relaxation, BCR) algorithm, offered the

following solution method based on the morphological

component. The solution process is:

Input: sample matrix R, the dictionary combination

D � [D1,/, Dk], missing seismic data Y, the total number of

iterations N; Output: reconstructed seismic data X′; Initialize:
each morphological component X(0)

i � 0, i � 1,/, K.

1) for: n � 1: N;

2) residual r(n) � Y − R · sum(X1, . . . , Xk);
3) for: k � 1: K;

4) αk(n) � Dk(Xk
(n), . . . , r(n));

5) Xk
(n) � Dk

−1Tλ(αk(n));
6) the threshold model is applied to reduce λ;

7) X′ � sum(X1,/, XK).

where, D−1 represents the inverse transformation of the

dictionary D; Tλ is the threshold function proposed, which

formula is:

T x, λ( ) � X · exp − λ/ x| |( )2−p( ) (9)

Besides the threshold λ, we have another independent

parameter p, which can be flexibly chosen to achieve better

performance. Based on the Taylor series, it is valuable to point

out that the exponential shrinkage can be considered a smooth ℓ0
constraint. For |x|≥ λ, it is a good approximation of the

p-thresholding operator and does not suffer the bias when

p ≠ 1. It reduces to Stein thresholding operator for p � 0 and

soft thresholding for p � 1. In solving the algorithm, it is

necessary to adjust the Lagrange multiplier to get the optimal

solution. The steps are as follows: First, a larger transform

domain coefficient is selected as the threshold value to obtain

the sparse approximate solution. Second, the value is

continuously reduced to include more transform domain

coefficients, and the optimal solution is approximated by

continuous iteration. The threshold selection strategy is called

FIGURE 9
Result via Shearlet. (A) Result via Shearlet (SNR=7.59 dB PSNR=23.94 dB). (B) Absolute error via Shearlet.
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a threshold model, which impacts the algorithm’s speed and

accuracy. Standard threshold models include linear models,

exponential models, and data-driven models. In this paper,

the exponential model is used, which has the form as:

λn � λ min/λ max( ) n−1
N−1 · λ max, n � 1, 2, . . . , N

λ max � q max ·max
i

D*Y| |i{ }
λ min � q min ·max

i
D*Y| |i{ }

(10)

where, λmax and λmin stand for the chosen maximum and

minimum regularization parameters, respectively. qmax and

qmin are user-defined percentages.N is the number of iterations.

2.3 The theory of denoising based on MCA

CS uses the structural differences between the useful signal

and random noise in the sparse domain to denoising. A noisy

seismic record y and its sparse representation can be

expressed as:

y � x + ε � Dα + ε (11)

where, ε represents random noise; D is a sparse dictionary; α is a

sparse coefficient; x is the original signal. Equation 11 can be

expressed in the form of MCA as:

y � ∑K
k�1

xk + ε � ∑K
k�1

Dkαk + ε (12)

To obtain sparse α, the following optimization problem is

solved using the same method as in 2.2:

min αk‖ ‖1 s. t y −∑K
k�1

Dkαk

���������
���������≤ σε (13)

3 Dictionary selection

The selection of D is the core problem of the MCA

Method. Different dictionaries have a significant influence

on the effect of sparse representation. We mainly focus on

the overall and local characteristics of seismic data. DFT

(Direct Fourier Transformer) and DCT (Discrete Cosine

Transform) can be used to transform the overall trend of

FIGURE 10
Result via DCT. (A) Result via DCT (SNR=3.03 dB PSNR=23.56 dB). (B) Absolute error via DCT.
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the data. We take x [n] and y [n] in Figure 1 as an example to

illustrate the advantages of DCT. We start by considering the

sequence y [n]=x [n]+x [2N-1-n] and this just consists of

adding a mirrored version of x [n] to itself. When transform is

DFT, we work with extension of x [n], when transform is DCT,

we work with extension of y [n]. From Figure 1, it can be seen

DFT case the extension introduces discontinuities but this

does not happen for the DCT, due to the symmetry of y [n].

The elimination of this artificial discontinuity, which contains

a lot of high frequencies, which is the reason why the DCT is

much more efficient.

A single mathematical dictionary cannot adequately sparse

the representation of seismic data, resulting in loss of

information and bad reconstruction data, dictionary learning

has been well applied to this problem. Therefor, for the local

characteristics of the data, we consider the K-SVD dictionary

learning algorithm. We divide the seismic data into two distinct

components, soK � 2. Shearlet transform getsD1 for k � 1, DCT

transform gets D2 for k � 2. The specific steps for training the

dictionary are as follows:

Assuming that there is a training database yi{ }Mi�1, which can

determine the generated model dictionary A. Suppose the

training error is ∈, and the goal is to find A. Create the

following training model:

min
A, xi{ }Mi�1

∑M
i�1

xi‖ ‖0 s. t yi − Axi

���� ����2 ≤∈ (14)

where, each signal yi can be expressed as the sparsest

representation A on the dictionary xi to be obtained.

If a dictionary A is obtained whose coefficients are sparse

when representing the data, a usable model R can be obtained.

Predecessors have proved that when ∈ � 0 and all elements in the

training database can be represented by k0 (k0 <spark (A0)/2)

atoms, there is a unique sparse dictionary A0. Therefore, sparsity

can also be used as a constraint, and the goal is to obtain the best

fit of the signal, as shown in Eq. 15:

min
A, xi{ }Mi�1

∑M
i�1

yi − Axi
���� ����22 s. t xi‖ ‖0 ≤ k0 (15)

The vectors in the database are combined into a matrix Y

by column, and the corresponding sparse representation forms

the matrix X. The problem of obtaining a dictionary is

equivalent to the problem of decomposing matrix Y into

AX, where the sizes of A and X are fixed and X has sparse

columns. The inner layer of Eq. 15 is the sparse problem of

representing vector xi when A is known, and the outer layer is

the minimization problem. In the kth iteration, each element yi

in the database is solved with the dictionary A(k−1) (the

dictionary obtained by the k-1st iteration) to obtain the

matrix X(k), and finally, the Least-Squares is used to

solve A(k−1):

FIGURE 11
Reconstructed single trace result (Red: Original data 221th
trace; Blue: Reconstructed data 221th trace). (A) Single trace result
via DCT+K-SVD; (B) Single trace result via Curvelet+DCT; (C)
Single trace result via K-SVD; (D) Single trace result via
Shearlet; (E) Single trace result via DCT.
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A k( ) � argmin
A

Y − AX k( )
���� ����2F � YXT

k( ) X k( )XT
k( )( )−1 � YX k( )−1

(16)

Y − AX k( )
���� ����2F � Y −∑m

j−1
ajx

T
j

����������
����������
2

F

� Y − ∑m
j ≠ j0

ajx
T
j

����������
����������
2

F

(17)

Where, xT
j represents the jth row of X. The items in parentheses

are used as the known error matrix, which is recorded as Eq. 18:

Ej0 � Y −∑
j≠j0

ajx
T
j (18)

The optimal aj0 and xT
j are approximations of Ej0 and their

rank must be 1. Solving with the SVD algorithm will generate a

dense vector xTj , which increases the number of non-zero items in

the X representation. To minimize the known error matrix while

keeping all expressed potentials unchanged. We take a subset of the

columns in Ej0 (the columns in this subset correspond to the signal

using the j0
th atom in the sample set), and the items in the row xT

j of

these columns are non-zero. In this way, only the non-zero

coefficient in xT
j changes, and the potential remains unchanged.

The detailed K-SVD dictionary learning algorithm is as follows:

Goal: Obtain the sparse dictionary A by solving the

approximate solution of Eq. 15;

Initialize: k � 0 and:

1) Initialize the dictionary: form A(0) ∈ Rn×m (random elements

or m randomly selected samples).

2) Normalization: Normalize the columns of A(0)

Main iteration: k � k + 1, and perform the following steps:

3) Approximate solution using tracking algorithm, get

sparse representation x′i(1≤ i≤M), they form the

matrix x(k).

x′i � argmin
x

yi − A k−1( )x
���� ����22 s.t. x‖ ‖0 ≤ k0

4) K-SVD dictionary update stage: use the following steps to

update the columns of the dictionary and obtain A(k)
(repeat j0 � 1, 2, . . . , m).

1) Define the sample set Ωj0 � i|1≤ i≤M,X(K)[j0, j] ≠ 0{ }
that using the atom aj0;

2) Calculate the error Ej0 � Y −∑
j≠j0

ajxTj , where xi is the j-th

row of the matrix x(k);
3) Limit Ej0 by selecting only the column corresponding to

Ωj0 to get ER
j0
;

4) Apply SVD to decompose ER
j0
� UΔVT, update the

dictionary atom aj0 � u1 and the representation xRj0 �
Δ[1, 1] · V1.

FIGURE 12
DCT+K-SVD results via missing in different proportions. (A) 20% missing image. (B) Reconstructed result via 20% missing (SNR=18.37 dB
PSNR=34.72 dB). (C) Absolute error via 20% missing; (D) 40% missing image. (E) Reconstructed result via 40% missing (SNR=14.25 dB
PSNR=30.59 dB). (F) Absolute error via 40% missing. (G) 60% missing image. (H) Reconstructed result via 60% missing (SNR=9.83 dB
PSNR=26.17 dB). (I) Absolute error via 60% missing; (J) 80% missing image. (K) Reconstructed result via 80% missing (SNR=0.5 dB
PSNR=21.29 dB). (L) Absolute error via 80% missing.
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5) Stop condition: If the change of ‖Y − AX(k)‖2F is small

enough, stop the iteration; otherwise, continue the

iteration.

Output: get the result A(K).
Figures 2,3 show the update process of the K-SVD

dictionary. We select a piece of seismic image for the test.

We observe that out of a seismic data, less than half were

‘active’ (i.e., non-flat). We randomly choose 100 “active”

patches for the dictionary training. The image and

examples of ‘active’ patches extracted from it are shown in

Figure 2. Figure 3 shows the change of the dictionary after

every 5 iterations (from 5th to 40th). As the iterations proceed,

the dictionary contains more and more basic features. At the

5th iteration, the dictionary A(5) contains only some point

features, which are insufficient to express the events. At the

40th iteration, the dictionary A(40) contains many linear

features, and the linear basis functions of various forms are

sufficient to achieve the best sparse representation of the

seismic data. E is the error of each dictionary and the value

is found by Eq. 18. Figure 4 shows the workflow of the method.

4 Test

4.1 Evaluation parameters

To quantitatively describe the reconstruction results, this

paper introduces two evaluation parameters, which are

defined as follows:

1) Signal Noise Ratio RS/N

FIGURE 13
Curvelat+DCT results via missing in different proportions. (A) Reconstructed result via 20% missing (SNR=15.32dBdB PSNR=31.67 dB). (B)
Reconstructed result via 40% missing (SNR=8.87 dB PSNR=25.21 dB). (C) Reconstructed result via 60% missing (SNR=4.52 dB PSNR=20.87 dB). (D)
Reconstructed result via 80% missing (SNR=0.36 dB PSNR=16.71 dB). (E) Absolute error via 20% missing; (F) Absolute error via 40% missing. (G)
Absolute error via 60% missing; (H) Absolute error via 80% missing.
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FIGURE 14
Regularized reconstruction of real data. (A) Original data (SNR=2.16 dB PSNR=11.2 dB). (B) Reconstructed data (SNR=23.89 dB
PSNR=32.92 dB).

FIGURE 15
Original image and noisy image. (A) Original image. (B) Noisy image (SNR=−2.55 dB PSNR=13.79 dB).
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FIGURE 16
Denoising result via DCT+K-SVD. (A) Denoised data (SNR=3.67 dB PSNR=20.02 dB). (B) Removed noise.

FIGURE 17
Denoising result via DCT. (A) Denoised data (SNR=−1.19 dB PSNR=15.15 dB). (B) Removed noise.

FIGURE 18
Denoising result via Shearlet. (A) Denoised data (SNR=3.93 dB PSNR=20.28 dB). (B) Removed noise.
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FIGURE 19
DCT+K-SVD denoising results via different levels of noise. (A) Image with 20 Hz noise (SNR=6.99 dB PSNR=23.34 dB). (B) Denoised data via
20 Hz noise (SNR=9.65 dB PSNR=25.99 dB). (C) Removed noise via 20 Hz noise. (D) Image with 35 Hz noise (SNR=0.96 dB PSNR=17.31 dB). (E)
Denoised data via 35 Hz noise (SNR=5.9 dB PSNR=22.24 dB). (F) Removed noise via 35 Hz noise. (G) Image with 50 Hz noise (SNR=−3.88 dB
PSNR=12.46 dB). (H) Denoised data via 50 Hz noise (SNR=1.94 dB PSNR=18.29 dB). (I)Removed noise via 50 Hz noise. (J) Image with 65 Hz
noise (SNR=−6.98 dB PSNR=9.36 dB). (K) Denoised data via 65 Hz noise (SNR=−0.25 dB PSNR=16.09 dB). (L) Removed noise via 65 Hz noise.
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RS/N � lg
X‖ ‖22

X′ − X
���� ����22⎛⎝ ⎞⎠10

(19)

Where, X represents complete seismic data; X′ represents a

seismic data reconstruction.

2) Peak Signal Noise Ratio RP
S/N

RP
S/N � log 10

max X( )2
MSE

( )10

(20)

Among them, MSE represents mean square error, and its

calculation formula is as follows.

MSE � 1
mn

∑m
i�0
∑n
j�0

x i, j( ) − x′ i, j( )���� ����22 (21)

FIGURE 20
Real data denoising. (A) Original data (SNR=1.69 dB PSNR=26.79 dB). (B) Denoised data (SNR=5.93 dB PSNR=31.02 dB). (C) Removed noise.
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4.2 Reconstruction of real data

This paper first verifies the effectiveness of the proposed

method for the reconstruction of randomly sampled seismic data

by comparing four sets of experimental data. Figure 5A shows a

partial image of an offset profile, and Figure 5B depicts the image

obtained by randomly sampling 50% of the traces.

The proposed method can effectively reconstruct the

underground medium image in the case of a low sampling

rate. It can be seen from Figure 6 that the proposed method

can not only reconstruct the shallow reflection images, but the

deep weak reflection images are also well reconstructed.

Figure 6A presents the reconstruction result of DCT+K-SVD;

Figure 6B describes the reconstructed error, which represents

reconstructed quality without noise. Figures 6C,D show the

reconstruction components of K-SVD and DCT. It can be

seen that the reconstruction amount of K-SVD for small

structures is rich, and most structures that cannot be

accurately reconstructed by fixed dictionaries are well restored

by K-SVD. The simple structures, such as smooth events and

FIGURE 21
Real data processing. (A) Original data (SNR=13.61B PSNR=37.91 dB). (B) Reconstruct the denoised data (SNR=22.19 dB PSNR=46.49 dB).

TABLE 1 Evaluation values for different methods.

Before reconstruction Methods Evaluation values After reconstruction Values of change Time (s)

SNR=3.03 dB PSNR=19.38 dB K-SVD SNR 15.88 +12.85 400

PSNR 3.23

DCT+K-SVD SNR 15.93 dB +12.9 dB 280

PSNR 32.32 dB

Curvelet+DCT SNR 11.45 dB +8.42 dB 156

PSNR 27.79 dB

Shearlet SNR 7.59 dB +4.56 dB 128

PSNR 23.94 dB

DCT SNR 7.22 dB +4.19 dB 2

PSNR 23.56 dB
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strong low-frequency signal, can be easily reconstructed by DCT,

which greatly reduces the calculation amount of dictionary

learning and improves the efficiency. Figure 7 shows the

reconstruction results of K-SVD. Due to the optimal

expression of dictionary learning algorithm, K-SVD can

reconstruct seismic data with very high accuracy. However, it

will take a lot of time, which is particularly obvious when

processing huge real data. Figure 8 shows the reconstruction

result of Curvelet+DCT. Figure 8A reveals that although this

method can recover all the missing information, the

reconstructed data have insufficient energy, the details are

clearly depicted, and the microstructure cannot be

distinguished, while Figure 8B suggests the existence of errors

at various locations in the reconstructed data. It can be seen from

Figures 8C,D that the two dictionaries (Curvelet and DCT) have

limited recovery ability for small structures. Curvelet transform is

applicable to signals with curve characteristics, but DCT cannot

perfectly reconstruct the remaining signals. In contrast, the

Shearlet method is provided with a stronger reconstruction

ability, which combines multi-scale geometric analysis through

synthetic wavelet theory and affine system, and generates the

basis function by stretching, translating, and rotating a base

function. However, its lack of global sparse representation

ability gives rise to reconstruction noise caused by

undersampling in the reconstruction data, as shown in

Figure 9A. Figure 10 indicates that the DCT method can

TABLE 2 Evaluation values for different missing.

Before
reconstruction

Proportion of
missing (%)

Evaluation
values

Method After
reconstruction (dB)

Values of
change

Time
(s)

SNR=3.03 dB
PSNR=19.38 dB

20 SNR DCT+K-SVD 18.37 +15.34 dB 250

PSNR 34.72

40 SNR 14.25 +11.22 dB

PSNR 30.59

60 SNR 9.83 +6.8 dB

PSNR 26.17

80 SNR 5.56 +2.53 dB

PSNR 21.29

20 SNR Curvelet+DCT 15.32 +12.29 dB 160

PSNR 31.67

40 SNR 8.87 +5.84 dB

PSNR 25.21

60 SNR 4.52 +1.49 dB

PSNR 20.87

80 SNR 0.36 -2.67 dB

PSNR 16.71

TABLE 3 Evaluation values for different methods.

Before denoising Methods Evaluation values After denoising Values of change Time (s)

SNR=-2.55 dB PSNR=13.79 dB DCT+K-SVD SNR 3.67 dB +6.22 dB 176

PSNR 20.02 dB

DCT SNR −1.19 dB +1.36 dB 16

PSNR 15.15 dB

Shearlet SNR 3.93 dB +6.48 dB 98

PSNR 23.56 dB
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completely supplement the missing data, but its detail-describing

ability is poor, and the image cannot be reconstructed with a high

resolution. To further compare the reconstruction effects of the

four methods, the 221th trace is taken for a separate comparison,

and the results are shown in Figure 11. It can be seen from the

curves that the results obtained by the proposed method have the

best fit with the original signal. The Shearlet+DCT and Shearlet

method is seriously inconsistent in some areas (For example,

0.6 s–0.7 s and 1.4 s–1.5 s). The curve of the signal obtained by

the DCT and shearlet method poorly fits the original signal.

Table 1 shows the quantitative evaluation parameters of the five

methods, of which the proposed method has the highest

improvement in SNR and takes less time than K-SVD.

The following conclusions can thus be drawn from numerical

experiments: 1) DCT+K-SVD, Shearlet and DCT reconstruction

methods based on CS can complement the missing data at lower

sampling rates, while it is difficult for the Curvelet+DCTmethod to

complete the reconstruction. This is because the Curvelet will

recognize it as a boundary in the large vacancy position, and the

Curvelet is equipped with good boundary protection properties,

making it impossible to reconstruct the large missing location; 2)

Sparse transformation is the key to the reconstruction algorithm,

with sparser coefficients obtained after transformation indicating a

better reconstruction effect. This group of experiments shows that

Shearlet presents better reconstruction results than DCT because of

the multi-directional and multi-scale characteristics of Shearlet

transform, representing the signal more sparsely; 3. The hereby

proposed reconstruction method based on the DCT+K-SVD sparse

transformation can well reconstruct the underground medium.

Overall, the difference from original images is the smallest, while

that from SNR and PSNR are the biggest. The weak reflection image

at the bottom is also endowed with a better reconstruction effect in

terms of local details.

In order to explore the reconstruction ability of the proposed

method, data are reconstructed with different degrees of random

missing, including 20%, 40%, 60%, and 80%. The missing data

with four missing levels, the reconstruction results and the errors

are presented in Figure 12, where it can be noticed that the

reconstruction effect gradually decreases with the increase of the

number of deletions. However, it can be guaranteed that the

proposed method can maintain satisfactory results in the case of

less than 60% missing. When 80% of the data are missing,

although some small features cannot be perfectly

reconstructed, the information of the reconstructed data is

complete, the event axis is continuous, and the SNR is

improved. However, it can be seen from Figures 13D,H that

other dictionary combination methods (Curvelet+DCT) are

difficult to completely reconstruct a large number of missing

data, and their reconstructed data have discontinuous events and

low SNR ratio. Table 2 shows the parameters of K-SVD+DCT

before and after reconstruction of data with different missing

degrees.

The real seismic data of a certain work area are used to test

the applicability of the method. The humid climate caused

water accumulation in the ground, and multiple receivers on

the survey line are damaged, resulting in incomplete

acquisition data. Figure 14 is a partial display of the

original data. Multiple breaks can be observed in the

events, which will be further reconstructed to get complete

data and smooth events. Figure 14B shows the reconstruction

result, and all the missing data are found to have been

recovered. In addition, the events of the reconstructed data

are smooth and continuous, and the SNR of the data is also

improved.

4.3 Denoising of real data

The proposed method is hereby applied to Compressed

Sensing denoising that uses the differences between useful

signal and random noise in sparse domain for denoising. In

order to verify the effectiveness of the method, a part of the offset

profile is selected for the experiment. The data have a total of

350 traces and 800 sampling points, as shown in Figure 15.

TABLE 4 Evaluation values for different noise.

Proportion of noise (Hz) Evaluation values Before denoising After denoising Values of change

20 SNR 6.99 dB 9.65 dB +2.66 dB

PSNR 23.34 dB 25.99 dB

35 SNR 0.96 dB 5.9 dB +4.94 dB

PSNR 17.31 dB 22.24 dB

50 SNR −3.88 dB 1.94 dB +5.82 dB

PSNR 12.46 dB 18.29 dB

65 SNR −6.98 dB -0.25 dB +6.73 dB

PSNR 9.36 dB 16.09 dB
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Figure 15B describes the data with noise, the main frequency of

which is 40 Hz. DCT+K-SVD is hereby compared with DCT and

Shearlet+DCT to prove its superiority. Figures 16–18 are the

denoising result and the removed noise of the three methods.

Figure 16 depicts the denoising result of the proposed method,

and suggests that the method can efficiently extract useful signals

of the deep and shallow layers. Additionally, this method does

not cause any information loss and better retains the original data

characteristics. Figure 17 shows that the denoising ability of the

DCT method is weak and fails to effectively suppress random

noise. In contrast, the Shearlet method has a stronger denoising

ability and can basically suppress all the noise. However, due to

the lack of self-adaptation, this method is still subject to the

problem that the useful signals are suppressed, and the removed

useful signals can be seen from Figure 18. Table 3 shows the noise

reduction evaluation parameters of the three methods. The

denoising ability of the proposed method is tested under

different degrees of random noise, including 20Hz, 35Hz,

50Hz, and 65 Hz. Figure 19 shows the noisy data with four

levels, the denoising results and the removed noise, and it can be

observed from Figure 19J that even under the interference of

strong noise, the effective signal is covered by a large area, making

it still possible to extract useful signals and obtain satisfactory

denoising results. Table 4 shows the relevant parameters.

To verify the applicability of this denoising method, the real

data, a single shot record of a work area in western China, with a

total of 800 traces and a sampling time of 2.5s, are further

processed. Figure 19A reveals that the data contain a lot of

noise. The existence of random noise and linear line noise makes

the SNR of the shot set data low, and the continuity of the event is

poor. Figure 20B shows the denoising result of DCT+K-SVD,

indicating that most of the random noise is effectively

suppressed, and that the event between 1.25 m and 1.5 m is

clearer. The SNR of the data has been significantly improved, and

forged a good foundation for subsequent processing. Figure 19C

depicts the removed noise, and reveals that not only random

noise is removed, but some linear noise and surface waves are

also suppressed to a certain extent. The reason is that the

dictionary learning algorithm self-adaptively learns the

characteristics of the useful signal that can effectively

distinguish the useful signal from other signals.

4.4 Process of real missing noisy data

This section presents the comprehensive application of the

proposed method, based on which, the reconstruction and

denoising of missing noisy data are implemented. Original

data and processed data are shown in Figure 21. Figure 21A

describes the original data, where partial missing and random

noise can be observed. Figure 21B reveals that all the missing

information is accurately recovered, and that the SNR is also

significantly improved.

5 Conclusion

Problems such as missing tracks and bad tracks generally give

rise to the incompletion of the seismic data. From the inversion

perspective, incomplete image reconstruction is an ill-posed

inverse problem, and seismic signals are inevitably affected by

noise during the propagation process, which reduces the quality

of seismic data and brings difficulties to subsequent

interpretation work. However, compressed sensing

reconstructs the data using the sparsity of the signal, and is

well applied in the fields of regular reconstruction and denoising.

A new dictionary combination, i.e., K-SVD+DCT, is hereby

proposed under the MCA framework, which overcomes the

limitation of fixed base functions by training dictionaries fully

suitable for processed data. DCT is a global type transformation

used to reconstruct a smooth event. Therefore, the coefficients of

the signal obtained using K-SVD+DCT are sparser, and have a

good reconstruction and denoising effect on both pre-stack and

post-stack data. Considerable experiments show that the hereby

proposed method can reconstruct the image well, that the relative

error of the reconstruction result is limited, and that the local

details and the deep weak reflection signal can also be well

reconstructed. Besides, even under the interference of strong

noise, the effective signal is covered by a large area, and it is still

possible to extract useful signals and obtain satisfactory denoising

results. Indeed, this method retains both the fast operation of

mathematical transformations and the high precision of

dictionary learning. However, only the training time of

dictionary learning is reduced by reducing the training data.

To this end, the focus of future work will be placed on improving

the dictionary learning time and developing efficient dictionary

learning algorithms.
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Prestack seismic random noise
attenuation using the
wavelet-inspired invertible
network with atrous convolutions
spatial pyramid

Liangsheng He1,2, Hao Wu1,2* and Xiaotao Wen1,2
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Ministry of Education, Chengdu, China, 2Chengdu University of Technology, Chengdu, China

Convolutional Neural Network (CNN) is widely used in seismic data denoising due
to its simplicity and effectiveness. However, traditional seismic denoisingmethods
based on CNN ignore multi-scale features of seismic data in the wavelet domain.
The lack of these features will decrease the accuracy of denoising results. To
address this barrier, a seismic denoise method based on the wavelet-inspired
invertible network with atrous convolutions spatial pyramid (WINNet_ACSP) is
proposed. WINNet_ACSP follows the principle of lifting wavelet transform. The
proposed method utilizes the redundant orthogonal wavelet transform to obtain
frequency multi-scale information from noisy seismic data. Then predict update
network (PUNet) extracts spatial multi-scale features of approximate and detailed
parts. The sparse driven network (SDN) learns the complex multi-scale
information and obtains sparse features. These sparse features are processed
to eliminate random noise. Compared to standard convolution, the atrous
convolutions spatial pyramid (ACSP) can extract more features. The redundant
features are the key to ensure the precision of multi-scale information. Therefore,
the introduction of ACSP in PUNet can guarantee the denoising effect of the
network. WINNet_ASCP combines the characteristics of wavelet transform and
neural network and has a high generalization. Besides, transfer learning is used to
overcome the difficulty caused by the training sample size of seismic data. The
training process includes pre-training and post-training. The former is trained to
obtain the initial denoising network by natural image samples. The latter is trained
with a small sample of seismic data to enhance stratigraphic continuity. Finally, the
proposed method is tested with synthetic and field data. The experimental results
show that the proposedmethod can effectively remove random noise and reduce
the loss of detailed information in prestack seismic data. In the future, wewill make
further improvements on this basis and conduct experiments on 3D prestack data.
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1 Introduction

Random noise can affect the signal-to-noise ratio (SNR) of
seismic data. Suppressing random noise and improving the SNR
of seismic data is a critical step in seismic signal processing (Kong
and Peng, 2015; Saad and Chen, 2020; Zhong et al., 2021). So far,
researchers have come up with many methods to suppress random
noise. Common methods include predictive filtering (Chen and Ma,
2014; Liu et al., 2020; Wang et al., 2021), mode decomposition (Han
and van der Baan, 2015; Gómez and Velis, 2016; Long et al., 2021),
low-rank constraints (Anvari et al., 2017; Chen et al., 2017; Huang,
2022), and transform domain (Kesharwani et al., 2022; Xie et al.,
2022; Zhang et al., 2022).

Predictive filtering exploits the predictability of seismic data to
suppress random noise. Canales and Lu (1993) first time proved the
feasibility of predictive filtering technology in seismic data denoising
field. Chen and Sacchi (2017) proposed a predictive filtering
approach to simultaneously suppress mixed noises. This
approach utilizes the hybrid L1/L2 norm to design a robust
M-estimate of a special autoregressive moving-average model.
The experimental results show that the model can effectively
remove the mixed noise. Besides, Liu and Li (2018) proposed an

adaptive predictive filtering method for non-stationary seismic
signals. This method utilizes streaming characteristics to speed
up the computation and uses signal-to-noise orthogonalization to
enhance the denoising ability. Experiments on field data
demonstrate the superiority of the method.

Mode decomposition-based denoising methods use
correlation to separate seismic data into signal and noise
components. Cai et al. (2011) utilized empirical mode
decomposition to denoise seismic record. The denoising result
showed that mode decomposition can suppress random noise.
Zhang and Hong (2019) proposed a random noise suppression
method based on the complete ensemble empirical mode
decomposition. The results show that complete ensemble
empirical mode decomposition has high feature recognition
ability in complex random desert noise. Wu et al. (2022) uses
multivariate variational modal decomposition on the segmented
seismic data. This method significantly improves the lateral
continuity and SNR of the seismic data.

Low-rank constrained denoising methods utilize seismic
data’s low-rank property to remove random noise. Wang et al.
(2018) proposed a Hankel low-rank approximate denoising
approach. Hankel structure can enhance the seismic low-rank

FIGURE 1
The network structure of WINNet_ACSP.

FIGURE 2
Lifting scheme wavelet transform.
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property. The enhanced low-rankness effectively removes
random noise. Feng et al. (2021) proposed a denoising method
using low-rank tensors. This method applies low-rank
constraints to the seismic data tensor and improves the
structural similarity of seismic data.

Transform domain-based denoising methods utilize the
characteristics of seismic data in different transform domains to
attenuate random noise. Zwartjes and Gisolf (2007) used Fourier
transform to reconstruct seismic data. The high SNR reconstruction
results demonstrate the feasibility of this method. Liang et al. (2018)
proposed a denoising method based on the non-subsampled shearlet
transform. The results show that the non-subsampled shearlet

transform can suppress random noise and retain effective signals.
Chen and Song (2018) used wavelet decomposition to decompose
seismic data into multiple components. Then different threshold
methods are applied to different seismic data components to achieve
random noise suppression.

Predictive filtering, mode decomposition, low-rank
constraints, and transform domain use the prior information
of seismic data to construct suitable optimization strategies.
Though these methods have good denoising ability and
generalization abilities, denoising results are easily affected
by human factors because of their large number of
hyperparameters. To reduce the interference of human
factors, researchers proposed the learning-based denoising
method (Beckouche and Ma, 2014; Chen, 2017; Richardson
and Feller, 2019; Yu et al., 2019). Dictionary learning and
deep learning are commonly used strategies. Dictionary
learning-based denoising methods train appropriate
dictionary elements and linearly combine the elements to
suppress random noise. Beckouche and Ma (2014) proposed
a step-decomposable dictionary learning denoising method.
The field data denoising result show that this method has a
good denoising performance. Wang and Ma (2019) used the
variation of noise variance in space to design a dictionary
learning method with adaptive threshold parameters. The
introduction of self-adaptation can realize blind denoising of
seismic data and obtain signals with a high SNR. Kuruguntla
et al. (2021) introduced a double sparse dictionary learning
constraint to improve the denoising performance. This method
combines the strength of the analytical transform and adaptive
transform to suppress mixing noise. Chen et al. (2023) proposed
a robust dictionary learning denoising method to reduce the
loss of effective signal. This method retrieves leaked seismic
signals by introducing a Huber-norm sparse coding model.
Synthetic data and field data demonstrate the effectiveness of
this method.

The denoising method based on deep learning distinguishes
random noise from effective seismic signals by extracting the
implicit features of seismic data through a neural network.
Zhang et al. (2018) proposed a fast and flexible denoising
convolutional neural network (FFDNet) to suppress noise.
Numerous experimental results prove that FFDNet can
flexibly and efficiently suppress random noise. Yu et al.
(2019) attenuated the random and linear noise of complex

FIGURE 3
The process of predict and update.

FIGURE 4
The structure of PUNet.

FIGURE 5
Atrous convolution with different dilation rates. (A) Dilation rate of 1; (B) Dilation rate of 2; (C) Dilation rate of 3; (D) Dilation rate of 4.
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seismic data using CNN. Experimental results prove the
potential applications of CNN in suppression of random,
linear, and multiples noise. Guo et al. (2019) proposed a
convolutional blind denoising network (CBDNet) to eliminate
random noise. The experimental results show that CBDNet can
flexibly remove different levels of random noise by introducing a
noise level estimation subnetwork. Sang et al. (2020) proposed a
denoising method for multidimensional geological structure
features based on the end-to-end deep denoising
convolutional neural networks (DCNNs). DCNNs have a
good denoising ability for complex geological structures, by
extracting the characteristics of seismic data in different
directions. Yang et al. (2021) proposed a denoising approach
for 3-D seismic data by deep skip autoencoder. This approach
uses the deep skip autoencoder to extract the waveform features
of each seismic data patch. Feng and Li (2021) combined
singular value decomposition (SVD) and neural networks to
suppress noise interference in distributed acoustic sensing. The
introduction of SVD improves the network’ generalization and
can accurately represent complex features in seismic data. Dong
et al. (2022) utilized a spatial attention mechanism and
convolutional neural network to distinguish weakly reflected
seismic signals from strong random noise. The spatial attention
further strengthens the denoising ability of the convolutional
neural network.

Learning-based methods can extract various implicit features of
seismic data. Through these implicit features, non-linear mapping of
noiseless seismic data and noisy seismic data can be established.
However, learning-based methods rarely take into account the
advantages of other categories of methods approaches. For

example, the wavelet transform threshold-based denoising
method proved that the multi-scale features of seismic data can
suppress random noise. But learning-based methods do not consider
multi-scale information. The lack of multi-scale information results
in a limited denoising effect of learning-based methods. To extract
more abundant seismic information and improve the denoising
effect, a wavelet-inspired invertible network with atrous
convolutions spatial pyramid (WINNet_ACSP) is proposed for
seismic denoising task. The proposed method consists of the
lifting inspired invertible neural network with atrous
convolutions spatial pyramid (LINN_ACSP) and sparse driven
network (SDN). LINN_ACSP and SDN follow the principle of
lifting wavelet transform and soft threshold operation,
respectively. Therefore, LINN_ACSP inherits the multi-scale
characteristic, sparsity, and perfect reconstruction characteristic
of the lifting wavelet transform. Multi-scale features can ensure
that the network effectively suppresses random noise. Sparsity can
be exploited by soft-thresholding to distinguish random noise.
Perfect reconstruction characteristic ensures that effective signals
are not leaked. LINN_ACSP can obtain the frequency and spatial
multi-scale information of seismic data through the splitting
operator, prediction and update network (PUNet). The detail and
approximate parts of the seismic data can be obtained by using this
multi-scale information. Using the sparse detail part obtained by
LINN_ACSP, the SDN learns to denoise the detail coefficients and
obtains the denoised detail coefficients. Besides, to overcome the
difficulty caused by the training sample size of seismic data, the
proposed method utilizes transfer learning for training. Finally, the
proposed method and other state-of-the-art methods are tested with
synthetic and field seismic data. The experimental results show that
the proposed method can effectively remove random noise and
reduce the loss of detailed information in prestack seismic data.

2 Methods

Noisy seismic data can be expressed as follows

Y � X + N (1)
where Y represents noise-containing seismic data observed in the
field, X denotes seismic data, and N indicates additive white
Gaussian noise.

In this work, we propose a method for attenuating prestack
seismic random noise using WINNet_ACSP. The LINN can obtain
frequency multi-scale features in the wavelet domain (Huang and
Dragotti, 2022). Embedding ACSP in LINN can extract spatial
multi-scale features of the approximate or detail parts. LINN_

FIGURE 6
Atrous convolutions spatial pyramid.

FIGURE 7
Convolution. (A) Standard convolution; (B) Depth-wise separable convolution.
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ACSP combines the characteristics of wavelet transform and neural
networks. The entire network structure of WINNet_ACSP follows
the wavelet threshold principle. At the same time,WINNet_ACSP as
a neural network can realize non-linear mapping. The network
structure of WINNet_ACSP is shown in Figure 1.

In Figure 1, LINN_ACSP represents lifting inspired invertible
neural networks with atrous convolutions spatial pyramid, SDN
denotes the sparse-driven network, D indicates the detail part,
representing the boundary information, A is the approximate
part, representing the smoothing information, n indicates the
n-th scale, and the superscript ~ indicates the part after
denoising.

WINNet_ACSP consists of LINN_ACSP and SDN. The forward
pass of LINN_ACSP learns to perform a non-linear redundant
transform on seismic data to obtain the multi-scale approximation
part and detail part. The SDN learns to denoise the detail coefficients
and obtains the denoised detail coefficients. Finally, using the

backward pass of LINN_ACSP, the approximate part and the
denoised detail part are reconstructed to obtain denoised seismic data.

2.1 LINN_ACSP

The denoising method based on wavelet transform can well
remove the random noise in seismic data (Aghayan et al., 2016). The
lifting scheme is known as the second-generation wavelet transform
(Sweldens, 1998). The second-generation wavelet transform process
can be divided into three steps: split, predict and update. Each step
can be reconstructed by changing the direction and sign of the data
flow. The splitting and merging process of the lifting scheme wavelet
transform is shown in Figure 2.

In Figure 2, p represents the predict step, u denotes the update
step, d [ ] indicates the detail part, a [ ] is the approximate part, s [
] represents seismic data or approximate part, and n indicates the
n-th scale.

However, for the split step, the lifting scheme wavelet transform
uses a non-redundant transform. Affected by random noise, the non-
redundant transformation will lose some important seismic
information. For the prediction and update steps, the lifting scheme
wavelet transformutilizes a simple linear formula and cannot accurately
represent complex spatial features. For the above problems, some
researchers use neural networks to complete the above requirements.
LINN_ACSP is an invertible neural network with a structure inspired
by the lifting scheme. LINN_ACSP inherits the sparsifying ability,
perfect reconstruction characteristics, and multi-scale characteristics
of the wavelet transform. Similar to the lifting scheme wavelet
transform, LINN_ACSP consists of a splitting/merging operator, and
a learnable predict and update network (PUNet).

2.1.1 Splitting/merging operator
LINN_ACSP uses redundant linear operators as a splitting

operator, denoted as S. The split operator S is parameterized by a
convolution kernel K∈Rc×1×ρ×ρ, where c denotes the number of
channels and ρ denotes the spatial filter size.

FIGURE 8
The structure of sparse driven network.

FIGURE 9
Training loss.
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Using the redundant split operator to process the seismic data,
the approximate part and the detail part with frequency multi-scale
are obtained, as shown in the following formula

S Y( ) � A1,D1( ) (2)

where A1 represents the approximate part of the first scale, andD1 is
the detail part of the first scale.

To ensure invertible, the merge operatorM is parameterized
by the transpose of the convolution kernel corresponding to
the split operator. The merge operator reconstructs the

FIGURE 10
Synthetic Seismic Data. (A) Noise-free data; (B) Noisy data.

FIGURE 11
Synthetic seismic data denoising results section. (A) DMSSA; (B) SSWT-GoDec; (C) DnCNN; (D) The proposed method; (E) Removed noise by
DMSSA; (F) Removed noise by SSWT-GoDec; (G) Removed noise by DnCNN; (H) Removed noise by the proposed method.
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approximate part and detailed part into seismic data. It can be
defined as

M A1,D1{ }( ) � Y (3)
where { } is the concatenation operation.

Redundant representation can effectively reduce the leakage
of seismic information and improve the stability of
reconstruction results. Considering the waveform
characteristics of seismic records, the sym2 wavelet is used to
construct the convolution kernel K.

2.1.2 PUNet
LINN_ACSP uses a learnable convolutional neural network

with ACSP to imitate the prediction and update operations
in the lifting scheme wavelet transform. This convolutional
neural network is named PUNet. PUNet can adaptively

learn the corresponding non-linear features of the
approximate part and the detailed part. These non-linear
features are used to predict the detail part and update the
approximate part. Completing one prediction and update
process can be called one lifting step. Suppose there are m
pairs of PUNet, in the n-th scale. The m times of lifting steps
are shown in Figure 3.

In Figure 3, P represents the predict network, U denotes the
update network, and the subscript m indicates the m-th lifting
step. This paper sets m = 4.

In the forward transform, the approximate part and the detail
part of the seismic data are non-linearly transformed by the neural
network into a representation that is easier to denoising. For the
approximate part An and detailed part Dn split in the n-th scale, the
predict network uses the correlation between the approximate part
and the detail part to perform prediction operation on the

FIGURE 12
The F-K spectrum of the seismic data. (A) Clean data; (B) Noisy data; (C) DMSSA; (D) SSWT-GoDec; (E) DnCNN; (F) The proposed method.
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approximate part. The m-th pairs predict operation can be
expressed as

Dn,m � Dn,m−1 − Pn,m An,m−1( ) (4)
The purpose of the predict network is to make Dn,m sparser.
The update network act on the detail part to obtain the update

result. Add the updated result and the approximate part to get the
adjusted approximate part. The m-th pairs update operation can be
expressed as

An,m � An,m−1 + Un,m Dn,m−1( ) (5)
The purpose of the update network is to make the approximate

part An,m smoother.
In the backward transform, the denoised detail part and

approximate part are reconstructed back to the original domain
by the same set ofm pairs PUNet used in the forward transform. The
formula is as follows

Dn,m−1 � Dn,m + Pn,m An,m−1( ) (6)
Cn,m−1 � Cn,m − Un,m Dn,m−1( ) (7)

2.1.3 Structure of PUNet
To accurately predict and update the detail and approximate

parts, PUNet needs to extract spatial multi-scale features of the
detail and approximate parts. So PUNet is constructed by
ACSP, residual blocks with depth-wise separable convolution,
and the soft-thresholding operator approximated as the
activation function. The network structure of PUNet is shown
in Figure 4.

In Figure 4, ACSP represents atrous convolutions spatial
pyramid, RB indicates residual block with depth-wise separable
convolution, Conv2D is the 2D convolutional layer, and the
subscript j represents j-th RB. This paper sets j = 4.

2.1.3.1 Atrous convolutions spatial pyramid
Atrous convolution is also called dilated convolution. Atrous

convolution can change the receptive field by changing the

dilation rate without increasing the number of convolution
kernel parameters. The convolution kernel of atrous
convolution is equivalent to inserting zeros between adjacent
filter values in the horizontal or vertical direction of the
convolution kernel of standard convolution. As shown in
Figure 5, the larger the dilation rate, the larger the receptive
field of the atrous convolution.

ACSP contains multiple parallel branches of the atrous
convolutions with different dilation rates, shown in Figure 6.
ACSP can extract spatial multi-scale features of approximate
part and detail part (Ma et al., 2019). These spatial multi-scale
features are fused by 1 × 1 convolution and input to the residual
block.

2.1.3.2 Residual block with depth-wise separable
convolution

The residual block directly stacks the input on the output
through the skip connection to realize the feature fusion of the
current module and the previous module. Feature fusion can
solve the gradient vanishing problem during neural network
training. Specifically, the residual block converts the original
mappings that need to be learned into residual mappings, as
shown in Eq. 8. And residual maps are easier to optimize for
neural networks.

R z( ) � O z( ) − z (8)
where z represents input features, O(z) indicates original mapping,
and R(z) is residual mapping.

So residual learning can improve the stability of the network and
allow more layers to be stacked to enhance the learning ability of the
network.

Depth-wise separable convolution can reduce residual
block parameters and ensure the accuracy of feature
extraction by dividing the standard convolution operation
into two parts (Chollet, 2017), as shown in Figure 7. The
first part is the depth-wise convolution. The second part is
the 1 × 1 convolution. Depth-wise convolution performs a
separate convolution on each channel. The 1 ×
1 convolution integrates all channel information. When the
number of channels and the size of the convolution kernel are
large, depth-separable convolution can effectively reduce
memory and time costs during training.

2.1.3.3 Soft-thresholding
The soft-thresholding activation function expression is as Eq. 9

STλ z( ) � sgn z( )max z| | − λ, 0( ) (9)
where, ST represents soft-thresholding operations, z is input
features, and λ is a hyperparameters.

The soft-thresholding operator can be regarded as a two-sided
ReLU function. Therefore, for seismic data with peaks and troughs,
the soft-thresholding is more suitable as a non-linearization operator.

2.2 Sparse driven network (SDN)

The sparse driven network (SDN) consists of convolutional
layers and soft-threshold sparse operators. For the detail parts

FIGURE 13
Field seismic data.
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at each scale, the denoising operation of the sparse drive
network does not directly perform simple soft thresholding
on the detail coefficients. The purpose of the sparse-driven
network is to first utilize convolutional layers to transform
the detail parts at each scale into a domain more suitable for
denoising. In this domain, the eigencoefficient of the effective
signal is made larger, and the eigencoefficient of random noise is
made smaller. All feature coefficients are then processed using a
learnable soft threshold operator. Finally, a convolutional layer
is used to convert the feature coefficients back to the domain
corresponding to the detail part. The network structure of SDN
is shown in Figure 8.

2.3 Network training

To overcome the problem of the training sample size of
seismic data, transfer learning (Pan and Yang, 2009) is used in
this paper. The training process is divided into pre-training and
post-training. In the pre-training step, a dataset of natural images
is used to train the network. The pre-training can teach LINN_
ACSP and SDN how to predict updates and denoising,

respectively. In the post-training step, a small sample of
seismic data is used for training to fine-tune the network. To
reduce computer consumption, the dataset size is divided into
50 × 50 as the input of the neural network. The optimizer uses
Adaptive Moment Estimation with a learning rate of 0.001 in the
pre-training and 0.0001 in the post-training. Figure 9 is the
training loss.

3 Examples and results

3.1 Evaluation of denoising performance

The SNR can directly reflect the quality of denoising results, it is
defined as

SNR � 10log10
X‖ ‖2F

X − Xdenoise‖ ‖2F
(10)

where Xdenoise is the estimated or denoised seismic data.
SNR can evaluate the denoising effect of various methods

as a whole. However, calculating SNR requires noise-free
seismic data. So the SNR cannot be calculated in field

FIGURE 14
Field seismic data denoising results section. (A)DMSSA; (B) SSWT-GoDec; (C)DnCNN; (D) The proposedmethod; (E) Removed noise by DMSSA; (F)
Removed noise by SSWT-GoDec; (G) Removed noise by DnCNN; (H) Removed noise by the proposed method.
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seismic data tests. To comprehensively evaluate the denoising
results, the F-K spectrum is utilized to evaluate the denoising
effect of various methods, too. F-K spectrum can analyze the
advantages and disadvantages of various methods in terms of
frequency.

3.2 Synthetic two-dimensional (2-D) seismic
data

The marmousi2 P wave velocity model was used as the
forward model. Combined with the first-order stress-velocity-
sound wave equation, 31 shot synthetic data that conform to the
law of field seismic data are obtained. The synthetic seismic data
of each shot contains 277 traces, each trace has 3,000 sampling
points, the sampling interval is 0.5 ms, and the domain

frequency range is 20–30 Hz. The 30 shot synthetic seismic
data were randomly selected as the post-training dataset. The
selected seismic data of each shot is divided into datasets of size
50*50, as the input of the neural network. The remaining one-
shot synthetic seismic data, shown in Figure 10, was used to test
the denoising effect of the proposed method and other methods.
Then AWGN was added to seismic data to generate noisy
seismic data with SNR = −2 dB.

To evaluate the denoising effect of the proposed method,
three state-of-the-art seismic denoising methods are used for
comparison. Figures 11A–D are the denoising results of f-x
damped multichannel singular spectrum analysis (DMSSA),
SSWT-GoDec method, DnCNN and the proposed method,
respectively. Figure 11A shows that the random noise in the
sanction of the denoising results based on DMSSA is effectively
suppressed. And this method does not cause the waveform

FIGURE 15
The F-K spectrum of the field seismic data. (A) Noisy data; (B) DMSSA; (C) SSWT-GoDec; (D) DnCNN; (E) The proposed method.
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distortion of the seismic effective signal. The SNR of the
DMSSA is 6.9 dB. Figure 11B contains a lot of random
noise, and the waveform of the seismic signal is distorted.
The SNR of the SSWT-GoDec is 3.3 dB. Figure 11C shows that
DnCNN can suppress random noise, but also weaken the
continuity of effective seismic signals. The SNR of the
SSWT-GoDec is 4 dB. Figure 11D shows that the proposed
method can effectively suppress random noise without causing
distortion of the effective seismic signal waveform, nor
weakening the continuity of the signal. The SNR of the
proposed method is 7.3 dB. This result proves that the use
of multi-scale features can improve the denoising effect of the
neural network.

The removed noise section of the above method is shown in
Figure 11E–H. Comparing Figure 11E–H the results show that
there is obvious seismic reflection information in the whole
removed noise section based on SSWT-GoDec and DnCNN.
The denoising method based on DMSSA, when affected by
random noise, will leak effective signals when recovering high-
amplitude seismic signals. Finally, the seismic signal leakage
cannot be observed in the removed noise section
corresponding to the proposed method. This result
demonstrates that the use of multi-scale features can prevent
the leakage of valid seismic signals.

Figures 12A, B shows the F-K spectra of clean and noisy
seismic data, respectively. Figure 12C–F are the F-K spectrum of
the denoising results of the above methods. Figure 12C is the F-K
spectrum obtained by DMSSA denoising. Comparing Figures
12A, C, when the frequency is higher than 30 Hz, the amplitude
of the F-K spectrum shown in Figure 12C is smaller than the
corresponding F-K spectrum of the noise-free seismic data. This
result shows that the DMSSA-based denoising method loses
high-frequency information, that is, leakage occurs when the
seismic signal changes from low amplitude to high amplitude.
Figure 12D is the F-K spectrum obtained by SSWT-GoDec
denoising. Comparing Figures 12A, D, when the frequency is
lower than 20 Hz, the F-K spectrum shown in Figure 12D is less
consistent with Figure 12A. This result shows that the denoising
method based on SSWT-GoDec will change the low-frequency
information, that is, the waveform of the seismic signal is
distorted. Figure 14E is the F-K spectrum obtained by
DnCNN denoising. Comparing Figures 12A, E, the overall
magnitude of the F-K spectrum shown in Figure 12E is lower
than that in Figure 12A. The results show that the denoising
method based on DnCNN will leak the effective seismic signal.
Figure 12F is the F-K spectrum obtained by the proposed
method for denoising. Comparing Figures 12A, F, the F-K
spectrum shown in Figure 12F has the highest similarity with
Figure 12A. The results show that the proposed method can
effectively remove random noise and protect critical seismic
signals.

3.3 Application on field seismic data

To verify the effectiveness of the proposed method in field
seismic data, the single shot data shown in Figure 13 are used for

testing. This single shot data contains 180 traces, each trace has
500 sampling points, and the sampling interval is 0.005 s.

Figure 14 shows the denoising results and removed noise
section of the proposed method and other methods,
respectively. Observing Figure 14, the results show that the
DMSSA-based denoising method will seriously leak the effective
signal. SSWT-GoDec-based denoising approach cause
waveform distortion and lateral discontinuities. DnCNN-
based denoising methods lose effective signals. The proposed
method can effectively suppress random noise and retain valid
signals.

Figure 15 shows the F-K spectrum of the field single shot
seismic data and denoising results. The F-K spectrum
amplitudes of DMSSA and DnCNN denoising results are low,
again indicating that the effective signal will leak. The F-K
spectrum of the SSWT-GoDec denoising results has a small
amplitude in the low frequency part, which confirms the
waveform distortion. The amplitude of the F-K spectrum of
the denoising result of the proposed method is appropriate and
focused. This result proves that the proposed method can
effectively suppress random noise and retain important
seismic signals.

4 Conclusion

This paper proposes a denoising method for prestack seismic
data using WINNet_ACSP. This method can effectively suppress
random noise and prevent the leakage of important seismic
information. In the forward pass of WINNet_ACSP, the first
step uses a redundant transformation to split the seismic data to
obtain frequency multi-scale approximate and detail parts. The
second step utilizes a learnable neural network with ACSP to
extract spatial features for the approximate or detail parts. The
third step uses the sparse drive network to process the coefficients
of the detail part. Finally, the denoised seismic data is
reconstructed using the backward pass of WINNet_ACSP. The
whole denoising process follows the principle of wavelet
transformation. The combination of redundant transformation
and ACSP can obtain richer multi-scale information. These
multi-scale features can effectively suppress random noise and
retain important seismic information. Transfer learning divides
the training process into pre-training and post-training. The
former is trained using natural images. The latter is trained
using a small amount of seismic data. Synthetic and field
seismic data are utilized to test the proposed method and
other methods. The results show that the proposed method
can effectively suppress random noise, improve the SNR of
seismic data, and prevent the leakage of effective signals. In
the future, we will make further improvements on this basis
and conduct experiments on 3D prestack data.
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Shear wave velocity prediction
using bidirectional recurrent
gated graph convolutional
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embeddings
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Shear wave velocity is an essential elastic rock parameter for reservoir
characterization, fluid identification, and rock physics model building. However,
S-wave velocity logging data are often missing due to economic reason. Machine
learning approaches have been successfully adopted to overcome this limitation.
However, they have shortcomings in extracting meaningful spatial and temporal
relationships. We propose a supervised data-driven method to predict S-wave
velocity using a graph convolutional network with a bidirectional gated recurrent
unit (GCN-BiGRU). This method adopts the total information coefficient to
capture non-linear dependencies among well-log data and uses graph
embeddings to extract spatial dependencies. Additionally, the method employs
a bidirectional gated mechanism to map depth relationships in both upward and
backward directions. Furthermore, the prediction performance is increased by an
unsupervised graph neural network to handle outliers and the generation of
additional features by the complete ensemble empirical mode decomposition
with additive noise method. Finally, the GCN-BiGRU network is compared with
Castagna’s empirical velocity formula, support vector regression, long-short-term
memory (LSTM), GRU, and BiGRU methods over the North Sea open dataset. The
results show that the proposed method performs better predicting S-wave
velocity than the other ML and empirical methods.

KEYWORDS

shear wave velocity prediction, graph convolutional network, bidirectional gated
recurrent unit, total information coefficient, graph neural network, outlier removal,
ensemble empirical mode decomposition with additive noise

Introduction

In reservoir characterization, shear wave (S-wave) velocity is an essential elastic property
for building accurate rock physics models and discriminating fluid content in geologic
formations (Xu and White, 1995; Vernik and Kachanov, 2010; Refunjol et al., 2022).
However, the availability of measured S-wave velocity logs in exploration projects is
frequently scarce for an economic reason (Anemangely et al., 2019). Statistical and
empirical methods address this problem using compressional wave velocity correlations
(Castagna et al., 1985; Greenberg and Castagna, 1992). Nevertheless, statistical methods,
such as linear regression (LR), often have low accuracy and fail to capture the complex
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relationships among the data. Moreover, empirical methods require
additional information, such as mineral composition, pore aspect
ratio, fluid saturation, total organic carbon content, or formation
pressure, for proper calibration and accurate results (Vernik et al.,
2018; Omovie and Castagna, 2021). In contrast, machine learning
(ML) methods discover intrinsic relationships, make accurate
predictions, and overcome data scarcity efficiently (Ali et al.,
2021). ML methods have been applied for predicting S-wave
velocity using well-log data, such as support vector regression
(SVR) (Ni et al., 2017), long-short-term memory (LSTM) (Zhang
et al., 2020), gated recurrent units (GRUs) (Sun and Liu, 2020), and
gradient boosting (Zhong et al., 2021).

The S-wave velocity prediction is frequently addressed as a
multivariate time series problem by assuming independence
among variables and calculating a single depth point without
further considerations (Jiang et al., 2018). Alternatively, the
S-wave velocity prediction can be reframed as a supervised data-
driven learning problem with recursive neural networks (RNNs) by
considering the trend variations in the rock properties with depth
(Hopfield, 1982). GRU is an improved RNN, less complex, and
easier to train than LSTM (Cho et al., 2014). GRU dynamically
extracts patterns from previous depth points to forecast rock
properties in the following depth points (Chen et al., 2020).
Bidirectional gated recurrent units (BiGRUs) with attention
consist of two synchronous GRU to increase the prediction
performance. The input sequence starts from the top to the
bottom for the first unit and from the bottom to the top for the
second unit. At the same time, the attention mechanism selects the
most important features contributing to the prediction (Zeng et al.,
2020). However, GRU has limitations in extracting local spatial
characteristics from data (Jiang et al., 2021). Therefore, recent
models combine convolutional neural network (CNN) layers to
extract local and global features (Wang and Cao, 2021).

Graph theory receives particular attention for representing
complex models surpassing the limitations of Euclidean space
(Zhou F. et al., 2019a). A graph is a collection of vertices and
edges that shares a relationship, represented by a Laplacian
matrix (Scarselli et al., 2009). A graph embedding translates
the latent dependencies from the graph into a low-
dimensional space while preserving the original features,
structure, and information (Hamilton et al., 2017). In this
context, graph neural networks (GNNs) are a learning
algorithm that handles graphs and resembles RNNs (Gori
et al., 2005; Di Massa et al., 2006; Xu et al., 2019). Graph
convolutional networks (GCNs) are first-order approximations
of local spectral filters on graphs that perform convolution
operations with linear computational complexity (Defferrard
et al., 2016; Kipf and Welling, 2017). Furthermore, GCN-GRU
has been successfully used for time-series prediction by
exploiting the advantages of both graph and recurrent network
architectures (Zhao et al., 2020).

We propose a graph recurrent gated method to predict S-wave
velocity and compare it with other ML methods. For added value,
the proposed method includes unsupervised distance-based outlier
elimination with GNN, empirical mode decomposition (EMD) as
feature engineering, and non-linear graph embedding with the total
information coefficient (TIC) for more meaningful results. The
workflow contains four steps:

1) An unsupervised GNN is used to detect outliers by learning the
information from the nearest neighbor samples (Goodge et al.,
2022). The goal is to remove the extreme values in the well-
logging data resulting from human, environmental, or
instrumental errors that impact the final prediction.

2) The well-logging data are decomposed into intrinsic mode
functions (IMFs) by the complete ensemble EMD with
additive noise (CEEMDAN) algorithm. The IMFs represent
features from the local oscillation frequency with a physical
meaning similar to Fourier domain spectral decomposition
(Huang et al., 1998; Gao et al., 2022). Furthermore, they are
concatenated with the well-logging data to form sequences for
the network input.

3) The well-logging data are converted into the graph domain by
mapping their dependencies with the TIC. TIC is a noise-robust
correlation coefficient representing intrinsic non-linear
dependencies among variables (Reshef et al., 2018).

4) A modified GCN-GRU network with bi-recurrent units and an
attention mechanism predicts the S-wave velocity (Zhao et al.,
2020). The GCN captures the spatial dependencies among the
well-logging data. At the same time, the bidirectional GCN-GRU
maps the sequence of previous and subsequent depth points for
the S-wave velocity prediction (Yu et al., 2018).

Finally, the GCN-BiGRU network is compared with other ML
methods, including SVR, LSTM, GRU, BiGRU, Castagna’s empirical
formula, and LR. The root mean square error (RMSE), mean
absolute error (MAE), mean absolute percentage error (MAPE),
and R2 metrics are used to evaluate the performance of the models.
The results show that the proposed method has a lower error in
predicting the S-wave velocity than the other ML and empirical
methods.

Methodology

Local outlier removal with graph neural
networks

Identifying and eliminating potential outliers is an essential step
in S-wave velocity prediction. Among different methods, local
outliers are widely adopted to detect anomalies in multivariate
data by measuring the distance between neighbor points (Breunig
et al., 2000; Amarbayasgalan et al., 2018). However, they lack
trainable parameters to adapt to particular datasets. In contrast,
the message-passing abilities of GNNs can detect anomalies and
outperform local outlier methods by learning the information from
the nearest samples without supervision (Goodge et al., 2022).

The GNN uses the message-passing abilities of a direct graph for
detecting outliers. In general, a graphG(V, E) is defined by a set ofN
vertices or nodes, V � υ1, υ2, . . . , υN{ }, with N nodes features,
X � x1, x2, . . . , xN{ }, a set of M edges, E � e1, e2, . . . , eM{ }, with
edge features defined as ej � (υi, υk), where υi, υk ∈ V (Zhou F. et al.,
2019a). The message-passing characteristic allows the graph to send
and receive information through its connections with its neighbors
in one direction. The message-passing workflow involves a message
function, an aggregation function, and an update function. Then, the
hidden representation of a node is calculated by
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hNi � ak m xi, xk, ej( )( ) (1)

where xi is the feature of the source node υi, xk is the feature of the
adjacent υk,m is the message function that sends the information
to each neighbor node, ak is the aggregation function that
summarizes the incoming messages from k adjacent nodes of
υi, k ∈ Ni, Ni is the number of adjacent nodes to υi, and hNi is the
aggregation of the messages from its neighbors. Finally, the
update function computes the following hidden representation
by using the aggregated messages and the current state of the
node by

hi � u xi, hNi( ) (2)
Then, the well-log data are represented as a graph for the

outlier removal method using GNN, where each sample is
equivalent to a node, and the value of each sample is the
node feature. The edge connects the nearest neighbor
samples to a given sample, and the network learns their
distance as the anomaly score. Therefore, the edge feature ej
is defined by

ej � d xi, xk( ), k ∈ Ni

0, k ∉ Ni
{ (3)

where d is the Euclidean distance between two point samples, xi is
the source sample, xk is the adjacent sample, and k is the nearest
neighbor sample set. The distance information is the message
transmitted from the source sample to the adjacent sample,
m � ej. In addition, the aggregation function concatenates the
distance of all neighbors of the source sample by

ai � e1, . . . , ek[ ] ∈ Rk (4)
Next, Eq. 1 can be rewritten as a neural network F , where ai
represents the hidden representation hNi through the learnable
weights Θ by

hNi � F ai,Θ( ) (5)
Then, the update function in Eq. 2 is rewritten as the learned
aggregated message hNi by

u � hNi (6)
The GNN performance is compared with the isolation forest

(IF) (Liu et al., 2008) and the local outlier factor (LOF) (Breunig
et al., 2000). IF is an unsupervised ensemble method to separate
anomalies from normal data. Based on the principle that a
normal sample requires more partitions to be isolated, an
anomaly sample requires fewer partitions. Then, the IF
constructs a tree representing the number of divisions to
isolate a sample. Normal samples have a path length that
equals the distance from the root node to the terminating
node. Anomalous samples have a shorten path length than
normal samples. On the other hand, LOF is an unsupervised
proximity algorithm for anomaly detection that calculates the
local density deviation of a sample within its neighbors. The local
density is calculated by comparing the distance between the
neighboring samples. Normal samples have similar densities to
their neighbors, while the samples with less density are
considered outliers.

Feature engineering with empirical mode
decomposition

The EMD is an adaptative and data-driven decomposition
method suitable for non-stationary and non-linear data (Huang
et al., 1998). In contrast with the wavelet transformation, a
wavelet definition is unnecessary for EMD (Zhou Y. et al.,
2019b). EMD calculates IMFs with several frequency bands
highlighting distinct stratigraphical and geological information
that increases the network performance (Xue et al., 2016). IMFs
are computed using the CEEMDAN algorithm, reducing model
mixing and data loss (Colominas et al., 2014). This computation
involves four steps. First, several types of Gaussian white noise w
are added to the original data x as follows,

xi � x + ε0w
i (7)

where xi is the data after adding white noise for an i-th time, and i
denotes the number of modes (i.e., i = 1, . . . , I), and εk is the fixed
coefficient that regulates the signal-to-noise ratio at each k stage.
Second, the adjoined noise data xi are decomposed using the EMD.
The fundamental EMD mode IMF1 is averaged, and the first
CEEMDAN mode IMF1 is calculated by

IMF1 � 1
I
∑I

i�1IMFi
1 (8)

The first residual is calculated by subtracting IMF1 from x,

r1 � x − IMF1 (9)
Third, the second CEEMDAN mode IMF2 is calculated, where

Ek is the k-th mode decomposed by the EMD algorithm,

IMF2 � 1
I
∑I

i�1E1 r1 + E1ε1w
i( ) (10)

Fourth, the process is repeated until the residual is unable to be
further decomposed,

rk � x −∑K

k�1IMFk (11)
Then, the final residual is calculated by

IMFk � 1
I
∑I

i�1E1 rk−1 + Ek−1εk−1wi( ) (12)
and the representation of the original data are defined by

x � ∑K

k�1IMFk + rk (13)

The IMF approach is compared with the depth gradient and the
spectral band methods. The gradient measures the rate of change of a
well-log property in depth to map subtle changes in the subsurface. The
spectralmethod decomposes thewell-logging data into frequency bands
to capture unseen relationships. In Figure 1, the IMF engineering
features fi are concatenated with the node features xi of each node
vi at each depth point zi. The result is an augmented feature matrix X̂,
which serves as the input sequences for the GCN-BiGRU. Additionally,
the logarithmic transformation is applied to the resistivity log to center
the distribution. And the input sequences are normalized with the
Minmax function for stable training by

xscaled � x −min x( )
max x( ) −min x( ) (14)
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where x is the well-log data, min(x) is the minimum value of the
dataset, max(x) is the maximum value of the dataset, and xscaled is
the normalized well-log data.

Graph construction

The S-wave velocity prediction is defined in the graph domain as
follows. Given a certain number of training wells, expressed as an
undirect graph G(V, E), V are the well-logs, E are their complex

dependencies, and X are the values of the well-log curves. The goal is
to learn the intrinsic relationships and predict the S-wave velocity ŷz.
The graph construction workflow calculates the edge weights and
the graph convolution (Gconv) operator. Then, the node features are
fed to the GCN-BiGRU network to output the S-wave velocity, as
shown in Figure 2. Transforming well-log data into the graph
domain is crucial since the Gconv operator requires reliable
estimation of the graph interdependencies for an accurate
prediction. Although there are no optimal methods to generate a
graph from tabular data (Narayanan et al., 2017), we proposed a

FIGURE 1
Sequence construction with the IMF features for the proposed model.

FIGURE 2
Graph construction workflow.
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knowledge-based approach to aggregate information from the
external domain. The edge features are calculated with the TIC
to represent the complex intrinsic relationships between the physical
rock properties measured by the well logs and highlight the most
significant dependencies.

TIC is a variation of the maximal information coefficient (MIC)
that integrates power, equitability, and performance to extract the
potentially diverse relationships among well-log data (Reshef et al.,
2018). MIC is a coefficient that detects non-linear dependencies by
applying information theory and probability concepts and is robust
to noise regardless of the relationship type (Reshef et al., 2011;
Reshef et al., 2015). Mutual information (MI) is defined by the
Kullback-Leibler divergence between two well logs joint and
marginal distributions; the higher the variance, the higher the MI
(Reshef et al., 2016). MIC is calculated by drawing a grid over a
scatter plot to partition the data and embed the relationship. The
well-log data distributions are discretized into bins, and the MI
values are compared and divided by the theoretical maximum for a
particular combination of bins. Then, MIC is defined as the highest
normalized MI between two well-logs by

MIC x, y( ) � max I x, y( )( )
log2 min nx, ny( )( ) (15)

where I(x, y) is the MI between the well-logs x and y, nx, ny are the
number of bins where x and y are partitioned. The MIC calculation
becomes computationally expensive in large datasets. Therefore, the
maximal grid size for simplification and optimization is defined by

nxny <B n( ) � n6 (16)
where n is the sample size. If B(n) is significantly low, MIC searches
only simple patterns, weakening the generality of MIC. If B(n) is
extremely high, MIC searches non-trivial coefficients for independent
paired variables under finite samples. Therefore, MIC is redefined as

MIC x, y( ) � max
nxny ≤B n( )

max I x, y( )( )
log2 min nx, ny( )( ) (17)

MIC measures equitability rather than the power to reject a null
hypothesis of independence. Therefore, TIC is introduced to address
this issue. Instead of choosing the maximal MI value, all entries are
summed,

TIC x, y( ) � ∑
nxny ≤B n( )

max I x, y( )( )
log2 min nx, ny( )( ) (18)

Finally, the prediction performance of the graph embeddings
using TIC and MIC are compared with other linear and non-linear
correlation coefficients. The Pearson product-moment correlation
coefficient (PC) (Szabo and Dobroka, 2017) quantifies linear
relationships. And the Spearman rank correlation coefficient (SC)
(Pilikos and Faul, 2019) and distance correlation coefficient (DC)
(Skekely et al., 2007) measure non-linear relationships.

Network architecture

The GCN-BiGRU, GCN-GRU, and GCN network structures are
shown in Figure 3. In Figure 3A, the input X̂ ∈ RN×Z of the GCN-

BiGRU is the feature matrix defined by well-logging data concatenated
with the engineering features, whereN is the number of well-log curves,
and Z is the number of depth samples. The GCN-GRU predicts the
spatial-temporal relationships in the forward and backward direction
and transmits their final state hz to the next GCN-GRU. The final
output yz is the predicted S-wave velocity at each depth point. In
Figure 3B, the GCN-GRU consists of a reset gate rz, an update gate uz, a
candidate memory cz, and a GCN to extract the most relevant
information between depth points and output the state hz. In
Figure 3C, the GCN concatenates the input node features with a
hidden state, followed by the Gconv, an activation function, and a
dropout layer. The Gconv captures the spatial relationships between the
well-logs and hidden states within a first-order neighborhood radius.
The GCN extracts spatial dependencies among nodes at each depth
point, and the GCN-GRU extracts depth dependencies along depth
points.

The Gconv uses the adjacency matrix A, degree matrix D, and
feature matrix X to construct a normalized spectral filter in the
Fourier domain (Kipf andWelling, 2017). The adjacency matrix A ∈
RN×N describes the edge weights betweenNwell-logs, defined by the
calculated correlation coefficient. The diagonal matrix D ∈ RN×N

describes the number of edges at each node, computed from A.
Then, a single-layer Gconv operator is defined by

Gconv X̂, Â( ) � fdrop σ ÂX̂W( )( ) (19)

where Â is the normalized self-connected adjacency matrix defined
as Â � ~D

−1
2 ~A ~D

−1
2, ~A denotes the adjacency matrix with self-

connections, defined as ~A � A + I, where I is the identity matrix,
~D is the degree matrix of the adjacency matrix with self-connections
~A, defined as ~D � ∑j

~Aij where i is the number of nodes, j is the
number of edges, W are the trainable weights, whose size is
determined by the number of hidden units, σ(·) is the Mish
activation function for non-linearity, and fdrop is a dropout layer
with a given probability, activated during the training phase, to
reduce overfitting. Mish is a novel self-regularized non-monotonic
activation function that surpasses ReLU and Swish performances
(Misra, 2019). Mish is defined by

Mish � x tanh ln 1 + ex( )( ) (20)
The GCN-BiGRU network comprises two GCN-GRUs for a

forward and backward prediction. Each GCN-GRU has a two-gated
mechanism to adaptively capture patterns from different depth points
(Cho et al., 2014), as shown in Figure 3B. The activation gates are the
reset gate rz and the updated gate uz. The GCN-GRU requires two
inputs, the feature matrix x̂z at depth z and the previous hidden cell
state hz−1. First, the reset gate rz controls the amount of information to
preserve from the previous depth point to transmit to the memory
candidate state cz. The reset gate rz combines the previous memory
information hz−1 with the current information x̂z by

rz � σ WrGconv x̂z, hz−1[ ],A( ) + br( ) (21)
whereWr and br are the trainable parameters of the reset gate, x̂z is
the current state input, hz−1 is the hidden state from the previous
depth point, [·] represents the concatenation, σ(·) is the logistic
sigmoid function that forces the output range between [0,1], rz
output is a scalar, rz ∈ [0,1], when rz � 1 the memory is preserved,
when rz � 0, the memory is discarded. Second, the update gate uz
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determines the amount of information to preserve from the previous
depth point and the amount of current information to include from
the current depth point, similar to the reset gate,

uz � σ WuGconv x̂z, hz−1[ ],A( )+bu( ) (22)
where Wu, and bu are the trainable parameters of the update gate.
Third, the memory candidate cz is the present moment state at the
depth point z and is defined by

cz � tanh WcGconv x̂z, rz ⊙ hz−1( )[ ],A( ) + bc( ) (23)
whereWc, bc are the trainable parameters of the candidate memory, ⊙
is the Hadamard product (i.e., element-wise multiplication), and tanh is
the hyperbolic tangent function. Finally, the output state hz at depth z is
defined by

hz � 1 − uz( ) ⊙ cz + uz ⊙ hz−1 (24)
The update gate selectively stores or forgets memory

information. The update gate acts as a forget gate when
uz ⊙ hz−1 ignores unimportant information from the previous
depth point. The update gate acts as a memory gate when (1 −
uz) ⊙ cz preserves relevant information in memory for the next
depth point. Additionally, a dropout layer is added at the end of each
GCN-GRU to increase the network generalization ability and reduce
overfitting. Next, the output state hz is fed into a hierarchical

attention mechanism to highlight the essential features and
attenuate the less significative information contributing to the
S-wave velocity prediction (Bahdanau et al., 2014; Yang et al.,
2016). The output state hz is fed into a fully connected (FC)
layer, followed by an activation function to obtain a hidden
representation uz defined by

uz � tanh Wahz + ba( ) (25)
whereWa and ba are the trainable parameters of the FC layer. Next,
the feature importance is measured between the hidden
representation uz and a trainable context vector uw that is a
high-level representation of a static query of the features
(Sukhbaatar et al., 2015; Kumar et al., 2016). Then, importance
weights are normalized through a softmax function αz by

αz � exp uzuw( )∑z exp uzuw( ) (26)

Then, the weighted sum of the hidden states is the new high-level
presentation of the output state ĥz and is defined by

ĥz � ∑
z
αzhz (27)

and the new output state ĥz is fed to a fully connected (FC) layer
with a Mish activation function and a dropout layer to predict the
S-wave velocity by

FIGURE 3
(A) GCN-BiGRU structure. (B) GCN-GRU structure. (C) GCN structure.
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ŷz � fdrop σ Wfĥz + bf( )( ) (28)

whereWf and bf are the trainable parameters of the final FC layer.
Lastly, the training dataset is rearranged into sequences in the
supervised training process and matched with the labels. The
Huber loss function is implemented to minimize the difference
between the predicted S-wave velocity ŷz and the actual S-wave
velocity yz at depth z. The Huber loss is less sensitive to outliers and
noise by combining L1 and L2 norms (Yu et al., 2016) and is
defined by

L �
1
2

yz−ŷz( )2, yz−ŷz

∣∣∣∣ ∣∣∣∣≤ δ
δ yz−ŷz

∣∣∣∣ ∣∣∣∣ − 1
2
δ( ), yz−ŷz

∣∣∣∣ ∣∣∣∣> δ

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (29)

where δ � 0.1 is the threshold parameter for the L1/L2 norm. The
adaptive movement estimation algorithm (Adam) is used for
network optimization with a learning rate of 0.001 (Kingma and
Ba, 2015). The grid search strategy is applied to optimize the
network parameters selection and a 10-fold cross-validation
method to evaluate the accuracy and generalization ability of the
model while reducing randomness impact (Hampson et al., 2001).
Finally, the metrics to evaluate the difference between the actual
S-wave velocity and the predicted S-wave velocity are RMSE, MAE,
MAPE, and R2. RMSE measures the average weighted performance
of the model. MAE estimates the average error of the model for the
prediction. MAPEmeasures the percentage of the average difference
between the actual and the predicted value. The coefficient of
determination measures the performance of the model over a
regressor that outputs the mean value of the label that is used in
training. The error metrics are defined as follows,

RMSE �
���������������
1
N
∑N

z�1 yz − ŷz( )2√
(30)

MAE � 1
N
∑N

z�1 yz − ŷz

∣∣∣∣ ∣∣∣∣ (31)

MAPE � 1
N
∑N

z�1
yz − ŷz

∣∣∣∣ ∣∣∣∣
yz

∣∣∣∣ ∣∣∣∣ × 100 (32)

R2 � 1 − ∑N
z�1 yz − ŷz( )2∑N
z�1 yz − �y( )2 (33)

where �y is the mean of the actual S-wave velocity, and N is the
number of samples.

Field data example

The study comprises a selection of 30 wells from the North Sea
area (Bormann et al., 2020). The training dataset consists of 21 wells,
the validation dataset includes 5 wells, and the testing dataset
consists of 4 blind wells. Each well has 6 well-log curves:
Gamma-ray (GR), compressional wave transit-time (DTC), shear
wave transit-time (DTS), bulk density (RHOB), neutron porosity
(NPHI), and deep resistivity (RDEP). The original sampling interval
is 0.152 m, and the range of the training dataset is constrained for
stability purposes, as shown in Table 1. The GCN-BiGRU employs a
prediction window of 1 sample, a sequence length of 8 samples, and
8 hidden units for the dimension of the hidden state. The training

time is 20 min for 50 epochs and a batch size of 128 samples in an
Nvidia GeForce GTX 960M.

Additionally, the robustness of the proposed method is
evaluated by measuring the impact of the proportion of the
training dataset and the sensitivity to Gaussian noise. First, the
training dataset is divided into ten groups based on the number of
wells (i.e., 4, 7, 9, 10, 12, 15, 16, 17, 20, and 21), corresponding to a
ratio of 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1 of the training
dataset, respectively. Second, the noise resistance is analyzed by
adding Gaussian noise with mean zero and standard deviation of the
training dataset (i.e., σGR = 40.96 api, σDTC = 20.09 us/ft, σDTS =
79.20 us/ft, σRHOB = 0.17 g/cc, σNPHI = 0.10 dec, σRDEP = 21.07 Ωm)
to each sample. Then, the performance is evaluated by examining
ten fraction levels of the defined noise (i.e., 0.1, 0.2, 0.3, 0.4, 0.5, 0.6,
0.7, 0.8, 0.9, and 1). Finally, the RMSE on the validation and testing
datasets is calculated for both analyses.

The effects of the GNN, LOF, and IF methods are shown in
Figure 4. GNN uses 13 samples as neighbors, LOF 50 nodes as
neighbors, and IF 100 estimators. Additionally, a contamination
value of 0.1 is employed for the three methods. The GNN handles
the spikes located on the RHOB log below the 2,200 m better than
the alternative outlier removal methods and other abrupt values on
the rest of the well-logs below the 2,400 m while preserving the
essential well-log information, as shown in Figure 4. In the
prediction performance, the GNN surpasses LOF and IF
methods, with lower RMSE error for the predicted DTS log, as
shown in Figure 5. The RMSE for the training, validation and testing
dataset with the GNN are 21.0482 us/ft, 22.7562 us/ft, and
23.5854 us/ft, respectively. Compared with the LOF and IF
methods, the main drawback of GNN is the higher
computation time.

The cross-plot between the DTS and the well-log curves is
shown in Figure 6. The color represents the distribution density
of the samples. The higher the density, the higher the color intensity.
And the line represents the minimum squares regression line. The
RHOB and NPHI show a good linear trend, the DTC behaves
linearly for low values, and the relationship changes for higher
values. The DEPT and RDEP trend is logarithmic, while the GR is
unclear due to the bimodal distribution between sand and shales.
The cross-plot shows that a linear correlation coefficient is
insufficient to capture the intrinsic relationships of the rock
properties and to build a meaningful graph structure. Therefore,
a non-linear correlation coefficient is more suitable for this task.

The relationship strength between the DTS log and the other
well logs curves with the six correlation coefficients is shown in

TABLE 1 Well-log data range for the training dataset.

Well-logs Data range

GR 0–200 api

DTC 50–200 us/ft

DTS 80–500 us/ft

RHOB 1.8–3.0 g/cc

NPHI 0–1 dec

RDEP 0–20 Ωm
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Figure 7. The hexagons range from 0 to 1, with an increment of 0.2.
The closer to the center, the lower the correlation; the closer to the
edges, the higher the correlation. On average, the DTC, NPHI, and
RHOB logs show a high correlation, consistent with the definition of
S-wave velocity. The DTC correlation is higher because it shares the
shear modulus and density parameters. The density is a very
sensitive parameter for rock velocity, and the porosity directly
impacts the rigidity of the rock and reduces its value. The DEPT
shows a moderate correlation due to the dependency on changes in
pressure and temperature that affect the rock properties. RDEP has

an average correlation linked to the lithology characteristics of the
layer. In contrast, the low correlation in GR is probably due to
averaging effect between sand and shale lithologies. These results
constitute the building block to constructing a graph with
meaningful physical rock relationships, proven by external
knowledge.

The evaluation of the prediction results for the six correlation
coefficients is shown in Figure 8. TIC accuracy is higher than other
approaches, with an RMSE value of 22.1603 us/ft, 23.3468 us/ft, and
24.2019 us/ft for the training, validation, and testing datasets,
respectively. TIC is more reliable for embedding the non-linear
physical correlation between the rock properties and the well-logs
into the graph edges. However, MI approaches have a
high computational cost for extensive datasets than other
correlation coefficients. The TIC matrix used as the
adjacency matrix to represent the edge features in the proposed
method is shown in Figure 9. The DTC and DTS are the only pair
that achieves a high correlation, with a value of 0.57, which is
consistent with the theoretical and empirical results for S-wave
velocity prediction.

The evaluation of the three feature engineering methods for the
DTS log prediction is shown in Figure 10. The gradient method adds
the first derivative as a component. The frequency bandmethod uses
three components. The low-frequency band (i.e., 20 Hz) isolates the
significant geological trend changes. The middle-frequency band
(i.e., 40 Hz) is related to third-order sequence events, while the high-

FIGURE 4
Comparison of the three methods for outlier removal at well W3.

FIGURE 5
RMSE of predicted DTS for the three outlier removal methods.
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frequency band (i.e., 200 Hz) focuses on the local changes inside the
geological formations. After experimentation with the training
dataset, the CEEMDAN method decomposes the data into
7 IMFs. This number preserves the uniformity size in all the

IMFs for the sequence aggregation step and reduces overfitting
by avoiding high-order IMFs without a reliable meaning. Results
show that the feature engineering method can improve the
prediction accuracy of the GCN-BiGRU network. The gradient

FIGURE 6
Cross plots between DTS and the well-logs. (A) DEPT. (B) GR. (C) DTC. (D) RHOB. (E) NPHI. (F). RDEP.

FIGURE 7
The correlation coefficients between DTS and the others well-
log curves.

FIGURE 8
RMSE of predicted DTS of the six correlation coefficients.

Frontiers in Earth Science frontiersin.org09

Cova and Liu 10.3389/feart.2023.1101601

99

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2023.1101601


shows the lowest performance because the contribution of its high
frequency is less significant for the prediction. Although the
computational time for the IMFs is longer than other methods,
the RMSE is lower, with 20.3805 us/ft, 23.1001 us/ft, and 23.3531 us/
ft, for the training, validation, and testing datasets, respectively.

The results for the DTS log prediction during the network
optimization are shown in Figure 11. The RMSE of the GCN-
BiGRU network is 19.6581 us/ft, 23.5363 us/ft, and 24.3045 us/ft for
the training, validation, and testing datasets, respectively, improving the
performance compared with the original GCN-GRU network (Zhao
et al., 2020), as shown in Figure 11A. The Mish activation function
shows superior regularization and overfitting reduction abilities than
other state-of-the-art activation functions, such as Leaky ReLU, GELU,
SELU, and Swish. The RMSE with the Mish activation function is
21.3972 us/ft, 23.1146 us/ft, and 23.6318 us/ft for the testing, validation,
and testing datasets, respectively, as shown in Figure 11B.

The prediction performance by the number of well-logs is shown in
Figure 11C. The node configurations are tested based on their
coefficient ranking. Thus, the GR log is excluded. The node
configurations are defined as follows: The 3 nodes include the DTC,
NPHI, and RHOB logs. The 4 nodes include the DTC, NPHI, RHOB,
and RDEP logs. The 5 nodes include the DTC, NPHI, RHOB, RDEP,
and DEPT logs. The 6 nodes include all logs. Although the RMSE error
decreases with 5 nodes for the training and validation datasets, the
overall performance of the GCN-BiGRU decreases for the testing
dataset. The RMSE for 6 nodes is 20.6117 us/ft, 22.8539 us/ft, and
22.9764 us/ft for the training, validation, and testing datasets,
respectively. The 6 nodes are used since the GCN extracts
meaningful embeddings based on the number of adjacent nodes for
aggregation. When the number of nodes is reduced, the GCN
embeddings are shallower, and the ability to map complex physical
relationships among the input data is also reduced. Then, the prediction
is compared with two attentionmechanisms. The hierarchical attention
shows a lower RMSE than soft attention, with a value of 19.7153 us/ft,
22.9858 us/ft, and 23.1156 us/ft, for the training, validation, and testing
datasets, respectively, as shown in Figure 11D. However, the attention
mechanism occasionally creates spike artifacts.

The impact of the proportion of the training dataset ratio is
shown in Figure 11E. The RMSE is higher for a ratio of 0.1, with a

value of 35.8539 us/ft for the validation dataset and 36.8711 us/ft for
the testing dataset. The RMSE reduces between a ratio of 0.2–0.5,
reaching a value of 32.4315 us/ft for the validation dataset and
32.7639 us/ft for the testing dataset at a ratio of 0.5. The RMSE shows
a stability plateau between a ratio of 0.7–1, achieving a value of
22.2465 us/ft for the validation dataset and 22.9672 us/ft for the
testing dataset at a ratio of 1.

The prediction performance in the presence of Gaussian noise is
shown in Figure 11F. The RMSE is high when the added noise is equal
to the standard deviation of the training dataset (i.e., a noise fraction of
1) with a value of 28.6670 us/ft for the validation dataset and 42.8739 us/
ft for the testing dataset. The RMSE gradually decreases until a noise
fraction of 0.5 with a value of 24.9382 us/ft for the validation dataset and
28.5342 us/ft for the testing dataset. The RMSE is stable when the noise
fraction is lower than 0.2, with a value of 22.9373 us/ft for the validation
dataset and 23.5910 us/ft for a noise fraction of 0.1.

Finally, the DTS log prediction results for all the models are
shown in Figure 12. The GCN-BiGRU shows lower error in the
training, validation, and testing dataset with an RMSE of 19.3260 us/
ft, 22.4905 us/ft, and 22.7120 us/ft, respectively. The evaluation for
the testing dataset is shown in Table 2. The GCN-BiGRU shows an
MAE of 17.2842 us/ft, MAPE of 6.7880%, and R2 of 0.9470. The
GCN-BiGRU performs better than other ML baseline models and
empirical equations without adding mineral components, fluid
properties, pore aspect ratio, or thermal maturity information.
Some discrepancies in the predicted DTS log and the actual DTS
log value are due to the presence of fluids, unbalanced lithologies
samples, or the inherent covariance shift problem.

The results for the testing well B9 are shown in Figure 13. The
predicted DTS log is consistent with the actual DTS log, as shown in
Figure 13A. The model performs satisfactorily when constant or
missing values are present, such as the depths 2,900 m, 3,100 m, and
3,400 m. The distribution of the predicted DTS and the true DTS are
consistent, as shown in Figure 13B. The range of the predicted DTS
for higher values is reduced due to the constraints established during
the training phase. The R2 coefficient between the true and predicted
DTS is 0.9593, as shown in Figure 163. The high coefficient indicates
that the proposed model can explain a significant variation in the
actual DTS log. Moreover, the homoscedasticity analysis shows that
the variance of the residuals is homogeneous, thus increasing the
robustness and feasibility of the method, as shown in Figure 13D.

FIGURE 9
TIC for the training dataset.

FIGURE 10
RMSE of predicted DTS for the three feature engineering
methods.
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Discussion

The proposedGCN-BiGRUmethod predicts the S-wave velocity by
extracting the spatial and depth relationships among well-log data. The
model combines GCN intoGRU to create a GCN-GRUnetwork, which
is implemented to predict the S-wave velocity in two directions, forming
the GCN-BiGRU network. The performance of themethod is evaluated
with a training dataset ratio test and a noise sensitivity test. The GCN-
BiGRU has a lower error than Castagna’s equation, LR, SVR, LSTM,
GRU, and BiGRU baseline methods using the well-logs from the North
Sea area. The approach is feasible and could be further extended for
reservoir properties prediction using inverted seismic data as input and
output maps and volumes of rock properties.

The GCN embeds the topological information, the intrinsic
relationships, and the measured physical properties of the
geological formations by an external-knowledge approach. The
Gconv aggregates nearby information from the nodes, resembling
a spectral Fourier filter. The number of nodes in the graph impacts
the quality of the embeddings. Fewer nodes create shallow
embeddings that reduce the representation ability.

Although 1-layer GCN is adopted due to the current graph
topology, the GCN can extract deeper patterns from the well-log
data with multiple GCN layers (Magner et al., 2022). Further
research could reframe the graph creation process and add more

FIGURE 12
RMSE of the predicted DTS for all the compared methods.

FIGURE 11
Proposed method optimization. (A). Network structure. (B) Activation Function, (C) Nodes number, (D) Attention mechanism, (E) Training ratio test,
(F) Noise sensitivity test.
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hierarchy nodes (i.e., nodes connected below the first-level nodes)
for a meaningful aggregation during the graph embeddings.

The GCN-GRU extracts patterns over previous data windows to
map the changes in rock properties with depth. The number of
hidden units inside the GCN-GRU impacts the ability to memorize
the most important information for the S-wave velocity prediction.
Moreover, the dimension of the hidden states balances the
generalization and overfitting of the GCN-GRU.

GNNs are a versatile approach to solving problems by the intrinsic
message-passing characteristic. As an unsupervised outlier removal
method, GNN shows promising results in handling anomalous values
based on the sample distance between neighbor samples. GNN adapts to
particular datasets by fine-tuning the number of nearest neighbor
samples, which is essential for the detection performance. GNN for
local outlier removal increases the accuracy of themodel at the expense of
a higher computational cost than IF and LOF.

The feature engineering process improves the prediction ability
of the GCN-BiGRU. The prediction error is reduced with the IMFs.
However, the network complexity and the training time increase
with a higher number of features. The frequency bands are an
alternative trade-off between accuracy and efficiency.

The construction of the graph is an essential step for the success
of graph embedding. The proposed approach constructs the
adjacency matrix from the correlation coefficients among well-log
data. This supervised external-knowledge approach links the
relationships between the measured rock properties and the wave
propagation parameters into the network. Linear coefficients have
limitations for capturing intrinsic rock dependencies and are more
sensitive to their variation with depth. Non-linear coefficients
extract suitable representations of the complex relationships
between rocks and measured physical properties and are more

TABLE 2 DTS prediction results for the testing dataset.

Model RMSE (us/ft) MAE (us/ft) MAPE (%) R2

Castagna 44.7420 32.8800 12.4500 0.9374

LR 26.0257 21.1107 10.4064 0.9315

SVR 24.9529 19.9018 8.9553 0.9403

LSTM 38.4902 32.6003 14.7848 0.9079

GRU 32.6786 26.6913 11.2101 0.9201

BiGRU 30.0930 24.8923 11.0732 0.9313

GCN-BiGRU 22.7120 17.2842 6.7880 0.9470

FIGURE 13
DTS prediction results on testing well B9. (A) DTS log curve, (B) True and predicted DTS distribution, (C) R2 analysis, (D) Homoscedasticity analysis.
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robust to well-log data variance, preserving the intrinsic
dependencies that govern depth.

Depth changes are affected by temperature, pressure, fluid, and
lithology, among other factors. Difficulties arise with a fixed adjacency
matrix in complex geological scenarios by approximating the global
properties variation with depth. Specifically, the GCN has limitations
for predicting local minima and maxima due to the smooth moving
average filter in the Fourier domain. Therefore, further research towards
a dynamic graph representation to recreate more realistic models and
map depth-dependent representations is encouraged.

The GCN-BiGRU uses point-wise activation functions as a non-
linear operator. Nevertheless, further research is required to adapt non-
linearities directly into the graph domain and increase the generalization
of the model. The contribution of conventional attention mechanisms
for the S-wave velocity prediction should be further explored. Graph
attention networks or graph transformers have the potential to improve
the ability of the network in abrupt lithology changes.

Conclusion

This study introduces a novelmethod for predicting S-wave velocity
with a GCN-BiGRU network. GCN captures the spatial dependencies
from the well-log data, while bidirectional GCN-GRU maps the
changes in the rock properties with depth in both upward and
backward directions. The well-log data are transformed into the
graph domain by integrating external knowledge into the model.
The well-logs are the graph nodes, well-logging data are the node
features, and their intrinsic non-linear relationships are the edges
features defined by TIC. Moreover, an unsupervised GNN is
implemented for outlier removal to increase the network
performance. And IMFs are aggregated to the node features,
improving the prediction accuracy. The proposed method performs
better than LR, SVR, LSTM, GRU, BiGRU methods, and Castagna’s
empirical equation. Finally, this method shows promising applications
for predicting reservoir properties using inverted seismic data.
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Reconstruction of seismic data
based on SFISTA and curvelet
transform

Lin Tian1,2* and Si Qin1

1School of Electronic Engineering, Yili Normal University, Yining, China, 2Key Laboratory of Signal
Detection and Control Technology, Yili Normal University, Yining, China

In seismic data processing, the reconstruction and interpolation of missing traces
are essential tasks. To overcome the limitations of irregularly sampled seismic
data, this paper proposes a seismic data interpolation method combining the
smoothing fast iterative soft threshold algorithm (SFISTA) and the curvelet
transform; this method uses the curvelet domain as the sparse domain. For
comparison, the contourlet transform is used for different sparse domains, and
the fast iterative shrinkage-thresholding algorithm (FISTA) is used for different
optimization algorithms. Numerical modeling and real data show that the SFISTA
method in the curvelet domain can give better reconstruction effects and higher
reconstruction accuracy than those in the contourlet domain with the FISTA
method; in addition, the SFISTA method in the curvelet domain can be used to
reconstruct the missing traces of three-dimensional seismic data.

KEYWORDS

seismic data reconstruction, sparse constraint, curvelet transform, contourlet transform,
SFISTA

1 Introduction

In complex environments, seismic data reconstruction has great significance as a
recovery technique. Under external disturbance, irregularly sampled seismic data will
affect further geological data processing such as migration imaging and data
interpretation. In order to obtain high-quality seismic data, interpolation reconstruction
is needed to approximate the original data. In recent years, under the compressive sensing
theory, seismic data reconstruction methods based on sparse constraints have become more
and more popular. It mainly consists of the sparse transform, measurement matrix, and
reconstruction algorithm. The sparse transforms that are often used include the Fourier
transform (Zhang et al., 2013; Ciabarri et al., 2014), curvelet transform (Hennenfent et al.,
2010; Liu et al., 2015; Zhang et al., 2017; Zhang et al., 2019; Tian and Qin, 2022), contourlet
transform (Eslami and Radha, 2006), and seislet transform (Liu W et al., 2016). Because the
curvelet transform undergoes multi-scale and multi-direction analysis and can perform the
optimal local decomposition of seismic data (Yang et al., 2017), the curvelet transform is
employed in this paper as a sparse transform, and the contourlet transform is also used in this
paper for comparison analysis.

A classical sparse recovery problem usually requires minimizing the L0 norm, which is NP-
hard. The L1 norm is the approximate of the L0 norm, which is a convex function, and can be
solved by the convex optimization algorithms or tools; so, the L0 norm is replaced by the L1
norm for simplicity and effectiveness. The iterative soft threshold algorithm (ISTA) shows
great advantages (Daubechies et al., 2004; Mohsin et al., 2015) for a convex optimization
algorithm. Gradually, a faster ISTA algorithm (FISTA) has been developed. FISTA is more

OPEN ACCESS

EDITED BY

Peng Zhenming,
University of Electronic Science and
Technology of China, China

REVIEWED BY

Shu Li,
Jishou University, China
Bibo Yue,
Southwest Petroleum University, China
Gulan Zhang,
Southwest Petroleum University, China

*CORRESPONDENCE

Lin Tian,
1610356358@qq.com

SPECIALTY SECTION

This article was submitted to
Environmental Informatics and
Remote Sensing,
a section of the journal
Frontiers in Earth Science

RECEIVED 20 November 2022
ACCEPTED 03 February 2023
PUBLISHED 23 February 2023

CITATION

Tian L and Qin S (2023), Reconstruction
of seismic data based on SFISTA and
curvelet transform.
Front. Earth Sci. 11:1103522.
doi: 10.3389/feart.2023.1103522

COPYRIGHT

© 2023 Tian and Qin. This is an open-
access article distributed under the terms
of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original author(s)
and the copyright owner(s) are credited
and that the original publication in this
journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Earth Science frontiersin.org01

TYPE Original Research
PUBLISHED 23 February 2023
DOI 10.3389/feart.2023.1103522

105

https://www.frontiersin.org/articles/10.3389/feart.2023.1103522/full
https://www.frontiersin.org/articles/10.3389/feart.2023.1103522/full
https://www.frontiersin.org/articles/10.3389/feart.2023.1103522/full
https://crossmark.crossref.org/dialog/?doi=10.3389/feart.2023.1103522&domain=pdf&date_stamp=2023-02-23
mailto:1610356358@qq.com
mailto:1610356358@qq.com
https://doi.org/10.3389/feart.2023.1103522
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org/journals/earth-science#editorial-board
https://www.frontiersin.org/journals/earth-science#editorial-board
https://doi.org/10.3389/feart.2023.1103522


suitable the synthesis approach to sparse recovery. And for the
analysis approach to sparse recovery, Tan et al. (2014) proposed a
monotone version of the fast iterative shrinkage-thresholding
algorithm, which is the smoothing fast iterative soft threshold
algorithm (SFISTA). In this paper, we introduce the SFISTA
method-based curvelet transform to the seismic data interpolation
reconstruction problem (Tan et al., 2014; Liu Y et al., 2016; Pokala and
Seelamantula, 2020; Shen et al., 2020). The theory is given in section 2,
and experimental results are given in section 3.

2 Theory

Assuming that the observed seismic data is y and the
downsampling matrix is U, the irregular missing seismic data can
be modeled as follows:

y � Ux + n, (1)
where n is a randomly generated noise and x is the original
seismic data.

The interpolation problem can be expressed as follows:

min
x

1
2

y −Ux‖22
���� + λ Ψx‖ ‖1, (2)

where ‖·‖2 is the L2 norm, ‖·‖1 is the L1 norm, λ is the regularization
parameter, andΨ is the analysis operator. Moreover,Ψ*Ψ � I, where
Ψ* denotes the adjoint of the operator Ψ and I is the identity matrix.
The sparse transform can be expressed as x � Ψα, where Ψ is the
transform operator and α is the sparse coefficient. Let us denote the
following equation:

f x( ) � 1
2
Ux − y
���� ����22, (3)

where f(x) is the smooth part.

g Ψx( ) � λ Ψx‖ ‖1, (4)
where g(Ψx) is the non-smooth part that needs to be replaced by the
Moreau envelope with an approximately smooth form gμ(Ψx),
where μ is the smooth approximate parameter.

∇gμ Ψx( ) � 1
μ
Ψ* Ψx − Tλμ Ψx( )( ), (5)

where ∇ is the gradient and Tλμ is the soft threshold operator; the
threshold of Tλμ is the multiplication of λ and μ.

In this paper, the process of the smoothing fast iterative soft
threshold algorithm (Shen et al., 2020) for optimization is expressed
as follows:

FIGURE 1
Reconstruction results of synthetic data in the contourlet domain. (A)Original data; (B) 50% of randomlymissing data; (C) interpolated data obtained
by the FISTA method; (D) interpolated data obtained by the SFISTA method; (E) reconstructed errors obtained by the FISTA method; (F) reconstructed
errors obtained by the SFISTA method.

TABLE 1 Reconstruction error and SNR of different methods.

FISTA SFISTA

Reconstruction error 784.34 450.45

SNR 10.12 12.41
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∇f x̂k( ) � UT Ux̂k − y( ), (6)

where k is the number of iterations, and x̂0 � x0 and t0 � 1.

∇gμ Ψxk( ) � 1
μ
Ψ* Ψxk − Tλμ Ψxk( )( ). (7)

The core iterations of the SFISTA are as follows:

xk+1 � x̂k − 1
L

∇f x̂k( ) + ∇gμ Ψxk( )( ), (8)

where L is the Lipschitz constant. At 0< γ≤ 1, L � 1/γ. Substituting
(6) and (7) in (8), the aforementioned equation is equivalent to the
following equation:

xk+1 � x̂k − γ

μ
xk − Ψ*Tλμ Ψxk( )( ) + γUT y − Ux̂k( ), (9)

where γ is the iteration step size. tk+1 is expressed as follows:

tk+1 �
1 +

������
1 + 4t2k

√
2

. (10)

Then, we derive the following equation:

x̂k+1 � xk+1 + tk − 1
tk+1

xk+1 − xk( ). (11)

The specific algorithm steps are as follows:

Parameters: λ � 10−3,μ � 10−3/λ � 1, γ � 1/(1 + 1/μ)
Initialization: x0, x̂0, t0 � 1

When not convergent, the following equations are used to

calculate:

xk+1 � x̂k − γ
μ (xk − Ψ*Tλμ(Ψxk)) + γUT(y − Ux̂k)

tk+1 � 1+ ����
1+4t2

k

√
2

x̂k+1 � xk+1 + tk−1
tk+1 (xk+1 − xk)

RLNE � ‖x̂−x‖2
‖x‖2

end if RLNE< 10−6 or the maximum number of iterations is

reached.

end

Output: x

Algorithm 1. SFISTA for seismic data interpolation

TABLE 2 Reconstruction error and SNR of different methods.

FISTA SFISTA

Reconstruction error 223.16 193.62

SNR 17.75 20.67

FIGURE 2
Reconstruction results of synthetic data in the curvelet domain. (A)Original data; (B) 50% of randomlymissing data; (C) interpolated data obtained by
the FISTAmethod; (D) interpolated data obtained by the SFISTAmethod; (E) reconstructed errors obtained by the FISTAmethod; (F) reconstructed errors
obtained by the SFISTA method.
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Parameters: λ � 10−3, γ � 1

Initialization: α0, α̂0, t0 � 1

When not convergent, the following equations are used to

calculate:

αk+1 � Tγλ(γΨUT(y − UΨ*αk) + α̂k)
tk+1 � 1+ ����

1+4t2
k

√
2

α̂k+1 � αk+1 + tk−1
tk+1 (αk+1 − αk)

RLNE � ‖α̂−α‖2
‖α‖2

end if RLNE< 10−6 or the maximum number of iterations is

reached.

end

Output: α

Algorithm 2. FISTA for seismic data interpolation

3 Examples

In this section, we conduct numerical experiments with different
seismic data to demonstrate the reconstruction performance of the

SFISTAmethod in the curvelet domain. The algorithm performance
is evaluated by interpolation results, the average amplitude
spectrum, single-channel interpolation effect, reconstruction
error, and signal-to-noise ratio. Numerical experiments are used
to test the method. At last, the paper continues to test the 3D
interpolation effect of the interpolation method of the proposed
method. The experiments are conducted on a Millet computer
running on the Windows 10 operating system and Inter Core
m3-6Y30.

3.1 Synthetic examples

3.1.1 Seismic data interpolation in the contourlet
domain

The regularization parameters of the FISTA and SFISTA
methods are set to 10−3. The step size of the FISTA is 1, and the
step size of the SFISTA is set to 0.5 (Liu Y et al., 2016); the number of
iterations is set as 500. The two-dimensional data tests have the same
parameters.

Part data on the Marmousi2 model (Martin et al., 2006) are
selected as test data; the data are shown in Figure 1A. Figure 1B
shows the irregular data with 50% of the traces removed randomly,
and this part’s records are padded with zeros. The sparse domain is
the contourlet domain. Figures 1C,D are interpolation results of
Figure 1B using FISTA and SFISTA methods based on the
contourlet transform. Figures 1E,F show the reconstruction errors
that correspond to the FISTA and SFISTA methods, in which the

TABLE 3 Reconstruction error and SNR of different methods.

FISTA SFISTA

Reconstruction error 1695.09 407.17

SNR 9.11 25.07

FIGURE 3
Reconstruction results of the coral reef model in the contourlet domain. (A) Original data; (B) 50% of randomly missing data; (C) interpolated data
obtained by the FISTA method; (D) interpolated data obtained by the SFISTA method; (E) reconstructed errors obtained by the FISTA method; (F)
reconstructed errors obtained by the SFISTA method.
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reconstruction residuals of the SFISTA method have smaller
amplitude ranges than those of the FISTA method. It is obvious
that the reconstruction method of SFISTA based on the contourlet
transform is more effective.

The performance of the proposed method in seismic data
interpolation could be evaluated using different qualitative and
quantitative analyzing tools. The reconstruction error is the
general quantitative evaluation tool used in seismic data
interpolation; the reconstruction error is defined to be∑ |x − x̂|, where x denotes the original data and x̂ denotes the
reconstructed seismic data. If the reconstruction error is smaller,
the reconstructed seismic data will be closer to the original data.
SNR is the signal-to-noise ratio, which is defined as

SNR � 101og10
‖x‖22

‖x−x̂‖22. A higher SNR value means that the data

have better reconstruction quality. The reconstruction error and
signal-to-noise ratio are illustrated in Table 1. Table 1 shows that
the SFISTA method has a smaller reconstruction error value and
higher SNR. Compared to the two methods, the SFISTA method

based on the contourlet transform has a lower reconstruction error
and higher SNR, and therefore, the SFISTA method shows better
performance.

3.1.2 Seismic data interpolation in the curvelet
domain

The part of the Marmousi2 model is shown in Figure 2A.
Figure 2B shows the irregular data with 50% of the traces
missing randomly. Figures 2C, D show interpolation effects using
FISTA and SFISTA methods based on the curvelet transform.
Figures 2E, F show the reconstruction errors that correspond to
the FISTA and SFISTA methods, in which the reconstruction
residuals of the SFISTA method have a smaller magnitude than
those of the FISTA method. It is obvious that the reconstruction
method of SFISTA in the curvelet domain is more effective.

Comparing Figures 1, 2, the SFISTA method in the curvelet
domain has lower reconstruction errors when using the qualitative
analyzing method. Comparing Tables 1, 2, the SFISTA method in
the curvelet domain has lower reconstruction errors and higher SNR
when using the quantitative analyzing method. The SFISTA method
shows better performance when using the curvelet domain as the
sparse domain.

3.1.3 Coral reef model tests in the contourlet
domain

The selected coral reef synthetic data are illustrated in
Figure 3A. Figure 3B shows corrupted data with 50% of traces

FIGURE 4
Reconstruction results of the coral reef model in the curvelet domain. (A) Original data; (B) 50% of randomly missing data; (C) interpolated data
obtained by the FISTA method; (D) interpolated data obtained by the SFISTA method; (E) reconstructed errors obtained by the FISTA method; (F)
reconstructed errors obtained by the SFISTA method.

TABLE 4 Reconstruction error and SNR of different methods.

FISTA SFISTA

Reconstruction error 902.74 323.55

SNR 15.45 27.72
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missing randomly. Figures 3C, D show interpolation effects using
FISTA and SFISTA methods in the contourlet domain. Figures 3E,
F show the reconstructed errors between the reconstruction and
original data; Figure 3F shows a smaller reconstructed error.
Table 3 shows the reconstruction error and SNR, which
demonstrates the validity of the SFISTA method in the
contourlet domain.

3.1.4 Coral reef model tests in the curvelet domain
The selected Coral reef synthetic data are tested in the curvelet

domain; the original data are shown in Figure 4A. Figure 4B shows
corrupted data with 50% of traces missing randomly. Figures 4C, D
show interpolation results using FISTA and SFISTA methods in the
curvelet domain. Figures 4E, F show the reconstructed errors
between the reconstruction and original data; Figure 4F shows a
smaller reconstructed error. Table 4 shows the reconstruction error
and SNR, which demonstrates the validity of the proposed method.

Comparing the detailed values in Tables 3, 4, the reconstruction
performance of the SFISTA method in the curvelet domain is better
than that in the contourlet domain.

3.2 Field examples

3.2.1 Seismic data interpolation in the contourlet
domain

The field data are illustrated in Figure 5A. Figure 5B
shows corrupted data with 50% of traces missing randomly.
Figures 5C, D show interpolation effects using FISTA and
SFISTA methods in the contourlet domain. By comparing
the interpolation results of the ellipse regions, we learn that
the reconstruction results of the SFISTA method in the
contourlet domain are similar to the original data. Figures
5E, F show the reconstructed errors between the
reconstruction and original data; Figure 5F shows a smaller
reconstructed error. Table 5 shows the reconstruction error and
SNR, which demonstrates the validity of the SFISTA method in
the contourlet domain.

3.2.2 Seismic data interpolation in the curvelet
domain

The field data are illustrated in Figure 6A. Figure 6B shows
incomplete seismic data with 50% of traces missing randomly.
Figures 6C, D show interpolation effects using FISTA and
SFISTA methods in the curvelet domain. By comparing the
interpolation results of the ellipse regions, we learn that the
reconstruction data on the SFISTA method in the curvelet
domain are similar to the original data. Figures 6E, F show
the reconstructed errors between the reconstruction and
original data; Figure 6F shows a smaller reconstructed error.

FIGURE 5
Reconstruction results of field data in the contourlet domain. (A)Original data; (B) 50% of randomly missing data; (C) interpolated data obtained by
the FISTAmethod; (D) interpolated data obtained by the SFISTAmethod; (E) reconstructed errors obtained by the FISTAmethod; (F) reconstructed errors
obtained by the SFISTA method.

TABLE 5 Reconstruction error and SNR of different methods.

FISTA SFISTA

Reconstruction error 3904.69 3633.50

SNR 6.43 7.16
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Table 6 shows the reconstruction error and SNR results of the two
algorithms in the curvelet domain. Comparing the two methods,
SFISTA performs better with a lower error and higher SNR.

Figure 7A plots the interpolation single trace of the missing trace
with zero values. In Figures 7, the black, pink, and blue lines correspond
to the original data and those obtained by FISTA and SFISTAmethods,
respectively. Figure 7B shows the zoomed traces from the transparent
gray window of Figure 7A. A detailed comparison reveals that the blue
line is similar to the black line. We can, therefore, affirm that the
proposed SFISTA method can better restore the significant features of
the useful signal than the FISTA method.

Comparing the detailed values in Tables 5, 6, the SFISTA
method in the curvelet domain is better than that in the
contourlet domain.

FIGURE 6
Reconstruction results of field data in the curvelet domain. (A)Original data; (B) 50% of randomlymissing data; (C) interpolated data obtained by the
FISTA method; (D) interpolated data obtained by the SFISTA method; (E) reconstructed errors obtained by the FISTA method; (F) reconstructed errors
obtained by the SFISTA method.

TABLE 6 Reconstruction error and SNR of different methods.

FISTA SFISTA

Reconstruction error 2968.24 2220.78

SNR 9.18 12.91

FIGURE 7
(A) Comparison of a missing single-trace amplitude interpolated
with FISTA and SFISTA methods; (B) zoomed traces from the
transparent gray window of (A).

FIGURE 8
Average amplitude spectrum from original data, interpolated
with FISTA and SFISTA methods.
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The performance of these methods could be investigated more
by comparing the average amplitude spectrum (Mafakheri et al.,
2022). The average amplitude spectrum presents the original data
and those obtained by FISTA and SFISTA methods, as shown in
Figure 8 by the black, pink, and blue lines, respectively. The SFISTA
method in the curvelet domain gives a closer spectrum to that of the
original data, particularly in the range of 5–30 Hz. In this case, our
method has better performance.

3.2.3 Three-dimensional seismic data tests
The experimental results of three sets of 2D data show that

SFISTA based on the curvelet transform shows good performance.
Next, this method will be tested for 3D seismic data reconstruction.
The 3D data (size: 64 × 64 × 64) are from the software package of
MathGeo 2020 (https://gitee.com/sevenysw/MathGeo2020). The 3D
discrete curvelet transform method comes from the reference of
Ying et al. (2005).

The original data are shown in Figure 9A. Figure 9B shows
corrupted data with 51% of the traces removed randomly; the
iteration number of the FISTA and SFISTA methods is 1000.
Figures 9C, D show the interpolation results using the FISTA
and SFISTA methods in the curvelet domain. Figures 9E, F show
reconstructed errors obtained by the FISTA and SFISTA methods.
The quantitatively recovered reconstruction error and SNR are
shown in Table 7; Table 7 illustrates that the SFISTA method is
better than the FISTA method.

Figure 10A plots the interpolation single trace from Figures
9C, D. The black, pink, and blue lines represent the original data

and those obtained by FISTA and SFISTA methods,
respectively. Figure 10B shows the zoomed traces from the
transparent gray window of Figure 10A. A detailed
comparison reveals that the blue line is similar to the black
line. We can, therefore, affirm that the proposed SFISTA
method can better restore the significant features of the
useful signal than the FISTA approach.

The performance of these methods could be investigated
more by comparing the average amplitude spectrum. The
average amplitude spectrum of the original data and FISTA
and SFISTA methods are shown in Figure 11 by the black,
pink, and blue lines, respectively. Interestingly, in this case,
the reconstruction data obtained by our method are very
similar to the original data.

4 Conclusion

In this paper, we proposed a new seismic data reconstruction
method combining the curvelet transform and the SFISTA method.

FIGURE 9
Reconstruction results of three-dimensional field data in the curvelet domain. (A) Original data; (B) 51% of randomly missing data; (C) interpolated
data obtained by the FISTA method; (D) interpolated data obtained by the SFISTA method; (E) reconstructed errors obtained by the FISTA method; (F)
reconstructed errors obtained by the SFISTA method.

TABLE 7 Reconstruction error and SNR of different methods.

FISTA SFISTA

Reconstruction error 27781.58 18396.99

SNR 7.32 10.79

Frontiers in Earth Science frontiersin.org08

Tian and Qin 10.3389/feart.2023.1103522

112

https://gitee.com/sevenysw/MathGeo2020
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2023.1103522


Comparing the results obtainedwhenusing the contourlet and curvelet
domainsas thesparsedomain, itcanbeconcludedthat theoptimization
algorithm in the curvelet domain has better performance. In the same
sparse domain, comparing the FISTA and SFISTA methods, it can be
concluded that SFISTA shows better performance. The seismic data
reconstruction effects of SFISTA based on the curvelet transform have
been demonstrated by quantitative and qualitative comparisons with

several sets of data. The proposed method can be used for 2D and 3D
seismic data reconstruction.

Data availability statement

The original contributions presented in the study are included in
the article/Supplementary Material; further inquiries can be directed
to the corresponding author.

Author contributions

All authors listed havemade a substantial, direct, and intellectual
contribution to the work and approved it for publication.

Funding

This work was supported by the Yili Normal University
Foundation under Grant 22XKZZ22, the Talent Position Project of
Yili Normal University under Grant YSXSGG22006, and the National
Natural Science Foundation of China under Grant 61761043.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

FIGURE 10
(A) Comparison of a missing single-trace amplitude interpolated with FISTA and SFISTA methods; (B) zoomed traces from the transparent gray
window of (A).

FIGURE 11
Average amplitude spectrum from original data, interpolated
with FISTA and SFISTA methods.
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Multichannel seismic impedance
inversion based on Attention
U-Net
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Recently, seismic inversion has made extensive use of supervised learning
methods. The traditional deep learning inversion network can utilize the
temporal correlation in the vertical direction. Still, it does not consider the
spatial correlation in the horizontal direction of seismic data. Each seismic
trace is inverted independently, which leads to noise and large geological
variations in seismic data, thus leading to lateral discontinuity. Given this, the
proposed method uses the spatial correlation of the seismic data in the horizontal
direction. In the network training stage, several seismic traces centered on the
well-side trace and the corresponding logging curve form a set of training sample
pairs for training, to enhance the lateral continuity and anti-noise performance.
Additionally, Attention U-Net is introduced in acoustic impedance inversion.
Attention U-Net adds attention gate (AG) model to the skip connection
between the encoding and decoding layers of the U-Net network, which can
give different weights to different features, so themodel can focus on the features
related to the inversion task and avoid the influence of irrelevant data and noise
during the inversion process. The performance of the proposed method is
evaluated using the Marmousi2 model and the SEAM model and compared
with other methods. The experimental results show that the proposed method
has the advantages of high accuracy of acoustic impedance value inversion, good
transverse continuity of inversion results, and strong anti-noise performance.

KEYWORDS

Attention U-Net, acoustic impedance inversion, spatial correlation, deep learning,
multichannel inversion

1 Introduction

Seismic inversion can be defined as the process of obtaining subsurface model
parameters, such as formation velocity, density, or impedance, from seismic data by
comprehensively available geological and logging data (Treitel and Lines, 2001). For
conventional seismic inversion methods, i.e., model-driven inversion methods, the
mathematical theory is based on the convolution model or other mathematical and
physical models. The convolution model is essentially a simplification and
approximation of the seismic wave transmission process. The subsurface structure is
usually very complex, and errors will inevitably arise when describing the wave
propagation with the convolution model, which leads to inaccurate inversion results. On
the other hand, in order to get a good inversion result, the model-driven method needs a
better initial model and an accurate wavelet. In practical applications, it is usually challenging
to obtain good initial models and accurate wavelets. In addition, problems such as limited
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data bandwidth, data noise, and incomplete data coverage cause
various troubles for model-driven inversion methods.

Unlike traditional model-driven seismic inversion, deep
learning is a data-driven approach that can learn complex
non-linear mappings between inputs and outputs based on
training datasets, and the parameters are adjustable. Deep
learning is a subset of machine learning that has recently
made breakthroughs in image classification (Krizhevsky et al.,
2017), object detection (Ren et al., 2015), image segmentation
(Chen et al., 2017), image and video captioning (Vinyals et al.,
2022), speech recognition (Graves et al., 2013), and machine
translation (Cho et al., 2014). The success of deep learning in the
fields of computer vision and natural language processing has
led to widespread interest among scholars in data-driven
intelligent seismic inversion methods. This class of methods
does not require an initial model and does not require the
estimation of seismic wavelets. Using the powerful learning
ability of deep neural networks to establish non-linear
mapping relationships between seismic data and parameters
to be inverted has become a trendy research direction in the
field of seismic inversion.

Currently, the application of deep learning methods in the field
of seismic inversion is expanding, involving acoustic impedance
inversion, pre-stack elastic and lithological parameter inversion, full
waveform inversion, and so on. Recently, seismic inversion has
made extensive use of supervised learning methods. Alfarraj and
AlRegib (2018) used recurrent neural networks for petrophysical
parameter estimation. Das et al. (2019) and Wu et al. (2020) trained
the convolutional neural networks (CNNs) to invert seismic
impedance using synthetic seismic records on the earth model
constrained by petrophysical relationships. The results show that
the type of sediment phase and source wavelet parameters used in
the training dataset affect the inversion process of the network.
Mustafa et al. (2019) used the temporal convolution network (TCN)
to estimate the acoustic impedance. This method not only
successfully captured the long-term trend but also preserved the
local patterns while overcoming the gradient disappearance problem
in the inversion of recurrent neural network (RNN) and the
overfitting problem in convolutional neural networks. Du et al.
(2019) proposed SeisInv-ResNet for pre-stack seismic inversion to
obtain p-wave impedance, s-wave impedance, and other
petrophysical parameters. Aleardi and Salusti (2021) proposed an
elastic pre-stack seismic inversion method based on CNN.

Although the above inversion networks based on deep learning
can well utilize the temporal correlation in the vertical direction,
they do not consider the spatial correlation of seismic data in the
horizontal direction, and each seismic trace is inverted
independently. However, in subsurface seismic profiles, adjacent
traces are highly correlated. The inversion method based on trace by
trace does not exploit the spatial correlation in the horizontal
direction, which may lead to poor horizontal continuity of
inversion results. To improve the continuity, Wu et al. (2021)
proposed a 2D network-based inversion method.

Traditional CNN networks take a long time to train and need a
lot of labeled data. To address these drawbacks of classical CNN
networks, Ronneberger et al. (2015) proposed the U-Net network in
their study of biomedical image segmentation problems. Their
research shows that U-Net can reduce the need for labeled data

to a certain extent while improving training efficiency. Seismic
inversion also faces the problem of a small number of labels (few
logging data) and a very large amount of seismic data. In view of this,
Cao et al. (2022) proposed an inversion network consisting of a
U-Net combined with three fully connected networks and named it
the UCNN, which was used to predict elastic parameters from pre-
stack seismic data. To further reduce the reliance on labeled data,
they use Sequential Gaussian Co-Simulation and Elastic Distortion
algorithms to generate adequate and diverse pre-stack seismic
inversion datasets. Similarly, Wang et al. (2020) proposed a
closed-loop CNN structure with a U-Net network as the main
body to make CNN less dependent on the amount of labeled
data in seismic inversion. The proposed closed-loop CNN can
simulate both seismic forward and inversion processes from the
training dataset.

Given the excessive and repeated extraction and utilization of
similar features for each cascaded CNN structure in U-Net, this
results in a significant computational effort and network parameter
scale. Oktay et al. (2018) proposed the Attention Gate (AG) model
and integrated it into U-Net to obtain the Attention U-Net network.
The AGmodel can implicitly learn to emphasize prominent features
that are helpful for inversion while suppressing irrelevant regions in
the input data. In addition, AG is easily integrated into standard
CNN architectures such as U-Net, which can reduce the
computational overhead while improving the sensitivity and
prediction accuracy of the network.

In conclusion, this paper proposes a multichannel acoustic
impedance inversion based on Attention U-Net to address the
issues with conventional deep learning inversion networks, such
as poor continuity of inversion results and susceptibility to noise due
to the trace-by-trace inversion method. The horizontal spatial
correlation is applied to the inversion network by mapping
multiple seismic traces to one logging curve. Under the
supervision of limited logging data, the inversion network is
trained. The training samples consist of several seismic traces
centered on the well-side traces and associated well-logging
curves. The inversion network simultaneously performs the
duties of predicting acoustic impedance and forwarding seismic
data. This paper is structured as follows: In Section 2, the theory and
network structure of Attention U-Net are briefly introduced, and
then the architecture of the inversion network consisting of three
modules and their specific internal parameter settings are presented.
In Section 3, the experimental results of the inversion of two typical
seismic models (the Marmousi2 model and the SEAM model) are
presented, analyzed, and discussed. The experimental results are
compared with other deep learning inversion methods, and the
noise immunity of the inversion network is discussed in this paper.
Finally, Section 4 concludes this paper.

2 Methods

2.1 Inversion framework

Geological structures are spatially correlated. The closer the
distance, the stronger the correlation, and conversely, the weaker the
correlation. The correlation of seismic data is reflected in the
temporal correlation in the vertical direction of seismic traces
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and the spatial correlation in the horizontal direction between the
central trace and the adjacent traces. Based on the spatiotemporal
characteristics of the seismic data, the inversion framework in
Figure 1 is constructed using a supervised learning approach.
The inversion framework shown in Figure 1 consists of three
main modules: the feature extraction module, the regression
module, and the forward module.

In the training phase, the input of the inversion network is the
seismic data of the well-side trace and the 2 k nearby seismic data
centered on it. The feature extraction module extracts the
temporal and spatial features of the seismic data of the well-
side trace and the 2 k nearby seismic traces by Attention U-Net.
The regression module is used to map the data from the feature
domain (spatiotemporal feature series) to the target domain
(predicted acoustic impedance), while the forward module is
used to map the data from the feature domain to the target
domain (forward 2 k + 1 traces seismic data). Referring to the
structure of the multi-task learning of Mustafa et al. (2021), the
inverse network learns two tasks simultaneously: the predicted
acoustic impedance data and forward seismic data. By sharing
representations between the two tasks, especially if they are
related to each other, we bias the network to learn more
generalizable features.

2.2 Network model

2.2.1 Feature extraction module
The Attention U-Net is used as a feature extraction module to

extract spatial and temporal features of seismic data. The input of the

feature extraction module is the seismic data of the well-side trace
and the nearby 2 k traces centered on it, and the output feature size is
the same as the input size. Attention U-Net is improved by using
U-Net as the base framework, as shown in Figure 1, adding AG at the
jump connection between the encoding-decoding layers of the
U-Net network, so that the originally up-sampled features are
connected with the encoded layer AG-processed signal. By
assigning different weights to different features, the model is
better able to pay attention to the features relevant to the
inversion task, which improves the sensitivity and prediction
accuracy of the model.

Attention U-Net is divided into an encoding part and a decoding
part, as shown in Figure 1. The encoding part of the Attention U-Net
framework used in this paper contains four downsampling layers.
The downsampling layer includes two consecutive convolutional
blocks and a 2 × 1 max-pooling layer, and each convolutional block
consists of a 3 × 3 two-dimensional convolutional layer (Conv2d), a
batch normalization layer (BN) (Ioffe and Szegedy, 2022), and a
rectified linear unit (ReLU) (Nair and Hinton, 2010) activation
function. Batch normalization is used to accelerate the convergence
of the network, and ReLU is used to enhance the non-linear
approximation capability of the model. The decoding part
corresponds to the encoding part, and the decoding part also
contains four upsampling layers. Each upsampling layer consists
of a 4 × 3 deconvolution layer, an AG model, and two convolution
blocks.

The input of AG is the feature in the encoding part and the
feature after deconvolution in the decoding part. The specific
structure of AG is shown in Figure 2. The features extracted
from the decoding part after deconvolution are used as the

FIGURE 1
Structure of inversion network.
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gating signal g, and the features from the matching layer’s coding
portion are used as x. The 1 × 1 convolution is done for g and x, and
the two results A and B are added element by element to highlight
the features. Then, the non-linear ability of the added result is
increased by the ReLU activation function to obtain C, and the
channel of C is reduced to 1 channel by a convolution operation. D is
processed using a sigmoid activation function such that its value falls
within the range of (0, 1), and the result is an attention weight that is
the same size as the input feature and has one channel. Finally, the
attention weight is multiplied by x.

2.2.2 Regression module
The regression module maps the output of the feature extraction

module from the feature domain to the target domain. The
regression module’s structure, as shown in Figure 3, consists of
two convolutional blocks and a 2D convolutional layer. Each
convolutional block consists of a 2D convolutional layer, a group

normalization layer, and the ReLU activation function. Group
normalization groups the outputs of the convolutional layers and
normalizes each group using the learned mean and standard
deviation, which have been shown to reduce covariate bias in the
learned features and speed up learning (Wu and He, 2012).

As shown in Figure 3, the input of the regression module is the
output of the feature extraction module, and the output is the predicted
acoustic impedance. Calculate themean square error between the actual
acoustic impedance and the output of the regression module. In other
words, the mean square error between the predicted and the actual
acoustic impedance data is calculated to update the learnable
parameters in the feature extraction module and the regression
module. The following Eq. 1 illustrates this:

l1 � MSE mi,t , m̂i,t( ) (1)
where mi,t is the actual acoustic impedance, m̂i,t is the predicted
acoustic impedance, and MSE is as in Eq. 4.

FIGURE 2
Attention gating model.

FIGURE 3
Block diagram of the regression module.
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2.2.3 Forward module
The forward module maps the output of the feature extraction

module from the feature domain to the target domain. As shown in
Figure 4, the input of the forward module is the output of the feature
extraction module, and the output is the predicted well-side trace
and 2 k nearby seismic data. The structure of the forward module
consists of two convolutional blocks plus a 2D convolutional layer.
Each convolutional block consists of a 2D convolutional layer, a
group normalization layer, and a ReLU activation function to
achieve reconstruction.

Calculate the mean square error between the feature extraction
module’s input and the forward module’s output. To put it another
way, the mean square error between the 2 k + 1 seismic data in the
well-side trace and nearby traces and the predicted 2 k + 1 seismic
data is calculated in order to update the learnable parameters in the
feature extraction module and the forward module. The following
Eq. 2 illustrates this:

l2 � MSE xi,t , x̂i,t( ) (2)
where xi,t is the seismic data of the well-side and nearby 2 k traces,
and x̂i,t is the predicted 2 k + 1 seismic data.

2.3 Loss function

The loss of the entire inversion network is the mean square error
between the predicted acoustic impedance data and the actual
acoustic impedance (l1), and the mean square error between the
2 k seismic data in and around the well-side traces and the predicted
2 k + 1 seismic data (l2), with the total loss shown in Eq. 3:

l � αl1 + βl2 (3)

where α and β are weighting factors that control the effects of
acoustic impedance losses and seismic losses, respectively.

2.4 Evaluation of inversion results

The inversion results are evaluated quantitatively by calculating
the mean square error (MSE) and the coefficient of determination
(R2) of the actual and predicted acoustic impedance.

Mean Squared Error (MSE): MSE is the average of the squared
sum of the errors of the corresponding points of the predicted data
and the real data, and the smaller the value indicates that the
predicted data fits better with the original data, which is defined as:

MSE � 1
N
∑N
i�1

yi
���� − ŷi

����22 (4)

where yi, ŷi denote the actual acoustic impedance and predicted
impedance, respectively, and N is the number of data.

Determination Coefficient (R2): R2 is a measure of the goodness
of fit between variables that takes into account the mean square error
between predicted and actual data. Its range of values is [0, 1], and
the larger the value, the better the fit between the variables, the more
the independent variable explains the dependent variable, and the
more the independent variable contributes to the overall variation. It
is defined as:

R2 y, ŷ( ) � 1 − ∑N

i�1 yi − ŷi( )2
∑N

i�1 yi − μy( )2 (5)

where yi, ŷi, and μy represent the actual acoustic impedance,
predicted acoustic impedance, and the average of the actual

FIGURE 4
Block diagram of the forward module.
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acoustic impedance, respectively. When R2 is closer to 1, the stronger
the correlation between the predicted and actual acoustic
impedance is.

3 Experiments

The Marmousi2 and the SEAM models are widely used to
validate the performance of deep learning inversion methods.
This subsection will use these two models to validate the
performance of the inversion network architecture proposed in
this paper for acoustic impedance inversion.

3.1 Marmousi2 model inversion experiments

The Marmousi2 model is an extension of the original Marmousi
model for amplitude variation with offset (AVO) analysis (Martin
et al., 2002). The original Marmousi model has been widely used to

validate inversion and imaging algorithms. The researchers added
more complex structures representing hydrocarbon regions to the
model and increased the number of strata, resulting in a new model,
the Marmousi2 model, which has a width of 17 km and a depth of
3.5 km. The model is accompanied by synthetic seismic data, which
are obtained by convolutional forward simulations of the model’s
reflection coefficients using seismic wavelets.

The acoustic impedance model was obtained by multiplying the
density and p-velocity models of the Marmousi2 data. The seismic
data and acoustic impedance profiles are shown in Figures 5A, B,
with 2,721 traces and 688 sampling points per trace in the seismic
profile and 2,721 traces and 688 sampling points per trace in the
acoustic impedance profile. The colors in Figure 5A represent
seismic amplitude values, and the colors in Figure 5B represent
the acoustic impedance values. Twenty traces of acoustic impedance
are uniformly extracted as pseudo-well data, and for each pseudo-
logging curve, 2 k + 1 seismic traces centered on the well-side trace
and with k as the radius will be obtained. This paper sets k to 3, and
each pseudo-logging curve corresponds to 7 seismic traces with a

FIGURE 5
The Marmousi2 model. (A) Seismic data profile; (B) real acoustic impedance profile.
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FIGURE 6
Acoustic impedance inversion profiles and residual profiles on the Marmousi2 model. (A) Inversion result of CNN method and its residual (B). (C)
Inversion result of TCNmethod and its residual (D). (E) Inversion result of U-Netmethod and its residual (F). (G) Inversion result of themethod in this paper
and its residual (H).
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depth of 688 sampling points. The inverse network is trained using
seismic data and pseudo-well data, the training epoch is set to 700,
and the batch size is 20 for each iteration. In each training iteration,
the weight coefficients in the loss function α and β are set to 1. The
total training loss of the previously described inverse network is
calculated and back-propagated through the network.

The Marmousi2 model has a complex stratigraphic structure
and contains many different subsurface layered media models. The
mean square error function is chosen as the loss function to measure
the mean square error of the predicted and real acoustic impedance.
ADAM is chosen as the optimizer, and ADAM adaptively sets the
learning rate during training, with the initial learning rate set to
0.001. A weight decay of 0.0001 is chosen to limit the L2 norm of the
weights from becoming too large, reducing the risk of overfitting the
network. The network’s training is implemented in the PyTorch
framework, and GPUs are applied to accelerate the computation.
Finally, the trained inverse network is used for acoustic impedance
inversion.

In order to prove the effectiveness of this paper’s method, the
inversion results of this paper’s inversionmethod are compared with
the inversion results of the commonly used deep learning inversion
methods, including the inversion method based on CNN (Das et al.,
2019), the inversion method based on 1D TCN (Mustafa et al.,
2019), and the inversion method based on 1D U-Net. This 1D U-net
model is constructed into the same network structure as the U-net
proposed in this paper, but it lacks an attention mechanism. These
inverse networks are set up with the same training conditions,
training data, and hyperparameters. The inversion result of the

method based on CNN is shown in Figure 6A, the inversion result of
the method based on 1D TCN is shown in Figure 6C, the inversion
result of the method based on 1D U-Net is shown in Figure 6E, and
the inversion result of the method proposed in this paper is shown in
Figure 6G. Figures 6B, D, F, H correspond to the residual difference
between each network’s inverse acoustic impedance and the real
acoustic impedance.

As shown in Figure 6, the inversion results shown in Figures 6E, G
have a higher similarity to the real model than the inversion results in
Figures 6A, C.Moreover, Figure 6Ghas stronger horizontal continuity
and weaker visible jitter in both horizontal and vertical directions for
the inverse acoustic impedance profile than Figure 6E, the water layer
at the top of the figure also clearly shows a relatively better inversion of
Figure 6G. The partition interface and fault location in different strata
are the main locations where the inversion results show errors,
according to the residual profiles. In comparison to other figures
in Figure 6, the inversion method in this paper can also invert the
convolution structure in the model well, and the inversion results are
more continuous and closer to the actual acoustic impedance, as well
as more accurate in predicting the location of the faults. In most
locations, the error is lower than that of other inversionmethods. This
is due to the effective use of the inversion network proposed in this
paper for the spatial correlation of seismic data’s horizontal direction.

In order to compare the details of the inversion results of
different methods from the microscopic level, the representative
Trace No. 570 (corresponding to the position around x = 3,565 m)
and Trace No. 1400 (corresponding to the position around x =
8,747 m) are selected for inversion.

FIGURE 7
Acoustic impedance inversion results of trace no. 570. (A) Inversion result of the CNNmethod. (B) Inversion result of the TCNmethod. (C) Inversion
result of the 1D U-Net method. (D) Inversion result of the method in this paper.

Frontiers in Earth Science frontiersin.org08

Ning et al. 10.3389/feart.2023.1104488

122

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2023.1104488


At these two locations, the acoustic impedance values obtained by
four inversion methods were compared. Figures 7A–D shows the
inversion results of Trace No. 570 using the conventional CNN
inversion method, the 1D TCN inversion method, the 1D U-Net
inversion method, and the method proposed in this paper, with the
red and black lines representing the true impedance and acoustic
impedance inversion results, respectively. Similar to the inversion
results of the four networks mentioned above for all seismic traces,
the inversion result of the method in this paper is relatively better. The
inversion result in Figure 7A has a large inversion error at a large depth,
the inversion result in Figure 7B is very different from the true value, and
the inversion result in Figure 7C changes too drastically, whereas the
difference between the inversion result and the actual acoustic impedance
in Figure 7D is very small, with the two curves almost overlapping.

Figures 8A–D corresponds to the inversion results of the above
four methods for Trace No. 1400 seismic trace, respectively, and the
conclusions are consistent with Figure 7. The inversion results of
Figures 8A, B in the figure deviate more from the true values. The

inversion results of Figures 8C, D are in better agreement with the
actual curves, but between sampling points 0 and 100, the inversion
of Figure 8D is better, while the curve change of the inversion result
of Figure 8C is too drastic. This further validates the performance of
the inversion network proposed in this paper.

In order to objectively and quantitatively evaluate the reliability
of the inversion results of the four methods, the coefficients R2 and
MSE are used as evaluation criteria. Table 1 shows the MSE and R2

between the acoustic impedance inversion results of different
methods in Figure 6 and the actual acoustic impedance.

Table 1 shows that this paper employs multichannel inversion,
and the method of acoustic impedance inversion by Attention
U-Net using spatial correlation performs best in terms of MSE
and R2, demonstrating the method’s efficacy.

Gaussian noise of 4%, 8%, and 12% was added to the seismic
data to test the adaptability of the method proposed in this paper to
noise. Table 2 shows the quantitative evaluation of the inversion
results obtained from the different inversion networks in Figure 6
under different noise conditions. As shown in Table 2, the
performance of each method’s inversion results decreases as
noise increases relative to a noiseless environment, but the
performance index of the method proposed in this paper
decreases the least. For example, when the noise of the seismic
data increases from 4% to 12%, the R2 coefficients of the inversion
results of CNN, TCN, U-Net, and the proposed method decreased
by 7.43%, 2.85%, 4.83%, and 1.38%, respectively. Observing the
changes inMSE data leads to a similar conclusion. It can be seen that
the proposed method in this paper has better noise immunity
performance compared with other methods.

FIGURE 8
Acoustic impedance inversion results of trace no. 1400. (A) Inversion result of the CNNmethod. (B) Inversion result of the TCNmethod. (C) Inversion
result of the 1D U-Net method. (D) Inversion result of the method in this paper.

TABLE 1 MSE, R2 between inversion results and actual acoustic impedance.

Methods MSE R2

CNN 0.0897 0.9090

TCN 0.0540 0.9452

U-Net 0.0343 0.9653

Attention U-Net 0.0199 0.9800
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3.2 SEAM model inversion experiments

To further verify the feasibility of the method, this paper conducts
experiments with the SEAM model. The SEAM model is open source
and also widely used for the validation of deep learning inversion
methods (Mustafa et al., 2021). The SEAMmodel is a 3D seismic survey

with very drastic lateral variations in density and longitudinal wave
velocity, which is challenging for the inversion algorithm. The SEAM
model is constructed based on basic rock properties, such as the volume
of shale and sand. It follows the changing trend of shale porosity
characteristics in the Gulf of Mexico, which is a better simulation of the
actual geological conditions. The density of the SEAM model and the

TABLE 2 MSE, R2 between inversion results and actual acoustic impedance under different noise conditions.

Indicator、SNR

methods

MSE R2

4% 8% 12% 4% 8% 12%

CNN 0.1146 0.1404 0.1787 0.8836 0.8571 0.8180

TCN 0.0622 0.0742 0.0886 0.9375 0.9253 0.9108

U-Net 0.0454 0.0729 0.0911 0.9540 0.9261 0.9079

Attention U-Net 0.0244 0.0285 0.0375 0.9751 0.9711 0.9616

FIGURE 9
SEAM model. (A) Seismic data profile. (B) Real acoustic impedance profile.

Frontiers in Earth Science frontiersin.org10

Ning et al. 10.3389/feart.2023.1104488

124

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2023.1104488


longitudinal wave velocity model are multiplied to obtain the
real acoustic impedance model. The seismic data and the real
acoustic impedance profiles are shown in Figures 9A, B, respectively,
with 501 traces and 688 sampling points per trace in the seismic profile
and 501 traces and 688 sampling points per trace in the acoustic
impedance profile. 12 traces of acoustic impedance are uniformly
extracted from the acoustic impedance model as pseudo-well data,
and k is also set to 3, so that each pseudo-logging curve corresponds to
7 seismic traces with a depth of 688 sampling points. The training epoch
is set to 400, and the batch size is 12 for each iteration. The network is
then trained in the same way as the Marmousi2 model, and the trained
network is used to perform acoustic impedance inversion on all seismic
traces.

The inversion results are shown in Figure 10. Figures 10A, C,
E correspond to the results of the inversion based on the
conventional CNN inversion method, the 1D U-Net inversion
method, and the inversion of the proposed method in this paper,
respectively. Figures 10B, D, F correspond to the residuals
between the acoustic impedance and the real acoustic
impedance inverted by each method, respectively. As can be
seen from the figure, compared with Figures 10C, E has a
better effect in displaying the stratigraphic interface in the left
half of the depth range of 10,000 m to 14,000 m, and the strata are

clearer. Some thin stratigraphic variations can be clearly observed
in the upper left part of Figure 10E diagram between 5,000 and
9,000 m depth. For example, at 2,500 m depth in the real model,
there is a thin arc-shaped stratigraphy that can be seen more
clearly in Figure 10E, whereas it is difficult to see in Figures 10A,
C, and Figure 10A does not outline the central uplifted area in the
real model better. Although the method in this paper has some
errors in the inversion of the SEAM model, the overall effect is
better than the other two methods.

Trace No. 179 (corresponding to the vicinity of x = 12,500 m) was
selected for the inversion experiment, and the acoustic impedance
inversion results of the three inversionmethods are shown in Figure 11.
Figures 11A–C shows the inversion results of Trace No. 179 using the
conventional CNN inversion method, the 1D U-Net inversion method,
and the method proposed in this paper, with the red and black lines
representing the true impedance and acoustic impedance inversion
results, respectively. The proposed method has better inversion results
compared with other methods. From Figure 11C, we can see that the
inversion result obtained by the proposed method almost completely
overlaps with the true impedance, while the inversion result of the CNN
deviates from the true value, and the result obtained by the 1D U-Net
inversion method also has large deviations, with a large deviation at a
small depth.

FIGURE 10
Acoustic impedance inversion profiles and residual profiles on the SEAMmodel. (A) Inversion result of CNNmethod and its residual (B). (C) Inversion
result of U-Net method and its residual (D). (E) Inversion result of the method in this paper and its residual (F).
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To quantitatively evaluate the performance of the method
proposed in this paper, the MSE and the R2 between the acoustic
impedance inversion results and the true acoustic impedance are
calculated and presented in Table 3. The data are the MSE and R2

between the acoustic impedance and the true acoustic
impedance obtained by the inversion of different inversion
methods in Figure 10. The data in the table show that the
inversion result of the proposed method performs best in
terms of MSE and R2, which verifies the effectiveness of the
method.

4 Conclusion

This paper proposes a multichannel seismic acoustic
impedance inversion method based on the Attention U-Net

network. Different from the conventional supervised learning
inversion method, this inversion method applies the spatial
correlation in the horizontal direction to the inversion
network, and trains the network with 2 k + 1 seismic traces
centered on the well-side trace and the corresponding logging
curve to enhance the lateral continuity. In addition, the Attention
U-Net network is used as a feature extraction module in the
inversion network, and the attention gating model is added to the
traditional U-Net-based inversion network. The AG is used to
implicitly learn to suppress irrelevant regions in the input data
while emphasizing salient features useful for inversion results,
and it can be easily integrated into the standard CNN architecture
to reduce computational overhead while improving the model’s
sensitivity and prediction accuracy. The method’s performance is
evaluated using the Marmousi2 and SEAM models, and it is also
compared to several other commonly used deep learning
inversion methods. The results show that the inversion results
of the method proposed in this paper are more consistent with
the actual acoustic impedance values, and the anti-noise
performance is the best. In the SEAM model, where the lateral
velocity and density vary drastically, the proposed method can
better obtain the stratigraphic structure and details in the true
model. These are attributed to the combined application of the
attention gating model and methods such as multichannel
simultaneous inversion.

FIGURE 11
Acoustic impedance inversion results of trace no. 179. (A) Inversion result of the CNN method. (B) Inversion result of the 1D U-net method. (C)
Inversion result of the method in this paper.

TABLE 3 MSE, R2 between inversion results and actual acoustic impedance.

Methods MSE R2

CNN 0.2659 0.5436

U-Net 0.1549 0.7991

Attention U-Net 0.1182 0.8250
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Cross-sensor vision system for
maritime object detection

Vinay Mohan* and Steven J. Simske*

Department of Systems Engineering, Colorado State University, Fort Collins, CO, United States
Accurate and automated detection of maritime vessels present in aerial images is

a considerable challenge. While significant progress has been made in recent

years by adopting neural network architectures in detection and classification

systems, these systems are usually designed specific to a sensor, dataset or

location. In this paper, we present a system which uses multiple sensors and a

convolutional neural network (CNN) architecture to test cross-sensor object

detection resiliency. The system is composed of five main subsystems: Image

Capture, Image Processing, Model Creation, Object-of-Interest Detection and

System Evaluation. We show that the system has a high degree of cross-sensor

vessel detection accuracy, paving the way for the design of similar systems which

could prove robust across applications, sensors, ship types and ship sizes.

KEYWORDS

deep learning, vessel detection system, maritime vessel, optical satellite system, object
detection, convolutional neural network, synthetic aperture radar
Introduction

From the advent of passenger ships in the late 19th century to container-revolutionized

maritime transport in the 1970s, there has been increasing interest in monitoring, tracking

and identifying vessels at sea. Before the first artificial earth satellite was placed into orbit in

the mid 1950s, vessels were primarily tracked using either primitive cooperative systems

such as inter-ship radio transmission or rudimentary non-cooperative systems such as

coastal or on-board RADAR. Human interests at this time – revolving around safety &

rescue, fishing and passenger transport - were largely satisfied by these systems.

More recently, effective understanding of the global maritime domain – or Maritime

Domain Awareness (MDA) – has exploded in importance around the world with a

significant number of commercial, defense and other government applications. There has

been increasing attention given to exclusive economic zones (EEZ) and governance of a

country’s natural resources with state interests including maritime security, monitoring of

marine traffic, illegal fishing, smuggling and maritime search & rescue. Commercial

interests have expanded to include drilling and exploration of ocean floors, the

management of fisheries, maritime piracy and cargo transportation. Private entities and

NGOs have interests ranging from forecasting weather to the protection of ecology and

sea health.
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A number of these applications use knowledge of position and

behavior of vessels as their cornerstone with MDA being enabled by

information from land, sea, air and/or space systems and in some

cases, vessel information repositories (Dekker et. al, 2013). These

systems can broadly be classified into one of two types –

Cooperative and Non Cooperative Systems - based on whether

the system is employed by vessels to communicate information

about themselves or whether they are observation systems which

function independently of vessel cooperation (Table 1).

Information captured usually includes the vessel type, cargo,

position, velocity, route as well as other identifying and

tracking data.

Cooperative systems are rarely used for comprehensive MDA.

Most small (<300) ton vessels are not required to carry either an

Automatic Identification System (AIS) or a Long-Range

Identification and Tracking System (LRIT) while fishing vessels –

regardless of size – are not required to carry a Vessel Monitoring

System (VMS). Additionally, illegally operating vessels rarely carry

or operate their systems accurately. Some vessels turn off their

systems while others spoof their mandatory position reports.

Operations such as search and rescue can’t be carried out

effectively if one is to rely solely on cooperative reports either.

These reasons make non-cooperative systems among the most

beneficial sources of information for a number of the MDA

applications outlined above. In particular, Synthetic Aperture

Radar (SAR) and Optical Imaging Satellite Systems have several

advantages such as their remote access, global reach, frequency of

information updates and the high amount of data they can collect

and process.

While the last century saw incremental progress made in

computer-generated detection and classification of objects

in images, the creation of the first convolutional neural network

in the 1980s and GPU-accelerated training in the 2000s enabled

significant strides in machine learning approaches to detection,

segmentation and localization of objects in images.

However, a number of distinct challenges exist which prevent

the robust detection of vessels at sea. Sea surfaces can be complex,

and variations in weather and vessel reflectivity can lead to a loss of

system precision. Small, densely packed and blurry vessels – as well

as vessels very close to land – have all proven challenging for

detection systems. While traditional systems are inefficient and

generally have lower accuracy, modern systems have been time-

consuming to build and require large amounts of labeled data.
Frontiers in Marine Science 02129
Lastly, no single technique has proved robust across sensors, leading

to piecemeal solutions for various sensors, datasets and locations.

This paper proposes a vision system which can provide robust

target detection across disparate sensor types. The system is

comprised of the following subsystems – Image Capture

Subsystem, Image Processing Subsystem, Model Creation

Subsystem, Object-of-Interest Detection Subsystem and System

Evaluation Subsystem - and provides functionality for object

detection using distinct independent data sources for model

creation and object detection.
Related work

LandSat-1, launched in 1972, was the first civil optical satellite.

Since then, hundreds of optical satellites with varying resolutions

have been launched with many continuing to orbit our planet.

Recent VHR additions like the WorldView and GeoEye series have

expanded spectral and spatial resolutions while others like

QuickBird and IKONOS have a higher radiometric resolution as

well. An increasing number of optical satellite sensors now also

provide more frequent coverage of Earth. At the turn of the century,

there was a significant increase in the availability of commercial

VHR sensor data and with it an explosion in the number of

publications exploring the viability of maritime vessel detection

using satellite systems.

Some of the earliest systems for maritime vessel detection used a

number of pre-processing steps prior to target detection. Sea-land

separation was considered crucial for accurate detection of vessels in

harbors (Willhauck et al., 2005) as well as reducing the high number

of false positives generated when vessel detection systems were

applied to land (Corbane at. al, 2008). Consequently, coastline data

was either incorporated from existing GIS data (Lavalle at al., 2011)

or land masks were created from the images themselves (Dong et al,

2013). Similarly, key environmental effects – cloud coverage, waves

and sunlight – were usually minimized using cloud masks (ESA,

2015), texture discrimination (Yang et. al, 2014) or Fourier transform

algorithms (Buck et al., 2007; Jin and Zhang, 2015).

Vessel Detection and Classification methods ranged from

simple geometrical feature detection (Lin et al, 2012; Heiselberg,

2016) to machine learning techniques. Prior to the advancements

made in object detection systems which used neural networks,

support vector machines (SVM) – a supervised classification
TABLE 1 Cooperative vs Non Cooperative Systems.

Cooperative Systems Non-cooperative Systems

Examples Type Examples Spectrum

Automatic Identification System (AIS) Visual Sighting Shore or Ship-based Sighting Varies

Long-Range Identification & Tracking System (LRIT) Optical Camera Optical Imaging Satellites
Panchromatic,
Multispectral

Vessel Monitoring System (VMS)
Infrared Camera FLIR, Weather Satellites Thermal Infrared

Radar Real Radar , SLAR , SAR Electromagnetic
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model – dominated publications (Bi et al., 2010; Bi et al., 2012;

Kumar and Selvi, 2011; Li and Itti, 2011; Xia et al., 2011; Guo and

Zhu, 2012; Satyanarayana and Aparna, 2012; Song et al., 2014).

Other classifiers for vessel detection include the Bayesian classifier

(Antelo et al., 2009), random forest models (Johansson, 2011) and

Fisher classification (Zhang et al., 2012).

More recently, neural network-based systems have taken the

world of image recognition and object recognition by storm.

AlexNet, a convolutional neural network architecture designed by

Alex Krizhevsky in 2012 achieved a top-5 error of 15.3%, a full 10

percentage points lower than that of the runner up and paved the

way for significant strides in image classification, segmentation and

object detection.

In Ramani et al., 2019 the authors build a vessel detection

system for real-time maritime applications. The system employs a

Mask R-CNN architecture to segment and classify 30 images every

30 seconds.

In Gallego et al. (2018), results from a Convolutional Neural

Network are passed to a k-NNmodel to improve detection performance.

In Zhang et al. (2019), pre-processing of satellite images is

performed using a support vector machine framework following

which variations of the Faster R-CNN neural network architecture

are applied to measure each system’s performance on different sizes

and types of vessels. The authors are able to identify a framework which

performs reasonably well for both offshore and inland vessel detection.

Chen et al., 2020 also used CNNs to create an end-to-end

detection system capable of detecting both inshore and offshore

ships with an accuracy >90%. Their detection speed was 72 fps and

their system intentionally balanced accuracy against speed of

detection on the SAR Ship Detection Dataset (SSDD).

Li et al. (2017) used a CNN architecture-based detection system

on a custom dataset consisting of ships of various sizes as well a

variety of environmental and sea conditions. Their paper

established a higher precision with the custom framework than

an equivalent Faster R-CNN system applied on the same dataset.

In contrast to common SAR and Optical Satellite Systems used

in other publications, Yang et al. (2018) uses a remote sensing

system which captured and segmented Google Earth images which

were then used for vessel detection. The authors also used a custom

neural network framework with a Feature Pyramid Network (FPN)

to minimize false positives in images consisting of densely

packed ships.

When we examine a collection of approaches used to build

vessel detection systems, we observe a number of underlying trends:
Fron
-Neural networks have gained popularity in recent

publications due to the largely scripted/automated

approach to building highly accurate detection systems.

-Classification of vessels by vessel type has proven very

challenging regardless of the type and resolution of the

sensor(s) used.

-Most publications have built and tested their systems using a

homogenous dataset of images collected from either a single

sensor or a set of sensors, thereby failing to establish

robustness of their system across sensor types.
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In this paper, we tackle the challenge of building a system robust

enough to collect and use images from one sensor to detect objects

in images collected from a second, disparate sensor. Such a system

would be tunable, adaptable and re-purposable across applications.

In the Object-of-Interest Detection subsystem, we evaluate several

state-of-the-art algorithms as well as create a custom model

architecture from scratch.

While we do not intend to recommend a winning algorithm to

solve cross-sensor vessel detection, we show that the designed

system has a high degree of cross-sensor vessel detection

accuracy, paving the way for future research in tunable, adaptable

and re-purposable systems which could prove robust across

applications, sensors, ship types and ship sizes.
System overview

Image capture subsystem

The Image Capture Subsystem (Figure 1) uses two satellite

sensor feeds along with two XML file feeds to obtain and provide

data to the consequent subsystems. The XML files contain

annotated image information for the corresponding image feeds.

The first input is an optical aerial image feed of maritime scenes

on the visible spectrum. The images are sourced in the RGB color

scheme, and can contain zero, one or multiple maritime vessels in

varying weather and lighting conditions. The images contain scenes

from different regions of the world including Africa, Europe and

Asia and different water bodies including the Mediterranean Sea as

well as the Atlantic and Pacific Oceans. While the images are of

different sizes, the average image has a spatial resolution of 512 x

512 pixels.

The second input is a synthetic aperture radar (SAR) generated

feed of maritime scenes (sea waves, shallow sea topography, coastal

zones, maritime vessels etc.) with a spatial resolution between 1-

500m. This feed provides images of 256 pixels in both range and

azimuth, and the vessels in these images have distinct scales and

backgrounds. A given image can contain a single vessel, multiple

vessels or none.

For each image feed, annotations are provided in the Pascal

VOC format. The Pascal VOC format is a common annotation

format for images which stores annotations in the XML file format

with a separate XML annotation file for each image. Optionally,

bounding box information is included in the [x-top-left, y-top-left,

x-bottom-right, y-bottom-right] format.

The image feeds are tagged with their source before being

merged together into a single stream and sent to the Image

Processing Subsystem. The two streams of XML annotations

comprise the other outputs of this system.
Image processing subsystem

The inputs to the Image Processing Subsystem (Figure 2) are
-a single stream of images tagged with their source, &
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Fron
-two annotation feeds corresponding to the respective image

streams.
First, the images are re-sized for uniformity across input

streams and to match the dimensions of the input layer in the

Model Creation Subsystem. The pixels in the image stream are then

converted to the float datatype following which each image is

normalized. Normalization scales the pixel values down from a
tiers in Marine Science 04131
range of (0,255) to a range of (0,1). Lastly, the image streams are

split based on their source, annotations are appended and the

output of the subsystem consists of two tagged and annotated

image streams. Convolutional Neural Network Architectures like

AlexNet and GoogleNet perform various image chopping and

feature extraction steps which, in conjunction with pooling layers

make them translation (and to a large degree, rotation) invariant

model architectures.
FIGURE 1

Image Capture Subsystem.
FIGURE 2

Image Processing Subsystem.
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Model creation subsystem

The input to the Model Creation Subsystem (Figure 3) is a single

annotated image feed. This feed is used to train a binary classification

model to detect the presence of a vessel in an image using a

combination of pre-defined model frameworks and hyperparameters.

The models employed are (a) a custom convolutional neural network

architecture, defined and trained from scratch, and (b) transfer learning

and benchmarking using four common computer vision model

architectures. For the latter, we re-define and fine-tune the last layers

for our specific task while leaving the architecture and weights of other

layers as is. Model parameters for each fitted model comprise the

output of the Model Creation subsystem as well as each model’s

predictions on the input image feed.
Frontiers in Marine Science 05132
Object-of-interest detection subsystem

The inputs to the Object-of-Interest Detection Subsystem

(OOIDS) (Figure 4) are the fitted model parameters and the

second image feed on which OOI Detection is to be performed.

The fitted model parameters can either be the hyperparameters of

the model – in which case the model will need to be re-fit on the

original dataset – or a fit model, as we have assumed here. The

model is applied (‘scored’) on the second image stream producing

predictions indicating the presence or absence of maritime vessels.

The output of this subsystem are the model results on the second

image stream. As a reminder, this is an image feed the model itself

has not been exposed to, and is an attempt to measure the model’s

power on a disparate and independent data source.
FIGURE 3

Model Creation Subsystem.
FIGURE 4

Object-of-Interest Detection Subsystem.
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System evaluation subsystem

The System Evaluation Subsystem (Figure 5) calculates and

produce model metrics which measure the performance of the

model on the dependent (‘training’) and independent (‘test’) data

sources. The inputs to this subsystem are the model results on both

the training (image feed #1) and test (image feed #2) datasets. Using

these model results, model metrics such as accuracy, precision and

recall can be calculated, dependent on the number and frequency of

classes in each dataset. The metrics indicate the overall performance

of the system at performing object detection using different sensors

and sensor types, i.e SAR and Optical Satellite sensors.,,,,
Methodology

The System Block Diagram is shown in Figure 6.

To test system functionality and gauge performance, we use the

MASATI (Maritime Satellite Imagery Dataset) and Sentinel datasets as
Frontiers in Marine Science 06133
inputs to the Image Capture Subsystem. The images contained in these

datasets containmaritime scenes in the visible spectrumusing optical aerial

cameras and SAR-based radio waves, respectively. These datasets mimic

and satisfy the earlier outlined assumptions regarding the two satellite

image feeds (III.A) and are accompanied by annotations indicating the

presence/absence of maritime vessels which are treated as ground truth in

the subsequent model design and evaluation subsystems.

The datasets are tagged with their source name, re-sized to

standardized dimensions, normalized and the bits converted to the

float datatype. The Model Creation Subsystem uses the Keras Deep

Learning API with the Tensorflow backend to fit four pre-defined

convolutional neural network architectures and one custom

architecture on the MASATI dataset. The MASATI dataset

consists of 1027 (48%) images containing one or more maritime

vessels and 1132 (52%) images with none. In addition to a custom

model trained from scratch, the 4 pre-defined architectures include
-VGG-16, proposed by Karen Simonyan and Andrew

Zisserman of Oxford University in 2014, the ‘16’ in the
FIGURE 5

System Evaluation Subsystem.
FIGURE 6

System Block Diagram.
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name indicating the number of layers with weights

(Simonyan and Zisserman, 2014).

-InceptionV3, originally a module for GoogleNet in 2015

(Szegedy et al., 2016)

-ResNet50, a variant of the ResNet Model consisting of 48

convolution layers and residual blocks, introduced in 2015,

and

-XCeption, a deep convolutional neural network architecture

involving Depthwise Seperable Convolutions, introduced

by Francois Chollet in 2016
Since (a) one of the primary goals behind most maritime object

detection systems is real-time processing, and (b) our primary goal

is to develop a system capable of using data from one sensor to

detect objects in incoming data from a second sensor, each of the 5

models is trained for <=5 epochs. There is no minimum stopping

threshold or other optimization criteria since we want flexible

models which aren’t overfit or optimized on the MASATI

dataset alone.

While the custom model is trained from scratch, each pre-

defined architecture has the following changes:
-The input layer is altered to match the dimensions of the

incoming data stream,

-The output layer is altered to a softmax function with two

classes of interest, and

-while the fitted weights of most layers stay the same, the last

five layers are re-trained for the purpose of optimizing

detection of our classes of interest
Each model is trained using specific values of hyperparameters

following which fitted parameter values are saved and transferred as

outputs to the Object-of-interest Detection Subsystem. The OOI

Detection Subsystem re-fits models and uses the fit models to

predict the presence or absence of a maritime vessel in the second
tiers in Marine Science 07134
(SAR) input stream. The results of the 5 models on the SAR image

stream is an input to the System Evaluation Subsystem which

calculates, compares and displays metrics for the system’s user(s).

Model Configuration and hyperparameters for each model are

shown in Table 2.
Results and discussion

The System Evaluation Subsystem calculates each model’s

accuracy in detecting ships on the two datasets – MASATI and

Sentinel, referred to as the training data and test data, respectively.

The number of images in each dataset as well as the time to train

and score each model on the respective datasets is also calculated.

These results are shown in Table 3.

As we can see, the results are interesting and varied.
-While the custom model – trained from scratch – has a low

accuracy, recall and F-Score, it has high precision and beats

larger architectures like ResNet50 across the board when

trained for only a few epochs.

-ResNet50, as we can see in Table 2 also has the highest

number of parameters of all the architectures indicating

that the extra learning potential of this network likely

requires additional parameter tuning and in its current

form results in overfitting on the training data.

-Most pre-trained models performed better than the custommodel

indicating that the extra layers, learning capacity and learned

features in these models aided in our binary classification task,

despite being designed for larger and more complex image

classification and object detection tasks. In addition to the higher

F-Scores, InceptionV3 and XCeption have much lower training

times than the custom architecture.

-Despite the datasets being collected from different sensors and

sensor types, many of the models are successfully able to
TABLE 2 Parameters for Models 1-5.

Architecture Custom VGG-16 InceptionV3 ResNet50 Xception

Train-Val Ratio N/A (Train = 1.0) N/A (Train = 1.0) N/A (Train = 1.0) N/A (Train = 1.0) N/A (Train = 1.0)

Image Width 200 200 200 200 200

Image Height 200 200 200 200 200

Number of Images 2,159 2,159 2,159 2,159 2,159

Number of Classes 2 2 2 2 2

Number of Epochs 5 5 1 1 1

Learning Rate 0.001 0.001 0.001 0.001 0.001

Decay Factor 0.9 0.9 0.9 0.9 0.9

Optimizer RMSProp RMSProp RMSProp RMSProp RMSProp

Total Parameters 1,483,010 14,751,554 21,868,322 23,735,298 21,062,186

Trainable Parameters 1,483,010 2,396,674 65,538 200,706 204,802
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identify maritime vessels in one using data solely from the

other with both high precision and recall despite the

unbalanced Sentinel dataset.

-While most modern systems built on underlying neural

network architectures require sufficiently large (a)

computing power, (b) time, and/or (c) data to perform

well, a dataset of ~2K images was used to sufficiently

capture between 62% - 94% of vessels in a dataset 10x as

large (21,682 images) with training and testing times of

<=10 minutes.

-While many systems require significant tuning and selection

of hyperparameters to optimize object detection, limited

fine-tuning resulted in respectable vessel detection results.
While we have not examined incorrect classification results

further to discover potential underlying trends, future research in

cross-sensor vessel detection could prove robustness across ship

and sensor types with longer training times, other model

architectures and/or further hyperparameter tuning.

We propose the following guidelines which similar studies

could consider:
-Using multiple sensors for both system training and testing

-Verification of algorithms on varied maritime scenes

-Validation of accuracy and false detection rates across

different ship sizes and difficult conditions

-Introduction of ship classification algorithms for specific

applications
Given that earth observation is a rapidly growing field with an

increasing availability of open data and new satellite technology,

cross-sensor vessel detection systems would be more adept than

traditional systems and could prove less cost-sensitive for new

applications. Future research using small datasets and low system
tiers in Marine Science 08135
processing times may also lead to rapid detection rates, thereby

aiding real-time maritime applications including safety, logistics

and transportation.
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Introduction: Cracks are a key feature that determines the structural integrity
of rocks, and their angular distribution can be used to determine the local
or regional stress patterns. The temporal growth of cracks can be monitored
in order to predict impending failures of materials or structures such as a
weakened dam. Thus, cracks and their spatial-temporal distributions should be
automatically monitored for assessing their structural integrity, the associated
stress patterns and their potential for failure.

Method: We show that the U-Net convolutional neural network, semantic
segmentation and transfer learning can be used to accurately detect cracks in
drone photos of sedimentary massifs. In this case, the crack distributions are
used to assess the safest areas for tunnel excavation. Compared to the coarse
performance of ridge detection, the U-Net accuracy in identifying cracks in
images can be as high as 98% when evaluated against human identification,
which is sufficient for assessing the general crack properties of the rock faces
for the engineering project.

Result: Based on approximately 100 h of manual cracks labeling in 127 drone
photos and 20 h of network training, the U-Net was able to successfully detect
cracks in 23,845 high-resolution photographs in less than 22 h using two Nvidia
V100 GPUs. Meanwhile, the network was able to detect more than 80% of the
observable cracks of a volcanic outcrop in Idaho without additional training.
With a modest amount of extra labeling on photos of the volcanic outcrop
and transfer training, we found that the accuracy significantly improved. The
surprising outcome of this research is that the U-Net crack detector laboriously
trained on photos of sedimentary rocks can also be effectively applied to photos
of volcanic rock faces. This can be important for real-time assessment of
geological hazards and lithology information for dam inspection and planetary
exploration by autonomous vehicles. For another application, we accurately
detected fractures and faults with a scale of tens of kilometers from Martian
photographs.

Conclusions: In summary, our methodology of using CNN with transfer training
suggests that it can be used as a semi-universal detector of cracks in across a
range of diverse geological settings.

KEYWORDS

geo-crack detection, rock cracks, U-Net, convolutional neural network, transfer
learning, machine learning
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1 Introduction

1.1 Crack detection and deep learning

All solids weaken over time and develop a reduction in their
mechanical strength. A sign of this weakness is the development
of cracks, a quasi-linear physical separation of material on the
surface and in the interior of a solid. For siting buildings on a
rock foundation (Wyllie, 1999), assessing dam hazards (Herbert,
2011), avoiding drilling hazards or for mining excavation (Dyskin
and Germanovich, 1993), it is critical to assess the density and
distribution of fractures in the rock mass. To aid in this task,
thousands of aerial photos of a rock area can easily be obtained
by cameras mounted on Unmanned Aerial Vehicles (UAVs). As
introduced in (Bemis et al., 2014) and (Vasuki et al., 2014), UAVs
can be programmed to photograph an area of interest to a centimeter
accuracy, no matter how large the rock mass. Then, methods from
photogrammetry can create a mosaic of these images and merge
them with real topograhy (Mikhail et al., 2001).

In tradition, surface cracks were labeled by experts and
their distribution was cataloged (Sanderson et al., 2019) to give
engineers an estimate of the integrity and stability of the rock
mass (Aydan et al., 2014). However, if there are thousands of
images then the manual interpretation of cracks is both time
consuming and error prone because of variable lighting, shadows,
non-crack erosional features, rock spall, and complex rock surfaces.
In addition, the accuracy of manual crack interpretation depends
on the expertise of the interpreter, and the interpretation criteria
(Hillier et al., 2015); (Sander et al., 1997). Therefore, there is a
growing demand to develop tools that can automatically detect and
catalogue cracks in a more efficient and accurate way.

Because the shape of cracks is long and narrow, many crack
detection methods are based on edge-detection algorithms. For
example (Pereira and Pereira, 2015), successfully applied edge-
detection algorithms to UAV photographs to detect cracks in
building structures. Their algorithm applied Sobel operator (Sobel,
1990) and particle filters (Thrun, 2002) for detecting cracks in
building facades. For fractured outcrop images, Prabhakaran et al.
(2019) used the complex shearlet transform to automatically extract
fracture ridge realizations from images. After getting the features
of ridges, post-processing image analysis algorithms were then
used to vectorize the fracture traces in an automated manner. The
resulting fracture detection maps are generally consistent with the
human-labeled fractures in photos taken over a geological outcrop
in Parmelan, France.

One problem with an image processing approach is that it
cannot easily distinguish abrupt changes in a photo’s intensity caused
by, for example, a skyline in a photo (Mohan and Poobal, 2018).
This type of noise is easily distinguished by an interpreter, but
manual detection is labor intensive when thousands of photos must
be analyzed. To incorporate humans into the automated decision
process, convolutional neural network (CNN) architectures were
introduced to detect cracks. In the earliest applications, a variety
of CNN networks including AlexNet (Dorafshan et al., 2018) and
VGG16 (WilsonLeal da Silva and de Lucena, 2018) were used to
detect cracks in concrete structures (Kim and Cho, 2018); (Cao and
Anh, 2019). Their limitation is that they are inefficient for high-
resolution semantic segmentation, which is the task of classifying all

pixels in the input image. Such CNNmethods cannot localize cracks
at the pixel level. In the work of (Cha et al., 2017), a method based
on CNN can only locate cracks in a box which has the same size as
the CNN’s input samples. Sufficiently large samples are required by
this CNN to ensure its accuracy, which limits its resolution.

Developed from previous CNN architectures, the standard
U-Net CNN (Ronneberger et al., 2015) mitigates the main flaw
by classifying each pixel in the input image with a very high
precision. As a convolutional neural network, U-Net can provide a
high accuracy and excellent resolution for semantic segmentation.
This is because the U-Net is a deep network with short-
connections between the encoder and decoder structure to enable
an accurate semantic segmentation: the short connections ease
information propagation in training and compensate details for
high level semantic features (Zhang et al., 2018). This high-
level accuracy makes the U-Net architecture favored by medical
personnel for analyzingMRI, CT, and ultrasound scans (Zhou et al.,
2018); (Han and Ye, 2018); (Yang et al., 2019a); (Yap et al., 2017);
(Behboodi and Hassan, 2019) and signal denoising (Sun et al.,
2020); (Xiong et al., 2022). In addition, the high resolution of U-
Net has been successfully used for crack detection in concrete
structures (Cheng et al., 2018); (Liu et al., 2019); (Li et al., 2020). For
scenes with a complex background, U-Net has been used to detect
prominent features such as roads in images taken by satellites and
performs better than traditional CNN methods (Constantin et al.,
2018), (Yang et al., 2019b). The convolutional blocks in U-Net can
be replaced with high-performing blocks with residual branches
(Yang et al., 2019b) and short-connections can be modified by
including several convolutional layers (Zou et al., 2021) to improve
detection accuracy and resolution in complex backgrounds. In
geophysics, U-Net architectures are used to identify faults in
seismic images and delineate their 3D patterns (Wu et al., 2019),
(Guitton, 2018). U-Net usually requires the support from powerful
hardware because of the millions of parameters, so that it is
limited in clusters rather than directly implemented on embedded
devices.

1.2 Project background

Sandstones in the Middle East study area are cut by a NW-
trending, roughly vertical set of long cracks that dissect the rocks,
forming blocky massifs and elongated rock fins that are several tens
to hundreds of meters wide, up to a kilometer or more in length
and several tens of meters in height. NE-trending vertical cracks
form a second but less prominent set of vertical cracks in the study
area. Cliff faces or facades are marked by traces of both vertical and
sub-horizontal cracks, with the latter aligned parallel to bedding.
Discontinuous vertical cracks located within the rocks terminate at
or near bedding surfaces suggesting that mechanical changes across
bedding locally inhibited crack growth (Pollard and Aydin, 1988).
Bedding-parallel cracks are relatively short, discontinuous features
caused mostly by failure along bedding surfaces exposed in vertical
facades. Consequently, failure along bedding surfaces should be
anticipated in the design of underground excavations. This type of
failure is common in crack (joint) bounded rock fins, where failure
and collapse along bedding surfaces leads to the development of
natural arches.
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FIGURE 1
Workflow of the procedure for training and labeling of cracks in drone photos.

FIGURE 2
U-Net architecture used for detecting cracks in drone images. In (A) and (B) each arrowed tier represents a layer; the blue boxes represent features
after the calculations from that layer. The input is a 256×256 RGB image. After five convolutional blocks (brown dotted block in a) and down-sampling
(violet downside arrow), the feature map has the size 16×16. This is followed by up-sampling of features with transposed layers (green upside arrow),
concatenation (gray dotted arrow) with the former output of the same size, and a final convolution. The final output size matches the 256×256 input to
allow individual pixel classification of the input. Each convolutional block contains 6 separate convolutional layers (red dash arrow) with a final input
identity operation (+) summed with the residual function block to form the desired output. (C) is the block of the original U-Net in (Ronneberger et al.,
2015) in comparison with (B).

Large cracks, especially those longer than 1 m, pose a problem
for engineers who must drill into portions of the sandstones. Prior
to drilling, a strict safety assessment must be carried out to access
the rock integrity. Mechanical integrity is related to the density and
distribution of large cracks, where drilling into themassif with a high
density of cracks must be avoided or extra precautions should be
taken. To quantitatively estimate the crack density, more than 23,000
drone photos were taken of the study area. Based on the success of

theU-Net architecture, we nowuse it to detect cracks in photographs
of rock faces. In our work, we add special convolutional modules
which include residual shortcuts and two additional branches to
better match crack orientations. More than 100 h were used to
manually label large cracks in 127 high-resolution training images,
which were then used to train the architecture. Applying the trained
U-Net to new input images achieved an accuracy of 98%, which is
sufficient to assess rock integrity prior to drilling into the massif.
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In addition we used transfer training to generalize the U-Net crack
detector so it is applicable to different rock types.

We describe our results in four sections. Following the
introduction, we present the methodology of our CNN procedure
for crack detection. The workflow for training and testing of the U-
Net is shown in Figure 1. After this, we describe the training of the
network and present results from the validation set.The next section
presents the numerical results of applying the trainedU-Net tomore
than 23,000 unlabeled drone images of our survey area. To test
the generalizability of the trained U-Net, we use it to detect cracks
in photos of volcanic rocks near the Teton dam site in Idaho and
do transfer learning and fine-tuning (Shin et al., 2016) to improve
accuracy. Finally we test the trained U-Net model on lineaments in
photos of Mars taken by a Mars orbiter. We draw conclusions in the
last section.

2 Network and loss function choosing

2.1 U-net architecture

To better match the reqiurements of crack detection, our
U-Net is designed and different from standard U-Net. The U-Net
architecture is diagrammed in Figure 2. It consists of a series of
contracting encoders followed by expanding decoders weighted
with features from the contraction path. In addition to the cross-
connected paths, each convolution block implements an internal
encoder/decoder with three convolution branches to enhance the
detection of specific orientations of cracks. The convolution block
forms the residual function to which an identity operation is added
(He et al., 2016). The dimensions of the final U-Net output are the
same as the input images but there is only one output channel
of binary values to represent the probability of a pixel to be
crack.

The U-Net design was chosen for the following reasons.

• Additional convolution branches: This idea comes from the
Inception Network (Szegedy et al., 2016) because most of the
cracks in our drone images are approximately horizontal
or vertical. The two additional convolution branches with
filter sizes 1×9 and 9×1 enable the efficient extraction
of crack features by focusing on a specified dimension
without the need for a square filter. A square filter with
many parameters can detect a wide variation of crack
orientations, but it is computationally inefficient if the cracks
are confined to just a few orientations. This is a data specific
enhancement.
• Residual function connection: In deep learning models, the
convergence rate and accuracy can become degraded with an
increase in the number of layers (He and Sun, 2015). Including
a residual operation to each convolution block helps to improve
accuracy in deep CNN models (He et al., 2016), (Zhang et al.,
2018).

Our U-Net has 9 convolutional blocks, including 54 convolution
layers, 4 maxpooling layers, and 4 transposed layers. For each
convolution layer, we include batch normalization (Ioffe and
Szegedy, 2015) and ReLU activation (Eckle and Schmidt-Hieber,

2019). Each convolution block is followed by a dropout layer with
a rate of 0.5 (a random choice, half are dropped) for additional
regularization. The final layer uses a sigmoid function to constrain
the output of U-Net between 0 and 1.

The labeling targets are cracks that tend to form less than
1% of the entire set of images. Therefore, there is an imbalanced
set of equations due to most labels having a label value of 0
(background). This typically leads to poor convergence and
large errors in inference labeling. To overcome the imbalance
problem, we test the performance of two weighted loss
functions.

1. Weighted cross entropy (WCE) (Sousa Aurelio et al., 2019):

WCE (y,p) = −∑
i
[λy(i) logp(i) + (1− λ)(1− y(i)) log(1− p(i))] (1)

where y(i) is our assigned label for the ith example, p(i) is the U-Net
prediction, and λ is a scalar chosen to improve performance.

2. Focal loss (FL) (Lin et al., 2017):

FL (y,p) = −∑
i
[λy(i) × (1− p(i))γ logp(i) + (1− λ)

×(1− y(i)) × (p(i))γ log(1− p(i))] (2)

where we use the constant γ = 2.
WCE is a typical loss function used in classification problems

where λ provides for a rebalancing of the possibly underrepresented
positive pixels in the loss calculation. FL is used to address
class imbalance by down-weighting the contribution of correctly
identified pixels to focus on the loss due to misidentified pixels. We
used a fixed value of γ = 2, varying only λ for all comparisons of each
loss function. The FL formula reduces to the WCE formula when γ
= 0. Our U-Net architecture is implemented using Keras 2.2.3 and
Tensorflow-GPU 1.14.

2.2 Labeling, training and validation

Although the facade and top images have different crack
features of the massifs, we only describe U-Net training of the
facade images because the workflow is the same for the top
images.

2.2.1 Labeling and picking of sub-samples
We select 57 photos from the facade view to be manually labeled

for training and validation, which contain typical cracks examples.
54 photos are used for training and 3 are used for validation. The
public-domain editing software GIMP (GNU Image Manipulation
Program) is used to label the crack lines. We use the pen tool in
GIMP to mark crack lines with many anchor points. Anchor points
are required to locate the center of the crack along the normal
direction to ensure the accuracy of labels. To convert labeled lines
to pixels, we paint the line with a width of 6-pixels to closely match
the crack size of interest. Image labeling is a time intensive task
that is necessary for the training of the CNN. Labeling requires
approximately 30–60 minutes per photo for a human, depending on
the number of cracks. The size of each image is 4,000× 3,000 or
4,000× 2000 so that more than 100 hours (including labeling the 70
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FIGURE 3
Different dataset samples. We use the two types of subimages to balance cracks in the dataset. (A) type A sub-samples that contain cracks; (B) type B
sub-samples that only contain the background and some have confusing and crack-like features. The size of each sample image is 256 × 256.

top images) are needed tomanually label the photos for training and
validation.

The biggest problem in labeling is defining what constitutes a
crack of interest. In the drone photos, there is a large variation
in the size of cracks and not all cracks are of interest. For these
data, geologists and building-site engineers are only interested
in identifying cracks longer than 1 m, which are long enough
to indicate possible instability in the building. Soil and small-
rock sections covering parts of cracks are not labeled, resulting
in discontinuous crack labels. Another problem is the mixture of
horizontal cracks and some special bedding contacts. Some bedding
contacts are strongly eroded so that there are some troughs along
bedding surfaces. It is challenging to discriminate them from cracks.
So we could include some troughs into the “horizontal cracks” label.

There are two types of subimages selected from the labeled
photos: subimages of type A contain labeled cracks (Figure 3A);
type B subimages contain the background rock, sky, sand, and/or
bare rocks, which are devoid of labeled cracks (Figure 3B). Some
samples in type B includes itemswhich complicate network training,
including line-like shapes of rain traces, shadow edges, and trees.
Although the U-Net output is a binary classification, identifying
types for inclusion in training allows for selecting a good balance
of cracks and non-cracks.

For samples of type A, labels are indexed with small random
shifts in the choice of index positions along the cracks to avoid cracks
are always in the center of training samples. Type B subimages are
randomly sampled. To reduce the bias of samples being too close to
each other, a minimal spacing distance was set for center points of

types A and B as 70 and 150 pixels, respectively. We select a count of
100 A types and 200 B types in each photo for balanced training.

2.2.2 Network training
Subsampling the 57 photos resulted in a training dataset

consisting of 16,200 subimages and a validation dataset consisting
of 900 subimages. The networks are trained using two Nvidia v100
GPUcardswith a batch size of 20 and an initial learning rate of 0.001.
The data are augmented in each batch of processed training samples
by adding copies with horizontal, vertical, or 0°–45° rotation using
a reflected sample to fill in the boundary space created by rotation.
The data augmentation is performed within Keras.

The maximum number of epochs is set to 100 and training
is stopped when either the maximum is reached or when loss in
the validation set does not decrease for 30 epochs (Figure 4). Loss
values in both the training and validation sets do not decrease after
around epoch number 50, so training is terminated at epoch 80.
Our modified U-Net provides lower loss values for both the training
and validation sets, compared to the standard U-Net architecture in
Figure 2C.

2.2.3 Validation and confusion matries after
skeletonization

We used two loss functions and a range of λ values to train
the U-Net. After trial-and-error tests, an output value threshold of
0.5 is used for all pixels in the U-Net for classification as either a
crack or background. Cracks in the output are marked as red in
the figures. For comparison with the U-Net, the automatic fracture
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FIGURE 4
Learning curves for the training data. (A,B) show the loss values in training set and validation set. The loss function uses WCE and λ = 0.85. Displayed
two lines show results of U-Net with original and modified blocks in Figure 2.

TABLE 1 Confusionmatrix definition and results for the validation images. a) is the definition of the confusionmatrix and related values: recall (R),
precision (P) and accuracy (A). b) is the workflow to get thematrix both in pixels and after skeletonization. The values in c) and d) are examples from results
of validation photos in which U-Net usesWCE and λ = 0.85.
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FIGURE 5
Perfomance metrics of the modified U-Net plotted against epoch number for the training data. We set eight λ from 0.5 to 0.98 in the loss functions and
display the average width, precision, recall of predictions in (A–C). The P and R values are calculated by the confusion matrix after skeletonization. In
(D), the relationship between P and R is for both the standard and modified U-Net architectures, and we add the performances of AFD method as
comparison.

FIGURE 6
Results of different algorithms applied to two validation images. Photos are 4,000×3,000 pixels each. Cracks marked in red color overlie on raw
photos. Human labeled images are shown in (A) and we only label those that we are quite confident about; (B) is calculated by automatic fracture
detection (AFD) in (Prabhakaran et al., 2019); (C–E) are trained with weighted cross entropy (WCE) using different values of λ; (F) focal loss (FL) shows
output from one value of λ.

detection (AFD) code in (Prabhakaran et al., 2019) is used as a ridge-
detection method for the validation images. We used typical 108
shearlet systems with a threshold of 0.52 for AFD.

The confusion matrix is necessary to evaluate the performance
of the U-Net for different parameter values. To normalize the crack
widths, we skeletonize the labeled and predicted cracks to be a same
width of one pixel (Zhang and Suen, 1984), (van der Walt et al.,

2014). After skeletonization, the labeled crack is only 1 pixel wide.
Table 1 compares the ground-truth labels with the predicted ones
using TP, FP and FN values. The identification accuracy is 98% but
the P and R parameters usually are the most important ones for
comparison purposes.

As shown in Figures 5, 6, λ is the key parameter which controls
the performance of the U-Net. With an increase in the value of λ,
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FIGURE 7
U-Net predictions of the image in Figure8. Here, (A) is the raw output from the U-Net with WCE as the loss function and (B) is the raw output from the
U-Net with FL as the loss function. The two kinds of loss functions share the same λ = 0.85 value. We use the sigmoid as the activation function in the
last layer so when a value of the U-Net output is closer to 1, it is more likely to be a crack.

FIGURE 8
Photos labeled by U-Net from unlabeled photos. We picked two example images from the out-of-the training set. (A,B) depict a facade view; (D,E) are
a top view. (C,F) are their distributions of crack orientations and densities.

the U-Net tends to be more aggressive in labelling more pixels as
cracks, which increases the average width and recall values while the
precision values goes down. Therefore, the choice of λ is important
for balancing the precision and recall values.The underestimation of
crack density can lead to safety problems, so that high FP counts are
more acceptable than missing cracks of interest. We select λ = 0.85
to reduce the high number of FP counts associated with large values
of λ.

Figure 6B displays the result from the AFD code. The result
of AFD shows many false positives caused by sharp changes in
intensity associated with non-crack features and it omitted some
labeled cracks. Also, the P-R result in Figure 6D shows a quite
low precision value and a modest recall compared to the U-
Net. The result of the original U-Net is shown in Figure 6E.
It correlates well with the human labelled result. However, the
P-R values of the original U-Net are less than these of the
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FIGURE 9
Crack detection of volcanic rocks at the Teton Dam Site, Idaho. (A): near-vertical cooling cracks in volcanic rocks just downstream from the dam site;
(B): cracks labeled in red by U-Net. The red markings correspond to a probability between 0.7 and 1.0 in the softmax output, while the white-bluish
markings correspond to a probability between 0.3 and slightly less than 0.7.

modified U-Net, which indicates the superiority of the modified
U-Net.

The results with using the U-Net with WCE and FL are shown
in Figures 6E, F. However, the P-R line of FL is always below that of
WCE in Figure 5D. Figure 7 shows that the output of WCE more
clearly highlights large cracks of interest compared to FL. Given the
limited values used for comparison, WCE is a better choice for our
work.

3 U-net crack detection in three
geological bodies

The trained U-Net is now used to label cracks in the study area
with the large sandstone massifs. Over 23,000 unlabeled photos of
the sandstone massif are taken by a drone with a high-resolution
camera. In addition, the trained U-Net is used to label cracks in
photos of volcanic rocks in Idaho as well as those in Martian orbiter
pictures. These last two examples were used to show that the U-Net
trained on photos of sandstone cracks can also be used to label the
cracks in photos of rocks with a different geological genesis. We also
show that the accuracy of theU-Net crack detection can be improved
by transfer learning.

3.1 Labeling of cracks in photos of
sandstone massifs

A drone was flown over the sandstone massifs and recorded
23,845 photos of the tops and facades (sides) of the target rock
masses. The paths of drone flights are optimized for achieving
a uniform image resolution, where variations in camera-to-target
distances created pixels approximately 0.8–10 cm wide. However,
most have a spatial resolution of several centimeters, which ensures
that the U-Net is not troubled by varying crack widths due
to the drone being at significantly different distances from the
rock face. The pixel dimensions of the photos range from are
4,000× 2000 to 4,000× 3,000 pixels with about 80% overlap of
areas.

Our U-Net does not have any fully connected layers so its input
size can be variable.Wewere limited by the amount ofGPUmemory,
so we partitioned each photo into 4 small sub-photos, each with half
the width and height of the original. Partitioning is shown by the
green lines inFigure 1.TheU-Net labeling of each photo takes about
3 s per GPU card.

Then the U-Net model trained was applied to the unlabeled
facade images. As shown in Figures 8A, B, the U-Net results for
unlabeled images are judged to be of acceptable accuracy. The
orientation distribution in Figure 8C shows that most cracks in this
photo are horizontal but there are some along 70°. We then applied
the samemethod and trained a newU-Net for the top images, where
we labeled 70 images which created a dataset with 16,800 subimages.
Figures 8D, E shows a processed top image, showing results as
accurate as those produced for the facade images. Figure 8F shows
all cracks have the same orientation angle of about 150°, which is
consistent with the cracks seen in Figure 8D. The U-Net labeling
of the all images (facade and top) required approximately 22 GPU
hours to finish.The labeled images were then used to assess the crack
densities and orientations in the areas of engineering interest.

3.2 Labeling of cracks in photos of volcanic
rocks and transfer learning

After achieving accurate detection of cracks in the sandstone
photos, we apply the sandstone U-Net1 to photos of volcanic rock
faces at the Dam site in Idaho, United States. The Teton Dam in
eastern Idaho failed catastrophically on the morning of 5 June 1976,
causing a large flood. The dam is built on silica-rich volcanics
(welded tuff) that were derived by the eruption of the Yellowstone
super-volcano. Investigations suggest the failure of the dam was
related to movement of water through large fractures (cracks) in the
bedrock foundation.

1 The sandstone U-Net model is exclusively trained from the sandstone pictures
on facade.
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FIGURE 10
(A) Raw photos from the Teton dam site, and crack labels computed by the (B) sandstone U-Net and the (C) hybrid U-Net models. Red labels have a
sigmoid probability between 0.5 and 1.0.

Figure 9A depicts a 4,000× 2000 picture from http://
gigapan.com/gigapans/163482, which is the cliffs at the Teton Dam
site. Mapping the cracks in the Teton Dam photo tests the ability
of the sandstone U-Net to accurately delineate cracks in photos of
volcanic rocks.Thenearly vertical cracks are cooling joints inwelded
volcanic tuff. The nearly vertical cracks mapped by our sandstone
U-Net are labeled by the red lines in Figure 9B, where many cracks
are correctly labeled. However, some cracks are not labeled even
though they are visible to the eye and there are some false positives.
This demonstrates that the sandstone U-Net algorithm is capable of
mapping the trends in crack orientations of rocks that are different
from those from which it was trained.

We can improve the accuracy of the sandstone U-Net model
by using transfer learning. This method has been applied on
pavement distress detection in (Gopalakrishnan et al., 2017), which
uses a pre-trained VGG-16 to construct their CNN. In our work,
transfer learning combines the weights learned from the sandstone
images as well as those learned from a small number of labeled
cracks from the Teton dam photos. It only requires a small
number of labeled images from the photos of volcanic rock faces
because it reuses common crack patterns from the sandstone

U-Net. This can result in significantly less labeling and computation
time compared to standard CNN training. For relabeling, we
used another 4,000× 2000 photo of the Gigapan image, manually
labeled the cracks and broke it up into 120 256× 256 sub-
photos. The transfer learning required less than 60 min compared
to an estimate of more than 20 h to train a new U-Net
model.

For the transfer learning, we freeze the weights in blocks from 3
to 7 and allow four symmetric blocks (block 1,2 and 8,9 in Figure 2)
to be trained on the newly labeled photos, which is called as in
fine-tune (Shao et al., 2018).This decreases the trainable parameters
from 20,000,000 to 730,000. An Adam optimizer is used and we set
the learning rate to be 10–4 in order to fine-tune the trainable layers.
The batch size is 5 and the total number of 256× 256 sub-photos is
120.The transfer training is halted at epoch 30 which takes no more
than 20 minutes of computation time on a Nvidia v100 GPU. We
denote this U-Net as the hybrid U-Net model because the original
weights were trained on images of sandstones and adjusted to those
for volcanic rocks.

After transfer learning, the sandstone U-Net and hybrid U-Net
were applied to the raw 4,000× 2000 images in Figure 10A to give
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FIGURE 11
(A) Photo taken by a martian orbitor and (B) the labeled photo. The
crack distribution is depicted in the inset Rose diagram of (B), and the
labels are computed by the sandstone U-Net. In this example, a crack
is defined as a sharp linear change in the photo’s intensity value.

the labeled cracks in Figures 10B, C, respectively. Figure 10C show
a much denser and more accurate collection of labeled cracks than
the ones in Figure 10B. The important accomplishment is that it
required no more than an hour of manual labeling to achieve this
goal.

3.3 Labeling of photos of martian Nocti
Labyrinthus

We notice that the U-Net detector is effective at detecting
lineaments in photos, where such lineaments might be associated
with large-scale tectonics. Therefore we apply the U-Net crack
detector to photos of the surface ofMars taken by the Viking orbiter.
Figure 11A depicts the region known as Nocti Labyrinthus, an area
of rift basins and grabens (Daniel and Cook, 2003).

Figure 11Adepicts the original photo andFigure 11B shows the
photo after labeling by the trained U-Net. Many of the lineaments
seen in Figure 11A are clearly labeled in Figure 11B. Some of the
subtle lineaments not easily detected in 13a are nowdelineated in the
labeled image. Many of these lineaments are interpreted as grabens

and fossae (Daniel and Cook, 2003). The Rose diagram here reveals
the trends in their orientations, where the graben distribution is
related to the ambient extensional stress field associated with local
volcanic rifting.

4 Discussion

The sandstone U-Net Keras code and the trained weights will
be available to the public by the public-domain site cited in the data
availability statement. Part of this code will have the capability for
transfer learning. We expect a number of practical applications for
this crack detection code.

1. Semi-universal Cracks Detector for Cracks in Rock Faces. The
U-Net trained on photos of a sandstone massif shows a precise
detection of sandstone cracks and acceptable results for volcanic
rocks. With a modest amount of extra labeling and transfer
training we believe this U-Net can be a semi-universal detector
of cracks in many types of rock faces. It can also be used to
automatically detect large-scale lineaments in photos taken by
planetary orbiters as a reconnaissance of a planet’s or Moon’s
tectonics.

2. Real-Time Monitoring of Crack Development. The U-Net crack
detector can be used as a real-time monitor of growing cracks if
the photos are periodically taken and quickly analyzed for crack
growth. One application with satellite photos of polar regions is
to automatically detect the growth of crevasses and cracks in the
ice, which would be a real-timemonitor of climate changes. Other
applications of real-time monitoring of crack growth include
hazard assessment of failing dams, imminent landslides, and
erupting volcanoes, which has some similarities with surface
displacements monitoring by frequent InSAR recordings in
(Sun et al., 2020).

There are some notable areas where our workflow can be
improved. Foremost is to increase the efficiency of labeling. The
pre-trained U-Net produces some FP and FN crack labels, which
should be removed by manual labeling. Another complication
is that close-up photos of the rock degrades the U-Net model
in distinguishing erosional features from small cracks. The
consequence is that it produces false positives. We believe this
problem can be mitigated by also introducing distance information
into the input of the U-Net. This distance information can
be included with the use of lidar or radar instruments in the
drone.

5 Conclusion

This work presents a successful use of an U-Net CNN to label
cracks in rock faces. We compare U-Net with a ridge-detection
method (AFD) andfind that theU-Net trainedwith just a few images
provides a more accurate detection of cracks. Our results shows that
the U-Net approach provides a viable alternative to the conventional
AFD method for detecting cracks in rock massifs. Besides, we find
that the U-Net with residual shortcuts and additional convolutional
branches shows a better accuracy than the original U-Net. And the
performance of the U-Net is largely controlled by the value of the
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λweight in the loss function.We think the reason is that rock cracks
often have a narrow linear shape containing only a limited number
of pixels, which has to be balanced byweighted loss. Considering the
location of cracks is the key feature for engineers, an improvement
may be to identify the location of cracks by anchor points, which
represents important future work of ours.

One disadvantage of U-Net is that it has millions of parameters
and requires a large amount of manual labeling to train the network.
However, U-Net has transferability capabilities so that a well-trained
U-Net with transfer training can be used to detect cracks on other
kinds of rocks without an extensive effort in relabeling. We proved
this to be true by using transfer training to significantly improve
the accuracy of labeling cracks in the Teton Dam photos. Less than
60 minutes were required for manual labeling of cracks in fewer
Teton Dam photos. Moreover, the sandstone U-Net could delineate
some line-like geology features in Mars photos.

In summary, our results suggest that our trained U-Net with
transfer training is a semi-universal detector of cracks in images of
almost any type of geological outcrop. The scale of cracks can range
from centimeters to kilometers which depends on the resolution
characteristics of the photographs. Practical applications of this
method include the use of crack detection for real-time monitoring
of crack growth, such as needed for safety assessment of dams,
landslides, volcanoes and man-made structures.
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Staggered-grid finite-difference (FD) method is widely used to solve the wave
equation for the numerical seismic modeling, and it is a key step of the advanced
seismic imaging and inversion problem. However, the conventional FD method
is prone to instability and dispersion error due to the insufficient approximation
accuracy. In this work, we propose an efficient temporal high-order finite-
difference (FD) scheme with the cross-rhombus stencil. Compared with the
standard cross-rhombus method, the new method has less computational
cost due to we simplify the FD scheme. Moreover, the dispersion relation of
the new method is easy to obtain the dispersion-relation-preserving (DRP) FD
coefficients, which can significantly alleviate the spatial and temporal dispersion
errors. Dispersion and stability analyses indicate that the new scheme has
better performance in seismic modeling than the conventional method, and
numerical experiments also indicate that the new scheme can effectively
mitigate dispersion error and improve the numerical accuracy.

KEYWORDS

finite difference, staggered grid, simplified dispersion-relation-preserving scheme,
cross-rhombus stencil, high-order approximation

1 Introduction

Staggered-grid finite-difference methods have been extensively applied in the seismic
wave simulations due to their straightforward implementation and high computing
efficiency (Kindelan et al., 1990; Moczo et al., 2000; Etgen and O¡¯Brien, 2007; Moczo et al.,
2011;Moczo et al., 2014; Etemadsaeed et al., 2016; Liu et al., 2019; Zhang et al., 2022). High-
order approximation for temporal derivatives in the staggered-grid FD scheme contributes
to suppressing the temporal dispersion errors, and enhancing the stability with a large
time step. However, the explicit high-order temporal derivative approximation in the FD
scheme is always unstable (Chen, 2007; 2011). Generally, we use a second-order temporal
approximation and an arbitrary even-order spatial approximation to solve the scalar wave
equation.

To improve the temporal accuracy, Dablain (1986) proposed a new FD scheme based
on the Lax-Wendroff approach, which can reach fourth-order accuracy in the temporal
derivative approximation but has a limitation in the case of the large velocity contrast.
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Chen (2007, 2011) further developed the fourth- and sixth-order
schemes and analyzed the stability condition in the high-order
cases. Alternatively, Liu and Sen (2009) proposed the time-space
domain FD coefficients by incorporating the dispersion relation of
the temporal and spatial terms. The time-space domain method
can reach arbitrary even-order accuracy along with some specific
propagation angles. However, it is still second-order accuracy along
with other angles (Liu and Sen, 2009). To further improve the
accuracy, Liu and Sen (2013) proposed a novel rhombus stencil.
This new stencil with the time-space domain FD coefficients
can reach arbitrary-order accuracy in both temporal and spatial
approximations. However, the standard rhombus stencil is not a
computationally friendly method for large-scale modeling, and it
will increase the computational cost exponentially for the high-order
cases. Afterwards, Tan and Huang (2014a),Tan and Huang (2014b)
proposed an effective FD stencil with the sixth-order accuracy in the
time approximation. Tan’s stencil is similar to the rhombus stencil,
but it involves fewer grid nodes outside the cross axis compared
to the standard rhombus stencil, thus reducing the computational
cost significantly. Wang E. et al. (2016) generally defined this stencil
as the cross-rhombus stencil with arbitrary even-order temporal
accuracy. The cross-rhombus stencil contains a large cross stencil
and a small rhombus stencil. Among them, the small rhombus
stencil increases the temporal accuracy and ensures computational
efficiency, while the large cross stencil has a high-order spatial
accuracy. Then, Ren et al. (2017) developed the cross-rhombus
stencil in the staggered-grid FD scheme, and presented twomethods

for solving the FD coefficients. Wang et al. (2019) further developed
the cross-rhombus stencil in the 3D case with the general cuboid
grid.

To mitigate the dispersion error, the dispersion relation of
the FD scheme should require many wavenumbers, because the
spatial dispersion error usually comes from the high-wavenumber
component. However, the conventional Taylor series expansion
(TE) method for solving FD coefficient satisfies the dispersion
relation near the zero wavenumbers, so it is prone to dispersion.
The optimization method is a feasible way to obtain the FD
coefficients (Liu, 2013; Zhang and Yao, 2013; Tan andHuang, 2014b;
Chen et al., 2020) for mitigating dispersion, where the dispersion-
relation-preserving method (Wang and Teixeira, 2003; Ye and
Chu, 2005; Liang et al., 2015; Etemadsaeed et al., 2016; Chen et al.,
2020) has been widely concerned because of its simplicity and
easy implementation. The DRP-based method expands dispersion
relation into an over-determined system associated with a series of
wavenumbers and propagation angles, and then solves this over-
determined system numerically to obtain the FD coefficients in the
least square sense. The DRP-based FD coefficients satisfy a series
of wavenumbers from low to high in the sense of the least square,
thus the DRP-based method can effectively mitigate the temporal
and spatial dispersion error.

The DRP-based FD coefficients have been successfully applied
to the temporal high-order scheme (cross-rhombus stencil) in the
regular grid Chen et al. (2020), in which the DRP-based coefficients
can significantly mitigate dispersion error, while the cross-rhombus

FIGURE 1
Illustrating the cross-rhombus stencil in the staggered grid.
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TABLE 1 Abbreviation table of different FDmethods used for dispersion analyses.

Abbreviations FD coefficients FD stencils

TE-C-S TE-based space domain coefficients Cross stencil

TE-C-TS TE-based time-space domain coefficients Cross stencil

TE-CR-TS TE-based time-space domain coefficients Cross-rhombus stencil (Standard)

DRP-CR-TS DRP-based time-space domain coefficients Cross-rhombus stencil (Proposed)

FIGURE 2
Dispersion curves of the four methods with a moderate time step τ = 0.0015 s (A) TE-C-S method. (B) TE-C-TS method. (C) TE-CR-TS method. (D)
DRP-CR-TS method.

stencil can effectively improve the temporal approximation
accuracy. However, for the staggered-grid FD scheme, the DRP-
based coefficients cannot be directly obtained because the dispersion
relation is difficult to be extended into an over-determined system.
Liang et al. (2018) has presented a special FD scheme with a high
computational efficiency, in which the second-order FD operator

is used to approximate some partial derivatives rather than the
global high-order FD operator. And such replacement simplifies the
dispersion relation into a form of the linear equation. Motivated
by (Liang et al., 2018; Zhou et al., 2022), we propose a general
simplified FD scheme for the temporal high-order modeling with
a cross-rhombus stencil. The new scheme contains a cross stencil
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FIGURE 3
Stability factors of the four methods with different r and M, where N = 3 and L =M for the cross-rhombus stencil. The green curve represents s(r) = r. (A)
TE-C-S method. (B) TE-C-TS method. (C) TE-CR-TS method. (D) DRP-CR-TS method.

with the analytic FD coefficients and a cross-rhombus stencil with
the DRP-based coefficients for different partial derivatives. The
cross stencil can simplify the dispersion relation, which makes it
easy to construct the over-determined system. The cross-rhombus
stencil can make the FD scheme maintain a high-order temporal
approximation. The dispersion relation of our new FD scheme
can be expanded to an over-determined system with a series of
wavenumbers and angles. Solving this over-determined system by
the numerical methods (Wang et al., 2014; Wang et al., 2016 Y.;
Chen et al., 2020; Wu et al., 2020; Li et al., 2022), we obtain the
DRP-based FD coefficients. Therefore, the new FD scheme has
three advantages: 1. The DRP-based FD coefficients can effectively
mitigate the dispersion error; 2. It still has a temporal higher-order
approximation accuracy; 3. The computational cost of the proposed
method is significantly reduced compared with the standard cross-
rhombus scheme.

2 Methods

2.1 Review of the standard cross-rhombus
scheme

The 2D first-order acoustic wave equations with the constant
density are

∂p
∂t
+K∇ ⋅ v = 0, ∂v

∂t
+ 1
ρ
∇p = 0, (1)

where K = ρυ2 is the bulk modulus, ρ(x,z) is the density and v(x,z)
is the velocity. p(x,z, t) is the pressure, and v = [υx,υz]

T is the
particle velocity vector. The staggered-grid FD scheme with the
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FIGURE 4
Maximum stability factors of the four methods satisfy r ≤ s for different
M, where N = 3 and L =M for the cross-rhombus stencil.

cross-rhombus stencil for above equations is

pli,j = p
l−1
i,j −Kτ(D

CR
x υl−1/2x i−1/2,j +D

CR
z υl−1/2z i,j−1/2) ,

υl+1/2x i+1/2,j = υ
l−1/2
x i+1/2,j −

1
ρ
τHCR

x pli,j,

υl+1/2z i,j+1/2 = υ
l−1/2
z i,j+1/2 −

1
ρ
τHCR

z pli,j.

(2)

Here, pli,j = p(x+ ih,z+ jh, t+ lτ), h is the grid spacing and τ is the
time step. The FD operators HCR

x and DCR
x are

∂p
∂x
≈HCR

x p0,0 =
1
h
[

M

∑
m=1

am,0 (pm,0 − p−m+1,0) +
N−1

∑
m=1

×
N−m

∑
n=1

am,n (pm,n − p−m+1,n + pm,−n − p−m+1,−n)]. (3)

and

∂vx
∂x
≈ DCR

x v−1/2,0 =
1
h
[

M

∑
m=1

bm,0 (vx,m−1/2,0 − vx,−m+1,0)

+
N−1

∑
m=1

N−m

∑
n=1

bm,n (vx,m−1/2,n − vx,−m+1/2,n

+ vx,m−1/2,−n − vx,−m+1,−n)]. (4)

The superscript CR represents the cross-rhombus stencil composed
of a standard cross stencil and a rhombus stencil (as shown
in Figure 1). am,n and bm,n represent the FD coefficients of the
operators HCR

x and DCR
x , respectively. M and N are the spatial and

temporal operator length parameters, respectively. Generally, when
temporal operator length N > 3, the accuracy increases far less than
the increase of the calculation cost. Thus, we recommend that
N = 3 is enough. M and N represents the (2M)th-order accuracy in
space and (2N)th-order accuracy in time respectively. And the FD
operators along the z-axis (HCR

z andDCR
z ) can be defined in the same

way.

Assuming plane wave propagating in the grid, we let

plm,n = p
0
0,0e

i(kxmh+kznh−ωlτ),

υl+1/2x m+1/2,n = υ
1/2
x 1/2,0e

i(kxmh+kznh−ωlτ),

υl+1/2z m,n+1/2 = υ
1/2
z 0,1/2e

i(kxmh+kznh−ωlτ),

(5)

where kx = k cos(θ) and kz = k sin(θ) are the wavenumbers in x- and
z-axes, respectively. θ is a propagation angle of the plane wave, ω is
the angular frequency and i = √−1. Substituting Eq. 5 into Eq. 2, we
obtain

[
M

∑
m=1

am,0 sin((m− 0.5)kxh) + 2
N

∑
m=1

×
N−m

∑
n=1

am,n sin((m− 0.5)kxh)cos(nkzh)]

*[
M

∑
m=1

bm,0 sin((m− 0.5)kxh) + 2
N

∑
m=1

×
N−m

∑
n=1

bm,n sin((m− 0.5)kxh)cos(nkzh)]

+[
M

∑
m=1

am,0 sin((m− 0.5)kzh) + 2
N

∑
m=1

×
N−m

∑
n=1

am,n sin((m− 0.5)kzh)cos(nkxh)]

*[
M

∑
m=1

bm,0 sin((m− 0.5)kzh) + 2
N

∑
m=1

×
N−m

∑
n=1

bm,n sin((m− 0.5)kzh)cos(nkxh)]

=
1− cos (ωτ)

2r2
. (6)

Here, r = vτ/h is the Courant number. Generally, the operators
HCR and DCR adopt the same FD coefficients, i.e.

am.n = bm,n. (7)

Then, Equation 6 can be rewritten as

[
M

∑
m=1

am,0 sin((m− 0.5)kxh) + 2
N

∑
m=1

×
N−m

∑
n=1

am,n sin((m− 0.5)kxh)cos(nkzh)]
2

+[
M

∑
m=1

am,0 sin((m− 0.5)kzh) + 2
N

∑
m=1

×
N−m

∑
n=1

am,n sin((m− 0.5)kzh)cos(nkxh)]
2

=
1− cos (ωτ)

2r2
. (8)

Eq. 8 represents the time-space domain dispersion relation of
the staggered-grid FD schemewith the cross-rhombus stencil. Using
the Taylor series to expand the trigonometric functions with respect
to the propagation angle θ, we can obtain the time-space domainTE-
based FD coefficients (Ren et al., 2017). The cross-rhombus stencil
with the TE-based FD coefficients can achieve arbitrary even-order
temporal accuracy, thus mitigating the temporal dispersion error
significantly.
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FIGURE 5
Snapshots of the four methods with the time step τ = 0.001s, where M = 8, N = 3, L =M, υ = 1500m/s and h = 6m. The main frequency of the Ricker
wavelet is 40Hz. (A) TE-C-S method. (B) TE-C-TS method. (C) TE-CR-TS method. (D) DRP-CR-TS method.

2.2 A new simplified staggered-grid FD
scheme with the cross-rhombus stencil

The TE-based FD coefficients satisfy the dispersion relation
within a limited wavenumber bandwidth, resulting in the high-
wavenumber components of seismic wavefield are prone to the
spatial dispersion. However, the dispersion relation of the standard
staggered-grid scheme is a quadratic equation, which is difficult to
expand into the over-determined system for solving DRP-based FD
coefficients. In this part, we develop a new simplified staggered-grid
FD scheme. The new scheme can not only easily obtain the over-
determined system for the DRP-based coefficients, but also greatly
reduce the computational cost.

The FD operators DCR and HCR use same coefficients
(am,n = bm,n), which causes the dispersion relation to be a second-
order non-linear equation. To obtain a simple dispersion relation,

we propose a new simplified FD scheme as

pli,j = p
l−1
i,j −Kτ(D

C
x υ

l−1/2
x i−1/2,j +D

C
z υ

l−1/2
z i,j−1/2) ,

υl−1/2x i+1/2,j = υ
l−3/2
x i+1/2,j −

1
ρ
τHCR

x pl−1i,j ,

υl−1/2z i,j+1/2 = υ
l−3/2
z i,j+1/2 −

1
ρ
τHCR

z pl−1i,j .

(9)

Here, the superscript C represents the cross stencil. For example, the
FD operator DC

x can be defined as

DC
x v−1/2,0 =

1
h

L

∑
l=1

bl,0 (vl−1/2,0 − v−l+1/2,0) . (10)

We use the cross-stencil-based operators DC to replace part of the
operator DCR in the new scheme. Thus, the new scheme contains
a cross-rhombus stencil and a cross stencil for different partial
derivatives.
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FIGURE 6
Seismic records of the four methods at Receiver 1 and Receiver 2. The reference traces represented by the green curves are obtained by the high-order
FD scheme under the fine grid. (A) Seismic records at Receiver 1. (B) Seismic records at Receiver 2.

TABLE 2 Relative errors of the four methods at Receiver 1 and Receiver 2.

Methods Relative Errors (Pa)

Receiver 1 Receiver 2

TE-C-S 0.3931 0.4323

TE-C-TS 0.2436 0.2092

TE-CR-TS 0.0366 0.2054

DRP-CR-TS 0.0113 0.0458

For convenience, DC adopts the analytic time-space domain FD
coefficients

bl,0 =
(−1)l+1

2l− 1
∏

1≤n≤L, n≠l

× |
(2n− 1)2 − r2

(2n− 1)2 − (2l− 1)2
| (l = 1,2,…,L) . (11)

Here, L represents the length of the analytic FD operator. And
the analytical cross stencil simplifies the original second-order
dispersion relation to a linear form. The new dispersion relation
can be easily extended to an over-determined linear system
for solving the wide-bandwidth FD coefficients. Moreover, the
analytical cross stencil has less computational cost compared with
the standard cross-rhombus scheme, especially in the high-order
cases.

2.3 Determining FD coefficients of the new
stencil by the DRP-based method

In this part, we present the method for solving the DRP-based
FD coefficients of the new scheme. We assume that the plane wave
propagating in the grid, and then substitute Eq. 5 into Eq. 9, yield
the new dispersion relation

[
M

∑
m=1

am,0 sin((m− 0.5)kxh) + 2
N

∑
m=1

N−m

∑
n=1

am,n sin

×((m− 0.5)kxh)cos(nkzh)]
L

∑
l=1

bl,0 sin((l− 0.5)kxh)

+ [
M

∑
m=1

am,0 sin((m− 0.5)kzh) + 2
N

∑
m=1

N−m

∑
n=1

am,n sin

× ((m− 0.5)kzh)cos(nkxh)]
L

∑
l=1

bl,0 sin((l− 0.5)kzh)

=
1− cos (ωτ)

2r2
. (12)

Clearly, the new dispersion relation can be easily extended to the
linear system satisfying a series of wavenumbers and propagation
angles. It is worth noting that if the FD operatorH uses cross stencil,
for example: HC and DCR are applied to Equation 9, the dispersion
relation does not change. And the cross stencil is applied to the FD
operator H or D, the corresponding FD schemes are equivalent.

Following our previouswork (Chen et al., 2020), we define a new
function ψm,β,θ to represent the weights of FD coefficients am,0 in
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Eq. 12. Then ψm,β,θ can be denoted as

ψm,β,θ = sin ((m− 0.5)βcos (θ))
L

∑
l=1

bl,0 sin ((l− 0.5)βcos (θ))

+ sin ((m− 0.5)βsin (θ))
L

∑
l=1

bl,0

× sin ((l− 0.5)βsin (θ)) . (13)

Here, β = kh and θ represents the propagation angle. Similarly, we
define another function χm,n,β,θ to represent the weights of am,n. The
function χm,n,β,θ is defined as

χm,n,β,θ = 2sin ((m− 0.5)βcos (θ))cos (nβsin (θ))
L

∑
l=1

bl,0

× sin ((l− 0.5)βcos (θ)) + 2sin ((m− 0.5)βsin (θ))

× cos (nβcos (θ))
L

∑
l=1

bl,0 sin ((l− 0.5)βsin (θ)) . (14)

Since am,n = an,m, we define a new function

φm,n,β,θ =
{
{
{

χm,n,β,θ (m = n)

χm,n,β,θ + χn,m,β,θ (m ≠ n) .
(15)

Therefore, the dispersion relation (Eq. 12) of the new FD scheme can
be rewritten as

M

∑
m=1

am,0ψm,β,θ +
N

∑
m=1

N−m

∑
n=m

am,nφm,n,β,θ =
1− cos (ωτ)

2r2
. (16)

Then we extend ψm,β,θ to a matrix involving a series of β and a fixed
angle θ, and the matrix is

A (θ) =

[[[[[[[[[[[[[[[[

[

ψ1,β1,θ
ψ2,β1,θ

⋯ ψM,β1,θ

ψ1,β2,θ
ψ2,β2,θ

⋯ ψM,β2,θ

⋮ ⋮ ⋮ ⋮

ψ1,βξ,θ
ψ2,βξ,θ

⋯ ψM,βξ,θ

]]]]]]]]]]]]]]]]

]

. (17)

Where βi = βmax/ξ*i, βmax = 2πfmax/v with respect to the maximum
frequency of the seismic wavefield Chen et al. (2022) and π is the
circular constant.

Similarly, we extend the function φn,β,θ to the matrix.

B (θ) =

[[[[[[[[[[[[[

[

φ1,1,β1,θ
⋯ φ1,N−1,β1,θ

φ2,2,β1,θ
⋯ φ2,N−2,β1,θ

⋯ φN/2,N/2,β1,θ

φ1,1,β2,θ
⋯ φ1,N−1,β2,θ

φ2,2,β2,θ
⋯ φ2,N−2,β2,θ

⋯ φN/2,N/2,β2,θ

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

φ1,1,βξ,θ
⋯ φ1,N−1,βξ,θ

φ2,2,βξ,θ
⋯ φ2,N−2,βξ,θ

⋯ φN/2,N/2,βξ,θ

]]]]]]]]]]]]]

]

.

(18)

Note that if N is an odd number, the matrix B(θ) is.

B (θ) =

[[[[[[[[[[[[

[

φ1,1,β1,θ
⋯ φ1,N−1,β1,θ

φ2,2,β1,θ
⋯ φ2,N−2,β1,θ

⋯ φ(N−1)/2,(N−1)/2,β1,θ φ(N−1)/2,(N+1)/2,β1,θ

φ1,1,β2,θ
⋯ φ1,N−1,β2,θ

φ2,2,β2,θ
⋯ φ2,N−2,β2,θ

⋯ φ(N−1)/2,(N−1)/2,β2,θ φ(N−1)/2,(N+1)/2,β2,θ

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

φ1,1,βξ,θ
⋯ φ1,N−1,βξ,θ

φ2,2,βξ,θ
⋯ φ2,N−2,βξ,θ

⋯ φ(N−1)/2,(N−1)/2,βξ,θ φ(N−1)/2,(N+1)/2,βξ,θ

]]]]]]]]]]]]

]

.

(19)

The right-hand side of Eq. 16 also be expanded to the matrix

D (θ) =

[[[[[[[[[[[[[[[[

[

r−2 [−2+ 2cos(β1r)]

r−2 [−2+ 2cos(β2r)]

⋮

r−2 [−2+ 2cos(βξr)]

]]]]]]]]]]]]]]]]

]

. (20)

Then the dispersion relation satisfying ξ wavenumbers and ζ angles
can be expressed as

[[[[[[[[[[[[[[[[

[

A (θ1) B (θ1)

A (θ2) B (θ2)

⋮ ⋮

A(θζ) B(θζ)

]]]]]]]]]]]]]]]]

]

[[[[[[[[[[[[[[[[

[

a0,0

a1,0

⋮

aN−1,1

]]]]]]]]]]]]]]]]

]

=

[[[[[[[[[[[[[[[[

[

D (θ1)

D (θ2)

⋮

D(θζ)

]]]]]]]]]]]]]]]]

]

. (21)

This over-determined system has ζ× ξ rows and 1+M+N2/4
columns with even number N and 1+M+ (N− 1)2/4 columns with
odd number N. We can easily obtain the DRP-based FD coefficients
by solving this over-determined system. We also introduce the
simplified FD scheme in the 3D case, the details are shown in the
Supplementary Material S1.

3 Numerical dispersion and stability
analyses

3.1 Numerical dispersion analysis

In this part, we analyse the dispersion characteristics of our new
scheme. The phase velocity of the new FD scheme can be expressed
as

vFD =
1
kτ

arccos(1− 2qr2) , (22)

where q is

q =
M

∑
m=1

am,0ψm,β,θ +
N

∑
m=1

N−m

∑
n=m

am,nϕm,n,β,θ. (23)

Thus, the dispersion parameter δ of the new FD scheme is defined as

δ =
vFD
v
= 1
rkh

arccos(1− 2qr2) . (24)
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FIGURE 7
Snapshots of the four methods for different M, where τ = 0.0015s, υ = 1500m/s, h = 6m, and N = 3, L =M. The main frequency of the Ricker wavelet is
40Hz. The four quadrants represent the snapshots of the same FD method for different M = 6,8,10,12, respectively. (A) TE-C-S method. (B) TE-C-TS
method. (C) TE-CR-TS method. (D) DRP-CR-TS method.

If δ is not equal to 1, the FD scheme suffers from the numerical
dispersion, i.e., has the spatial dispersion error (δ < 1) or temporal
dispersion error (δ > 1). We analyze and compare the dispersion
parameter δ of the new FD scheme with the other three methods,
and the abbreviations of these methods are listed in Table 1. The
dispersion curves of δ varying with the kh are shown in Figure 2.

It can be seen that the cross-stencil-based FD schemes (TE-C-
S and TE-C-TS methods) have obviously temporal dispersion
error (δ > 1). The corresponding temporal dispersion of the cross-
rhombus stencil (TE-CR-TS and DRP-CR-TSmethods) is alleviated
(Figures 2C, D) due to the temporal high-order approximation. It
is worth noting that the proposed method (DRP-CR-TS method)
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FIGURE 8
Snapshots of the simplified scheme for different L and N, where M = 8, τ = 0.0015s, υ = 1500m/s and h = 6m. The main frequency of the Ricker wavelet is
40Hz. (A) DRP-CR-TS method with different L, here N = 3. (B) DRP-CR-TS method with different N, here we set L =M.

FIGURE 9
BP model with 560 × 1000 grid nodes and grid spacing h = 7.5 m, the variation of velocities from 1500m/s to 4500m/s.
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FIGURE 10
Snapshots of the four methods, here we set M = 8, N = 3, L =M and τ = 0.007s (A) TE-C-S method. (B) TE-C-TS method. (C) TE-CR-TS method. (D)
DRP-CR-TS method.

satisfies the widest range of the wavenumber (kh), which can
mitigate the spatial dispersion error considerably.

3.2 Stability analysis

According to the dispersion relation of the new FD scheme, we
obtain

cos (ωτ) = 1− 2qr2. (25)

It is clear that

−1 ≤ cos (ωτ) ≤ 1. (26)

Then, we obtain

q ≥ 0 (27)

and

r ≤ √1/q. (28)

We consider the Nyquist wavenumber, that is

kxh = kzh = π. (29)

Substituting Eq. 29 into (28), we obtain the stability condition

r ≤ [2(
M

∑
m=1
(−1)m+1am,0 + 2

N−1

∑
m=1

×
N−m

∑
n=1
(−1)m+n+1am,n)

L

∑
l=1
(−1)l+1bl,0]

− 1
2

. (30)

We denote the right-hand side of inequation (30) as the stability
factor

s = [2(
M

∑
m=1
(−1)m+1am,0 + 2

N−1

∑
m=1

×
N−m

∑
n=1
(−1)m+n+1am,n)

L

∑
l=1
(−1)l+1bl,0]

− 1
2

, (31)

where the stability factor s is related to the FD coefficients am,n
and bl,0, and these FD coefficients are determined by the Courant
number r. In the following, we analyze the stability factors s varying
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FIGURE 11
Seismic records of the four methods. (A) TE-C-S method. (B) TE-C-TS method. (C) TE-CR-TS method. (D) DRP-CR-TS method.

with the Courant number r, the stability curves of our new scheme
and other three methods are shown in Figure 3. It can be seen that
the stability factors of the proposedmethod are slightly less than that
of the TE-CR-TSmethod. Although theDRP-CR-TSmethod adopts
an analytical cross stencil, its stability does not sharp decrease, and it
is much larger than that of the conventional methods (TE-C-S and
TE-C-TS). Figure 4 shows the maximum value of stability factors
satisfying r ≤ s for different ordersM.The stability curve ofDRP-CR-
TSmethod is volatile due to the use of numericalmethod to solve the
over-determined system, and it is sensitive to orderM, but this does
not affect the overall stability. It can be seen that the stability curve of
the proposedmethod has the same level with theTE-CR-TSmethod.
Stability analyses in Figures 3, 4 reveals that the proposed scheme

has the same level stability as the standard temporal high-order
scheme (TE-CR-TS method), and far better than the conventional
scheme.

4 Numerical experiments

4.1 Homogeneous model

In this section, we use a 2-D homogeneous velocity model
to examine our new scheme. The 2D homogeneous model has
512× 512 grid nodes with the grid spacing h = 6m and velocity
υ = 1500 m/s. A Ricker-wavelet source with a main frequency of
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FIGURE 12
Seismic records of the four methods at (1920 m, 0 m).

40Hz is located at the spatial point (1536m,1536m). Two receivers
at the spatial points (768m,768m) and (768m,1536m) are used to
record the waveforms.

Figure 5 shows the snapshots with a time step τ = 0.001s. The
TE-C-S and TE-C-TS methods have serious temporal and spatial
dispersion errors (Figure 5A). The temporal dispersion error (red
arrow) of the TE-CR-TS method is smaller than that of the TE-
C-TS method. However, the TE-CR-TS method still has obvious
spatial dispersion error (white arrow), because the TE-based FD
coefficients preserve the dispersion relation in a limited range.
Figure 5D shows that the corresponding spatial dispersion error
is reduced considerably in the proposed method (DRP-CR-TS).
Figure 6 shows the seismic records of the fourmethods at Receiver 1
and Receiver 2.The reference traces represented by the green curves
are obtained by the high-order FD scheme under the fine grid. The
Receiver 1 (Figure 6A) shows that the temporal dispersion errors of
the TE-CR-TS andDRP-CR-TSmethods are smaller than that of the
TE-C-S and TE-C-TS methods, and the Receiver 2 shows that the
spatial dispersion error are serious in the TE-based methods (TE-
C-S, TE-C-TS, and TE-CR-TS). But the proposed method (DRP-
CR-TS) still has a small level of the dispersion error. Table 2 lists
the relative errors of the four methods compared to the reference
trace at Receiver 1 and Receiver 2. The relative errors of the cross-
rhombus stencil are smaller than that of the conventional cross
stencil, especially the DRP-CR-TS method reduces the relative error
significantly.

We also analyze the snapshots for different orders M, the
snapshots are shown in Figure 7. In this case, simply increasing
M can not effectively reduce the dispersion error in the TE-C-
S method. The temporal dispersion errors of the TE-C-TS and

TE-CR-TS methods are gradually reduced, but when M = 12,
there are still obvious spatial dispersion error (white arrow). The
corresponding spatial dispersion error is mitigated in the proposed
method (DRP-CR-TS) even at low order (M = 6).Then, we study the
snapshots of the proposed method for different N and L, the results
are shown in Figure 8.The dispersion error of the proposedmethod
is small for different L and N, thus we can select an appropriate
low-order L or N to improve the computational efficiency.

4.2 Inhomogeneous model

4.2.1 2D BP model
We use a widely referred 2D BP velocity model (Figure 9) to

test the four methods in the inhomogeneous model. The 2D BP
model has 560× 1000 grid nodeswith the variation of velocities from
1500 m/s to 4500 m/s. In this case, we set time step τ = 0.0007 s,
M = 8, N = 3, L =M, grid spacing h = 7.5m and main frequency
fm = 30Hz for numerical simulation. A total of 1,000 receivers are
located on the surface of the model.

Figure 10 shows the snapshots of the four methods. The
TE-C-S method has obvious temporal dispersion error (red
arrow), and the corresponding error in the TE-C-TS and TE-
CR-TS methods is reduced (Figures 10B, C). However, the spatial
dispersion error (white arrow) is still serious. Figure 10D shows the
spatial dispersion error of the proposed method (DRP-CR-TS) is
significantly reduced in the low- and high-velocity layers. Figure 11
shows the seismic records of the four methods, and Figure 12 shows
the corresponding seismic records at (1920m,0m). It can be seen
that the TE-based methods have serious spatial dispersion error
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TABLE 3 CPU execution times and the relative errors of the four methods on the BPmodel.

Cases Methods M N L Execution times s) Relative errors (pa)

1 TE-C-S 8 \ \ 649.0250 0.8941

2 TE-C-TS 8 \ \ 649.3852 0.4469

3 TE-CR-TS 8 3 \ 983.2374 0.3001

4 DRP-CR-TS 8 3 8 791.3253 0.1096

5 DRP-CR-TS 8 3 6 729.4710 0.1098

6 DRP-CR-TS 8 3 3 670.7974 0.1102

from the first arrivals, but the corresponding error is mitigated in
the proposed method (DRP-CR-TS). The reflected wave from the
high-velocity layers contain both the spatial and temporal dispersion
errors, and the corresponding error in the proposed method (DRP-
CR-TS) is smaller than that of the other three methods.

5 Discussion

In this section, we discuss the computational cost and accuracy
simultaneously. Taking the above BPmodel as an example, we design
a series of FD parameters for seismic modeling. The numerical
experiments are executed on the same computer (Intel Core I7-700
with 3.6 GHz and 8 GBmemory).Table 3 shows the CPU execution
times and the relative errors at spatial point (1920 m, 0 m) of the
four methods. It is clear that the TE-C-S and TE-C-TS methods
have fewer execution times in the numerical experiments (Cases 1
and 2 in Table 3), but their relative errors are larger than that of the
TE-CR-TS and DRP-CR-TSmethods.The relative error of the DRP-
CR-TS method is significantly reduced, and their execution time is
less than that of the TE-CR-TSmethod. It is worth noting that when
we reduce the length of the analytic FD operator in the DRP-CR-TS
method (Cases 5 and 6), the execution time is reduced considerably,
and the relative error is almost unaffected. Besides, the DRP-CR-
TS method can select a relatively larger time step to reduce the
computational cost due to the temporal high-order approximation.

6 Conclusion

We propose a new staggered-grid DRP-based FD scheme with
a cross-rhombus stencil for solving the scalar wave equation. The
new scheme has a simplified dispersion relation, which is convenient
for solving the dispersion-relation-preserving FD coefficients.
Besides, the simplified scheme uses the cross stencil instead of the
cross-rhombus stencil in some FD operators, thus reducing the
computational cost considerably. Dispersion analyses reveals that
the proposed FD scheme can effectively mitigate the dispersion
error, and it still has a temporal higher-order approximation
accuracy. The proposed scheme also has better stability compared
with the conventional scheme.Numerical experiments show that the
proposed scheme has smaller temporal and spatial dispersion errors
while ensuring the computational efficiency, and it is an economical
way for the large-scale seismic modeling.
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for seismic fault detection
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Automatic seismic fault identification for seismic data is essential for oil and gas
resource exploration. The traditional manual method cannot accommodate the
needs of processing massive seismic data. With the development of artificial
intelligence technology, deep learning techniques based on pattern recognition
have become a popular research area for seismic fault identification. Despite the
progress made with U-shaped neural networks (Unet), they still fall short in
meeting the stringent requirements of fault prediction in complex structures.
We propose a novel approach by combining a standard Unet with a transformer
Unet to create a parallel dual Unet model, called Dual Unet with Transformer. To
improve the accuracy of fault prediction, we compare six loss functions (including
Binary Cross Entropy loss, Dice coefficient loss, Tversky loss, Local Tversky loss,
Multi-scale Structural Similarity and Intersection over Union loss) using synthetic
data, based on three evolution metrics involving Dice coefficient, Sensitivity and
Specificity, find that the binary cross entropy loss function is the most robust one.
An example comparing the prediction performance of different Unet models on
synthetic data demonstrates the superior performance of our Dual Unet model,
verifying the practical application value. To further validate the practical feasibility
of our proposedmethod, we use real seismic data with a complex fault system and
find that our proposed model is more accurate in predicting the fault system
compared to well-developed Unet models such as the classical Unet and classical
coherence cube algorithm, without transfer learning. This confirms the potential
for wide-scale application of our proposed model.

KEYWORDS

transformer, UNET, fault prediction, dual Unet, loss function

1 Introduction

Seismic fault detection is a crucial step of oil and gas reservoir exploration because faults
often serve as pathways for hydrocarbon migration. Furthermore, faults have geological
significance as they indicate changes in stress and provide valuable information for drilling.
Fault identification technology is constantly developing with the development of seismic
exploration technology. In the past, the discontinuity or edge of seismic images is considered
as a sign of a fault. Therefore, many fault detection methods are proposed to enhance those
discontinuities using some seismic attributes including the semblance, coherence and
curvature (Marfurt et al., 1998; Marfurt et al., 1999; Roberts, 2001). To pursue better
performance, more improved approaches are proposed including the ant tracking and
attributes fusedmethods (Pedersen et al., 2002; Di et al., 2019; Yuan et al., 2020; Acuña-Uribe
et al., 2021; Yuan et al., 2022), but the results still rely heavily on the experience of
interpreters and the quality of the seismic attributes used. Moreover, the presence of noise in
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seismic images can negatively impact the accuracy of fault detection.
Therefore, it is imperative to develop an automatic fault
identification method.

With the rapid development of deep learning, especially the deep
convolution neural networks (CNN), more and more attention has
been paid to processing and interpreting seismic data, such as
velocity inversion, seismic salt interpretation and noise
suppression (Shi et al., 2019; Wu and McMechan, 2019; You
et al., 2020). The powerful capability of deep CNNs to establish
non-linear relationships between inputs and targets has made
automatic fault identification based on CNN models a popular
area of application. Seismic fault detection is essentially a
classification task, with labels of “fault” and “non-fault.” Over the
years, researchers have developed a variety of neural network
architectures to tackle this task. In the early stages, support
vector machine (SVM) and multi-layer perceptron (MLP)
methods were applied to deal with this task (Di et al., 2017;
2018). In recent years, more end-to-end fault-detection deep
CNN models have been developed (Xiong et al., 2018). The fault
detection task is regarded as semantic segmentation of images, and
the standard Unet architecture including encoder and decoder is
introduced (Li et al., 2019; Wu et al., 2019). Because of the
superiority of Unet models, its many variants have been
successfully applied in seismic fault detection, such as a nested
residual Unet, Unet 3plus and wavelet transform based CNN (Yang
et al., 2020; Gao et al., 2022; Shen et al., 2022).

The main feature of a CNN model is that it shares receptive
fields by using filters with limited size. Because of that, it is difficult
for CNN-based methods to learn explicit global and long-term
semantic information. In cases where the fault system is complex,

the positive (fault) and negative (non-fault) labels in seismic images
are highly unbalanced, and the CNN model may suffer from an
unsatisfactory result, which seems to be unable to fully meet the
strict requirements of seismic fault detection. Inspired by the
significant success of the transformer with attention mechanism
in the field of Natural Language Processing (NLP), a vision
transformer (ViT) module with an attention mechanism was
introduced (Dosovitskiy et al., 2021). However, transformers were
originally designed to process one-dimensional sequences and focus
on building global relationships between inputs and targets, which
results in a lack of localization information, which coincidentally is
the advantage of a CNN model. Integrating the strengths of both
models is becoming a new trend, leading to the development of
combined CNN and transformer architectures, such as the
Transformer-based Unet (TransUnet) and Shifted Windows
Transformer-based Unet (Swin TransUnet) (Cao et al., 2021;
Chen et al., 2021). Although these two hybrid models have been
successfully applied to medical image segmentation, there are few
reports on their use in seismic fault prediction. Using the combined
CNN-Transformer model to develop a new end-to-end hybrid
structure for seismic fault prediction is both promising and
significant.

In our manuscript, we begin by presenting our newly developed
hybrid CNN-Transformer architecture. Next, we investigate the loss
function used in the image segmentation and compare their
performances. Afterwards, we detailed compare several well-
established CNN architectures using synthetic data and evaluate
their metrics. Lastly, we apply the developed CNN models to
perform seismic fault prediction on real data and summarize
our work.

FIGURE 1
Architectures of (A) classical Unet, (B) TransUnet, (C) SwinUnet.
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2 Methodology

2.1 Architecture of Unet model

In our manuscript, for the task of semantic segmentation,
various variants of the standard Unet model that incorporate
transformers are gaining increasing attention. Two of these well-
developed models are the TransUnet and Swin TransUnet. The
TransUnet model integrates multiple transformer blocks into the
bottom layer of the standard Unet model, while the Swin TransUnet
replaces the convolutional blocks in the encoder-decoder
components with transformer blocks. TransUnet combines the
convolution blocks with transformers, showing more fused
features; Swin TransUnet illustrates a purely U-shaped
Transformer architecture. Further research is needed to
determine which architecture produces better results in seismic
fault prediction. The architectures of Unet models are shown in
Figure 1.

In order to extend the applications of CNN models, a
transformer with attention mechanism embedded within a CNN
is proposed and serves as a powerful tool in computer vision. In the
later examples of synthetical data, we can observe that predicted
results of the traditional Unet model are more continuity but lack
detailed information whereas transformer assistant Unet models are
short of continuity in seismic fault prediction. Due to the use of
shared convolution kernels, conventional convolutional neural
network models such as Unet are more suitable for learning local
features of input images but have limited ability to capture global
features. The Transformer models show a good performance of
global learning, but its description of local features of images is not
ideal. To take advantage of the strengths of both models, we propose
a new hybrid architecture called the Dual Unet with Transformer, as
illustrated in Figure 2.

2.2 Loss function

In deep learning, the loss function plays a crucial role. By
minimizing the loss function, the model converges and reduces
the predictive error of the CNN model. Therefore, different loss
functions have a significant impact on the model. In the case
where the parameters of the deep neural network architecture
have been determined, there is a need for a deeper comparative
study on how to select the loss function so that the deep neural
network converges to an optimal solution. In the seismic fault
detection, the positive (faults) and negative (no-faults) labels are
extremely unbalanced. The selection of the loss function is crucial
for prediction accuracy as it has advantages in handling label
imbalances. In our manuscript, we discuss a loss function that is
introduced. As seismic fault detection is a binary classification,
the loss function we discuss belongs to the binary segmentation
problem.

Binary Cross Entropy loss: Binary cross entropy is a classic and
widely used loss function in binary classification, but for image
segmentation, it is defined to predict a binary label at a pixel level. Its
function is defined as

lossBCE � − ylog~y + 1 − ~y( )log 1 − ~y( )[ ] (1)

Where y and ~y are the ground truth and predicted labels,
respectively.

Dice coefficient loss: Dice coefficient is a widely used
measurement in computer vision, which is applied to calculate
the similarity between two images. It has also been suggested for
use as a loss function (Milletari et al., 2016). The dice coefficient loss
between labels and outputs can be written as

lossDC � 1 − 2y~y
y + ~y

(2)

FIGURE 2
Architecture of dual Unet with transformer.
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Tversky loss: The loss function of dice coefficient keeps an
equal weigh between precision and recall. However, it is difficult
to train a network for highly imbalanced data by using the dice
coefficient loss function, in which predicting small scaled seismic
faults is crucial. To improve performance, the Tversky loss
function (Salehi et al., 2017) based on the Tversky index is
defined as

lossT � 1 − y~y

y~y + α 1 − y( )~y + βy 1 − ~y( ) (3)

Where α and β are coefficients. Noted that when α = β = 0.5, the
Tversky loss function is degenerated into the dice coefficient loss
function.

Local Tversky loss: Based on the Tversky index, to balance
precision and recall ratios in the small regions-of-interest and
make the loss function more sensitive to the small regions of
interest, a local Tversky loss (Abraham and Khan, 2019)
is proposed with a parameter γ, and its loss function is
defined as

losslocal T � lossT( ) 1
/γ (4)

Where γ is in the range of 1–3.
Multi-scale Structural Similarity (MS-SSIM) loss: The

structural similarity index (SSIM) is used to measure image
quality evaluation between a processed image and a reference
image. However, the SSIM index is a single-scale assessment. To
calculate image quality assessment more flexibly, a multi-scale
structural similarity (MS-SSIM) index is proposed (Wang et al.,
2003), it can be computed by combining the evaluation at
different scales using

lossms−ssim � 1 − l y, ~y( )[ ]αM∏M
j�1

c y, ~y( )[ ]βj s y, ~y( )[ ]γj (5)

Where l(y, ~y) � 2μxμy+C1

μ2x+μ2y+C1
, c(y, ~y) � 2σxσy+C2

σ2x+σ2y+C2
and

s(y, ~y) � σxy+C3

σxσy+C3
, C1 � (K1L)2, C2 � (K2L)2 and C3 � C2

2 . In

generally, L =255 and K1 ≪ 1 , K2 ≪ 1.
Intersection over Union (IoU) loss: The IoU index (Rahman and

Wang, 2016) is performed to measure a standard similarity between
the predicted and ground truth images for a segment issue, this loss
function is generally used in object detection and its definition is
written as

lossIoU � 1 − y ∩~y
∣∣∣∣ ∣∣∣∣
y ∪~y
∣∣∣∣ ∣∣∣∣ (6)

3 Numerical experiments

3.1 Performance of loss functions on
synthetic data

The selection of loss functions in seismic fault detection is a less
concerned topic. In this example, we compare the performance of
different loss functions using synthetic data, which lays a solid
foundation for the following works. We use synthetic 2D seismic

images with faults and their corresponding fault labels as training
samples to train a standard Unet (Wu et al., 2019). The synthetic 2D
seismic images and their corresponding labels are shown in Figure 3.
In the stage of training a neural network, we employ a total of
5,120 samples, in which 80% of them are used as training samples
and the remaining 20% are used as validation datasets while an
additional 256 samples are applied to test the accuracy of neural
networks. In order to quantitatively evaluate the performance of
different loss functions, we use three.

Evaluation indexes, including dice coefficient, sensitivity and
specificity, in evaluating the prediction results of CNN models.
Dice coefficient is used to account for overlapping pixels between
the predicted and ground-truth images while sensitivity and
specificity mirror the ratios of true positive and true negative,
respectively. These metrics are calculated by using the following
equations

DC � 2TP
2TP + FP + FN

,

sensitivity � TP

TP + FN

specificity � TN

TN + FP

(7)

Where TP, FP FN and TN represent the number of true positive,
false positive, false negative and true negative, respectively.

During the training of the neural network, we set the number of
epochs to 30 and use the same optimization parameters, including
Adam algorithm and learning rate of 0.0001. The loss and accuracy
curves using different loss functions are drawn in Figure 4.
Additionally, we also compile statistics for these three metrics
using different loss functions, which are listed in Table 1.
Examining the loss and accuracy curves, it can be seen that the
binary cross entropy loss function achieves the lowest error and the
highest accuracy. In the prediction results, we obtain a best dice
coefficient of 0.9101 by using the binary cross entropy loss, and IoU
loss also gets a very close value, a dice coefficient of 0.9050. As for
sensitivity, binary cross entropy loss also surpasses other loss
functions and IoU loss follows it closely. Except for MS-SSIM
loss function, the specificity of most loss functions is almost
equal. The comparison of metrics mutually confirms the accuracy
curves using different loss functions (Figure 4B).

In this test, we can conclude that it seems that a single loss
function is very difficult to get the best scores in all indexes. In the
seismic fault detection task, based on the seismic fault labels, it can
be observed that the positive and negative labels seem to be
imbalanced, but the binary cross entropy function outperforms
other loss functions in most metrics and it is probably the most
robust one. According to manuscript of Jadon (2020), other loss
functions may work better in the case of highly imbalanced data sets.
Therefore, our further work is based on the binary-cross entropy loss
function.

3.2 Fault prediction on synthetic data using
different architectures

After determining the performances of different loss functions,
we carry out an example to compare the performance of different
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Unet architectures, including the standard Unet, transUnet,
swinTrans Unet and dual Unet with transformer. In the neural
network training stage, we use the same training datasets in the

examples of comparing loss function. Figure 5 shows the accuracy of
the validated data sets using different Unet models. By observing the
accuracy curves, it can be seen that the predicted accuracy of the
proposed dual Unet with transformer model is superior to the other
Unet models. For a fair comparison, we pick up some predicted fault
images from the test data set by using different Unet models, which
are shown in Figure 6. By comparing the results, we notice that the
predicted faults from our proposed models exhibit more accurate
information than that of other Unet models. In the experiment, the
faults predicted by the traditional Unet model have greater
discreteness and less continuity, and the transUnet seems to
produce more artifacts. Our proposed dual Unet model combines
characteristics and properties of the traditional Unet model and the
transUnet model. This example illustrates the superiority of our
proposed method and provides a foundation for its application in
practical data.

It is interesting to note that the purely swin transformer U-type
model seems to produce an imperfect prediction. The predicted

FIGURE 3
Synthetic 2D seismic images and their corresponding labels, (A,C) are the seismic patch, (B,D) are their corresponding fault labels.

A B

FIGURE 4
Loss (A) and accuracy (B) curves using different loss functions, the red, blue, back, green, yellow and cyan lines present dice loss, Tversky, local
Tverskry, MS-SSIM, IoU and binary cross entropy loss functions.

TABLE 1 Evaluation metrics by using different loss functions.

Loss function Metrics

DC Sensitivity Specificity

Binary Cross-Entropy 0.9101 0.8592 0.9616

Dice 0.8688 0.7820 0.9696

Tversky 0.8887 0.8161 0.9687

Local Tversky 0.8730 0.7901 0.9673

MS SSIM 0.8953 0.8375 0.9532

IoU 0.9050 0.8473 0.9652
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results of Swin TramsUnet model have an obvious gap from those of
other models. The emphasis on global feature extraction makes it
difficult to consider the local continuity of seismic events in the
linear mapping of swin transformer blocks, and the precision curve

of Swin TransUnet in processing validation data sets also proves this
view. At present, we doubt that whether swinTrans Unet is able to
achieve a better performance than other methods as described in the
medical image segmentation, for the seismic fault detection task
(Cao et al., 2021). Fortunately, TransUnet seems to hold a good
accuracy compared with the standard Unet. Because of that, we
prefer to merge TransUnet and the standard Unet, to build a merged
Unet architecture, the predicted accuracy and fault images verify our
judgement.

4 Application of real data

In the actual seismic data fault prediction, our work selects a
shallow sea area in the southwest of Bohai Bay where the faults
are relatively well developed. In terms of regional structure, the
study area is located in the east of the low uplift in the Cheng Bei,
at the junction of the Bohai Depression and Jiyang Depression.
To the south is the Zhendong Depression, to the north is the
Bohai Depression, and to the east and west are the Chengbei low
uplift and the Bonan low uplift, respectively. The study area is
rich in hidden mountains, which have experienced the evolution
stages of ancient platform development, Triassic platform
disintegration, Yanshan rapid deformation, ancient
Quaternary faulting, and recent Quaternary depression. The

FIGURE 5
Accuracy curves of the validation date sets recorded by using
different Unet models, the black, blue and green lines indicate
accuracy of swinUnet, standard Unet and transUnet while the red
dashed line is the accuracy of our proposed dual Unet with
transformer.

FIGURE 6
Comparison of predicted faults by using different Unet models in the test data set: (A) standard Unet; (B) TransUnet; (C) Swin TransUnet; (D) our
proposed dual Unet with Transformer; (E) ground truth label.
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internal structure of the hidden mountain belt is quite complex,
with a large number of folds and fault structures, as shown in
Figure 7. Therefore, carrying out the characterization and
description of faults in this study area is of great significance

for understanding the evolution of the hidden mountains and
predicting oil and gas resources.

After the neural network training of synthetic data is completed,
we try to use our pretrained Unet models to perform seismic fault

FIGURE 7
Geological background of the research area.

FIGURE 8
Original seismic section with manual interpreted faults.
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prediction on the real data. The real seismic section is painted in
Figure 8. In Figure 8, some faults are easy to notice directly, which
have been marked by red lines. For a seismic fault detection task, we
prefer applying the pretrained Unet models to predict the seismic
faults straightforwardly without transfer learning, which is a tough
challenge. The predicted probability of faults overlapping with the
seismic section is shown in Figure 8. In the predicted faults, for some
large-scale faults such as fault F1, three Unet models generate similar
results. For the case of fault F3, the TransUnet model can only
predict it intermittently or hardly. Maybe inherited the ability of
standard Unet model, our proposed dual Unet with transformer can
produce clearer fault lines than the standard Unet and TransUnet
models, especially fault F4 at 1.2–1.4 s. To furtherly compare the
performance of fault prediction, we enlarge on the red dashed box
(F4) in Figure 9 and display it in Figure 10, it is obvious to see that
our proposed model yields a better quality of fault prediction than
other two methods. Note that because the Swin TransUnet model
has not obtained ideal results in the synthetic example, hence we do
not include it in the practical application. In order to compare the
application effects of neural network methods and traditional fault
identification methods in practical examples, this article used the
classical coherence cube algorithm to process the actual example
(Bahorich and Farmer, 1995). As shown in Figures 8, 9, the neural
network method provides a clearer and more continuous
characterization of the fault compared to conventional methods.
This also demonstrates the necessity and superiority of conducting
deep research on neural network methods.

It is worth noting that the seismic fault prediction of actual
seismic data using our proposed model is not performed using

transfer learning. The predicted results supply hard evidence to
prove that our proposed model has a better generalization than the
standard Unet and TransUnet models, and it is of great significance
for seismic fault prediction of practical data.

5 Discussion

Our target is to emphasize and raise the significance of loss
function in deep learning. Loss functions are crucial in
determining the performance of a model. However, for complex
objectives like segmentation, it’s not feasible to choose a single,
universal loss function. The optimal loss function depends mostly
on the dataset properties used for training, such as distribution,
skewness, and boundaries. It’s worth noting that none of the
existing loss functions are universally superior in all use cases.
Specifically, the binary-cross entropy function performs well in our
cases, and we do not think this is a conclusion that applies to all
deep learning problems. It may perform well for fault detection
task, but for different deep learning tasks, other loss functions may
be more effective. In our opinion, specific deep learning tasks need
to be analyzed in detail. For example, for deep learning tasks that
involve noise suppression in seismic data, which loss function
enables better performance of the deep neural network model, and
relevant numerical experiments and comparative studies need to
be conducted. For medical image semantic segmentation tasks,
Jadon (2020) has made a detailed comparison of the performance
of different loss functions, which has a different conclusion with
fault detection task.

FIGURE 9
Predicted faults by using different neural networks: (A) classical coherence cube algorithm; (B) conventional Unet; (C) TransUnet; (D) our proposed
dual Unet with transformer.
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For the interpretation of 3D seismic data, due to the large
amount of data, manual interpretation is difficult to efficiently and
quickly complete the relevant interpretation tasks. Fully automatic
or semi-automatic computer interpretation solutions have
received increasing attention and research. In theory, 3D
seismic data can be regarded as an unfolding form of multiple
2D data. For seismic data interpretation, we believe that the
successful application of 2D seismic data is the basis for the
application of 3D seismic data. Therefore, for fault recognition
work, the feasibility and effectiveness of the proposed method in
this article were first verified on 2D seismic data. Of course, the
development of 3D Transformer-based fracture recognition
technology is also one of our future research directions.
Currently, in the research of 3D medical image semantic
segmentation, some scholars have developed 3D Transformer
models, which can provide references for our future research on
3D Transformer-based fault detection (Hatamizadeh et al., 2022;
Liang et al., 2022). However, we need to develop a 3D Transformer

model suitable for fault recognition in seismic data according to
the characteristics of seismic data.

6 Conclusion

Aiming at the problem of seismic fault identification, after
analyzing the shortcomings of the convolution block and the
transformer block, we attempt to integrate a standard Unet
model with a TransUnet model, and develop a dual Unet with
transformer. In order to discuss which kinds of loss function can
make CNN models converges quickly and produce a best
performance, we carried out a numerical example to compare the
performance of six loss functions and find that the binary cross
entropy loss function has a superior performance in the task of
seismic fault detection. In addition, a synthetic data is employed to
compare performaces of different Architectures, the predicted fault
sections show that our proposed transformer assisted dual Unet

FIGURE 10
Enlarged images of the red dashed box in Figure 8: (A) classical coherence cube algorithm; (B) conventional Unet; (C) TransUnet; (D) our proposed
dual Unet with transformer.
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depicts the fault system clearer than that of the standard Unet,
TransUnet, Swin TransUnet and classical coherence cube algorithm.
Based on that, through seismic fault prediction and qualitative
comparison, predicted results demonstrate that our proposed
dual Unet with transformer model obtains a more accurate and
convergent fault prediction than that of the standard Unet,
TransUnet and Swin transUnet models in a synthetical case. In
the application of real data, our proposed model generates a higher
quality fault predicted image, compared with other Unet models,
proving its practical application value.
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Well log prediction while drilling
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Well log prediction while drilling estimates the rock properties ahead of drilling
bits. A reliable well log prediction is able to assist reservoir engineers in updating
the geological models and adjusting the drilling strategy if necessary. This is of
great significance in reducing the drilling risk and saving costs. Conventional
interactive integration of geophysical data and geological understanding is the
primary approach to realize well log prediction while drilling. In this paper, we
propose a new artificial intelligence approach to make the well log prediction
while drilling by integrating seismic impedance with three neural networks: LSTM,
Bidirectional LSTM (Bi-LSTM), and Double Chain LSTM (DC-LSTM). The DC-LSTM
is a new LSTM network proposed in this study while the other two are existing
ones. These three networks are thoroughly adapted, compared, and tested to fit
the artificial intelligent prediction process. The prediction approach can integrate
not only seismic information of the sedimentary formation around the drilling bit
but also the rock property changing trend through the upper and lower
formations. The Bi-LSTM and the DC-LSTM networks achieve higher prediction
accuracy than the LSTM network. Additionally, the DC-LSTM approach
significantly promotes prediction efficiency by reducing the number of training
parameters and saving computational time without compromising prediction
accuracy. The field data application of the three networks, LSTM, Bi-LSTM, and
DC-LSTM, demonstrates that prediction accuracy based on the Bi-LSTM and DC-
LSTM is higher than that of the LSTM, and DC-LSTM has the highest efficiency
overall.

KEYWORDS

machine learning, long short-term memory, well log prediction, drilling bit, seismic
impedance, neural networks

1 Introduction

During the drilling process, reliable prediction of the rock properties of the
geological formation below the drill bit is of great significance. If well logs can be
effectively obtained within a certain depth range below the drill bit, it can surely help to
improve the drilling process with lower risk and optimal strategy. Researchers have
proposed various methods for well log prediction while drilling (Wang, 2017; Tamim
et al., 2019). Wang (2017) established a 3D model by analyzing the drilling core, rock
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chip, and seismic data. The well log curve values below the
drilling bit along the borehole trajectory are predicted based
on the 3D model. Tamim et al. (2019) constructed a Bayesian
classifier using well logs as the classification target. With the
posterior probability calculated with prior distribution and
conditional probability, the spatial distribution of well logs
can be predicted. However, the actual geological formations
are non-homogeneous and complex. The logging curve values
show great fluctuations with depth even when the sampling
interval of the well log is small. The mapping relationships
between different data points are strongly non-linear, and the
traditional methods are not able to effectively predict the actual
formation changes.

Predicting rock property with geophysical data is often a
non-linear problem in many cases. Describing the intrinsic
relationship between properties and their geophysical
responses using explicit mathematical or physical equations
can be challenging. However, machine learning has shown great
potential in recent years, as it can describe these relationships
with network parameters by using a large number of training
datasets. Examples of relevant machine learning applications
include geological parameter estimation (Ahmed Ali Zerrouki
and Baddari, 2014; Iturrarán-Viveros and Parra, 2014),
lithology discrimination (Wang et al., 2014; Silva et al.,
2015), and stratigraphic boundary determination (Singh,
2011; Silversides et al., 2015). In recent years, there has been
a surge of research on well log prediction, resulting in
significant improvements in performance (Rolon et al., 2009;
Alizadeh et al., 2012; Mo et al., 2015; Long et al., 2016; Salehi
et al., 2017).

The well log prediction methods discussed above use fully
connected neural networks (FCNN) to construct a point-to-
point mapping. However, FCNN shows less effectiveness in
characterizing the trend of the data because it cannot capture
the relations between the point data of well log at different
depths. This means that the correlation between the rock
properties at a shallower depth and those at a deeper depth
is ignored, potentially contradicting the sedimentary principles
in the geological sense. To fix this problem with FCNN in well
log prediction, many researchers have improved FCNN by
coupling non-machine learning methods, such as wavelet
transform (Adamowski and Chan, 2011) and singular
spectrum analysis (Sahoo et al., 2017). However, these
improvements are often complex and cumbersome to
implement. An alternative way to utilize recurrent neural
networks (RNNs) is able to deal the problems (Schuster and
Paliwal, 1997). In the RNN structure, there is a self-looping
structure within each neural unit, which allows previous
information to be retained and used later. Since the
information can flow freely in the RNN, well log prediction
with this method integrates the intrinsic connection between
different logs and the overall trend with depth, which follows
geological principles.

Long Short-Term Memory Neural Networks (LSTM), an
advanced form of RNN, have become widely utilized in the
deep learning community for various tasks. LSTM
incorporates gate structures within each automatic cycle
structure to mimic biological neurons’ information conduction

patterns, thereby storing more long-term sequential information
without additional tuning. This attribute has facilitated LSTM’s
extensive use in natural language processing (Deng et al., 2019),
machine translation (Lokeshkumar et al., 2020), and speech
recognition (Graves and Jaitly, 2014). Moreover, RNNs and
LSTMs have also found applications in the field of hydrology
to deal with time series data-related problems (da Silva and
Saggioro, 2013), and some researchers have used LSTM to
generate logs (Jin, 2018).

In the case of well log prediction while drilling, Wang et al.
(2020) employed the LSTM model, whereas Shan et al. (2021)
utilized the CNN-LSTM hybrid model to achieve the goal.
Both methods employed neighboring well logs to predict the
logs at the undrilled segment, resulting in successful
outcomes. However, when neighboring wells are too distant
(as in the case of sparse neighboring wells) and well
correlation is weak, the prediction results can become
biased. In certain scenarios, prediction may not be possible
due to the unavailability of well logs from neighboring wells at
the prediction depth.

This study proposes a novel approach for well log prediction
while drilling, utilizing seismic impedance and three different
artificial intelligence networks: the LSTM network and its two
derivative networks, namely, the Bi-LSTM and the newly
developed Double Chain LSTM (DC-LSTM). The proposed
methodology effectively integrates seismic impedance
constraints for well log prediction. The results demonstrate
that the two derivative networks outperform the LSTM
network in terms of prediction accuracy. Additionally, the
DC-LSTM network exhibits superior computational efficiency
as compared to the Bi-LSTM network, owing to the reduction in

FIGURE 1
Workflow of data procession. (Red means known value and blue
means unknown value).
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the number of network parameters and consequently the
computing time, while maintaining prediction accuracy. A
practical case study is conducted to verify the effectiveness of
the proposed methodology.

2 Methodology

2.1 Well log prediction while drilling
principle: training and prediction

The acquisition of well logs is traditionally carried out after
drilling, while well log prediction while drilling refers to the real-
time estimation of well logs at a certain depth below the drill bit
during the drilling process. This paper presents a workflow for
such prediction, as depicted in Figure 1. The known observed logs
are shown in red, whereas the logs yet to be predicted are shown
in blue. The seismic impedance obtained through seismic
inversion is utilized as input data for the training and
prediction of well logs using three different networks, as
outlined in Table 1.

2.2 Three networks: LSTM, Bi-LSTM, and
DC-LSTM

2.2.1 The LSTM adaption
The LSTM neural network (Hochreiter and Schmidhuber,

1997) is a specialized type of recurrent neural network (RNN)
designed to capture long-term dependencies within sequential
data. This makes it particularly suitable for processing well logs,

which are a type of sequential data with a relatively small
sampling interval. A significant characteristic of well logs is
the representation of long-term depth trends within a large
depth interval, which can play an essential role in prediction
tasks. Unfortunately, these trends are often overlooked in
existing models. However, LSTM’s ability to retain
information with long-term dependencies from previous, more
distant steps allows it to capture and incorporate these trends
into its predictions. As a result, LSTM represents an effective tool
for well log prediction.

Figure 2 illustrates the architecture of the LSTM network. The
inputs to the network are denoted by x1 to xn, while h1 to hn
represent the hidden state vectors. The computation of the LSTM
network’s outputs is performed iteratively in a stepwise fashion,
from Step 1 to Step n, with the hidden state vectors h1 to hn and
outputs y1 to yn calculated sequentially by the LSTM unit. In the
context of well log prediction, only the final output, yn, is utilized for
prediction, and is subsequently fed into a Fully-Connected Neural
Network (FCNN).

2.2.2 Bidirectional LSTM network adaption
The Bi-LSTM neural network (Graves and Schmidhuber,

2005) represents a variant of the LSTM architecture that
incorporates two parallel LSTMs: one running forward along
the input sequence, and another running backward in reverse
order. By exploiting both the past and future context of the input
data, the Bi-LSTM model can capture more comprehensive and
accurate representations of sequential data. Specifically, the
forward and backward LSTMs compute hidden state vectors in
opposite directions, and the final output of the network is
produced by combining the two LSTM’ outputs with
appropriate weights in the output layer. A diagram of the Bi-
LSTM structure is presented in Figure 3.

In Figure 3, the input is denoted by x, and the hidden state
vectors of the forward and backward hidden layers are represented
by hf and hb, respectively. The forward layer computes its outputs in
a sequential manner from Step 1 to n, while the backward layer
calculates its outputs from Step n to 1. The LSTM unit calculates the
hidden state vectors of the forward and backward layers, i.e., hf and
hb, respectively. The network generates its outputs based on the
following equation,

yn � hf⊗ hb (1)

TABLE 1 The steps of the work.

Steps of well log prediction while drilling

Step 1: Obtaining seismic impedance by the inversion of seismic data.

Step 2: Constructing a dataset with B1 and A1 as the label library.

Step 3: Training the neural network with the label library and establishing the
mapping from seismic impedance to well log.

Step 4: Performing the prediction from B2 to A2 based on the trained network.

FIGURE 2
The architecture of the LSTM. (Each green box stands for one LSTM unit).
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where a ⊗ is a matrix operator, which is utilized to couple hf and hb

sequences. The operator ⊗ could be a summation, multiplication,
concatenating, or average function. In the experiment of this paper,
the operator ⊗ is concatenating the horizontal matrix. The final output of
a Bi-LSTMnetwork is expressed as vectors, [y1, y2, . . . , yl . . . , yn−1, yn].
The element in the middle position, yl, is used to predict the log values.

Figures 4, 5 present the prediction framework using a Bi-LSTM
network for mapping the relationship between well logs and seismic
impedance. The prediction framework is comprised of three layers,
namely, the input layer, the output layer, and the hidden layer. The
network is trained using the training set to obtain the mapping
relationship between the log segment of the well and seismic

FIGURE 3
The architecture of the BiLSTM.

FIGURE 4
Prediction framework of Bi-LSTM network.
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impedance. The seismic impedance within the undrilled well
segment is then used to predict well logs.

In Figure 5, the model is trained using well logs observed
from the drilled segment and the corresponding seismic
impedance to optimize the network. The trained model is
subsequently used to predict log values of the well segment
below the training data along the well trajectory. The input
window specifies the length of the input seismic impedance

sequence to the network, and the input window length should be
consistent between the training and prediction phases. In the
current example, q1 represents the value at the position xl, while
hfl−1 and hbl−1 denote the hidden state vectors before and after
processing q1, respectively. Table 2 outlines the prediction steps
in detail.

2.2.3 The double-chain LSTM adaption
The Bi-LSTM model utilized for well log prediction while

drilling entails numerous prediction parameters. Specifically, the
final output of a Bi-LSTM layer is expressed as a set of vectors,
denoted as [y1, y2, . . . , yl . . . , yn−1, yn]. However, only the vector
positioned in the middle, yl, is employed to predict the log values.
As a result, other vectors computed during both training and
prediction are not utilized, resulting in a strain on computational
efficiency. To address this issue, this paper proposes a DC-LSTM
network.

The DC-LSTM network is an optimized network that aims to
enhance the computational efficiency in well log prediction while
drilling in comparison to the Bi-LSTMmodel. As shown in Figure 6,
DC-LSTM divides the input sequence, represented by
[x1, x2, . . . , xl . . . , xn−1, xn], into two sequences: [x1, . . . , xl] and
[xl, . . . , xn], where xl is positioned at the middle of the sequence.
The two sequences [x1, . . . , xl] and [xl, . . . , xn] are then separately
inputted into two LSTM. Following the ⊗ operation, yl, which is
identical to the yl mentioned in the Bi-LSTM, is obtained. Because

FIGURE 5
Flow chart for prediction of Bi-LSTM network.

TABLE 2 The specific steps of the prediction phase.

Steps of Bi-LSTM model for well log prediction while drilling

Step 1: Determine the location of the input window

Step 2: As shown in Figure 5, when the data is input to the network (the data in the
solid box), q1 is located in the midpoint of the input window, i.e., ql is the
input of time step xl , then the LSTM cell at the position of time step= l can
obtain as well as the original seismic data q1 and the input of two cell states

hfl−1 and h
b
l−1, outputs h

f
l and hbl , After the ⊗ operation yl is obtained and from

this, the logging data w1 for the unknown segment is predicted, w1 and q1
being the corresponding data for the same depth.

Step 3: The Input Window is shifted one place to the right, so that when the data is
entered into the network (the data inside the dashed box), q2 is located right
in the middle of the InputWindow, and it can be predicted thatw2,w2, and q2
are the corresponding data of the same depth.

Step 4: Repeat the step3 to predict all unknown segment data
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only one vector, yl, is involved in the prediction process, DC-LSTM
significantly reduces the number of network parameters and
enhances calculation efficiency relative to Bi-LSTM.

Figures 7, 8 depict the prediction process with DC-LSTM, which
is a simplified and more efficient version of Bi-LSTM in well log
prediction while drilling. As illustrated in Figure 7, DC-LSTM
replaces Bi-LSTM in the hidden layer, resulting in a simpler
overall structure. Furthermore, Figure 8 shows that DC-LSTM

requires only n+1 LSTM units, whereas Bi-LSTM utilizes 2n
LSTM units. This reduces the number of parameters and
improves computational efficiency. Importantly, yl calculated in
DC-LSTM is identical to that in Bi-LSTM, thereby ensuring the
same level of prediction accuracy.

The steps of prediction with DC-LSTM are largely analogous to
those outlined in Table 2 for Bi-LSTM. The only difference is that
DC-LSTM divides the input sequence [x1, x2, . . . , xl . . . , xn−1, xn]

FIGURE 6
The architecture of the Double-chain network.

FIGURE 7
Prediction framework of DC-LSTM network.
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into two shorter sequences, namely, [x1, . . . , xl] and [xl, . . . , xn],
which are then fed into two separate LSTMs.

3 Experiment

In this part, we present the results of well log predictionwhile drilling
using seismic impedance with the LSTM, Bi-LSTM, and DC-LSTM.

3.1 Dataset

In this experiment, a pilot area of an oil field in East China is
selected for well log prediction. Two wells and a seismic
impedance cube in the area are used in this experiment (see
Figure 9). The two wells have four logs for testing, density (DEN),
natural gamma ray (GR), compensated neutron log (CNL), and
induction (CON).

FIGURE 8
Flow chart for prediction of DC-LSTM.

FIGURE 9
Seismic impedance profile of input data.
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Before the prediction with the three networks, two data
preprocessing tasks, data cleaning, and standardization are
required.

3.1.1 Data cleaning
Data cleaning (Zhang et al., 2015) aims to improve the data

quality of input data. Common problems with logs, such as

FIGURE 10
Logging curves for well A and well B used in training and validation: (A) well A, (B) well B
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invalid and missing values, are cleared. Check on the data value
range are necessary as well. Any data point, falling outside the
normal range, logically unreasonable, or contradictory, is also
cleared.

3.1.2 Data standardization
The purpose of data standardization is to centralize data

values so that the characteristics of each type of data are balanced.
Data standardization also reduces the disturbance of anomalous
values that still exist after data cleaning. This paper uses the
z-score normalization method (Hrynaszkiewicz, 2010) to
standardize input data standardization, expressed in the
equations below,

x* � xi − �x

s
(2)

�x � 1
N

∑N

i�1xi (3)

s �
�����������������
1

N − 1
∑N

i�1 xi − �x( )2
√

(4)

where x* is the standardized data, xi is the input data, �xi is the mean
of the input data, and s is the standard deviation of the input data.
The standardized data not only retains the correlations present in
the original data but also removes the effects of different magnitudes
and ranges of data values.

3.2 Evaluation metrics

The problem discussed in this paper is called the ‘regression
task’ in the field of the neural network, and the common loss
functions of the regression task are Mean Square Error (MSE),
Root Mean Square Error (RMSE), and Mean Absolute Error
(MAE). If there are some unusual values (large or small) in
the data, these values are more likely to indicate the important
geological contrast in rock properties, such as sudden change of
lithology, measured acoustic velocity, etc. Therefore, it is
necessary to attach more weight on the unusual values. This is
achieved by using MSE as the loss function.

MAE and RMSE are used as criteria to evaluate prediction
accuracy. MAE is the average of the absolute error between the
predicted value and the true value, indicating the true situation of
the error, while RMSE is generally used to indicate the deviation
between the predicted value and the true value. MAE, MSE, and
RMSE are defined as,

MAE � 1
N

∑N

i�1 yi − ŷi

∣∣∣∣ ∣∣∣∣ (5)

MSE � 1
N

∑N

i�1 yi − ŷi( )2 (6)

RMSE �
��������������
1
N

∑N

i�1 yi − ŷi( )2√
(7)

where yi is the predicted value and ŷi is the true value. The smaller
the MAE and RMSE values, the more accurate the model’s
prediction of the well logs will be.

In this study, the MAE and RMSE of four logs are calculated and
averaged to evaluate the performance of different models. However,
the value ranges of these four curves are very different, and the value
ranges of the same curve in different wells are also different. For the
fair evaluation of the results, the true and predicted values of each
curve are put together and normalized before calculating the MAE
and RMSE, according to the following equation,

yi � yi − �y( )
ymax − y min( ) (8)

where yi are the normalized values of a well log, �y is the mean of the
well log, ymin refers to the minimum value, and ymax denotes the
maximum value.

3.3 Experiment results and analyze

In this experiment, two wells, namely, Well A (with measured
depth ranging from 3220m to 3960 m) and Well B (ranging from
3700 to 4400 m), along with a seismic impedance segment
traversing both wells, were utilized as input data (as depicted
in Figure 9). The training data set was constructed by
incorporating the first 70% of the well log data (the section
above the red line shown in Figure 10), along with the
corresponding seismic impedance. The remaining 30% of the
logs (the section below the red line in Figure 10) and their
corresponding seismic impedance were used for blind test
validation. The sampling interval for both wells was set to
0.076 m. The input window length for the networks was fixed
at 51 neighboring data points, which corresponds to an actual
sampling length of 3.876 m. By using seismic impedance, each
input window predicts a single well log point at the depth of the

TABLE 3 Training parameter setting.

Parameter Setting

Optimization algorithm ADAM

Hidden layers 25

Batch size 32

Learning rate 0.002

Dropout 15%

Epochs 150

Input size 1

Output size 1

Layer number 2
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middle point of the input window. The window length
determines the memory range of the network model during
both the training and prediction processes.

In this study, the training data set is obtained by dividing the
impedance and well logs into segments with a length of 51. The
impedance is utilized as the input, while four well logs, including

FIGURE 11
Results of the three networks applied to well A: (A) LSTM, (B) Bi-LSTM, (C) DC-LSTM.

TABLE 4 MAE and RMSE of the three methods applied to well A.

CNL CON DEN GR Average

MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

LSTM 0.154 0.182 0.119 0.153 0.145 0.198 0.176 0.214 0.149 0.187

Bi-LSTM 0.088 0.111 0.067 0.090 0.146 0.183 0.154 0.182 0.114 0.142

DC-LSTM 0.078 0.099 0.076 0.102 0.115 0.156 0.129 0.164 0.099 0.130

TABLE 5 MAE and RMSE of the three methods applied to well B.

CNL CON DEN GR Average

MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

LSTM 0.062 0.088 0.143 0.207 0.085 0.115 0.167 0.207 0.114 0.154

Bi-LSTM 0.056 0.075 0.119 0.169 0.069 0.110 0.113 0.141 0.089 0.124

DC-LSTM 0.057 0.076 0.110 0.139 0.062 0.089 0.121 0.147 0.086 0.112
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density (DEN), natural gamma ray (GR), compensated neutron log
(CNL), and induction (CON) curves, serve as the output. The optimal
training parameters, as demonstrated in Table 3, are determined
through several rounds of parameter tests.

The training sequences (impedance and well logs) are divided
into segments with a length of 51 to produce the training and
prediction data set. The impedance is used as the input. Four well
logs, including density (DEN), natural gamma ray (GR),
compensated neutron log (CNL), and induction (CON) curves,

are used as the output. The best results are obtained by using the
training parameters shown in Table 3 after a few times of parameter
tests.

Figures 11, 12 depict the outcomes of the three methods
employed in the analysis of the two wells, where the red and
blue curves indicate the predicted and actual values, respectively.
As illustrated in these figures, the performance of the LSTM-
based method is suboptimal, as it fails to capture the geological
changes adequately, leading to inaccurate overall predictions.

FIGURE 12
Results of the three networks applied to well B: (A) LSTM, (B) Bi-LSTM, (C) DC-LSTM.

TABLE 6 Time spent on three methods (Unit: seconds).

WELL A WELL B Over All

Train Predict Train Predict Train Predict Total

LSTM 17.6 ± 1.1 3.4 ± 0.3 18.9 ± 1.2 3.2 ± 0.3 36.5 6.5 43.0

Bi-LSTM 43.5 ± 3.4 8.8 ± 1.1 41.3 ± 3.2 8.1 ± 1.1 84.8 16.9 101.7

DC-LSTM 25.4 ± 2.1 5.1 ± 0.7 24.1 ± 2.1 4.7 ± 0.8 49.5 9.8 59.3
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Conversely, the Bi-LSTM and DC-LSTMmethods yield favorable
results in both detecting the geological variations in detail and
predicting the overall trend.

Table 4, 5 present the Mean Absolute Error (MAE) and Root
Mean Squared Error (RMSE) values of three methods applied to two
wells. Figure 13 is a bar chart illustrating the performance of these
methods. The results indicate that the MAE and RMSE values of the
Bi-LSTM and DC-LSTM models are significantly lower than those
of the LSTM model in terms of average value. This finding implies
that the predicted values of Bi-LSTM andDC-LSTM are closer to the
true values than those of the LSTM model. The MAE and RMSE
values of DC-LSTM are similar to those of Bi-LSTM. However,

Table 6 shows that using DC-LSTM significantly reduces the time
required for model training and prediction.

In well log prediction while drilling, accuracy is a crucial
reference factor. In this study, the models are evaluated based on
the time spent, using the same personal computer with NVIDIA
GPU (GTX 1650 with 4 GB video storage) and the same set of
parameters for training and prediction. Table 6 and Figure 14 show
the time spent on the models. Results reveal that the running time of
the LSTM model is the shortest among the three methods, but its
accuracy is the lowest. Bi-LSTM and DC-LSTM models exhibit
comparable higher accuracy, with DC-LSTM being more efficient in
terms of computational time.

FIGURE 13
The average MAE and RMSE of three methods on three wells: (A) MAE, (B) RMSE.
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4 Conclusion

This paper presents a novel approach for predicting well logs
using artificial intelligence while drilling, utilizing seismic
impedance and three related LSTM networks. The proposed
approach incorporates the constraints of sedimentary
formation seismic impedance at the drill bit and the changing
trend of impedance through the upper and lower formations.
This optimization of the prediction process results in improved
computational efficiency. Through experimentation, the Bi-
LSTM and DC-LSTM derivative networks are demonstrated to
have higher prediction accuracy than the base LSTM. Notably,
the DC-LSTM network, developed in this paper, is more efficient
in reducing the number of training parameters and
computational time without compromising prediction
accuracy, as compared to the Bi-LSTM. Field data tests of the
three networks were conducted using two wells, and the results
demonstrate their effectiveness and efficiency.

The data-driven approach utilizing the three networks is effective
for predicting well logs in laterally homogeneous target formations,
particularly in the case of clastic sedimentation. However, if the
formation exhibits significant lateral heterogeneity, such as fractures
and faults near the drilling bits, the prediction accuracy may be
compromised. Therefore, the challenge of making reliable
predictions under such conditions with limited quality data and
rapidly changing trends is an important research topic for the future.
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